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Resum

Aquesta tesis esta dedicada a estudiar la propietat de Bishop-Phelps-

Bollobéas en diferents contextos.

En el Capitol 1, introduim la notaci6 utilitzada al llarg de tota la tesis
i donem un resum historic d’aquesta propietat, explicant, entre altres, els
teoremes de Bishop-Phelps i Bishop-Phelps-Bollobas. El primer teorema
de Bishop-Phelps [14] ens diu el segiient:

Siga X un espai de Banach. Donat un nimero real positiu € > 0 ¢ un
funcional lineal © continu x* € X*, existeir un nou funcional xj, € X* 1

un nou punt xo € Sx tals que satisfan les segiients condicions:
|z5(z0)| = llagll 1 lzg — ™[] <e.

Es a dir, el teorema prova que el conjunt de tots els funcionals que
alcanga la norma és dens (en norma) en el dual d'un espai de Banach X.

Es natural doncs preguntar-se si aquest resultat és també cert per
a operadors lineals i continus. En 1963, J. Lindenstrauss [52] va donar
el primer contraexemple que mostra que, en general, el resultat és fals.
D’altra banda, també va presentar condicions que han de satisfer els
espais de Banach per a obtindre resultats positius. Després d’aixo, altres
autors han estudiat diverses hipotesis que es poden exigir als espais

de Banach per a saber si el conjunt dels operadors lineals i continus
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que alcancen la norma és dens (en norma) dins del conjunt de tots els
operadors lineals i continus.
Set anys més tard, en 1970, Bollobés [15] va provar una versié més

forta del teorema de Bishop-Phelps, enunciada a continuaci6.

Siga X un espai de Banach. Donat € > 0, si x € Bx ¢ x* € Bx-

complizen
2

g
1—a*(z)| < =
- @) < 5

aleshores existeixen elements xy € Sx 1 xj € Sx+ tals que
[zo(zo)| =1, lmo -zl <e i [lag—2"|| <e.

Amb aquest resultat Bollobas va mostrar que a més de 'aproximacié
per als funcionals, també és possible aproximar el punt inicial on el
primer funcional z* quasi alcanca la norma, per un punt en el que el nou
funcional, proper a z*, alcanga la norma.

En els ultims nou anys, s’han escrit una gran quantitat d’articles en
els que es presenten diferents teoremes del tipus Bishop-Phelps-Bollobas
per a operadors lineals i continus. L’interes per aquests teoremes va
comencar amb 'article de M. Acosta, R. Aron, D. Garcfa i M. Maestre [2].
En aquest article, els autors van definir per primera vegada la propietat
de Bishop-Phelps-Bollobas (BPBp). La propietat és la segiient.

Diem que un parell d’espais de Banach (X;Y') satisfa la BPBp si donat
e > 0, existeiz n(e) > 0 tal que per a tot T : X — Y operador lineal de

norma u © per a tot xo element en [’esfera unitat de X que complizen
1T (o)|| > 1 = ne),

existeixen un nou operador lineal S : X — Y de norma wu i un nou

element x1 en l'esfera unitat de X tals que complizen les segiients condi-
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ctons:
[S(x)l| =1, [lo1—all<e 7@ [|S-T[<e.

Es important destacar que del teorema de Bishop-Phelps-Bollobés es
dedueix que el parell (X;K) satisfa la BPBp per a tots els espais de
Banach X. D’altra banda, cal assenyalar que si el parell (X;Y) satisfa
la BPBp, aleshores el conjunt de tots els operadors lineals i continus que
alcancen la norma és dens (en norma) en el conjunt de tots els operadors
lineals i continus de X en Y.

Per a finalitzar el Capitol 1, es presenten alguns dels més recents
resultats relacionats amb els teoremes de Bishop-Phelps-Bollobas amb

I’objectiu de posar aquesta tesis en un context actual.

A continuacid, en el Capitol 2 estudiem algunes propietats semblants
a la propietat de Bishop-Phelps-Bollobas. Comencem amb la propietat
punt de Bishop-Phelps-Bollobas (BPBpp).

Diem que un parell d’espais de Banach (X;Y') satisfa la BPBpp si donat
e >0, emisteiz n(e) > 0 tal que per a tot T : X — Y operador lineal de

norma u i per a tot xg element de ’esfera unitat de X tals que
1T (o)l > 1 —=n(e),
ezisteir un nou operador lineal S : X — Y de norma u que satisfa
[S(o)| =1 4 [[S-T] <e

Destaquem que aquesta nova propietat és més forta que la BPBp. Al
llarg d’aquest capitol, primer estudiem la BPBpp per a operadors lineals
y després per a aplicacions bilineals, obtenint en el dos casos resultats
positius d’existencia de parells d’espais de Banach satisfent-les.

També és important mencionar que en la BPBpp, el punt inicial z,

i.e., el punto en el que 'operador T quasi alcanca la norma, és el mateix
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punt en el que I'operador proper a T' també alcanca la norma. D’altra
banda, utilitzant la BPBpp hem provat una caracteritzacio dels espais

uniformement suaus.

Un espai de Banach X és uniformement suau si i només si el parell
(X;K) satisfa la BPBpp.

En aquest capitol també provem que si un parell (X;Y) satisfa la
BPBpp per a algun espai de Banach Y, I'espai de Banach X ha de ser
uniformement suau. Per tant, sempre necessitem suposar que el domini
X de l'operador és uniformement suau per a aixi poder aconseguir
resultats positius sobre aquesta propietat.

A més a més, si Y té la propietat 5 o és un algebra uniforme, aleshores
el parell (X;Y') té la BPBpp per a tots els espais uniformement suaus
X.

D’altra banda, també hem provat resultats sobre la BPBpp treballant
en espais de Hilbert. Com els espais de Hilbert tenen normes transitives,
mostrem que si H es un espai de Hilbert, aleshores el parell (H;Y)
satisfa la BPBpp per a tots els espais de Banach Y.

Acabem aquesta primera part del capitol mostrant que existeixen
espais reals X uniformement suaus de dimensi6 2 tals que el parell (X;Y)
no satisfa la propietat punt de Bishop-Phelps-Bollobds per a certs espais
de Banach Y. Finalment, estenem els resultats obtinguts al considerar

la propietat per a aplicacions bilineals en situacions semblants.

El contingut d’aquesta secci6 va ser publicat en el segiient article:

S. DanTas, S. K. Kim AND H. J. LEE, The Bishop-Phelps-Bollobés
point property, J. Math. Anal. Appl. 444 (2016), no. 2, 1739-1751.

Seguint en el Capitol 2, estudiem una propietat dual a la BPBpp en
dues situacions diferents. Primer, considerem que el nimero real positiu

n que apareix en la definici6 (veure Definition 2.2.2) depén no solament
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d’e > 0, pero també d’un operador lineal préviament fixat i de norma u.

Anomenem aquesta propietat, propietat 1.

Diem que un parell d’espais de Banach (X;Y) satisfa la propietat 1 si
donat € > 0 i donat un operador lineal T de norma u, existeiz n(e, T) > 0

tal que per a tot element xo de l’esfera unitat de X amb
1T (zo)|| > 1 —n(e, T),
existeir un altre element x1, també en [’esfera unitat de X, que satisfa
[Tl =1 @ |z — ol <e.

De la definici6 de la propietat 1 es dedueix que tot operador 7' : X — Y
alcanga la norma si el parell (X;Y) satisfa aquesta propietat. Per tant, i
utilitzant el Teorema de James (veure Remark 2.2.3.(a)), hem de prendre
com condicié necessaria que el domini X siga reflexiu per a aixi obtindre
resultats positius.

Per a espais de dimensi6 finita hem provat el seglient resultat.

El parell (X;Y) satisfa la propietat 1 per a tot espai de dimensid finita
X 1 per a qualsevol espai de Banach'Y .

Un altre resultat provat s’enuncia a continuacio.

Si X es un espai de Banach reflexiu i localment uniformement convex,
en particular si X és uniformement convezx, aleshores el parell (X;Y)

satisfa la propietat 1 per a operadors compactes.

Com conseqiiencia, el parell (f9;¢;) satisfa la propietat 1 ja que tot
operador entre aquests dos espais és compacte i f5 és uniformement
convex. En realitat, en aquest capitol, donem una caracteritzacié de

aquesta propietat per a tots els parells (¢,;¢,).
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(1) El parell (€,;¢,) satisfa la propietat 1 per a tots p,q tals que 1 < g <
p < 00.

(ii) EIl parell (£,;4,) no satisfa la propietat 1 per a tots p,q tals que
I<p<g<oo.

A continuacié, considerem una versié uniforme de la propietat 1 i
I’anomenem propietat 2. Aquesta propietat és semblant a la propietat 1
pero considerant 7 depenent només d’e > 0.

Utilitzant el Teorema de Kim- Lee [46, Theorem 2.1] tenim la segiient

caracteritzacié dels espais uniformement convexos:

Un espai de Banach X és uniformement convex si i només si el parell
(X;K) té la propietat 2.

Aquesta és una versié dual de la ja mencionada propietat punt de
Bishop-Phelps-Bollobés per al parell (X;K), que caracteritza els espais
uniformement suaus. Al contrari del que hem provat amb la BPBpp,
en el cas de la propietat 2 resulta més complicat aconseguir resultats
positius. En efecte, entre els resultats provats destaquem els segiients

teoremes negatius.
Els parells ((3(R); £2(R)) no satisfan la propietat 2 per a 1 < q < oo.
I també

Donat 'Y espai de Banach de dimensid 2, el parell (Y;Y) no satisfa la
propietat 2.

El contingut d’aquesta seccio va ser publicat en el segiient article:

S. DANTAS, Some kind of Bishop-Phelps-Bollobas property, Math.
Nachr., 2016, doi:10.1002/mana.201500487

En la Secci6 2.3 treballem amb la propietat punt de Bishop-Phelps-
Bollobés per a radi numeric (BPBpp-nu). Aquesta propietat va ser
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motivada per la recent propietat de Bishop-Phelps-Bollobas per a radi
numeric (veure, per exemple, [32, 37, 47]). La seua definicié és pareguda
amb la BPBp pero en lloc de la norma de 'operador considerem ara el

radi numeric.

Diem que un espai de Banach X satisfa la propietat de Bishop-Phelps-
Bollobds per a radi numéric (BPBp-nu) si donat € > 0, existeiz n(e) > 0
tal que per a tot operador lineal i continu T : X — X de radi numeric

u i per a tot parell (x,x*) que satisfa |z*|| = ||z|| = z*(z) = 1 @ també

|2*(T(2))] > 1 =ne),

existeizen un nou operador lineal i continu S amb radi numeric u © un

nou element (y,y*) amb [|y*|| = |ly|| = y*(y) =1 tals que
(Sl =1 lly =" <e, ly—zll<e i [[S-T|<e.

En el nostre cas, igual que fem amb la BPBpp, considerem el mateix
punt inicial (z,z*) per al dos operadors.

El primer resultat provat en aquesta seccié ens diu que tot espai de
Hilbert complex satisfa la BPBpp-nu. Es per aixd que hem provat que
alguns tipus d’operadors (auto-adjunts, anti-simetrics, unitaris i normals)
definits en un espai de Hilbert complex complixen els propietats BPBpp

i BPBpp-nu. Resumim aquests resultats a continuacio.
St H és un espai de Hilbert complex, aleshores

(i) H satisfa la BPBpp-nu per a operadors auto-adjunts, anti-simétrics i
unitaris;
(ii) (H; H) satisfa la BPBpp per a operadors auto-adjunts, anti-simétrics,

unitaris ¢ normals.
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Aixo significa que quan es comenca, per exemple, amb un operador
auto-adjunt, tenim que H (respectivament el parell (H; H)) complix
la BPBpp-nu (respectivament la BPBpp) amb S també un operador
auto-adjunt.

Finalment, en I'iltima seccié d’aquest capitol, generalitzem alguns

dels resultats de [11] considerant normes absolutes. Hem provat que:

Si |- |a €és una norma absoluta i el parell (X;Y) @, Ys) satisfa la BPBp,
aleshores, els parells (X;Y1) i (X;Y3) també satisfan la BPBp.

A més a més, presentem exemples de normes absolutes | - |, tals que si
el parell (X; @&, X;Y) satisfa la BPBp, aleshores els parells (X;;Y) i
(X2;Y) també la satisfan.

En el Capitol 3 considerem la propietat de Bishop-Phelps-Bollobas

per a operadors compactes.

Diem que un parell d’espais de Banach (X;Y') satisfa la BPBp per
a operadors compactes si dotat € > 0, ezisteiz n(e) > 0 tal que per a
tot T : X — Y operador lineal i compacte de norma u i per a tot x

element de [’esfera unitat de X tals que

1T (o)l > 1 =n(e),

existeizen un nou operador lineal © compacte S : X — Y de norma u i

un nou punt x1 en l’esfera unitat de X que satisfan
[S(zo)ll =1 ey — ol <& @ [[S=T] <e.

La definicié d’aquesta propietat és similar a la BPBp, pero ara iinicament
considerem operadors compactes. Al principi d’aquest capitol donem
una extensa llista d’exemples de parells d’espais de Banach (X;Y") que

satisfan la BPBp per a operadors compactes. Alguns d’ells ja sén
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coneguts d’altres articles. Per exemple, el parell (X;Y") té la BPBp per

a operadors compactes si complixen alguna de les segiients condicions:

o X és uniformement conver i Y és arbitrari;

X és arbitrari 1Y és un algebra uniforme;

X = Co(L), amb L un espai topologic de Hausdorff localment

compacte, i Y és uniformement convex;

X és arbitrari 1Y és isométricament isomorf a un espai Ly;
o X = Ly(u), amb p una mesura arbitraria, i Y té 'AHSP.

D’altra banda, realitzant senzilles modificacions en les demostracions
de certs resultats provats per la BPBp, obtenim més resultats positius
per la versié d’aquesta propietat per a operadors compactes. La idea
és agafar inicialment un operador compacte 7' i definir una pertorbaci6
compacta que satisfaga les condicions de Bishop-Phelps-Bollobés (veure
Definition 3.1.1). Per exemple, en la demostracié de [2, Theorem 2.2], si
comencem amb un operador compacte 7" en K(X,Y') de norma 1 i tal

que [|[T(zo)|| > 1 — %, llavors l'operador donat per
S(a) = T(x) + [(1+n)z(x) = T"(Y5)(2)]Yao,

satisfa les condicions de la BPBp i és també compacte.

Tot aquest tercer capitol esta motivat per I'estudi dels operadors
compactes que alcancen la norma. M. Martin va provar en [53] que
existeixen espais de Banach X i Y i operadors compactes de X en Y que
no poden ser aproximats per els que alcancen la norma. Va presentar
també condicions que garantixen la densitat dels operadors que alcancen
la norma en el conjunt dels operadors compactes.

En la primera secci6é del capitol, presentem algunes técniques per a

produir parells d’espais de Banach que satisfan la BPBp per a operadors
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compactes. Aquestes tecniques estan basades en dos resultats anteriors
de J. Johnson i J. Wolfe [43] sobre operadors compactes que alcancen la
norma. La idea principal de la seccié és donar alguns resultats técnics a
través dels quals ens garatixen passar la propietat d’espais de successions
per a espais de funcions.

Per a aconseguir estos resultats sobre els espais domini de ’operador,

provem el segiient lema:

Siguen X 1Y dos espais de Banach. Suposem que existeir una funcio
n: Rt — RT tal que donats § € RY, x3,..., 2% € By« i 9 € Sy,
podem trobar dos operadors de norma u P € L(X;X) ii € L(P(X); X)

que compleizen les segiients condicions:
(1) |Pra; —af[| <dperaj=1,...,n,
(2) [[i(P (o)) — ol <0,
(3) POZ = Idp(X),

(4) el parell (P(X);Y) satisfa la BPBp per a operadors compactes amb
la funcio n.
Aleshores, el parell (X;Y) satisfa la BPBp per a operadors compactes.

D’altra banda, el lema que necessitem per a obtindre els resultats

sobre els espais imatge de 'operador és el segiient:
Siguen X 1Y dos espais de Banach. Suposem que

(1) existeiz una red de projeccions de norma u {Qx}rean C L(X;Y) tal
que per a toty € Y, la successio {Qry} convergeix a y en norma,

7 a més

(2) existeix una funcic n : R™ — RT tal que els parells (X; QA (Y))
amb A € A satisfan la BPBp per a operadors compactes amb la

funcio n.
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Aleshores, el parell (X;Y') satisfa la BPBp per a operadors compactes.

Utilitzant aquests dos resultats tecnics, estem preparats per a treballar
amb casos particulars d’espais de Banach en la tercera seccié d’aquest
capitol.

Comencem amb els espais domini de I'operador, sense perdre de vista
que l'objectiu és passar la propietat d’espais de successions a espais de

funcions, tal i com ja hem explicat.

Si (co;Y) satisfa la BPBp per a operadors compactes, aleshores el pa-
rell (Co(L);Y) també satisfa la propietat per a tot L espai topologic de

Hausdorff localment compacte.

Per a provar aquest resultat, necessitem preéviament una caracte-
ritzacié dels parells (cp;Y') que satisfan la BPBp per a operadors com-

pactes. S’enuncia a continuacié.

Siguen X 1Y dos espais de Banach. Les segiients afirmacions son

equivalents:
(i) el parell (co(X);Y) té la BPBp per a operadors compactes;

(ii) existeir una funcié n : RT — RT tal que els parells ({7 (X);Y),
amb m € N, tenen la BPBp per a operadors compactes amb la

funcio n.

D’altra banda, quan K(X;Y) = £(X;Y) (en particular, si algun dels
espais X oY és de dimensi6 finita), el resultat anterior és cert quan
(co(X);Y) 0 (lo(X);Y) té la BPBp. Com conseqiiéncia, obtenim el
segiient resultat.

Siga'Y un espai de Banach. Si el parell (co;Y') satisfa la BPBp, aleshores

el mateix parell també satisfa la BPBp per a operadors compactes.
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De fet, encara que aquest teorema siga cert, no esta totalment clara la
relaci6 que hi ha entre la BPBp per a operadors compactes i la BPBp. Es
important dir que no és veritat que la BPBp per a operadors compactes
implique la BPBp, ja que el parell (L]0, 1],C10, 1]) té la BPBp per a
operadors compactes pero no pot tenir la BPBp per un contraexemple
donat per W. Schachermayer per a operadors que alcancen la norma
entre els espais L1]0,1] i C[0,1] [59]. Fins ara no hi ha resultats, ni
positius ni negatius, que proven que la BPBp implique la BPBp per a
operadors compactes.

Seguint en el context de les aplicacions per als espais domini, hem
provat el segiient resultat que ens permet passar la propietat d’espais ¢;

a espais L.

Siga i una mesura positiva i siga X un espai de Banach tal que X* té
la propietat de Radon-Nikodym. SiY és un espai de Banach i el parell
(01(X);Y) té la BPBp per a operadors compactes, aleshores el parell
(Li(p, X);Y) també la té.

El segiient lema és necessari per a provar el resultat anterior.

Siguen X 1Y dos espais de Banach. Les segiients afirmacions son

equivalents:

(i) per a tote >0 existeiz 0 < £(e) < € tal que, donats les successions
(Tk) C Br(x:v) i (wx) C Bx, i donada una série convexa Y32, o,
que satisfan

oo
> Ty
k=1

>1—¢&(e),

existeizen un subconjunt finit A C N, un element y* € Sy« i dos

successions (Si) C Sk(x.vy i (2z) C Sx que compleizen

() Ypeaar >1—¢,

(b) |lzk — k|| <€ y ||Sk — Tk|| < € per a tots k € A,
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(c) y*(Skzk) =1 per a tots k € A.

(En aquest cas, diem que el parell (X;Y) satisfa ’AHSP genera-

litzada per a operadors compactes.);
(ii) el parell (¢1(X);Y) té la BPBp per a operadors compactes;

(iii) emisteix una funcié n: Rt — R tal que els parells ((7*(X);Y),
amb m € N, satisfan la BPBp per a operadors compactes amb la

funcio n.

En particular, tenim la segiient caracteritzacié dels parells (¢1;Y) que

satisfan la BPBp per a operadors compactes.

Siga 'Y un espai de Banach. Les segiients afirmacions son equivalents:
(i) el parell (¢1;Y) té la BPBp per a operadors compactes;
(ii) l’espai de Banach'Y satisfa ’AHSP;

(iii) el parell (41;Y") satisfa la BPBp;

(iv) el parell (Li(p);Y) té la BPBp per a operadors compactes per a

tota mesura positiva [;

(v) existeiz una mesura positiva ju tal que L1(p) és de dimensid infinita

i el parell (Ly(p);Y') té la BPBp per a operadors compactes.

D’altra banda, utilitzant el lema tecnic mencionat anteriorment
obtenim els segiients resultats per als espais imatge de 1'operador com-

pacte.

(a) Per1 < p<oo, sielparell (X;0,(Y)) té la BPBp per a operadors
compactes, aleshores el parell (X; L,(p,Y)) també la té per a tota

mesura positiva p tal que Li(u) és de dimensio infinita.
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(b) Si el parell (X;Y) satisfa la BPBp per a operadors compactes,
aleshores el par (X; Loo(u,Y')) també la satisfa per a tota mesura

positiva o-finita (.

(c) Sielparell (X;Y) té la BPBp per a operadors compactes, aleshores
(X;C(K,Y)) també la té per a tot espai topologic de Hausdorff

compacte K.

Per a provar aquest resultat, necessitem del segiient lema que caracteritza
els parells (X;Y) que satisfan la BPBp per a operadors compactes en

termes de sumes directes.

Siguen X 1Y dos espais de Banach i siga n : Rt — R wuna funcid.

Les segiients afirmacions son equivalents:

(i) el parell (X;Y) té la BPBp per a operadors compactes amb la

funcio n,

(ii) els parells (X;02(Y)), amb m € N, satisfan la BPBp per a opera-

dors compactes amb la funcio n,

(iii) el parell (X;co(Y')) té la BPBp per a operadors compactes amb la

funcio n,

(iv) el parell (X;0x(Y)) té la BPBp per a operadors compactes amb la

funcio n.

Per a acabar el capitol i utilitzant els resultats préeviament enunciats

es prova el seglient teorema:

Siga K un espai topologic de Hausdorff compacte i siguen X ©Y dos
espais de Banach. Si p és una mesura positiva i v és una mesura positiva

o-finita, aleshores les segiients afirmacions son certes:
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(a) SiY té la propietat B, aleshores els parells (X; Loo(v,Y)) i (X;
C(K,Y)) tenen la BPBp per a operadors compactes.

(b) SiY té VAHSP, aleshores Loo(v,Y) i C(K,Y) també la tenen.

(c) Perl<p<oo,sil,(Y)té VAHSP i Li(n) és de dimensio infinita,
aleshores L,(p,Y) té ’AHSP.

El contingut d’aquest capitol va ser publicat en el segiient article:

S. DANTAS, D. GARcfA, M. MAESTRE AND M. MARTIN, The Bishop-
Phelps-Bollobas property for compact operators, Canadian J. Math.,
2016, http://dx.doi.org/10.4153/CJM-2016-036-6

Finalment, en el Capitol 4 estudiem diferents propietats de tipus
Bishop-Phelps-Bollobas adaptades al cas d’aplicacions multilineals. Co-

mencem enunciant la BPBp per a aplicacions multilineals.

Siguen Xi,... Xy 1Y espais de Banach. Diem que (Xi,...,Xn;Y)
satisfa la propietat de Bishop-Phelps-Bollobds per a aplicacions multi-
lineals si donat € > 0, existeix n(e) > 0 tal que per a tota A aplicacio
N-lineal de X1 x ... Xy en'Y amb ||A|| =1 i per a tot (29,...,2%) €

Sx, X ... x Sx, que satisfan
IAGY, . 2] > 1 = n(e),

existeixen una nova aplicacié N-lineal B : X1 X ... x Xy — Y amb

|B|| =1 i un nou element (29,...,2%) € Sx, X ... X Sx, tals que
1Bl =1, max 20—l << i B~ Al <e

Destaquem el grau de I'aplicacié multilineal indicant que (X7, ..., Xy;Y)

té la BPBp per a aplicacions N-lineals en lloc de dir que té la propietat

per a aplicacions multilineals. Igual que hem fet per a BPBp per a



XXVi

aplicacions multilineals, també podem definir la BPBp per a aplicacions
multilineals simetriques exigint que les aplicacions A i B siguen elements
del conjunt de totes les aplicacions N-lineals simetriques, denotat per
L,NX;Y). En aquest cas, diem que (Y X;Y') té la BPBp per aplicacions
multilineals simetriques. Un cas particular apareix quan ¥ = K on
denotem la BPBp per a (X7, ..., Xy;K) solament per (X,...,Xy) i
diem que (X7,..., Xy) té la BPBp per a formes N-lineals. Analogament,

definim la BPBp per a polinomis homogenis.

Diem que el parell d’espais de Banach (X;Y') satisfa la propietat de
Bishop-Phelps-Bollobds per a polinomis homogenis si donat e > 0, existeix
n(e) > 0 tal que per a tot P polinomi N-homogeni amb |P|| =1 i per a

tot xo € Sx que satisfan

[1P(zo)[| > 1 = nfe),

existeizen un nou polinomi N-homogeni Q@ amb ||Q|| = 1 i un element

x1 € Sx tals que
Q)| =1, o1 —xof| <e @ |[Q—P <e

En aquest capitol també estenem alguns resultats coneguts sobre aplica-
cions multilineals que alcancen la norma per la BPBp com, per exemple,

la segiient observacié que deriva del cas lineal:

Siguen X, X1,..., Xy 1Y espais de Banach de dimensio finita. Aleshores

les segiients afirmacions son certes:
(i) (X1,...,XN;Y) té la BPBp per a aplicacions multilineals;
(ii) (VX;Y) té la BPBp per a aplicacions multilineals simétriques;

(iii) (X;Y) té la BPBp per a polinomis N-homogenis.



XXVii

Un resultat que mereix ser destacat és un teorema d’estabilitat que
permet passar la BPBp per a aplicacions multilineals de grau N + 1 per

a aplicacions multilineals de grau N.

Si (Xi,..., XN, Xni1;Y) té la BPBp per a aplicacions (N + 1)-lineals,
aleshores (Xi,..., Xn;Y) té la BPBp per a aplicacions N -lineals.

Un altre teorema que relaciona la BPBp per a aplicacions N-lineals i

(N — 1)-lineals és el segiient:

Si N >2isiXq,...,Xy son espais de Banach amb Xy un espai uni-
formement convez, aleshores (Xi,...,Xy) té la BPBp per a aplicacions
N-lineals si i només si (X1, ..., Xn_1; X¥) té la BPBp per a aplicacions
(N — 1)-lineals.

Aixi mateix, també mostrem que és possible passar del cas vectorial
al cas escalar en la BPBp per a aplicacions multilineals. En particular,

provem la segiient caracteritzacio:

SiY té la propietat (3, aleshores (Xi,...,Xn) té la BPBp per a formes
N-lineals si i només si (X1,...,Xn;Y) té la BPBp per a aplicacions

N -lineals.

D’altra banda, en aquest capitol també estudiem la BPBp per a
aplicacions multilineals compactes seguint la mateixa linia del capitol

anterior.

Siga Y un espai predual de Ly. Suposem que (Xi,...,Xy) té la BPBp
per a formes multilineals. Aleshores (X1,...,Xn;Y) té la BPBp per a

aplicacions multilineals compactes.
Pero com en [3], hem obtingut un resultat més fort:

Donat € € (0,1), existeiz n(e) > 0 tal que per a tota A aplicacié multi-

lineal compacta amb || Al =1 i per a tot (z9,...,2%) € Sx, X ... X Sx,
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que satisfan
[A(2Y, .- 2%l > 1 = n(e),

existeizen una nova aplicacié multilineal compacta B amb |B|| =1 i
(29,...,2%) € Sx, x ... x Sx, tals que dim(B(X; X ... x Xy)) < oo,

IBGS, R =1, ma |20 —afll <= i 1B Al <=

A continuacié presentem alguns exemples d’espais que compleixen la

BPBp per a aplicacions multilineals compactes.

Siga Y un espai predual de Ly. Si (X,Z;Y) compleix alguna de les
seglients condicions, aleshores té la BPBp per a aplicacions multilineals
compactes.

(a) Si X = Cy(L) i Z = Co(K) amb L i K espais topologics de

Hausdorff localment compactes.
(c) Si X i Z son espais de Banach uniformement convezos.

Seguidament, en la tercera seccié d’aquest capitol caracteritzem els
parells (¢1(X),Y") que satisfan la BPBp per a formes bilineals. El resultat

és el segiient:

El parell (¢1(X),Y) té la BPBp per a formes bilineals si i només si
per a tot € > 0, ezisteiz 0 < n(e) < € tal que, donats successions
(Ti)e C L(X;Y) amb ||Tk]| = 1 per a tot k i (xx)r C Sx @ donada una

serie convera y ;o oy tal que

i o Ty ()

k=1

>1—n(e),

existeizen un subconjunt A € N, un element y* € Sy« i dos successions
(Sk)e C L(X;Y) amb ||Sk|| = 1 per a tot k i (zx)r C Sx satisfent
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(1) Sreaar >1—c¢,
(2) |lzx — x|l <€ @ ||Sk — T|| <€ peratotk e A, i
(3) y*(Sk(zx)) =1 per a tot k € A.

També hem provat que, si H és un espai de Hilbert, aleshores el
parell (X, H) té la BPBp per a formes bilineals si i només si el parell
(X, H) té ’AHSP generalitzada.

Un altre camp de treball d’aquest capitol és I'estudi del radi numeric
en el conjunt de les aplicacions multilineals definides en L;(x) amb
(4 una mesura arbitraria. Hem provat que per a tota aplicacié A €
L(NLi(pn); L1 (1)), el seu radi numeric i la seua norma coincideixen.

Per a acabar el capitol, estudiem la propietat de Bishop-Phelps-
Bollobas per a radi numeric en el context de les aplicacions multilineals.
Mostrem que si X té dimensio finita, aleshores 'espai X satisfa aquesta
propietat. D’altra banda, Li(u) no satisfa la propietat encara que aquest
espai si té la BPBp-nu en el cas lineal per a tota mesura . Un altre
resultat provat és el segiient: si una cyp-suma o una f;-suma satisfa la
BPBp-nu per a aplicacions multilineals, aleshores tota component de la

suma directa també la satisfa.

El contingut d’aquest capitol ha sigut enviat a publicacio i els autors

esperen una resposta definitiva de la revista:

S. DANTAS, D. GARcia, S. K. Kim, H. J. LEE AND M. MAESTRE,
The Bishop-Phelps-Bollobas theorem for multilinear mappings, Linear
Alg. Appl., 2017, parcialment aceptat.

Acabem la tesis presentant una llista de problemes obertes amb la
intencié d’expandir nous horitzons per a continuar treballant en aquest
tema. També presentem la llista dels articles publicats derivats d’aquesta
tesis. A més a més, presentem tables que resumeixen de manera practica

els parells d’espais de Banach més coneguts que satisfan la propietat
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de Bishop-Phelps-Bollobas per a operadors, amb 'objectiu de situar el

lector en l'actual escenari del tema.



Resumen

Esta tesis esta dedicada a estudiar la propiedad de Bishop-Phelps-

Bollobéas en diferentes contextos.

En el Capitulo 1, introducimos la notacion utilizada a lo largo de
toda la tesis y damos un resumen histérico de esta propiedad, explicando,
entre otros, los teoremas de Bishop-Phelps y Bishop-Phelps-Bollobas. FEl

primer teorema de Bishop-Phelps [14] nos dice lo siguiente:

Sea X un espacio de Banach. Dado un nimero real positivo € > 0 y un
funcional lineal y continuo x* € X*, existe un nuevo funcional x§ € X*

y un nuevo punto xo € Sx tales que satisfacen las siquientes condiciones:
|25 (wo)| = llagll vy [lag — a7 <e.

Es decir, el teorema prueba que el conjunto de todos los funcionales
que alcanzan la norma es denso (en norma) en el dual de un espacio de
Banach X.

Es natural pues preguntarse si este resultado es también cierto para
operadores lineales y continuos. En 1963, J. Lindenstrauss [52] dio el
primer contraejemplo que muestra que, en general, el resultado es falso.
Por otro lado, también present6é condiciones que deben satisfacer los
espacios de Banach para obtener resultados positivos. Después de esto,
otros autores han estudiado diversas hipodtesis que se pueden exigir a los

espacios de Banach para saber si el conjunto de los operadores lineales y
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continuos que alcanzan la norma es denso (en norma) dentro del conjunto
de todos los operadores lineales y continuos.
Siete atios después, en 1970, Bollobés [15] prob6 una versién mas

fuerte del teorema de Bishop-Phelps enunciada a continuacién:

Sea X un espacio de Banach. Dado e > 0, si x € Bx y x* € Bx-

cumplen

82

27

entonces existen elementos o € Sx y xf € Sx- tales que

1 —z"(z)] <

[zo(wo)l =1, flzo =2l <e vy [lag =27 <e.

Con este resultado Bollobds mostré que ademas de la aproximacién para
los funcionales, también es posible aproximar el punto inicial donde el
primer funcional x* casi alcanza la norma, por un punto en el que el
nuevo funcional, préximo a z*, alcanza la norma.

En los dltimos nueve anos, se han una escrito gran cantidad de
articulos en los que se presentan diferentes teoremas del tipo Bishop-
Phelps-Bollobas para operadores lineales y continuos. El interés por
estos teoremas comenzo con el articulo de M. Acosta, R. Aron, D. Garcia
y M. Maestre [2]. En dicho articulo, los autores definieron por primera
vez la propiedad de Bishop-Phelps-Bollobas (BPBp). La propiedad es la

siguiente:

Decimos que un par de espacios de Banach (X;Y') satisface la BPBp
si dado € > 0, existe n(e) > 0 tal que para todo T : X — Y operador
lineal de norma uno y para todo xy elemento en la esfera unidad de X

que cumplen
1T (xo)]| > 1 —nle),

existen un nuevo operador lineal S : X — 'Y de norma uno y un nuevo

elemento x1 en la esfera unidad de X tales que cumplen las siguientes
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condiciones:
[S(x)l =1, |lz1 -zl <e y [[S-T| <e.

Es importante destacar que del teorema de Bishop-Phelps-Bollobas se
deduce que el par (X;K) satisface la BPBp para todos los espacios de
Banach X. Por otro lado, cabe senialar que si el par (X;Y') satisface la
BPBp, entonces el conjunto de todos los operadores lineales y continuos
que alcanzan la norma es denso (en norma) en el conjunto de todos los
operadores lineales y continuos de X en Y.

Para finalizar el Capitulo 1, se presentan algunos de los mas recientes
resultados relacionados con los teoremas de Bishop-Phelps-Bollobas con

el objetivo de poner esta tesis en un contexto actual.

A continuacién, en el Capitulo 2 estudiamos algunas propiedades
semejantes a la propiedad de Bishop-Phelps-Bollobas. Empezamos con
la propiedad punto de Bishop-Phelps-Bollobéds (BPBpp).

Decimos que un par (X;Y) de espacios de Banach satisface la BPBpp
st dado € > 0, existe n(e) > 0 tal que para cada T : X — Y operador
lineal de norma uno y para cada xy elemento de la esfera unidad de X

tales que
1T (o)l > 1 —n(e),

existe un nuevo operador lineal S : X — Y de norma uno satisfaciendo
[S(@o)| =1y IS T <e.

Destacamos que esta nueva propiedad es mas fuerte que la BPBp. A lo
largo de este capitulo, primero estudiamos la BPBpp para operadores
lineales y luego para aplicaciones bilineales, obteniendo en ambos ca-
sos resultados positivos de existencia de pares de espacios de Banach

satisfaciéndolas.
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También es importante mencionar que en la BPBpp, el punto inicial
Zg, i.e., el punto en el que el operador T casi alcanza la norma, es el
mismo punto en el que el operador préximo a I' también alcanza la norma.
Por otra parte, utilizando la BPBpp hemos probado una caracterizacion

de los espacios uniformemente suaves:

Un espacio de Banach X es uniformemente suave si y solo st el par
(X;K) satisface la BPBpp.

En este capitulo también probamos que si un par (X;Y) satisface la
BPBpp para algtin espacio de Banach Y, el espacio de Banach X tiene
que ser uniformemente suave. Por lo tanto, siempre debemos suponer
que el dominio X del operador es uniformemente suave para asi poder
conseguir resultados positivos sobre esta propiedad.

Ademas, si Y tiene la propiedad 3 o es un algebra uniforme, entonces
el par (X;Y) tiene la BPBpp para todos los espacios uniformemente
suaves X.

Por otro lado, también hemos probado resultados sobre la BPBpp
trabajando en espacios de Hilbert. Al tener los espacios de Hilbert normas
transitivas, mostramos que si H es un espacio de Hilbert, entonces el
par (H;Y') satisface la BPBpp para todos los espacios de Banach Y.

Terminamos esta primera parte del capitulo mostrando que existen
espacios reales X uniformemente suaves de dimension 2 tales que el par
(X;Y) no satisface la propiedad punto de Bishop-Phelps-Bollobas para
ciertos espacios de Banach Y. Finalmente, extendemos los resultados
obtenidos al considerar la propiedad para aplicaciones bilineales en

situaciones semejantes.
El contenido de esta seccion fue publicado en el siguiente articulo:

S. Dantas, S. K. Kim aAND H. J. LEE, The Bishop-Phelps-Bollobas
point property, J. Math. Anal. Appl. 444 (2016), no. 2, 1739-1751.
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Siguiendo en el Capitulo 2, estudiamos una propiedad dual a la
BPBpp en dos situaciones distintas. Primero, consideramos que el
nimero real positivo 7 que aparece en la definicién (ver Definition 2.2.2)
depende no sélo de € > 0, sino también de un operador lineal previamente

fijado y de norma uno. Llamamos a esta propiedad, propiedad 1:

Decimos que un par de espacios de Banach (X;Y') satisface la propiedad
1 si dado € > 0 y dado un operador lineal T' de norma uno, existe

n(e,T) > 0 tal que para todo elemento zo de la esfera unidad de X con
1T (zo)[| > 1 =n(e, T),
existe otro elemento x1, también en la esfera unidad de X, satisfaciendo
[T(z)l =1 y [ler — 2ol <e.

De la definicién de la propiedad 1 se deduce que todo operador T : X —
Y alcanza la norma si el par (X;Y") satisface dicha propiedad. Por consi-
guiente, y utilizando el Teorema de James (ver Remark 2.2.3.(a)), hemos
de tomar como condicién necesaria que el dominio X sea reflexivo para
asi obtener resultados positivos.

Para espacios de dimension finita hemos probado el siguiente resul-
tado:

El par (X;Y) satisface la propiedad 1 para todo espacio de dimension
finita X y para cualquier espacio de Banach'Y .

Otro resultado probado se enuncia a continuacion:

Si X es un espacio de Banach reflexivo y localmente uniformemente
convexo, en particular si X es uniformemente convezo, entonces el par

(X;Y) satisface la propiedad 1 para operadores compactos.
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Como consecuencia, el par ({q; ¢1) satisface la propiedad 1 ya que todo
operador entre estos dos espacios es compacto y {5 es uniformemente
convexo. En realidad, en este capitulo, damos una caracterizaciéon de

dicha propiedad para todos los pares (£,; ¢,):

(i) El par (L, ¢,) satisface la propiedad 1 para todos p,q tales que
1<g<p<oo.
(ii) El par (£,;¢,) no satisface la propiedad 1 para todos p,q tales que
I<p<g<oo.

A continuaciéon, consideramos una version uniforme de la propiedad 1,
a la que llamamos propiedad 2. Esta propiedad es similar a la propiedad
1 pero considerando 717 dependiendo sélo de € > 0.

Utilizando el Teorema de Kim-Lee [46, Theorem 2.1] tenemos la

siguiente caracterizacion de los espacios uniformemente convexos:

Un espacio de Banach X es uniformemente convexo si y solo si el par
(X;K) tiene la propiedad 2.

Esta es una version dual de la ya mencionada propiedad punto de
Bishop-Phelps-Bollobas para el par (X;K), que caracteriza los espacios
uniformemente suaves. Al contrario de lo que hemos probado con la
BPBpp, en el caso de la propiedad 2 resulta méas complicado conseguir
resultados positivos. En efecto, entre los resultados probados destacamos

los siguientes teoremas negativos:
Los pares ((3(R); £2(R)) no satisfacen la propiedad 2 para 1 < q < oo.
y también:

Dado Y espacio de Banach de dimension 2, el par (Y;Y') no satisface la
propiedad 2.

El contenido de esta seccion fue publicado en el siguiente articulo:
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S. DANTAS, Some kind of Bishop-Phelps-Bollobas property, Math.
Nachr., 2016, doi:10.1002/mana.201500487

En la Seccién 2.3 trabajamos con la propiedad punto de Bishop-
Phelps-Bollobés para radio numérico (BPBpp-nu). Esta propiedad fue
motivada por la reciente propiedad de Bishop-Phelps-Bollobés para radio
numérico (ver, por ejemplo, [32, 37, 47]). Su definicién es parecida con
la BPBp pero en lugar de la norma del operador consideramos ahora el

radio numérico.

Decimos que un espacio de Banach X satisface la propiedad de Bishop-
Phelps-Bollobds para radio numérico (BPBp-nu) si dado € > 0, eziste
n(e) > 0 tal que para todo operador lineal y continuo T : X — X de
radio numérico uno y para todo par (x,x*) satisfaciendo ||x*|| = ||z| =
z*(x) =1y con

|2*(T(2))] > 1 =nle),

existe un nuevo operador lineal continuo S con radio numérico uno y un

nuevo elemento (y,y*) con ||y*|| = ||yl = y*(y) = 1 tales que
(SN =1, lly" =27l <e lly—zll<ey [§-T| <e.

En nuestro caso, igual que hacemos con la BPBpp, consideramos el
mismo punto inicial (z,2*) para ambos operadores.

El primer resultado probado en esta seccién nos dice que todo espacio
de Hilbert complejo satisface la BPBpp-nu. Es por ello que hemos
probado que algunos tipos de operadores (auto-adjuntos, anti-simétricos,
unitarios y normales) definidos en un espacio de Hilbert complejo cumplen
las propiedades BPBpp y BPBpp-nu. Resumimos estos resultados a

continuacion:

Si H es un espacio de Hilbert complejo, entonces
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(i) H satisface la BPBpp-nu para operadores auto-adjuntos, anti-simétricos
Y unitarios.
(ii) (H; H) satisface la BPBpp para operadores auto-adjuntos, anti-

simétricos, unitarios y normales.

Eso significa que cuando uno toma, por ejemplo, un operador 7" auto-
adjunto, tenemos que H (resp. el par (H; H)) cumple la BPBpp-nu
(resp. la BPBpp) con S también auto-adjunto.

Finalmente, en la ultima seccion de este capitulo, generalizamos
algunos de los resultados de [11] considerando normas absolutas. Hemos

probado que:

Si |- |a es una norma absoluta y el par (X;Y1 @, Ys) satisface la BPBp,
entonces los pares (X;Y1) y (X;Ys) también satisfacen la BPBp.

Ademés, presentamos ejemplos de normas absolutas | - |, tales que si
el par (X; @, X5;Y) satisface la BPBp, entonces los pares (X1;Y) y

(Xo;Y) también la satisfacen.

En el Capitulo 3 consideramos la propiedad de Bishop-Phelps-Bollobas

para operadores compactos.

Decimos que un par (X;Y') de espacios de Banach satisface la BPBp
para operadores compactos si dado € > 0, existe n(e) > 0 tal que para
cada T : X — Y operador lineal y compacto de norma uno y para cada

xo elemento de la esfera unidad de X tales que
[T (o) [| > 1 —n(e),

existen un nuevo operador lineal y compacto S : X — Y de norma uno

y un nuevo punto x1 en la esfera unidad de X satisfaciendo

[S(xo)lf =1 flzs —aol <&y [[§-TI <e.
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La definicion de esta propiedad es similar a la BPBp, pero ahora tnica-
mente consideramos operadores compactos. Al principio de este capitulo
damos una extensa lista de ejemplos de pares de espacios de Banach
(X;Y) que satisfacen la BPBp para operadores compactos. Algunos de
ellos ya son conocidos de otros articulos. Por ejemplo, el par (X;Y) tiene
la BPBp para operadores compactos si cumple alguna de las siguientes

condiciones:
o X es uniformemente convexo eY es arbitrario;
o X es arbitrario e Y es un dlgebra uniforme;

o X =Cy(L), siendo L un espacio topoldgico de Hausdorff localmente

compacto, e Y es uniformemente convero;
e X es arbitrario e Y es isométricamente isomorfo a un espacio L ;
o X = Li(u), siendo p es una medida arbitraria, e Y tiene la AHSP.

Por otro lado, realizando sencillas modificaciones en las demostraciones
de ciertos resultados probados para la BPBp, obtenemos mas resultados
positivos para versiéon de esta propiedad para operadores compactos.
La idea es tomar inicialmente un operador compacto 7'y definir una
perturbacion compacta que satisfaga las condiciones de Bishop-Phelps-
Bollobés (ver Definition 3.1.1). Por ejemplo, en la demostracién de [2,
Theorem 2.2], si partimos de un operador compacto 7 en K(X,Y) de

norma 1 y tal que ||T(zo)]| > 1 — %, entonces el operador dado por

S(a) = T(x) + [(1+n)z(x) = T"(Y5) (2)]Yao,

satisface las condiciones de la BPBp y es también compacto.
Todo este tercer capitulo esta motivado por el estudio de los opera-
dores compactos que alcanzan la norma. M. Martin probé en [53] que

existen espacios de Banach X e Y y operadores compactos de X en Y que
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no pueden ser aproximados por aquellos que alcanzan la norma. El pre-
sento también condiciones que garantizan la densidad de los operadores
que alcanzan la norma en el conjunto de los operadores compactos.

En la primera seccién del capitulo, presentamos algunas técnicas
para producir pares de espacios de Banach satisfaciendo la BPBp para
operadores compactos. Estas técnicas estan basadas en dos resultados
anteriores de J. Johnson y J. Wolfe [43] sobre operadores compactos
que alcanzan la norma. La idea principal de la seccién es dar algunos
resultados técnicos a través de los cuales podremos pasar la propiedad
para espacios de sucesiones a la propiedad para espacios de funciones.

Para conseguir estos resultados sobre los espacios dominio del opera-

dor, probamos el siguiente lema:

Sean X e Y dos espacios de Banach. Supongamos que existe una
funcion n : Rt — RT tal que dados § € R, z%,... 25 € Bx« y
xg € Sx, podemos encontrar dos operadores de norma uno P € L(X; X)

ei € L(P(X);X) que cumplen las siguientes condiciones:
(1) [Pz} — a3l <6 para j=1,...,n,
(2) [li(P(zo)) — woll <4,
(3) Poi= IdP(X),

(4) el par (P(X);Y) satisface la BPBp para operadores compactos con

la funcion n.
Entonces, el par (X;Y) satisface la BPBp para operadores compactos.

Por otro lado, el lema que necesitamos para obtener los resultados

sobre los espacios imagen del operador es el siguiente:

Sean X eY dos espacios de Banach. Supongamos que
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(1) existe una red de proyecciones de norma uno {@Qx}rea C L(X;Y)
tal que para cada y € Y, la sucesion {Q y} converge a y en norma,

y ademds

(2) existe una funcion n : R™ — RT tal que los pares (X;Qx(Y))
con A € A satisfacen la BPBp para operadores compactos con la

funcion n.
Entonces, el par (X;Y') satisface la BPBp para operadores compactos.

Usando estos dos resultados técnicos, estamos preparados para tra-
bajar con casos particulares de espacios de Banach en la tercera seccion
de este capitulo.

Comenzamos con los espacios dominio del operador, sin perder de
vista que el objetivo es pasar la propiedad de espacios de sucesiones a

espacios de funciones, como ya habiamos mencionado.

Si (co;Y') satisface la BPBp para operadores compactos, entonces el par
(Co(L);Y') también satisface la propiedad para todo L espacio topoldgico

de Hausdorff localmente compacto.

Para probar este resultado, necesitamos previamente una caracte-
rizacién de los pares (cg;Y) que satisfacen la BPBp para operadores

compactos. Se enuncia a continuacion.

Sean X eY dos espacios de Banach. Las siguientes afirmaciones son

equivalentes:
(i) el par (co(X);Y) tiene la BPBp para operadores compactos;

(ii) ewxiste una funcion n : RT — RT tal que los pares (¢7(X);Y),
con m € N, tienen la BPBp para operadores compactos con la

funcion n.
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Por otro lado, cuando K(X;Y) = L(X;Y) (en particular, si alguno de
los espacios X o Y es de dimension finita), el resultado anterior es cierto
cuando (¢p(X);Y) 0 (l(X);Y) tiene la BPBp. Como consecuencia,

obtenemos el siguiente resultado.

Sea 'Y un espacio de Banach. Si el par (cy;Y') satisface la BPBp, entonces

el mismo par también satisface la BPBp para operadores compactos.

De hecho, aunque este teorema sea cierto, no esta totalmente clara la
relacion que hay entre la BPBp para operadores compactos y la BPBp.
Es importante mencionar que no es verdad que la BPBp para operadores
compactos implique la BPBp, ya que el par (L]0, 1],C[0, 1]) tiene la
BPBp para operadores compactos pero no puede tener la BPBp por un
contraejemplo dado por W. Schachermayer para operadores que alcanzan
la norma entre los espacios L[0,1] y C[0,1] [59]. Hasta el momento
no hay resultados, ni positivos ni negativos, que prueben que la BPBp
implique la BPBp para operadores compactos.

Siguiendo en el contexto de las aplicaciones para los espacios dominio,
hemos probado el siguiente resultado que nos permite pasar la propiedad

de espacios ¢; a espacios L.

Sea p una medida positiva y sea X un espacio de Banach tal que X*
tiene la propiedad de Radon-Nikodym. SiY es un espacio de Banach y
el par ((1(X);Y) tiene la BPBp para operadores compactos, entonces el
par (L1(p, X);Y) también la tiene.

El siguiente lema es necesario para probar el resultado anterior.

Sean X eY dos espacios de Banach. Las siguientes afirmaciones son

equivalentes:

(i) para todo € > 0 existe 0 < {(¢) < € tal que, dadas las sucesiones
(Tk) C Brxy) ¥ (z1) C Bx, y dada una serie convexa Y32, ay,
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(ii)
(iii)

satisfaciendo

o
> apTyak
k=1

>1—£(e),

existen un subconjunto finito A C N, un elemento y* € Sy~ y dos
sucesiones (Sk) C Sk(xyy) ¥ (2r) C Sx que cumplen

(a) ZkeAak > ].—€,

(b) ||z — 2kl < e y ||Sk — Tk|| < € para todos k € A,

(c) y*(Skzx) = 1 para todo k € A.

(En este caso, decimos que el par (X;Y') satisface la AHSP genera-
lizada para operadores compactos);

el par ((1(X);Y) tiene la BPBp para operadores compactos;

existe una funcion n : R™ — R tal que los pares ((7'(X);Y),
con m € N, satisfacen la BPBp para operadores compactos con la
funcion n.

En particular, tenemos la siguiente caracterizacion de los pares (¢1;Y)

que satisfacen la BPBp para operadores compactos.

Sea Y un espacio de Banach. Las siguientes afirmaciones son equiva-

lentes:

(i)
(ii)
(iii)
(iv)

el par ((1;Y) tiene la BPBp para operadores compactos;
el espacio de Banach'Y satisface la AHSP;
el par (01;Y) satisface la BPBp;

el par (L1(n);Y") tiene la BPBp para operadores compactos para

toda medida positiva p;
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(v) existe una medida positiva u tal que Ly(u) es de dimension infinita

y el par (L1(p);Y') tiene la BPBp para operadores compactos.

Por otro lado, utilizando el lema técnico mencionado anteriormente
obtenemos los siguientes resultados para los espacios imagen del operador

compacto.

(a) Paral < p < oo, sielpar(X;€,(Y)) tiene la BPBp para operadores
compactos, entonces el par (X; L,(p,Y')) también la tiene para toda

medida positiva p tal que Ly(p) es de dimension infinita.

(b) Si el par (X;Y) satisface la BPBp para operadores compactos,
entonces el par (X; Loo(,Y')) también la satisface para toda medida

positiva o-finita .

(c) Si el par (X;Y) tiene la BPBp para operadores compactos, en-
tonces (X;C(K,Y)) también la tiene para todo espacio topoldgico
de Hausdorff compacto K.

Para probar este resultado, necesitamos del siguiente lema que caracteriza
los pares (X;Y') que satisfacen la BPBp para operadores compactos en

términos de sumas directas.

Sean X eY dos espacios de Banach y sea n: Rt — RT una funcion.

Las siguientes afirmaciones son equivalentes:

(i) el par (X;Y) tiene la BPBp para operadores compactos con la

funcion n,

(ii) los pares (X; 02 (Y)), con m € N, satisfacen la BPBp para opera-

dores compactos con la funcion n,

(iii) el par (X;co(Y)) tiene la BPBp para operadores compactos con la

funcion n,
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(iv) el par (X;L(Y)) tiene la BPBp para operadores compactos con la

funcion n.

Para acabar el capitulo y utilizando los resultados previamente enun-

ciados se prueba el siguiente teorema:

Sea K un espacio topoldgico de Hausdorff compacto y sean X eY dos
espacios de Banach. Si p es una medida positiva y v es una medida

positiva o-finita, entonces las siguientes afirmaciones son ciertas:

(a) Si Y tiene la propiedad (3, entonces los pares (X; Loo(v,Y)) y
(X;C(K,Y)) tienen la BPBp para operadores compactos.

(b) Si Y tiene la AHSP, entonces Loo(v,Y) y C(K,Y) también la

tienen.

(c) Paral<p< oo, sily(Y) tiene la AHSP y Li(n) es de dimensidn
infinita, entonces L,(u,Y) tiene la AHSP.

El contenido de este capitulo fue publicado en el siguiente articulo:

S. DANTAS, D. GARciA, M. MAESTRE AND M. MARTIN, The Bishop-
Phelps-Bollobas property for compact operators, Canadian J. Math.,

2016, http://dx.doi.org/10.4153/CJM-2016-036-6

Finalmente, en el Capitulo 4 estudiamos diferentes propiedades de
tipo Bishop-Phelps-Bollobas adaptadas al caso de aplicaciones multi-
lineales. Comenzamos enunciando la BPBp para aplicaciones multi-

lineales.

Sean Xi,...Xn eY espacios de Banach. Decimos que (Xy,...,Xn;Y)
satisface la propiedad de Bishop-Phelps-Bollobds para aplicaciones multi-
lineales si dado € > 0, existe n(e) > 0 tal que para toda A aplicacion
N-lineal de X1 x ... Xy en'Y con ||Al| =1 y para todo (29,...,2%) €
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Sx, X ... x Sx, satisfaciendo

1A, . 23l > 1= n(e),

existen una nueva aplicacion N-lineal B : X1 X ... x Xy — Y con
|B|| =1 y un nuevo elemento (29,...,2%) € Sx, X ... X Sx,, tales que
1B Rl =1, max [ —alll <<y [B-4] <<

Destacamos el grado de la aplicacién multilineal indicando que (Xj, ...,
Xn;Y) tiene la BPBp para aplicaciones N-lineales en lugar de decir que
tiene la propiedad para aplicaciones multilineales. Al igual que hemos
hecho para la BPBp para aplicaciones N-lineales, también podemos
definir la BPBp para aplicaciones multilineales simétricas al exigir que las
aplicaciones A y B sean elementos del conjunto de todas las aplicaciones
N-lineales simétricas, denotado por L,(V¥X;Y). En este caso, decimos
que (VX:;Y) tiene la BPBp para aplicaciones multilineales simétricas.
Un caso particular sucede al tomar ¥ = K en el que denotamos la BPBp
para (X, ..., Xn;K) solo por (Xi,..., Xy) y decimos que (X1, ..., Xy)
tiene la BPBp para formas N-lineales.

Analogamente, definimos la BPBp para polinomios homogéneos.

Decimos que el par de espacios de Banach (X;Y') satisface la propiedad
de Bishop-Phelps-Bollobds para polinomios N-homogéneos si dado € > 0,
existe () > 0 tal que para todo P polinomio N-homogéneo con ||P|| =1

y para todo xy € Sx que satisfacen

[P ()] > 1 —=ne),
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existen un nuevo polinomio N-homogéneo Q con ||Q| =1 y un elemento

x1 € Sx tales que

Q) =1, [lor —aoll <2y Q=P <e.

En este capitulo también extendemos algunos resultados conocidos sobre
aplicaciones multilineales que alcanzan la norma para la BPBp como,

por ejemplo, la siguiente observacién que deriva del caso lineal:

Sean X, Xy,..., Xy eY espacios de Banach de dimension finita. En-

tonces las siquientes afirmaciones son ciertas:
(i) (X1,...,XN;Y) tiene la BPBp para aplicaciones multilineales,
(ii) (NX;Y) tiene la BPBp para aplicaciones multilineales simétricas,

(iii) (X;Y) tiene la BPBp para polinomios N -homogéneos.

Un resultado que merece ser destacado es un teorema de estabilidad
que permite trasladar la BPBp para aplicaciones multilineales de grado

N + 1 a aplicaciones multilineales de grado N.

Si (X1,..., XN, Xni1;Y) tiene la BPBp para aplicaciones (N + 1)-
lineales, entonces (X1,..., Xn;Y) tiene la BPBp para aplicaciones N -

lineales.

Otro teorema que relaciona la BPBp para aplicaciones N-lineales y

(N — 1)-lineales es el siguiente:

SiN >2ysiXy,...,Xn son espacios de Banach siendo Xy un espa-
cio uniformemente convezo, entonces (Xi,...,Xy) tiene la BPBp para
aplicaciones N-lineales si y solo si (Xy,...,Xn_1;X}y) tiene la BPBp

para aplicaciones (N — 1)-lineales.
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Asimismo, también mostramos que es posible pasar del caso vectorial
al caso escalar en la BPBp para aplicaciones multilineales. En particular,

probamos la siguiente caracterizacion:

Si Y tiene la propiedad (3, entonces (Xi,...,Xn) tiene la BPBp para
formas N-lineales si y sélo si (Xy,...,Xn;Y) tiene la BPBp para apli-

caciones N -lineales.

Por otra parte, en este capitulo también estudiamos la BPBp para
aplicaciones multilineales compactas siguiendo la misma linea del capitulo

anterior.

Sea Y un espacio predual de Li. Supongamos que (Xi,...,Xy) tiene
la BPBp para formas multilineales. Entonces (Xi,...,Xn;Y) tiene la

BPBp para aplicaciones multilineales compactas.
Pero al igual que prueban en [3], hemos obtenido un resultado més fuerte:

Dado € € (0,1), existe n(e) > 0 tal que para todo A € K(X1,...,Xn;Y)

con ||A|| = 1 y para todo (29,...,2%) € Sx, X ... X Sx,, que satisfacen
1A, . 23l > 1= n(e),

evisten B € K(X1,...,Xn;Y) con ||B|| =1y (2,...,2%) € Sx, x ... x
Sx, tales que dim(B(X; X ... x Xy)) < o0,
0 0| — 0_ .0 _
IBGD )l =1, a2~ af <= y B - 4] <<

A continuacion presentamos algunos ejemplos de espacios que cumplen

la BPBp para aplicaciones multilineales compactas.

Sea Y un espacio predual de Ly. Si (X,Z;Y) cumple alguna de las
siguientes condicones, entonces tiene la BPBp para aplicaciones multi-

lineales compactas.
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(a) Sitomamos los espacios complejos X = Co(L) y Z = Cy(K) siendo

L y K espacios topoldgicos de Hausdorff localmente compactos.
(b) Si X =Li(pn) y Z = co.
(c) Si X y Z son espacios de Banach uniformemente convezos.

Seguidamente, en la tercera seccién de este capitulo caracterizamos
los pares (¢1(X),Y’) que satisfacen la BPBp para formas bilineales. El

resultado es el siguiente:

El par (¢1(X),Y) tiene la BPBp para formas bilineales si y solo si para
todo e > 0, existe 0 < n(e) < ¢ tal que, dadas sucesiones (Ty,)r C L(X;Y)
con || Tx|| = 1 para todo k y (zx)r C Sx y dada una serie convera Y32, oy,
tal que

i Oéka(iUk)

k=1

>1- 77(5)7

existen un subconjunto A € N, un elemento y* € Sy« y dos sucesiones
(Sk)k C L(X;Y) con ||Skl| =1 para todo k y (zx)r C Sx satisfaciendo

(1) ZkeAak‘ > 1 — g,
(2) llzx — x|l <€ y ||Sk — Tkl < € para todo k € A, y
(3) y*(Sk(zx)) =1 para todo k € A.

También hemos probado que, si H es un espacio de Hilbert, entonces
el par (X, H) tiene la BPBp para formas bilineales si y sdlo si el par
(X, H) tiene la AHSP generalizada.

Otro campo de trabajo de este capitulo es el estudio del radio numérico
en el conjunto de las aplicaciones multilineales definidas en L; (), siendo
i una medida arbitraria. Hemos mostrado que para toda aplicacién

A€ LIVLy(u); Ly(p)), su radio numérico y su norma coinciden.



Para terminar el capitulo, estudiamos la propiedad de Bishop-Phelps-
Bollobas para radio numeérico en el contexto de las aplicaciones multi-
lineales. Mostramos que si X tiene dimensién finita, entonces el espacio
X satisface esta propiedad. Por otro lado, L;(u) no satisface la propiedad
aunque este espacio si tiene la BPBp-nu en el caso lineal para toda me-
dida p. Otro resultado probado es el siguiente: si una cy-suma o una
{1-suma satisface la BPBp-nu para aplicaciones multilineales, entonces

cada componente de la suma directa también la satisface.

El contenido de este capitulo ha sido enviado a publicacion y los

autores esperan una respuesta definitiva de la revista:

S. DANTAS, D. GARcia, S. K. Kim, H. J. LEE AND M. MAESTRE,
The Bishop-Phelps-Bollobas theorem for multilinear mappings, Linear
Alg. Appl., 2017, parcialmente aceptado.

Terminamos la tesis presentando una lista de problemas abiertos con
la intenciéon de expandir nuevos horizontes para continuar trabajando
en este tema. También presentamos la lista de articulos publicados
derivados de esta tesis. Ademads, presentamos tablas que resumen de
manera practica los pares de espacios de Banach més conocidos que
satisfacen la propiedad de Bishop-Phelps-Bollobas para operadores, con

el objetivo de situar al lector en el actual escenario del tema.



Abstract

This dissertation is devoted to the study of the Bishop-Phelps-

Bollobas property in different contexts.

In Chapter 1 we introduce the notation and give a historical resume
behind this property as the classics Bishop-Phelps and Bishop-Phelps-
Bollobés theorems. The first theorem [14] says the following:

Let X be a Banach space. Given a positive real number € > 0 and a
continuous linear functional x* € X*, there are a new functional zj; € X*

and a new point xo € Bx satisfying that
|z5(xo)| = llzoll  and  [lag — 27 <e.

That is, that the set of all norm attaining functionals is norm dense in
the dual of a Banach space X.

It is natural to ask if this theorem holds for general bounded linear
operators. In 1963, J. Lindenstrauss [52] gave the first counterexample
that in general this is false presenting, on the other hand, conditions
on the Banach spaces to get positive results. After that, many authors
studied the hypothesis that some Banach spaces must satisfy to get that
the set of all bounded linear operators which attain their norm is norm
dense in the set of all bounded linear operators.

Seven years later, Bollobas [15] proved a stronger version of the

Bishop-Phelps theorem which we highlight as follows.
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Let X be a Banach space. Given € >0, x € Bx and x* € Sx+ satisfying

2
19
1—2z* < —
1-a"(@) < .

there are elements xo € Sx and xf € Sx~ such that
[Zo(zo)| =1, lwo—zf| <e and |[zg—2z"[| <e.

With this result he showed that besides the approximation for the
functionals, we can approximate the point that an initial functional
almost attains its norm.

In the last nine years a lot of attention had been paid in the attempt to
get Bishop-Phelps-Bollobas type theorems for bounded linear operators.
This started with the seminal paper by M. Acosta, R. Aron, D. Garcia
and M. Maestre [2]. They defined the Bishop-Phelps-Bollobéds property

as follows.

We say that a pair (X;Y') of Banach spaces has the BPBp if given € > 0,
there exists () > 0 such that whenever T is a norm-one linear operator

from X intoY and xq is an element of the unit sphere of X such that
1T (zo)[| > 1 = n(e),

then there are a new norm-one linear operator S and a new element x,

on the unit sphere of X satisfying the following conditions:
IS(x)|| =1, |lx1—m|| <e and ||S—T] <e.

Note that the Bishop-Phelps-Bollobas theorem says that the pair (X, K)
has the BPBp for all Banach spaces X. Note also that if the pair (X;Y)
has the BPBp, then the set of all bounded linear operators from X into
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Y which attain their norm is norm dense in the set of all bounded linear
operators.

We finish this chapter commenting on some important current results
on this topic as the necessary reference background material to help

make this dissertation entirely connected with the recent works.

In Chapter 2 we study similar properties to the BPBp. We start with
the Bishop-Phelps-Bollobas point property (BPBpp).

We say that a pair (X;Y) of Banach spaces has the BPBpp if given
e > 0, there exists n(e) > 0 such that whenever T is a norm-one linear

operator and xq is an element in the unit sphere of X such that
1T (o)l > 1 —n(e),
there is a new norm-one linear operator S such that
|1S(zo)[| =1 and ||S—T| <e.

Observe that this property is stronger than the BPBp. First we study
it for bounded linear operators and then for bilinear mappings.

Note that here we do not change the initial point zg, i.e., the point
that T" almost attain its norm is the same point that the operator which
is close to T" attains its norm. As a first result, we give a characterization

for uniformly smooth Banach spaces via this property:

A Banach space X is uniformly smooth if and only if the pair (X;K)
has the BPBpp.

Also we prove that if a pair (X;Y') has this property for some Banach
space Y, the Banach space X must be uniformly smooth. For that
reason, we must suppose always that the domain space X is uniformly

smooth to get more positive examples.
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We show that if Y has property [ or it is a uniform algebra, then
(X;Y) has the property for all uniformly smooth Banach spaces.

On the other hand, we work on Hilbert spaces. Recalling that Hilbert
spaces have transitivy norms we show that if H is a Hilbert space, then
the pair (H;Y') has the BPBpp for all Banach spaces Y.

We finish this first part by showing that there exist 2-dimensional
uniformly smooth real Banach spaces X such that the pair (X;Y") fails
the BPBpp for some Banach space Y. After that we consider the same

property for bilinear mappings on similar situations.
The contents of this section was published in the following paper:

S. DanNTAS, S. K. Kim AND H. J. LEE, The Bishop-Phelps-Bollobés
point property, J. Math. Anal. Appl. 444 (2016), no. 2, 1739-1751.

Still on Chapter 2, we study the dual property of the BPBpp in two
different situations. In the first situation we consider the positive real
number 7 which appears in its definition (see Definition 2.2.2) depending
not only on ¢ > 0 but also on a fixed norm-one linear operator 7. We

call this property as property 1.

We say that a pair (X;Y') has property 1 if given € > 0 and a norm one
linear operator T, there is n(e,T) > 0 such that whenever an element

in the unit sphere of X satisfies
1T (z0)[| > 1 =n(e,T),
there is another element x1, also in the unit sphere of X, satisfying that
IT(x1)|]| =1 and |x1 — x| <e.

Note, by the definition, that the operator T': X — Y must attains
its norm if the pair (X;Y’) has this property. So, to get positive results,
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we have at least suppose that the domain space X is reflexive by using
James theorem (see Remark 2.2.3.(a)). For finite dimensional Banach

spaces, we have the following result:

The pair (X;Y') has property 1 for every Banach space Y if X is finite

dimensional.
We also show that

If X is reflexive and locally uniformly convez, in particular for X uni-

formly convex, then the pair (X;Y') has property 1 for compact operators

As a consequence the pair (f5; ¢1) satisfies it since, in this particular
case, every operator is compact and /5 is uniformly convex. Actually,
we give the following complete characterization to this property for the

pairs (£,;0,):

(i) The pair (£, ¢,) has property 1 whenever 1 < g < p < co.
(i) The pair (L, ¢,) fails property 1 whenever 1 < p < q < 0.

After that, we consider the uniformly version of property 1 which we
call as property 2. This is the same as property 1 but 7 depends only on
e > 0. By Kim-Lee theorem [46, Theorem 2.1], we have that

A Banach space X is uniformly convex if and only if the pair (X;K) has
property 2.

This is the dual version of the already mentioned BPBpp for the pair
(X; K) which characterizes uniformly smooth Banach spaces. Differently
from the Bishop-Phelps-Bollobas point property, it seems to be difficult
to get positive results besides the scalar case when the domain space is

uniformly convex. Indeed, among other negative results, we show that
The pairs ((3(R); (2(R)) fails property 2 for all 1 < q < oc.

and also
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For all 2-dimensional Banach spaces Y, the pair (Y;Y') cannot have

property 2.
The contents of this section was published in the following paper:

S. DaNTAS, Some kind of Bishop-Phelps-Bollobas property, Math.
Nachr., 2016, doi:10.1002/mana.201500487

In Section 2.3 we work on the Bishop-Phelps-Bollobas point property
for numerical radius (BPBpp-nu). This property was motivated by
the recently study of the BPBp for numerical radius (see for example
[32, 37, 47]). Its definition is similar to the BPBp but now considering
numerical radius instead of the norm on the space of all bounded linear

operators.

The Banach space X has the Bishop-Phelps-Bollobds property for nu-
merical radius (BPBp-nu) if for every € > 0, there exists some n(g) > 0
such that whenever T is a operator from X into itself with numerical

radius 1 and (x,x*) satisfy ||x*|| = ||z]| = z*(x) =1 and

|2*(T'(2))] > 1 =nle),

there are a new numerical radius one linear operator S and an element
(y,y*) with ||y*|| = ||yl = v*(y) = 1 such that

Sl =1, lly" =2l <e lly—zll <e and [|S-T[ <e.

In our case, we are considering that the initial point (z,2*) does not
change as in the BPBpp.

As a first result, we show that the complex Hilbert spaces satisfy this
property. Then we work with operators defined in complex Hilbert spaces

and we give versions of the BPBpp-nu and the BPBpp for self-adjoint,
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anti-symmetric, unitary and normal operators. We summarize these

results as follows.
If H is a complex Hilbert space, then

(i) H has the BPBpp-nu for self-adjoint, anti-symmetric and unitary
operators.
(ii) (H, H) has the BPBpp for self-adjoint, anti-symmetric, unitary and

normal operators.

This means that if one starts with, for example, self-adjoint operator,
we have that H (resp. the pair (H; H)) has the BPBpp-nu (resp. the
BPBpp) with S also a self-adjoint operator.

Finally, in the last section of this chapter we generalize some results

from [11] by considering absolute norms. We prove that

If | - o is an absolute norm and the pair (X;Y; @, Y2) has the BPBp,
then (X;Y7) and (X;Ys) also satisfy this property.

Moreover, we give some examples of absolute norms |- |, such that if the
pair (X; @, Xo;Y) has the BPBp so do the pairs (X;;Y) and (Xo;Y).

In Chapter 3 we consider the Bishop-Phelps-Bollobas property for

compact operators.

We say that a pair (X;Y) of Banach spaces has the BPBp for compact
operators if given € > 0, there exists n(e) > 0 such that whenever T is a
norm-one compact linear operator from X intoY and xq is an element
of the unit sphere of X such that

1T (zo)[| > 1 = n(e),
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then there are a mew norm-one compact linear operator S and a new

element x1 on the unit sphere of X satisfying the following conditions:
|S(z1)]| =1, ||lz1 —ax0|| <e and ||S—T| <e.

Its definition is similar to the BPBp but now considering just this type
of operator. At the beginning of the chapter, we give an extensive list of
examples of pairs (X;Y') of Banach spaces which satisfy the BPBp for
compact operators. Some of them are already known as, among others,
the pairs (X;Y') when

e X is uniformly convex and Y is arbitrary;
e X is arbitrary and Y is a uniform algebra;

e X = Cy(L) and Y is uniformly convex where L is any locally

compact Hausdorff topological space;
e X arbitrary and Y™ is isometrically isomorphic to a L;-space;
o X = Ly(p) for an arbitrary measure and Y having the AHSP.

On the other hand, others are obtained by a simple modification on
the proof of some BPBp results by starting with a compact operator
and defining a compact perturbation which satisfies the Bishop-Phelps-
Bollobés conditions (see Definition 3.1.1). For example in the proof of
[2, Theorem 2.2], if we start with a compact operator T € IC(X;Y") with

|| = 1 satisfying | T(z0)]| > 1 — &

<, then the operator

S(a) = T(x) + [(1+n)z(x) = T"(Y5) (2)]Yao,

which satisfies the BPBp conditions, is also compact.
The hole chapter is motivated by the study of norm attaining compact
operators. M. Martin [53] showed that there exist Banach spaces X and
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Y, and compact operators from X into Y which cannot be approximated
by norm attaining operators. He presented some conditions ensuring the
density of norm attaining operators in the space of compact operators.

During the first section, we present some techniques to produce
pairs of Banach spaces having the BPBp for compact operators. These
techniques are based on two old results about norm attaining compact
operators by J. Johnson and J. Wolfe [43] and the main idea here is
to give some applications which carry the BPBp for compact operators
from some sequence spaces to function spaces.

To get applications on the domain spaces, we prove the following

technical lemma.

Let X and Y be Banach spaces. Suppose that there exists a function
n:RT — RT such that given § € RY, z%,... 2 € By« and xy € Sy,
we may find a norm-one operator P € L(X; X) and a norm-one operator

i€ L(P(X); X) such that
(1) ||P*xj — x;H <dforj=1,...,n,
(2) [li(P (o)) — ol <4,
(3) Poi= Idp(X),

(4) the pair (P(X);Y) has the BPBp for compact operators with the

function n.
Then, the pair (X;Y") has the BPBp for compact operators.

On the other hand, the abstract lemma that we need to get the

applications for the range spaces is the following.

Let X and Y be Banach spaces. Suppose that

(1) there exists a net of norm-one projections {Qx}ren C L(X;Y)
such that {Q\y} — y in norm for every y € Y and
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(2) there exists a functionn : RT — RT such that the pairs (X; QA(Y))
with A € A have the BPBp for compact operators with the function

n.
Then the pair (X;Y') has the BPBp for compact operators.

Using these two technical results, we will be prepare to work on
concrete Banach spaces in the third section of this chapter. We start
with the domain spaces trying to get results from sequences to functions

spaces as the following theorem.

If (co;Y') has the BPBp for compact operators, then so does (Co(L);Y)
for every locally compact Hausdorff topological space L.

To prove this, we need a characterization for the pairs (¢o(X),Y) to

have the BPBp for compact operators.

Let X andY be Banach spaces. Then the following are equivalent:
(i) the pair (co(X);Y) has the BPBp for compact operators;

(ii) there is a function n : RY — R such that the pairs ({7 (X);Y)
with m € N have the BPBp for compact operators with the function
n.

Besides that, when K£(X;Y) = £(X;Y) (in particular, if one of the
spaces X or Y is finite-dimensional), this happens when (co(X);Y") or
(/5 (X);Y) has the BPBp. As a consequence we have that

Let Y be a Banach space. If the pair (co;Y') has the BPBp, then it has
the BPBp for compact operators.

In fact, although we have the above fact, it is not totally clear what
is the relation between the BPBp for compact operators and the BPBp.
It is worth to mentioning that it is not true that the BPBp for compact
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operators implies the BPBp for operators since the pair (L;[0, 1], C[0, 1])
has the BPBp for compact operators but this pair cannot have the BPBp
by a W. Schachermayer counterexample for norm attaning of operators
from L]0, 1] into C10, 1] [59]. We do not know if the BPBp implies the
BPBp for compact operators.

Still on the application for the domain spaces, we get the following

result which passes the BPBp for compact operators from ¢; to L spaces.

Let i be a positive measure, let X be a Banach space such that X*
has the Radon-Nikodym property and let Y be a Banach space. If the
pair ((1(X);Y) has the BPBp for compact operators, then the pair
(L1(p, X);Y) has the BPBp for compact operators.

To prove this, we need the following useful lemma.

Then the following are equivalent:

(i) for every e > 0 there exists 0 < £(g) < € such that given sequences
(Tk) C Bx(x.vy and (x) C Bx, and a convex series Y 3, oy, such
that

o.]
> ay Ty
k=1

>1—¢&(e),

there exist a finite subset A C N, y* € Sy« and sequences (Sy) C
Skx:vy, (2x) C Sx satisfying the following:

() Ypeaar >1—¢,
(b) |lzk — k|| < € and ||Sy — Ty|| < € for all k € A,
(c) y*(Skzk) =1 for every k € A.

(in this case, we may say that the pair (X;Y') has the generalized
AHSP for compact operators);

(ii) the pair ((1(X);Y") has the BPBp for compact operators;
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(iii) there is a function n: RT™ — Rt such that the pairs ((7(X);Y)
with m € N have the BPBp for compact operators with the function
7.

In particular, we have the following characterization for the pairs
(¢1;Y) to have the BPBp for compact operators.
The following are equivalent:
(i) the pair (¢1;Y) has the BPBp for compact operators;
(ii) Y has the AHSP;
(iii) the pair ((1;Y) has the BPBp;

(iv) for every positive measure p, the pair (L1();Y") has the BPBp for

compact operators;

(v) there is a positive measure p such that Li(p) is infinite-dimensional

and the pair (L1(p);Y') has the BPBp for compact operators.

And now about the ranges spaces. We get the following applications

of the abstract lemma that we had showed before.

(a) Forl < p < oo, if the pair (X;€,(Y)) has the BPBp for compact
operators, then so does (X; L,(11,Y)) for every positive measure

such that Li(u) is infinite-dimensional.

(b) If the pair (X;Y) has the BPBp for compact operators, then so
does (X; Loo(11,Y')) for every o-finite positive measure .

(c) If the pair (X;Y') has the BPBp for compact operators, then so does
(X;C(K,Y)) for every compact Hausdorff topological space K.
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To prove this theorem, we need of the following useful lemma which
characterizes the pair (X,Y") to have the BPBp for compact operators

in terms of direct sums.

Let n: RT — R* be a function. The following are equivalent:

(i) the pair (X;Y) has the BPBp for compact operators with the

function n,

(ii) the pairs (X;02(Y)) with m € N have the BPBp for compact

operators with the function n,

(iii) the pair (X;co(Y)) has the BPBp for compact operators with the

function n,

(iv) the pair (X;l(Y')) has the BPBp for compact operators with the

function n.

To finish this chapter, we get the following consequences of the last

theorem.

Let K be a compact Hausdorff topological space, let v be a positive

measure and let v be a o-finite positive measure.

(a) IfY has property B, then (X; Loo(v,Y)) and (X;C(K,Y)) have
the BPBp for compact operators.

(b) IfY has the AHSP, then so do Lo (v,Y) and C(K,Y).

(c) For 1 < p < oo, if £,(Y) has the AHSP and Ly(p) is infinite-
dimensional, then L,(u,Y’) has the AHSP.

The contents of this chapter was published in the following paper:

S. DANTAS, D. GARcfA, M. MAESTRE AND M. MARTIN, The Bishop-
Phelps-Bollobas property for compact operators, Canadian J. Math.,
2016, http://dx.doi.org/10.4153 /CJM-2016-036-6
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Finally, in Chapter 4, we study different type BPB properties adapted

for multilinar mappings.

Let Xi,...Xn and Y be Banach spaces. We say that (Xi,..., Xn;Y)
has the Bishop-Phelps-Bollobds property for multilinear mappings (BPBp
for multilinear mappings) if given € > 0, there exists n(e) > 0 such
that whenever A is an N-linear mapping from X1 X ... Xy into Y with
Al =1 and (29,...,2%) € Sx, X ... x Sx, satisfy

1AL, . 2l > 1= n(e),

there are a new N-linear mapping B : X; x...x Xy — Y with | B|| = 1

and a new element (z9,...,2%) € Sx, X ... X Sx, such that
1BV, ..., 20 =1, 1211]'&51(\[”’2? — 2l <e and |B- Al <e.

When it is of interest we can emphasize the degree of the multilinear
mapping by saying that (Xi,..., Xx;Y) has the BPBp for N-linear
mappings instead of the BPBp for multilinear mappings. We may
also define the BPBp for symmetric multilinear mappings when we
consider A and B both elements in £,(Y X;Y), the set of all N-linear
symmetric mappings. In this case, we say that (¥ X;Y) has the BPBp
for symmetric multilinear mappings. When Y = K, we denote the BPBp
for (Xi,..., Xn;K) just by (X3,..., Xy) and we say that (Xq,..., Xy)
has the BPBp for N-linear forms. Analogously, we define the BPBp for

homogeneous polynomials.

We say that the pair (X;Y') has the Bishop-Phelps-Bollobds property for
N-homogeneous polynomials if given € > 0, there exists n(e) > 0 such
that whenever P is an N-homogeneous polynomial with ||P|| = 1 and
xg € Sx satisfy

[P (zo)] > 1 —n(e),
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there are a new N -homogeneous polynomial Q with |Q| =1 and x1 € Sx
such that

Q) =1, lz1 —xol| <& and [|Q—P| <e.

In this chapter, we extend some known results about norm attaining
multilinear mappings to the BPBp as for example the simple following

observation which is came from the linear case:
Let X, Xq,..., XN and Y be finite dimensional Banach spaces. Then

(i) (X1,...,XN;Y) has the BPBp for multilinear mappings,
(ii) (VX;Y) has the BPBp for symmetric multilinear mappings,

(iii) (X;Y) has the BPBp for N-homogeneous polynomials.

We also prove an stability result which says that we can pass from
(N + 1)-degree to a N-degree in the BPBp:

If (Xy1,..., XN, Xni1;Y) has the BPBp for (N + 1)-linear mappings,
then (X1,..., Xn;Y) has the BPBp for N-linear mappings.

We also show that

If N > 2 and X4, ..., Xy are Banach spaces where Xy is a uniformly
convex space, then (Xi,...,Xy) has the BPBp for N-linear mappings
if and only if (X1,...,Xn_1;XX) has the BPBp for (N — 1)-linear

mappings.
It is show that we may pass from the vector-valued case to the

scalar-valued case in the Bishop-Phelps-Bollobas property for multilinear

mappings. Moreover, we prove the following characterization:

If'Y has property (3, then the N-tuple (X1, ..., Xx) has the BPBp if and
only if (X1,...,Xn;Y) has the BPBp.
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We also study the BPBp for compact multilinear mappings in the

same vein of the previous chapter.

LetY be a predual of an Li-space. Suppose that the N-tuple (X1, ..., Xy)
has the BPBp for multilinear forms. Then the pair (Xi,...,Xn;Y) has
the BPBp for compact multilinear mappings.

But as [3], we get a little more than that:
Given e € (0,1), there exists n(e) > 0 such that whenever A € K(Xy, ...,
Xn;Y) with [JA] =1 and (29,...,2%) € Sx, X ... X Sx,, satisfy

1A, ., 2yl > L =n(e),

there are B € K(Xi,...,Xn;Y) with |B|| = 1 and (29,...,2%) €
Sx, X ... x Sx, such that dim(B(X; X ... x Xy)) < oo,

IBGS, Rl =1, max (120 —afll <= and |B— Al <<

We provide examples of spaces satisfying such property.

For a predual Y of an Ly-space, (X, Z;Y") has the BPBp for compact

bilinear mappings in the following cases.

(a) For the complex Banach spaces X = Co(L) and Z = Cy(K) where
L and K are locally compact topological Hausdorff spaces.

(b) For X = Ly(p) and Z = cy.
(c) For X and Z uniformly convex Banach spaces.

In the third section of this chapter, we characterize the pair (¢1(X),Y")
to have BPBp for bilinear forms. We prove that

The pair (¢1(X),Y) has the BPBp for bilinear forms if and only if

for every € > 0 there exists 0 < n(e) < e such that given sequences
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(Te)r € L(X;Y) with ||Tk]| = 1 for every k, (zx)r C Sx and a convex

series Y poq ay such that

i o Ty ()

k=1

>1—n(e),

there exit a subset A € N, y* € Sy« and sequences (Sg)r, C L(X;Y) with
1Skl = 1 for every k, (z1)r C Sx satisfying

(1) Spcaar >1—¢,
(2) |lzk — x|l <€ and ||Sk — T|| < e for all k € A, and
(3) y*(Sk(zx)) =1 for every k € A.

Also we show that the pair (X, H) has the BPBp for bilinear forms
if and only if the pair (X, H) has the generalized AHSP where H is a
Hilbert space.

Still on this chapter, we study the numerical radius on the set of all
multilinear mappings defined in L;(u), where u is an arbitrary measure.
We prove that for every A € L(VLy(u); Li(p)), its numerical radius and
its norm coincide.

To finish the chapter, we study the Bishop-Phelps-Bollobas property
for numerical radius for multilinear mappings. It is shown that if X is
a finite-dimensional Banach space, then X satisfies this property. On
the other hand, Li(u) fails it although L;(p) has the property in the
operator case for every measure p. We also prove that if a ¢y or a £1-sum
satisfies it, then each component of the direct sum also satisfies the

BPBp-nu for multilinear mappings.
The contents of this chapter was partially accepted:

S. DANTAS, D. GARcia, S. K. Kim, H. J. LEE AND M. MAESTRE,
The Bishop-Phelps-Bollobas theorem for multilinear mappings, Linear
Alg. Appl., 2017, partially accepted.
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We finish this dissertation by presenting a list of open problems with
the intention to expand new horizons to continue working on the subject.
Also we present the list of published articles derived from this thesis.
Moreover, we present tables which summary those pairs of classical
Banach spaces satisfying the Bishop-Phelps-Bollobas property with the

purpose to put the reader in the current scenario on this topic.
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Chapter 1

Introduction

1.1 Preliminaries

We start with some definitions, conventions and notation which will
be used throughout this dissertation. The set of positive integers is
denoted by N. The fields of real and complex numbers are denoted by R
and C, respectively. We denote by K a field that can be either R or C.
We call the elements of K by scalars.

If X is a Banach space, then X* denotes its topological dual space.
We denote by Bx and Sx the unit ball and the unit sphere of the Banach

space X, respectively, i.e.,
Bx={ze X: ||z|| <1} and Sx={xr e X : |z]| =1}

We denote by £(X;Y") the set of all linear continuous operators from
X toY. When Y =K, a linear operator from X into K is called linear
functional. We define the norm of an operator 7' € L(X;Y') by

[T} = sup |T(z)] = sup [T(x)]]

r€EBx rz€Sx
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We say that T' € L(X;Y) attains its norm or that it is norm attaining
if there exists some zy € Bx such that ||T|| = ||T'(xo)||. We denote by
NA(X;Y) the set of all norm attaining operators.

GivenT' € L(X;Y), we denote by T* € L(Y™*; X*) its adjoint operator
which is defined by

T y*(x) =y"(Tz) (xe€ X, y"eY").

We recall that ||7%|| = ||T'|| and that T is weak*-to-weak* continuous
for every T' € L(X;Y).

A linear operator T is said to be a compact operator if T(By) is
relatively compact in Y. We denote by IC(X;Y) as the set of all compact
linear operators from X into Y. Recall that all finite rank operators in
L(X;Y) are compact. By Schauder’s Theorem, an operator in £(X;Y)
is compact if and only if its adjoint is compact.

We also need some notation about direct sums. Let X be a Banach
space, m € N and 1 < p < oo. By £'(X) we denote the {,-sum of m
copies of X and ¢,(X) is the {,-sum of a countable infinitely many copies
of X. We denote by ¢o(X) the co-sum of a countable infinitely many
copies of X.

If (2,%, 1) is a positive measure space, L,(u, X) is the space of all
strongly measurable functions f : 2 — X such that || f||” is integrable
for 1 < p < oo or f is essentially bounded for p = oo, endowed with the
natural corresponding p-norm. For 1 < p < oo, let p* be the conjugate
exponent, i.e. p* = oo for p = 1 and p* is determined by the equation
I/p+1/p*=1forl<p<oc.

Let Xi,..., Xy and Y be Banach spaces. We denote by L£(X7,...,
Xn;Y) the set of all bounded N-linear mappings defined from X; X
... X Xy into Y. We use the letters A, B, C' or D to denote members of
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L(Xy,...,Xn;Y). If Ae L(Xy,...,Xn;Y), then we define its norm by
Al :==sup {||A(z1,...,zn)| : (@1,...,2n) € Sx; X ... X Sxy}-

Analogous to the operator case, we say that A € L£(Xy,...,Xn;Y)
attains its norm or that it is norm attaining when there exists some point
(29,...,2%) € Sx, X ... X Sx, such that [[A(zY,...,2%)| = || A|. We
denote by NA(L(Xj, ..., Xy;Y) the set of all norm attaining multilinear

mappings.

When X; = ... = Xy = X, we write L(VX;Y) and if moreover
Y =K we write just £L(VX). When Y =K, we write £(X7,..., Xy) to
specify the space of all multilinear mappings from X; x ... x Xy into

K. We say that A € L(NX;Y) is symmetric whenever
A(xg(l), e ,.CIZJ(N)) = A(.Tl, e ,QZN) (331, ..., IN € X)

for every permutation o on {1,..., N}. We denote by £,(VX;Y) the
set of all symmetric multilinear mappings from X x ... x X into Y.

A mapping P : X — Y is said to be an N-homogeneous polynomial
if there exists some symmetric N-linear mapping Ae L,NX;Y) such
that

P(z) = A(z,...,x)

for all z € X. We denote by P(VX;Y) the set of all continuous
N-homogeneous polynomials from X into Y. In this space, we define

the norm of P by
|1P|| == sup ||P(z)].

TESx
We say that an N-homogeneous polynomial P attains its morm or
that it is norm attaining if there exists some zy € Sx such that
| P(z0)|| = ||P||. We denote by NA(P(NX;Y)) the set of all norm at-

taining N-homogeneous polynomials.
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We say that the N-linear mapping A € L(Xy,...,Xy;Y) is com-
pact if A(Bx, X ... x Bx,) is a precompact set in Y. We denote

by K(Xi,...,Xn;Y) the set of all N-linear compact mappings from
X1 X ... XXN into Y.

1.2 Historical background

This work was motivated by the Bishop-Phelps and the Bishop-
Phelps-Bollobas theorems. In this introductory chapter we give some
important historical and motivator facts about these two remarkable
results and we mention some significant current research on that area.

It is well known that, in general, there exist functionals on Banach
spaces which do not attain their norm. On the other hand, James proved
one of the most famous theorem in the norm attaining theory which gives
a characterization of reflexive Banach spaces as those Banach spaces in
which all bounded linear functionals are norm attaining [39, 40].

Around the same time, Bishop and Phelps showed that every con-
tinuous linear functional can be approximated by norm attaining ones,
i.e., given z* € X* and € > 0, there are some zj € X* and zp € Sx
such that ||zf|| = |2§(z0)| and ||z — z*|| < €. This theorem is known
nowadays as the Bishop-Phelps theorem [14]. At the end of that article,
they asked if this result could be extended to bounded linear operators,
i.e., is it true that the set NA(X;Y) is dense in £(X;Y)? The answer for
that arises two years later with Lindenstrauss [52]. He showed that, in
general, there is no version of the Bishop-Phelps theorem for operators.
Nevertheless, he gave some particular cases in which such a density holds.
For example, if X is any Banach space and Y is a closed subspace of £,
containing the canonical copy of ¢y, then the set NA(X;Y') is dense in
L(X;Y). Also he showed that the set of all bounded linear operators

such that its second adjoint operator attain the norm in X** is dense
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in £(X;Y). In particular, if X is reflexive, then NA(X;Y) is dense in
L(X;Y) for all Banach space Y.

After that, many positive results were obtained by using techniques
which depend strongly on the particular involved Banach spaces. For
example, Johnson and Wolfe proved that the set NA(C(K);C(S)) is
dense (considering just real functions) in the space L(C(K);C(S)) for
every compact and Hausdorff topological spaces K and S [43, Theorem 1].
Also, Iwanik showed the corresponding result for L, (p) for a finite positive
Borel measure g on the unit interval of R [38, Theorem 2] and Paya
and Saleh proved that NA(L;(p); Leo(v)) is dense in L(L1(u); Loo(v))
for every measure p and every localizable measure v [58, Theorem 1].
There are much more results in this direction and we suggest the detailed
survey [1] for more information about it.

In 1970, Bollobés proved an improved version of the Bishop-Phelps
theorem which is nowadays known as the Bishop-Phelps-Bollobas theo-
rem. Since this result is very significant to our work, we highlight it as

following.

Theorem 1.2.1 (The Bishop-Phelps-Bollobas theorem [15], [22]). Let
X be a Banach space. Let ¢ € (0,2) and suppose that z§ € Bx- and

xro € By satisfy

82

Rezj(xo) > 1—5. (1.1)

Then, there are 7 € Sx+ and z; € Sx such that
|27 ()] =1, |lz1 —x0]| <& and |z} — x5]| < e.

Bollobas’ result is a refinement of the Bishop-Phelps theorem since
given z* € Bx+ and € > 0, there exists some 7y € By satisfying (1.1).
Applying his result, we get a new bounded linear functional x] attaining
its norm and it is near to xj. Note that the only difference between these

two theorems is that in the Bollobas’ result both functionals and points
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where they almost attain their norm can be simultaneously approximated
by norm attaining functionals and points where they attain their norm.

The Bishop-Phelps-Bollobas theorem is very useful in the study of
numerical range theory. To see its application in many results, we suggest
the monographs [16, 17] due by F. F. Bonsall and J. Duncan.

Since there is no version of the Bishop-Phelps theorem for bounded
linear operators and the Bishop-Phelps-Bollobas theorem implies it, there
is no version of the Bishop-Phelps-Bollobas theorem for this class of
functions either. For that reason, in 2008, M. Acosta, R. Aron, D. Garcia
and M. Maestre introduced the Bishop-Phelps-Bollobas property which

is defined as follows.

Definition 1.2.2 (The Bishop-Phelps-Bollobas property [2]). A pair of
Banach spaces (X;Y') has the Bishop-Phelps-Bollobas property (BPBp

for short) if given ¢ > 0, there exists n(¢) > 0 such that whenever
T e L(X;Y) with [|T|| =1 and 2y € Sx satisfy

1T (o)l > 1 —ne),
there are S € L(X;Y) with ||S|| = 1 and z; € Sx such that
1S(x)|| =1, ||Jz1 —xo|| <e and ||S—T| <e. (1.2)

In this case, we say that the pair (X;Y") has the BPBp with function
e — n(e).

With this new notation, the Bishop-Phelps-Bollobas theorem just
says that the pair (X,K) has the BPBp for every Banach space X.
There has been an extensive research on this topic in the same spirit of
Lindenstrauss, that is, analyzing the conditions that the Banach spaces
X and Y must satisfy to get a Bishop-Phelps-Bollobas type theorem for

bounded linear operators from X into Y.
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In [2], the authors showed that the pair (X;Y’) has the BPBp when-
ever dim(X) < oo and dim(Y’) < oo [2, Proposition 2.4] or when Y has
property [ (see Definition 2.1.5) for any Banach space X [2, Theorem
2.2]. They also gave a characterization for the pair (¢1;Y") via the ge-
ometry of the Banach space Y. More precisely, the pair (¢1;Y") has the
BPBp if and only if Y has the approximate hyperplane series property
(AHSP, for short) (see Definition 4.2.1) [2, Theorem 4.1]. They proved
that finite-dimensional Banach spaces, L;(u)-spaces, C'(K)-spaces and
uniformly convex Banach spaces all satisfy this property [2, Proposition
3.5, 3.6, 3.7 and 3.8, respectively]. Actually, Kim, Lee and Martin defined
a more general property [50, see Definition 4], the generalized AHSP
for a pair (X;Y’), which characterizes when the pair (¢;(X);Y’) has the
BPBp.

It is worth to mention that if the pair (X;Y") has the BPBp then the
set NA(X;Y) is dense in L(X;Y). So the BPBp is stronger than the
denseness of norm attaining operators. Nevertheless, the study of the
BPBp is not merely a trivial extension of the corresponding study of the
density of norm attaining operators. From the seminal paper [2] we know
that is not always true that the density of NA(X;Y") implies the BPBp
for the pair (X;Y) (see [2, Remark 2.5]). Actually, there are some other
examples showing that but maybe one of the more remarkable is that one
found in [11, Example 4.1]: there exists a sequence of two-dimensional
polyhedral spaces such that, writing ) to denote its cp-sum, the pair
(£3;Y) fails the BPBp, we have the equality NA((%;Y) = L(¢3;Y) for
every Banach space Y and, on the other hand, we have that the set
NA(X;Y) is dense in L(X;)) for every Banach space X.

Many authors have studied the Bishop-Phelps-Bollobas property over
the last 8 years and there is a long literature about this topic. This
motivated us to create a table containing all known pairs of classic

Banach spaces which satisfy this property and we invite the reader
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to take a look at it before going on into the next chapters. We did
not include any references on it but all the remarkable results to this
dissertation are referred properly over the next pages. One may find this
table in the last page of this monograph.

Now let us give information about how this work is organized. Chapter
2 is devoted to the study of three similar properties to the BPBp. In
the first section we start with the Bishop-Phelps-Bollobas point property
(BPBpp for short). This is stronger than the BPBp since its definition
is almost the same as Definition 1.2.2 but without changing the point
xg, i.e., if a pair (X;Y') has this property, the BPBp conditions (1.2)
are satisfied with a new operator S and x; = xq. We will show positive
results about it as well as cases in which it does not happen. In the
second section, we study properties 1 and 2. In these cases, we are not
changing the operator 7" in Definition 1.2.2, that is, given € > 0 there
exists some positive real number 7 such that whenever T' € £(X;Y") with
|T|| =1 and xy € Sx satisty || T(zo)|| > 1 —n, we get a new vector such
that T attains its norm at this vector and it is near to zy. In property 1
we are considering this 7 depending not only on € > 0 but also on a fixed
operator T. On the other hand, property 2 studies the uniform version
of property 1 in which consider 1 depending only on €. As we may see,
the behavior of property 2 is very different from the BPBpp although
these two properties may seem to be very similar at first sight. We finish
the chapter by studying the Bishop-Phelps-Bollobas point property on
complex Hilbert spaces and its analogous for numerical radius.

Chapter 3 is dedicated to the study of the compact version of the
Bishop-Phelps-Bollobas property. This means that we study the condi-
tions on the domain spaces X and the range spaces Y such that given
e > 0, there exists a positive real number 7(g) > 0 in such way that
whenever xy € Sy and a compact operator T € L(X;Y) with ||T] =1
satisfy the relation ||T'(zo)|| > 1 — n(e), there are a new point z; € Sx
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and a new compact operator S € L(X;Y) such that they satisfy the
Bishop-Phelps-Bollobés conditions (1.2). We call this property the BPBp
for compact operators. The strategy here is to present some technical
results which allow us to carry the BPBp for compact operators from
sequence to function spaces and so apply them to concrete Banach spaces.

In Chapter 4 we define and work on the BPBp, the BPBp for nu-
merical radius and the generalized AHSP for multilinear mappings. We
extend some known results about norm attaining operator to the multi-
linear and homogeneous polynomial cases and we characterize the pair
(41(X),Y) to have the BPBp for bilinear forms. We will calculate the
numerical radius of a multilinear mapping defined on L;(x) and we
present some negative results about the BPBp for numerical radius in

the multilinear case.






Chapter 2

Some versions of
Bishop-Phelps-Bollobas

properties

As the title of this chapter suggests, we study some similar properties
to the Bishop-Phelps-Bollobas property (see Definition 1.2.2). We start
with a stronger property called the Bishop-Phelps-Bollobas point property
and we will refer to it as the BPBpp to simplify the notation. We give
a characterization for the uniformly smooth Banach spaces via this
property, that is, we prove that a Banach space X is uniformly smooth if
and only if the pair (X;K) satisfies the BPBpp. From there on, we prove
some positive results by assuming that the domain space is uniformly
smooth. We also give a example of a pair of Banach spaces (X;Y') such
that X is uniformly smooth but the pair (X;Y") fails to have the BPBpp.
We finish this section by studying this property for bilinear mappings.

Section 2 is devoted to the study of two more properties which we
call as properties 1 and 2. As we mention in the first chapter, in both
properties we do not change the initial operator in Definition 1.2.2 of

the Bishop-Phelps-Bollobas property in the sense that S = T satisfies
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the BPBp conditions (1.2). In property 1 we consider the positive real
number 7 depending not only on € > 0 but also on a fixed operator
T. On the other hand, property 2 is defined as the uniform version of
property 1 where 1 depends only on €. Although property 2 and the
BPBpp seem to be very similar at first sight, their behavior is totally
different from each other as we may see later.

In the third section we study a BPBpp version for numerical radius
(BPBpp-nu, for short) and we show that the complex Hilbert spaces H
satisfy it. Moreover, we study the BPBpp and BPBpp-nu for concrete
operators defined in H as self-adjoint, anti-symmetric, unitary and
normal operators.

In the last section we study the stability of the Bishop-Phelps-Bollobas

property for some absolute sums.

2.1 The BPBpp

In this section, we present a property for a pair of Banach spaces
(X;Y) which insures that it is possible to approximate an operator from
X into Y by operators which attain their norm at the same point where
the original operator almost attains its norm. In other words, we do not
change the initial point which 7" almost attains its norm in the BPBp
(see Definition 1.2.2). We call it as the Bishop-Phelps-Bollobés point
property. We also study it for bilinear mappings.

2.1.1 The BPBpp for operators

We start with the operators version of the Bishop-Phelps-Bollobas
point property. The definition is the following.

Definition 2.1.1 (The BPBpp). A pair of Banach spaces (X;Y) is said
to have the Bishop-Phelps-Bollobds point property (BPBpp, for short) if
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given € > 0, there exists 7(e) > 0 such that whenever T' € L(X;Y') with
|T|| =1 and = € Sy satisfy

IT()] > 1 =n(e),
there exists S € £(X;Y) with ||S|| = 1 such that
|S(x)] =1 and ||S—T] <e.

In this case, we say that the pair (X;Y") has the BPBpp with the function
e —>n(e).

Note that the BPBpp is stronger than the BPBp by definition in the
sense that if the pair (X;Y’) has the BPBpp then it has the BPBp. We
also observe that it is possible to choose T" in the above definition with
|IT]| < 1 instead of ||T'|| = 1 by changing the parameters (see Remark
3.2.1).

As our first result in this section we give a characterization for the
uniformly smooth Banach spaces via the BPBpp. Before we do that, let
us recall the definition of uniform smoothness. A Banach space X is

said to be uniformly smooth if the limit

tr| —1
et

t—0 t (2'1)

exists uniformly for all x € Bx and z € Sx. We also need the concept
of uniformly convex Banach spaces. A Banach space X is said to be
uniformly conver if given € > 0, there exists a positive real number
d(g) > 0 such that

T+ T2

>1-6() = ||lv1 — 2] <e
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for all zq1,x9 € Sx. If X is a uniformly convex or a uniformly smooth
Banach space, then X is reflexive. Also X is uniformly smooth if and
only if X* is uniformly convex.

In what follows we use the ideas from [55, Proposition 4.10]. By [31,
Theorem V.9.5, p. 447 we have that

tr|| —1
L e+t

t—0+ t

= max{Rez"(z) : ||z"]| = 2"(2) = 1}. (2.2)

Proposition 2.1.2. The Banach space X is uniformly smooth if and
only if the pair (X;K) has the BPBpp.

Proof. Suppose that X is uniformly smooth. Then X* is uniformly

convex. So, given € > 0, z; € Bx+ and zyp € Sx such that
|75 (wo)| = |zo(ag)| > 1 —mn(e),

there exists 27 € Sx~ such that |zo(z})| = |xf(z0)| = 1 and |27 —zf|| < e
by [46, Theorem 2.1] (see Theorem 2.2.1). This proves that (X;K) has
the BPBpp.

Conversely, let ¢ > 0 and consider 7(¢) > 0 be the function in the
definition of the BPBpp for the pair (X;K). We prove that the limit
(2.1) exists uniformly for all x € By and z € Sx. Let x € By, z € Sy
and 0 <t < @ Define

z+tx

=¢85
|z +taf] ~ X

Ty .

and take z} € Sx« to be such that z}(z;) = 1. Since z(2) = ||z + tz|| —

tzy(z), we have that

Rexj(z) > [|z[| — 2t||z[| > 1 = n(e).
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From the assumption that the pair (X;K) has the property, there exists
2} € Sx» such that

Rez(z) =1 and |z —z| <e.

Now, by the definition of the element z;, we have that

|z +tz|| — 1 _ zi(z+tx) — 1
t t

< Rexzj(z)
and by (2.2) we have that

tr| —1
R

Jlim > Re 7/ (z).

Moreover, for t; > t5 > 0, we have that
lt12 + tritaz|| < |[t2z + tritaz|| + || (t1 — t2)2]| = |[taz + titox|| + 1 — t2

and so
ti(llz + x|l = 1) < ta(l|z + tazf] = 1),
which implies that

|z + toz|| — 1 o |z + tiz|| — 1
to h t '

||z+tz||—1
— —

This means that the function ¢ decreases when ¢ > 0 goes to

zero. Hence, we have

|z 4tz —1 . Jlz+tz|| -1
—— lim —
t t—0t t
< Rezj(z) —Rezf(x) < |laf — 27| < e.

0<

Since € > 0 is arbitrary, X is uniformly smooth. m
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Remark 2.1.3. We observe that we may take zj in Bx- instead of Sx-
in the proof of Proposition 2.1.2 thanks to [46, Theorem 2.1]. So we can
rewrite this result as follows: X is a uniformly smooth Banach space
if and only if given € > 0, there is n(¢) > 0 such that if 2 € Bx+ and
xo € Sx are such that |z§(xo)| > 1 — n(e), then there exists x] € Sx~

satisfying |23 (zo)| = 1 and ||z} — z}]| < e.
As a consequence of Proposition 2.1.2, we have the following examples.
(a) If H is a Hilbert space, then the pair (H;K) has the BPBpp.

(b) The pair (L,(x); K) has the BPBpp for every positive measure p
and every 1 < p < oo.

Now we start to treat the vector valued case. The next proposition is
the reason that we have to assume from now on that the domain space
X is uniformly smooth in order to get more examples of pairs (X;Y)
satisfying the BPBpp.

Proposition 2.1.4. Let X be a Banach space. Suppose that there is
some Banach space Y such that the pair (X;Y’) has the BPBpp. Then
X is uniformly smooth.

Proof. Let € > 0 be given. Assume that (X;Y’) has the BPBpp with
n(e) > 0. We show that the pair (X;K) has the property and we apply
Proposition 2.1.2 to get that X is uniformly smooth. Let zj; € Sx- and
ro € Sx be such that

Rezj(xo) >1—n (;) :
Define T': X — Y by T'(z) := z{(x)yo for every € X and for a fixed
Yo € Sy. Since ||T|| = ||=|| = 1 and

€

IT (o)l = le5(ao)] > 17 (5).
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there exists S € L(X;Y) with ||S|| = 1 such that
€
1S(zo)l =1 and [|S =T < 3.

Take y5 € Sy~ so that Rey;(S(20)) = [y5(5(20))| = [[S(zo)[| = 1 and
define x7 := S*y; € X*. Then we see that

1> |21l = Reai(zo) = Re S7yg(x0) = Reyg(S(xo)) = 1.

Hence z] € Sx~ and it attains its norm at z,. It remains to prove that
|z} — zf|| < e. By using that ||S — T'|| < §, we get that

* * * * %,k * % % % * * €
lz1 = yo(vo)zoll = llar = Tyoll = 1570 — Tl < 157 = T71 <5

and since Re x}(xo) = 1,

3

Re(1 —45(%0)) < Re(zi(z0) — 5 (y0)25(w0)) < ll21 = 9o (v0)z0]l < 5

We can use these two inequalities to get

*

This proves that the pair (X;K) has the BPBpp. Applying Proposition
2.1.2, X is uniformly smooth as desired. [

In particular, all the pairs (X;Y) whenever X is not uniformly
smooth, for example X = ¢y or X = /1, do not have the BPBpp for any
Banach space Y. For this reason, we have to assume that the domain
space X is uniformly smooth if we aspire to get more examples of pairs
(X;Y) satisfying the property. In the next result, we prove that for such
X whenever Y has the property 3, the pair (X;Y') satisfies the BPBpp.
To do so, we use similar arguments to [2, Theorem 2.2] and [54, Theorem

4.1]. Let us remember what property /5 means.
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Definition 2.1.5. A Banach space Y is said to have property 3 with con-
stant 0 < p < 1if there are sets {y; : i € A} C Sy and {y; : i € A} C Sy~
such that

(i) yi(y;) =1 for alli € A,
(i) |yf(y;)| <p<lforalli,je A withi##jand

(iti) [lyll = sup;en |y; (y)| for all y € Y.

The Banach spaces ¢y(A) and £ (A) are the most typical examples
of spaces satisfying property ( by taking their canonical basis and
biorthogonal functionals. By [2, Theorem 2.2], when Y has property (3,
the pair (X;Y’) has the BPBp for every Banach space X. We have the
analogous result for the BPBpp.

Proposition 2.1.6. Let X and Y be Banach spaces. Assume that X
is uniformly smooth and that Y has property 5. Then the pair (X;Y)
has the BPBpp.

Proof. Let € > 0 be given. Proposition 2.1.2 says that there exists a
positive real number 7(e) > 0 such that whenever = € Bx+ and xy € Sx
satisty |z§(zo)| > 1 —n(e), there is z} € Sx- such that |2} (x¢)| = 1 and
|z — x§]| < e. Choose £ > 0 such that

1+p<2+§)<(1+z>(1—§). (2.3)

This gives that § < §. Let T € L(X;Y) with ||T'|| =1 and 2, € Sx be
such that
1T (o) | > 1 = n(E).

Since Y has property /3, there exists some ay € A such that y; (T'(zo)) =
(T*yx, ) (o) > 1 —mn(£). So there is o7 € Sx~ such that

[z1(xo)| =1 and a7 = Ty [| < €.
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Define S: X — Y by

S(z) == T(z) + [(1 4 i) zi(z) — Ty, ()

Yoo (x € X).

Then S € L(X;Y) and [[S — T < £+ & < 5. Also, we have

* ok ko k * € * ko k * *
Sy =Ty +y (yao)[<1+4)x1—Tyao} (y"eY").
Note that [|S|| = supgea |S*yk]|. On the one hand, we have that

1S*y%, |l = 1+ § and on the another hand, for a # ap, we have that

13 & g
£ 3 < —_ — _ —.
||Sya|!\1+p(4+£><(1+4)(1 £)<1+4

This shows that S* attains its norm at y; € Sy-. Observe that
S*yr, = |15*[|2} and that 27(zo) = 1, so ||S(zo)| = ||S||. So, if U := ﬁ,
then ||U(zo)|| =1 and |[U —T|| < 2||S —T|| < e. Thus the pair (X;Y
has the BPBpp. O

As a consequence of Proposition 2.1.6, we have the following examples.

(a) If H is a Hilbert space, then the pairs (H;cg) and (H; /) have
the BPBpp.

(b) The pairs (L,(u);co) and (L,(p); {) have the BPBpp for every

positive measure p and every 1 < p < oo.

(¢) If X is uniformly smooth and Y is a closed subspace of /., con-

taining the canonical copy of ¢, then (X;Y) has the uniform
BPBpp.

In fact, when the domain is a Hilbert space we get a more general
result than (a) as we can see in Theorem 2.1.7. To prove this, we have
to use the fact that Hilbert spaces have transitive norm, i.e., that for

any fixed two norm one points x and y, there exists a linear isometry
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R : H — H such that R(z) = y. Moreover, if ||y — z|| is small, then
R can be chose so that ||R — Idg]| is also small. Let us give a proof of
this result. Indeed, note first that it is enough to take dim(H) = 2 by
decomposing the Hilbert space H into the direct sum of a 2-dimensional
space and its orthogonal complement and we define R as the identity
operator outside the 2-dimensional part. Given ¢ € (0,1), let x and y
both in Sy be such that ||y — z|| < . Define

U Su.

Note that {z,u} and {y,v} are orthonormal systems in H. If we define
R:H — H by

R(ax + fu) :=ay+ v (ax+ pu € H),

then R is a linear isometry, R(z) = y and ||R — Idy| < d(¢) where
lim; 0 d(t) = 0. We use this fact constantly in Section 2.3.

Theorem 2.1.7. Let H be a Hilbert space and let Y be any Banach
space. Then the pair (H;Y") has the BPBpp.

Proof. Let H be a Hilbert space and let ¢ > 0 be given. Since H is
uniformly convex, the pair (H;Y") has the BPBp for all Banach space Y
(see [6, Corollary 2.3] or [46, Theorem 3.1]). Hence, there exists some
function € — n(e) satisfying the BPBp for this pair. Let T' € L(H;Y')
with ||T']| = 1 and hy € Sy be such that

1T (ho)ll > 1 = n(e).
Then there are S € £(H;Y) with ||S|| = 1 and hy € Sy satisfying

1S(ho)| =1, |lho—hol| <& and ||S—T| <e.
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Since H is a Hilbert space, it has a transitive norm. So there is a linear
isometry R : H — H such that

R(ho) = hy and ||R — Idyl|| < é(e)
where lim,_,o () = 0. Define S := SoR: H — Y. Then ||S|| < 1 and
1S(ho)l| = IS(R(ho)) || = |[S (ho)|| = 1.
So ||S]| = ||S(ho)|| = 1. Moreover,
IS=T|<|[SoR—=S||+|S=T| <||R—Idy||+¢ < d(c) +e.

This proves that the pair (H;Y') has the BPBpp as desired. ]

Concerning the transitivity, it is shown in [36] that for homogeneous
and non o-finite measure p, L,(x) has transitive norm when 1 < p < oc.
However, for p # 2 it is not possible to guarantee that the isometry
used there is close to the identity operator when the fixed two points are
close to each other. We do not know if it is possible to extend Theorem
2.1.7 to L,(p)-spaces. Also we do not know what happens with the pair
(X; H) when X is uniformly smooth and H is Hilbert.

Let K be a compact Hausdorff topological space. We denote by C(K)
the space of all continuous functions defined on K and || . ||« denotes
the supremum norm on this space. A uniform algebra is a || . ||o-closed
subalgebra A C C(K') endowed with the supremum norm that contains
the constant functions and separates the points of K, i.e., for every
x,y € K with x # y there is a function f € A such that f(z) # f(y).
We said that the uniform algebra A € C(K) is unital if the constant
function 1 belongs to A. It is known that the pair (X;C(K)) has the
BPBp whenever X is an Asplund space [10, Corollary 2.6] and it was
extended for the pair (X; A) in [19, Theorem 3.6] for both unital and
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non-unital uniform algebra A. We use the ideas from those results to
prove that the pair (X; A) has the BPBpp whenever X is a uniformly

smooth Banach space and A is a uniform algebra.

Theorem 2.1.8. Let X be a uniformly smooth Banach space and A be
a uniform algebra. The pair (X; A) has the BPBpp.

Proof. Indeed, adapt [19, Lemma 3.5] by using Proposition 2.1.2 instead
of the Bishop-Phelps-Bollobés theorem. Then apply it in [19, Theorem
3.6]. Since every uniformly smooth space is reflexive and every operator

from a reflexive space into A is Asplund, the result follows. O
We have the following consequence.

Corollary 2.1.9. Let X be a uniformly smooth Banach space and let
K be a compact Hausdorff topological space. Then the pair (X; C(K))
has the BPBpp.

Next we study the stability of the property with respect to direct

SuIs.

Proposition 2.1.10. Let X be a uniformly smooth Banach space and
let {Y;: j € J} be an arbitrary family of Banach spaces.
(a) The pairs (X; (@jg Yj)e ) and (X; (@jeJ Y;) ) have the BPBpp
(&S} co
if and only if, for all j € J, the pair (X;Y;) satisfies it with a

common function n(e) > 0.

(b) If the pair (X; (@jGJ Yj)gl has the BPBpp, then the pair (X;Y;)
satisfies it as well for all 7 € J.

Proof. For (a), use [11, Proposition 2.4] adapting it for our property.
For (b), do the same by using [11, Proposition 2.7]. Alternatively, both
items can be proved by adapting the more general Propositions 2.4.2
and 2.4.6 to the BPBpp. ]
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We do not know if the converse of Proposition 2.1.10.(b) is true even
for finite sums. We finish this section by commenting that there are
2-dimensional real uniformly smooth Banach spaces X such that the

pair (X;Y') fails the BPBpp for some Banach space Y.

Example 2.1.11. It is proved in [46, Corollary 3.3] that a 2-dimensional
real Banach space X is uniformly convex if and only if the pair (X;Y)
has the BPBp for all Banach spaces Y. Let X, be a 2-dimensional
Banach space which is uniformly smooth but not strictly convex. Then,
there is a Banach space Yj such that the pair (Xo; Yp) fails the BPBp
and so it can not satisfy the BPBpp either.

2.1.2 The BPBpp for bilinear mappings

Now we study the Bishop-Phelps-Bollobas point property on another
class of functions: the bilinear mappings. Before we do that, let us
establish some notation, give some definitions, and recall some useful
known results about the BPBp for bilinear forms.

Let X, Y and Z be Banach spaces. We denote by L(X,Y;Z) the
set of all bilinear mappings from X x Y into Z. It is a Banach space

equipped with the norm

|B|| = sup [|B(z,y)|| = sup || B(z,y)l.
r€Bx z€Sx
yEBy yESy

Recall that (X,Y’; Z) has the Bishop-Phelps-Bollobds property for bilinear
mappings (BPBp for bilinear mappings, for short) when given ¢ > 0,
there exists 7(e) > 0 such that whenever B € £(X,Y; Z) with ||B| =1
and (zg,y0) € Sx x Sy are such that

1B (o, %)l > 1 —n(e),
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there are A € L(X,Y;Z) with ||A]| = 1 and (z1,y1) € Sx x Sy such
that

Az, y)|| =1, [Jlzr — 0l <&, [l —wll <e and [[A—- B <e.

In this case, we say that (X,Y; Z) has the BPBp for bilinear mappings
with the function € — 7n(¢). When Z = K, we just say that the pair
(X,Y) has the BPBp for bilinear forms.

It was proved in [27, Theorem 2| that the pair (¢y, ¢;) fails the BPBp
for bilinear forms. On the other hand, if X and Y are uniformly convex
Banach spaces, then (X,Y’; Z) has the BPBp for bilinear mappings for
any Banach space Z [6, Theorem 2.2]. For the bilinear case, we introduce

the following stronger property.

Definition 2.1.12. We say that (X, Y’; Z) has the Bishop-Phelps-Bollobds
point property for bilinear mappings (BPBpp for bilinear mappings,
for short) if given € > 0, there exists n(¢) > 0 such that whenever
B e L(X,Y;Z) with ||B|| =1 and (xo, ) € Sx x Sy satisfy

1B(zo, yo)l| > 1 = nfe),
there exists A € L(X,Y; Z) with ||A]| = 1 such that
JA(zo,50) =1 and [ A— B] <e.

In this case, we say that (X,Y’; Z) has the BPBpp for bilinear mappings
with the function € — n(e).

When Z =K, we just say that the pair (X,Y’) has the BPBpp for
bilinear forms. It is clear that the BPBpp for bilinear mappings implies
the BPBp for bilinear mappings. Note by a routine change of parameters
that we may consider B € L(X,Y; Z) with ||B|| < 1 instead of || B|| =1
in Definition 2.1.12 (and we will use this in Theorem 2.1.16). It is worth
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mentioning that the pair (¢, ¢;) fails the BPBpp for bilinear forms since
it fails the BPBp for bilinear forms.

Our first result gives a partial characterization for the pair (X,Y") to
have the BPBpp for bilinear forms. It was proved in [6, Proposition 2.4]
(and independently in [28, Theorem 1.1]) that if Y is a uniformly convex
Banach space then the pair (X,Y’) has the BPBp for bilinear forms if
and only if the pair (X;Y™*) has the BPBp for operators. We will do the
same to our property but assuming now that Y is a Hilbert space. It is
not difficult to check that if the pair (X,Y’) has the BPBp for bilinear
forms then the pair (X;Y™*) has the BPBp for operators by using the
natural identification between the Banach spaces £(X,Y) and £(X;Y™)
given by B(z,y) :=T(z)(y) forall z € X,y € Y and T € L(X,Y™).
The same happens in our case. So we have to prove the converse and we
will do that in the next theorem.

Theorem 2.1.13. Let X be a uniformly smooth Banach space and let
H be a Hilbert space. Then the pair (X, H) has the BPBpp for bilinear
forms if and only if the pair (X; H*) has the BPBpp (for operators).

Proof. Let € > 0 be given. Assume that the pair (X; H*) has the BPBpp
for operators with n(¢) > 0. Consider dy(¢) > 0 the modulus of uniform
convexity of H. Let B : X x H — K be a bilinear form with ||B]|| = 1
and (zg, hg) € Sx x Sy be such that

Re B(zg, ho) > 1 —min{du(c),n(du(e))}.

Define the bounded linear operator 7" : X — H* by T'(x)(h) := B(z, h)
forall z € X and h € H. Then ||T|| = ||B|| =1 and

| T'(z0)|| = ReT'(x0)(ho) = Re B(zo, ho) > 1 —n(0n()).
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So there exists S € L(X; H*) with ||S|| = 1 such that
|S(z0)[| =1 and ||S—T| < dule) < 2e.
Let h; € Sy be such that
Re hi(S(wo)) = Re S(x0)(h1) = [|S(xo)[| = 1

We prove that ||hg — hq|| < e. Note first that since

ou(e)>||S—=T| = ReT(xo)(ho) —ReS(xo)(ho)
> 11— 6H(5) — ReS(xo)(ho),

we get that Re S(zo)(ho) > 1 — 20p(¢). Then

| > Re (5(1’0)(’10) + 5(950)(’11)) > 1= Gy (e).

2
So ||ho — h1|| < € as desired. Since H has a transitive norm (see the

ho + hq
2

observations just before Theorem 2.1.7), we can find a linear isometry
R € L(H; H) such that

R(ho) =hy and ||R— Idyl| < d(e)
where lim;_,o §(t) = 0. We define the bilinear form A : X x H — K by
A(z,h) .= S(z)(R(h)) ((xz,h) € X x H).
Then [[Afl <1 and

[ Ao, ho)| = [S (o) (R(ho))| = [S(20)(h1)| = Re S(x0)(h1) = 1.
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So ||A]| = |A(xo, ho)| = 1. Moreover, for all (z,h) € Sx x Sy, we have
that

| Az, h) = B(x, h)| <[S(2)(R(h)) = S(x)(h)] + [S(x)(h) = T(x)(h)]
<R = Idy| + ||S =T
<

d(e) + 2e.

Since (z,h) € Sx x Sy is arbitrary, we get that |A — B|| < d(g) + 2e.
This shows that the pair (X, H) has the BPBpp for bilinear forms. [

As a consequence of Theorem 2.1.13, we have the following corollary.

Corollary 2.1.14. Let H; and H, be Hilbert spaces. Then (Hy, Hs)
has the BPBpp for bilinear forms.

Proof. The pair (Hy; H}) has the BPBpp by Theorem 2.1.7. Hence,
Theorem 2.1.13 gives the desired result. [

Remark 2.1.15. We have a direct proof for Corollary 2.1.14. By [6,
Theorem 2.2], we know that (Hy, H2) has the BPBp with some 7(¢) > 0
for a given € > 0 where H; and H, are Hilbert spaces. Soif B € L(H;, Hs)
is a bilinear form with || B|| = 1 and (hg, h1) € Sy x Sp satisfying

| B(ho, h1)| > 1 —n(e),

then there are A € L(H,y, Hy) with HAH =1 and (ﬁo,ﬁl) € Sy x Sy
such that

’ﬁ(ﬁo,ﬁlﬂ =1, HEO — hoH <eg, H?LI — h1H < e and H/I — BH <e.

Then, there are linear isometries Ry, Ry € L(H; H) such that Ro(hg) = ho,
Rl(h1> = El, HRO — IdHH < 50(8) and HR1 — IdHH < (51(6) where
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limy 0 do(t) = limy_,0 01(t) = 0. Define A : H; x H, — K by
Az, y) = A(Ro(x), Ri(y))  ((x,y) € Hy x Hy).
Then A € L(Hy, Hs), ||A]| <1 and
|[A(ho, h1)| = |A(Ro(ho), Ri(h))| = [A(ho, h)| = 1.

So [|A|| = |A(ho, h1)| = 1. Moreover for all (z,y) € Sy, X Sh,,

|A(z,y) — B(x,y)| = |A(Ro(x), Ri(y))|
< JA(Ro(x), Ri(y)) — Alz, Ri(y))] + | Az, Ru(y)) — Az, )]
+ |A(z,y) — B(,y)]
< ||Ro — Idy || + || Ry — Idg|| + ||A = B|| < do(e) + 01(e) + ¢

This implies that (H;, Hy) satisfies the BPBpp for bilinear forms.

In the following, we are assuming that the range space Z satisfies

property f3.

Theorem 2.1.16. Let X,Y and Z be Banach spaces. Suppose that the
pair (X,Y’) has the BPBpp for bilinear forms and that Z has property
B. Then (X,Y; Z) has the BPBpp for bilinear mappings.

Proof. Let € > 0 be given and consider £ > 0 satisfying (2.3) in Proposi-
tion 2.1.6. Suppose that Z has property § with constant p € [0,1) and
sets {zo tx € A} C Sz and {2} :a € A} C Sy. Let B e L(X,Y;7)
with ||B]| =1 and (zo,y0) € Sx x Sy be such that

| B(wo, yo)[| > 1 —n(§),
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where € — () is the function for (X,Y’) which we are assuming to

have the BPBpp for bilinear forms. There exists some g € A such that
Re(z,, o B)(wo, o) = Re 2, (B(z0,%0)) > 1 —n(&).
Then there exists A € £(X,Y) with ||A|| = 1 such that
[A(zo,90)] =1 and [|A— (2}, 0 B)[| < &.
Define A: X xY — Z by

Alw,g) = Bloy) + | (14 5) Alwy) = (5, © B@.1) 200

for all (z,y) € X x Y. Notice that for all « € A and (z,y) € X XY, we

have

Z(A(z,y)) = 2,(B(2,y))
* €\ 7 *
+ 23 za) | (14 3) Alw) = (22, 0 B,y
So if a = ay, then 2} (A(z,y)) = (1 + i) A(z,y) and this implies that
|22, (A(x,9))] <1+ 5. On the other hand, if a # g, then

Al <1+p(5+) < (1-5)0-9 <143,

Since |z} (A(wo,90))| = 1+ 5, |All = [|A(zo,90)||. Also, we have that
|B—All <f+&<e Soif C:= H%H then we have that ||C'(zo,v0)|| = 1
and ||C — B|| < 2¢, proving that (X,Y’; Z) has the BPBpp for bilinear

mappings. 0

As a consequence of Theorem 2.1.16, we have the following corollary.
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Corollary 2.1.17. Let H; and H, be Hilbert spaces and let Z be a
Banach space with the property 5. Then (Hy, He; Z) has the BPBpp for

bilinear mappings.

Proof. This is a combination of Corollary 2.1.14 (or Remark 2.1.15) and
Theorem 2.1.16. O

Let us now consider compact bilinear mappings. Let X,Y and Z be
Banach spaces. We say that the bilinear mapping B : X XY — Z
is compact if B(Bx x By) C Z is precompact in Z. We denote by
K(X,Y; Z) the set of all compact bilinear mappings from X x Y into
7. We define the BPBpp for compact bilinear mappings by using just
compact bilinear mappings in Definition 2.1.12, i.e., we consider compact
bilinear mappings A and B in that definition. It is worth mentioning
that we study the BPBp for compact operators in Chapter 3 and for
compact multilinear mappings in Theorem 4.1.9 and Corollary 4.1.10.

Our aim now is to prove that (H, Hy; C'(K)) has the BPBpp for
compact bilinear mappings whenever H; and Hs are Hilbert spaces and
K is a compact Hausdorff topological space. First, we prove two auxiliary
results and the promised one will be a consequence of them.

For a function ¢ : K — L(X,Y), we say that ¢ is 7,-continuous if
the mapping ¢ — ¢(¢)(x,y) is continuous on K for each (z,y) € X x Y.
In the next lemma, we prove that there exists a natural (isometric)
identification between the spaces £(X,Y;C(K)) and the space of all
T,-continuous and bounded functions from K into £(X,Y’) endowed with

the supremum norm ||¢|| = sup,cg [|¢(©)||-

Proposition 2.1.18. [31, Theorem 1, p. 490] Let X and Y be Banach
spaces. Let K be a compact Hausdorff topological space. Then,

(i) there exists an isomorphic isometry between £(X,Y;C(K)) and
the set of all 7,-continuous and bounded functions from K into

L(X,Y) and
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(ii) The subspace K(X,Y; C(K)) of all compact bilinear mappings from
X x Y into C(K) corresponds to the set of all norm-continuous

functions.

Proof. (i). Let B € L(X,Y;C(K)) and define ¢ : K — L(X,Y) by
the relation

p(t)(z,y) = Bz, y)(t) (2.4)

for all t € K and (z,y) € X x Y. Then the function t — ¢(t)(z,y) is
continuous on K for each (z,y) € X x Y since B(x,y) € C(K) for each
(z,y) € X x Y. Conversely, if p : K — L(X,Y) is a 7,-continuous and
bounded function, we define B € £(X,Y;C(K)) as in (2.4) and it is
not difficult to see that B is a continuous bilinear mapping such that
1Bl = llell-

(ii). Let B € K(X,Y;C(K)). Consider ¢ : K — L(X,Y) defined
by (2.4). We prove that t — ¢(t)(z,y) = B(z,y)(t) is norm-continuous.
Let (ta)o C K be such that t, — tg € K. Then

[o(ta) — (t)]l = . y)sngB lo(ta) (@, ) — o(to) (2, y)]
" (e)eBaxB |B(z,y)(ta) — Bz, y)(to)| — 0O

since B(Bx x By) C C(K) is equicontinuous and bounded by the
Arzela-Ascoli theorem for C(K) [31, Theorem 7, p.266]. This shows that
t — o(t)(z,y) is norm-continuous for all (z,y) € X x Y. On the other
hand, let ¢ : K — L(X,Y) be a norm-continuous function. Define
again B : X xY — C(K) by the relation (2.4). Given € > 0 and
ty € K, there exists a neighborhood U, of t; such that if t € U,,, then



32 Some versions of Bishop-Phelps-Bollobas properties

() = (to)|| < e. So

sup | B(z,y)(t)—B(z,y)(to)]
(x,y)EBX X By

= sup o) (x,y) — p(to)(z, )|

(x,y)€Bx X By

= [lo(t) — @(to)| < e.

Hence if t € Uy, then |B(x,y)(t) — B(z,y)(to)] < € for all (z,y) €
Byx x By. This shows that the set B(By x By) is equicontinuous in
C(K) and since this set is already bounded, we may conclude that B is

a compact bilinear mapping. O]

In order to show that the pair (H; x Hy, C(K)) has our property for
compact bilinear mappings, we will prove first that it is possible to carry
the property from the pair (X,Y") to (X,Y; C(K)) by using Proposition
2.1.18. We will prove the analogous version of this for compact operators

in Chapter 3 by using different techniques (see Theorem 3.3.18.(c)).

Theorem 2.1.19. Let X and Y be Banach spaces. Let K be a compact
Hausdorff topological space. Suppose that the pair (X,Y) has the
BPBpp for bilinear forms. Then (X,Y;C(K)) has the BPBpp for
compact bilinear mappings.

Proof. Let ¢ > 0 be given. Consider n(¢) > 0 to be the BPBpp con-
stant for the pair (X,Y). Let B € K(X,Y;C(K)) with ||B|| = 1 and
(0,%0) € Sx x Sy be such that

9
B0, o)l > 1= (5)

Now define ¢ : K — L(X,Y) by the relation (2.4) of Proposition 2.1.18.

Since B is compact, ¢ is norm-continuous. Consider ty € K such that

lo(to)(zo, yo)| = |B(x0,y0)(to)| > 1 —1n (;) .



2.1 The BPBpp 33

Then there is B € £(X,Y) with ||B|| = 1 such that
- ~ £
[B(wo,90)] =1 and [|B —e(t)]| < 5

Consider the retraction r : L(X,Y) — Bg(x,y) defined for C' € L(X,Y)
by

r(C):=C if |C]| <1 and r(C):= MC if [|C]>1

Now define the norm-continuous map ¢ : K — L£(X,Y’) by

U(t) =r(p(t) + B — ¢(t)) (t € K).

Then 4(ty) = 7(B) = B. Now consider A : X x Y — C(K) defined
by A(x,y)(t) := ¥(t)(x,y) for every t € K and (z,y) € X x Y. Then
Ae K(X,Y;C(K)) with ||A]| <1 and

1> [[All > [ Ao, y0)lloo = [A(20,y0) (o) = | Blo, y0)| = L.

Then ||A]| = ||A(x0, yo)|lec = 1. It remains to prove that |A — B|| < .
To prove this, note first that if C' € £(X,Y") is such that 1 < ||C]| < 143,
then

g
Ir©) - 0l = | ¢ - ¢ = hen - 1<

1C]
Therefore
14~ Bll = sup [4(0) - (0]
= sup [[r(¢(t) + B — ¢(to)) — (¢(t) + B — ¢(ty)) + B — o(to)||

teK

6 ~
<SHIB-glto)ll <e.

This proves that (X,Y; C(K)) has the BPBpp for bilinear mappings. [
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Now we can prove the promised result.

Corollary 2.1.20. Let H; and Hy be Hilbert spaces and let K be a
compact Hausdorff topological space. Then the pair (H;, Ho; C(K)) has
the BPBpp for compact bilinear mappings.

Proof. The proof is a combination of Corollary 2.1.14 (or Remark 2.1.15)
and Theorem 2.1.19. O

2.2 Properties 1 and 2

This section is devoted to the study of two properties also similar
to the Bishop-Phelps-Bollobas property as the BPBpp (see Section 2.1).
Indeed, properties 1 and 2 are motived by a result which gives a “dual
version” of Proposition 2.1.2 proved by S. K. Kim and H. J. Lee in 2014
[46, Theorem 2.1].

Theorem 2.2.1 (Kim-Lee Theorem, [46]). A Banach space X is uni-
formly convex if and only if given € > 0, there exists a positive real

number 7(¢) > 0 such that whenever z§ € Sx- and zy € By satisfy
[55(w0)| > 1 n(e),
there is ;1 € Sx such that
lzg(x1)] =1 and ||z — x| < e.

We observe that the theorem says that a Banach space X is uniformly
convex if and only if the pair (X;K) satisfies the Bishop-Phelps-Bollobas
property without changing the initial functional x*, that is, the functional
that almost attains its norm at some point zq is the same functional that

attains its norm at the new vector which is close to xy. Note also that
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we already apply this result at the beginning of the proof of Proposition
2.1.2.

We study Theorem 2.2.1 for bounded linear operators in two cases.
First, we consider the positive real number n depending on € > 0 and
also on a fixed operator T" and we call it property 1. After that, we
consider the uniform case of this, that is, when the number 7 depends
only on € > 0 as we are used to work when we are working with the
BPBp. This property is called property 2.

Note that the difference between property 2 and the Bishop-Phelps-
Bollobas point property is that, in the first one, we are fixing the operator
and in the second one we fix the point. Despite the visual similarity
between them it turns out that they are very different from each other.

We start with the formal definition of property 1 although we believe

that it is already clear from the above comments.

Definition 2.2.2 (Property 1). A pair of Banach spaces (X;Y) has
property 1 if given € > 0 and T' € L(X;Y) with ||T|| = 1, then there
exists (e, T") > 0 such that whenever z, € Sy satisfies

1T (zo)|| >1—=n(e,T),
there is 1 € Sx such that
IT(x1)|]| =1 and |z — x| <e.

If the above property is satisfied for every norm one compact operator,
then we say that the pair (X;Y') has property 1 for compact operators.
We would like to comment that D. Carando, S. Lassalle and M.
Mazzitelli [18] defined a Bishop-Phelps-Bollobas type property for ideals
of multilinear mappings where the positive real number 7 in the definition
of the BPBp depends on a given € > 0 and also on the ideal norm of

the operator defined on a normed ideal of N-linear mappings. In other
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words, a normed ideal of N-linear mappings U = U(X; X ... x Xy;Y)
where X1,..., Xy,Y are Banach spaces has the weak BPBp if for each
@ € U with ||®|| =1 and e > 0, there exists 7(z, ||?||) > 0 such that if

(x1,...,2N) € Sx, X...X Sx, satisfies | P(xy,...,zn)|| > 1—n(e, |P||u),
then there exist ¥ € Y with ||¥|| = 1 and (ay,...,an) € Sx, X ... X Sx,
such that [|[¥(aq,...,an)|| =1, ||(a1,...,an) — (z1,...,2x)] < € and

| — @||yy < e. They proved, among other things, that if Xi,..., Xy are
uniformly convex Banach spaces then U has the weak BPBp for ideals
of multilinear mappings for all Banach space Y. Here we will work on a
different context where 1 depends on a fixed operator and not on the
norm of the operators ideal.

Next we make simple but important observations about our property

which will influence the rest of the section.

Remark 2.2.3. (a). We note that in Definition 2.2.2 the operator T'
must attains its norm if the pair (X;Y) has property 1. So if X is not
reflexive, then the pair (X;Y) cannot have property 1 for any Banach
space Y. Indeed, if X is not reflexive then there is a linear continuous
functional z§ € Sx-« such that |z{(z)| < 1 for all z € Sx by using James
theorem. Fixing yo € Sy and defining T': X — Y by T'(z) := x{()yo,
we have that ||T']| = ||z§]| = 1 and || T(x)|| = |z§(z)| < 1 for all x € Sx.
This implies that 7" never attains its norm and then the pair (X;Y’) can
not satisfy the property.

(b). For every infinite-dimensional Banach space X, the pair (X; )
fails property 1. Indeed, it is shown in [55, Lemma 2.2] that for every
infinite-dimensional Banach space X, there exists a norm-one linear

operator from X into ¢y which does not attain its norm.

Let us give the first result related to property 1. We assume that the
domain space X is finite dimensional.

Theorem 2.2.4. Let X be a finite dimensional Banach space. Then
the pair (X;Y') has property 1 for all Banach spaces Y.
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Proof. The proof is by contradiction. Let 7" € L£(X;Y') with ||T]| = 1.
If the result is false for some ¢y > 0, then for all n € N, there exists

xr, € Sx such that

1
1> ||T(x)]| >1— =
T > 1~

but dist(x,, NA(T)) > ¢¢ for n € N, where
NAT) ={z € Sx - |T(z)] =1}

(which is non empty as X is finite-dimensional). Since X is finite
dimensional, there exists a subsequence (x,,, ) of (z,,) such that x,,, — z¢
for some xy € X. This implies that ||T(x,,)|| — ||7(x0)|| and since

1
1> Tl 21—

we get that || T(xo)|| = ||zo]| = 1 and so g € NA(T). Then
e < dist(z,,, NA(T)) < |20, — zol| =50

which is a contradiction. So the pair (X;Y') has property 1. O]

Let X be a Banach space. We say that X is locally uniformly rotund
(LUR) if for all z,z,, € Sx satisfying lim, ||z, + x| = 2, we have that
lim, ||z, — z|| = 0. If we assume that X is LUR and reflexive, we get
that the pair (X;Y’) has property 1 for compact operators. In particular,

we have the same result when X is uniformly convex.

Theorem 2.2.5. Let X be a reflexive Banach space which is LUR. Then
the pair (X;Y') has property 1 for compact operators for every Banach
space Y.

Proof. As Theorem 2.2.4, the proof by contradiction. Let T' € K(X;Y)

with ||T'|| = 1 be a compact operator. If the result is false for some
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go > 0, for all n € N, there exists x,, € Sy such that

1
1> |T(z,)|| >1——
17 @)l > 1~

but dist(x,, NA(T)) > g for all n € N. Then ||T(x,)|| — 1 as n — oo.
Since X is reflexive, by Smulian’s Theorem, there exists a subsequence
(xp,) of (z,,) and zy € X such that (z,,) converges weakly to x. Since
T is completely continuous (see, [56, Definition 3.4.33, Proposition 3.4.34
and Proposition 3.4.36]), T'(z,, ) converges in norm to 7'(zo) as k — oo.
Therefore ||T(xo)|| = ||zo]| = 1 and so xg € NA(T'). Thus NA(T) # 0

and
T, + T

2

T(x,) + T(xo)

k—oo
P o ) = 1

1>

=

This implies that limj_,« ||z, + %ol = 2 and, using that X is LUR, we

get that limg e ||, — Zo|| = 0, which gives the following contradiction:

Corollary 2.2.6. If X uniformly convex and Y is a Banach space with
Schur’s property, then the pair (X;Y") has property 1. In particular,
(¢3;¢1) has property 1.

Proof. We apply Theorem 2.2.5. To do this, we prove that every bounded
linear operator T': X — Y is compact. Indeed, since T is continuous,
T is w-w continuous. Let (z,), C Bx. Since X is reflexive, by the
Smulian theorem, there are a subsequence of (z,), (which we denote
again by (z,),) and zy € X such that z, — z¢. So T(z,) — T(x0).
Now, since Y has the Schur’s property, T'(x,) — T'(x¢) in norm. So T’
is compact. By Theorem 2.2.5, the pair (X,Y") has property 1. O

Corollary 2.2.7. If X is a reflexive Banach space which is LUR and Y
is a finite dimensional Banach space, then the pair (X,Y’) has property
1.
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Proof. This is proved by using the fact that every bounded linear operator

with finite dimensional range is compact and Theorem 2.2.5. O]

What happen if the n that appears in Definition 2.2.2 of property 1
depends just on €7 As we will see, it seems to be difficult to get positive
results when we add this condition in property 1. Just to help make

reference, we put a name on it.

Definition 2.2.8 (Property 2). We say that a pair of Banach spaces
(X;Y) has property 2 if given £ > 0, there exists n(e) > 0 such that
whenever T' € L(X;Y) with ||T'|| = 1 and zg € Sx are such that

1T (zo)[| > 1 —mn(e),
there is ©; € Sx such that
IT(x1)|]| =1 and |z — x| <e.

In this case, we say that the pair (X;Y') has property 2 with the function
e — n(e).

We observe that we already have examples of pairs of Banach spaces
which satisfy property 2. The Kim-Lee Theorem says that a Banach
space X is uniformly convex if and only if the pair (X;K) has property
2. Note also that if the pair (X;Y") satisfies property 2 then the pair
(X;Y) satisfies the BPBp. First we notice that if (X;Y') has property 2
for some Banach space Y, then the Banach space X must be uniformly

convex. This is the dual version of Proposition 2.1.4.

Proposition 2.2.9. Let X be a Banach space. Suppose that there is
some Banach space Y such that the pair (X;Y") has property 2. Then

X is uniformly convex.

Proof. Let € € (0,1) be given. Consider n(¢) > 0 to be the positive real
number that satisfies property 2 for the pair (X;Y’). We prove that the
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pair (X;K) has the same property with n(¢) and we use the Kim-Lee
Theorem to conclude the proof. Let xf € Sx~ and xy € Sx be such that

|25 (0)| > 1 = n(e).

Let yo € Sy and define T' € L(X;Y) by T'(z) := zj(z)yo for all z € X.
So 1T = Jla5] = 1 and

1T (o) || = [x5(x0)| > 1 = n(e).

Since the pair (X;Y') has property 2 with n(e), there exists z; € Sy
such that ||T'(z1)|| = 1 and ||zg — x1]| < €. Since ||T(z1)]| = |z§(z1)| the

proof is complete. n

By this last result, since £2 is not uniformly convex, all the pairs
(£2;Y) fail property 2 for all Banach spaces Y. What about the converse
of Proposition 2.2.97 The first idea that one may have is to assume
that the domain space X is a Hilbert space (since every Hilbert space is
uniformly convex) and try to find some Banach space Y such that the
pair (X,Y") satisfies the property. But even in this simple situation, the
result fails unlike Theorem 2.1.7 for the BPBpp. In fact, the idea from
now on is start to put some conditions on the Banach spaces X and Y

trying get some positive result concerning property 2.

Example 2.2.10. This example works for both real and complex cases.

For a given £ > 0, suppose that there exists () > 0 satisfying property
2 for the pair (£3;¢2). Let T : {3 — (% be defined by

2y~ o0

Ttmy)f—<(1—-;n@ﬁ)m,y> ((x,9) € 83).
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For every (z,y) € Bz, we have

1
Since T'(e3) = 1, we obtain ||T'|| = 1. Moreover,

(e =1~ () > 1 - n(e).

We prove now that every z = (a,b) € Sgz such that || T'(2)[| = 1 assumes

the form z = Aey for |A\| = 1. Indeed, since

<1 and ||T(2)|le =1,

- 500e)

we have |b| = 1. Since |al? 4+ |b|> = 1, we have a = 0 and b = X\ with
|A| = 1. In summary, we have a norm one operator 7" and a norm one
vector ey satisfying ||T'(e1)|| > 1 — n(e) but if T attains its norm at
some point z € Sgz then z = (0, A) with [A] = 1. This contradicts the

assumption that the pair (£%; % ) has property 2 since z is far from e; in

view of the fact that |le; — z||o = [[(1, A)]|2 = V2.

This shows that the pair (¢3(K); ¢ (K)) fails property 2 for K = R
or C. Now what if we add on the hypothesis that both X and Y are
Hilbert spaces? The answer for this question is still negative, as we may

see in the next proposition.

Proposition 2.2.11. Let 1 < p < ¢ < oo (or p < ¢ = 00). Given
B € (0,1), there exists Ty € L(¢2;¢2) with || Ts|| = 1 such that

P’ q
(i) 1 Ts(e)lly = 8 and
(ii) for every z € Sz such that || Ts(2)|l, = 1, we have ||z — e, = 27.

Proof. Let f € (0,1) and 1 < p < ¢ < oo. Define Tj : 612) — Eg by
Ts(x,y) == (Bx,y) for every (x,y) € £2. If ||(x,y)|, = 1, since p < ¢, we
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get

175, 9)lle = (Bl + [y19)7 < (2 + )7 = 1,
which implies that ||T3|| < 1. Since ||T(ez)ll, = |le2ll, = 1, we have
T[] = 1. Now, let z = (a,b) € Sz be such that ||T(2)[|, = 1. We prove
that b = Xey with |A\| = 1. Indeed, the equality ||T3(a,b)||, = 1 implies
that [9]al? 4+ |b|? = 1 and since |alP + |bP = 1, we do the difference

between these two equalities to get
(lal” = Bal?) + ([o]” — [b]*) = 0

Since p < g and |al, |b] < 1, |a]? — B9]al? > 0 and |b]” — |b|? > 0. Because
of the above equality, we get that |a|? — $%al|? = 0 = |[b|P — |b|?. But

|a|? < |a|P which implies that
0= la” = Bal* = (1 = 57)]al".

Thus a = 0 and then b = Ae; with [A[ = 1 as desired. So if z € S
is such that ||Ts(2)||, = 1, then ||z — e, = 27 which completes the
proof. O]

As a consequence of this last result, we get that all the pairs
(0,(K); £,(K)) fail property 2 for 1 < p < ¢ < oo when K = R or
C. In particular, the pair (¢£3;¢3) fails it as well (and this was already
known; see example right below [46, Corollary 2.4]). Moreover, since £%
is isometrically isomorphic to £ in the real case, the pair (£3; £%) also fails
property 2 in the real case. Next we show that the pairs ((3(R); £2(R))
for 1 < g < 2 can not satisfy property 2.

Proposition 2.2.12. Let 1 < ¢ < 2. In the real case, given g € (0,1),
there exists £(€3; () with ||T3|| = 1 such that

(i) [ITs(ex)llg = 5 and
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(ii) for every z € ¢2 such that ||T(2)|, = 1 we have ||z — e1 ]2 = V2.

Proof. Let 1 < ¢ < 2 and define T : (3 — (7 by

T(e.y) = (x—y’x—l—y)

2: 91

for every (z,y) € (3. First note that

14 1\ 1 1
T q == |—— —_— = - —_——= ]_
|| (62)||q ‘ 21 + <2é> 2 + 2 ’

q

ie., [|[T(e2)|l; = 1. Analogously, ||T'(e1)|l, = 1. Since T is a scalar
multiple of the composition of a rotation in ¢3 and the identity from ¢3
into £2, we have that ||T| = 1. Next, we show that the only points which
T attains its norm are at +e; and +e,. To do so, we study the norm of

the operator T' by using the following compact set:
K = {(a,b) eR?:a®>+1* <1, a,bZO}.

By symmetry, the norm of 7" is the maximum of ||7'(z)|| with 2z in K.
Let zp = (ao, bp) a point of K such that T attains its norm at zy, that is,
IT] = ||T(z0)||. We consider K; as the segment that connect (0,0) with
e1, K3 as the segment that connect (0,0) with e; and K as the arc that
connect e; with ey. See Figure 2.1.

It is enough to study the values of || T'(2)||, on the set K5 \ {e1,e2}
since the operator T attains its norm at elements of the sphere and
ITe)lly = IT(es)ly = 1. We have

Ko\ feresd = {0 s e
1

(ol ()
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K €1

Figure 2.1

with f : (J5,1) — R defined as f(z) = (1—-2?)2 and g : (J5,1) — R
defined as g(y) = (1 —y2)2. Since

(&l -

for every 1 < ¢ < 2, then zy # (\/5’ \f) (On the other hand observe that
it ¢ = 2, then HT ﬁ’f H = 1 and if ¢ > 2, then HT \/i’f H

Thus if 29 € K3 \ {e1, €2}, then either 2z, € {( Jflx)x (\/? 1)} and
then ag would be a critical point of F' in (%, ), where

2
9314

<1

[N
(ST

F(z) = |T(z, f@)) == [(z = (1 —2%)%)"+ (2 + (1 - 2?)

)’

DN | —



2.2 Properties 1 and 2 45

or zg € {(g(y) y):y € (%, 1)} and in this case by would be a critical

point of G in ( 12, 1), where

S

1

Gly) = IT(gw) yli= 3

: (== + (A=) +y)].

But, as we will see in the next lines, these can not happen because

F'(z) >0and G'(y) > 0 forall z,y € (%, 1) and then zo € Ko\ {e1,e2}.
Indeed, we consider first the case that x € (%, 1). For every x € (%, 1),

we get

F'(z) =

N
—
&
|
—~
—_
|
&
o
N—
I
~—
T
—
—~
—_
+
—~
—_
|
8 8
o
S~—
[SIE
~—

-1
For x € (%, 1), we have that (a: —(1- .7:2)%)(1 > 0 and since

q—1 q—1

(a:+(1—a:2)%) > (SL’—(l—SE2)%)

for every x on this interval, we obtain that

(z—q —xQ)%)qfl <1+ % 41— x)

F/ZL‘ = 1 1
@) > (1—a2)2 (1—a2)2
=q(z—(1-a2)",

N [

for every z € (%, 1) and the last expression is strictly positive. A simply

change of the letter F' by G and x by y imply that G'(y) > 0 for every
1

Everything we did so far was to prove that T' attains its norm on

K only at z = e; and z = ey. Therefore, we may conclude that T

attains its maximum at d+e; and at +e,. In other words, we proved that
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T(Bg) N Se = {+e1, +ez}. Now, for 0 < 3 < 1, define Tj : €5 — (7 by

fr—y P+
Tg(l‘,?J) = ( 1 ) 1 )
24 24q
for every (z,y) € (3. Note that ||Ts(e1)]|, = 8 and || T(es)|l, = 1. Since
T5(Bgz) C T(Byg) C Byz, then [[Tj[| < 1. Also, using that T'(Bg) NSk =
{xe1, xes} and that ||Ts(xe;)|, < 1, we have that ||Ts(xeq)|, = 1.
This implies that if z € Sz is such that [|T(2)[|, = 1, then 2z = %e; and

therefore ||e; — z||2 = V/2 as we wanted. O

As a consequence of Propositions 2.2.11 and 2.2.12 we have the

following corollary.

Corollary 2.2.13. The pair (£3(R); Z(R)) fails property 2 for every
1 <¢g< o0

What about the case in which 1 < p < 2and 1 < ¢ < 27 We study the
real case of this now. Consider 1 < p < 2. Define Id : £2(R) — (3(R)
by Id(z,y) = (z,y) for every (z,y) € £2(R). Then Id(e;) = e; and
Id(ez) = e9. Since p < 2, it is clear that || Id || = 1. Given 0 < 8 < 1, let
Ts : (3(R) — £2(R) be as in the Proposition 2.2.12 with 1 < ¢ < 2. Now,
define Tj : (2(R) — (%(R) by T = Tsold. Then ||T;| < ||Z5//||Id || = 1.
Also, [ Ts(en)l, = [(Tsold)(er)l, = 8 and [ Ts(ea)l, = N(Tsold) ), =
[ T5(e2)|l; = 1. Suppose that there exists z € Sgz(r) such that || T5(2)|l, =

IN N

1. Thus ||T3(2)|l; = 1 and then, as we can see in the proof of the
Proposition 2.2.12, z must be equals to e; or —es. In both cases, we

have that ||e; — z||, = 25, We just have proved the following result.

Corollary 2.2.14. The pair (€2(R); £2(R)) fails property 2 for 1 < p <2
and 1 < g < 2.
Next we observe that whenever we put the supremum norm in the

range space, the property fails for any pair of the form (X;¢% ) which

gives Example 2.2.10 in particular.
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Proposition 2.2.15. The pair (X, (%) fails property 2 for all Banach
space X with dim(X) > 2.

Proof. Suppose that there exists n(e) > 0 that depends only on a given
e € (0,1) satisfying the property. Let zf, 25 € Sx« and x1,29 € Sx be
such that z}(z;) = d;; for 4,5 = 1,2. Define T : X — (% by

T(x) = (1 = n(e)) zi(x), 25(x)) (v € X).

Then ||T(z1)|le = 1 — n(e) and ||T(x2)]lcc = 1. Moreover, since
1 —n(e) < 1, we have that ||T’|| < 1. This shows that ||T'|| = 1. Therefore,
there exists z € Sx such that

IT(2)||leo =1 and ||z — ] <e.

Since [|T'(2)||o = max {[(1 —n(e))|z1(2)], [25(2)|} and (1-n(e))|1(2)] <
1, we have that |z5(z)| = 1. On the other hand, since |z5(z — 21)| <

|z — z1|| < € we get a contradiction, since
1 =z3(2)] = |25(z — 21) + 23(21)| = |23(z — 1) < e < L. O

We show now that if Y is a 2-dimensional Banach space, then the
pair (YY) does not have property 2. To do so, we use the existence of
Auerbach bases for all finite dimensional Banach space (see, for example,
[41, Proposition 20.21]). Let Y be an n-dimensional Banach space.
Then there are elements ey, ..., e, of Y and yj,...,y; of Y* such that
lleill = |lyf|| = 1 for all ¢ and y;(e;) = &;; for @ # j. In fact, {e1,...,e,}
is a basis of Y called an Auerbach basis of Y.

Proposition 2.2.16. Let Y be a 2-dimensional Banach space. Then
the pair (Y;Y) fails property 2.

Proof. We start by taking an Auerbach basis: let {e1,es} and {y}, y5}
satisfying |le;|| = ||lyf|| = 1 for i« = 1,2 and y/(e;) = &;; for i,j =
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1,2. Since {ej,e2} is a basis for Y, every y € Y has an expression
in terms of ey, eq, ¥ and y5 given by y = yi(y)er + vi(y)es. Given
B € (0,1), define the continuous linear operator 75 : ¥ — Y by

Ts(y) = Byi(y)er + y5(y)ez for all y = yi(y)er + y5(y)es € Y. Then for
all y € Sy, we have that

1Tl = [1Byi(v)er + y3(y)ea|
18y (y)er + Bys (y)ea — Bys (y)ez + y5 (y)eal
1B(yi(w)er + ys(y)e2) || + [[(1 = Byz(y)ea|
Blyll + (1 = B8)llys(y)eq|

N

< Bllyll + = Blya(y)]
< f+1-p
= 1L

Then || 75| < 1. Also, note that ||[Ts(eq2)|| = [le2|| = 1. So || T3] = 1.
Now let yo € Sy be such that ||Ts(yo)|| = 1. Then, using that

L= [|Ts(yo)ll < Bllwoll + (1 = B)lyz(yo)| < 1,

we get that |y5(yo)| = 1 and therefore

ller = yoll = |y5(er) —ya(yo)| = | — 1] = 1.

Finally, if the pair (Y;Y") has property 2, there exists n(¢) > 0 satisfying
the property. If we put § =1— @, there exists an operator ' € L(Y;Y)
such that ||T']| =1, || T'(e1)|| > 1 —n(¢e) and for all yy € Sy which satisfies
IT(yo)|l = 1 we have ||e; — yo|| = 1. This is a contradiction and the pair
(YY) fails property 2. ]

Remark 2.2.17. If dim(Y') = n > 2, the proof of Proposition 2.2.16
works as well in this situation. Indeed, for g € (0,1) we define Tj €
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LY;Y) by
Ts(y) = Byi(y)er + Bys(y)ea + ... + Byn_1(y)en—1 + yn(y)en

for all y € Y, where {eq,...,e,} C Sy and {yj,...,y:} C Sy~ is given
by the Auerbach basis. Then ||Ts(e;)|| = 8 for i # n and ||Ts(e,)|| = 1.
To prove that || 75| < 1, we add and subtract the term

Byi()er + .. yn_o(Y)en—2 + Byn(y)en

in ||Ts(y)|| where y € Sy, to get [|T5(y)|| < Bllyll + (1 = B)lyn(y)| < 1.
Now, if Tj attains its norm at some y, € Sy then

lei = yoll = lyn(ei — yo)| = [y, (yo)| =1
for all i # n.

It is clear but it is worth mentioning that if the pair (X;Y") has
property 2, then the pair (X;Z) also has this property for all closed
subspaces Z of Y. Because of that since £% is a closed subspace of C|[0, 1]
and the pair (£3; /%) does not satisfy property 2 (see Example 2.2.10),

the pair (¢2; C0, 1]) also fails this property. Another consequence of this

fact is given in the next corollary.

Corollary 2.2.18. If Y is a Banach space which contains strictly convex
2-dimensional subspaces, then there exists a uniformly convex Banach

space X such that the pair (X;Y) fails property 2.

Proof. Indeed, let Z be a subspace of Y such that Z is stricly convex
and dim(Z) = 2. Then X = Z is uniformly convex, since Z is finite
dimensional. By Proposition 2.2.16, the pair (X; Z) fails property 2 and
by the above observation the pair (X;Y’) can not have this property. [
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By Corollary 2.2.7, the pair (f2; Z) has property 1 if dim(Z) < oc.
But in the case of property 2, we get a negative result. In fact, we show

in the next proposition that the pair (¢y;¢3) fails property 2.
Proposition 2.2.19. The pair ({; ¢3) fails property 2.

Proof. Suppose by contradiction that the pair (¢5; ¢3) satisfies property 2.
Then given € > 0 there exists 7(g) > 0 such that whenever T' € L({3; (3)
with [|T]| = 1 and zy € Sy, are such that ||T'(zo)|l2 > 1 — n(e), there
is #1 € Sy, such that |[|[T'(z1)| = 1 and ||x; — zo]] < e. Since the
pair (¢%;(3) fails property 2, there exists some gy > 0, a norm one
linear operator R : {3 — (3 and a norm one vector (ag, by) € Sgz with
[ R(ao, bo)|| > 1 —m(eo) such that there is no point (c1,c2) € Sz such
that [|R(c1,c2)||2 =1 and ||(c1, c2) — (ag, bo)||2 < €o. Let 7 : €y — (3 be
the projection on the first two coordinates, i.e., w((a,),) := (a1, az) for
all (a,), € lo. Then ||«|| = 1. Define T : oy — ¢2 by T := Rom. Then
|T|| = ||R|| = 1. Let zo := (aop, bo, 0,0,...) € Sp,. We have that

1T (o) | = [ (a0, bo)l| > 1 = n(e0)-

Then there exists =1 = (¢,), € Sy, such that | T'(z1)|ls = 1 and

||x1 — 2ol]2 < €. Since
L= [T (z1)]2 = |R(m(z1))]l2 = [[R(c1, e2)[|l2 < [[(c1, e2) |2 < [[z1]l2 = 1,
we get that ||R(c1,c2)|l2 = ||(c1,¢2)||2 = 1. On the other hand,

[(@o0, bo) — (1, e2)[|2 < [[o — z1]l2 < €0.

This is a contradiction and then the pair (fy;¢3) fails property 2 as
desired. 0
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So, as we already mention and now the reader must be convinced of
that, property 2 seems to be very strong in the sense that it could be
difficult to get a positive result about it.

To finish this section, we present a complete characterization for the
pairs (€,; ¢,) concerning property 1. In particular, there are uniformly
convex (and then reflexive) Banach spaces X such that the pair (X;Y)
fails property 1.

Theorem 2.2.20. The following holds.
(i) The pair (¢,;¢,) has property 1 whenever 1 < ¢ < p < 0.
(ii) The pair (¢,;4,) fails property 1 whenever 1 < p < ¢ < o0.

Proof. (i) By Pitt’s Theorem (see, for example, [9, Theorem 2.1.4]),
every bounded linear operator from ¢, into ¢, with 1 < ¢ < p < oo is
compact. By Theorem 2.2.5 the pair (¢,;¢,) has property 1 since ¢, is
uniformly convex for 1 < p < oo.

(ii) Let ¢ € (0,1) and 1 < p < ¢ < oo. Consider ¢, and ¢, as the
Banach spaces @,(ﬁi) and Eq(ég), respectively. For each n € N define
T, : 5123 — 62 by

1 2
Tu(e,y) = (1= 57 ) 2v) (@wed).
Let z = ((zn, Yn))nen € €2 and let T': £, — {, be defined by

1

O (e
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3=

For each z = ((2,, Yn) )Jnen € £ we have that | z]|, = (Z;; |z;|P + |yj|p)
and then

IT()llg = (i (1—21j> |xj|q+|yj|q)q

J=1

q

S (Z ;] + !yj!q) = [lzllg < lI=llp-
j=1
So || T|| < 1. We consider the vectors
e1n = ((0,0),...,(0,0),(1,0),(0,0),...) € Se,

and

ean = ((0,0),...,(0,0),(0,1),(0,0),...) € Sy,.

Thus we get that || T(e2n)|l; = ||(0,1)||; = 1. So ||T'|| = 1. Suppose that
there exists n(e,T") > 0 such that the pair (¢,;¢,) has property 1. Let
n € N be such that 5- < (e, T). So since ||T|| = ||e1u]l, = 1 and

1
IT(ern)llg =1~ 5 >1=n(T)

there exists v = (up,w,) € £, such that ||T'(v)||, = [|v|, = 1 and
|lv —e1n|l2 < e. We claim that u; = 0 for all j € N. Indeed, suppose
that there exists some jy € N such that u;, # 0. Thus

1

[e%¢] 1 q q

el = (% (1- 5 |uj|q+rwjrq)
j=1 J

1

1 q 1 q q
= (1= o) Tuiol? o+ 30 (1= ) gl + Juoy]?
(1= 5 ) ool bl 3 (1= ) o+ o

J#Jo

1

q

< g T+ w7 4+ D fuyl? + |wj|q) = [lofly < [v]l, =1
J#jo
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which is a contradiction. Then u; = 0 for all 7 € N and we have

1
q
1
le1n —vlly = (1 +3 |wj|q> >1li=1>c¢.
j#n
This new contradiction shows that the pair (¢,;¢,) fails property 1
whenever 1 < p < ¢ < 0. O

2.3 The BPBpp for numerical radius on

complex Hilbert spaces

Inspired by the Bishop-Phelps-Bollobas property, some authors stu-
died the Bishop-Phelps-Bollobéas property for numerical radius (see
[13, 32, 37, 47]). To give this definition, we recall the concept of numeri-
cal radius. We denote by II(X) the set of all pairs (z,2*) € Sx X Sx+
such that z*(z) = 1. Given a bounded linear operator 7': X — X, we

define its numerical radius by
o(T) := sup{|a™(T'(x))| - (z,2%) € II(X)}.

It is not difficult to see that v is a semi-norm on the Banach space
L(X; X) of all bounded linear operators from X into X. The inequality
v(T) < ||T|| always holds for all T' € L£(X; X). We refer the reader to
[16, 17] for more information and background about numerical radius
theory.

The Banach space X has the Bishop-Phelps-Bollobas property for
numerical radius (BPBp-nu, for short) if for every € > 0, there exists
some n(e) > 0 such that whenever 7' € £(X; X) with v(7) = 1 and
(x,2*) € TI(X) satisfy

2% (T'(x))] > 1 =n(e),
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there are S € L(X;X) with v(S) =1 and (y,y*) € II(X) such that
(S =1, ly" —2*| <& lly —zf <eand |5 - T <e.

The Banach spaces ¢; and ¢y have the BPBp-nu ([37, Corollary 3.3
and Corollary 4.2] as well as all finite dimensional Banach spaces [47,
Proposition 2] and the Banach space Li(u) for every measure p [47,
Theorem 4.1] (see also [32]). Besides, it is known that the Banach space
C(K) has this property in some cases [13, Theorem 2.2|. It is also known
that the L,-spaces satisfy the BPBp-nu when 1 < p < oo [47, Examples
3.5] (see [49] for p = 2 in the real case).

We recall that the numerical index of a Banach space X is defined

as follows:
n(X) :=inf{o(T): T € LIX;X), |T| =1}.

Equivalently, the numerical index of a Banach space X is the greatest
constant k > 0 such that k||T|| < v(T) for every T € L(X;X). We
note that 0 < n(X) < 1 and n(X) > 0 if and only if v and || . || are
equivalent norms on £(X; X). The set of values of the numerical index
was established in [30]:

{n(X): X complex Banach space} = [e™*, 1]

and
{n(X) : X real Banach space} = [0, 1].

It is known that a Hilbert space of dimension greater than one has
numerical index 1/2 in the complex case.

In this section we study the BPBpp and the BPBpp for numerical
radius on complex Hilbert spaces. The reason that we are working on

Hilbert spaces is that they have transitive norm, that is, given two points
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x and y in Sy, there exists a linear isometry R € L(H; H) such that
R(x) = y. Moreover, if the points x and y are close to each other, then R
can be taken to be close to the identity operator on H (see observations
just before Theorem 2.1.7). On the other hand, we assume that these
Hilbert spaces are complex since in this case its numerical index is 1/2
and so v and || . || are equivalent norms on L(H; H). Throughout this
section we use these facts without any explicit mention.

Let us define the Bishop-Phelps-Bollobas point property for numerical

radius.

Definition 2.3.1 (The BPBpp-nu). We say that a Banach space X
has the Bishop-Phelps-Bollobis point property for numerical radius
(BPBpp-nu, for short) if given € > 0, there exists some n(¢) > 0 such
that whenever (xo, z§) € II(X) and T € L£(X; X) with v(T) = 1 satisfy

|5(T'(20))| > 1 =n(e),
there are S € L(X; X) with v(S) = 1 such that
|z5(S(x0))| =1 and ||S—T| <e.

In this case, we say that X has the BPBpp-nu with the function
e — n(e).

When T and S belong to a certain class of operators, we say that
X has the BPBpp-nu for this class of operators. For example, if X is a
Hilbert space and T and S are self-adjoint operators, we say that X has
the BPBpp-nu for self-adjoint operators.

We note that the BPBpp-nu is the BPBpp version for numerical
radius. In other words, we are starting with an operator 7" which almost
attains its numerical radius at some point (zg, zf) € II(X) and ending
with another operator which attains its numerical radius also at (z¢, x{)

and which is close to T
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Let X be a Banach space with n(X) = 1 and suppose that X has the
BPBpp-nu. Then X must be 1-dimensional. To show this we will prove
that X is uniformly smooth by using the characterization in Proposition
2.1.2, and then we will use [45, Theorem 2.1] which says that uniformly

smooth Banach spaces with numerical index 1 are 1-dimensional.

Proposition 2.3.2. Let X be a Banach space with n(X) = 1. If X has
the BPBpp-nu, then X is a 1-dimensional Banach space.

Proof. Let € € (0,1) be given and let n(¢) > 0 be the function for the
BPBpp-nu for the Banach space X. We will show that the pair (X; K)
has the BPBpp. Let zf, € Sx- and xy € Sx be such that

|25 (20)| > 1 = 1n(e).

Consider ] € Sx+ to be such that z7(x¢) = 1 and define T' € L(X; X) by
T(x) := af(x)xy for all x € X. Then v(T) = ||T|| = 1, (zo, z}) € II(X)

and
|21(T (20))| = |27 (x5 (wo)wo)| = |g(z0)| > 1 = n(e).
So there is S € £(X; X) with v(S) = ||S]| = 1 such that
|(S"a7) (20)| = |21(S(20))| = 1 and [|S =T <e.

Define 2z := S*z; € X*. Then |z{(x¢)| = 1 and so ||z5]| = 1. Also, for
all z € Sy,

[20(z) = 2p(2)] = |1(S(2)) — a5(z)a1(wo)]
)

AN
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So ||z — x}|| < €. This shows that the pair (X;K) has the BPBpp and
by Proposition 2.1.2, X is uniformly smooth. Finally, [45, Theorem 2.1]

gives that X must be 1-dimensional. O]

By Proposition 2.3.2, we notice that the BPBpp-nu seems to be a
strong property. Indeed, the only examples that we have satisfying it are
the complex Hilbert spaces and this fact is proved in the next proposition.

Before we prove that, let us remember that in a complex Hilbert space
H we have that II(H) = {(h,h) : h € Sy} and so

v(T) = sup{[{T'(h),h)| : h € Sy}

for every T' e L(H; H).

Proposition 2.3.3. The complex Hilbert space H has the BPBpp-nu.
More precisely, given € > 0, there are n(¢) > 0 and B(¢) > 0 with
lim; .o 5(t) = 0 such that whenever T' € L(H; H) with v(T) = 1 and
hg € Sy satisty

(T (o), ho)| > 1= (&),

there is S € L(H; H) with v(S) = 1 such that
[(S(ho), ho)l =1 and [|S =T < B(e).

Proof. Let ¢ € (0,1) be given. By [49, Corollary 4.3], H has the BPBp-nu
with some n(e) > 0. Let T € L(H; H) with v(T) = 1 and hy € Sy be
such that

[{(T'(ho), ho)| > 1 = n(e).

Then there are hy € Sy and S € L(H; H) with v(S) = 1 such that

1(S(h1),hi)| =1, ||hi—ho|]| <e and ||S—T| <e.
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Since H is a complex Hilbert space, we have that ||S| < 2v(S) = 2.
On the other hand, since H has a transitive norm and ||h; — hol| < &,
there exists a linear isometry R € L(H; H) such that R(hg) = hy and
|R — Idy| < 6(c) with limy_, 6(t) = 0. Define S := R*oSo R € L(H).
Then v(S) < 1 and

[(S(ho), ho)| = [{(S 0 R)(ho), R(ho))| = [{S(h1), h)| = 1.

So v(S) =1 and S attains its numerical radius at (ho, hg) € II(H). Also,
1S =T |R"0SoR~—T|

IR*0SoR—R 0S|+ R oS ~5|+[5—T|

ISR = Ida|| + ISIIIR* — Idall + IS - T|

46(e) +e=:P(e). O

NN N

From now on we assume that H is a complex Hilbert space. In
the next results we will work with the BPBpp and the BPBpp-nu for
self-adjoint, anti-symmetric, unitary and normal operators. We say
that an operator T' € L(H; H) is self-adjoint if T = T*; it is normal if
T*T =TT*, it is unitary it T*T = TT* = Idy and it is anti-symmetric
if T'= —T*. We start with the self-adjoint operators.

Proposition 2.3.4. Let H be a complex Hilbert space. Then
(a) H has the BPBpp-nu for self-adjoint operators.
(b) (H; H) has the BPBpp for self-adjoint operators.

Proof. (a). Let € € (0,1) be given. By Proposition 2.3.3, there are
n(e) > 0 and f(e) > 0 such that H has the BPBpp-nu. Let T' € L(H; H)
be a self-adjoint operator and hy € Sy be such that

[(T'(ho), ho)| > 1 — min{n(e),e}.
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Then there is S € £(H; H) with v(5) = 1 such that
(S(ho),ho)l =1 and ||S — T < B(e).

Since T is a self-adjoint operator, (T'(hg), ho) € R. We may suppose that
(T'(ho), ho) > 0. We set

(S(ho), ho) = €|(S(ho), ho)| = € € S¢ and r := (T'(ho), ho) € R.
Then we have ((e=*S)(ho), ho) = 1. Now since ||S — T|| < B(¢),
e — | = [{S(ho), ho) = (T'(ho), ho)| < || = T|| < B(e).

So e — 1| < [ — 7| + |r — 1| < B(e) + € and since ||S|| < 2v(S) = 2,

we have that

IS = (e S < 11— e ?|IS] = [1 = ?[|IS] <
By using this last inequality, we get that
I(e7*S) =TIl < I(e™S) = S|+ 1S =TIl < Ble) +e +Be) = 28(e) +e.
We just proved that the operator " := (e~*S) € £L(H; H) is such that

v(S") =Re (5'(ho), ho) =1 and [|S" =T <~(e)

where 7(g) = 28(e) + & > 0. Define S := 5" ¢ £(H: H). Then S is
self-adjoint, v(S) < 1,

1<ho, (S")*(ho))| = Re (S'(ho), ho) = 1.

(Sho), )| = | 58" (ha), ) + 5
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and, since T = T™,
1 ! 1 1 * *
IS =TIl < SIS =Tl + 5 0(S) = Tl < (e).

(b). Let € € (0,1) be given. By [33, Theorem 2.1] there is n(¢) > 0
such that H has the BPBp for self-adjoint operators. Let T' € L(H; H)
with ||T']| = 1 be a self-adjoint operator and hy € Sy be such that

1T (ho)ll > 1 =n(e),

There are a self-adjoint operator S € £(H) with ||S|| = 1 and a point
hi € Sy such that

IS(hu)ll =1, [lhy = hol| < Bi(e) and [|S—TI <

where lim; ,o 31(t) = 0. Since H is a Hilbert space, there is a linear
isometry R € L(H) such that

R(ho) = hy and ||R — Idy| < 8(c)

with lim;_,06(t) = 0. Define S := R*oSo R € L(H;H). Then S is
self-adjoint, ||S]| < 1,

1S(ho)ll = [I1R*(S(R(ho))|| = [R*(S(ha))[| = IS(ha)[| = 1
and

|IS—T||=||R*cSoR—T|
<R oSoR—R 0S|+ |R oS —5|+|S5~T]|
< |R = Idyl| + ||R* = Idg| + IS = T|
< 20(g) + e := Be). O
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Corollary 2.3.5. Let H be a complex Hilbert space. Then
(a) H has the BPBpp-nu for anti-symmetric operators.
(b) (H, H) has the BPBpp for anti-symmetric operators.

Proof. Both items are consequence of Proposition 2.3.4 and the fact that
an operator T' € L(H; H) is self-adjoint if and only if i7" and —iT" are

anti-symmetric operators. 0

For unitary operators, we work just with the BPBpp-nu since if
T € L(H; H) is unitary then T is an isometry and so ||T'(h)| = ||| =1
for every h € H. So the pair (H; H) trivially has the BPBpp for unitary

operators.

Proposition 2.3.6. Let H be a complex Hilbert space. Then H has
the BPBpp-nu for unitary operators.

Proof. Let € € (0,1) be given. Let T € L(H; H) be a unitary operator
with v(7") = 1. In particular, 7" is normal and since H is complex we
have that ||T']| = v(T) = 1 [35, Equation 1.9]. Now let hy € Sy be such

that
2

Re (T'(ho), ho) > 1 — %

Then
IT(ho) = holl* = IT(ho)|I* + ol — 2Re (T'(ho), ho) < €”.

So || T'(ho) — hol| < €. Since [|[T'(ho)|| = ||hol] = 1, there is a linear
isometry R € L(H; H) such that

R(T(ho)) = hy and ||R — Idy| < 6(c)
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with limy_,00(t) = 0. Define S := RoT € L(H; H). Then S is unitary,
v(S) =51 <1,

‘(S(ho)yhoﬂ = ’<R(T(h0))aho>\ = |<h0,h0>| = HhoH2 =1

and
|S=T||=||RoT —=T| < ||R— Idul|||T|| < ().

]

Next we prove the BPBpp for normal operators. The proof follows

same ideas of item (b) of Proposition 2.3.4.

Proposition 2.3.7. The Hilbert space H has the BPBpp for normal

operators.

Proof. Let € € (0,1) be given. In the first part of the proof [21, Theorem
3.1] it was proved that (H; H) has the BPBp for normal operators with
e—n(e). Let T' € L(H; H) be a normal operator with || 7|| = 1 and
ho € Sy satisfying ||T'(ho)|| > 1—n(e). Then there are a normal operator
S e L(H;H)and hy € Sy such that ||S(hy)|| = 1, [|ho—h1|| < v2e+/2¢
and ||S — T|| < v/2e. There is a linear isometry R € L£(H; H) such
that R(ho) = hy and ||R — Idg|| < d(¢) with lim;_,od(¢) = 0. Define
S:=R*oSoRe L(H;H). Since S is normal so is S. Repeating the
same arguments of item (b) of Proposition 2.3.4 we have that ||S(ho)|| = 1
and ||S — T < 28(g) + V/2¢. O

2.4 The BPBp for absolute sums

In this short section we work on the stability of the BPBp for absolute
sums and it was motivated by [11] where the authors proved the following

result.
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Theorem 2.4.1. [11, Theorem 2.1] Let {X; : ¢ € I} and {Y; : j € J} be
families of Banach spaces, let X and Y be the ¢g-,¢1- or {y-sum of {X;}
and {Y;}, respectively. If the pair (X,Y) has the BPBp, then (X;,Y))
has it for all - € I and j € J.

Also they provided some partial converses (see [11, Proposition 2.4]).
Before we give our results, let us define and recall basic facts about
absolute sums. An absolute norm is a norm | . |, on R? such that
[(1,0)|a = [(0,1)], = 1 and |(s,t)|s = [(|s], |t])|a for every s,t € R. Given
two Banach spaces Y and W and an absolute norm | . |,, the absolute
sum of Y and W with respect to | . |,, denoted by Y &, W, is the Banach

space Y x W endowed with the norm

1y, w)lla = [yl [lwD]a (y € Y, w e W).

Examples of absolute sums are the ¢,-sums @, for 1 < p < oo associated
to the £,-norm in R?. It is not difficult to see that ||(y,0)|l. = ||y| for
all y € Y and that

I lloe < Hla <1 T (2.5)

for every absolute sum || . ||,. We recall also that there exists an
isomorphic isometry between (Y &, W)* and Y* ®,« W* where @, is
defined by

I(y", w")

ar = sup [yl lyll + lw{|f]wl]

va)EBYEBaW

for every (y*,w*) € Y* x W*. The action of (z*,y*) € X* @, Y* on an
element (x,y) € X @, Y is given by

((z,9), (", y")) = 2" () + ¥"(y).
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Our first result says that we have stability in the BPBp when we put
an absolute sum in the range space. Its proof is an extension of [11,

Proposition 2.7].

Proposition 2.4.2. Let X,Y; and Y5 be Banach spaces. Given an
absolute norm | . |,, we set Y = Y] @, Ys. If the pair (X;Y) has the
BPBp, then the pairs (X;Y;) and (X;Y3) also have it.

Proof. Let € € (0,1) be given. Consider n(e) > 0 to be the BPBp
function for the pair (X;Y’). We prove that the pair (X;Y7) has the
BPBp since the other case is completely analogous. Let 77 € L(X;Y))
with ||71|| = 1 and zy € Sx be such that

T3 (o)l > 1 = ().

Define T € L(X;Y) by

Then ||T|| = ||T|| = 1 and
1T (@o)la = I(T2(20), 0)lla = | Tx(z0)l| > 1 —1()-
Then there are S € £(X;Y) with ||S|| = 1 and z; € Sy such that
1S(z)|| =1, |lz1—z0|| <& and ||S—Ti <e.

Write S = (S}, S,), where S; € £(X;Y;) for j = 1,2. By using (2.5), for
all z € By, we have
1(S1(2) = Ta(x), Sa(2)) oo < [I(Sa(@) = Ti(x), Sa(@)) o
< S =T, <e.
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Then ||S; — T1|| < € and ||Sy|| < e. Now we consider y* = (yi,13) €
Y @g Y5 with ||y*]|e+ = 1 such that

Rey"(S(21)) = Reyi(Si(1)) + y5(Sa(21)) = [[S(21)]| = L.

Then

5 IS (2| + s 1 Sa ()

1= Rey;(Si(21)) + y5(Sa(z1)) <
<y lle- =1

So Rey;(Si(z1)) = |lyilllISi(z1)]| and Reys(Sa(z1)) = [ly3llllS2(z1)]-
Since

lyllS1 (@)l = Rey; (Si(21)) = 1 = Reys(Sa(1)) > 1= [|Sa] > 0,
we have that y # 0 and ||S;(z;)|| # 0. Define S € £(X,Y;) by

3;1(301)
151 (1)l

For all € By, [|S1(x)|| < [ly7 1151 ()]l + w3 152 (2)I] < lly*

§1($1)
151 (= )II)

Si(x) := llyillSi(x) + y3(Sa(w)) (z € X).

o = 1 and

[S(z1)] = Re H H <Hy1||51($1) +95(S2(x1))
= Reyl (Sl(l'l)) + Rey;(§2<l‘1)) =1.

So ||S1]| = ||Si(x1)|| = 1. Finally, since
L [l7 < 1= Reyi(Si(21)) = Reys(Sa(1)) < |18l <e,

we have

150(@) = Ta (@)l < HlyillSi(@) = Si(@)ll + 181 = Tall + |18l < 3¢
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for all x € Bx. Thus ||S1—T}|| < 3e. Since we already have ||z; —z|| < ¢,
the result follows. O

So we can transfer the BPBp from a pair (X, Y] @&, Ys) to the pairs
(X,Y1) and (X,Y7) for every absolute sum @,. We do not know about
the converse of this. In fact, we do not know if the pair (X,Y; ®; Ys)
has the BPBp whenever its components (X, Y;) and (X, Y3) have it.

On the other hand, the proof of Proposition 2.4.2 gives the following

particular important case.

Proposition 2.4.3. Let X, Y; and Y; be Banach spaces and let 1 < p <
oo. If the pair (X;Y; &, Y3) has the BPBp with a function 7, then so
do the pair (X;Y;) with j = 1,2 with the function n — n(g/3).

Now we study the analogous problem for domain spaces. To do
so, we need some definitions. For z € X, we define the set D(X,x)
of all z* € X* such that 2*(z) = ||z||. The set D(X,z) is convex and
nonempty by the Hahn-Banach theorem. We say that x € Sy is a vertex
of Bx if D(X, z) separates the points of X and we say that z is a smooth
point of By if D(X,z) is a singleton subset of X*. By the remark after
Theorem 4.6 of [16], we have that a vertex of By is an extreme point of
By.

The next definition classifies the absolute norms in three different
types through the behaviour at the vector (1,0) and, although our result
is proved just for two types, we put all of them for completeness. Let

| . |« be an absolute norm in R2.
Definition 2.4.4. We say that | . |, is of
(i) type 1 if the vector (1,0) is an vertex of By.
(i) type 2 if the vector (1,0) is a smooth and extreme point of Bx.

(iii) type 3 if the vector (1,0) is a smooth and not extreme point of Bx.
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The absolute norm | . |; is of type 1. On the other hand, | . |« is of
type 3 and for 1 < p < oo, | . |, is of type 2. We have the following two

characterizations.

Lemma 2.4.5. ([57, Propositions 5.3 and 5.5]) Let | . |, be an absolute

norm in R?. Then

(a) | . |q is of type 1 if and only if there exists K > 0 such that
|z + Kyl < [(z,y)]a-

(b) | . |4 is of type 3 if and only if there exists by > 0 such that
|(1,b0)]a = 1.

Proposition 2.4.6. Let X, X, and Y be Banach spaces. Given an
absolute norm | . |, of type 1 or 3, we set X = X; @, X5. If the pair
(X;,Y) has the BPBp, then the pairs (X1;Y") and (X5;Y) also have it.

Proof. We show that the pair (X;;Y") has the BPBp. Let T' € L(X;;Y)
with ||T]| = 1 and zy € Sx, be such that

1T (o)l > 1 = n(e).
Define T € L(X,Y) by
T(xy,m2) :=T(x1) ((z1,73) € X).
Then |T|| = 1 and

IT (0, 0)|| = T (o) | > L —(e).

Since the pair (X;Y) has the BPBp with 7, there are S € £(X;Y) with
|S|| = 1 and (), 2,) € Sx such that

1S(@y ap) = 1, [|(2,25) — (20,0)lla <& and [|S—T| <e.
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Using (2.5), we get ||} — zo|| < € and ||a%|| < e. Define S € L(X1;Y) by
S(z1) := S(z1,0) for all z; € X;. Suppose first that | . |, is an absolute
norm of type 1. Then there exists K > 0 such that

1241 + Kllzoll < [zl 2al)la = (2, 25)[la = 1.
We prove that 2, = 0. Note that for all zo € X5, we have
15(0, )| = [15(0,25) = T(0,25)|| < ||1S = Tl <e.

Therefore, if we assume that x4, # 0, we get for all € € (0, K) that

of ! / / o 33, / o :U,
L= 182 = 1] Hs (H“o) H b Hs (o : )H

sl
< |71l + ellas |

< lzh| + Klay]l <1
which is a contradiction. Then
IS@)I = 15,0 =1=|S|l, IS=T||<e and |z} — ol <e.

Now assume that | . |, is an absolute norm of type 3 and let p = 2 > 0.
Consider the vector (2, px}) € X. Note that since ||z}|| < ¢,

lp5 | = pllxs]l < pe = bo.

Therefore since [ (z1, p5)lla = [([21 ] [|p25]])]a; [[21]] < Tand [|pzy]| < bo,
we have by the definition of by that ||(z], pz5)||« < |(1,b0)|a = 1, so that
(2], pry) € Bx. So, writting

5

/ ! ! € / !
(2], 2h) = <1 - bo) (27,0) + %(xhpxﬂ
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we get

9 €
L= @)l < (1= 1) 1t Ol + ol o)l <1

bo
and
Qo) € QA €ia /
= [5Gt al < (1 - ) 156, 0l + 18 pr) < 1
which imply that ||z/| = 1 and ||S(z})| = ||S(z},0)|| = 1. Since we

already have ||S — T'|| < ¢ and ||z} — || < &, we conclude that the pair
(X1;Y) has the BPBp for operators with n(e) for all € € (0, by). O






Chapter 3

The BPBp for compact

operators

3.1 Introduction

In this chapter we study the Bishop-Phelps-Bollobas property for
the case that T and S are compact operators in Definition 1.2.2, that
is, given a compact operator T' which almost attains its norm at some
point, there is another compact operator S which satisfies the BPBp
conditions (1.2).

Many results about density of norm attaining compact operators
were given in the 1970’s. For example, NA(X;Y) NK(X;Y) is dense
in K(X;Y) whenever one of the spaces X, X*, Y or Y* is isometrically
isomorphic to an L;(u)-space [43]. It was actually conjectured that
compact operators between Banach spaces can be always approximated
by norm attaining compact operators, but it has been recently shown
that this is not the case: it has been shown in [53, Theorem 1] that
there exist compact operators which cannot be approximated by norm
attaining ones. Besides that, the author of [53] studied some conditions

on the domain space or on the range space to assure the denseness of
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norm attaining compact operators. We refer to the survey paper [54] for
a detailed account on this subject. Here we study a stronger property:
the Bishop-Phelps-Bollobas version of the density of norm attaining
compact operators.

Let us define formally the BPBp for compact operators. It is worth
to mentioning that it already appeared (mostly without name) in some

of the references cited in this dissertation (see [3] for example).

Definition 3.1.1 (BPBp for compact operators). We say that a pair
of Banach spaces (X;Y') has the Bishop-Phelps-Bollobds property for
compact operators (BPBp for compact operators, for short) if given € > 0,
there exists n(e) > 0 such that whenever 7' € K(X;Y) with |7 =1
and zg € Sx satisfy

1T (zo)[| > 1 = n(e),

there are S € K(X;Y) and z; € Sx such that
IS = 1[S(xo)l = 1, |lwo — [l <& and [[S =T <e.

In this case, we say that the pair (X;Y’) has the BPBp for compact
operators with the function € — 7(e).

Note that we already studied something similar in Section 2.3 when
we were studying the BPBpp and the BPBpp-nu for particular operators
defined on complex Hilbert spaces. See also Definition 2.2.2 and Theorem
2.2.5.

An extensive list of known pairs of Banach spaces which satisfy
the BPBp for compact operators is given in Examples 3.1.2. Actually,
although in most of the papers that contain these results, it is not
explicitly stated that the pair (X;Y) satisfies the property for compact

operators, the proofs can be easily adapted to the compact case.

Examples 3.1.2. The pair of Banach spaces (X;Y') has the BPBp for

compact operators when
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(a) X is arbitrary and Y has property § (adapting the proof of [2,
Theorem 2.2]);

(b) X is uniformly convex and Y is arbitrary (using [6, Corollary 2.3]
or adapting the proof of [46, Theorem 3.1]);

(¢) X isarbitrary and Y is a uniform algebra - in particular, Y = Cy(L)
for a locally compact Hausdorff topological space L - [19, R2 in
page 380];

(d) X = Ly(u) and Y = Ly(v) for arbitrary measures p and v (adapt-
ing the proof of [26, Theorem 3.1]);

(e) X = Ly(u) and Y = L (v) for any measure p and any localizable
measure v (adapting the proof of [26, Theorem 4.1));

(g) X = Co(L) and Y is uniformly convex where L is any locally
compact Hausdorff topological space [3, Theorem 3.3];

(h) X is arbitrary and Y* is isometrically isomorphic to an L (u)-space
[3, Theorem 4.2]; in particular, if Y = Cy(L) for a locally compact
Hausdorff topological space L;

(i) X = Li(p) for an arbitrary measure and Y having the AHSP [5,
Corollary 2.4].

We invite the reader to take a look into the tables 4.1, 4.2 and 4.3 in
order to compare the examples of pairs of classic Banach spaces (X;Y)
which satisfy the BPBp with the pairs (X;Y) which satisfy the BPBp
for compact operators listed above. Doing this, it is natural to ask the

following questions.

(Q1) does the BPBp for compact operators imply the BPBp?

(Q2) does the BPBp imply the BPBp for compact operators?
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The answer for (Q1) is no. Indeed, the pair (L]0, 1]; C[0, 1]) has the
BPBp for compact operators (by any of the assertions (c), (h) or (i) of Ex-
amples 3.1.2) but NA(L,[0, 1]; C[0, 1]) is not dense in £(L,]0, 1]; C10, 1])
(by Schachermayer’s counterexample [59, Theorem A]) and thus, the
pair (L0, 1]; C[0,1]) does not have the BPBp. On the other hand, (Q2)
seems to be an open problem.

Section 3.2 is devoted to give some technical results about the BPBp
for compact operators. We will apply them in section 3.3 in order to get

more examples of pairs (X;Y') which satisfy it.

3.2 The tools

In this section we present abstract results about the Bishop-Phelps-
Bollobas property for compact operators which makes possible to carry
it from sequences spaces to functions spaces.

First we would like to mention that a routine change of parameters in
Definition 3.1.1 allows us to show that we may require the conditions not
only for norm one operators and vectors, but for operators and vectors
with norm less than or equal to one. We prove this simple observation
for the compact version of the BPBp although its proof holds for all
Definitions 2.1.1, 2.1.12, 4.1.1 and 4.1.2.

Remark 3.2.1. Let X and Y be Banach spaces. The pair (X;Y') has
the BPBp for compact operators if given £ > 0, there exists n(e) > 0
such that whenever 7' € K(X;Y) with | 7| < 1 and x¢ € Bx satisfy

17 (o)l > 1 = n(e),
there are S € K(X;Y) and z; € Sy such that

IS =1[S(xo)l| = 1, llwo = xa[| <& and [|S =T <e.
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Indeed, for e > 0 suppose that (X;Y’) has the BPBp with some function
ne) > 0. Let T € L(X;Y) with 0 < ||T|]| < 1 and 0 < ||zo] <

satisfying
9 9
T > 1 — mi .5 ¢-
7 (o) > 1= min{n (5).5}

HH;H (w)H > TG > 1 =min{n (3) .5}

So there are S € K(X;Y) with ||S|| = 1 and z; € Sx such that

Zo
x —
R

1S(z)]| = 1, <§ and Hs—

[ < —
1] H 2

Since 1 |T]| <1~ [ T(xo)]| < § and 1 [lzgl| <1~ | T(ao) | < 5, we
have that

X
1 = zoll < |l — || + 11 = [loll| < &
lzo
and
I =71 < |5 = g |+l = I <

We first deal with domain spaces, for which the results are based
n [43, Lemma 3.1]: if a Banach space X admits a net of norm-one
projections with finite rank whose adjoints converge pointwise in norm
to the identity operator, then NA(X;Y) N IC(X;Y) is dense in K£(X;Y)
for every Banach space Y. We note that for the BPBp this result is
not valid since the finite-dimensionality of the domain space does not
guarantee the BPBp as we already mention in the first chapter of this
dissertation (see [11, Example 4.1]) and we have to impose additional
conditions.
The most general result that we have is the following one, from which

we will deduce some particular cases.
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Lemma 3.2.2 (Main technical lemma). Let X and Y be Banach spaces.
Suppose that there exists a function n : R — R* such that given
d e R z%, ... 2% € Bx«and 2 € Sy, we may find a norm-one operator
P € L£(X;X) and a norm-one operator i € L(P(X); X) such that

(1) |Pay —xj|| <dforj=1,...,n;
(2) [[i(P(x0)) — woll < 0;
(3) POiZIdP(X);

(4) the pair (P(X);Y) has the BPBp for compact operators with the
function 7.

Then, the pair (X;Y’) has the BPBp for compact operators.

Proof. Let € > 0 be given. Define

- (3) i

Let T € K(X;Y) with ||T']| =1 and xy € Sx be such that
|17 (o)l > 1 =7'(e).

First we note that 77(By~) is compact. Indeed, since By« is w*-compact
and T™* is weak*-to-weak* continuous, then T*(By+) is w*-compact, so it
is norm-closed. By Schauder’s theorem, T™ is a compact operator and

then 7%(By+) is a compact set. So we can conclude that T*(By+) is

compact. Because of this, we may find z7, ...,z € Bx~ such that

min [T%y" — 23| <n'(e) (4" € By+).
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Let P € L(X;X) and i € L(P(X); X) satisfying (1)-(4) for § = n/(e).
Then, for every y* € By, we have
ITy" — P*Ty"|| < mjin(HT*y* — | + [lf — Pragll
HIP*z; — P Ty ) < 30/(e).
Therefore,
|7 = TP|| = |IT" = P*T"|| < 37/ (e).

Next, consider T = T|px) € K(P(X);Y). Then, |7]| <1 and

IT(P (o)) || = T (o)l = 1T (x0) — T(P(0))|
2 ||T (o) = IT = TP
>1—17'(e) = 31'(e)
£
21-0(3)
2
As the pair (P(X);Y) has the BPBp for compact operators with the
function 7, there are S € K(P(X);Y) and #; € Sp(x) such that

-1
-1

5 . . € 5 & €
I8l=1=18G@)l IPGo) -7l <3, 15-Tl <.

Finally, consider S = S o P € K(X;Y) which satisfies ||S|| < 1 and

consider x; = i(71) € Bx. First, we see that
[Sz1|| = [[[S o Poi(z1)]| = [|S(z1)] =1,
so ||S]| =1 =||Sz]| (in particular, ||| = 1). Next,

1 = oll < [[i(Z1) — i(P(xo))[| + [|i(P (o)) — ol

~ 15 9
< ||l’1 —P(ZE())” +T]/(E) < §+6 < E.



78 The BPBp for compact operators

Finally,
IS =T <[|S=TP|+[TP-T|
<||ISP = TP + 37/ (¢)
IS =T +30(E) <=+ S =e O

2 2

A useful particular case of the above result is the following proposition
in which we assume also the pointwise convergence in X besides the

pointwise convergence in X*.

Proposition 3.2.3. Let X be a Banach space for which there exists a

net { P, }aeca of rank-one projections on X such that
(1) {P,x} — z for all € X in norm and
(2) {Piz*} — z* for all * € X* in norm.

If for a Banach space Y there exists a function n : RT — R* such
that all the pairs (P,(X);Y) with o € A have the BPBp for compact
operators with the function 7, then the pair (X;Y’) has the BPBp for

compact operators.

Proof. This is a consequence of Lemma 3.2.2 considering the formal

inclusion as operator 1. O

The requirements for the Banach space X in the above proposition
are fulfilled if X has a shrinking monotone Schauder basis, that is, a
monotone Schauder basis such that the biorthogonal functionals form a

basis to the dual space.

Corollary 3.2.4. Let X be a Banach space with a shrinking monotone
Schauder basis and let {P, },en be the sequence of natural projections

associated to the basis. If for a Banach space Y there exists a function
n: RT — R* such that all the pairs (P,(X);Y) with n € N have the
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BPBp (for compact operators) with the function 7, then the pair (X;Y)
has the BPBp for compact operators.

Another particular case of Proposition 3.2.3 is given by the following

corollary.

Corollary 3.2.5. Let X be a Banach space. Let {P,}aeca be a net of

norm-one projections on X such that
(1) a < f implies P,(X) C P3(X) and
(2) {Piz*} — 2* in norm for all z* € X*.

If for a Banach space Y there exists a function n : Rt — R* such
that all the pairs (P, (X);Y) with a € A have the BPBp for compact
operators with the function 7, then the pair (X;Y’) has the BPBp for

compact operators.

Proof. We prove that P,x — x in norm for all x € X and then we
apply Proposition 3.2.3. First, we prove that Z = U,y Pa(X) is the
whole space X. For a contradiction, suppose that there exists some
zo € X such that xy & Z. Define ¢ : Z @ [x9] — K by p(z 4+ Azg) := A
for all z € Z. Then ¢ is a continuous linear functional on Z & [z¢] and
ker p = Z. By the Hahn-Banach theorem, there exists some zj € X*
such that
Z Ckerzy and xj(zg) = 1.

Using the hypothesis, we get {P*z{} — z and then (PXz})(zo) —
zy(xo) = 1. But this cannot happen since (Pz§)(zo) = 2§(Pa(zo)) = 0.
This contradiction gives the desired equality. Now let x € X. By the
first part of this proof, there exist oy € A and x; € X such that

g
| Pagl1) = 2l < 5.
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Since the net (F,), is ordered by inclusion, for all & > ay we have that
Po(Pag(#1)) = Pag(21)- So

[Pag (1) = Pa(2) || = | Pa(Pay (1)) = Pal() || < [ Pallll Pa (1) — ]| < %

for « > ap. Thus
[ Po(z) — || < ||Pal(®) = Pao(@1)|| + || Pap (1) — 2| <,

whenever o > «p. This proves that {P,x} converges to z in norm for all
x € X as desired. ]

Our next abstract result deals with range spaces instead of domain
spaces. The idea of the proof, which is an adaptation of [43, Lemma 3.4]
to the BPBp, was used in [3, Theorem 4.2] to prove that every pair
(X;Y) has the BPBp for compact operators when Y* is isometric to an

L1(p)-space.

Proposition 3.2.6. Let X and Y be Banach spaces. Suppose that
there exists a net of norm-one projections {Qx}ren C L(X;Y) such
that {Q,y} — vy in norm for every y € Y. If there is a function
n : Rt — RT such that the pairs (X;Q\(Y)) with A € A have the
BPBp for compact operators with the function 7, then the pair (X;Y)
has the BPBp for compact operators.

Proof. Let € > 0 be given. Define

16= b fo(5)

Let T € K(X;Y) with ||T']| =1 and xy € Sx such that

17 (zo)ll > 1 =1/ (e).
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As T(Bx) is relatively compact, we may find yi,...,y, € Y such that

n'(€)

min [|T'(z) - yll < 5= (= € Bx).
By hypothesis, there is A € A such that
1'(e) :
1) — sl < = (j=1....m).

Now, for every x € By, we have

1Tz — @\T|l < min {[|Tw =yl + lly; — Qa(yp) | + 1@x(y;) — @aTxl}

n'(€)
3

<min2|Te -y + T2 < (o).
J

Therefore,
1T = Q\T'|| < 7' (e).

The operator T = Qx0T € K(X;Qx(Y)) is such that ||T] < 1 and
satisfies

1T (z0)|| = | T(xo)|| = |QAT = T|| > 1—25/() > 1 -1 (;) ,

Then, there exists S € K(X;Q,(Y)) with ||S|| = 1 and 2; € Sy such
that

. ~ o~ € £
|1S(zq)|| =1, ||S—T] <3 and ng—a:1H<§<5.

If we write S € IC(X;Y) to denote the operator S viewed as an operator
with range in Y, we have that ||S| = ||S(z1)]| = 1 and

~ - ~ €
IS =TI <8 =TI+ T =Tl <5 +u() <e. O
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In the next section we also need some technical results concerning
direct sums. Note that both items (a) and (b) are particular cases of

Propositions 2.4.2 and 2.4.6 adapted for compact operators.
Lemma 3.2.7. Let X, X, X5, Y, Y] and Y5 be Banach spaces.

(a) If (X7 @1 X2;Y) or (X] @ X2;Y) has the BPBp for compact
operators with a function 7, then so do the pairs (X;;Y) with

j = 1,2 with the same function 7.

(b) If (X;Y1 @1 Ys) or (X;Y) @ Ya) has the BPBp for compact oper-
ators with a function 7, then so do the pairs (X;Y;) for j = 1,2

with the same function 7.

3.3 Applications

In this section we give some applications of the abstract results
that we proved in Section 3.2. The idea here is to use Lemma 3.2.2,
its consequences and Proposition 3.2.6 to transfer the Bishop-Phelps-
Bollobas property for compact operators from sequence spaces, such as
co or £,, to function spaces, such as Cy(L) or L,(p). By doing that, we
will be able to give more examples of pairs which satisfy the BPBp for
compact operators beyond Examples 3.1.2.

The first application is the following sufficient condition for the pair

(Co(L);Y) to have the BPBp for compact operators.

Theorem 3.3.1. Let L be a locally compact Hausdorff topological space
and let Y be a Banach space. If the pair (co; V') has the BPBp for compact
operators, then (Co(L);Y) has the BPBp for compact operators.

To prove this theorem we use Lemma 3.2.2. Nevertheless, we need
two preliminary results in order to show that the hypothesis of that

lemma are satisfied. The first one is the following lemma, for which



3.3 Applications 83

we only need the case X = K, but we state it in the general form for

completeness.

Lemma 3.3.2. Let X and Y be Banach spaces. Then the following are

equivalent:

(i) the pair (¢o(X);Y) has the BPBp for compact operators;

(ii) there is a function 7 : RT — R™ such that the pairs (/7 (X);Y)
with m € N have the BPBp for compact operators with the function
n.
Moreover, when K(X;Y) = L(X;Y) (in particular, if one of the spaces X
or Y is finite-dimensional), this happens when (co(X);Y) or ({oo(X);Y)
has the BPBp.

Proof. First note that each ¢7(X) is an {y-summand in ¢y(X). So (i)
implies (ii) because of Lemma 3.2.7.(a). Now if we suppose that the
pairs (¢22(X);Y) have the BPBp for compact operators with a function
n, we can construct the sequence of projections satisfying conditions (1)
and (2) in Proposition 3.2.3. So (ii) implies (i).

When K(X,Y) = L(X;Y), if (¢(X);Y) or ({(X);Y) has the
BPBp, then [11, Proposition 2.6] gives that each (¢/Z.(X);Y) has the
BPBp with the same function 7. Since every operator from ¢7(X) into
Y is compact, (ii) holds. Now using that IC(X;Y") is equals to L(X;Y)

is not difficult to see that (ii) implies (i) also in this case. O

In particular, we have the following consequence.

Corollary 3.3.3. Let Y be a Banach space. If the pair (co;Y') has the
BPBp, then it has the BPBp for compact operators.

The next preliminary result is based on [3, Proposition 3.2] and
gives the possibility to apply Lemma 3.2.2 when the domain space is a
Co(L)-space. We recall that Cy(L)* can be identified with the space of

regular Borel measures on L by the Riesz representation theorem.
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Lemma 3.3.4 (Extension of [3, Proposition 3.2]). Let L be a locally
compact Hausdorff topological space. Given d > 0, p1, ..., jtn, € By
and fy € Bey(r), there exist a norm-one projection P € L(Cy(L), Co(L))
and a norm-one operator i € L(P(Cy(L)),Co(L)) such that:

(1) ([P pj — pyll <0 for j=1,....m;

(2) li(P(fo)) = foll < 9;

(3) Poi=Idpcyry;

(4) P(Cy(L)) is isometrically isomorphic to ¢7 for some m € N.

Proof. Almost everything is given by [3, Proposition 3.2] and its proof.
We have to define the operator ¢ and, to do so, we need to give some
details which already appear in that proposition.

First, we note that we may suppose that || fo|| = 1. Indeed, if fo =0,
then (2) is always true and, as P is a projection, (3) is true by taking i
to be the inclusion of P(Cy(L)) into Cy(L). In the case that fo # 0, we
use fo/|| fol| and the result for fy will follows.

Let po € Scyn)- be such that po(fo) = ||fo]] = 1. By the Riesz
representation theorem, we may view pg, f1, ..., i, as Borel measures
on L. Consider the finite positive regular measure p = >>%_ ;. We
use the Radon-Nikodym theorem, the density of simple functions on
Lq(p), the regularity of u, Urysohn’s lemma, and the continuity of fo
as in the proof of [3, Proposition 3.2] to get the following: there are a
finite collection K, ..., K,, of pairwise disjoint compact subsets of L
with u(Ky) > 0 for k =1,...,m and a collection of continuous functions
with pairwise disjoint compact support ¢, ..., @, with values in [0, 1]

with ¢ = 1 on K}, for every kK = 1,...,m, in such a way that, if we

define
PN =% s ([ fdn) e (recw)

1
k—1 M(Kk)

one has
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(a) P e L(Cy(L),Cy(L)) is a norm-one projection;
(b) [|P*p; — py|l < 6/2 for every j =0,1,...,n;

(¢) P(Co(L)) is the linear span of {1, ..., ¢y} and so, it is isometri-
cally isomorphic to £2;

(d) sup |fo(t) — fo(s)| <d/2for k=1,...,m;

(e) sup {|[Pfol(t) = fo(t)| : t € Upy Ky} < 6/2.

Note that (b) and (c) are (1) and (4) of our lemma. Next, we use (b)
with j = 0 to get that

)
1 P(fo)ll = 11o(P(fo))] = |po(fo)| — [P po — proll > 1 — >

and consider Ty € P(Cy(L))* such that

IToll =1 and Yo(P(o) = [P > 1 2.

On the other hand, we may use (d) to get a compactly supported
continuous function ¥ : L — [0, 1] such that ¥ = 1 on U}, K} and
such that 5

sup [P i](t) = fo(h)| < 5.

tesupp(¥)

We are now ready to define the operator i € L(P(X);Cy(L)) as follows:

[@ (é amﬂ (1) = W(t) (é akgok(t)> + (1=0(1)) 1y (é ozkgok> fo(t)
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for every t € L and every ay,...,a,, € K. Then, i is linear, ||i|| < 1 and
P oi=1Idpcx). This gives (3). Finally, since
i(Pfo) = fo = W(Pfo) + (1 =V¥)To(Pfo)fo— fo
= U(Pfo) + (L =U)[Pfollfo— fot+ Vfo—¥fo
= U(Pfo—fo) = (1 =U)(1 = [[Pfoll)fo

we have that

1i(P(fo)) = foll < [[W(Pfo— fo)ll + (1 =W)X = [[P(fo)l]) fol

b 0

AT

2 2
by using that |1 — ¥|| < 1, [1—[|P(fo)]|] < $ and || fo|| = 1. This gives
(2) and it finishes the proof. O

Now we combine these results to get Theorem 3.3.1.

Proof of Theorem 5.5.1. By Lemma 3.3.4 and Lemma 3.3.2, we are in
the hypotheses of Lemma 3.2.2, so the result follows. m

A family of Banach spaces Y for which the pair (cy; V') satisfies the
Bishop-Phelps-Bollobés property has been recently discovered in [7].
This family strictly contains the uniformly convex Banach spaces and
the Banach spaces with property 8. By using Theorem 3.3.1, one gets
that the pair (Co(L),Y") has the BPBp for compact operators for all
elements Y in that family. To explain this application better we need a
definition. Let Y be a Banach space, E C Sy and F : E — Sy-. We
say that the family E is uniformly strongly exposed by F' if for every
e > 0 there is 6 > 0 such that

yE By, ecE, ReF(e)(ly)>1—-0 = |ly—e|] <e.

The promised application is the following.
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Corollary 3.3.5. Let Y be a Banach space. Suppose that there exist
aset I, {y;:i €I} CSy,{yf:i€l} C Sy, asubset E C Sy, a
mapping F' : E — Sy« and 0 < p < 1 satisfying that

(1) yi(y:) =1, Viel,

(2) lyiy)l < p,Vijel,i#j,

(3) E is uniformly strongly exposed by F,
(4) [F(e)(yi)| < p, Ve€ E i €1,

() llyll = max{sup{|y; (y)| - i € I},sup{[F(e)(y)| : e € E}} for all
yey.

Then, for every locally compact Hausdorff topological space L, the pair
(Co(L);Y) has the BPBp for compact operators.

Proof. Applying [7, Theorem 2.4] we get that the pair (cp;Y") has the
BPBp. By Corollary 3.3.3, (co; Y') has the BPBp for compact operators.
Now we apply Theorem 3.3.1 to get the property for the pair (Co(L);Y)
as desired. O

We observe that this result covers the already known cases when Y is
uniformly convex (I = () and when Y has property 3 (E = () (see items
(a) and (b) of Examples 3.1.2). It was proved in the cited paper [7] that
there are examples of Banach spaces Y satisfying the requirements of
Corollary 3.3.5 which are neither uniformly convex nor satisfy property
[, even in dimension two.

Now we work with ¢;-preduals spaces. By using Corollary 3.2.5, we

will prove the following.

Theorem 3.3.6. Let X be a Banach space such that X* is isometrically
isomorphic to ¢; and let Y be a Banach space. If the pair (¢o; Y) has the
BPBp for compact operators, then (X;Y’) has the BPBp for compact

operators.
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To do so, we use the ideas of [34, Theorem 1.1, Theorem 3.2 and
Corollary 4.1]. More specifically, in order to apply Corollary 3.2.5, we
construct a net of w*-continuous finite-rank contractive projections in
X* which converges pointwise to the identity operator in this space and
such that their adjoint operators restricted to X C X** is ordered by
inclusion.

Let (ef), be a Schauder basis of X* isometrically equivalent to the

canonical basis of ¢;. For every n € N, we put Y, := [e],..., €], the

’n
linear span of {e],...,e:}. It was contructed in the proof of Corollary
4.1 of [34] a sequence @, : X* — X* of w*-continuous contractive
projections such that Qf(X*) =Y, for each n € N. We prove that
this sequence satisfies the hypothesis of Corollary 3.2.5, that is, for any
¥ € X*, {Qnz*} — z* in norm and @} restricted to X is ordered
by inclusion and it is isometric to ¢ for each n € N. We start with a

general lemma which has its own interest.

Lemma 3.3.7. Let E be a Banach space and consider M, N to be closed
subspaces of E* such that

E*=Ma N,

where dim M < oo. Consider ) : E* — M to be the projection on the
first coordinate and Q :=io0Q : E* — E* where i : M < E* is the

inclusion of M in E*. If ) is w*-continuous then

(Q)"(E™) = (Q)"(B) = Q*(M"),

Proof. Suppose that () is w*-continuous. First we prove that ¢ o @) is
w*-continuous for all ¢ € M* and ¥ o Q is w*-continuous for all 1) € E**.
Indeed, let (z) C E* be a net such that =% - 27 for some z, € E*.
Since @ is w*-continuous, Q(z%) Q(z§). We are assuming that M
as finite dimension, so Q(z}) — Q(z) in norm. Thus for all ¢ € M*,
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e(Q(xf)) — w(Q(xf)) which shows that ¢ o @ is w*-continuous for all
@ € M*. On the other hand, Q(z*) = i 0 Q(z*) — i 0 Q(x) = Q(x3)
in norm and then ¢ o Q(z%) — v o Q(x) for all ¥ € E**. By these

observations,
Qop=poQ€eE and (Q)op=yoQeckE

for all ¢ € M* and ¥ € E**. Let v € E** = M* & N*. So there are
unique ¢7 € M* and o € N* such that for all e* € E*,

¢(e”) = p1(Q(e7)) + pa((Idp- — Q)(e7)).

Q) (@) =¢oQ = ¢oioQ

= ¢1(Q(ioQ)) +pa((Idp- — Q)(i0Q))

= p10Q+ ¢a(0)

= Q"o
This proves the lemma. O
Lemma 3.3.8. Let X be a Banach space such that X* is isometri-
cally isomorphic to £;. Let (e};), be the Schauder basis of X* isometri-
cally equivalent to the usual ¢;-basis. Denote by Y,, the linear span of

{ei,...,e;}. There exists a sequence (P,), in X of contractive projec-

tions such that
(a) Pr: X* — Y, is w*-continuous,
(b) Po(X) C Ppi1(X) for all n € N,
(¢) P,(X) is isometric to £ for all n € N,

(d) {Pfz*} — «* in norm for all z* € X*,
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(e) {P,x} — z in norm for all z € X.

Proof. By Corollary 4.1 of [34], there exists a sequence of w*-continuous
contractive projections @, : X* — X* with @, (X*) =Y, and Q,Qn 1 =
Q. for all n € N. Given z* € X* we prove that {Q,z*} — z* in norm.
aje; with a; € K for all j € N, there exists

o0

Indeed, since z* = >

no € N such that

9
<§7

n
* *
xr — E CLjGj
=1

for all n > ng. On the other hand, since Z;‘:l aje; €Yy, it follows that
Qn (27:1 aje;f> = Z;;l aje;. Thus, for all n > ng, we get that

So, we conclude that

HQn(a:*) - Z a;e;

Jj=1

Qn(x*) —Qn (zn: aje;)

Jj=1

1@n(2") = 2™ <

for all n > ng. Now we prove that if n > m then Q}(X) C Q& (X).
Indeed, by Lemma 3.3.7, Q:(Y) = Q:(X) for all n € N. Since
QnQni1 = @Qp for all n € N, it follows that Q;_ ,Q; = @ for all
n € N. So we get

Qn(X) = @11 (@ (X)) C Q1 (X),

for all n € N. Consequently, Q*x — =z in norm for all z € X (see
the proof of Corollary 3.2.5). Finally, we note that Q}(X) = Q5 (Y))

*
n

restricted to X (and then P' = @Q,) for all n € N to get properties

(a)—(e). =

is isometric to £7 for all n € N. To finish the proof, we put P, := @
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Proof of Theorem 3.3.6. Suppose that X* is isometrically isomorphic to
/1 and that the pair (co;Y’) has the BPBp for compact operators. By
Lemma 3.3.2, the pair (¢ ;Y") has the BPBp for compact operators with
the same function n for every n € N. Consider the sequence (P,), of
Lemma 3.3.8. Since P,(X) is isometric to ¢2 , then the pair (P,(X);Y)
has the BPBp for compact operators with the same function 1. Now,
applying Corollary 3.2.5 we get that the pair (X;Y") has the BPBp for

compact operators. O

Using the same arguments of Corollary 3.3.5 we get the following
examples of pairs of Banach spaces (X;Y") satisfying the Bishop-Phelps-

Bollobés property for compact operators.

Corollary 3.3.9. Let Y be a Banach space. Suppose that there exist
aset I, {y; i€ 1} C Sy, {y:i€l} C Sy~, asubset E C Sy, a
mapping F': F — Sy« and 0 < p < 1 satisfying that

(1) yi(ys) =1L Vi€ I

(2) lyi ;)| < p,Viyj € 10 # j;

(3) FE is uniformly strongly exposed by F’;
(4) [F(e)(yi) < p,Ve € ELi € I;

(5) Ilyll = max{sup{|y; (y)| : i € I}, sup{|F(e)(y)| : e € E}} for any
yey.

Then, for every Banach space X such that X* is isometrically isomorphic
to £1, the pair (X,Y’) has the BPBp for compact operators.

Observe again that this result covers the cases when Y is uniformly
convex (I = ()) and when Y has property 8 (E = ). If Y has property
B, the result was already known (see Examples 3.1.2.(a)), but it was

unknown for uniformly convex spaces.
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Corollary 3.3.10. Let X be a Banach space such that X* is isometri-
cally isomorphic to /; and let Y be a uniformly convex Banach space.
Then (X;Y") has the BPBp for compact operators.

Remark 3.3.11. We do not know whether Theorem 3.3.6 can be ex-

tended to general Li-predual spaces.

Next we will give a result for L;(u, X)-spaces (see Section 1.1 for

notations). This is an extension of Examples 3.1.2.(i).

Theorem 3.3.12. Let p be a positive measure, let X be a Banach space
such that X™* has the Radon-Nikodym property and let Y be a Banach
space. If the pair (¢1(X);Y’) has the BPBp for compact operators, then
the pair (Li(i, X);Y) has the BPBp for compact operators.

We first need the following lemma which is similar to Lemma 3.3.2
but now for ¢;-spaces. This lemma gives a version for compact operators
of [50, Theorem 6] which characterizes the pairs (¢1(X);Y") to have the

BPBp. Observe that, in this case, no assumption on X is needed.

Lemma 3.3.13. Let X and Y be Banach spaces. Then the following

are equivalent:

(i) for every € > 0 there exists 0 < £(¢) < ¢ such that given sequences
(Tk) C Bx(x,v) and (z) C By, and a convex series Y22 a; such
that

i OAkaxk >1-— 5(8),

k=1

there exist a finite subset A C N, y* € Sy« and sequences (S;) C
Sk(x;vy, () C Sx satisfying the following:

(a) ZkeAak >1-— g,

(b) |lzr — zx|| < e and ||Sy — Ti|| < € for all k € A,

(¢) y*(Skzr) =1 for every k € A.
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(in this case, we may say that the pair (X;Y") has the generalized
AHSP for compact operators);

(i) the pair (¢;(X);Y’) has the BPBp for compact operators;

(iii) there is a function 7 : R™ — R™ such that the pairs (¢7*(X);Y)
with m € N have the BPBp for compact operators with the function
n.

Moreover, if £(X;Y) = L(X;Y) (in particular, if one of the spaces X

or Y is finite-dimensional), then the above is equivalent to
(iv) the pair (41(X);Y’) has the BPBp.

Proof. (i) = (ii) is an adaptation of the proof of [50, Theorem 6] to
compact operators. Indeed, if we suppose that the set A is finite and
all the operators T,’s and Si’s are compact, then the operator S :
01(X) — Y defined there is also compact. (ii) implies (iii) follows from
Lemma 3.2.7.(a) since each ¢7*(X) is an ¢;-summand in ¢;(X). Finally,
for (iii) implies (i), we can again adapt the proof of [50, Theorem 6]
to the case of compact operators, using that in our item (i) we may
reduce to finite sums instead of series (using the analogous for compact
operators of [50, Remark 5.a]).

If(X,Y)=L(X,Y), item (iii) is equivalent to the fact that all the
pairs ({7"(X),Y) with m € N have the BPBp with the same function 7.
This is equivalent to (iv) by [50, Theorem 6]. O

In particular, we have the following characterization for the pairs

(¢1;Y) to have the BPBp for compact operators.

Corollary 3.3.14. Let Y be a Banach space. The following are equiva-

lent:

(i) the pair (41;Y) has the BPBp for compact operators;
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(ii) Y has the AHSP;
(iii) the pair (¢1;Y") has the BPBp;

(iv) for every positive measure p, the pair (L;(u);Y) has the BPBp for

compact operators;

(v) there is a positive measure p such that Li(u) is infinite-dimensional
and the pair (L;(u);Y) has the BPBp for compact operators.

Proof. We already know that (ii) and (iii) are equivalent by [2, Theo-
rem 4.1]. Applying Lemma 3.3.13 we get the equivalence between (i)
and (iii). To prove that (ii) implies (iv) go to Examples 3.1.2.(1). It
is clear that (iv) implies (v). Finally, (v) implies (ii) is proved in [5,
Corollary 2.4]. O

To prove Theorem 3.3.12 we need the following modification of [29,
Lemma II1.2.1, p. 67] to put it in the conditions of Proposition 3.2.3.

Lemma 3.3.15. Let (2, %, 1) be a measure space such that Ly (u) is

infinite-dimensional, let X be a Banach space and let € > 0.

(a) For 1 < p < oo, given fi,..., fn in L,(p, X) there exists a norm-
one projection P : L,(p, X) — L,(p, X) such that P(L,(p, X))

is isometrically isomorphic to £,(X) and

I1P(f;) = fill <e,
for every j =1,...,n.

(b) If p is a finite measure then, for 1 <p < oo, fi1,..., fn in L,(u, X),
91y -y Gm i0 Lp«(p, X*) and € > 0, there exists a norm-one projec-
tion P : L,(p, X) — L,(p, X) such that P(L,(p, X)) is isometri-
cally isomorphic to £,(X) and such that

Ifi = Pfill, <e and |lgx — P gl <,
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forall j=1,....nand k=1,...,m.

(c) If p is a finite measure then, given gy, . .., g, in Lo (i, X) and e > 0
there exists a norm-one projection P : Lo (pt, X) — Loo(pt, X)
such that P(Loo(u, X)) is isometrically isomorphic to £, (X) and
such that

lgr — Porlleo <,
forall k=1,...,m.

Proof. Since Ly () is infinite-dimensional, there exists a sequence A =

(A;)$2, of pairwise disjoint measurable sets such that 0 < p(A;) < oo for

every ¢ € N.
(a). Fix 1 < p <oo. Let fi,..., f, in L,(p, X). As, by definition,
simple functions are dense in L,(u, X), for each j € {1,...,n} we can

find a finite family A; of pairwise disjoint measurable sets of positive and
finite measure, and x4 € X for every A € A; such that the vector-valued

simple function ¢; = 3 4c4, Taxa satisfies

1fj — @illy <e

for every j =1,...,n. Define

Uua4

j=1AcA;

2= |Uafu

and consider B = {B; : i € N} to be an infinite countable partition of
2 such that all their elements are measurable with 0 < u(B;) < oo for
every ¢ € N and such that B is a refinement of the above families. In

the case p = 1, we have that

,LL(le) (/B fdu) XB;

o)
2.
=1

o
=2
1 =1

N T
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for every f € Li(u,X). For 1 < p < o0, let us observe that for any
r,s € N with 1 <r < s, the fact that B is a partition leads to

A ORLDIEE - > g | o S 0
for every t in 2. Hence
gu(lBi) </B fd#>XBi ) B /Q <§; M(;i)p /Bi fdp ][)XBZ)CZ,u

s 1 P
_ d / du.

But

e I R T [
<3y [, o)
= [0l =111

for every 1 < r < s. Thus, for 1 < p < oo, we can define P :
Ly (p, X) — Lp(p, X) by

o)

P(f) N ; M(le)

(/B fdﬂ> XB; (f € Lp(M,X)).

Since P(xp,) = xp, for every i, we have that P is a norm-one projection
such that P(L,(p, X)) is isometrically isomorphic to £,(X). Moreover,

for each j € {1,...,n}, there exists a sequence (x;;);en in X such that

oo
Gj =Y TijXB,,
=1
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where the equality holds both pointwise and with respect to the p-norm.
This implies that

1P(f;) = fille = ll¢s — filly <,

for every j =1,...,n.

(b). If we now assume that p is a finite measure, the sequence
A = (A;)2, of pairwise disjoint sets of positive measure can be assumed
to be a partition of Q. As above, given fi,..., f, in L,(u, X), we can
find ¢4, ..., ¢, simple functions ¢; = > Aecd; TaXa, such that

1f5 = ¢3llp <&,

for every j = 1,...,n, where now each 4; is a partition of {2 of measurable
sets of positive measure. Let us take gi,...,¢m in Ly-(p, X*). We
distinguish two subcases again. If p > 1, then, by definition of L« (p, X*),
for each j € {1,...,m}, we can find a finite family C; of pairwise disjoint
measurable sets of positive and finite measure, and x} € X* such that

the vector-valued simple function n, = > cce, 76X satisfies that

Hgk — Nk q* <e€

for every k = 1,...,m. Observe that, since u is finite, by adding a
suitable null characteristic function, we may and do assume that each Cy
is actually a measurable partition of 2. If p = 1, then p* = co. In that
case, by [29, p. 97], there exists a measurable, bounded and countably
valued mapping 7 : 2 — X* such that

€
e —melloe < 5
for every k = 1,...,m. Thus, again there exists a countable partition Cy

of  and vectors x5, € X* such that 7:(t) = Ycee, voxc(t), for every
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t € Q. In both cases, we can find B = (B;)2, a partition of € of sets of
positive measure that is a refinement of all the partitions A, A;, C;, for
every j and k. As in (a), if we define P : L,(u, X)) — L,(p, X) by

e}

=% iy (7o) v

we have that P is a norm-one projection such that P(L,(p, X)) is

isometrically isomorphic to £,(X) and [|P(f;) — fill, = ll¢; — fill, < € for
every j = 1,...,n. Furthermore, L, (p, X*) is isometrically isomorphic
to a subspace of L,(u, X)* (see e.g. [29, p. 97]), and

[P (a"xm,)] () = / $*(P(f)(?f)>XBr(t) ap(t)
ot ([ ) o0, (0 du)

SRy r——

for every f in L,(u, X), every z* in X* and every r. We know that there
exists xf;, € X* such that ng(t) = >7°, xfxp,(t), pointwise in € and

convergent with the || - ||,-norm for 1 < p < oco. Hence, for 1 < p < oo,

we obtain that P*(ny) = n for every k. For p = 1 the equality holds too.

But we need to do some extra work to prove it. We have
! !
lP* (; :vikar)] (f) = ; T < /B () d,u(t))
!
= [ S w (O, (0) dutt),
r=1

But

l

E_:l |22 (f(0)xs, (O < D Il lLf ) lxs, (8) < M £,

r=1
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for every ¢ in Q and every [ € N, where M := max{||g1|/cos - - - » ||gm |00 } €.
Thus the series 22, 2%, (f(t))xs,(t) is absolutely convergent for every
f and every t, and we obtain that

(¢ Z rre (f(t)xB, (1)

Moreover, by the Lebesgue Dominated Theorem

£ = [ m(r) du /ka X, (£) du(t)
= Z/ ))xs, (t) du(t),

for all f in L;i(p, X). On the other hand, since the series defining P

converges in the ||.||;-norm,

()] () -y M(gi) (78] ((/B f(u) dﬂ(u)) XBi)
1 / 2_: T < /B fu) du(U)> X5, ()X, (t) du(t)

>y o (f, 00 ) w0t

K3

=S ([ f@dutw)) = 3 [ @i/ )xe, ) duw)
Thus, for 1 < p < oo,
1P (gx) = grllp= < 1P (gk) — P (i) lp= + i — gl
< 2H77k_ » < g,

forevery k=1,...,m
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(c). To prove this, we follow the lines of (b). Given gq,..., ¢y in
Loo(p1, X) and € > 0, for each k € {1,...,m} there exists a measurable,
bounded and countably valued mapping 7y : 2 — X such that

llgr — nkllee < &,

and hence, we have a countable partition Cy of 2 and points x¢ € X for
every C € Cj such that n,(t) = Xoec, Toxc(t), for every ¢t € Q. Again,
we take an infinite countable partition B = {B; : i =€ N} of Q of sets
of positive measure that is a refinement of A and Cy for all k. Finally, if
we define P : Lo (p, X) — Loo(pt, X) by

=1

P(f) = < / fdu> XB:;
( ) ; M(Bz) B; B

we have that P is a norm-one projection such that P(L.(p, X)) is

isometrically isomorphic to £ (X) and

1P (gr) — gklloo = Mk — grlloo < &,

for every k =1,...,m. O

Proof of Theorem 3.3.12. 1f Ly(p) is finite-dimensional, the result is a
consequence of Lemma 3.3.13. Let us suppose that L;(x) is infinite-
dimensional in the rest of the proof.

Let us start with the case when p is finite. As X* has the Radon-
Nikodym property, we have that L. (p, X*) = Li(u, X)* (see e.g. [29,
Theorem IV.1.1 in p. 98]), so Lemma 3.3.15.(b) gives a net { Py} ea of
norm-one projections on Li(u, X) such that {P\f} — f in norm for
every f € Ly(pu, X), {Pyg} — ¢ in norm for every g € Loo(p, X*) =
Ly(p, X)* and Py(L(p, X)) is isometrically isomorphic to ¢,(X). Now,
we may apply Proposition 3.2.3 to conclude the result.
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If p is o-finite, we may use [20, Proposition 1.6.1] to reduce to
the previous case: there is a finite measure v such that L;(u, X) is
isometrically isomorphic to L; (v, X). Let us also observe that we actually
get that there exists a common function 7 : Rt — R*, depending only
on X and Y, such that all the spaces (L;(u, X),Y) have the BPBp for
compact operators with the function 1 when p is o-finite.

Finally, for the general case, we may adapt an argument from the
proof of [26, Proposition 2.1]. Let 0 < e < 1 and T € K(L(p, X);Y)
with |7’ = 1 and fy € S, x) satisfying

1T foll > 1 =ne),

where 7 is the universal function for all o-finite measures given in the
previous case. Pick a sequence {f,},en in the unit sphere of L;(u, X)
such that lim, o ||T'f.]| = 1. Then, there is a measurable set A such
that the measure p|4 is o-finite and the support of all the f,,, n > 0, are
contained in A. Then, consider 7} to be the restriction of 7" to Ly (p]a, X),
which satisfies ||T3|| = 1 and ||} fo|| > 1 — n(¢). By the assumption on
n, there exist a compact norm-one operator Sy : Lq(p]4, X) — Y and
a norm-one vector g € Ly (|4, X) such that

1Sl =1, [Ty = Sifl <& and [lfo—g] <e.
Let P: Ly(p, X) — L1(u|a, X) denote the restriction operator. Then
S=(S10oP)+To(Id-P)

is a compact norm-one operator from L;(u, X) into Y, g can be viewed
as a norm-one element in L;(u, X) (just extending by 0), ||Sg|| = 1,
IS —T| <eand |fo— gl <e. O
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When X is just the base field, we recover the result for pairs of the
form (Li(u);Y) from [5, Corollary 2.4] (see Examples 3.1.2.(i)). More
applications of Theorem 3.3.12 for the vector-valued case can be given

using the results of [50].

Corollary 3.3.16. Let u be a positive measure and let X, Y be Banach
spaces. The pair (L;(i, X);Y) has the BPBp for compact operators in

the following cases:
(a) if X and Y are finite-dimensional;

(b) if X* has the Radon-Nikodym property, Y is a Hilbert space and
the pair (X;Y’) has the BPBp for compact operators;

(c) in particular, if Y is a Hilbert space and X = ¢y or X = L,(v) for

any positive measure v and 1 < p < o0.

Proof. (a). When X and Y are finite-dimensional, it is shown in [50,
Proposition 7] that the pair (¢1(X);Y") has the BPBp. Since X and YV
are finite-dimensional, Lemma 3.3.13 gives that the pair (¢1(X);Y") has
the BPBp for compact operators. Now, Theorem 3.3.12 applies since X*
trivially has the RNP.

(b). If we only consider finite convex sums instead of convex series,
we may repeat the proof of [50, Proposition 9] but using only compact
operators to get item (i) of Lemma 3.3.13. Then, we have that (¢,(X);Y)
has the BPBp for compact operators. If X* has the Radon-Nikodym
property, Theorem 3.3.12 finishes the proof.

(c). It follows from (b) and Examples 3.1.2. O

The proof of Theorem 3.3.12 can be adapted to pairs of the form
(Lp(p, X);Y) for 1 < p < oo, but only when the measure y satisfies that

Li(p) is infinite-dimensional.
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Proposition 3.3.17. Let 1 < p < o0, let i be a positive measure such
that L;(u) is infinite-dimensional, let X be a Banach space such that
X* has the Radon-Nikodym property, and let Y be a Banach space. If
the pair (¢,(X);Y’) has the BPBp for compact operators, then so does
the pair (L,(u, X);Y).

Let us observe that, in this case, the scalar-valued version of the result
has no interest, as the spaces L, () are uniformly convex for 1 < p < oo
and we may use Examples 3.1.2.(b).

Now we work with the results in the range spaces. In those cases, we

are using Proposition 3.2.6.
Theorem 3.3.18. Let X and Y be Banach spaces.

(a) For 1 < p < oo, if the pair (X;¢,(Y)) has the BPBp for compact
operators, then so does (X; L,(p,Y)) for every positive measure

such that L;(u) is infinite-dimensional.

(b) If the pair (X;Y) has the BPBp for compact operators, then so
does (X; Loo(p,Y)) for every o-finite positive measure p.

(c) If the pair (X;Y’) has the BPBp for compact operators, then so
does (X;C(K,Y)) for every compact Hausdorff topological space
K.

To prove this theorem we need the following result which reminds

Lemma 3.3.2 but now for range spaces.

Lemma 3.3.19. Let X, Y be Banach spaces and let  : Rt — R* be

a function. The following are equivalent:

(i) the pair (X;Y’) has the BPBp for compact operators with the

function 7,

(ii) the pairs (X;¢2(Y)) with m € N have the BPBp for compact

operators with the function 7,
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(iii) the pair (X;co(Y')) has the BPBp for compact operators with the

function 7,

(iv) the pair (X; /. (Y")) has the BPBp for compact operators with the

function 7.

Proof. The implications (i) = (ii), (i) = (iii) and (i) = (iv) can be proved
by adapting the proof of [11, Proposition 2.4] to compact operators.
Finally, the fact that any of the assertions (ii), (iii) or (iv) implies (i) is

a consequence of Lemma 3.2.7.(b). O
We are now ready to present the proof of the theorem.

Proof of Theorem 3.3.18. (a). Fix 1 < p < oo. Suppose that the pair
(X;£4,(Y)) has the BPBp for compact operators. If L;(u) is infinite-
dimensional, Lemma 3.3.15.(a) provides a net {Qx}rea of norm-one
projections on L,(p,Y) such that {Q\f} — f in norm for every f €
L,(1,Y) and Qx(Ly(p,Y)) is isometrically isomorphic to £,(Y). By
Proposition 3.2.6, we get that the pair (X; L,(u,Y")) has the BPBp for
compact operators.

(b). Suppose that the pair (X;Y) has the BPBp for compact op-
erators. If L. (u) is finite-dimensional, the result is a consequence of
Lemma 3.3.19. Otherwise, if L. (u) is infinite-dimensional, we may
suppose that the measure p is finite by using [20, Proposition 1.6.1].
Lemma 3.3.15.(c) provides a net {Q)}rea of norm-one projections on
Loo (1, X) such that {Qxf} — f in norm for every f € Lo (1,Y) and
Qx(Loo(pt, X)) is isometrically isomorphic to £o.(Y"). Now, Lemma 3.3.19
gives that all the pairs (X, @\(Lo(t, X))) have the BPBp for compact
operators with the same function, and so the result follows again from
Proposition 3.2.6.

(c). Following step-by-step the proof of [44, Theorem 4], by using
peak partitions of unity and extending the scalar-valued case to the

vector-valued case, we may find a net {Q,} e of norm-one projections



3.3 Applications 105

on C(K,Y) such that {Q,f} — f in norm for every f € C(K,Y)
and Q»(C(K,Y)) is isometrically isomorphic to £2(Y). Now, the result

follows one more time from Lemma 3.3.19 and Proposition 3.2.6. O

In particular, Theorem 3.3.18.(c) gives that the pair (X, C(K)) has
the BPBp for compact operators for every Banach space X (see Theorem
2.1.19 and Theorem 4.1.9 for similar cases). More consequences of

Theorem 3.3.18 are the following.

Corollary 3.3.20. Let X, Y be Banach spaces, let K be a compact
Hausdorff topological space, let i be a positive measure and let v be a

o-finite positive measure.

(a) If Y has property 3, then (X; Lo(v,Y)) and (X;C(K,Y)) have
the BPBp for compact operators.

(b) If Y has the AHSP, then so do Ly (v,Y) and C(K,Y).

(c) For 1 < p < oo, if £,(Y) has the AHSP and L;(p) is infinite-
dimensional, then L,(x,Y") has the AHSP.

Proof. (a). If Y has property /3, then Example 3.1.2.(a) says that the
pair (X;Y') has the BPBp for compact operators. By items (b) and (c)
of Theorem 3.3.18 we have the result.

(b) and (c). Here we use Corollary 3.3.14 which says that a Banach
space Z has the AHSP if and only if the pair (¢;; Z) has the BPBp
for compact operators. With this in mind, both statements are direct

consequences of Theorem 3.3.18. O






Chapter 4

The BPBp for multilinear

mappings

In this chapter, we study the Bishop-Phelps-Bollobas property, the
Bishop-Phelps-Bollobés property for numerical radius and the generalized
AHSP for multilinear mappings. See Section 1.1 for multilinear and

homogeneous polynomials notations.

4.1 Extending some known results

We dedicate this section to extend some known results about norm
attaining and Bishop-Phelps-Bollobas property for operators to the
multilinear and polynomial cases. We start by defining the BPBp for
these type of functions.

Definition 4.1.1. (BPBp for multilinear mappings) Let X, ... Xy and
Y be Banach spaces. We say that (Xi,..., Xx;Y) has the Bishop-
Phelps-Bollobds property for multilinear mappings (BPBp for multilinear
mappings, for short) if given £ > 0, there exists n(e) > 0 such that
whenever A € L(Xy,...,Xy;Y) with ||A|| = 1 and (2f,...,2%) €
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Sx, X ... x Sx, satisfy
[A(Y, .2l > 1 =n(e),

there are B € L(Xy,...,Xn;Y) with |B]] = 1 and (2Y,...,2%) €
Sx, X ... x Sx, such that
1B, ....,20) =1, lléljzgjcvﬂz? —2f|| <e and |[B— Al <e (4.1)

In this case, we say that (Xi,..., Xy;Y) has the BPBp for multilinear
mappings with function e — n(e).

When it is of interest we can emphasize the degree of the multilinear
mapping by saying that (Xi,..., Xy;Y) has the BPBp for N-linear
mappings instead of the BPBp for multilinear mappings. We may also
define the BPBp for symmetric multilinear mappings when in Defini-
tion 4.1.1 we consider A and B both elements in £,(YX;Y). In this
case, we say that (Y X;Y') has the BPBp for symmetric multilinear map-
pings. When Y = K, we denote the BPBp for (X3,..., Xy;K) just by
(X1,...,Xn) and we say that (Xy,..., Xy) has the BPBp for N-linear
forms. Analogously, we define the BPBp for homogeneous polynomials

as follows.

Definition 4.1.2. (BPBp for homogeneous polynomials) Let X and Y
be Banach spaces. We say that the pair (X;Y) has the Bishop-Phelps-
Bollobas property for N-homogeneous polynomials if given € > 0, there
exists n(e) > 0 such that whenever P € P(NX;Y) with ||P|| = 1 and
xg € Sx satisfy

1Pl > 1 - (),

there are Q € P(NX;Y) with ||Q|| =1 and z; € Sx such that

Q) =1, lzr =@l <& and [|Q - Pl <e.
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It is worth to mentioning that using a routinely change of parameters
in Definitions 4.1.1 and 4.1.2, we may consider the given elements in the
unit ball of their respectively spaces instead of norm-one elements (see
Remark 3.2.1). For example, in the multilinear mapping case, we can say
that (Xi,...,Xn;Y) has the BPBp for multilinear mappings if given
e > 0, there exists n(¢) > 0 such that whenever A € L(X,..., Xy;Y)
with [|A|| < 1 and (29,...,2%) € Bx, x ... x By, satisfy

IAGY, . 23l > 1 =n(e),

there are B € L(Xy,...,XxN;Y) with |B|| = 1 and (29,...,2%) €
Sx, X ...x Sx, satisfying conditions (4.1).

Let us comment on some known results about the BPBp for those
classes of functions. It was shown in [48, Theorem 2 and Corollary 3]
that (Co(K),Co(L)) and (co, o) have the BPBp for bilinear forms in
the complex case for all locally compact Hausdorff topological spaces
K and L. On the other hand, (L;[0,1], L0, 1]) fails the BPBp for
bilinear forms [23, Theorem 3]. The pair (H, H) has the BPBp for
symmetric bilinear forms on a Hilbert space H [33, Theorem 3.2 and
Theorem 3.4]. In [6, Theorem 2.2] it was shown that if X;,..., Xy are
uniformly convex Banach spaces, then (X1, ... Xy;Y') has the BPBp for
multilinear mappings for any Banach space Y. Also, if X is a uniformly
convex Banach space then (X;Y') has the BPBp for N-homogeneous
polynomials for any Banach space Y [4, Theorem 3.1].

As we said before, we are trying to extend some known BPBp and
norm attaing operators results to the multilinear case. Nevertheless, we

already can discard some possible extensions.

o We cannot expect a BPBp version for multilinear mappings of
[12, Theorem 3] which says that if X satisfies property a then the
set NA L(VX) is dense in L(VX), since a typical example of a
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Banach space with this property is ¢; and ({1, ¢;) fails the BPBp

for bilinear forms [27, Theorem 2].

o There is no BPBp version for multilinear mappings of [2, Theorem
2.2] when we assume that the range space Y has property [ since
K satisfies property § and ({1, ¢;) fails the BPBp for bilinear forms
[27, Theorem 2.

o The same arguments of [27, Theorem 2] gives a proof that (¢, ¢;)
does not have the BPBp for symmetric bilinear forms although
the set NA L,(V¢;Y) is dense in L,(V1;Y) for every N € N and
every Banach space Y [25, Theorem 2.4(b)].

We observe also that although (¢4, ¢,) fails the BPBp for bilinear forms,
the set NA L(NV¢1;Y) is dense in L(M{1;Y) for every N € N and every Ba-
nach space Y [25, Theorem 2.4(a)]. So, analogously to the operator case,
the BPBp for multilinear mapping is not just a trivial generalization of
the norm attaining multilinear mappings denseness on £(X1,..., Xn;Y).

We start our results now. It is known that for all finite-dimensional
Banach spaces X and Y, the pair (X;Y") has the BPBp [2, Proposition
2.4]. Our first result gives the analogous version for multilinear mappings
and homogeneous polynomials and its proof is just an easy modification

of [2, Proposition 2.4] to these cases.

Proposition 4.1.3. Let X, X;,..., Xy and Y be finite dimensional

Banach spaces. Then
(i) (Xi,...,Xn;Y) has the BPBp for multilinear mappings,
(i) (VX;Y) has the BPBp for symmetric multilinear mappings and
(iii) (X;Y) has the BPBp for N-homogeneous polynomials.

The next result concerns stability of the BPBp for multilinear map-

pings. In [8, Proposition 3.1] and [42, Proposition 2.1] it was proved
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that if X is a Banach space and N € N is a natural number, then the set
NAL(VX;Y) is dense in L(NX;Y) whenever the set NA L(VT1X;Y) is
dense in L(MT1X:Y). In the next proposition we show that the analogous

result for the Bishop-Phelps-Bollobas property holds as well.

Proposition 4.1.4. Let X;,... Xy, Xyy1 and Y be Banach spaces. If
(X1,..., Xn, Xyi1;Y) has the BPBp for (N + 1)-linear mappings, then
(X1,..., Xn;Y) has the BPBp for N-linear mappings.

Proof. Let € € (0,1) be given. Let n(e) > 0 be the BPBp constant for
(Xl, Ceey XN,XN+1;Y). Let A € ,C(Xl, C ,XN,XN+1;Y) with ||A|| =1

and (29,...,2%) € Sx, x ... x Sx, be such that

g
1AGS, ... %) > 1 -7 (2) .

Let %4 € Sxy,, and take xy, € Sx; , to be such that T (@) =
1. Define A: X7 x ... x Xy X Xyy1 — Y by

A('Th <oy Ty xN—‘rl) = x7V+1(xN+1>A(xl7 s JIN)

for every (z1,...,zn,2n41) € X7 X ... X Xy X Xny1. Then ||f~1H <1
and

~ €
At o)l > 1= (5)-

Then there are B € L(VT1X,,..., Xy, Xy41;Y) with |B|| = 1 and

(27,..., 2%, 28 11) € Sx, X ... x Sx, X Sx,,, such that
1B(0, ..., 2%, 2%, )l =1, max 2% —2% < S and |A—- B < =
1 » Ny “N+1 ’ 1<j<N+1 J J 2 2
In particular, |29 — 2%|| < e for all j =1,...,N. Since | B — A < &, it

follows that %, (2% 1) # 0 since

€
|I*N+1(Z?V+1)| = |$7\/+1($?\/+1)| - ||x?v+1||||z?v+1 - x9v+1|| >1- B > 0.
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Now we define C': X7 x ... x Xy — Y by

1 N
C<x1a"'7xN) ::*7‘8(‘7;17"'71']\/’20 )
xN+1(Z?v+1) N

for all (z1,...,zn) € X1 X ... X Xy. Is is not difficult to prove that

IC]| = |C(2%,...,2%)] and that ||C' — A|| < e. To finish the proof, we
put B := TeT Therefore,

1Bl =B (21,...,2%)|| = 1, IB-A|| < 2 and lrgj%“zg—xgn <e O

We observe that the converse of Proposition 4.1.4 is no longer true by
using again [27, Theorem 1]. Now we observe that, since there is a natural
(isometric) identification between the Banach spaces L(V X7, ..., Xx;Y)
and L(°Xq, ..., Xp; LV Xpy1, ..., XN Y)), we have the following re-

sult.

Proposition 4.1.5. Suppose that X;,..., Xy and Y are Banach spaces.
If the pair (Xi,..., Xn; Y) has the BPBp for N-linear mappings, then
the pair (X1,..., X3 LV % Xy11, ..., Xn;Y)) has the BPBp for k-linear

mappings.

We observe that the converse of Proposition 4.1.5 is not true in
general. If it were true, then it would hold for N = 2, k¥ = 1 and
Y = K. But this would imply that if the pair (X;Y™*) has the BPBp for
operators then (X,Y") has the BPBp for bilinear forms which is false in
general. For this, we take again X =Y = /; and use [2, Theorem 4.1]
which gives that the pair ({1, {,,) has the BPBp for operators and [27,
Theorem 1] which shows that (¢4, ¢;) fails the BPBp for bilinear forms.
However, we have the following result which is the multilinear version of
[6, Proposition 2.4] or [28, Theorem 1.1].

Proposition 4.1.6. Suppose that X;,..., Xy are Banach spaces and
let Xy be uniformly convex. Then (Xi,...,Xy) has the BPBp for
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N-linear forms if and only if (Xi,..., Xy_1; X}) has the BPBp for
(N — 1)-linear mappings.

Proof. If (X1,...,Xy) has the BPBp for N-linear mappings, then
(X1,..., Xn_1; X}) has the BPBp for (N — 1)-linear mappings by using
Proposition 4.1.5 with k = N —1 and Y = K. Now let € € (0,1) and
N € N be given. Assume that (Xi,..., Xy_1; X}) has the BPBp for
(N — 1)-linear mappings with function n(¢) > 0 and consider dx, (¢) > 0
the modulus of convexity of the space Xy. We take £ > 0 satisfying that

§ < N§ < min {5XN2(€),6} and 77/(§) := min {5)(]5(5)777(5)} :

Let A € L(Xy,...,Xy) with ||A|| = 1and (29,...,2%) € Sx, X...xSx,
be such that
Re A(2Y,...,2%) > 1—17/().

Deﬁneﬁ:Xlx...xXN_1—>Xj§,by

A(l‘l, Ce ,ZEN_l)(J?N) = A(l’l, Ce ,ZEN_l,l‘N)

for all (z1,...,2zny-1) € X1 X ... X Xy_1 and zy € Xy. Then ||/~l|| =
|A|| =1 and

1A, . el > Re A(af, . alk_y ) > 1—7/(€).

So, there are B € L(X1, ..., Xy_1; X%) with [|B]| = 1 and (22,...,2%_))
€ Sx, X ...x Sx,_, such that

IBGS o Rl =1, max (120 —af <€ <= and |B-A] <€

Since X is reflexive, there is 2% € Sy, such that

Re B(2},..., 2y 1) (%) = [B(1, .., 2 )l = 1.
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We will prove that ||2% — 2%/|| < e. Indeed, since

ReA(2},... 2 1)(a}) = Re B}, 2 1) (a}) <€

then
Re B(:0, ., 2_)(a) > Re AL, .., 28,)(ad) — &
N-1
> Re A2, 23, ..., 2%, 2%) — Z ||:1c9 — z;)|| —&>1—0x,(e).

j=1

This implies that

% + 2% 1 Sxy (€)
2 2

and then [|z8 — 2%/]| < e. Now defining B : X; X ... x Xy — K by

B(xq,...,xy) = B(z1,...,zx_1)(zN)
for all (x1,...,zn_1,2n5) € X1 X ... X Xn_1 X Xy, we have that
HB(z?,...,Z?V)H —=ReB(2°,...,2% (X)) =1
as well as

0_ .0 P_q
lléljc“gji\f”zj —zjll<e and [[B-Al <[[B-Al<¢<e.

This shows that (X1,..., Xy) has the BPBp for N-linear forms. O

In the next result we prove that we may pass from the vector-valued

to the scalar-valued case in the BPBp for multilinear mappings.

Proposition 4.1.7. Suppose that X7, ..., Xy and Y are Banach spaces.
If (X4, ..., Xn; Y) has the BPBp for multilinear mappings, then (X, . ..,
Xn) has the BPBp for multilinear forms.
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Proof. Let ¢ € (0,1) be given and consider n(¢) > 0 be the BPBp
constant for (Xy,...,Xn; V). Let A € L(Xy,...,Xy) with ||A]] =1
and (z9,...,2%) € Sx, X ... X Sx, be such that

2
Re A(z),...,2%) > 1—7)(16>.

Define A: X; x ... x Xy — Y by

A(xla"'axN) = A(xla'-'axN)yO

for some yo € Sy and for every (z1,...,2y5) € X1 X ... X Xy. Then
|A[l = [|A]| = 1 and

2
A, 2 >1—-n(=].
|| (Il’ 7$N)|| n 16

Then there are B € £(Xy,...,Xy;Y) with ||B|| =1 and (20,...,2%) €
Sx, X ... x Sx, such that

2 2

B( .0 0N — 0_ .0 & B_Ale &
|B(z1,...,25)] =1, 1%?](\]”2]» x| < 6 <¢ and ||B— Al < T

Let yi € Sy~ be such that
Reys(B(21, ..., 2y)) = [I1B(1,-.., 2n)ll = 1.

Define B := yioB € L(X1,...,Xy). Then ||B|| < Land |B (29,...,2%)]
=1. So ||B|| = 1 and B attains its norm at (z},...,2%) which is close

to (29,...,2%). It remains to prove that B is close to A. Indeed, first
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we note that

Re(1 — y5(y0)) < Re(l = y5(y0) A1, - - 21))
= Re(yé(é( (1)’ cee 72?\7)) - A(Z?v ceey Z?V)yO)
82

<||B-A| < =.
| | 16

So, we have a complex number a := y;(yo) such that |a|] < 1 and
Re(l—a)=1—Rea < %. This implies that (Rea)? 4+ (Ima)? < 1 and
then

2 2

(na)? < 1- (Rea)? = (1 + Rea)(l ~ Rea) <2- = = =

By this, we get that

g2 ez ¢
1 —a|l = \/(I—Re)2+(1ma)2 < (16) +§ <3

So |1 —y5(yo)| < 5 and then

IB—=All <llygoB—yso Al +[lygoA— A

~ . e? ¢
<|B-Al+ 1 =ywo)l < = +3 <e O

16 2
It is clear that the converse of the previous proposition is false
because of Lindenstrauss’ counterexample for the Bishop-Phelps theorem
for operators. Nevertheless, we have the following consequence by using

[4, Proposition 3.3].

Corollary 4.1.8. Let Xi,..., Xy and Y be Banach spaces. Assume
that Y has property 8. The N-tuple (X, ..., Xx) has the BPBp for mul-
tilinear forms if and only if (X7, ..., Xy;Y') has the BPBp for multilinear

mappings.
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Proof. By [4, Proposition 3.3], if (X, ..., Xx) has the BPBp for multi-
linear forms and Y has property [, then (Xi,..., Xx;Y) has the BPBp
for multilinear mappings. Now we apply Proposition 4.1.7 to finish the
proof. O

It was proved in Section 3.3 that if the pair (X;Y’) has the BPBp for
compact operators, then the pair (X; C(K,Y’)) has the same property for
every compact Hausdorff topological space K (see Theorem 3.3.18.(c)).
In particular, (X; C'(K)) has the BPBp for compact operators. Analogous
to the operator case, we say that (Xi,...,Xy;Y) has the BPBp for
compact multilinear mappings when in Definition 4.1.1 we consider A and
B as compact multilinear mappings. We already have some examples of

this property:

« adapting [4, Proposition 3.3], if N-tuple (X3,...,Xy) has the
BPBp for multilinear forms, then (Xj,..., Xy;Y) has the BPBp

for compact multilinear mappings whenever Y has property [;

e when we assume that Xy,..., Xy are uniformly convex Banach
spaces, we can adapt [6, Theorem 2.2] to get that (X1,..., Xy;Y)
has the BPBp for compact multilinear mappings for all Banach
space Y.

In [3, Theorem 4.2] it was proved that the pair (X;Y’) has the BPBp
for compact operators for any Banach space X and for a predual of an
Ly-space Y. We will prove the analogous result for multilinear mappings.
To do so, we will use the fact that preduals of Lq-spaces have a strong

form of the metric approximation property.

Theorem 4.1.9. Let X;,..., Xy be Banach spaces and let Y be a
predual of an Lj-space. Suppose that the N-tuple (Xi,..., Xy) has
the BPBp for multilinear forms. Then the pair (X7,..., Xx;Y) has the
BPBp for compact multilinear mappings. More precisely, given ¢ € (0, 1),
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there exists n(e) > 0 such that whenever A € IC(X,..., Xy;Y) with
Al =1 and (29,...,2%) € Sx, x ... x Sx,, satisfy

1A, ., 2l > 1= n(e),

there are B € K(Xy,...,Xy;Y) with |B|| = 1 and (29,...,2%) €
Sx, X ...x Sx, such that dim(B(X; x ... x Xy)) < o0
0 0\ — _ 0
1B 2R =1, s [ = ol < & and 1B = A] <=
Proof. Suppose that (X, ..., Xy) has the BPBp for multilinear forms.
Let ¢ € (0,1) and m € N. By using an adaptation of the compact
case of [4, Proposition 3.3], we have that (Xi,..., Xyn;¢7) has the

BPBp for compact multilinear mappings with some n(e) > 0. Let
AeK(Xy,...,Xy;Y) with [JA| = Land (29,...,2%) € Sx, X...xSx,

be such that )
Al . 2 >1== (5) .
” (ZE17 JxN)H 47] 2

By the observation just before the start of this theorem, Y has the metric
approximation property and therefore there exists a finite rank operator
F:Y — Y with ||F|| < 1 such that, for all y € A(Bx, X ... X Bx,) C
A(Bx, X ...x Bx,), we have that

17G) ol <min {30 (5)}

Then ||[FA| # 0 and we may define A" :=
K(X1,...,Xn;Y) with ||A'|| = 1. Moreover,

”FAHFA Thus A" €

|A" = All = Al S[I=[[FAJ[[+[[FA= Al < 2| FA - AH<*

H IFAL
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and

|A' (25, ... 2y IFAY, ... 2)]

>
> [A(f, ... 2R - |[FA - A

1 €
> 1—=n(=].
2"(2)

Since dim(A’(X; X ... x Xy)) < 0o, there is k € N such that for every
(331,...,1‘]\[) e X1 x...x Xy,

k
Al(zy, ..., xN) :ZAi(xl,...,xN)yi
i=1
for some A; € K(Xy,...,Xn)\ {0} and y; € By fori=1,..., k. We set
M :=max {||2?]| : j=1,..., N} and we choose a such that

7

. 1 € 1
0<a<min{ g (5) gt
By [51, Theorem 3.1], there are a natural number m € N and a
subspace E of Y which is linearly isometric to 7 such that d(y, F) < «
for every y € By N A'(X; x ... x Xy). In particular, for : = 1,... k,

there is e; € F such that |le; — y;|| < a. Define C' € K(Xy,...,Xn; E)

to be such that
k
C(mlw . ,ZBN) = ZAZ'(:EIV . 7xN>ei

=1

for every (z1,...,2y5) € X; X ... x Xy. Then ||C — A'|| < kM. This
implies that 0 < 1 — kMa < ||C]] < 1+ kMa. Moreover,

IC@Y, ..., af)ll > A @Y, 2yl = 10— 4]

1 €
1—=n(2) = kMa.
- 4”(2) “
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and then
C 1-1n(5) - kMa
Mww>@3“ﬁw > e
1—*77() €
> 1+4n(2)>1—n<2).

Since F is isometric to 7, we have that (Xi,..., Xx; E) has the BPBp
for compact multilinear mappings with the function n and so there
are B € L(Xy,...,XnE) C K(Xq,...,XN;Y) with ||B]] = 1 and

(29,...,2%) € Sx, X ... x Sy, such that
9
IBGR R =1 g 18—l < < ana |- ] <

Since dim(B(X; x...x Xy)) < 0o, it remains to prove that |B—A|| < e.

This is true since

15— 4 —OWWC—AWWA—AH

<

H ||C||H HHCH
— +2EM — .

< 2+ k a+4<5

This shows that (X,..., Xy;Y) has the BPBp for compact multilinear
mappings. ]

It is known that the pair (Cy(L), Co(K')) has the BPBp for bilinear
forms in the complex case [50, Theorem 2] and (L;(u), ¢o) has the BPBp
for bilinear forms [4, Corollary 2.7(2)]. Also, [6, Theorem 2.2] shows
that (X3, X2) has the same property whenever X; and X, are uniformly

convex spaces. Hence, we deduce the following corollary.

Corollary 4.1.10. For a predual Y of an L;-space, (X, Z;Y) has the

BPBp for compact bilinear mappings in the following cases.

(a) For the complex Banach spaces X = Cy(L) and Z = Cy(K') where

L and K are locally compact topological Hausdorff spaces.
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(b) For X = Ly(p) and Z = ¢.
(¢) For X and Z uniformly convex Banach spaces.

Adapting Theorem 4.1.9 we can prove the analogous result for com-
pact symmetric multilinear mappings and for compact N-homogeneous

polynomials.

4.2 The generalized AHSP for bilinear

forms

In this section we study the generalized approximate hyperplane
series property for bilinear forms which was motivated by the AHSP and
the generalized AHSP (see [2] and [50]). The AHSP appears for the first
time in [2] where the authors were interested to characterize the pairs
(¢1;Y) to have the BPBp for operators. We recall its definition.

Definition 4.2.1 (AHSP). A Banach space X is said to have the ap-
proximate hyperplane series property (AHSP, for short) if for every ¢ > 0,
there exists 0 < 7(e) < e such that for every sequence (xy)r C Sx and

every convex series > o, o with

00
Z AL

k=1

>1—n

there are subsets A C N and {z; : k € A}, and z* € Sy satisfying
(1) Cheaow >1—m,
(2) |lzx — x| < e forall k € A,

(3) z*(z) =1 for all k € A.
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They showed that the pair (¢1;Y") has the BPBp for operators if and
only if the Banach space Y has the AHSP [2, Theorem 4.1]. On the
other hand, Kim, Lee and Martin defined the generalized AHSP (see [50,
Definition 4]) and they also use this property to characterize the pair
(¢1(X);Y) to have the BPBp for operators.

Definition 4.2.2 (generalized AHSP). A pair of Banach spaces (X;Y)
is said to have the generalized AHSP if for every ¢ > 0 there exists
0 < n(e) < e such that given sequences (1), C L(X;Y) with ||T;|| =1

for every k, (zx)r C Sx and a convex series Y32, ay such that

i o Ty ()

k=1

>1—n(e),

there exit a subset A € N, y* € Sy~ and sequences (Sk)r C L(X;Y)
with ||Sk|| = 1 for every k, (zx)r C Sx satisfying

(1) Zk‘eAak > 1 — €&,
(2) ||z — xk|| < e and ||Sp — Tx|| < € for all k € A, and
(3) y*(Sk(xx)) =1 for every k € A.

Based on Definitions 4.2.1 and 4.2.2, we study the analogous property
for bilinear forms. Note that, although there are no bilinear forms in
this definition, we put its name as generalized AHSP for bilinear forms
since it implies the BPBp for bilinear forms for the pair (¢1(X),Y).

Definition 4.2.3 (generalized AHSP for bilinear forms). Let X and
Y be Banach spaces. We say that the pair (X,Y’) has the generalized
approzimate hyperplane series property for bilinear forms (generalized
AHSP for bilinear forms, for short) if for every € > 0, thereis 0 < n(¢) < ¢

such that for given sequences (T})r C Sgx,v+) and (x)r C Sx, an
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element y, € Sy and a convex series Y ;2 ; oy with

Re > anTi(en) o) > 1 — n(e).

k=1

there are uy € Sy, a subset A C N and sequences (Sk), C L£(X;Y™) with
|Sk|| = 1 for every k and (z), C Sx satisfying

(1) Ypeaar >1—c¢,

(2) |lzx — x| < e and ||Sy — Ty|| < € for all k € A,
(3) lluo — ol < e and

(4) Sk(zk)(up) =1 for all k € A.

As the first result in this section, we observe that the pair (X,Y’) has
the generalized AHSP for bilinear forms whenever X and Y are finite
dimensional Banach spaces. To do so, we will use the following lemma

which is proved in [2].

Lemma 4.2.4. [2, Lemma 3.3] Let {c,} be a sequence of scalars with
lcn| < 1 for every n € N and let >0, oy, be a convex series such that
Re> >, ayc, > 1 —n for some 1 > 0. Then for every 0 < r < 1, the set
A :={i € N:Rec¢; > r} satisfies the estimate

icA L—r
Proposition 4.2.5. For all finite dimensional Banach spaces X and Y,
the pair (X,Y") has the generalized AHSP for bilinear forms.

Proof. For arbitrary ¢ > 0, we first prove that there exists a positive
real number 7(¢) > 0 satisfying the following. For each yo € Sy, there is
ug € Sy with [Jug — || < e such that whenever (z,7T) € Sx x Sg(x;v+)
satisfies

ReT'(z)(yo) > 1 —n(e),
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there exists (2,5) € Sx x Sg(x,y+) with
S(z)(uwg) =1 and ||S—=T| <e and |z—z|<e.

Indeed, otherwise, we can choose some €3 > 0 such that for each
n € N, there is y, € Sy in such way that for each u € Sy with
| — yn|| < €0, there exists (z, T1) € Sx X Sgix,y+) with

1
Re T2(a2) () > 1 -
such that if (2,5) € Sx x Sg(x,y~) satisfies S(z)(u) = 1 then
max{||S = T||, ||z — 2]} = <o.

Since Y is finite dimensional, we assume that y, converges to 1y, € Sy
and ||y, — Yool < € for each n. Using compactness again, we may
assume that (z¥=, TY>) converges to (oo, To) € Sx X Sg(x;v+). Then

Too(ZToo)(Yoo) = 1 and this gives a contradiction since we would have that
max{|[ T3> = T, [[43 = woo|} = €0

Now we are ready to prove the result. Let ¢ € (0,1) and consider
0 < n(e) < € as above. Let sequences (Tj)r C Sg(x;y+) and (xx)r C Sx,

a convex series Y 72, o and an element y, € Sy be such that

Re > axTi(zr)(yo) > 1 — (n(e))”.
k=1
Let A:={k € N:ReTk(zx)(yo) > 1 —n(e)}. By Lemma 4.2.4, we get
that

ZOék>1—€.

keA
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Also, there are uy € Sy and for each k € A, (2, 5;) € Sx X Sgxv+)
satisfying that

Se(zr)(wo) =1, luo—woll <&, ||zx—zi| <e and [|Sy — Tk <e.

for all k € A. This shows that the pair (X,Y") has the generalized AHSP

for bilinear forms. O

As we mentioned before it is easy to see that if the pair (X, Y') has the
generalized AHSP for bilinear forms, then it has the BPBp for bilinear
forms. In the following proposition we prove the converse when the range

space is a Hilbert space.

Proposition 4.2.6. Let X be a Banach space and let H be a Hilbert
space. The pair (X, H) has the BPBp for bilinear forms if and only if
the pair (X, H) has the generalized AHSP.

Proof. Assume that the pair (X, H) has the BPBp for bilinear forms
with function 7n(-). Note that since H is a Hilbert space, there exists a
function £(-) > 0 satisfying that lim; 0 £(¢) = 0 and that for every € > 0
and points hy, he € Sy with ||hy — he|| < €, there exits a linear isometry
R : H — H such that

R(hl) :h2 and ||R—IdH|| <f(€).
Fix € > 0 and choose €' > 0 so that
2(n(e) +3e)+ ' +&(€) < e

Consider sequences (T;)r C Sg(x;a+) and (xx), C Sx, an element hg €

Sy and a convex series ) 0° ; o, such that

Re fj e Ty(z) (ho) > 1 — (n(€")? .

n=1
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By Lemma 4.2.4 we get that

apg>1-n(E)>1-¢

keA
where A := {k € N: ReTi(xr)(yo) > 1—n(e')}. For each k € A, we
define a bilinear form By on X x H by By(x,h) := Ty(z)(h) for all
(x,h) € X x H. Then ||Bg|| = ||Tk|]| = 1 for all k € A and

Re Bi(xk, ho) = Re Ty.(xx)(ho) > 1 —n(€'),

for every k € A. From the assumption, there are a bilinear form C}, and
(zg,ur) € Sx x Sp such that |Ck(zx,ur)| = 1 = ||Ckll, |z — zx|| < €,
|lur — hol| < € and ||Cy — By|| < € for all k € A.

Now choose a scalar ¢, with |¢;| = 1, such that ¢,Cy(zx,ux) = 1.
Then,

11— ¢l < \/2(1 —Recq) = \/2(1 — Re Cy(zk, ug))
< \/2(’1 — ReBk(xk, ho)’ + | ReBk(xk, ho)—
Re Bi(zk, ug)| + | Re Bi(2k, ug)—

Re Ck(zx, ur)|) < v/2(n(e’) + 3¢')

For each k € A, there exits a linear isometry Ry : H — H such that

Rk(ho) =, and HRk — [dHH < 5(8/).

Define Sy € L(X; H*) by Sk(z)(h) := cxCi(x, Rg(h)) for every z € X
and h € H. Then

1Sk — Tl < \/2(n(e') +3¢') + &' +£(") < e and ||Sk|| = Sk(zk)(ho) =1

for every k € A. m
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We now show that the generalized AHSP for bilinear forms charac-
terizes the pair (¢1(X),Y’) to have the BPBp for bilinear forms. This is

the analogous version of [50, Theorem 6.

Theorem 4.2.7. Let X and Y be Banach spaces. The pair (X,Y) has
the generalized AHSP for bilinear forms if and only if the pair (¢1(X),Y)
has the BPBp for bilinear forms.

Proof. The proof will be given for complex Banach spaces since the real
case is not only similar but also simpler.

Let ¢ € (0,1) be given. Suppose that the pair (X,Y) has the
generalized AHSP for bilinear forms with 0 < n(e) < . Let B be
a bilinear form defined on ¢;(X) x Y with ||B]| = 1 and (zo,%0) €
Se,(x) X Sy satisfying

|B(z0,90)] >1—1n (;) :

Let a« € C with |a] = 1 be such that aB(zo,y) = B(zo,ays) =
| B(zo,v0)|. Define T': ¢1(X) — Y* by

T(x)(y) == B(z,y) (re€lf(X)andyeY).

Then ||T']| = ||B]| = 1. We denote by T}, the restriction of T" to the k-th
coordinate X of ¢1(X). Then, we see that T'(x) = > ey Tk (zx) for every
z = () € £1(X). Since zg € Sy, (x), we may write o = (qz}), with
SR, ar=1,a; > 0and z) € Sy for all k£ € N. Then

S ali@(am) = a3 Tl

) = OZT:(%)(?JO)

€
= aB(wo,y) = |B(xo,y0)| > 1—1n <3> .

Then there are uy € Sy, a set A C N and sequences (Si)r C Sz(x,v+)
and (z)r C Sx such that
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(1) Cpeaar >1-7%,

(2) |lzw — 23|l < § and || Sy — Tp|| < § for all k € A,
(3) lluo —ayoll < § <e,

(4) Sk(zr)(up) = 1 for all k € A.

Define S : £;(X) — Y™ by

keA keN\A
Then [|S]| = 1. Define now a bilinear form C on ¢1(X) xY by C(x,y) :=

S(x)(y) for all (x,y) € £,(X) x Y. So, we have that ||C| = ||S|| =1 and
|C' — BJ| <e. Let

677

D ke O

B for k€ A and [ = 0 otherwise.

We define zo := (By2i)x € 1(X) where 25, = 2 for all k € N\ A. Then
l|20l1 = X pea Bx = 1 and

20 = molls = 3 ||Bezk — cwal| + D llewad)|
keA kEN\A

a

dojeA O

2 — 2kl + Z oz — apal| + Z ay,

keA kEA kEN\A

e (@)
Zak—i-* < €.
keA 3

(1),(2) €
< 1- Z ap + =
keA 3
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By using (3), we get that ||a " ug — yoll1 = |Juo — agolls < €. Finally,

1> [C(z0, 07 ug)| = |S(20)(u0)| = ZASk(ﬁkzk)(Uo)
= > BeSk(zi)(uo)
keA
= Y B =1
=y

So ||C|| = |C(z0, @ up)| = 1 and this proves that the pair (/1(X),Y)
has the BPBp for bilinear forms.

Now we assume that the pair (¢1(X),Y’) has the BPBp for bilinear
forms with some function n(¢) > 0 and we assume that 7(¢) < ¢ for a
given € > 0. Let £(¢) > 0 be such that

f()+w<8 and &(e +\/2 ) +3&(g)) < e. (4.2)

Consider sequences (1), € L(X;Y™*) with ||[T}|| = 1 for all £ € N and
(z), C Sx, a convex series 352 a; and an element yo € Sy to be such
that

Re > arTi(al) (o) > 1 - n(€(e).

k=1
Define B a bilinear form on ¢1(X) x Y by

=S T ((#)e) = 9) € 600 x V).

Then || B|| = ||T}|| = 1. Putting xo := (oa)) € Sp,(x), we have
Re B(0,y0) = Re 3 Ty () (o) > 1 = n(&(e))-
k=1

Since (¢1(X),Y") has the BPBp for bilinear forms, there are a bilinear form
C on (1(X) x Y and (20, u0) € Sy, (x) X Sy such that |C' (20, up) | =1=
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IC1], 20 = woll < £(e) <&, luo—woll < &(e) <eand [C=B| < £(e) <e
Let a € C with |a] = 1 be such that aC(zg,up) = C(z9, aug) = 1. Note
that we have

ReC(z0,u0) > ReB(xo,y0) = IC = Bl = [lz0 = 2ol| = [luo — woll
> 1 =n(&(e)) = 3E(e).

Since |a| = 1, we see that

[1—a] = /(1 = Rea)? + Ima? = /2(1 — Rea) = /2(1 — Re C(20, uo)).

From the last inequality, we conclude that

(42)
lyo — o] < llyo — uoll +[1 — o < &(€) +/2(n(E(e)) +3¢(e)) < e.

To find the desired set A, we write 2o = (2))r € S, (x) and consider the
set A:={k € N: |22 =0}. First we note that

§(€) > llwo — zolly = >_ lloway — 211 > D o, (4.3)

keN kEZ

and also that

B B 20— |22l 2
lzo =20, > Y [lewal — R = D o o
KeEN\A KeN\A o [z
20 20 20 20
> Z~<“’“ N )
keN\A k k k k
Observe that for kGN\fl
| I ’_| e ||| o — E I H
ETTE v ar | 2]l
‘ o =l =
~
ar 12l

So
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o =zl 2
Z oy k <||wo — 201 + Z ay ||z, — o
keN\A H k” KEN\A a |zl
=||zo — 20||1 + Z Hakxz — z,gH
keN\A

<2le0 — 20, < 26(e).

Define A := {kEN:

0
7 — ﬁ <e, |22 # 0}. We see that

0 U

Zak x%—‘} Z ay ||z — ‘
o ET] Ay E]
> > ap (44)
ke(N\A)\A
Since
1:Zak:Zak+ Z ak+2ak
keN keA ke(N\A)\ A keA
we get that
(4.3)
Zakzl—Zak— Z o > 1—5(6)— Z g
keA keA ke(N\A)\A ke(N\A)\A
(4.4) 2¢(e
> 1-£(e) - €< )
(4.2)
> 1—c.

Now we define S : £1(X) — Y* by S(z)(y) := C(x,y) for all x € ¢;(X)
and y € Y and let Sy be the restriction of S to the k-th coordinate X of
¢1(X). Then, we have that || Sy — Tx|| < ||C — B|| < € and

i Se(2)) () = C(z0, aug) = aC(zg, up) = |C(20,ug)| = 1.

k=1
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Since 1 = ||z0]l1 = 22, |22, we get that Si(22)(aug) = ||z0]| for all
k € N. Therefore, for every k € A, we see that S, (”z§”> (aug) =1
k

which implies ||Sg|]| = 1. The proof ends if we choose the set A, the
sequences (Sk)r C L(X;Y™) which satisfies || Sg|| = 1 for all £ € N and

(zk)k := < % )k C Sy and the element aug € Sy. O

B4

4.3 The numerical radius on £(" Ly(u); L1(p))

Consider the set IIy(X) of all elements (z1,..., 2N, z*) in S¥ X Sx-
such that z*(z;) = ... = z*(xy) = 1. When N = 1, we denote
I1;(X) just by II(X). The numerical radius of an N -linear mapping
A€ LIVX; X) is the number

v(A) == sup {|z*(A(xy,...,zNn))| : (x1,..., 2N, 27) € TIN(X)}.

As in the operator case, we have that v is a semi-norm on £(VX; X)
such that v(A) < ||A| for all A € L(VX;X). On the other hand, the
equality is not true in general. Nevertheless, in [25, Theorem 3.1(i) and
Theorem 3.2] it was proved that v(A) = || A for every A € L(Ney; ¢o) or
A€ LNy 0y). Also in [24, Theorem 3.2] it was proved that v(L) = ||L]|
for every L € L(NAp; Ap) where Ap is the disc algebra. In this section
we prove the same result but now on L;(u)-spaces. In what follows,

(x,z*) means the action z*(x) for x € X and z* € X*.

Theorem 4.3.1. Let p be an arbitrary measure. For each positive
integer N and each A € L(NVLy(u); Li(11)), we have v(A) = || 4]|.

Proof. Since v(A) < ||A|l, we need to prove the another inequality.
Without loss of generality, suppose that ||A|| = 1 and we prove that
v(A) > 1 — ¢ for any fixed € > 0. Choose fi,..., fx € Si,(u) such that

3

||A(f17”'afN)“1>1_§~ (45)
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Consider

O = (L_J{te@ : |fi(t)|>0}>u{teQ CA(fL, - ) ()] > 0}

Since given f € Li(u) and r > 0 the set {t € Q : |f(¢)] > r}isa
measurable set of finite measure, there exists a sequence (2 ) of pairwise
disjoint measurable sets having finite measure such that " = ;2 Q.
For a finite partition 7 C ¥ of {4 let us denote by E, : Ly(u) — Li(p)

the contractive projection given by

B0 = X (g Jo ) e (7 € 1)

Fenm

Fixed k, since 4 has finite measure, we can apply [29, Lemma II1.2.1,
pg. 67] to the finite measurable subset Qy, fixq, and A(f1,..., fx)Xxa,
to find a finite partition m of €2, such that

9
1En S5 = fixawll < PN

and that

€
||E7FkA(f17 s 7fN) - A(fla v 7fN)XQk||1 < mv
for every k. Now we take

r=m={F :ieN}Cx
k=1

We have that 7 is a countable family of measurable sets with finite

measure that is a partition of {2'. We define E, : Ly(u) — L1(p) by

Bof) = Y Bnlf) (7 € Law)
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and then we have that E, is a contractive projection such that

> €

IExf; — filly < kz::l 1B fi = fixaulh < SN 1)’ (4.6)
for j =1,..., N. Analogously,

€
E A(f1,..., —A(f1,..., < . 4.7
AU oo ) = Al PO < ey (@)

We claim that we have the following inequality

”Eﬂ’A(Eﬂfl?"'aEﬂ'fN)”l >1—e (48)

Indeed, note first that since A is N-linear mapping, we have

A(Eﬂ—fl, .. .EﬁfN> - A(fl, .. wa) - A(Eﬂfl - f17 . .,EﬂfN)‘i‘
A(fr, Exfa = fos oo  Exfn) + ...
+A(f1a s 7fn—1aE7rfn - fn)7

which shows that

N
VA(Exf1, .. Exfn) — A(fr, - I < Do NEf; — fillh
=1
£
< Nm
Since ||Eq|| <1,
1B AEnf - Bef) = B Al Pl < N - g

On the other hand, by using (4.7) and (4.5), we get that

[E=ACf - Sl > [TAGR - f)lh =

€

2(N +1)

2 2(N+1)
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So

[ExAEx frs - o B fn)lln 2N E- A - fn)lh=

B A(Es fi, . Exfn) — ExA(frs- s £l
e £ £

—f__f N __q_.

ST T (N1 (N + 1) c

Recall that m = {F; : i € N} C ¥. Foreach j =1,..., N, we put

. 1 ' .
Eﬂfj:Zaf-#(Fi>XFi with afz/Fifjdu.

i

By using (4.6),

L= s < IEfilh = [ |Befildu= [ |5 d
—/ZWI S
=Yl <1

Hence, from (4.8) we have that
1
E A a; X sy alY X Z)
<Z " Z w(E) ),
1 1
1 N
= a, - a Er Al ———=Xp, . — o XF )
R (st iy o 1

1 1
< |a1]---|aN| EWA<XF7"-7XF >
ll,,_%;veN b N p(E,) T (B )

1
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and so we conclude that there exist [y, ...,y € N such that

1 1
EAl—xp., s ———X )
‘ (M(Fh) i pu(Fry ) i

Now we write

1

1 1
ET(A — = XF. -y o XF >: i———<XF;»
<M<Fh> e ) i | T 2y
where

1 1
= Al ——xp e, ——— du.
(mm’“’” u(ﬂm”w) s

Define on Ly (i) the element

9= ciXr, where |¢;] = 1, ¢a; = |a,| for all i € N.
Then ||g|lcc = 1, we note that for all j =1,..., N, we have that

aj _/ q du = 1 /[ ]2d =1
M(F}j)XFlj’g - Q,U/(F}J.)XFlj g M_N(E]) QXFZJ' on =

and also since

Cly Cly
E.Al L, ,
< (u(Fh)XF“ u(FzN)XFlN> g>

)
1

1 1
=B Al ———xp ..., ———
(mﬂl)’ml u(FmXFlN)
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we have that

Cl, Cly
E A —2 g ..., —X ,
|< (uml)’ml u(FzN)XFlN> g>

Finally, we consider the adjoint operator E¥ : Lo(p) — Loo(pt). Then
|E%(g)]|oo < 1. Also for all j =1,...,N,

iy 220) = (B (iym, ) -9) = (giyon o) =
u(E) M B NI BN ) )T ) e
and
Ccr, Cln
Al =y, — JEX(g) )| =
|< (mmm u(ﬂm”‘”w) (g>>‘
Cl, Cly
B AL " :
‘< (mﬂl)“ﬁ MN)XFZN) g>

Then v(A) > 1 — e. This completes the proof. ]

(4.9)
> 1—c.

>1—c.

4.4 The BPBp-nu for multilinear mappings

In this section we study the Bishop-Phelps-Bollobas property for
numerical radius in the multilinear case (for the operator case, see its
definition at the beginning of Section 2.3). We define this property as

follows.

Definition 4.4.1. We say that a Banach space X has the Bishop-
Phelps-Bollobds property for numerical radius for multilinear mappings
(BPBp-nu for multilinear mappings, for short) if for every e > 0, there
exists n(e) > 0 such that whenever A € L(VX; X) with v(A) = 1 and
(29, ..., 2%, 28) € IIx(X) satisfy

|25 (A(aY, ... a))| > 1 —nle),
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there are B € L(VX; X) with v(B) = 1 and (29,...,2%, 2) € IIy(X)
such that

(2) max |z} — 2]l <,

(3) =5 — a5l <&,
(4) |B— Al <e.

If N =1, then we go back to the operator case. In [47, Proposition
2] it was proved that X has the BPBp-nu when dim(X) < co. We have
the analogous version for multilinear mappings. Its proof is an easy

adaptation of [47, Proposition 2] for this class of functions.

Proposition 4.4.2. Let X be a finite-dimensional Banach space. Then
X has the BPBp-nu for multilinear mappings.

We prove that the infinite dimensional Banach space L;(u) fails the
BPBp-nu for bilinear mappings although L;(v) has it in the operator
case for every measure v (see [32, Theorem 9] or [47, Theorem 4.1]).
It is worth to mentioning that if 4y and py are measures such that
Ly(p1) and Ly (pz) are infinite dimensional Banach spaces, then the pair
(L1(u1), L1(p2)) fails the Bishop-Phelps-Bollobés property for bilinear
forms [4, Corollary 2.7.(4)].

Theorem 4.4.3. The infinite dimensional Banach space L;(u) does not

satisfy the BPBp-nu for bilinear mappings.

Proof. Since L;(u) is infinite dimensional, we may consider measurable
subsets (E,), (F,) C ¥ such that

(i) 0 < u(E,) < oo and 0 < u(F,) < oo for all n € N with
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We put Ey :=Q\ (U2, E,) € ¥ and Fy :=Q\ (U2, F,,) € X. Define
the bilinear mapping A : Ly(u) X Li(p) — Li(p) by

Ao =3 ( f@)i(/ﬂ_gdu) By (e L)
i

For , ,
2n 1 2n 1

XE, XF,
"= — . 4 d g := — . :_
=g wmy ™ %= 25wy

r=1 s=1

Then f§, g5 € S, and

n Yy — L XEI
A(fo 90) = <1 N 2n2> n(Er)

This shows that ||A|| = 1 and so we have v(A) = ||A]| = 1 by Theorem
4.3.1. For a contradiction, suppose that L;(u) has the BPBp-nu for

bilinear mappings with some n(¢) > 0. Choose ny € N to be such
that ﬁ < n(1/2) and we consider xq € Si_ (. Then, (fy°, xa) =
<9307XQ> =1 and

(AU, 05) xe) = 1= 5z > 1=15).

Then there are B € L(3L1(p); Li(1)) with v(B) =1, f,g € L1(u) and
h € Loo(p) such that

(a) (B(f,9),h)| =1=(f,h) = (g,h) = Iflr =gl = [Pl
(b) [If = fo°ll: < 5,

(©) 7 —96°lh <3

(d) 17— xallo < 3

(e) 1B —All < 3.
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We prove that (b) or (c) is false. For all n =0,1,2,..., set

an = [ \Fhm,di and by i= [ gl du.
En Fn

We have that

= [(B(f.9), )| < [Pl B(f,9)]lx < Z Z tnbm = || fll[lgll: = 1.

n=0m=0

This shows that

for all n,m = 0,1,2,.... Considering N := {n € N : a, > 0} and
M :={m € N: b, > 0}, we have that

=1forall (n,m) e N x M. (4.10)

1-— 1
HB (f * XEn» Q'XFm>
(07% m 1

b

We observe now that 0 ¢ N. Indeed, if 0 € N, then by using (4.10), we
have that

=1
1

1- 1
B(=7. — G-
for all m € M. On the other hand,
1- 1_
A (aOfXEo? bfg : XFm>

i::(/ —f XEod,U>

because of (iii). This implies that

1 1 1
“s>|A-B|=|B(—F xm,—7"

1
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which is a contradiction. By using exactly the same arguments, we may
prove that 0 € M. Now we note that N N M = (). Indeed, if there exists
some n # 0 such that n € N N M, then by using again (4.10), we have
the same contradiction as before: 1 > A — B| > 1.

Now we suppose that (b) is true and we get that (c) does not hold.
We shall show that the numbers of elements in the set {1,...,2n’} N N

is > n?. Otherwise, there exists a set
S:={jeN:1<j<2n*}

with |S| = n? 4+ ng for some ng € N such that a; = JE, | fIxE,dp =0 for
all j € S. This implies that if j € S, f is 0 almost everywhere in E;.
Then

07— fll = [, 17 Sl + 3 [, 17~ ol d

+ Z /If folxe,dp

k=2n2+1

_/ |f fO|XE0d/~L+Z/ |f0|XE dﬁb—i—

]ES
Z/ \f — folxe,du+ Z /If folxz, du
iéS k=2n2+1

Z/ ‘fO’XE dp.

JES

But

/ Jo- XE; dp =
jES 2TL2 GSH’
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This implies that || f— fo||; > 5 which is a contradiction. Since NNM = 0),
the numbers of elements in the set {1,...,2n*} N M is < n? which
implies that ||g — gol[1 = % by using the same arguments as before. This

contradicts (c¢) and then Li(u) fails the property. O

In [47, Proposition 4] it was proved that if X is a Banach space which
is uniformly convex and uniformly smooth, we get a weak version of the
BPBp-nu for operators in the sense that the new operator which is close
to the fixed one does not have numerical radius equals to one but it just
attains its numerical radius at some point of II(X). The same kind of

result holds for the multilinear, symmetric and polynomial cases.
Proposition 4.4.4. Let X be a uniformly convex and uniformly smooth
Banach space. Given £ > 0, there exists n(¢) > 0 such that whenever
Ay € LY (X, X) with v(Ag) = 1 and (xg, z) € T1(X) satisfy
[7g(Ao(zo, - -, 20))| > 1 —n(e),

there are By € LV (X, X) and (20, z5) € II(X) such that

(1) v(Bo) = [z (Bo(20, - - 20))l,

(2) ll20 — ol <,

3) Nl — x5l <e,

(4) |1 Bo— Aol <e.

Proof. The proof is just a slight modification of [47, Proposition 4] for
the multilinear case since if (z1,...,zy,2") € [Iy(X), then 21 = ... =

TNy =: xg because X is uniformly convex. O

In the next proposition, we deal with direct sums again. We prove

the multilinear version of [47, Lemma 19]. First we need some notation.
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Given a family {X)}aea of Banach spaces, we denote by [@yca Xo],,
and [@)en X2y, the co and f-sum of {X,}. Letting X = [@yep Xo,, or
[@aca Xaly,, we consider X* = [@yep X3, or [Dren X3],_ to be their
dual spaces, respectively. We denote by Py : X — X the norm-one
linear projection from X onto X, and by @, : X* — X} the norm-one
linear projection from X* onto X3. We denote an element x € @, X
by = (7))xea. We also use the inclusion Py : Xy — [@,cp Xa]. In
X* we use Qy and Q.

Proposition 4.4.5. Let {X}, : £ € N} be a family of Banach spaces.
Let X = [B52, Xk, or X = [Bp2; Xk]s- If X has the BPBp-nu for

multilinear mappings then so does X for all j € N.

Proof. Let € € (0,1) and consider 7(¢) > 0 the BPBp-nu constant for
the space X. Fix j € N. Let 4; € £L(VX;; X;) with v(4;) = 1 and
(], ..., 2 x7) € Iy(Xj) be such that

5 (A (2, ., 2))| > 1= n(e).

We will prove that there are B; € L(VX;; X;) with v(B;) = 1 and
(z,..., 2%, z7) € Hn(Xj;) such that |zj(Bj(z{, 20 =1, |25 =7 <
e, maxien ||z — x| < e and ||B; — A;|| < &. Define A € L(VNX; X) by

Az, ..., 2n) = (P o Aj) (Pj(z1), ..., Pj(zn))

for all 2z1,...,2xy € X. Then v(A) = v(A;) = 1. Consider for each
| = 1,...,N, the point z; := Pj(z]) € Sy and z* := Qj(z}) €
Sx«. Then z*(x;) = 1for all [ =1,...,N and |z* (A (21,...,2N))| =
|5 (Aj(21,...,2%))] > 1 —n(e). Since X has the BPBp-nu for multilin-
ear mappings with n(g) > 0, there are B € L(NX; X) with v(B) = 1
and (zq,...,2n,2%) € [Ix(X) such that

(i) [z*(B(z1,...,2n8))| =1,
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(i) [[2" —a*]| <e,
(iii) maxigi<N ||Zl — 1’;” < g,
(iv) |IB— Al <e.

Now we write B = (D1, Dy, ...) with D, € L(V X; X},) for each k € N.
We define the N-linear mapping B; € L(V X;; X;) by

.
—~
s
=

Bi(.- - k) = Di(Bi(y). -
for all yf,...,yh € X;. Then v(B;) < v(B) = 1 and |B; — 4| <
||B — Al < e by using (iv). Now by using (ii) and (iii), we get that

16Q;(2%) — 75l < [lz" — 2™ < e

and

N g _
max [[P5(z) — |l < max ||z — ]| <e.

To finish the proof, we have to prove that (Pj(z1),..., Pj(zn), Qj(z%)) €
HN(X]‘) and

[(Bj(Pj(=1), -, Pi(2n)), Q;(27))| = 1. (4.11)

To do so we consider first X = [Pr2 Xile,. Since (21,...,2n,2%) €
In(X), foralll=1,..., N, we have

1=2"(z) = Y Qu(z")Pulz) < D 1Qu(z") | Pa(20)]]-

neN neN

But whenn #7and [ =1,..., N, we have

1Pa (20l = 1Pa(z1) = Pzl < [z — willoe <€
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and then
LY @u(IIP(0l < 1Qi(z)NIPi ()]l +€ D [1Qn(27)]
neN neN,
n#j
< Qi)+ D 1Qn(zM)]l
neN
n#j

< |Iz*h = 1.

This implies that ||Q;(z*)|| = 1 and Q,(z*) = 0 for all n # j. Then
Q;(z*)(Pj(z)) = 2*(z) =1 forall l = 1,..., N. In particular, P;(z) €
Sx, foralll =1,...,N. Now we prove (4.11). First note that we can

write (21,...,2N) as

((1 )PPy + e (Pjpj<zl) + i (= - Pjpj(zg)) o

(1—¢)P;Pi(zn)
S 1 —
+e (Pij(ZN) + 2 (2n - Pij(ZN)>) )
Because of that, we have that

1 =1|2"B(z1,...,2n)| <
(1= &)V|z*B(PiP;(z1), . .., PiPj(2n)) 1+
Z YN B(Z, . 7).

yi€{l—¢c,e}
1e{1,....N}
1N A=) N

where Z € {EP](ZZ),EP](ZZ) +1 (zl —ﬁij(zl)) l=1,.. .,N}. Now,
since for every [ =1,..., N,

Q;(z")(Pi(z)) =1 and @n(z") =0 Vn #j,
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we have that
ZBEBF (=), PPy (2n))| < v(B) = 1
and |z*B(Z,...,Z)| < v(B) = 1, whenever
Z e {Pij(zl),Pij(zl) + i (zl — ?JPJ(zl)) l=1,... ,N} :
Then, we get that

1< (1- N BEF (1), ... FPy ()]
+ Z Y-l B(Z, ..., Z)]
fitie

y1 AN #E(L—e)N

<SA-a"+ Y mew=(+0-e)V =1

Therefore |2*B(P;Pj(z1),. .., P;Pj(zy))| = 1 and then

[(B;j(Pj(21), -+, Pi(2n)), @5(27))]
= (D;(P;Pi(21), - ., PiPi(zn), Q;(27))]

= ["B(P;Pj(z1),..., FjPi(zn))| = 1

This proves (4.11) and v(B;) = 1, and it completes the proof in the

co-sum case. Similarly, we can prove it for ¢;-sums. O]



Open problems

During the preparation of this dissertation, there were some questions
that we could not answer.

In Theorem 2.1.7 we prove that the pair (H;Y") has the Bishop-Phelps-
Bollobas point property for all Hilbert spaces H and any Banach space
Y. To do so, we use the fact that Hilbert spaces have transitive norm,
i.e., given two norm-one points x and y, there exists a linear isometry R
such that R(z) = y. Moreover, if the points = and y are close from each
other, we may choose the isometry R satisfying ||R — Idy || < d(e) for
some function 6(¢) > 0 with lim; 0 J(¢) = 0. We do not know if we can

use similar ideas for L,-spaces.

1. Does the pair (L,(u),Y) satisfy the BPBpp for operators for all
Banach spaces Y and 1 < p < o0?

It could be interesting to give a characterization for the pair (X;Y)

to have property 1 (see Definition 2.2.2).

2. Tt is possible to give a characterization for the pair (X;Y") to have

property 17

About property 2 (see Definition 2.2.8), we have just one positive
result which is the Kim-Lee theorem [46, Theorem 2.1]. So, it is natural
to ask if
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3. Is there a Banach space Y # K such that the pair (X;Y") satisfies
property 27

In Section 2.3 we studied the BPBpp and the BPBpp for numerical
radius on Hilbert spaces for self-adjoint, anti-symmetric, normal and

unitary operators. It is true that

4. H, a complex Hilbert space, satisfies the Bishop-Phelps-Bollobas

point property for numerical radius for normal operators?

Also about this topic, we can consider other types of functions as
hermitian and symmetric bilinear forms. For a complex Hilbert space,
we recall that a hermitian form is a bilinear form B on H x H such that
B(z,y) = B(y, z) for every (z,y) € H x H.

5. Let H be a complex Hilbert space. It is true that the pair (H, H)
has the BPBpp for hermitian forms?

6. Let H be a real or complex Hilbert space. It is true that the pair
(H, H) has the BPBpp for symmetric forms?

In Chapter 3 we have seen that there are some cases in which the
pair (X;Y') has both BPBp and BPBp for compact operators. We know
that there are pairs of Banach spaces which have the BPBp for compact
operators but fail the BPBp, but we do not know if the BPBp implies
the BPBp for compact operators.

7. If the pair (X;Y') has the BPBp, does it have the BPBp for compact

operators?

About multilinear mappings (see Chapter 4) we have the following

questions.
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8. Is there some infinite dimensional Banach space (non Hilbert) X
such that (X, X) has the BPBp for symmetric bilinear forms?

9. For every Banach space X, is it true that the set of all N homoge-
neous continuous polynomials whose canonical extension to X**
attain their norm is dense in P(VX) for N > 27

Finally, we finish it with an old problem:

10. Is the Bishop-Phelps theorem true for linear operators from any

Banach space X into euclidian space R??
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Classical Banach spaces with
the BPBp

In this final section, we present three tables which give a summary

of those pairs of classical Banach spaces pairs satisfying the Bishop-

Phelps-Bollobas property for operators. We would like to emphasize

that these tables clarified our minds to think about new problems on

this topic at the beginning of the thesis.

We used some symbols to indicate the results in different cases. Each
of them means that the pair of Banach spaces (X;Y’) has the BPBp in

that case. The symbols are:

FD
v’
v R

C

o

COLS

e}

for finite-dimensional Banach spaces,
for both real and complex cases,

just for the real case,

just for the complex case,

for localizable measures,

for locally compact metrizable spaces,

for a o-finite measures.

In what follows, p,q € (1,00). In general, u and v are arbitrary

measures, K and S are compact Hausdorff topological spaces and Ly, Lo

are locally compact Hausdorff topological spaces, except when we use

the symbols above to indicate specific cases.
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