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Introduction

The work presented in this thesis is carried out within the instrumentation research

line of the IRIS (Image Reconstruction, Instrumentation and Simulations for medical

imaging applications) group of IFIC, which aims at the development of high performance

detectors for PET and hadron therapy applications.

In these applications, spatial resolution is a critical parameter. Usually, the detection

of gamma rays is performed employing detectors based on pixelated scintillator crystals

coupled to segmented photodetectors. In such detectors, the spatial resolution strongly

depends on the crystal size. In order to improve spatial resolution, small crystals are

needed, which reduces the sensitivity of the detector. In addition, the reduction of the

crystal size greatly increases the detector cost.

The work carried out in this thesis is motivated by the need to develop alternative

detector designs capable of enhancing spatial resolution without reducing detector

efficiency. Traditionally, photomultiplier tubes (PMTs) coupled to scintillator crystals

have played a dominant role in the detection of gamma rays. In the last years, a new

kind of solid state photodetector, the Silicon Photomultiplier (SiPM), has emerged as an

option to substitute PMTs in certain applications. SiPMs have high gain and quantum

efficiency, low bias voltage and excellent timing properties. Besides, they are very

compact devices and insensitive to magnetic fields.

The use of continuous scintillator crystals coupled to SiPMs can lead to an im-

provement of spatial resolution and sensitivity at the same time, at the expense of

imposing additional technological challenges. Besides, avoiding segmentation strongly

reduces the detector cost, which can benefit the transfer of technology from research

to commercial systems.

This thesis aims at overcoming such challenges and at evaluating the possibilities,

limitations and further developments needed for the use of this innovative technology.



2 INTRODUCTION

The main goal of this thesis is to demonstrate the feasibility of this approach in

the development of novel detector concepts, focused on PET and hadron therapy

applications, which have different requirements. To do so, scintillator crystals of

different types coupled to SiPMs from several manufacturers have been tested and fully

characterized. The work takes place at an early stage of development, and thus it is

focused on evaluating the performance, rather than on achieving an optimal operation

for each application.

The main part of the thesis comprises the development of a small animal PET

prototype based on SiPMs and continuous LYSO crystals. In addition, the first tests

of a Compton telescope based on SiPMs and continuous LaBr3 crystals for treatment

delivery monitoring in hadron therapy are presented.

The thesis is divided in six chapters. Chapters 1 and 2 describe the theoretical

background for medical imaging and detectors for medical imaging, respectively, fo-

cused on the detectors and applications relevant for this work. Chapter 3 presents

the results obtained with the first tests of a detector based on SiPMs and continuous

LaBr3 crystals for a Compton telescope. Chapter 4 describes the characterization,

coincidence tests and simulations performed with a detector head based on SiPMs

and continuous LYSO crystals for the development of a first prototype of a small animal

PET.

In both Compton telescope and small animal PET applications, a new readout

system was needed due to the foreseen increase in the number of readout channels.

The ASIC selected was the VATA64HDR16 and chapter 5 shows the performance

evaluation of this ASIC for medical physics applications based on continuous crystals

and SiPMs. This ASIC is employed in chapter 6 to develop the second version of the

small animal PET based on continuous LYSO crystals and SiPMs. Characterization

tests and images with point-like sources and FDG are presented.

The thesis finishes with final conclusions and a summary of the work performed,

written in Spanish.



Chapter 1

Medical imaging

Medical imaging is the technique and process that noninvasively produce visual

representations of the interior of a body for clinical analysis and medical intervention,

as well as visual representation of the function of some organs or tissues. In this

sense, medical imaging can be seen as the solution of the mathematical inverse

problem: the cause (the properties of the living tissues) is inferred from the effect

(the observed signal). The main medical imaging modalities include X-ray imaging,

computed tomography (CT), magnetic resonance imaging (MRI), ultrasound imaging

and nuclear medicine.

Nuclear medicine is the branch of medicine that makes use of radioactive tracers

(radiotracers) in the diagnosis and treatment of disease. Radiotracers consist of carrier

molecules in which one or more atoms have been replaced by a radioisotope. A

radioisotope is an atom whose nucleus has an excess of either protons or neutrons,

making it unstable and prone to change to a more stable configuration by means of

radioactive decay. The carrier molecules in a radiotracer vary greatly depending on

the purpose of the scan and the biological phenomenon being investigated. Once

administered to the patient, the radiotracer concentrates at specific organs or cellular

receptors with a certain biological function. For this reason, nuclear medicine provides

information about physiological processes, in contrast to other imaging techniques

such as CT or MRI, which provide anatomical information.

In nuclear medicine imaging, two major types of radiotracers are employed: single

photon emitters and positron emitters. The former emit one principal gamma ray or a

sequence of gamma rays that are directionally uncorrelated. Positron emitters emit a

positron that travels a short distance and annihilates with an electron. This annihilation
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Figure 1.1: Gamma camera cross section. The incidence angle of the incoming photons

is restricted by a mechanical collimator.

generates two 511 keV gamma rays, which travel in nearly opposite directions.

This thesis is focused on two nuclear medicine imaging techniques: Compton

imaging, a variety of single photon emission computed tomography (SPECT), and

positron emission tomography (PET). In the following sections, a brief overview of

these imaging techniques is presented.

1.1 SPECT

SPECT is a nuclear medicine imaging technique that employs singles photon

radioisotope emitters. The most common used radionuclide for SPECT is technetium-

99m (99mTc), which emits gamma rays of 140.5 keV. The most widespread applications

for SPECT have been myocardial pefusion imaging and functional brain imaging.

The single photons emitted by the radiotracer are detected by a gamma camera

head consisting of a photodetector, a scintillator crystal and a collimator. The collimator

rejects gamma rays that are not within a small angular range (see figure 1.1). The

gamma camera head rotates around the patient acquiring planar projection images

(2D) of the radiotracer distribution. 3D images are obtained by the combination of these

planar images using tomographic reconstruction algorithms.
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The spatial resolution in SPECT is dominated by the collimator. The resolution of

the collimator is given by [13]

Resolution = 2
d
l

(
z+

l
2

)
, (1.1)

where d and l are the diameter and the length of the collimator holes, respectively,

and z is the distance from the collimator surface to the patient. It can be seen that the

resolution can be increased reducing the factor d/l, but this results in a reduction of the

efficiency, given by [13]

E f f iciency =
(

d
2l

)2

. (1.2)

Thus, the main limitation of SPECT comes from the employment of mechanical

collimators and the fact that spatial resolution and efficiency in them are inversely

related: an increase in one implies a decrease in the other.

1.2 Compton imaging

Compton imaging is a variety of SPECT in which mechanical collimators are

replaced by a stack of detection planes working in time coincidence (electronic colli-

mation). The gamma rays interact in the first detector by Compton scattering and the

scattered photons interact in a second detector by photoabsorption. The employment

of electronic collimation allows to eliminate the resolution-efficiency tradeoff imposed

by mechanical collimators, making it possible to improve both simultaneously under

the appropriate conditions.

1.2.1 Compton scattering

The interaction process of Compton scattering [1] takes place between an incident

gamma ray photon (γ) and an electron in the absorbing material (e). The electron is

assumed to be at rest (free), since its kinetic and binding energies are usually much

lower than the energy transferred by the gamma ray. As a result of the interaction, the

electron recoils (e’) and the scattered gamma ray (γ’) propagates at an angle θ with

respect to the original incidence direction. Figure 1.2 shows a representation of the

interaction.
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Figure 1.2: Compton scattering of a photon (γ) with a free electron (e). The electron

recoils (e’) and the scattered gamma ray (γ’) propagates at an angle θ with respect to the

original incidence direction.

The expression that relates the energy of the scattered photon with the energy of

the incident photon and the scattering angle can be obtained from the conservation of

energy and momentum

E ′ = E0−Ee =
E0

1+α(1− cosθ)
, (1.3)

where E’ is the energy of the scattered photon, E0 is the initial energy of the photon,

Ee is the energy of the recoil electron in the scatter detector and α = E0/m0c2, being

m0c2 = 511 keV the electron rest-mass energy.

The cross section for Compton scattering is given by the Klein-Nishina formula

dσ

dΩ
=

r2
e

2
1

[1+α(1− cosθ)]2

(
1+ cos2

θ+
α2(1− cosθ)2

1+α(1− cosθ)

)
, (1.4)

where re is the classical electron radius (re=2.81794 fm).

The integration of this formula over dΩ gives the total probability per electron for a

Compton scattering to occur

σc = 2πr2
e

{
1+α

α2

[
2(1+α)

1+2α
− 1

α
ln(1+2α)

]
+

1
2α

ln(1+2α)− 1+3α

(1+2α)2

}
. (1.5)

The Klein-Nishina formula is derived considering free electrons at rest. This is not

the case in real situations, where the electrons involved in the interaction are bound

to a nucleus and have a momentum different from zero. The effect caused by the

momentum distribution of the electrons is known as Doppler broadening and it depends

on the detector material, increasing with the atomic number, and on the atomic shell of

the detectors, imposing a physical limit in the scattering angle uncertainty.
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Figure 1.3: Schematic representation of a Compton camera. Photons of unknown

propagation direction are Compton scattered at the first (scatter) detector and then low

energy gammas are fully absorbed in the second (absorption) detector.

1.2.2 Compton camera

A Compton camera is employed to carry out Compton imaging. The most com-

mon detector configuration is based on a two-layer approach [2, 3, 4], each of them

measuring the energy deposition and the interaction position of the interacting photons.

Photons of unknown propagation direction are Compton scattered in the first (scatter )

detector and then low energy gammas are fully absorbed in the second (absorption) de-

tector. Both detectors are operated in time coincidence (electronic collimation), without

restricting their incoming direction as mechanical collimators do and therefore eliminat-

ing the resolution-efficiency tradeoff imposed by them. A schematic representation of

a Compton camera can be seen in figure 1.3, where E1 = Ee is the energy deposited

in the first detector and E2 = E’ is the energy deposited in the second detector in the

case of total absorption.

The scattering angle θ can be calculated from equation 1.3 using the energy

deposited in both detectors

cosθ = 1−m0c2
(

1
E0−Ee

− 1
E0

)
. (1.6)
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Figure 1.4: The source position is determined by the intersection of several cones.

Since only the propagation direction of the scattered photon is known, the incident

direction of the incoming photon cannot be recovered univocally. However, determining

the interaction positions in both detectors allows to reconstruct a cone surface. The

apex of the cone corresponds to the interaction position in the scatter detector and the

propagation direction of the scattered photon defines the cone axis. The half angle

of the cone is the scattering angle θ and the original direction of the incoming photon

could be any generatrix contained in the cone surface. From the intersection of the

cones generated in several events, the source position can be determined (figure 1.4).

The spatial resolution of the Compton detector depends on the spatial resolution of

both the scatter and absorption detectors, and on their relative distance. The effects of

these factors have been analytically evaluated for a parallel plate Compton detector

[5]. The spatial resolution of the absorption detector affects the uncertainty in the

orientation of the cone axis, while the spatial resolution of the scatter detector affects

both the orientation of the axis and the position on the apex. To achieve an appropriate

spatial resolution, the scatter detector should be placed as close as possible to the

source, and the uncertainty in the scattering angle must be minimized. The effects of

the spatial resolution of the scatter and absorption detectors are minimized when the

distance between them is increased [6].

For a given geometry, the scatter detector is the key in the performance of the

Compton detector. The main requirements are therefore a high probability of Compton

interaction, a good spatial resolution, and an excellent energy resolution, that affects

the determination of the scattering angle.
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Figure 1.5: Positron emission and annihilation. Two 511 keV gamma photons are emitted

in nearly opposite directions.

1.3 PET

PET is a nuclear medicine imaging technique that makes use of positron emitting

radiotracers, which are specifically designed depending on the organ or tissue to be

imaged [7]. The most commonly used positron emitting radioisotopes are 11C, 13N,
15O and 18F.

In PET imaging, there are different radiotracers depending on their chemical and

biological properties and how they interact with the metabolism of the patient. One

of the most commonly used radiotracer is 18F-fluorodeoxyglucose (FDG), which is

created by adding fluorine-18 into deoxyglucose.

The most widespread application for PET has been the detection and staging of

cancer, through whole-body FDG studies. FDG is also used with diagnostic purpose in

several neurodegenerative diseases and dementia, epilepsy and psychiatric disorders.

1.3.1 PET physics

In PET, the radiotracers have an excess of protons and they decay through positron

emission, also known as β+ decay. A proton (p+) is converted to a neutron (n), emitting

a positron (e+) and an electron neutrino (νe) in the process:

p+→ n+ e++νe. (1.7)

The positron emitted by β+ decay undergoes a series of inelastic collisions as it

passes through the surrounding tissues, losing its kinetic energy, until its annihilation
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Figure 1.6: Schematic representation of a PET scanner consisting of a ring of detectors.

with an electron (its antiparticle). From this reaction, two gamma rays of 511 keV are

emitted in almost opposite directions. If the momentum of the positron at the time of

annihilation with the electron is different from zero, the trajectories of the two photons

are not completely collinear and slightly deviate from 180◦. The net distance traveled

by the positron until the annihilation with an electron is known as positron range. The

process of positron emission and annihilation is illustrated in figure 1.5.

1.3.2 PET scanner

For the detection of the two emitted gamma photons, a ring of detectors working in

time coincidence is usually employed. The detection of two events in time coincidence

defines a line, the line of response (LOR), along which the annihilation took place.

From the intersection of many LORs, a map of the concentration of the radionuclide

can be generated employing a tomographic reconstruction algorithm. If the detector

finite size is considered, the shape of the region in which the annihilation took place is

the tube-like volume connecting them, called volume of response (VOR). A schematic

representation of a PET scanner can be seen in figure 1.6.

The use of electronic collimation allows to know the direction of both photons from

the LOR, so there is no need to use a mechanical collimator to define (and therefore

restrict) the acceptance angle, as in SPECT. The wider acceptance angle in PET

translates into a gain in sensitivity two or three orders of magnitude higher than for

SPECT [8].
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Table 1.1: Properties of the most commonly used radionuclides in PET.

Isotope Half-life β+ average energy FWHM FWTM

(min) (MeV) in water in water

[10] [10] (mm) [9] (mm) [9]
11C 20.4 0.385 0.188 1.86
13N 9.97 0.492 0.282 2.53
15O 2.03 0.735 0.501 4.14
18F 110 0.250 0.102 1.03

1.3.3 Sources of response degradation

The quality of the information available in a LOR is degraded by several physical

effects related to the emission and detection of the annihilation photons: positron range,

acollinearity of the emitted gamma rays, detector size and depth of interaction (DOI).

Positron range

Positron range is the distance between the place where the positron is emitted

and where it undergoes annihilation with an electron. This distance ranges from a few

hundred micrometers to a few millimeters and it depends on the energy with which

the positron is emitted and the material through which it travels. The quantity that

directly affects the spatial resolution is the effective positron range, defined as the

component of the net positron displacement vector perpendicular to the line defined by

the annihilation photons. The distribution of the effective positron range is characterized

by a sharp peak with long exponential tails, rather than a Gaussian. For this reason, in

addition to the full width at half maximum (FWHM) of the distribution, the full width at

one-tenth maximum (FWTM) should be given to characterize the distribution [9]. Table

1.1 shows the half-life, the average positron energy and the effective positron range in

water for the most commonly used radionuclides in PET.

Acollinearity

Due to the fact that the momentum of the positron at the time of the annihilation

with the electron is different from zero, the trajectories of the two generated photons

are not completely collinear and slightly deviate from 180◦. The angular distribution is
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Figure 1.7: CRF at different positions for a pair of face-to-face detectors of the same size.

The intrinsic spatial resolution is given by the FWHM of the CRF distribution. Figure based

on [12].

approximately Gaussian with a FWHM of 0.5◦ [11]. The effect on spatial resolution due

to acollinearity Racol can be expressed as [13]

Racol = 0.5 ·D · tan(0.25◦) = 0.0022 ·D, (1.8)

where D is the diameter of the PET scanner or the distance between detectors.

Detector size

The coincidence response function (CRF) is the probability that a point source,

which is moved perpendicular to the LOR corresponding to a detector pair, is detected

as a coincidence event. The size of the detectors determines the precision with which

an annihilation event is located inside the VOR and therefore the CRF. PET scanners

typically use identical detectors around the ring, so the CRF of a pair of any of these
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is symmetric about the midpoint between the two. For LORs near the center of the

field of view (FOV) the CRF forms a triangle at the center of the FOV and becomes

rectangular near the ends. At intermediate positions the CRF is trapezoidal in shape,

with a plateau whose width is equal to the distance between two lines joining opposite

sides of the two detectors. The width of the base of the CRF is the same as the detector

width w [12]. Figure 1.7 shows the CRF at different positions for a pair of face-to-face

detectors of the same size. The intrinsic spatial resolution is given by the FWHM of

the CRF distribution. Resolution is highest when the CRF is triangular, in the centre,

and degrades as the function spreads out to be trapezoidal and, finally, rectangular.

For LORs located away from the centre of the FOV, where the detector pairs are not

directly facing each other, the shape of the CRF varies due to the effect of the depth of

photon interaction in the detector and becomes asymmetric.

Depth of interaction

A degradation of the intrinsic spatial resolution, known as parallax error, is caused

by the uncertainty regarding the depth of interaction (DOI) when a photon enters a

detector at an oblique angle [13]. Figure 1.8 illustrates the problem. As it has been

just explained (figure 1.7), the spatial resolution for a source located near the center of

the scanner is determined by the width of the detector element, Rdet=w/2. However,

for a source located away from the center, the apparent width of the detector element

becomes

w′ = wcosθ+ l sinθ, (1.9)

where w, l and θ are the width, length and inclination angle of the detector, respectively.

The apparent change in width results from the angulation between the detectors and

from the lack of knowledge about the depth at which an interaction has occurred within

the detector crystal. The FWHM of the spatial resolution then becomes R’det=w’/2.

Using equation 1.9:

R′det ≈
(w

2

)
·
[

cosθ+

(
l
w

)
sinθ

]
≈ Rdet ·

[
cosθ+

(
l
w

)
sinθ

]
. (1.10)

It can be seen from this equation that the DOI effect is described by a multiplicative

factor applied to the value of detector resolution at the midpoint between a pair of

directly opposed detectors. Thus, degradation increases with the scanner radius.
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Figure 1.8: Uncertainty regarding the depth of interaction (DOI) caused by a photon

entering a detector at an oblique angle. Figure based on [13].



Chapter 2

Detectors for medical imaging

Detectors based on a scintillator crystal optically coupled to a photodetector are the

most widely used radiation detectors in medical physics applications for the detection

of gamma rays and the type employed in this thesis. The crystal produces scintillation

light when radiation interacts with it and the photodetector converts the scintillation light

into an electrical signal. In this chapter, a brief overview of the main characteristics of

these components is given.

The position determination method applied to the prototypes was not developed

inside the framework of this thesis. Nevertheless, since it was used in this thesis, a

brief explanation is given.

2.1 Scintillators

A scintillator is a material that emits light when ionizing radiation interacts with it.

In medical physics, one of the most common ways to produce ionizing radiation is

through gamma rays. When a gamma ray photon interacts with a scintillator material,

the scintillator absorbs its energy totally or partially, converting the deposited energy to

visible and ultraviolet light [14].

The two important interaction mechanisms for detecting gamma photons in medical

physics are photoelectric absorption and Compton scattering. If the photon interacting

with the scintillator undergoes photoelectric effect, the entire energy of the gamma

photon is transferred to the release of a photoelectron. The place where the interaction

takes place will produce a scintillation center. If the photon interacting with the scintil-

lator undergoes Compton scattering, only part of the energy of the incident gamma

ray will be transferred to the electron of the scintillator. The scattered photon can
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then escape from the scintillator material or interact again in it suffering new Compton

scattering or photoelectric absorption. For this reason, photons undergoing Compton

scattering can produce several scintillation centers, which will affect the interaction

position determination in the form of position blurring.

Scintillator materials show the luminescence property. Three different types of

luminescence can be distinguished. In fluorescence, the incoming energy is absorbed

and promptly re-emitted in the form of light. If the excited state is metastable, the

re-emission is delayed some time and it takes place in longer wavelenghts light than

fluorescence. This process is called phosphorescence or afterglow. Finally, in delayed

fluorescence the re-emission is also delayed some time but it takes place in the same

wavelenghts as prompt fluorescence. In phosphorescence and delayed fluorescence,

the time between absorption and re-emission can range from microseconds to hours

depending on the material.

There are several types of scintillating materials: organic crystals, organic liquids,

plastics, inorganic crystals, gases and glasses. Each of them has different properties

and is therefore suitable for a different application. Inorganic scintillators offer a high

cross-section to gamma ray photons and a high light yield, making them the perfect

candidates for medical imaging detectors.

A good scintillation material should satisfy the following properties [14]:

• High scintillation efficiency to convert the incident radiation energy to prompt

fluorescence, avoiding or reducing as much as possible the appearance of

phosphorescence and delayed fluorescence.

• The light output should be proportional to the deposited energy over a range as

wide as possible. Otherwise, the energy resolution would worsen.

• High light yield (number of emitted scintillation photons per MeV absorbed

energy). A high light yield ensures a high number of photons reaching the

surface of the photodetector. This implies a good energy, timing and position

resolution.

• The optical self-absorption of the scintillation material should be minimal. This

means that it should be transparent to its own radiation in order to allow transmis-

sion of the light. In this sense, the scintillator can be surrounded by a reflector

to prevent light from escaping and therefore increase the number of photons

reaching the photodetector.
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Figure 2.1: Energy band structure of an inorganic scintillator crystal with activators. Figure

based on [14].

• The emission spectrum should overlap with the spectral sensitivity of the pho-

todetector.

• The decay time should be short. A fast decay time allows a high count rate of

the detector since the dead time is reduced. Besides, a fast scintillator also

improves the timing capabilities of the detector.

• The scintillation material should have a high density for a high absorption prob-

ability and a high atomic number for a large fraction of events undergoing

photoelectric absorption.

2.1.1 Inorganic scintillators

The scintillation mechanism in inorganic scintillators is determined by the electronic

band structure and the energy states of its crystal lattice. The mechanism is illustrated

in figure 2.1. Electrons in the valence band are bound at lattice sites, but electrons in

the conduction band have enough energy to move through the crystal. In pure crystals,

electrons can never be found in the forbidden band. Ionizing radiation interacting

with the scintillator may cause electrons from the valence band to absorb sufficient

energy to jump to the conduction band, leaving a hole in the valence band. During the

de-excitation process, the electron returns to the valence band emitting a photon. In

pure crystals, this process is inefficient and the typical gap widths are such that the

photons released are too energetic to be in the visible spectrum.

To overcome this problem, small amounts of impurities, called activators, are

introduced into the scintillator material. These activators change the existing energy

band structure, creating energy states within the forbidden gap through which the
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Table 2.1: Properties of some used scintillators for PET.

NaI BGO LYSO:Ce LaBr3:Ce

[15] [16]

Peak emission [nm] 410 480 420 380

Light yield [ph/MeV] 41000 7000 32000 63000

Density [g/cm3] 3.67 7.13 7.1 5.08

Ze f f 50 74 65 47

Decay time [ns] 230 300 41 16

Index of refraction 1.85 2.15 1.81 1.9

∆E/E at 662 keV [%] 6.0 9.0 8.0 2.9

1/µ at 511 keV [mm] 25.9 11.6 12 21.3

Hygroscopic Yes No No Yes

electron can de-excite back to the valence band. The energy of this transition is

less than the energy required to elevate an electron from the valence band to the

conduction band, releasing photons in the visible light spectrum. For this reason,

scintillators are transparent to scintillation light, since the emission and absorption

spectra do not overlap and self-absorption by the crystal is therefore minimal. These

de-excitation sites are the luminescence centers (also called recombination centers)

from which scintillation can take place. The energy structure of the luminescence

centers in the crystal lattice determines the emission spectrum of the scintillator. The

time characteristics of the emitted scintillation light is determined by the decay time of

electrons from an excited state to the valence band, which eventually depends on the

scintillation material and the impurities chosen as activators.

The two inorganic scintillator crystals employed in this thesis are LYSO (Lutetium

Yttrium Oxyorthosilicate, Lu1.8Y0.2SiO5) and LaBr3 (Lanthanum (III) Bromide). Both

of them are co-doped with Cerium (Ce3+) as an activator. This ion is an efficient

luminescence centre with a fast response and an effective atomic number Ze f f = 58. It

has one electron in the 4f state that is excited to the empty 5d shell through interaction

with radiation. The subsequent de-excitation by emitting a scintillation photon will occur

by an allowed 5d to 4f electric dipole transition with a decay time in the range of 20 to

80 ns [14]. NaI (Sodium Iodide) and BGO (Bismuth Germanium Oxide, Bi4Ge3O12) are

inorganic scintillators that were commonly used in PET for the detection of gamma rays

before the emergence of LYSO. The main characteristics of these inorganic scintillator

crystals can be found in table 2.1.
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LYSO is nowadays widely used in commercial clinical PET scanners as well as

in preclinical small animal PET scanners. It has a high detection efficiency, a high

light yield and a short decay time. It is not hygroscopic and shows good mechanical

properties. The main drawback of LYSO is the presence of the 176Lu isotope, with a half-

life of 4×1010 years. This isotope adds a natural radiation background in spectroscopy

measurements. In PET detectors, this effect is reduced since the detectors are operated

in time coincidence mode.

LaBr3 is a relatively new scintillator [17]. It has a very high light yield, a very

short decay time and a very good energy resolution. Compared to other scintillator

crystals, LaBr3 has a lower photoelectric absorption probability and a higher Compton

probability due to its lower effective atomic number Ze f f . The main drawback of LaBr3

is its hygroscopicity, requiring an hermetic housing and careful handling.

2.2 Photodetectors

The photodetector converts the light coming from the scintillator into an electrical

signal. This signal can be analyzed to obtain information about the incident radiation,

such as the energy deposited in the scintillator or the position where the interaction of

the gamma ray inside the scintillator took place.

Photomultipliers tubes (PMTs) have been the most widely used photodetector

for the detection of gamma rays. In the last years, a new kind of semiconductor

photodetector, called Silicon Photomultiplier (SiPM), has gained a lot of attention

because of its interesting properties. The detectors developed in this thesis employ

SiPMs as photodetectors.

2.2.1 Photomultiplier tubes

A photomultiplier tube is a photodetector consisting of a light transmitting window

(usually glass), a photosensitive layer (the photocathode), a series of electrodes

(dynodes) and an anode, all housed in an envelope with high vacuum conditions inside.

A schematic view of a PMT can be seen in figure 2.2.

The first component that scintillation light interacts with is the light transmitting

window, that is usually made of glass. The index of refraction of the transmitting

window is typically 1.5, meanwhile the index of refraction of inorganic scintillators is

around 1.8 or more. This difference produces losses of photons because of optical
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Figure 2.2: Schematic view of a PMT. Reproduced and modified from [18].

refraction. Optical grease or glue is commonly used to optically couple the scintillator

crystal with the photodetector and attenuate this problem. The photocathode converts

part of the incident photons into low-energy electrons by the photoelectric effect. The

photocathode essentially determines the light response characteristic of the PMT

as a function of the wavelength. The probability that the photocathode liberates a

photoelectron after the interaction of an incident photon is the quantum efficiency (QE).

The QE depends on the wavelength of the incident light as well as on the properties of

the transmitting window and photocathode. After the release of photoelectrons from the

photocathode, the photoelectrons are accelerated through a vacuum chamber under

very high voltage to the first dynode. The impact of these photoelectrons in the dynode

liberates secondary electrons, which in turn, are accelerated towards the next dynode

where more electrons are released and further accelerated. The repeated structure

creates an electron cascade which is finally collected by the anode in the form of a

current pulse. The gain of a PMT is determined by the number of dynodes and the

voltage difference between the photocathode and the anode. Typical PMT gains are in

the order of 107-1010. Finally, the time response of a PMT is primarily determined by

the time required for the electrons to travel from the photocathode to the anode, which

is in the order of nanoseconds.

It is worth to mention the existence of a type of PMTs called multianode PMTs

(MAPMTs). MAPMTs consist of a focusing mesh of metal channel dynodes with

minimal dead space. Each dynode cascade system (channel) is distributed on the
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9.1 Multianode Photomultiplier Tubes

9.1.1 Metal channel dynode type multianode photomultiplier tubes

(1) Structure

Figure 9-2 shows the electrode structure for metal channel dynodes and the associated electron trajecto-
ries. Compared to the other types of dynodes, metal channel dynode type multianode photomultiplier tubes
feature very low crosstalk during secondary electron multiplication. This is because the photoelectrons
emitted from the photocathode are directed onto the first dynode by the focusing mesh and then flow to the
second dynode, third dynode, . . . last dynode and finally to the anode, while being multiplied with a
minimum spatial spread in the secondary electron flow.

The overall tube length can be kept short because the metal channel dynodes are very thin and as-
sembled in close-proximity to each other.

PHOTOCATHODE

METAL CHANNEL
DYNODES

MULTIANODE

FOCUSING MESH

THBV3_0902EA

Figure 9-2: Electrode structure and electron trajectories

Multianode photomultiplier tubes using metal channel dynodes can be roughly classified into two groups.
One group uses a matrix type multianode and the other group uses a linear type multianode.

© 2007 HAMAMATSU PHOTONICS K. K.

Figure 2.3: Schematic view of a MAPMT. Reproduced from [19].

MAPMT surface and has its own anode. In this way, each channel of the MAPMT

performs as an independent PMT, being position sensitive to the spatial distribution of

the scintillation light from the crystal. A schematic view of a MAPMT can be seen in

figure 2.3.

2.2.2 Semiconductor detectors

Semiconductor detectors present an electronic band structure consisting of a

valence band, a forbidden energy gap and a conduction band. Electrons in the

conduction band are detached from their parent atoms and are free to move around the

material. Electrons in the valence band are more tightly bound and remain associated

to their respective lattice atoms.

Silicon is a semiconductor material used in medical physics as a photodetector. It

is a tetravalent atom, so it has four valence electrons to create four covalent bonds,

forming an atomic crystal. In solid-state physics, an electron hole (usually referred to

simply as a hole) is the absence of an electron at a position where one could exist in

an atom or atomic lattice. In pure silicon, the number of holes is equal to the number

of electrons in the conduction band. Doping a semiconductor with small amounts of

impurities modifies its lattice, introducing allowed energy states within the band gap.

Depending on the silicon dopant, two types of silicon can be created, n-type or p-type.
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Figure 2.4: Scheme of a p-n junction. Reproduced and modified from [20].

N-type doping is achieved employing a pentavalent dopant. It has five electrons in

the valence band so four covalent bonds will be formed, leaving one free electron. This

free electron will create a new state in the energy gap, close to the conduction band.

In n-type configuration, electrons are the majority charge carriers. Impurities typically

used to create n-type silicon are arsenic (As) or phosphorus (P).

P-type doping is achieved employing a trivalent dopant. It has three electrons in the

valence band so three covalent bonds will be formed, generating an excess of holes

in the crystal. This excess of holes will create a new state in the energy gap, but this

time close to the valence band. In p-type configuration, holes are the majority charge

carriers. Impurities typically used to create p-type silicon are gallium (Ga) or boron (B).

A p-n junction consists of n-type silicon and p-type silicon placed into adjacent

regions on a silicon substrate. The difference in electron and hole concentrations

causes diffusion between the regions, producing an electric field E which opposes the

diffusion process. The diffusion continues until the electric field is strong enough to

balance it, creating a stable state in which a thin layer around the junction is left without

free carriers. The layer is called depletion region. A schematic view of a p-n junction

can be seen in figure 2.4.
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Figure 2.5: Photodiode working in reserve bias configuration.

Photodiodes

A photodiode is a p-n junction sensitive to photons. They are operated in reverse

bias configuration, with the p-type region connected to the negative terminal and the

n-type region connected to the positive terminal (see figure 2.5). When a bias voltage is

applied, the electrons of the n-type region will move to the positive terminal meanwhile

the holes of the p-type region will move to the negative terminal, leaving the depletion

region void of charges. When a photon with sufficient energy interacts in the depletion

region, electron-hole pairs are created. The electron-hole pairs are swept away of

the depletion region by the electric field resulting from the applied voltage: holes

move toward the anode and electrons toward the cathode, producing a current signal.

Conventional photodiodes have no internal gain, so the current signals generated by

incident light have small amplitudes and therefore electronic noise is its major drawback.

For these reasons, photodiodes are not used as photodetectors in medical imaging.

Avalanche photodiodes

An Avalanche Photodiode (APD) is a kind of photodiode that is operated at a bias

voltage higher than photodiodes, but still below the breakdown voltage. The breakdown

voltage (Vbd) is the value of the reverse bias at which the p-n junction breaks down

and starts to conduct. Optical photons interacting in the sensitive volume of the

photodetector produce electron-hole pairs. At these values of bias voltage, electrons

are sufficiently accelerated by the electric field to create additional electron-hole pairs

along the collection path due to impact ionization. The electrons of these secondary

carriers are then themselves accelerated and collide with further atoms, releasing more
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electron-hole pairs and subsequently repeating the process (avalanche multiplication),

acting as an internal gain stage. This gain pulls the signal up from the electronic noise

level and allows good energy resolution compared to conventional photodiodes. Typical

APD gain is in the range of 102 to 103.

2.2.3 Silicon Photomultipliers

A Silicon Photomultiplier (SiPM) consists of a densely packed matrix of light-

sensitive microcells all connected in parallel (see figure 2.6). Each microcell is an APD

operated at a bias voltage above the breakdown voltage (Geiger mode). In Geiger

mode, the internal electric field of each microcell becomes so high that when optical

photons interact with it, both electrons and holes are involved in the multiplication

process, creating a self-sustaining avalanche. A quenching resistor (Rq) is employed

to stop the avalanche. Cd is the diode capacitance introduced by the depletion region.

Each microcell has three different states: quiescent mode, discharge phase and

recovery phase.

In quiescent mode, the diode is reversed biased to

Vbias =Vbd +Vov, (2.1)

where Vov is the overvoltage (the excess bias beyond Vbd). When an avalanche occurs

(discharge phase), the current flowing through the microcell is quenched through

the series resistor Rq. This quenching process limits the diode current during the

breakdown and reduces the reverse voltage applied to Cd from Vbias to a value below

its Vbd , effectively stopping the avalanche. In the recovery phase, Cd recharges back

to Vbias through Rq and the microcell returns to the quiescent mode.

The signal obtained in a microcell due to an avalanche is always the same, in-

dependently of the energy and the number of the incoming photons. Each microcell

detects photons identically and independently, functioning as a photon-triggered switch

with a binary ”on” or ”off” response. The energy information about the incoming photon

flux is obtained by adding up the signals of all microcells since they are connected in

parallel. Typical microcell size ranges from 20×20 µm2 to 100×100 µm2.
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(a) (b)

Figure 2.6: (a) Schematic representation of a SiPM. The microcell capacitance is repre-

sented by Cd and the quenching resistor by Rq. (b) Detail of the microcell array structure

in a SiPM from Hamamatsu.

Photon detection efficiency

The photon detection efficiency (PDE) of a silicon photomultiplier is the statisti-

cal probability that an incoming photon will produce an avalanche and therefore a

measurable output signal. The PDE is a function of wavelength and Vbias:

PDE(λ,Vbias) = QE(λ) ·Pav(Vbias) ·FF, (2.2)

where QE is the quantum efficiency of silicon, Pav is the avalanche initiation probability

in the depleted region and FF is the geometric fill factor. The quantum efficiency is the

probability that an incident photon will produce an electron-hole pair by photoelectron

conversion. The quantum efficiency of silicon depends on the wavelength. The

geometrical fill factor represents the ratio of the effective sensitive detection area with

respect to the total detector area. Some of the microcell area is dedicated to quenching

resistors and electrical pads, which are insensitive to light. For this reason, SiPMs with

big microcells have a high fill factor meanwhile small microcells have a low fill factor.

Typical fill factor values range from 25% to 75%, depending on the microcell size. The

quantum efficiency QE and the avalanche initiation probability Pav can be designed to

be close to unity, so the fill factor FF becomes a highly relevant parameter for the PDE.

Figure 2.7 shows a typical PDE curve as a function of the overvoltage.
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Figure 2.7: Photon detection efficiency (PDE) as a function of the overvoltage. Plot from

AdvanSiD [21].

Gain

The gain of a microcell (and therefore the SiPM) is the ratio between the output

charge over the charge of an electron (q). The output charge can be obtained from the

overvoltage Vov and the microcell capacitance Cd :

G =
Cd ·Vov

q
. (2.3)

Assuming Cd constant for Vbias > Vbd , gain increases linearly with the overvoltage

due to the widening of the depletion region. Since Vov = Vbias - Vbd and Vbd strongly

depends on temperature, both Vbias and temperature need to be stable for constant

gain. Typical SiPM gain is in the order of 105-106. Figure 2.8 shows a typical gain

curve as a function of the overvoltage. The slope represents Cd/q.

Dynamic range

In Geiger mode, the output charge generated by a microcell due to an avalanche

breakdown is almost the same in all the microcells of a SiPM. For this reason, the total

output charge in a SiPM is the sum of the charge produced by the firing microcells

at that moment. Due to the limited number of microcells in a SiPM, the response to

an incoming photon flux obeys a Poisson distribution rather than a linear dependency.

The output of a SiPM is only linear when the number of incident photons is significantly
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Figure 2.8: SiPM gain as a function of the overvoltage. The slope is the diode capacitance

Cd . Plot from AdvanSiD [21].

smaller than the number of available cells. The SiPM output begins to saturate when

the number of detected photons begins to approach the number of microcells. Above a

certain signal level, and before saturation, the SiPM response becomes sub-linear. As

the number of incident photons per microcell per unit of time increases, the probability

that two or more photons will interact in the same microcell at the same time increases

as well. The output signal is completely saturated when no microcells are available to

detect incoming photons and remains saturated until some of the microcells recover

back to their quiescent mode.

The number of fired microcells as a function of the number of incident photons can

be approximated by the following expression

N f ired = Ncells · (1− exp(−
PDE(λ,Vbias) ·Nph

Ncells
)), (2.4)

where N f ired is the number of fired microcells, Ncells is the number of SiPM microcells

and Nph is the number of incident photons. This equation is not exact, since it does not

take into account the recovery time of a microcell and it assumes that a microcell can

only fire once during a scintillation event.

Large microcell sizes imply a low dynamic range since there are less cells per

unit area, but a high PDE due to a larger fill factor. Small microcell sizes imply a high

dynamic range, but a low PDE. The choice of the microcell size will therefore depend

on the particular application.
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Figure 2.9: Current pulse produced by a microcell in response to photon absorption. The

pulse has a very fast rising edge and a slower trailing edge (microcell recovery). Plot from

AdvanSiD [21].

Recovery time

The discharge and recovery process of a microcell produces a typical current signal

as the one shown in figure 2.9. Its amplitude is defined to be 1 p.e. (photo-electron).

The rising edge corresponds to the discharge phase and the slower trailing edge

corresponds to the recovery phase. The recovery time is the time needed to reestablish

the electric field of a fired microcell. The recovery time constant τ of a microcell is

proportional to the quenching resistance Rq and the microcell capacitance Cd :

τ = Rq ·Cd . (2.5)

The microcell capacitance depends on its area, so the recovery time will depend

on the microcell size. Large microcell sizes have significantly longer recovery times

than small microcell sizes.

During recovery the voltage across the microcell is increasing from Vbd to Vbias,

following the exponential recharge of Cd through Rq. Consequently, the detection

efficiency goes from zero to the value at Vov with the same time constant. Therefore,

the microcells are not completely blind during recovery, they feature increasing detection

efficiency.
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Figure 2.10: Afterpulse in a microcell. The same microcell fires again during the recharge

phase due to a carrier being released from a previously filled silicon trap. To note that

the amplitude of the afterpulse is <1 p.e. since Cd has not recharged to Vbias yet when

afterpulse occurs. Plot from AdvanSiD [21].

Dark count rate

Spurious generation of free carriers inside the active region of a microcell initiates

an avalanche with an output signal indistinguishable of an output signal generated

by a photoelectron. These free charge carriers are mainly due to thermal generation

or tunneling effect, being produced even in absence of light and therefore receiving

the name of dark noise or dark event. The number of dark events per unit of time is

the dark count rate (DCR) and it is usually expressed in Hz (typically kHz or MHz) or

counts per second (cps). The DCR is the main source of noise in a SiPM and it can not

be completely removed, forming a contribution to the measured signal and ultimately

limiting the smallest signal that can be detected. The DCR increases with overvoltage,

temperature, microcell size and overall detector area.

Afterpulsing

Doping a semiconductor with impurities creates lattice defects inside the silicon

wafer. Electron and holes generated after an avalanche can be trapped in those

semiconductor defects, having some probability to be released after a characteristic

time. Typical release times range from few ns to several hundreds ns. The released

carriers might produce a secondary avalanche in a process called afterpulsing. The net
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Figure 2.11: Optical crosstalk in SiPMs. From left to right: a single-cell signal (1 p.e.), a

direct crosstalk signal (2 p.e., two cells firing at the same time), and a delayed crosstalk (a

second cell fires few nanoseconds after a first one). Plot from AdvanSiD [21].

effect is that a new current pulse is generated on the tail of the original current pulse, as

it can be seen in figure 2.10. The amplitude of the afterpulse is <1 p.e. since Cd has

not recharged to Vbias yet when afterpulse occurs. Afterpulsing probability increases

more than linearly with the overvoltage and quadratically with the cell size. Afterpulses

represent a source of correlated noise, since it is originated from an existing pulse.

Optical crosstalk

An additional source of correlated noise in a SiPM is optical crosstalk between

neighbouring microcells. During avalanche multiplication, optical photons are emitted

[22]. These photons may reach adjacent microcells and initiate an avalanche there,

generating a signal unrelated to the original one but indistinguishable from it. This

signal will be integrated with the original one, resulting in a misinformation of the

number of detected incoming photons and limiting the photon counting capabilities of

the SiPM. Direct optical crosstalk occurs when an emitted photon reaches the active

region of another cell triggering an additional avalanche practically at the same time

of the original avalanche. The result is the double pulse shown in the second signal

of figure 2.11. Delayed optical crosstalk occurs when photons are re-absorbed in the

inactive regions of the SiPM. The generated electron (or hole) must then diffuse to

the active region of a cell before being able to trigger an avalanche. The correlated
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pulse has therefore a certain time delay (in the order of few ns) with respect to the

original one. The result is the third signal of figure 2.11. The crosstalk depends on the

overvoltage and the distance between surrounding microcells.

2.3 Position determination

The determination of the interaction position of the gamma rays is a critical issue

with continuous crystals and it represents a challenge due to the intrinsic characteristics

of the crystal itself.

In this thesis, a method based on the solid angle subtended by the interaction

position with the photodetector elements, including the reflections of the photons on

the sides of the crystal, was employed. As mentioned before, the algorithm was not

developed in this thesis and it is fully explained in [23]. It is based on the number of

photons arriving to each pixel from a light source, which is the generation point of

optical photons in the scintillator crystal, as a consequence of the energy deposited

of the gamma rays. The model to estimate the number of optical photons detected in

each pixel is

npi =Cest +A0Ω(x,y,z)+A0 ∑
j

Ω(x j,y j,z j), (2.6)

where npi is the number of detected optical photons in pixel i, Cest is a constant that

represents the contribution of the reflected photons on the diffuse reflector around the

crystal, A0 represents the total number of optical photons produced by the light source

and Ω(x,y,z) represents the solid angle subtended by pixel i from the light source

located at (x,y,z). The last two terms represent the number of photons impinging in

pixel i. A0 Ω(x,y,z) represents the number of photons impinging directly the pixel and

A0 ∑ j Ω(x j,y j,z j) the number of photons that are reflected in any of the five sides of

the scintillator that are not coupled to the SiPM. This mirror-like internal reflections are

modelled as if there was a virtual source at a symmetric position on the other side

of each surface. The difference between the real number of detected photons and

the estimation performed by the model is optimized using a non-linear least squares

minimization.

The main advantage of this method is that no previous calibration is needed and in

addition it can provide the depth of interaction (DOI) in the crystal.
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Chapter 3

Detector based on SiPMs and

continuous LaBr3 crystals for a

Compton telescope

3.1 Introduction

Hadron therapy is a cancer treatment technique based on the irradiation of tumours

with light ions, generally protons or carbon ions. During treatment, beam particles

excite nuclei in the patient and secondary particles are emitted. Prompt gammas

are generated from nuclear de-excitation in a characteristic spectrum, being most

abundant in the energy range from 1 to 7 MeV [24]. Since the prompt gammas

production distribution is closely correlated to the absorbed dose and their emission

takes place within nanoseconds of irradiation [25, 26], their detection can be used for

real time treatment delivery assessment.

Collimated [27] and Compton cameras are being investigated as possible can-

didates to locate the origin of the prompt gammas emitted during hadron therapy

treatments. Among these two types of cameras, Compton cameras offer a higher

efficiency and 3D information, along with the advantage of discarding the negative

impact of passive collimator in terms of weight and signal attenuation. Several research

groups are investigating the application of Compton cameras to range verification in

hadron therapy [6, 28, 29, 30, 31, 32, 33].

The ENVISION (European NoVel Imaging Systems for ION therapy) European

project [34] aimed to develop novel devices for the detection of prompt gammas

employing Compton cameras based on different detector approaches such as silicon
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Figure 3.1: MPPC from Hamamatsu Photonics model S11064-050P composed of 16

elements of size 3 mm × 3 mm.

[6] and CZT (Cadmium Zinc Telluride) [35] detectors. Another detector approach was

developed at IFIC-Valencia, consisting of a Compton telescope (multilayer Compton

camera) based on several planes of continuous LaBr3 crystals coupled to SiPM arrays.

LaBr3 meets all the requirements mentioned in section 1.2.2 and combined with the

compactness of SiPMs make these materials suitable candidates for most Compton

imaging applications.

A first prototype of such a detector was assembled. In this chapter, the results of

the characterization and coincidence tests carried out to assess the performance and

the operability of the proposed technology are presented.

3.2 Detector description

The detector planes employed in this proof-of-concept of the Compton telescope

consisted of a continuous LaBr3 crystal coupled to a 16-channel SiPM array.

3.2.1 SiPM array

The SiPM employed was a Multi Pixel Photon Counter (MPPC) from Hamamatsu

Photonics, model S11064-050P. This MPPC array was the first SiPM array available

at the time these tests started. It was a SiPM array consisting of 16 (4 × 4) channels.

Each channel had an effective area of 3 × 3 mm2 and contained 3600 microcells of 50

µm × 50 µm size. The pitch was 4.05 mm in one direction and 4.5 mm in the other

direction. The external dimensions of the device were 16 × 18 mm2. Due to the gaps
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Figure 3.2: LaBr3 crystal from Saint-Gobain Crystals of 16×18×5 mm3 surrounded by

reflective material and encapsulated in an aluminium housing.

between the detector elements, this MPPC array had a 50% loss of active area. A

picture of the MPPC array can be seen in figure 3.1.

The MPPC array was connected to a custom-made printed circuit board (PCB) for

bias and mechanical support. The PCB routed the signal coming from each pixel to the

corresponding channel of the readout electronics through a flat cable. A common bias

voltage was applied to the 16 photodetector elements in the MPPC array. A plastic

holder ensured the correct positioning of the crystal on the MPPC array and the PCB.

In this board, the signal from each MPPC element was split and part of the signals

from all MPPC elements were summed and driven to a common analog output. This

output was employed in some of the timing resolution measurements.

3.2.2 LaBr3 crystal

The continuous LaBr3 crystal employed was manufactured by Saint-Gobain Crys-

tals (BrilLanCe 380) and it had an effective volume of 16 mm × 18 mm × 5 mm (figure

3.2), matching perfectly the size of the MPPC array. The crystal was surrounded by

highly reflective material in five faces, and encapsulated in an aluminium housing due

to its hygroscopicity. The open face in contact with the MPPC array was covered by a 1

mm thick optical guide. Usually, optical grease is employed to couple the scintillator

crystal to the photodetector. Nevertheless, tests performed in such a way showed

an increase in the current flowing through the MPPC array, probably due to the fact

that the MPPC elements were not covered by a common coating. For this reason, no

optical grease was employed to couple the crystal to the MPPC.
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For the detector uniformity tests, a pixelated crystal array was coupled one-to-one

to the MPPC array. The crystal array was composed of 16 LYSO crystals of 3 mm × 3

mm × 15 mm size, separated with white epoxy resin.

3.3 Readout electronics

The readout electronics employed was based on the SPIROC1 (SiPM Integrated

Read-Out Chip) ASIC [36] developed at the Linear Accelerator Laboratory (LAL, Orsay).

This ASIC was designed for the readout of SiPMs with positive output polarity, making

it suitable to work with the output polarity of the MPPC array described in section 3.2.1.

The SPIROC1 ASIC was a 36-channel, low noise, high dynamic range front-end

circuit developed to read out SiPM outputs. Each channel had a preamplifier with an 8-

bit input DAC to fine-tune the input voltage of the SiPM bias of each channel individually

up to 5 V in 20 mV steps. The high dynamic range (up to 2000 photoelectrons) was

achieved by means of two variable gain input preamplifiers. Each preamplifier was

followed by a slow shaper with variable shaping time (50-100 ns). In parallel, trigger

signals were obtained via a fast shaper (15 ns) followed by a level discriminator. A

common threshold was applied to all discriminators that could be adjusted by means

of a 4-bit DAC. The trigger signal generated by the SPIROC1 ASIC was given by the

logic OR of the 36 trigger outputs of the ASIC channels. The diagram of one channel

of the SPIROC1 ASIC can be seen in figure 3.3.

For each event recorded, the pulse amplitude was stored using a 12-bit ADC

located on the test board. The ASIC was connected to a test board driven by an Altera

Cyclone FPGA that controlled the ASIC operation and the communication with the

computer through a USB connection. A picture of the evaluation board can be seen in

figure 3.4. A dedicated LabView program was employed for the ASIC test and data

acquisition.
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Figure 3.3: SPIROC1 single channel diagram.
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Figure 3.4: SPIROC1 ASIC evaluation board.
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3.4 Detector characterization

Characterization tests were carried out to determine the performance of the detec-

tor. Results were published in [37] and [32].

3.4.1 Uniformity

The manufacturing process of the MPPC array produced photodetector elements

with different operating voltages, which could result in variations in the response

of the photodetector elements and therefore produce a degradation of the detector

performance as a whole. The operation voltages recommended by the manufacturer

ranged from 71.08 V to 71.12 V. The common bias applied to all elements was the

average of the operating voltages of the 16 elements, 71.10 V.

The differences in the response of the photodetector elements were tested by

coupling the pixelated LYSO crystal array described in section 3.2.2 to the MPPC

matrix. Data were taken with a 22Na source placed at a distance far enough from the

detector to ensure a homogeneous distribution of the emitted gamma rays among the

photodetector elements. This method assumed that, for a high number of events, the

average charge per channel would be similar if the response of all channels was the

same. An energy spectrum was obtained for each detector channel and the 511 keV

photopeak was fitted with a Gaussian function.

The input DACs in the ASIC were employed to adjust the bias voltage applied

to each channel and therefore compensate for the differences among the detector

elements and achieve a similar response in all of its channels. A small increment or

decrement of the bias voltage was applied to each channnel by means of the input DAC.

Then, data were taken with the 22Na source again. Figure 3.5 shows the difference

in the photopeak position in ADC units for each channel before (dashed histogram)

and after (solid histogram) applying the DAC corrections to the individual input voltage,

achieving an 8% of improvement.

The effect of these corrections in the energy spectra was also assessed. Figure

3.6 shows the 22Na energy spectrum obtained from all channels without applying the

input DAC voltage corrections (dashed histogram) and applying them (solid histogram).

It can be clearly seen that the corrected spectrum is significantly narrower than the

non-corrected one.



40 3. Detector for a Compton telescope

Figure 3.5: Position of the 22Na 511 keV photopeak in ADC units for each channel

before (dashed histogram) and after (solid histogram) applying the DAC corrections to the

individual input voltage. Data obtained with the pixelated LYSO crystal array coupled to

the MPPC matrix.

Figure 3.6: 22Na energy spectrum obtained from all channels without applying the input

DAC voltage corrections (dashed histogram) and applying them (solid histogram). Data

obtained with the pixelated LYSO crystal array coupled to the MPPC matrix.
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Table 3.1: Sources employed for the detector calibration.

Isotope Energy (keV)
57Co 122
22Na 511
137Cs 662
54Mn 835
22Na 1275

Figure 3.7: Photopeak position in ADC units as a function of the source energy obtained

with the LaBr3 crystal coupled to the MPPC matrix. The behaviour is linear up to 1275

keV.

3.4.2 Linearity

Spectra with different radioactive sources were acquired with the LaBr3 crystal in

order to test the linearity of the detector in the range of 122 keV up to 1275 keV. A list

of the radioactive sources employed with their corresponding energy can be found in

table 3.1.

For each event, the signals acquired in all the photodetector elements were added

to calculate the total energy deposited in the crystal. The photopeak position was fitted

with a Gaussian function and its position in ADC units was plotted as a function of the

source energy. The detector shows a linear behaviour up to 1275 keV, as it can be

seen in figure 3.7.
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Figure 3.8: 22Na energy spectrum obtained with the LaBr3 crystal coupled to the MPPC

matrix. The energy resolution was 7% FWHM at 511 keV.

3.4.3 Energy resolution

The energy resolution of the LaBr3 scintillator crystal was first measured with a

PMT in order to compare it to the value given by the manufacturer. The PMT model

employed was a Hamamatsu R6236 read out by an Atomki MCA8k-01 Multichannel

Analyzer (MCA). The energy resolution obtained was 5.8% FWHM at 511 keV. The

value given by the manufacturer was around 4% FWHM.

The energy resolution obtained with the LaBr3 crystal coupled to the SiPM array

and read out by the SPIROC ASIC, without applying any input DACs corrections,

was 7% FWHM at 511 keV (figure 3.8). Applying input DACs corrections, the energy

resolution obtained was 6.5% FWHM at 511 keV.

The energy resolution results could be limited due to the fact that the MPPC model

employed in the measurements had a 50% loss of active area because of the gaps

between SiPM elements, meaning that, in an interaction, half of the photons reaching

the sensor were lost.
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Figure 3.9: Time difference distribution triggering on the sum signal of all channels. The

timing resolution obtained was 3.1 ns FWHM.

3.4.4 Timing resolution

The timing resolution of the LaBr3 crystal coupled to the MPPC array and read

out by the SPIROC1 ASIC was measured in coincidence with a 1 mm × 1 mm ×
10 mm LYSO crystal wrapped in Teflon and coupled to a 1 mm × 1 mm MPPC from

Hamamatsu. A 22Na source was employed for this measurement. The trigger signal

provided by the SPIROC1 ASIC was connected to one channel of a LeCroy WavePro

940 oscilloscope. The output signal of the 1 mm × 1 mm MPPC was connected to

another channel of the oscilloscope. The time difference between these two signals

was histogrammed and the distribution was fitted with a Gaussian function.

A timing resolution of 7.2 ns FWHM was obtained with this method [37]. As

mentioned in section 3.3, the trigger signal generated by the SPIROC1 ASIC was given

by the logic OR of the 16 channels connected, with a common threshold value set

for all channels. This approach was appropriate for pixelated crystals, in which each

crystal behaved as an independent detector. But this approach was not optimized for

timing measurements with continuous crystals.

With the aim of improving the timing measurement with continuous crystals, an

alternative method was tested employing the sum output of the detector PCB, described

in section 3.2.1, as the detector trigger signal. With this method, the result obtained

was 3.1 ns FWHM, as it can be seen in figure 3.9. This result supported the idea that

triggering on the sum signal of all channels could be more appropriate for continuous

crystals rather than an OR trigger.
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Figure 3.10: Recovered planar interaction location for a 22Na point-like source placed in

three different positions. Red crosses represent the real position of the source.

3.4.5 Position determination

The position determination capabilities of this detector were tested employing the

position estimation method explained in section 2.3. A 22Na point-like source of 0.25

mm diameter was placed at different positions of the detector surface and operated in

time coincidence with a second detector (electronic collimation). The second detector

consisted of a 1 mm × 1 mm × 10 mm LYSO crystal coupled to a single SiPM of the

same area. The source was placed 5 mm away from the continuous crystal and at 30

mm distance from the second detector.

In figure 3.10, the recovered planar interaction location for the 22Na source placed

in three different positions is shown. The red crosses represent the real position of the

source. A spatial resolution of 0.7 mm FWHM was achieved in the whole surface of the

crystal selecting only the events that interacted close to the photodetector surface [38].
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Figure 3.11: Schematic representation of the experimental coincidence setup.

3.5 Coincidence tests

3.5.1 Experimental setup

In order to determine the detector performance in time coincidence, tests were

carried out using the previously described detector as a first layer of the telescope.

A second layer was added, consisting of a 12 mm × 12 mm × 5 mm LYSO crystal,

painted white in five faces and coupled to another 16 mm × 18 mm S11064-050P

MPPC array from Hamamatsu. The crystal was placed in one corner of the MPPC array,

covering 9 out of the 16 pixels. Each detector was attached to a PCB that provided a

common bias to the detector elements and routed the signal coming from each pixel to

the corresponding channel of the SPIROC1 ASIC. A plastic holder attached to the PCB

ensured the correct positioning of the crystal on the MPPC. A schematic representation

of the setup can be seen in figure 3.11.

A 22Na source was employed in the coincidence tests. Photons underwent Comp-

ton scattering in the first detector and interacted in the second detector through a

second Compton interaction or suffering photoelectric absorption. Each detector was

connected to a SPIROC1 board that generated an individual trigger signal. The triggers

generated in the two boards were led to a NIM coincidence unit to determine when a

photon interacted in both detectors. A hold signal was then generated and sent back to
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Figure 3.12: Picture of the experimental setup with the source located on the first detector.

the ADCs in each board to digitize the data. A dedicated LabView program capable of

handling two SPIROC1 boards was employed as data acquisition software. A picture

of the experimental setup is shown in figure 3.12.

3.5.2 Energy spectra

Energy spectra were taken from the two detectors in two different ways: from each

detector independently (without coincidence) for energy calibration purposes, and from

both detectors working in time coincidence. A 22Na (511 keV and 1275 keV) source

with 8 kBq activity was employed.

The energy spectra obtained with the two detectors can be seen in figure 3.13. As

a reference, the spectra acquired without coincidence are shown in figure 3.13 (a) for

the LaBr3 and in (b) for the LYSO. The energy resolution obtained for the LaBr3 crystal

alone was 8.3% FWHM at 511 keV biased at the operating voltage indicated by the

manufacturer. For the LYSO crystal alone, an energy resolution of 18.3% FWHM at

511 keV was obtained in this test.

Figure 3.13 (c) and (d) show the spectra acquired when both detectors were

operated in time coincidence. In the first detector (figure 3.13 (c)), only the low

energy region of the Compton continuum was recorded because only forward scattered

photons could be detected due to the geometrical distribution of the detectors. A small

peak in the Compton region can be seen in figure 3.13 (c) around 280 keV. This peak

was due to the photons that interacted first in the second detector and backscattered

to the first detector. In the second detector (figure 3.13 (d)), higher energy events were
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Figure 3.13: Reference energy spectra of LaBr3 (a) and LYSO (b). Coincidence energy

spectra of LaBr3 (c) and LYSO (d).

recorded because in most events the photon was fully absorbed. In both detectors, the

photopeaks should disappear when working in time coincidence mode, but peaks can

be seen in figure 3.13 (c) and (d) at 511 keV. Further studies showed that these peaks

were mostly due to coincidence events between a 511 keV and a 1275 keV gamma.

Figure 3.14 shows the sum of the energies recorded in both detectors when

operated in time coincidence (figure 3.13 (c) and (d)). The photopeak appeared again,

as a result of summing the energies of the photons scattered in the first detector and

fully absorbed in the second detector. Events at energies lower than the photopeak

corresponded to the events that Compton scatter in both detectors. The events

corresponding to 1275 keV gamma rays that escaped the second detector can be seen

at energies higher than 511 keV.
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Figure 3.14: Sum energy spectrum of both detectors.

Figure 3.15: Energy recorded in the second detector (LYSO) versus the energy recorded

in the first detector (LaBr3) in the data taken with the 22Na source.

Figure 3.15 shows the energy recorded in the second detector (LYSO) versus the

energy recorded in the first detector (LaBr3) in the data taken with the 22Na source.

The diagonal lines corresponded to the photons scattered in the first detector, and

absorbed in the second detector, with 511 keV or 1275 keV total energy. The horizontal

and vertical lines corresponded to random coincidences with full absorption in one

layer.
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Figure 3.16: Coincidence timing resolution distribution obtained of 2 ns FWHM.

3.5.3 Coincidence timing resolution

The coincidence timing resolution of the two detector layers also was measured.

The trigger signal provided by the SPIROC1 ASIC of the first layer was connected

to one channel of an oscilloscope. The trigger signal provided by the SPIROC1

ASIC of the second layer was connected to another channel of an oscilloscope. The

coincidence signal provided by the coincidence unit was used as an external trigger

in order to record only coincidence events. The time difference between the trigger

signals from the two detectors provided by the SPIROC1 boards was histogrammed

and the distribution was fitted with a Gaussian function. A timing resolution of 10 ns

FWHM was obtained with this method.

The coincidence timing resolution was also measured employing the sum output in

the PCBs of both detectors, as described in section 3.2.1. With this method, the result

obtained was 2 ns FWHM, as it can be seen in figure 3.16. Again, this results indicates

that triggering on the sum signal of all channels is important for continuous crystals.
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3.6 Work beyond this thesis

The tests described in this chapter were part of the first proof of concept of a

Compton telescope. Images of point-like sources were obtained with this prototype

and published in [39]. The results obtained demonstrated the feasibility of operating

the system and led to a second version of the prototype consisting of a three-layer

telescope with detectors four times bigger [40]. The increase in the number of channels

made it necessary to move from the SPIROC1 ASIC and its 36 channels to another

ASIC. The electronics employed in the second version of the prototype was based on

the VATA64HDR16 ASIC, fully described in chapter 5. The performance of this second

prototype of the Compton telescope was tested in-beam and the results were published

in [41].

The author of this thesis is currently working on the third generation of the Compton

telescope. The MPPC arrays employed as photodetectors are going to be updated

to the last available model from Hamamatsu (S13361-3050AE-08), improving several

specifications. Besides, the suitability of CeBr3 (Cerium (III) Bromide) for this application

is being investigated.



Chapter 4

First prototype of a small animal

PET based on SiPMs and

continuous LYSO crystals

4.1 Introduction

In a PET scanner, the two main parameters to maximize are sensitivity and spatial

resolution. Traditionally, commercial PET scanners employ detector blocks consisting

of segmented scintillation crystals coupled to an array of PMTs. The position of the

interaction is determined by identifying the crystal in which the interaction took place.

The pixelated crystals are surrounded by reflective material to separate them and

channel the scintillation light generated in an interaction. Thus, the spatial resolution

depends on the crystal size and the photodetector ability to separate the crystals in

the block. Reducing the crystal size improves the spatial resolution, but it increases

the amount of dead space due to segmentation and therefore it reduces the sensitivity.

Reducing the crystal size also increases the complexity of the readout electronics and

the detector cost.

The use of continuous crystals can improve both sensitivity and spatial resolution

simultaneously [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. The lack of segmentation

increases the active volume and therefore sensitivity. Spatial resolution is not longer

limited by crystal size and the position of the interaction is now determined by the

scintillation light distribution over the photosensor array. Moreover, monolithic crystals

are significantly lower in cost than pixelated crystals, since no segmentation is needed.
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PMTs are the most used photosensors in commercial PET scanners. Their main

properties are a high sensitivity for extremely low light intensities and a fast response,

at the expense of being bulky photodetectors. Besides, PMTs cannot be operated in

the presence of a magnetic field, preventing the development of multimodality PET-MR

systems. In the last years, SiPMs have emerged as a candidate to substitute PMTs

in PET applications [54, 55, 56, 57, 58, 59, 60, 61], offering high gain, fast timing

properties, compactness and insensitivity to magnetic fields.

The first part of this chapter describes the characterization of a PET detector head

based on continuous LYSO crystals and SiPM arrays as photodetectors for its use in

the development of a first prototype of a small animal PET scanner. In the second part

of this chapter, two detector heads were mounted and operated in time coincidence,

obtaining tomographic images. In the last part of this chapter, test of novel geometries

were carried out employing GEANT4 simulations.

4.2 Detector description

The detector heads employed in the first prototype of a small animal PET consisted

of a continuous LYSO crystal coupled to a 64-pixel SiPM matrix. Three LYSO crystals

with different types of painting (white, black and black and white) were tested, and a

pixelated crystal array was employed to evaluate the matrix uniformity.

4.2.1 SiPM matrices

At the time this thesis was developed, there were no commercially available SiPM

matrices. The Center for Scientific and Technological Research (FBK-irst) developed

the monolithic SiPM matrices employed in the first prototype of a small animal PET.

Monolithic matrices have the advantage that the signal is routed from each pixel to the

side of the detector by means of readout lines, instead of wire-bonds that require more

space, thus minimizing the dead area between the pixels. They consisted of 64 SiPM

elements distributed in an array of 8 × 8 pixels in a common substrate. The matrices

had readout pads on two sides, with 32 channels on each side. Each channel had an

active area of 1.5 mm × 1.4 mm and had 840 microcells of 50 µm × 50 µm size with a

fill factor of about 35%. The microcells had a n-on-p structure optimized to enhance the

photon detection efficiency (PDE) at 420 nm. The pitch was 1.5 mm in both directions.

There was no gap between the 8 pixels in each row, but below each row there was
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Figure 4.1: SiPM matrix from FBK-irst composed of 64 elements of 1.5 mm × 1.4 mm

and readout in two sides.

a dead space of 0.1 mm for the readout lines to reach the sides of the detector. The

active area of the SiPM matrix was 12 × 12 mm2. A picture of the matrix can be seen

in figure 4.1.

The matrix was glued and wire-bonded to a custom-made printed circuit board

(PCB) for bias and mechanical support. Since the matrix was fabricated on a common

substrate, the same bias voltage was applied to all channels in the matrix through the

backplane. The output polarity of the SiPM elements was negative. The PCB routed the

signal coming from each pixel to the corresponding channel of the readout electronics.

The breakdown voltage of the SiPM matrix was around 30 V. The measurements

performed in the following sections were obtained with the matrix operated at 4.5 V

above the breakdown voltage, unless otherwise stated.

4.2.2 LYSO crystals

The continuous LYSO crystals employed were manufactured by Hilger Crystals.

Their sizes were 12 mm × 12 mm × with 5 and 10 mm thickness, matching perfectly

the area of the SiPM matrix. The effect of the color of the painting on the surface of the

crystal was investigated. To do so, three different LYSO crystals with three different

types of painting were evaluated. All of them were painted in five faces, leaving one 12

mm × 12 mm without painting to couple to the photodetector. The so-called white slab

was painted in white in five faces. The black slab was painted in black in five faces.

The black and white slab was painted in white on the face opposite to the SiPM matrix

and in black on the sides.

For the detector uniformity tests, a pixelated crystal array was coupled one-to-one
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Figure 4.2: Crystals employed in the tests. Top left: crystal array. Top right: black and

white slab. Bottom left: white slab. Bottom right: black slab.

Figure 4.3: Detector head consisting of a 12 mm × 12 mm × 5 mm LYSO crystal painted

in white coupled to a SiPM matrix. A PCB provides electrical connections and mechanical

support. A plastic holder ensures the correct positioning of the crystal.

to the SiPM matrix. The crystal array was composed of 64 LYSO crystals of 1.4 mm ×

1.4 mm × 10 mm size, separated with 100 µm of white epoxy resin. A picture of the

crystals employed in the tests can be seen in figure 4.2.

For the test of novel geometries, tapered crystals were employed.

A plastic holder ensured the correct positioning of the crystal on the SiPM matrix

and the PCB. A picture of the whole detector head can be seen in figure 4.3.
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4.3 Readout electronics

The readout electronics employed was the MAROC2 (Multi Anode Read-Out Chip)

ASIC [62] developed at the Linear Accelerator Laboratory (LAL, Orsay). This ASIC

was originally designed for the readout of multi-anode PMTs (Hamamatsu H7546)

employed in the Roman Pots of the ATLAS luminometer, at CERN. Those multi-anode

PMTs had negative output polarity, as well as the SiPM matrices employed in the

prototype and described in section 4.2.1. Nevertheless, the ASIC was not optimized for

the readout of SiPMs nor for PET applications, and its performance could be improved

in some aspects.

The MAROC2 ASIC had 64 channels. Each channel had a preamplifier with a 6-bit

adjustable gain stage. A slow shaper with variable shaping time provided the shaped

signal, the amplitude of which was proportional to the input charge. The preamplifier

was followed by a slow shaper with variable shaping time. The shaping time was set to

the longest possible (about 120 ns) to integrate the LYSO signals. In parallel, trigger

signals were obtained via a fast shaper (15 ns) followed by a level discriminator. A

common threshold was applied to all discriminators that could be adjusted by means

of a 12-bit DAC. The trigger signal generated by the MAROC2 ASIC was given by the

logic OR of the 64 trigger outputs of the ASIC channels. The trigger was employed to

generate a HOLD signal in an external NIM gate generator, which was sent back to the

board to sample the shaped signal at its maximum. The diagram of one channel of the

MAROC2 ASIC can be seen in figure 4.4

For each event recorded, the signals coming from the 64 slow shapers were

digitized using a 12-bit ADC located on the test board and multiplexed in a single

analog charge output. The ASIC was connected to a test board with a FPGA Altera

Cyclone that controlled the ASIC operation and the communication with the computer

through USB protocol. A picture of the evaluation board can be seen in figure 4.5. A

dedicated LabView program was employed for the ASIC test and data acquisition.
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Figure 4.4: MAROC2 single channel diagram.
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Figure 4.5: MAROC2 ASIC evaluation board.
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Figure 4.6: MAROC2 ASIC relationship between input charge and ADC units for five

different channels.

4.4 Detector characterization

Characterization tests were carried out to determine the performance of the detec-

tor. Results were published in [49].

4.4.1 Input charge range

In order to establish a correlation between input charge and ADC units, a voltage

pulse was sent through a 47 nF capacitor to one channel of the ASIC. Figure 4.6 shows

the ASIC response to an injected calibration pulse as a function of the injected charge

for five channels. The ASIC had a linear response from 10 pC up to 80 pC, with a

uniformity in the channel response of about 1%, and then it started to deviate from

linearity until it reached complete saturation. The typical signals coming from the SiPM

matrix were in the linear region.
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(a) (b)

Figure 4.7: (a) 2D plot of the 22Na photopeak position for all pixels in the matrix. (b)

Distribution of the mean values of the fitted photopeak positions. The standard deviation

was 7.3%.

4.4.2 Uniformity

The uniformity of the 64 channels was evaluated coupling the pixelated LYSO

crystal array described in section 4.2.2 one-to-one to the pixels in the SiPM matrix.

The amount of light per channel in pixelated crystals is larger than in continuous

crystals. Thus, in order to have signals in the individual pixels in a range comparable to

the ones obtained with continuous crystals, a 2 V overvoltage was employed in this

measurement. Data were taken with a 22Na source placed at a distance far enough

from the detector to ensure an homogeneous distribution of the emitted gamma rays

among the photodetector elements. An energy spectrum was obtained for each

detector channel and the 511 keV photopeak was fitted with a Gaussian function in

each case.

Figure 4.7 (a) shows the mean value of the photopeak position in ADC units for each

channel, as a function of the pixel location. The channel with no signal corresponded to

a dead channel in the ASIC, and it was excluded from the calculations of the uniformity.

Figure 4.7 (b) shows the distribution of the peak positions of the 64 channels, fitted with

a Gaussian function. The distribution of the peak positions, which included variations

of the electronics and crystals, had a standard deviation of 7.3%. No corrections were

applied to the individual photodetector elements.
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Table 4.1: Sources employed for the detector calibration.

Isotope Energy (keV)
57Co 122
133Ba 356
22Na 511
137Cs 662
54Mn 835
22Na 1275

Figure 4.8: Photopeak position in ADC units as a function of the source energy obtained

with the white slab. The behaviour was linear up to 1275 keV.

4.4.3 Linearity

Among the crystals employed in the tests, the white slab was the one that gave

the highest amount of light per pixel, therefore having a higher probability of saturating

the photodetector. For this reason, spectra with different radioactive sources were

acquired with the white slab to test the linearity of the detector in the range of 122 keV

up to 1275 keV. A list of the radioactive sources employed with their corresponding

energy can be found in table 4.1. For each event, the signals acquired in all the

photodetector elements were added to calculate the total energy deposited in the

crystal. The photopeak position was fitted with a Gaussian function and its position in

ADC units was plotted as a function of the source energy. The detector shows a linear

behavior up to 1275 keV, as it can be seen in figure 4.8.
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Table 4.2: Energy resolution measured for the three crystals.

Crystal Energy resolution (FWHM)

White 15%

Black 26%

Black and white 30%

Figure 4.9: 22Na energy spectrum for the white slab. The energy resolution obtained was

15% FWHM at 511 keV.

4.4.4 Energy resolution

The energy resolution of the three LYSO crystals coupled to the same SiPM matrix

and read out by the MAROC2 ASIC was evaluated employing a 22Na source. The

511 keV photopeak was fitted with a Gaussian function and the energy resolution was

calculated for each of the three crystals.

Table 4.2 shows the energy resolution measured for the three crystals. The energy

resolution at 511 keV was 15% FWHM for the white slab, 26% FWHM for the black slab

and 30% for the white and black slab. Figure 4.9 shows the 22Na spectrum obtained

with the white slab. The white crystal offered the best energy resolution because the

reflection of the light on the sides and the back of the crystal resulted in a larger amount

of light reaching the photodetector.
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Table 4.3: Timing resolution measured for the three crystals in coincidence with a BaF2

crystal coupled to a PMT.

Crystal Timing resolution (ns FWHM)

White 6.0

Black 6.8

Black and white 8.7

Figure 4.10: Timing distribution for the white slab in coincidence with a BaF2 crystal

coupled to a PMT. The timing resolution obtained was 6.0 ns FWHM.

4.4.5 Timing resolution

The timing resolution of the three LYSO crystals described in section 4.2.2 cou-

pled to the same SiPM matrix and read out by the MAROC2 ASIC was measured

in coincidence with a 5.5 mm × 5.5 mm × 5 mm BaF2 crystal coupled to a PMT

Hamamatsu H5783. The trigger signal provided by the MAROC2 ASIC was connected

to one channel of a LeCroy WavePro 940 oscilloscope. The output signal of the PMT

was discriminated and then split in two. One part of the signal was connected to

another channel of the oscilloscope for the timing measurement. The other part of the

signal was connected to the MAROC2 ASIC as an external trigger in order to perform

the coincidences between this external trigger and the internal trigger coming from

detected events in the SiPM matrix. The coincidence signal generated by the MAROC2

ASIC was also connected to the oscilloscope and employed as a trigger. The time

difference between the trigger signals provided by both detectors was histogrammed
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and the distribution was fitted with a Gaussian function.

Table 4.3 shows the timing resolution obtained with the three different crystals.

The timing resolution was 6.0 ns FWHM for the white slab, 6.8 ns for the black slab

and 8.7 ns for the black and white slab. Figure 4.10 shows the timing distribution

obtained with the white slab. The white crystal provided the best timing resolution

due to the higher amount of photons reaching the photodetector per event detected.

Nevertheless, the use of continuous crystals results in a relatively low amount of light

per pixel, which gives poor timing performance. The trigger signal of the detector head

was generated by the FPGA as the OR signal of the 64 trigger outputs of the ASIC

channels. This approach was not optimized for timing measurements with continuous

crystals. Possible improvements would be to employ a signal given by the sum of the

signals of all the pixels in the matrix to generate a trigger. Another option would be

to implement a double threshold system that allows to trigger at low threshold levels,

while selecting only the photopeak events.

4.4.6 Position determination

The main disadvantage of continuous crystals is the difficulty to determine ac-

curately the interaction position of the gamma rays in the crystal, in particular when

it takes place close to the crystal edges. Center Of Gravity (COG) and Maximum

Likelihood (ML) methods were tested in the early stages of the prototype [49]. The

COG method failed to reconstruct the real interaction position close to the edges with

the black crystal and in the whole surface for the white crystal, suffering from a com-

pression effect. The ML method was successfully applied and it improved the position

determination also in the case of white crystals, providing the correct positioning in

the whole surface with the three crystals. The main drawback of this method was

that it required a previous calibration of the Light Response Function (LRF) of the

whole surface of the detector, and the calibration needed to be repeated each time the

detector conditions changed.

To overcome the problems of the above mentioned approaches, the position

determination method explained in section 2.3 was employed. In order to test the

position determination algorithm, a 22Na point-like source of 0.25 mm diameter was

placed at different positions of the detector surface and operated in time coincidence

with a second detector (electronic collimation). The second detector consisted of a 1

mm × 1 mm × 10 mm LYSO crystal coupled to a single SiPM of the same area. The
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Figure 4.11: Schematic representation of the setup employed for the position determina-

tion tests.

source was placed 5 mm away from the continuous crystal and at 30 mm distance from

the second detector. A schematic representation of the setup employed can be seen in

figure 4.11.

Experimental data were obtained with the 5 mm and 10 mm thick white crystals

[63]. For the 5 mm thick crystal, data were taken at four different interaction points.

Figure 4.12 shows the distribution of the reconstructed positions at the four different

interaction points. The average spatial resolution of the reconstructed positions for

the 5 mm thick crystal was 0.69 ± 0.08 mm FWHM. Figure 4.13 shows a profile in x

through the maximum of the distribution for the position A, the closest to the center of

the crystal in figure 4.12. The FWHM of the profile was 0.7 mm.

For the 10 mm thick crystal, data were taken at nine different interaction points.

Figure 4.14 shows the distribution of the reconstructed positions at the nine different

interaction points. The average spatial resolution of the reconstructed positions for the

10 mm thick crystal was 0.73 ± 0.11 mm FWHM.

Results obtained for the 5 mm and 10 mm thick white crystal are summarized in

table 4.4. It must be noted that at that point events interacting far from the photodetector

were cut due to a high threshold operation. This resulted in an artificially improved

spatial resolution that gets closer to 1 mm FWHM when events in the whole crystal

thickness are considered [23].
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Figure 4.12: Distribution of reconstructed interaction positions at four different interaction

points for the 5 mm thick white crystal.

Figure 4.13: Profile through the maximum of the distribution of reconstructed positions

for an interaction point close to the center of the crystal. The FWHM is 0.7 mm.
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Figure 4.14: Distribution of reconstructed interaction positions at nine different interaction

points for the 10 mm thick white crystal.

Table 4.4: Average position reconstruction results for the 5 mm and 10 mm thick white

crystal.

5 mm thick 10 mm thick

FWHM (mm) 0.69 ± 0.08 0.73 ± 0.11

FWTM (mm) 1.89 ± 0.22 2.0 ± 0.1
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Figure 4.15: Picture of the experimental rotating system employed to take tomographic

data at different angles.

4.5 Coincidence tests

4.5.1 Experimental setup

In order to test the imaging capabilities of the detector described in the previous

sections, a first prototype of a small animal PET was assembled. The prototype

consisted of two detector heads placed in front of each other. Tests were carried out

with continuous crystals of size 12 mm × 12 mm × 5 mm painted white on five faces.

The detector heads were fixed to a methacrylate frame for mechanical support and

alignment of the system. The frame was attached to a rotating stage MICOS DT-65N

and the sources to be imaged were stationary at the center of the system in a field

of view (FOV) of 12 × 12 × 12 mm3. The distance between detectors was 45.8 mm,

making it possible to cover six angular positions from 0◦ to 150◦ at 30◦ steps.

Each detector was connected to a MAROC2 board through a ribbon cable. The

trigger signals generated by the two boards were led to a NIM coincidence unit CAEN

N455. The coincidence signal was sent to a custom made NIM gate generator to

produce a HOLD signal that was sent back to the two boards to digitize the recorded

event. A dedicated DAQ program developed in LabView controlled the rotation stage

and the data acquisition of the two detectors simultaneously, and stored the digitized
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Figure 4.16: Transaxial (left) and sagittal (right) views of a point-like source reconstructed

with the MLEM algorithm employing continuous white crystals. The FWHM was 0.9 mm in

average.

data from all channels of the two detectors for each coincidence event for further

processing. A picture of the experimental rotating system can be seen in figure 4.15.

4.5.2 Image reconstruction

To reconstruct the first tomographic images, a standard Maximum Likelihood Ex-

pectation Maximization (MLEM) algorithm was implemented [64]. In order to model the

scanner, the volumes of the continuous crystals were divided into virtual subvolumes.

Lines of response (LORs) were obtained by taking all the possible pairs of subvolumes

between the two detectors. The format used in the reconstruction was LOR-histogram

[65]. The system matrix employed in the MLEM algorithm was computed using the

Siddon multi-ray tracing technique. The system matrix took into account the main

geometrical component (solid angle), as well as finite size of the (virtual) detectors.

Positron range and acollinearity were ignored. A Gaussian filter was applied to the

image volumes to reduce the noise. The FOV of the reconstructed image volumes was

12 × 12 × 12 mm3 and the image voxel was 0.5 mm3 in all cases.

Figure 4.16 shows a reconstructed 22Na point-like source of 1 mm nominal diameter

placed close to the center of the FOV with continuous white crystals. The FWHM

obtained averaging the results of the two dimensions was 0.9 mm.
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Figure 4.17: Transaxial view of two point-like sources reconstructed with the MLEM

algorithm employing continuous white crystals. The FWHM was 1.1 mm in average.

Figure 4.18: Example of a profile through the maximum of the reconstructed image of

one of the sources of figure 4.17. The FWHM was 0.95 mm.

Figure 4.17 shows the reconstructed image of two point-like sources separated 5

mm in the same transaxial plane obtained with continuous white crystals. The average

FWHM for the two sources was 1.1 mm. In order to determine these values, the profile

through the maximum of the source distribution along the axes was obtained. The

FWHM was determined employing linear fits. Fig 4.18 shows an example of one of

these profiles, with a FHWM of 0.95 mm.

Figure 4.19 shows the reconstructed image of a disc source of non-uniform activity

distribution. The image represents the field of view of 12 mm × 12 mm. The source

diameter was known to be about 5 mm, which is consistent with the reconstructed

image.
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Figure 4.19: Reconstructed image of a disc source of non-uniform activity distribution.

The source diameter was about 5 mm.

The version of the MLEM algorithm employed for the reconstruction of the previous

images did not take advantage of the continuous nature of the crystals because of the

discretization of the volumes of the crystals in order to obtain the LORs. With the aim of

fully take advantage of continuous detectors, a second version of the MLEM algorithm

was implemented [66], in which the coordinates of the estimated interaction position

were stored in list-mode format. If the acquired data were represented in continuous

space, the elements of the transition matrix required for MLEM could not be pre-

calculated and stored, hence they were calculated on the fly. For accurate calculation

of the transition matrix elements, the ray-end points corresponding to the estimated

position interactions of two events of a given coincidence without discretization were

used, including an uncertainty model. This algorithm, called Simulated One-Pass

List-Mode (SOPL) [67], was adapted to this detector.

In order to test this approach, data were taken with a 22Na point-like source of 0.25

mm nominal diameter at five different positions along the diagonal line of the detector

and reconstructed with SOPL with the 5 mm thick white crystal, moving 1 mm in both x

and y for each step. The absolute positions in the detector could not be determined.

The nominal (0,0) position was taken as the closest achievable by the positioning

system to the center of the crystal. The relative positions from one point to the next

one were set with an accuracy about 0.3 mm FWHM. Figure 4.20 shows a profile of the

reconstructed images of the five different positions. The differences in the peak height
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Figure 4.20: Profile of the reconstructed images along a diagonal line for the 5 mm thick

crystal.

Figure 4.21: Nominal source positions along the diagonal (crosses) and maximum of the

reconstructed positions (circles) for the 5 mm thick crystal. The squares represent the

maximum of the reconstructed positions, shifted by the same offset.
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Table 4.5: Reconstructed position along a diagonal for the 5 mm thick crystal.

Nominal Reconstructed X FWHM Y FWHM Average

(mm) (mm) FWHM (mm)

0 , 0 0.25 , -0.75 0.93 0.66 0.78

1 , 1 1.25 , 0.75 1.04 0.7 0.87

2 , 2 2.75 , 1.75 0.72 0.67 0.70

3 , 3 3.75 , 2.75 0.8 0.71 0.76

4 , 4 4.25 , 3.75 0.67 0.79 0.73

were mainly due to misalignments in the source position along the diagonal, so that the

profile was not taken at the maximum for all positions. Figure 4.21 shows the nominal

source positions along the diagonal (crosses) and the maximum of the reconstructed

positions (circles) for the 5 mm thick crystal. If a common shift was applied to the

reconstructed positions (squares), the coincidence with the nominal positions was quite

good in spite of the approximate source positioning system, with three points matching

perfectly with the nominal position, and two more containing a constant shift in the x

direction, and a perfect match in the y direction. The reconstructed position for each

point is shown in table 4.5. The average FWHM measured from all of the positions,

including x and y profiles, was 0.77 mm for the 5 mm thick crystal. The measurement

was repeated with the 10 mm thick white crystal and the average FWHM obtained from

all the positions was 0.81 mm.

4.6 Test of novel geometries

One of the most important and critical choices to be made was the selection of

the scintillator crystal geometry. Apart from the traditional cuboid crystals, innovative

scintillator geometries such as tapered crystals were considered for reduction of the

gaps between detectors and therefore increase the full-ring sensitivity [68].

Simulations are a powerful tool for testing different geometries and their impact on

detector behavior in an easy way. They also help to understand complex physical pro-

cesses that take place inside the scintillator crystal or in the crystal-detector interface.

A GEANT4 [69, 70] simulation of one detector head was implemented including gener-

ation and transportation of optical photons for a better understanding of its response

and to predict its performance in different conditions [71]. The aim of the simulations

carried out was not to have a perfectly accurate model of the detector, but to have a
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Figure 4.22: Schematic cross-section of the simulated geometry.

Table 4.6: Materials and properties

Material Chemical Density Refractive

composition (g/cm3) index

Air N0.7O0.3 1.29 1.00

Silicon Si1 2.23 4.24

Optical grease C1H1O1 1.00 1.70

Crystal Lu1.8Y0.2Si1O5 7.1 1.81

relatively simple and fast tool to reproduce the experimental tests. This allowed us to

understand the behavior of optical photons independently from other effects, like the

readout electronics chain. Some approximations were made: the non-inclusion of the

LYSO natural radioactivity and the simulation of 511 keV photons instead of a 22Na

source. This entailed excluding the second 1275 keV photopeak, the acolinearity and

the scatter produced by the radioactive source holder. No energy cuts were applied.

The optical model employed to simulate the reflections of the optical photons in the

crystal was the unified model. The crystal-air surface was simulated with the attribute

polished and a reflectivity of 0.8. The SiPM elements were declared as sensitive

detectors embedded on an inactive common silicon substrate. Each SiPM element is

1.5 mm× 1.4 mm with a 0.1 mm gap in one direction, reproducing the distribution of the

real prototype described in section 4.2.1. A schematic cross-section of the simulation

can be seen in figure 4.22 and a description of the material properties employed is



74 4. First prototype of a small animal PET

hchanres 

Entrles 130112 
P"--------------------------

Mean 34.11 

10 20 30 40 

Slmulated light dlstrlbutlon 

50 

RMS 15.53 

60 

hNpxPx 

Entrles 401436 
-----------------------------. 

Mean 32.68 

10 20 30 40 50 

RMS 18.29 

60 

Figure 4.23: (Top) Real light distribution inside the 5 mm width cuboid crystal. (Bottom)

Simulated light distribution inside the 5 mm width cuboid crystal.

shown in table 4.6. An intrinsic energy resolution of 7.3% was considered for the LYSO

crystal [72].

The comparison of the simulated and experimental data was done in terms of

light distribution, plotting the number of events measured in the photodetector versus

the channel number. The optical photons that interacted in the sensitive elements of

the SiPM array were considered for the data analysis. The 511 keV photon source

simulated was a pencil beam oriented normally to the crystal surface and placed at

different positions. Once a gamma ray had interacted inside the scintillator crystal, light

was spread all over the crystal. Those SiPM elements immediately under the interaction

position received more light, creating peaks in the light distribution. SiPMs elements

further from the interaction position received less light, creating valleys. Groups of 8

channels were expected due to the geometric positioning of the SiPM pixels.
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Figure 4.24: Tapered crystal geometries that were simulated.

For all crystal geometries, channels 3, 4, 5, 6, 12, 14 and 60 in the real detector

gave no signal because they corresponded to dead channels.

4.6.1 Cuboid crystal geometry

A simulation of a cuboid geometry of a 12 mm × 12 mm LYSO crystal was carried

out, with 5 mm and 10 mm width. Photons were simulated to interact in the center of

the crystal and results were compared to real data obtained in the same position.

Figure 4.23 shows the comparison for the 5 mm width squared crystal between

experimental data (top) and simulated data (bottom). Results showed good agreement

between real and simulated data, demonstrating that our simulation was capable of

reproducing experimental results.

4.6.2 Tapered crystals geometries

Once we had a simulation for cuboid crystals, tapered crystal geometries were

implemented. The use of tapered crystals allows to reduce the gap between detectors.

In addition, the placement of the photosensor in the entrance surface of the crystal

was expected to improve the performance of the detector in comparison with the

conventional placement of the photosensor on the rear surface of the crystal in terms

of DOI positioning accuracy [73], so this approach was also included in the simulations.

A schematic view of the four simulated tapered geometries can be seen in figure 4.24.

Two main configurations based on tapered crystals were implemented. One of them

was with the placement of the photosensor on the rear surface of the crystal, so in order

to form a ring of detectors the crystal must close towards the center of the scanner
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Figure 4.25: (Top) Real light distribution inside the 5 mm tapered close crystal. (Bottom)

Simulated light distribution inside the 5 mm tapered close crystal.

to allow the positioning of the rest of the crystals (tapered close, figure 4.24 a and c).

The other one was with the placement of the photosensor in the entrance surface of

the crystal, so in order to form a ring of detectors the crystal must open to allow the

positioning of the rest of crystals (tapered open, figure 4.24 b and d).

First, a simulation for the 5 mm width tapered crystal was carried out and the light

distribution was compared to experimental data. Figure 4.25 shows the comparison for

the 5 mm width tapered close crystal between experimental data (top) and simulated

data (bottom). Results showed good agreement between real and simulated data, so

the remaining tapered geometries were simulated.



4.6 Test of novel geometries 77

Figure 4.26: (Top) Simulated tapered close 5 mm spectrum. (Bottom) Simulated tapered

open 5 mm spectrum.

Table 4.7: Tapered close vs. tapered open

Crystal Peak position Energy resolution

Tapered close 5 mm 9345 17.8% FHWM

Tapered open 5 mm 6842 21.9% FWHM

4.6.2.1 Tapered open vs. tapered close

In order to obtain more information about the behavior of the optical photons inside

the different tapered geometries, a 5 mm width tapered open crystal was simulated

and compared to the previous 5 mm width tapered close crystal simulation.

Figure 4.26 shows the simulated energy spectrum for the 5 mm tapered close

crystal and the 5 mm tapered open crystal. Based on the photopeak position, more
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Figure 4.27: (Top) Simulated tapered close 5 mm light distribution. (Bottom) Simulated

tapered open 5 mm light distribution.

photons reached the photodetector in the tapered close configuration. The energy

resolution of the 5 mm tapered close configuration was 17,8% FWHM meanwhile the 5

mm tapered open configuration was 21,9% FWHM. These results are summarized in

table 4.7. The anomalies in the photopeak shape were probably due to geometrical

factors and how the light was reflected on the sides of the tapered crystals.

Figure 4.27 shows the difference in the simulated light distribution inside the crystal

between the 5 mm tapered close crystal and the 5 mm tapered open crystal when

the same number of channels were illuminated. It can be seen that the background

produced in the tapered open crystal is larger than the background in the tapered

close.
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4.6.2.2 Position determination

The position determination method explained in section 2.3 was applied to the ta-

pered open and tapered close geometries employing the coincidence setup mentioned

in 4.4.6 and represented in figure 4.11. Real data were obtained in four different points

of the crystal and compared to simulations carried out in the same four points. The

center of the crystal was taken as the (0,0) position. The experimental measurements

did not have an absolute reference frame, but the relative distances were set with

micrometer accuracy. Points 1, 2 and 3 were separated 2 mm in x direction and point 4

was separated 2 mm in y direction from point 2.

Figure 4.28 shows a comparison between real data and simulated data for the 5

mm tapered close crystal in the position determination. Quantitative results can be

seen in table 4.8.

Figure 4.29 shows a comparison between real data and simulated data for the 5

mm tapered open crystal in the position determination. Quantitative results can be

seen in table 4.9.

Results obtained with the simulations of tapered crystals showed a different light

behaviour for different geometries, as expected, showing also good agreement with

experimental data. This demonstrated that our simulation could also be employed

with tapered crystals geometries. Nevertheless, the position determination algorithm

employed was exactly the same developed for cuboid crystals and it was not adapted

to tapered crystals. For this reason, position determination results are expected to

improve if the algorithm were adapted and took into account the particularities of each

of the tapered geometries employed.
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Figure 4.28: Position estimation in tapered close 5 mm in real data (left) and simulated

data (right).

Table 4.8: Reconstructed FWHM (mm) in tapered close 5 mm

Point Nominal position Real data Simulated data

1 1 , 1 1.07 1.02

2 3 , 1 1.02 1.05

3 5 , 1 0.71 1.23

4 3 , 3 0.95 0.77

Figure 4.29: Position estimation in tapered open 5 mm in real data (left) and simulated

data (right).

Table 4.9: Reconstructed FWHM (mm) in tapered open 5 mm

Point Nominal position Real data Simulated data

1 -1 , -1 1.00 0.88

2 -3 , -1 0.89 0.98

3 -5 , -1 0.78 1.03

4 -3 , -3 0.61 1.12
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4.7 Conclusions

In this chapter, different characterization tests were carried out to assess the

feasibility of applying the technology based on continuous crystals and SiPMs in the

development of a first prototype of a small animal PET scanner.

The comparison study between three different types of painting applied to the

crystal surfaces showed that the white crystal offered a much better performance in

terms of energy and timing resolution. Besides, the interaction position determination

method applied showed that it was capable of reconstructing the interaction position

with submillimetre spatial resolution, even near the edges of the crystal and without

any previous calibration. For these reasons, white crystals were chosen to mount a

rotating system consisting of two detector heads. First tomographic images of point-like

sources were obtained with a FWHM close to one millimetre.

Since the performance of the detector head was good, a GEANT4 simulation was

carried out to assess the possibility of employing different types of geometries, including

tapered crystals, in a future version of the prototype. Out of the framework of this thesis,

more simulations of the system were carried out, together with the acquisition of more

experimental data, in order to improve the position determination method. Results

were published in [23] and they represent the core of another thesis developed inside

the IRIS group.

The results presented in this chapter were promising, encouraging the development

of a second version of a small animal PET. The idea of building a full-ring scanner

made it necessary to consider new readout electronics, being the VATA64HDR16 ASIC

the chosen option. A full characterization of this ASIC is shown in chapter 5. The

second prototype of the small animal PET is fully explained in chapter 6.
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Chapter 5

Performance of VATA64HDR16

ASIC for medical physics

applications based on continuous

crystals and SiPMs

5.1 Introduction

As explained in previous chapters, both hadron therapy and PET applications

reached a point in which the readout electronics employed in the detectors needed to

increase the number of readout channels. In this situation, a cost effective approach

was to develop a versatile Data Acquisition (DAQ) system employing the same ASIC

for both applications. This approach allowed us to unify both research lines and to

carry out the developments within our research group. The main issue was that the

hadron therapy application employed MPPC arrays with positive output polarity and

the PET application employed SiPM matrices with negative output polarity. Besides,

SiPMs available at that time had a wide spread in the breakdown voltage of the pixels

in the array due to the manufacturing technology available.

The search of ASICs in the market at that time was very limited because there

were no ASICs specifically designed to work with continuous crystals. Some available

ASICs were under development and they had a reduced number of channels. Moreover,

these ASICs were usually designed for a specific input polarity, limiting the type of

SiPMs used with them. Some ASICs employed for the readout of scintillator crystals

and SiPMs were: NINO [74], MAROC [62], SPIROC [36], PETA [75], BASIC [76],
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Table 5.1: Some characteristics of ASICs employed for the readout of SiPMs.

ASIC Number Input Dynamic

of channels polarity range

NINO 8 + 300 pC

MAROC 64 - 80 pC

SPIROC 36 + 200 pC

PETA 40 + -

BASIC 32 - 70 pC

TOFPET 64 -/+ 200 pC

VATA64HDR16 64 -/+ -20 to 55 pC

VATA64HDR16 [77] and TOFPET [78]. Some characteristics of these ASICs can be

seen in table 5.1. The use of any of these ASICs with continuous crystals would lead

to a limited performance and results.

The VATA64HDR16 ASIC from Ideas [79] was chosen for several reasons: it had

a large enough number of channels, it was capable of working with both positive and

negative input signals and it allowed to adjust the bias for each channel independently.

Besides, the research group had previous experience with other chips of the same

family for other applications and a DAQ board previously developed by the group could

be adapted to operate this ASIC.

This chapter describes the tests carried out with the VATA64HDR16 ASIC, which

was employed in the second version of the Compton telescope and PET prototypes.

The results presented here are not intended to achieve the best possible performance

of the ASIC, but to evaluate its response in a particular situation for a given application

[80].

5.2 Experimental setup

5.2.1 ASIC

The VATA64HDR16 is a 64-channel, charge sensitive ASIC optimized for energy

and timing measurements with SiPM detectors. It is developed under a 0.35 µm

CMOS manufacturing process. It is based on a combination of the existing ASICs

VA32 HDR14.2 and TA32cg from Ideas. The functionality of these previous ASICs
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Figure 5.1: VATA64HDR16 single channel diagram.

had been complemented with new functionalities tailored for SiPM read-out [81]. Tests

performed with this ASIC by other research groups are shown in [77, 82].

Each channel consists of a charge sensitive preamplifier, a circuit for amplitude

spectroscopy and a circuit for triggering and timing. The preamplifier gain can be set
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Figure 5.2: Custom made data acquisition system based on the VATA64HDR16 ASIC.

to a low gain mode or a high gain mode by changing the feedback capacitance. The

preamplifier input works with both positive and negative input charges, although it is

optimized for positives, and it can be connected directly to the SiPM. The preamplifier

input potential can be programmed through a 8-bit digital-to-analog converter (input

DAC) in each readout channel allowing to adjust the bias voltage of each SiPM individ-

ually. The input potential can be decreased from a reference voltage in steps of 3.5 mV

within a range of almost 1 V. In systems with many SiPMs, the input DACs can be used

to adjust variations in the operating voltage or to actively control the operating point as

the SiPMs temperature or bias voltage changes. A block diagram of one channel of the

VATA64HDR16 ASIC can be seen in figure 5.1.



5.2 Experimental setup 87

The ASIC has a slow shaper and a fast shaper. The slow shaper is meant for

amplitude spectroscopy and its shaping time can be set to 50 ns, 100 ns, 150 ns or

300 ns. The default value for the slow shaper is 100 ns and all measurements shown

in this paper are performed with that value. The fast shaper provides the trigger signal.

The fast shaping time is fixed to 50 ns. The discriminator triggers when the output of

the fast shaper exceeds the discriminator programmable threshold. All channels can

be read out via the back-end which contains a multiplexer and an output buffer that

delivers a differential current and a differential voltage output. Both current and voltage

outputs were tested and differential current output showed a more linear behavior than

the differential voltage output. For this reason, all measurements performed in this

chapter were carried out with the differential current output.

5.2.2 Detector

The VATA64HDR16 ASIC was glued and wire-bonded on a custom made printed

circuit board (PCB) that provided the bias voltage for the SiPM arrays and mechanical

support. The ASIC was encapsulated with Dymax Multi-cure 9001-E-V3.5 [83] to

protect the bonds. Each PCB was connected to a custom made data acquisition (DAQ)

board equipped with a 12-bit ADC on board and an FPGA Spartan3 from Xilinx that

controlled the acquisition process and that was connected to the computer through

Ethernet connection [84]. A picture of the DAQ board can be seen in figure 5.2. A

graphical C++ user interface allowed to control the ASIC parameters. Data taking

generated an ASCII output file with a line per event detected. For each event, the ADC

value of the 64 channels was recorded.

The SiPM employed in the measurements performed in this chapter was a MPPC

array from Hamamatsu Photonics model S11064-050P(X1) with 16 channels of 3×3

mm2 size and 3600 microcells, as the ones employed for the Compton telescope in

chapter 3. The external dimensions of the device were 16×18 mm2. This model was

chosen because each channel had an independent anode and cathode, so a positive

or a negative output polarity could be obtained depending on the bias scheme. The

16-channel MPPC array covered one quarter of the 64 channels of the ASIC, as it can

be seen in figure 5.3 (a).

For the energy resolution studies, LYSO and LaBr3 monolithic scintillator crystals

of 16×18×5 mm3 were employed (figure 5.3 (b) and (c), respectively), covering the

whole MPPC surface. LYSO crystals were polished and painted in white in five faces,
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(a)

(b) (c)

Figure 5.3: (a) Picture of the PCB containing the VATA64HDR16 ASIC and the MPPC

array. (b) LYSO crystal of 16×18×5 mm3. (c) LaBr3 crystal of 16×18×5 mm3 surrounded

by reflective material and encapsulated in an aluminum housing.

being the non-painted face the one attached to the SiPM. The LaBr3 crystal was

surrounded with reflective material and encapsulated in an aluminum housing because

of its hygroscopicity.

For the coincidence timing resolution measurement, two LYSO crystals of 12×12×5

mm3 covering 9 out of the 16 MPPC channels were employed in order to perform

the measurement with two equal crystals. No optical grease has been employed to

couple the scintillator crystals to the MPPCs because tests performed in the laboratory

showed a malfunctioning of the MPPC array and a dramatic increase in its current

when optical grease was used to attach the scintillator crystal to the SiPM, probably

due to the fact that there was no coating between SiPM elements in the MPPC.
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Figure 5.4: Input charge range for low gain and high gain in a single readout channel.

5.3 ASIC characterization

In order to assess the performance of the VATA64HDR16 ASIC, several tests on

different characteristics were performed.

5.3.1 Input charge range

As a first step, the dynamic range of the ASIC for positive and negative charges

in low gain and high gain configuration was tested. A voltage pulse through a 33 pF

capacitor was used to inject charge to one channel of the ASIC. The ADC value of the

channel was recorded in order to establish a correlation between injected charge and

ADC units.

Figure 5.4 shows the ASIC response to the input charge for both polarities and

for both gain configurations. The input charge range for low gain configuration was

approximately from -20 pC up to 55 pC before saturation started, whereas for the high

gain configuration it went from -6 pC until 10 pC, approximately. The ADC range for

positive input charges was of 1900 ADC units, but it was reduced to 500 ADC units

with negative input charges. These results demonstrated that the performance of this

ASIC for negative input charges was limited and it was optimized for positive charges,

as stated in the ASIC specifications.
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Figure 5.5: Intrinsic coincidence timing resolution of 1.3 ns FWHM.
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Figure 5.6: Position of the center of the intrinsic coincidence timing resolution distribution

as a function of the input charge.

5.3.2 Intrinsic coincidence timing resolution

In order to measure the intrinsic timing resolution, two different ASICs were em-

ployed. To make conditions similar, a pulse was generated and split so that the same

pulse was sent to the same channel number in both ASICs. The threshold was ad-

justed to the same level in both ASICs to reject noise. Trigger signals coming from the

ASICs were connected to an oscilloscope LeCroy WavePro 950 and the time difference

between them was measured through a histogram. A Gaussian function was employed

to fit the distribution and obtain the FWHM.

First, a noise of 0.3 ns due to fluctuations in the power line was measured. Then,

an intrinsic coincidence timing resolution of 1.3 ns FWHM was obtained with the pulse

generator. The timing distribution can be seen in figure 5.5.

The amplitude of the input pulse was varied and the position of the center of the
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(a) (b)

Figure 5.7: Detector response before (a) and after (b) applying voltage corrections to

individual channels.

timing distribution and its sigma were represented in figure 5.6. The input charge range

tested corresponded to the linear part of the positive, low gain mode of the ASIC (from

0 to 55 pC). While the sigma of the distribution remained constant, it can be seen

that the center of the timing distribution had a strong dependence on the input charge

(timewalk). This will affect the measurements with real detectors, where the charge

produced in each event is different (see section 5.3.6).

5.3.3 Input DACs equalization

In order to make the detector response uniform, input DACs were employed to

adjust the bias voltage applied to each channel. Instead of using a pixelated crystal

for this measurement, the continuous LaBr3 crystal coupled to the MPPC array was

employed. To provide similar signals to all channels, the detector was connected to the

ASIC and a 22Na source was placed 10 cm away, a distance far enough to ensure an

homogeneous distribution of the emitted gamma interacting in the crystal.

Input DAC values were initially disabled and events were recorded in ADC units

and normalized to 1. The channel with less hits recorded was taken as reference and

no input DAC was applied to it. The input DAC values of the channels with larger

values than the reference channel were increased in order to decrease the bias voltage

applied until the difference in the number of hits recorded among channels is less than

1%. Figure 5.7 (a) shows a histogram of the number of hits recorded per channel when

no input DACs were applied. Differences of up to 4% in the number of hits recorded

among channels were obtained. Figure 5.7 (b) shows the effect of optimizing the
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Figure 5.8: 22Na spectra obtained with the LaBr3 crystal when no input DACs were

applied (a) and when they are applied (b).

individual bias voltages, reducing the difference in the number of hits recorded per

channel to less than 0.6%.

Once the detector response was equalized, data were taken to evaluate the effects

of the input DACs on the energy resolution. The 22Na source was placed close to the

crystal in order to increase the rate and energy spectra were taken. In terms of energy

resolution, an improvement of about 2% FWHM is obtained when the input DACs were

applied, as it is shown in figure 5.8.
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Figure 5.9: Position of the 511 keV photopeak as a function of the Hold Delay value for

different bias voltages.

5.3.4 Hold delay selection

The hold delay parameter allows to choose the time elapsed from the moment in

which an event surpasses the threshold until it is sampled. The aim is to sample the

signal in its maximum, in order to get all the energy information. Different hold delay

values were tested in order to identify the values that were better adjusted to the peak

of the pulse and thus yielded the best results. 22Na spectra were acquired with several

bias voltages (from 71.2V to 71.5V in 0.1V steps) and different hold delay values (35,

60, 115, 170, 250, 360 ns) for each value of the bias voltage, employing the LaBr3

scintillator crystal and low gain mode. For each acquisition, the 511 keV photopeak

was fitted with a Gaussian function and its position in ADC units was recorded.

Figure 5.9 shows the position of the 511 keV photopeak as a function of the hold

delay value for four different bias voltages. It can be observed that for each bias voltage,

the 511 keV peak position increased until it reached a maximum, then it started to

decrease. A hold delay value of 170 ns was selected for data taking in the remaining

measurements, given that it corresponded to the peak of the distribution and it provided

the largest amount of light recorded.

5.3.5 Energy resolution studies

Energy resolution measurements were carried out employing a 22Na source and

a MPPC array coupled to LYSO and LaBr3 crystals of 16×18×5 mm3 size. The

MPPC array was biased with positive and negative voltages, in order to assess the
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Figure 5.10: (a) 511 keV peak position for negative biases (b) energy resolution for

negative biases.

performance of the ASIC to positive and negative inputs. For each case, low gain (LG)

and high gain (HG) configurations were tested. The positive and negative bias voltages

tested are the only values in which the detector generates a trigger, limiting the range

of bias voltage that can be employed for detector operation.

Figure 5.10 and 5.11 show the results obtained with negative and positive biases,

respectively. Figure 5.10 (a) shows the 511 keV peak position in ADC units as a

function of the bias voltage for negative voltages, following an almost linear behavior.

Figure 5.10 (b) shows the energy resolution obtained for each negative bias, being

around 10% FWHM and 16% FWHM the best values obtained for LaBr3 and LYSO,

respectively. Figure 5.11 (a) shows the 511 keV peak position in ADC units as a
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Figure 5.11: (a) 511 keV peak position for positive biases (b) energy resolution for positive

biases.

function of the bias voltage for positive voltages. The peak position increased until it

reached a peak and then it decreased. Figure 5.11 (b) shows the energy resolution

obtained for each positive bias, being around 10% FWHM and 18% FWHM the best

values obtained for LaBr3 and LYSO, respectively.

The best energy resolution obtained with the LaBr3 scintillator crystal was 10%

FWHM at 511 keV, far from the 5.8% FWHM obtained with the same LaBr3 crystal

attached to a PMT and employing optical grease [85]. Results of energy resolution

could be limited due to the fact that the MPPC model S11064 has a 50% of dead

space because of the gaps between SiPM elements, meaning that half of the photons
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Figure 5.12: Coincidence timing resolution of 24 ns FWHM with two LYSO detectors.

reaching the photodetector were lost. An energy resolution of 7.1% FWHM would be

expected if no photons were lost due to the dead area. Energy resolution improvement

would also be expected if optical grease could be employed with this MPPC model.

5.3.6 Coincidence timing resolution

For this measurement, two detectors working in time coincidence and low gain

mode were employed. In order to ensure a similar response in both detectors, two

crystals of the same dimensions were selected. Each detector consisted of a 12×12×5

mm3 LYSO crystal coupled to a MPPC array biased with positive voltage and connected

to the VATA64HDR16 ASIC. Detectors were separated by a distance of 60 mm and

the 22Na source was placed in the middle. Triggers coming from each detector were

connected to an external custom made coincidence board which generated an output

signal whenever the two input signals performed a logic AND. The output signal of the

coincidence board was used as an external trigger to record the coincidence event in

each detector.

A coincidence timing resolution of 24 ns FWHM was obtained, as it can be seen

in figure 5.12. As mentioned in section 5.3.2, the timing distribution has a strong

dependence on the input charge (timewalk). It can be seen in figure 5.6 that the

difference in the center of the timing distribution was up to 20 ns for the whole input

range of the positive, low gain mode of the ASIC. This could explain the poor results

obtained with the real detector. In order to minimize timewalk and obtain a better timing

resolution in the case of PET applications, the threshold should be set high enough

to select only the events contained in the photoelectric peak. In this configuration,
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this was not possible. The threshold value applied to both detectors was the highest

possible, corresponding to an energy cut around 300 keV.

Moreover, the fact that the ASIC generated a trigger when any of the 64 channels

surpasses the threshold level (OR trigger) was appropriate for pixelated crystals, in

which a photon interacting in any position within the crystal would generate enough

light to exceed the threshold level and trigger the readout of the event. In continuous

crystals, even for a high energy deposition, the light detected by a single SiPM element

can be very low, especially if the event has taken place far from the SiPM side of

the crystal. In this situation, signals generated by single SiPM channels can have

low amplitude not surpassing the threshold level, although they are associated to a

non-negligible amount of light. In PET applications, an appropriate threshold to select

events in the photoabsorption peak would be more suitable. Trigger signal should be

generated when the sum of the energy deposited in the 64 channels surpasses the

threshold value. In Compton imaging, since the energies of interest cover a wide range,

a constant fraction discriminator strategy could be an effective approach.

5.4 Conclusions

In this chapter, several tests were carried out to test the performance of the

VATA64HDR16 ASIC from Ideas for medical physics applications based on continuous

crystals and SiPMs. The aim was to assess its suitability for our applications. Based

on the results obtained, the performance of the VATA64HDR16 ASIC is not optimum,

but it fulfils our needs.

The VATA64HDR16 ASIC has been successfully employed in the second version

of the Compton telescope prototype described in chapter 3. Results of this second

prototype can be found in [40] and in-beam tests with the system are described in [41].

The VATA64HDR16 ASIC has also been employed in the second version of the

small animal PET prototype described in chapter 4. Results of this second prototype

are presented in chapter 6.
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Chapter 6

Second prototype of a small

animal PET based on SiPMs and

continuous LYSO crystals

6.1 Introduction

The first prototype of a small animal PET based on SiPMs and continuous LYSO

crystals, described in chapter 4, was successfully operated. The results obtained were

promising and demonstrated the feasibility of the technology, so efforts were focused

on making it scalable to a full-ring geometry of 16 detector heads. With this aim, a

second prototype of a small animal PET was developed and a first characterization was

carried out. The need of operating the 16 detector heads in coincidence and handling

a high number of readout channels forced us to use the custom made data acquisition

system based on the VATA64HDR16 ASIC described in chapter 5. Besides, the SiPM

matrices were changed to a new version that significantly improved several device

characteristics.

The detector heads of the second prototype were assembled in Valencia and first

characterization tests were carried out. Then, the system was sent to the Technical

University of Munich (TUM) to carry out the tests involving 18F-fluorodeoxyglucose

(FDG). These tests were an attempt to study the functioning of the prototype with FDG,

check the limitations of the system and identify the problems to be solved. A proper

characterization of the system was not intended.
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Figure 6.1: SiPM matrix from AdvanSiD model ASD-RGB1.5S-P-8x8A composed of 64

(8×8) pixels of size 1.45 mm × 1.45 mm.

6.2 Detector description

The detector heads employed in the second prototype of a small animal PET

consisted of a continuous LYSO crystal coupled to a 64-pixel SiPM matrix.

6.2.1 SiPM matrices

The SiPM matrices employed in the second prototype of the small animal PET

were the ASD-RGB1.5S-P-8x8A [86] from AdvanSiD [87]. The photodetector area

was the same as the ones employed in the first version of the prototype, 12 mm × 12

mm. These SiPMs introduced a new manufacturing technology named RGB-SiPMs

[88] that significantly improved several aspects of the SiPM matrices employed in the

first prototype, such as dark count rate, photo detection efficiency, breakdown voltage

uniformity and temperature stability. As the previous ones, they had 64 (8×8) pixels

but the pixel size slightly changed to 1.45 mm × 1.45 mm, maintaining the 1.5 mm ×
1.5 mm pitch. Each pixel had 841 microcells of 50 µm × 50 µm size. The connection

to the PCB was done through a socket connector. A picture of the device can be seen

in figure 6.1.

6.2.2 LYSO crystals

The scintillator crystals employed in the second prototype were the same of the

first version, being LYSO crystals of 12 mm × 12 mm size with 5 mm and 10 mm
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Figure 6.2: 12 × 12 × 10 mm3 LYSO crystal placed on a RGB-SiPM matrix.

thickness painted white in five of their faces. A picture of a 10 mm thick crystal placed

on a RGB-SiPM matrix can be seen in figure 6.2. Efforts were focused on using the

10 mm thick crystals because of their higher sensitivity compared to the 5 mm thick

crystals due to the increase in the crystal thickness.

6.3 Readout electronics

The VATA64HDR16 ASIC from IDEAS was employed as readout electronics. A

complete assessment of this ASIC can be found in chapter 5.

The charge output of the RGB-SiPMs was negative. The VATA64HDR16 ASIC was

designed to work with both positive and negative input charges, but it was optimized

for positive charges. In order to employ this ASIC with negative input polarity, some

parameters needed to be adjusted and some features were not available. As it was

shown in chapter 5, the performance of this ASIC with negative signals is limited. All

measurements in this chapter were carried out with the low gain mode of the ASIC, in

order to have a broader dynamic range in comparison with the high gain mode (see

5.3.1).

Each PCB containing the photodetector and the scintillator crystal was connected

to another PCB hosting the VATA64HDR16 ASIC through a ribbon cable and to a data

acquisition board. This approach was taken in order to allow the movement of the

detector heads around the radioactive source while the electronics remained static.
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Figure 6.3: Flood map obtained for the two matrices employed in the second prototype.

6% response difference among channels.

6.4 Detector characterization

6.4.1 Uniformity

To test the uniformity of the two SiPM matrices employed in the second prototype

of the small animal PET, a flood map was obtained. A piece of paper impregnated with

FDG of the same size of the photodetectors (12 mm × 12 mm) was placed between

them. Data were taken in both detectors in singles mode and normalized to the number

of recorded events. The response difference among channels in both matrices was

around 6%. The flood map obtained for both detectors can be seen in figure 6.3. The

blue squares represent the channels not working in each detector.

6.4.2 Energy resolution

The energy resolution of the new RGB-SiPM matrices coupled to the 12 × 12 ×10

mm3 LYSO crystals and read out by the VATA64HDR ASIC was evaluated employing

a 22Na source. The 511 keV photopeak was fitted with a Gaussian function and the

energy resolution was calculated for each of the SiPM matrices. Almost identical results

were obtained for both matrices. The 22Na spectrum of one of the SiPM matrices can

be seen in figure 6.4. The energy resolution obtained was 22.5% FWHM at 511 keV.

These results were compatible with the results showed in section 5.3.5.
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Figure 6.4: 22Na spectrum obtained with a 12 × 12 × 10 mm3 LYSO crystal coupled to a

RGB-SiPM. The energy resolution obtained was 22.5% FWHM at 511 keV.

6.5 Coincidence tests

6.5.1 Experimental setup

The first prototype of the small animal PET was designed in order to allow the

distribution of 12 detector heads, resulting in an inner diameter of 45.8 mm. This

diameter was considered to be small, so the second prototype of the small animal PET

was designed to host 16 detector heads, increasing its inner diameter up to 61.1 mm.

This new diameter would allow to test the system with mice and rats.

The second prototype of the small animal PET consisted of two detector heads

placed in front of each other and fixed to a methacrylate frame for mechanical support

and alignment of the system. The frame was attached to a rotating stage MICOS

DT-65N and the sources to be imaged were stationary at the center of the system in

a field of view of 12 × 12 × 12 mm3. The distance between detectors was 61.1 mm,

making it possible to cover eight angular positions from 0◦ to 157.5◦ at 22.5◦ steps. The

trigger signals generated by the two detectors were led to a custom made coincidence

board. The coincidence board generated an output signal whenever the two input

signals performed a logic AND. The output signal of the coincidence board was used

as an external trigger and sent to the data acquisition board to record the coincidence

event in each detector. A dedicated DAQ program developed in C++ controlled the

rotation stage and the data acquisition of the two detectors simultaneously, and stored

the digitized data from all channels of the two detectors for each coincidence event for
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Figure 6.5: Picture of the experimental rotating system employed in the second prototype

to take tomographic data at different angles.

further processing. A picture of the experimental rotating system can be seen in figure

6.5.

The algorithm employed for the image reconstruction was the MLEM explained in

section 4.5.2, with the system matrix elements calculated with a Siddon-like method

(SOPL). A Gaussian filter was applied to the image volumes to reduce the noise. The

FOV of the reconstructed image volumes was 12 × 12 × 12 mm3 and the image voxel

was 0.1 mm3.

6.5.2 Tests with point-like sources

Images with 22Na point-like sources were obtained to test the performance of the

prototype. Two point-like sources with different activities were employed for these

measurements. They consisted of a plastic brick of 3 mm × 3 mm × 8 mm. The

radioisotope was deposited in the center of the brick, being a cylinder of 1 mm diameter

and 0.5 mm thick. The so-called ”low activity” source had 1.3 MBq and the so-called

”high activity” source had 3.4 MBq. The measurements were carried out with the 10

mm thick crystals.

To place the sources inside the field of view, a plastic holder was employed. It

consisted of a column with rectangular holes of the same size as the source, with a
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Figure 6.6: Picture of the column holder employed to place the point-like sources.

separation of 6 mm between centers of the holes. The column had holes in the two

possible orientations, but they were interleaved, being 3 mm the minimum separation

between active parts of the sources. A picture of the column holder can be seen in

figure 6.6.

The first qualitative tests consisted in imaging both the low activity and the high

activity sources. The threshold in this test was set as low as possible, just above the

electronic noise. With the high activity source it was not possible to obtain good images.

The best reconstructed image can be seen in figure 6.7 (top). Data were also taken

with the low activity source, and the resulting image is shown in figure 6.7 (bottom).

Although both sources had the same active volume, it can be qualitatively seen that

the FWHM of the low activity source was better defined than the FWHM of the high

activity source. We suspect that this effect was produced when the number of events

to be processed exceeded a number the electronics was not capable of processing.

The firmware employed in the electronics had a maximum effective readout rate of

around 3500 events per second in each detector. If the number of events reaching the

detectors was higher than 3500 per second, the events that the electronics was not

able to process interfered with the readout and introduced noise into the measurement.

Therefore, the higher the activity, the higher the number of events to be processed

and consequently the distortion in the data obtained. To try to overcome this problem,

a firmware programmed to support a higher readout rate was loaded into the FPGA

and tested, but it resulted in making the electronics unstable. A too large amount of

events to be read out was a critical limitation of the system at the time these tests were

performed.
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Figure 6.7: (Top) Reconstructed image of the high activity source. (Bottom) Reconstructed

image of the low activity source.

Thus, in order to study the effect of varying the number of events to be read out,

the influence of varying the energy threshold applied to the detectors was tested. To

do so, both sources were placed in the column holder separated by a distance of 6

mm and approximately in the center of the field of view. Figure 6.8 (top) shows the

reconstructed image when the same low threshold as in the previous tests was applied.

As it can be seen in the figure, the two sources are indistinguishable. Then, a high

threshold was set, meaning that events with energies below approximately 300 keV

were electronically rejected and they were not processed. As it can be seen in figure

6.8 (bottom), the two sources were then clearly distinguishable. In PET imaging, the

desirable events for the image reconstruction are the 511 keV ones to avoid detecting

events scattered in the patient. Therefore, increasing the threshold up to around 300

keV is a usual practice in PET and it also contributes to reduce the number of events

to be read out and therefore avoid the saturation of the electronics.

Taking into account the issues learned from the two previous tests, the low activity



6.5 Coincidence tests 107

Figure 6.8: (Top) Reconstructed image of two point-like sources separated by 6 mm

and employing a low threshold. (Bottom) Reconstructed image of two point-like sources

separated by 6 mm and employing a high threshold.

Figure 6.9: Low activity point-like source reconstructed with the MLEM algorithm, employ-

ing the 10 mm thick crystals. The FWHM obtained is 1 mm.
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Figure 6.10: Reconstructed image of two point-like sources separated 7.5 mm. The

distance between reconstructed sources was 7.3 mm and the FWHM obtained was 1.5

mm.

Figure 6.11: Reconstructed image of two point-like sources separated 9 mm. The

distance between reconstructed sources was 8.7 mm and the FWHM obtained was 1.2

mm.

source was placed in the center of the field of view and the threshold was set high to

have the lowest possible event readout rate. Figure 6.9 shows the reconstructed 22Na

point-like source obtained. The FWHM of the reconstructed image is 1 mm. Employing

a high threshold produced a proper image, mostly probably because the electronics

was not saturating.

Employing the column holder mentioned before, images with two point-like sources

inside the field of view were also obtained separated at two different distances and

the threshold set high. Figure 6.10 shows the reconstructed image obtained with the

active part of the sources separated 7.5 mm. The distance in the image between

reconstructed sources was 7.3 mm and the FWHM obtained for both sources was 1.5
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Figure 6.12: Reconstructed image of a hollow plastic cylinder of 12 mm inner diameter

filled with FDG up to 12 mm.

mm. Figure 6.11 shows the reconstructed image obtained with the active part of the

sources separated 9 mm. In this case, the distance between reconstructed sources

was 8.7 mm and the FWHM obtained was 1.2 mm.

6.5.3 Tests with FDG

Tests employing FDG were also carried out. A hollow plastic cylinder of 12 mm

inner diameter was filled with 10 MBq of FDG up to 12 mm, in order to cover the whole

field of view and avoid having radioactivity outside it. The reconstructed image should

be a cylinder with the radioactivity homogeneously distributed in the whole volume.

The image obtained did not show cylindrical shape as it can be seen in figure 6.12.

This was probably due to the high activity contained in the cylinder and therefore the

saturation of the electronics, as it was explained before. Inter-pixel sensitivity correction

and sensitivity matrix correction were applied, but no improvement in the images was

obtained.

Measurements with a custom made phantom were also carried out. The phantom

consisted of a solid plastic cylinder of 12 mm diameter with 9 holes placed in a 3 ×
3 matrix. The diameter of the holes was 1.2 mm and the distance between centres

was 2.4 mm in both directions. All holes were covered with tape except two in opposite

corners. A first attempt to get an image with the 10 mm thick crystals was carried out

since all the previous tests were performed with those crystals, but no clear image

was obtained. As a test, crystals were changed to the 5 mm thick crystals and the

measurement was repeated. Figure 6.13 shows the reconstructed image obtained with
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Figure 6.13: Reconstructed image of a custom made phantom filled with FDG. Three

different column structures were clearly distinguishable.

the phantom and the 5 mm thick crystals. As it can be seen in the figure, the structure

of the holes was distinguishable. The figure also shows three column structures instead

of two, revealing that a third hole was accidentally filled with FDG.

A possible reason for this is that the position estimation determination in continuous

crystals was more accurate in the case of 5 mm thick crystals due to their more

favourable aspect ratio [23] and this affected the reconstruction of distributed sources

more than point-like sources.

6.6 Conclusions

The second prototype of a small animal PET based on SiPMs and continuous

LYSO crystals was assembled and the first images with point-like sources and FDG

were obtained. The results presented in this chapter are constrained to the limited

time spent at the TUM and the availability of FDG. Some tests should be carried out

again with a revised version of the prototype. Nevertheless, these tests allowed to

understand some of the limitations of the system in several aspects, some of which

were improved, and to obtain images with FDG.

Still, further optimization of the system is needed. Although the VATA64HDR16

ASIC is capable of working with positive and negative signals, the use of SiPMs with

negative polarity limits the ASIC performance, as it was shown in section 5.3.1. The

use of matrices with positive polarity is foreseen in a future version of the system.



Summary and conclusions

The progress in the development of SiPMs in recent years has made them suitable

candidates to replace traditional PMTs in medical physics applications. Coupled to

continuous crystals, it is possible to improve spatial resolution and sensitivity at the

same time, as well as to reduce the cost of the block detector.

The work presented in this thesis was initiated when the use of SiPMs was starting

and it describes the first developments carried out in the IRIS group related to the use

of continuous crystals and SiPMs for two medical physics applications: a Compton

telescope for hadron therapy monitoring and a small animal PET.

The detector developed for the hadron therapy application was the necessary first

step to test the detector concept towards the development of a Compton telescope,

since SiPMs are essential in its design. It allowed us to evaluate the technology based

on continuous LaBr3 crystals and SiPMs and its application in a functioning Compton

camera. At the time the tests carried out began, SiPMs were a new technology and

the manufacturing process was not mature enough. The main problems were the

lack of homogeneity among elements in a SiPM matrix and the high dark count rate.

Besides, LaBr3 was a relatively new scintillator crystal with characteristics that made it

appropriate for the application. The detector was fully characterized and coincidence

tests were carried out. Images were successfully reconstructed with the device. These

results demonstrated the feasibility of operating the system and led to the development

of a three-layer telescope with detectors four times bigger, which is still ongoing.

The other application, which was the main part of the work developed, was the

first prototype of a small animal PET. The detectors were fully characterized and

coincidence tests between two detector heads were carried out. Tomographic images

of point-like sources were obtained with a FWHM close to 1 mm. Simulations of novel

geometries, mainly tapered crystal, were performed in order to assess the possibility of

employing such geometries in future versions of the prototype.
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In both Compton telescope and small animal PET applications, improved readout

electronics were needed due to the foreseen increase in the number of readout

channels of the new prototypes. A simple and cost effective approach was to develop

a versatile DAQ system employing the same ASIC for both applications. This approach

allowed us to unify both research lines and to carry out the developments within our

research group. The VATA64HDR16 ASIC was chosen for several reasons: it had a

large enough number of channels, it was capable of working with both positive and

negative input signals and it allowed to adjust the bias for each channel independently.

Besides, the research group had previous experience with other chips of the same

family for other applications and a DAQ board previously developed by the group could

be adapted to operate this ASIC. Tests were carried out to assess the suitability of

the VATA64HDR16 ASIC for our applications. Based on the results obtained, the

performance of the ASIC was not optimum, but it fulfilled our needs.

The VATA64HDR16 ASIC was employed in a second version of the prototype of a

small animal PET. The main differences with the first prototype were the use of this

ASIC as readout electronics and the change of the SiPM matrices to a new version

that significantly improved several device characteristics. Images of point-like sources

and preliminary images of a custom made phantom filled with FDG were obtained.

Those tests allowed us to understand the limitations of the system in several aspects.

The prototype was a successful proof-of-concept of the proposed technology and the

development of a full-ring PET based on it is underway with the aim of comparing its

performance with commercial preclinical scanners.

The results obtained within this thesis assess the possibility of employing the

proposed technology in the detector concepts tested from a technical point of view and

have led to significant advances in the field. The use of continuous crystals coupled

to SiPMs, with some additional efforts to achieve the stability and reproducibility

requirements for commercialization, can constitute an effective way of enhancing

spatial resolution and efficiency while reducing detector cost.

The tests carried out also show that the development of ASICs that appropriately

address the specific requirements of continuous crystals is mandatory to achieve an

optimal performance.

From the point of view of the applications, the requirements of PET are less

stringent and it is better suited for the use of this technology. Its application to Compton

cameras for nuclear imaging, homeland security or astroparticle physics can also be
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advantageous. In the case of hadron therapy monitoring, other requisites such as large

dynamic range or detector occupancy must also be carefully evaluated.

In conclusion, the development of this work has been essential to evaluate tech-

nologies and detector concepts that were being tested by a restricted number of groups

at that point and that now have increased interest in the field with the contribution of

the work carried out in this thesis. The results obtained in this work have given a strong

experimental support to the research lines followed by the group and will lead to further

developments and improvements along these lines in the future.
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Resumen en castellano

El trabajo presentado en esta tesis introduce y evalúa dos aspectos novedosos en

los detectores de rayos gamma para imagen médica: el uso de fotomultiplicadores de

silicio (SiPMs, en inglés) acoplados a cristales centelleadores continuos.

Tradicionalmente, los tubos fotomultiplicadores (PMTs, en inglés) acoplados a

cristales centelleadores han jugado un papel dominante en la detección de rayos

gamma. En los últimos años ha aparecido un nuevo tipo de fotodetector de estado

sólido, el SiPM, como opción para sustituir a los PMTs en ciertas aplicaciones. Los

SiPMs tienen una ganancia y una eficiencia cuántica altas, un voltaje de operación bajo

y unas propiedades temporales excelentes. Además, son dispositivos muy compactos

e insensibles a los campos magnéticos. Estas propiedades hacen de los SiPMs un

excelente candidato para usarlos en aplicaciones de fı́sica médica.

Normalmente, la detección de los rayos gamma se lleva a cabo utilizando de-

tectores basados en cristales centelleadores pixelados acoplados a un fotodetector

segmentado porque ofrecen una manera sencilla de identificar el lugar donde ha tenido

lugar la interacción. Sin embargo, en esta configuración la mejora de la resolución

espacial implica la reducción de la sensibilidad, y al revés. El uso de cristales centel-

leadores continuos acoplados a SiPMs podrı́a aumentar la resolución espacial y la

sensibilidad al mismo tiempo, además de reducir el coste del bloque detector.

Este trabajo aquı́ presentado se desarrolló en el grupo IRIS (Image Reconstruction,

Instrumentation and Simulations for medical applications) del IFIC-Valencia. Se inició

cuando el uso de los SiPMs estaba empezando y llevó a desarrollos importantes.

En esta tesis, se han probado diferentes tipos de cristales centelleadores continuos

acoplados a SiPMs de varios fabricantes para demostrar la viabilidad de esta tecnologı́a

en el desarrollo de nuevos conceptos de detector y aplicaciones en fı́sica médica. La

mayor parte de la tesis trata el desarrollo de un prototipo PET para animales pequeños

basado en cristales centelleadores continuos de LYSO y SiPMs. Además, también
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se presentan las primeras pruebas de un telescopio Compton basado en SiPMs y

cristales centelleadores continuos de LaBr3 para la monitorización del tratamiento en

terapia hadrónica.

Imagen médica

La imagen médica es el conjunto de técnicas que de forma no invasiva son capaces

de producir imágenes de las estructuras internas de un cuerpo. Sus principales

modalidades incluyen la imagen por rayos X, imagen por tomografı́a computarizada

(CT), imagen por resonancia magnética (MRI), imagen por ultrasonidos e imagen por

medicina nuclear.

La medicina nuclear es la rama de la medicina que hace uso de radiotrazadores

para el diagnóstico y el tratamiento de enfermedades. En medicina nuclear se utilizan

principalmente dos clases de radiotrazadores: los emisores de un sólo fotón y los

emisores de positrones. Los emisores de un sólo fotón emiten principalmente un rayo

gamma o una secuencia de rayos gamma que no están correlacionados direccional-

mente. Los emisores de positrones emiten un positrón que viaja una corta distancia

antes de aniquilarse con un electrón, su antipartı́cula, generando dos fotones de 511

keV que viajan en direcciones casi opuestas.

En esta tesis, se describe el desarrollo de nuevos detectores para medicina nuclear,

en concreto para una aplicación de imagen Compton (una variedad de SPECT) y otra

para PET.

El SPECT hace uso de emisores de un solo fotón y para su detección emplea

colimadores mecánicos, lo que provoca que la resolución espacial y la eficiencia de

detección estén inversamente relacionadas. La imagen Compton supera esta lim-

itación sustituyendo los colimadores mecánicos por una serie de planos de detección

trabajando en coincidencia temporal, lo que se conoce como colimación electrónica.

El rayo gamma interacciona en un primer detector por efecto Compton, cediendo parte

de su energı́a y cambiando su dirección de propagación e interacciona de nuevo en

un segundo detector. Haciendo uso de la cinemática Compton, es posible determinar

el origen de los rayos gamma.

Por su parte, el PET emplea emisores de positrones y se basa en la detección

simultánea de los dos fotones de 511 keV generados tras la aniquilación del positrón

con un electrón. Para ello, se suele utilizar un anillo de detectores trabajando en



117

coincidencia temporal que se dispone alrededor del lugar del cual se quiere obtener la

distribución del radiotrazador.

Detectores para imagen médica

Tanto para la aplicacion de imagen Compton como para la de PET, se han usado

detectores basados en cristales centelleadores continuos y SiPMs.

Los dos cristales centelleadores que se emplean en esta tesis son el LaBr3 (Bro-

muro de Lantano (III)) y el LYSO (Lutecio Ytrio Ortosilicato, Lu1.8Y0.2SiO5). El LaBr3 es

un cristal centelleador relativamente nuevo. Tiene una producción de luz muy alta, un

tiempo de decaimiento muy bajo y una resolución energética excelente. Comparado

con otros cristales centelleadores y debido a su bajo número atómico efectivo (Ze f f ),

el LaBr3 presenta una probabilidad de fotoabsorción más baja y una probabilidad

Compton más alta. La principal desventaja del LaBr3 es su higroscopicidad, lo que

hace que requiera de un alojamiento hermético y manipularlo con cuidado. Por su

parte, el LYSO se emplea en escáneres PET. Tiene una eficiencia de detección alta,

una producción de luz alta y un tiempo de decaimiento bajo. No es higroscópico y

muestra buenas propiedas mecánicas. Su principal desventaja es la presencia del

isótopo 176Lu en su composición, con una vida media de 4×1010 años.

Los SiPMs son unos detectores que transforman la luz de centelleo que llega

a su superficie proveniente del cristal centelleador en una señal eléctrica. Están

formados por una matriz de microceldillas sensibles a la luz conectadas en paralelo.

Cada microceldilla es un diodo de avalancha (APD) funcionando en modo Geiger que

detecta fotones de manera idéntica e independiente. De esta manera, la amplitud

de la señal de salida de un SiPM corresponde con la suma de la señal de todas las

microceldillas activadas y es proporcional a la cantidad de fotones que interaccionan

en su superficie.

Detector basado en SiPMs y cristales continuos de LaBr3
para un telescopio Compton

La terapia hadrónica es una técnica para el tratamiento del cáncer basada en la

irradiación de los tumores con iones ligeros, normalmente protones o iones de carbono.

Durante el tratamiento, las partı́culas del haz excitan los núcleos de los tejidos del

paciente y se emiten partı́culas secundarias. En el proceso de desexcitación nuclear



118 Resumen en castellano

(a) (b)

Figure 1: (a) Imagen del cristal de LaBr3 de tamaño 16 mm × 18 mm × 5 mm. (b) Array

de MPPCs fabricado por Hamamatsu modelo S11064-050P compuesto por 16 (4 × 4)

pı́xeles de 3 × 3 mm2.

se emiten fotones en un espectro caracterı́stico, siendo más abundantes en las

energı́as comprendidas entre 1 y 7 MeV [24]. La producción de estos fotones está

correlacionada con la dosis absorbida y además tiene lugar a los pocos nanosegundos

de la irradiación [25, 26], por lo que su detección se puede usar para monitorizar el

tratamiento en tiempo real.

Un telescopio Compton se podrı́a usar para localizar el origen de los fotones

emitidos durante el tratamiento con terapia hadrónica. El grupo IRIS, dentro del

proyecto europeo ENVISION, desarrolló un primer prototipo de un detector basado

en cristales centelleadores continuos de LaBr3 acoplados a SiPMs para su uso en un

telescopio Compton.

El detector estaba compuesto por un cristal continuo de LaBr3 de tamaño 16 mm

× 18 mm× 5 mm (figura 1 (a)) acoplado a una matriz de SiPMs, en este caso un array

de MPPCs fabricado por Hamamatsu modelo S11064-050P de la misma superficie y

compuesto por 16 (4 × 4) pı́xeles de 3 × 3 mm2 (figura 1 (b)).

La electrónica de lectura empleada fue el ASIC SPIROC1 [36]. El detector

mostraba un comportamiento lineal hasta los 1275 keV. La resolución energética

obtenida fue del 7% FWHM a 511 keV y mejoraba hasta el 6.5% FWHM si se ecual-

izaba la respuesta de todos los pı́xeles del array del MPPC. La resolución temporal

fue de 3.1 ns si se empleaba la señal suma de la salida del detector. La resolución

espacial obtenida en toda la superficie del cristal fue de 0.7 mm FWHM.
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Figure 2: Espectros energéticos de referencia para los cristales de LaBr3 (a) y de LYSO

(b). Espectros energéticos en coincidencia temporal de LaBr3 (c) y de LYSO (d).

Para evaluar el rendimiento del detector en modo telescopio, se llevaron a cabo

pruebas añadiendo un segundo plano de detección detrás del que se acaba de

describir, trabajando ambos en coincidencia temporal. El segundo plano estaba

compuesto por un cristal de LYSO de 12 mm × 12 mm × 5 mm acoplado al mismo

modelo de array de MPPCs, de manera que el cristal cubrı́a 9 de los 16 pı́xeles.

Para estas pruebas, se usó una fuente de 22Na colocada delante del primer

detector, donde los fotones sufrı́an dispersión Compton y después, en el segundo

detector, interaccionaban a través de otra dispersión Compton o por fotoabsorción.

La figura 2 corresponde a los espectros energéticos obtenidos sin coincidencia

temporal con el LaBr3 (a) y con el LYSO (b), los cuales se usaron como referencia

y para realizar la calibración energética. La figura también muestra los espectros

energéticos obtenidos trabajando en coincidencia temporal con el LaBr3 (c) y con el

LYSO (d). La figura 3 muestra la suma de las energı́as recogidas en los dos detectors,

recuperando el espectro de 22Na.

Con este prototipo también se obtuvieron imágenes de fuentes puntuales y fueron

publicadas en [39]. Los resultados obtenidos demostraron la viabilidad de operar
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Figure 3: Espectro suma obtenido con ambos detectores en coincidencia temporal.

el sistema y condujeron a una segunda versión del prototipo que consistı́a en un

telescopio de tres capas con detectores cuatro veces más grandes [40]. El aumento

en el número de canales a procesar hizo necesario cambiar la electrónica de lectura

al ASIC VATA64HDR16. El rendimiento de este segundo prototipo se probó en haz y

los resultados se publicaron en [41].

El autor de esta tesis se encuentra actualmente trabajando en la tercera versión

del telescopio Compton. Los arrays de MPPCs se van a actualizar al último modelo

disponible de Hamamatsu (S13361-3050AE-08), los cuales mejoran varias especifica-

ciones. Además, se está investigando la idoneidad del CeBr3 para esta aplicación.

Primer prototipo de un PET para animales pequeños basado
en SiPMs y cristales continuos de LYSO

En un escáner PET, los dos principales parámetros que hay que maximizar son

la sensibilidad y la resolución espacial. El uso de cristales centelleadores continuos

acoplados a SiPMs puede mejorar al mismo tiempo ambas magnitudes.

Para probar esta tecnologı́a, se desarrolló un detector basado en un cristal centel-

leador continuo de LYSO de tamaño 12 mm × 12 mm × 5 mm acoplado a una matriz

monolı́tica de SiPMs de la misma superficie desarrollada en el FBK-irst y compuesta

por 64 elementos distribuidos en 8 × 8 pı́xeles. Cada pı́xel tenı́a un tamaño de 1.5 ×
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(a) (b)

Figure 4: (a) Matriz monolı́tica de SiPMs desarrollada en el FBK-irst compuesta por 64

elementos (8 × 8) de 1.5 × 1.4 mm2. (b) Cristales empleados en las pruebas. Superior

izquierda: array de cristales. Superior derecha: cristal blanquinegro. Inferior izquierda:

cristal blanco. Inferior derecha: cristal negro.

1.4 mm2 con un pitch de 1.5 mm en las dos direcciones (figura 4 (a)).

La electrónica de lectura empleada fue el ASIC MAROC2 [62]. Se hicieron pruebas

con cristales centelleadores pintados de distintos modos para evaluar su rendimiento:

blanco, negro y blanquinegro (figura 4 (b)). El cristal blanco fue el que mejores

resultados ofreció, con un comportamiento lineal hasta los 1275 keV, una resolución

energética del 15% FWHM a 511 keV, una resolución temporal de 6 ns FWHM y una

resolución espacial de 0.7 mm FWHM. El algoritmo de determinación de la posición

empleado demostró que era capaz de reconstruir la posición de interacción con una

resolución espacial mejor que un milı́metro, incluso cerca de los bordes del cristal y

sin necesidad de calibración previa.

Para obtener imágenes tomográficas, se montaron dos detectores con los cristales

blancos enfrentados a una distancia de 45.8 mm, unidos entre sı́ a través de un

soporte de metacrilato, el cual giraba solidariamente junto con una mesa de rotación,

de manera que cubrı́an seis posiciones angulares desde 0◦ a 150◦ en pasos de 30◦.

La figura 5 muestra la imagen reconstruida de una fuente de 22Na obtenida con

los cristales continuos blancos de 5 mm de grosor. La FWHM promedio de las dos

dimensiones fue de 0.9 mm. Algunas medidas se repitieron con cristales continuos

blancos de 10 mm de grosor.

También se llevaron a cabo simulaciones con GEANT4 que incluı́an la generación
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Figure 5: Vista transaxial (izquierda) y sagital (derecha) de una fuente puntual recon-

struida con los cristales centelleadores blancos. La FWHM obtenida fue 0.9 mm de

media.

y el transporte de fotones ópticos. Una vez se tuvo una simulación válida para cristales

cuboides, se simularon cristales trapezoidales para reducir con ellos el espacio entre

detectores y de esa manera aumentar la sensibilidad en un anillo completo [68].

Además, también se consideró colocar el fotodetector en la superficie de entrada del

cristal, lo que se espera que mejore el rendimiento [73].

La figura 6 muestra las geometrı́as trapezoidales que se simularon para cristales

de 5 y 10 mm de espesor. Los resultados de las simulaciones se compararon con datos

reales, principalmente en términos de distribución de la luz y de determinación de la

posición en el cristal. Los resultados obtenidos con las simulaciones de cristales trape-

zoidales mostraron una distribución de la luz distinta para cada geometrı́a, como era

de esperar, reproduciendo los datos experimentales. Esto demostró que la simulación

se podı́a usar con cristales trapezoidales. Sin embargo, el algoritmo de determinación

de la posición que se empleó era el mismo que se habı́a desarrollado para cristales

cuboides y no estaba adaptado para las particularidades geométricas de los cristales

trapezoidales.

Los resultados obtenidos con este primer prototipo de PET para animales pequeños

fueron prometedores, lo que motivó el desarrollo de una segunda versión del prototipo.

La idea de crear un anillo completo de detectores hizo necesario considerar nuevas

electrónicas de lectura, siendo el ASIC VATA64HDR16 la opción escogida.
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Figure 6: Geometrı́as de cristales trapezoidales que fueron simuladas.

Rendimiento del ASIC VATA64HDR16 para aplicaciones
de fı́sica médica basadas en cristales continuos y SiPMs

Tanto la aplicación de terapia hadrónica como la de PET alcanzaron un punto en

el que la electrónica de lectura que se empleaba en los detectores necesitó aumentar

el número de canales. En esta situación, la solución fue desarrollar un sistema de

adquisición de datos (DAQ) que usase el mismo ASIC para las dos aplicaciones.

Esto permitı́a unificar las dos lı́neas de investigación y continuar con los desarrollos

dentro del grupo de investigación. El principal problema era que la aplicación para

terapia hadrónica hacı́a uso de arrays de MPPCs con una polaridad de salida positiva,

mientras que la aplicación para PET empleaba matrices de SiPMs con una polaridad

de salida negativa.

El ASIC VATA64HDR16 se escogió por varias razones: tenı́a un número de

canales lo suficientemente amplio, era capaz de trabajar con señales de entrada

positivas y negativas y permitı́a ajustar el voltaje de operación de cada canal de

forma independiente. Además, el grupo IRIS tenı́a experiencia con otros chips de la

misma familia para otras aplicaciones y previamente habı́a desarrollado una tarjeta de

adquisición que se podı́a adaptar para controlar este ASIC.

Para las pruebas se usó un array de MPPCs de Hamamatsu modelo S11064-050P

compuesto por 16 (4 × 4) pı́xeles de 3 × 3 mm2 acoplado a cristales de LYSO y de

LaBr3 de 16 mm × 18 mm × 5 mm. La particularidad de este modelo de MPPC es

que el ánodo y el cátodo son independientes, por lo que dependiendo del esquema

de alimentación se pueden conseguir señales de salida positivas o negativas y ası́

evaluar el rendimiento del ASIC para cada una de ellas.
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(a) (b)

Figure 7: (a) Matriz de SiPMs AdvanSiD ASD-RGB1.5S-P-8x8A compuesta de 64 pı́xeles

(8 × 8) de tamaño 1.45 mm × 1.45 mm. (b) Cristal de LYSO pintado de blanco de 12 mm

× 12 mm × 10 mm colocado sobre una matriz de SiPMs.

Se llevaron a cabo pruebas de rango dinámico, de resolución temporal, de ecual-

ización de la respuesta del detector, de selección del tiempo de retardo a la retención

y estudios de resolución energética [80]. Las pruebas llevadas a cabo permitieron

comprobar que el rendimiento de este ASIC para señales negativas era limitado y que

estaba optimizado para señales positivas. Además, su respuesta temporal mostraba

una fuerte dependencia de la amplitud de la señal de entrada (timewalk). Aunque el

rendimiento del ASIC VATA64HDR16 no era óptimo, cumplı́a con los requisitos para

nuestras aplicaciones.

Segundo prototipo de un PET para animales pequeños
basado en SiPMs y cristales continuos de LYSO

Basado en los resultados obtenidos con el primer prototipo, se desarrolló un

segundo prototipo de PET para animales pequeños con el objetivo de hacerlo escalable

a una geometrı́a de anillo completo. Las principales diferencias fueron el uso del

ASIC VATA64HDR16 como electrónica de lectura y la sustitución de las matrices de

SiPMs por una nueva versión que mejoraba significativamente varios parámetros del

fotodetector.

Las matrices de SiPMs se cambiaron por las AdvanSiD ASD-RGB1.5S-P-8x8A

que estaban compuestas de 64 pı́xeles (8 × 8) de tamaño 1.45 × 1.45 mm2 (figura
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Figure 8: Fuente puntual de baja actividad reconstruida con los cristales de LYSO de 10

mm de espesor. La FWHM obtenida fue de 1 mm.

7 (a)). Los cristales centelleadores continuos empleados eran de LYSO pintados de

blanco y tenı́an unas dimensiones de 12 mm × 12 mm × 10 mm (figura 7 (b)).

Los detectores se ensamblaron en el IFIC-Valencia y se realizaron las primeras

pruebas de caracterización. Después, el sistema se envió a la Universidad Técnica de

Múnich (TUM) para probarlo con fuentes puntuales y FDG.

Para obtener imágenes tomográficas se montaron dos detectores con los cristales

blancos enfrentados. Se aumentó la distancia a 61.1 mm, de manera que cubrı́an

ocho posiciones angulares desde 0◦ a 157.5◦ en pasos de 22.5◦.

Las pruebas realizadas permitieron unas condiciones aceptables para la obtención

de imágenes. La figura 8 muestra la imagen reconstruida de una fuente puntual de
22Na obtenida con los cristales continuos blancos de 10 mm de grosor. La FWHM

obtenida fue de 1 mm.

Una vez se obtuvieron imágenes con fuentes puntuales, se pasó a pruebas con

FDG y un fantoma que consistı́a en un cilindro de metacrilato de 12 mm de diámetro

con 9 agujeros dispuestos en una matriz de 3 × 3. El diámetro de los agujeros era

de 1.2 mm y la distancia entre centros de 2.4 mm en ambas direcciones. Se taparon

todos los agujeros menos dos, situados en esquinas opuestas, que se llenaron con

FDG. No se consiguió obtener ninguna imagen del fantoma con los cristales de 10

mm de grosor. Se cambiaron los cristales por los de 5 mm de grosor y se repitió la

prueba. La figura 9 muestra el resultado obtenido, donde se distingue la estructura de

los agujeros llenos con FDG. La figura también muestra que una tercera columna se

habı́a llenado de FDG de forma no intencionada.
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Figure 9: Imagen reconstruida de un fantoma relleno de FDG. Tres columnas se dis-

tinguen claramente.

Los resultados aquı́ mostrados están limitados por el tiempo que se pasó en la

TUM y la disponibilidad de FDG. Las pruebas con FDG fueron un intento de estudiar

el funcionamiento del prototipo con fuentes lı́quidas, comprobar las limitaciones del

sistema e identificar los problemas a resolver. El uso de matrices con señales de salida

negativas limitaba mucho el rendimiento del ASIC VATA64HDR16. Por ello, se prevé

utilizar matrices con señales de salida positivas en una futura versión del sistema.

Ademas, se ha mejorado el algoritmo de estimación de la posición para cristales de 10

mm de grosor [23].

Conclusiones

El detector basado en cristales continuos de LaBr3 y SiPMs fue el primer paso

necesario para el desarrolo de un telescopio Compton. Permitió evaluar la tecnologı́a

basada en cristales continuos de LaBr3 y SiPMs y su aplicación en una cámara

Compton funcional. El LaBr3 era un cristal centelleador relativamente nuevo con unas

caracterı́sticas que lo hacı́an indicado para la aplicación. El uso conjunto de ambos

componentes permitió comprobar que la tecnologı́a propuesta era adecuada para un

telescopio Compton. Los buenos resultados obtenidos condujeron a continuar con el

desarrollo del prototipo, que todavı́a sigue su curso.

Por su parte, los dos prototipos de PET para animales pequeños fueron una

exitosa prueba de concepto de la tecnologı́a basada en cristales continuos de LYSO y

SiPMs. Las imágenes obtenidas mostraron resultados con una FWHM cercana a 1
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mm. Las pruebas realizadas sirvieron para entender las limitaciones del sistema en

muchos aspectos y la intención es desarrollar un anillo completo que permita comparar

su rendimiento con el de escáneres preclı́nicos comerciales.
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6. G. Llosá, J. Barrio, M. M. Bisogni, J. Cabello, A. D. Guerra, J. E. Gillam, C.

Lacasta, J. F. Oliver, M. Rafecas, C. Solaz, V. Stankova, I. Torres-Espallardo.

Silicon photomultipliers in pet and hadrontherapy applications. ICTR-PHE 2012

Conference, 2012, pages S111 - S112, number 0

7. I. Torres-Espallardo, J. E. Gillam, P. Solevi, G. Llosá, V. Stankova, J. Barrio, C.
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Española de Fı́sica, 2011
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de Ingenierı́a Biomédica, 2010, pages 265

Conference proceedings related with the VATA64HDR16 ASIC

1. C. Solaz, V. Stankova, J. Barrio, C. Lacasta, M. Trovato, G. Llosá. Sistema de
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A compton imager for in-vivo dosimetry of proton beams—a design study. Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators,



138 References

Spectrometers, Detectors and Associated Equipment, 626–627:114 – 119, 2011.

33

[31] Shunsuke Kurosawa, Hidetoshi Kubo, Kazuki Ueno, Shigeto Kabuki, Satoru Iwaki,

Michiaki Takahashi, Kojiro Taniue, Naoki Higashi, Kentaro Miuchi, Toru Tanimori,

Dogyun Kim, and Jongwon Kim. Prompt gamma detection for range verification

in proton therapy. Current Applied Physics, 12(2):364 – 368, 2012. 33
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Robin Cuypers, José Manuel Pérez, and Carlos Willmott. Characterization and

performance of monolithic detector blocks with a dedicated ASIC front-end readout

for PET imaging of the human brain. Nucl. Instrum. in Phys. Res. A, 633:S33–5,

2011. 51

[52] Herman T Van Dam, Stefan Seifert, Ruud Vinke, Peter Dendooven, Herbert
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detectors based on continuous crystals and sipms for small animal {PET}. Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 718:148 – 150, 2013. Pro-

ceedings of the 12th Pisa Meeting on Advanced DetectorsLa Biodola, Isola d’Elba,

Italy, May 20 – 26, 2012. 64
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[66] G. Llosá, P. Barrillon, J. Barrio, M.G. Bisogni, J. Cabello, A. Del Guerra,

A. Etxebeste, J.E. Gillam, C. Lacasta, J.F. Oliver, M. Rafecas, C. Solaz,

V. Stankova, and C. de La Taille. High performance detector head for {PET} and

pet/mr with continuous crystals and sipms. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-

ated Equipment, 702:3 – 5, 2013. PET/MR and SPECT/MR: New Paradigms for

Combined Modalities in Molecular Imaging. 70

[67] J E Gillam, P Solevi, J F Oliver, and M Rafecas. Simulated one-pass list-mode:

an approach to on-the-fly system matrix calculation. Physics in Medicine and

Biology, 58(7):2377, 2013. 70

[68] Sara St James, Yongfeng Yang, Spencer L Bowen, Jinyi Qi, and Simon R Cherry.

Simulation study of spatial resolution and sensitivity for the tapered depth of



References 143

interaction pet detectors for small animal imaging. Physics in Medicine and

Biology, 55(2):N63, 2010. 72, 122

[69] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,

D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau,

L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek,

G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich,

R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti,

S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González,
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