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tWe study, at the one loop level, the dominant new physi
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ontributions fromextra dimensions to Z → bb̄, as well as B-B̄ and K-K̄ mixing. We use a modelwith one extra dimension 
ontaining fermions whi
h live in four dimensions,and gauge bosons and one s
alar doublet propagating in �ve dimensions. We�nd that the e�e
t of the in�nite tower of Kaluza-Klein modes in Z → bb̄is �nite and gives a negative 
orre
tion to Rb = Γb/Γh, whi
h is used toset a lower bound of 1 TeV on the 
ompa
ti�
ation s
ale Mc. On the otherhand, we show that the box diagrams 
ontributing to B-B̄ and K-K̄ mixingare divergent and, after proper regularization, we �nd that they in
rease thevalue of the fun
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h governs this mixing. The obtained value isperfe
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I. INTRODUCTIONIn the last years there has been a revival of interest in new physi
s s
enarios in whi
h theordinary four dimensional standard model (SM) arises as a low energy e�e
tive theory ofmodels de�ned in �ve or more dimensions. Apart from the fa
t that this type of models arisenaturally in string s
enarios, there are various reasons for this renewed interest. Probably themost ex
iting one is the realization that the size of the extra dimensions 
an be amazinglylarge without 
ontradi
ting present experimental data [1�4℄. This opens the door to thepossibility of testing these models in the near future. In fa
t, a general feature of modelswith large extra dimensions is the presen
e of a tower of Kaluza-Klein (KK) states whi
h, iflight enough, 
ould be produ
ed in the next generation of a

elerators (see for instan
e [5�7℄).In addition, models based on large extra dimensions 
an be used to shed light on a variety ofproblems. First of all, by introdu
ing a new s
ale 
lose to the ele
troweak s
ale the hierar
hyproblem is pushed by a few orders of magnitude [2, 8℄. Furthermore, by resorting to extradimensions one might gain new insights on the size of the 
osmologi
al 
onstant [9, 10℄. Inaddition, supersymmetry breaking 
ould be explained in the 
ontext of su
h theories [11℄.Moreover, the linear running of gauge 
ouplings obtained in models with extra dimensions
an be used to lower the s
ale of gauge 
oupling uni�
ation (see for instan
e [12, 13℄).Finally, by assigning fermions to di�erent 
on�gurations of the extra dimensions one hopesto reprodu
e the hierar
hi
al pattern of fermion masses (see for instan
e [14�18℄).Models with 
ompa
t extra dimensions are in general not renormalizable, and one shouldregard them as low energy manifestations of some more fundamental theory, perhaps stringtheory. The e�e
ts of the extra dimensions are 
ommuni
ated to the four dimensionalworld through the presen
e of in�nite towers of KK modes, whi
h modify qualitatively thebehavior of the low energy theory. In parti
ular, the non-renormalizability of the theory isfound when summing the in�nite tower of KK states. Indeed, already when 
omputing treelevel pro
esses, one en
ounters sums of the type
+∞∑

n1,n2,···=−∞

1

n2
1 + n2

2 + · · ·+ n2
δ

, (1.1)where δ is the number of extra dimensions. The above sum is divergent if δ > 1. Noti
ethat this type of behavior is di�erent from 
onventional non-renormalizable theories where,at least at tree level, all pro
esses are �nite. Then, if δ > 1 one readily assumes that thetheory should be 
ut o� at some s
ale above the 
ompa
ti�
ation s
ale. In pra
ti
e this isimplemented by trun
ating the tower of KK modes at ni ∼ 100. Su
h a trun
ation me
h-anism is dynami
ally realized in the 
ontext of some string theories, where an exponentialdumping fa
tor suppresses the 
ouplings of the KK modes to ordinary matter [4℄. Modelswith only one extra dimension (δ = 1) are espe
ially interesting be
ause the above sum is
onvergent. Therefore, the tree level predi
tions of �ve dimensional models are parti
ularlystable with respe
t to the s
ale of any new physi
s beyond the 
ompa
ti�
ation s
ale. How-ever, as 
ommented before, even su
h models are not renormalizable, and one expe
ts thattheir bad high energy behavior will eventually manifest itself also at the level of the fourdimensional theory with an in�nity of KK modes. Thus, it is interesting to study the be-havior of this type of models at the one loop level and investigate to what extent their good2



tree level behavior is maintained. We will show in se
tion III that the e�e
t of summingthe in�nite tower of KK modes amounts to 
hanging the propagator of the parti
le havingKK modes by a propagator whi
h behaves like 1/k for large k, instead of the 
anoni
al 1/k2behavior. This ultimately will trigger the non-renormalizability even of models with onlyone extra dimension. In spite of that the integrals involving only one summation over KKmodes are as well behaved as their 
ounterparts in the original (zero-mode) renormalizablefour dimensional theory; they too will therefore give rise to �nite results.Models with extra dimensions are also interesting from the phenomenologi
al point ofview be
ause they are very predi
tive on
e the spe
trum and the symmetries have been spe
-i�ed (e.g. whi
h �elds live in four dimensions and whi
h �elds live in the extra dimensions).For instan
e, �ve dimensional extensions of the SM or the minimal supersymmetri
 standardmodel (MSSM) 
ontain only one additional parameter, the 
ompa
ti�
ation radius, R, or itsinverse, the 
ompa
ti�
ation s
ale Mc = 1/R. In prin
iple the theory also depends on the
uto� s
ale of the theory Ms < 100Mc; however, for models with a single extra dimensionthis s
ale does not appear at tree level and, as we will see, many one-loop results are alsorather insensitive to it. On the other hand, models with more than one extra dimension 
andepend heavily on this additional parameter.In this paper we study a model with only one extra dimension at the one loop levelfollowing the bottom-up approa
h. Spe
i�
ally, we will build a four-dimensional quantum�eld theory (QFT) 
ontaining an in�nite tower of KK modes, derived from a �ve dimensionalmodel. In this framework we will study some of the theoreti
al issues that arise when keepingthe in�nite tower of KK modes, as well as some of their phenomenologi
al 
onsequen
es.There are many di�erent types of models with large extra dimensions depending onthe �elds they 
ontain and the exa
t lo
ation of these �elds [2℄. For our purposes we willadopt the simplest generalization of the SM, namely the so-
alled 5DSM with fermionsliving in four dimensions and gauge bosons and a single s
alar doublet propagating in �vedimensions [19℄. This simple model will allow us to explore the behavior of the theory atthe one loop level and, at the same time, to extra
t some phenomenologi
al 
onstraintsderived from one loop pro
esses whi
h are enhan
ed due to their strong dependen
e on thetop-quark mass, mt. Thus, in se
tion II we derive the relevant four dimensional Lagrangian
ontaining the tower of KK modes from the �ve dimensional one. At energies mu
h smallerthan the 
ompa
ti�
ation s
ale the tower of KK modes 
an be integrated out. This givesrise to a four-fermion intera
tion, whi
h is also derived in se
tion II. In se
tion III we usethe pro
ess Z → bb̄ as a laboratory to study the e�e
t of the KK tower of 
harged s
alar�elds at the one-loop level. This pro
ess is also phenomenologi
ally interesting be
ause itis very well measured and be
ause it is sensitive to the presen
e of additional s
alar �eldswith 
ouplings proportional to mt. We �nd that the s
alar KK modes give rise to a �nite
ontribution, and dis
uss the reason for that. The theoreti
al predi
tion thus obtained,
ombined with the existing pre
ise experimental value of Rb, is used to set stringent boundson the 
ompa
ti�
ation s
ale. Se
tion IV is devoted to the study of two related pro
esses,namely K-K̄ and B-B̄ mixing, indu
ed by box diagrams involving the ex
hange of twos
alar towers of KK modes. These diagrams are also enhan
ed by the top quark mass andare interesting from the phenomenologi
al point of view. Contrary to the 
ase of Z → bb̄,the presen
e of two towers of KK modes renders these diagrams divergent. Introdu
ing the
uto� of the theory, Ms, we estimate their 
ontribution and 
ompare it with the available3



experimental data. Finally in se
tion V we 
olle
t and dis
uss the results.II. THE LAGRANGIANWhen studying the dominant radiative 
orre
tions indu
ed by the ex
hange of KKmodes,it is natural to fo
us on pro
esses whi
h are known to be sensitive to radiative 
orre
tionseven in the absen
e of KK modes. In the SM the most important loop e�e
ts are thoseenhan
ed due to the dependen
e on the heavy top-quark mass: Z → bb̄ [20�23℄, B-B̄-mixing [24℄, and the ρ parameter.If fermions live in four dimensions, as is the 
ase in the model we 
onsider, there are no KKmodes asso
iated with the top quark; therefore, there are no additional one-loop 
orre
tionsto the ρ parameter enhan
ed by the top-quark mass. On the other hand, in models withgauge bosons living in the extra dimensions the ρ parameter is already modi�ed at tree level,be
ause the KK modes of gauge bosons mix with the standard zero-mode gauge bosons, afa
t whi
h provides interesting 
onstraints on the 
ompa
ti�
ation s
ale [7, 25�29℄. We willtherefore fo
us on the remaining two pro
esses mentioned above.In the SM the dominant 
ontributions to Z → bb̄ and B-B̄ -mixing 
ome from diagramswith the 
harged s
alars (the would-be Goldstone bosons) running in the loop, be
ausetheir 
ouplings are proportional to the top-quark mass. One 
an easily establish this in theFeynman or in the Landau gauges. The 
ontributions from the ex
hange of gauge bosonsare suppressed by powers of (mW /mt)
2 and vanish in the gauge-less limit (g → 0) or inthe large top-quark mass limit. However, be
ause the top quark mass is not so heavy, the
onvergen
e of the expansion is rather slow [21℄ and the 
omplete 
al
ulation is neededin order to mat
h the experimental a

ura
y against the SM predi
tion. In spite of that,the dominant large top-quark mass approximation is good enough for many purposes, inparti
ular when estimating the size of 
ontributions stemming from new physi
s.If the s
alar doublet lives in �ve dimensions it will give rise to a tower of KK modeswith Yukawa 
ouplings proportional to the top-quark mass. Therefore, we expe
t the 
on-tributions from diagrams 
ontaining these 
ouplings to be numeri
ally dominant. If thes
alar doublet lives in four dimensions there 
ould still be important 
ontributions 
omingfrom the ex
hange of the KK modes of the gauge bosons, but they are not enhan
ed by thetop-quark mass. Therefore, we will only 
onsider the 
oupling of a s
alar doublet living in�ve dimensions to fermions living in four dimensions.The relevant pie
es of the �ve dimensional Lagrangian are (µ = 0, 1, 2, 3 are four dimen-sional indi
es and M = 0, 1, 2, 3, 51 are �ve dimensional ones)

L =
∫

d5x
(

∂Mϕ†∂Mϕ −
(

Q̄LYuuR ϕ δ(x5) + h.c.
)

+ · · ·
)

, (2.1)where ϕ(xM ) is the SU(2) s
alar doublet whi
h lives in �ve dimensions. QL(xµ) and uR(xµ)are the standard left-handed quark doublets and right-handed singlets, respe
tively, whi
hlive in four dimensions. They 
arry additional �avor and 
olor indi
es whi
h have been
1Following the standard notation we label the �fth 
omponent as 5, even though we started at 0.4



suppressed. Yu are 3 × 3 matri
es in the �avor spa
e. We have not written the Yukawaintera
tion of the down quarks be
ause it is proportional to the down quark masses whi
hare small. Of 
ourse these intera
tions are present and ne
essary for generating down quarkmasses and mixings. We have also omitted the kineti
 terms of fermions, as well as gaugebosons intera
tions, whi
h will not be relevant in our approximation. The r�le of δ(x5) is tofor
e the fermions to live in four dimensions. As usual, one assumes that the �fth dimension
x5 is 
ompa
ti�ed on a 
ir
le of radius R with the points x5 and −x5 identi�ed (that is, anorbifold S1/Z2). Fields even under the Z2 symmetry will have zero modes whi
h will bepresent in the low energy theory. Fields odd under Z2 will only have KK modes and willdisappear from the low energy spe
trum. One 
hooses the s
alar doublet to be even underthe Z2 symmetry in order to have a standard zero mode Higgs �eld. Following the standardKaluza-Klein 
onstru
tion, we Fourier expand the s
alar �elds as follows (from now on xrefers only to the four dimensional 
oordinates xµ)

ϕ(xµ, x5) =
∞∑

n=0

cos
nx5

R
ϕn(xµ) . (2.2)Substituting this expression into the �fth dimensional Lagrangian, eq. (2.1), and integrat-ing over the �fth 
omponent leads to the four dimensional Lagrangian for the KK modes

ϕn(x). The kineti
 terms, however, are not 
anoni
al, and we need to perform the followingrede�nitions of �elds and 
ouplings in order to 
ast them into 
anoni
al form:
ϕ0(x) → 1√

2πR
ϕ0(x) , ϕn(x) → 1√

πR
ϕn(x) , (n 6= 0) , Yu →

√
2πR Yu . (2.3)Then, we arrive at the following four dimensional Lagrange density

L = ∂µϕ
†
0∂

µϕ0 −
(

Q̄LYuuRϕ0 + h.
.)
+

∞∑

n=1

(

∂µϕ
†
n∂

µϕn − n2

R2
ϕ†

nϕn −
(

Q̄LYuuR

√
2ϕn + h.
.)) , (2.4)whi
h will be used in our 
al
ulations. Fermions obtain their masses when the neutral 
om-ponent of the zero mode Higgs �eld, ϕ

(0)
0 , a
quires a va
uum expe
tation value 〈ϕ(0)

0

〉

≡ v.Mass matri
es are diagonalized in the standard way, and, if we only keep terms propor-tional to the top quark mass we obrtain the following Yukawa intera
tion between the masseigenstates and the KK modes of s
alar �elds
LY = −

√
2
mt

v

∞∑

n=1



tL tRϕ(0)
n +

d,s,b
∑

f

fLV ∗
tf tRϕ(−)

n + h.c.



 , (2.5)where Vtf is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, while ϕ(0)
n and ϕ(−)

n are theneutral and 
harged 
omponents of the KK s
alar doublets, respe
tively. Noti
e the addi-tional fa
tor √2 in the 
oupling of the KK modes, whi
h 
omes from the normalization ofthe zero mode in the Fourier expansion. 5



In the low energy limit one 
an integrate out the KK modes (by using the equations ofmotion, for instan
e) and obtain the following four fermion intera
tion (in the weak basis)
Leff =

(πR)2

3
(Q̄LYuuR)(ūRY †

u QL) , (2.6)whi
h 
an be expressed in terms of the mass eigenstates (keeping only terms proportionalto mt).

Leff =
(πR)2

3

m2
t

v2



(tL tR) (tR tL) +
d,s,b
∑

f,f ′

(

f ′
L tR

)

(tR fL) VtfV
∗
tf ′



 . (2.7)The above Lagrangian provides, for instan
e, a four fermion intera
tion (b̄L tR)(t̄R bL) (andalso (s̄L tR)(t̄R sL) and (d̄L tR)(t̄R dL) ) whi
h mu
h in the spirit of ref. [30℄ 
an 
ontribute atone loop level to the de
ay Z → bb̄ as well to B-B̄ and K-K̄ mixing. However, if we use thee�e
tive four-fermion intera
tion, the loop integral in �g. 2 is divergent and following ref. [30℄one 
an only 
ompute in this way the dominant logarithmi
 
ontributions. To obtain thenon-logarithmi
 parts one should 
al
ulate the one-loop mat
hing with the 
omplete theory.One of the advantages of models with large extra dimensions is that they provide this fulltheory, whi
h will allow us, as we will immediately show, to 
ompute not only the logarithmi

orre
tions but also the �nite parts. In order to a

omplish this, one has to maintain all KKmodes as dynami
al parti
les. Therefore, in what follows we will use the intera
tions givenin eq. (2.5). III. Z → bb̄In the SM there are many diagrams 
ontributing to the vertex 
orre
tions to Z → bb̄. Inthe Feynman or in the Landau gauges the dominant 
ontribution for large mt is 
aptured bydiagrams su
h as the one shown in �g. 1, with a 
harged would-be Goldstone boson runningin the loop. In the unitary gauge these 
orre
tions originate from the longitudinal partsof the gauge boson propagators. In general there are strong 
an
ellations among vertexdiagrams (as the graph of �g. 1) and diagrams with self-energies in the external fermionlegs in su
h a way that the dominant 
ontribution is �nite. By far the easiest way to
ompute these 
orre
tions is to resort to the equivalen
e theorem [31�34℄, i.e. to use theWard identities [35�38℄ that relate the Z-bb̄ vertex to the G0-bb̄ vertex , where G0 denotesthe would-be Goldstone boson asso
iated to the Z gauge boson.In the model we are 
onsidering, there are additional 
ontributions enhan
ed by mt thatarise from the presen
e of the 
harged s
alar KK modes, with intera
tions governed byeq. (2.5), whi
h give rise to the diagram of �g. 1. If the gauge bosons also possess KK modesthere will be additional diagrams, su
h as the one shown in �g. 1, in whi
h the KK modes ofthe s
alars will be repla
ed by the 
orresponding KK modes of the W -gauge bosons. Eventhough their 
ontribution is formally suppressed by a fa
tor (mW /mt)
2, we will estimate itat the end of this se
tion. In su
h a 
ase it is important to realize that the KK modes of the6




harged s
alars appearing inside the loop are not the would-be Goldstone bosons of the KKmodes of the gauge bosons. In fa
t the mass of the KK modes asso
iated to the gauge bosonsis given by their �fth 
omponents2. This distin
tion be
omes 
lear if one uses the unitarygauge for the KK modes of the gauge bosons. In this 
ase the �fth 
omponents of the �vedimensional gauge bosons are 
ompletely absorbed by the KK modes of the gauge bosons,i.e. there are not graphs 
ontaining would-be Goldstone bosons, while the KK modes of thes
alars remain in the spe
trum of physi
al parti
les, i.e. the diagram of �g. 1 persists.Again, the easiest way to 
al
ulate the 
ontribution of the s
alar KK modes is to resortto the equivalen
e theorem for the external Z and 
ompute the diagram of �g. 1 with theZ repla
ed by the G(0). Sin
e the 
ouplings of the KK modes to fermions are universal,summing all s
alar 
ontributions amounts to repla
ing the propagator of the SM would-beGoldstone boson by (for Eu
lidean momenta, whi
h we will use in the momentum integralsafter the Wi
k rotation)
1

k2
E

→ 1

k2
E

+ 2
∞∑

n=1

1

k2
E + n2/R2

=
∞∑

n=−∞

1

k2
E + n2/R2

= πR
coth(kEπR)

kE

, (3.1)where kE =
√

k2
E .Noti
e the behavior of this propagator: for small kE it redu
es to the standard Goldstonepropagator plus, if expanded at leading order, an additional 
onstant whi
h furnishes the
onta
t intera
tion derived above, eq. (2.6). However, for large kE it goes as 1/kE; as a resultthe ultraviolet (UV) behavior of this theory is worse than in the SM by one power of kE , afa
t whi
h will eventually trigger the non-renormalizability of the theory. However, sin
e inthe large kE limit only even powers of kE 
ontribute in standard QFT integrals, this worseUV behavior of the non-standard propagator does not 
reate additional problems, as longas only one su
h propagator is inserted into a 
onvergent graph. For instan
e, the dominantSM 
ontribution to the Zbb̄ vertex, �g. 1, is 
onvergent be
ause the integrand behaves as

1/k6
E; when we use the non-standard propagator this behavior will drop to 1/k5

E, whi
h stillleads to a 
onvergent result.To see how this works in detail we parametrize the e�e
tive Zb̄b vertex as
g

cW

b̄γµ(gLPL + gRPR)bZµ , (3.2)where PL = (1 − γ5)/2 and PR = (1 + γ5)/2 are, respe
tively, the left and right 
hiralityproje
tors, c2
W = 1 − s2

W = m2
W /m2

Z , and
2Fifth 
omponents of gauge bosons are odd under the Z2 symmetry, therefore they do not have zeromodes. Masses for the zero-mode gauge bosons should be provided by the usual Higgs me
hanism,while masses for non-zero mode gauge bosons are provided by their �fth 
omponents. Thus, onlythe zero mode s
alars play the r�le of Goldstone bosons.7



gL = −1

2
+

1

3
s2

W + δgSM
L + δgNP

L

gR =
1

3
s2

W + δgSM
R + δgNP

R . (3.3)In the above equations the −1/2+s2
W /3 and s2

W/3 are the tree level 
ontributions, δgSM
L and

δgSM
L denote higher order 
orre
tions within the SM, whereas δgNP

L and δgNP
L parametrizethe 
ontributions 
oming from new physi
s. Noti
e that, in general, gR only re
eives sub-dominant 
orre
tions (not proportional to the top quark mass) in both the SM and in mostof new physi
s s
enarios. In parti
ular, the dominant SM 
ontribution 
omes from theGoldstone boson diagrams running in the loop, �g. 1, and it is given by

δgSM
L ≈

√
2GF m4

t i
∫

d4k

(2π)4

1

(k2 − m2
t )2k2

=

√
2GF m2

t

(4π)2
. (3.4)Therefore, adding the KK modes we obtain

δgNP
L ≈ δgSM

L (F (a) − 1) , (3.5)where a = πRmt, and
F (a) = πR

∫
dkEk2

E coth(kEπR)

(k2
E + m2

t )2

/
∫

dkEkE

(k2
E + m2

t )2

= 2a
∫ ∞

0
dx

x2

(1 + x2)2
coth(ax) (3.6)is the ratio of the non-standard to the standard integrals (in the Eu
lidean). F (a) is, asexpe
ted, perfe
tly 
onvergent. It 
an be expanded for small a, yielding

F (a) ≈ 1 + a2
(

−1

3
− 4

π2
ζ ′(2) − 2

3
log(a/π)

)

≈ 1 + a2
(

0.80979 − 2

3
log(a)

)

, (3.7)where ζ ′ is the derivative of the Riemann zeta fun
tion. As 
ommented before, the log-arithmi
 
ontribution 
an be obtained easily by using the four-fermion intera
tion at theloop level and then 
utting o� the integrals at kE ≈ 1/a. This model, in addition to thelogarithmi
 
ontribution provides also the non-logarithmi
 pie
e, and the result reportedabove is valid for any value of a. One important point about this result is that the addi-tional 
ontribution from the KK modes is always positive, a fa
t whi
h will be of parti
ularimportan
e in the following phenomenologi
al analysis.A shift in the Zbb̄ 
ouplings gives a shift in Rb = Γb/Γh (here Γb = Γ(Z → bb̄) and
Γh = Γ(Z → hadrons)) given by

Rb = RSM
b

1 + δNP
bV

1 + RSM
b δNP

bV

, (3.8)where
δNP
bV =

δΓb

ΓSM
b

≈ 2
gL

(gL)2 + (gR)2
δgNP

L ≈ −4.6 δgNP
L (3.9)8



gives the relative 
hange to Γb due to vertex 
orre
tions 
oming from new physi
s, Γb =
ΓSM

b + δΓb. Here, quantities with supers
ript SM denote standard model values in
luding
omplete radiative 
orre
tions. Note that non-vertex 
orre
tions are universal for all quarksand 
an
el in the ratio Rb.In re
ent years there has been a signi�
ant 
ontroversy surrounding Rb, be
ause for sometime its measured value was more than two standard deviations away from the one predi
tedin the SM. However, the present experimental value is perfe
tly 
ompatible with the SM [39℄:
Rexp

b = 0.2164 ± 0.00073, while RSM
b = 0.2157 ± 0.0002, although the 
entral value is stillsomewhat higher. Using these values together with equations (3.4), (3.5), (3.8) and (3.9),one immediately �nds that F (a)−1 = −0.24±0.31. However, as 
ommented before, F (a) isalways larger than 1 sin
e 
orre
tions from extra dimensions are always positive. In this 
aseone should be espe
ially 
areful when estimating 
on�den
e levels (CL) for the bounds on

F (a)−1. For this purpose we used the pres
ription of ref. [40℄, whi
h provides more reliablelimits than other approa
hes, and found the following 95% CL limit of F (a) − 1 < 0.39.After evaluation of the integral (3.6) the previous limit translates into an upper bound on
a, a < 0.56, whi
h amounts to the following lower bound on the 
ompa
ti�
ation s
ale Mc,

Mc > 1 TeV . (3.10)If only 68% CL limits are required we obtain F (a) − 1 < 0.11, a < 0.26, and Mc > 2 TeV.Quite interestingly, these one-loop bounds are 
omparable to those obtained from tree levelpro
esses [7, 25�29℄.In the above dis
ussion we have not taken into a

ount the e�e
ts of the gauge boson KKmodes be
ause their 
ontribution is suppressed by (mW /mt)
2. However, sin
e (mW /mt)

2 ∼
1/4, su
h 
ontributions, even though formally suppressed, 
ould be
ome numeri
ally relevantand a�e
t the obtained bounds. In addition, those 
ontributions are present even if the s
alardoublet lives in four dimensions and, as a 
onsequen
e, has no KK modes. Therefore, wewill provide an estimate of their size.At energies below the 
ompa
ti�
ation s
ale one 
an integrate the KK modes of thegauge bosons and obtain the following four-fermion intera
tion for the third generation (inthe eigenvalue basis and negle
ting CKM mixings)

Lgauge = −(πR)2

3

g2

2

(

b̄LγµtL
)

(t̄LγµbL) , (3.11)to be 
ompared with the 
ontribution from s
alar modes obtained from (2.7) (again negle
t-ing CKM mixings)
LYtb =

(πR)2

3

m2
t

v2

(

b̄L tR
)

(t̄R bL) . (3.12)As 
ommented above and dis
ussed in ref. [30℄, one 
an use these e�e
tive Lagrangians toobtain the leading logarithmi
 
orre
tions to Z → bb̄. In order to a
hieve that we 
omputethe divergent part of the diagram shown in �g. 2, where the symbol ⊗ denotes the insertionof any of these four-fermion operators. It turns out that the di�erent Lorentz stru
ture ofthe two four fermion intera
tions in (3.11) and (3.12) gives an additional fa
tor −2 in the9



former 
ase. Therefore, up to non-logarithm 
orre
tions, one 
an in
lude the e�e
t of theex
hange of KK modes of gauge bosons by multiplying the e�e
t of the s
alar KK modesby a fa
tor 1 + 2(mW/mt)
2, whi
h gives a non-negligible 
orre
tion. Noti
e that due to thepositive relative sign, in
lusion of this 
orre
tion would lead to a 20% improvement in thebound on Mc. Moreover, this 
orre
tion will remain even in the absen
e of s
alar KK modes;in that 
ase one 
an still pla
e a bound on Mc of about 0.7 TeV.IV. BOX CONTRIBUTIONS TO K-K̄ AND B-B̄ MIXING AND THEDIVERGENCESIn the SM, the mixing between the B0 meson and its anti-parti
le is also 
ompletelydominated by the top-quark 
ontribution. The expli
it mt dependen
e of the box diagramsis given by the loop fun
tion [24℄

S(xt)SM =
xt

4

[

1 +
9

1 − xt

− 6

(1 − xt)2
− 6x2

t log(xt)

(1 − xt)3

]

, xt ≡
m2

t

M2
W

, (4.1)whi
h 
ontains the hard m2
t term, i.e. xt/4, indu
ed by the longitudinal W ex
hanges. Thesame fun
tion 
ontrols the top�quark 
ontribution to the K-K̄ mixing parameter εK . Themeasured top-quark mass, mt = 175 GeV, implies S(xt)SM ∼ 2.5.The KK modes of the 
harged 
omponents of the doublet also 
ontribute to this boxdiagram. The total dominant 
ontribution, SM plus KK modes, 
an be obtained by substi-tuting the propagator (3.1) in the box diagram, �g. 3. However, as dis
ussed in the previousse
tion, the modi�ed propagator behaves as 1/kE for large kE, and therefore, the insertionof two propagators of this type turns this modi�ed diagram into UV divergent. On the otherhand, the insertion of only one modi�ed propagator still yields a �nite result.We write the 
orre
tion to S(xt) as

S(xt) = S(xt)SM + δS(xt) , δS(xt) =
xt

4
(G(a) − 1) , (4.2)where the fun
tion G(a) is again the ratio of the non-standard to standard box integrals3

G(a) = (πR)2
∫ dkEk3

E coth2(kEπR)

(k2
E + m2

t )2

/
∫ dkEkE

(k2
E + m2

t )2

= 2a2
∫ ∞

0
dx

x3

(1 + x2)2
coth2(ax) (4.3)

3Noti
e that, even though the SM box integral is given exa
tly by the same expression as thatof the SM vertex integral in the previous se
tion, their original stru
tures are rather di�erent .In parti
ular, the box diagram 
ontains two s
alar propagators whereas the vertex diagram only
ontains one. 10



whi
h is 
learly divergent for x → ∞. In order to estimate this integral, we split coth(ax) →
1
ax

(1 + ax coth(ax) − 1
︸ ︷︷ ︸

) and rewrite G(a) as
G(a) = 2

∫ ∞

0
dx

x

(1 + x2)2

(

1 + 2 (ax coth(ax) − 1) + (ax coth(ax) − 1)2
)

= 1 + 2 (F (a) − 1) + 2
∫ ∞

0
dx

x

(1 + x2)2
(ax coth(ax) − 1)2 . (4.4)The divergen
e is 
ontained in the last term. To evaluate it we 
ut o� the integral at

x ≈ ns/a, where ns is related to the s
ale at whi
h new physi
s enters to regulate the �vedimensional theory. In parti
ular, Ms ∼ nsMc and ns ≫ 1. Then, after a 
hange of variable
y = ax the last term 
an be re-written as

2a2
∫ ns

0
dy

y

(a2 + y2)2
(y coth(y) − 1)2 ≈ 2a2

∫ ns

0
dy

1

y3
(y coth(y) − 1)2

≈ 2a2 (−1.38136 + log(ns)) , (4.5)where in the se
ond expression we have assumed a ≪ 1, and, in addition, in the lastexpression we have also taken ns ≫ 1. Combining this result with (4.4) and (3.7) we obtain
G(a) ≈ 1 + a2

(

−1.14314 − 4

3
log(a) + 2 log(ns)

)

. (4.6)We have 
he
ked that the 
oe�
ients of the two logarithms, log(a) and log(ns), 
an also beobtained by performing �rst the 
onvergent momentum integrals and subsequently trun
at-ing the divergent double series at ∼ ns. However, this latter method is te
hni
ally far more
ompli
ated than the one presented here.For moderate values of a ∼ 0.2 and ns ∼ 10 the new physi
s 
orre
tion is only about 0.2.For more extreme values (for instan
e a ∼ 0.6 and ns ∼ 100), we �nd that the 
ontributionfrom extra dimensions to the fun
tion G(a) is about 3. Noti
e also that, as dis
ussed atthe end of se
. III, the presen
e of diagrams with gauge boson KK modes 
ould modify thebounds on Mc by a fa
tor of about 20%. However, given the un
ertainty in the 
al
ulationof the box diagrams due to the dependen
e on the s
ale Ms, estimating su
h e�e
ts seemssuper�uous. The important point, however, is that the 
ontribution from extra dimensionsto the fun
tion S(xt) is always positive.We 
an use the measured B0
d-B̄0

d mixing to infer the experimental value of S(xt) and,therefore, to set a limit on the δS(xt) 
ontribution. The expli
it dependen
e on the quark�mixing parameters 
an be resolved by 
ombining the 
onstraints from ∆MB0

d

, εK , and Γ(b →
u)/Γ(b → c). In ref. [30℄ a 
omplete analysis of the allowed values for S(xt) was performedby varying all parameters in their allowed regions. The �nal out
ome of su
h an analysis isthat S(xt) 
ould take values within a rather large interval, namely

1 < S(xt) < 10 . (4.7)Sin
e most of the errors 
ome from un
ertainties in theoreti
al 
al
ulations, it is ratherdi�
ult to assign 
on�den
e levels to the bounds quoted above. The lower limit is very11



stable under 
hanges of parameters, while the upper limit 
ould be modi�ed by a fa
tor of2 by simply doubling some of the errors.Given that the standard model value for S(xt) is S(xt)SM = 2.5, positive 
ontributions
an be 
omfortably a

ommodated, whereas negative 
ontributions are more 
onstrained.As we have seen, extra dimensions result in positive 
ontributions to S(xt); in fa
t one 
anobtain values that 
ould approa
h the upper limit of S(xt) only for rather small values ofthe 
ompa
ti�
ation s
ale Mc and large values of the s
ale of new physi
s, Ms. It seemstherefore that, at present, the above bounds do not provide good limits on Mc. On the otherhand, if future experiments 
ombined with theoreti
al improvements were to furnish a valuefor S(xt) ex
eeding that of the SM, our analysis shows that su
h a dis
repan
y 
ould easilybe a

ommodated in models with large extra dimensions.V. CONCLUSIONSWe have studied, at the one loop level, the minimal extension of the SM with one extradimension 
ompa
ti�ed in S1/Z2. Fermions live in 4 dimensions, while gauge bosons andthe s
alar doublet live in 5 dimensions and therefore give rise to a tower of KK modes. Inthe 
ase of a single extra dimension the 
ontribution of the in�nite tower of KK modes leadto �nite tree level predi
tions. We have investigated whether this feature persists at theone loop level, by 
onsidering two amplitudes whi
h are enhan
ed by the top-quark mass,namely Z → bb̄ and B-B̄ mixing.The in�nite tower of KK modes enters in the 
al
ulation of Z → bb̄ by modifying thepropagator of the 
harged s
alars running in the vertex diagram. This 
an be e�e
tivelytaken into a

ount by using a modi�ed propagator for the s
alars whi
h for large k behavesas 1/k, instead of the 
anoni
al behavior of 1/k2. In spite of that the e�e
t is �nite and
al
ulable. The result, when 
ompared with pre
ise experimental data on Rb = Γb/Γh, isused to pla
e stringent limits on the 
ompa
ti�
ation s
ale, Mc, Mc > 1 TeV at the 95%CL, whi
h are 
omparable to the bounds obtained from tree-level pro
esses.The box diagrams 
ontributing to B-B̄ and K-K̄ mixings 
ontain two propagators of KKmodes. The double sum over KK modes amounts to the repla
ement of both propagators bythe aforementioned softer ones, a fa
t whi
h in
reases the UV behavior of the diagram by twopowers, and renders it divergent. Thus, due to su
h 
ontributions the theory be
omes non-renormalizable already at the one-loop level. To estimate their size one has to assume thatthe model is embedded in a more 
omplete theory whi
h would provide an e�e
tive 
uto�at s
ales larger than Mc. In pra
ti
e, this 
an be realized either by 
utting o� the in�niteintegrals at momenta of order of Ms, the s
ale where new physi
s enters to regularize the �vedimensional theory, or by trun
ating the sum of KK modes at some value of ns, ns ∼ Ms/Mc,with ns expe
ted to be order ∼ 100 or less. This way we 
an estimate the 
orre
tion indu
edby the extra dimension to the fun
tion S(xt) whi
h parametrizes the short distan
e physi
sin B-B̄ and K-K̄ mixings. A phenomenologi
al analysis shows that 1 < S(xt) < 10, whilethe SM value is S(xt) = 2.5. This suggests that moderate positive extra 
ontributions to
S(xt) are still allowed. Sin
e within the model we 
onsider the 
ontributions to S(xt) fromKK modes is always positive and moderate in size, no interesting bounds 
an be obtainedform this pro
ess. However, if in the future a value of S(xt) larger than the SM value is12



found, extra dimensions 
ould easily a
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FIG. 1. Diagram 
ontributing to Z → bb̄ if the s
alar doublet lives in �ve dimensions. Thetower of KK modes of 
harged s
alars is represented by the dashed double line.
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FIG. 2. E�e
tive �eld theory diagram used in the 
omputation of the leading logarithmi
 
or-re
tions indu
ed by four fermion intera
tions.
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FIG. 3. Box diagram 
ontributing to B-B̄ and K-K̄ mixings. The tower of KK modes isrepresented by the dashed double lines.
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