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I. INTRODUCTIONIn the last years there has been a revival of interest in new physis senarios in whih theordinary four dimensional standard model (SM) arises as a low energy e�etive theory ofmodels de�ned in �ve or more dimensions. Apart from the fat that this type of models arisenaturally in string senarios, there are various reasons for this renewed interest. Probably themost exiting one is the realization that the size of the extra dimensions an be amazinglylarge without ontraditing present experimental data [1�4℄. This opens the door to thepossibility of testing these models in the near future. In fat, a general feature of modelswith large extra dimensions is the presene of a tower of Kaluza-Klein (KK) states whih, iflight enough, ould be produed in the next generation of aelerators (see for instane [5�7℄).In addition, models based on large extra dimensions an be used to shed light on a variety ofproblems. First of all, by introduing a new sale lose to the eletroweak sale the hierarhyproblem is pushed by a few orders of magnitude [2, 8℄. Furthermore, by resorting to extradimensions one might gain new insights on the size of the osmologial onstant [9, 10℄. Inaddition, supersymmetry breaking ould be explained in the ontext of suh theories [11℄.Moreover, the linear running of gauge ouplings obtained in models with extra dimensionsan be used to lower the sale of gauge oupling uni�ation (see for instane [12, 13℄).Finally, by assigning fermions to di�erent on�gurations of the extra dimensions one hopesto reprodue the hierarhial pattern of fermion masses (see for instane [14�18℄).Models with ompat extra dimensions are in general not renormalizable, and one shouldregard them as low energy manifestations of some more fundamental theory, perhaps stringtheory. The e�ets of the extra dimensions are ommuniated to the four dimensionalworld through the presene of in�nite towers of KK modes, whih modify qualitatively thebehavior of the low energy theory. In partiular, the non-renormalizability of the theory isfound when summing the in�nite tower of KK states. Indeed, already when omputing treelevel proesses, one enounters sums of the type
+∞∑

n1,n2,···=−∞

1

n2
1 + n2

2 + · · ·+ n2
δ

, (1.1)where δ is the number of extra dimensions. The above sum is divergent if δ > 1. Notiethat this type of behavior is di�erent from onventional non-renormalizable theories where,at least at tree level, all proesses are �nite. Then, if δ > 1 one readily assumes that thetheory should be ut o� at some sale above the ompati�ation sale. In pratie this isimplemented by trunating the tower of KK modes at ni ∼ 100. Suh a trunation meh-anism is dynamially realized in the ontext of some string theories, where an exponentialdumping fator suppresses the ouplings of the KK modes to ordinary matter [4℄. Modelswith only one extra dimension (δ = 1) are espeially interesting beause the above sum isonvergent. Therefore, the tree level preditions of �ve dimensional models are partiularlystable with respet to the sale of any new physis beyond the ompati�ation sale. How-ever, as ommented before, even suh models are not renormalizable, and one expets thattheir bad high energy behavior will eventually manifest itself also at the level of the fourdimensional theory with an in�nity of KK modes. Thus, it is interesting to study the be-havior of this type of models at the one loop level and investigate to what extent their good2



tree level behavior is maintained. We will show in setion III that the e�et of summingthe in�nite tower of KK modes amounts to hanging the propagator of the partile havingKK modes by a propagator whih behaves like 1/k for large k, instead of the anonial 1/k2behavior. This ultimately will trigger the non-renormalizability even of models with onlyone extra dimension. In spite of that the integrals involving only one summation over KKmodes are as well behaved as their ounterparts in the original (zero-mode) renormalizablefour dimensional theory; they too will therefore give rise to �nite results.Models with extra dimensions are also interesting from the phenomenologial point ofview beause they are very preditive one the spetrum and the symmetries have been spe-i�ed (e.g. whih �elds live in four dimensions and whih �elds live in the extra dimensions).For instane, �ve dimensional extensions of the SM or the minimal supersymmetri standardmodel (MSSM) ontain only one additional parameter, the ompati�ation radius, R, or itsinverse, the ompati�ation sale Mc = 1/R. In priniple the theory also depends on theuto� sale of the theory Ms < 100Mc; however, for models with a single extra dimensionthis sale does not appear at tree level and, as we will see, many one-loop results are alsorather insensitive to it. On the other hand, models with more than one extra dimension andepend heavily on this additional parameter.In this paper we study a model with only one extra dimension at the one loop levelfollowing the bottom-up approah. Spei�ally, we will build a four-dimensional quantum�eld theory (QFT) ontaining an in�nite tower of KK modes, derived from a �ve dimensionalmodel. In this framework we will study some of the theoretial issues that arise when keepingthe in�nite tower of KK modes, as well as some of their phenomenologial onsequenes.There are many di�erent types of models with large extra dimensions depending onthe �elds they ontain and the exat loation of these �elds [2℄. For our purposes we willadopt the simplest generalization of the SM, namely the so-alled 5DSM with fermionsliving in four dimensions and gauge bosons and a single salar doublet propagating in �vedimensions [19℄. This simple model will allow us to explore the behavior of the theory atthe one loop level and, at the same time, to extrat some phenomenologial onstraintsderived from one loop proesses whih are enhaned due to their strong dependene on thetop-quark mass, mt. Thus, in setion II we derive the relevant four dimensional Lagrangianontaining the tower of KK modes from the �ve dimensional one. At energies muh smallerthan the ompati�ation sale the tower of KK modes an be integrated out. This givesrise to a four-fermion interation, whih is also derived in setion II. In setion III we usethe proess Z → bb̄ as a laboratory to study the e�et of the KK tower of harged salar�elds at the one-loop level. This proess is also phenomenologially interesting beause itis very well measured and beause it is sensitive to the presene of additional salar �eldswith ouplings proportional to mt. We �nd that the salar KK modes give rise to a �niteontribution, and disuss the reason for that. The theoretial predition thus obtained,ombined with the existing preise experimental value of Rb, is used to set stringent boundson the ompati�ation sale. Setion IV is devoted to the study of two related proesses,namely K-K̄ and B-B̄ mixing, indued by box diagrams involving the exhange of twosalar towers of KK modes. These diagrams are also enhaned by the top quark mass andare interesting from the phenomenologial point of view. Contrary to the ase of Z → bb̄,the presene of two towers of KK modes renders these diagrams divergent. Introduing theuto� of the theory, Ms, we estimate their ontribution and ompare it with the available3



experimental data. Finally in setion V we ollet and disuss the results.II. THE LAGRANGIANWhen studying the dominant radiative orretions indued by the exhange of KKmodes,it is natural to fous on proesses whih are known to be sensitive to radiative orretionseven in the absene of KK modes. In the SM the most important loop e�ets are thoseenhaned due to the dependene on the heavy top-quark mass: Z → bb̄ [20�23℄, B-B̄-mixing [24℄, and the ρ parameter.If fermions live in four dimensions, as is the ase in the model we onsider, there are no KKmodes assoiated with the top quark; therefore, there are no additional one-loop orretionsto the ρ parameter enhaned by the top-quark mass. On the other hand, in models withgauge bosons living in the extra dimensions the ρ parameter is already modi�ed at tree level,beause the KK modes of gauge bosons mix with the standard zero-mode gauge bosons, afat whih provides interesting onstraints on the ompati�ation sale [7, 25�29℄. We willtherefore fous on the remaining two proesses mentioned above.In the SM the dominant ontributions to Z → bb̄ and B-B̄ -mixing ome from diagramswith the harged salars (the would-be Goldstone bosons) running in the loop, beausetheir ouplings are proportional to the top-quark mass. One an easily establish this in theFeynman or in the Landau gauges. The ontributions from the exhange of gauge bosonsare suppressed by powers of (mW /mt)
2 and vanish in the gauge-less limit (g → 0) or inthe large top-quark mass limit. However, beause the top quark mass is not so heavy, theonvergene of the expansion is rather slow [21℄ and the omplete alulation is neededin order to math the experimental auray against the SM predition. In spite of that,the dominant large top-quark mass approximation is good enough for many purposes, inpartiular when estimating the size of ontributions stemming from new physis.If the salar doublet lives in �ve dimensions it will give rise to a tower of KK modeswith Yukawa ouplings proportional to the top-quark mass. Therefore, we expet the on-tributions from diagrams ontaining these ouplings to be numerially dominant. If thesalar doublet lives in four dimensions there ould still be important ontributions omingfrom the exhange of the KK modes of the gauge bosons, but they are not enhaned by thetop-quark mass. Therefore, we will only onsider the oupling of a salar doublet living in�ve dimensions to fermions living in four dimensions.The relevant piees of the �ve dimensional Lagrangian are (µ = 0, 1, 2, 3 are four dimen-sional indies and M = 0, 1, 2, 3, 51 are �ve dimensional ones)

L =
∫

d5x
(

∂Mϕ†∂Mϕ −
(

Q̄LYuuR ϕ δ(x5) + h.c.
)

+ · · ·
)

, (2.1)where ϕ(xM ) is the SU(2) salar doublet whih lives in �ve dimensions. QL(xµ) and uR(xµ)are the standard left-handed quark doublets and right-handed singlets, respetively, whihlive in four dimensions. They arry additional �avor and olor indies whih have been
1Following the standard notation we label the �fth omponent as 5, even though we started at 0.4



suppressed. Yu are 3 × 3 matries in the �avor spae. We have not written the Yukawainteration of the down quarks beause it is proportional to the down quark masses whihare small. Of ourse these interations are present and neessary for generating down quarkmasses and mixings. We have also omitted the kineti terms of fermions, as well as gaugebosons interations, whih will not be relevant in our approximation. The r�le of δ(x5) is tofore the fermions to live in four dimensions. As usual, one assumes that the �fth dimension
x5 is ompati�ed on a irle of radius R with the points x5 and −x5 identi�ed (that is, anorbifold S1/Z2). Fields even under the Z2 symmetry will have zero modes whih will bepresent in the low energy theory. Fields odd under Z2 will only have KK modes and willdisappear from the low energy spetrum. One hooses the salar doublet to be even underthe Z2 symmetry in order to have a standard zero mode Higgs �eld. Following the standardKaluza-Klein onstrution, we Fourier expand the salar �elds as follows (from now on xrefers only to the four dimensional oordinates xµ)

ϕ(xµ, x5) =
∞∑

n=0

cos
nx5

R
ϕn(xµ) . (2.2)Substituting this expression into the �fth dimensional Lagrangian, eq. (2.1), and integrat-ing over the �fth omponent leads to the four dimensional Lagrangian for the KK modes

ϕn(x). The kineti terms, however, are not anonial, and we need to perform the followingrede�nitions of �elds and ouplings in order to ast them into anonial form:
ϕ0(x) → 1√

2πR
ϕ0(x) , ϕn(x) → 1√

πR
ϕn(x) , (n 6= 0) , Yu →

√
2πR Yu . (2.3)Then, we arrive at the following four dimensional Lagrange density

L = ∂µϕ
†
0∂

µϕ0 −
(

Q̄LYuuRϕ0 + h..)
+

∞∑

n=1

(

∂µϕ
†
n∂

µϕn − n2

R2
ϕ†

nϕn −
(

Q̄LYuuR

√
2ϕn + h..)) , (2.4)whih will be used in our alulations. Fermions obtain their masses when the neutral om-ponent of the zero mode Higgs �eld, ϕ

(0)
0 , aquires a vauum expetation value 〈ϕ(0)

0

〉

≡ v.Mass matries are diagonalized in the standard way, and, if we only keep terms propor-tional to the top quark mass we obrtain the following Yukawa interation between the masseigenstates and the KK modes of salar �elds
LY = −

√
2
mt

v

∞∑

n=1



tL tRϕ(0)
n +

d,s,b
∑

f

fLV ∗
tf tRϕ(−)

n + h.c.



 , (2.5)where Vtf is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, while ϕ(0)
n and ϕ(−)

n are theneutral and harged omponents of the KK salar doublets, respetively. Notie the addi-tional fator √2 in the oupling of the KK modes, whih omes from the normalization ofthe zero mode in the Fourier expansion. 5



In the low energy limit one an integrate out the KK modes (by using the equations ofmotion, for instane) and obtain the following four fermion interation (in the weak basis)
Leff =

(πR)2

3
(Q̄LYuuR)(ūRY †

u QL) , (2.6)whih an be expressed in terms of the mass eigenstates (keeping only terms proportionalto mt).

Leff =
(πR)2

3

m2
t

v2



(tL tR) (tR tL) +
d,s,b
∑

f,f ′

(

f ′
L tR

)

(tR fL) VtfV
∗
tf ′



 . (2.7)The above Lagrangian provides, for instane, a four fermion interation (b̄L tR)(t̄R bL) (andalso (s̄L tR)(t̄R sL) and (d̄L tR)(t̄R dL) ) whih muh in the spirit of ref. [30℄ an ontribute atone loop level to the deay Z → bb̄ as well to B-B̄ and K-K̄ mixing. However, if we use thee�etive four-fermion interation, the loop integral in �g. 2 is divergent and following ref. [30℄one an only ompute in this way the dominant logarithmi ontributions. To obtain thenon-logarithmi parts one should alulate the one-loop mathing with the omplete theory.One of the advantages of models with large extra dimensions is that they provide this fulltheory, whih will allow us, as we will immediately show, to ompute not only the logarithmiorretions but also the �nite parts. In order to aomplish this, one has to maintain all KKmodes as dynamial partiles. Therefore, in what follows we will use the interations givenin eq. (2.5). III. Z → bb̄In the SM there are many diagrams ontributing to the vertex orretions to Z → bb̄. Inthe Feynman or in the Landau gauges the dominant ontribution for large mt is aptured bydiagrams suh as the one shown in �g. 1, with a harged would-be Goldstone boson runningin the loop. In the unitary gauge these orretions originate from the longitudinal partsof the gauge boson propagators. In general there are strong anellations among vertexdiagrams (as the graph of �g. 1) and diagrams with self-energies in the external fermionlegs in suh a way that the dominant ontribution is �nite. By far the easiest way toompute these orretions is to resort to the equivalene theorem [31�34℄, i.e. to use theWard identities [35�38℄ that relate the Z-bb̄ vertex to the G0-bb̄ vertex , where G0 denotesthe would-be Goldstone boson assoiated to the Z gauge boson.In the model we are onsidering, there are additional ontributions enhaned by mt thatarise from the presene of the harged salar KK modes, with interations governed byeq. (2.5), whih give rise to the diagram of �g. 1. If the gauge bosons also possess KK modesthere will be additional diagrams, suh as the one shown in �g. 1, in whih the KK modes ofthe salars will be replaed by the orresponding KK modes of the W -gauge bosons. Eventhough their ontribution is formally suppressed by a fator (mW /mt)
2, we will estimate itat the end of this setion. In suh a ase it is important to realize that the KK modes of the6



harged salars appearing inside the loop are not the would-be Goldstone bosons of the KKmodes of the gauge bosons. In fat the mass of the KK modes assoiated to the gauge bosonsis given by their �fth omponents2. This distintion beomes lear if one uses the unitarygauge for the KK modes of the gauge bosons. In this ase the �fth omponents of the �vedimensional gauge bosons are ompletely absorbed by the KK modes of the gauge bosons,i.e. there are not graphs ontaining would-be Goldstone bosons, while the KK modes of thesalars remain in the spetrum of physial partiles, i.e. the diagram of �g. 1 persists.Again, the easiest way to alulate the ontribution of the salar KK modes is to resortto the equivalene theorem for the external Z and ompute the diagram of �g. 1 with theZ replaed by the G(0). Sine the ouplings of the KK modes to fermions are universal,summing all salar ontributions amounts to replaing the propagator of the SM would-beGoldstone boson by (for Eulidean momenta, whih we will use in the momentum integralsafter the Wik rotation)
1

k2
E

→ 1

k2
E

+ 2
∞∑

n=1

1

k2
E + n2/R2

=
∞∑

n=−∞

1

k2
E + n2/R2

= πR
coth(kEπR)

kE

, (3.1)where kE =
√

k2
E .Notie the behavior of this propagator: for small kE it redues to the standard Goldstonepropagator plus, if expanded at leading order, an additional onstant whih furnishes theontat interation derived above, eq. (2.6). However, for large kE it goes as 1/kE; as a resultthe ultraviolet (UV) behavior of this theory is worse than in the SM by one power of kE , afat whih will eventually trigger the non-renormalizability of the theory. However, sine inthe large kE limit only even powers of kE ontribute in standard QFT integrals, this worseUV behavior of the non-standard propagator does not reate additional problems, as longas only one suh propagator is inserted into a onvergent graph. For instane, the dominantSM ontribution to the Zbb̄ vertex, �g. 1, is onvergent beause the integrand behaves as

1/k6
E; when we use the non-standard propagator this behavior will drop to 1/k5

E, whih stillleads to a onvergent result.To see how this works in detail we parametrize the e�etive Zb̄b vertex as
g

cW

b̄γµ(gLPL + gRPR)bZµ , (3.2)where PL = (1 − γ5)/2 and PR = (1 + γ5)/2 are, respetively, the left and right hiralityprojetors, c2
W = 1 − s2

W = m2
W /m2

Z , and
2Fifth omponents of gauge bosons are odd under the Z2 symmetry, therefore they do not have zeromodes. Masses for the zero-mode gauge bosons should be provided by the usual Higgs mehanism,while masses for non-zero mode gauge bosons are provided by their �fth omponents. Thus, onlythe zero mode salars play the r�le of Goldstone bosons.7



gL = −1

2
+

1

3
s2

W + δgSM
L + δgNP

L

gR =
1

3
s2

W + δgSM
R + δgNP

R . (3.3)In the above equations the −1/2+s2
W /3 and s2

W/3 are the tree level ontributions, δgSM
L and

δgSM
L denote higher order orretions within the SM, whereas δgNP

L and δgNP
L parametrizethe ontributions oming from new physis. Notie that, in general, gR only reeives sub-dominant orretions (not proportional to the top quark mass) in both the SM and in mostof new physis senarios. In partiular, the dominant SM ontribution omes from theGoldstone boson diagrams running in the loop, �g. 1, and it is given by

δgSM
L ≈

√
2GF m4

t i
∫

d4k

(2π)4

1

(k2 − m2
t )2k2

=

√
2GF m2

t

(4π)2
. (3.4)Therefore, adding the KK modes we obtain

δgNP
L ≈ δgSM

L (F (a) − 1) , (3.5)where a = πRmt, and
F (a) = πR

∫
dkEk2

E coth(kEπR)

(k2
E + m2

t )2

/
∫

dkEkE

(k2
E + m2

t )2

= 2a
∫ ∞

0
dx

x2

(1 + x2)2
coth(ax) (3.6)is the ratio of the non-standard to the standard integrals (in the Eulidean). F (a) is, asexpeted, perfetly onvergent. It an be expanded for small a, yielding

F (a) ≈ 1 + a2
(

−1

3
− 4

π2
ζ ′(2) − 2

3
log(a/π)

)

≈ 1 + a2
(

0.80979 − 2

3
log(a)

)

, (3.7)where ζ ′ is the derivative of the Riemann zeta funtion. As ommented before, the log-arithmi ontribution an be obtained easily by using the four-fermion interation at theloop level and then utting o� the integrals at kE ≈ 1/a. This model, in addition to thelogarithmi ontribution provides also the non-logarithmi piee, and the result reportedabove is valid for any value of a. One important point about this result is that the addi-tional ontribution from the KK modes is always positive, a fat whih will be of partiularimportane in the following phenomenologial analysis.A shift in the Zbb̄ ouplings gives a shift in Rb = Γb/Γh (here Γb = Γ(Z → bb̄) and
Γh = Γ(Z → hadrons)) given by

Rb = RSM
b

1 + δNP
bV

1 + RSM
b δNP

bV

, (3.8)where
δNP
bV =

δΓb

ΓSM
b

≈ 2
gL

(gL)2 + (gR)2
δgNP

L ≈ −4.6 δgNP
L (3.9)8



gives the relative hange to Γb due to vertex orretions oming from new physis, Γb =
ΓSM

b + δΓb. Here, quantities with supersript SM denote standard model values inludingomplete radiative orretions. Note that non-vertex orretions are universal for all quarksand anel in the ratio Rb.In reent years there has been a signi�ant ontroversy surrounding Rb, beause for sometime its measured value was more than two standard deviations away from the one preditedin the SM. However, the present experimental value is perfetly ompatible with the SM [39℄:
Rexp

b = 0.2164 ± 0.00073, while RSM
b = 0.2157 ± 0.0002, although the entral value is stillsomewhat higher. Using these values together with equations (3.4), (3.5), (3.8) and (3.9),one immediately �nds that F (a)−1 = −0.24±0.31. However, as ommented before, F (a) isalways larger than 1 sine orretions from extra dimensions are always positive. In this aseone should be espeially areful when estimating on�dene levels (CL) for the bounds on

F (a)−1. For this purpose we used the presription of ref. [40℄, whih provides more reliablelimits than other approahes, and found the following 95% CL limit of F (a) − 1 < 0.39.After evaluation of the integral (3.6) the previous limit translates into an upper bound on
a, a < 0.56, whih amounts to the following lower bound on the ompati�ation sale Mc,

Mc > 1 TeV . (3.10)If only 68% CL limits are required we obtain F (a) − 1 < 0.11, a < 0.26, and Mc > 2 TeV.Quite interestingly, these one-loop bounds are omparable to those obtained from tree levelproesses [7, 25�29℄.In the above disussion we have not taken into aount the e�ets of the gauge boson KKmodes beause their ontribution is suppressed by (mW /mt)
2. However, sine (mW /mt)

2 ∼
1/4, suh ontributions, even though formally suppressed, ould beome numerially relevantand a�et the obtained bounds. In addition, those ontributions are present even if the salardoublet lives in four dimensions and, as a onsequene, has no KK modes. Therefore, wewill provide an estimate of their size.At energies below the ompati�ation sale one an integrate the KK modes of thegauge bosons and obtain the following four-fermion interation for the third generation (inthe eigenvalue basis and negleting CKM mixings)

Lgauge = −(πR)2

3

g2

2

(

b̄LγµtL
)

(t̄LγµbL) , (3.11)to be ompared with the ontribution from salar modes obtained from (2.7) (again neglet-ing CKM mixings)
LYtb =

(πR)2

3

m2
t

v2

(

b̄L tR
)

(t̄R bL) . (3.12)As ommented above and disussed in ref. [30℄, one an use these e�etive Lagrangians toobtain the leading logarithmi orretions to Z → bb̄. In order to ahieve that we omputethe divergent part of the diagram shown in �g. 2, where the symbol ⊗ denotes the insertionof any of these four-fermion operators. It turns out that the di�erent Lorentz struture ofthe two four fermion interations in (3.11) and (3.12) gives an additional fator −2 in the9



former ase. Therefore, up to non-logarithm orretions, one an inlude the e�et of theexhange of KK modes of gauge bosons by multiplying the e�et of the salar KK modesby a fator 1 + 2(mW/mt)
2, whih gives a non-negligible orretion. Notie that due to thepositive relative sign, inlusion of this orretion would lead to a 20% improvement in thebound on Mc. Moreover, this orretion will remain even in the absene of salar KK modes;in that ase one an still plae a bound on Mc of about 0.7 TeV.IV. BOX CONTRIBUTIONS TO K-K̄ AND B-B̄ MIXING AND THEDIVERGENCESIn the SM, the mixing between the B0 meson and its anti-partile is also ompletelydominated by the top-quark ontribution. The expliit mt dependene of the box diagramsis given by the loop funtion [24℄

S(xt)SM =
xt

4

[

1 +
9

1 − xt

− 6

(1 − xt)2
− 6x2

t log(xt)

(1 − xt)3

]

, xt ≡
m2

t

M2
W

, (4.1)whih ontains the hard m2
t term, i.e. xt/4, indued by the longitudinal W exhanges. Thesame funtion ontrols the top�quark ontribution to the K-K̄ mixing parameter εK . Themeasured top-quark mass, mt = 175 GeV, implies S(xt)SM ∼ 2.5.The KK modes of the harged omponents of the doublet also ontribute to this boxdiagram. The total dominant ontribution, SM plus KK modes, an be obtained by substi-tuting the propagator (3.1) in the box diagram, �g. 3. However, as disussed in the previoussetion, the modi�ed propagator behaves as 1/kE for large kE, and therefore, the insertionof two propagators of this type turns this modi�ed diagram into UV divergent. On the otherhand, the insertion of only one modi�ed propagator still yields a �nite result.We write the orretion to S(xt) as

S(xt) = S(xt)SM + δS(xt) , δS(xt) =
xt

4
(G(a) − 1) , (4.2)where the funtion G(a) is again the ratio of the non-standard to standard box integrals3

G(a) = (πR)2
∫ dkEk3

E coth2(kEπR)

(k2
E + m2

t )2

/
∫ dkEkE

(k2
E + m2

t )2

= 2a2
∫ ∞

0
dx

x3

(1 + x2)2
coth2(ax) (4.3)

3Notie that, even though the SM box integral is given exatly by the same expression as thatof the SM vertex integral in the previous setion, their original strutures are rather di�erent .In partiular, the box diagram ontains two salar propagators whereas the vertex diagram onlyontains one. 10



whih is learly divergent for x → ∞. In order to estimate this integral, we split coth(ax) →
1
ax

(1 + ax coth(ax) − 1
︸ ︷︷ ︸

) and rewrite G(a) as
G(a) = 2

∫ ∞

0
dx

x

(1 + x2)2

(

1 + 2 (ax coth(ax) − 1) + (ax coth(ax) − 1)2
)

= 1 + 2 (F (a) − 1) + 2
∫ ∞

0
dx

x

(1 + x2)2
(ax coth(ax) − 1)2 . (4.4)The divergene is ontained in the last term. To evaluate it we ut o� the integral at

x ≈ ns/a, where ns is related to the sale at whih new physis enters to regulate the �vedimensional theory. In partiular, Ms ∼ nsMc and ns ≫ 1. Then, after a hange of variable
y = ax the last term an be re-written as

2a2
∫ ns

0
dy

y

(a2 + y2)2
(y coth(y) − 1)2 ≈ 2a2

∫ ns

0
dy

1

y3
(y coth(y) − 1)2

≈ 2a2 (−1.38136 + log(ns)) , (4.5)where in the seond expression we have assumed a ≪ 1, and, in addition, in the lastexpression we have also taken ns ≫ 1. Combining this result with (4.4) and (3.7) we obtain
G(a) ≈ 1 + a2

(

−1.14314 − 4

3
log(a) + 2 log(ns)

)

. (4.6)We have heked that the oe�ients of the two logarithms, log(a) and log(ns), an also beobtained by performing �rst the onvergent momentum integrals and subsequently trunat-ing the divergent double series at ∼ ns. However, this latter method is tehnially far moreompliated than the one presented here.For moderate values of a ∼ 0.2 and ns ∼ 10 the new physis orretion is only about 0.2.For more extreme values (for instane a ∼ 0.6 and ns ∼ 100), we �nd that the ontributionfrom extra dimensions to the funtion G(a) is about 3. Notie also that, as disussed atthe end of se. III, the presene of diagrams with gauge boson KK modes ould modify thebounds on Mc by a fator of about 20%. However, given the unertainty in the alulationof the box diagrams due to the dependene on the sale Ms, estimating suh e�ets seemssuper�uous. The important point, however, is that the ontribution from extra dimensionsto the funtion S(xt) is always positive.We an use the measured B0
d-B̄0

d mixing to infer the experimental value of S(xt) and,therefore, to set a limit on the δS(xt) ontribution. The expliit dependene on the quark�mixing parameters an be resolved by ombining the onstraints from ∆MB0

d

, εK , and Γ(b →
u)/Γ(b → c). In ref. [30℄ a omplete analysis of the allowed values for S(xt) was performedby varying all parameters in their allowed regions. The �nal outome of suh an analysis isthat S(xt) ould take values within a rather large interval, namely

1 < S(xt) < 10 . (4.7)Sine most of the errors ome from unertainties in theoretial alulations, it is ratherdi�ult to assign on�dene levels to the bounds quoted above. The lower limit is very11



stable under hanges of parameters, while the upper limit ould be modi�ed by a fator of2 by simply doubling some of the errors.Given that the standard model value for S(xt) is S(xt)SM = 2.5, positive ontributionsan be omfortably aommodated, whereas negative ontributions are more onstrained.As we have seen, extra dimensions result in positive ontributions to S(xt); in fat one anobtain values that ould approah the upper limit of S(xt) only for rather small values ofthe ompati�ation sale Mc and large values of the sale of new physis, Ms. It seemstherefore that, at present, the above bounds do not provide good limits on Mc. On the otherhand, if future experiments ombined with theoretial improvements were to furnish a valuefor S(xt) exeeding that of the SM, our analysis shows that suh a disrepany ould easilybe aommodated in models with large extra dimensions.V. CONCLUSIONSWe have studied, at the one loop level, the minimal extension of the SM with one extradimension ompati�ed in S1/Z2. Fermions live in 4 dimensions, while gauge bosons andthe salar doublet live in 5 dimensions and therefore give rise to a tower of KK modes. Inthe ase of a single extra dimension the ontribution of the in�nite tower of KK modes leadto �nite tree level preditions. We have investigated whether this feature persists at theone loop level, by onsidering two amplitudes whih are enhaned by the top-quark mass,namely Z → bb̄ and B-B̄ mixing.The in�nite tower of KK modes enters in the alulation of Z → bb̄ by modifying thepropagator of the harged salars running in the vertex diagram. This an be e�etivelytaken into aount by using a modi�ed propagator for the salars whih for large k behavesas 1/k, instead of the anonial behavior of 1/k2. In spite of that the e�et is �nite andalulable. The result, when ompared with preise experimental data on Rb = Γb/Γh, isused to plae stringent limits on the ompati�ation sale, Mc, Mc > 1 TeV at the 95%CL, whih are omparable to the bounds obtained from tree-level proesses.The box diagrams ontributing to B-B̄ and K-K̄ mixings ontain two propagators of KKmodes. The double sum over KK modes amounts to the replaement of both propagators bythe aforementioned softer ones, a fat whih inreases the UV behavior of the diagram by twopowers, and renders it divergent. Thus, due to suh ontributions the theory beomes non-renormalizable already at the one-loop level. To estimate their size one has to assume thatthe model is embedded in a more omplete theory whih would provide an e�etive uto�at sales larger than Mc. In pratie, this an be realized either by utting o� the in�niteintegrals at momenta of order of Ms, the sale where new physis enters to regularize the �vedimensional theory, or by trunating the sum of KK modes at some value of ns, ns ∼ Ms/Mc,with ns expeted to be order ∼ 100 or less. This way we an estimate the orretion induedby the extra dimension to the funtion S(xt) whih parametrizes the short distane physisin B-B̄ and K-K̄ mixings. A phenomenologial analysis shows that 1 < S(xt) < 10, whilethe SM value is S(xt) = 2.5. This suggests that moderate positive extra ontributions to
S(xt) are still allowed. Sine within the model we onsider the ontributions to S(xt) fromKK modes is always positive and moderate in size, no interesting bounds an be obtainedform this proess. However, if in the future a value of S(xt) larger than the SM value is12
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FIG. 1. Diagram ontributing to Z → bb̄ if the salar doublet lives in �ve dimensions. Thetower of KK modes of harged salars is represented by the dashed double line.
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FIG. 2. E�etive �eld theory diagram used in the omputation of the leading logarithmi or-retions indued by four fermion interations.
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FIG. 3. Box diagram ontributing to B-B̄ and K-K̄ mixings. The tower of KK modes isrepresented by the dashed double lines.
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