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que no ha sigut sense sacrificis, com el retrasar alguns anys el començar a
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sigut molt valuós. Gràcies en general a tota la gent de GEeitEma, VaBar
i/o el departament d’Estad’istica i Investigació operativa. Sabeu fer sentir
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Resum

In compliance with the Regulations for assessment and deposit of doctoral
theses, Amended CG 28-VI-2016, we present an abstract of this thesis
written in Valencian, one of the official languages of the University of
Valencia.

En compliment del Reglament sobre depòsit, avaluació i defensa de
tesi doctoral, Modificat CG 28-VI-2016, presentem un resum d’aquesta tesi
escrit en Valencià, un dels idiomes oficials de la Universitat de València.

Grip i models de detecció de brots

La grip és una malaltia que afecta a milions de persones i causa cents de
morts cada any. Aquesta malaltia es també la causa de gran quantitats de
despeses directes i indirectes degut als costos de l’atenció sanitària, absen-
tisme i altres efectes de l’epidèmia. Per aquest raó, la vigilància d’aquesta
infecció viral té un notable interès per a aquells que fan poĺıtiques en salut
ja que, entre d’altres beneficis de fer vigilància, detectar el moment ex-
acte quan l’epidèmia està començant permet fer un millor ús dels recursos
disponibles.

La epidèmia de grip té un comportament particular que dona forma als
mètodes estad́ıstics dedicats a la seua detecció. En aquest treball posem
l’atenció a la detecció de la grip a les parts temperades del planeta, donat
que el comportament de la malaltia és prou distint a les bandes equatorial
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xii RESUM

i tropicals, on la malaltia ocorre durant tot l’any.
La grip estacionària als päısos temperats ocorre durant els mesos freds

de l’any. Per tant, certa estacionalitat és apreciada a l’epidèmia. En qual-
sevol cas, els creixements acusats i els pics d’incidència ocorren a diferents
setmanes cada any, de tal manera que algunes temporades poden presen-
tar l’inici de l’epidèmia al voltant d’any nou mentre que altres voltes, el
brot es retarda fins a febrer. Inclús alguns anys es presenten sense un brot
apreciable de grip estacionària. A banda de la grip estacionària, altres
epidèmies de grip no estacionària poden ocórrer a qualsevol temps de l’any,
normalment causades per ceps de virus que boten la barrera entre espècies
dels animals als humans, com ha passat a les epidèmies anomenades ‘grip
porcina’ o ‘grip aviar’.

Independentment del seu origen i dada d’inici, les epidèmies de grip
sempre duren varies setmanes (a algunes temporades l’epidèmia pot durar
5 setmanes, mentre que a altres aquesta es pot estendre fins als 3 o 4
mesos). Espacialment, les epidèmies de grip s’estenen començant per un
o diversos punts, propagant-se amb el temps extensivament per päısos o
inclús per continents sencers. Totes aquestes caracteŕıstiques de l’epidèmia
es solen prendre en compte en diversos graus a l’hora de construir un model
estad́ıstic per a la detecció de brots de grip.

Cal tenir en compte que, amb gran freqüència, els sistemes de detecció
d’epidèmies utilitzen dades sindròmiques per a vigilar la grip. D’aquesta
manera, les dades que es fan servir són incidències de malaltia de tipus
gripal (ILI, per l’acrònim anglès ‘Influenza-Like Illness’), que es defineix
com a cert conjunt de śımptomes, usualment febre i alguna afecció del
sistema respiratori superior com tòs i/o mal de gola. Aquesta aproximació
per a la incidència de grip està lluny de ser precisa i comporta una quantitat
de soroll considerable. Pel costat positiu, fer vigilància d’aquestes dades
permet detectar no solament els brots de grip però també d’altres malalties
com ara la śındrome respiratòria aguda greu o el potencial inici de certs
atacs bio-terroristes. A partir d’ara, usarem les expressions ‘vigilància de
grip’ i ‘vigilància d’ILI’ de forma indistinta entenent que, en general, es
refereixen al mateixos sistemes i processos.

Diversos models estad́ıstics han sigut proposats per a la detecció de
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brots de malalties i, en particular, per als de grip, cadascú amb els seus
punts forts i febles. Una revisió abreujada de la revisió de models per a la
detecció d’epidèmies de grip del present treball de tesis ha sigut publicada
a la revista REVSTAT-Statistical Journal (Amorós et al., 2015).

Una ferramenta interessant per a la modelització de mètodes per a la
detecció d’epidèmies és l’ús de variables latents associades a cada temps
(i localització, al cas de les propostes espai-temporals) que determinen
distints models als quals les dades s’adapten millor depenent de l’estadi
epidèmic al qual aquestes dades s’han observat. Per tant, cada submodel
es construeix usant el coneixement que prèviament es té del diferent com-
portament de la malaltia durant les fases epidèmica i endèmica. Com les
setmanes epidèmiques solen ser seguides per altres setmanes epidèmiques i
les no epidèmiques per altres setmanes no epidèmiques, una manera comú
de modelar aquestes variables latents és enllaçant-les mitjançant una ca-
dena de Markov. Un avantatge de les variables latents per a la presa de
decisions és que el seu valor esperat pot ser interpretat com la probabilitat
estimada d’estar en fase epidèmica per a cada temps (i localització), de tal
manera que la resposta és més rica que un simple ‘śı’ o ‘no’.

El paradigma Bayesià ofereix un marc per a la inferència de models
amb varies caracteŕıstiques interessants. Una d’elles és la interpretabilitat
directa dels resultats dels models com a distribucions de probabilitat. Un
altre avantatge és la flexibilitat dels models jeràrquics, sobre els qual es pot
realitzar inferència gràcies a les ferramentes informàtiques de simulació.
Això permet que varies estructures estad́ıstiques puguen ser combinades a
un sol model més complexe de manera relativament senzilla.

En aquest treball proposem dos extensions del model de Martinez-
Beneito et al. (2008a) per a la detecció de brots de grip, una sobre dades
temporals i una altra sobre dades espai-temporals. Ambdós combinen l’ús
de ferramentes de sèries temporals i l’ús de variables latents sota un marc
Bayesià. En particular, les dos propostes són models jeràrquics Bayesians
amb un conjunt de variables latents associades a cada temps (i localització)
distribüıdes com a una cadena de Markov oculta sobre el temps que in-
diquen l’estat epidèmic (fase epidèmica o no epidèmica). Depenent del
valor estimat per a aquestes variables latents, les dades per a cadascun
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dels temps (i localitzacions) es modelitzen mitjançant un de dos distints
regressors. Tant la proposta temporal com la espai-temporal usen estruc-
tures temporals autoregressives per a reflectir el creixement i decäıment de
la incidència durant l’epidèmia. El model espai-temporal inclou també un
terme autoregressiu condicional el qual modela la propagació espacial de la
infecció. Les estructures com la descrita anteriorment, a les quals la vari-
able resposta depèn d’una cadena de Markov oculta i de la mateixa variable
observada al temps anterior, i a les quals la relació entre la variable resposta
a temps correlatius depèn del valor de la variable oculta, s’anomenen mo-
dels de commutació de Markov (MSM per les sigles de l’anglés Markov
Switching Model).

Proposta temporal

Una versió abreujada del treball presentat en aquesta tesis sobre la pro-
posta temporal ha sigut ja publicada a la revista Statistical Methods in
Medical Research (Conesa et al., 2015). Aquesta proposta consisteix en un
marc de models Poisson temporals de commutació de Markov per a la de-
tecció d’epidèmies de grip. Les dades modelitzades són dades que es solen
trobar a la majoria dels sistemes de vigilància, que són series temporals
de recomptes diàries o setmanals, tals com nombre d’admissions a hospi-
tal, casos d’incidència d’ILI, trucades rebudes als serveis d’emergència, etc.
Passem ara a introduir la modelització de les dades del marc de models
proposat.

Al model de Martinez-Beneito et al. (2008a) les taxes diferenciades de
grip es modelen segons una distribució normal amb paràmetres dependents
de l’estat epidèmic, de tal manera que la dinàmica no epidèmica es carac-
teritza per canvis aleatoris menuts i la epidèmica per canvis grans. Encara
que la variabilitat permet distingir fins a cert punt les dos dinàmiques,
incorporar la magnitud de la incidència pot ser avantatjós, ja que la mag-
nitud pot també informar sobre l’estat de la malaltia, sabent que una alta
incidència està clarament relacionada amb la fase epidèmica. Per açò in-
corporem a la proposta les taxes crues (sense diferenciar). Altra novetat
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del marc de models temporals és el considerar les taxes no com a valors
fixes sinó estocàstics, modelitzant-les mitjançant els recomptes observats
i la població subjacent de la qual han sigut reportats. Anomenem Yts al
nombre de casos observats de grip, ILI o altra caracteŕıstica usada per a
rastrejar la grip (com ara l’absentisme o la venda de medicaments) durant
la setmana (o dia) t a la temporada s. Modelitzem Yts mitjançant una dis-
tribució de Poisson, el paràmetre de la qual és funció de la taxa d’incidència
rts de la setmana (o dia) t a la temporada s mitjançant la següent estructura
jeràrquica:

Yts ∼ Po(νts) ,

νts =
rtsPopts
100000

,

rts ∼ N
(
RtsZts , σ

2
sZts

)
,

on Popts representa la població vigilada a la unitat de temps corresponent.
Noteu que el denominador depèn de la manera en que està definida la taxa.
En aquest cas, ho hem expressat considerant que rts està definida sobre
100 000 habitants. Una volta definida la funció que uneix el nombre esperat
de recomptes i la taxa d’incidència, modelem aquestes taxes mitjançant
una distribució normal en la qual tant la mitjana com la variància depenen
de l’estat epidèmic, determinat per la variable Zts, que identifica l’estat
epidèmic de cada setmana.

Modelitzem la variable Zts com una variable latent no observada que
segueix una cadena de Markov amb dos possibles estats, 1 per a les setmanes
epidèmiques i 0 per a les endèmiques, amb probabilitats de transició:

p(Zt+1s = l|Zts = k) = pkl , k, l ∈ {0, 1} .

Sabent que pk0 + pk1 = 1, tenim que p01 = 1 − p00 i p10 = 1 − p11, per
tant sols necessitem fer inferència sobre p00 i p11 per a establir tota la
matriu de probabilitats de transicions entre estats. La cadena de Markov
es reinicia cada temporada s, per tant també s’ha de fer inferència sobre
les probabilitats inicials:

p(Z1s = k) = pk , k ∈ {0, 1} .
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Amb l’objectiu d’expressar el nostre coneixement vague sobre aquestes pro-
babilitats, usem la distribució a priori no informativa de Jeffreys usual per
a assajos de Bernoulli per a p00, p11 i p0:

p00, p11, p0 ∼ Beta

(
1

2
,
1

2

)
,

i obtenim la resta de probabilitats per complementarietat. La probabilitat
a posteriori de que la variable Zts prenga valor 1 és la probabilitat estimada
pel model de que la setmana t de la temporada s estiga en fase epidèmica.

Vejam la distribució proposta per al paràmetre de variància σ2
sZst

. La
dinàmica endèmica es caracteritza per xicotets canvis aleatoris, mentre que
la dinàmica epidèmica mostra fluctuacions majors a les taxes d’incidència.
Per aquesta raó, proposem diferents valors de la variància per a cada fase de
cada temporada, constrenyent una variància menor a la fase no epidèmica.
Per a aconseguir açò, usem part de l’estructura jeràrquica present al model
de Martinez-Beneito et al. (2008a):

σs0 ∼ Unif(θ[1], θ[2]) ,

σs1 ∼ Unif(θ[3], θ[4]) ,

θm ∼ Unif(0, a) , m = 1, ..., 4 ,

on {θ[1], θ[2], θ[3], θ[4]} correspon a la seqüència ordenada de les variables
{θ1, θ2, θ3, θ4}, i a és un hiperparàmetre fixat pel modelador, que t́ıpicament
expressa un coneixement a priori vague. Aquesta manera de definir les
variàncies evita problemes d’intercanviabilitat i falta d’identificabilitat.

El següent pas és modelar les mitjanes de les taxes per a ambdós estats.
Aquesta és una de les majors novetats respecte del model de Martinez-
Beneito et al. (2008a). A la seua proposta modelaven directament les taxes
diferenciades mentre que a la present proposta modelem la incidència de
recomptes mitjançant la distribució de les taxes crues (no diferenciades).
Rts0 i Rts1 representen la magnitud esperada de les taxes d’incidència rts a
cadascuna de les fases i podem prendre avantatge d’açò per a distingir les
dos dinàmiques. Degut a la natura temporal de les dades, proposem una
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estructura autoregressiva per a cadascun d’ells. Aix́ı apareixen diverses
opcions depenent de l’ordre del procés autoregressiu elegit.

El model més senzill és considerar les mitjanes com a dos constants dis-
tintes, les quals es poden considerar com a processos autoregressius d’ordre
zero:

Rts0 = µ0 ,

Rts1 = µ1 .

Forcem la mitjana de les taxes no epidèmiques a ser menor, µ0 < µ1,
mitjançant la definició de les distribucions a priori:

µ0 = λ[1] ,

µ1 = λ[2] ,

λm ∼ Unif(0, b) , m = 1, 2 ,

on {λ[1], λ[2]} correspon a la seqüència ordenada de les variables {λ1, λ2}, i
b és un hiperparàmetre elegit per a fer la distribució a priori de λm vaga.
Anomenem a aquest model AR0-AR0, el primer terme referit a l’estructura
de la fase endèmica i el segon al de la epidèmica.

Es esperable certa estructura temporal de la incidència de grip o ILI.
Per tant, una segona opció és considerar que la mitjana de les taxes (a un o
ambdós estats epidèmics) és depenent de l’observació anterior. A aquesta
configuració, les taxes es distribueixen al voltant d’un valor desconegut
com abans (µ0 i µ1 respectivament), però amb l’afegit de que si l’anterior
taxa estava per davall d’aquest valor mitjà, el següent és més probable que
també ho estiga i viceversa. En aquest cas, la mitjana de les taxes segueix
un procés autoregressiu d’ordre un. Tres models més poden ser considerats
combinant AR0 i AR1: AR0-AR1, AR1-AR0 i AR1-AR1. Per simplicitat,
mostrem solament AR1-AR1:

R1s0 = µ0 ,

R1s1 = µ1 ,

Rts0 = µ0 + ρ0(rt−1s − µ0) , t > 1 ,

Rts1 = µ1 + ρ1(rt−1s − µ1) , t > 1 .
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Definim distribucions a priori uniformes per als paràmetres dels processos
autoregressius de la fase endèmica i epidèmica a la regió que assegura que
aquests processos són estacionaris:

ρ0, ρ1 ∼ Unif(−1, 1) .

Una tercera opció per a modelitzar les taxes és considerar-les rela-
cionades amb taxes de dos o més setmanes anteriors. Aix́ı, podem con-
siderar processos autoregressius d’ordres majors a un. En qualsevol cas,
en aquest treball treballem amb un ordre màxim de 2. Com a resultat, es
poden considerar cinc nous models: AR2-AR0, AR2-AR1, AR2-AR2, AR1-
AR2 i AR0-AR2. Per simplicitat, presentem el model on les dos mitjanes
segueixen processos autoregressius d’ordre 2 (AR2-AR2):

R1s0 = µ0 ,

R1s1 = µ1 ,

R2s0 = µ0 +
ρ10

1− ρ20
(r1s − µ0) ,

R2s1 = µ1 +
ρ11

1− ρ21
(r1s − µ1) ,

Rts0 = µ0 + ρ10(rt−1s − µ0) + ρ20(rt−2s − µ0) , t > 1 ,

Rts1 = µ1 + ρ11(rt−1s − µ1) + ρ21(rt−2s − µ1) , t > 1 .

Definim els paràmetres dels processos autoregressius d’ordre 2 a la regió on
aquests processos són estacionaris:

ρ2k + ρ1k < 1 ,

ρ2k − ρ1k < 1 ,

−1 < ρ2k < 1 .

Totes les expressions prèvies contenen tot el coneixement sobre el sis-
tema però, com és habitual als models jeràrquics, no disposem d’expressió
anaĺıtica de la distribució a posteriori dels paràmetres. Per tant utilitzem
simulació de Monte Carlo en cadenes de Markov (MCMC, per les sigles an-
gleses de Markov Chain Monte Carlo) mitjançant el programa WinBUGS
per tal d’aproximar-les.
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Proposta espai-temporal

La idea de la proposta espai-temporal és usar les diferents dinàmiques de
les taxes diferenciades d’ILI (els salts d’una setmana a la següent) per
a diferenciar entre les setmanes epidèmiques i endèmiques de les diverses
localitzacions estudiades. Centrar l’atenció a les taxes diferenciades permet
detectar canvis a les dinàmiques que denoten un brot sense importar que
aquests canvis siguen observats a taxes baixes de grip, com és usualment el
cas al començament d’una epidèmia. Amés, el fet de modelitzar directament
les taxes diferenciades simplifica el model, el qual pot fer la inferència més
ràpida.

Per simplicitat a la notació, donada una localització i i una temporada
s, denominem yits a la taxa en temps t (rits) menys la taxa en temps t− 1
(rit−1s):

yits = rits − rit−1s .

Comencem els ı́ndexs t de les taxes crues rits en 0 de tal manera que els
ı́ndexs t per a les taxes diferenciades yits comencen en 1. La variable Zits
indica l’estat latent epidèmic o endèmic per a cada lloc i temps, amb valor
1 per a l’estat epidèmic i valor 0 per a l’estat no epidèmic. Considerem
que les taxes diferenciades segueixen una distribució normal amb mitjana i
variància depenent de l’estat epidèmic:

yits ∼ N(RitsZits , σ
2
Zits) .

Cal notar que la notació RitsZits a aquest model no té el mateix significat
que al marc de models temporals proposat, on RtsZts era el valor esperat
de les taxes crues rts donada Zts. En aquest cas, és el valor esperat de les
taxes diferenciades rit+1s − rits donada Zts.

Com a la proposta temporal, modelitzem les variables latents Zits com
una cadena de Markov oculta per a cada localització. Aix́ı, la distribució
de Zits condicionada a Zit−1s segueix una distribució de Bernoulli amb pro-
babilitats de transició comuns a tots els temps, localitzacions i temporades:

Zits ∼ Ber(pZit−1s1) .
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Definim distribucions a priori no informatives de Jeffreys per a assajos de
Bernoulli per a les probabilitats de transició de la mateixa manera que les
descrites per a la proposta temporal:

p00, p11, p0 ∼ Beta

(
1

2
,
1

2

)
,

on

pkl = P (Zits = l|Zit−1s = k) ,

pk = P (Zi1s = k) , k, l ∈ {0, 1} ,

i la resta de probabilitats p10, p01 i p1 s’obtenen per complementarietat.
La probabilitat a posteriori de que la variable Zits prenga valor 1 és la
probabilitat estimada pel model de que la localització i a la setmana t de
la temporada s estiga en fase epidèmica.

La fase no epidèmica es caracteritza per salts de les taxes propers al zero.
Una primera aproximació per a modelitzar aquests salts no epidèmics pot
ser deixar la mitjana d’aquests salts igual a 0, però les dades mostren que
hi ha setmanes no epidèmiques amb creixements o decäıments de les taxes
comuns a totes les localitzacions. Açò és probablement una manifestació
de certa estacionarietat de les dades endèmiques, amb suaus decreixements
després de l’estació freda i suaus creixements després de l’estació càlida. En
qualsevol cas, aquests increments i decrements no ocorren a les mateixes
setmanes tots els anys, i epidèmies no estacionàries poden trencar aquesta
dinàmica. Per aquesta raó, considerem que cada setmana t de la temporada
s té una mitjana µts0 comú a totes les localitzacions per a dita setmana,
però diferent a la mitjana d’altres setmanes.

La fase epidèmica es modela amb una estructura espai-temporal més
complexa per a la mitjana de les taxes diferenciades. És d’esperar a una
localització en estat epidèmic el tenir diversos salts (taxes diferenciades)
positius fins a aplegar al pic de l’epidèmia i, després, que els salts es tor-
nen negatius fins a aplegar al nivell endèmic de les taxes d’incidència. Per
tant, és d’esperar que les taxes diferenciades per a cada localització siguen
temporalment dependents. Altre comportament esperable degut al caràcter
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contagiós de la grip és que si una regió te creixements epidèmics de les taxes
d’incidència, les regions vëınes poden infectar-se i tenir creixements sem-
blants. Com a conseqüència d’açò, modelem la mitjana de les taxes diferen-
ciades mitjançant un terme µts1 comú a totes les localitzacions però diferent
per a cada temps, més una estructura autoregressiva temporal d’ordre 1 per
a cada localització amb paràmetre ρ, més un model espacial autoregressiu
condicional intŕınsec (ICAR, per les sigles angleses d’Intrinsic Conditional
Auto-Regressive model) per a cada temps. Les expressions matemàtiques
per a la mitjana dels periodes endèmic i epidèmic son:

Rits0 = µts0 ,

Rits1 = µts1 + ρyit−1s + ψits ,

amb ψits el terme ICAR. Per a assegurar l’estacionarietat del procés au-
toregressiu cal delimitar els valors del paràmetre ρ a l’interval [−1, 1]. De
tota manera, si assumim que la correlació entre creixements subsegüents
a la fase epidèmica és positiva, a la pràctica podem restringir a l’interval
[0, 1]:

ρ ∼ Unif (0, 1) .

En quant a µts0 i µts1, els considerem com a dos efectes aleatoris so-
bre el temps, amb major variabilitat per a µts1, donat que és esperable
que els creixements i decäıments epidèmics siguen majors que aquells de la
fase endèmica. Per a evitar problemes d’identificabilitat amb la variabilitat
no estructurada σZits de la distribució principal, establim les desviacions
t́ıpiques dels dos efectes aleatoris com a proporcionals a aquelles de la dis-
tribució principal. Podem expressar la modelització dels termes temporals
comuns aix́ı:

µts0 ∼ N(0, σ2
µ0) , σµ0 = λσ0 ,

µts1 ∼ N(0, σ2
µ1) , σµ1 = λσ1 , λ ∼ Unif(0, a) ,

on λ és el factor de proporció estimat i a és un hiperparàmetre fixat pel
modelador de tal manera que expresse un coneixement vague.
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En general, les taxes diferenciades estan centrades a zero, per tant,
encara que el comportament de la mitjana de la variable resposta aporta
informació important per a distingir entre la fase epidèmica i endèmica,
el comportament de la variància és d’importància cŕıtica per a aquesta
tasca. Els salts de les taxes no epidèmiques són relativament menuts en
valor absolut, mentre que els creixements o decreixements de les taxes a
l’estat epidèmic són usualment més grans. Per tant, modelitzem la variància
no estructurada de les dos fases obtenint dos desviacions t́ıpiques d’una
distribució a priori uniforme i ordenant-les de manera que la variabilitat
epidèmica siga major que la endèmica:

σ0 = θ[1]

σ1 = θ[2]

θm ∼ Unif(0, c) m = 1, 2 ,

amb c un hiperparàmetre a fixar pel modelador de manera que expresse un
coneixement a priori vague.

Com ocorre amb la proposta temporal, no disposem d’expressió anaĺıtica
per a la distribució a posteriori dels paràmetres del model jeràrquic a
aquesta proposta espai-temporal. Per tant, utilitzem simulació MCMC
mitjançant el programa WinBUGS per tal d’aproximar-les.

Resultats i Conclusions

La revisió dels models de detecció d’epidèmies de grip temporals i espai-
temporal ha servit per a justificar la necessitat de crear noves metodologies
capaces de franquejar limitacions d’anteriors mètodes i per a informar la
creació de les noves propostes exposades abans. Vejam algunes de les limi-
tacions a la literatura i cóm les nostres propostes les franquegen.

Una proposta usada a la detecció d’epidèmies és construir llindars amb
dades històriques i donar una alarma quan les dades els sobrepassen. Aques-
tes propostes tenen l’inconvenient de necessitar una predefinició de què és
considerat com a epidèmic i no epidèmic a les dades històriques, la qual
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cosa és un problema de detecció d’epidèmies en ella mateixa. Un avan-
tatge d’usar cadenes de Markov a la modelització és el fet de que no es re-
quereix una diferenciació prèvia de quines setmanes estan en fase epidèmica
o endèmica per a les dades usades per a entrenar el model.

Els models basats en gràfics de control cumulatius poden detectar com a
epidèmic un increment relativament menut però persistent del nivell mitjà
de les taxes que s’estenga durant varis dies o setmanes. Però aquest és
un comportament habitual a la fase endèmica (no epidèmica) de les taxes
d’incidència d’ILI. Les nostres propostes consideren el comportament de
les taxes diferenciades (el tamany i direcció dels salts d’una setmana a al-
tra) com un tret diferenciador, i no sols la grandària mitjana de les taxes
d’incidència. D’aquesta manera, un creixement brusc o diversos creixe-
ments suaus contigus són necessaris per a donar l’alarma.

Una alternativa a l’ús de llindars que trobem a la literatura és l’ús de
l’anomenat ‘scan statistic’, que realitza contrastos d’hipòtesis per a deter-
minar si certa regió temporal, espacial o espai-temporal té una quantitat
inusual de casos comparat amb la resta. Aquesta metodologia no sem-
bla molt adequada per a la detecció espai-temporal d’epidèmies de grip,
ja que requereix que l’extensió espacial de les epidèmies siga menor que la
meitat de la regió d’estudi, mentre que les epidèmies de grip solen esten-
dre’s a regions més amplies. La nostra proposta espai-temporal, sent un
MSM, és capaç de classificar qualsevol quantitat de localitzacions com a
no epidèmiques o com a epidèmiques, ja que no hi ha cap restricció a la
quantitat de les variables Zits que poden prendre valor 0 o 1 cada setmana.

Respecte a la proposta temporal abans descrita, diverses aplicacions
sobre dades reals ens han permès discutir l’actuació del marc de models,
oferir algunes directrius per a elegir un model dintre del marc i discutir els
problemes de les ferramentes dedicades a avaluar i comparar els mètodes
de detecció de brots.

La presència o absència del terme autoregressiu a la modelització de les
mitjanes de les taxes a la proposta canvia en gran mesura la classificació
com a fase epidèmica o endèmica de les setmanes analitzades. No obstant,
si l’estructura autoregressiva està present, el canvi en ordre d’aquesta afecta
sols de manera lleu als resultats inferits. La natura de les dades de la grip
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i alguns resultats observats suggereixen que és important l’ús d’estructura
autoregressiva. Per raons de parsimònia, també es recomana seleccionar
entre els models amb mateix ordre autoregressiu a ambdós regressors (AR1-
AR1 i AR2-AR2).

Diversos mètodes es poden fer servir per a seleccionar entre diversos
models de detecció d’epidèmies. La primera qüestió a considerar és si fer
l’avaluació sobre resultats en ĺınia (aplicant el model tantes voltes com set-
manes a avaluar usant cada volta sols la informació actual i prèvia per a
obtenir l’estimació de cada setmana) o sobre resultats retrospectius (apli-
cant el model amb totes les dades una sola volta i obtenir estimacions per a
totes les setmanes). L’aplicació en ĺınia és realista, però computacionalment
costosa. Les probabilitats estimades amb les dos metodologies són similars,
però l’aplicació en ĺınia pot declarar alguns brots una o dos setmanes més
endarrerits comparada amb l’aplicació retrospectiva (comprensible, ja que
l’aplicació retrospectiva pot usar informació posterior per a inferir resultats
i la en ĺınia no).

La segona qüestió a tractar és la selecció d’alguna mesura sobre el rendi-
ment dels models de detecció. El criteri d’informació de la desviació (DIC,
per les sigles angleses de Deviance Information Criterion) és poc costós,
ja que s’obté de l’aplicació retrospectiva dels models. Mesura la bondat
d’ajust del model penalitzant per la seua complexitat, però no mesura di-
rectament el que es tracta d’avaluar, la qualitat de la detecció. Les mesures
ROC (sigles de l’anglès Receiving Operative Characteristic, o caracteŕıstica
operativa del receptor) ponderades avaluen la qualitat de la detecció i la
seua oportunitat (rapidesa a senyalar un brot emergent), però existeixen
dos dificultats. La primera és seleccionar cóm reduir una informació tridi-
mensional (sensitivitat, especificitat i oportunitat) a una sola dimensió,
donat que diferents formes de combinar resulten en distints criteris.

El segon problema és que les mesures ROC ponderades requereixen de
la definició d’un estàndard d’or o prova de referència, un criteri extern
que definisca quines setmanes són epidèmiques i quines endèmiques. Nos-
altres hem usat dades d’äıllament del virus en laboratori per a construir
l’estàndard d’or, però diverses formes de construir l’estàndard d’or són pos-
sibles amb aquest tipus de dades, i altres dades o mètodes poden també
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ser usats. Vegem aix́ı que la definició d’un estàndard d’or no és en abso-
lut trivial, i els resultats reflecteixen que les mesures ROC ponderades són
considerablement sensibles a aquesta definició. Les correlacions entre DIC
i mesures ROC ponderades observades a una de les aplicacions del model
estan lluny de ser perfectes, però són majors al 0.5, el que indica que quan
existeix dificultat per a calcular les mesures ROC ponderades, el DIC es
pot usar com a un proxy d’elles.

Els models de la proposta temporal han obtingut millors puntuacions
de les mesures ROC ponderades que altres models de la literatura i que
el model de Martinez-Beneito et al. (2008a) del qual és una extensió. Açò
indica que els models de la nostra proposta ofereixen una millor i més ràpida
detecció dels brots de grip.

Un apropament distint ha sigut pres per a l’avaluació de l’aplicació de
la proposta espai-temporal. Açò ha sigut degut a considerar els problemes
de les mesures ROC ponderades observades a les aplicacions de la proposta
temporal i a que no es disposava de dades de laboratori per a construir un
estàndard d’or per a les dades espai-temporals. Per tant, s’ha fet avaluació
de validació creuada aproximada usant la puntuació de probabilitat de rang
continu (CRPS, per les sigles angleses de Continuous Rank Probability
Score) com a mesura de la discrepància entre la distribució predictiva i les
dades observades. Al fer-ho, assumim que un model que és capaç de predir
les dades de manera correcta també ha d’inferir correctament els valors de
les variables latents que indiquen l’estat epidèmic.

El CRPS ha mostrat ser útil a l’hora d’avaluar la rellevància de dos
termes del model. Un d’ells és el terme ICAR espacial al regressor epidèmic,
i l’altre es µts0, l’efecte aleatori sobre la mitjana de la taxa diferenciada no
epidèmica. Ambdós han provat que són termes de la proposta que milloren
de forma notable el CRPS. Açò demostra que estos termes són necessaris
per a estimar correctament les dades i, si l’assumpció que em expressat al
paràgraf anterior és correcta, per a determinar millor l’estat epidèmic.

L’estructura espacial proposada per Leroux et al. (2000) també ha sigut
provada com a una alternativa a l’estructura ICAR. Aquesta modelització
ofereix certa flexibilització del model jeràrquic proposat que pot ser interes-
sant teòricament. De tota manera, les probabilitats d’epidèmia estimades
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són quasi idèntiques, i les puntuacions de CRPS són lleugerament pitjors.
El model de Martinez-Beneito et al. (2008a) ofereix estimacions de la

probabilitat d’epidèmia prou distintes a aquelles oferides per la nova pro-
posta en diverses localitzacions i temps. Els valors de CRPS són notable-
ment pitjors que els de la nova proposta i les variacions abans comentades.
Açò indica el notable impacte i rellevància d’usar un model espai-temporal
en lloc d’usar un model temporal per a cada regió de manera äıllada, un
enfocament del problema que no permet la compartició d’informació al llarg
de l’espai.

Per a resumir, a aquesta investigació hem mostrat una revisió de
mètodes de detecció de brots de grip i hem proposat un marc de models
temporal i un model espai-temporal per a la detecció de brots de grip.
Aquestes propostes tenen la capacitat de detectar els brots sense la neces-
sitat de definir prèviament les fases epidèmiques i endèmiques a les dades
històriques, no assumeixen una localització temporal fixa de les epidèmies
i poden modelitzar la difusió espacial extensa usual a les epidèmies de
grip. L’ús de cadenes ocultes de Markov i d’estructures temporals i espai-
temporals de correlació condicional baix el paradigma Bayesià ha sigut cŕıtic
per a construir les noves propostes i per a definir de manera senzilla un cri-
teri per a donar alarmes en forma de probabilitat d’epidèmia. També, la
variabilitat de les taxes i el comportament de les taxes diferenciades han de-
mostrat ser trets importants de les dades de grip per a distingir entre fases
epidèmica i no epidèmica. Hem vist també cóm l’avaluació i comparació
del rendiment de models no és trivial, i hem discutit distintes maneres de
fer-ho.
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Introduction

Influenza is a disease that affects millions of people and causes hundreds
of thousands of deaths each year. This disease is also the cause of large
amounts of direct and indirect expenses due to health care costs, absen-
teeism and other effects of the epidemic. For this reason, the surveillance
of this viral infection has notorious interest for health policy makers as,
among other benefits of doing surveillance, detecting the exact moment
when the epidemic is starting allows for a better use of resources.

The epidemic of influenza has a particular behavior that shapes the
statistical methods dedicated to its detection. In this work we focus the
attention on the detection of influenza epidemics at temperate parts of the
planet, as the behavior of the disease is quite different in the equatorial and
tropical bands, where the disease happens during all the year.

Seasonal influenza in temperate countries occurs during the cold months
of the year, so certain seasonality is appreciated in the epidemic. Anyhow,
the steep growths and the peaks of each epidemic happen in different weeks
every year, so some seasons may present the start of the epidemic around
New Year’s Eve while some other times the outbreak waits until February
to happen. There are even some years without an appreciable outbreak
of seasonal influenza. Besides the seasonal outbreaks, other non-stationary
influenza epidemics can happen at any time of the year, usually caused by
strains of virus that jump species from animals to humans, as happened
with the so called ‘swine flu’ or ‘bird flu’ epidemics.

Regardless of their origin and starting date, influenza epidemics always
last several weeks (some seasons might last around 5 weeks while others

xxxix
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can extend during 3 or 4 months), and spread spatially, starting from some
points and usually extending over whole countries or even continents. All
of these epidemic characteristics are usually taken into account in varying
degrees when building a statistical model for the detection of influenza
outbreaks.

Several statistical models have been proposed for the detection of dis-
eases outbreaks and, in particular, for those of influenza. Building thresh-
olds with historical data and trigger an alarm when data surpass them,
finding the break point when the mean behavior changes its monotony or
doing hypothesis testing about an abnormal quantity of cases inside a re-
gion are some of the approaches that have been taken. All of them have
their strengths and weak points, that will be discussed in this work.

Another alternative which is able to overcome some of the drawbacks of
previous methodologies is the use of latent variables associated to each time
(and location, in the case of spatio-temporal proposals) which determine
different models to which data adapt better depending on the epidemic
phase data are collected from. Therefore, each sub-model is built using the
knowledge we have about the behavior of the disease during the endemic
and the epidemic season. As epidemic weeks are usually followed by epi-
demic weeks and non-epidemic weeks are usually followed by non-epidemic
weeks, a common way to model these latent variables is to link them with a
Markov chain. One advantage of these latent variables for decision making
is that its expected value can be interpreted as the estimated probability
of being in epidemic phase for each time (and location), so the answer is
richer than a simple ‘yes’ or ‘no’ answer.

The Bayesian paradigm offers a framework for the inference of models
with several interesting characteristics. One of them is the direct inter-
pretability of the outcome as probability distributions. Another advantage
is the flexibility of the hierarchical models, on which inference can be done
thanks to simulation tools. That allows for several statistical structures to
be joined in a single more complex model.

In this work we propose two models for the detection of influenza out-
breaks, one on temporal data and one on spatio-temporal data. The two
of them combine the use of time series tools and the use of latent variables
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in a Bayesian framework. In particular, both proposals are Bayesian hier-
archical models with a set of latent variables associated to each time (and
location) distributed as hidden Markov chains over time that indicate the
epidemic state (epidemic or non-epidemic phase). Depending on the esti-
mated value for these latent variables, data for each time (and location) are
modeled by two different regressors. Both proposals use temporal autore-
gressive structures to reflect the growth and decay of the incidence during
the epidemic, and the spatio-temporal proposal also includes a conditional
autoregressive term that models the spatial spread of the infection.

The temporal proposal is not only one model but a framework of hierar-
chical models, with several common layers. The first layer of the hierarchi-
cal structure models the counts of incident cases through a Poisson distri-
bution. A second layer models the rates as normally distributed, with sev-
eral possible combinations of regressors for the epidemic and non-epidemic
mean rates with different degrees of temporal conditional dependence. The
spatio-temporal proposal is one model where the differentiated rates (the
increases or decreases on the weekly incidence) are modeled with a Gaus-
sian distribution, with temporal and spatial terms in the regressors of the
mean differentiated rate. In both of the proposals, the variances are a key
point for the distinction of the epidemic phase, so all the proposed models
consider that data will have less variability during the non-epidemic phase.

The rest of the thesis is structured as follows: In Chapter 1 the problem
is introduced by briefly discussing influenza epidemics and surveillance sys-
tems. After that, a review of temporal statistical methods for the detection
of influenza outbreaks is performed. This review pays special attention to
the models that involve any of the features which are present in our propos-
als, and concludes with the detailed explanation of the model proposed by
Martinez-Beneito et al. (2008a), in which the new proposals in this thesis
are based.

In Chapter 2, a framework of temporal Poisson Markov switching mo-
dels on the differentiated rates for the detection of influenza outbreaks is
presented. A detailed description of this framework of models is offered,
defining the models through the conditional distributions of each one of the
levels of the hierarchical structure. After that, several applications on real



xlii INTRODUCTION

data allow us to discuss the performance of the framework of models, give
some guidelines to choose the most appropriate method among the models
in the proposed framework and discuss the problematic of the tools for the
evaluation of outbreak detection methods.

Chapter 3 starts with a review of spatio-temporal statistical methods
for the detection of outbreaks, specially to those which deal with influenza
epidemics. Special attention is paid to the models and statistical tools that
deal with spatial lattice structured data, because any other type of spatial
data is usually easily translatable to it. The following section shows in
detail the proposed spatio-temporal Markov switching model on the differ-
entiated rates for the detection of influenza outbreaks through the detailed
definition of the conditional distributions that form the hierarchical model.
An application on real data is used to test the performance of the new
proposal and to compare it with several modifications and simplifications
in order to asses the relevance of the model.

Chapter 4 presents the conclusions of the work and proposes several
future lines of investigation.

The appendices include a review of methods for the selection of sta-
tistical algorithms for the detection of outbreaks, which describes several
measures devoted to this purpose; a discussion about a specific framework
for the detection of outbreaks proposed by Banks et al. (2012); WinBUGS
codes of the new proposals; and some figures which would hinder the read-
ing if they were to be put along with the text of the thesis.



Chapter 1

Methods for the detection of
influenza epidemic outbreaks

1.1 Introduction

In this chapter we take a brief look at the reasons to do influenza surveil-
lance and how this surveillance is done. To do so, we briefly explain what
influenza is, how does it spread and its impact in public health and economy.
We also describe what a surveillance system is, paying special attention to
the processes of data collection and analysis of the data. The main part
of this chapter consists of a review of temporal methods for the detection
of outbreaks, focusing on those for the detection of influenza epidemics.
The review visits the classic methods and then will pay special attention
to Bayesian models and the use of hidden Markov chains for the detection
of epidemics. Finally we describe the proposal of Martinez-Beneito et al.
(2008a), a Bayesian model with a hidden Markov structure for the detec-
tion of influenza outbreaks in which the new proposals of the present work
are based on.

1
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1.2 Influenza epidemics

In order to know how to deal with detection of influenza epidemic outbreaks
we must first know about the disease itself and its dynamics, as well as the
reasons to monitor this specific disease.

Influenza is an infectious disease that affects the upper and/or lower
parts of the respiratory tract and is caused by the influenza virus. This dis-
ease spreads all around the world; through seasonal epidemics at temperate
climates and at any time of the year at tropical regions. The continuous
prevalence in the central belt of the planet supposedly serve as a reservoir
to the seasonal epidemics (Rambaut et al., 2009). Influenza epidemics are
related to climate variables such as humidity, temperature and radiation,
though the mechanisms of this relation are not clear, as stated by Tang
et al. (2010).

There are 3 types of seasonal influenza viruses –A, B and C– and many
subtypes of each according to the combination of various virus surface pro-
teins. There also exist strains of influenza that affect animals and may
eventually cross the border of species and infect humans. These strains
may cause epidemics that have different temporal behavior from seasonal
influenza, appearing not only during the cold moths of the year but at
any time, so a good outbreak detection method will have to take this
into account. Well known examples of this cross-species infections are
the Avian influenza strains A(H5N1) and A(H7N9) or the swine influenza
A(H1N1)pdm09 virus, which spread worldwide. This last epidemic was
monitored with special attention and led to the analysis and re-evaluation
of several influenza surveillance strategies, as shown in the works of Ortiz
et al. (2009), Tilston et al. (2010), Cook et al. (2011), Kavanagh et al.
(2012), De Lange et al. (2013), Mulpuru et al. (2013) and Gomez-Barroso
et al. (2014).

Some of the possible symptoms of influenza are fever, cough, sore throat,
runny nose, muscle and joint pain and severe malaise, which appear in
about 2 days from infection. Healthy people usually recover from fever
and other symptoms within a week without requiring medical attention,
but people at risk, like young children, elders, and people with certain
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medical conditions have higher risk of complications, which can lead to
hospitalization and death. Some of the symptoms are used as a proxy to
influenza, constituting what is known as Influenza-Like Illness (ILI) which
is defined as a subset of the symptoms, usually fever and some upper-
respiratory affection as cough and/or sore throat. Anyhow, as the work
of Navarro-Maŕı et al. (2005) shows, this proxy is far from accurate and
carries a considerable amount of noise with it. A diagnose of Influenza
requires laboratory confirmation, which highly improves the specificity, but
it is costly and delays the diagnose.

Other respiratory infections may have similar symptoms in some of their
stadiums, such as SARS, respiratory syncytial virus, pertussis, rhinovirus,
enterovirus or other potential infections not contemplated now by several
public health institutions (as it was with SARS before 2003). Outbreaks
of these illnesses may also be detected by influenza surveillance systems,
specially those based on symptomatology. Also some potential bio-terrorist
attacks have similar initial symptoms. The usefulness of syndromic surveil-
lance systems in cases of bio-terrorism is uncertain for developed countries
(Buehler et al., 2003), but some authors like Paterson and Durrheim (2013)
consider that it might be appropriate for developing regions where labora-
tory confirmations are difficult to obtain in a timely manner.

Influenza and ILI causes a high impact in terms of mortality, absen-
teeism and use of health care resources, with their associated economic
burden. According to the World Health Organization (a) (WHO), the an-
nual incidence rate is estimated at 5%–10% in adults and 20%–30% in
children, with 3 to 5 million cases of estimated severe illness and about
250 000 to 500 000 deaths per year. The economic cost of influenza is re-
viewed in detail by Gasparini et al. (2012), who indicated that each case of
influenza in adults aged 18-64 years old costs several hundreds of euros in
direct or indirect expenses in the US and EU.

The early detection of influenza and other ILI epidemics helps taking
public health actions that save resources, money and lives. In particular,
knowing when and where the epidemic starts helps optimizing health re-
sources such as health workers, hospital facilities, medicines, publicity to
encourages prevention measures, etc., by use them at the times and loca-
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tions where they will be most useful. A good planning avoids the misspend
of resources, but it also rises the prevention of infection, which results in
less monetary spend due to work absenteeism and cost of treatments. The
quality of treatment to the sector of the population at special risk, for which
the infection is an actual threat to life, is also improved thanks to a good
use of the resources due to a timely detection of the epidemics.

More information about the disease can be retrieved from the World
Health Organization (a)’s web page.

1.3 Surveillance systems

Detection of outbreaks methods are one of the possible ways of analyzing
data in surveillance systems. According to the World Health Organization
(b),

public health surveillance is the continuous, systematic collection,
analysis and interpretation of health-related data needed for the plan-
ning, implementation, and evaluation of public health practice. Such
surveillance can: serve as an early warning system for impending
public health emergencies; document the impact of an intervention,
or track progress towards specified goals; and monitor and clarify the
epidemiology of health problems, to allow priorities to be set and to
inform public health policy and strategies.

A surveillance system in public health is the set of resources, structures
and procedures used to achieve these objective. Two main parts can be
distinguished in a surveillance system: the collection of data and their
analysis and interpretation.

1.3.1 Data collection

In surveillance systems, data are collected in many ways and from many
sources, and each of the existing data sources and each way of collecting
data from them have different specificity, sensitivity and timeliness because
of their different natures. As reflected on the graph from Cheng et al.
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(2009), shown in Figure 1.1, there is not such thing as the best data source.
Data sources where data are collected faster and cover a wider amount
of population are usually associated with lower specificity. A useful data
source will balance these three characteristics, taking into consideration
that the suitability of a data source for a surveillance system depends on
the particular relevance of each of these three factors for the purpose of
the surveillance. The type and format of the available data, as well as
their expected sensitivity, specificity and timeliness will shape the analysis
methods used on them.

Figure 1.1: Schematic diagram of the course of illness and clinical iceberg of
upper respiratory infections in a population, and examples of surveillance systems
targeting each stage. Taken from Cheng et al. (2009).

Let us review some of the most common data sources for influenza
surveillance systems:

Mortality registers. The register of every patient is coded by trained
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coders. The specificity is usually high, but the time to process the
information until it is accessible is usually long. In any case, the pro-
portion of people dying from influenza or its complications among its
incidence is very low. Some authors like Serfling (1963) used pneumo-
nia mortality rates, while others like Sebastiani et al. (2006) focused
on influenza mortality for their research.

ER and hospital admissions. Influenza has mild symptoms in healthy
young adults. Hospitalization or admission to emergency room usu-
ally happens only in children, elders and patients with complications
or comorbidity. The proportion of incident patients that actually
are admitted to one of these health services is low, and sometimes it
does not happen until several days after the start of the first symp-
toms. Laboratory tests are frequently available. Several authors like
Wieland et al. (2007) or Corberán-Vallet and Lawson (2014) use emer-
gency room visits for the surveillance of respiratory related disorders.

General practitioners. There are two main ways in which data from
influenza incidence may be gathered from general practitioners; no-
tifiable diseases mandatory report or sentinel networks. Influenza is
listed as a mandatory notifiable disease in some countries as Australia,
India or Spain, while in others, like the United States, only certain
types of influenza are notifiable. In other countries like Malaysia or
United Kingdom influenza is not notifiable at all. Sentinel Networks
(present in countries like Switzerland, United States and Spain) are
a different structure in which general practitioners voluntarily enroll
and report observed cases. In this system, practitioners may be more
involved in the process and give higher quality reports, but the people
assigned to the enrolled physicians cover just a fraction of the total
population that is being studied. In both cases notifications are usu-
ally syndrome based, reporting influenza-like illness (which introduces
noise to the data), as laboratory confirmation is usually not necessary
for the sake of the patient’s health. Time of reporting may depend on
the way the practitioners communicate the cases. Traditional systems
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usually collect data once every week, but new computerized systems
allow to shorten this time and collect data each day.

Laboratory isolation. All previous data sources may be laboratory con-
firmed or not. It is frequent that blood or sputum samples are an-
alyzed when a patient visits the emergency room or is admitted to
a hospital, but it is more uncommon when visiting a general prac-
titioner. In some cases, a fraction of the patients may be analyzed
in a sentinel network for epidemiological reasons, as it is the case of
the Valencian Sentinel Network (which we will use further on in an
exemplification of performance of one of our proposals). Laboratory
confirmations rise the specificity of data sources but in some cases
may take several days. In Nunes et al. (2013) one can see an exam-
ple of a detection algorithm for an influenza surveillance system that
combines data rapidly retrieved twice a week from a sentinel network
and laboratory estimations, more specific but with one week of delay.

Absenteeism. School and workplace absenteeism may be used as a data
source to detect the outbreak of an influenza epidemic. The cause
of the absence is not always available, and when it is, it may be self
reported or medically certified ILI. Besides, unemployed or retired
people and people attending study or work centers where attendance
is not registered are not covered by this kind of data source. In
any case, the coverage is wider than for the previous mentioned data
sources, and the timeliness might be higher. Its specificity, though, is
lower, as medical confirmation is not always required. Some examples
of the use of absenteeism for influenza surveillance may be found in
Paterson et al. (2011), Cheng et al. (2012) and Kom Mogto et al.
(2012).

Drugs sales. Influenza may have mild symptoms and is a sufficiently well
known illness that is not appreciated as a threat by healthy young or
middle aged adults. For that reason many infected people might not
attend the health centers and keep going to work or school, but many
of them self medicate to cope with the symptoms. Over-the-counter
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sales is a data source with higher timeliness and coverage but lower
specificity, as it is often based in self-diagnosis. The association of
over-the-counter sales data and several respiratory illnesses has been
studied in several works like Goldenberg et al. (2002), Liu et al. (2013)
and Magruder (2003).

Internet sources. Information technologies have opened new ways to ob-
tain data susceptible to be used in surveillance systems. It is true
that internet data sources usually present a bias of selection, as they
mostly represent internet users, but the quantity of available informa-
tion and its immediateness make internet a really interesting resource
for surveillance.

One way of retrieving information from internet are online surveys.
Influenzanet –see also Debin et al. (2013) and Vandendijck et al.
(2013)– is a remarkable example in Europe, being a network of 9
national partners with a web page each. In them, volunteer people
can register and, during the cold months of the year, are asked to
weekly answer a review which takes only a few seconds if the individ-
ual has no symptoms. One advantage of this kind of data is that many
aspects of the symptoms and possible risk factors may be surveyed.
On the other hand, it depends on the commitment of the individuals
to obtain the information.

Of special interest is the automated collection of data from social
networks or search engines, which provides large amounts of data from
large quantities of people without their purposeful collaboration. In
this way, one can obtain almost immediate data from a wide territory
and a vast amount of individuals.

Internet queries do not require any special commitment from the peo-
ple that use them. Some search engines offer data from the use of
some words by the users of the engine, like Google Trends. Based
on this engine, a specific algorithm was created using queries about
topics like influenza complication, cold/flu remedy, general influenza
symptoms, etc., to estimate influenza rates of the official agencies of
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different countries. This particular tool is Google Flu Trends and
its algorithm is discussed in Ginsberg et al. (2009). But, after the
A(H1N1)pdm09 epidemic on 2009, it became clear that the behavior
of the search engine users is not stable and the algorithm needed to
be reevaluated and adjusted, as reflected by the discussions of Cook
et al. (2011). In fact, the algorithm for the USA was reassessed in
2009, 2013 and 2014, as shown in the work of Olson et al. (2013),
among others. Nowadays data are available at the website but the
algorithm does not offer new estimations since August 19th, 2015.

Another source of massive instant information is the social media.
Social networks such as Twitter have been used to track the presence
of influenza (see, for example, Broniatowski et al., 2013; Gesualdo
et al., 2013; Li and Cardie, 2013 or Grover and Aujla, 2014). These
and other internet-based data sources –and its associated surveillance
systems– are discussed in Milinovich et al. (2014).

There are some drawbacks of search engines and social media as data
sources compared to some other more traditional ones. One is the
necessity of an algorithm that transforms a wide amount of raw data
into something manageable and meaningful that actually provides in-
formation related to the incidence of the disease. This is usually done
by statistical methods that try to predict data from other data sources
of greater specificity but with a higher time of collection. Another
disadvantage, deduced from the previous one, is the lower specificity
of the data compared to that of some other traditional data sources.
In any case, the advantages of the timeliness, the automaticity, the
wide coverage of population and the low cost of collection make this
kind of data sources attractive for an epidemic detection system.

Each data source will allow to achieve different objectives in a surveil-
lance system. Retrospective studies will rely on data sources with high
specificity, regardless of the speed of retrieval of data. On the other side,
systems devoted to triggering epidemic alarms with recent data will focus
on the timeliness, often sacrificing specificity and, sometimes, doing it will-
ingly to broaden the scope of illnesses which epidemics could be detected.
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1.3.2 Analysis methods

Once data are collected, they must be analyzed in order to extract relevant
information that may be interpreted to achieve the goals of the surveil-
lance system. The analysis may be just a qualitative analysis of the cases
for a disease with very low prevalence, a simple numerical or graphical de-
scription, a mathematical or statistical algorithm or a combination of all
of them. The nature and form of the analytic tools depend on the data
and on the objectives of the surveillance system. Let us review some of
the possible kinds of analysis that are performed in influenza surveillance
systems:

Assessment of risk factors. One of the main objectives of public health
is to detect the risk and protective factors for the diseases in order to
be able to set health politics in accordance. This kind of analysis is
the only one in the list that requires covariates other than space and
time.

Disease mapping. The objective of this analysis is to plot maps where the
incidence, prevalence or mortality of the illness is represented along a
certain territory, in order to observe the differences between different
regions. Statistical methods are usually applied in order to cope with
variability of the data in regions with low population, with lack of data
or when plotting maps in a continuous way instead of using a lattice.
Some methods worth mentioning are kriging, an interpolation method
for continuous data proposed by Krige (1951), and Besag, York, and
Mollié (1991) (BYM) model for lattice data. Temporal dimension can
also be taken into account in disease mapping and thus observe the
evolution of the disease. Some examples of influenza disease mapping
can be seen in Carrat and Valleron (1992), where kriging is applied
on ILI data in France, or the work of Hu et al. (2015), who use the
BYM model for influenza A(H7N9) in Shanghai.

Anomalous regions detection This analysis takes a step further from
disease mapping. Besides plotting the behavior of the illness through
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space (and maybe time), it also sets some rule or algorithm to detect
particular locations with different behavior from the rest. By doing so,
the method is able to detect locations with a dysfunctional reporting
system, local outbreaks or locations exposed to some particular risk
factors. An example of this kind of analysis is presented by Li et al.
(2012), who present a methodology that detects locations with differ-
ent temporal patterns from the global pattern of mortality, caused by
chronic obstructive pulmonary disease (though the methodology may
be used on several other diseases).

Clusters detection A step further in sophistication from anomalous re-
gions detection is cluster detection, where sets of neighboring loca-
tions with a common differentiated behavior are located. It may help
to detect epidemics or risk factors that spread among a region larger
than the spatial unit of observation. Some extended methods for
cluster detection are scan statistics, a methodology that has been im-
proved in many ways since proposed by Naus (1965a,b). Several of
the extensions are implemented in the software SaTScanTM. Kulldorff
et al. (2005) show an application of this methodology on syndromic
data that is capable of detecting an unusually early influenza season
in New York City.

Outbreak detection Outbreak detection’s scope is to detect the begin-
ning of an outbreak as soon as possible, maximizing sensitivity and
specificity. Outbreak detection models always deal with temporal
data, but can also work with spatio-temporal data. Unlike the three
previous analysis, outbreak detection is necessarily prospective, so
timely data sources are often used for them. Because of the prospec-
tive nature of this kind of analysis, the algorithms must be applied in
an ‘online’ basis, that is, every time new data are obtained (usually
every week or day) the algorithm has to be run anew to identify the
possible outbreak as soon as possible. The new proposals for influenza
outbreak detection presented in Chapters 2 and 3 are based on the
model proposed by Martinez-Beneito et al. (2008a), though several
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other methodologies for triggering epidemic alarms of influenza may
be found in the literature.

Prediction of the severity of epidemics A different temporal ap-
proach is to try to predict the behavior of the epidemics, focusing not
as much in when and where it will happen but in how large and vir-
ulent will it be. Predictions can be short term (one time unit ahead)
or try to predict the whole epidemic curve. For example, Yang et al.
(2015) forecast the peak timing and peak magnitude for individual
influenza strains as well as for the aggregate epidemics in Hong Kong.

Many times one system performs several of these analyses at once. All
of these analyses may involve covariates to determine which are the risk
factors for the disease in study, to isolate spatio-temporal behavior not
attributable to other factors and to improve detection and prediction.

This thesis is set within the framework of outbreak detection methods.
In particular we propose two novel methods for the detection of influenza or
ILI outbreaks. The one presented in Chapter 2 deals with temporal data,
trying to detect as soon as possible the arise of influenza epidemics. The
proposal in Chapter 3 is applied on spatio-temporal data in order to signal
not only when, but also where the epidemic starts, and when and where it
spreads.

Before going any further, it is interesting to point out why sometimes we
talk about influenza surveillance and some other times about ILI (influenza-
like illness) surveillance. Most of the influenza surveillance methods pre-
sented in the literature actually do surveillance on ILI data, as most data
sources are based on syndromic diagnose and laboratory confirmation of
the actual influenza virus is seldom performed. Because of this, one may
wonder if these are influenza or ILI surveillance methods. On one hand, the
main goal of the surveillance system usually is to detect influenza epidemics
and ILI data are used only as a proxy of the disease. On the other hand, ILI
data usually are used instead of confirmed influenza data and the detection
of other ILI is a welcomed (or even intended) byproduct. Because of that,
most authors speak of influenza surveillance or ILI surveillance almost in-
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distinctly. From now on, we will refer to influenza or ILI surveillance in
this sense.

1.4 Review of temporal analysis methods for the
detection of influenza outbreaks

In order to understand how the new proposals of influenza outbreak de-
tection methods presented in this thesis have been built and why have we
constructed them as they are, it is interesting to understand previous meth-
ods present in the literature. This will allow the reader to appreciate which
of their statistical tools have inspired or been used in our proposals and
which limitations found in other methods are attempted to be solved by
the proposals in Chapters 2 and 3. In this section we are going to review
different temporal analysis methods of surveillance systems present in the
literature, centering our view in those focused on the detection of outbreaks
of influenza or ILI. We will be paying special attention to the evolution from
the simplest alarm triggering algorithms to the Bayesian Markov switching
models.

Some extended reviews of methods for the detection of outbreaks can
be found in the works of Buckeridge et al. (2005), Le Strat (2005), Burkom
(2007) and Unkel et al. (2012). Several of the models are implemented in
the R package surveillance (see Höhle, 2007 for documentation about the
whole package and Salmon et al., 2016 for more details about its temporal
methods). Spreco and Timpka (2016) offer a brief metanarrative review
of online algorithms for detecting and predicting influenza outbreaks. A
particular review centered in the use of Markov switching models for the
detection of influenza outbreaks can be found in Amorós et al. (2015).

1.4.1 Methods based on historical limits

Methods based on historical limits are the most widely used for detect-
ing the onset of influenza epidemics and with longer tradition in the epi-
demiological literature. These methods consist of estimating a parametric
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behavior of the non-epidemic observations in previous observations (from
the present and/or past seasons) and using it to calculate an upper thresh-
old. These models are based on the so-called ‘control charts’, proposed by
Shewhart (1931) and originally used for quality control in industrial produc-
tion. In control charts, a warning is triggered when the difference between
the current observation and a theoretical mean of the process surpasses
the mentioned threshold. This threshold is usually set using the estimated
standard error of the observations under control (in the context of out-
break detection, non-epidemic observations). Methods based on historical
limits are those which follow this idea, but may be more sophisticated when
modeling the theoretical mean and threshold. One way to determine this
theoretical mean and threshold is to consider a window of observations of
times t−m, . . . , t− 1 from the present year and/or t−m, . . . , t+m times
from previous years and compute some central estimator and standard error
for the observations in these windows, as Stroup et al. (1989), Farrington
et al. (1996), Fricker et al. (2008) or Boyle et al. (2011) do. Another option
would be using all non-epidemic data as training and fitting a regression
model which includes time trend and Fourier periodical terms as proposed
by Serfling (1963):

Yt = µ+ αt+
∑

βi cos θi +
∑

γi sin θi , (1.1)

with θi a linear function of t. This harmonic cyclic regression method has
been used for influenza surveillance by the Center for Disease Control and
Prevention (CDC) of the United States (Muscatello et al., 2008). This ap-
proach or some variations of it are also used in other works like Costagliola
et al. (1991), Costagliola (1994) and Simonsen et al. (1997).

Other works use generalized linear models instead of linear regressions,
like Chan et al. (2015), where a Negative Binomial regression is applied on
all the historical data, including several covariates like climate or day of
the week and applying a simple threshold on the standardized residuals.
Others use this idea in a more complex methodology, like Noufaily et al.
(2013), who propose a decision algorithm based on the number of actual
and previous observations that are missing, zero or other. Depending on
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the observations, this algorithm directly indicates the epidemic or non-
epidemic state or decides to apply a quasi-Poisson model based on a window
of observations to estimate a threshold. Some other simple approaches
assuming a non-Gaussian distribution of the data can also be applied, as
in the work of Closas et al. (2012), where all previous non-epidemic data
are assumed to follow an exponential distribution. For each new datum,
the Kolmogorov-Smirnov test is used to test whether it comes from the
same exponential distribution or not (this test could also be expressed as a
threshold for the new datum).

These approaches have some drawbacks in practice, as pointed by Rath
et al. (2003):

• First, most of these methods need a predefinition of epidemic and
non-epidemic periods on the historic data, as they use only the non-
epidemic observations to calculate thresholds. But that differentiation
between phases is precisely the final outcome that detection methods
want to achieve. Several approaches have been taken to distinguish
the epidemic and non-epidemic states of the historic data. The works
of Costagliola et al. (1991) and Costagliola (1994) declare as epi-
demic weeks in the previous seasons those weeks with more than 3
patients per doctor. Some methods use only data from the present
season, making sure that data start from non-epidemic and stay like
that for several weeks, as done in Cowling et al. (2006). Others, like
Muscatello et al. (2008), use an arbitrary criterion on the laboratory
confirmations. Vega et al. (2013) propose a method that searches for
the length of the epidemic of each past season as the one that, if is
made larger by one week, doesn’t increment the proportional amount
of influenza rate inside the period more than an arbitrary percentage
between 2% and 4%. The variety of possible criteria found in the
literature suggest arbitrariness in their definition. Because of that, it
would be convenient to perform a sensitivity study to these criteria in
all detection methods which require a predefinition of non-epidemic
periods, or use detection methods that do not require this predefini-
tion.
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• In second place, contiguous observations in time are treated as con-
ditionally independent values, while we would expect that their tem-
poral arrangement could show some kind of dependence –such as
streaks– that could be used to better distinguish between epidemic
and non-epidemic stages.

• Thirdly, the baseline (non-epidemic) period is sometimes estimated
with national data that maybe do not properly fit if we are mostly
interested in a local influenza surveillance system.

Goddard et al. (2003) also point out as a fourth drawback that the
use of temporally fixed threshold values to describe the levels of influenza
activity can be misleading due to long-term time trends in consultations
for influenza. Specifically, they pointed out a decline in the number of
influenza-related consultations in recent years that could reduce the sensi-
tivity of these methods.

The detection methods proposed in this thesis try to overcome these
drawbacks, usually present in methods based on historical limits. In par-
ticular, the novel proposals do not require a predefinition of non-epidemic
periods and use time series tools to seize the temporal dependency of in-
fluenza data. Both proposals also consider possible different behaviors for
each year, which can assimilate long-term time trends as well as specific
years with particularly different behavior on the epidemic and/or endemic
incidence rates.

1.4.2 Cumulative control charts

Two different evolutions to the control chart proposed by Shewhart (1931)
are the cumulative sum chart (CUSUM chart) and the exponentially
weighted moving average chart (EWMA chart). Both of them accumu-
late information from previous weeks and the value that is tested against a
threshold is not just the single observation for each week but the statistic
that accumulates information from the present and previous weeks. In that
fashion, growths that are not punctually sharp but a streak of mild upward
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increases may also be detected, although on the other hand the power to
detect sudden outbreak starts could be diminished.

CUSUM was proposed by Page (1954), and consists of assigning a statis-
tic St to each time that can be expressed recursively as

St = max(0, St−1 + Yt − µ) , (1.2)

with Yt being the observed values and µ a theoretical mean value the pro-
cess is supposed to have. When the value of St exceeds certain threshold,
the alarm is triggered and usually the process is reset to zero. Certain
variations on the way of calculating the statistic or the threshold may be
done to improve the performance of the method. Some of its applications
in influenza surveillance and epidemic detection may be found in Höhle
and Paul (2008), Griffin et al. (2009), Höhle (2010), Sparks et al. (2010) or
Boyle et al. (2011).

EWMA consists of the calculation of the moving average of the observa-
tions with exponential weights and can be expressed recursively as follows:

St = (1− ρ)St−1 + ρ(Yt − µ) , (1.3)

with ρ ∈ [0, 1]. The threshold widens with t approaching to a limit set by k
times the sample standard deviation, with k arbitrary. The use of EWMA,
proposed by Roberts (1959), is less frequent than the use of CUSUM, but
we can find some applications in surveillance like the dengue fever outbreak
detection in Meynard et al. (2008). Woodall et al. (2006) provide a good
review of the use of control charts in health-care and public surveillance that
includes the use of cumulative control charts for the detection of epidemics.

Nevertheless, cumulative control charts can detect a relatively small
shift of the mean behavior of the rates that extends during several days
or weeks as epidemic weeks. The endemic behavior of influenza epidemics
could have these shifts with the arrival of the cold months of the year,
but they do not imply the beginning of the epidemic. A way to avoid
this misclassification is using models which consider the behavior of the
differentiated rates (the size and direction of the jumps from one week to
the next one) as a differentiating feature and not only the size of the mean
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value of the incidence rates. Our proposals take this approach so that a
sharp increase or several contiguous mild increases are needed to trigger an
alarm. More details on how this is done will be presented in Chapter 2 and
Chapter 3.

1.4.3 ARIMA

In 1981, Choi and Thacker published a paper on the forecast of pneumo-
nia and influenza using time series analysis instead of regression analysis,
showing the power of this kind of models in the surveillance of influenza.
The most popular methods in time series analysis are the autoregressive
integrated moving average (ARIMA) models, which are linear models for
observations on a discrete time support in which the predictors for each
observation consist of previous (lagged) values of the variable concerned
and/or previous forecast errors. There are three components that define an
ARIMA model, let us see each of them separately.

Autoregressive model of order p. This model expresses each observa-
tion as a regression on the previous p observations with parameters
ρi:

Yt = c+

p∑
i=1

ρiYt−i + εt , εt ∼ N(0, σ2) . (1.4)

Moving average of order q. This model expresses each observation as
the sum of a normal error on time t plus the previous q normal errors
associated to the previous times multiplied by q parameters γj :

Yt = µ+

q∑
j=1

γjεt−j + εt , εt ∼ N(0, σ2) . (1.5)

Integrated process of order d. Also known as random walk of order d,
in this model the d times differentiated observations are expressed as
a normal error:

∇dYt = εt , εt ∼ N(0, σ2) , (1.6)
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where

∇Yt = Yt − Yt−1 , (1.7)

∇dYt = ∇(∇d−1Yt) = ∇d−1Yt −∇d−1Yt−1 .

The possible combinations of these three models are called
ARIMA(p, d, q) and can be expressed as follows:

∇dYt = c+

p∑
i=1

ρi∇dYt−i +

q∑
j=1

γjεt−j + εt , εt ∼ N(0, σ2) , (1.8)

though usually the complexity of the models used in practice is low (p, d, q ≤
2).

Cowling et al. (2006), for example, do automated monitoring of in-
fluenza sentinel surveillance data by applying a random walk of order one
with predefined variance on the means of the normal distribution that mo-
dels the observations:

Yt ∼ N(rt, σ
2
1) , rt = rt−1 + ε , ε ∼ N(0, σ2

2) , (1.9)

with σ2
1 fixed and σ2

2 to be estimated by the model. Reis and Mandl (2003)
opt for a model with weekly and yearly pattern and select a combination of
autoregressive and moving average components for the residuals to monitor
respiratory symptoms reported at an emergency department. Williamson
and Hudson (1999) describe a two-stage monitoring system consisting of
univariate ARIMA models and subsequent tracking signals from several
statistical process control charts (Shewhart, moving average and EWMA)
and applies it on data of several notifiable diseases. The integer autoregres-
sive model, a variation of the autoregressive model for discrete data, firstly
introduced by Al-Osh and Alzaid (1987) and McKenzie (1985), is used for
influenza outbreak detection in Rao and McCabe (2016). In that work,
the authors propose a rule of decision based on the p-value of the forecast
which can also be applied with any other model that provides a probability
distribution for the forecast. In general, the use of ARIMA techniques is
frequently observed in combination with other statistical tools.
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Both proposals presented in this thesis use autorregressive structures
over time to capture the intrinsic temporal correlation of influenza rates.
Different parameters and orders for the autoregressive structures are set
on the epidemic and the non-epidemic phases, so that the two different
temporal behaviors can be distinguished.

1.4.4 Change point

The detection of a lingering epidemic –as it is the case of influenza
epidemics– implies the identification of a moment where the behavior of
the time series changes. Frisén (2003) studies how a shift from the basal
mean of a process µ0 to a higher mean µ1 is detected by different methods
(including Shewhart, CUSUM and EWMA). Later on, Frisén and Anders-
son (2009) and Frisén et al. (2010) propose a different approach, where the
change happens from a constant basal mean to a set of increasing means at a
certain time j, so that µt=1 = · · · = µt=j−1 < µt=j ≤ µt=j+1 ≤ · · · ≤ µt=T .
Several ways to estimate this change point are discussed in the aforemen-
tioned works.

The methods proposed in this work take the idea of modeling two dif-
ferent behaviors and detecting the transition between them, but embody it
in a different manner. First of all, Markov switching models (which will be
explained in Section 1.6.2) are used to model the two different structures
–epidemic and endemic– and the transitions among them. Besides that,
the distinction between phases do not only consider the change from a low
mean of the incidence rates to a higher or increasing one. Other features
are also considered, as are the change in the variance of the data or the
spatial correlation.

1.4.5 Temporal scan statistic

A scan statistic is a tool to detect clusters of occurrences in space and/or
time. The basic idea is to propose several windows that cover a connected
subset of the whole region and/or of the whole time period, and test which
of these possible windows shows a behavior most opposed to the null hy-
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pothesis of random observations by comparing the number of observations
inside and outside the window. Several possible distributions for the null
hypothesis can be considered, like Poisson or Binomial among others.

Though mostly used in spatial or spatio-temporal surveillance, the sim-
plest versions of the scan statistic, proposed by Naus (1965a) and improved
in Naus and Wallenstein (2006), is purely temporal. In order to use a scan
statistic for detection of outbreaks, it has to be applied in an online basis,
forcing the potential cluster windows to include observations from the last
week or day, as done by Ismail et al. (2003). As the authors state, the
window size and the number of events expected to occur in an interval have
to be predetermined and this can be done using historical information or
externally set standards. This arises again the problem of using histori-
cal data, already discussed in Section 1.4.1, or using external information,
which we tried to avoid in our proposals.

1.5 The Bayesian approach

All the references reviewed in the previous section are framed in the fre-
quentist paradigm, though the general methodologies are not necessarily
bounded to this paradigm. In this section we will discuss the role of
Bayesian statistics in epidemic surveillance.

1.5.1 The Bayesian paradigm

Every statistical model tries to express the behavior of some observable
variable or variables through one or several parameters θ. The Bayesian
paradigm considers every parameter as a non directly observable variable
with a probability distribution. The current knowledge about the parame-
ters is expressed by a prior distribution p(θ), that is set by the researcher
and expresses some previous knowledge or lack of knowledge about the pa-
rameters. Given a set of observed data Y from the observable variable or
variables and a model that relates them with the parameters, the knowl-
edge about these parameters can be updated using the Bayes’ Theorem.
So, if the likelihood of the observed data given the parameters is denoted
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as p(Y |θ), we have that the posterior probability distribution for the pa-
rameters is

p(θ|Y ) =
p(Y |θ)p(θ)∫

Θ p(Y |θ)p(θ)dθ
. (1.10)

As the denominator is just a constant that assures that the distribution
integrates to 1, it is usual to express this relation as proportionality, without
regards to this integration constant: p(θ|Y ) ∝ p(θ)p(Y |θ). This is known
as the ‘learning process’, and is the basic methodology to obtain information
about the parameters from the observations.

An advantage of the Bayesian paradigm is the capability of doing infer-
ence on hierarchical models with ease. Suppose that the parameters in one
given model can be split in two sets, θ1 and θ2, so that the distribution of
θ1|θ2 ∼ p(θ1|θ2) is explicit in the model, and the likelihood of the observ-
able data is dependent only on θ1 given θ2, that is p(Y |θ1,θ2) = p(Y |θ1).
Then, and knowing that p(θ1,θ2) = p(θ1|θ2)p(θ2), we can express the
posterior distribution of the parameters as

p(θ1,θ2|Y ) ∝ p(Y |θ1,θ2)p(θ1,θ2) (1.11)

= p(Y |θ1)p(θ1|θ2)p(θ2) .

This is the basis of the Bayesian Hierarchical modeling, that allows us to
make inference about parameters within complex models in a relatively
simple way, as a product of simpler probability distributions.

Bayesian methodology provides a unified theory for handling uncer-
tainty, which makes it a very advisable tool for the decision-making process
of a surveillance system. Specifically, Bayesian analyses enable to quantify
whichever feature of interest of any variable in the model by means of its
posterior distribution. This makes the Bayesian methodology to be per-
fectly suited for quantifying the probability of being in an epidemic phase
at any given moment. Also, the way of doing Bayesian inference ensures
that all the possible sources of variability considered in the model are inte-
grated in the output of the posterior distribution of the parameters or the
predictions.
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Another advantage of the Bayesian approach is the ability to cope with
inference on the parameters on models with complex structures (as are
spatial statistics, hierarchical models or hidden Markov models, among
others) in a relatively easy way. This is done thanks to the capability of
splitting complex models in multiplication of several simpler probability
distributions, as seen in Expression (1.11). The proposals presented in this
thesis are hierarchical models with hidden Markov structures, and one of
them has also spatial structure, so they bear the kind of complexity we have
just mentioned. Thus, by being defined under the Bayesian paradigm, the
proposals enjoy of the relative simplicity of inference as well as the other
characteristics we have previously discussed.

1.5.2 Inference tools in Bayesian statistics

As analytic inference is often impracticable or impossible, simulation and/or
approximation tools are required to obtain posterior probabilities. Let us
review some of them:

Markov Chain Monte Carlo (MCMC). This type of algorithms are
explained in Gilks et al., 1996. The idea is to construct a Markov
chain whose limiting distributions corresponds to the posterior distri-
bution of interest, and then iterate the chain to generate samples from
it. Softwares like WinBUGS and OpenBUGS (Lunn et al., 2000),
JAGS (Plummer, 2003), STAN (Carpenter et al., 2017), NIMBLE
or BayesX use MCMC techniques to numerically approximate the
posterior distribution of the parameters of a model. This numerical
algorithms can also be programmed in computational languages such
as R (R Core Team, 2016) or C++ (Stroustrup, 2013).

Sequential Monte Carlo (SMC). SMC, also called particle filters (see
Del Moral, 1996), is an algorithm that allows to update the inference
on the posterior distribution of the parameters of a Bayesian model
when new data are added to the existent ones without having to redo
the inference with all the data (as is the case when using MCMC or
other methods).
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Integrated nested Laplace approximation (INLA). Proposed by
Rue et al. (2009), INLA is an approach for hierarchical latent
Gaussian models which computes very accurate approximations to
the posterior marginals using the Laplace approximation. INLA
can overcome convergence problems that MCMC may show and
significantly diminishes the computational time in general. Anyhow,
models that can not be expressed as latent Gaussian models, like
hidden Markov chains, for example, cannot currently be analyzed by
INLA. A wide range of statistical models are fitted with the INLA
approach in the R-INLA package in R.

Aproximate Bayesian computation (ABC). ABC (see, for example,
Biau et al., 2013) is a relatively recent computational technique to
approximate the posterior distributions of the parameters that only
requires of being able to sample from the model (likelihood) p(·|θ).
The algorithm consists of simulating jointly

θ∗ ∼ p(θ) and z ∼ p(z|θ∗) (1.12)

until the distance from the simulated z to the observed data Y is
less than a certain threshold. Repeating this process several times
provides of simulations of the posterior distribution p(θ|Y ).

1.5.3 Bayesian models for epidemic surveillance

Bayesian studies are not new in surveillance literature, but in recent years
there has been increasing interest in them. An example of the motivation
for this change of paradigm can be seen in Charland et al. (2009), who
work on the assessment of environmental risk factors to the peak week of
influenza epidemic, using Bayesian inference because

generalized mixed models can be particularly sensitive to the point es-
timates of the variance parameters [...]. Bayesian hierarchical models
average over the uncertainty of the parameters of the model rather
than using point estimates [...].
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A first approach we may consider to do surveillance from the Bayesian
perspective are Bayesian networks, models where variables are conditionally
related in a way that their conditional distributions can be represented in
a directed graph without directed cycles. In these models, the principle
of hierarchical Bayesian models presented in Expression (1.11) applies, so
that the joint distribution of the model can be expressed as the product
of several relatively simple conditional probability distributions. Inference
can be made in a Bayesian or frequentist way, depending on the definition
or not of prior distributions for the parameters of the model which are not
conditionally dependent on other variables. Some examples of Bayesian
networks applied on influenza surveillance are the work of Cooper et al.
(2004), who proposed a Bayesian hierarchical network for the detection
of CDC category A outbreak diseases (including influenza), and the work
of Sebastiani et al. (2006), which integrates information from several data
sources through Bayesian networks to forecast the starting and peak of
epidemics.

Statistical structures already discussed in previous sections can also be
considered in terms of Bayesian hierarchical models, which allow for more
complex structures that can adapt better to the nature of the data. In that
way, Held et al. (2006) propose a Bayesian method where the observations
Yt are the sum of two components, the endemic one (Ent) and the epidemic
one (Ept), as follows:

Yt = Ent + Ept , Ent ∼ Po(νt) , Ept|Ent−1 ∼ Po(λtEnt−1) . (1.13)

The logarithm of the parameter of the endemic component (log(νt)) is mod-
eled by a Serfling regression, a linear regression with sinusoidal periodical
terms. The expected value of the epidemic component is proportional to
the endemic one by a factor λt that may change at several changepoints.
λt rising over 1 determines the outbreak.

Manitz and Höhle (2013) fit a Bayesian Negative Binomial regression
as follows:

Yt ∼ NB(µt, ν) , log(µt) = αt + β · t+ γt + δ′Xt + ζzt , (1.14)
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where αt has a temporal random walk structure, β ·t captures the long term
tendency, γt captures the seasonal pattern of length S (with γt = γt+S) and
δ′Xt represents the covariates effect. A threshold is computed from this
regression and the moment t + 1 is declared as epidemic if Yt+1 surpasses
it. The extra covariate zt is equal to 1 if the moment t was declared as
epidemic using data from time 1 to time t−1, and 0 otherwise. In this way,
ζzt captures the amount of epidemic cases in time t. A model based on
those of Manitz and Höhle (2013) and of Noufaily et al. (2013) (discussed
in Section 1.4.1) can be found in Salmon et al. (2015), which deals with
delay of notification. In this kind of data, Yt is not completely notified at
time t, but only a fraction of the total cases are reported, and one has to
wait several weeks (or days) for this underestimation to be corrected by
adding the cases that were not notified in time. Thresholds are corrected
in this work to take the delay of notification into account.

In this section we have discussed the potential of the Bayesian paradigm
in terms of handling uncertainty, obtaining results in form of probability dis-
tributions and doing inference on complex models. We also have reviewed
some of its applications in epidemic surveillance. In the next section we
will review the use of hidden Markov chains in the detection of epidemics.
This tool has been used under the frequentist paradigm in simple models,
but is mainly addressed through the Bayesian paradigm when constructing
more complex hierarchical models. The following section shows how hidden
Markov chains offer a powerful and intuitive way of addressing the epidemic
detection issue.

1.6 Hidden Markov chains in epidemic surveil-
lance

There are two main forms of hidden Markov chains used in epidemic detec-
tion; hidden Markov models (HMM; see, for example, Cappé et al., 2005)
and Markov switching models (MSM; see, for example, Douc et al., 2004).
We will consider them with a discrete support for time and taking a finite
number of possible states (commonly two, representing the epidemic and
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non-epidemic states), as they are usually seen in surveillance.
A hidden Markov chain is a stochastic model that considers a set of

non observed variables Zt (hidden states) and a set of observed values Yt
(observations), one for each time unit t ∈ {1, . . . , T}, so that Z = {Zt} is
a Markov chain. For any time t the conditional distribution of the present
state given the past states depends on just the previous state

p(Zt|Z1, . . . , Zt−1) = p(Zt|Zt−1) (1.15)

and Yt is conditionally dependent on Zt.
The most common use of hidden Markov chains in the surveillance

field assumes two possible values for the non observed variables, also called
states: Zt = 0 indicating that there is no epidemic in time t and Zt = 1
when an epidemic is occurring. Since Zt depends on just Zt−1, which is
also a binary variable, a 2×2 transition matrix is estimated with the prob-
abilities pkl of going from epidemic state k to l;

pkl = P (Zt = l|Zt−1 = k) , k, l ∈ {0, 1} , (1.16)

that is, the probabilities of staying or changing the epidemic state, from any
time t− 1 to the next time t. The transition matrix is therefore expressed
as follows:

P =

(
p00 p01

p10 p11

)
with pkl ∈ [0, 1] . (1.17)

HMM are particular cases of hidden Markov chains with an added re-
striction, so that the value of the observed variable at each time Yt is only
dependent on the hidden state for that time, given the past observations
and the present and past states

p(Yt|Z1, . . . , Zt, Y1, . . . , Yt−1) = p(Yt|Zt) . (1.18)

In a MSM, the states are also a Markov chain so they comply with the
Expression (1.15) but, in this case, the restriction in Expression (1.18) is
not accomplished. The observations Yt are dependent on previous obser-
vations in Y instead, usually through an autoregressive process, and the



28 Chapter 1. Methods for the detection of influenza epidemic outbreaks

present state Zt affects both the present observation and the relation be-
tween the present and the past observations. As Lu et al. (2010) state, this
setting makes the Markov switching model more suitable for time-series-
related problems. In Figure 1.2 there are two illustrations of the conditional
dependencies for these two structures that may be enlightening.

HMM

Yt−1 Yt Yt+1

Zt−1 Zt Zt+1

MSM

Yt−1 Yt Yt+1

Zt−1 Zt Zt+1

Figure 1.2: Diagrams of the conditional dependencies in a hidden Markov model
(HMM) and a Markov switching model (MSM).

Once the model is determined, the values of the states and all other
parameters have to be computed. In the frequentist paradigm, Viterbi
algorithm (1967) is often used for computing the most likely state for each
Zt in HMM, while the transition matrix is usually estimated by the Baum-
Welch algorithm (see Baum et al. 1970). Posterior probabilities for the
states and the transition matrix are usually estimated by MCMC in the
Bayesian approach, both for HMM and MSM. Due to their complexity
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MSM models are usually fitted under the Bayesian paradigm.

An advantage of using hidden Markov chains for the detection of out-
breaks is that the model classifies all past incidence rates or counts as
epidemic or endemic, and use all that information for the decision in the
present time. In that way, it avoids the problem of having to define which
part of the historical data is endemic and which is not with an external
criterion, and also avoids to dismiss the information of the epidemic his-
torical data. Besides that, a model with a hidden Markov structure does
not model just the non-epidemic behavior, as many other models do, but
also specifies how epidemic data behave. In that way, the classification as
endemic or epidemic is not done by accepting or refusing that data have
certain structure but by discerning which of the two structures data adapt
better to.

1.6.1 Hidden Markov models for oubreak detection

Le Strat and Carrat (1999) propose the use of HMM for disease surveillance
in 1999 under the frequentist paradigm. An implementation of this model
is available in the R package surveillance. Variations of the model are
proposed in the same article with a Serfling cyclic regression and tested
on Influenza-like illness (ILI) and Poliomyelitis data. Two examples with
Gaussian or Poisson errors are described where the observations are mod-
eled in one of these two ways:

Yt ∼ N(µtZt , σ
2) or Yt ∼ Po(λtZt) , (1.19)

and where the parameters ηtk = µtk or ηtk = log(λtk) respectively are
expressed by an harmonic regression

ηkt = αk + βk · t+ γk cos

(
2πt

r

)
+ δk sin

(
2πt

r

)
, k ∈ {0, 1} , (1.20)

with r the seasonal period. This kind of structure is not only used in in-
fluenza surveillance, as can be seen in Rafei et al. (2012) where a simplifica-
tion of the same Poisson model is applied on tuberculosis patient registries
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data. In this simplification, all the parameters of the regression are equal
for η0t and η1t except for α1, which is α0 + αe, with αe the estimated shift
on the expected counts caused by the epidemic.

A seasonal structure is not always considered to be the best baseline
regression in HMM, as is reflected by Rath et al. (2003). They argue that
non-epidemic rates are always positive and approximately exponentially dis-
tributed, as is appreciated in an exploratory histogram of non-epidemic ILI
they perform. Following this idea, they propose a 2-state HMM with an
exponential distribution for non-epidemic rates and a Gaussian distribution
for the epidemic state, without linear or seasonal trend:

Yt ∼ Exp(λ) when Zt = 0 and Yt ∼ N(µ, σ2) when Zt = 1 . (1.21)

A comparison with the seasonal Gaussian model by Le Strat and Carrat
shows that Rath et al.’s algorithm is more cautious in the sense that does
not trigger the alarm too soon, does not maintain it too long when the
epidemic has ended, and avoids false alarms in small peaks better.

Concerned on the problem of multiple testing under dependence, as
happens when deciding whether each week is epidemic or not in a HMM,
Sun and Cai (2009) propose a decision tool based on a new statistic called
local index of significance instead of using p-values. They apply it on a
HMM with a Gaussian distribution for the non-epidemic state and a sum
of several Gaussian distributions for the epidemic state:

Yt ∼ N(µ0, σ
2
0) when Zt = 0 , and (1.22)

Yt ∼
L∑
l=1

N(µl, σ
2
l ) when Zt = 1 .

The amount of Gaussian distributions to be added for the epidemic state
(L) is choosen by the Bayesian information criterion (BIC), proposed by
Schwarz (1978). This model is tested on ILI sentinel data of France.

Some Bayesian HMM for influenza surveillance are simple adaptations
of frequentist approaches. That is the case discussed by Madigan (2005),
where Le Strat and Carrat’s model is completed with non-informative prior
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distributions for the parameters. A three states extension of this model is
also proposed, where an intermediate state is considered. Madigan also pro-
poses some variations of Rath et al. (2003) modelization, considering both
epidemic and non-epidemic states with the same distribution. He com-
pares the Gaussian, lognormal, gamma and exponential modelings using
the deviance information criterion (DIC, introduced by Spiegelhalter et al.,
2002). The DIC compares the goodness-of-fit of Bayesian nested models
penalizing for overparametrization (see Section A.2 of the appendices for
more details). The comparison finds the lognormal model scoring markedly
better. In any case, Madigan himself states that he has not included Rath
et al.’s model in the comparison process, as only models with the same
distribution for the epidemic and the non-epidemic phase were taken into
account.

1.6.2 Markov switching models for the detection of in-
fluenza outbreaks

In order to adapt better to the nature of epidemic data, it is a common prac-
tice to assume conditional dependency between close observations in time
that have the same epidemic state. To do so, one must disregard the condi-
tion in Expression (1.18) of conditional independence of the observations in
a HMM, which allows to open the toolbox of MSM. A recent work of Rafei
et al. (2015) compares, under the frequentist paradigm, the performance
on detection of tuberculosis epidemic outbreaks of several combinations
of Gaussian Serfling harmonic cyclic regression, harmonic regression with
temporal autoregressive dependence of first order of the observations and
HMM. R2 and BIC measures indicate the model with the three components
(actually a MSM for including the autoregressive structure with changing
parameter for each epidemic state) to be the one that better adjusts to the
data.

Models with higher complexity are usually addressed under the Bayesian
paradigm as they usually require of hierarchical structures of higher or-
der. This is the case of Lu et al. (2010), who present what they called
a Markov switching with jumps model for the detection of epidemic out-
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breaks which includes several terms: the median of the means of a win-
dow of size 7 (a week size) for the 3 previous years g(Y t−1), a random
jump that captures sporadic extreme values with Bernoulli probability ξtJt,
(Jt ∼ Bernoulli, ξt ∼ Normal), an autoregressive process Xt which depends
on the epidemic state and includes day of the week

∑6
i=1wiDti, exogenous

covariates effect
∑K

j=1 bjVtj and a Gaussian error εt ∼ N(0, σ2
ε):

Yt = g(Y t−1) + ξtJt +Xt , (1.23)

Xt = a00 + a01Zt + (a10 + a11Zt)xt−1 +

6∑
i=1

wiDti +

K∑
j=1

bjVtj + εt .

Conjugated priors are used for the model fitting. The model is tested on
simulated data of over-the-counter sales for gastrointestinal disorders and
on real-world clinic visits for respiratory syndrome with an added simulated
anthrax outbreak. Each observation Yt in this model is dependent of Yt−1

through the autoregressive structure. The state variables Zt, which form
a hidden Markov chain, modify the dependence between Yt and Yt−1 by
modifying the autoregressive parameter. This makes this model a perfect
example of Markov switching model applied on ILI-related data.

A particular line of development is the creation of innovative structures
that adapt to non conventional data sources, for example to sources of
multivariate data. Usually these models are built ad hoc and would take
considerable effort to adapt them to be applied on different data sources
than those they were built for. Another novelty that may be introduced in
hidden Markov chains for surveillance is time-changing transition matrices,
that is, transition matrices which vary depending on time and on the ob-
servations. An example that incorporates these two characteristics is the
model proposed by Nunes et al. (2013). This work is based on the work
developed by Paroli and Spezia (2008), using in an algorithm that involves
partial sentinel ILI observations Yt(t), complete sentinel ILI observations
taken half a week after Yt(t+1) and laboratory influenza isolations taken
half a week before νt−1(t).

The model on the observations taken half a week after has cyclic terms, a
Gaussian error with higher variance in the epidemic state plus a polynomial
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function of the partial observations which takes a different form according
to the epidemic state:

Yt(t+1) = µ+ β1 cos

(
2πt

52

)
+ β2 sin

(
2πt

52

)
+ ξZt + εtZt , (1.24)

with εtZt ∼ N(0, σ2
Zt

) and σ0 < σ1. εtZt is the polynomial function of
the partial observations Yt(t), which is linear for the non-epidemic state
and quadratic for the epidemic state. The later quadratic structure can
better describe the step increase or decrease of rates during the epidemic.
The polynomial term is set to zero for the non-epidemic state when the
number of laboratory confirmations is high, that is, when they surpass an
empirically set value ν0 (set to 20 for the application in the article). In
this way, when laboratory data grant that the process is in the epidemic
state, only the epidemic option of the polynomial function is available to
capture the relation between the partial observations Yt(t) and the complete
observations Yt(t+1). The epidemic state of this term is also set zero when
the number of laboratory confirmations is below another threshold ν1 (in
the article, when νt−1(t) < 1). This ensures that when laboratory data show
no evidence of epidemic whatsoever, only the endemic polynomial structure
is available:

ξ0 = θ0Yt(t)I(νt−1(t) ≤ ν0), , (1.25)

ξ1 = (θ1Yt(t) + θ2Y
2
t(t))I(νt−1(t) ≥ ν1) ,

with I(·) the indicator function that takes value 1 if its argument is true
and 0 otherwise. Three different models are proposed for the transition
matrix:

1. pkl (the usual one, constant for all t),

2. logit(pt,kl) = αkl + βklYt(t) ,

3. logit(pt,kl) = αkl + βklYt(t) + γklνt−1(t) ,
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with k, l ∈ {0, 1} and k 6= l (pkk is set by complementarity). Epidemics are
shown to be detected 2 weeks earlier in models with changing transition
matrix (proposals 2 and 3).

Other ways of adding complexity on hidden Markov chain models to
take advantage of a particular case of multivariate data can be found in
spatio-temporal applications. We will review this kind of models in Section
3.3.4.

In the next section we will do a deeper analysis of a particular MSM by
Martinez-Beneito et al. (2008a). The reason to discuss this model in detail is
because in the present work we will present two extensions of this model, one
for temporal data and one for spatio-temporal data. Knowing the structure
of the model as well as its performance, advantages and limitations is key
to be able to properly develop and understand these new proposals.

1.7 A Bayesian Markov switching model for the
early detection of influenza epidemics

In 2008, Martinez-Beneito et al. introduced a Bayesian MSM for the detec-
tion of influenza outbreaks based on the analysis of temporal data of disease
rates. One of the particular characteristics of this model is the fact that
the data used on the model are not rates themselves, as those on Figure
1.3, but the difference of rates from time t− 1 to time t, as seen in Figure
1.4. As the authors state, for the first-order differentiated series:

The non-epidemic dynamic is characterized by small random changes
around zero, while in the epidemic dynamic changes are greater and
inter-related (positive and negative values are usually followed by posi-
tive and negative values, respectively). But more importantly, the fact
that this new series has a zero mean allows us to restrict our study
to its variability at each moment, which is expected to confer on our
model a reasonable discriminatory capability, while in the former [non-
differentiated] series we had differences not only in the variability but
also in the means, thus making its analysis more complex. This com-
ment is in line with that of Baron (2002), who also used differenced
series to distinguish between epidemic and non-epidemic phases with
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the final aim of early detection of the start of an influenza epidemic.
To do so, he proposes the use of hierarchical Bayesian change-point
models instead of Markov switching models.

Figure 1.3: Weekly ILI incidence rates per 100 000 inhabitants during seasons
from 1996–1997 to 2006–2007 of the Valencian Sentinel Network, as they appear
in Martinez-Beneito et al. (2008a).

Figure 1.4: Time series of the differentiated rates per 100 000 inhabitants during
seasons from 1996–1997 to 2006–2007 of the Valencian Sentinel Network, as they
appear in Martinez-Beneito et al. (2008a).

Let us take a look at the model by Martinez-Beneito et al. (2008a). For
convenience of notation, we will set the index for the first week of each
season as t = 0. Let y = {yts, t = 1, . . . , T ; s = 1, . . . , S} denote the set of
differences between the rates of weeks t and t− 1 in season s:

yts = Yts − Yt−1s . (1.26)

A season may be a whole year or part of it, but starting and ending from
dates that are expected to be in non-epidemic state, for example, in sum-
mer. In that way, all weeks from an epidemic share the same particular



36 Chapter 1. Methods for the detection of influenza epidemic outbreaks

parameters of the season it is in, and epidemics in different seasons can
have some different parameters to capture the differences from season to
season. For that reason, in the northern hemisphere, seasons are usually
defined to start in summer or autumn of one year and end the next year
after the winter has past.

The authors model the behavior of the differentiated rates time series
for both epidemic and non-epidemic periods with two different structures
depending on the epidemic state, indicated by a hidden variable Zts. This
variable takes value 1 for epidemic and 0 for non-epidemic and, as it has
been explained in Section 1.6, is a hidden variable in the sense that it is
never directly observed. It seems reasonable to assume no underlying pro-
cess beyond Gaussian noise for the non-epidemic period since, supposedly,
no underlying mechanism should be inducing dependence among the ob-
servations. Meanwhile, the epidemic phase should show greater variability
and, expectably, dependent observations in time. Therefore, the conditional
distribution of yts is modeled either as a Gaussian white noise process or
as an autoregressive process of order 1 depending on whether the system is
in non-epidemic or epidemic phase. As the distribution of yts is conditional
on Zts we will notate as ytsZts this conditional distribution yts|Zts. The
conditional distributions are made explicit as follows:

yts0 ∼ N(0, σ2
s0) , t ∈ {1, . . . , T − 1} , s ∈ {1, . . . , S} ,

y1s1 ∼ N(0, σ2
s1) , (1.27)

yts1 ∼ N(ρyt−1s, σ
2
s1) , t ∈ {2, . . . , T − 1} , s ∈ {1, . . . , S} .

This model assumes a different variance for each season in order to reflect
that the variability in any of the phases is not necessarily the same in differ-
ent years, as a consequence of differences in the shape of the corresponding
epidemic waves. Note also that the conditional distribution of the first dif-
ference of rates cannot be modeled as an autoregressive process as there is
no previous value to condition on.

Taking into account that influenza epidemics last several weeks or
months, it is sensible to consider a temporal dependency among epidemic
states. The unobserved sequence of Zts are modeled to follow a two-state
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Markov chain with transition probabilities:

p(Zts = l|Zt−1s = k) = pkl , (1.28)

where k, l ∈ {0, 1}. This Markovian feature enables epidemic (respectively
non-epidemic) weeks to be followed by epidemic (respectively non-epidemic)
weeks with a high probability if data do not indicate otherwise. This perfor-
mance could not be achieved with an independent modeling of the Zts’s and
the Markovian structure makes the non-epidemic state to be more robust
to sudden, although slight, changes in the differenced series. In summary,
the distribution of yts depends on Zts, and the dependency structure of yts
with previous observations is also dependent on Zts. Having that Zts fol-
lows a hidden Markov chain, this model is a MSM, as it has been described
in Section 1.6.

Once the model is determined, the following step is to estimate its
parameters. Martinez-Beneito et al. (2008a) propose using the following
prior distributions for the parameters involved in the model:

ρ ∼ Unif(−1, 1) ,

p11 ∼ Beta(0.5, 0.5) ,

p00 ∼ Beta(0.5, 0.5) , (1.29)

σs0 ∼ Unif(θ[1], θ[2]) ,

σs1 ∼ Unif(θ[3], θ[4]) ,

where {θ[1], θ[2], θ[3], θ[4]} corresponds to the ordered sequence of the vari-
ables {θ1, θ2, θ3, θ4} with prior distributions defined as follows:

θj ∼ Unif(a, b) , j = 1, ..., 4 , (1.30)

where a and b are hyperparameters to be fixed by the modeler, typically
expressing vague prior knowledge.

Expressions (1.27) and (1.29) contain all the knowledge about the sys-
tem but they do not yield analytical estimates. Therefore, computational
methods like MCMC are necessary. WinBUGS software (see Spiegelhalter



38 Chapter 1. Methods for the detection of influenza epidemic outbreaks

et al., 2003) was used by the authors to compute the posterior distribution
of the parameters of the model. See Martinez-Beneito et al. (2008a) for
more details on the specific implementation of this model.

This model can be applied to any temporal data with real or estimated
influenza or ILI incidence rates in temperate climate locations collected
in a daily or weekly basis during several seasons. The authors show an
application of the model on weekly influenza incidence rates per 100 000
inhabitants collected by the Valencian Sentinel Network from the Comu-
nitat Valenciana, one of the 17 autonomous regions of Spain. These data
were reported by around 30 volunteering practitioners from seasons cov-
ering from the 42nd week of one year to the 19th week of the next one.
Data, shown in Figure 1.3, was available from 1996 to 2007. In order to
check this model’s performance and also to be able to compare it with other
methods from the literature, Martinez-Beneito et al. (2008a) constructed
a gold standard. It consisted of considering as epidemic weeks all of the
weeks in a season from the first to the last one with at least one laboratory
confirmation of influenza infection from the Valencian Sentinel Network.
As shown in Figure 1.5, the method returns a probability between 0 and 1
of being in an epidemic phase for each week (the posterior means of the hid-
den variable Zts). It can be appreciated that weeks considered as epidemic
by the gold standard are considered to be epidemic with a high probability
by the detection method. Several rules of action can be adopted by health
authorities thanks to the quantification of the probability of being in the
epidemic state, but if a simple rule of thumb is required, one can always set
the threshold of probability 0.5, splitting the weeks in two sets; those which
are most likely non-epidemic and those which are most likely epidemic, as
shown in Figure 1.6.

The relevance of all the components of the model is tested by comparing
the deviance information criterion (DIC, see Spiegelhalter et al., 2002) of the
complete model and three simplifications of it; same standard deviations for
all seasons, avoiding autoregressive structure in epidemic phase and using a
non-Markovian model. The complete model got notably better scores than
the simplifications.

The first version of the area under the weighted ROC curve
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Figure 1.5: Estimated epidemic probabilities for seasons 4th to 11th and lab-
oratory confirmations gold standard as they appear in Martinez-Beneito et al.
(2008a).

Figure 1.6: Influenza incidente rates for seasons 4th to 11th, as they appear in
Martinez-Beneito et al. (2008a). Weeks with probability of being in epidemic state
greater than 0.5 indicated with dots.

(AUWROC1) measure proposed by Kleinman and Abrams (2006) is used
to compare in a unidimensional scale the sensitivity, specificity and time-
liness of the methods in comparison. The aforementioned gold standard
based in the laboratory virus isolations was considered for the construction
of this score. More details on AUWROC1 measure can be found in Section
A.3.2 of the appendices. The methods considered for the comparison are:

• the method proposed by Serfling (1963),

• a simplification of Le Strat and Carrat (1999) without temporal trend,
implemented in the R package depmix (Visser, 2007),

• the Stroup et al. (1989) method without taking into account data
from previous seasons and
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• a Gaussian CUSUM method.

Martinez-Beneito et al. (2008a) method outperformed all other four meth-
ods. An implementation of this method is detailed in Conesa et al. (2009),
where the architecture of systems of the web-based application FluDetWeb
is explicit. This platform allows to upload data from any surveillance sys-
tem and to obtain estimations of the probability of being in the epidemic
state for each week without requiring advance knowledge on statistics, in-
formatics or programming.

To summarize, in this chapter we have stressed the reasons to do in-
fluenza surveillance and how it is done. We have paid attention to the
different data sources and reviewed the temporal analysis methods for the
detection of influenza outbreaks present in the literature. Paying attention
to their strengths and limitations has been key to developing the two new
proposals for the temporal and spatio-temporal detection of influenza out-
breaks that are discussed in detail in Chapter 2 and Chapter 3, respectively.



Chapter 2

A framework of temporal
Poisson Markov switching
models for the detection of
influenza outbreaks

2.1 Introduction

In this chapter we present a framework of Bayesian hierarchical Poisson
models with a hidden Markov structure for the detection of influenza out-
breaks that generalizes the proposal of Martinez-Beneito et al. (2008a).
A reduced version of this work has already been published in the journal
Statistical Methods in Medical Research (Conesa et al., 2015).

As seen in the previous chapter, a large variety of statistical algorithms
for the automated monitoring of influenza surveillance have been proposed.
The most widely used approaches are based on historical limit methods or
on Serfling’s method, but these proposals have certain drawbacks: the need
for a predefinition of epidemic and non-epidemic periods necessary to model
the baseline distribution (which could condition the final results), and the
fact that rates are treated as independent and identically distributed, ig-

41
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noring temporal dependence inherent to this kind of data. It would be
desirable, then, to use statistical models that are able to capture the tem-
poral correlation of the data (by using ARIMA structures, for example) and
which do not need a previous definition of the epidemic state of previous
seasons (as is the case in hidden Markov chains).

The Bayesian paradigm may help to avoid these problems because of
the capability of Bayesian hierarchical models of integrating in one model
several complex structures like ARIMA, HMM, MSM or others and being
able to do inference on these complex models in a relatively easy way. Also,
the Bayesian methodology provides a unified theory for the handling of
uncertainty, in which all the parameters are considered as variables with an
associated probability distribution. This makes Bayesian models perfectly
suited when quantifying the probability of being in an epidemic phase at
any given moment. Following a Bayesian approach, Martinez-Beneito et al.
(2008a) proposed a method that avoids the above-mentioned disadvantages
while being able to quantify the probability of epidemic for each time point.

Two characteristics of the model by Martinez-Beneito et al. (2008a)
proved to be very convenient in the surveillance context. The first one
was the use of HMMs to segment the time series of influenza into epidemic
and non-epidemic phases. HMMs are especially suited here as they can
be applied to historical data without the need to make a previous ad hoc
segmentation between epidemic and non-epidemic phases for a training pe-
riod. The second issue was the use of the data variability to distinguish
between both epidemic and non-epidemic phases, with non-epidemic dy-
namics characterized by small random changes and greater changes during
the epidemic.

Nevertheless, although the variability allows both dynamics to be dis-
tinguished, incorporating the magnitude of the incidence can be very ad-
vantageous because this magnitude would also inform about the state of
the illness, with high incidence clearly related to the epidemic phase. This
would increase the capability of the method to distinguish between both
epidemic and non-epidemic phases and therefore to determine the start of
the epidemics. As a result, our main objective in this chapter is to introduce
a model based on the proposal of Martinez-Beneito et al. (2008a) in which



2.2 Modeling influenza time series for the detection of outbreaks 43

we incorporate the magnitude of the incidence rates into the surveillance
system. But this is not the only novelty; we are also considering rates as
stochastic quantities instead of fixed and known quantities. In our opinion,
this is a more realistic assumption, as rates are not data themselves but
the quotient between a stochastic quantity (the observed cases) and the
population. Therefore, rates are stochastic quantities and their variability
should also be taken into account in the model. Our new proposal will
emphasize the discrete nature of the weekly observed cases by giving them
an appropriate discrete distribution.

The remainder of this chapter is organized as follows. First, a novel
proposed framework of models for the detection of influenza outbreaks will
be described. Secondly, the framework will be applied to a North Carolina
Sentinel Network data set. The issue of the selection of the best model
among those in the framework will be discussed and a variation to the
proposal will be compared to the original one. The application of the model
on a Valencia Sentinel Network data set will allow us to further discuss the
problematic of the gold standard definition for the selection of the best
model. In a last section, the framework of models will be applied on three
Google Flu Trends data sets for further exemplification of the application
of the new proposal when a gold standard is not available.

2.2 Modeling influenza time series for the detec-
tion of outbreaks

As discussed in Section 1.3.1, there are several types of surveillance data,
and their format will vary according to their nature and how their collec-
tion is performed. Some statistical methods have been conceived for being
applied to a specific type and format of data (although some of them could
also be adapted to be used in other contexts). However, the adaptability of
a statistical method to different surveillance system should be considered
as an important feature of its potential usefulness. As a result, our inten-
tion is to develop a method that could easily be adapted to most kinds of
surveillance data.
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Therefore, our proposal uses only the type of data that can be ob-
tained from most surveillance systems, which is a weekly/daily time series
of counts, such as number of deaths due to influenza, number of hospi-
tal admissions, influenza-like illness (ILI) incidence cases, emergency phone
calls received, etc. From them one can also obtain the rates by dividing the
number of observed cases by the population of the region at each moment
and multiplying it by a standardizing factor which is typically a power of
10.

An example of these series of surveillance data is shown in Figure 2.1,
which displays ILI incidence rates obtained from the Valencian Sentinel Net-
work (VSN), the same data source used by Martinez-Beneito et al. (2008a)
in the application of their proposed detection method. Note that in this
case we display two more seasons of data, and that data from season 10
have been corrected. The displayed rates for that season were divided by
10 by mistake on their article, an error of no major importance, as that
particular season presented no influenza epidemic. Note that these series,
as is usual in the context of influenza data, show a mixture of two dynam-
ics: a non-epidemic dynamic in which the number of observed cases does
not present big changes and varies around small values and an epidemic
dynamic with higher rates in which the number of observed cases increases
and decreases sharply.

One may also notice that this time series do not contain data from
all the weeks of the season, but only from the 42nd week of one year to
the 19th week of the following. Several surveillance systems, like this one,
focus their attention and resources only on the cold months of the year,
when temperate climate countries usually suffer of seasonal influenza epi-
demics. It is true that since the apparition of some non-seasonal strains of
influenza, like the avian or swine flu, or some other diseases which share sev-
eral symptoms with influenza, like SARS, some surveillance systems have
changed their policies and started monitoring all year round, as previously
discussed in Section 1.2. That has not been the case in many other ones
though, which keep on interrupting the collection of data during the warm
moths of the year. To take this possible feature of the nature of the data
in consideration, our proposal will reinitiate all temporal dependencies the
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first week of each season, including its hidden Markov chain.
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Figure 2.1: Weekly influenza incidence rates per 100 000 inhabitants during
seasons from 1966–1997 to 2008–2009 in the VSN.
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Figure 2.2: Weekly logarithm of influenza incidence rates per 100 000 inhabitants
during seasons from 1996–1997 to 2008–2009 in the VSN.

2.2.1 First layers: Modeling the observations and rates

We introduce now the modeling of the data that we pursue along this chap-
ter. As said in the introduction of this chapter, rates should be considered
as stochastic quantities so we will not directly modeling the rates, which
are subject to sampling variation that should be taken into account in our
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proposal. Instead of that, we model them via the number of cases observed
and the underlying population from which the observed cases have been
reported. Let Yts denote the number of observed cases of influenza, ILI or
another characteristic that could be used to track influenza, e.g. absen-
teeism during week (or day) t in season s. We model Yts by means of a
Poisson distribution whose parameter is a function of the incidence rate rts
of the week (or day) t in season s via the following hierarchical structure:

Yts ∼ Po(νts) ,

νts =
rtsPopts
100000

, (2.1)

rts ∼ N
(
RtsZts , σ

2
sZts

)
,

where Popts represents the population under surveillance at the correspond-
ing unit of time and rts is the corresponding influenza incidence rate. Note
that the denominator in Expression (2.1) depends on the way the rate is
defined. In this case we have expressed it considering the rates rts over
100 000 inhabitants. Note also that population can take different values for
different weeks and seasons. For example, if data represent a whole region,
population estimates are usually modified every year. If we were to deal
with a sentinel network, population would refer to the number of patients
assigned to the practitioners who are enrolled each week, and this can vary
week to week, as practitioners can join or leave the network an any time.
In any case, other expressions are also possible for νts. Once the function
which links the expected number of counts and the incidence rates is de-
fined, we model these rates as a normal distribution in which both mean
and variance depend on the epidemic state, determined by a variable Zts.

It is common when modeling the temporal behavior of a disease to model
the logarithm of the rates as a normal distribution. Given the positive na-
ture of the rates, the logarithm is able to transform the data allowing them
to take values in the whole real line. Also, the growth of the incidence rate
during an epidemic tends to be similar to an exponential growth. In this
case we choose not to use the logarithmic transformation because it hinders
the detection of the beginning of the epidemic. As can be appreciated com-
paring Figures 2.1 and 2.2, the values and the variability of the log-rates
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are much more similar among them than those of the rates. The different
variances between the two possible epidemic phases are a key point to dis-
tinguish between epidemic and endemic weeks, and the logarithmic scale
drastically diminishes the difference in the variance of the data between
these two phases.

It may be argued that the rates are bounded to be positive or zero,
and that using a normal distribution is not adequate in this case. Strictly
speaking, this is true, but temporal methods of detection as the one we
are presenting are often used in aggregated data from a wide region, so
the number of cases is high enough to use the normal approximation, even
during the endemic phase. When applying the model to small regions, one
may assume the approximation that has been proposed or alternatively
opt by the use of some spatio-temporal method, which share information
among small regions and thus would be more robust to variability of low
rates. This will be further elaborated in Chapter 3.

2.2.2 Modeling the epidemic phase through a hidden
Markov chain

To identify the epidemic state of each week, we model the variable Zts
as an unobserved latent variable following a Markov chain –as described
in Section 1.6– with two possible states, 1 for epidemic weeks and 0 for
endemic (non-epidemic) weeks, and transition probabilities:

p(Zt+1s = l|Zts = k) = pkl , k, l ∈ {0, 1} . (2.2)

Knowing that pk0 + pk1 = 1, we have that p01 = 1− p00 and p10 = 1− p11

so we only need to make inference over p00 and p11 for setting up the whole
transition matrix.

As said before, for each season s, the Markov chain is reset, so inference
must also be done on the initial probabilities:

p(Z1s = k) = pk , k ∈ {0, 1} . (2.3)

We will consider these probabilities equal for every season. Knorr-Held and
Richardson (2003) set the value of p0 and p1 to be equal to the stationary
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distribution of the Markov chain:

p0 =
p10

p01 + p10
, (2.4)

p1 =
p01

p01 + p10
.

This is a general assumption in Bayesian analysis of hidden Markov models
suggested in works like that of Robert et al. (2000). This assumption would
make sense if the first week of each season was picked randomly among
all the possible weeks. The truth is that most surveillance systems for
influenza or ILI start tracking the disease in a time of the year where
influenza is highly unlikely. Therefore, the probability p0 of starting in
a non-epidemic week will be way higher than the stationary distribution
of the endemic state for the hidden Markov chain. Instead of using the
stationary distributions, we prefer an independent prior distribution for p0

and obtain p1 by complementarity; p1 = 1− p0.

With the objective of expressing our initial vague knowledge about all
these probabilities, we use the usual Jeffreys non-informative prior distri-
bution for Bernoulli trials for p00, p11 and p0:

p00, p11, p0 ∼ Beta

(
1

2
,
1

2

)
. (2.5)

2.2.3 Modeling the variance of the rates

The value of the latent variable Zts, which we just described in the previ-
ous section, determines the distribution of the parameters of the Gaussian
distribution of the rates. Let us expose now the proposal for the variance
parameter σ2

sZst
. Non-epidemic dynamics are characterized by small ran-

dom changes while epidemic dynamics show stronger fluctuations of the
incidence rates. For this reason, we propose different values of the vari-
ance for each phase of each season, setting a lower variance in the endemic
phase. Including the difference of variability of the observed data as a clas-
sifying feature of the model has proved to be very helpful for distinguishing
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between epidemic and non-epidemic phases in the proposals of Martinez-
Beneito et al. (2008a) and Nunes et al. (2013).

Different variances for each season have been assumed in order to reflect
behaviors like the one observed in Figure 2.1, where it can be appreciated
that the width of the variations is not the same for different seasons: some
of them have higher and steeper peaks in contrast to others, with flatter
epidemic waves. In any case, we constrain them all to ensure that all non-
epidemic variances are lower than epidemic variances, regardless of being
in different seasons. To achieve this, we have used part of the hierarchic
structure used in the model by Martinez-Beneito et al. (2008a):

σs0 ∼ Unif(θ[1], θ[2]) ,

σs1 ∼ Unif(θ[3], θ[4]) , (2.6)

θm ∼ Unif(0, a) , m = 1, ..., 4 ,

where {θ[1], θ[2], θ[3], θ[4]} corresponds to the ordered sequence of the vari-
ables {θ1, θ2, θ3, θ4}, and a is a hyperparameter to be fixed by the modeler,
typically expressing vague prior knowledge. A way to ensure a vague enough
prior distribution would be to set a as a higher than all the observed rates
of the data value (it is slightly data-driven). Given that all the rates are
positive, any sensible standard deviation will be lower than that value.
Sensitivity analysis show that rising a from this value does not affect the
posterior distribution of the parameters, and that it can even be lowered
to facilitate convergence of the MCMC.

By defining the variances as we have just done, two problems are
avoided; interchangeability and lack of identifiability. The indices 0 for
endemic and 1 for epidemic will be correctly assigned to the two variances
for each season and can not be interchanged thanks to the restriction of
σ2
s0 < σ2

s1. The variance parameters are also well identified even in the
first weeks of the season because of the way θm parameters are defined.
They determine two ordered intervals, and are informed by all the data
from all the seasons. In that way, the first data for each season can be
properly classified as epidemic or non-epidemic, as their variance will be
closer to one of the intervals and farther from the other. If, for example,
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the observed variance of the data falls closer to the interval [θ[1], θ[2]], this
gives information suggesting that the data are more likely to come from the
distribution with variance σ2

s0 and not so likely to come from that one with
σ2
s1. If no information were to be shared among seasons, no information

would be available the first weeks of each season to determine whether data
are supposed to come from a model with σ2

s0 or with σ2
s1.

2.2.4 Modeling the mean of the rates

The next step is to model the mean of the rates in both states. This is
one of the main novelties with respect to the model by Martinez-Beneito
et al. (2008a). They modeled directly the differentiated rates while in this
proposal we model the incident counts by means of the distribution of the
raw (non-differentiated) rates. Note that Rts0 and Rts1 in Expression (2.1)
represent the expected magnitude of the incidence rate rts at each phase and
so we can take advantage of this to distinguish between both dynamics. Due
to the temporal nature of the data, we propose an autoregressive structure
for each one of them. Several options arise depending on the order of the
autoregressive structure we pick.

Mean of the rates as white noise

The first and easiest way to model both means is to consider them as two
different constants. We denote this modeling as AR0-AR0, the first term
making reference to the structure of the non-epidemic rates and the second
term being the one representing the epidemic phase. The AR0 notation
stands for a zero-order autoregressive process, that is, a collection of normal
independent variables. Therefore, for this model we define:

Rts0 = µ0 , (2.7)

Rts1 = µ1 .
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We force the mean of the non-epidemic rates to be lower, µ0 < µ1, by the
way we define their prior distributions:

µ0 = λ[1] ,

µ1 = λ[2] , (2.8)

λm ∼ Unif(0, b) , m = 1, 2 ,

where again {λ[1], λ[2]} corresponds to the ordered sequence of the variables
{λ1, λ2}, and b is a hyperparameter chosen to make the prior distribution for
λm vague. Just as we recommended in Section 2.2.3, this hyperparameter
may be set to be a superior to the highest rate in the data value, as the
mean of both process will obviously be below that value.

Taking into account that µ0 and µ1 represent, respectively, the mean
value of the rate in the endemic and epidemic phases, the phase with higher
variability is modeled to be the same as the phase with higher mean. This
makes sense as low incidences clearly indicate an endemic (and therefore
less volatile) phase, while high incidences represent an epidemic (and con-
sequently more volatile) phase. As a result, we now have two different
features for distinguishing between epidemic and non-epidemic phases in-
stead of just variability as in Martinez-Beneito et al. (2008a).

Note that the means for both phases in the proposal above do not change
among seasons. If they were to be different, no information on the mean
level for each period would be available to distinguish between phases at
the beginning of a new season. This would often cause the triggering of
false alarms as the model would not know the range of values for the mean
of the endemic and epidemic rates and it would be easier to misclassify the
first weeks of the season.

Means of the rates as autoregressive models of order 1

A second option is to consider the mean of the rates (in one or both periods)
to be conditionally dependent on the previous observation. In this setting,
the rates (of either the endemic or epidemic period) would be distributed
around an unknown value as before (µ0 and µ1, respectively), but with the
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addition that if the previous rate was below the mean value, the following
would also be more likely to be below and vice versa. In that case, we
model the mean of the rates as an autoregressive process of order one. As a
result, three more models could be considered combining the AR0 and AR1
proposals, that is: AR0-AR1, AR1-AR0 and AR1-AR1. For simplicity, we
present the model for AR1-AR1 in which both means are autoregressive
processes of order 1:

R1s0 = µ0 ,

R1s1 = µ1 , (2.9)

Rts0 = µ0 + ρ0(rt−1s − µ0) , t > 1 ,

Rts1 = µ1 + ρ1(rt−1s − µ1) , t > 1 .

To define for example AR0-AR1, we would parametrize the non-epidemic
rate as a white noise and the epidemic phase as a first order autoregressive
process. No matter what combination of autoregressive orders for epidemic
and endemic phases we use, the prior distribution for µ0 and µ1 remains
the same as the one shown in Expression (2.8).

We propose flat prior distributions for the parameters of the autoregres-
sive processes. As the non-stationary behavior of the series is intended to be
modeled with the change between endemic and epidemic phases, we choose
uniform distributions in the region where the processes are stationary in
each of the epidemic and endemic modelings. For example, our selection in
the AR1-AR1 model is:

ρ0, ρ1 ∼ Unif(−1, 1) . (2.10)

In order to ensure that the variance of Y1s is also equal to the stationary
variance of the series {Yts}∞t=1, a correction is introduced on the standard
deviations of each season’s first week, so that the last line in Expression
(2.1) for the first week is as follows:

r1s ∼ N

(
R1sZ1s ,

σ2
sZ1s

1− ρZ1s

)
. (2.11)
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This type of correction is seen, for example, in works like that of Martinez-
Beneito et al. (2008b) in the context of spatio-temporal disease mapping.
This correction makes the marginal variance for all the rates to be equal to
σ2
sZ1s

1−ρZ1s
.

Means of the rates as autoregressive models of order 2

As a third option for the modeling of the rates, we may consider them (in
one or both phases) to be related to rates from two or more previous weeks
(or days). Then, a suitable option would clearly be to consider the mean
of the rates as an autoregressive process of a higher order. Nevertheless,
in this work, the order of the autoregressive processes is limited to be
at most 2. This decision has been taken because the complexity of the
models increases with the order of the processes and because, in the real
applications considered in Section 2.3, the differences between AR0 and
AR1 modelings are substantially higher than those between AR1 and AR2
(in terms of DIC and the classification of weeks into either epidemic or
endemic periods). Nevertheless, there is no theoretical inconvenience in
considering autoregressive processes of order higher than 2.

As a result, five more models can be considered: AR2-AR0, AR2-AR1,
AR2-AR2, AR1-AR2 and AR0-AR2. For simplicity, we present the model
in which both means are second-order autoregressive processes (AR2-AR2):

R1s0 = µ0 ,

R1s1 = µ1 ,

R2s0 = µ0 +
ρ10

1− ρ20
(r1s − µ0) , (2.12)

R2s1 = µ1 +
ρ11

1− ρ21
(r1s − µ1) ,

Rts0 = µ0 + ρ10(rt−1s − µ0) + ρ20(rt−2s − µ0) , t > 1 ,

Rts1 = µ1 + ρ11(rt−1s − µ1) + ρ21(rt−2s − µ1) , t > 1 ,

with the same prior distribution for µ0 and µ1 shown in Expression (2.8).
The distribution for the rates of the first and second weeks are defined so
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that the autoregressive model is stationary. Any combination other than
AR2-AR2 would be defined by giving to the endemic or the epidemic mean
rates the AR0 or AR1 structure presented in Expressions (2.7) and (2.9).

Similarly to our choice for the autoregressive modeling of order 1, we
choose a uniform joint prior distribution for (ρ1k, ρ2k) (for k = 0 or k = 1)
on the set of values for this pair that guarantees that the autoregressive
process of order 2 is stationary. As shown, for example, in Box et al.
(1994), this region is bounded by the following constraints:

ρ2k + ρ1k < 1 ,

ρ2k − ρ1k < 1 , (2.13)

−1 < ρ2k < 1 ,

which restrict the values of (ρ1k, ρ2k) to the triangle represented in Figure
2.3.

ρ1k

ρ2k

-2 -1 1 2

1

-1

Figure 2.3: Region for the parameters where the autoregressive process of order
2 is stationary.

Again, the variances for the first and second weeks of each season are
corrected so that they coincide with that of the stationary autoregressive



2.2 Modeling influenza time series for the detection of outbreaks 55

model (see, for example, page 62 of Box et al. (1994)). Thus,

r1s ∼ N
(
R1sk, γkσ

2
sk

)
,

r2s ∼ N

(
R2sk, γk

(1− ρ2k)
2 − ρ2

1k

(1− ρ2k)2
σ2
sk

)
, (2.14)

γk =
(1− ρ2k)

(1 + ρ2k)((1− ρ2k)2 − ρ2
1k)

,

with k, which takes values in {0, 1}, being an abbreviation for Z1s or Z2s

respectively.

It is worth to note that the selection of the best of all the modelings
for the rates presented above becomes an important and sensitive issue
throughout this framework. Clearly, this will depend on the kind of data
being analyzed, and we will discuss it further in Sections 2.3, 2.4 and 2.5.

2.2.5 Inference on the model

All previous expressions in this chapter contain all our knowledge of the sys-
tem but, as usual with hierarchical models, there is no analytic expression
for the posterior distribution of the parameters. Hence, in order to make
inference about the proposed models, we have to resort to numerical meth-
ods. Namely, we have resorted to MCMC using the software WinBUGS.
The code of the model can be found in Appendix D.

The output obtained for each variable and parameter of interest from
the MCMC is a set of 1000 simulations of the posterior probability. From
them we can extract any statistical estimator that we want, including pos-
terior means and 95% credible intervals. In particular, we can obtain the
posterior mean of all the state variables Zts, which are estimations of the
posterior probabilities of being in an epidemic for each week of the analyzed
period.

Nevertheless, our real interest when we apply the detection method is
not knowing which phase the system has been in previous weeks, but to
know instead which phase the system is in during the last week of the
available data, the week in which we perform the analysis. Because of that,
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every week we have to rerun the model adding data from the new week. In
order to compare the performance of a model in terms of detection in the
most realistic way one must mimic this way of applying the model. To do
so, we must run the model as many times as weeks we want to classify as
epidemic or endemic using each time only data from the same and previous
(but not subsequent) weeks we are trying to classify. That is what is called
applying the model in an ‘online’ basis, and it is intended to reproduce the
detection of the epidemic’s beginning in the very precise week it starts, the
real setting where these algorithms are supposed to be useful.

2.2.6 Some considerations

One important issue that arises when dealing with HMMs and autoregres-
sive structures is how to model the first weeks after a change between the
two phases in models where both the endemic and epidemic mean rates are
modeled with autoregressive structures. There are two possible options: us-
ing information from the previous weeks (although they are from another
phase) or not using it. In other words, we may maintain the conditional
distributions of the autoregressive structures or make the rates condition-
ally independent when there is a change in epidemic phase. We have tested
both kinds of models, and the ones using information from previous weeks
perform better in terms of sensitivity, specificity and timeliness (in par-
ticular, using the measures of performance described in Section A.3.2 of
the appendices). Consequently, we have decided to use information from
previous weeks when the epidemic phase changes.

Nevertheless, the cost of this is that the method sometimes gives small
probabilities of being in an epidemic phase after the peak of the season. This
happens because of the strong role the autoregressive structure plays in the
model. In terms of the mean of the rates, reinitiating the autoregressive
structure considers the first week after the change of epidemic phase as
having the mean of the new epidemic phase, without taking into account
the size of the previous rate. In the weeks after the peak of the epidemic, the
rates are much higher than µ0, so the model remains in the epidemic phase
until the rates are lowered close enough to the endemic mean. However,
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the model which does not reinitiate the autoregressive structure tends to
classify a rate as non-epidemic if it is descending towards (getting closer
to) the non-epidemic mean and has similar magnitude to the previous rate
(even when it is not a low rate). That is the reason of the lack of sensitivity
in some weeks after the peak.

The good side of this choice of modeling is that the same phenomenon
happens when going from non-epidemic to epidemic phase. The change
from endemic to epidemic phase usually happens in low rates, and the
model which reinitiates the autoregressive structure requires the rates to
be close to µ1 to switch the epidemic phase of the HMM. However, the
model which does not reinitiate the autoregressive structure is capable of
correctly detect the change from non-epidemic to epidemic in a week which
is similar in magnitude to the previous non-epidemic rate but which shows
a clear uprising tendency towards the µ1 value of the epidemic process.

Changing the subject, it is also worth noting that the model of Martinez-
Beneito et al. (2008a) can be considered as a particular case of this frame-
work, if we remove the first Poisson layer of the hierarchical model. More
specifically, it corresponds to a limit situation of an AR1-AR2 model (first-
order autoregressive process for the endemic phase and second order for the
epidemic). In their model they considered the differentiated rates as their
data, that is, they model rts − rt−1s in the first layer of their hierarchical
model. They also considered these differentiated rates to follow a first order
autoregressive model for the epidemic phase and a Gaussian white noise for
the non-epidemic phase. Let us see that for the epidemic phase, the first
order autoregressive model of the differentiated rates is equivalent to a sec-
ond order autoregressive model of the raw rates. The AR1 hypothesis on
the differenced rates mean:

rts − rt−1s ∼ N(ρ(rt−1s − rt−2s), σ
2
s1)↔

rts ∼ N((1 + ρ)rt−1s − ρ rt−2s, σ
2
s1)↔ (2.15)

rts ∼ N(µ1 + (1 + ρ)rt−1s − ρ rt−2s − (1 + ρ− ρ)µ1, σ
2
s1)↔

rts ∼ N(µ1 + (1 + ρ)(rt−1s − µ1)− ρ(rt−2s − µ1), σ2
s1)↔

Rts = µ1 + (1 + ρ)(rt−1s − µ1)− ρ(rt−2s − µ1) ,
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therefore, this is a limit case or the AR2 modeling for the epidemic phase,
with ρ11 = 1 + ρ and ρ21 = −ρ, which lies on the limit of the parametric
domain of the AR2 process. For the non-epidemic, the equivalency is quite
straightforward. The limit case of the AR1 when ρ = 1 is a first order
random walk and, as we saw in Section 1.4.3, a first order random walk
for the rates corresponds to a white noise for the differentiated rates by
definition. Let us show it explicitly:

rts − rt−1s ∼ N(0, σ2
s0)↔

rts ∼ N(1 · rt−1s, σ
2
s0)↔ (2.16)

Rts = µ0 + 1 · (rt−1s − µ0) .

It has to be taken into consideration that in Martinez-Beneito et al. (2008a)
the values µ0 and µ1 are not present, as they are lost in the differentiation
of the rates, so the effect of these two estimated quantities on the discrimi-
nation of the epidemic state is a novelty in the framework of models we are
presenting in this chapter.

Thus far, we have introduced a methodological framework that allows us
to distinguish between epidemic and non-epidemic phases. In the following
sections, we show how this framework of models can be used as an early
warning method for influenza outbreaks, applying it on real data sets.

2.3 Application on North Carolina Sentinel Net-
work data

In this section we show the application of the proposed framework of models
for the temporal detection of influenza outbreaks. We apply the models
on North Carolina Sentinel Network data, compare its performance with
other models in the literature and discuss the problematic of the tools for
comparing them.
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2.3.1 The North Carolina Sentinel Network data

The Department of Health and Human Services of North Carolina, in the
United States, publishes every year a report about the surveillance of in-
fluenza in the NC DHHS Influenza (Flu) Information website. The report
includes the weekly ILI reports by the North Carolina Sentinel Network
(NCSN) and the Influenza Virus Isolates identified by the State Labora-
tory of Public Health.
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Figure 2.4: Weekly influenza incidence percentages during seasons from 2001–
2002 to 2008–2009 of the NCSN.

ILI data on this surveillance system consist of the total amount of pa-
tients who visit the Sentinel Network practitioners and the counts of ILI
diagnosed patients among them. We use this ILI counts as the model obser-
vations and the total amount of patients as the population. The rate of ILI
incidence over visitors to the practitioners is reflected as a percentage, as
shown in Figure 2.4. We modify the denominator in Expression (2.1) and
divide by 100 to be coherent with that way of presenting information and
because in doing so the model works with a nice scale of numbers with easy
interpretation (values oscillating between 0.02 and 7.75 % for the rates).
Virus Isolates are also presented as counts, split by virus strain. We use the
aggregated counts of virus isolates for each week to build a gold standard of
when the epidemic is likely to be occurring, which is useful to evaluate the
performance of the models. Isolates data are missing for seasons 2001-2002
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and 2004-2005. For each season, data are presented weekly starting from
week 40 of one year and finishing in week 20 of the following year. For
this illustration we are going to work with data from seasons 2001–2002 to
2008–2009.

2.3.2 Online and retrospective application of the model

As previously introduced, when applying the model on the available data
one can take two approaches. The easiest way to do it, and which gives
the best estimates is to apply the model in a retrospective basis. That is,
to apply the model with all data only once, and get the estimation of the
epidemic phase for all the weeks of all the seasons in the data. The more
realistic approach is to mimic the way in which we would have applied
the model if we were actually running the surveillance system in a real
setting. In a realistic way we run the model once a week, adding each week
the counts of ILI for the current week to the data we had from previous
weeks and seasons. As we said before, that is what is called an online
application of the model. In this second setting we focus on the estimated
probability of the epidemic phase only for the latest available week. We are
not specially concerned about the modified estimation of the epidemic state
for previous weeks, as the main use of the model is knowing if the epidemic
is starting now, according to the newest information available, or not. Of
course, estimates obtained from a retrospective application of the model
for other weeks than the current one are better, as both future and past
data are used for estimating the epidemic states, but this way of applying
the models is unrealistic.

In terms of computation time, at the time we ran the models they took
between 10 and 20 minutes when applying the model in a retrospective
basis, with the lowest times for the AR0-AR0 proposal and the highest
times for the AR2-AR2 model. Calculations were performed in an Intelr

Xeonr CPU E5530 with 16 cores at 2.40GHz and 48Gb of RAM, with
OS Linux ubuntu 12.04 LTS. 3 parallel WinBUGS calls with 1 chain each
were run in 3 different cores with 15 000 iterations of burning and 30 000
subsequent iterations. After thinning, 1002 iterations were kept, 334 from
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each chain. Convergence was checked by observing the equivalent number
of sample size, the R̂ statistic (see, for example, Gelman et al. (2013)) and
visual check of the chains of simulations.
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Figure 2.5: Retrospective and online estimated probability of being in epidemic
phase according to the AR2-AR2 model on NCSN data. In black: weekly influenza
incidence percentages during seasons from 2004–2005 to 2008–2009.

In Figure 2.5 we show the percentage of ILI and the estimates for the
probability of being in the epidemic phase obtained from the AR2-AR2
model in retrospective and online basis. One can observe that the realistic
way of applying the model results in more spiky estimates which also reach
probabilities of 1 or 0 later, while the retrospective way shows smoother
curves of estimates which rise and decay earlier thanks to using information
from the past and the future for the estimation for each week.

2.3.3 Comparing models with DIC

The Deviance Information Criterion (DIC) is a typical choice for comparing
models, therefore we use it as a first approach for the evaluation of the
proposed models in our framework. This criterion measures the goodness-
of-fit of a Bayesian model but penalizing by its complexity, having that
the lower the score, the better the performance of the model. More details
about DIC may be found in Section A.2 of the appendices.

Using DIC as a first evaluation tool is driven by the idea that models
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which fit better the data might be estimating better the values of the vari-
ables Zts which determine the epidemic state. Therefore, DIC is only an
indirect measure of the quality of detection, but it is an easy-to-use tool
and computationally cheap, as it is applied to the retrospective version of
the models. To compare the performance of several Bayesian models, they
must be applied on the same data set. In Table 2.1 we show the DIC for the
9 different modeling proposals on the whole data set. We can observe that
the best values are in those models with temporal autoregressive structure
both in the epidemic and endemic phases.

Rts1
Rts0 AR0 AR1 AR2

AR0 2125.8 2105.7 2112.6
AR1 2116.6 2097.6 2100.2
AR2 2118.1 2092.9 2095.9

Table 2.1: DIC of the 9 proposals applied on the NCSN data. Higher values
colored in red, lower values colored in blue.

2.3.4 Timeliness weighted ROC measures for the compari-
son of the models

Though DIC is an easy-to-apply tool for comparing models, it is not a
direct measure of the epidemic outbreak detection performance. As any
test that tries to classify entities into two possible categories, the detection
of epidemics can be evaluated by measures of sensitivity (true positive rate)
and specificity (true negative rate).

As those criteria usually depend on a certain arbitrary threshold that
distinguishes negative from positive observations, the receiving operating
curve (ROC) and the area under the ROC curve (AUROC) summarize the
information of both measures for different values for that threshold. The
ROC curve is drawn by joining the two dimensional points of sensitivity
and 1-specificity that result in choosing all possible thresholds for the detec-
tion method (see Lusted, 1971, Egan, 1975 or Metz, 1978 for some classic
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references). AUROC is the integral of that curve which would be ideally
1 for perfect methods assigning correctly all observations to either positive
or negative for all the values of the threshold.

There is a third relevant measure in the field of outbreak detection, as
not all the true positives are equally important in public health. Correctly
classifying the first weeks of an epidemic is crucial for a good outbreak
detection method, so the measure of timeliness (time since the beginning
of the epidemic until it is firstly detected) is also relevant. Several ways of
combining sensitivity, specificity and timeliness in a single criterion have
been suggested. In this work we use two measures proposed by Kleinman
and Abrams (2006). The first one, AUWROC1, is the area under a ROC
curve weighted by the mean time saved. The time saved is the proportion of
time an alarm is triggered before an arbitrarily given maximum delay from
the outbreak. The second measure is the volume under the timeliness-ROC
surface (VUTROS1). This 3-dimensions surface is constructed by creating
a 3D curve in a cube [0, 1]× [0, 1]× [0, 1] whose axis are the sensitivity and
1-specificity, as in ROC curves, plus a third axis, which is the mean time
saved. The surface is created by joining the points of this 3D curve to an
upper vertex of the cube. Values near to 1 of these measures indicate good
performance of the detection method in terms of sensitivity, specificity and
timeliness.

We also use VUTROCS, presented in the work of Cowling et al. (2006),
which is the mean of several AUROCs. Each ROC curve is constructed
using a season based specificity instead of a weekly specificity. The season
based specificity is defined by considering as true positives the amount of
seasons where an alarm has been triggered before a certain amount of weeks
from the outbreak, instead of the amount epidemic weeks correctly classi-
fied. Several ROC curves are built according to that amount of weeks, from
0 (perfect detection of the outbreak week) to the maximum delay. More
details on these measures can be found in Section A.3.2 of the appendices.

Sensitivity, specificity and timeliness (and therefore the other measures
discussed in this section) are computed using the estimated classification
given by the detection method and the true classification of the data. In
absence of a unequivocal classification of what is a true epidemic week,
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some criterion is used as a reference. This reference is called gold standard
and can use different data from the one used by the detection method being
evaluated. The gold standard criterion usually requires higher amounts of
resources in terms of time, money, computation or human effort. In Section
A.3.1 of the appendices we discuss this matter in more detail, indicating
the difficulties in finding a method which unequivocally locates the starting
and ending of the epidemics in real data (and also some of the problems of
using simulated data).

Establishing a gold standard for North Carolina

In the North Carolina example, we use the same approach for constructing
a gold standard as in Cowling et al. (2006), who consider as ‘true’ epidemic
weeks those which surpass 30% of the maximum number of weekly virus
isolates for each season. Anyhow, we are aware that the gold standard de-
fined by this procedure does not necessarily correspond to the real epidemic
phase, if it can actually be defined.
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Figure 2.6: Gold standard (in blue) based on virus isolates following the criterion
on Cowling et al. (2006) of surpassing 30% of the maximum number of isolates
for each season (End –Endemic phase–, Epi –Epidemic phase–). In black: weekly
influenza incidence percentages during seasons from 2001–2002 to 2008–2009 of
the NCSN.

In Figure 2.6 we present the gold standard based on the Influenza Virus
Isolates identified by the State Laboratory of Public Health and compare
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it with the NCSN data. The gold standard is not defined on seasons 1 and
4, as there is no registry of the weekly virus isolation for these seasons.
Comparing the gold standard criterion and the NCSN data, one may find
some ‘disagreements’ between them. For example, one might consider that
the gold standard epidemic period extends too much in time in season 8
because it comprises weeks after the ending of the descent from the epi-
demic peak, but not enough in seasons 5, 6 and 7, because the descent
is not completely classified as epidemic. One may also consider that the
gold standard does not start soon enough in seasons 3 and 7, as the rates
begin to ascend towards the epidemic peak earlier. Anyhow, these are
subjective considerations, and it is difficult to assure that the problem of
concordance is caused by the gold standard criterion and not because of
the quality of the NCSN data. We have expressed these inconsistences as
the gold standard failing to adapt to the NCSN data, but one could also
think that it is the NCSN data which do not completely follow the pattern
of epidemic/endemic phases the gold standard gives. In any case, the cor-
respondence between them is sensible enough and so far we lack of further
tools to validate how adequate the gold standard is or how adequate the
NCSN data are for the detection of influenza epidemics.

Comparing weighted ROC measures

We have selected some measures to evaluate the sensitivity, specificity and
timeliness of the detection of outbreaks and have determined a gold stan-
dard, which is required by these measures. Let us use them to compare
the performance of our proposal and other models in the literature on the
NCSN data. In Table 2.2 we show the values of AUWROC1, VUTROS1
and VUTROCS for all the models of the framework and compare their per-
formance with the proposal of Martinez-Beneito et al. (2008a) and other
models from the literature: Serfling (1963) method, Le Strat and Carrat
(1999) method without temporal trend (implemented in the R package
depmix, see Visser, 2007) and Stroup et al. (1989) method without tak-
ing into account data from previous seasons. To test the sensitivity of the
weighted ROC measures to the choice of maximum delay, we present the
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measures with 1, 2 and 3 weeks after the beginning of the epidemic as max-
imum admissible delay. All methods are applied in an online basis (run
anew every week adding the datum from that week) to emulate how they
would be applied in a real surveillance system. Only seasons 5 to 8 are used
to calculate these measures, as the first three seasons are used as training
data for the tuning of all the models and there is no gold standard available
for the fourth season.

AUWROC1 VUTROS1 VUTROCS
Max delay 1 2 3 1 2 3 1 2 3

M-B 2008 0.601 0.617 0.625 0.544 0.557 0.654 0.713 0.736 0.748
AR0-AR0 0.561 0.592 0.623 0.537 0.555 0.573 0.638 0.677 0.716
AR0-AR1 0.673 0.684 0.698 0.578 0.592 0.602 0.724 0.739 0.756
AR0-AR2 0.674 0.685 0.700 0.575 0.589 0.599 0.723 0.738 0.754
AR1-AR0 0.707 0.734 0.748 0.628 0.650 0.664 0.817 0.855 0.875
AR1-AR1 0.676 0.698 0.709 0.595 0.612 0.623 0.824 0.857 0.875
AR1-AR2 0.669 0.701 0.717 0.608 0.632 0.645 0.785 0.830 0.854
AR2-AR0 0.741 0.761 0.770 0.647 0.671 0.683 0.846 0.876 0.890
AR2-AR1 0.717 0.733 0.740 0.643 0.660 0.669 0.824 0.851 0.865
AR2-AR2 0.726 0.741 0.749 0.649 0.667 0.676 0.840 0.866 0.879
Stroup 0.540 0.559 0.568 0.517 0.536 0.545 0.807 0.846 0.865
HMM 0.608 0.640 0.665 0.556 0.576 0.592 0.682 0.722 0.755
Serfling 0.612 0.657 0.682 0.553 0.581 0.598 0.698 0.758 0.793

Table 2.2: Comparison of weighted ROC measures with different maximum de-
lays on the NCSN data for the models of the proposed framework, Martinez-
Beneito et al. (2008a) (M-B 2008), Stroup et al. (1989), Le Strat and Carrat
(1999) (HMM) and Serfling (1963) methods, applied online. The lowest (worst)
values of each column are colored in red and the highest (best) values are colored
in blue.

In general, the results of the measures are quite insensitive to the elec-
tion of maximum delay, as models are similarly ordered in terms of the
measures for all three choices. One particular discrepancy can be observed,
as is the relatively good measure of VUTROS1 with a maximum delay of
3 weeks for the model of Martinez-Beneito et al. (2008a) compared to the
same measure with 1 or 2 weeks of maximum delay. In any case, given
this general lack of sensitivity to the maximum delay, from now on we fix
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the value of maximum delay to 1 week for any further use of the weighted
ROC measures. This implies considering that an outbreak is successfully
detected if an alarm is triggered the week of the beginning of the epidemic
or the next week.

One can observe that, in general, the models presented in our frame-
work outperform the other methods, with the exception of the AR0-AR0
proposal, which shows lower scores of the weighted ROC measures. In the
particular case of VUTROCS, which considers seasonal sensitivity instead
of weekly sensitivity, the model of Stroup et al. (1989) also shows a compet-
itive performance. In contrast, the values for the measures that consider
weekly sensitivity (AUWROC1 and VUTROS1) for this same model are
the lowest among the compared models. If we focus our attention on the
models on the framework, those with higher structure in the non-epidemic
phase outperform the models with lower or non temporal structure in that
same phase. This suggests that the temporal similarity of the endemic rates
is a feature of the NCSN data which notably helps classifying these rates
as non-epidemic ones. This high importance of the non-epidemic tempo-
ral structure is caused by the seasonal pattern of the endemic rates, which
causes the consecutive rates and the consecutive jumps (differentiated rates)
to be alike. The epidemic phase also presents similarities between consec-
utive jumps, during the rise of the epidemic they tend to be positive and
negative during the fall. But the consecutive rates themselves are less alike
because of the fast grows and decays of rates which are characteristic of this
phase. Unlike the proposal of this chapter, the model of Martinez-Beneito
et al. (2008a) do not give any temporal structure to the endemic phase
and therefore can not take advantage of this feature to help distinguishing
epidemic and endemic weeks. This is reflected in the observed measures
of sensitivity, specificity and timeliness. The model with highest values for
almost all measures is AR2-AR0, followed by AR2-AR2.

Relationship between DIC and weighted ROC measures

So far, we have used two tools for the comparison of methods for the detec-
tion of influenza outbreaks. DIC is a tool that evaluates the goodness-of-fit,
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which is not exactly the goal of a detection method, but which is easy to
obtain. On the other hand, weighted ROC measures do give a measure of
sensitivity, specificity and timeliness, which directly evaluate the quality of
the detection given by the methods. But, for them to correctly evaluate
these classifications among epidemic and endemic weeks and the prompt-
ness of the detection, the models should be applied in an online basis. In
that way, the classification being evaluated would be that obtained by a
realistic application of the method in a surveillance system, using only the
available information to estimate the epidemic phase each week. This can
involve to run the model several dozens or even hundreds of times, which
can be computationally expensive. Also, weighted ROC measures require
of a reliable gold standard. If a correspondence between these two measures
could be established, we could use DIC as a proxy of the more difficult to
obtain weighted ROC measures.

To check the correspondence between DIC and weighted ROC measures
we show the correlation between them for the nine models of the proposed
framework in Table 2.3. The correlation is negative, as expected, as lower
values of DIC and higher values of weighted ROC measures are associated
to good performance. The correlation is far from perfect, but at least shows
that DIC is a reasonable approximation to evaluate the detection power of
the models. On the contrary to weighted ROC measures, DIC does not use
any gold standard to be computed. As said before, the definition of a gold
standard is not without problems and, as we will see in the next section,
the weighted ROC measures considerably variate when the definition of
the criterion to calculate the gold standard is modified. This could explain
in part the discrepancies between DIC and weighted ROC measures. We
observe that the best correspondence is shown between DIC and VUTROCS
measure, which focuses not in the general sensitivity but specifically in the
sensitivity of the detection of the starting of the epidemics, which usually
is the main objective of outbreak detection methods.
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AUWROC1 VUTROS1 VUTROCS
Max delay 1 2 3 1 2 3 1 2 3

Correlation -0.54 -0.60 -0.58 -0.66 -0.67 -0.65 -0.77 -0.80 -0.80

Table 2.3: Correlation between DIC and weighted ROC measures calculated with
a maximum acceptable delay of 1, 2 and 3 weeks after the outbreak, for the nine
models of the proposed framework applied on the NCSN data.

AUWROC1 VUTROS1 VUTROCS
Threshold 20% 30% 40% 20% 30% 40% 20% 30% 40%

M-B 2008 0.628 0.601 0.748 0.562 0.544 0.693 0.736 0.713 0.843
AR1-AR1 0.697 0.676 0.714 0.610 0.595 0.648 0.840 0.824 0.894
AR2-AR2 0.746 0.726 0.746 0.662 0.649 0.714 0.856 0.840 0.886
Stroup 0.503 0.540 0.527 0.489 0.517 0.508 0.811 0.807 0.845
HMM 0.639 0.608 0.781 0.582 0.556 0.681 0.704 0.682 0.845
Serfling 0.711 0.612 0.622 0.595 0.553 0.596 0.798 0.698 0.738

Table 2.4: Comparison of weighted ROC measures with different definitions of
gold standard on the NCSN data for the models: AR1-AR1, AR2-AR2, Martinez-
Beneito et al. (2008a) (M-B 2008), Stroup et al. (1989), Le Strat and Carrat (1999)
(HMM) and Serfling (1963) methods, applied online. The lowest (worst) values of
each column are colored in red and the highest (best) values are colored in blue.

2.3.5 Comparing different thresholds for the gold standard

We have discussed before that a gold standard based on the data from the
State Laboratory of Public Heath may not be completely well related to
the data or to the real epidemic. But another problem that arises is the ar-
bitrariness of the threshold chosen to construct this gold standard. In order
to assess the sensitivity of the selection of the best model to this threshold,
we compare the results for three different thresholds for building the gold
standard; 20%, 30% and 40% of the maximum number of influenza virus
isolates for each season (depicted in Figure 2.7). In Table 2.4 we present the
scores of the weighted ROC measures for these three gold standards. For
simplicity, only balanced models with temporal structure from the proposed
framework of models are shown (AR1-AR1 and AR2-AR2).

Figure 2.7 shows that the gold standard may substantially vary de-
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Figure 2.7: Gold standard based on virus isolates following the criterion on
Cowling et al. (2006) of surpassing different percentages of the maximum number
of isolates for each seasong (End –Endemic phase–, Epi –Epidemic phase–). In
black: weekly influenza incidence percentages during seasons from 2001–2002 to
2008–2009 of the NCSN.

pending on the chosen threshold, as it happens in season 6. It also can
be observed that the orderings of the models in Table 2.4 for the differ-
ent weighted ROC scores are not always completely consistent when the
criterion for defining the gold standard varies. Notice for example how
the HMM method obtains better scores than Serfling (1963) method for
a threshold of 40% but it gets worse scores for a threshold of 20%. It is
advised, therefore, to be cautious when defining a gold standard and maybe
to carry out sensitivity analyses for different values of the threshold. When
deciding which method to choose among several, a good policy is to con-
sider several complementary criteria, as are the weighted ROC measures,
the DIC and others.

2.3.6 Selecting a model from the framework

In the previous sections we have discussed the performance of two tools
for comparing the performance of models for the detection of influenza
outbreaks and have stressed that they both have their issues. Let us dis-
cuss how to select one method among the proposed framework using DIC,
weighted ROC measures and direct observation of the outcome of the mo-
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dels. To start with, we will take a look at the classifications of epidemic and
endemic weeks for the 9 models of the framework. We will asses whether
and how the degree of autoregressive dependency for the endemic and for
the epidemic phases affects this outcome and, in particular, how does it
reflects on the sensitivity and specificity of the method.

In Figure 2.8 the estimated probability of being in epidemic phase by all
9 models in the framework applied on NCSN data is shown. The first graph
depicts the estimated value of Zts for the models with no autoregressive
structure for the non-epidemic phase. We can see there that the amount of
weeks with high probability of being in epidemic phase is larger than in the
other two, which represent the models with AR1 and AR2 for the endemic
phase. In the third graph, which represents the models with AR2 for the
endemic phase, the probabilities are the lowest. This shows that the greater
the structure in the non-epidemic phase is, the more inclined the model is
to signal weeks as non-epidemic. In a similar way, the red lines, which
represent AR0 for the epidemic phase, are usually bellow, while the yellow
ones, representing the highest autoregressive structure for the epidemic
phase, are above. This indicates that the higher the temporal structure
is in the epidemic phase, the more likely is the model to categorize weeks
as epidemic. The discrepancy is remarkable between heterogeneous (AR0)
and autoregressive (AR1 or AR2) structures, while the difference between
the two possibilities for the autoregressive structures are much milder.

One problem of presenting a framework of models is that the choice
of the best model for each surveillance system can be tricky. DIC is not
completely related to the measures of sensitivity, specificity and timeliness,
and these measures require each model to be applied in an online basis,
which is computationally expensive. Besides that, as the definition of a gold
standard can sometimes be doubtful, the weighted ROC measures should
not be taken as the only tool for decision. To choose between the models we
suggest to observe the DIC, weighted ROC measures and the assessment by
an expert of the correspondence between the inferred epidemic phases and
the data. But when the comparison of all the models causes troubles, we
can reduce the amount of models for theoretical and observational reasons.

For an easier decision, we recommend to avoid lack of temporal structure
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Figure 2.8: Online estimated probability of being in epidemic phase by all 9
models in the framework on NCSN data.

both in the non-epidemic and the epidemic phases. The AR0-AR0 seems
like an inappropriate choice, as the nature of the data (ILI incidence rates)
is qualitatively time dependent. The models where the temporal white



2.4 Application on Valencian Sentinel Network data 73

noise is set only in one of the phases shall also be avoided because the
lack of temporal structure drastically pulls the estimations of Zts of the
model to the opposite phase when the other phase is modeled with temporal
structure. With the same idea, we can simplify the decision by using only
balanced models (AR1-AR1 or AR2-AR2), as unbalanced models pull the
classification towards the phase with higher structure. We can not assure
that one of these two models will be the best choice, but it is expected
to be a good one, with comparable performance to the best option of the
discarded models.

In this particular case, AR2-AR2 seems like a good choice. It has good
DIC score, good weighted ROC scores (and also consistent regardless the
threshold of the gold standard), the temporal structures of endemic and
epidemic phases are well balanced and the predictions observed in Figure
2.5 (red line) are visually consistent with what we would expect as a good
detection of the outbreaks for each season.

2.4 Application on Valencian Sentinel Network
data

In this section we are going to show the application of AR1-AR1 and AR2-
AR2 models on the Valencian Sentinel Network data, we are going to eval-
uate their performance compared to other methods in the literature and to
test some variations on the definition of the gold standard.

2.4.1 The Valencian Sentinel Network data

Being part of the Valencian Network of Surveillance in Public Health (Red
Valenciana de Vigilancia en Salud Pública), the Valencian Sentinel Network
(Red Centinela Sanitaria, VSN) tracks the incidence of several diseases, in-
cluding influenza like illnesses. ILI and other diseases, are weekly reported
by volunteer practitioners of all the Valencian Region, one of the 17 ad-
ministrative regions of Spain. This data source reports ILI counts, the
population covered by the volunteer practitioners (not only those who at-
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tend the doctor’s office each week but all the patients which are assigned
to the doctor) and the rates associated to these two quantities over 100 000
inhabitants. The string of data we use in this application is displayed in
Figure 2.1. The data consists of the reports of ILI from season 1996–1997
to season 2008–2009 during 30 weeks each season, from the 42nd week of
one year to the 19th week of the following. As previously mentioned, this
data is the same as that one used in Martinez-Beneito et al. (2008a) but
adding two new seasons and correcting an error on the data of season 2005–
2006, where the rates of this season were divided by 10. This was a minor
error, as this season presents no appreciable epidemic phase. The VSN also
seeks for virus isolation for a small fraction of the patients diagnosed with
ILI, which we will be using to build a gold standard for the ‘true’ epidemic
phase.

2.4.2 Evaluating model performance on VSN data

In this section we are going to select a model for the detection of influenza
epidemics on the VSN data following the guidelines presented in Section
2.3.6. As stated before and for the sake of simplicity, we restrict our selec-
tion among the balanced models with temporal structure; AR1-AR1 and
AR2-AR2.

Evaluating the goodness-of-fit with DIC

By running each model only once on the whole data set, we can obtain the
DIC score, which offers a measure of the goodness-of-fit of the model to the
data penalized by the effective number of parameters of each model. To
double check the inadequacy of the model without temporal structure AR0-
AR0, we also include it in the comparison of DIC. In Table 2.5 we observe
that DIC for AR0-AR0 is much worse than that for the two other proposals,
with a distance greater than 100 points. The best proposal in terms of DIC
is AR2-AR2 with a score 10 points lower than that of AR1-AR1. In Section
2.3.6 we remarked the relatively high discrepancy in the estimation of the
latent variable of the models with heterogeneous structures (AR0), both
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for the endemic and epidemic phase, with respect to these models with
autoregressive structure. DIC corroborates again that this estimation is
likely to be worse, as the model fits worse the data. Therefore the AR0-
AR0 model is not further considered for the model selection.

AR0-AR0 AR1-AR1 AR2-AR2

DIC 2487.9 2365.8 2355.5

Table 2.5: DIC for the balanced models of the proposed framework for the VSN
data.

Determining a gold standard

To use weighted ROC measures, which give an idea of the sensitivity, speci-
ficity and timeliness achieved by the models, we need a gold standard.
When considering to build a gold standard from the laboratory isolation
data, the approach of Cowling et al. (2006) seems not appropriate due to
the low amount of isolates during the year. In the US laboratory data used
by Cowling et al. (2006), 1300 samples are tested each month in median,
arriving to achieve rates of influenza isolation over 0.30. VSN analyzes a
much lower number of samples and the weekly number of virus isolates
never surpasses 11 in our available data. Because of that, we use the gold
standard as defined on Martinez-Beneito et al. (2008a) instead, considering
as being in epidemic phase those weeks between the first and last influenza
virus isolates of the season.

There is one correction that can be done to this gold standard, as in
the first week of season 12 there is an isolate and then there is no other
isolate until 3 months later. It might be sensible, therefore, to ignore this
separated virus isolate and declare the epidemic to start at the 9th week
of season 12, instead of at the first week. In Figure 2.9 the corrected gold
standard is depicted over the rates. The non-corrected gold standard is the
same but for season 12, where the epidemic would start at the beginning of
the season. In the following part of the section we are going compare the
effect of using the original or the corrected gold standard on the selection
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Figure 2.9: Corrected gold standard (in blue, End –Endemic phase–, Epi –
Epidemic phase–). In black: weekly ILI incidence per 100 000 inhabitants from
season 1996–1997 to season 2008–2009 of the VSN.

of models.

Weighted ROC measures

Weighted ROC measures are shown in Table 2.6 to evaluate the perfor-
mance of AR1-AR1 and AR2-AR2 models and compare them to other
models in the literature. As previously done in the NCSN analysis, the
first 3 seasons are not taken into consideration for the evaluation of the
weighted ROC measures, because they are considered as training data. For
each measure, two columns are shown; the first one is the measure using the
gold standard with the strict definition in Martinez-Beneito et al. (2008a),
while the second column is the same measure with the correction on the
12th season to the gold standard.

In general, AR2-AR2 model shows the best scores in all three measures
and the two gold standard definitions, but there are some discrepancies
between the order of the scores for the two gold standards. One discrepancy
is the notoriously better score of the model of Le Strat and Carrat (1999)
(HMM) on AUWROC1 and VUTROCS. The other difference is the worse
score of the method by Martinez-Beneito et al. (2008a) in VUTROCS with
the corrected gold standard. Once again, this shows the sensitivity of the
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AUWROC1 VUTROS1 VUTROCS
Gold st. Orig. Correc. Orig. Correc. Orig. Correc.

M-B 2008 0.871 0.876 0.760 0.754 0.921 0.911
AR1-AR1 0.806 0.847 0.751 0.786 0.916 0.935
AR2-AR2 0.871 0.905 0.794 0.828 0.953 0.968
Stroup 0.527 0.541 0.489 0.506 0.891 0.949
HMM 0.813 0.905 0.707 0.752 0.867 0.936
Serfling 0.729 0.752 0.645 0.657 0.855 0.866

Table 2.6: Comparison of weighted ROC measures with original and corrected
gold standard on the VSN data for the model of Martinez-Beneito et al. (2008a)
(M-B 2008), the proposed models AR1-AR1, AR2-AR2, and the models of Stroup
et al. (1989), Le Strat and Carrat (1999) (HMM) and Serfling (1963) methods,
applied online. The lowest (worst) values of each column are colored in red and
the highest (best) values are colored in blue.

weighted ROC scores to the definition of the gold standard.
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Figure 2.10: Estimated probability of being in epidemic phase by AR1-AR1
and AR2-AR2 models on VSN data. In black: weekly ILI incidence per 100 000
inhabitants from season 1999–2000 to season 2008–2009.

DIC and weighted ROC measures indicate a better goodness-of-fit and
performance on AR2-AR2 model than on AR1-AR1, therefore AR2-AR2
would be a sensible choice to use in surveillance. The online estimates for
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the probability of being in the epidemic state are shown in Figure 2.10.
One can observe that, in some seasons, the estimates from the AR1-AR1
model linger less in intermediate values and tend to give scores closer to 1
or 0 than the AR2-AR2 model. Some public health authorities might prefer
therefore the AR1-AR1 model, as it still has good DIC and weighted ROC
scores and shows slightly more determination when indicating if a week is
in the endemic or epidemic phase, so the decisions would be less threshold
dependent.

2.4.3 Parameters of the model AR2-AR2

In Table 2.7 we present the parameters of the retrospective application of
AR2-AR2 model on the complete VSN data (which are also the parameters
for the estimation of the last week of the online application). Of particular
interest are the values of ρ10, ρ20, ρ11 and ρ21, all different from 0, which
seem to support the selection of second-order autoregressive processes in
both periods. It is also interesting to note that the distance between the
posterior distribution of the means and variances for the endemic and epi-
demic phases indicates clearly different dynamics between phases.

2.5 Application on Google Flu Trends data sets

As we have discussed before, this framework of models is designed so that it
can be applied to data obtained from different kinds of data sources. So far
we have shown applications on data chains obtained from sentinel networks.
In this section we are going to show the performance of our proposal on
data obtained from a less traditional data source, Google Flu Trends, for
three different countries.

2.5.1 The Google Flu Trends data

For these applications we use data from Google Flu Trends (GFT) for the
countries of Spain, Japan and Netherlands from the 40th week of 2003 to
the 18th week of 2010, dividing the seasons every 52 weeks. This results
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Parameter Posterior mean 95% Credible interval

p00 0.96 [ 0.72 , 0.92 ]
p11 0.85 [ 0.93 , 0.98 ]
θ[1] 3.23 [ 0.82 , 6.11 ]

θ[2] 7.25 [ 4.43 , 11.33 ]

θ[3] 28.63 [ 8.98 , 50.45 ]

θ[4] 77.80 [ 49.48 , 128.09 ]

µ0 20.27 [ 15.43 , 25.69 ]
µ1 207.72 [ 133.31 , 288.16 ]
ρ10 1.23 [ 1.06 , 1.36 ]
ρ20 −0.38 [ −0.49 , −0.25 ]
ρ11 1.50 [ 1.26 , 1.70 ]
ρ21 −0.67 [ −0.86 , −0.44 ]

Table 2.7: Estimated mean and 95% credible interval for the parameters of the
AR2-AR2 model applied on the VSN data in a retrospective basis.

in 6 seasons of 52 weeks and one incomplete season of 32 weeks. As com-
mented in Section 1.3.1 these data chains are estimates based on internet
queries of influenza related topics that try to reproduce the incidence rates
(expressed over 100 000 inhabitants) provided by official institutions of each
country. The last season includes the wave of swine influenza, that might
not be well estimated by GFT because data are not estimated with the last
modifications of the algorithm. Also, media putted much attention on this
epidemic, which most certainly affected the behavior of search engine users
about the topic and, therefore, on the estimations by GFT. The estimated
influenza incidence rates for the three countries are shown in Figure 2.11.

2.5.2 Online application of the AR1-AR1 and AR2-AR2
models

In this case no gold standard is available for any of the three data sets, so
no measures of specificity, sensitivity and timeliness can be provided that
could help in the model selection. To simplify the model selection and
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Figure 2.11: Weekly estimated influenza incidence per 100 000 inhabitants during
seasons from 2003–2004 to 2009–2010 by GFT for Spain, Japan and Netherlands.

following the guidelines presented in Section 2.3.6 we do not consider the
whole framework of models but only AR1-AR1 and AR2-AR2 models. In
Table 2.8 we observe that, for all data sets, the model with higher temporal
autoregressive structure offers better DIC scores than the model with au-
toregressive structure of order one, as it also was the case with both VSN
and NCSN data (see Tables 2.1 and 2.5). In any case, we should remember
that DIC is not a direct evaluation of the quality of detection of the models
and we may consider other aspects for taking the decision. For example,
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when taking a look at the estimates of the epidemic phase presented in
Figure 2.12 we observe that AR1-AR1 tends to give higher estimates for
Zts. In the case we were to seek for a model that favors sensitivity over
specificity we might choose to select the AR1-AR1 model even if it offers a
worse DIC score.

AR1-AR1 AR2-AR2

Spain 2163.5 2107.3
Japan 2345.7 2306.9
Netherlands 2108.9 2030.8

Table 2.8: DIC for the AR1-AR1 and AR2-AR2 models of the proposed frame-
work on the GFT data for Spain, Japan and Netherlands.

One might notice that the Japan data set presents estimated incidence
of zero or near to zero during the non-epidemic periods, with extremely low
variability. This behavior is captured by the non-epidemic structure of the
models and whenever the estimated incidence values rise, even slightly, the
estimated probability of epidemic rises so that the epidemic structure can
fit the higher variability and higher values of the response variable. For
this reason, our proposal could have problems to deal with data with long
strings of zeroes in the non-epidemic phase. Several variations might be
considered in further investigations to deal with this kind of data, as using
more than two hidden states or eliminating connected sections of data that
are all zeroes. On the other hand, the data sets of Spain and Netherlands
do present higher than zero incidence rates and variances during the non-
epidemic periods. In this situation the higher estimates of probability of
epidemic tend to be located only on the steep rises and decays around the
peaks of the epidemics, as it is expected from a sensible detection method.

To summarize, in this chapter we have presented a framework of
Bayesian hierarchical Poisson models with a hidden Markov structure for
the detection of influenza outbreaks based on the proposal of Martinez-
Beneito et al. (2008a). We have described the framework of models and
applied it on two surveillance data sets and three data sets from internet
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Figure 2.12: Estimated probability of being in epidemic phase by AR1-AR1
and AR2-AR2 models on GFT data for Spain, Japan and Netherlands. In black:
weekly estimated influenza incidence per 100 000 inhabitants during seasons from
2006–2007 to 2009–2010.

query based sources. These applications have allowed us to discuss the
issue of model selection, in particular the use of gold standards, weighted
ROC curves, DIC and observation of the outcomes for selecting the best
method of detection. The observed results suggest to restrict the selection
of models to those with balanced autoregressive structures for both endemic
and epidemic phases whenever a full comparison is impracticable. We have
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also shown that several models within the proposed framework outperform
other proposals in the literature in terms of weighted ROC curves based
measures. The following chapter deals with a more complex problem: the
detection of influenza outbreaks using spatio-temporal data. Spatial and
spatio-temporal structures allows neighboring regions to share information
about influenza incidence and epidemic state, therefore producing models
that give a more prompt and consistent detection of influenza outbreaks
than those which do not share information in space. For this reason, in
the next chapter we propose a spatio-temporal extension of the proposal of
Martinez-Beneito et al. (2008a) for the detection of influenza outbreaks in
time and space.
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Chapter 3

Spatio-temporal detection of
influenza outbreaks

3.1 Introduction

Our review of temporal methods for the detection of influenza epidemics
presented in Chapter 1 has highlighted the advantages of several statistical
structures for this task: time series structures, hidden Markov chains or
Bayesian hierarchical models, are some of the statistical tools that can help
to better distinguish between epidemic and endemic phases. In Chapter 2
we have used them to construct a framework of models for the temporal
detection of influenza outbreaks, which has proven to be capable of timely
detect the outbreaks of influenza in different temporal data sets.

In the present chapter we present a spatio-temporal Bayesian hierarchi-
cal model on the differentiated rates with a hidden Markov structure for
the detection of influenza outbreaks. This proposal is also based on the one
of Martinez-Beneito et al. (2008a) and also uses the statistical structures
previously mentioned (time series, hidden Markov chains and Bayesian hier-
archical models). Unlike in Chapter 2, the spatio-temporal proposal has not
an additional Poisson first layer on the observations. Instead, we directly
model the differentiated rates as Martinez-Beneito et al. (2008a) originally

85
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do. Some of the reasons for this choice are the improvement in simplicity
of the model (and the subsequent reduction in computational time) and
the fact that for some data only rates are available, but not counts. One
could estimate the number of cases from the rates if population data for
the regions were available, but those estimated cases would not be actual
observations, so modeling them would introduce a spurious source of vari-
ability. We also believe that observing only the differentiated rates and
not the actual dimension of the rates can diminish the sensibility in high
rates, but can also improve the timeliness, as the outbreaks of influenza are
usually located at weeks with low raw rates but relatively large increases
of the rates.

In Chapter 2 we have presented a framework of models among which
an expert should choose the best fitted one for their surveillance system.
Many health policy makers find that capability of choosing among several
models as a problem instead of as an advantage: sometimes the tools to
choose between models do not offer a clear winner and there is not always a
trained expert to do the choice. For that reason, we propose only one model
for the spatio-temporal proposal, having in mind that this method will have
to be able to fit diverse data sets with their peculiar characteristics.

There are several reasons for using spatial information to improve the
performance of outbreak detection methods. One reason is that dealing
with aggregated information from a large territory with temporal data can
hinder the detection of the onset of outbreaks, as the beginning of influenza
outbreaks often happens in small regions. Even though the increase of
cases might be noticeable in these small regions, it may become unnoticed
if merged with the endemic cases of the larger territory. Another advantage
is to consider the contagious nature of the disease so, if an outbreak starts a
certain week in a certain small region, it is more likely for neighbor regions
to get into epidemic stage in the same or nearby weeks. Last but not least,
a method that offers spatially demarcated alarms can be more useful when
devising health policies, allowing to focus the use of resources where and
when they are most needed.

The remainder of this chapter is organized as follows. First we will
review some general spatial models which set the foundations for the build-
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ing of several spatio-temporal models. Then we will do a review of spatio-
temporal methods for the detection of outbreaks, paying special attention
to those methods used for influenza outbreaks detection. This will help us
putting the new proposal in context and we will also review some statistical
tools that we will use but which were not described in previous chapters.
We will go over spatio-temporal extensions of: ARIMA, cumulative control
charts, scan statistics, Bayesian methods and hidden Markov chain models.
After this contextualization, the newly proposed spatio-temporal model for
the detection of influenza outbreaks will be described. The application of
this model on Google Flu Trends data from USA will exemplify the per-
formance of this new proposal, and the comparison with some variations
of the model and the proposal of Martinez-Beneito et al. (2008a) will show
the pertinence and relevance of this new spatio-temporal proposal.

3.2 Review of spatial models

In Section 1.4.3 we reviewed ARIMA methods, which allow to model the
existing correlation between consecutive observations of influenza rates and
therefore are frequently used tools in temporal statistical models for the
detection of influenza outbreaks. ARIMA, as well as most of the methods
presented in Chapter 1, are applied on data referenced to discrete (and
usually equally spaced) time points, which can be represented as a linear
graph, where each time point is connected to the previous and next ones.
When having to deal with spatial data, a natural evolution is to use a
discrete spatial support for the data, where the information is displayed
as a lattice process. In a lattice process, the set of counts or rates of the
disease {Yi} must be observed at a set of fixed locations i ∈ {1, · · · , I}
with a certain neighboring structure. This neighborhood can be defined
by an I × I matrix W = (wij) with wij = 1 if locations i and j are
neighbors and zero otherwise. We will consider that a region i is not a
neighbor of itself. Usually, the fixed locations which constitute a lattice are
administrative regions and the neighboring relation is defined by sharing
a common border. Nevertheless, other ways of setting the lattice can be
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defined, and even non binary neighboring weights could be set.

Spatial structures can share information among neighboring regions in a
similar way as ARIMA structures share information among contiguous time
points. This allows, for example, to better estimate effects in small regions
with low population, where the variance of the estimation can be too large
or affected by zero counts which offer spuriously low or high estimates of
the incidence or the risk. In this section we review the intrinsic conditional
autoregressive model, the proper conditional autoregressive model and the
spatial moving average risk smoothing model, which are the spatial equiva-
lents of the ARIMA structures. For simplicity we only review the structures
of order 1 except for the extension of the moving average. We also review
two other related spatial models, the Besag, York and Mollié model and
the Leroux model. Let us describe them:

Intrinsic conditional autoregressive model. Also known as ICAR
model, it is the spatial equivalent to a random walk of order 1. Was
presented in Besag et al. (1991) and since then has been widely used in
dissease mapping and other issues of disease surveillance. The ICAR
model is conditionally expressed as follows:

Yi|Y−i ∼ N

(∑
j∼i Yj

ni
,
σ2

ni

)
, (3.1)

with j ∼ i meaning locations i and j are neighbors, Y−i = {Yj : j 6= i}
and ni being the number of neighbors of location i. In this way, the
conditional distribution for each location follows a Gaussian distri-
bution whose expected value is the mean value of the neighboring
locations and its variance is inversely proportional to the number of
neighbors. The set of all the conditional distributions is intrinsic, in
the sense that one extra constraint is needed for its proper definition.
Usually, a constraint on the sum of the variables

∑I
i=1 Yi is set, gen-

erally constraining it to zero. That is the case, for example, for the
software WinBUGS, which we use in the application of the proposals
presented in this thesis.
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In order to cope with data that have mean different to zero, a general
mean µ is estimated in addition to the ICAR term. The model can be
also expressed as a multivariate normal distribution in the following
way:

Y ∼ N
(
0, σ2 (D −W )+) , (3.2)

where D is a diagonal matrix with ni as the diagonal terms and (·)+

denotes the Moore-Penrose pseudoinverse of a matrix (see, for exam-
ple, Gentle (2007)). One has to take into account that the structure
matrix (D −W ) is singular (having each row and column ni in the
diagonal and ni negative ones in the rest of the positions, the sum
of the rows is always zero). The range of the structure matrix is at
most I − 1, which is why the restriction about the sum of all of the
observations (or any other restriction) is necessary to make of this
a proper distribution. The ICAR distribution models strong spatial
dependencies, where the mean of the process in one location is highly
determined by the value of the observations in the neighboring re-
gions, as described by Botella-Rocamora et al. (2013). These authors
also show that this structure implies a negative correlation of the
spatial effect between locations that are far away in the lattice.

Besag, York and Mollié model. When used for disease mapping, the
ICAR model is frequently combined with an independent random
effect, what is known as the Besag, York, and Mollié (1991) (BYM)
model. This random effect is able to capture particular behaviors
of the regions that are not determined by the neighboring structure,
relaxing the strong spatial dependency defined by the ICAR model.
Both spatial and independent random effects are usually combined,
for defining more flexible variables, as:

Yi = µ+ ui + vi ,

ui|u−i ∼ N

(∑
j∼i Yj

ni
,
σ2
u

ni

)
, (3.3)

vi ∼ N(0, σv) .
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In vectorial notation, it can be expressed as a multivariate normal
distribution (as a result of the sum of two multivariate normal distri-
butions):

Y ∼ N
(
µ1, σ2

u (D −W )+ + σ2
vI
)
. (3.4)

This combination allows to distribute the variability of the model
in two spatially structured and unstructured terms, so that both the
spatial effect of the neighbors and the particular effect of each location
can be taken into account and distinguished.

Leroux model. BYM model distributes the spatially structured and un-
structured variability of the data by using two Gaussian additive
terms. Another way of distributing this variability is through the
definition of the structure matrix (proportional to the inverse of the
variance matrix). In that way Leroux et al. (2000) introduced a weight
parameter φ (bound to be between 0 and 1) to estimate the strength
of the spatially structured and unstructured variability in a unique
multivariate Gaussian distribution with the following definition:

Y ∼ N
(

0, σ2 (φ (D −W ) + (1− φ) I)−1
)
, (3.5)

so that the structure matrix gives more weight to the spatially struc-
tured or the unstructured variability depending on the estimated
value of φ. This model can also be expressed with conditional
marginal distributions as follows:

Yi|Y−i ∼ N

 φ

1− φ+ φni

∑
j∼i

Yj ,
σ2
ψ

1− φ+ φni

 . (3.6)

The use of ICAR, BYM and Leroux models for disease mapping is
discussed in Riebler et al. (2016).

Proper conditional autoregressive model. Also called proper CAR
model, is the spatial equivalent of the temporal autoregressive struc-
ture of order 1. The definition by conditional distributions is quite
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similar to that one of the ICAR model, but adding a correlation factor
φ to the mean:

Yi|Y−i ∼ N

(
φ

∑
j∼i Yj

ni
,
σ2

ni

)
. (3.7)

The estimated value of this correlation factor indicates the strength
of the spatial correlation of the data; φ > 0 indicates that neighbor
regions have similar values, while φ < 0 arises when neighbor locations
have opposite values. When φ = 0, no spatial structure is observed
in the data, but for the fact that the variance of each observation
depends on its number of neighbors. The joint distribution of the
proper CAR distribution is as follows:

Y ∼ N
(
µ1, σ2 (D − φW )−1

)
. (3.8)

As shown in Gelfand and Vounatsou (2003), this distribution is proper
as long as the parameter φ is strictly between the inverse values of
the smallest and largest eigenvalue of D−

1
2WD−

1
2 , with the smallest

eigenvalue being negative and the largest one being 1. In practice, in
many fields it is common to assume that, in case of existing spatial
correlation, it is positive, so φ is usually parameterized between 0 and
1. In the limit values of the parameter φ proper CAR reduces to a
non-spatial Gaussian random effect for φ = 0 and the ICAR model
for φ = 1. It should be taken into account that the restriction on
the mean is not necessary in this case, as (D − φW ) is proper in
the range assumed for φ. Therefore, this distribution in WinBUGS
includes an specific parameter µ modeling its mean.

Spatial moving average risk smoothing model. Also called SMARS,
this model was presented by Botella-Rocamora et al. (2013) and is the
spatial extension of the temporal moving average process of unfixed
order. The conditional definition of the model is shown in the article
as a hierarchical model with a Poisson distribution for the likelihood
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and the moving average structure for the logarithm of the relative
risk:

Oi ∼ Po(Ei exp(νi)) ,

νi = µ+ λ−1
i

γ0εi + γ1

∑
j∼1i

εj

+ · · ·+ γm

∑
j∼mi

εj

 , (3.9)

εi ∼ N(0, σ2) ,

where m is the order of the SMARS (usually higher than 1) to be
estimated by the model and λi are weighting factors set so that the
components of the vector ν have all the same variance σ2 regardless
of their location in the region of study. The notation j ∼v i denotes
j being a neighbor of i in v steps or less, that is, there exists a path
in the graph of neighborhoods connecting j and i through v edges
or less. This model has the advantage over the ICAR model of not
causing a negative correlation of the spatial effect between locations
that are far away in the lattice.

3.3 Review of spatio-temporal methods for the
detection of outbreaks

In this section we present a brief review of spatio-temporal methods for the
detection of outbreaks with special attention to methods for the detection of
influenza outbreaks. Visiting all these models of the literature provides the
necessary background for the development of our spatio-temporal proposal.

3.3.1 Spatio-temporal extensions of ARIMA and spatial
models

There are several spatio-temporal extensions of the temporal ARIMA mo-
dels and the spatial models presented in the previous section. One example
is to consider a spatio-temporal autoregression based on the mean of the
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values of the response variable for the neighbors but on the previous unit of
time instead of on the present time. In this fashion, Held and Paul (2012)
present a model where the number of observed cases Yit is set to follow a
negative binomial distribution with mean µit, which is modeled as the sum
of three components:

µit = ρitYit−1 + φit

∑
j∼i Yit−1

ni
+ νit , (3.10)

the first one being a temporal autoregressive model, the second one sim-
ilar to a proper CAR but with data from week t − 1 and the third one
representing the endemic proportion of cases. To add a twist, the param-
eters ρit, φit and νit are not necessarily constants but the authors propose
the option of model their logarithms through harmonic regressions in the
fashion of Serfling (1963). This model is implemented in the R package
surveillance and discussed in Meyer et al. (2014). In the same package,
two other versions of the same model are presented for individual events in
continuous space-time (point process data) and for individual Susceptible-
Infectious-Removed event history of fixed population data. Several other
spatio-temporal extensions of spatial models can be done but, due to their
complexity (among other possible reasons), they are usually proposed un-
der the Bayesian paradigm. We will discuss them later in Sections 3.3.4
and 3.3.5.

3.3.2 Spatio-temporal cumulative control charts

Several temporal models (not necessarily using ARIMA structures) in dis-
ease surveillance have spatio-temporal extensions. That is the case of the
cumulative control charts, among others. Rogerson and Yamada (2004) dis-
cuss some approaches to spatio-temporal surveillance using different multi-
variate CUSUM extensions. As they list, the CUSUM extensions include:

1. separate monitoring of each regional disease count (Woodall and
Ncube, 1985),
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2. monitoring outliers among vectors of the distance between ob-
served and expected standardized counts (e.g. a multivariate
Shewhart chart),

3. monitoring a univariate measure of the distance between re-
gional vectors of observed and expected standardized counts,
and

4. monitoring the multivariate vector of cumulated differences be-
tween observed and expected standardized counts (Pignatiello
and Runger, 1990; Crosier, 1988).

Another cumulative control chart type, as is the exponentially weighted
moving average chart (EWMA), is also used in spatio-temporal modeling
of the spread of diseases, as seen in Zhou and Lawson (2008), who perform a
spatio-temporal prediction of excess of Relative Risk for a simulated generic
disease, combining a Bayesian BYM model with a multivariate EWMA.

As discussed in Section 1.4.2, cumulative control charts rise the alarm
of outbreak when they find mild but persistent shifts of the rate mean.
But this shift is a common endemic behavior of ILI on the arrival of the
cold months of the year. This behavior is also observed in the spatio-
temporal extensions of cumulative control charts. As we will see later,
our spatio-temporal proposal avoids this misclassification by not paying
attention to the mean of the process of rates, but using the differentiated
rates to distinguish the epidemic and non-epidemic phases. In that way, a
sharp increase or several contiguous mild increases in the rates can trigger
an alarm, while one mild increase in the mean of the process does not.

3.3.3 Spatial and spatio-temporal scan statistics

In Section 1.4.5 the use of scan statistic for temporal data has been re-
viewed, but its main use is found when applied on spatial and spatio-
temporal data. Let us remember that the basic idea to detect clusters
using this type of algorithm implies proposing several windows that cover a
connected subset of the spatio-temporal space. The counts in these windows
are tested against the null hypothesis of random observations, checking if
there is an unusual amount of observations on their inside compared to the
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outside given the window size. The detected clusters are those windows
whose observations are less likely given the null hypothesis.

This tool started detecting clusters of one or two dimensions on point
processes with only one possible cluster as an output and a fixed windows
size with segment or square shape (Naus, 1965a,b), but it has evolved and
become more complex since then. Some of the examples of this sophistica-
tion are: the use of circular clusters with different sizes on lattice spatial
data with primary and secondary clusters detection by Kulldorff (1997),
eliptical windows by Kulldorff et al. (2006), arbitrarily shaped windows
by Assunção et al. (2006) or Takahashi et al. (2008) and spatio-temporal
cylinders by Kulldorff et al. (2005).

The use of scan statistic for diseases surveillance is common. Some ex-
amples of it are the aforementioned works of Kulldorff (1997) for spatial
data and Kulldorff et al. (2005) for spatio-temporal data. In Section 1.4.2
we have pointed that Ismail et al. (2003) applied statistic for temporal de-
tection of outbreaks in an online basis forcing the potential cluster windows
to include observations from the last week or day. In the same way, Kull-
dorff (2001) does it in a spatio-temporal basis. Several of these algorithms
are implemented in the computer program SaTScanTM.

Scan statistics have also been addressed under the Bayesian paradigm,
as seen in the work of Neill et al. (2006) with a Bayesian spatial scan statis-
tic, and in Neill and Cooper (2010), where a multivariate Bayesian scan
statistic is used to compute the posterior probability of several types of
events (for example, avian flu, bio-terrorist atacks, etc.) in each space-time
region under study. The data used to detect these different events are a mul-
tivariate vector; for example, different chief complaints (respiratory, fever,
etc.) to the Emergency Department or different over-the-counter medica-
tion sales for several items. Detected clusters are therefore characterized as
one type of event or another depending on which complaints or which sold
items are appreciated to cluster together.

A problem one finds when trying to do spatio-temporal detection of
influenza outbreaks is the fact that influenza epidemics usually cover huge
extensions of terrain (whole countries or even continents). The windows
of scan statistics though, can cover at most only half of the region being
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analyzed. Other statistical tools which can cope with this wide spread are
therefore advisable for the detection of this disease.

3.3.4 Spatio-temporal Bayesian methods

Bayesian models are quite prolific in the spatio-temporal detection of out-
breaks due to their capacity to make inference on models with complexly
correlated data (as spatio-temporal data tend to be) in a relatively simple
way. In Sections 3.3.2 and 3.3.3 we have already seen that control charts
and scan statistic have been applied under the Bayesian paradigm. In this
section we review several other Bayesian models for the surveillance of dis-
eases, taking special attention to the models devoted to detect outbreaks
of influenza and ILI.

Many spatio-temporal extensions of the spatial models discussed in Sec-
tion 3.2 are usually embedded in Bayesian hierarchical models, due to the
difficulty of implementing them under the frequentist paradigm, among
other possible reasons. In this fashion, Mugglin et al. (2002) use a Poisson
vectorial auto-regressive model with a spatio-temporal term (STit). The
value of the spatio-temporal term for a certain location i and time t is a
linear combination of the value of the spatio-temporal term in the same
region at the previous time and the terms for the first and second order
neighbors also in time t − 1. Neighbors of order n of a location i are de-
fined as those locations which are connected to region i by a path of n
edges of the neighborhood matrix and are not neighbors of a lower order.
The authors also add to the spatio-temporal term a proper CAR struc-
ture for each time unit (CARit(µZt)) with three possible mean values µZt
corresponding to three stages. The three stages, (Zt = 1, 2 or 3), corre-
spond to non-epidemic, growing and decaying phases and their temporal
locations and extents are not estimated by the model, but previously set
by the researchers. Because of that, this model is not suitable for outbreak
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detection. The proposed hierarchical model can be written as follows:

Yit ∼ Po(EiRit) ,

log(Rit) = x
′
itα+ STit , (3.11)

STit = ρ0STit−1 + ρ1STjt−1 + ρ2STkt−1 + CARit(µZt) ,

where j stands for the first degree neighbors of i, k stands for the second de-
gree neighbors of i, Ei is the expected counts for region i and x

′
itα captures

the covariates effect. Over this model, the measures presented in Cressie
and Mugglin (2000) are applied by the authors. They allow to detect which
regions don’t follow the general pattern. In this case, the authors don’t try
to detect the onset of an epidemic, but a location or locations where the
evolution of the risk of infection develops in a different way than everywhere
else.

With the same objective of detecting regions with different behavior,
Li et al. (2012) propose a Poisson spatio-temporal model for the detection
of unusual temporal patterns. In this model, the logarithm of the relative
risk for the majority of the regions is modeled as a general mean plus a
common BYM spatial structure (BYMi) plus a common temporal Random
Walk (RWt). For the unusual regions, the logarithm of the relative risk is
modeled as a particular mean plus an individual temporal Random Walk
(RWit):

Yit ∼ Po(EitRit)

log(Rit) = µ0 +BYMi +RWt with Zi = 0 , (3.12)

log(Rit) = µi +RWit with Zi = 1 .

This is a clear example of how data adapting better to a certain structure
or another can distinguish two different epidemic behaviors by means of
hidden variables. One shall notice that, in this case, the hidden variables
Zi do not follow a Markov chain, but they are conditionally independent.

Another example of spatio-temporal Bayesian model for disease surveil-
lance is found in Corberán-Vallet and Lawson (2014). In this proposal, the
argument of the Poisson model is the sum of an endemic and an epidemic
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parameters. The logarithm of the relative risk for the endemic part fol-
lows a linear regressor with ICAR (ICARi) and unstructured (ξi) spatial
random effects and a spatio-temporal random effect (εit):

Yit ∼ Po(EitRit + λit) , (3.13)

log(Rit) = µ+ ICARi + ξi + εit ,

with zero-mean Gaussian priors for µ, ξi and εit. The epidemic parameter
is proportional to the previous counts on the same and neighbor locations,
with the particularity that the exponential of this proportional parameter
has a temporal structure that reflects the seasonality of the epidemic:

λit = ρit

Yit−1 + φi
∑
j∼i

Yjt−1

 (3.14)

ρit = exp (Serfling harmonicsi +RWit) ,

with a beta prior distribution for φi. A multivariate model is also proposed
where the incidence of a syndromic disease helps estimating the epidemic
component of the disease of interest. Both diseases are modeled with the
equivalent structures, except for the addition of a term ψλSit−1 to λit, where
λSit is the epidemic term of the syndromic disease and λit is the equivalent
term for the disease of interest.

Several other Bayesian models are used in the spatio-temporal modeliza-
tion and surveillance of diseases but, when trying to do outbreak detection,
most of the Bayesian models involve a latent variable to distinguish between
the two possible epidemic states, as we review in the next subsection.

3.3.5 HMM and MSM for spatio-temporal outbreak detec-
tion

The value of HMM and MSM as tools for the detection of outbreaks in
temporal data has been discussed in Chapters 1 and 2. Similar strategies
are also applied in spatio-temporal data, using one hidden Markov chain for
each of the locations in consideration. Also, some spatio-temporal models
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condition the values of the hidden variables Zit not only on the value of
Zit−1 (same region and previous time), but also on the spatial neighbors
at the same or previous times (Zjt or Zjt−1, with j neighbor of i), forming
a Markov random field. In Markov random fields the graph of conditional
dependencies of the hidden Markov variables is no longer a chain, but a
general graph where the temporal, spatial and spatio-temporal conditional
dependencies can be represented.

The description and prediction of meningococcal infection incidence
(but not explicitly the detection of outbreaks) is addressed by Knorr-Held
and Richardson (2003), who propose a framework of spatio-temporal Pois-
son MSM. In this framework, the logarithm of the relative risk of infec-
tion follows an overall temporal random walk of order 2 (RW (2)t) plus an
independent random effect on the month (γt) plus a spatial ICAR term
(ICARi) plus an epidemic term (β

′
Xit) that is activated only when the

hidden variable Zit of the MSM is estimated as 1:

Yit = Po(EitRit) (3.15)

log(Rit) = RW (2)t + γt + ICARi + Zitβ
′
Xit .

Six forms of the epidemic term are considered, plus the option of not having
any epidemic term:

Model β
′
Xit

0 0

I β1I(Yit−1 > 0)

II β1I(Yit−1 > 0 or Yjt−1 > 0 for at least one j ∼ i)
III β1I(Yit−1 > 0) + β2I(Yjt−1 > 0 for at least one j ∼ i) (3.16)

IV β1 log(Yit−1 + 1)

V β1 log(Yit−1 + Σj∼iYjt−1 + 1)

V I β1 log(Yit−1 + 1) + β2 log(Σj∼iYjt−1 + 1)

with I(·) being the indicator function which is equal to 1 if its argument is
true and 0 otherwise. DIC (see Section A.2 of the appendices) is used by
the authors as a tool for selecting among the seven possible modelings.



100 Chapter 3. Spatio-temporal detection of influenza outbreaks

The modeling of Li and Cardie (2013) has some peculiar features that
are worth discussing. This model (also used in Sun et al., 2014) works
with twitter data, using the counts of influenza related tweets in one region
and day as raw data, though the observations in the model are taken to
be not the raw counts but the relative increase or decrease on the counts,
that is, (Yit− Yit−1)/Yit−1. The second particular feature is the use of four
Markovian stages; non-epidemic, rising epidemic, stationary epidemic and
declining epidemic phases. A third particular feature is that the hidden
Markov variables Zit are not only conditionally dependent on Zit−1 but
also on Zit+1 and on Zjt, j ∼ i through a generalized linear model. All the
stages have a day of the week term modeled as a Gaussian process, and
the rising epidemic and declining epidemic phases also have a temporal
autoregressive structure.

Another example of a model where the conditional dependence of the
hidden variable Zit is not only temporal but also spatial is found in Banks
et al. (2012). The authors present a theoretical multivariate Bayesian
framework for syndromic surveillance on multiple data streams where, for
each type of event, a Poisson model with three components is set:

Yit ∼ Po(νit + Zitλit) , (3.17)

where log(νit) is modeled by a linear regression with periodic terms and
several covariates plus a spatio-temporal term to be chosen among several
options involving spatially unstructured random effects, spatial CAR dis-
tributions, temporal autoregressive structures and joint Gaussian spatio-
temporal distributions. The νit terms represent the endemic part of the
observed cases. log(λit) is modeled by another regressor similar to the pre-
vious one but representing the epidemic part of the cases. For the hidden
variables Zit indicating the endemic or epidemic phase, the logit of the
probability of being in epidemic phase logit(pit) are linearly modeled by
means of the counts on neighbors. Regrettably, the application presented
in the article is the one firstly presented in Niemi et al. (2008) about drug
abuse, which is actually a different more simple Bernoulli model with a
CAR structure in its regressor and without the Zit variable.
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Two works which actually do present models within the theoretical
framework presented in Banks et al. (2012) are those of Zou et al. (2012)
and Heaton et al. (2012). The first layer of both models is a Poisson distri-
bution for the counts of influenza cases with a non-epidemic term νit and
an epidemic term λit which is only present when the hidden variable Zit is
equal to 1. In these two works, the conditional distribution of Zit depends
on Zit−1 through a matrix of transition probabilities which also depends
on Zjt, j ∼ i. The probability of going from the non-epidemic state to
the epidemic state is thus the probability of spontaneous epidemic ps if no
neighbor is in the epidemic phase. When at least one of the neighbors is in
the epidemic state, the transition probability from endemic to epidemic is
the combined probability of being infected by each neighbor:

p01,it = psI(Σi∼jZjt = 0) + 1− (1− pc)
∑
i∼j Zjt , (3.18)

with pc the probability of being infected by one neighbor. The model focuses
only on detecting the onset of the epidemic so the transition matrix is
defined to be absorbent, that is, the probability of going from the epidemic
state to the non-epidemic state is null: p10 = 0 and p11 = 1.

In the proposal of Zou et al. (2012) the logarithm of the non-epidemic
term is modeled as a general mean plus covariates effects plus a white noise
term:

log(νit) = µν + β
′
νXνit + εit , εit ∼ N(0, σ2

ν) . (3.19)

The logarithm of the epidemic effect is modeled in a similar manner but
with a spatio-temporal Gaussian term STit instead of the white noise term:

log(λit) = µλ + β
′
λXλit + STit . (3.20)

This spatio-temporal term is a fusion between a temporal autoregressive
model and a spatial proper CAR:

STit ∼ N

(
φ

∑
j∼i STjt

ni
+ ρSTit−1,

σ2
λ

ni

)
, (3.21)
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with ni the number of neighbors of the location i. In the proposal of Heaton
et al. (2012) they opt for a general ICAR distribution common to all times
in the non-epidemic phase and a spatio-temporal Gaussian term which is
a fusion of a temporal autoregressive structure and a spatial ICAR with a
slightly different variance term:

log(νit) = µν + β
′
νXνit + ICARi

log(λit) = µλ + β
′
λXλit + STit , (3.22)

STit ∼ N

(∑
j∼i STjt

ni
+ ρSTit−1,

σ2
λ

ni + 1

)
.

In this case, the variance is scaled by ni+1, reflecting the information given
by the ni spatial neighbors plus one temporal neighbor: the same region in
the previous time period.

Both models are tested on data simulated from the models themselves.
An application of the model of Heaton et al. (2012) on real data of weekly
influenza mortality in 121 cities of USA can be found in the same article.
The real data example of Zou et al. (2012) can be found in Zou et al. (2014),
where the authors use the model with a day of the week term for daily ILI
and respiratory syndrome data from 11 regions in Indiana.

Regarding prior distributions of the parameters, Zou et al. (2012) state
that the choices of hyperparameters represent vague prior information and
ensure posterior propriety. In the case of Heaton et al. (2012), the value of ρ
is fixed at 0.5, and as ps and pc are expected to be small, an informative beta
distribution Beta(1, 30) is used. In Appendix B a discussion about a sim-
plification of the general model of Banks et al. (2012) (of which the models
of Zou et al. (2012) and Heaton et al. (2012) are particular cases or modi-
fications, as we stated before) can be found. In this discussion it is proven
that a simplification of these models, where no spatial or spatio-temporal
terms are taken into account, and where improper non-informative priors
are set for the parameters, has improper posterior distributions for certain
parameters of the model. This suggests that the more complex alternatives
of Zou et al. (2012) and Heaton et al. (2012) with the same main structure
might also present problems with the inference process, forcing the elec-
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tion of informative priors that might influence the results of the inference.
An alternative is also discussed in this appendix, where the same Poisson
distribution for the counts seen in Expression (3.17) is substituted by a
‘switch’ Poisson distribution, where the expected number of counts λit is
not added to νit when the epidemic phase is active, but it substitutes the
endemic term instead. Unlike the previously discussed model, the ‘switch’
model leads to a proper posterior distribution for the parameters of the
model.

The model in Zou et al. (2014) is the most similar (though far from being
equal) to the one we present in this chapter and is also one of the few models
specially designed for spatio-temporal detection of the start of influenza
outbreaks. Because of this, we wanted to compare the performance of our
model with theirs. We found, though, several problems while trying to
implement and run it on WinBUGS. We got in contact with the authors
but they could not facilitate the code.

3.4 Modeling spatio-temporal influenza data for
the detection of outbreaks

In this section we present a novel proposal for the spatio-temporal detection
of influenza outbreaks. This method is an extension of the temporal method
presented by Martinez-Beneito et al. (2008a). The idea for building this
model is to use the different dynamics of the differentiated ILI rates (the
jumps from one week to the next one) to distinguish between epidemic and
endemic weeks of several location. This allows to detect changes in the
dynamics that denote an outbreak regardless of being observed in low rates
of influenza, as is usually the case at the start of an epidemic.

Influenza epidemics start in one or several geographical foci, which can
appear in different weeks of the year. We intend to construct a model that
can deal with the emergence of these multiple outbreaks. We also want
to capture and use the spatio-temporal structure of the data in order to
improve the detection power, because the way influenza epidemics spread
suggests that neighboring regions tend to infect each other, and correctly
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modeling this will improve the classification.
Seasonal epidemic outbreaks can occur in different weeks of the year.

Some outbreaks of seasonal influenza can happen in December for one sea-
sons while for the next season the start can be delayed till February. It
can also be the case that one season has two different outbreaks or that
there is no epidemic that year. In addition to that, non-seasonal influenza
outbreaks can happen at any time of the year. Therefore our proposal does
not make assumptions about the temporal location of the epidemics or the
amount of them.

The proposed method makes use of data sources that provide informa-
tion of the rates of influenza or ILI referenced both spatially and temporally.
Spatial locations of the data can be expressed in several ways: individual
cases may be associated with their home address, individual or aggregated
cases may be assigned to a health care facility –hospitals, emergency rooms,
pharmacies, etc.–, or they can be associated to an administrative region.
All the possibilities can, in general, be translated to aggregated rates in
administrative regions, which results in spatially discrete support of the
information structured as a lattice, where a neighboring rule can be estab-
lished. This last format may in some cases be coarser, but ensures that
almost every spatial data of any surveillance system can be translated to
it. Therefore, with the intention of making our method as versatile as pos-
sible, we model it to deal with lattice data. For the time dimension, we also
choose discrete and equally spaced temporal information (daily or weekly)
divided in seasons, which is the usual way of reporting data to surveillance
systems.

An example of influenza rates over spatio-temporal discrete support is
shown in Figure 3.1. This figure displays the original map of administrative
regions (in this case, states) of the USA and the transformation of this
map into a lattice support with a neighboring network defined by sharing a
border. Below the spatial depiction of the map and the spatial lattice, the
temporal chains for each location of estimated influenza rate by Google Flu
Trends (with 4 of the 49 chains highlighted in different colors as examples)
are shown. In the bottom of the figure the differentiated estimated rates
are plotted. These temporal chains are the data used by our proposal.
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Figure 3.1: Map of USA, graph of neighborhood defined by sharing a border,
estimated influenza rates by Google Flu Trends between 2007 and 2013 and the
corresponding differentiated rates. Highlighted regions: Alabama in red, Arizona
in green, Illinois in blue and Virginia in yellow
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3.4.1 Modeling the differentiated rates

In the introduction of this chapter we have stated that for our spatio-
temporal proposal we model the differentiated rates instead of modeling
the counts, which was done on our proposed temporal framework of models
in Chapter 2. This results in a simpler and faster model (an important
feature, given the complexity that provides the spatial data and structure)
which is more adaptable to different data sources and do not focus the
attention on the magnitude of the rates. This can be an advantage because
in some cases using the magnitude of the rates can difficult the detection of
the beginning of an outbreak, as several outbreaks happen when influenza
rates are still low.

For simplicity in the notation, given a location i and season s, we name
yits to the rate in time t (rits), minus rate in time t− 1 (rit−1s):

yits = rits − rit−1s . (3.23)

We start the indices t of the raw rates rits at 0 so that the indices t of
the differentiated rates yits used in the model start at 1. The variable Zits
indicates the latent epidemic state for each time and location, with a value
of 1 for the epidemic state and a value of 0 for the non-epidemic state.
We consider that the differentiated rates follow a normal distribution with
mean and variance depending on the epidemic state:

yits ∼ N(RitsZits , σ
2
Zits) . (3.24)

Note that in this model, the notation RitsZits has not the same meaning as
in the model presented in Chapter 2, where RtsZts was the expected value
of the raw rate rts given Zts. In this case, it is the expected value of the
differentiated rate rit+1s − rits given Zts.

In Section 2.2.1 we have discussed that the common practice in dis-
ease surveillance of modeling the logarithm of the rates with a Gaussian
distribution may difficult the detection of the onset of epidemics. This pro-
cedure is also common in disease mapping and other branches of spatial
and spatio-temporal disease surveillance. In this case we do not take log-
arithms of the raw rates before differentiating them either. If we were to
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do so and then differentiated them, we would have that our data would be
log(rit+1s)− log(rits) = log( rit+1s

rits
). In this situation the model would only

consider the percentage of the growth and not its magnitude. Doubling the
rate would result in the same value for the response variable, whether the
jump on incidence was from a rate of 20 cases per 100 000 inhab. to 40 (rea-
sonable jump during the non-epidemic phase) or it was from 2000 to 4000
(more likely during the epidemic phase). We do not take logarithms to the
differentiated rates either, as this makes no sense because approximately
half of them are negative values.

3.4.2 The hidden Markov structure for the epidemic phase

In order to model the two possible phases in which each location and time
can be classified, we model a set of lattice variables Zits (equal to 1 to
indicate epidemic phase and equal to 0 to indicate non-epidemic phase) as
a hidden Markov chain for each location. In an equivalent way as described
in Section 1.6, the distribution of the latent variable Zits for each location
i and season s conditioned to Zit−1s follows a Bernoulli distribution with
transition probabilities common for all times, locations and seasons:

Zits ∼ Ber(pZit−1s1) . (3.25)

Jeffreys non-informative prior densities for Bernoulli trials are set for
the transition probabilities in the same way as those described in Section
2.2.2 for the temporal proposal:

p00, p11, p0 ∼ Beta

(
1

2
,
1

2

)
, (3.26)

where

pkl = P (Zits = l|Zit−1s = k) , (3.27)

pk = P (Zi1s = k) , k, l ∈ {0, 1} ,

and the rest of probabilities p10, p01 and p1 are obtained by complementar-
ity. As we have described in the previous chapter, the initial probabilities
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for each season p0 and p1 are not set as the stationary distribution for
the transition probabilities because the initial week of each season is not
randomly chosen, but is usually an endemic week.

The posterior probabilities of these Zits are estimations of the probabil-
ity of each location in each time to be in the epidemic state, and are used for
declaring epidemic alarms. This response is not a simple yes or no so it can
be used by the public health authorities to make better informed decisions
which actually take into account the uncertainty of the estimation.

3.4.3 Modeling the mean of the differentiated rates

Some features used in this proposal that help characterizing the epidemic
phase are the behavior of the expected value of the differentiated rates,
its spatial and temporal correlation and the higher structured variability
for the epidemic state. A higher temporal autoregressive structure in the
epidemic phase helps distinguishing the consecutive epidemic growths and
decays of the rates from the less correlated endemic differentiated rates. The
spatial structure captures the contagion effect, and the higher structured
variability helps distinguishing the sharper epidemic jumps from the milder
endemic ones.

The non-epidemic phase is characterized for jumps on the rates close
to zero. A first approach could be just leaving the mean to be 0, but a
close look at the data (see Figure 3.2) shows that there are non-epidemic
weeks where small growths or decreases happen on the rates in all locations
at the same time. This may be manifesting a stationary behavior of the
endemic weeks, with some weeks of common small decreases after the cold
season (winter in the Northern Hemisphere) and some weeks of common
small increases after the hot season (summer in the Northern Hemisphere).
In any case, these increases or decreases do not happen at the same exact
weeks in general, and non-stationary epidemics can break this dynamic. For
this reason, we consider each week t of each season s to have a mean value
µts0 which is common to all locations at that week, but different from the
mean of other weeks. No further spatial or temporal structure is considered
for the endemic phase.
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Figure 3.2: Estimated influenza differentiated rates by Google Flu Trends be-
tween 2007 and 2013 in USA for all the regions in gray and the mean of all the
regions in black.

The epidemic phase is modeled with a more complex spatio-temporal
structure than that of the endemic phase. It is expected for a region in
epidemic state to have several positive jumps (differentiated rates) until
reaching the peak of the epidemic and then the jumps are to become neg-
ative whereas the rates decrease again to the endemic level. Therefore, it
is expected that the differentiated rates for each location in the epidemic
state are temporally dependent.

Another expected behavior caused by the contagious nature of influenza
(corroborated by observation of real data) is that if one region has epidemic
growths on its incidence rates, neighbor regions may become infected and
show similar growths. As a consequence, we model the mean of the dif-
ferentiated rates by a term µts1, common for all the locations (the overall
epidemic rate for that week) but different for each time, plus a tempo-
ral auto-regressive structure of order 1 on the observations for each loca-
tion with parameter ρ, plus a spatial intrinsic conditional auto-regressive
(ICAR) model for each time. The mathematical expressions for the mean
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of both endemic and epidemic periods are:

Rits0 = µts0 , (3.28)

Rits1 = µts1 + ρyit−1s + ψits ,

with ψits being the ICAR term. Let us describe each of these three com-
ponents:

The common term for each time unit

As stated before, the common term of the endemic phase µts0 can capture
the mild common seasonality of non-epidemic ILI. In the case of the epi-
demic season, µts1 models the common rise or fall of the rates during the
epidemic. In both cases, these terms model the weekly consensus along all
the states in the same epidemic phase, which in general is positive in ascend-
ing phases (before the epidemic peak) and negative in descending phases
(after the epidemic peak). These factors do not appear in the temporal
model of Martinez-Beneito et al. (2008a), as only one region is analyzed
and, therefore, no inference on the weekly consensus for all the regions can
be done.

We consider µts0 and µts1 as two random effects over time, with larger
variability for µts1, as common rises or falls of the epidemic phase are
expected to be larger than those of the endemic phase. In order to avoid
identifiability problems with the main unstructured variability σZits of the
main distribution, we set the variances of the two random effects to be
proportional to those of the main distribution. We can express the modeling
of the common temporal terms as follows:

µts0 ∼ N(0, σ2
µ0) , σµ0 = λσ0 , (3.29)

µts1 ∼ N(0, σ2
µ1) , σµ1 = λσ1 , λ ∼ Unif(0, a) ,

where λ is the estimated proportion factor and a is a hyperparameter to
be set by the modeler expressing a vague prior knowledge. For example,
a = 100 would be a possible choice, as it is really unlikely that this part of
the structured variability is so much larger than the unstructured one.
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The autoregressive structure in the epidemic mean

During the epidemic state of influenza, it is common to observe a rise on
the rates during several weeks and, after reaching the peak, a descend of
the rates that also lasts several weeks. In contrast to the lack of temporal
structure of the non-epidemic mean, the autoregressive structure on the
growths is able to fit this behavior. This is one of the features that allow
to distinguish between epidemic and non-epidemic states.

To ensure the stationarity of the autoregressive process we must bound
the parameter ρ to the interval [−1, 1]. Anyhow, assuming that the corre-
lation between subsequent growths in the epidemic phase will be positive,
in practice we can restrict the interval to [0, 1]:

ρ ∼ Unif (0, 1) . (3.30)

In the same fashion as in Section 2.2.4, and to ensure that the variance of
yi1s is equal to the stationary variance of the series {yits}∞t=1, the Expression
(3.24) for the first week of each season is modified as follows:

yi1s ∼ N

(
Ri1sZi1s ,

σ2
Zits

1− Zi1sρ

)
. (3.31)

As mentioned in Section 2.2.4, this type of correction is introduced, for
example, in works like that of Martinez-Beneito et al. (2008b) in the context
of disease mapping.

The ICAR structure in the epidemic mean

We have seen how the autoregressive structure models similar jumps for
consecutive times for each location during the epidemic phase. In an anal-
ogous way, the ICAR structure captures how neighbor locations in the epi-
demic phase have similar behavior in the growth of rates which differ from
the general common behavior. Clusters of locations where the influenza is
spreading show growths on rates that adapt better to this modeling, while
neighboring regions where the disease has not extended yet adapt better
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to the absence of any spatial structure (endemic state). This behavior is
theoretically expected due to the nature of influenza data, but it has also
been empirically suggested in the work of Fox and Dunson (2015). The
authors propose a Bayesian nonparametric covariance regression, which al-
lows the variance matrix in a multivariate regression model to vary with
the predictors among time. The model is exemplified with an application
on USA Google Flu Trends data between 2003 and 2009. The application
does not assume any prior spatial structure but the estimated posterior
correlation matrices among regions for each week show it. In addition, the
estimated correlation values are higher during the epidemic weeks and lower
on non-epidemic weeks.

The terms φits for a given week t and season s follow a joint ICAR
distribution as described in Section 3.2. We set a non-informative prior for
conditional standard deviation of ψits:

σψ ∼ Unif(0, b) , (3.32)

with b a hyperparameter to be fixed by the modeler expressing a vague
prior knowledge. In a similar way as in Section 2.2.3 for the temporal
framework of models, the hyperparameter b may be chosen to be any value
above the highest differentiated rate in absolute value, to ensure that the
prior distribution is really vague.

This structure is additional to the common parameterization of the rise
and fall of the rates during the epidemic phase, expressed in Expression
(3.29). The existence of this µt1 is necessary as the ICAR distribution is
constrained to sum zero and therefore an additional component is needed
to model the mean of the epidemic period at each week.

3.4.4 Modeling the variance of the differentiated rates

We have seen that one important aspect for the discrimination between
epidemic and non-epidemic phases in our proposal is the behavior of the
expected value of the differentiated rates, its spatial and temporal correla-
tion and the higher structured variability for the epidemic state. Another
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feature that helps characterizing the epidemic phase will be the unstruc-
tured variability.

In general, differentiated rates are centered in zero, therefore, though the
behavior of the mean of the response variable gives important information
to distinguish between epidemic phases, the behavior of the variance of the
data is critical for this task. The jumps of the rates on the non-epidemic
state are relatively small in absolute value, while the growths or decreases
of the rates on the epidemic state are usually larger. A wider variance on
the differentiated rates is therefore expected for the epidemic state.

In Section 2.2.3 we have already seen that characterizing the epidemic
state by a higher variance has been successfully done in works like those
of Martinez-Beneito et al. (2008a) and Nunes et al. (2013). The first work
proposes a model on the differentiated rates and the second proposal mo-
dels the raw rates. In some spatio-temporal proposals, like those of Zou
et al. (2012) and Heaton et al. (2012), the extra variance of the data on
the epidemic phase is modeled by the extra variance of the added spatio-
temporal structure. In our case, besides the structured noise that is fitted
by the spatio-temporal term for the mean, we also consider an unstruc-
tured noise in the epidemic phase, getting a combination of structured and
unstructured noise in the fashion of a BYM model Besag et al., 1991. We
also ensure that the unstructured noise of the epidemic phase is higher than
that of the epidemic phase, emphasizing the importance of the variance as
a tool for classification and avoiding the interchangeability of these terms.

Therefore, we model the unstructured variability of the two phases by
obtaining both standard deviations from a uniform prior and ensuring that
they are ordered:

σ0 = θ[1]

σ1 = θ[2] (3.33)

θm ∼ Unif(0, c) m = 1, 2 ,

with c a hyperparameter to be set by the modeler expressing vague prior
knowledge. Setting c as a value above the largest differentiated rate in
absolute value is a sensible choice, as also suggested in Section 3.4.3 for the
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standard deviation of the ICAR structure.

Unlike the temporal proposal, the spatio-temporal model does not con-
sider different variances for each season. Peaks of raw rates may be larger
or smaller depending on the season, and thus, the variance of the epidemic
rates may be larger or smaller. That is why we did this distinction in the
temporal model, but when dealing with the differentiated rates one is mod-
eling the velocity with which the incidence grows or decays. We consider
this velocity of growth and decay as a characteristic of the epidemic and
endemic phases that remains similar over the seasons. Also, sharing the
same epidemic and endemic variance parameters across years helps to bet-
ter distinguish between phases during the first weeks of each season, where
not enough information is available to estimate a new variability parameter.

3.4.5 The complete model

For clarity in the understanding of the proposed method, we present again
all the previously introduced equations which make up the hierarchical
model:
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yits ∼ N(RitsZits , σ
2
Zits) ,

Rits0 = µts0 , µts0 ∼ N(0, σ2
µ0) ,

Rits1 = µts1 + ρyit−1s + ψits , µts1 ∼ N(0, σ2
µ1) ,

ψits ∼ N

(∑
j∼i ψjts

ni
,
σ2
ψ

ni

)
Zits ∼ Ber(pZit−1s1) ,

σ0 = θ[1] ,

σ1 = θ[2] , θm ∼ Unif(0, c) , m = 1, 2 ,

σµ0 = λσ0 ,

σµ1 = λσ1 , λ ∼ Unif(0, a) ,

ρ ∼ Unif (0, 1) ,

σψ ∼ Unif(0, b) ,

p00, p11, p0 ∼ Beta

(
1

2
,
1

2

)
.

As it occurs with the temporal proposal in Chapter 2, there is no
analytic expression for the posterior distribution of the parameters of the
hierarchical model presented in this spatio-temporal proposal. Therefore,
MCMC simulation has been carried out using the software WinBUGS. The
code of the model can be found in Appendix D. As done in the previous
chapter, the posterior probability of the hidden variables Zits are the
estimations of the probability of being in epidemic for each region, time
and season. These estimations for the last week available are the tool used
to trigger the epidemic alarms by a surveillance system.
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3.5 Application on United States Google Flu
Trends data

In the past section we have defined our spatio-temporal proposal of a
Markov Switching model over the differentiated rates for the detection of
influenza outbreaks. In the present section we show an application of the
proposed spatio-temporal model on United States Google Flu Trends data.
We also compare the proposal with some simplifications of the model to
stress the pertinence of using several of the statistical structures which
conform this proposal.

3.5.1 The USA Google Flu Trends data

In Section 1.3.1 it has been discussed that there are several kind of data
sources and several ways to retrieve data, with different specificity and
timeliness. We took special interest in the automated collection of data
from search engines, like Google Flu Trends (GFT), which provide almost
immediately large amounts of data from vast populations and territories
without the purposeful collaboration of the individuals. It has also been
discussed that, over the years, the original algorithm ceased to be suited
to estimate the influenza incidence, probably because some conditions and
some users’ behaviors changed (for example, with the appearance of a non-
seasonal strain of influenza like the swine flu). For this reason the algorithm
has been revised several times, specifically attending to the prediction of
influenza incidence rates from the CDC for the USA, its states and its main
cities. In any case, in the following sections do not pay attention to whether
the data are narrowly accurate when estimating the CDC published inci-
dence rates but we just consider that it is a realistic data source, regardless
of its quality.

The data we use in this chapter, represented in Figure 3.1, consist of
weekly estimates of influenza incidence for the 48 spatially connected states
of the USA plus Washington, D.C., between 2007-12-02 (48th week of the
year) and 2013-01-20 (3rd week of the year). We separate the seasons on
the middle of summer, that is, on week 26 of each year. Data used by the
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model are the differentiated rates for each state. No virus isolates or other
more reliable data segregated by states that could be used to provide a gold
standard were available.

3.5.2 Retrospective estimates of the epidemic phase in space
and time

As a first approach to evaluate the performance of the spatio-temporal
model on the GFT USA data described above, we show the results of the
retrospective application of the model. The real use of a detection method is
prospective, but the retrospective application is computationally cheap and
can offer a proxy of its performance which can be used for its evaluation.
In Figure 3.3 one can observe the estimated posterior probability of the
epidemic phase for four randomly chosen states of the 49 possible ones
which we use as an example for the rest of the chapter (Alabama, Arizona,
Illinois and Virginia). In Section C.1 of the appendices, all estimates for
the 49 states are displayed. The retrospective detection of the epidemic
phase shows a sensible behavior that appears to give high probability of
epidemic to those weeks with step growth or decay around the peak of the
epidemic for each season.

Parameter Posterior mean 95% Credible interval

p00 0.95 [ 0.95 , 0.96 ]
p11 0.89 [ 0.87 , 0.90 ]
σ0 85.00 [ 82.99 , 87.01 ]
σ1 430.89 [ 404.70 , 458.70 ]
σµ0 127.61 [ 116.60 , 138.40 ]
σµ1 646.69 [ 583.28 , 701.00 ]
σψ 770.10 [ 716.90 , 822.70 ]
ρ 0.35 [ 0.31 , 0.38 ]
λ 1.50 [ 1.38 , 1.62 ]

Table 3.1: Posterior mean and 95% credible interval for the parameters of the
spatio-temporal model applied on the GFT USA data in a retrospective basis.
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Figure 3.3: Retrospective estimated probability of being in epidemic phase by the
spatio-temporal model on GFT USA data for 4 states. In black: weekly estimated
influenza incidence per 100 000 inhabitants during seasons from 2007–2008 to
2012–2013.

In Table 3.1 the posterior mean and 95% credible interval for the most
relevant parameters of the model are shown. The high values of p00 and
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p11 indicate that weeks in a certain phase tend to be followed by weeks of
the same phase. The typical season has one peak, so usually there is one
transition from non-epidemic to epidemic phase and one transition from
epidemic to non-epidemic phase per season. Roughly speaking, p00 takes a
value around 1 over the average quantity of endemic weeks per season, while
p11 takes a value around 1 over the average quantity of epidemic weeks per
season. The fact that p00 > p11 comes therefore because the mean length of
the epidemic phase is shorter than the mean length of the endemic phase.
The standard deviations associated to the endemic phase, σ0 and σµ0, take
notably lower values than those of the epidemic phase, σ1, σµ1 and σψ.
This indicates that the variance of the differentiated rates is a key point
for the classification of the two states of the Markov chain. All the credible
intervals are quite narrow, which is an indicator of the identifiability of all
the parameters of the model.

3.5.3 Online versus retrospective application of the spatio-
temporal model

For a real life application of the spatio-temporal proposal in a surveillance
system, the estimates of the epidemic phase would have been obtained
week by week. Therefore, for each week only data from that week and
previous weeks (but not following ones) could have been used to estimate
the epidemic state. To reproduce this realistic behavior one must apply the
model in an online basis. Figure 3.4 compares the posterior probability of
epidemic for the last season of the GFT USA data for the 4 states used
as example previously mentioned. In Section C.2 of the appendices, the
comparison for all 49 states is displayed.

The results of both ways of applying the model are similar, though the
online estimates tend to take a little bit longer to give high posterior proba-
bility to the epidemic phase. This behavior is expected, as the retrospective
way of applying the method can use information from posterior weeks when
estimating the phase, while the online application can not.

Paradoxically, one can also observe that the online outcome is more
consistent about the estimated phase along time, in the sense that not many
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Figure 3.4: Comparison of the online and retrospective estimated probability
of being in epidemic phase by the spatio-temporal model on GFT USA data for
4 states. In black: weekly estimated influenza incidence per 100 000 inhabitants
during season 2012–2013.

ups and downs are observed in the evolution of the posterior probability of
epidemic through the weeks. In contrasts, the retrospective estimate shows
a more erratic line, jumping from high and low posterior probabilities of
epidemic.

Figures 3.5, 3.6 and 3.7 show maps of the estimated posterior probability
of being in epidemic phase for some of the weeks of the last season when
applying the model in an online basis. One can appreciate how the model
makes a sensible estimation of the spread of the outbreak, which starts
from the south and east of the United States and ends up covering all the
country.

3.5.4 Comparison with alternative proposals

In order to evaluate the relevance of the proposed spatio-temporal model,
in this section we show a comparison of the new proposal with two simpli-
fications of the proposal, one variation and the model of Martinez-Beneito
et al. (2008a) in which it is based.

Simplifications and variations of our proposals

Here we describe the two simplifications and the variation we are going to
compare the spatio-temporal proposal with. We also explain how we apply
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Figure 3.5: Online estimated probability of being in epidemic phase by the
spatio-temporal model on GFT USA data (green-red scale). Weeks 15 and 17.
Contours in purples: estimated influenza incidence per 100 000 inhabitants.
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Figure 3.6: Online estimated probability of being in epidemic phase by the
spatio-temporal model on GFT USA data (green-red scale). Weeks 19 and 21.
Contours in purples: estimated influenza incidence per 100 000 inhabitants.
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Season 6 Week 23

[0,10)%
[10,20)%
[20,30)%
[30,40)%
[40,50)%
[50,60)%
[60,70)%
[70,80)%
[80,90)%
[90,100]%

[0,500)
[500,1000)
[1000,1500)
[1500,2000)
[2000,2500)
[2500,3000)
[3000,3500)
>3500

Season 6 Week 25

[0,10)%
[10,20)%
[20,30)%
[30,40)%
[40,50)%
[50,60)%
[60,70)%
[70,80)%
[80,90)%
[90,100]%

[0,500)
[500,1000)
[1000,1500)
[1500,2000)
[2000,2500)
[2500,3000)
[3000,3500)
>3500

Figure 3.7: Online estimated probability of being in epidemic phase by the
spatio-temporal model on GFT USA data (green-red scale). Weeks 23 and 25.
Contours in purples: estimated influenza incidence per 100 000 inhabitants.
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the model of Martinez-Beneito et al. (2008a) over spatio-temporal data.

Removing the spatial component. The first proposed simplification is
removing the structured spatial random effect, the intrinsic CAR com-
ponent, from the modeling of the epidemic phase. To do so, the lower
equation in Expression (3.28) loses the ψits term. The modified ex-
pression is as follows:

Rits0 = µts0 (3.34)

Rits1 = µts1 + ρyit−1s .

By comparing this simplification with the original new proposal one
can assess how the assumption of similar growths of incidence among
neighbors in epidemic phase affects the fitting and the phase classifi-
cation.

Removing µts0. As it is indicated in Section 3.4.3, the term µts1 for the
epidemic phase is necessary because of the constraint to zero of the
ICAR term. Hence the term µts0 is added to the model to capture
the mild common jumps on the endemic phase, but also thinking that
it brings balance of complexity among the regressors of the epidemic
and endemic phases, preventing an excessive sensitivity of the model.
To check that this choice is appropriate, the second simplification we
compare is the removal of this random effect on the common mean
of the differentiated rates on the non-epidemic phase for each time,
µts0. By doing so, the mean of the non-epidemic phase is set equal to
0. Expression (3.28) for this modification becomes now as follows:

Rits0 = 0 (3.35)

Rits1 = µts1 + ρyit−1s + ψits ,

changing the original term µts0 for a 0. Also, Expression (3.29) is
substituted for this modification by the following, so that µts1 has a
variance that is conditionally independent from σ0 and σ1:

µts1 ∼ N(0, σ2
µ1) σµ1 ∼ Unif(0, d) . (3.36)
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The hyperparameter d is set to a value above the largest differentiated
rate (in absolute value), as suggested in Sections 3.4.3 and 3.4.4.

Leroux. The variation of the model we compare the new proposal with
is the substitution of the ICAR term on the epidemic regressor by
the spatial structure proposed by Leroux et al. (2000), previously
mentioned in Section 3.2. Expression (3.28) remains the same, but in
this case, the definition of the conditional distribution of the terms
ψits|ψ−its is set as a normal distribution with conditional mean and
variance as those expressed in the work of Leroux et al. (2000).

Observing the conditional distribution of the Leroux effect as de-
scribed in Expression (3.6), and taking into account that φ is bounded
between 0 and 1, one may notice the following: the mean of the condi-
tional distribution monotonically increases with φ, while the variance
decreases as φ gets bigger (except when ni = 1, where the variance is
constantly σ2

ψ). In the limit cases, the distribution is that of an un-

structured random noise with 0 mean and variance equal to σ2
ψ when

φ = 0 and an ICAR distribution, with mean equal to 1
ni

∑
j∼i ψjts and

variance equal to
σ2
ψ

ni
, when φ = 1. All intermediate values of φ result

in a Gaussian distribution with mean and variance values in between.
In that way, the parameter φ distributes the variability of the Leroux
term between spatially structured and unstructured variability. We
compare our proposal with this variation to check if the ICAR term
forces a too strong spatial relation which Leroux model could be able
to soften.

M-B 2008. M-B 2008 is the abbreviation we use in this chapter for the
model of Martinez-Beneito et al. (2008a). It has already been ex-
plained in detail in Section 1.7 and is the model in which our pro-
posal is based. The model is run for each of the 49 locations of the
GFT USA data set independently, so no information (whether spatial
or of any other nature) has been shared among them. The compar-
ison with this model indicates the relevance of the spatio-temporal
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modeling against the purely temporal modeling which does not share
information among different geographic units at all.

Comparison of computational cost

Table 3.2 shows computation time in minutes for the spatio-temporal pro-
posal and its variations, run on all the GFT USA data set in a retrospective
basis. Calculations were performed in an Intelr CoreTM CPU I7–3770 with
4 cores at 3.40GHz and 8Gb of RAM, with OS Windows 7 Professional 64
bits. A WinBUGS process with 2 chains was run for each model, with 1 000
iterations of burning and 3 000 subsequent iterations. After thinning, 1 000
iterations were kept, 500 from each chain. Convergence was checked by ob-
serving the effective sample size, the R̂ statistic (see, for example, Gelman
et al. (2013)) and visual check of the chains of simulations.

Reference removing ICAR removing µts0 Leroux M-B 2008

64 40 38 55 19

Table 3.2: Computational cost in minutes for the spatio-temporal model applied
on the GFT USA data in a retrospective basis, its variations and Martinez-Beneito
et al. (2008a) model. Reference denotes the model proposed in Section 3.4.

The greatest difference in terms of computational time is observed be-
tween the new proposal and the M-B 2008 model, which runs over three
times faster. The simplifications removing the ICAR or the µts0 terms of
the proposal take around 60% of the time the spatio-temporal proposal
takes, and the Leroux variation reduces the time of computation in about
15%. All observed computational costs are affordable if the model were to
be run once a week in a real surveillance system.

Comparison of estimated parameters and epidemic phases

In order to give an insight into how the different versions alter the detection
of the epidemic phase, Figure 3.8 displays the estimated posterior proba-
bility of being in the epidemic phase for the retrospective application of the
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spatio-temporal proposal, its variations and the M-B 2008 model for four
of the locations. The same graph for all the locations is depicted in Section
C.3 of the appendices. The estimated mean for the principal parameters of
the models are shown in Table 3.3.
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Figure 3.8: Estimated probability of being in epidemic phase by the spatio-
temporal model, its variations and M-B 2008 on GFT USA data for 4 states. In
black: weekly estimated influenza incidence per 100 000 inhabitants during seasons
from 2007–2008 to 2012–2013.
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Param. Reference without ICAR without µts0 Leroux M-B 2008

p00 0.95 0.96 0.94 0.95 0.95
p11 0.89 0.88 0.92 0.87 0.89
σ0 85.00 88.27 92.75 84.45 126.78
σ1 430.89 712.33 390.94 259.51 935.40
σµ0 127.61 118.72 – 153.39 –
σµ1 646.69 958.09 418.72 469.81 –
σψ 770.10 – 582.51 930.34 –
ρ 0.35 0.39 0.36 0.36 0.51
λ 1.50 1.34 – 1.82 –
φ – – – 0.59 –

Table 3.3: Comparison of the estimated mean for the parameters of the spatio-
temporal model applied on the GFT USA data in a retrospective basis and its
variations, and the average value of the mean for the parameters of Martinez-
Beneito et al. (2008a) model applied separately on the 49 temporal strains of data
of each state. Reference denotes the model proposed in Section 3.4.

Taking a look at the yellow line in Figure 3.8, one can observe how the
detection of the simplification without µts0 is consistently higher than the
rest. The higher posterior estimated mean for p11, shown in Table 3.3, also
indicates the higher sensibility and lower specificity of this simplification.
As it was conjectured, not having a random effect on the endemic mean of
all locations depending on t gives advantage to the epidemic structure over
the non-epidemic structure to be able to adapt to the data, and this rises
the amount of weeks detected as epidemic. In any case, the yellow lines
show some wiggly unexpected movements at moments without particular
evidence of epidemic phase that advice us to discard this simplification in
the original model.

The red line represents the detection when removing the spatial depen-
dence, that is, when not considering an ICAR component for the epidemic
phase. The layout of this red line is similar to that of the blue line, which
represents the novel spatio-temporal proposal, but with lower values in cer-
tain weeks. This lower values tend to be located in weeks next to others
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which have been classified as epidemic weeks. It seems that the addition
of the spatially structured component helps with the correct classification
of these weeks as epidemic ones thanks to the sharing of the information
with neighbors. Observing the estimates for the means of the parameters in
Table 3.3, one can see how the variability that σψ can not capture (because
it is absent) is split among the other two variance terms of the epidemic
phase; σ1 and σµ1.

The detection performance of the Leroux model is almost the same as
that of the original proposal, as it is shown by the almost complete super-
position of the blue and gray lines. The estimated mean of the parameters
is quite similar with the notorious exception of the variances for the epi-
demic phase. As can be appreciated in Table 3.3, part of the non-spatial
variability modeled in σ1 in the spatio-temporal proposal moves to σψ in
the Leroux model, which is a parameter that captures both spatially struc-
tured and unstructured variability. The parameter φ indicates that part of
the variability expressed by this term is spatially structured and the rest
is unstructured. One slight advantage of the Leroux model is that it offers
more freedom to decide the variance of the random effects for the mean of
the epidemic and non-epidemic regressors. This is so because the unstruc-
tured variability is split among σ1, which directly affects the value of σµ1,
and σψ, which does not.

The model proposed by Martinez-Beneito et al. (2008a), represented in
green, offers different periods detected as epidemic than the spatio-temporal
proposal or its variations, classifying as in the epidemic phase some weeks
that are considered as non-epidemic by the other models and vice versa.
This shows the effect of sharing information among various regions, even
if the neighboring structure is not taken into account (as is the case of the
model without the ICAR component). It is also worth mentioning that M-B
2008 tends to estimate a higher temporal correlation in the autoregressive
structure, given that the average mean value of ρ is 0.51, compared with
the 0.35 value of the new proposal, as shown in Table 3.3. This is probably
because of the absence of other terms, as are µ1ts or the spatial terms, to
capture the structure of the epidemic data.
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Comparison of the predictive power

When comparing detection methods, a first approach one can consider is
assessing the sensitivity, specificity and timeliness of the models and, to do
so, a gold standard is needed. When a gold standard is not available, as in
our case, other approaches should be taken. One option used in some works
like that of Boyle et al. (2011) is the comparison of the predictive power of
the models. All models in the comparison have the latent variables Zits in
their formulation. The posterior probability for these latent variables in all
the models are the estimated probability of being in the epidemic phase. It
seems sensible to assume that a model that gives better prediction of the
data will also give better estimates of the latent variable, from which the
observed values directly depend. Therefore the predictive power assessment
can be sensibly used as an indirect measure of the quality of detection.

Approximate cross-validatory predictive assessment, proposed by Mar-
shall and Spiegelhalter (2003), was performed to evaluate the predictive
power of the methods. This is a computationally cheaper alternative to the
full leave-one-out cross-validatory assessment where the model is run only
once instead of once per observation. Prediction for each region i was cal-
culated ignoring the estimate of the parameter ψits but taking into account
the parameters of the neighbors ψjts with j ∼ i. This process was done
for each week in an online basis, doing prediction using only data from the
same or previous weeks. In order to do the approximate cross-validatory
predictive assessment, a measure of the discrepancy between predictions
and observed values is needed. As all the models in the comparison are de-
fined under the Bayesian paradigm, predictions are expressed as probability
distributions and not as punctual estimates. For this reason, in order to
evaluate the goodness of the predictions in comparison to the observations,
the Continuous Rank Probability Score (CRPS, see Gneiting and Raftery,
2007, for example) was used. CRPS, described in detail in Section A.4 of
the appendices, is a measure of discrepancy between a probability distribu-
tions and a point. This measure considers not only the posterior expected
value of a distribution but also its precision and shape to calculate the dis-
tance between the prediction and the observation, giving lower scores for
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better predictions. One advantage of using approximate cross-validatory
predictive assessment over using DIC (also a model selection tool based
in predictive criterions) is that the former is able to evaluate the online
performance of the model. DIC, instead, considers all the retrospective es-
timates, not only the last week and, because of that, it can not be applied
to adequately evaluate the application of the models in an online basis.

Figure 3.9 shows the average CRPS for all 49 locations, for each week of
season 2012–2013 calculated in the cross-validatory predictive assessment of
the new spatio-temporal proposal, its variations and the M-B 2008 model,
which requires applying each one of the models in an online basis for all
the weeks of this last season. The graph on the bottom of that same figure
shows a detail of the first 15 weeks, where the majority of the states are clas-
sified as non-epidemic. We can observe that the new proposal, depicted in
blue, offers the best (lowest) scores of CRPS both in the first weeks, where
the majority of the states are in the endemic phase and in the last weeks,
where the majority of locations are in the epidemic phase. The red line,
representing the model without spatial structure, shows almost equivalent
scores in the first weeks, as should be expected, as for the non-epidemic
observations the spatial component is not present. The suppression of the
ICAR term in the epidemic linear regressor, though, results in worse scores
in the last weeks. The same phenomenon, but much milder, happens with
the model that substitutes the ICAR structure for a Leroux structure, rep-
resented by the gray line. The quality of the prediction is close to that of
the new proposal, but somehow worse for the epidemic weeks. The model
represented by the yellow line differs from the original novel proposal only
in the non-epidemic regressor, which is modeled without the µts0 term. For
this reason the most visible differences are in the first weeks, as their be-
havior is not well captured by the simplified model. The M-B 2008 model,
shown in green, gives the worst values among all the compared models both
in the first and last weeks. This indicates that sharing information among
locations is important to correctly model both endemic and epidemic weeks.

To summarize, in this chapter we have presented a review on spatio-
temporal methods for the detection of outbreaks, paying special attention
to those dedicated to influenza surveillance. This review has set the theo-
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Figure 3.9: Cross-validatory predictive assessment using CRPS as measure of
discrepancy for the new proposal, its variations and M-B 2008. Average CRPS for
the prediction of the 49 states is shown for all the weeks of the season 2012–2013.
Graph in the bottom shows a zoom for the first 15 weeks of the season so the
differences may be better appreciated.

retical framework for our proposal, also presented in this chapter, a spatio-
temporal Markov switching model on the differentiated rates for the de-
tection of influenza outbreaks. This novel proposal has shown to be able
to detect the onset of influenza outbreaks in a set of neighboring regions
where incidence data is available along time. It has shown no problem cap-
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turing the behavior of the spread of influenza, which can start in several
focuses and spread along entire countries. The comparison with several
simplifications and variations has shown the pertinence of the components
of its hierarchical structure. In the next chapter we present the conclusions
to the work in the first three chapters and some possible future lines of
research are discussed.
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Chapter 4

Conclussions and future lines

4.1 Conclussions

In this thesis we have intended to offer two specific contributions to the field
of the statistical methods for the detection of influenza outbreaks by propos-
ing two extensions of the model presented in the work of Martinez-Beneito
et al. (2008a). These new proposals are Bayesian hierarchical statistical
models with a set of latent variables structured as hidden Markov chains.
A review of statistical methods for the detection of influenza outbreaks
has justified the necessity to develop these new methodologies capable of
avoiding limitations present in previous methods and has informed their
creation.

Our proposals consider the behavior of the differentiated rate as an
important discriminating feature. By paying attention to the differentiated
rates and not only to the raw rate, several mild increases or a sharp one are
able to rise the alarm. This happens even when the size of the raw rates
are relatively small, as they usually are at the beginning of an epidemic
period, allowing our proposals to trigger timely alarms without the need
to wait for the rates to rise high. Also, with this approach, an isolated
but persistent mild increase of the mean rate (typical of the endemic rates
during the cold season of the year) does not trigger an alarm, as methods
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based in cumulative charts would.
A core feature of both of our proposals is the use of MSM. The first

advantage seen in the use of MSM is the fact that one is not restricted to
model the endemic phase and test if data fit the model, and when they
do not, declare an alarm. MSM, instead can model both the endemic and
epidemic phase, and by doing so, the knowledge about the temporal and
spatio-temporal behavior of influenza epidemics is also helpful for determin-
ing the epidemic and endemic phases. Models using these hidden variables
to discriminate between epidemic and non-epidemic phases do not require
of a previous distinction of what is epidemic and what is endemic in the
training data, so one of the main problems of methods based on historic
limits is avoided. Influenza epidemics spreading along huge territories is
not a problem when using this hidden indicators of epidemic, as there is no
problem for these variables to take the same epidemic value across all the
regions for a given time. Another advantage is the fact that the expected
value of these latent variables offer a decision tool that is not dichotomous,
but a continuous measure between 0 and 1 for the probability of presence
of epidemic.

Once again we point out that using Bayesian inference has allowed us to
construct and do inference with relative ease on hierarchical models. They
are capable of modeling complex behaviors by combining several compo-
nents (hidden Markov chains, temporal, spatial and spatio-temporal struc-
tures of conditional dependence or any others). This paradigm also offers
interpretability of the results as probability distributions, which allows us
to speak of the expected probability of being in epidemic phase for each
time (and location).

In the temporal proposal, the use of a Poisson distribution to model the
counts of incident cases in the first layer of the framework of hierarchical
models has allowed the models to capture part of the intrinsic variabil-
ity of the data that directly modeling the rates does not. An important
point for the classification of the epidemic or non-epidemic phase in this
framework of models has been the variability, as non-epidemic phases show
much less variance. Another key point has been the temporal structure
of the data. The presence or absence of the autoregressive terms in the
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regressors has highly changed the estimated classifications of the epidemic
phase. However, if the autoregressive term had been present, the degree of
this temporal structure had affected only in a mild way to the estimation
of the epidemic state. The nature of the data and some of the observed
results have suggested that it is important to use the autoregressive struc-
ture in both regressors. For reasons parsimony, it is also advisable to use
models of the framework with the same degree of structure for both regres-
sors. Anyhow, the four models with autoregressive terms in both regressors
(AR1-AR1, AR1-AR2, AR2-AR1 and AR2-AR2) offer, in general, similar
enough outcomes.

When trying to decide which model better detects influenza epidemics,
several proposals have been discussed, as none of them offers a definitive
criterion. The first issue to consider has been whether to use the online
or the retrospective performance of the models to make this decision. The
online basis (the one used in real surveillance systems for outbreak detec-
tion) offers realistic estimates, but it is computationally expensive. The
estimated probabilities of epidemic have been appreciated to be similar in
both fashions, but the online application of the model have declared some
outbreaks one or two weeks later than the retrospective application (which
is understandable, as no information about the future behavior of data is
available).

A second issue has been the selection of a measure of the performance
of the detection model. The DIC is a cheap to obtain measure, as it only
requires a retrospective application of the model. It measures the goodness-
of-fit of the model penalizing its complexity, but does not directly measure
what has been tried to be assessed. Weighted ROC measures do evaluate
how well a method detects and how fast it does it, but two difficulties have
arisen. The first one is to determine the best way to summarize a three
dimensional information (sensitivity, specificity and timeliness) in a one di-
mensional measure. Our results have shown that measures which define
sensitivity in terms of number of correctly classified weeks and measures
which define sensitivity in terms of correctly detected seasons show discrep-
ancies in the order of the models. We have also noticed that the election
of the maximum delay for a successful detection does not influence much
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in the outcome of these measures.
The second problem is that weighted ROC measures require a gold stan-

dard. We have chosen to construct a gold standard based on the laboratory
isolates of the virus, though several other ways are possible. The outcome
of the weighted measures has proven to be quite dependent on the way the
gold standard was defined. Observed correlation between DIC and weighted
ROC measures in one of the applications of the model have been far from
perfect, but higher than 0.5 in all cases, which indicates that DIC can be
used as a proxy of weighted ROC measures when they are not available.

The proposed temporal models have shown better weighted ROC scores
with respect to other methods in the literature. This indicates that the mo-
dels of our proposal give better and faster detection of influenza outbreaks.

For the evaluation of performance of the spatio-temporal proposal, ap-
proximate cross-validatory predictive assessment using CRPS has been
used. While doing so, we have assumed that correctly predicting the data
indicates that we are doing a good inference on the value of the latent
variables which indicate the epidemic state. CRPS has shown to be useful
to evaluate the relevance of two terms in the model. One of the terms is
the spatial ICAR term in the epidemic regressor, and the other is µts0, the
random effect on the mean of the non-epidemic differentiated rate. Both of
them have proven to be terms of the proposal that notably improve CRPS.
This shows that these terms are necessary for the model to correctly esti-
mate the data and, by the assumption, to better determine the epidemic
state.

The spatial structure proposed by Leroux et al. (2000) has also been
tested as an alternative to the ICAR structure. This structure makes the
hierarchical model more flexible which, in theory, can be interesting. Any-
how, the estimated epidemic probabilities have been almost the same and
the obtained CRPS values have been slightly worse.

The model of Martinez-Beneito et al. (2008a) offers estimated probabil-
ities of detection that in some regions and times are quite different to those
of the novel proposal. The CRPS values are notably worse than those of the
new proposal or its variations. This indicates the impact and importance
of using a spatio-temporal model, like the one we have proposed, instead of
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using a temporal model for each region, an approach that does not allow
information to be shared along space.

To sum up, in this research we have shown a review on methods for
the detection of influenza outbreaks and have proposed a temporal frame-
work of models and a spatio-temporal model for the detection of influenza
outbreaks. They are able to detect outbreaks without the need of previous
definition of epidemic and endemic phases on historic data, do not assume
temporal location of the epidemics and can model the extensive spatial
spread of usual influenza epidemics. The use of hidden Markov chains and
temporal and spatio-temporal structures of conditional correlation under
the Bayesian paradigm have been critical to build the novel proposals and
to easily set a criterion for the triggering of alarms in the form of prob-
ability of epidemic. Also, the variability of rates and the behavior of the
differentiated rates have shown to be important features of the influenza
data which can be used to distinguish between epidemic and non-epidemic
phases. We have also seen how the evaluation and comparison of the per-
formance of the models is not trivial, and have discussed several ways to
do it.

4.2 Future lines

As a conclusion to this work, we present possible future lines of investiga-
tion based on the research presented here. The proposals presented in this
work have set the temporal and spatio-temporal structures on the mean
behavior of the raw or differentiated rates. Another approach is to model
the matrix of transition probabilities of the hidden Markov chain, so the
probability of changing to epidemic or endemic phase is not the same for all
the weeks. The temporal model presented by Nunes et al. (2013) uses logit
regressions with partial data and laboratory isolates to model the transition
probabilites. The works of Zou et al. (2012) and Heaton et al. (2012) mod-
ifies the non-epidemic to epidemic transition probability according to the
amount of neighboring regions in epidemic phase. Further models with spa-
tial and spatio-temporal structures can be proposed to model the transition
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matrix.
The edges of the neighborhood structure for the spatio-temporal appli-

cation on this thesis have been defined as sharing borders and they all have
the same weight. Other neighboring graphs can be considered, for example,
the movements of people, using main flight connections and other modes
of transport as edges of the graph. Following this idea, one may consider a
non-dichotomous graph, where weights of the graph edges may take contin-
uous values others than 0 or 1 based in some convenient criterion, as could
be the observed movement of people between regions based on data from
traffic, flights, etc. This would require to use a more general definition of
the ICAR structure, where these weights are considered and, depending on
the way the matrix is defined, lack of sparsity problems may arise. A way
more challenging idea is to let the influenza data estimate the values of
the neighboring matrix, whether they are assumed dichotomous or weights
between 0 and 1. But this would require to deeply refurbish the model
or use a different model for the estimation of the neighboring structure.
A further step could be inspired by the work of Fox and Dunson (2015),
who propose a Bayesian nonparametric covariance regression. This model
allows the variance matrix in a multivariate regression model to vary with
the predictors among time. This idea could be taken as a starting point to
develop a method for the estimation of neighboring structures which would
stem from the data and would dynamically change among time.

Another possible extension to the models presented in this thesis would
be the use of weather covariates like humidity, temperature or solar radia-
tion on each region and time, which may be important factors that affect
the behavior of influenza incidence (see, for example, Tang et al., 2010 or
Charland et al., 2009).

In our opinion, the proposals in this thesis are effective tools for the
detection of influenza outbreaks which offer interesting insights on useful
ways to model influenza data for outbreak detection. Thanks to them,
new paths to improve detection power are opened on the field of influenza
outbreaks detection.



Appendices

141





Appendix A

Review of methods for the
selection of statistical
algorithms for the detection
of outbreaks

The selection of the best model within a set of models for the detection of
epidemic outbreaks is not trivial. Different researches use different ways of
comparing and selecting outbreak detection methods and, in many occa-
sions, several tools are used in the same work while the authors stress the
issues of each tool. A review of evaluation of detection models can be found
in Watkins et al. (2006), which explains the general approaches taken and
their issues. In this appendix we describe several tools used for the evalua-
tion and selection of outbreak detection methods which have been used in
this thesis: the description of the outcome, the assessment of goodness-of-fit
through the Deviance Information Criterion, methods based on specificity,
sensitivity and timeliness and the continuous ranked probability score used
to assess the predictive power.
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A.1 Description of the outcome

The first simplest method consists in graphically describing the outcome
and qualitatively evaluating the quality of performance of the models with-
out any numeric measures. One can describe how the alarms coincide with
the weeks with highest incidence rates or compare the date of starting and
ending of alarms of two different methods. This approach is usually pre-
sented together, but not always, with other approaches which do imply
numeric measures.

Some works that use this approach as a selection method are those of
Kulldorff (2001), which compares a spatio-temporal scan statistic with a
purely spatial one, Knorr-Held and Richardson (2003) (actually a method
for prediction, not detection), Frisén and Andersson (2009), Boyle et al.
(2011), Zou et al. (2014) and Salmon et al. (2015). All of them show an
application of the method on real data only.

A.2 Model fit and Deviance Information Crite-
rion

A general approach when doing variable selection or when choosing among
nested or similar models is to evaluate the goodness-of-fit of the model,
for example, by means of R2. Using measures which involve goodness-of-
fit have several drawbacks which should be considered. Goodness-of-fit on
nested models is always better for the more complex ones, so some way
of penalizing the complexity is usually taken into consideration. Several
ways of penalizing have been proposed, like the Akaike information crite-
rion (AIC, see Akaike, 1974), the Bayesian information criterion (BIC, see
Schwarz, 1978) or the Deviance Information Criterion (DIC, see Spiegel-
halter et al., 2002), this last one commonly used for Bayesian hierarchical
models. There is no consensus on the minimum distance in these measures
which indicate that a model is qualitatively better than another. A limita-
tion of these measures is that they do not pay attention to specific aspects
of the performance of the models that may be of particularly interesting in



A.2 Model fit and Deviance Information Criterion 145

some contexts, as is the detection power in our case.
Sun and Cai (2009) use BIC to select between the different options that

they offer. Rafei et al. (2012, 2015) also use BIC plus R2. DIC is used
to select between different proposals in the Bayesian works of Knorr-Held
and Richardson (2003) and Li et al. (2012). DIC has also been used in
this thesis to help choosing between the models of the proposed temporal
framework and, for this reason, we present this selection method in more
detail.

DIC is based on the deviance, a goodness-of-fit statistic defined as fol-
lows:

D(θ) = −2 log (p(Y |θ)) + 2 log (f(Y )) , (A.1)

with p(Y |θ) the likelihood of the model and f(Y ) a fully specified stan-
dardizing term that is a function of the data alone. The 2 log (f(Y )) term
is actually a constant that cancels out in all calculations that compare dif-
ferent models, so is irrelevant for comparison. In fact, several other works
like Gelman et al. (2013) refer to the deviance just as

D(θ) = −2 log (p(Y |θ)) , (A.2)

and this form is often used for comparison of models. The deviance is lower
when the log-likelihood is higher and therefore when the goodness-of-fit is
higher.

Another statistic that arises from the deviance is the number of effective
parameters, which is defined as the mean of the deviance minus the deviance
at the posterior mean of each parameter in the model:

pD = D(θ)−D(θ̄) . (A.3)

As stated in Gelman et al. (2013):

pD can be thought of as the number of ’unconstrained’ parameters in
the model, where a parameter counts as: 1 if it is estimated with no
constraints or prior information; 0 if it is fully constrained or if all the
information about the parameter comes from the prior distribution;
or an intermediate value if both the data and prior distributions are
informative.
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A higher pD is associated with more complex models and can indicate
overparametrization. Both quantities D(θ) and D(θ̄) are easily computed
from MCMC simulations provided that a closed form for D(θ) is available.
D(θ) is estimated as the mean of the simulations of D(θ), and D(θ̄) can
be calculated by estimating θ̄ as the mean of the iterations of the posterior
distribution p(θ|Y ) and plugging it into the D(θ) function.

DIC is defined in Spiegelhalter et al. (2002) as a classical estimate of fit,
plus twice the effective number of parameters. Equivalently, given the defi-
nition of pD in Expression (A.3), it is also the expectation of the deviance
plus the effective number of parameters, which shows that this measure
rewards goodness-of-fit while penalizing complexity of the models:

DIC = D(θ̄) + 2pD (A.4)

= D(θ) + pD .

Another equivalent expression that facilitates calculation is:

DIC = 2D(θ)−D(θ̄) . (A.5)

Regarding the minimum distance in DIC that shows an important dif-
ference between models, Spiegelhalter et al. (2002) point out that:

Burnham and Anderson (1998) suggested models receiving AIC within
1–2 of the ‘best’ deserve consideration, and 3–7 have considerably less
support: these rules of thumb appear to work reasonably well for
DIC. Certainly we would like to ensure that differences are not due
to Monte Carlo error: although this is straightforward for D(θ), Zhu
and Carlin (2000) have explored the difficulty of assessing the Monte
Carlo error on DIC.

A.3 Specificity, sensitivity and timeliness based
methods

Outbreak detection is a classification problem, where one has to classify
each time (and location, for spatio-temporal applications) unit as in epi-
demic or endemic phase. Two important measures for assessing the quality
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of classifications are sensitivity and specificity. Sensitivity is the propor-
tion of outbreak that is actually detected by the method, specificity is the
proportion of non-epidemic weeks (and regions) where no false alarm is
triggered. Of particular importance for our problem is the capability of the
methods to correctly classify the first weeks or days of epidemic, so there
is also a third target that one tries to optimize, timeliness. Timeliness
concerns the time it takes for a method to flag an alarm from the begin-
ning of an outbreak. The computation of this three measures always needs
information about the ‘true’ classification of each unit. For real data, a
gold standard is needed, that is, an external method that determines which
weeks (and locations) truly are in epidemic state and which are not. The
‘true’ epidemic state in simulated data is determined by the way the data
is simulated.

A.3.1 Epidemic state determination

There are several ways of determining which weeks (and locations) of a
set of data are in epidemic phase, but all of these methods have some
drawbacks. Now we discuss the most commonly used:

Gold standard from laboratory confirmations. Detection methods
are usually applied on data from fast sources like sentinel networks,
admissions to health care or internet based data. When laboratory
isolation data are available for the same population at the same time
of study, this slower but more reliable data source can be used as
a gold standard. One problem is to determine which should be the
threshold on the counts of laboratory confirmations for the defini-
tion of the gold standard. Cowling et al. (2006), for example, use
an arbitrary 30% of maximum laboratory confirmations per week for
each season, checking also 20% and 40% thresholds to test the sen-
sitivity of the gold standard to this percentage. Martinez-Beneito
et al. (2008a) opt for a presence/absence approach, declaring as gold
standard epidemic phase the period between the first and the last
laboratory confirmation for each season. This approach has also been
used in the present work for the temporal proposal.
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Gold standard from other detection method. Some authors choose
to use classical methods in the literature as the providers of a gold
standard to calculate sensitivity, specificity and timeliness. For ex-
ample, Rath et al. (2003) and Rafei et al. (2012) use Serfling (1963)
to create this gold standard. The obvious drawback is that one shall
use a method to set a gold standard that does a better detection than
the one being proposed. That would only make sense if the proposed
method had other advantages, like the time of computation or the
ease of use.

Gold standard from the proposed model with complete data.
When applied in a realistic way, a detection method is run every
week (or day) with data from only previous weeks available; that is
what we call ‘online’ detection. Some models, like those based in the
estimation of a hidden variable Zit can give better estimations of the
epidemic state in time t if data from t + 1, t + 2, . . . are available.
With this in mind, the works of Nunes et al. (2013), Heaton et al.
(2012) or Zou et al. (2012) calculate sensitivity, specificity and
timeliness of the online application of the model using the estimation
of the epidemic states with all the available data as a gold standard.
In any case, comparing the performance of one model against itself
just guarantees an intern coherence, but is a dubious way to do
comparison with other methods.

Simulated data. A way to ensure a known classification of the data
among epidemic and endemic phase is to simulate the epidemic data.
In this fashion, one can take known endemic cases (though the deci-
sion of what is endemic is an outbreak detection problem itself) and
inject artificial extra cases during one or several weeks, as authors
like Lu et al. (2010) do. The other option is to create all the data
from scratch, simulating both endemic and epidemic cases, as seen in
Frisén and Andersson (2009), Lu et al. (2010), Salmon et al. (2015) or
Rao and McCabe (2016). An issue would be to ensure that the way
of simulating data is realistic, even more with diseases with complex
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spatio-temporal behavior, as influenza is. Some authors, like Heaton
et al. (2012) or Zou et al. (2012) choose to use the detection model
itself, with some fixed parameters, to simulate the data, which allows
only for intern validation of the model.

A.3.2 Combined measures of specificity, sensitivity and
timeliness

Once a gold standard for the epidemics has been set and the model has
been run, one can calculate several measures about the quality of the de-
tection of the model. Specificity and sensitivity measures are broadly used
in many works like Li et al. (2012) and Rafei et al. (2012). But besides
the usual measures of the classification problem it is also common to use
other measures that take into account the temporal nature of the data by
involving time until the trigger of an alarm, for example:

Average run length. Is the expected time until the first false alarm is
triggered when the model is run on endemic data.

Timeliness. Also known as conditional expected delay, is the expected
time since the start of an outbreak until an alarm is triggered.

Probability of successful detection. Is the probability of an alarm to
be triggered before a certain maximum delay.

This kind of measures are seen, among others, in the works of Frisén and
Andersson (2009), Heaton et al. (2012), Salmon et al. (2015) and Rao and
McCabe (2016).

When a detection method depends on a threshold, the measures of
sensitivity, specificity and timeliness also depend on it. In order to of-
fer measures that are not dependent on the threshold, one can build a
receiver operating characteristic (ROC) curve. This graph plots the sen-
sitivity against 1-specificity depending on the threshold (see Lusted, 1971,
Egan, 1975 or Metz, 1978 for some classic references). The simple obser-
vation of the curves or the area under the ROC curves (AUROC) can be
used as decision tools, as done by Rath et al. (2003) or Rafei et al. (2015).
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Similar curves can be built combining other measures, like timeliness. In
this fashion, Lu et al. (2010), Jiang and Cooper (2010) and Zou et al. (2012)
combine the specificity and timeliness in ROC like curves. Timeliness can
also be added to ROC curves as a weighting factor or as a third dimension,
obtaining measures of the area under the weighted ROC curve (AUWROC)
or volumes under the timeliness-ROC surface (VUTROS or VUTROCS).

Now we are going to discuss in more detail the proposals that we have
used in the present work as decision tools for the temporal model. The
first two measures we are going to discuss are proposed in Kleinman and
Abrams (2006), while the last one is proposed in Cowling et al. (2006).
For all of them there must be defined a maximum delay (MD) so that an
alarm is considered of no practical use if it is triggered after that maximum
delay from the beginning of the outbreak. The mean time saved TSk is also
needed, where the time saved for season s with a certain threshold labeled
as k is defined as:

TSks = max

(
1− delay of the alarmks

MD + 1
, 0

)
, (A.6)

which is a measure with value 1 when there is no delay in the alarm and
value 0 when the delay is greater than MD and indicates the mean pro-
portion of time the alarm is triggered before the maximum delay. The
three measures used in Chapter 2 which combine sensitivity, specificity and
timeliness are defined as follow:

AUWROC1. The simplest one; is the area under a weighted ROC curve
which is constructed using as y axis the sensitivity weighted by TSk
instead of just the sensitivity. As TSk ∈ [0, 1], this measure is
always lower than AUROC. Figure A.1 top-right graph illustrates
AUWROC1. It can be compared to AUROC depicted in top-left
graph.

VUTROS1. In this case, TSk is set as a third dimension z axis, and the
points of the 3D curve that is formed are joined to the point (0, 1, 1)
forming a surface. The volume under this surface is our measure. If a
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discrete set of thresholds k ∈ 1, · · · ,K is considered, the approximate
measure can be calculated as:

V UTROS1 =
K−1∑
k=1

1

6

(
TSk + TSk+1 + 1

)
|sekspk+1 − sek+1spk| ,

(A.7)

with sek and spk the sensibility and specificity with threshold k. Fig-
ure A.1 bottom-left graph illustrates VUTROS1.

VUTROCS. This measure consists of calculating several (MD+ 1) ROC
curves and average the area under them. Each ROC curve has a
different maximum delay md going from 0 to MD. The sensitivity
in these curves is not measured per weeks, as done in the previous
measures, but as the proportion of seasons where there is an alarm
with a delay less or equal to md. VUTROCS is the mean of the areas
under these ROC curves. Figure A.1 bottom-right graph illustrates
VUTROCS.

This measure is almost equivalent to VUTROS3 in Kleinman and
Abrams (2006) but easier to compute and more coherent. VUTROS3
calculates the volume under the surface that results of joining the
ROC curves in the x, z planes and md

MD in the y axis. Calculating each
section of the volume between ROC curves in this way is equivalent
to do the mean of the two adjacent areas under the curves, multiply
by 1

MD each and add them all. In this fashion, when MD > 1, all the
curves are used twice for the calculation except for those correspond-
ing with delay 0 and maximum delay, which are used only once, so
these two cases influence less to the final measure.

Both AUWROC1 and VUTROS1 are built using the same three compo-
nents (weekly sensitivity, specificity and timeliness) but combining them in
different ways. Because of that, they give similar though not equal results
when comparing several models. Instead of weekly sensitivity, VUTROCS
uses seasonal sensitivity and, because of that, the ordering of compared
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Figure A.1: Illustration of measures combining ROC curves and timeliness. Top-
left: area under classic ROC curve. Top-right: AUWROC1 (slightly lower than
AUROC). Bottom-left: VUTROS1. Bottom-right: Weighted ROC curves for dif-
ferent maximum delays; the average of the areas is VUTROCS.
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models presents substantial differences with those from the two previous
measures. For all of the measures, the absolute value has no direct in-
terpretation, and only the relative value when comparing models has a
meaning.

A.4 Continuous ranked probability score to assess
predictive power

As seen in the previous section, the definition of a gold standard is not
trivial. Also, sometimes its quality is doubtful and, without it, measures of
sensitivity, specificity and timeliness can not be computed. A different ap-
proach is to evaluate the predictive power of the detection method, as seen
in some works like that of Boyle et al. (2011). It is true that the predictive
power is not a direct measure of the quality of detection, but if the causal
relations of the model are sensible, it is expected that a good prediction
also indicates a good estimation of the components of the model. There-
fore, in models based in hidden variables to distinguish between epidemic
and non-epidemic phases, the assessment of the predictive power indirectly
evaluates the quality of estimation of those hidden variables. In doing so,
the detection power is indirectly evaluated.

The predictive power of a model is usually measured by correlation or
distance between the prediction and the data, but when the response of
the model is not a punctual estimation but a probability distribution -as
happens in Bayesian models- other measures can be considered. In this
way not only the location but also the precision of the prediction are taken
into account. The continuous ranked probability score (CRPS; see, for
example, Gneiting and Raftery (2007)) is a measure that evaluates how
close a continuous probability distribution is to a value. In the present
work we have used this measure to evaluate our spatio-temporal proposal.
We explain it with more detail here.

Given a cumulative distribution function F (·) (in our case, the cumula-
tive predictive distribution) and a point Y (the data point which is being
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predicted), CRPS is defined as follows:

CRPS(F, Y ) =

∫ ∞
−∞

(F (x)− I(x ≥ Y ))2 dx . (A.8)

A lower score of CRPS indicates that the predictive distribution is closer
to the real value. Hersbach (2000) explains how CRPS can be estimated
when the available data about the probability distribution are in the form of
samples (as is the case when using MCMC for the inference). If the samples
of the predictive distribution are Xi, i ∈ 1, . . . , N and taking into account
that i

N is the estimated cumulative probability distribution between Xi and
Xi+1), then:

CRPS(F, Y ) =

N∑
i=1

∫ Xi+1

Xi

(
i

N
− I(x ≥ Y )

)2

dx (A.9)

= αi

(
i

N

)2

+ βi

(
1− i

N

)2

,

with αi and βi defined as follows:

if αi βi
Y > Xi+1 Xi+1 −Xi 0

Xi+1 >Y > Xi Y −Xi Xi+1 − Y (A.10)

Xi >Y 0 Xi+1 −Xi .

A graphic illustration of this calculation is depicted in Figure A.2 for a sam-
ple of size 6 of a predictive distribution. In Figure A.3, another illustration
with a more realistic sample of size 1000 is depicted.
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Figure A.2: Illustration of CRPS (shaded in gray) from a sample of size 6.
X1, . . . , X6 represent the sampled values. Estimated cumulative distribution func-
tion in thick line. Y represents the real datum being predicted.
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Figure A.3: Illustration of CRPS (shaded in gray, graph above) for a sample
of size 1000. Estimated cumulative distribution function in thick line. Y repre-
sents the real datum being predicted. Corresponding predictive probability density
function in the graph below.
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Appendix B

Discussion about Banks et
al.’s (2012) model

This appendix presents a discussion about the general structure of models
for the spatio-temporal surveillance of diseases presented by Banks et al.
(2012), in which are based the models of Heaton et al. (2012) and Zou et al.
(2012). The first layer of the general model is as follows:

Yit ∼ Po(νit + Zitλit) , (B.1)

where νit and λit represent the endemic and epidemic expected cases and
Zit is a latent dichotomous variable which takes value 1 when and where the
system is in the epidemic state and 0 otherwise. The logarithms of νit and
λit are modeled by a linear regression with covariates and a spatio-temporal
term each:

log(νit) = β
′
νXit + ξνit , (B.2)

log(λit) = β
′
λUit + ξλit ,

where Xit and Uit are vectors of covariates for each of the regressors and
ξνit and ξλit are some spatio-temporal terms.

In this appendix we prove that a simplification of this model with only
an intercept term in the regressors and with improper flat priors for these
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intercept parameters has an improper posterior distribution. This suggests
that a more complex structure as that of Banks et al. (2012) might also have
problems with the inference process as long as an intercept term is included
in the linear term, which is an extremely common setting. We also prove
the propriety of the posterior distribution for an alternative model, the
‘switch’ model, where the parameter of the Poisson distribution is defined
as (1− Zit)νit + Zitλit.

B.1 Impropriety of the posterior distribution for
the simplification of Banks et al., 2012

Let us consider the model above with only the intercept term for the re-
gressors and no spatio-temporal interactions, which can be formulated as
follows:

log(νit) = βν , π(βν) ∝ 1 , (B.3)

log(λit) = βλ , π(βλ) ∝ 1 .

Therefore, we have that:

νit = eβν , λit = eβλ , (B.4)

which do not depend on i or t. Therefore, we can lose the subindices in the
notation for ν and λ. Because of the Change of Variable theorem, the prior
distributions of ν and λ are as follow:

π(ν) ∝ 1

ν
, π(λ) ∝ 1

λ
. (B.5)

We are going to demonstrate that the posterior distribution is improper.
For simplicity in the notation, let us denote Ω to the set of pairs of

indices (i, t) for all times and locations considered and A to the subset of
Ω where the latent variable is in the epidemic phase (Zit = 1):

Ω := {(i, t) : i ∈ {1, . . . , I}, t ∈ {1, . . . , T}} , (B.6)

A := {(i, t) ∈ Ω : Zit = 1} .
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We also notate n and nA to the number of elements in Ω and A respectively.
A lower bound for the likelihood of the Poisson model can be expressed

as follows:

l(ν, λ) ∝
∏
Ω

e−(ν+Zitλ) (ν + Zitλ)Yit

= e−
∑

Ω ν e−
∑

Ω Zitλ
∏
Ω

(ν + Zitλ)Yit

= e−
∑

Ω ν e−
∑
A λ
∏
Ω

(ν + Zitλ)Yit (B.7)

≥ e−
∑

Ω ν e−
∑
A λ
∏
Ω

νYit

= e−nν e−nAλ ν
∑

Ω Yit .

Then, a lower bound for the joint posterior distribution of (ν, λ) is expressed
as follows:

p(ν, λ|Y ) = π(ν)π(λ)l(ν, λ)

≥ ν−1 λ−1 e−nν e−nAλ ν
∑

Ω Yit (B.8)

= e−nν e−nAλ ν(
∑

Ω Yit)−1 λ−1 .

Now we integrate λ to obtain a lower bound for the marginal posterior
distribution of ν:

p(ν|Y ) =

∫ ∞
0

p(ν, λ|Y )dλ

≥
∫ ∞

0
e−nν e−nAλ ν(

∑
Ω Yit)−1 λ−1dλ (B.9)

= e−nν ν(
∑

Ω Yit)−1

∫ ∞
0

e−nAλ λ−1dλ .

And
∫∞

0 e−nAλ λ−1dλ integrates infinity, as is proportional to the improper
distribution Ga(0, nA). Therefore, the posterior distribution p(ν, λ|Y ) is
improper.
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B.2 Propriety of the posterior distribution of the
switch model

To avoid the impropriety of the posterior distribution of the parameters, an
alternative modeling can be considered. In this alternative modeling, the
epidemic regressor is not added to the non-epidemic regressor when there
is an epidemic. Instead of that, the model switches between two different
regressors with different parameters. That is done, for example in the work
of Li et al. (2012) (though it is not used for detection of outbreaks, but
for detection of unusual behavior of particular locations). This ‘switching’
Poisson distribution on the first layer of the hierarchical modeling has also
been used in the temporal proposal of Chapter 2, also published in Conesa
et al. (2015).

We add Ā to the notation used in the previous section, denoting the
subset of Ω where the latent variable is in the non-epidemic phase (Zit = 0):

Ā := {(i, t) ∈ Ω : Zit = 0} , (B.10)

and nĀ as the number of elements in Ā.

The first layer of the model, then, is

Yit ∼ Po ((1− Zit)νit + Zitλit) . (B.11)

Let us assume that the epidemic period A and the non-epidemic period
Ā are not void and there is some observed case for each of them. Let us
prove then that the posterior distribution of the parameters in this model
is proper for the same improper prior distributions that those proposed
in the previous section for the simplification of the model of Banks et al.
(2012). Considering the same definition of the regressors as in Expression
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(B.3) with only the interaction terms, the likelihood is expressed as follows:

l(ν, λ) ∝
∏
Ω

e−(1−Zit)ν e−Zitλ ((1− Zit)ν + Zitλ)Yit

= e−
∑

Ω(1−Zit)ν e−
∑

Ω Zitλ
∏
Ω

((1− Zit)ν + Zitλ)Yit (B.12)

= e−nĀν e−nAλ
∏
Ā

νYit
∏
A

λYit

= e−nĀν e−nAλ ν
∑
Ā Yit λ

∑
A Yit ,

and the posterior distribution of (ν, λ) is:

p(ν, λ|Y ) = π(ν)π(λ)l(ν, λ)

∝ ν−1 λ−1 e−nĀν e−nAλ ν
∑
Ā Yit λ

∑
A Yit (B.13)

= e−nĀν e−nAλ ν(
∑
Ā Yit)−1 λ(

∑
A Yit)−1 .

This distribution is proper, as long as the epidemic A and non-epidemic
periods Ā are not void and with some observed case for each of them, as
it is the product of the following two conditionally independent Gamma
distributions:

p(ν|Y ) = Ga(
∑

Ā Yit, nĀ) , (B.14)

p(λ|Y ) = Ga(
∑

A Yit, nA) .
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Appendix C

Additional Figures

In this appendix we present several figures which show some results of
Chapter 3 for all 49 states of the USA and which are not presented along
the text for the sake of simplicity. In the text of that chapter, figures for
only four randomly chosen states have been shown to facilitate readability.

C.1 Estimates of the probability of epidemic in
all 49 states by spatio-temporal model

In this section we present the estimated posterior probability of being in
the epidemic phase for all 49 states of the USA by our spatio-temporal
proposal applied on Google Flu Trends (GFT) USA data.
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Figure C.1: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Alabama, Arizona, Arkansas and California.
In black: weekly estimated influenza incidence per 100 000 inhabitants during
seasons from 2007–2008 to 2012–2013.
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Figure C.2: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Colorado, Connecticut, Delaware and Dis-
trict of Columbia. In black: weekly estimated influenza incidence per 100 000
inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.3: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Florida, Georgia, Idaho and Illinois. In
black: weekly estimated influenza incidence per 100 000 inhabitants during seasons
from 2007–2008 to 2012–2013.
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Figure C.4: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Indiana, Iowa, Kansas and Kentucky. In
black: weekly estimated influenza incidence per 100 000 inhabitants during seasons
from 2007–2008 to 2012–2013 of GFT USA.



168 Appendix C. Additional Figures

0

2000

4000

6000

8000

10000

12000

0

1Lo
ui

si
an

a

0

2000

4000

6000

8000

10000

12000

0

1

M
ai

ne

E
st

im
. p

ro
b.

 o
f e

pi
de

m
ic

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

W
ee

kl
y 

ra
te

s 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

0

2000

4000

6000

8000

10000

12000

0

1M
ar

yl
an

d

0

2000

4000

6000

8000

10000

12000

0

1

M
as

sa
ch

us
et

ts

Figure C.5: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Louisiana, Maine, Maryland and Mas-
sachusetts. In black: weekly estimated influenza incidence per 100 000 inhabitants
during seasons from 2007–2008 to 2012–2013.
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Figure C.6: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Michigan, Minnesota, Mississippi and Mis-
souri. In black: weekly estimated influenza incidence per 100 000 inhabitants
during seasons from 2007–2008 to 2012–2013.
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Figure C.7: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Montana, Nebraska, Nevada and New
Hampshire. In black: weekly estimated influenza incidence per 100 000 inhabitants
during seasons from 2007–2008 to 2012–2013.
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Figure C.8: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for New Jersey, New Mexico, New York and
North Carolina. In black: weekly estimated influenza incidence per 100 000 in-
habitants during seasons from 2007–2008 to 2012–2013.
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Figure C.9: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for North Dakota, Ohio, Oklahoma and Ore-
gon. In black: weekly estimated influenza incidence per 100 000 inhabitants during
seasons from 2007–2008 to 2012–2013.
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Figure C.10: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Pennsylvania, Rhode Island, South Carolina
and South Dakota. In black: weekly estimated influenza incidence per 100 000
inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.11: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Tennessee, Texas, Utah and Vermont. In
black: weekly estimated influenza incidence per 100 000 inhabitants during seasons
from 2007–2008 to 2012–2013.
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Figure C.12: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Virginia, Washington, West Virginia and
Wisconsin. In black: weekly estimated influenza incidence per 100 000 inhabitants
during seasons from 2007–2008 to 2012–2013.
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Figure C.13: Estimated probability of being in epidemic phase by the spatio-
temporal model on GFT USA data for Wyoming. In black: weekly estimated
influenza incidence per 100 000 inhabitants during seasons from 2007–2008 to
2012–2013.

C.2 Comparison of retrospective and online esti-
mation of probability of epidemic phase

In this section we present the comparison of the retrospective and online
estimated posterior probability of being in the epidemic phase for all 49
states of the USA during season 2012-2013 by our spatio-temporal proposal
applied on GFT USA data.

0

5000

10000

15000

0

1

retrospective
online

Alabama

0

5000

10000

15000

0

1

Arizona

0

5000

10000

15000

0

1

Arkansas

0

5000

10000

15000

0

1

California

Figure C.14: Comparison of the online and retrospective estimated probability
of being in epidemic phase by the spatio-temporal model on GFT USA data for
Alabama–California states. In black: weekly estimated influenza incidence per 100
000 inhabitants during season 2012–2013.
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Figure C.15: Comparison of the online and retrospective estimated probability of
being in epidemic phase by the spatio-temporal model for Colorado–Massachusetts
states. In black: weekly estimated influenza incidence per 100 000 inhabitants
during season 2012–2013.
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Figure C.16: Comparison of the online and retrospective estimated probability
of being in epidemic phase by the spatio-temporal model for Michigan–Oregon
states. In black: weekly estimated influenza incidence per 100 000 inhabitants
during season 2012–2013.
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Figure C.17: Comparison of the online and retrospective estimated probability of
being in epidemic phase by the spatio-temporal model for Pennsylvania–Wisconsin
states. In black: weekly estimated influenza incidence per 100 000 inhabitants
during season 2012–2013.
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C.3 Estimates of the probability of epidemic in all
49 states by the spatio-temporal model and
some alternative proposals

In this section we present the estimated posterior probability of being in the
epidemic phase for all 49 states of the USA by our spatio-temporal proposal
applied on Google Flu Trends (GFT) USA data, the simplification without
ICAR, the simplification without µts0, the Leroux variation and the model
of Martinez-Beneito et al. (2008a).
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Figure C.18: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Alabama,
Arizona, Arkansas and California. In black: weekly estimated influenza incidence
per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.19: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Colorado,
Connecticut, Delaware and District of Columbia. In black: weekly estimated
influenza incidence per 100 000 inhabitants during seasons from 2007–2008 to
2012–2013.



C.3 Estimates of the probability of epidemic in all 49 states by the . . . 183

0

2000

4000

6000

8000

10000

12000

0

1F
lo

rid
a

0

2000

4000

6000

8000

10000

12000

0

1G
eo

rg
ia

E
st

im
. p

ro
b.

 o
f e

pi
de

m
ic

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

W
ee

kl
y 

ra
te

s 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

0

2000

4000

6000

8000

10000

12000

0

1

Id
ah

o

0

2000

4000

6000

8000

10000

12000

0

1

New proposal
New pr. without ICAR
New pr. without mu
New pr. with Leroux
Martinez−Beneito 08

Ill
in

oi
s

Figure C.20: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Florida, Geor-
gia, Idaho and Illinois. In black: weekly estimated influenza incidence per 100 000
inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.21: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Indiana, Iowa,
Kansas and Kentucky. In black: weekly estimated influenza incidence per 100 000
inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.22: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Louisiana,
Maine, Maryland and Massachusetts. In black: weekly estimated influenza inci-
dence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.23: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Michigan,
Minnesota, Mississippi and Missouri. In black: weekly estimated influenza inci-
dence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.24: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Montana,
Nebraska, Nevada and New Hampshire. In black: weekly estimated influenza
incidence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.25: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for New Jersey,
New Mexico, New York and North Carolina. In black: weekly estimated influenza
incidence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.26: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for North Dakota,
Ohio, Oklahoma and Oregon. In black: weekly estimated influenza incidence per
100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.27: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Pennsylvania,
Rhode Island, South Carolina and South Dakota. In black: weekly estimated
influenza incidence per 100 000 inhabitants during seasons from 2007–2008 to
2012–2013.



C.3 Estimates of the probability of epidemic in all 49 states by the . . . 191

0

2000

4000

6000

8000

10000

12000

0

1Te
nn

es
se

e

0

2000

4000

6000

8000

10000

12000

0

1

Te
xa

s

E
st

im
. p

ro
b.

 o
f e

pi
de

m
ic

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

W
ee

kl
y 

ra
te

s 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

0

2000

4000

6000

8000

10000

12000

0

1

U
ta

h

0

2000

4000

6000

8000

10000

12000

0

1

New proposal
New pr. without ICAR
New pr. without mu
New pr. with Leroux
Martinez−Beneito 08

V
er

m
on

t

Figure C.28: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Tennessee,
Texas, Utah and Vermont. In black: weekly estimated influenza incidence per 100
000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.29: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Virginia,
Washington, West Virginia and Wisconsin. In black: weekly estimated influenza
incidence per 100 000 inhabitants during seasons from 2007–2008 to 2012–2013.
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Figure C.30: Estimated probability of being in epidemic phase by the spatio-
temporal model its variations and M-B 2008 on GFT USA data for Wyoming. In
black: weekly estimated influenza incidence per 100 000 inhabitants during seasons
from 2007–2008 to 2012–2013.
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Appendix D

Codes

In this appendix we present the WinBUGS codes for the balanced models
(AR0-AR0, AR1-AR1 and AR2-AR2) of the framework of temporal models
presented in Chapter 2 and the model of the spatio-temporal proposal of
Chapter 3. The codes for the unbalanced models of the temporal framework
can be easily composed from the codes of the balanced ones.

D.1 Temporal Proposal

D.1.1 AR0-AR0 model

model {

# All weeks

for (j in 1:nyear) {

for (i in 1:nweek[j]){

Obs[i, j] ~ dpois(nu[i,j])

nu[i,j] <- pob[i,j]*rate[i,j]/100000

rate[i, j] ~ dnorm(meanrate[i,comp[i,j],j],tau[i, j])

tau[i, j] <- pow(lambda[comp[i, j], j],-2)

meanrate[i,1, j] <- mu[1,j]

meanrate[i,2, j] <- mu[2,j]

195
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}

}

# Standard deviations, means and hidden states

for (j in 1:nyear) {

comp[1, j] ~ dcat(P0[])

lambda[1, j] ~ dunif(linf,lmed1)

lambda[2, j] ~ dunif(lmed2,lsup)

mu[1, j] <- mu1[1]

mu[2, j] <- mu1[2]

}

mu1[1] <- ranked(thetamu[],1)

mu1[2] <- ranked(thetamu[],2)

for(i in 1:2){thetamu[i] ~ dunif(c,d)}

linf <- ranked(theta[],1)

lmed1 <- ranked(theta[],2)

lmed2 <- ranked(theta[],3)

lsup <- ranked(theta[],4)

for(i in 1:4){theta[i] ~ dunif(a,b)}

# Markovian modeling

for (j in 1:nyear) {

for (i in 2:nweek[j]) {

comp[i, j] ~ dcat(P.mat[comp[i-1, j], ])

}

}

P0[1] ~ dbeta(0.5,0.5)

P0[2] <- 1-P0[1]

P.mat[1,1] ~ dbeta(0.5,0.5)
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P.mat[2,2] ~ dbeta(0.5,0.5)

P.mat[1,2] <- 1-P.mat[1,1]

P.mat[2,1] <- 1-P.mat[2,2]

#NEW DATA

# All weeks

for (i in 1:nobs.new){

Obs.new[i] ~ dpois(nu.new[i])

nu.new[i] <- pob.new[i]*rate.new[i]/100000

rate.new[i] ~ dnorm(meanrate.new[i,comp.new[i]],

tau.new[i])

tau.new[i] <- pow(lambda.new[comp.new[i]],-2)

meanrate.new[i,2] <- mu.new[2]

meanrate.new[i,1] <- mu.new[1]

}

comp.new[1] ~ dcat(P0[])

for (i in 2:nobs.new) {

comp.new[i] ~ dcat(P.mat[comp.new[i-1], ])

}

lambda.new[2] ~ dunif(lmed2,lsup)

lambda.new[1] ~ dunif(linf,lmed1)

mu.new[1] <- mu1[1]

mu.new[2] <- mu1[2]

}
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D.1.2 AR1-AR1 model

model {

# Week 1

for (j in 1:nyear){

Obs[1,j] ~ dpois(nu[1,j])

nu[1,j] <- pob[1,j]*rate[1,j]/100000

rate[1, j] ~ dnorm(meanrate[1,comp[1,j],j],tau[1, j])

tau[1, j] <- (1-pow(ro[comp[1, j]],2))*

pow(lambda[comp[1, j], j],-2)

meanrate[1,2, j] <- mu[2,j]

meanrate[1,1, j] <- mu[1,j]

}

# Week >1

for (j in 1:nyear) {

for (i in 2:nweek[j]){

Obs[i, j] ~ dpois(nu[i,j])

nu[i,j] <- pob[i,j]*rate[i,j]/100000

rate[i, j] ~ dnorm(meanrate[i,comp[i,j],j],

tau[i, j])

tau[i, j] <- pow(lambda[comp[i, j], j],-2)

meanrate[i,2, j] <- mu[2,j]+ro[1]*(rate[i-1, j]-mu[2,j])

meanrate[i,1, j] <- mu[1,j]+ro[2]*(rate[i-1, j]-mu[1,j])

}

}

# Parameters of the autoregressive processes

ro[1] ~ dunif(-1,1)

ro[2] ~ dunif(-1,1)

# Standard deviations and means

for (j in 1:nyear) {
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comp[1, j] ~ dcat(P0[])

lambda[1, j] ~ dunif(linf,lmed1)

lambda[2, j] ~ dunif(lmed2,lsup)

mu[1, j] <- mu1[1]

mu[2, j] <- mu1[2]

}

mu1[1] <- ranked(thetamu[],1)

mu1[2] <- ranked(thetamu[],2)

for(i in 1:2){thetamu[i] ~ dunif(c,d)}

linf <- ranked(theta[],1)

lmed1 <- ranked(theta[],2)

lmed2 <- ranked(theta[],3)

lsup <- ranked(theta[],4)

for(i in 1:4){theta[i] ~ dunif(a,b)}

# Markovian modeling

for (j in 1:nyear) {

for (i in 2:nweek[j]) {

comp[i, j] ~ dcat(P.mat[comp[i-1, j], ])

}

}

P0[1] ~ dbeta(0.5,0.5)

P0[2] <- 1-P0[1]

P.mat[1,1] ~ dbeta(0.5,0.5)

P.mat[2,2] ~ dbeta(0.5,0.5)

P.mat[1,2] <- 1-P.mat[1,1]

P.mat[2,1] <- 1-P.mat[2,2]
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#NEW DATA

# Week 1

Obs.new[1] ~ dpois(nu.new[1])

nu.new[1] <- pob.new[1]*rate.new[1]/100000

rate.new[1] ~ dnorm(meanrate.new[1,comp.new[1]],tau.new[1])

tau.new[1] <- (1-pow(ro[comp.new[1]],2))*

pow(lambda.new[comp.new[1]],-2)

meanrate.new[1,2] <- mu.new[2]

meanrate.new[1,1] <- mu.new[1]

# Week >1

for (i in 2:nobs.new){

Obs.new[i] ~ dpois(nu.new[i])

nu.new[i] <- pob.new[i]*rate.new[i]/100000

rate.new[i] ~ dnorm(meanrate.new[i,comp.new[i]],

tau.new[i])

tau.new[i] <- pow(lambda.new[comp.new[i]],-2)

meanrate.new[i,2] <- mu.new[2]+

ro[1]*(rate.new[i-1]-mu.new[2])

meanrate.new[i,1] <- mu.new[1]+

ro[2]*(rate.new[i-1]-mu.new[1])

}

comp.new[1] ~ dcat(P0[])

for (i in 2:nobs.new) {

comp.new[i] ~ dcat(P.mat[comp.new[i-1], ])

}

lambda.new[2] ~ dunif(lmed2,lsup)

lambda.new[1] ~ dunif(linf,lmed1)

mu.new[1] <- mu1[1]

mu.new[2] <- mu1[2]
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}

D.1.3 AR2-AR2 model

model {

# Week 1

for (j in 1:nyear){

Obs[1,j] ~ dpois(nu[1,j])

nu[1,j] <- pob[1,j]*rate[1,j]/100000

rate[1, j] ~ dnorm(meanrate[1,comp[1,j],j],tau[1, j])

tau[1, j] <- invsigma[comp[1, j]]*

pow(lambda[comp[1, j],j],-2)

meanrate[1,1, j] <- mu[1,j]

meanrate[1,2, j] <- mu[2,j]

}

# Week 2

for (j in 1:nyear){

Obs[2,j] ~ dpois(nu[2,j])

nu[2,j] <- pob[2,j]*rate[2,j]/100000

rate[2, j] ~ dnorm(meanrate[2,comp[2,j],j],tau[2, j])

tau[2, j] <- pow(lambda[comp[2, j],j],-2)*

invsigma[comp[2,j]]*

pow(pow(1-ro1[2],2)/(pow(1-ro1[2],2)-

pow(ro1[1],2)),equals(comp[2,j],1))*

pow(pow(1-ro2[2],2)/(pow(1-ro2[2],2)-

pow(ro2[1],2)),equals(comp[2,j],2))

meanrate[2,1, j] <- mu[1,j]+(ro1[1]*(rate[1, j]-mu[1,j])/

(1-ro1[2]))

meanrate[2,2, j] <- mu[2,j]+(ro2[1]*(rate[1, j]-mu[2,j])/

(1-ro2[2]))

}
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# Week >2

for (j in 1:nyear) {

for (i in 3:nweek[j]){

Obs[i, j] ~ dpois(nu[i,j])

nu[i,j] <- pob[i,j]*rate[i,j]/100000

rate[i, j] ~ dnorm(meanrate[i,comp[i,j],j],tau[i, j])

tau[i, j] <- pow(lambda[comp[i, j], j],-2)

meanrate[i,1, j] <- mu[1,j]+ro1[1]*

(rate[i-1, j]-mu[1,j])+ro1[2]*

(rate[i-2, j]-mu[1,j])

meanrate[i,2, j] <- mu[2,j]+ro2[1]*

(rate[i-1, j]-mu[2,j])+ro2[2]*

(rate[i-2, j]-mu[2,j])

}

}

invsigma[1] <- (1-pow(ro1[1],2)-pow(ro1[1],2)*ro1[2]-ro1[2]-

pow(ro1[2],2)+pow(ro1[2],3))/(1-ro1[2])

invsigma[2] <- (1-pow(ro2[1],2)-pow(ro2[1],2)*ro2[2]-ro2[2]-

pow(ro2[2],2)+pow(ro2[2],3))/(1-ro2[2])

# Parameters of the autoregressive processes

ro1[1] ~ dunif(-2,2)

ro1[2] ~ dunif(-1,1)

aux1 <- 1

aux1 ~ dbern(cond1)

cond1 <- step(1-ro1[1]-ro1[2])*step(1+ro1[1]-ro1[2])

ro2[1] ~ dunif(-2,2)

ro2[2] ~ dunif(-1,1)

aux2 <- 1

aux2 ~ dbern(cond2)

cond2 <- step(1-ro2[1]-ro2[2])*step(1+ro2[1]-ro2[2])
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# Standard deviations and means

for (j in 1:nyear) {

comp[1, j] ~ dcat(P0[])

lambda[1, j] ~ dunif(linf,lmed1)

lambda[2, j] ~ dunif(lmed2,lsup)

mu[1, j] <- mu1[1]

mu[2, j] <- mu1[2]

}

mu1[1] <- ranked(thetamu[],1)

mu1[2] <- ranked(thetamu[],2)

for(i in 1:2){thetamu[i] ~ dunif(c,d)}

linf <- ranked(theta[],1)

lmed1 <- ranked(theta[],2)

lmed2 <- ranked(theta[],3)

lsup <- ranked(theta[],4)

for(i in 1:4){theta[i] ~ dunif(a,b)}

# Markovian modeling

for (j in 1:nyear) {

for (i in 2:nweek[j]) {

comp[i, j] ~ dcat(P.mat[comp[i-1, j], ])

}

}

P0[1] ~ dbeta(0.5,0.5)

P0[2] <- 1-P0[1]

P.mat[1,1] ~ dbeta(0.5,0.5)

P.mat[2,2] ~ dbeta(0.5,0.5)

P.mat[1,2] <- 1-P.mat[1,1]

P.mat[2,1] <- 1-P.mat[2,2]
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#NEW DATA

# Week 1

Obs.new[1] ~ dpois(nu.new[1])

nu.new[1] <- pob.new[1]*rate.new[1]/100000

rate.new[1] ~ dnorm(meanrate.new[1,comp.new[1]],tau.new[1])

tau.new[1] <- invsigma[comp.new[1]]*

pow(lambda.new[comp.new[1]],-2)

meanrate.new[1,1] <- mu.new[1]

meanrate.new[1,2] <- mu.new[2]

# Week 2

Obs.new[2] ~ dpois(nu.new[2])

nu.new[2] <- pob.new[2]*rate.new[2]/100000

rate.new[2] ~ dnorm(meanrate.new[2,comp.new[2]],tau.new[2])

tau.new[2] <- pow(lambda.new[comp.new[2]],-2)*

invsigma[comp.new[2]]*

pow(pow(1-ro1[2],2)/(pow(1-ro1[2],2)-

pow(ro1[1],2)),equals(comp.new[2],1))*

pow(pow(1-ro2[2],2)/(pow(1-ro2[2],2)-

pow(ro2[1],2)),equals(comp.new[2],2))

meanrate.new[2,1] <- mu.new[1]+

(ro1[1]*(rate.new[1]-mu.new[1])/

(1-ro1[2]))

meanrate.new[2,2] <- mu.new[2]+

(ro2[1]*(rate.new[1]-mu.new[2])/

(1-ro2[2]))

# Week >2

for (i in 3:nobs.new){

Obs.new[i] ~ dpois(nu.new[i])

nu.new[i] <- pob.new[i]*rate.new[i]/100000

rate.new[i] ~ dnorm(meanrate.new[i,comp.new[i]],
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tau.new[i])

tau.new[i] <- pow(lambda.new[comp.new[i]],-2)

meanrate.new[i,1] <- mu.new[1]+ro1[1]*

(rate.new[i-1]-mu.new[1])+ro1[2]*

(rate.new[i-2]-mu.new[1])

meanrate.new[i,2] <- mu.new[2]+ro2[1]*

(rate.new[i-1]-mu.new[2])+ro2[2]*

(rate.new[i-2]-mu.new[2])

}

comp.new[1] ~ dcat(P0[])

for (i in 2:nobs.new) {

comp.new[i] ~ dcat(P.mat[comp.new[i-1], ])

}

lambda.new[2] ~ dunif(lmed2,lsup)

lambda.new[1] ~ dunif(linf,lmed1)

mu.new[1] <- mu1[1]

mu.new[2] <- mu1[2]

}

D.2 Spatio-temporal model

model{

# First year

#############

for (i in 1:nreg){

Y[t0+1,i,1] ~ dnorm(R[t0+1,i,1,Z[t0+1,i,1]],

tau[t0+1,i,1])

tau[t0+1,i,1] <- pow(sigma[Z[t0+1,i,1]],-2)*
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(1-(Z[t0+1,i,1]-1)*rho*rho)

R[t0+1,i,1,1] <- mufirst0[1]*sigmamu[1]

R[t0+1,i,1,2] <- mufirst1[1]*sigmamu[2]+

psifirst[1,i]*sigmapsi

}

for (t in 2:nobs.first){

for (i in 1:nreg){

Y[t+t0,i,1] ~ dnorm(R[t+t0,i,1,Z[t+t0,i,1]],

tau[t+t0,i,1])

tau[t+t0,i,1] <- pow(sigma[Z[t+t0,i,1]],-2)

R[t+t0,i,1,1] <- mufirst0[t]*sigmamu[1]

R[t+t0,i,1,2] <- rho*Y[t+t0-1,i,1]+

mufirst1[t]*sigmamu[2]+

psifirst[t,i]*sigmapsi

}

}

# Spatio-temporal structure

for(t in 1:nobs.first){

mufirst0[t] ~ dnorm(0,1)

mufirst1[t] ~ dnorm(0,1)

psifirst[t,1:nreg] ~ car.normal(adj[],weights[],num[],1)

}

# Markovian modeling

for (t in 2:nobs.first){

for (i in 1:nreg){

Z[t+t0,i,1] ~ dcat(P.mat[Z[t+t0-1,i,1], ])

}

}

for (i in 1:nreg){

Z[1+t0,i,1] ~ dcat(P0[])
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}

# Second year till second last

###############################

for (i in 1:nreg){

for (j in 2:nhist){

Y[1,i,j] ~ dnorm(R[1,i,j,Z[1,i,j]],tau[1,i,j])

tau[1,i,j] <- pow(sigma[Z[1,i,j]],-2)*

(1-(Z[1,i,j]-1)*rho*rho)

R[1,i,j,1] <- mu0[1,j-1]*sigmamu[1]

R[1,i,j,2] <- mu1[1,j-1]*sigmamu[2]+

psi[1,j-1,i]*sigmapsi

}

}

for (t in 2:weeks){

for (i in 1:nreg){

for (j in 2:nhist){

Y[t,i,j] ~ dnorm(R[t,i,j,Z[t,i,j]],tau[t,i,j])

tau[t,i,j] <- pow(sigma[Z[t,i,j]],-2)

R[t,i,j,1] <- mu0[t,j-1]*sigmamu[1]

R[t,i,j,2] <- rho*Y[t-1,i,j]+mu1[t,j-1]*sigmamu[2]+

psi[t,j-1,i]*sigmapsi

}

}

}

# Spatio-temporal structure

for(t in 1:weeks){

for(j in 1:(nhist-1)){

mu0[t,j] ~ dnorm(0,1)

mu1[t,j] ~ dnorm(0,1)
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psi[t,j,1:nreg] ~ car.normal(adj[],weights[],num[],1)

}

}

# Markovian modeling

for (t in 2:weeks){

for (i in 1:nreg){

for (j in 2:nhist){

Z[t,i,j] ~ dcat(P.mat[Z[t-1,i,j], ])

}

}

}

for (i in 1:nreg){

for (j in 2:nhist){

Z[1,i,j] ~ dcat(P0[])

}

}

# Prior distributions of parameters

rho ~ dunif(0,1)

sigmamu[1] <- sigma[1]*lambda

sigmamu[2] <- sigma[2]*lambda

lambda ~ dunif(g,h)

sigmapsi ~ dunif(e,f)

sigma[1] <- ranked(theta[],1)

sigma[2] <- ranked(theta[],2)

for(k in 1:2){

theta[k] ~ dunif(a,b)
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}

P0[1] ~ dbeta(0.5,0.5)

P0[2] <-1-P0[1]

P.mat[1,1] ~ dbeta(0.5,0.5)

P.mat[2,2] ~ dbeta(0.5,0.5)

P.mat[1,2] <- 1-P.mat[1,1]

P.mat[2,1] <- 1-P.mat[2,2]

# Last year

############

for (i in 1:nreg){

Y[1,i,nhist+1] ~ dnorm(R[1,i,nhist+1,Z[1,i,nhist+1]],

tau[1,i,nhist+1])

tau[1,i,nhist+1] <- pow(sigma[Z[1,i,nhist+1]],-2)*

(1-(Z[1,i,nhist+1]-1)*rho*rho)

R[1,i,nhist+1,1] <- munew0[1]*sigmamu[1]

R[1,i,nhist+1,2] <- munew1[1]*sigmamu[2]+

psinew[1,i]*sigmapsi

}

for (t in 2:nobs.new){

for (i in 1:nreg){

Y[t,i,nhist+1] ~ dnorm(R[t,i,nhist+1,Z[t,i,nhist+1]],

tau[t,i,nhist+1])

tau[t,i,nhist+1]<- pow(sigma[Z[t,i,nhist+1]],-2)

R[t,i,nhist+1,1]<- munew0[t]*sigmamu[1]

R[t,i,nhist+1,2]<- rho*Y[t-1,i,nhist+1] +

munew1[t]*sigmamu[2] +

psinew[t,i]*sigmapsi

}

}
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# Spatio-temporal structure

for(t in 1:nobs.new){

munew0[t] ~ dnorm(0,1)

munew1[t] ~ dnorm(0,1)

psinew[t,1:nreg] ~ car.normal(adj[],weights[],num[],1)

}

# Markovian modeling

for (t in 2:nobs.new){

for (i in 1:nreg){

Z[t,i,nhist+1] ~ dcat(P.mat[Z[t-1,i,nhist+1], ])

}

}

for (i in 1:nreg){

Z[1,i,nhist+1] ~ dcat(P0[])

}

for (i in 1:nreg){

Zlast[i]<-Z[nobs.new,i,nhist+1]-1

}

for (t in 1:nobs.new){

for (i in 1:nreg){

Zlastarray[t,i]<-Z[t,i,nhist+1]-1

}

}

}
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Höhle M and Paul M (2008). Count data regression charts for the
monitoring of surveillance time series. Computational Statistics & Data
Analysis, 52(9):4357–4368. 17

Hu W, Zhang W, Huang X, Clements A, Mengersen K, and Tong
S (2015). Weather variability and influenza A (H7N9) transmission in
Shanghai, China: A Bayesian spatial analysis. Environmental Research,
136:405–412. 10

Influenzanet. A network of European citizens fighting against influenza.
https://www.influenzanet.eu/. Accessed: 2017-02-19. 8

Ismail N. A, Pettitt A. N, and Webster R. A (2003). ‘Online’
monitoring and retrospective analysis of hospital outcomes based on a
scan statistic. Statistics in Medicine, 22(18):2861–2876. 21, 95

Jiang X and Cooper G. F (2010). A Bayesian spatio-temporal method
for disease outbreak detection. Journal of the American Medical Infor-
matics Association, 17(4):462–471. 150

Kavanagh K, Robertson C, Murdoch H, Crooks G, and McMe-
namin J (2012). Syndromic surveillance of influenza-like illness in Scot-
land during the influenza A H1N1v pandemic and beyond. Journal of
the Royal Statistical Society: Series A (Statistics in Society), 175(4):
939–958. 2

Kleinman K. P and Abrams A. M (2006). Assessing surveillance
using sensitivity, specificity and timeliness. Statistical Methods in Medical
Research, 15(5):445–464. 39, 63, 150, 151

Knorr-Held L and Richardson S (2003). A hierarchical model for
space-time surveillance data on meningococcal disease incidence. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 52(2):169–
183. 47, 99, 144, 145

Kom Mogto C. A, De Serres G, Douville Fradet M, Lebel G,
Toutant S, Gilca R, Ouakki M, Janjua N. Z, and Skowronski

https://www.influenzanet.eu/


220 BIBLIOGRAPHY

D. M (2012). School absenteeism as an adjunct surveillance indica-
tor: Experience during the second wave of the 2009 H1N1 pandemic in
Quebec, Canada. PLOS ONE, 7(3):e34084. 7

Krige D. G (1951). A statistical approach to some mine valuation and
allied problems on the Witwatersrand. Master Thesis. 10

Kulldorff M (1997). A spatial scan statistic. Communications in Statis-
tics - Theory and Methods, 26(6):1481–1496. 95

Kulldorff M (2001). Prospective time periodic geographical disease
surveillance using a scan statistic. Journal of the Royal Statistical Soci-
ety: Series A (Statistics in Society), 164(1):61–72. 95, 144

Kulldorff M, Heffernan R, Hartman J, Assunção R, and
Mostashari F (2005). A space-time permutation scan statistic for dis-
ease outbreak detection. PLOS medicine, 2(3):e59. 11, 95

Kulldorff M, Huang L, Pickle L, and Duczmal L (2006). An elliptic
spatial scan statistic. Statistics in Medicine, 25(22):3929–3943. 95

Le Strat Y (2005). Overview of temporal surveillance. In Lawson A. B
and Kleinman K, editors, Spatial and Syndromic Surveillance for Public
Health, chapter 2, pages 13–29. John Wiley & Sons, Ltd. 13

Le Strat Y and Carrat F (1999). Monitoring epidemiologic surveillance
data using hidden Markov models. Statistics in Medicine, 18(24):3463–
3478. 29, 30, 39, 65, 66, 69, 76, 77

Leroux B. G, Lei X, and Breslow N (2000). Estimation of disease
rates in small areas: A new mixed model for spatial dependence. In Hal-
loran M. E and Berry D, editors, Statistical Models in Epidemiology, the
Environment, and Clinical Trials, pages 179–191. Springer, New York.
xxv, 90, 125, 138

Li G, Best N, Hansell A. L, Ahmed I, and Richardson S (2012).
BaySTDetect: Detecting unusual temporal patterns in small area data



BIBLIOGRAPHY 221

via Bayesian model choice. Biostatistics, 13(4):695–710. 11, 97, 145, 149,
160

Li J and Cardie C (2013). Early stage influenza detection from Twitter.
ArXiv, 1309.7340v3. 9, 100

Liu T. Y, Sanders J. L, Tsui F. C, Espino J. U, Dato V. M, and
Suyama J (2013). Association of over-the-counter pharmaceutical sales
with influenza-like-illnesses to patient volume in an urgent care setting.
PLOS ONE, 8(3):e59273. 8

Lu H, Zeng D, and Chen H (2010). Prospective infectious disease
outbreak detection using Markov switching models. IEEE Transactions
on Knowledge and Data Engineering, 22(4):565–577. 28, 31, 148, 150

Lunn D. J, Thomas A, Best N, and Spiegelhalter D (2000). Win-
BUGS - A Bayesian modelling framework: Concepts, structure, and ex-
tensibility. Statistics and Computing, 10(4):325–337. 23

Lusted L. B (1971). Signal detectability and medical decision-making.
Science, 171(3977):1217–1219. 62, 149

Madigan D (2005). Bayesian data mining for health surveillance. In
Lawson A. B and Kleinman K, editors, Spatial & syndromic surveillance
for public health, chapter 12, pages 203–221. John Wiley & Sons, Inc.,
Chichester. 30, 31

Magruder S. F (2003). Evaluation of over-the-counter pharmaceutical
sales as a possible early warning indicator of human disease. Johns Hop-
kins Applied Physics Laboratory Technical Digest, 24(4):349–353. 8
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