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1 Introduction

Electroweak (EW) radiative corrections are presently achieving an extremely high degree of
sophistication and complexity. Indeed, after the pioneering one-loop calculations of Marciano
and Sirlin [1] and the two-loop ones of van der Bij and Veltman[2], and because of the high-
precision experiments recently performed at LEP and the SLC[3], there is a clear need for
increasingly higher-order calculations; even if only for assessing the size of the theoretical error
when comparing to the experiment. Currently two-loop EW corrections (pure or mixed with
QCD) are being analyzed rather systematically [4] and , sometimes, even up to three loops
are being accomplished [5]. Needless to say these calculations are extremely complicated and
usually heavily rely on the use of the computer. In this paperwe would like to point out that in
some situations thinking in terms of effective field theories (EFTs) [6, 7] can help much in this
development.

Built as a systematic approximation scheme for problems with widely separated scales [8],
EFTs organize the calculation in a transparent way dealing with one scale at a time and clearly
separating the physics of the ultraviolet from the physics of the infrared. They are based on the
observation that, instead of obtaining the full answer and then take the appropriate interesting
limits, a more efficient strategy consists in taking the limit first, whereby considerably reducing
the amount of complexity one has to deal with, right from the start. For this kind of prob-
lems EFTs are never more complicated than the actual loopwise perturbative calculation and
in some specific cases they may even be more advantageous, even able to render an extremely
complicated calculation something very simple.

By EFT we specifically mean the systematic construction of the effective Lagrangian that
results when a heavy particle is integrated out. The procedure goes as follows [6, 7]. Let us
imagine we are interested in studying the physics at an energy scaleE0. Starting at a scale
µ >> E0 one uses the powerful machinery of the renormalization group equations (RGE’s)
to scale the initial Lagrangian from the scaleµ down to the energyE0 one is interested in. If
in doing so one encounters a certain particle with massm, one must integrate this particle out
and find the corresponding matching conditions so that the physics below and above the scale
µ = m (that is to say the physics described by the Lagrangian with and without the heavy
particle in question) is the same. This is technically achieved by equating the one-particle ir-
reducible Green functions (with respect to the other light fields) in both theories to a certain
order in inverse powers of the heavy massm1. This usually requires the introduction of local
counterterms [9] in the effective Lagrangian forµ < m. Once this is done, one keeps using
the RGE’s until the energyE0 is reached. If another particle’s threshold is crossed, theabove
matching has to be performed again. All this procedure is most efficiently carried out by us-
ing theMS renormalization scheme where the RGE’s are mass independent and can be gotten
directly from the1/ǫ poles of dimensional regularization.

In this work we would like to apply this technique by concentrating on the QCD corrections
to the large-mt EW contributionsspecificto theZbb̄ vertex. Other corrections common to the
other fermions originate from vacuum polarization and havebeen already studied in [10–12];
therefore we shall not consider them. The decay widthZ → bb̄ can be written as [13,14]

Γ(Z → bb̄) = Nc
M3

Z

√
2GF

48π
ρ RQCD RQED [A2 + V 2] , (1.1)

with

A = 1 +
1

2
∆ρvertex ; V = 1 +

1

2
∆ρvertex − 4

3
κs2

0 , (1.2)

1One could also match S-matrix elements.
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κ ≈ 1 − c2

c2 − s2
∆ρ +

g2

(4π)2

1

6 (c2 − s2)
log

M2
W

m2
t

(

1 +
αs(µ)

π

)

, (1.3)

ρ = 1 + ∆ρ ; ∆ρ ≈ 3

(4π)2
m2

t (mt)GF

√
2

(

1 − αs(µ)

π

2

9
(π2 − 9)

)

, (1.4)

and

s2
0 =

1

2



1 −
√

√

√

√1 − 4πα(MZ)√
2GF M2

Z



 , (1.5)

where

RQCD ≈ 1 +
αs(µ)

π
; RQED ≈ 1 +

α(µ)

12π
, (1.6)

∆ρvertex ≈ −4m2
t (mt)GF

√
2

(4π)2

(

1 − αs(µ)

π

π2 − 8

3

)

+

+
g2

(4π)2
log

(

M2
W

m2
t

)

(

8

3
+

1

6c2

)

(

1 + C αs(µ)

π

)

. (1.7)

It is more natural, when using the EFT language, to employ therunningMS mt(µ = mt) rather
thanmt(pole) and this is what we have done in the previous expressions.

What is the natural scale forµ in these contributions? As explained in refs. [11, 12, 15] the
αs(µ) appearing in∆ρ of eq. (1.4) is to be interpreted asαs(µ ≈ mt) because it originates
at the matching between the full theory with top and the effective field theory without top at
the scaleµ = mt. As discussed in ref. [16], it turns out this even encompasses most of the
O(α2

s) contributions. On the contrary, as explained in ref. [12], the logarithmic term of eq. (1.3)
comes from the running of the effective Lagrangian from the scaleµ = mt down to the scale
µ = MW ≃ MZ and consequently does not probe a singleµ scale but rather integrates over the
whole range. The result of this integration leads to the substitution 2

log
M2

W

m2
t

(

1 +
αs(µ)

π

)

→ log
M2

W

m2
t

+ log

(

αs(MW )

αs(mt)

)

−4/β0

(1.8)

in eq. (1.3); hereβ0 ≡ 11 − 2nf/3 = 23/3 is theβ function of the QCD coupling constant
αs(µ) for nf = 5 flavors:

dαs

dt
= − β0

(4π)
α2

s(t) ; t ≡ log µ2 . (1.9)

Equation (1.8) actually resums all the QCD leading logarithms, i.e. all terms of the form
αn

s logn.
In this paper we shall describe an effective field theory calculation of the physical process

Z → bb̄. As a result we shall obtain the value of the coefficientC in eq. (1.7). This coefficient
has also been recently obtained in ref. [17] and our result agrees with theirs. Moreover, our
construction of the EFT will also yield the value for the natural scaleµ that appears in the
different terms of eqs. (1.6),(1.7).

We think that our discussion in terms of effective Lagrangians is a good guide for dealing
with questions of this sort and also for computing things like “the QCD corrections to thelog mt

term” for largemt, i.e. the coefficientC. As we will see, one could even resum, if necessary,
the leading logarithms. However one should keep in mind thatin the real world the top mass is
not that large with respect to theZ and, therefore, one should expect sizeable corrections to the
simple casemt → ∞.

2For small values ofαs of course the next two expressions coincide.

2



2 Case without QCD corrections

Integrating the top quark out affects the coupling to theW andZ gauge bosons of every lighter
fermion through vacuum polarization. Moreover it also affects specifically the coupling of the
bottom quark to theZ boson; an effect that is not felt by any other fermion. To set the stage
for the QCD corrections of the next section we shall now review, in an effective field theory
language, how this comes about. The standard strategy is thefollowing:

1. Matching the effective theory to the full theory atmt.

2. Running the effective Lagrangian frommt down toMZ .

3. Calculating matrix elements with the effective Lagrangian at the scaleMZ .

The integration of the top quark is done in several steps. Firstly, at tree level, there is the
contribution given by the diagram of fig. 1. This contribution gives rise to an effective operator
that is suppressed by two inverse powers of the top mass. We shall consistently neglect this
type of contributions since they can never give rise to the terms we are interested in, i.e. eq.
(1.7). This is the only contribution in the unitary gauge, which is the one we shall employ in
this work. In any other gauge other effective operators arise because the would-be Nambu–
Goldstone bosons couple proportionally to the top mass and may compensate them2

t factor in
the denominator (see for example the diagram of fig. 2). This is a welcome simplification, most
notably when QCD corrections will be considered in the next section.

Since at this order the matching condition turns out to be trivial, the effective Lagrangian
below the top quark mass looks exactly the same as the full standard model Lagrangian except
that the top is absent; e.g. there is notbW vertex in this Lagrangian :

L = b̄ iD/ b − 1

2
cb
L(µ) b̄ Z/ PL b +

1

3
cb
V (µ) b̄ Z/ b+

+ ē iD/ e − 1

2
cL(µ) ē Z/ PL e + cV (µ)ē Z/ e +

c+(µ)√
2

(

ē W/ PL ν + h.c.
)

(2.1)

wherePL is the lefthanded projector andD/ stands only for the QED covariant derivative since
αs = 0 in this section. Thec(µ)’s of the electron are actually common to all the fermions
but the bottom quark. For instance, theZνν̄ would be+cL(µ)/2 since the neutrino has no
vector couplingcV (µ). We also take all the fermions but the top as massless and assume that
MH ≃ MZ,W to avoid unnecessary complications in the form of termslog(MH/MZ). Notice
that we have decomposed theZff̄ vertex in terms of a lefthanded and vector couplings instead
of the more conventional left and righthanded, or vector andaxial counterparts. The matching
conditions at this order yield Standard Model tree-level values for the effective couplings:

cb
L(mt) =

g

c
; cb

V (mt) =
g

c
s2 ; (2.2)

cL(mt) =
g

c
; cV (mt) =

g

c
s2 ; c+(mt) = g . (2.3)

We can select the non-universal part of theZbb̄ vertex by comparing thecb
L(µ) coupling on

shell with the analogous coupling for the electroncL(µ) at the scaleµ ∼ MZ ∼ MW ≡ M .
One defines3

1 +
1

2
∆ρvertex =

cb
L(M)

cL(M)
. (2.4)

3This ratio is called1 + ǫb in ref. [18]
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In order to make contact with the physics at the scaleµ = M , one has to scale the La-
grangian (2.1) down to this particularµ. Since we are only interested in one-loop electroweak
contributions, the RGEs that govern this scaling will be computed using the lowest order in
the electroweak couplings, i.e. the tree level. In this process of scaling,cb

L(µ) andcL(µ) run
differently. The calculation can be done by setting the external particles on shell. This is actu-
ally a subtle point. If one were to compute off-shell Green functions one would discover that
extra structures other than those appearing in the operators of eq. (2.1) are generated in the run-
ning. This has nothing to do with the effective field theory construction but is a reflection of the
known fact that the Standard Model is not manifestly renormalizable in the unitary gauge at the
level of off-shell Green functions. Only when S-matrix elements are taken can one renormalize
it [19]. Of course this is all we need since in the physical processZ → bb̄ all particles are on
shell, so that the physical amplitude is governed by the coefficient cb

L(M).
For cb

L(µ) the running is given by the1/ǫ poles of the diagrams of fig. 3. One can see,
however, that the diagrams of figs. 3a,b do not contribute to the running ofcb

L(µ) since they
are actually finite (this is akin to the Ward–Takahashi identity relating the vertex to the wave
function renormalization in QED) and the only contributioncomes from fig. 3c. Therefore

dcb
L(t)

dt
= fig. 3c . (2.5)

However things look differently forcL(µ) sincethere isaneνW vertex. The running ofcL(µ) is
given by the diagrams of fig. 4. As before, the diagrams 4d,e donot contribute, and an explicit
calculation in the unitary gauge for on-mass-shell matrix elements shows that the diagrams of
fig. 4b,c are each finite. Therefore the only contribution is that of figs. 4a and 4f, and one finds

dcL(t)

dt
= − g

c

g2

(4π)2

(

4

3
+

1

12c2

)

+ fig. 4f , (2.6)

where the relationM2
Zc2 = M2

W has been used. One can now trivially integrate eqs. (2.5)-(2.6)
with respect to t betweenlog m2

t andlog M2 to find

cb
L(M) ≃ cb

L(mt) + (fig. 3c) log
M2

m2
t

(2.7)

cL(M) ≃ cL(mt) −
g

c

g2

(4π)2

(

4

3
+

1

12c2

)

log
M2

m2
t

+ (fig. 4f) log
M2

m2
t

. (2.8)

This yields
cb
L(M)

cL(M)
≃ cb

L(mt)

cL(mt)

(

1 +
g2

(4π)2

(

4

3
+

1

12c2

)

log
M2

m2
t

)

, (2.9)

since the contribution of figs. 3c and 4f cancel each other outin this ratio. The tree-level
matching conditions of eqs. (2.2), (2.3) lead tocb

L(mt)/cL(mt) = 1 and, therefore, in this
approximation, one finds the right logarithmic piece of eq. (1.7) but the power-like one that goes
like m2

t is still missing. To obtain it one has to go to the next order, i.e. do a one-loop matching.
In order to do this one has to consider the integration of the top quark to one loop. This not only
modifies the boundary conditions of eq. (2.2),(2.3) but alsoproduces new nontrivial operators
besides those of eq. (2.1). The relevant diagrams are depicted in fig. 5. Then the part of the
Lagrangian involving the bottom quark interactions reads4

L = L4 + L6 , (2.10)
4Because of the diagram of fig. 5a there is a wave function renormalization factor.L4 only follows after making

the field redefinition that renders the kinetic term in a standard form.
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L4 = b̄ iD/ b − 1

2
cb
L(µ) b̄ Z/ PL b +

1

3
cb
V (µ) b̄ Z/ b (2.11)

and

L6 =
1

Λ2
F

∑

i

ci(µ)Oi , (2.12)

whereΛF = 4πv, v = (
√

2GF )−1/2 = 246 GeV and theOi’s are a set of dimension six
operators involving the (lefthanded) bottom quark and three derivatives; or the (lefthanded)
bottom quark, theZ and two derivatives5. They arise from the longitudinal part of theW
propagators. This is why the scaleΛF appears: it is the combination of the ordinary1/m2

t

suppression of any six dimensional operator in an effectivefield theory and the fact that the
would-be Nambu–Goldstone bosons couple proportionally tothe top mass. There are also other
operators generated at this stage, like for instance a Wess-Zumino term (which ensures in the
theory without top the cancellation of anomalies that occurs in the theory with top) or a four
bottom-quark operator (which comes from box diagrams with the top flowing in the loop).
However they can only affect theZbb̄ vertex with contributions that are two-loop electroweak,
i.e. subleading with respect to eq. (1.7). Still higher dimensional operators may exist but they
are truly suppressed by inverse powers of the top mass.

It is easy to convince oneself that, forαs = 0, one can forget aboutL6. Firstly, we are only
interested in considering matrix elements ofL6 at tree level sinceL6 itself has been generated
at one electroweak loop. With a massless bottom, dimensional analysis leavesMZ as the only
scale to compensate the scaleΛF in eq. (2.12). This is an effect ofO(g2) in theZbb̄ vertex, i.e.
without thelog mt enhancement and therefore is subleading with respect to those of eq. (1.7).

However, this is not the whole story. The longitudinal part of the W boson propagator
also produces a contribution to the matching condition of the cb

L(µ) coupling of eq. (2.11) and
modifies the first of the boundary conditions in eq. (2.2). An explicit calculation yields the
following result

cb
L(mt)

cL(mt)
= 1 − 2

m2
t

(4πv)2
, (2.13)

sincecL(mt) = g/c remains unchanged. Inserting this into eq. (2.9) one obtains the desired
final result: eq. (2.9) one

cb
L(M)

cL(M)
≃ 1 − 2

m2
t

(4πv)2
+

g2

(4π)2

(

4

3
+

1

12c2

)

log
M2

m2
t

, (2.14)

i.e. eq. (1.7) withαs = 0. For the effective field theory aficionado eq. (2.14) is somewhat un-
conventional in that it mixes matching (i.e. them2

t term) with running (i.e. the logarithm) both
at one loop. The reason is of course the non-decoupling of thetop quark which enhances the
one-loop matching contribution with the sizeablem2

t term. The rest of the one-loop matching
is of O(α) and therefore subleading.

Clearly the effect of integrating the top quark out affects only the lefthanded projection of
the bottom-quark field,cb

L(µ), but leaves untouched the coefficientcb
V (µ). This coefficient not

only equalscV (µ) atµ = mt (eqs. (2.2-2.3)) but also runs withµ ascV (µ) does. In other words,
cb
V (µ) = cV (µ). Of course this fact will be unaffected by QCD corrections.

3 QCD corrections

As discussed in the previous section, the unitary gauge has the advantage that, at the tree level,
the matching corrections that appear when one integrates out the top quark are suppressed by

5See next section for more discussion.
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two inverse powers of the top quark mass (fig. 1). Since ultimately this fact is due to dimen-
sional analysis, it cannot change once QCD is switched on andone-loopαs corrections to the
diagram of fig. 1 are also considered in the matching conditions. Therefore, with our choice of
the unitary gauge, dimensional analysis still dictates that these corrections are also suppressed
by two inverse powers of the top mass whenαs 6= 0. Since in the matching conditions one has
to calculate not only the divergent parts but also the finite pieces, the fact that the unitary gauge
does away with these particular matching conditions altogether is a major simplification and
justifies our choice of this gauge.

Not all the matching corrections disappear, however. The diagrams of fig. 6 do give rise to
new dimension six operators. Since no gluon loop appears in these diagrams, these operators
are explicitly QCD gauge invariant and, in fact, together with the diagrams of fig. 5 they are
none other than the LagrangianL of eqs. (2.10)-(2.12) with the only change that, now, every
derivative has been appropriately promoted to a QCD covariant derivative. It is important to no-
tice that both sets of diagrams (fig. 5 and fig. 6) are necessaryin order to resolve the ambiguities
one encounters when trying to implement this promotion to covariant derivatives.

In principle one should now calculate how all these operators mix back into theZbb̄ operator
of eq. (2.11) and make the coefficientscb

L,V (µ) evolve withµ as one runs frommt down toMZ .
However, one notices that since we are only interested in on-shell Z gauge bosons we can
use the free-field equations of motion for theZ to trade derivatives byZ masses. Moreover,
although theb-quark field is not on-shell and will be closed in loops, one isalso free to use the
full field equations of motion for theb quark as a means of defining and simplifying the operator
basis [20].

In this way, a clever use of the equations of motion helps us get rid of most of the operator
structures that are generated in the matching and leaves us with only three (in principle) relevant
operators. These are6,7

O1 = bLγν λA

2
bL gs DµGA

µν

O2 =
g

c
bLσµν 6Z λA

2
bLgsG

A
µν (3.1)

O3 =
g

c
bLγµ λA

2
bLZνgsG

A
µν . (3.2)

Of course these operators only affect the running ofcb
L(µ) and not ofcb

V (µ).
For instance an operator likeO4 = ibL 6D3bL will give rise, upon integration by parts and

use of the equations of motion for bothb fields, to another operator with twoZ ’s which can
only mix back into theZbb̄ operators of eq. (2.11) by closing oneZ in a loop, i.e. at the two-
electroweak-loop level sinceO4 originated already at one electroweak loop, and therefore we
can neglect it. One can check the fact that theO4 can be neglected by computing its contribution
to the diagrams of figs. 7a and 7b and seeing that they cancel each other. Throughout this work
we shall always use the Feynman gauge propagator for the gluon.

An explicit straightforward evaluation of the diagrams of fig. 6a yields for the coefficient
c1(µ) accompanying the operatorO1 the value

c1(mt) = − 7

18
. (3.3)

In principle we should also computec2,3(mt) for the corresponding operatorsO2,3. How-
ever, for our purposes this is totally unnecessary. A moment’s thought reveals thatO2,3 can

6One could still use the equations of motion for the gluon fieldbut we found more convenient not to do so.
7There are two Hermitian linear combinations ofO2 that must be considered.
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never mix back into theZbb̄ operators of eq. (2.11), where the three particles are on shell, be-
cause closing the gluon line in a loop will produce –through ap/ or ap2– a bottom mass which
we have taken to be zero.

In order to make contact with the physics at the scaleµ ≃ M one has to find howcb
L(µ)

scales withµ. What is the RGE governing the running of the coefficientcb
L(µ) now thatαs

corrections are included? Forαs = 0 we know that the answer is given by eq. (2.5). Not much
is changed whenαs 6= 0. In particular, the cancellation of the diagrams of figs. 3a and 3b
still takes place, even with QCD corrections. First of all there is the diagram of fig. 3c (now
of course includingαscorrections in theZ vacuum polarization). Notice that there can be no
gluon attaching the vacuum polarization to the external bottom-quark line to orderαs. Secondly
there is the contribution of the coefficientsci(µ) of L6 to the RGE forcb

L(µ). However, as we
discussed above, onlyc1(µ) needs to be considered; the relevant diagrams are those of fig. 7b.
Notice also in this regard that there is no wave function renormalization due toO1 because of the
masslessness of the bottom quark. Finally notice thatcb

L(µ) does not renormalize itself through
αs corrections because the operatorbLZ/bL behaves like a conserved current under QCD.

Consequently, gathering all the pieces, one obtains that

dcb
L(t)

dt
= fig. 3c +

g

c

g2

(4π)2
γ1 c1(t)

αs(t)

π
. (3.4)

We have explicitly checked that, as we argued before, the contributions of diagrams of
figs. 8a and 8b cancel out when the vertices obtained from figs.5b and 6b are inserted thus
confirming that the only running, besides the vacuum polarization diagram of fig. 3c, comes
from the penguin operatorO1, so that eq. (3.4) indeed follows. We obtain the following value
for the coefficientγ1:

γ1 = − 1

9c2

(

1 − 2

3
s2
)

. (3.5)

SinceO1 only involves the lefthanded bottom quark it is clear why thecoefficientγ1 turns out
to be proportional to the lefthanded bottom coupling to theZ, i.e. the combination1 − 2

3
s2.

Now we would like to integrate eq. (3.4). In first approximation, one may takeαs(t) and
c1(t) as constants independent oft, i.e. αs(µ) ≃ αs(mt) ≃ αs(M) ≡ αs andc1(µ) ≃ c1(mt) ≃
c1(M) ≡ c1 = −7/18. The integration overt betweenlog m2

t andlog M2 gives

cb
L(M) ≃ cb

L(mt) + fig. 3c log
M2

m2
t

+
g

c

g2

(4π)2
γ1 c1

αs

π
log

M2

m2
t

. (3.6)

It is in principle possible to improve on this approximationby considering theµ-dependence
of αs(µ) andc1(µ) in eq. (3.4). Theµ-dependence ofαs(µ) is given by the usual one-loopβ
function. However theµ-dependence ofc1(µ) is more complicated to obtain because it requires
performing a complete operator mixing analysis of the penguin operator along the lines of, for
instance, the work carried out in the studies ofb → sγ or K0-K̄0 mixing [21] from where most
of the results could be taken over to our case. However, the fact thatγ1c1(mt) = 7

162c2
(1 −

2
3

s2) ≈ 0.05 turns out to be so small renders this improvement moot and we shall content
ourselves with eq. (3.6) as it is. As we shall see later on, there are other sources of QCD
corrections that are numerically more important.

Of course leptons do not have strong interactions and for them the answer for the running
of cL(µ) is still eq. (2.8) (notice however that fig. 4f will now have someαs-dependence inside
the vacuum polarization, just as fig. 3c does). Consequentlyone obtains from eqs. (3.6),(2.8):

cb
L(M)

cL(M)
≈ cb

L(mt)

cL(mt)

[

1 +
g2

(4π)2

(

4

3
+

1

12c2

)

log
M2

m2
t

+
g2

(4π)2
γ1 c1

αs

π
log

M2

m2
t

]

, (3.7)
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since, also in this case, the contributions from figs. 3c and 4f cancel each other out in this ratio.
This fixes the coefficientC in eq. (1.7) to be

C = 2 γ1 c1

(

8

3
+

1

6c2

)−1

≈ 0.03 . (3.8)

We would like to mention at this point that all of the above calculations (included those
in the previous section without QCD) have been repeated using the Landau gauge for theW
propagator with exactly the same results. In particular we would like to point out that in this
gauge the coefficientc1(mt) comes entirely from fig. 6a with theW replaced by a Nambu–
Goldstone boson. This agreement has as a consequence the vanishing of the contribution to
cb
L(M) of the QCD corrections to the matching conditions of operators with external Nambu–

Goldstone bosons like for instance the one in fig. 2, which arepresent in this gauge. Of course
in the unitary gauge they trivially disappear.

The ratiocb
L(mt)/cL(mt) is still given by eq. (2.13) in this approximation. One could

now considerαs corrections to eq. (2.13). This is a hard two-loop calculation of the matching
conditions in the presence of QCD when the top is integrated out. Here the effective field theory
language does not help much and the calculation has to be done. Fortunately the result is already
available in the literature [22]. Translated into our context it amounts to

cb
L(mt)

cL(mt)
= 1 − 2

m2
t (mt)

(4πv)2

[

1 − αs(mt)

π

(

π2 − 8

3

)]

. (3.9)

Again, what the EFT does tell us is that theµ scale ofαs(µ) in this equation has to bemt

since it originates at the matching condition when the top isintegrated out.8 Therefore we get
to eq. (1.7) withαs(µ = mt) in them2

t -dependent term.
However this is not yet all. Up to now all the physics has been described with RGEs (i.e.

running) and their initial conditions (i.e. matching) which is only ultraviolet physics, and no
reference to infrared physics has been made. For instance, where are the infrared divergences
that appear when a gluon is radiated off a bottom-quark leg? As we shall now see, this physics
is in the matrix element forZ → bb̄. After all, we have only obtained the effective Lagrangian
(2.10),(2.12) at the scaleµ = M ; we still have to compute the physical matrix element with it,
and here is where all the infrared physics takes place.

Indeed, when computing the matrix element forZ → bb̄ with the effective Lagrangian
(2.10),(2.12) expressed in terms ofcb

L,V (µ) atµ = M , one has the contribution of the diagrams
of figs. 9a, 9b, where the⊗ stands for the effective vertices proportional tocb

L,V (M). These
diagrams give rise to infrared divergences. These divergences disappear in the standard way
once bremsstrahlung diagrams like those of fig. 9c are (incoherently) added [23, 24]. Note
that similar diagrams with effectiveg − b − b couplings are subleading and never give rise to
corrections of the form of eq. (1.7).

As is well known [14], the net result of all this (a similar calculation can be performed
for the QED corrections) is the appearance of the factorsRQCD andRQED of eqs. (1.1),(1.6),
whereb-quark mass effects can also be included [24,25] if needed.

The EFT technology adds to this the choice of scale forµ, namelyµ = M , in these factors9:

RQCD ≃ 1 +
αs(M)

π
; RQED ≃ 1 +

α(M)

12π
, (3.10)

8Another advantage is that matching conditions are free frominfrared divergences [6], which is a nice simpli-
fication. For some more discussion on infrared divergences,see below.

9This has been previously suggested by D. Bardin (private communication).
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and naturally leads to the factorized expression (1.1)-(1.7) (see the Appendix), with the value
of C given by eq. (3.8). As stated in the introduction, our resultagrees with that of ref. [17].
Since the “intrinsic”αs contribution of∆ρvertex is, due to the smallness of the coefficientC,
much less important than that ofRQCD one sees that the QCD corrections to the non-universal
log mt piece of theZbb̄ vertex are, to a very good approximation, of the form one-loop QCD
(mt << MZ) times one-loop electroweak (mt >> MZ) [26].

4 Discussion and conclusions

In this paper we have presented an effective field theory study of the processZ → bb̄ in the limit
of largemt including all the QCD corrections to the leading and the subleading contributions.
In particular we have explicitly shown that the QCD corrections to the termlog(mt/MZ) can be
easily obtained in the EFT framework by computing only a couple of one-loop diagrams in the
limit of small external momenta. We have also shown that the EFT framework answers quite
naturally the question of the renormalization points to be used for the coupling constants in the
different terms.

In addition, it is important to remark that in the EFT language all the physics aboveM
is absorbed (in particular, allmt effects) in the coefficients of the effective operators so that
infrared physics is relegated to the calculation of the physical process one is interested in. With
our effective Lagrangian one could in principle compute anyphysical quantity, and not only
theZ width, like for example jet production (i.e. where cuts are needed) , forward–backward
asymmetries, etc. This is to be compared with more standard methods for computing radiative
corrections to theZ width in which this width is extracted from the imaginary part of theZ self-
energy to avoid problems with infrared divergences. For instance, a more standard calculation
of the coefficientC [17] requires starting with theZ self-energy at three loops (with all the
complications of the renormalization program at that order) to then compute its imaginary part.
Extracting from this spatial asymmetries or jet rates, for instance, will be much harder because it
is not easy to limit to one’s needs the entire phase space. TheEFT calculation clearly separates
ultraviolet from infrared physics and as a consequence it ismore flexible. And it is also simpler
since, after all, we never had to compute anything more complicated than a one-loop diagram.

Of course, our results become more accurate as the top mass becomes larger. In practice it is
unlikely that the top quark be much heavier than, say,200 GeV so due caution is recommended
in the phenomenological use of eq. (1.1). In the lack of a (very hard !) fullO(g2αs) calculation,
this is the best one can offer. Furthermore, we think it is interesting that at least there exists a
limit (i.e. mt >> MZ) where the various contributions are under full theoretical control.
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APPENDIX

A The width for Z → bb̄

In ref. [12] the effective couplingsg3(µ), g+(µ) andg′(µ) were employed. The connection with
cL(µ), cV (µ) andc+(µ) is

cL(µ) =
g3(µ)

c(µ)
; cV (µ) =

g3(µ)s2(µ)

c(µ)
; c+(µ) = g+(µ) ,

wheres2(µ) = sin2 θW (µ) andtan θW (µ) = g′(µ)/g3(µ).
According to our discussion, the widthZ → bb̄ can be computed from our Lagrangian

(2.10) as
Γ ∝ MZ RQCD RQED

[

V 2 + A2
]

,

whereRQCD,QED are given by eq (1.6) withµ = M , and

V =
1

3
cb
V (M) − 1

4
cb
L(M) ,

A =
1

4
cb
L(M) .

Therefore

V 2 + A2 =
1

16

[

(

cb
L(M)

)2
+
(

cb
L(M) − 4

3
cb
V (M)

)2
]

.

Sincecb
V (µ) = cV (µ) andcV (µ) = cL(µ)s2(µ) one obtains that

V 2 + A2 =
1

16
(cL(M))2





(

cb
L(M)

cL(M)

)2

+

(

cb
L(M)

cL(M)
− 4

3
s2(M)

)2


 ,

and, using (3.7)-(3.9), one sees that

cb
L(M)

cL(M)
= 1 +

∆ρvertex

2
.

From ref. [12] we know that

M2
W =

c2
+(M)

4
v2
+(M) =

c2
+(M)

4

(√
2GF

)

−1
,

and

M2
Z =

c2
L(M)

4

(

v2
3(M) + 4M2

ZδZ3Y (M)
)

,

so that one can relatecL(M) to MZ andGF . One finally obtains eq. (1.1) after noticing that

s2(M) = κs2
0 ,

with

κ = 1 − c2

c2 − s2
∆ρ +

g2

c2 − s2
δZ3Y (M) ,

and

δZ3Y (M) =
1

6(4π)2



log
M2

m2
t

+ log

(

αs(M)

αs(mt)

)

−4/β0



 .
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Figure 1: Diagram contributing to the matching in the unitary gauge. It is suppressed by1/m2
t .
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Figure 2: Diagram contributing to the matching in non-unitary gauges. It is not suppressed by
1/m2
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Figure 3: Running of the vertexZ-b-b in the effective theory.
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Figure 4: Running of the vertexZ-e-e in the effective theory.
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Figure 5: One-loop matching: QCD switched off.
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Figure 6: One-loop matching: QCD switched on.
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Figure 7: QCD running: Insertion ofb-b andb-b-g operators.
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Figure 8: QCD running: Insertion ofb-b-Z andb-b-Z-g operators.
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Figure 9: Diagrams contributing to the matrix element ofZ → bb̄ in the effective theory.
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