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ABSTRACT

Semileptonic 7 decays to two and three pions are considered. Based on recent
data for the pion form factor a new prediction for I'(r — v~ 70)/T(r — veie)
of 1.32 £ 0.05 is derived. The chiral model — supplemented by vector dominace
— is used to predict rate and differential distributions for the three pion mode in
good agreement with present data. The parity violating asymmetry which has been
predicted theoretically and observed experimentally is studied and found to be fairly

insensitive towards the details of the model for the hadronic decays.
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1. Introduction

Semileptonic decays of the 7 lepton have stimulated theoretical and experimen-
tal investigations since the discovery of the 7 lepton [1,2]. In particular decays to
two and three pions — representing the strongest exclusive modes — have received
considerable attention. The two pion, p-meson dominated mode serves as anm ex-
cellent test of the CVC hypothesis and, on the basis of this assumption, can be
predicted from the experimentally determined pion form factor [3, 4, 5]. The three
pion mode, on the other hand, provides new information on the matrix element of
the axial current. For low mass of the three pion system it allows to test the pre-
dictions based on chiral invariance {6,7]. The distribution of the rate with respect
to the mass of the hadronic system Q2 allows to determine mass and width of the
a1 resonance and the dynamics of its decay. The three pion mode allows, further-
more, the construction of a parity violating asymmetry and thus the unambiguous
determination of the magnitude and the sign of the ratio of the vector and axial

couplings gy /g4 at the lepton vertex.

With this motivation in mind a detailed analysis of the two and three pion
channels has been performed. In chapter 2 the two pion channel is treated in some
detail. The most recent experimental results, as compiled in Ref. 8 are incorporated.
This leads to a prediction for 'y;/Te = I'( — vr~70)/T(+ — evi) of 1.32 £ 0.05
with a central value significantly higher than the previously quoted result [5] of
1.23 +: 0.12. This channel serves also as a testing ground for the ansatz of the p-
propagator required for the 37 mode and for the detailed form of the a; Breit-Wigner
amplitude. In particular the impact of an energy dependent width, the inclusion of

a dispersive part and of higher radial excitations will be studied.

Chapter III is concerned with the analysis of the 37 decay. It is based on
an amplitude derived [6] in the chiral limit, supplemented by vector dominance
to correctly describe the resonances in the 27 and 37 mass distributions. Fixing
the p propagator with the parameters adopted in chapter 2 to describe the pion
form factor, the mass and width of the aj resonance are deduced from the 37 mass
spectrum. The normalization of the rate is fixed unambiguously in this model.
The dependence of the a; parameters, as deduced from the data, on the form of

the resonance parametrization is studied. While the @; mass will turn out to be



fairly insensive towards these details, the width will be significantly more mindel

dependent.

Various spectra characterizing the distribution in the Dalitz plane are then cal-
culated and compared with the experimental results, wherever available. These
distributions can be predicted quite unambiguously and are in nice agreement with
the data. The impact of the interference between the two p combinations on these

distributions is stressed.

Motivated by the recent observation [9] of parity violation in 7 decays as pre-
dicted in Ref. 7, the model dependence of the theoretical prediction is investigated.
After a brief introduction of the kinematic variables relevant for this analysis the
results derived from different models are presented. The differences are found to be

small.

2. The two pion mode 7 — v7~ 70 and the pion form factor

Using the CVC hypothesis and isospin invariance, the decay rate relevant for

0

T — vr~ w" is expressed in terms of the pion form factor F' through [3,4]

2 2 2\2 2 2
Pon/Te = 0[S0 (12 ) (1122 )0 - 2021 m, @O (2)

2 J mi 2 m# Q?

where the subscript / = 1 indicates that the w contribution has been subtracted.

Various parametrizations have been suggested for F(Q?2). They all incorporate p—w
mixing and an energy dependent width for the p, but differ in the exact functional
dependence of I‘,,(Q2), in the incorporation of analyticity in the p propagator and
in the inclusion of higher radial excitations p’, p" and eventually in a deformation

of the resonance in the large Q2 region as a consequence of the opening of a new

channel.

Since a reliable parametrization of the p propagator will be needed for the a;
decay amplitude in chapter 3, the maximum of information will be extracted from
the presently available data on the pion form factor in the timelike region and the

different choices will be confronted with the data . As a byproduct a new prediction
for I’y /Te will be derived.

The energy dependence of the resonance width is incorporated in the propagator



through the substitution

i mplp = 1\/Q2T,H(Q) (2.2)
with
@)=r,7% 2" 3)
r =lp—=53 (2.
P g Q
and
2p = (Q% — 4m2)1/2,  2p, = (m} — 4m?2)!/2 (2.4)

(Throughout this paper 7~ and 70 masses will be taken as 140 MeV). Such a
form is expected from relativistic p-wave phase space and can be derived from the
assumption of a constant pr7 coupling. It coincides with the functional dependence
adopted by Gounaris and Sakurai (GS) [10] and also in Ref. 11, but differs from
the one employed in Refs. 12,13,14. For the real part of the inverse propagator the
expression (m/2, — Q2) can be adopted. This implies

BWP(Q?) =

i (2.5)
m2 — Q2 — i/Q2T»(Q2) '

Alternatively one may use the form proposed in Ref. 10. We repeat the derivation
of the latter since a similar form will be used for the a;. The real part of the inverse
propagator is obtained from the requirement of analyticity combined with the proper
subtractions to fix mass and width of the resonance and a normalization factor in

the numerator to assure BW(Q? = 0) = 1. This leads to the following form of the

Breit Wigner resonance:

BI/VGS(Q2) B m% +dl'pym, (2.6)
— Q%+ H(Q?) — i/Q2T)(Q?) '
with
H(Q*) = H(Q?) — A(m2) — (Q* — m2)H'(m?) (2.7)

The function H can be obtained from \/Q2I‘p(Q2) through a twice subtracted dis-

persion relation and is given by

QY = 27 ”(Q2/4 mZ)h(Q?)



with

(-
h(Q*) = - (28)
42 i(E-1)1241
(D —1)1/2 ln(%zﬁ) if 0 < Q2 < 4m?
| e i(42E-1)1/2-1
The constant
d = H(0)/(Tymy)
depends on m, and mq only. It is explicitly given by [10]
2 2
4o Jmh (mot g | my _mim, o9
2T P mp — 2pp 27pp wp%

As discussed in Ref. 8 the high Q2 region (above ~ 1 GeV) can only be described if
either higher radial excitations like p’ and p" are included or if the high Q2 region

of the p resonance is significantly distorted due to the 47 and wr threshold.

Parametrizing the form factor through

F(Q%) = (prpw

S B BWy BI/Vpu)/(l +B8+4)  (210)

the free parameters are obtained from a x2 fit to the complete data set given in
Ref. 8 and are listed in table 1 (models 1,2 for BWP, models 4,5 for BWCS ). The
masses and widths of the w and the p” have been fixed [15] to my, = 782 MeV,
Iy, = 8.5 MeV, my = 1700 MeV, I‘pu = 235 MeV. A simple Breit Wigner with
constant width has been used for the w propagator. Consistent with Ref. 8 the
relative phases of a, 4 and v are assumed to be real. This leads in particular to a
real pion form factor below threshold. Fits based on p and w alone with propagators
as given in eq. (2.5) or eq. (2.6) do not* lead to a satisfactory description of the

data** as is evident from Fig. 1.

*We disagree with Ref. 11 in the applicability of a simple P-wave Breit-W igner
to the data. In fact the disagreement between model and data is evident already
from their Fig. 2.

**For Bp and Bgg one finds m, = 784 MeV, T = 127 MeV, x2/np = 1255/136
and mp = 783 MeV, 'y = 139 MeV, x2/np = 640/136 respectively.
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Fig. 1: Comparison of data [8] and fits to the pion form factor, based on the
Gounaris-Sakurai parametrization. Solid/dashed/dotted curves: models 4/5/6
from table 1. Dash-dotted curve: fit with p only and W = 1/Q2.

To detach ourselves from the assumption of higher radial excitations and to
study the model dependence of the results for 'y /Te the data were also fitted to
the function [16]

F(Q?) = BW,

1+aBWy {!7(@2) if Q%> (my +ma)” (2.11)

l+a Red(Q?) if Q2 < (mw + mq)?

307 = ()"

m% — Q2 — imgly




my, | Tp @ my | Tp B ¥ m, I, no xz/nD L2z /Te
773 | 145 | 1.85-103 | 1370 | 510 | —0.145 | = - - - 146/133 | 1.313
773 | 144 | 1.84-1073 | 1320 | 390 | —0.103 | —0.037 | ~ - - 136/132 | 1.314
774 | 143 [ 1.82-1073 | — - - - 1190 | 230 | 0.285 | 139/133 | 1.313
776 | 150 | 1.95-10~3 | 1370 | 350 | —0.083 | = - - - 159/133 | 1.320
776 | 151 | 1.95-1073 | 1330 | 270 | —0.052 | —0.031 | -— - - 151/132 | 1.323
776 | 149 | 1.94.10°3 - - - - 1180 | 105 | 0.142 | 141/133 | 1.323

Tab. 1: Results of fits to the pion form factor based on P-wave Breit-Wigner ampli-
tudes (N=1,2,3) and on the Gounaris-Sakurai formula (N=4,5,6), excluding (N=1,4)
or including (N=2,5) p" or using the modification of eq. (2.11)(N=3,6).

The latter form will, however, not be used in the subsequent discussion of the
three pion mode. The parameters resulting from this fit are also listed in table 1
(models 3 and 6). The curves based on the Gounaris-Sakurai amplitudes are shown
in Fig. 1. Those based on the P-wave Breit-Wigner (2.5) are quite similar and are
therefore not presented in the figure. Also shown in table 1 are the predictions for
I9z/Te based on (2.1). The w contribution has been dropped in the evaluation of the
integral, i.e. a has been set to 0. The result of 1.31-1.32 is fairly insensitive towards
the details of the parametrization. The statistical error in the fitted parameters and
in the resulting integral is small (< 0.01). The main uncertainty originates from
the systematic error of the experiments (quoting between 2% and 4%) which leads
to our final result of 1.32 with a conservative error estimate of £0.05. This result is
above the previously quoted value [5] of 1.23 4 0.12. One might expect some model
dependence from the region with larger errors, i.e. above 1.0 GeV. This contribution
is, however, rather small. Furthermore the fits are typically below the data points in

this region, such that any model dependence would raise the prediction even further.



3. The three pion mode, chiral invariance and a1 properties

3.1. GENERAL FORM OF THE AMPLITUDE

The three pion channel is entirely determined by the appropriate matrix element

of the axial current J4

(7~ (q1)7 " (a2)7 ™ (g3)|J2(0)[0) = Ja(q1, 92, 93) (3.1)

which implies a decay amplitude in the form

G _
M = cos 9c7§vu(m)va(gv — 9a75)ur(pr)J%(q1,92,93) (3.2)

The standard model value gy = g4 =1 will be assumed in this chapter, the general
form will be used in chapter 4. The most general ansatz of J, for three pions in a

spin 1 state which incorporates also the constraints from Bose symmetry reads

Ja = F(s1,39, Q%) Via + F(s9,51,Q%)Vaa (3.3)

Via = Q1a — - Qa Q( Q2 Q3); Voo = 920 — 930 — Qa%q—w

with s; = (g9 + q3)2 etc.. It has been shown in Ref. 6 that form and normalization
of Jo are fixed in the chiral limit
2\/— 21

3fx
with fr = 93.3 MeV. It has been argued, furthermore [6,7] that the correct distri-

butions in the Dalitz plot are obtained once the enhancements from the p meson

Jo = (Vie + Vaa) (3-4)

propagators are included along the prescription of vector dominance. In addition
damping for large Q2 is required which can be incorporated through a broad a;
resonance. The normalization is still derived from eq. (3.4). One is thus led to the

following amplitude*

Jo = —z?3f£BWa(Q )(Bo(s2)Via + By(s1)Vaa) (3.5)

with the requirement BW,(Q?) Q—) 1 and By(s;) — 1. The detailed forms of
8;—+

BW, and B, will be discussed below and will be based on the parametrizations used

for the pion form factor.

*This amplitude has been discussed recently also by Pich [13]. We differ, however,
in the form of the p and a; propagator and in the numerical result.



3.2. THE SPECTRAL FUNCTION AND dI'/dQ?

The rate for Cabbibo allowed semileptonic 7 decays can be expressed quite
generally in terms of spectral functions py and py, characterizing the relative amount

of spin 0 and spin 1 hadronic final states {3, 4]

Cye/Te = o126 [ 297 (12 ) (i@ + (1422 )p1(Q2)) (3.6)

me m2

with

% / dPS(37)(0]JL[37)(3717510) = QuQpp0(Q?) + (Qa®@p — 905R%)P1(Q2)

fc denotes the Cabbibo angle, dPS(37) the Lorentz invariant phase space, Q the

four momentum vector of the three-pion state and m; the 7-lepton mass.

From eq. (3.3) one derives py = 0 and the spectral function p; can be cast into

the form
2 _ oy _1 1 02)126(02)/Q?
Q) = r3(@) = § szl BWa( @) P0(@2)/Q (37)
The three pion phase space factor*
dsy1ds
9@ = [ SLF2 (- VRIB (o2~ Vi 1By(s1) P~ 2ViVa Re By(s1) By(s)" ) (3.9

~WE = (s2 = 4m2) + (53 — 51)*/(4Q?)
—V§ = (s1— 4m3) + (s3 — 52)?/(4Q?) (3.9)
~ViVe = (Q%/2 = s3 = m/2) + (s3 — s1)(53 — 52)/(4Q")
replaces the relativistic P wave phase space which appeared in the two pion channel
(egs. (2.1,2.3)). It has to be inserted also in the a; Breit Wigner, since — in analogy

to the discussion in chapter 2 — g(Q2) governs also the a; decay rate. If a decay

matrix element of the form

Ma = 37) = facl( Bo(s2)Via + Bp(s1)Via) (3.10)

*This form is closely related to formulas given in [17]. In fact —ViZ = D(sg, s1),
~V1Vy = I(s1,52), where D and I can be found in the J¥ = 17 entry of table
IT in [17].



is assumed the decay rate reads

1 J2 2
[(ay — 37) = Sy (47r)3g(ma) (3.11)

Special limiting cases which lead to simple analytic results for my = 0 are the narrow

width approximation (without p’ contribution)

2rms3 m2 m2 1

99" =, 5,79 -G+ (1—~—ﬂ)) (3.12)
and the chiral limit
9
9(@? G20 T6Q4 (3.13)

We stress, that the squared matrix element is not a simple constant, such that
g(Q2), even in the narrow width approximation, is not given by s-wave phase space
and increases o QQ.(This differs from the assumptions used in Ref. 18 where the
corresponding function —Im C approaches a constant.) In analogy to the discussion

in chapter 2 the parametrizations of both p and a; enhancements now have to be

specified in detail.
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Fig. 2: Phase space function g for two choices of B,. Solid curve: including

p' (model 1); dashed curve: p only, with the same parameters.
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A priori it is not evident that the p' (or p") resonance contributes with the same
relative strength to the a; decay and to the pion form factor. ¢(Q?) is therefore

evaluated for the two possibilities of a single p contribution
B, = BT/V,? (3.14)

and p plus p’

By = (BWJ + BBW))/(1+ f) (3.15)
(p parameters always taken from model 1 of table 1) with P-wave Breit Wigner
amplitudes (Fig. 2). The main difference results from the factor 1/(1 + §) in the
normalization. The large s1, s9 region is strongly suppressed in the relevant inte-
grals. Therefore the differential distributions differ barely for the two models and
only the results from model 1 will be presented in section 3 below. A convenient
parametrization of g for this model with p' only which is applicable in the region up
to 3 GeV? reads (all parameters in appropriate powers of GeV):
2(Q%) = { 4.1(Q% — 9m2)3(1 - 3.3(Q% — 9m2) + 5.8(Q% — Im2)?) if Q% < (m, +my)?

Q?(1.623 +10.38/Q? — 9.32/Q* + 0.65/Q5) else
(3.16)

The energy dependence of the imaginary part of the inverse aj propagator is
fixed through

2
g(mg)
Two choices for the real part are suggested. One may either retain the form
2
m
BW,(Q?) = a (3.18)
m3 — Q% — i\/Q?T4(Q?)

which is choosen in analogy to the P-wave Breit Wigner for the p. The ARGUS
result for the spectral function is shown in Fig. 3 together with the curve resulting
from B, chosen according to eq. (3.15). In table 2 the parameters of the fit are
listed for both models (eqs. (3.14,3.15)) without fixing the normalization and thus
allowing for a scale factor S different from 1. Considering the present uncertainty

in the rate*, satisfactory agreement is obtained for both models.

*We note that B(r~7~7t) = 5.6 £ 0.7% has been obtained in [19] whereas the
present world average [15] amounts to 6.8 £ .6% with individual results ranging
between 5.0 and 9.7%.

11
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Fig. 3: Spectral function as derived from eq. (3.15) (including the scale factor
of 0.85) and data from Ref. 19.

BW, B, Scale factor | mg[ MeV] | I'a[ MeV] | x2/np | Tpepero/Te
(s=1
no dispersive
. BW?P, no p' 1.06+0.08 | 1246+ 12 | 562+ 38 48/51 0.286
correction
no dispersive .
. BWP?, withp' 0.85+£0.07 | 1256113 | 599+ 44 52/51 0.356
correction
with dispersive GS
. BWS>  no p' 0.48+£0.03 | 1256215 | 655+ 56 65/51 0.622
correction
with dispersive GS .- , -
. BW®S? | with p 0.43+£0.03 | 1255+£16 | 696+ 66 71/51 0.705
correction

Tab. 2: Results of the fits to the experimental data [19] for the spectral function using

theoretical predictions based on different assumptions for the p and ay enhancements.

12




Alternatively one may incorporate a dispersive part

, 2
BI/chl:lzsp(Q2) — mg + dal'amg (3.19)

m2 — Q2 + H(Q?) - i/Q?Tu(Q?)

similar to the treatment of the p-propagator in Ref. 10. The function H(s) is ob-

tained from g(s) through

2y _ LTamalg ov 40 o 22\ fyl, 2
HQY) = | (@7 ~ H(m) - (@ - md) ()]
@Y = -1¢* [ 5L (3.20)
L L =)+ md )
’ g(m3)

The first subtraction assures the proper location of the a1 mass, the second subtrac-
tion is required to allow the interpretation of I'y as width of the aj. The additional
term in the numerator assures the correct normalization in the chiral limit Q2 — 0.

The dispersive integral in eq. (3.20) is ultraviolet convergent and has been evaluated

numerically.
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Fig. 4: a)The functions g, H and H' (solid/dashed/dotted curves) as
defined in eq. (3.20) (in units of GeV2).
b)The functions H(Q?) (dashed) and V@2Ta(Q?) (solid) (in units of

GeVQ) which modify the ay propagator with the a1 parameters listed in
table 2.
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The results for ¢(Q?), H(Q?) and H'(Q?) are shown in Fig. 4a based on
GS

(with p parameters taken from model 4 of Table 1), those for H(Q?) and \/—Q—QI‘(QQ)
in Fig. 4b. Independent from differences in the detailed form of ¢ resulting from
differences in B, one obtains a drastic change in the normalization d ~ 1.(1 +
daI‘a/ma)2 ~ 2!). Thus this ansatz leads to a prediction of Lo g—nt/Te = 0.62
which is about a factor 2 higher than the one discussed above. This seems to be
incompatible with the present world average. Including the p’ contribution increases
the difference even further. Also the shape differs significantly from the case without
the dispersive part. Even allowing for the scale factor listed in table 2 to adopt the
normalization of the data, the shape of the spectral function is still not reproduced

as well as in the previous case — a fact evident from table 2.

3.3. DISTRIBUTIONS IN THE DALITZ PLANE.

While the distribution dT'/dQ? is reproduced through the simple ansatz of an ay
resonance and pm phase space (see e.g. [12]) differential distributions should allow

to test the model in more detail.

One characteristic feature is the interference between the two p combinations.
This aspect (barely visible in g(s) in Fig. 2) reflects itself in the mass distribution
of like sign and opposite sign pion pairs.

In Fig. 5 dI'/d\/s; and dI'/d\/s3 are shown with (/5] = m(7¥7~) and /33 =
m(7~77) integrated over all Q2. (Note that every event enters twice in the distri-
bution dT'/d,/s1.) These curves are in nice agreement with the results from Ref. 19.
The cross-over, however, of the two curves in the region of small s1, s3 is character-
istic for the interference. It is not present in the case of incoherent superposition.
This feature is absent in the published data of ARGUS [19] although the errors are
still large. More recent data from the same experiment [20] and data from MAC

[21] seem to indicate the presence of this effect.

Similar comparisons can be made for distributions in s; where s9 has been in-
tegrated over the p band (0.5 GeV?2 < s9 < 0.7 GeV?), and Q2 has been integrated
over a fixed interval. Satisfactory agreement is obtained for shapes and normaliza-

tion.

14
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prediction is given for restricted Q% = M327r intervals.



4. Parity violation in 7 decays

It has been observed in Ref. 7 that the three pion mode can serve to establish
parity violation in 7 decays. For the sake of completeness the basic formulae and
kinematic variables will be repeated. The model dependence will then be studied
in some detail. The asymmetry will firstly be described in the case where both
the 7 and the 37 restframe can be reconstructed, relevant e.g. for a 7 factory close
to threshold. Then the case of the 7 decaying in flight and resulting from ete~

annihilation will be studied.

Fig. 7: Definition of |, iy and fig in the hadronic rest frame.

The differential rate is expressed in the form*

2 2\2
+ G
dI' = cos 06—(gv 1 gA) w dPS(pr;pv,q1,92,93) (4.1)
1”'1'

with w = wp, + wpy,. The parity violating piece is given by

Wpy = Tya2Ime(pr, J, J*, )
8

571 BWa(@) Im Bp(s1) Bp(s2)*  (4.2)

= _'YVA 12€(q1, q2) q3)pT)

*In this paper we follow the conventions of Bjorken and Drell and use €p193 = +1.

16



= —7,,3(RL7ir)(m2 — Q%)/(s15053 — m2(Q2 — m2)2)/Q?

8 %IB%(QQ)FIme(son(sz)*

where v,,, = 2ngA/(g%, +g%) and 77, = q1 X ¢2/|q1 X ¢2| denotes the normal on the
plane spanned by the momenta of the three pions in the rest frame of the hadronic
system, fir the direction of flight of the 7 viewed from the rest frame of the hadronic

system. (See Fig. 7)

The parity conserving part reads

m2 — 02 . .
(—TQ2Q—)|ﬁTJ|2 + |12 (4.3)

where J is to be taken in the 37 rest frame.

To extract the parity violating piece experimentally, two situations of practical

interest may be considered:

Taus decaying at rest: This is equivalent to those situations in which the tau rest
frame can be fully reconstructed. In this case 7ir = —7ig (where 7ig denotes the di-
rection of the hadrons in the lab system) is known and the first moment with respect
to () 77 ) sign(sy — s2) can be considered. The antisymmetric function sign(sq — s9)
is needed to avoid a null result due to the Bose symmetry of the amplidude. (For
an alternative choice see [7] eq.4.6.) Using the factorization property of phase space

2

d
dPS(pripv,q1,92,93) = %dPS(pr;pu, Q)dPS(Q; 91,92, 93) (4.4)

we can define the moments with respect to (7 7ir)sign(s; — sg) by integrating the

three-pion phase space, keeping the direction of the hadronic system fixed:

Lo _ o) = 19P5(Q5 91,92, 93)(77ir) sign(s1 — sp)w -
(7177 siga(e1 = 2)) = JdPS(Q;q1,92,93)w (4.5)

An explicit calculation gives

(7L 7ir) sign(s1 — s2)) = ~1avALR(Q?) (4.6)
where Ay p depends on Q2 only:
ALR(Q?) = (4.7)

3Q? [ dsydsgy/(s15953 — m2(Q? — m2)?)/ Q2 sign(s1 — s9) Im By(s1) Bp(s2)*
(m2 +2Q2?) [ dsydsy(—V|Bp(s9)|2 — Vi#|Bp(s1)|2 — 2V4 Vi Re By(s1)Bp(s2)*)

i



eTe experiments at energies significantly above the 7 threshold: The taun rest-
frame cannot be fully reconstructed, 7, is not known and the moment as defined
previously cannot be measured. However, one can still define a moment with re-
spect to i) (—7ig) sign(sy — s9) but now —7ig = i}, denotes the direction of the lab
viewed from the 37-rest frame.( g is again the direction of the hadrons in the lab
system). After the replacement 7i; — 7}, the asymmetry can be defined as in {1.5)
with ¢ = Q?ab/Ebeam fixed and one obtains

(ipfiy sign(sy — s2)) = —yay cospALp(Q?)

where cosy = 7l = ~fig7i; can be completely reconstructed and expressed in

terms of the remaining kinematical variables.
z(m? + Q%) — 2Q?

(m2 ~ Q2)y/o? — 4Q¥/s

s = 4E?2 Alternatively z could be expressed in terms of § (which denotes the
beam

cosy =

angle between the direction of flight of the 7 in the lab frame and the direction of

the hadronic system in the 7 rest frame) through the relation

mzé[(l-i-g—z) +(1——:—z> 1—421’2' cosG] (4.8)

T T
In the limit 8 — 0 ,i. e. when the taus are produced at threshold, 7i; = 7ir, cos® = 1

and the previous result is reproduced.

The size of the parity violating asymmetry is evidently proportional to the rel-
ative size of vector vs. axial vector couplings at the lepton vertex and thus propor-
tional to 4, ,. Although it depends crucially on the relative phase between the two
pm amplitudes in (3.5), the asymmetry depends only mildly on the exact form of
the p — 77 amplitude. To support this statement, the predictions resulting from a

single p with constant width (153 MeV) and those for models 1 and 2 of table 1 are
shown in Fig. 8.

The results are, however, quite sensitive to the specific form of the aj p7 coupling
€a€p inherent in (3.5). Replacing this effective coupling by (eqq1)(€pgy) which is

equivalent to the amplitude denoted D-wave in [17], one finds
ALR(Q%) = (4.9)

9Q? [ dsydsgy/(s15953 — m2(Q? — m2)2)/Q2sign(s| — s9) Im C,C3
(m2 4 2Q?) [ dsydsy(—WE|Ca|? — WE|C1|2 — 2W; Wa Re C1C3)
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Fig. 8: The function App(Q3?) as defined in eq. (4.7) for different models
of the p Breit Wigner (solid/dashed/dotted curves), and (dashed-dotted
curve) for the “D-wave” amplitude (eq. (4.9)).

with

C1=(s3—39)Bp(s1)  Co=(s3—s1)Bp(s2)
Wie= (2Vae — Vig)  Waq = (2Viq — Vay)

which leads to a result drastically different as shown also in Fig. 8.
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Summary

Semileptonic 7 decays to two and three pions have been considered. Based on recent
data for the pion form factor a new prediction for I'(7 — v~ 70)/T(r — ves) of
1.32£0.05 has been derived. The chiral model — supplemented by vector dominace
— is used to predict rate and differential distributions for the three pion mode in
good agreement with present data. The predictions for the total rate depend on
the inclusion of the p' in the two pion distribution and on the incorporation of
dispersive corrections. Differential distributions in the mass of the hadronic system
and in the Dalitz plane are fairly insensitive towards details of the model and in
good agreement with the data. The parity violating asymmetry which has been
predicted theoretically and observed experimentally is studied and found to be fairly

insensitive towards the details of the model for the hadronic decays.
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