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SUMMARY.- Technological innovations have led to exciting fast-moving developments in science. 19 

Today, we are living in a technology-driven era of biological discovery. Consequently, tracking 20 

technologies have facilitated dramatic advances in the fundamental understanding of ecology and 21 

animal behaviour. Major technological improvements, such as the development of GPS dataloggers, 22 

geolocators and other bio-logging technologies, provide a volume of data that were hitherto 23 

unconceivable. As a consequence, we can claim that ornithology has entered in the era of big data. In 24 

this paper, which is particularly addressed to undergraduate students and starting researchers in the 25 

emerging field of movement ecology, I summarise the current state of the art of individual-based 26 

tracking methods for birds as well as the most important challenges that, as a personal user, I consider 27 

we should address in the future. To this end, I first provide a brief overview of individual tracking 28 

systems for birds. Then, I discuss current challenges for tracking birds with remote telemetry, 29 

including technological challenges (i.e., tag miniaturization, incorporation of more bio-logging 30 

sensors, better efficiency in data archiving and data processing), as well as scientific challenges (i.e., 31 

development of new computational tools, investigation of spatial and temporal autocorrelation of data, 32 

improvement in environmental data annotation processes, the need for novel behavioural 33 

segmentation algorithms, the change from two to three, and even four, dimensions in the scale of 34 

analysis, and the inclusion of animal interactions). I also highlight future prospects of this research 35 

field including a set of scientific questions that have been answered by means of telemetry 36 

technologies or are expected to do so in the future. Finally, I discuss some ethical aspects of bird 37 

tracking, putting special emphases on getting the most out of data, and enhancing a culture of 38 

multidisciplinary collaboration among research groups. 39 

Key words: animal tracking, Argos, bio-logging, computational science, conservation, datalogger, 40 

geolocator, GPS, movement ecology, PTT, ringing, satellite transmitter, telemetry. 41 

 42 

RESUMEN.- Las innovaciones tecnológicas han dado lugar a grandes progresos en ciencia. Estamos 43 

viviendo actualmente en una era en la que los descubrimientos científicos vienen mediados por la 44 

tecnología. Consecuentemente, la tecnología de seguimiento a distancia ha permitido avances 45 
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extraordinarios en nuestra comprensión fundamental de la ecología y el comportamiento animal. Las 46 

grandes mejoras tecnológicas, como por ejemplo el desarrollo de dispositivos GPS dataloggers, 47 

geolocalizadores y otras tecnologías de seguimiento animal, proporcionan un volumen de datos que 48 

era hasta hace poco inconcebible. Por todo ello, podemos afirmar sin ambages que la ornitología ha 49 

entrado en la era de los datos masivos. En este artículo, que está especialmente dirigido a estudiantes 50 

universitarios y a investigadores que se inicien en el campo emergente de la ecología del movimiento, 51 

resumo el estado actual de los sistemas de seguimiento individual para aves, así como los retos más 52 

importantes que, como usuario personal, considero que deberíamos afrontar en el futuro. Para ello, en 53 

primer lugar muestro un pequeño resumen sobre los sistemas de seguimiento individual que existen 54 

para aves. A continuación, discuto los retos actuales que debemos afrontar gracias al seguimiento de 55 

aves mediante telemetría remota, entre los que se incluyen retos tecnológicos (i.e., miniaturización de 56 

los transmisores, incorporación de más sensores biológicos, mejor eficiencia en el archivo y 57 

procesamiento de datos), así como retos científicos (i.e., desarrollo de nuevas herramientas de 58 

análisis, investigar la autocorrelación espacial y temporal de los datos, mejora del proceso de toma de 59 

datos ambientales, la necesidad de nuevos algoritmos de segmentación del comportamiento, el paso 60 

de dos a tres, e incluso cuatro, dimensiones en la escala de análisis, y la inclusión de las interacciones 61 

entre animales). También destaco las perspectivas de futuro de este campo de investigación 62 

incluyendo una serie de preguntas científicas que han sido respondidas mediante telemetría o que se 63 

espera que así sea en el futuro. Por último, discuto algunos aspectos éticos del seguimiento de aves 64 

haciendo especial hincapié en la necesidad de obtener el máximo rendimiento de los datos y de 65 

promover una cultura de colaboración multidisciplinar entre grupos de investigación.  66 

 67 

Palabras clave: anillamiento, Argos, biologging, ciencia computacional, conservación, datalogger, 68 

ecología del movimiento, geolocalizador, GPS, PTT, seguimiento animal, telemetría, transmisor 69 

satelital.  70 
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INTRODUCTION 71 

From early observation of planets through telescopes by Galileo and Kepler, the development 72 

of time measurement methods which allowed navigation, the discovery of the elemental parts of cell 73 

through microscopes, the use of x-ray diffraction to discover the DNA structure, chromatography, 74 

spectroscopy or DNA sequencing, to modern use of fast computational tools in the Internet era, 75 

technological innovations have led to exciting fast-moving developments in science. Many 76 

philosophers and science historians have long debated whether scientific advances are driven mostly 77 

by novel ideas or by new tools and, although there is no clear response to this question, no-one doubts 78 

that technology has played a fundamental role in scientific progress (Dyson, 2012).  79 

Today, we are living in a technology-driven era of biological discovery where extremely large 80 

datasets are routinely used in biology (Ropert-Coudert and Wilson, 2005; Shade and Teal, 2015). In 81 

this sense, the fields of ecology, ethology, zoology and ultimately, ornithology, have not been 82 

unaware of these technological innovations, thus allowing the generation of large amounts of data 83 

owing to the increasingly extensive use of remote tracking technologies. As happened some decades 84 

ago with genomics, proteomics, metabolomics and other “–omics”, ecology has entered in the so 85 

called era of “big data” (Hampton et al., 2013). Therefore, the study of animal movement, as an 86 

important part of ecology, does not constitute an exception.  87 

Animal movement, and particularly bird movement, has long called the attention of naturalists 88 

and scientists since the times of Aristotle. As a consequence, there is a vast amount of information 89 

gathered across different taxa and geographic regions which has been the subject of analysis of many 90 

different scientific disciplines. In order to provide a conceptual framework to integrate all this 91 

information, some scientist proposed the foundation of a new scientific discipline called “movement 92 

ecology” eight years ago (Nathan et al., 2008). As their proposers claim, the aim of the movement 93 

ecology concept is “proposing a new scientific paradigm that places movement itself as the focal 94 

theme, and promoting the development of an integrative theory of organism movement for better 95 

understanding the causes, mechanisms, patterns, and consequences of all movement phenomena” 96 

(Nathan, 2008). Accordingly, individual tracking technologies are the link between the emerging field 97 

of movement ecology and the vast body of knowledge gathered in traditional scientific disciplines.  98 
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This paper is particularly addressed to undergraduate students in their final years, recent 99 

graduates in the field of biology or environmental sciences and is especially addressed to young 100 

scientists wishing to start their careers in the emerging field of movement ecology. It reflects my 101 

personal point of view of the current state of the art of individual-based tracking methods for birds 102 

and the most important challenges that, as a personal user, I consider we should address in the future. 103 

First, I provide a brief overview of individual tracking systems for birds. Then, I discuss current 104 

challenges for tracking birds with remote telemetry, including technological and scientific challenges. 105 

I also highlight future prospects of this research field including a set of scientific questions that have 106 

been answered by means of remote telemetry data or are expected to do so in the future. Finally, I 107 

discuss some ethical aspects in animal tracking with particular focus on bird trapping, attachment 108 

methods, tag mass to body mass ratio and behaviour of the species subject to individual tracking. 109 

 110 

INDIVIDUAL TRACKING IN ORNITHOLOGY: A BRIEF OVERVIEW 111 

Individual tracking, or simply tracking sensu lato (see Box 1), is the collection of 112 

methodological techniques aimed at following and determining where an animal is located spatially 113 

on earth. Individual tracking has a long tradition in ornithology, principally due to bird ringing 114 

(Newton, 2014). Since the first metal rings were attached to birds by Hans Christian Cornelius 115 

Mortensen in 1899, the individual identification of birds by means of metal rings and wing tags has 116 

provided many of the most significant advances in many fields of animal ecology, which reach far 117 

beyond the field of ornithology. Basically, ringing has facilitated dramatic advances in the 118 

fundamental understanding of ecology, animal behaviour, bird conservation and even evolution. 119 

Primarily focused on the fascinating study of bird migration, individual tracking of birds by using 120 

metal rings has provided valuable insight into other aspects of bird biology, such as population 121 

monitoring, population dynamics, dispersal, biometrics, breeding and moult phenology, orientation 122 

and navigation mechanisms, mating systems, genetics, territoriality, feeding behaviour, physiology, 123 

disease transmission and, more recently, the study of global climate change (Spina, 1999; Baillie, 124 

2001; Newton, 2014; EURING, 2015), to cite a few examples. A comprehensive description of major 125 
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achievements in animal ecology attributable to bird ringing is beyond the scope of this paper. I would 126 

kindly ask the reader to excuse me for this omission.  127 

For the aims of this paper, hereafter I will refer to remote telemetry methods (Box 1) to refer to 128 

the study of individual tracking. After ringing, one of the most significant advances in the study of 129 

bird movements was the development of the first radio transmitters in the late 1950s (Lemunyan et al., 130 

1959; Cochran and Lord, 1963; White and Garrott, 1990). Due to the low cost of equipment and its 131 

basic technology, very high frequency (VHF) radio tracking has been the conventional tracking 132 

system used for decades (Kenward, 2001). Like bird ringing, conventional ground-tracking is still a 133 

very useful (and in some cases the only) system available to track small organisms including the 134 

majority of bird species (Figure 1). Later, one of the major advances in individual tracking was the 135 

development of the first satellite transmitters in the 1980s (Fuller et al., 1984; Jouventin and 136 

Weimerskirch, 1990; Nowak et al., 1990). Satellite transmitters allowed tracking animals remotely 137 

across the globe without the need to locate the signal by the researcher (Börger, 2016). Hence, 138 

questions that so far had remained unsolved, such as where long-distance migrants spent their winters, 139 

and important aspects of migratory connectivity began to be answered. With the incorporation of GPS 140 

receivers, data transmission through the Argos system and the increase of data storage and battery 141 

capacity (firstly in on-board batteries and afterward by using solar-powered rechargeable panels), 142 

satellite transmitters have definitely revolutionized the study of animal movement. Furthermore, new 143 

technological innovations such as the development of light-level geolocators, which allowed 144 

estimating geographical position by calculating the time of sunrise and sunset, were made available in 145 

the 1990s (Wilson, 1992), helping to address major research and conservation questions in avian 146 

ecology (Bridge et al., 2013). Their main advantage is that they provide a relatively lightweight, low-147 

cost alternative to traditional tracking technologies and, consequently, have allowed significant 148 

advances in the study of small bird species (Stutchbury et al., 2009). Unfortunately, the main 149 

disadvantage is that geolocators must be retrieved to download data (i.e., only useful for species 150 

exhibiting high site-fidelity and easy recapture) and that location accuracy, ranging from 50 km up to 151 

200 km, is low (particularly close to the Poles, the equator, and during equinoxes). Finally, archival 152 

data loggers (or dataloggers, see Box 1) were firstly available in late 1990s and have become more 153 
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popular in recent years mainly due to their capability to incorporate new sensors along with GPS 154 

location, including accelerometers, temperature, heart rate, conductivity or even video recording 155 

sensors (Cooke et al., 2004; Ropert-Coudert and Wilson 2005; Tomkiewicz et al., 2010; Brown et al., 156 

2013; Hays, 2015). This fact, combined with improved remote data download capabilities through the 157 

mobile communications GSM network and the possibility of duty cycle reconfiguration based on 158 

users’ request, has made near-real-time monitoring of animals possible. Commercial dataloggers 159 

currently available allow the collection of up to several thousand locations per day due to their high 160 

frequency of data acquisition (i.e., 1 Hz = 1 location/second) and bigger internal memory storage 161 

capacity. In addition, the current dataloggers also have increased accuracy of location estimation. As a 162 

consequence of these major technological improvements, many researchers claim that animal 163 

movement ecology has entered in a “golden age” in which the current generation of scientists will be 164 

witness to unprecedented exciting discoveries in upcoming years (Wilcove and Wikelski, 2008; Kays 165 

et al., 2015). 166 

 167 

BIRD TRACKING IN THE CONTEXT OF SCIENTIFIC PUBLISHING 168 

Movement has long held great interest for ornithologists. Consequently, the number of 169 

published papers using individual-based tracking technologies for birds has increased considerably in 170 

the last decades (Holyoak et al., 2008). For example, according to a literature survey for the period 171 

1950 – 2015, the first papers about satellite tracking, dataloggers, geolocators and accelerometry were 172 

published in 1990, 1991, 2002 and 2002, and have increased by an average of 42.7%, 27.7%, 79.5%, 173 

51.5% per year in the last 25 years, respectively (Figure 2). In parallel, scientific publishing has 174 

experienced an exponential increase in the last decades (Bornmann and Mutz, 2015). However, 175 

whereas the percentage of papers regarding ecology has increased on average by 7.0% per year, the 176 

number of papers regarding individual-based tracking technologies for birds has increased on average 177 

by 17.6% per year (i.e., 2.52 times in the same period) (Figure 2). This clearly indicates that tracking 178 

technologies have played a fundamental role in our understanding of birds’ ecology. Modern 179 

individual-based tracking technologies have made significant contributions on many important topics 180 
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in ornithology, or are expected to do so in the future (Table 1), building on our knowledge gained 181 

through other methodological techniques (e.g., ringing and conventional radio-tracking). 182 

 183 

CURRENT CHALLENGES OF BIRD TRACKING 184 

Technological challenges 185 

Since Gordon E. Moore, co-founder of Intel company, stated in 1965 his famous law based on 186 

the observation that the number of transistors in a dense integrated circuit doubles approximately 187 

every two years (also known as Moore’s law) (Moore, 1965), electronic devices have undergone a 188 

dramatic miniaturization process in the last five decades. Like mobile phones and computers, animal 189 

tracking technologies have downsized three or four orders of magnitude, from the first radio-190 

transmitters weighing as much as one or two kilograms to small geolocators lighter than 0.5 g (Figure 191 

1; Appendix 1). Obviously, there is a trade-off between operational life of tracking devices, maximum 192 

number locations recorded per day, temporal and spatial resolution, battery size, and weight. As a 193 

consequence, engineers are struggling to get the most from current technologies, developing new 194 

smaller components and installing more energy efficient microprocessors in tracking devices. For 195 

example, just a decade ago, Platform Transmitters Terminals (PTTs) attached to resident and 196 

migratory birds provided one or two locations per day based on Argos Doppler shift (e.g. Cadahía et 197 

al., 2005; Thorup et al., 2006), whereas the best Argos/GPS transmitters were able to get one fix every 198 

2-3 hours in the most demanding duty cycle configuration (e.g. Soutullo et al., 2007, 2008; Cadahía et 199 

al., 2008). In contrast, modern dataloggers are able to provide up to 1 location per second (Figure 3), 200 

including also additional information from other activity sensors, and are able to send data packages 201 

through the GSM network (e.g., Lanzone et al., 2012) or by means of automatic downloading to a 202 

base station (e.g., Holland et al., 2009; Kays et al., 2011; Bouten et al., 2013; Pfeiffer and Meyburg 203 

2015).  204 

 205 

More sensors in smaller tags 206 

The current technological challenge is to continue shrinking transmitters’ size together with 207 

increasing the number of incorporated bio-logging sensors (Cooke et al., 2004; Rutz and Hays, 2009). 208 
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Unlike traditional tracking methods such as metal rings or conventional radio-tracking, cutting-edge 209 

tracking devices are very expensive (from several hundred to several thousand euros) and thus there is 210 

an enormous commercial market behind tracking technologies. As a consequence, companies are 211 

immersed in an all-out war attempting to manufacture increasingly smaller transmitters with higher 212 

capacities at competitive prices (see some examples in Appendix 1). Future transmitters will have 213 

higher internal storage capacity and longer battery lifetime expectancy (i.e., more charge/discharge 214 

cycles). In addition, it is expected that remotely downloadable dataloggers (i.e., transmitters using 215 

radio link for wireless communication) will have shorter processing times for data retrieval from 216 

multiple tags. Interesting enterprises such as the promising ICARUS project (see Box 1), which is 217 

aimed at observing global migratory movements of small animals through a satellite system installed 218 

in the International Space Station, are under development (Wikelski et al., 2007). This initiative aims 219 

to revolutionize current tracking systems, mimicking conventional radio-tracking by pointing 220 

antennas toward earth from near-earth orbit in the International Space Station (ISS). This will allow 221 

locating radio transmitters attached to small animals, from birds to insects, in any place on earth. The 222 

scientific community has great interest on this initiative and, although several questions still remain 223 

unanswered (e.g., how much will transmitters weigh, how much will they cost, or who will be the 224 

final users), if it becomes successful, this could facilitate a quantum leap in our knowledge of animal 225 

movement. 226 

 227 

Data archiving and data processing 228 

As a result of improved characteristics of modern dataloggers, we have jumped from recording 229 

very few locations per animal to hundreds and thousands of locations per animal and per day. Until 230 

recently, raw data were accessed and downloaded directly by users with a relatively low frequency 231 

(e.g. usually every week or every ten days from the Argos system) and could be easily stored in 232 

conventional desktop computers. However, current dataloggers, especially those transmitting 233 

information through the GSM mobile network, transmit large amounts of raw data every day (Fig. 2). 234 

Hence, storage and management of extremely large datasets can be overwhelming, especially for 235 

beginners. To improve this situation, several data repositories freely available on the Internet allow 236 
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long-term data archiving in an offsite location. In addition, these repositories provide useful services 237 

such as automatic data download from transmitters, data parsing, data managing, data analysis and 238 

environmental annotation (see Box 1). Although data repositories are freely accessible on the Internet, 239 

it is important to emphasize that researchers retain ownership of their data and can choose between 240 

different levels of data accessibility to the public (e.g., data manager, project’s collaborators, public at 241 

large). One of the most popular data repositories is Movebank (Wikelski and Kays, 2015), although 242 

others such as Satellite Tracking and Analysis Tool (Coyne and Godley, 2005) were pioneers in the 243 

field and have been used since early 2000s. Therefore, I recommend using external data repositories 244 

not only for data backup but also for data sharing with other members of the scientific community and 245 

citizens at large, which is probably the most important application (e.g., seaturtle.org, 246 

seabirdtracking.org). This facilitates the participation in collaborative work to help scientists to 247 

address bigger scientific questions, and also allows attraction from the public. Finally, the information 248 

available in public repositories is a great tool for raising public awareness of conservation problems 249 

(e.g., for migratory species) and as a teaching tool for all academic levels.  250 

 251 

Scientific challenges 252 

New computational tools 253 

In addition to technological challenges, individual tracking systems raise many different 254 

scientific challenges. Once data are collected, filtered, and adequately stored in external repositories, 255 

one of the most important challenges is data analysis. The analysis of extremely large datasets 256 

introduces computational and statistical challenges mainly due to massive sample size and high 257 

dimensionality of big data (Fan et al., 2014). To overcome this problem, the development of new 258 

sophisticated data-management tools to analyse movement data is needed (Shamoun-Baranes et al., 259 

2011). This opens new possibilities for research not only for ornithologists but also for scientists in 260 

general. In particular, we need to train the next generation of scientists in computing, a field that has 261 

been largely overlooked in graduate programs in biology, as well as to create multidisciplinary teams 262 

in which ornithologists take part contributing to data interpretation (Hampton et al., 2013; Shade and 263 

Teal, 2015). Hence, we need to encourage a culture of data sharing and interdisciplinary collaborative 264 
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work. New toolboxes specially developed for Geographic Information Systems such as Animal 265 

Movement Analysis software (Hooge and Eichenlaub, 1997), Home Range Tools (Rodgers et al., 266 

2007), or Geospatial Environmental Modelling software (Beyer, 2012) have been developed. In 267 

addition, freely-available software packages that contain functions to access movement data as well as 268 

tools to visualize and statistically analyse animal movement datasets have become very popular. Some 269 

examples are “adehabitat” (Calenge 2006), “move” (Kranstauber et al., 2012; Kranstauber and 270 

Smolla, 2015), “GeoLight” (Lisovski and Hahn, 2012), and reproductible home range “rhr” (Signer 271 

and Balkenhol 2015) R-packages. Importantly, data reproducibility is an important issue that still 272 

remains a challenge (Peng, 2011). Further improvements in computational science will provide 273 

interesting tools that will open new avenues of research in the analysis of birds’ movement. 274 

 275 

Spatial and temporal autocorrelation 276 

Animals move over large spatial and temporal scales delineating extremely variable trajectories 277 

among individuals. For example, birds’ movements may vary from ballistic trajectories (i.e., 278 

movements nearly following a constant direction at high speed) recorded during migration, to crooked 279 

paths with continual turns and changes in direction at low speed during intensive foraging. 280 

Furthermore, the relocations from individuals show a spatiotemporal autocorrelation pattern (Otis and 281 

White, 1999), which is moreover stochastic and often subject to severe observation error (Patterson et 282 

al., 2008). Dealing with both uncertainty and spatiotemporal autocorrelation (i.e., the location at time 283 

t+1 is dependent on the bird’s location at time t) is one of our biggest challenges in the analysis of 284 

movement data (Cagnacci et al., 2010; Fieberg et al., 2010). Depending on duty cycle configuration, 285 

transmitters record this information at different sampling rates. Hence, the length of the gap between 286 

consecutive locations makes necessary the utilization of one set of analytical tools or others (Kie et 287 

al., 2010). This fact gave rise to the development of statistical methods such as state-space models 288 

(Jonsen et al., 2005; Patterson et al., 2008) and Brownian Bridges models (Horne et al., 2007), which 289 

were aimed at interpreting where an animal could be between consecutive relocations. Nowadays, the 290 

degree of uncertainty in animal movement has been dramatically reduced owing to high-resolution 291 

GPS telemetry, making analytical tools that have been very useful until now somewhat obsolete. For 292 
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example, current dataloggers (at least those available for larger birds, see Fig. 1 and Appendix 1) 293 

record GPS locations with 1Hz frequency and thus is no longer necessary to interpolate where the bird 294 

has moved between consecutive relocations. We have shifted from the analysis of a schematic 295 

representation of bird’s path, to the analysis of its true trajectory. Therefore, our current challenge is 296 

to develop analytical tools that take into consideration the intrinsically autocorrelated nature of animal 297 

movement and to investigate the underlying mechanisms that cause this spatiotemporal 298 

autocorrelation (e.g. cognitive processes and memory effects) (Boyce et al., 2010). 299 

  300 

Environmental data annotation 301 

No-one would study fish or cetaceans’ movements without taking into account the movement of 302 

oceanic currents. Correspondingly, analysing bird movement data without considering environmental 303 

conditions would be meaningless too. For their locomotion birds must push against a fluid, either air 304 

(most species) or water (e.g., penguins, albatrosses, ducks, etc.), which is itself also moving. Hence, it 305 

is necessary to correlate the information of animal movement with the particular characteristics of the 306 

media in which they actually move. Linking animal tracks with environmental data and the 307 

underlying context, that is, the “environmental data annotation process”, is thus necessary to 308 

understand birds’ behaviour (Mandel et al., 2011). However, this represents an analytical challenge 309 

due to the different spatiotemporal resolution of tracking data and environmental information (e.g. 310 

weather conditions, topography, primary productivity, land use, vegetation, snow cover, etc.). The 311 

Env-DATA system (Dodge et al., 2013) implemented in the Movebank data repository provides an 312 

interesting free automated annotation service of movement trajectories that facilitates the study of bird 313 

movements in their environmental context (e.g., wind currents, temperature, thermal uplift, air 314 

pressure, and other measures recorded by remote sensing technologies). Notwithstanding, our current 315 

challenge is to continue creating new analytical tools (e.g., under R and MATLAB statistical software 316 

as well as specific extensions for Geographical Information Systems software), and developing new 317 

interpolation algorithms to facilitate data integration, resampling, and interpolation at the same rate at 318 

which movement data is recorded.  319 

 320 
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Behavioural segmentation 321 

Inferring behaviour from animal movement data is an important topic in behavioural ecology. 322 

To this end, removing subjectivity in data interpretation and understanding behaviour at the 323 

appropriate scale in which it happens becomes crucial. To this end, researchers have developed 324 

several tools aimed at splitting behaviour into its elementary basic units or behavioural modes (i.e., 325 

displacement, foraging, resting, etc.). This process is thus known as behavioural segmentation. 326 

Traditional approaches include machine learning languages, fractal analysis, first passage time, state-327 

space models, behavioural change point analysis, k-clustering, autocorrelation functions, and 328 

hierarchical Bayesian algorithms, but they need important input from the researcher and are thus 329 

subject of certain degree of subjectivity (Jonsen et al., 2003, 2005; Morales et al., 2004; Schick et al., 330 

2008; Gurarie et al., 2009; Dean et al., 2012). Recent advances in this field are unsupervised and non-331 

intensive computing algorithms such as the Expectation-Maximization Binary Clustering 332 

implemented in the “EMbC” R-package (Garriga et al., 2014). EMbC focuses only on the analysis of 333 

two movement variables (velocity and turn) obtained from the successive locations of a trajectory and 334 

has been proved to be well suited for big data recorded at high-frequency as well as large-scale 335 

analysis (e.g., Louzao et al., 2014). Other novel approaches take advantage of acceleration data to 336 

identify behavioural modes (Nathan et al., 2012; Williams et al., 2015). Therefore, our current 337 

challenge is to continue developing new reliable tools for behavioural segmentation that reflect 338 

complexity in behavioural modes, independent of a priori assumptions and with the highest 339 

explanatory potential (Gurarie et al., 2016). Understanding how different behavioural modes interact 340 

at different spatiotemporal scales and incorporating cognitive processes, behavioural plasticity (i.e., 341 

personality) (Patrick and Weimerskirch, 2014), and memory effects in the models also remain a 342 

challenge.  343 

 344 

From 2D to 3D (and 4D) 345 

Birds use space in three dimensions. However, despite computational advances, the analysis of 346 

animal movements has typically been reduced to the quantification of space use in two dimensions 347 

(latitude and longitude) and has failed to integrate vertical data into habitat use estimates (Belant et 348 
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al., 2012), mainly due to the low precision of most altitudinal measurements. Therefore, it is 349 

necessary to incorporate the third dimension (i.e., altitude or depth) in the analysis of animal 350 

movement because this will lead to better understanding of habitat use and selection (Cooper et al., 351 

2014). Although several algorithms to generate novel movement-based kernel density estimators have 352 

been developed such as “ks” (Duong, 2015) and “mkde” (Tracey et al., 2014) R-packages, there are 353 

very few examples of movement analysis that consider 3D in the analysis of space use and 354 

quantification of utilization distributions (Keating and Cherry, 2009; Cooper et al., 2014; Cleasby et 355 

al., 2015). Modelling birds’ movements in three dimensions (or even in fourth dimensions, thus also 356 

considering time) is in consequence a promising field of research, especially for the analysis of animal 357 

interactions both in space and time. In addition, we need better computer visualization tools for 358 

generating and exploring 3D as well as incorporating colour images and videos in traditional 359 

publishing (Shamoun-Baranes et al., 2011; Demšar et al., 2015). 360 

 361 

Animal interactions 362 

Complex behaviour exhibited by birds is the outcome of the sum of animal-environment 363 

interactions and animal-animal interactions, both at intraspecific and interspecific level. There is vast 364 

body of ecological literature on the study of the relationship between animals and their environment 365 

(e.g., habitat selection, resource use, environmental niche analysis, etc.). However, the role of intra- 366 

and interspecific interactions and how they affect birds’ movements and ultimately shape space use 367 

remains poorly understood. Traditionally, most studies on bird interactions have focused on spatial 368 

overlap in home ranges or static interactions (i.e., the joint occurrence in space of two or more 369 

individuals), but very few have addressed dynamic interactions (i.e., co-occurrence in both space and 370 

time) (Benhamou et al., 2014). A combination of the availability of high-resolution telemetry data and 371 

new analytical tools opens new avenues for future research in the field of movement ecology (Kays et 372 

al., 2015). A good tool is the “wildlifeDI” R-package (Long, 2014), which includes a suite of 373 

functions and indexes to quantify animal interaction (e.g., proximity analysis, coefficient of 374 

association, correlation index, dynamic interaction index) (Long et al., 2014). Importantly, these 375 

metrics take into account the intrinsically autocorrelated nature of movement data and are thus 376 
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particularly suited for analysis of information recorded by individual-based tracking methods. 377 

Evaluating how intraspecific and interspecific interactions affect movement is extremely important in 378 

ornithology, especially to address interesting topics such as spread of invasive species, disease 379 

transmission, or for studying territorial and anti-predator behaviour (see some examples in Table 1). 380 

In addition, multi-individual GPS-tracking expands the scope of animal ecology to the study of 381 

collective behaviour and the roles of social networks and hierarchy in decision-making processes (e.g. 382 

leadership in flocking behaviour) (Couzin et al., 2005; Usherwood et al., 2011; Flack et al., 2015; 383 

Kays et al., 2015). Our current challenge is to shift from individual tracking to multi-individual 384 

tracking (e.g., tracking cohorts of individuals of the same guild, parents and young of the same 385 

family, or different members in social or colonial species), in order to link collective movement with 386 

environmental characteristics and ultimately with population dynamics (Morales et al., 2010). 387 

Inferring population-level spatial patterns from underlying individual movement and interaction 388 

processes, and developing mechanistic models of territorial interactions, also constitute a promising 389 

field of research (Potts et al., 2015). 390 

 391 

ETHICAL ASPECTS 392 

Studies using individual-based tracking systems are based on an underlying basic assumption: 393 

birds’ behaviours are not altered (or are insignificantly altered) by the effect of transmitters. However, 394 

this basic assumption has been rarely tested and is arbitrary in some way (Caccamise and Hedin 1985; 395 

Barron et al., 2010; Constantini and Møller, 2013). There is a vast literature about the effects of 396 

transmitters on birds, yet results are not conclusive (Murray and Fuller, 2000). Whereas some authors 397 

report negative effects on birds, with an overall negative effect on fitness components (i.e., survival 398 

and breeding) (Constantini and Møller, 2013), other researchers have not found such effects (e.g. 399 

Igual et al., 2005) and argue that sample size in most papers reporting deleterious effects is low 400 

(Sergio et al., 2015). The correct selection of the type of transmitter (i.e., PTTs, dataloggers, 401 

geolocators, etc.) in combination with an appropriate method of attachment (i.e., backpack harness, 402 

collar, glue, tailmount, leg rings, leg-loop backpack harness, anchor, and even implantable 403 
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transmitters that need surgery) is critical in order to reduce potentially harmful effect on bird 404 

behaviour (e.g., Vandenabeele et al., 2013; Blackburn et al., 2016).  405 

There is a common widely accepted 3% - 5% “rule of thumb” for the ratio of tag mass to body 406 

mass, which limits the tracking devices suitable for a given species (Brander and Cochran, 1969; 407 

Kenward, 2001) (Figure 1). However, some review studies suggest that there is no empirical support 408 

for this rule (Barron et al., 2010) and it is up to the researcher’s arbitrary decision to follow the rule or 409 

not. Nowadays there is a big pressure to push technologies to the limit in order to get better chances of 410 

final publication of results, and consequently some researchers succumb to the temptation of 411 

exceeding the 3% - 5% tag mass/body mass ratio in some cases. Nevertheless, the precautionary 412 

principle should be respected (i.e., if the effects of the combination of a transmitter and method of 413 

attachment is unknown or is suspected of harmful effects in similar species (i.e., morphologically or 414 

taxonomically), the tracking project should not be permitted). Hence, further research is needed to 415 

assess which tracking methods are appropriate, including not only the effects of tag mass, but also tag 416 

impact on aerodynamics on different groups of species and the resulting possible drag effect (e.g., 417 

Pennycuick et al., 2012). Trial studies with common not endangered species could be a good chance 418 

to check transmitters’ effects on birds under controlled conditions (e.g., using irrecoverable species in 419 

rehabilitation centres). 420 

Finally, it would be desirable to regulate the use of individual-based tracking technologies in 421 

some way, including (for example) more stringent licensing criteria and enforcing attendance at 422 

training courses (Sergio et al., 2015). Fitting transmitters implies trapping birds, in some cases of 423 

vulnerable, rare or endangered species, and therefore a cost/benefit analysis should be done before 424 

starting a tracking project (Latham et al., 2015; Pimm et al., 2015). Trapping, handling, and attaching 425 

tracking devices require a set of skills that must be taught and constantly re-evaluated. Hence, I 426 

recommend creating special working groups, as well as open symposia and specific workshops for 427 

interested researchers. Public administration and financial entities should ask for strong ethical 428 

commitments before starting a tracking project. In addition, scientist should clearly justify why 429 

tracking a given species is needed, which are the main goals of the project, and how these goals are 430 

achievable only using individual-based tracking technologies. Currently, the cost of transmitters is 431 
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decreasing rapidly, making them more accessible for everyone. Consequently, some public 432 

administrations, NGOs, land managers, and amateur groups have found tracking bird an entertaining 433 

hobby that feeds numerous public profiles in social media (e.g., Facebook, project websites, etc.) 434 

without the intention of addressing clear questions supported by sound scientific projects. In my 435 

opinion, the simple curiosity of where animals move does not justify trapping and tracking birds in 436 

and of itself. Hence, collaboration among multidisciplinary groups and enhanced sharing of 437 

information should be promoted (Hampton et al., 2013; Pimm et al., 2015).  438 

 439 

CONCLUDING REMARKS 440 

We are possibly experiencing the most productive time for the study of birds’ movements since 441 

the time of Aristotle. Fast-developing technologies are allowing cutting-edge studies with an 442 

unprecedented level of detail about animal movements. As a consequence, some have taken this 443 

opportunity to coin the term “movement ecology” as a scientific discipline in order to call attention to 444 

this emerging field. Although from my point of view movement in itself does not constitute a separate 445 

scientific discipline, no-one doubts the importance of movement and its essential role in ecology and 446 

behaviour. Individual tracking technologies are usually criticized for their elevated cost, which gives 447 

raise to small sample size and thus to limited capacity for ecological inference (Hebblewhite and 448 

Haydon, 2010). Notwithstanding, continual improvements in current tracking technologies and an 449 

increasingly number of companies commercializing remote-tracking devices assure a promising 450 

future for the study of animal movement. Current challenges are, on one hand, how to scale-up from 451 

individual fine-scale movements to coarse-scale resource selection and population-level dynamics 452 

(Hebblewhite and Haydon, 2010; Morales et al., 2010) and, on the other hand, to put the information 453 

derived from telemetry in the general framework of the theoretical body of knowledge of ecology. 454 

Finally, we should not forget that individual-based tracking systems are just methods and do not 455 

constitute an end in themselves (Sokolov, 2011). Trapping, handling, and attaching transmitters entail 456 

a disturbance (tolerable in most cases) and, accordingly, a great responsibility. Prior to start a tracking 457 

project, researchers should carefully consider the main goals of the study, the convenience of tracking 458 

this or these species, and whether remote tracking is the best methodology for this end (Latham et al., 459 
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2015). The key challenges ahead are to get the most out of data and to enhance a culture of 460 

multidisciplinary collaboration among research groups (Pimm et al., 2015). We have definitely 461 

entered into the golden era of the study of animal movement and we should not miss this opportunity.  462 
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BOX 1. Glossary.  1164 

Accelerometer: electronic device that measures acceleration over time. Acceleration sensors are 1165 

usually included in dataloggers and usually record data in multiple axes (i.e., typically in three axes 1166 

X,Y,Z). Sensor output can change due to two causes: changing orientation of the device and 1167 

accelerated translational movement of the device. Raw acceleration data must be converted to 1168 

physical units (e.g. m/s2) using mathematical formulae.  1169 

Archival data logger (or datalogger): an electronic device attached to or implanted in animals that 1170 

registers and stores information in an on board memory. Depending on their size, battery capacity and 1171 

species tracked, dataloggers must be recovered for data retrieval. In most advanced devices data can 1172 

be remotely transmitted via satellite, GPRS/GSM phone network or through a wireless link to a base 1173 

station connected with a special antenna. 1174 

Argos location: The ARGOS system allows calculating a transmitter’s location using the Doppler 1175 

Effect on transmission frequency, which is the only available position information for small PTTs not 1176 

including GPS sensor (e.g. < 5g). Location is calculated using two location processing algorithms: 1177 

Least squares analysis and Kalman filtering, which provides more positions and better accuracy. 1178 

Regardless of the number of messages received during a satellite pass, an estimated error is calculated 1179 

by Argos. This allows a classification of location classes (LCs) depending on their nominal accuracy 1180 

as follows: LC3 < 250 m; LC2 = 250 m – 500 m; LC1 = 500 m – 1500 m; LC0 > 1500m; LCA, LCB 1181 

= No accuracy estimation; LCZ = invalid location (Argos 2015). 1182 

ARGOS system: a global satellite-based location and data collection system dedicated to studying 1183 

animal movement. It allows any mobile object equipped with a compatible transmitter to be located 1184 

across the world by means of a network of six satellites. Data recorded in Platform Transmitters 1185 

Terminals (PTTs) are transmitted to one of these satellites, stored on the on-board recorder and 1186 

retransmitted to the ground each time the satellite passes over one of the three main receiving stations. 1187 

Processing centres process all received data and make available information to users.  1188 

Behavioural segmentation (or behavioural annotation): to identify movement trajectories’ simplest 1189 

functional units (i.e., behavioural modes) and annotate them to each location. Drawing an analogy, a 1190 

behavioural mode is to the movement trajectory what a gene is to the DNA sequence (Nathan et al., 1191 



 

ARDEOLA SPECIAL ISSUE  45 

2008). There are several computational tools and mathematical algorithms that do this in an 1192 

unsupervised manner (e.g., binary clustering, Bayesian estimation methods, state-space models, etc). 1193 

Biologging (or biotelemetry): use of miniaturized animal-attached tags for recording and/or relaying 1194 

data about animal’s movements, behaviour, physiology and/or environment. This term embraces 1195 

different types of sensors including those aimed at recording fast-tracking GPS position, 1196 

accelerometry, conductivity, light-level information, heart rate, neuro-loggers, body temperature, 1197 

video recording and even exchange of information with other nearby tags and base stations.  1198 

Conventional tracking (or ground tracking, radio-tracking, VHF tracking): individual ground-1199 

based tracking system based on the emission of short-range very high frequency (VHF) radio signals 1200 

which are received by an array of systems including antennas mounted on towers, vehicles (cars, 1201 

airplanes, boats…), or handled by persons. Position is estimated by triangulation and the main 1202 

disadvantage is that the receiver must be close to the transmitter (usually within a few kilometers of 1203 

distance). Due to the low cost of the equipment and its basic technology it has been the conventional 1204 

tracking system used for decades.  1205 

Environmental data annotation (or path annotation): a system to add external information (i.e., 1206 

environmental data) and/or internal information (physiological) to animal tracking data. The result is 1207 

an annotated path which includes additional data to each geographic location of the moving organism. 1208 

Geolocator (or global location sensing/GLS logger, light-level logger, light-sensing geolocator): 1209 

small recording data loggers that include a light sensor, which measures solar irradiance, and an 1210 

accurate real-time clock to determine the time of sunrise and sunset. The estimated geographical 1211 

position is obtained by calculating the length of the day which indicates latitude, and the time of solar 1212 

noon, which indicates longitude.  1213 

GPRS: acronym of General packet radio service. An extension of the Global System for Mobile 1214 

Communications consisting of a packet oriented mobile data service on the 2G and 3G cellular 1215 

communication systems. In contrast to circuit switched data, which is usually billed per connection 1216 

time, GPRS usage is typically charged based on volume of data transferred. 1217 
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GPS: acronym of Global Positioning System. Satellite-based navigation system developed in the 1218 

United States that provides location and time information in all conditions with global coverage on 1219 

the earth. 1220 

GSM: acronym of Global System for Mobile Communications.A digital mobile telephony system that 1221 

is widely used in Europe and other parts of the world for data transmission. 1222 

ICARUS: acronym of “International Cooperation for Animal Research Using Space”. International 1223 

initiative aimed at observing global migratory movements of small animals through a satellite system 1224 

installed in the Russian module of the International Space Station (ISS) (www.icarusinitiative.org). 1225 

This system is equipped with powerful processing capability to detect and distinguish the weak 1226 

signals of small tags (< 5g) that are in the reception area of receive antennas installed in the ISS. Tags 1227 

record archival data including GPS position, accelerometer and temperature.  1228 

ODBA: overall dynamic body acceleration. A measure of dynamic acceleration induced about the 1229 

centre of an animal's mass as a result of its movement. This measure is derived from recordings of 1230 

acceleration in the three spatial dimensions by an accelerometer. ODBA is considered as a calibrated 1231 

proxy for rate of oxygen consumption (V̇O2) and hence animal’s metabolic rate (i.e., energy 1232 

expenditure) (Wilson et al., 2006). 1233 

PTT: acronym of Platform Transmitter Terminal. Equipment used for measurement through a set of 1234 

sensors and one-way transmitting communication.  1235 

Telemetry: a word derived from the combination of two Greek words: tele (τῆlε) and metron 1236 

(μετρον), which mean remote measurement of data. 1237 

Tracking (or individual tracking): methodological technique aimed at following and determining 1238 

where an animal is located spatially. For the aims of this paper, I refer only to remote telemetry to 1239 

track animal movement.  1240 

http://www.icarusinitiative.org/
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TABLE 1 1241 

Main topics in which individual-based tracking methods have made significant contributions in 1242 

ornithology (or are expected to do so in the future). The reference list shows some examples to 1243 

illustrate addressed topics and includes only information on birds tracked by remote telemetry 1244 

(examples using radio-tracking and ringing methods are not shown).  1245 

[Principales temas en los que los métodos de seguimiento individual han contribuido a realizar 1246 

importantes aportaciones en ornitología (o se espera que así lo hagan en el futuro). La lista de 1247 

referencias muestra algunos ejemplos para ilustrar los asuntos tratados e incluye información solo de 1248 

aves seguidas mediante telemetría remota (se han excluido ejemplos en los que se hubiera utilizado 1249 

radio-seguimiento o anillamiento científico).]  1250 

Topic Questions and future challenges References 

Migratory 

routes and 

wintering areas 

Description of novel migratory routes (i.e., short- 

and long-distance migrations). Analysis of 

migratory patterns and strategies (i.e., routes, 

directions, speed, timing, altitude, 

diurnal/nocturnal migration, loop migration, 

differential/partial migration, leapfrog migration, 

transcontinental and trans-oceanic migration, 

migratory divides, population-specific migration 

routes). Identification and characterization of 

wintering areas. Winter ecology of migratory 

species (e.g., habitat selection and trophic 

ecology). 

Martell et al., 2001; 

Meyburg et al., 2004a, 

2004b; González-Solís et 

al., 2007; Gschweng et al., 

2008; Gill et al., 2009; 

López-López et al., 2009; 

Egevang et al., 2010; 

García-Ripollés et al., 

2010; Klaassen et al., 

2010; Mellone et al., 

2012a, 2013a, 2013b; 

Rodríguez-Ruiz et al., 

2014; DeLuca et al., 

2015 ; Ramos et al., 2015 
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Migratory 

connectivity 

Analysis of the links between breeding and 

nonbreeding areas. Measurement of the strength of 

migratory connectivity (i.e., strong, weak/diffuse). 

Effects of migratory connectivity on individual 

breeding success and population dynamics. 

Behavioral and evolutionary effects. Conservation 

implications. 

Webster et al., 2002; 

Bächler et al., 2010; 

Robinson et al., 2009; 

Cresswell 2014; 

Rodríguez-Ruiz et al., 

2014; Trierweiler et al., 

2014; Ouwehand et al., 

2016 

Carry-over 

effects 

How individuals’ decisions, previous history and 

experience explain current and future performance 

over the annual cycle. Detailed analysis of key 

vital stages throughout the annual cycle (e.g. 

migration, wintering, breeding). Analysis of the 

interplay between environmental and intrinsic 

factors in determining carry-over effects. Impacts 

of environmental change on individuals’ migratory 

performance and populations. 

Norris et al., 2004; Norris 

and Marra 2007; Harrison 

et al., 2011; Arlt et al., 

2013; Daunt et al., 2014; 

Senner et al., 2014; Saino 

et al., 2015; Shoji et al., 

2015 

Lifetime 

tracking 

Individual monitoring throughout the bird’s 

lifetime. Description and analysis of variations in 

tracks’ characteristics and movement patterns over 

different life-history stages. Analysis of the role of 

experience on migratory performance.  

Sergio et al., 2014; 

Weimerskirch et al., 2014; 

Flack et al., 2015; Kays et 

al., 2015 

Behavioural 

flexibility 

Analysis of the degree of flexibility or consistency 

in birds’ behaviour. Repeatability in migratory 

routes and timing. Examination of annual 

Alerstam et al., 2006; 

Quillfeldt et al., 2010; 

Vardanis et al., 2011; 
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schedules of migration and route fidelity. 

Evaluation of the role of individuality and 

personality in animal behaviour (i.e., behavioural 

plasticity) and its consequences on fitness. 

Stanley et al., 2012; Dias 

et al., 2013; Conklin et al., 

2013; López-López et al., 

2014a; Müller et al., 2014; 

Yamamoto et al., 2014 

Ecological 

barriers 

Effects of geographical and meteorological barriers 

on movement (e.g., migration, altitudinal 

movements). Identification of migration corridors, 

barriers and main migration flyways. Migration 

patterns (e.g., detours, narrow-front migration, 

wide-front migration, sea-crossing, mountain-

crossing).  

Gill et al., 2009; 

Strandberg et al., 2009a; 

López-López et al., 2010; 

Hawkes et al., 2011; 

Mellone et al., 2011; 

Willemoes et al., 2014; 

Adamík et al. 2016 

Stopover 

ecology 

Identification of stopovers along migration routes. 

Detailed analysis of birds’ ecology in stopovers 

(e.g., foraging and refueling tactics). Conservation 

of stopover sites. 

Shaffer et al., 2006; 

Guilford et al., 2009; 

Chevallier et al., 2011; van 

Wijk et al., 2012; Kessler 

et al., 2013; Shephard et 

al., 2015 

Environmental 

conditions 

Analysis of the effects of external conditions on 

birds’ behaviour. Relationship between global 

patterns of productivity (e.g. primary productivity, 

upwelling currents, temperatures, etc.) and 

movements (i.e., “green wave” hypothesis). 

Testing the effects of prevailing winds, 

Klaassen et al., 2010, 

2011; Mandel et al., 2011; 

Mellone et al., 2012b, 

2015a, 2015b; Péron and 

Grémillet 2013; 

Trierweiler et al., 2013; 

Kölzsch et al., 2015; 

Vansteelant et al., 2015; 
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atmospheric pressure and other meteorological 

conditions on migratory performance.  

Bridge et al., in press; 

Vidal-Mateo et al., in 

press; 

Foraging 

ecology 

Detailed study of foraging movements, 

identification of feeding locations and food 

provisioning. Evaluation of different theoretical 

models of food searching behaviour (e.g., central 

place foraging theory, Brownian movement, 

correlated random walks, Lévy flight/walk, first-

passage time analysis). Analysis of spatial foraging 

consistency, foraging site fidelity and complex 

foraging strategies (e.g. dual-foraging). Evaluation 

of different flight modes (e.g. flapping flight vs. 

soaring-gliding flight), energy consumption and 

foraging ecology. 

Jouventin and 

Weimerskirch 1990; 

Viswanathan et al., 1996; 

González-Solís et al., 

2000; Magalhães et al., 

2008; Pinaud and 

Weimerskirch 2005; Dean 

et al., 2012; López-López 

et al., 2013a; Focardi and 

Cecere 2014; Patrick et al., 

2014; Hernández-Pliego et 

al., 2015; Wakefield et al., 

2015 

Space use Delineation and quantification of home range size. 

Evaluation of different methods for estimating 

home range (i.e., kernel density estimators, 

minimum convex polygons, dynamic Brownian 

bridge, local convex hull, etc.). Analysis of habitat 

use, habitat selection and its influence on breeding 

performance. External and internal drivers of 

animal movement across geographical gradients. 

Soutullo et al., 2008; 

Wakefield et al., 2009; Kie 

et al., 2010; Kranstauber et 

al., 2012; López-López et 

al., 2014c; Domenech et 

al., 2015; Pfeiffer and 

Meyburg 2015 
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Social 

interactions 

Analysis of how intraspecific and interspecific 

interactions affect movement. Roles of social 

networks and hierarchy in movement behaviour 

(e.g. leadership in flocking behaviour). 

Development of mechanistic models of territorial 

interactions. Use of social information in colonial 

species. Tracking of cohort of individuals of the 

same guild. 

Nagy et al., 2010, 2013; 

Weimerskirch et al., 2010; 

Usherwood et al., 2011; 

Potts et al., 2014; Müller 

et al., 2015 

Population 

dynamics  

Spatially-explicit analysis of the mechanisms of 

population regulation (e.g., individual experience, 

territory quality, territoriality, density-dependence 

effects). Niche segregation, niche partitioning and 

analysis of intraspecific and interspecific 

competition in colonial birds. 

Masello et al., 2010; 

López-López et al., 2013b; 

Pérez-García et al., 2013; 

Wakefield et al., 2013; 

Moss et al., 2014; Thiebot 

et al., 2015 

Dispersal Dispersal studies, post-fledging movements and 

site fidelity. Obtaining spatially explicit 

information of key events of the life-cycle (i.e., 

natal, breeding dispersal and recruitment). Inter-

connexion between different populations in meta-

populations. Identification and delineation of 

dispersal areas.  

Cadahía et al., 

2008,2009,2010; Kays et 

al., 2011; Yamaç and 

Bilgin 2012; Soutullo et 

al., 2013; López-López et 

al., 2014b; Bentzen and 

Powell 2015 

Disease 

transmission 

Transmission routes of pathogens and disease-

dynamics along migration routes. Study of 

outbreaks of emergent diseases (e.g. avian 

influenza). Detailed tracking of vectors of disease 

Prosser et al., 2009, 2011; 

Newman et al., 2009, 

2012; Adelman et al., 
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transmission. Surveillance of the population 

ecology of zoonotic hosts, pathogens or vectors. 

2014; Tian et al., 2015; 

van Dijk et al., 2015 

Physiology Recording of physiological parameters (e.g. heart 

rate, body temperature, blood pressure, respiration) 

and their interaction with locomotor activity. Use 

of body acceleration to estimate energy 

expenditure (e.g., ODBA). Analysis of 

physiological rhythms at different spatio-temporal 

scales. Managing of sleeping habits, starvation and 

dehydration during migration. 

Grémillet et al., 2005; 

Ropert-Coudert et al., 

2006; Wilson et al., 2006; 

Mandel et al., 2008; 

Wilson and Vandenabeele 

2012; Liechti et al., 2013; 

Dominoni et al., 2014; 

Duriez et al., 2014; 

Portugal et al., 2014 

Orientation and 

homing 

Disentangling the mechanisms of bird orientation 

and navigation (e.g., magnetic field, celestial cues, 

sun compass, polarized light, landscape features 

and odour cues). Experimental analysis of homing 

mechanisms in captive birds. Contribution to the 

development of optimal migration models and 

detailed understanding of migration routes (e.g. 

orthodromes, geographic loxodromes, 

magnetoclinic routes, magnetic loxodromes). 

Comparison between orientation mechanisms in 

captive birds and free-ranging birds.  

Mouritsen et al., 2003; 

Bonadonna et al., 2005; 

Alerstam 2006; Biro et al., 

2006; Åkesson and 

Hedenström 2007; 

Dell'Ariccia et al., 2008; 

Guilford et al., 2011; 

Horton et al., 2014; 

Reynolds et al., 2015; 

Wikelski et al., 2015; 

Willemoes et al., 2015 

Conservation Identification of critical mortality hotspots along 

migration routes and their impact on population 

dynamics. Environmental impact assessment of 

major threats for endangered species and obtaining 

Strandberg et al., 2009b; 

van Heezik et al., 2010; 

Grecian et al., 2012; 

Mellone et al., 2013; 
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spatially explicit information of where mortality 

occurs (e.g., electrocution, wind-farms, illegal 

hunting, poisoning, light pollution). Impact of 

introduced species on native species. Evaluation of 

the performance of protected areas and delineation 

of new ones (e.g. Marine Important Bird Areas). 

Obtaining unbiased mortality estimations to feed 

capture-recapture demographic models. 

Phipps et al., 2013; 

Klaassen et al., 2014; 

Braham et al., 2015; Oppel 

et al., 2015; Thaxter et al., 

2015 

Management 

actions 

Evaluation of the effectiveness of different 

management actions for bird conservation and their 

impacts on movement behaviour (e.g., 

reintroduction programmes, removal of non-native 

species, supplementary feeding). 

Margalida et al., 2013; 

Monsarrat et al., 2013; Gil 

et al., 2014; López-López 

et al., 2014c; Gooch et al., 

2015; Petersen et al., 2015 

Exploitation of 

natural 

resources 

Analysis of the interactions between bird 

movements and exploitation of natural resources 

(e.g., fisheries, game species). Impact of fisheries 

bycatch on marine pelagic birds. Movement of 

species of economic interest and sustainable 

harvesting.  

Brothers et al., 1998; Okes 

et al., 2009; Pichegru et 

al., 2009; Žydelis et al., 

2011; Caudill et al., 2014; 

Ratcliffe et al., 2015; 

Weimerskirch et al., 2015 

  1251 
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 1252 

Fig. 1.- Histogram of bird body masses and possible tracking devices according to the 3%-body-1253 

weight rule. This figure has been adapted and updated from Bridge et al., (2011) and Kays et al., 1254 

(2015). Note that body mass (g) in the X-axis is shown in log2 scale. Bird body masses of 8654 1255 

species were obtained from Dunning (2007). 1256 

[Histograma de los pesos corporales y posibles dispositivos de seguimiento que se pueden utilizar de 1257 

acuerdo con la regla del 5% del peso corporal. La figura ha sido adaptada y actualizada a partir de 1258 

Bridge et al., (2011) y Kays et al., (2015). Nótese que la masa corporal (g) en el eje X se muestra en 1259 

escala log2. El peso corporal de 8654 especies de aves fue obtenido de Dunning (2007).]  1260 
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 1261 

Fig. 2.- Number of papers published per year referring to individual tracking systems for birds. 1262 

Information was obtained based on a literature survey by using the ISI Web of Science database. The 1263 

purple line shows the number of published papers on individual tracking as a percentage of all papers 1264 

published in the field of Ecology. Search terms are available in Appendix 2. 1265 

[Número de artículos publicados por año referentes a sistemas de seguimiento individual en aves. La 1266 

información fue obtenida a partir de una búsqueda bibliográfica en la base de datos del ISI Web of 1267 

Science. La línea morada muestra el porcentaje de artículos publicados sobre seguimiento individual 1268 

con respecto al número total de artículos publicados en el campo de la Ecología. Los términos de 1269 

búsqueda están disponibles en el Apéndice 2.]  1270 
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 1271 

Fig.- 3. Example of two individual tracks of a pair of Bonelli’s eagles (Aquila fasciata) recorded by 1272 

high-resolution GPS/GSM telemetry in Spain (López-López & Urios, unpubl. data). Each point 1273 

corresponds to a GPS location and shows how male (red) and female (yellow) soar together a two-1274 

hour time window. For this particular study, dataloggers were programmed to record one GPS 1275 

location and tri-axial accelerometer measurements (sampling rate = 33.3 Hz for each axis) every five 1276 

minutes according to a basic configuration throughout the year. Furthermore, dataloggers record a 1277 

GPS location every second during certain time periods of 15 minutes in length called “super busts”. 1278 

As a result, high-resolution GPS telemetry is allowing in-depth analysis of the behavior of these birds 1279 

in their territory. 1280 

[Ejemplo de dos “tracks” individuales de una pareja de águilas perdiceras (Aquila fasciata) en 1281 

España gracias a telemetría GPS/GSM de alta resolución (López-López & Urios, datos inéditos). 1282 

Cada punto corresponde a una localización GPS y muestra cómo el macho (rojo) y la hembra 1283 

(amarillo) ciclean juntos en una ventana temporal de dos horas. En concreto, para este estudio los 1284 

dataloggers fueron programados para obtener una posición GPS y medidas del acelerómetro tri-1285 

axial (frecuencia de muestreo = 33 Hz en cada eje) cada cinco minutos de acuerdo con la 1286 

programación básica para todo el año. Además, los dataloggers recogen una localización GPS cada 1287 

segundo durante determinados períodos de tiempo de 15 minutos de duración denominados “super 1288 
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ráfagas”. De este modo, la telemetría GPS de alta resolución está permitiendo llevar a cabo un 1289 

análisis en profundidad del comportamiento de estas aves en su territorio.]  1290 
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APPENDIX 1 1291 

Marketing companies of individual tracking devices for birds. The smallest size of the tracking device 1292 

commercially available is shown (prototypes not included). The number of locations, battery-1293 

expectancy and operating/data downloading distance may vary considerably among tracking devices, 1294 

based in part on duty cycle configuration and attachment system on birds, hence devices of similar 1295 

size may have different performance. 1296 

[Empresas comercializadoras de aparatos de seguimiento individual para aves. Se muestra el tamaño 1297 

mínimo de los dispositivos comercialmente disponibles (no se incluyen prototipos). Aviso importante: 1298 

el número de localizaciones, duración de la batería y la distancia a la que se pueden descargar los 1299 

datos puede variar considerablemente entre dispositivos de seguimiento, configuración individual y 1300 

sistema de colocación en las aves, por tanto dispositivos de tamaño similar pueden tener un 1301 

rendimiento diferente.] 1302 

Company name website 
Argos 

(no 
GPS) 

Argos/
GPS 

GPS/GSM 
dataloggers 

GPS-remote 
downloading 
dataloggers 

geolocator
s 

Microwave 
Telemetry Inc. 

http://www.microwa
vetelemetry.com 2.2g 17g 25g no no 

North Star 
Science and 
Technology, 

LLC 

http://www.northstar
st.com/ 5g 22g 55g no no 

e-obs digital 
telemetry http://www.e-obs.de no no 48g 10g no 

Cellular 
Tracking 

Technologies 

http://www.celltrackt
ech.com/ no no 23g no no 

Telonics Inc. http://www.telonics.
com/ 15g no 137.5g no no 

UvA-bits http://www.uva-
bits.nl/ no no 18.5g 7.2g no 

Ecotone 
Telemetry 

http://www.ecotone-
telemetry.com/ no no 17g 5g no 

TechnoSmArt http://www.technos
mart.eu/ no no no 17g (3.5g***) no 

Migrate 
Technology Ltd. 

http://www.migratete
ch.co.uk/ no no no no 0.3g 

Biotrack* http://www.biotrack.
co.uk/ 100g 3.5g** no no 0.39g 

http://www.microwavetelemetry.com/
http://www.microwavetelemetry.com/
http://www.northstarst.com/
http://www.northstarst.com/
http://www.e-obs.de/
http://www.celltracktech.com/
http://www.celltracktech.com/
http://www.telonics.com/
http://www.telonics.com/
http://www.uva-bits.nl/
http://www.uva-bits.nl/
http://www.ecotone-telemetry.com/
http://www.ecotone-telemetry.com/
http://www.technosmart.eu/
http://www.technosmart.eu/
http://www.migratetech.co.uk/
http://www.migratetech.co.uk/
http://www.biotrack.co.uk/
http://www.biotrack.co.uk/
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PathTrack Ltd. http://www.pathtrack
.co.uk/ no no no 5g (1g****) no 

Blueoceanix 
Technology Co., 

LTD 

http://blueoceanix.en
.ec21.com/ no no 45g no no 

* commercial partners of Sirtrack Ltd. (http://sirtrack.co.nz/) and Lotek Wireless 1303 

(http://www.lotek.com/) 1304 

** up to 30 locations (PinPoint technology) 1305 

*** 3.5 g device is an archival location logger that must be retrieved at the end of its deployment. 1306 

Expected battery duration is up to 3-5 days.  1307 

**** The 1 g device is an archival location logger that must be retrieved at the end of its deployment. 1308 

It provides 80 locations on average during lifetime.  1309 

http://www.pathtrack.co.uk/
http://www.pathtrack.co.uk/
http://sirtrack.co.nz/
http://www.lotek.com/
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APPENDIX 2 1310 

Search terms used for the literature survey in ISI Web of Science. Search conducted in SCI-1311 

EXPANDED database and time period 1950 – 2015 in all cases. Search date: December 2015. 1312 

[Términos de búsqueda utilizados para la búsqueda bibliográfica en el ISI Web of Science. Búsqueda 1313 

realizada en la base de datos SCI-EXPANDED para el período temporal 1950 – 2015 en todos los 1314 

casos. Fecha de búsqueda: diciembre de 2015.] 1315 

Search 
# Search term Results 

1 

Search term: (ecology) 

Refined by: (ECOLOGY OR MARINE FRESHWATER BIOLOGY OR 
ZOOLOGY OR ENVIRONMENTAL SCIENCES OR EVOLUTIONARY 
BIOLOGY OR BIODIVERSITY CONSERVATION OR 
MULTIDISCIPLINARY SCIENCES ) 

74664 

2 

Search term: (satellite track*) AND (bird*) 

Refined by: (ORNITHOLOGY OR ECOLOGY OR MARINE 
FRESHWATER BIOLOGY OR ZOOLOGY OR OCEANOGRAPHY OR 
BIODIVERSITY CONSERVATION OR ENVIRONMENTAL SCIENCES 
OR MULTIDISCIPLINARY SCIENCES OR COMPUTER SCIENCE 
THEORY METHODS OR BIOLOGY OR BEHAVIORAL SCIENCES OR 
EVOLUTIONARY BIOLOGY ) 

543 

3 

Search term: (accelerom*) AND (bird*) 

Refined by: Categorías de Web of Science: ( BIOLOGY OR MARINE 
FRESHWATER BIOLOGY OR MULTIDISCIPLINARY SCIENCES OR 
ECOLOGY OR ZOOLOGY OR EVOLUTIONARY BIOLOGY OR 
PHYSIOLOGY OR ORNITHOLOGY ) 

51 

4 Search term: (GPS AND bird*) 380 
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