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Ab•tract 

We ltudy the general conditiou to maintain the ac:ale of the lepton number 
breaJdna; VEV at the eleclrowea.k ac:ale. It is shown that the only pouibili­
tiea are if the main component of the resulting majoron is a hyperchargeles. 
complex triplet or a neutral ainslet. Models with a hyperchargeleu triplet, 
even though phenomenologically more intere.ting, seem to be very difficult 
to build beeau.e they like to break charge conservation. However we have 
found a particular exten.ion, by adding an addition&l neutral singlet, that 
110lve. this problem. The model can give a Majorana ma.ss to the neutrinos in 
the eV range, p - e '"I can proceed with branching ratios at the verge of the 
present experiment&! limit and there are no additional decay modes of the ZO 
into invisible particle.. 
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1. Introduction 

The ltandard model of elect:~ weak intera.di0111 predida mauleu neutriu<.. Thi• is 

becauae i) in the model there are no right-banded neutrinOfl to combine with left-handed 

neutrin01 to generate a Dirac ma .. term and ii) the minimal Higp content o( the model 

lead. to the automatic cooaerva.tioo of lepton number. 

Althoush there ia no definite experimental evidence for muaive neutrinoa, there are 

110me indic:atiooa for non-vaniahing neutrino ma.ues. H neutrina. are mauive at all it 

ian~ to extend the atandard theory by adding new ae&lan, new fermion• and/or 

new gauge bo.ona. H nature dwo&es the first poesibility the neutrino mau term. must 

be oec.eu&rily Majorana mus terms, thus the lepton number IlllUt be broken either 

explicitly or •pontaneously. The HICODd cue is the JllOI;t interesting for it impli~ the 

existence of a new Goldatone bo.on, auociated with the ~taneous breakdown of lep­

ton number, called the majoron [1]. The majoron presents, in general, a very interesting 

phenomenology that can be used to test the models apart &om the direct neutrino ex­

periment• which are difficult to perform if the neutrino muses are very small. ThlU, 

for eu.mple, the Gelmin.i-Ronca.delli model (GR)(2,3] will be tested at LEP because the 

decay of the zo sause boton to neutr&l scalan oontribut~ to the decay width like two 

more generations of liJht neutrin011 (3J. 

Ma.joron models, in general, can be clauified in two groups : i) models in which the 

lepton number ia broken by the vacuum expectation value (VEV) of a SU(2) ainglet. 

Here the ac:ale of lepton number breaking ia quite arbitrary but in moat of the cues it is 

required to be very large (1], moreover the phenomenology is very limited. ii) model. with 

the lepton number broken by a nonsinglet VEV, like the model of Gelmini-Roncadelli (2] 

or the doublet majoroo model(4]. In these kind of models the lepton number breaking 

VEV cannot be larger than the electroweak •cale because it contributes to the gauge 

boson maaaea. In addition, as the majoron has gauge couplings, the phenomenology is 

much more interesting (3,5,6]. 
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In the existing nonainglet m&joron models [2,4,7] the majoron baa a tree-level coupling 

to electrons dind:ly proportional to the lepton number breaking VEV. This coupling 

make. the reaction -y + e -+ e J proceed at a very high rate in the cores of red giant stan. 

As the majoron acaruly inteta.ds with ordinary matter it escapes freely producing a too 

fut cooling o! the star. This puts a bound on the coupling, which allows us to obtain 

a very 1hong bound on the lepton number breaking VEV v < 10- 100 KeV {3,8] six 

orden of magnitude below the electroweak scale. This poses a problem of naturalness. 

Indeed it hu been shown [9,10] that at the one loop level there will appear in general a 

correction to the small VEV proportional to the large VEV, Although, at this level, this 

corredion can be avoided by fine tuning the parameters in the Higv potential, at higher 

loops it is not clear what will happen. 

In any cue it would be nice if we can find a majoron model in which the scale of 

lepton number breakdown is not 10 diffttent from the electr~weak scale. This is the 

main purpc~~~e of this paper. In section 2 we study th~ necessary conditions to a.void 

the utrophysie&l bound on the lepton number brea.king VEV. In section 3 we propose a 

simple extf!nsion of the atandard model containing a. hyperchargeleu complex triplet of 

acalan to implement these condition.s and we comment on some o{ the phenomenological 

iuues of such a. model. In section 4 we analyze the Higgs potential and t.he pattern 

ol 1ymmetry brealcing. It turtll out tha.t the model, in ita minimal configuration, is 

inconaide:Dt b«.auae the true minimum of the potential breaks cha.rge conservation. The 

problem can be solved by adding a neutral scalar singlet carrying lepton number, but 

ewn in tha.t cue the solution depends crucially on the singlet-doublet-triplet coupling. 

The ainslet VEV can be of the aa.me order of magnitude a.a the triplet VEV and the 

majoron a roughly equal combination of triplet and ainglet. Thua, the phenolllenological 

implica.tions of the model can be maintained. Finally in section S we collect the ma.i.n 

result. ol the paper. 
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2. The majoron coupling to electrons 

In all the majoron model. we will have, at least, two bro1oen U(l) symmetrie., U(l)y 

of hypercharge and U{l)t of lepton number. The Noether'• currents a.uociated with these 

symmetries are 

.r,. = iLx'IJ;x + .r..u> + · · · 

J; = ~lf'1 1tlf' + iyx'1tx + J; (f)+··· (I) 

where If' is the 1tandard doublet, X i1 the new RiMS multipld which caniet: lepton number 

L and weak hypetcharge y. J!(f) and J~ (!) are the fermionic parts of the currents. H 

the symmetry is broken spontaneously we muat perform a shift in the neutral components 

of the fields 

cp(O) = U + ~(cpt + icp,), X(O) = 'U + ~(Xt + i;t2) (2) 

Thus 

.r,. = -Lv'ivo.x, + .r..u> + · ·. 
y u 2yv y 

J" = -8.( J2'P.+ JiX•) + J" (/) + (3) 

The Goldatone bosons u10cia.ted with the breaking of each I}'Dlllletry are given by the 

linear combinations of the tield.a tha.t appear in the derivative term&. However the two 

linear combinationa are not orthosonal. M we know that the Goldatone boson aasocia.ted 

to the breaking of hype%charp is the one "eaten, by the ZO ga.uge boson, the majoron 

will be the orthogonal linear combination 

00 = coe:8cp, +sinS X2 
(4) 

J = -lfin6 'P2 +cod X2 

with 

• 8 2yv 
llD .jui + 4y2v2 

(5) 

From eq. (3) aubatituting eq. ( 4), taking derivatives and solving for {JIS8,.J we obtain the 

equation of motion for the majoron. 

I I 
IY'o.J - -

8
1Y'[----;;; .r..u> 

cos Lv2v 
,/ 

2 
oin 8 f(/)] u2 +4y2v2 1-1 + ···=0 (6) 
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We are interested only in majoron coupllnge: to electrona, 10 we can take J!,(f) = 
-e..I-"'1~~- e.KY~e.R and J!{f) = -;e;:;;"'f~e_,- e......,~eaR.. Obviously the lepton cur· 

rent for electrons is vectorial ( eL and e11 cany the aa.me lepton number), thus if there is 

no mixing IUDOng charged leptons with difl'erent lepton number, and using the free Dirac 

equation tOr eledrona, we obtain 8~(lRT'eR + l£T'eL) = 0. Doing the aame with the 

hyperchaqe CUrTe:Dt we obtain 8~{-ldeR- }l£1""e£) = -}8~(lll't"eR) = -inr!-rse 

Thus, after integration of the equation of motion (eq. (6)) the linear coupling of the 

majoron to electrona Ui 

. m.a 2yv J i:"Yse .. 
Cw = a ./2u Ju2 + 4!iv2 (7) 

To obtain this coupling, we have used several times the equation• of motion, thua one 

would expect it to be valid only on tnas~-shell. However it can be ahown that it is valid 

off-mus-sheU, u weD. This is because the coupling of eq. (7) is a Yukawa coupling and 

in the parameterization of eq. (2) Yukawa couplings are the only ones allowed in the 

fundamental lagrangian. 

From eq. (7) it is obvious that, in general, the majoron only couples to electrons 

at tree level through the mixing with the standard doublet. This can be understood 

because the majoron multiplet cannot couple to two electrons direc:tly ( !bex(O) does not 

conaerve lepton number). Therefore, all the coupling comes through the mixing with the 

standard doublet. 

In eq. (7) we see that the coupling is proportional to the hypercbarge of the majoron 

multiplet, thus the only way to suppresa it ia by chooeing a multiplet without hypercharge. 

H 1'l'e want to avoid &actional charges and high SU(2) multiplets the only possibilities 

are a singlet or a triplet. H we choose the ainglet the scale of the lepton number breaking 

is eomehow arbitrary and the phenomenology will be rather poor because it does not 

enjoy the gauge couplings, 10 we will try to build a model using a triplet to brea.k lepton 

number. 

5 

3. The hyperchargeless triplet majoron model 

A scalar triplet without hype:rcharge cannot couple directly to fe:rmiou, hence, if 

the atandard model is enlarged with only a hyperchargeleN triplet there is no way to 

usign lepton number to it.The model must be enlaqed with more scalan. The timplest 

poAibilityl Ui by adding a new charged singlet aea.lar h + with two units of lepton number 

uaigned through the coupling 

Cr = f.,l~lw.h+ (8) 

where G = i'1'2l~ are the c»njugate left-handed doublet. ~d the aum over a,b = e,p,T' 

is understood. The coupling con.tants f,p must be antisymmetric in flavour(/<~~>= - J,..,). 

In addition we need a scalar coupling of this singlet to the triplet in order to aesign 

lepton number to the triplet. This coupling actually exists, 

C~wnt, = ).8h- rpT iT'2XIP + h.c. (9) 

where the triplet X is represented by a 2 x 2 matrix. Thus, the model is defined by the 

couplings of eq. (8) and eq. (9) and the field content 

h.+- (0,1,2) cp"' (\,\ 10) X"' (1,0,2) (10) 

The numben in brackets refer to the SU(2)£, U(1)y and U(l)1 transformation properties. 

The spectrum will contain, in addition to the spectrum of the standard model, three singly 

charged particles, the majoron and its scalar partner PL· 

We can now extract the main phenomenological characteristics of the model: 

1. No tree level majoro~elutron coupling. 

This Ui because, by conatruction, the triplet does not carry hypercbarge. Thus, the 

astrophysical bound on the lepton number breaking VEV no longer exists. However, a 

DULjoron·electron coupling can be generated at higher loopa. In that case the coupling is 

'It U. euy to lee UW wi\h ooly Ill additional doubly charged tcalar titJslet it U. ~ble to -ign 

lepton number to the tripld. 
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mppn!Ued. by \be loop and the large mane~ ru.nn.ing around it, hence, we do not expect 

any problem due to \hl!ee couplings. 

t. Bound on tM triplet VEV. 

One of the crucial predictio011 of the standard model hu hem! the tree level relation 

p = Ml,f~ OM1 8w = 1, which i1 satisfied to a high degree of accuracy. It is related to 

the fact that in the standard mode1 the spontaneous breaking of symmetries is achieved 

through a scalar doublet. By adding to the standard model a triplet that develops a 

VEV this relation will be ..,ailed, becauee the triplet contributes to the muses of the 

puse bo.ons in a different manner than doublets. The experimental degree of accuracy 

in the determination of p automatically pub a bound on the VEV of the new multiplet. 

From the seneral formulae for the contribution to the manes of the g&uge bosons from 

~~eVeral multiplets, Afl. = l9' Eo tJ?(J? +I,- Ji.) and M~ cos1 8w = g' EtJ? Ji., we obtain 

the value of p 

W. v' 
P=M3 ~e =1+4-; (11) 

zcoa w u 

The experimental value is[ll] 0.998 < p < 1.014, thus the bound on the triplet VEV is 

tJ < 0.06 u~ 10 GeV (12) 

After one loop corrections the 1quare of the small VEV will receive corrections propor­

tional to the square of the large VEV. The comtant of proportionality is of the order of 

{9,10] g4 /(41r)2
, thus a ratio of the order of the one given in eq. (12) does not represent 

any hierazchy problem. 

S. No tkcoy Z0 - J PL· 

Pouibly ooe of the crucial tests of nonsiDglet majoron models will be neutrino counting 

experimmh in ZO decay. Indeed, it can be shown that together with the majoron there 

is always anotbe!r scalar particle PL with a mass of the order o( (or smaller tha.n) the 

lepton numbe!r breaking VEV [12]. In addition, if the majoron belongs to a nonsinglet 

multiplet it will have a gauge coupling Z';.JiJ'-pL giVing a new unobserved ZO decay mode 

u well u the standard decay to neutrinos. In fad, in the GR model it gives an additional 
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contribution equivalent to two more geuentions of neutrina.{3]. In the doublet majoron 

model the contribution is 4 times smaller[4J. Neutrino countiDs at LEP is expected to 

reach a eensitivity equivalent to 0.3-0.2 neutrino geuerations(l3] which is enoup to probe 

these modela. In the hypercbarseleu triplet model even though this decay is lrinematieally 

allowed due to the bound of eq. (12), it cannot proceed beeauee the oouplins does not 

exin. Tbia is obvious if we take into a.ccount that the bypercbaq:e of the majoron is 

exactly zero (it .j,~ not contain any mixins with the standud doublet). This makes a 

significant difference between tbia model and the other nonsin&let majoron modela [2,4, 7]; 

it cannot be excluded by neutrino oountiDs experiment. at LEP. 

4. The neutrino mo.t.~. 

The main purp06e of majoron models is to justify the smallness o( the neutrino masses. 

Here, the Majorana neutrino ma.ss is gen~ated through radiative corrections. Thus, 

even though the lepton numbe!r breakins VEV can be relatively large, lhe muset are 

kept small. They are generaLed throush the diagram of Fig. 1. h is very simiht.r to 

the diagram tha.t gene!rates the neutrino maaa in the Zee model {14] and, in (act, the 

mus matrix hu exactly the same structure, •ymmetric without di*!onal components. 

The diagonaliza.tion of thi• m.aa matrix hu been studied in Ref. 15 aud it leads to 

a pseudo- Dirac neutrino and to a Majorana neutrino with a man proportional to the 

splitting between the two components of the pseudo-Dirac neutrino. The pseudo-Dirac 

neutrino mus can be ettimated to be 

8 u1 m 3 

m.. z (.Cw)'.X.mf In r'h:G,m!vf (13) 

where m,_ is the man of the charpd lin&}et, r'h is some averaged mus of the charsed 

components of the triplet and f i• a function of the Yuhwa couplings in eq. (8). It 

is important to notice that, in compariton to the Zee model, here the equivalent of the 

dimensional trilinea.r scala.r oouplins is fixed by the electrowealr: scale. Thus, unlike the 

Zee model, a large neutrino ma.ss automatically implies a relatively small charged singlet 

mass. Using the bound (eq. (12)) on the triplet. VEV; ..\1 ~ 0.1, f ':::! 0.1 and putting a 

factor 1 (or the loga.rithm we can euily obtain neutrino muses of the orde!r of 1 - 100 e V 
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for a ma.u ofthe charged .calar 1inglet between 100·1000 GeV. The maas ofthe Majorana 

neutrino it: two orders of magnitude amaller because it is suppressed by a factor ( m""/m.. )2 

[15[. 

5. p -+ e 7 decay. 

Exactly like in the Zee modd, the presence of the coupling of eq. (8) induca; the radiative 

decay p -+ e 'Y· The diagram i• depicted in Fig. 2 and the branching ratio is given by 

[16,4[ 

BR(p ~ q)"' ;; • II~ I •• I' •<>,.. ,m,. (14) 

which can be at the verge of the present experimental limit {17] BR(p -+ e "'f)np < 
4.9 X 10-11 if the ma.u of the charged singlet Ui not too heavy (m,. < 10 TeV) and the 

Yub.wa couplings are not too small. As commented previously, in this model, to have 

1izable neutrino lll&ISel we need a relatively •mall charged singlet mass, and the process 

can be relevant. 

6. Bound on t.he ma.t.S~ of the triplet charged &calar.t. 

Even though &t tree level in the standard model, p = .wt?!5,, = 1, at one loop level 

there are finite radiative corrections which depend quadratically on the mass splitting 

in a multipletl, U1ing thi• effect it is pouible to put a bound on the top quark mas• 

[19) me < 180 GeV. The same effect appears i( extra Higgs multiplet& are present [20) 

and can be used to constrain the lll&ISel of charged scalar particle.. In the GR model 

tbe.e considerations give an upper bound on the mass of the charged particle. o( about 

300 GeV {6). We expect a similar bound on the nonsinglet charged scalar masses. 

7. Pouibility of Z0 -+ x+x- and w+ -+ x+ J. 

The majoron a.ud the chazged scalan that belong to the triplet interact with full strength 

with the sause b010ns1 thu. if they are light enough, they can give an important contri· 

bution to the decay width of the gauge bosona. 

tm the reacxmalisa&ion .cheme introduced by SilliD [18] p it fixed to be oDe to &11 orders, but the 

c::onec::t~ appear. i.D the eft'ec::tin "-fenrUon 11eutral current interaction. 
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The couplings and the fidd content are not enough to define a theory. We IDUSt 1how 

that the vacuum of the model is, indeed, the true vacuum. 

4. Higgs potential and pattern of symmetry breaking 

With the fidd content of the modd, the Ill(Mt general gauge invariant and lepton 

number conserving Higgs potential can be written u 

where 

V('l'oXoh) = lli('I',X) + V,('l'oXoh) 

Vt = At(~1r.p- u 2)2 + A2(Tr{xxl}- v2)2 

+A3(r.pfr.p- u2)(Tr{xx1}- v2) 

+:1.(2'1'1xx1'1'- "''"' Tr{xx1
}) 

+~.(2Tr{xx'xx1}- Tr{xx1}') 

The triplet has been represented by a 2 x 2 complex matrix, 

x = ( ;);x(•l 
X~-) 

X(+) ) 

-~x(o> 

(15) 

(16) 

(17) 

while (or the V' we have used the ltandard representation a. a two component complex 

vector. 

The piece of the potential that depends on the charged singlet scalar is 

v, = P' [hi'+ :le [hi' + ~, lhl' 1'1'1' + :le [hi' Tr{xx1) 

-~h-r.pTi-r2xr.p + A;h+r.ptxti-r2V'• 
(18) 

Other possible couplings like p~Tr{x'} or 1J2r.pfxr.p are (orbidden because o( lepton nwn· 

ber conservation, and u a consequence the only dimensional parameters in the Higgs 

potential will be the two VEV's and the mu1 term of the charged singlet. Tenns like 

A'h-r.pTi-r2x1r.p are also forbidden once one makes the assignment of lepton number given 

by the ).fl term in eq. (18). 
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To minimise the whole potential il a difficult tuk. We will start by studying V1 

because it i. independent of the charged singlet acala:r and after that we will try to 

generalize the result to the whole potential. 

The charge conserving minimum of the potential must be 

( 
0 ) < V' >= ' 

< V'(O) > 
<x>~ ( ;);<:'"'> 

-;);<ox'''> ) 

These requirements can be written in an invariant way 

J ~ ---,-<-'-'"'=-',x~xc''"'s-:>-.,.­
~n:- < ~~''~~' >< Tr{xx'} > 

! J = :<:...T~r:,c{c<X~x~' x'cx~'J.);::_> 
2 )( - < Tr{xx'} >2 

I 

2 

(19) 

(20) 

J~ and Jll:: a.re related to the relative anglea formed between the doublet and the triplet 

and the real and imaginary components of the triplet. Performing a SU(2) rotation we 

can diagonalize the hermitian positive semidefinite matrix xx' 

Uxx'U' = ( zf 0 ) 
0 zl 

Thus, it ia enough to .tudy the following potential 

V, = >.t(i + yf- u')2 + J.,(z: + z~- v2)2 

+~,(yf + Yl- u2)(zf + z~- v2 ) 

+~(~- yf)(z:- zl) + >.,(zf- zD2 

(21) 

(22) 

Yt and Jh are the moduli of the two components of the standard doublet in this basis. Vj 

only depend. on Yt and Y1 and it is independent of the phaaes of the fields. 

The requirements for the vacuum of eq. (20) are expressed by 

z: = z~ (23) 

Thus, the only thing we have to do is to check that the absolute minimum of the potential 

in eq. (22) satiafiea these requirements. 
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1'be cancellation of the fint dmvativoea givea 

2yt[2~t(V: + yf- u,) + ~,(zf + zl- v2) + ~(zf ~ zl)] = 0 

2y2[2~t (V: + yf - u2) + ~,(zf + zl- v2) - ~(zf - z~)) = 0 

2zl[2~2 (zr + z~- v2
) + ~,(V: + vl- u2

) + .X..(V:- vU + 2A,(zr- z~)] = 0 

2z2(2"'2(zf + z~- u2) + ~,(V: + yf- u2)- -'..t(V:- yf)- 2As(zf- zUJ = 0 

From these equations i1 clear that there exiata a solution with zf = zl if yf 
corresponding to 

, 2 1 2 
Zt = Z2 = zv 2 2 1 2 

lit = 112 = zu 

(24) 

Yl. 

(25) 

The fact that in thia buia 11f = vl doea not represent any problem becauae we can alwaya 

rotate thia aolution to obtain a doublet with only a neutral oomponent; this is because 

(xx'), being proportional to the identity, is invariant. However we have to check that 

eq. (24} gives a true minimum. To do ao we must ahow that the matrix of the seoond 

derivatives iA positive definite. 

Using eq. (25) the matrix of the second derivative~ (in the baaiA (Yt,y21 z 11 z2)) ia 

where 

[ 

•• b c 

a a c b 

b c tl e 

c b e tl 

(26) 

a:= 4~1 u', b := 2(~a+~)uv, c = 2(~,-~)uv, tl = 4("'2+>.1)v2, e = 2(~,-~s)uv (27) 

A matrix iA positive aemidefinite, if and only if, aD ita principal ttUnon are positive or 

zero[21}. From eq. (26) we can extract the principal minor 

J· ob 

I 
a • c 

b c d 

= -a(b- c)2 = -64J.1 ~!utv2 (28) 
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which i• alway. negative bec&we a muJ;t be poeitive. Thi• means that the solution of eq. 

(24) we have found i• not a true minimum, it mu.t be a saddle point and thus it does 

not repreaent the true vacuum of the model. The true minimum of the potential of eq. 

(22) i. obtalned for 

rf=O, ~#0, z~=O, z~#O (29) 

However thi1 solution doe. not aatisfy eq. (23) which means that it breab charge con­

tenation with the auignmenh of the weak hypercharge we have givenl. 

Now we have to consider the whole Higgs potential to aee if the inclusion of tenna 

depending on the charged 1inglet 1calat can change the 1ituation. It can be shown that 

the field configuration 

< ~ >= ( : ) • < X >= ( ~v 0 ). 

--},vj 
< h+ >= 0 (30) 

nti1fies the equations of minimization for the whole potential. Again we must check 

that the matrix of second derivatives ia positive semidefinite, which i1 exactly the same 

u checking that the mau matrices of the scalars are positive semidefinite. For the 

maaa matrix of the neutral scalars there is no problem, it is poeitive definite if ).1 > 0 

and 4.X1 .X1 - .Xl > 0; however, the DlUI matrix of the charged sca.lan ia (in the basis 

(hl+l,xi•l,x~+l,~i+l)) [ ...... ,,_, ~eu2 0 ~ .. l ).gu~ -.X.u2 + 2~sv2 -2~15v2 -v'2.X4uv 
(31) 

0 -2~1v2 .X.u2 + 2~1v2 v'2A.uv 

v'2~uv -v'2A.uv J2A.uv 0 

Again it contains principal minon that are always negative, so again, it is not the true 

minimum of the potential and the true minimum of the potential brea.ks charge conser· 

vation. Thus the model as proposed is inconsistent. 

"ID laC\, UWI rwwmum correspond. \o the true minimum of the Gelmini~Rooc.delli model; in that 

cue the hypercllarse ol the triplet. il I aDd this ncuum does not break charge eonee"'"ioo. 
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Obviously to solve the problem we have to add new term~ in the potential. We can 

add lepton number violating temu, in which caae there i1 no reaaon to we a complex 

triplet and the natural thing to do ia to use a real triplet x = x'. For a real triplet we have 

xxt =X:= ~Tr{x2 }1, and the conditiona of eq. (20) are automatically aatiatied (or, in 

other words, the unwanted couplings A. and~. are automatically zero). However, beeawe 

the lepton number is broken explicitly there is no majoron and the main motivation for 

the model i. !oat. • The other 110lution ia to add new fieldA. The 1implest pouibility i1 a 

1calat singlet. Thus we will try to find the required vacuum by adding a lcalat 1inglet 

carrying lepton number 

a,....,(o,0,-2) 

The new piece. in the Higgs potential can be written as 

V, = fl,(lul'- w')' + P,(lul'- w')('P''P- u') 

+P.(Iul' - w')(Tr{n'} - v') 

+(P,(Iul' Tr{xx') - u'Tr{x')) + h.c.) + fl, I hi' lui' 

(32) 

(33) 

where a discrete symmetry a ..... -a has been used to aimplify the potential by forbidding 

tenna like av>'x.~ and also for simplicity we will take all the couplins- to be real. 

It is easy to see that the equationa of minimization for the potential, Vi + V2 + Vs, 

are satisfied by the field configuration o( eq. (30) together with < a >= w. Developing 

around this point we can obtain the mau matricea; of the scalars. For the real parts of 

the neutral components we obtain that the maa matrix is poeitive definite if 

~I > 0, 4).1~1- ).~ > 0, 4).1~2.8! + ).afJ2/33- ).2,(3:- ).1~- .8!~~ > 0 (34) 

For the imaginary parts of the neutral components we find that Im(~l0l) does not get 

any m.au beeawe it corresponds to the would-be-Goldstone boeon eaten by the ZO gauge 

,Ne~rtbdas it can be a Dice alumatift to the Z« model. U coo.t&ila one las depee of freedom 

aDd, more import&Dtly, the equi~nt of the arbitrary triliDea.r couplina in the Zee model il tb:ed to be 

here of the ordet' of the electro--.& .cale. 
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OO.On. For the other two component. (J2Im(x(Ol),v'2Im(o")) we obta.in the following 

mass matrix 

4{3, ( ..,. ""' ) 

""' v' 
(35) 

It hu a zero eigenvalue corresponding to the majoron field 

J = ¥'2(,..;,....., Im(x'''l- ---,.;_...lm(d''')) 
vv' + w2 vv' + w2 

(36) 

while the orthogonal combination geta a mus squared 4,84(v2 + w2 ), poeitive if ,84 > 0. 

However for the maas matrix of the charged scalars we obtain exa.ctly the same structure 

u eq. (31) by changing only lav'-+ .\ev2 + f3&w 2 and 2l1v2 -+ 2.\1v2 + 2,84w2• Thus, 

again it is not positive lleiDidefin.ite, and the model will bre&k charge conservation. We 

can understand thi1 result in the following way; the model, without the neutral singlet, 

breaks charge conservation because the minimum of the potmtial is found for an angle 

between the doublet and the triplet incompatible with cha.rge conservation. The problem 

cannot be -alved by adding a tenn lilr:e ~Tr{~}, becaute this term is independmt of 

that ansle, and therefore cannot modify the pattern of symmetry breaking. The same 

lfU'KUlDellt can be applied for a toodel with a singlet tT' ..... (0,01 -4) with the lepton number 

conservin8 coupling 17Tr{x'}. We have checlr:ed this explicitly. Following this argument 

it seems that the only pouible 10lution of the problem ill to add couplings that depend 

on the angle formed between the doublet and the triplet. The on1y term we can use 

ma.intainins lepton number conservation is 

1 
V4 = 'J2al7~1x~ + h.c. (37) 

At fint look it .eem~ that adding such a term cannot modify the mass subm.atrix of the 

charged •c:alan (x~+l,x~+)), whic:h is not positive definite. This is because it is linear 

in X· However by adding the term of eq. (37) the vacuum is shifted inducing additional 

term. in thit mau matrix. The minimum of the potential will now be 

< ~>= ( :. ) < X >= ( ;);v' 0 ) 
0 -j;ii2 

< u >=W < ~af+l >= 0 (38) 
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where the new U, V and i;J Dnllt satisfy the followins equations 

2U[2).1(U2 - u') + .X,(ii'- v2 ) + ~(t;J'- w2)- aWV) = 0 

2ii(2l2(ii'- v2) + l 1 (U2 - u2) + 1Ja(t;J2 - w2)] - aWU2 = 0 

2W(2.Bt(I;J2
- w2 ) + .O,(U2 - u 2) + /\(ii2 - v2)J- aiiii2 = 0 

(39) 

From the whole potential, making the shift in the fields and using eq. (39) we can write 

the mass ma.tric::es of all the particles in terms of the new VEV's. Thus for the imaginary 

part of the fields ( v'ilm(X(O)), v'ilm(u)) we set the following mau matrix 

-· ("'' ;;.;.) (4,84 + ia ~) W ii' (40) 

It has exactly the same form, apart &om the sJoba.l factor, u eq. (35), tberef'ore, in this 

case the majoron is also given by eq. (36) changing on1y u -+ U, v-ii and w -+ W. For 

the mass matrix of cha.rged scalars we obtain 

[! 

b 0 

-C+d+i -J 

-J C+cl+i 

(-C+i)~ (C+i)~ 

where we haw defined 

(-c~ <)• l 
(c + <)• 
2i~ 

4 ;:; p 2 + l7U
2 + l,ii2 + f3cW1 b:>.,u', c = >..u' 

J = 2>.,v2 + 21\W' I - -· - .... e:=-a-
2 ;; '= ,12£ ii 

(41) 

(42) 

On1y the term e contains the dependence on the new coupling. From this expression it 

is clear that in the limit e - 0 the maa matrix of charged sca.lan Mduce. to the form 

of eq. (31) and 110 it ill not pa.itiw .anideflnite. However, the pieca with e destroy the 

previous structure of eq. (31). On the other hand, it is easy to checlr: that this matrix 

contains a zero mode, as it should, rol'tftponding to the would-be-Goldstone boson eaten 

by the W gauge boson. It is given by the linear combination 

~· = __ 1_( ,., !•) Jl + 2~' tXt + tX2 - ~(+l) (43) 
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Performing a rotation to get rid of tbi. spurio11.1 degree of freedom we obtain 

( 
. 

b/./2 
bz/ .;2 

bJ./2_ bzj./2) 
i+U -b 

-Cz iz2 

where z = v't + 2t2 • This maaa matrix is po1itive definite if 

i>O 

i(i+2d)-C'>O 

o(<(H U)- C')- b'(<+ C+ J) > o 

(44) 

(45) 

These conditiow; can be eaaily satisfied if the new coupling we have introduced in eq. 

(37) is different from zero. In particular they can be fulfiUed for a singlet VEV W of the 

aame order of magnitude a. the triplet VEV. U that is the case, the resulting majoron is 

a roughly equal combination of triplet and singlet and all the interesting phenomenology 

related to the nonsinglet nature of the majoron can be maintained. In particular, all the 

a.pects diKUaed in section 3 are maintained. 

5. Conclusions 

We have studied the conditiom needed to avoid the tree level coupling of the majoron 

to electrons, and hence, the a.trophysical bound on the lepton number breaking VEV. It 

tUI'tll out that thi1 is only pouible if the majoron multiplet does not carry weak hyper· 

charge. To avoid fractional charges and high SU(2) multipleh the only possibilities are 

singlet1 or triplets. Triplets are in principle more interesting because their phenomenal· 

ogy is richer and because the lepton number breaking scale is bounded, at least, by the 

electrowea.k scale. We tried t.o build a hypercha.rgeleu triplet majoron model by adding 

to the standard model a charged singlet carrying two units of lepton number and a triplet 

without weak hypercbarge carrying also lepton number 2. In the minimal version the 

model i1 incoruistent because the minimum of the potential breaks charge conservation. 

17 

However the problem can be solved by adding a neutralsing;let a carrying two units of 

lepton number and adding the lepton number conserving coupliQ.f!: tTif'l XV'· The reaulting 

majoron can be a roughly equal combination of triplet and singlet and tn011t of the triplet 

model phenomenology can be maintained. In particular there is no tree level coupling 

of the majoron to electrotll. There is a bound on the triplet vacuum expectation value 

coming &om the correction to the p = w,3,.. = 1 parameter ((x) < 10 GeV). There 

are no additional decay mods of the ZO into invilible parliclm. The neutrino ma.u ia 

generated at the one loop level and can be in the range 1 - 100 eV for a mus of the 

charged singlet between 100 - 1000 GeV, For maues of the charged scalar singlet in 

this range the radiative decay Jl -+ e "'1 can proceed with branching ratia. at the verge 

of the present experimental limit. The maues of the charged triplet scalars axe bounded 

&om above because they contribute, through radiative correction~, to the p par&IIleter. 

And finally, because the majoron and the charged scalars feel the weak interactions they 

contribute, if they are light enough, to the decay width of the gauge bosons. 

After completion of ma.t of thia; work, we became aware that models containing a 

complex 1calar triplet without weak hypercbarge have alao been considered by the authors 

of ref. [22]. However they did not study the Higgs potential. 

I would like to acknowledge S. Capstick, K. Choi and L.F. Li for many diacu11ions 

on the 1ubject of this paper. I am also indebted to L. Wolfen1tein for his comments and 

careful reading of the manuscript. Thi1 work ha. been partially supported by a fellowship 

&om the Coruelkria d~ CuUum, EducaciO i Ciincia tk la a~nerolital Val~nciana. 
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Figure Captions 

Fig. 1 The one-loop diagram that s;eneratet the Majorana entries of the neutrino 

mass matrix. 

Fig. 2 The diagram for 11 ...... e -y in the hypercbargeleu majoron model. 

20 




