November 22, 1988 CMU-HEP88.16 1. Introduction

The standard model of electro-weak interactions predicts massless neutrinos. This is
b i) in the model there are no right-handed neutrinos to combine with left-handed
neutrinos to generate a Dirac mass term and ii) the minimal Higgs content of the model

. . leads to t t ti ti t: .
The Hyperchargeless Triplet Majoron Model © the sutomatic conservation of lepton aurmber
Although there is no definite experimental evidence for massive neutrinos, thers ase

some indications for non-vanishing neutrino masses. If neutrinos are massive at all jt

A. Santamaria® is necessary to extend the standard theory by adding new scalars, new fermions and/or
new gauge bosons. If nature chooses the first possibility the neutrino mass terms must
be necessarily Majorana mass terms, thus the lepton number must be broken either
Pittsburgh, PA 15213, USA explicitly or spontaneously. The second case is the most interesting for it implies the
existence of & new Goldstone boson, associated with the spontaneous breakdown of lep-
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ton number, called the majoron [1]. The majoron presents, in general, a very interesting
phenomenclogy that ¢an be used to test the models apart from the direct neutrino ex-

Abstract periments which are difficult to perform if the neutrino riasses are very small. Thus,
for example, the Gelmini- Roncadelli model {GR)(2,3] will be tested at LEP because the
We study the general conditions to maintain the scale of the lepton number decay of the 2° gauge boson to neutral scalars contributes to the decay width like two

breaking VEV at the eleciroweak scale. It is shown that the only possibili-
ties are if the main component of the resulting majoron is a hyperchargeless
complex triplet or a neutral singlet. Models with a hyperchargeless triplet, . Majoron models, in general, can be classified in two groups : i) models in which the
even though phenomenologically more interesting, seem to be very difficult lepton number is broken by the vacuum expectation value (VEV) of a SU(2) singlet.
to build because they like to break charge conservation. However we have o . . .

found a particular extension, by adding an additional neutral singlet, that Here the scale of lepton number breaking is quite arbitrary but in moet of the cases it is
solves this problem. The model can give a Majorana mass to the neutrinos in required to be very large [1], moreover the phenomenology is very limited. ii) models with
the eV range, 4 — ¢ 7 can proceed with branching ratios at the verge of the the lepton number broken by a nonsinglet VEV, like the model of Gelmini- Roncadelli [2]
P * ext tad limit and there are 20 additional decay modes of the Z° or the doublet majoron model(4]. In these kind of models the lepton number breaking

into invisible particles.
VEV cannot be larger than the electroweak scale because it contributes to the gauge

more generntions of light neutrinoa [3].

boson masses. In addition, as the majoron has gauge couplings, the phenomenoclogy is
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much more interesting [3,5,6].
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In the existing nonsinglet majoron models [2,4,7] the majoron has a trec-level coupling
to electrons directly proportional to the lepton pumber breah'ng VEV. This coupling
makes the reaction -y +¢ — ¢ J proceed at a very high rate in the cores of red giant stars.
As the majoron scarcely interacts with ordinary matter it escapes freely producing a too
fast cooling of the star. This puts a bound on the coupling, which allows us to obtain
& very strong bound on the lepton number breaking VEV v < 10 — 100 KeV (3,8] six
orders of magnitude below the electroweak scale. This poses a problem of naturalness.
Indeed it has been shown [9,10] that at the one loop level there will appear in general a
correction to the small VEV proportional to the large VEV, Although, at this level, this
correction can be avoided by fine tuning the parameters in the Higgs potential, at higher
loops it is not clear what will happen.

In any case it would be nice if we can find a majoron model in which the scale of
lepton number breakdown is not so different from the electro-wenk scale. This is the
main purpose of this paper. In section 2 we study the necessary conditions to avoid
the astrophysical bound on the Jepton number breaking VEV. In section 3 we propose a
simple extension of the standard model containing a hyperchargeless complex triplet of
scalars to implement these conditions and we comment on some of the phenomenclogical
issues of such a model. In section 4 we analyze the Higgs potential and the patterm
of symmetry breaking. It turns out that the model, in its minimal configuration, is
inconsistent becsuse the true minimum of the potential breaks charge conservation, The

problem can be sclved by adding a neutral scalar singlet carrying lepton number, but

even in that case the solution depends crucially on the singlet-doublet-triplet coupling.
The singlet VEV can be of the same order of magnitude as the triplet VEV and the
majoron a roughly equal combination of triplet and singlet. Thus, the phenomenological
tmplications of the model can be maintained. Finally in section 5 we collect the main

results of the paper.

G

2. The majoron coupling to electrons

In all the majoron models we will have, at least, two broken /(1) symmetries, U(1)y
of hypercharge and U(1); of lepton number. The Noether's currents associated with these
symmetries are

To=ilx'Bx+ L)+
I = 5o\ +inxBix + T+ (1)
where o is the standard doublet, x is the new Higgs multiplet which carries lepton number
I and weak hypercharge y. J"‘(f) and J{(_f) are the fermionic parts of the currents. If
the symmetry is broken spontanecusly we must perform a shift in the neutral components
of the fields

(0) =u+%(}c1 + $x2) (2)

1
) = +ipa)
@ u+7=2(w1 #a), X
Thus

J= —LvV2v8,x: + T+ -
== u(%‘l’3+27y:h) + )+ (3)
The Goldstone bosons associated with the breaking of each symmetry are given by the
linear combinations of the fields that appear in the derivative terma. However the two
linear combinations are not orthogonal. As we know that the Goldstone hoson associated
to the breaking of hypercharge is the one “eaten” by the Z° gauge boson, the majoron
will be the orthogonal linear combination

G® =cosf iy +sind x2

{4)

with
P 2yv 5
i = £y ®

From eq. (3} substituting eq. (4), taking derivatives and solving for 848, we obtain the

equation of motion for the majoron.

1 1 [ . B
&‘(9”.’ —_ m&‘[L_\/EU JL(f) - Wsmﬂ J:(f)] + =0 (6)
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We are interested only in moajoron couplings to electrons, a0 we can take Ji(f) =
—TaLTutel — TaiVuter 80d JY(f) = 38T vucar ~ Tamvutar . Obviously the lepton cur-
rent for electrons is vectorial ( e, and ex carry the same lepton number), thus if there is
no mixing among charged leptons with different lepton number, and using the free Dirac
equation for electrons, we obtain 8,(Zxy*eq + Z;ver) = 0. Doing the same with the
bypercharge current we obtain 8,{~&ry'en — %!L‘f‘e;) = —gﬂu(ém“eg) = —iDeyye
Thus, after integration of the equation of motion {eq. (8)) the linear coupling of the

majoron to electrons is

, Mg 2yv -
Loy = i —mptamee J Tvsea 7
o l\/fﬂ u+4que'“e (N

To obtain this coupling, we have used several times the equations of motion, thus one
would expect it to be valid only on mass.shell. However it can be shown that it is valid
off-mass-shell, as well. This is because the coupling of eq. (7) is a2 Yukawa coupling and
in the parameterization of eq. (2) Yukawa couplings are the only ones allowed in the
fundamental lagrangian.

From eq. (7) it is obvious that, in general, the majoron only couples to electrons
at tree level through the mixing with the standard doublet. This can be understood
because the majoron multiplet cannot couple to two electrons directly ( 0ex(® does not
conserve lepton pumber). Therefore, all the coupling comes through the mixing with the
standard doublet.

In eq. (7) we sce that the coupling is proportional to the hypercharge of the majoron
multiplet, thus the only way to suppress it is by choosing a multiplet without hypercharge.
If we want to avoid fractional charges and high SU{2) multiplets the only possibilities
are a singlet or a triplet. If we chooee the singlet the scale of the lepton number breaking
is somehow arbitrary and the phenomenology will be rather poor because it does not
enjoy the gauge couplings, so we will try to build a mode! using a triplet to break lepton
aumber.

3. The hyperchargeless triplet majoron model

A scalar triplet without hypercharge cannot couple directly to fermions, hence, if
the standard model is enlarged with only a hyperchargeless triplet there is no way to
aasign lepton number to it. The model must be enlarged with more scalars. The simplest
possibility! is by adding » new charged singlet scalar A* with two units of lepton number
assigned through the coupling

Ly = faliheh? (8)
where [, = irylS; are the conjugate lefi-handed doublets and the sum over a,b = ¢, 4, 7

is understood.The coupling constants fu must be antisymmetric in flavour (fu = — fa)-

In addition we need a scalar coupling of this singlet to the triplet in order to nasign
lepton number to the triplet. This coupling actually exists,

Lagx = Xeh™pTimxp + hoc. @)

where the triplet x iz represented by a 2 x 2 matrix. Thus, the model is defined by the
couplings of eq. (8) and eq. (9) and the field content

h+"'(0’1v2) k°~(§,§;0) x~(1.0,2) (10)

The numbers in brackets refer to the SU(2), U(1)y and U(1), transformation properties.
The spectrum will contain, in addition to the spectrum of the standard model, three singly
charged particles, the majoron and its scalar partner pyr.

We can now extract the main phenomenclogical characteristics of the model:

1. No tree level majoron-electron coupling.
This is because, by construction, the triplet does not carry hypercharge. Thus, the
sstrophysical bound on the lepton number breaking VEV no longer exists. However, a
majoron-electron coupling can be generated at higher loops. In that case the coupling is

It is easy to see that with only en additional doubly charged scalar singlet it is impossible to nsaign
lepton oumber to the triplet.



suppressed by the loop and the large masses running around it, hence, we da not expect
any problemn due to these couplings.

2. Bound on the triplet VEV.

One of the crucial predictions of the standard model has been the tree level relation
p = My /M3 cos? 6w = 1, which is satisfied to a high degree of accuracy. It is related to
the fact that in the standard mode! the spontaneous breaking of symmetries is achieved
through a scalar doublet. By adding to the standard model a triplet that develops a
VEV this relation will be spoiled, because the triplet contributes to the masses of the
gauge bosons in a different manner than doublets. The experimental degree of accuracy
in the determination of p automatically puts a bound on the VEV of the new multiplet.
From the general formulae for the contribution to the masses of the gauge bosons from
several multiplets, M3, = 3¢° T, v¥(7? + I, — I3;) and M} cos? 0w = g ¥ v? I3, we obtain
the value of p ,

p= % =1+ 45; (11)

The experimental value is{11] 0.998 < p < 1.014, thus the bound on the triplet VEV is
v < 0.06 u=~10 GeV (12)

Afier one loop corrections the square of the small VEV will receive corrections propor-
tional to the square of the large VEV. The constant of proportionality is of the order of
[9,10) g*/(4x)*, thus a ratio of the order of the one given in eq. {12} does not represent
any hierarchy problem.

8. No decay Z° — J py.
Pousibly one of the crucial tests of nonsinglet majoron models will be neutrino eounting
experiments it 2° decay. Indeed, it can be shown that together with the majoron there
is always another scalar particle g7, with a mass of the order of (or smaller than) the
lepton pumber breaking VEV [12]. In addition, if the majoron belongs to a nonsinglet
smdtiplet it will have s gauge coupling Z3J& py, giving a new unobserved Z° decay mode
s well as the standard decay to neuirinos. In fact, in the GR model it gives an additional
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contribution equivalent to two more generstions of neutrinos{3]. In the doublet majoron
model the contribution is 4 times smaller{4]. Neutrino counting at LEP is expected to
reach a sensitivity equivalent to 0.3-0.2 neutrino generations{13] which is enough to probe
these models. In the hyperchargeless triplet mode] even though this decay is kinematically
allowed due to the bound of eq. (12), it cannot proceed becsuse the coupling does not
exist. This is obvious if we take into account that the hypercharge of the majoron is
exactly zero { it s not contain any mixing with the standard doublet). This makes a
significant difference between this model and the other nonsinglet majoron models [2,4,7];
it cannot be excluded by neutrino counting experiments at LEP.

4. The neutrino mass,
The main purpose of majoron models is to justify the smallness of the neutrino masses.
Here, the Majorans neutrino mass is generated through radiative corrections. Thus,
even though the lepton number breaking VEV can be relatively large, the masses are
kept small. They are generated through the diagram of Fig. 1. It is very similar to
the diagram that generates the neutrino mass in the Zee model [I4] and, in fact, the
mass matrix has exactly the same structure, symmetric without diagonal components.
The diagonalization of this mass matrix has been studied in Ref. 15 and it leads to
a paeudo-Dirac neutrino and to a Majorsns neutrino with a mass proportional to the
splitting between the two components of the pscudo-Dirac nentrino. The pseudo-Dirac

neutrino mass can be estimated to be
8 2 3
m, =~ W&i’lﬂ%apmzuf {13)

where m,, is the mass of the charged singlet, vh is some averaged muss of the charged
components of the triplet and f is a function of the Yukawa couplings in eq. (8). It
js important to notice that, in comparison to the Zee model, here the equivalent of the
dimensional trilinear scalar coupling is fixed by the elsctroweak scale. Thus, unlike the
Zee model, & large neutrine mass sutomatically implies a relatively small charged singlet
masg. Using the bound {eq. {12)) on the triplet VEV, X = 0.1, f =~ 0.1 and putting a

factor 1 for the Jogarithm we can easily obtain neutrino masses of the order of 1~ 100 eV
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for s mass of the charged scalar singlet between 100-1000 GeV. The mass of the Majorana
neutrino is two orders of magnitude smaller because it is suppressed by a factor (m,./m,)?
[15].

5. p— ey decay.
Exactly like in the Zee model, the presence of the coupling of eq. (8) induces the radiative
decay g4 — ¢ . The diagram is depicted in Fig. 2 and the branching ratio is given by
(16,4]

BR(s = ¢9) = e | ferSur | (19
which can be at the verge of the present experimental limit [17] BR{p — & Y)eep <
4.9 x 107" if the mass of the charged singlet is not too heavy (my, < 10 TeV) and the
Yulawa couplings are oot too small. As commented previously, in this model, to have
sizable neutrino masses we need a relatively small charged singlet mass, and the process
can be relevant.

6. Bound on the masses of the triplet charged scalars.

Even though at tree level in the standard model, p = E%‘i; = 1, at one loop level
there are finite radiative corrections which depend quadratically on the mass splitting
in a multiplet!, Using this effect it is possible to put a bound on the top quark mass
(19} m, < 180 GeV. The same effect appears if extra Higgs multiplets are present [20]
and can be used to constrain the masses of charged scalar particles. In the GR model
these considerstions give an upper bound on the mass of the charged particles of about
300 GeV [6]. We expect a similar bound on the nonsinglet charged scalar masses.

7. Poasibility of 2° — x*x~ and W+ — x*J.
The majoron and the charged scalars that belong to the triplet interact with full strength
with the gauge bosons, thus if they are light enough, they can give an important contri-
bution to the decay width of the gauge bosons.

tin the lisation scheme introduced by Sirlin [18] p is fixed to be one to all orders, but the

correction appears in the effective v — fermion neutral current interaction.

The couplings and the field content are not enough to define a theory. We must show

that the vacuum of the model is, indeed, the true vacunm.

4. Higgs potential and pattern of symmetry breaking

With the field content of the model, the most general gauge invariant and lepton

number conserving Higgs potential can be written as

Vigx, b} = Vi{w,x) + Val, x, A) {15)
where
Vi = hlele — o' + M(Tr{xx} - v*)
+hslee ~ ) (Trixx'} —v*)
(2t — wle Trix'h)
+s(2Tr{xxctod} - Tr{xx'y)
The triplet has been represented by a 2 x 2 complex matrix,

® 0

X x

x = ( :}"H ! ) a7
xi’ —dex®

while for the  we have used the standard representation as a two component complex

(16)

vector.
The piece of the potential thal depends on the charged singlet scalar is

Va= I+ de 1|+ 27 1A [l + A A1 Trixx"}

—dehmpTine + Mht e xtinge®

(18)

Other possible couplings like p3Tr{x*} ar pap'xy are forbidden because of lepton num-
ber conservation, and as a consequence the only dimensional parameters in the Higgs
potential will be the two VEV's and the mass term of the charged singlet. Terms like
MhpTiryxlp are also forbidden once one makes the assignment of lepton number given
by the A term in &g. (18).

10



To minimnize the whole potential is a difficult task. We will start by studying V|
because it is independent of the charged singlet scalar and after that we will try to
generalize the result to the whole potential.

The charge conserving minimum of the potential must be

0 < x> 0
<p = , <x>= :k x (19}
< pl® > ] —d < x>

These requirements can be written in an invariant way

e < p'xxly > U < Triadxx'y> 1 (20)
™ cpto>< Trixxt} > 2 T < Trixx') »? 2

Jox and J, are related to the relative angles formed between the doublet and the triplet
and the real and imaginary components of the triplet. Performing a SU(2) rotation we

can dingonalize the hermitian positive semidefinite matrix y

2 0
Uxx'U'=( ' ) (21)

0 =z}

Thus, it is enough to study the following potential
Vi =00 +ud - )+ (el + 2] -0
+x3( + 9 — W)= + 2] - v?) (22)
Ao - Bl - 23) + Ae(z] — 23)

w1 and yy are the moduli of the two components of the standard doublet in this basis. V;
only depends on y, and y,; and it is independent of the phases of the fields.

The requirements for the vacuum of eq. {20) are expressed by
= =z} (23)
Thus, the only thing we have to do is to check that the absolute minimum of the potential

in eq. {22) satisfies these requirements.

11

The cancellation of the first derivatives givea

{2l + 9] ~w?) + Malad + 23 —v?) + Az} - 2Y)] =0
2n(22 (0] + 93 — v*) + Mofz] + 25 — %) - M=} - =) = 0
22,[20a(=] + 2] — %) + As(8] + 9] — v) + (] — ¥]) + 2h(x} — 23} =0
2z2{20a(zd + 2] — 07) + da(pd + 4] — %) — Ml — 43) — Dufe} - 2)) =0

(24)

From these equations is clear that there exists a solution with z} = =z if ] = 4,

corresponding to
v == (25)

The fact that in this basis y? = I does not represent any problem because we can always

L Rl

rotate this solution to obtain a doublet with only & neutral component; this is because
(xx'), being proportional to the identity, is invariant. However we have to check that
eq. (24) gives & true minimum. To do se we must show that the matrix of the sccond

derivatives in positive definite.
Using eq. {25) the matrix of the second derivatives (in the basis (11,15, 21, 23)) is

aa b ¢

a2
L]
o

(26)

o
o
R
[

where
a =4, b= 200+ ey, o= 2(ha—Auv, d = 4(Ax4Ae)v?, e = 2(da—Ag)uv (27)

A matrix is positive semidefinite, if and only if, all its principal minors are positive or
zero[21]. From eq. (26) we can extract the principal minor

e a b
g o ol=—a(b—c)? = —64x2ut? {28}

b c d

12



which is always negative because @ must be positive. This means that the solution of eq.
(24) we have found is not a true minimum, it must be a saddle point and thus it does
not represent the true vacuum of the model. The true minimum of the potential of eq.
(22) is obtained for

W=0, ¥ #0, zf=0, z]#0 (29)
However this solution does not satisfy eq. (23) which means that it breaks charge con-
servation with the assignments of the weak hypercharge we have given!,

Now we have to consider the whole Higgs potential to see if the inclusion of terms
depending on the charged singlet scalar can change the situation. It can be shown that
the field configuration

<w>=(o), <x>=(:}5v 0 ), <ht>=0 (30)
u 0 —j;v /

satisfies the equations of minimization for the whole potential. Again we must check
that the matrix of second derivatives is positive semidefinite, which is exactly the same
as checking that the mass matrices of the scalars are positive semidefinite. For the
mass matrix of the neutral scalars there is no problem, it is positive definite f A, > 0

and 4\ 35 — A} > 0; however, the mass matrix of the charged scalars is (in the basis
(h9, X1, i1, 1))

B4 dud + Age? Agu? 0 VvZAeuv
Agu? —dqu? 4+ gt — 2t —vZAuv (31)
0 —2Ag0? dut 4 2207 VZAuv
VZXuv — V2 uy V2Auv 0

Again it contains principal minors that are always negative, so again, it is not the true
minimum of the potential and the true minimum of the potential breaks eharge conser-

vation. Thus the model as proposed is inconsistent.

¥In fact, this minimum cotresponds to the true minimum of the Gelmini-Roacadelli model; in that
case the hypercharge of the triplet is 1 abd this wcoum does not break charge conservation.
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Obvicusly to solve the problem we have to add new terms in the potential. We can
add lepton number violating termws, in which case there is no reason to use s complex
triplet and the natural thing to do is to use a real triplet y = x!. For a real triplet we have
xx' = x* = 1Tr{x*}1, and the conditions of eq. (20) are automatically satisfied (or, in
other words, the unwanted couplings A, and Ay are sutomatically zero). However, because
the lepton number is broken explicitly there is no majoron and the main motivation for
the model is lost.Y The other solution is to add new fields. The simplest poasibility is a
scalar singlet. Thus we will try to find the required vacuum by adding a scalar singlet
carrying lepton number

o ~ (0,0,-2) : (32)

The new pieces in the Higgs potential can be written as

Vs =Bi(lel’ —w)? + Ba(lof! — w)(pte - u?)
+Bs(lof* ~ W Tr{xx!} - v') (33)
+(Bllol* Trixx!} — Tr{®}) + he)+ B A" o]
where a discrete symmetry ¢ — —o has been used to simplify the potential by forbidding
terms like oty and also for simplicity we will take all the couplings to be real.

It is easy to sec that the equations of minimization for the potential, V| + V4 + Vi,
are satisfied by the field configuration of eq. (30) together with < & >= w. Developing
around this point we can obtain the mass matrices of the scalars, For the real parts of

the neutral components we obtain that the mass matrix is positive definite if
M0, 44 —-A>0, ANMA + MBS - MOl - ME-BA >0 (34)

For the imaginary parts of the neutral components we find that Im(p{®) does not get
sny mass because it corresponds to the would-be-Goldstone boson eaten by the 2% gauge

TNevertheless it can be a nice alternative to the Zee model. It contains one less deﬁu of freedom
and, more importantly, the equivalent of the arbitrary trilinear coupling in the Zee model is fixed to be
here of the order of the electroweak scale.
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boson. For the otber two components (v2 Im{x?), v2 Im{c)) we obtain the following

w!
4ﬂ4( \ ) (35)

It has u zero eigenvalue corresponding to the majoron field

mass matrix

I = VI (%) ~ s (o) (36)
while the orthogonal combination geta a mass squared 43,{1? + w?), positive if 8, > 0.
However for the mass matrix of the charged scalars we obtain exactly the same structure
»s oq. {31) by changing only Aev? — Agv? + Ggw? and 220* — 200? + 28,07 Thus,
again it ix not positive semidefinite, and the mode] will break charge conservation. We
can understand this result in the following way; the model, without the neutral singlet,
breaks charge conservation because the minimum of the potential is found for an angle
between the doublet and the triplet incompatible with charge conservation. The problem
cannot be solved by adding a term like o?Tr{x’}, because this term is independent of
that angle, and therefore cannot modify the pattern of symmetry breaking. The same
argument can be applied for & model with a singlet o’ ~ (0,0, —4) with the lepton number
conserving coupling oTr{x*}. We have checked this explicitly. Following this argument
it scems that the only possible solution of the problem is to add couplings that depend
on the angle formed beiween the doublet and the triplet. The only term we can use
maintaining lepion number conservation is

Ve= 715a6w'x(p + he (37)

At first look it seems that adding such a term cannot modify the mass submatrix of the
charged scalars (x{*!,x{") , which is not positive definite. This is because it is linear
in x. However by adding the term of eq. (37) the vacuum is shifted inducing additional

terma in this maes matrix. The minimum of the potential will now be

0 P 0
<> = <x>= j; <om=w <h* >=0 (38)
a? 0 —j;ﬁ’
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where the new 4, ¢ and & must satisfy the following equations

262X (@ ~ w?) + Ae(P? — 9?) + By{d? - W) — 2B} = 0

25[209(07 — v?) + Xaf@® — u?) + By(@* — )] — i =0 (39)

25[28:(&” — W) + B — w?) + By(i® — v7)] — @b’ = 0
From the whole potential, making the shift in the fields and using eq. (39} we can write
the mass matrices of all the particles in terms of the new VEV's. Thus for the imaginary
part of the fields (v2 Im(x™), v2 Im(c}} we get the following mass matrix

1 @, o W
(48, + 5"5) ( . ) {40)

htd

It has exactly the same form, apart from the global factor, aa eq. (35), therefore, in this
case the majoron is also given by eq. (36) changing only v — @i, v — 4 and w — w. For
the mass matrix of charged scalars we obtain

a b 0 be
1 —a+d:+é —d (&4 é)e )
0 —d d+dté (3+8)e
be (-e+&k (E+8) 2¢
where we have defined
G+ AAt 4 AP+ 50 b=, = Ad
- " -3 T,
d=anit+280® = -lz-afu— €= \/iﬁ (42)

Only the term é containe the dependence on the new coupling. From this expression it
is clear that in the limit & — 0 the mass matrix of charged scalars reduces to the form
of eq. {31) and so it is not positive semidefinite. However, the pieces with £ destroy the
previous structure of eq. (31). On the other hand, it is easy to check that this matrix
contains a zero mode, as it should, corresponding to the would-be-Goldstone boson eaten
by the W gauge boson. It is given by the libear combination

1
= Vi+ 2;=(<x£*’ +extt! - (43)
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Performing a rotation to get rid of this spurious degree of freedom we obtain
a  bVE byv2
bivE E+2d -z (44)
bz/v2 ~dx Ex?
where z = +/1 + 262, This mass matrix is positive definite if
>0
He+2d) -2 >0 (45)
ee+2d)-F) -PE+e+d) >0
These conditions can be easily satisfied if the new coupling we have introduced in eq.
(37) is different from zero. In particular they can be fulfilled for a singlet VEV & of the
same order of magnitude as the triplet VEV. If that is the case, the resulting majoron is
& roughly equal combination of triplet and singlet and all the interesting phenomenology

related to the nonsinglet nature of the majoron can be maintained. In particular, all the

aspects discussed in section 3 are maintained.

5. Conclusions

We have studied the conditions needed to avoid the tree level coupling of the majoron
to electrons, and hence, the astrophysical bound on the lepton number breaking VEV. It
turns out that this is only possible if the majoron multiplet does not carry weak hyper-
charge. To avoid fractional charges and high SU(2) multiplets the only possibilities are
singlets or triplets. Triplets are in principle more interesting because their phenomenol-
ogy is richer and because the lepton number breaking scale is bounded, at least, by the
electroweak scale. We tried to build a hyperchargeless triplet majoron model by adding
to the standard madel a charged singlet carrying two units of lepton number and a triplet
without weak hypercharge carrying also lepton number 2. In the minimal version the

model is inconsistent because the minimum of the potential breaks charge conservation.
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However the problem can be solved by adding a neutral singlet o carrying two units of
lepton number and adding the lepton number conserving coupling plxp. The resulting
majoron can be a roughly equal combination of triplet and singlet and most of the triplet
mode} phenomenology can be maintained. In particular there is no tree level coupling
of the majoron to electrons. There is a bound on the triplet vacuum expectation value
coming from the correction to the p = Fz%T.‘ == 1 parameter ({x) < 10 GeV). There
are no additional decay modes of the 2° into invisible particles. The neutrino mass is
generated at the one loop level and can be in the range 1 — 100 eV for & mass of the
charged singlet between 100 — 1000 GeV. For masses of the charged scalar singlet in
this range the radiative decay ¢ — ¢ 4y can proceed with branching ratios at the verge
of the present experimental limit. The masses of the charged tripld scalars are bounded
from above because they contribute, through radiative corrections, to the p parameter.
And finally, because the majoron and the charged scalars feel the weak interactions they
contribute, if they are light enough, to the decay width of the gauge bosons.

After completion of most of this work, we became aware that models containing a
complex scalar triplet without weak hypercharge have also been considered by the authors
of ref. [22]. However they did not study the Higgs potential.
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on the subject of this paper. I am also indebted to L. Wolfenstein for his comments and
careful reading of the manuscript. This work has been partially supported by a fellowship
from the Conselleria de Cullura, Educacidé 1 Ciéncia de la Generalitat Valenciana.
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Figure Captions

Fig. 1 The one-loop diagram that generates the Majorans entries of the neutrine

mass matrix,

Fig. 2 The diagram for 4 — e 7 in the hyperchargeless majoron model.
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