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El inicio de la teledetección como una ciencia global que integrara datos de satélite de 
toda la superficie terrestre, se inició con el lanzamiento del Landsat-1 en el año 1972. La 
misión Landsat, fue la primera en obtener datos de la superficie terrestre con una 
resolución adecuada para la detección de los detalles superficiales de La Tierra. Desde 
ese momento, más de 197 misiones han sido enviadas al espacio, de las cuales, en la 
actualidad, más de 150 Sensores de Observación de La Tierra (EOS, por sus siglas en 
inglés) están suministrando datos en tiempo real de la superficie terrestre (Tatem et al. 
2013). Debido a este incremento masivo de los datos, en la actualidad,  más de 1 terabyte 
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de información está listo para utilizarse en estudios terrestres de todo tipo (Maa et al. 
2015), que incluyen análisis de series temporales de variables biofísicas o la obtención 
de parámetros puntuales requeridos para la gestión del entorno. 

Por todo ello, el comité de observación de La Tierra a través de satélites (CEOS por sus 
siglas en inglés) y en concreto el grupo de trabajo de calibración y validación (WGCV 
por sus siglas en inglés) que está integrado en CEOS, han establecido en consenso con la 
comunidad internacional la necesidad de incorporar un programa de control de calidad 
de los datos, que incluye la calibración (cal), validación (val) e inter-comparación de 
todos los datos registrados por los actuales y futuros satélites de observación de La Tierra. 

La calibración es un procedimiento clave de cualquier sistema electrónico, ya que nos 
permite saber la calidad de los datos brutos registrados o, dicho de otra manera, la 
respuesta del sistema a una señal dada, controlada por el usuario. La importancia de la 
calibración es obvia, ya que si los datos brutos registrados por satélite no son precisos, 
todos los productos obtenidos a partir de ellos tampoco lo serán. Por otra parte, la 
validación, se refiere a la detección de errores a un nivel de procesado de datos más alto, 
que incluye los productos derivados de satélite, que son los que representan las variables 
biofísicas que al final se utilizan para los estudios científicos. 

Entre estas variables, el subgrupo de validación de productos de tierra (LPV por sus siglas 
en inglés) incluyó en el año 2015 a la Temperatura de la Superficie Terrestre (TST) como 
una de las variables esenciales que intervenían en los procesos terrestres, ya que 
interviene de forma directa en el intercambio de energía a escala local y global (Kustas 
et al. 2009). Como la TST, la Temperatura de la Superficie de la Mar (TSM) es otra 
variable fundamental en la teledetección, ya que juega un papel importantísimo en la 
estabilidad de todos los procesos terrestres y atmosféricos. La TST/TSM está 
íntimamente ligada con el espectro Infrarrojo Térmico (TIR, por sus siglas en inglés) que 
abarca el espectro desde los 8 µm hasta los 14 µm y que es usado por los sensores como 
fuente de información de la energía emitida que proviene de La Tierra (a través de la 
atmosfera, que juega un papel importante en la distorsión de los datos registrados por 
satélite). Por ello, el adecuado conocimiento de la emisividad terrestre y los efectos 
atmosféricos es fundamental para la precisa obtención de la TST y la TSM. 

Hoy en día, la técnica de calibración utilizada para la mayoría de los EOS térmicos, una 
vez estos se encuentran en órbita terrestre, es la Calibración Vicaria (VC por sus siglas 
en inglés) que consiste en la obtención de los valores de radiancias a nivel de satélite, 
mediante la simulación de las medidas registradas in-situ. Para la VC (y la validación), 
es necesaria la obtención de datos in-situ representativos de la resolución espacial del 
sensor, por lo que la homogeneidad del terreno donde está situado el radiómetro que mide 
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la temperatura, en términos de TST, juega un papel clave en las medidas de suelo. Los 
lugares en los que se implementan las medidas in-situ, además de ser lo más homogéneos 
posibles, tienen que cumplir otras características, como ser totalmente accesibles, tener 
la mínima perturbación atmosférica posible (como pueden ser lugares que estén situados 
a más de 1 km de altura) o que tengan pocos días nublados. Ya que encontrar un lugar lo 
más adecuado posible para las actividades de cal/val es difícil, un estudio lo más 
completo posible del terreno sobre el cual se desarrollarán estas actividades es necesario 
(para el control de los errores que se pueden introducir en nuestras medidas). Las 
campañas de medidas con sensores aerotransportados son una herramienta útil para este 
propósito, ya que aportan información útil del terreno estudiado y permiten la inter-
comparación de los datos con otros EOS a una escala más amplia de la que se obtendría 
con una sola medida. 

Dependiendo del EOS considerado, la TST o TSM se puede obtener mediante variadas 
técnicas que dependen de las bandas TIR integradas en los sensores y de los datos 
atmosféricos disponibles. Entre estas técnicas destacan: la Ecuación de Transferencia 
Radiativa (ETR) y la ecuación Monocanal (SC), que sólo necesitan una banda en el 
espectro TIR; la ecuación Split-Window (SW) que se basa en la diferencia de absorción 
entre dos bandas TIR y, finalmente, el método Temperature Emissivity Separation (TES), 
que requiere más de 2 bandas. Todas estas técnicas estiman la TST con un error entre 
1.0-2.0 K y la TSM con errores inferiores a 1.0 K.  

Para contribuir al control de calidad de los datos obtenidos mediante los EOS, en este 
trabajo se presentan las actividades realizadas en el marco del proyecto Calibration of 
Earth Observation Satellites in SPAIN (CEOS-SPAIN), que han consistido en la puesta 
en marcha de estaciones automáticas para la toma continua de datos de la TST (junto a 
un análisis de idoneidad de las estaciones), la cal/val de EOS y la propuesta de nuevos 
algoritmos para la estimación de la TST y la TSM, así como un método para la mejora 
de la resolución espacial de la TST. 

Para llevar a cabo estos objetivos, esta tesis se ha dividido en cinco capítulos que se 
resumen de forma breve en las siguientes páginas: 

CAPÍTULO 1: SENSORES Y ALGORITMOS 

En este capítulo se realiza una descripción de los sensores utilizados que han servido para 
llevar a cabo las actividades de cal/val, así como los algoritmos utilizados para la 
obtención de la TST y la SST. 
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Los sensores se pueden dividir en dos tipos: Unos con una resolución espacial, en el 
espectro térmico, moderada (≤ 100 m) que son el Thermal InfraRed Sensor (TIRS) y el 
Enhanced Thematic Mapper Plus (ETM+), ambos a bordo de la serie de satélites Landsat 
– concretamente el Landsat-7 (ETM+) y el Landsat-8 (TIRS). Los otros dos, MODerate 
resolution Imaging Spectroradiometer (MODIS) y el Spinning Enhanced Visible and 
Infrared Imager (SEVIRI), son sensores de baja resolución especial con un tamaño de 
pixel de 1 km para MODIS y 3 km para SEVIRI (en nadir). MODIS y SEVIRI son 
sensores con un amplio ángulo de visión por lo que a mayor ángulo de visión, mayor será 
el tamaño del pixel medido. 

Entre los algoritmos, se hace una referencia más amplia a los propuestos en esta tesis y 
entre los que destacan el algoritmo Monocanal y Split-Window propuestos para el TIRS 
y el Water vapor Path length SST (WPSST) propuesto para el MODIS (algoritmo de tipo 
SW). Los coeficientes de estos algoritmos se han extraído a partir de bases de datos 
atmosféricas (Global Atmospheric Profiles from Reanalysis Information para el sensor 
TIRS) y de valores de boyas de la red de puertos del estado para el WPSST. Además, en 
este trabajo, se describen brevemente otros algoritmos que son validados en este trabajo, 
como son los productos MODIS de TST (MOD11) y de TSM (el Non-Linear Sea Surface 
Temperature, NLSST) propuestos por la NASA, o los algoritmos SW de MODIS y 
Monocanal del sensor ETM+ propuestos en los trabajos de Jiménez-Muñoz et al. (2008) 
y Jiménez-Muñoz et al. (2009a) respectivamente. 

Para finalizar, se presenta también un análisis de sensibilidad de los algoritmos 
propuestos en este trabajo, para tener una idea de su posible precisión a la hora de 
aplicarlos a los datos de satélite. Además de los errores proporcionados por los nuevos 
algoritmos propuestos, que no superan los 2.0 K para la TST ni los 0.70 K para la TSM, 
también se ofrece un resumen de los errores detectados en todos los algoritmos descritos 
(tanto teóricos como obtenidos en validaciones). 

CAPÍTULO 2: PROCESADO DE LOS DATOS 

Este capítulo hace énfasis en el proceso seguido para el tratamiento de los datos 
necesarios para la realización de la VC y de la validación, tanto directa (con datos 
medidos in-situ) como indirecta (o cruzada, con comparaciones de datos entre sensores 
mediante el procedimiento de up-scaling, que consiste en la degradación de una imagen 
de mayor resolución a una resolución igual a la del sensor que se pretende validar). 

Entre los datos más importantes hay que destacar los perfiles atmosféricos utilizados 
provenientes de datos de reanálisis, concretamente del National Center for Environmental 
Prediction (NCEP), o del producto atmosférico MOD07 ofrecido por MODIS. Estos 
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datos son utilizados para la obtención de los parámetros atmosféricos que son necesarios 
como entrada a los algoritmos de estimación de la TST. Entre los parámetros obtenidos 
se extrae la transmisividad atmosférica, la emisión atmosférica en dirección ascendente 
y descendente y, por último, el vapor de agua en todo el perfil atmosférico. 

Además se ofrece una descripción detallada de los datos in-situ de las boyas de la red de 
Puertos del Estado, que cuenta con una larga serie de valores de temperatura del mar 
Mediterráneo y del Océano Atlántico. Estas boyas, miden la temperatura del mar a 3 
metros por debajo de su superficie, lo que no equivale a la TSM. Sólo en ciertas 
condiciones, estas dos temperaturas (la de la superficie y a mínimas profundidades) se 
llegan a igual: con velocidades de viento entre los 3-10 m/s y con un mínimo impacto de 
la radiación solar. Estas son las condiciones más idóneas para la validación de la TSM 
con boyas. 

En el trabajo también se detalla la aplicación del método de down-scaling propuesto para 
el sensor TIRS y MODIS que consiste en la mejora de la resolución espacial de la TST 
basada en el uso de bandas del espectro visible e infrarrojo. El método denominado 
Nearest Neighbor Temperature Sharpening (NNTS) se ha propuesto en esta tesis como 
alternativa al Temperature Sharpening (TsHARP) descrito en Jeganathan et al. (2011). 
El proceso además de basarse en la relación de la TST con el NDVI, incorpora las bandas 
situadas entre los 1.5-2.5 μm para mejorar la relación de los suelos desnudos y semi-
desnudos con la TST. Además, como el nombre del método indica, incorpora la relación 
por cercanía entre los pixeles similares, confiriéndole la posibilidad de mejorar la 
resolución espacial incluso con presencia de nubes y masas de agua (lo que no es posible 
con el método TsHARP y la relación con el NDVI). 

Finalmente, se detalla (mediante esquemas) el proceso seguido por los datos descritos 
para la obtención final de los productos de la TST y la TSM que serán testeados. 

CAPÍTULO 3: ESTACIONES AUTOMÄTICAS DE MEDIDA Y CAMPAÑAS DE 

CAMPO 

Una descripción completa y detallada de la toma de datos in-situ de la TST y de todo el 
proceso de gestión y tratamiento de datos se puede encontrar en este capítulo. 

La instalación de estaciones automáticas permanentes para el registro y control de la TST 
fue el primer paso para el desarrollo de actividades de cal/val. Las zonas de medida 
elegidas para la instalación de las estaciones fueron, por sus facilidades de acceso: 
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- Barrax, con un área netamente agrícola en la que se han instalado dos estaciones 
(Las Tiesas, localizada en 39.059º N, 2.099º W y El Cruce, localizada en 39.061º 
N, 2.099º W) 

- El parque nacional de Doñana que dispone de áreas muy extensas en las que 
existe una marisma que se inunda cada año cíclicamente. Tres estaciones han 
sido puestas en marcha en Doñana: Fuente Duque: 36.998˚ N, 6.434˚ W, 
Juncabalejo: 36.946˚ N, 6.389˚ W y Cortes: 36.996˚ N, 6.513˚ W 

- Por último, el parque natural del Cabo de Gata, que ofrece un área con muy pocos 
cambios a lo largo del año y en la que se instaló una estación recientemente, en 
diciembre del 2015 (Balsa Blanca: 36.939˚ N, 2.034˚ W). 

Cada estación dispone de instrumental para la medida de la TST u otras variables que 
puedan ayudar a su estimación. 

El procesado de los datos de las estaciones, así como el control de calidad, se gestionan 
mediante programas generados en la Unidad de Cambio Global (UCG) que, finalmente, 
nos ofrecen valores de la TST pasando el máximo control de calidad posible.  

Además de los datos obtenidos por las estaciones permanentes, en el capítulo se describen 
las campañas de campo que han hecho posible el control de la emisividad de las zonas de 
medida, realizadas con el radiómetro CIMEL, así como las campañas realizadas con el 
sensor aerotransportado Airborne Hyperespectral Sensor (AHS) que han servido para la 
realización de la validación indirecta de los EOS y para los estudios de homogeneidad 
del terreno de nuestras zonas de medida. 

CAPÍTULO 4: ERRORES DE LA TST EN LAS MEDIDAS IN-SITU 

Una vez los datos in-situ han pasado el control de calidad necesario que garantiza la 
máxima precisión de los valores registrados, en este capítulo se hace referencia a la 
cuantificación de la precisión de esos datos. 

Para ello, en primer lugar se localizaron las principales fuentes de error, gran parte de 
ellas localizadas como valores de entrada de la ecuación de transferencia Radiativa 
(ETR), para, a continuación, detallarlas y cuantificarlas mediante estudios. 

Entre las fuentes de error para la obtención de la TST podemos destacar: 

- El efecto pass-band, que introduce un error en la TST al utilizar el valor efectivo 
de la longitud de onda de un filtro en vez de ecuación de transformación, 
específica para cada filtro. 
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- La radiación descendente procedente de la atmosfera, que si no se mide de forma 
directa, se puede obtener mediante otros métodos que, finalmente, introducen un 
error en su estimación. 

- La imprecisión en la estimación de la emisividad, que no se puede obtener de 
una forma totalmente precisa, debido a todos los cambios que se producen en la 
cobertura o composición de las superficies medidas. 

- La imprecisión del mismo radiómetro, que con el paso del tiempo se vuelve más 
impreciso en la medida de la TST. 

- Y, finalmente, la homogeneidad del terreno, que no es un error directo en la 
estimación de la TST, pero sí un error importante en las actividades de cal/val. 
El error se produce cuando se comparan valores in-situ registrados con una alta 
resolución espacial de sólo unos pocos metros, con un valor que representa áreas 
grandes de cientos o incluso miles de metros. Este error ha sido ampliamente 
estudiado para los sensores de moderada y baja resolución espacial utilizados en 
esta tesis, mediante los datos de las campañas del sensor AHS y las imágenes 
TIRS del Landsat-8. 

Como parte final del capítulo, mediante la teoría clásica de errores – que consiste en la 
raíz de la suma de los cuadrados de cada error – se obtuvo el error final esperado de las 
medidas de la TST para cada estación del año y para cada estación automática de 
medidas. A pesar de no disponer siempre de datos directos de todos los errores para cada 
momento del año, mediante información complementaría (ya sea de fotografías, 
información de satélite, comparación de los sensores de medida de la TST o transectos) 
se pudo estimar el error de la TST para cada uno de los sensores a bordo de satélite 
utilizados en esta tesis. 

CAPÍTULO 5: CALIBRACIÓN VICARIA Y VALIDACIÓN DE LA TST/TSM 

En este capítulo se han resumido los resultados más importantes extraídos de este trabajo 
entre los que destacan la validación de los algoritmos propuestos para la estimación de la 
TST y TSM, la calibración vicaria de las bandas del Infrarrojo Térmico de los sensores y 
la obtención de los errores de cal/val esperados para cada sensor y estación. 

Para acabar con el análisis de errores iniciado en el capítulo anterior, el error debido a la 
perturbación de la señal que le llega al sensor a través de la atmosfera fue calculado 
mediante la comparación de una base de datos de radiosondeos con perfiles atmosféricos 
derivados del producto atmosférico MOD07. Mediante la comparación de los perfiles y 
su influencia en la determinación de la TST, se pudo obtener el error inducido por la 
atmosfera que, añadido a los errores de la medida in-situ de la TST, posibilitaron la 
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estimación de los errores esperados para la calibración vicaria (VC) y la validación de 
cada algoritmo. 

La VC realizada en las bandas del Infrarrojo Térmico nos mostró que la deviación de las 
bandas de los sensores con respecto de los valores in-situ simulados a la altura del sensor 
era mínima, con valores muy cercanos al cero. La banda 11 del sensor TIRS a bordo del 
Landsat-8 fue la única que mostró una desviación más grande (entre -0.9 K y 0.8 K, 
dependiendo de la temperatura registrada por el sensor) pero dentro de los límites de 
precisión de nuestra calibración. Además se pudo observar que el efecto stray-light 
detectado en las bandas del sensor TIRS era menor que el predicho por Barsi et al. (2015). 

La validación directa de los algoritmos de estimación de la TST mostró en general valores 
de Error Cuadrático Medio (ECM) inferiores a los 2.0 K, pero muy dependientes de la 
condiciones atmosféricas imperantes del momento. El algoritmo SW fue el que más 
estabilidad mostró, tanto en el sensor TIRS como en el MODIS con diferencias de valores 
de 0.3-0.6 K entre condiciones de alto y bajo contenido de vapor de agua en la atmósfera. 
A pesar de que la ETR y el algoritmo TES implementado en MODIS mostraron los 
valores más bajos de ECM, no mostraron tanta estabilidad entre las dos condiciones 
atmosféricas de alto y bajo contenido de vapor de agua, mostrando diferencias entre 
atmosferas con alto y bajo contenido de vapor de agua de 0.5-1.0 K. Finalmente los 
algoritmos tipo Monocanal de los sensores a bordo de la serie Landsat mostraron una 
gran variabilidad de resultados, con diferencias de hasta 2.0 K entre condiciones 
atmosféricas de alto (con precisiones de la TST de 2.0-3.5 K) y bajo (1.0-1.5 K) contenido 
de vapor de agua, por lo que su uso queda muy restringido a atmosferas con niveles bajos 
de vapor de agua. A nivel global, y debido a la estabilidad mostrada en diferentes 
condiciones de medida, el algoritmo SW es el más recomendado para estudios de 
variaciones temporales de la TST. Para valores puntuales, la ETR es la que ha mostrado 
mayor precisión aunque, para valores de vapor de agua bajos, la ecuación Monocanal 
también obtiene buenos resultados. 

Con la validación indirecta (mediante el procedimiento de up-scaling) se pudieron 
contrastar los resultados obtenidos de la validación directa, pero con una gran cantidad 
de datos. Valores muy similares a los obtenidos por la validación directa fueron 
obtenidos, con valores de ECM para la TST del sensor TIRS de entre 1.9-2.3 K 
(dependiendo del algoritmo) y valores de 1.3 K para MODIS. Para grandes ángulos de 
medida del sensor MODIS los valores fueron superiores a los esperados, con ECM 
superiores a 3.0 K en las campañas de Doñana, lo que contrasta con los valores de la 
validación directa (1.5 K aproximadamente). Estas diferencias son debidas al proceso de 
up-scaling, que se vuelve menos preciso en zonas de costa y gran variedad de superficies, 
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lo que lleva a grandes contrastes de la TST que inducen un error extra al proceso de up-
scaling. Análogos resultados a MODIS se obtuvieron para el sensor SEVIRI, pero con un 
ECM más alto para la campaña realizada en la zona de Miajadas (Cáceres) de 2.5 K y 
valores similares a MODIS en las campañas de Doñana (2.6 K y 4.4 K). 

Mediante la misma fórmula de validación indirecta se validaron las imágenes generadas 
por down-scaling. En comparación con la imagen original, las imágenes con mayor 
resolución espacial (a las que se les aplicaron los métodos de mejora de la resolución 
espacial) obtuvieron valores de ECM algo más grandes que las imágenes originales (entre 
0.5-1.0 K de más) lo cual se esperaba, ya que las imágenes que se generan mediante 
down-scaling no mantienen la radiometría (o valor) del píxel original. Comparando el 
método NNTS con el TsHARP y con la imagen Landsat proporcionada por la United 
States Geological Survey (USGS) a 30 m (cuando la resolución espacial del sensor TIRS 
Landsat-8 es de 100 m), el NNTS obtiene los valores más bajos de ECM, con diferencias 
de 0.2-0.5 K. 

Para finalizar con el análisis de los algoritmos, los SW descritos para la obtención de la 
TSM (el WPSST y el NLSST) fueron validados tanto en el mar Mediterráneo como en el 
océano Atlántico con resultados muy similares (diferencias de 0.03 K). Cabe destacar 
que, en las mejores condiciones de validación con boyas, ambos algoritmos alcanzaron 
precisiones de 0.50 K, lo que nos indica que, con la validación mediante boyas que miden 
a una profundidad de 3 m por debajo de la superficie del mar, no se puede obtener una 
precisión mejor que medio Kelvin. 

Finalmente, un pack de productos de TST y TSM, para su inclusión en la cadena de 
procesado que mantiene la UCG a cargo del proyecto CEOS-SPAIN, han sido 
propuestos. Para el sensor MODIS, un producto de TST mediante el algoritmo TES a 500 
m y un producto de la TSM que cubre el Atlántico y el Mediterráneo. Para el sensor TIRS 
a bordo del Landsat-8, un producto de TST a 30 m de resolución espacial que cubra toda 
la superficie de la Península Ibérica. 

CONCLUSIONES: 

En esta tesis, un pequeña (pero importante) contribución a la calidad de los datos 
derivados del Infrarrojo Térmico se ha realizado en el marco de las necesidades del 
WGCV. Tres importantes actividades se desarrollaron para ello: la instalación de 
estaciones automáticas y permanentes para el desarrollo de la cal/val, la VC de los datos 
TIR obtenidos a través de los EOS y la validación de los algoritmos para la estimación 
de la Temperatura de la Superficie Terrestre y del Mar. El establecimiento de las 
estaciones fue el primer paso para el desarrollo de la cal/val que, desde que comenzó con 
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la instalación de la primera estación en Enero del 2011 en Doñana, ya dispone de 6 puntos 
con los que controlar los datos obtenidos por las bandas del espectro Infrarrojo Térmico. 
Todas las estaciones tienen la capacidad de calibrar y validar los datos procedentes de los 
sensores a bordo de satélites con un error aproximado de ±1.0 K. 

Con la calibración de los sensores se ha comprobado el adecuado funcionamiento de sus 
bandas mientras que, con la validación, se ha comprobado la validez de los algoritmos 
propuestos en este trabajo y su posible implementación en la cadena de procesado para 
estudios que necesiten la temperatura como valor de entrada. Entre estos estudios 
podemos destacar los temporales, como es el análisis de las variaciones de la TSM a lo 
largo de los años o los instantáneos, que necesitan un valor para obtener una magnitud 
física como puede ser la evapotranspiración. 

Hay que tener en cuenta que los resultados obtenidos en esta tesis se refieren a nuestras 
zonas de calibración y validación, aunque los resultados obtenidos se pueden extrapolar 
a otras regiones con condiciones de suelo, emisividad o atmosféricas similares a las 
nuestras. Aun así, para tener una idea más global del funcionamiento de los algoritmos, 
habría que validarlos en condiciones más extremas, como pueden ser atmósferas con alto 
contenido de vapor de agua o suelos con emisividades bajas. 

Para el futuro se espera seguir ampliando las zonas de cal/val, con las que tener más 
puntos de muestreo. De esta forma, se puede incrementar la calidad de los datos obtenidos 
y se puede dar más validez a los resultados extraídos mediante la VC y la validación 
directa de los algoritmos. 
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ABSTRACT 
 

 

Land Surface Temperature (LST) and Sea Surface Temperature (SST) are a key 
parameters in physical processes of surface energy at local and global scales. LST/SST 
are directly related to Thermal Infrared (TIR) spectra, which constitute the main source 
of Earth emission. Control of satellite TIR data can be performed through Vicarious 
Calibration (VC), which is the more common way to guaranty data quality once sensor 
is on orbit. Usually, direct validation of LST algorithms and VC of TIR data is performed 
through in-situ measurements of LST while SST is controlled through anchor buoys or 
ship transect data. In the framework of CEOS-SPAIN project, Global Unit Change 
(GCU) group has installed six fixed and automatic stations in three test sites over the 
Iberian Peninsula (Barrax, Doñana and Cabo de Gata), which provides suitable data for 
calibration and validation (cal/val) activities of middle and low spatial resolution Earth 
Observation Sensors (EOS). Validation of SST has been performed with buoys web data 
available in the database of Puertos del Estado webpage. 

Before sensors cal/val, complete suitability study of land test sites was performed in order 
to obtain the maximal precision given by our fixed stations (in Kelvin). Uncertainties 
sources linked to in-situ LST retrievals were analyzed such as area inhomogeneity, 
emissivity or down-welling radiance among others. Finally, with each uncertainty source 
contribution it was possible to establish the precision of our in-situ measurements 
regarding the sensor’s spatial resolution. For our test sites, LST precision was set below 
1 K. 

Keeping in mind the values of in-situ LST precision, VC was performed on Landsat TIR 
sensor (TIRS) and Enhanced Thematic Mapper Plus (ETM+) as well as Terra/Aqua 
MODerate-resolution Imaging Spectroradiometer (MODIS), showing no displacement in 
raw TIR data. Test of LST algorithms was also performed with direct and indirect 
(through airborne sensor data) validations. Results showed Root Mean Square Errors 
(RMSE) in LST estimations below 2 K and, in the best cases (with the most favorable 
external conditions), values of 1 K. SST algorithms (Split-Window type) demonstrated 
precisions below 0.8 K and, in the best case (no solar radiation and high wind velocity), 
values of 0.5 K. 
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Finally, two LST algorithms (for TIRS and MODIS) and one SST algorithm (MODIS) 
have been proposed for its inclusion in the sensor images process chain managed by the 
GCU group. 
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The launch on 1972 of the Landsat-1 was the start of the Earth Observation (EO) 
satellite era focused on the global data collection of the Earth land cover (Belward and 
Skøien 2015). Before, some geostationary satellites as Television Infrared Observation 
Satellite (TIROS-1) or Metor also collected global images of the Earth but with a low 
spatial and spectral resolution mainly focused on the land/water/cloud boundaries and 
meteorological uses. After that, 197 land cover missions and, currently, more than 150 
EO sensors were launched providing remote sensing data from ultra violet to 
microwave spectra (Tatem et al. 2013, Belward and Skøien 2015). 
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In comparison to previous years, the sheer volume of data acquired by EO satellites 
have increased at an exponential rate - following Maa et al. (2015), it is expected that 
the global archived observation data would probably exceed one Exabyte - and have 
provided unprecedented local and global views of our planet and useful data for 
environmental management. Because the satellites often use different methodologies, 
the efficient exploitation of the data for trend analysis and environmental monitoring 
can be very difficult. Thus, it is essential to establish globally recognized guidelines for 
calibration and validation (cal/val) processes, as well as for improving available 
mechanisms for efficient data (and product) management, distribution and processing. 
The Committee on Earth Observation Satellites (CEOS), the space contribution to 
Global Earth Observation System of Systems (GEOSS), identified the need to pursue a 
more active role in tackling these specific issues. The CEOS Working Group on 
Calibration and Validation (WGCV) established consensus within the international 
community that cal/val and quality assurance processes should be incorporated into 
satellite programs in a harmonized way. The intergovernmental Group on Earth 
Observations stressed that in order for GEOSS to be fully successful, there must be 
cal/val and inter-calibration mechanisms in place between all available and new 
instruments. 

Validation is the process of assessing by independent means the accuracy of the data 
products derived from the system outputs, whereas calibration is the process of 
quantitatively defining the system response to known, controlled signal inputs. 
Calibration is a key procedure because determines the quality of raw data, which is the 
background of the offered satellite products. If raw data is inaccurate, all the products 
will also be incorrect. Moreover, in general, validation refers to assessing the 
uncertainty of high level satellite sensor derived products by analytical comparison to 
reference data, which is presumed to represent the target value. Inter-comparison of 
data products or model outputs provides an initial indication of gross differences and 
possibly insights into the reasons for the differences, however independent validation 
data are needed to determine product accuracy (Justice et al. 2000). 

The Land Product Validation (LPV) subgroup, included in the WGCV, focuses on 
standardizing inter-comparison and validation across products from different satellite, 
algorithms, and agency sources. These products include essential climate and 
biodiversity variables, such as Leaf Area Index, Soil moisture or Albedo. Recently, in 
the year 2015, Land Surface Temperature (LST) and Land Surface Emissivity (LSE) 
variables, which were excluded in the 2010 implementation plan, have been 
incorporated to LPV subgroup as a new Essential Climate Variable (ECV).  
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LST is a key parameter in the physical processes of surface energy at local and global 
scales (Kustas et al. 2009, Karnieli et al. 2010). Knowledge of LST provides direct or 
indirect information in other study fields, such as evapotranspiration (Kalma et al. 
2008; Sanchez et al. 2008), climate change (Julien et al. 1999) or urban heat island 
effects (Lehoczky et al. 2017). Through the Radiative Transfer Equation, LST is 
directly related to Thermal Infrared (TIR) spectra, which constitute the main source of 
Earth emission (supposing average Earth temperature around 290 K). TIR spectra goes 
from 8 µm to 14 µm and is used by satellite sensors to retrieve information of surface 
emissions. TIR data is not only dependent on surface emitted radiation (linked with 
emissivity and temperature), but also on atmospheric absorption effects. The accuracy 
of TIR data and the knowledge of emissivity and atmospheric effects is fundamental in 
the precision of LST retrievals and in the target accuracy requirements for LST (Li et 
al. 2013). See https://lpvs.gsfc.nasa.gov/LSTE/LST_home.html for more information 
about LST/LSE as ECV. 

As LST, Sea Surface Temperature (SST) is another ECV that plays important roles in 
the exchanges of energy, momentum, moisture and gases between the ocean and 
atmosphere. Because water represents more than 70% of Earth surface, it is a key study 
factor in climate studies. Small variations in SST (less than 1 K) as described in Rayner 
et al. (2003) were observed during the last century, which means that a high precision is 
necessary in SST estimations to retrieve reliable time series. As suggested in Reynolds 
et al. (2005) or Merchant et al. (2012) an objective of 0.1 – 0.5 K is required. SST is 
also obtained from TIR data, although some algorithms include Middle Wavelength 
Infrared (MWIR) spectra – centered in 4 µm – as additional data (only at nighttime, 
since at daytime there is solar “contamination” of the observed radiances). More 
information about SST as ECV can be found at 
http://database.eohandbook.com/climate/gcosecv.aspx?gcosipECVID=14. 

Radiometric calibration of EO sensors (EOSs) is a critical component to provide 
accurate global measurements of environmental variables at useful spatial and temporal 
resolutions. The calibration techniques used for most TIR sensors (TIRSs) includes a 
pre-launch calibration, performed in a similar fashion as it would be performed for any 
instrument; on-board calibration, using a blackbody source; and, finally, in-flight 
calibration methods, referred to as Vicarious Calibration (VC), that are essential for 
ensuring highly consistent and accurate radiometric calibration of EOS (Slater et al., 
1996). Usually, for VC, in-situ measurements from ground (Thome et al. 1997) or water 
test sites (Tonooka et al. 2005) are needed. This part is the most problematic, since the 
measurements performed in-situ have higher spatial resolution than the EOS 
measurements. For this reason, the knowledge of what test sites are the most suitable 
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for the infrared radiometers installation is critical, as these should be representative of 
sensor pixel size. An ideal test site for development of cal/val activities should comply 
with several critical characteristics that are essential for the simplification of cal/val 
tasks. As suggested in Thome, (2001) or Schneider et al. (2012) these characteristics 
can be summarized as follows: 

- High spatial uniformity (homogeneity) over large areas minimizes the errors of 
in situ measurements. 

- Knowledge of temporal variations of test sites implies the knowledge of the 
changes in the emissivity and, consequently, the correct retrieval of the LST. 

- An elevation of at least 1 km reduces calibration atmospheric-associated errors. 
- High probability of cloud-free days. 
- Easy accessibility to the test site is also an important factor. 

Of course, it is not always possible to find a test site that verifies all these conditions. 
For example, desert test sites or lake test sites do not have an easy accessibility, 
however the high homogeneity and the year surface invariability make them ideal for 
cal/val. 

One way to find possible test sites candidates is by performing an inhomogeneity 
analysis, which is one of the most important contributions to the uncertainty of in-situ 
measurements. Test sites should be as homogeneous as possible, so that they can be 
represented by a single or only a few measurements in comparison to the pixel size of 
the EOS. But, usually, it is not possible to have the equipment and personnel needed to 
cover the measured area due to high costs. Furthermore, it is not always clear how to 
combine the different in situ measurements (if one measurement is more representative 
than other or not) to represent the EOS data (especially for sensors with low spatial 
resolution). To solve these difficulties, a detailed knowledge of the selected area is 
recommended in terms of homogeneity variation over time. 

Field campaigns and airborne campaigns are a necessary and useful complement of 
remote sensing science. Usually, the goal of the field campaigns is to support 
geo/biophysical algorithm development, to perform cal/val activities, to obtain a 
detailed knowledge of the area and to simulate future spaceborne Earth Observation 
missions (Sobrino et al. 2008). The Airborne Hyperspectral Scanner (AHS) is one of 
these airborne sensors, developed by SensyTech Inc., currently ArgonST, and operated 
by the Spanish Institute of Aeronautics. With it, many campaigns were performed over 
Barrax area for cal/val of remote sensing observations (Sobrino et al. 2009), for land-
atmosphere exchanges (Su et al. 2008) or for surface energy fluxes derivation (Andreu 
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et al. 2015). From 2012 to 2015 many additional campaigns were carried out for the 
purpose of this work allowing multiple studies referred to LST. These included: 

- A detailed homogeneity analysis in order to find the best site location for the 
installation of permanent fixed stations for cal/val activities. 

- An indirect validation (or cross validation) of a great number of EOS pixels per 
image, instead of a few pixels allowed by in-situ measurements. This validation 
process, called up-scaling because airborne image simulates the pixel size of an 
EOS by pixel aggregation, has the advantage that atmospheric correction is 
only needed below the flight height line so that the radiometric measures 
performed by the airborne sensor are less atmospheric disturbed than the 
spaceborne sensors. The use of airborne-spaceborne data allows accurate (in 
atmospheric terms) cross validation in comparison to satellite-satellite cross 
validation. 

- A validation of down-scaling procedures for the improvement of LST spatial 
resolution. 

Depending of sensors considered, LST and SST can be estimated using methods that 
depend of the available TIR number bands in the sensor. The common LST retrievals 
include the Radiative Transfer Equation (RTE), the Single-Chanel (SC) and Split-
Window (SW) algorithm and the Temperature Emissivity Separation (TES) algorithm 
that provide, typically, 1.0-2.0 K of LST uncertainty. For SST, the SW algorithm is 
usually applied, providing an estimated precision of 0.5 K. Currently, 3 moderate 
spatial resolution sensors - Enhanced Thematic Mapper Plus (ETM+), Thermal Infra-
Red Sensor (TIRS) and Advanced Spaceborne Thermal Emission Reflection 
Radiometer (ASTER) - 4 low spatial resolution polar orbiting sensors - Advanced Very 
High Resolution Radiometer, MODerate-resolution Imaging Spectroradiometer 
(MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Sea and Land 
Surface Temperature Radiometer (SLSTR) – and one geostationary sensor - Spinning 
Enhanced Visible and Infrared Imager (SEVIRI) – are taking TIR images over the 
Iberian Peninsula. From those sensors, only ETM+, TIRS, MODIS and SEVIRI were 
taken in account for cal/val activities because of the data availability (MODIS and 
SEVIRI data are received and archived in the installations of our group) or data amount 
(ETM+ and TIRS have taken data in each satellite pass unlike ASTER, which data must 
to be ordered). 

In response to the aforementioned needs, this work has tried to contribute to WGCV on 
the improvement of quality TIR data with the establishment of permanent stations for 
LST measurements over Spain - which allows for a continuous monitoring of TIR data 
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- and with the development of new methodologies for LST and SST retrievals. In order 
to achieve these objectives, the thesis is divided into five chapters: 

The first chapter presents the specific equations for SST/LST estimation as well as the 
procedure followed to retrieve them with a particular focus on the temperature 
retrievals proposed in this work. Furthermore, specific coefficients for each retrieval, 
uncertainty associated to each algorithm and LSE retrievals for each sensor are shown. 
Finally, in order to better understand the algorithms, a description of the EOS in which 
algorithms are applied is also performed. 

The second chapter on the one hand, describes the data used in this work which 
includes atmospheric profiles, satellite data and in-situ data. One the other hand, the 
methodology followed for sensors calibration and LST and SST validation, including 
the down-scaling process, is explained. 

The third chapter describes the in-situ data measured by the permanent stations 
located at our test sites. This chapter includes a description of test sites – including its 
temporal (year) evolution –, the in-situ data validation procedure and the instrumental 
installed in each test site. 

The fourth chapter is focused in the analysis of the uncertainties sources of the LST 
measurements. These include emissivity, atmospheric and radiometer calibration 
sources plus an analysis of the test sites inhomogeneity which is EOS dependent. 

The fifth chapter presents the results of the cal/val activities. This chapter is divided in 
six sections which show the cal/val expected uncertainty for each station and sensor, the 
VC and direct validation results, the validity of down-scaling procedure, the cross-
validation of LST products and, finally, the presentation of possible temperature 
products that can be introduced in the process chain of the Global Change Unit (GCU) 
group.  

Finally, the conclusion chapter summarizes the main results obtained in the thesis. 

 

 

 

 



 

 

 

 

 

 

CHAPTER 1: 

SENSORS AND ALGORITHMS 
 

 

 

  

 

 

 

 

 

This chapter is focused on the description of the LST and SST algorithms analyzed in 
this work. A brief resume of the coefficients retrieval procedure, database used and 
expected errors is included. Furthermore, two new algorithms for LST and SST 
estimation are presented here. In order to better understand the relation between sensors 
bands and algorithms, a section of satellite and airborne sensors characteristics is 
introduced in the beginning of the chapter (including the technical problems detected in 
the TIR bands). 
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1.1. SENSOR DATA 

In this section, characteristics of high (AHS), moderate (ETM+ and TIRS) and low 
(MODIS, SEVIRI) spatial resolution sensors are described as well as the calibration 
problems detected. 

1.1.1. The Airborne Hyperspectral Scanner (AHS) 

AHS is carried onboard the aircraft CASA 212-200 Paternina and incorporates 
advanced components to ensure high performance while maintaining the ruggedness to 
provide operational reliability in a survey aircraft. The main AHS technical 
specifications following Sobrino et al. (2008) are: 

– Optical design: scan mirror plus Cassegrain-type afocal telescope with a single IFOV 
determining field stop (Pfund assembly). 

– FOV (Field Of View)/IFOV (Instantaneous Field Of View): 90/2.5 mrad. 

– GSD (Ground Sampling Distance): Flight high dependence, but usually 2-8 m. 

– Scan rates: 12.5, 18.75, 25, 35 Hz, with corresponding ground sampling distances 
from 7 m to 2 m. 

– Digitization precision: 12 bits to sample the analog signal, with gain level from ×0.25 
to ×10. 

– Samples per scan line: 750 pixels/line, 

– Reference sources: two controllable thermal black bodies (“cold” and “hot”) placed at 
the edges of the field of view for each acquired scanline, 

– Spectrometer: four dichroic filters to split radiation in four optical ports - Visible and 
Near-Infrared (VNIR), Short-Wave Infrared (SWIR), Middle-Infrared (MIR) and TIR - 
and diffraction gratings within each port, plus lens assemblies for re-focusing light onto 
the detectors. 

– Spectral bands: 80 bands, with continuous coverage in four spectral regions (VNIR, 
SWIR, MIR and TIR) + single band at 1.5 µm. 
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– 10 TIR thermal bands, from 71 to 80, with effective wavelengths of 8.18, 8.66, 9.15, 
9.60, 10.07, 10.59, 11.18, 11.78, 12.35 and 12.93 µm and a Full Width at Half 
Maximum (FWHM) of approximately 0.4-0.5 µm. 

– Mean Noise Equivalent Delta Temperature (NEΔT) for TIR bands of ~0.25 K, 
depending on the considered band. 

Only once, during SPARC 2004 campaign, technical problems have been found for the 
AHS sensor (Sobrino et al. 2006). Since then, TIR bands have shown accurate values as 
it is indicated in Sobrino et al. (2008) and as it was obtained during internal calibration 
operations performed in our group for each campaign. 

1.1.2. Enhanced Thematic Mapper Plus (ETM+) and Thermal InfraRed Sensor 
(TIRS) 

Landsat series are the only EO platforms which have been providing long-term high 
spatial resolution TIR data since the 1980s (even though Landsat-3 was the first with a 
thermal band, it failed shortly after launch). Today, two Landsat platforms remain 
operational: Landsat-7 (L7), launched in 1999 and Landsat-8 (L8), launched in 2013. 
Both have a revisiting time of 16 days with a gap between them of 8 days. More 
information is available on https://landsat.gsfc.nasa.gov/. 

The ETM+ instrument carried by L7, collects data at 60 m (resampled to 30 m) in the 
TIR band region (band 6) in a window of 10.3-12.3 μm (see Figure 1.1) and with NEΔT 
around 0.2-0.3 K (Barsi et al. 2003). Band 6 has been continuously monitored by the 
NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology 
(RIT) since 1999. Data obtained during these years allowed the identification of three 
calibration problems. The first problem was a detection of constant bias in the data of 
0.31 W·m-2·sr-1·μm-1 at the end of the year 2000 with the ETM+ sensor estimating 
about 3 K too high for typical LST. The second one was a small gain correction 
identified in the year 2010 with ETM+ estimating too hot for cold targets and too cold 
for hot targets. The associated bias at 273 K, 285 K and 300 K was reported to be 0.8 K, 
0 K and -0.7 K, respectively (Schott et al. 2012). Finally, was relayed an update in the 
year 2013, with a bias correction of 0.4 K at 300 K. These corrections, which can be 
found in the Landsat web site (http:/landsat.usgs.gov/science_L7_Cal_Notices.php) 
have aided in increasing the quality of L7 ETM+ TIR data. 

The most recent Landsat platform carries on board the Operational Land Imager (OLI), 
and the TIRS. OLI sensor collects data at 30 m spatial resolution with 8 bands located 
in the VNIR and in SWIR regions of the electromagnetic spectrum, plus an additional 
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panchromatic band at 15 m spatial resolution (see table 1.1). TIRS measures the TIR 
radiance at 100 m spatial resolution (resampled to 30 m in order to match with OLI) 
using two bands located in the atmospheric window between 10-12 µm (see Figure 
1.1). NEΔT for TIRS bands is estimated at 0.4 K (pre-launch values), but later revision 
showed a NEΔT below 0.1 K (Ren et al. 2014). Calibration problems of TIRS bands 
have been reported by the U.S. Geological Survey (USGS) with bias error of 0.29 and 
0.51 W·m-2·sr-1·μm-1 or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, 
where TIRS data was too hot (Barsi et al. 2015). On February 2014, all the L8 archive 
was reprocessed but the residual variability was still larger showing out-of-field stray 
light - stray light is unwanted light entering into the sensor by ghosting or scattering and 
depends on scene or pixel location (Tonooka et al. 2005) -  which has not yet been 
corrected. For this reason, band 11, which has the largest variability with 1.67 K at 300 
K, is not recommended for temperature retrievals. 

 

Table 1.1. ETM+ and TIRS bandwidth of VNIR and SWIR spectra (given in μm). 
Sesnor b1 b2 b3 b4 b5 b6 b7 b9 

ETM+ 0.45-0.52 0.52-0.60 0.63-0.69 0.77-0.90 1.55-1.75 - 2.09-2.35 - 

TIRS 0.43-0.45 0.45-0.51 0.53-0.59 0.64-0.67 0.85-0.88 1.57-1.65 2.11-2.29 1.36-1.38 

 

1.1.3. MODerate resolution Imaging Spectroradiometer (MODIS) 

Terra and Aqua missions are a key component of NASA’s EO System that were 
launched on December 18, 1999 and on May 4, 2002, respectively. Terra and Aqua 
satellites carry on board the MODIS instrument, among others, and are operated in a 
near sun-synchronous polar orbit at a nominal altitude of 705 km, with Terra’s 
equatorial crossing time of 10:30 AM (descending southward) and Aqua’s equatorial 
crossing time of 1:30 PM (ascending northward). MODIS provides high radiometric 
sensitivity (12 bits) in 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm 
in three different spatial resolutions:  

– 250 m: Band 1 and 2, with a central wavelength at 0.645 μm and 0.859 μm, 
respectively. 

– 500 m: Band 3 to 7, with a central wavelength at 0.469, 0.550, 1.24, 1.64 and 2.13 
μm, respectively. 
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– 1000 m: Reflective bands from 8 to 20, with a central wavelength at 0.422, 0.443, 
0.488, 0.531, 0.551, 0.667, 0.678, 0.748, 0.870, 0.905, 0.936 and 0.940 μm, 
respectively. 

– 1000 m: Emissive bands from 21 to 36, with a central wavelength at 3.75, 3.96, 3.96, 
4.05, 4.47, 4.52, 1.38, 6.72, 7.33, 8.55, 9.73, 11.03, 12.02, 13.34, 13.94 and 14.24 μm, 
respectively. 

A ± 65º scanning pattern achieves a 2,330 km swath and provides global coverage 
every one to two days providing spatial resolution TIR images of 1 km at nadir and of 4 
km at the edge of the image. Of thermal emissive bands, band 29, 31 and 32 were taken 
in account for calibration and temperature retrieval purposes. Spectral functions for 
each band are shown in Figure 1.1 with a NEΔT of 0.05 K. More information can be 
found on https://modis.gsfc.nasa.gov/.  

Calibration of MODIS instrument is performed with on-board calibrators that include a 
blackbody or a space view port among others (Xiong et al. 2015). Although there is a 
slow but continuing increase in noisy detectors (uncertainty increase around 1%), 
MODIS instruments continue to provide valuable Earth imagery. Regarding the bands 
29, 31 and 32, radiance uncertainties below 0.3% are reported, which is lower than the 
required specification of 0.5% for bands 30 and 31 and 1% for band 29. More 
information of calibration issues and performance can be found at 
http://mcst.gsfc.nasa.gov/calibration/information and (Xiong et al. 2015). As an 
additional problem, it has been reported that thermal emissive band 29 has been 
significantly affected by electronic crosstalk, which impacts directly in instrument 
response and induces striping, which in last years has become very pronounced (Sun et 
al. 2016a, 2016b). In spite of this problem, band 29 has been used in TES algorithm 
thought LST product shows striping effects. 

1.1.4. Spinning Enhanced Visible and Infrared Imager (SEVIRI) 

SEVIRI is a line by line scanning radiometer, which provides image data in four VNIR 
channels from 0.4 to 1.6 μm and eight InfraRed (IR) channels from 3.9 to 13.4 μm. 
VNIR and IR channels take images at spatial resolution of 1 km and 3 km, respectively. 
SEVIRI, which is carried by Meteosat Second Generation (MSG) series, spin of 100 
rpm allows to complete (east – west direction) a full image in about 12.5 min. A flip-
flop mechanism is activated to put the on-board black body in the optical path for the 
instrument calibration. The black body is removed after about 2 seconds from the 
calibration position. After that, the scan mirror moves back to its initial position. The 
Earth observation is resumed (after a stop of ~2 min) leading to an overall repeat cycle 
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of maximum 15 minutes. In our case, images over Iberian Peninsula are taken 8 min 
after the start of the measurement with an average spatial resolution of 3.5×4.5 km for 
IR channels. IR10.8 and IR12.0 channels, which spectral response function can be 
found in Figure 1.1, were used in this work for LST validation purposes.  

 

 
Figure 1.1. Spectral response functions normalized for the thermal bands of the 
different sensors described in this work in the 8-14 μm window. 

 

1.2. RADIATIVE TRANSFER EQUATION 

All objects with temperatures greater than absolute zero emit radiation, and the amount 
of radiation from a black body in thermal equilibrium at wavelength λ and temperature 
T is described by Planck's law: 

஛ሺܤ ௦ܶሻ ൌ
ܿଵ

ହߣ ൬exp ൤
ܿଶ
ߣ ௦ܶ

൨ െ 1൰൘ 																																																					ሺ1.1ሻ 

where ܤ஛ሺ ௦ܶሻ is the spectral radiance (W·µm-1·m-2·sr-1) of a black body at temperature 
Ts (K) and wavelength λ (μm). Because most natural objects are non-black bodies, the 
emissivity ε, which is defined as the ratio between the radiance of an object and that of 
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a black body at the same temperature, must be taken into account. The spectral radiance 
of a non-black body is given by the spectral emissivity multiplied by Planck's law as 
shown in Eq. (1.1). Obviously, if the atmosphere exerts no influence on the measured 
radiance, LST or SST (i.e. TS) can be retrieved by making temperature as the subject of 
Eq. (1) once the emitted radiance and emissivity are known. It is interesting to keep in 
mind that the surface temperature obtained by remote sensing methods is only 
representative of a few surface thickness (approximately ~1 µm) which is important for 
SST studies. 

When atmosphere exists, thermal radiance measured at-sensor level (Lsen) is given by 
the emission from the ground at a certain temperature Ts (BTs, where B is the radiance 
referred to the Planck’s law), emission of the atmosphere in the upward direction (Lu), 
and the emission of the atmosphere in the downward direction reflected by the surface – 
(1-ε)×Ld. The radiation terms leaving the ground are also subject to the atmospheric 
absorption. All these terms are related through the Radiative Transfer Equation (RTE): 

஛ܮ
௦௘௡ ൌ ஛ሺܤ஛ߝൣ ௦ܶሻ ൅ ሺ1 െ ௗ,஛൧߬ܮ஛ሻߝ ൅  ሺ1.2ሻ																																												௨,஛ܮ

where ε is the Land Surface Emissivity (LSE), Ts is the Land Surface Temperature 
(LST) and τ, Lu, Ld are the atmospheric parameters, namely, the atmospheric 
transmissivity, the up-welling atmospheric radiance (or path radiance) and the down-
welling atmospheric radiance, respectively. Except for Ts, all the magnitudes involved 
in Eq. (1.2) are spectral magnitudes. By solving for BTs, and applying the inverse of the 
Planck’s law, LST is finally obtained as 

௦ܶ ൌ
ܿଶ

ߣ ln ൤
ܿଵ

஛ሺܤହߣ ௦ܶሻ
൅ 1൨൘ 																																																					ሺ1.3ሻ 

where λ is the band wavelength (e.g. effective wavelength, averaged from the spectral 
response function), and c1 and c2 are the Planck’s radiation constants, with values of 
1.19104·108 W·µm4·m-2·sr-1 and 14387.7 µm·K, respectively and Ts and ܤ஛ሺ ௦ܶሻ were 
defined above. Note that retrieving LST from the RTE (Eq. 1.2) requires the knowledge 
of the atmospheric parameters τ, Lu, Ld. Surface emissivity ε must also be known. More 
information about RTE can be found in Jimenez-Muñoz and Sobrino (2003) and Li et 
al. (2013). 
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1.3. LAND AND SEA SURFACE TEMPERATURE ALGORITHMS 

In the past years, many algorithms have been proposed for LST estimation onboard 
different satellites and using different assumptions and approximations for the RTE and 
LSEs. In our case, for the purpose of this work, only three algorithms will be 
considered: the Single Chanel (SC) and Split Window (SW) methods and the 
Temperature and Emissivity Separation (TES) method. Furthermore, a new LST 
retrieval for L8/TIRS and SW method for SST estimation will be presented. 

1.3.1. Single Channel 

The Single-Channel general algorithm (SC߰) retrieves LST using the following general 
equation: 

௦ܶ ൌ
௦ܶ௘௡
ଶ

ܾఊܮ௦௘௡
൤
1
ߝ
ሺߖଵܮ௦௘௡ ൅ ଶሻߖ ൅ ଷ൨ߖ ൅ ௦ܶ௘௡ െ

௦ܶ௘௡
ଶ

ܾఊ
																												ሺ1.4ሻ 

 
where Tsen is the at-sensor brightness temperature, Ts is the LST, bγ=c2/λ, and ߖଵ, ߖଶ 
and ߖଷ are the so-called atmospheric functions, given by 

	 ଵߖ ൌ
ଵ

ఛ
; ଶߖ			 ൌ െܮௗ െ

௅ೠ
ఛ
ଷߖ			; ൌ 	ሺ1.5ሻ																																							ௗܮ

If atmospheric parameters τ, Lu, Ld are known, the atmospheric functions can be 
calculated from Eq. (1.5) and then the LST. The Eq. (1.4) referred to SC߰ algorithm is 
similar to Eq. (1.2) referred to RTE, but with different mathematical structure. 

The atmospheric functions defined in Eq. (1.5) can be approached with a polynomial 
second order relation versus the atmospheric water vapor content (w) in order to obtain 
the Single-Channel water vapor approximation algorithm (SCw). The polynomial 
relation can be expressed as: 

൥
ଵߖ
ଶߖ
ଷߖ
൩ ൌ ൥

ܿଵଵ ܿଵଶ ܿଵଷ
ܿଶଵ ܿଶଶ ܿଶଷ
ܿଷଵ ܿଷଶ ܿଷଷ

൩ ൥
ଶݓ

ݓ
1
൩																																													ሺ1.6ሻ 

where coefficients cij are retrieved with a direct relation between Ψ parameters against 
w. 
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The τ, Lu, Ld spectral parameters, which are related with Ψ parameters through Eq. 
(1.5), are retrieved with the introduction of atmospheric database profiles in 
MODTRAN-5 radiative transfer code (Beck et al. 1999). Fitting these parameters 
against w, cij in Eq. (1.6) can be extracted and, then, the LST by applying Eq. (1.4). To 
estimate the LST with SCw, the only atmospheric input required is the w. More 
information about SC algorithm can be found in Jiménez-Muñoz et al. (2009a).  

1.3.2. Split-Window 

The Split-Window (SW) technique uses two TIR bands typically located in the 
atmospheric window between 10 and 12 µm. The basis of the technique is that the 
radiance attenuation for atmospheric absorption is proportional to the radiance 
difference of simultaneous measurements at two different wavelengths, each subject to 
different amounts of atmospheric absorption (McMillin, 1975). SW was used for LST 
retrievals as well as for SST retrievals. Below are shown the SW used in this work: 

- The land SW algorithms tested and proposed in this work are based on the 
mathematical structure proposed by Sobrino et al. (1996), and applied to different 
Earth Observation sensors in Jiménez-Muñoz and Sobrino (2008): 

ௌܶ ൌ ௜ܶ ൅ ܽ଴ ൅ ܽଵ൫ ௜ܶ െ ௝ܶ൯ ൅ ܽଶ൫ ௜ܶ െ ௝ܶ൯
ଶ
൅ ሺܽଷ ൅ ܽସݓሻሺ1 െ ሻߝ

൅ ሺܽହ ൅ ܽ଺ݓሻΔߝ																																																																																									ሺ1.7ሻ 

where TS is the LST, Ti and Tj are the at-sensor brightness temperatures at the SW 
bands i and j (in K), ε is the mean LSE, ε = 0.5 (εi + εj), Δε is the LSE difference, Δε 
= εi - εj), w is the total atmospheric water vapor content (in g·cm-2), and a0 to a6 the 
SW coefficients to be determined from simulated data. Similar to the SC algorithm, 
the SW algorithm only requires the knowledge of w. 

- MOD11_L2 LST product is retrieved using the generalized split-window algorithm 
(Wan & Dozier, 1996): 

ௌܶ ൌ ܽ଴ ൅ ቂܽଵ ൅ ܽଶ
ሺ1 െ ሻߝ

ൗߝ ൅ ܽଷ Δߝ ଶൗߝ ቃ ൫ ௜ܶ ൅ ௝ܶ൯ 2⁄  

	൅ ቂܽସ ൅ ܽହ
ሺ1 െ ሻߝ

ൗߝ ൅ ܽ଺ Δߝ ଶൗߝ ቃ ൫ ௜ܶ െ ௝ܶ൯ 2⁄ 																						ሺ1.8ሻ 
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where Ti, Tj, ε and Δε have equal mean as the previous equation. As was said, ai 
coefficients are also obtained with regression for a large range of surface and 
atmospheric conditions. 

Regarding the SST retrievals, McClain et al. (1985) introduced the linear algorithm 
Multi-Channel SST (MCSST) that is based on a formula of the following form: 

ௌܶௌ் ൌ ௜ܶ ൅ ܿ଴ ൅ ܿଵ൫ ௜ܶ௝൯ ൅ ܿଶሺsec ௭ߠ െ 1ሻ																					ሺ1.9ሻ 

where θz represents the sensor scan angle and was introduced to minimize the error due 
to the increase (with the angle) of the atmospheric path length, Tij represent the 
difference between Ti and Tj and, finally, ௌܶௌ் represents the SST. Because of the non-
linear relationship in the effect of water vapor (Minnett, 1990), other algorithms were 
introduced following the structure of Eq. (1.9) as a Quadratic (QDSST) algorithm 
introduced by Emery et al. (1994), and a Nonlinear SST (NLSST) method used 
currently for the MODIS SST product introduced by Walton et al., (1988,1998). Below, 
a SST algorithm proposed in this work and the NASA algorithm are presented: 

- A variant of the QDSST algorithm named Water vapor Path length (WPSST) 
algorithm is proposed here and is based on the nonlinear relationship of total 
atmospheric w content and zenith angle (or path length): 

ௌܶௌ் ൌ ௜ܶ ൅ ܿ଴ ൅ ܿଵ൫ ௜ܶ௝൯ ൅ ܿଶ൫ ௜ܶ௝൯ሺ1 െ sec  ௭ሻߠ

																																							൅ܿଷ൫ ௜ܶ௝൯
ଶ
൅ ܿସ൫ ௜ܶ௝൯

ଶ
ሺ1 െ sec  ሺ1.10ሻ																					௭ሻଶߠ

where c0 to c4 are the WPSST coefficients to be determined empirically from buoys 
data versus the satellite observations.  

- The NLSST method tested here is formulated as follows: 

ௌܶௌ் ൌ ௜ܶ ൅ ܿ଴ ൅ ܿଵ൫ ௜ܶ௝൯ ௦ܶ௙௖ ൅ ܿଶ൫ ௜ܶ௝൯ሺsec ௭ߠ െ 1ሻ	൜
݀ ௜ܶ௝ ൑ 0.5
݀ ௜ܶ௝ ൒ 0.9ൠ 

ௌܶௌ் ൌ ௌܶௌ்൫݀ ௜ܶ௝ ൑ 0.5൯ ൅
்೔ೕି଴.ହ

଴.ଽି଴.ହ
൫ ௌܶௌ்ൣ݀ ௜ܶ௝ ൒ 0.9൧ െ ௌܶௌ்ൣ݀ ௜ܶ௝ ൑ 0.5൧൯					ሺ1.11ሻ
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where Tsfc is a ‘climatological’ estimate of the SST in the area produced by National 
Oceanic and Atmospheric Administration (NOAA) and called Optimum 
Interpolation SST (OISST) (Reynolds et al., 2002). The coefficients are derived and 
continuously verified based on match-ups between the satellite retrievals of 
brightness temperature and moored buoys and the Atmosphere Emitted Radiance 
Interferometer (M-AERI). More information can be found on Liang et al., (2013) 
and Minnett et al., (2004). 

1.3.3. TES algorithm 

The TES method estimates LSE and LST from land-leaving thermal data and down-
welling atmospheric irradiances (Gillespie et al., 1998). It is based on the radiative 

transfer equation applied to thermal data, in which the land-leaving radiance (ܮ௅௅ோ
௜ ) for 

band i is given by: 

௅௅ோܮ
௜ ൌ ௦்ܤ௜ߝ ൅ ଵ൫1ିߨ െ ௗܮ௜൯ߝ

௜ 																																												ሺ1.12ሻ 

In order to completely determine Eq. (1.12) it is necessary to supply one independent 
measurement. This is provided by a semi-empirical relation determined from laboratory 
spectra, between the minimum emissivity and spectral contrast Maximum–Minimum 
Difference (MMD). 

Taking into account that ܮ௅௅ோ
௜  and ܮௗ

௜  are the input data, from an initial value of 
emissivity it is possible to obtain a first value for land surface temperature. In fact, five 
different values will be obtained for Ts using Eq. (1.12) by inversion of Planck's law for 
each involved thermal band. The final value for Ts is chosen as the maximum value 
between the five different values. Then, Ts can be introduced again in Eq. (1.12) and 
obtain the emissivity values for thermal bands. This methodology can be repeated again 
in order to obtain another value for Ts and other emissivity values. The described 
iterative procedure is called as NEM (Normalized Emissivity Method) module, and 
constitutes itself a method for retrieving surface emissivities and temperature (Gillespie, 
1985). In order to obtain more accurate emissivity values, another two modules are 
applied: the RATIO and the MMD modules. The RATIO module obtains relative 
emissivities (βi) by rationing the NEM emissivities to their average value, whereas in 
the MMD module final emissivity values are obtained according to the following 
expression: 
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௜ߝ ൌ ௜ߚ ቀ
௠௜௡ߝ

minሺߚ௜ሻ
ൗ ቁ																																													ሺ1.13ሻ 

where εi is the minimum emissivity obtained from the following empirical relationship: 

௠௜௡ߝ ൌ ݉ଵ ൅ ݉ଶܦܯܯ௠య																																											ሺ1.14ሻ 

with MMD the spectral contrast calculated as: 

ܦܯܯ ൌ ௜ሻߚሺݔܽ݉ െ ݉݅݊ሺߚ௜ሻ																																							ሺ1.15ሻ 

The TES method is capable of recovering surface emissivities within about 0.015 and 
surface temperatures within about 1.5 K. A detailed description of the algorithm is 
given in Gillespie et al. (1998). 

 

1.4. SIMULATED DATA 

Both the SC and the SW algorithms require the retrieval of several coefficients; in the 
case of the SC, the coefficients appear in the relationship between atmospheric 
functions and water vapor (Eq. 1.6), and in the case of the SW algorithm the 
coefficients appear in the SW algorithm itself (Eq. 1.7 to 1.11). These coefficients are 
retrieved from statistical fits performed over a simulated database. Simulated data are 
obtained from atmospheric profiles datasets used as input to the MODTRAN radiative 
transfer code (Beck et al. 1999). MODTRAN spectral outputs are averaged using the 
spectral response functions to finally obtain the band-averaged values of the 
atmospheric parameters τ, Lu, Ld. In the case of SW algorithms, where at-sensor 
brightness temperatures need to be simulated, different emissivity spectra (108 samples) 
extracted from ASTER library (Baldridge et al. 2009) are used. For the TES algorithm, 
ASTER emissivity spectra library (ASTERlib) was also used for coefficients retrieval 
of the empirical relationship showed in Eq. (1.14). Additional details on the simulation 
procedure for SW, SC and TES algorithms can be found in Jiménez-Muñoz and 
Sobrino (2008), Jiménez-Muñoz et al. (2009a) and Sobrino et al. (2008) respectively. 

Different atmospheric profiles databases were used to derive the atmospheric functions: 

a) STanDard (STD), extracted from the atmospheres included in MODTRAN code, 
with 66 atmospheres and with mean w of 1.96 g/cm2; 
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b) Thermodynamic Initial Guess Retrieval (TIGR) sounding database which includes 
three datasets: 1) reduced TIGR61 with 61 atmospheres (28 atmospheres assigned to the 
tropical model, 12 to midlatitude summer model, 12 to subartic winter, and 9 to U.S. 
Standard) compiled by Sobrino et al., (1993), with mean w of 2.94 g/cm2; 2) TIGR1761, 
1761 atmospheres composed by 322 tropical, 388 midlatitude summer, 354 midlatitude 
winter, 104 subartic summer, and 593 subartic winter (Escobar, 1993), with mean w of 
1.03 g/cm2; 3) TIGR2311, 2311 atmospheres that includes TIGR1761 atmospheres plus 
550 atmospheres assigned to the tropical model (Chevallier et al., 1998), with mean w 
of 1.82 g/cm2. 

c) Global Atmospheric Profiles from Reanalysis Information (GAPRI) that was recently 
created. GAPRI database is a comprehensive compilation of selected atmospheric 
profiles at global scale derived from ERA-Interim reanalysis data (Dee et al., 2011) 
during 2011. Atmospheric profiles were extracted from a global spatial grid of about 
0.75º×0.75º latitude-longitude, and they include 29 vertical levels. The GAPRI database 
used in this study contains 4,838 atmospheric profiles selected over land (GAPRI4838), 
covering tropical, mid-latitude, sub-arctic and arctic weather conditions. A detailed 
description of the GAPRI database is provided in Mattar et al. (2015). 

For simplicity, the databases will be denoted as STD61, TIGR61, TIGR1761, TIGR2311 and 
GAPRI4838 where the number refers to the number of atmospheric profiles included in 
each database. 

To account for differences between LST and air temperature (temperature at the first 
layer in the atmospheric profile), the following variations were considered for LST: T0-
5, T0, T0+5, T0+10 and T0+20, where T0 is the temperature at the first layer. These 
temperature steps were used in other studies (e.g. Jiménez-Muñoz and Sobrino, 2008), 
though the highest temperature step (T0+20) could be too low for desert regions. 
Therefore, the number of atmospheric profiles included in each database must be 
multiplied by 5 when these variations are considered. In the case of the SW algorithm, 
where 108 surface emissivities are also used in the simulation, the number of 
atmospheric profiles must by multiplied by 108 to obtain the total amount of simulated 
cases. 

In the case of WPSST (see Eq. 1.10), retrieval of the coefficients is performed with the 
buoys values acquired during the year 2014. Because buoys measurements are taken at 
a depth of 3 meters, this temperature is not representative of the surface or skin 
temperature of the sea. This difference of temperatures, known as bulk-skin effect, has 
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been studied in many works as e.g. Hook et al. (2003) or Ghaneaa et al. (2016) and 
shows differences of 0.5 K over Lake Tahoe or 0.1 – 0.4 K over open sea. Some authors 
demonstrated that the relationship between bulk-skin temperatures depends on two 
forcing factors: wind and net air-sea heat flux (North et al. 2002). When heat flux is 
near to zero (at night) and the wind speed is above 5-6 m/s (Donlon et al. 2002; 
Gentemann et al. 2003), the layers of ocean are less stratified and the value of skin 
temperature is closer to bulk temperature. Following this, a database of buoys (always 
with coincident MODIS pass) was compiled with only at night and wind speed ≥ 5 m/s 
values.  

 

1.5. ALGORITHM COEFFICIENTS AND SENSITIVE ANALYSIS 

In this section, coefficients for each algorithm and sensor described in Section 1.1 and 
1.2 (copied from the original works or retrieved in this work) are showed. In our case, 
SCw algorithm was tested on L7/ETM+ and L8/TIRS; SW algorithm on L8/TIRS, 
MODIS and SEVIRI and TES algorithm on MODIS. The uncertainty of the LST 
algorithms proposed in this work (errors of the other algorithms were extracted from the 
original works), has been obtained in three different manners: 

a) Sensitive analysis: solving Eq. 1.5, 1.7 and 1.10 with the assumption of different 
uncertainties for the input data (θ, w and ε) and a certain value of NEΔT. 

ௌாேௌߪ ൌ ටߜ௔௟௚ ൅ ୒୉୼୘ߜ ൅ ఏߜ ൅ ௪ߜ ൅  ሺ1.16ሻ																																								ఌߜ

where δalg is the standard deviation of the algorithm obtained in the minimization 
(standard error of estimation), δNEΔT is the contribution of the noise equivalent delta 
temperature (NEΔT), δε is the error due to the uncertainty of the surface emissivity, δW 
is the error due to the uncertainty of the atmospheric water vapor content and σSENS is 
the total sensitivity analysis error of the algorithm. These contributions are given by: 

୒୉୼୘ߜ ൌ ඨቀ߲ܶݏ ߲ ௜ܶ
ൗ ቁ

ଶ
݁ሺ ௜ܶሻଶ ൅ ൬߲ܶݏ ߲ ௝ܶ

ൗ ൰
ଶ
݁ሺ ௝ܶሻଶ																								ሺ1.17ሻ 

ఏߜ ൌ ቀ߲ܶݏ ൗߠ߲ ቁ݁ሺߠሻ																																																				ሺ1.18ሻ 
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௪ߜ ൌ ቀ߲ܶݏ ൗݓ߲ ቁ݁ሺݓሻ																																															ሺ1.19ሻ 

கߜ ൌ ඨቀ߲ܶݏ ௜ߝ߲
ൗ ቁ

ଶ
݁ሺߝ௜ሻଶ ൅ ൬߲ܶݏ ௝ൗߝ߲ ൰

ଶ
݁ሺߝ௝ሻଶ																									ሺ1.20ሻ 

where e refers to the error of the parameter considered in brackets. The different 
derivatives of the Ts given by Eq. (1.16) can be easily calculated. Values of e(Ti) = e(Tj) 
= 0.07-0.40 K (depends of NEΔT of considered sensor), e(εi) = 0.01 and e(w) =0.5 
g/cm2 have been considered for MODIS, SEVIRI and TIRS. In the case of WPSST, Eq. 
(1.10), where there is a dependence of zenith angle, an error of e(θ)=0.08º for θ>45º and  
e(θ)=0.03º for θ≤45º has been considered, based on the gap of two consecutive MODIS 
angles. 

b) From Independent Simulated Data: the databases presented above were applied to 
SC and SW algorithms (including 108 emissivity spectra) to retrieve the LST and 
compare it with the LST database values. This procedure provides an idea of algorithm 
temperature precision value (σSIM) 

c) Direct validation from in-situ data: this is the last step in order to test the algorithm 
with direct ground LST data comparison. The sensitivity with direct validation (σVAL) 
was included for the algorithms that have been tested in previous works. 

1.5.1. Landsat 8 TIRS 

The coefficients showed in Table 1.2 and 1.3 were obtained in this work and published 
in Jiménez-Muñoz et al. (2014). The SC algorithm was obtained for band 10 (because 
of the lower atmospheric absorption of this band than the band 11) for the atmospheric 
functions (Eq. 1.5 and Eq. 1.6) using GAPRI database. Because bγ=c2/λ parameter has a 
λ dependence it was calculated for TIRS to be 1324 K. SW algorithm was also 
developed using GAPRI database. 

SC Pearson’s linear correlation coefficient is higher than 0.98 for the three atmospheric 
functions (Eq. 1.6). Since total atmospheric water vapor column (w) is the main input to 
the algorithm (except for surface emissivity), we tested the sensitivity of the algorithm 
to variations in w of ±0.5 g·cm−2 for all the simulated data obtained from the GAPRI 
database. Bias (LST for a given variation of w minus LST when nominal w0 value is 
considered) values are of (0.2 ± 0.7) K for w0 − 0.5, and of (−0.5 ± 1.0) K for w0 + 0.5, 
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with respective root mean square errors (RMSEs) of 0.8 and 1.1 K. For SW algorithm, 
the standard error of estimation in the statistical fit (δalg) was 0.6 K, with a Pearson’s 
linear correlation coefficient of 0.98. The RMSE of sensitivity analysis (σSENS) is of 2.1 
K, with δalg = 0.6 K, δNEΔT = 1.5 K (considering NEΔT=0.4 K), δε = 1.4 K and δw = 0.1 
K. Major contributions to this error are due to the NEΔT and the uncertainty of the 
surface emissivity). If the sensor’s NEΔT is assumed to be only 0.1 K (as it was 
reported in the Section 1.1) the contribution of the NEΔT to the total LST error is 
significantly reduced (from 1.5 to 0.4 K), and total LST error is then 1.5 K. 

Furthermore, SC and SW algorithms were applied to simulated data obtained from the 
TIGR and STD databases. Bias (LST retrieved from the algorithm minus the reference 
LST), standard deviation, and RMSE values are provided in Table 1.4, including also 
the linear correlation coefficient. 

 

Table 1.2. SCw coefficients retrieved by applying GAPRI database on TIRS. 
c11 c21 c31 c12 c22 c32 c13 c23 c33 

0.0402 0.0292 1.0152 -0.3833 -1.5029 0.203 0.0092 1.3607 -0.2751 

 
Table 1.3. SW coefficients retrieved by applying GAPRI database on TIRS. 

a1 a2 (K-1) a3 (K) a4 (K· cm2 g-1) a5 (K) a6 (K· cm2 g-1) a0 (K) 

-0.268 1.378 0.183 54.30 -2.238 -129.20 16.40 

 

RMSEs for the SW algorithm over the whole range of water vapor values are around 
1.0 K, with almost no bias. As commented in Jiménez-Muñoz et al. (2009a), the SCw 
algorithm estimated from the w approach fails for moderate to high w values (e.g., w > 
3 g·cm−2). Therefore, RMSEs for the SC algorithm over the whole range of w values 
increase to 3–4 K, except for the TIGR1711 database, with an RMSE of 2 K. This last 
result is explained by the w distribution, which is biased toward low values of w in this 
database. When only atmospheric profiles with w values lower than 3 g·cm−2 are 
selected, the SC algorithm provides RMSEs around 1.5 K, with almost equal values of 
bias and standard deviation, around 1.0 K in both cases (with a negative bias, thus the 
SC underestimates the LST). In contrast, when only w values higher than 3 g·cm−2 are 
considered, the SC algorithm provides RMSEs higher than 5 K. In these cases, it is 
preferable to calculate the atmospheric functions of the SC algorithm directly from Eq. 
(1.5) rather than approximating them by a polynomial fit approach as given by Eq. 
(1.6). 
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Table 1.4. Test of the Single-Channel (SC) and Split-Window (SW) algorithms using 
independent simulated data. 

Database Algorithm 
W range 
(g·cm-2) 

n data 
Bias 
(K) 

St. Dev. 
(K) 

RMSE 
(K) 

r 

TIGR61 

SW 0-6 32940 -0.1 1.2 1.2 0.997 

SC 0-6 32940 -2.7 3.0 4.0 0.982 

SC 
SC 

0-3 
3-6 

17820 
15120 

-1.2 
-4.5 

1.5 
3.2 

1.9 
5.6 

0.996 
0.954 

TIGR1761 

SW 0-6 950940 0.0 0.6 0.6 0.999 

SC 0-6 950940 -1.1 1.7 2.0 0.996 

SC 
SC 

0-3 
3-6 

886680 
58860 

-0.8 
-4.0 

0.9 
3.5 

1.2 
5.4 

0.999 
0.957 

TIGR2311 

SW 0-6 249588 0.4 1.0 1.1 0.999 

SC 0-6 249588 -2.2 3.7 4.3 0.981 

SC 0-3 186732 -1.0 1.1 1.5 0.998 

SC 3-6 54216 -4.5 4.6 6.5 0.936 

STD66 

SW 0-6 35640 -0.2 0.9 0.9 0.998 

SC 0-6 35640 -2.1 2.6 3.3 0.989 

SC 
SC 

0-3 
3-6 

28080 
7020 

-1.2 
-4.7 

1.2 
2.3 

1.7 
5.4 

0.997 
0.961 

 

1.5.2. Landsat 7 ETM+ 

The coefficients showed in Table 1.5 were extracted from Jiménez-Muñoz et al. 
(2009a) for band 6 L7/ETM+ for the atmospheric functions (Eq. 1.5 and Eq. 1.6) of the 
SC algorithm using the databases presented in Section 2.3. Because bγ=c2/λ parameter 
has a λ dependence, for ETM+ bγ is equal to 1277 K. 

 

Table 1.5. SCw coefficients extracted with four different databases on ETM+ sensor. 
database c11 c21 c31 c12 c22 c32 c13 c23 c33 

STD61 0.0917 -0.0989 1.0966 -0.7166 -0.6422 -0.1718 -0.0350 1.5406 -0.4643 

TIGR61 0.0759 -0.0713 1.0857 -0.6144 -0.7092 -0.1938 -0.0289 1.4605 -0.4320 

TIGR1761 0.0652 0.0068 1.0272 -0.5300 -1.2587 0.1049 -0.0197 1.3695 -0.2431 

TIGR2311 0.0698 -0.0337 1.0490 -0.5104 -1.2003 0.0630 -0.0546 1.5263 -0.3214 
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Correlation coefficients (r2) obtained for the three atmospheric functions (Eq. 1.6) are 
above 0.96 and the RMSE of the algorithms using STD and TIGR independent 
simulated data is around 2–4 K for a whole w range. Taking in account only the results 
obtained for w values between 0.5 and 2 g·cm−2, which can be considered the range of 
good performance for the algorithm (Jiménez-Muñoz et al. 2009a), RMSE < 1.0 K are 
obtained for all the databases. 

1.5.3. Terra/Aqua MODIS Land Surface Temperature 

Coefficients and errors of SW and MMD of TES algorithms are presented in Table 1.6 
and 1.7 respectively for Terra and Aqua platforms. SW coefficients have been extracted 
from Jiménez-Muñoz et al. (2008) using TIGR61 database with the minimization of 
164,700 data points for MODIS bands 31 and 32. The uncertainty obtained with the 
sensibility analysis (σSENS) was of 2.1 K, assuming a NEΔT=0.1 K, with major 
contributions due to emissivity error (ẟε=1.8 K). 

In the case of TES algorithm (where band 29, 31 and 32 are involved), the semi 
empirical relation between εmin and MMD (see Eq. 1.14) has been extracted from 
Jiménez-Muñoz et al. (2014) with a standard error of determination (1-sigma) of 0.006 
and a correlation coefficient of 0.990. 

 

Table 1.6. SW coefficients (a0–a6) obtained for MODIS Terra (TE) – Aqua (AQ). SW 
errors contributions are given by (ẟ) and the total sensitivity error of algorithm is given 
by σSENS. 

SW a1 
a2 

(K-1) 
a3 

(K) 

a4 

(K· cm2 
g-1) 

a5 

(K) 

a6 

(K· cm2 
g-1) 

a0 

(K) 
δalg 

(K) 
δNEΔT 

(K) 
δε 

(K) 
δw 

(K) 
σSENS 

 (K) 

TE 2.625 0.424 41.4 0.04 -201 26.6 0.004 
0.9 0.6 1.8 0.1 2.1 

AQ 2.601 0.424 41.3 0.14 -199 26.3 0.012 

 

Table 1.7. MMD coefficients (m1–m3) retrieved in the TES algorithm. Standard error of 
determination (σ) and correlation coefficient (r2) for MMD fit are also shown. 

TES 
m1 m2 m3 σ (K) r2 

0.998 0.654 0.736 0.006 0.990 
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MOD11 products were also validated in this work, however, since fixed coefficients are 
not used to obtain the product and depend on zenith angle, atmospheric water vapor 
content and emissivity values (condition dependence), the coefficients are extracted 
from a LookUp Table (LUT) and are not shown here. More information about MOD11 
and MYD11 product can be found in Wan and Dozier (1996), Wan (2014) and MOD11 
Algorithm Theoretical Basis Document (ATBD) at website 
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf. 

The uncertainty of TES algorithm through direct validation (based on MOD21 ATBD 
at https://modis.gsfc.nasa.gov/data/atbd/atbd_mod21.pdf) is below 1.5 K in all test sites. 
Although MMD coefficients analyzed here are not the same as MOD21 product, the 
low σ (or ε uncertainty) in the MMD relationship presents minimal differences with 
TES algorithms (0.005 in ε uncertainty leads 0.3 K in LST). For MOD11, reported 
RMSE with simulated data is approximately 1.0 K and 0.8 K for daytime and nighttime 
data, respectively (see MOD11 ATBD) while direct validation shows values of 1.0 K to 
2.0 K for both daytime and nighttime data (Wan, 2014). 

1.5.4. Terra/Aqua MODIS Sea Surface Temperature 

Results obtained for QDSST algorithm proposed in this work (see Eq. 1.10) are 
summarized in Figure 1.2 and 1.3 – showing relationship between TSST, direct 
measurement, versus T31 and T32 band difference (T312) and zenith angle (θ) – and Table 
1.8, which includes the SW coefficients (c0–c4), number of data used in the relationship, 
the Pearson’s correlation coefficient (r) and the contribution to the total sensitivity error 
of the different terms (δalg, δNEΔT and δθ). Algorithm has been divided in four ranges in 
order to be more sensitive to the atmospheric path length.  

In terms of the different contributions to σSENS, it is clearly shown that the main 
contributions is angle dependent. For θ below 40º, the main contribution is due to 
algorithm adjustment but, for θ above 40º, the contribution due to NEΔT and θ 
increases reaching similar values to algorithm contribution. These differences between 
angles are due to different values assumed in the T312 and θ that were taken as the 
average value of all the data used for each range algorithm. The values used for each 
range, from lower to higher θ, were: 0.55 K, 0.60 K, 0.75 K and 0.90 K for T312 and 15º, 
30º, 45º and 60º for θ. In terms of total error on SST, values below 0.5 K and 1.0 K 
were obtained for low and high zenith angles, respectively, showing clearly that there is 
a quick decrease in precision for large angles. 
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a) 

  

b) 

  

c) 

  

d) 

Figure 1.2. MODIS Terra comparison between buoy temperature minus band 31 
brightness temperature (Tb-T31) versus band 31 minus band 32 brightness temperature 
(T312) for left plots, and with a zenith view angle dependence (1-secθ) in the right plots. 
Comparison was separated for four zenith view angle ranges: a) θ < 20º; b) 20 ≤ θ < 
40º; c) 40 ≤ θ < 55º; d) θ ≥ 55º. 
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a) 

  

b) 

  

c) 

  

d) 

Figure 1.3. MODIS Aqua comparison between buoy temperature minus band 31 
brightness temperature (Tb-T31) versus band 31 minus band 32 brightness temperature 
(T312) for left plots, and with a zenith view angle dependence (1-secθ) in the right plots. 
Comparison was separated for four zenith view angle ranges: a) θ < 20º; b) 20 ≤ θ < 
40º; c) 40 ≤ θ < 55º; d) θ ≥ 55º. 
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Table 1.8. WPSST algorithm coefficients (c0–c4), number of points (n), Pearson’s 
correlation coefficient (r), the total error of the different terms (δalg, δNEΔT and δθ) as 
well as the total sensitivity error of algorithm (σsens) through sensitive analysis for each 
zenith view angle (θ) range. See also Figure 1.1 and 1.2. 

Platform θº c1 c2 
c3 

(K-1) 

c4 

(K-1) 
c0 

(K) 
n r ẟalg 

(K) 
ẟNEΔT 

(K) 
ẟθ 

(K) 
σSENS 

 (K) 

Terra 

< 20 2.44 -0.85 0.56 - 1.18 393 0.917 0.38 0.09 0.01 0.39 
[20, 40] 2.61 -1.14 0.33 - 1.21 489 0.918 0.41 0.09 0.03 0.42 
]40, 55] 2.52 -1.41 0.12 -0.19 1.45 498 0.906 0.57 0.46 0.04 0.73 

> 55 -0.43 -2.54 1.24 -0.46 2.54 363 0.894 0.63 0.66 0.36 0.98 

Aqua 

< 20 2.51 0.49 0.40 - 0.95 203 0.922 0.37 0.25 0.01 0.45 
[20, 40] 2.72 -0.97 0.14 - 0.99 282 0.916 0.41 0.09 0.05 0.42 
]40, 55] 2.36 -0.87 0.49 -0.06 1.19 432 0.933 0.49 0.47 0.03 0.68 

> 55 -0.97 -2.90 1.53 -0.58 2.12 515 0.889 0.68 0.66 0.38 1.01 

 
 

The NLSST algorithm presented in Eq. (1.11) and processed by Ocean Biology 
Processing Group uses month dependent coefficients that can be downloaded at 
https://oceancolor.gsfc.nasa.gov/atbd/sst/. The errors provided by the sensibility 
analysis and extracted from the ATBD 
(https://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf) were retrieved as 0.337 K at 
nadir and 0.48 K at θ=45º. Direct validation of SST product was also performed in 
other works as, for example, Minnett et al. (2004), Qin et al. (2014) or Ghanea et al. 
(2016) with biases and 1-sigma results ranging from -0.3 K to 0.1 K and 0.45 K to 0.68 
K, respectively. More information can be found on Kilpatrick et al. (2015). 

1.5.5. SEVIRI 

SEVIRI SW coefficients presented in Eq. (1.7), were obtained with zenith angle 
dependence form Atitar and Sobrino, (2009) with simulations performed on TIGR61 
database (see Table 1.9). SW algorithm was applied to IR10.8 and IR12.0 channels. 
Errors of different contributions were also included in the Table 1.9 (except ẟw which in 
all cases is below 0.1 K) for a simulation performed at θ=30º. The total sensitivity error 
(σSENS) showed by the algorithm is 1.13 K.  

Furthermore, uncertainties form direct validation were found in the work, with 
nighttime RMSE values of 1.0 K to 1.9 K. 
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Table 1.9. SEVIRI SW coefficients (a0–a6), Pearson’s correlation coefficient (r) and 
error contributions (ẟ) to the total LST error. µ is equal to 1/cos2(θ). 

a1 
a2 

(K-1) 
a3 

(K) 

a4 

(K· cm2· 
g-1) 

a5 

(K) 

a6 

(K· cm2· 
g-1) 

a0 

(K) 
r 

ẟalg 

(K) 

ẟNEΔT 

(K) 
ẟε 

(K) 

1.34- 

0.11µ 

0.29+ 

0.08µ 

60.67- 

10.01µ 

-6.71+ 

2.47µ 

-125.91+ 

15.09µ 

19.44- 

4.27µ 

-0.44+ 

0.57µ 
0.98 0.42 0.40 0.97 

 

1.5.6. AHS 

TES algorithm was used in AHS for LST retrieval because of its 10 thermal channels. 
Following the work of Sobrino et al. (2008), a configuration of 7 channels (less affected 
by atmospheric absorption) was considered as optimal to retrieve LST. AHS bands 
considered are 72, 73, 75, 76, 77, 78 and 79. 

	 	 ௠௜௡ߝ ൌ 0.999 െ ଴.଼ଵହܦܯܯ0.777 → ݎ ൌ 0.996, ߪ ൌ 0.005 

Applying the MMD relation (Eq. 1.14) to TES algorithm, a RMSE below 1.6 K was 
obtained in a direct validation of LST. 

 

1.6. LAND SURFACE EMISSIVITY 

Because of the coupling between LST and LSE, all the algorithms for LST retrieval 
require the knowledge of LSE (except the TES algorithm). In this work, we used the 
NDVI Thresholds Method (NDVI-THM), originally presented by Sobrino et al. (2001) 
and revised by Sobrino et al. (2008). LSE is estimated from information collected in 
VNIR bands (reflectance or vegetation index) depending on the Fractional Vegetation 
Cover (FVC) for a given pixel. Different approaches have been proposed to retrieve 
FVC from vegetation indices (e.g. NDVI) or other techniques. A review can be found in 
Jiménez-Muñoz et al. (2009b). Equations for LSE are given as: 

ߝ  ൌ ܽ ൅ ܥܸܨሺ			௥௘ௗߩܾ ൌ 0ሻ  

ߝ  ൌ ௦ሺ1ߝ െ ሻܥܸܨ ൅ ܥܸܨ௩ߝ ൅ ሺ0			ܥ ൏ ܥܸܨ ൏ 1ሻ												ሺ1.21ሻ  

ߝ  ൌ 0.99			ሺܥܸܨ ൌ 1ሻ  
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where ρred is the reflectance in the red band, the term C accounts for the cavity effect 

(multiple scattering), and ߝ௦ and ߝ௩ are reference soil and vegetation emissivity values. 

The empirical linear relationship between ߝ and ρred for the case FVC=0 was introduced 
to avoid an a priori knowledge of the soil emissivity, and also to account for the 
variation in emissivity over different soil types. When working over a particular area 
with only one type of soil with known emissivity, and neglecting the cavity term 
because of practical considerations, Eq. (1.21) can be simplified to	ߝ ൌ ௦ሺ1ߝ െ ሻܥܸܨ ൅
 ௩ values have been obtained using laboratory measurements ofߝ ௦ andߝ .ܥܸܨ௩ߝ
emissivity spectra included in the ASTER spectral library (Baldridge et al., 2009). In 
Table 1.10, the final expressions for emissivity retrievals are shown.  

 

Table 1.10. Emissivity estimation with NDVI Thresholds Method (NDVI-THM). The 
different conditions (land cover) are expressed in terms of Fractional Vegetation Cover 
instead of NDVI values. 

Sensor Band Land Cover Expression 

L8 
10 

FVC=0 0.979-0.046ρOLI,B4 

0<FVC≤1 0.971+0.0167FVC 

11 
FVC=0 0.982-0.027ρOLI,B4 

0<FVC≤1 0.977+0.011FVC 

MODIS 
31 

FVC=0 0.984-0.088ρ1 
0<FVC≤1 0.974+0.015FVC 

32 
FVC=0 0.982-0.028ρ1 

0<FVC≤1 0.968+0.021FVC 

SEVIRI 
10.8 

FVC=0 0.977-0.048ρVIS0.6 
0<FVC≤1 0.968+0.021FVC 

12.0 
FVC=0 0.981-0.026ρVIS0.6 

0<FVC≤1 0.976+0.015FVC 
 

 

1.7. ALGORITHMS SUMMARY 

A summary of the algorithms, databases for coefficients retrieval, bands and the 
different errors (σSENS, σSIM and σVAL) expected for each sensor are shown in Table 1.11 
(no data is symbolized with a line). These errors will be taken in account for the 
validation analysis performed in Chapter 4. 
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Table 1.11. Summary of algorithms, databases (used for coefficients retrieval), 
emissivity inputs for the errors analysis, sensor bands and the different errors expected 
for each sensor algorithm: σSENS is the error obtained with the sensitive analysis, σSIM is 
the RMSE obtained with the simulation of the algorithm in an independent database and 
σVAL is the RMSE obtained with a direct validation. Values shown in brackets represent 
the uncertainty for low atmospheric w range conditions. 

Sensor 
Algorit

hm 
Bands 

Data 
base 

Emissivity 
input 

σSENS 

(K) 

σSIM 

(K) 
σVAL 

(K) 
SEVIRI SW 10.8, 12.0 TIGR61 NDVI-THM 1.1 - 1.0 - 1.9 

MODIS 

SW 31, 32 TIGR61 NDVI-THM 2.1 - - 

TES 
29, 31 

and 32 
ASTERlib MMD - - < 1.5 

MOD11 31, 32 MOD07 MMD - 0.8 - 1.0 1.0 - 2.0 

QDSST 31, 32 Buoys - 0.42 at 40º - - 

NLSST 31, 32 
Buoys/ 

M-AERI 
- 0.48 at 45º - 0.45 - 0.68 

TIRS 
SW 10, 11 GAPRI NDVI-THM 1.5 1.1 - 

SC 10 GAPRI NDVI-THM 1.1 3.8 (1.7) - 

ETM+ SC 6 

STD61 NDVI-THM < 2.0 (< 0.7) 4.0 (0.8) - 

TIGR61 NDVI-THM ∼3.0 (< 0.7) 3.0 (0.8) - 

TIGR1761 NDVI-THM < 2.0 (< 0.7) 2.6 (0.9) - 

TIGR2311 NDVI-THM ∼3.0 (< 0.7) 2.5 (0.9) - 

AHS TES 

72,73,75, 

76,77,78 

and 79. 

ASTERlib MMD - - 1.6 

 

In general, all algorithms obtain RMSE values below 2 K, except SC algorithms if all w 
range is considered. TES algorithm has the advantage that it only needs as input the 
atmospheric functions, while SC and SW algorithms need, additionally, an emissivity 
input value. As TES algorithm, SW SST algorithms do not need emissivity input 
because the high emissivity in the infrared spectral intervals of concern are relatively 
invariant under the usual range of environmental conditions. As a result, variability in 
surface processes is not a major source of uncertainty and then, the accuracy of SST 
algorithms is higher than LST algorithms. 
 



 



 

 

 

 

 

 

CHAPTER 2:  

DATA PROCESSING 
 

 

 

 

 

 

 

 

 

In this chapter we described the in-situ, satellite, airborne and atmospheric data used for 
cal/val activities in addition to process of these data. Furthermore, a new methodology 
for LST sharpening developed in this work and the VC and algorithm validation process 
are presented. 
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2.1. ATMOSPHERIC DATA 

Atmospheric corrections are difficult to implement. The presence of the atmosphere 
between surface and sensors affects the radiances measured by a radiometer at the TOA. 
These radiances result primarily from emission/reflection at the surface modulated by the 
effects of the attenuation, and emission of the atmosphere. Atmospheric corrections thus 
consist in correcting the radiance measured by sensors for the effects of atmospheric 
attenuation (or transmissivity), emission (up-welling atmospheric radiance) and 
emission-reflection (the down-welling atmospheric radiance). Correcting for the 
atmospheric effects requires accurate knowledge of the vertical profiles of atmospheric 
water vapor and temperature both highly variable spatially and temporally (Perry & 
Moran, 1994). 

Local soundings are a useful and most precise tool for atmospheric vertical profile 
knowledge. The problem is that soundings do not cover all regions of the world but only 
specific local areas. For this reason, alternative atmospheric profile sources covering our 
test sites were used in this study. These atmospheric profiles are MODIS MOD07 
atmospheric product and the reanalysis data extracted from the National Center for 
Environmental Prediction (NCEP). 

2.1.1. Local Soundings 

In the web page http://weather.uwyo.edu/upperair/sounding.html of the University of 
Wyoming, soundings of Madrid (40.50N, 3.48W) and Murcia (38.00N, 1.16W) airports 
were downloaded for years 2013, 2014 and 2015. Soundings are launched two times per 
day, at 00:00 and 12:00 with measurements of pressure, temperature, relative humidity, 
wind speed and direction. Altitude of the soundings was computed using the hydrostatic 
equation, which is a function of pressure.  

These soundings were not used for the cal/val activities because of their distant location, 
but were used for error estimations of alternative atmospheric profile sources. Madrid 
location was tested as a representative profile of inland atmospheres (such as Barrax 
location) and Murcia was tested as a representative of coastal of south Iberian Peninsula 
locations (Doñana and Cabo de Gata). 

2.1.2. MODIS atmospheric profiles product (MOD07) 

MODIS project provides the scientific community with many Standard Products, among 
them include the atmospheric profile product, denoted as MOD07 or MYD07 for Terra 
or Aqua platform, respectively. In general, we use the term MOD07 to refer both Terra 
and Aqua derived products. MOD07 consists of several parameters, such as total-ozone 
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burden, atmospheric stability, temperature and moisture profiles, and atmospheric water 
vapor. All of these parameters are produced day and night at 5×5 1-km pixel resolution 
when at least 9 observations are cloud free. It provides a total amount of 20 atmospheric 
levels. In particular, the pressure levels of profiles are 5, 10, 20, 30, 50, 70, 100, 150, 200, 
250, 300, 400, 500, 620, 700, 780, 850, 920, 950 and 1000 hPa. The algorithm uses 11 
infrared MODIS bands (bands 25, and from 27 to 36) to extract the vertical profiles with 
a statistical regression. Profiles include temperature, moisture as well as total column 
estimates of precipitable water vapor, ozone, and atmospheric stability. Two latest 
versions, version 5 (v5) and version 6 (v6) were considered in this work. The differences 
between v5 and v6 (processing data differences) can be found in Borbas et al. (2011) and 
Seemann et al. (2006) and MODIS Atmosphere Web site at http://modis-
atmos.gsfc.nasa.gov/. 

For cal/val purposes, MOD07 v6 and v5 profiles were extracted for one single pixel 
centered in our desired area. Furthermore, MOD07 v6 was used for indirect validation or 
cross-validation of LST products proposed in this work and derived from L8/TIRS or 
MODIS. In this last case, for the retrieval of LST maps, a huge number of profiles is 
required which needs large computing time using normal computers. For this reason, in 
order to reduce computing time, the profiles were averaged to 20×20 km. As an example, 
to compute all the pixels over Iberian Peninsula (10 million pixels) it is necessary 50 
hours approximately. Averaging the pixels, the time is reduced to 3 hours approximately.  

2.1.3. National Center for Environmental Prediction (NCEP) 

An Atmospheric Correction Parameter Calculation (ACPC) web tool was proposed by 
Barsi et al. (2005) in order to provide atmospheric parameters particularized to the 
Landsat series TIR bands as well as vertical atmospheric profiles. Data included in the 
ACPC is generated by NCEP, and they incorporate satellite and surface data to predict a 
global atmosphere at 28 altitudes, plus one extra altitude at the TOA (at 0 hPa). These 
modelled profiles are sampled on a 1°×1° grid and generated every 6 h, 00:00, 06:00, 
12:00, and 18:00 UTC. Vertical atmospheric information includes the most important 
variables such as pressure, geopotential height, air temperature and relative humidity, 
among others. In the web-tool (http://atmcorr.gsfc.nasa.gov), the user needs to enter the 
latitude and longitude coordinates to obtain the vertical atmospheric profile that are sent 
by e-mail.  

Because each profile must to be obtained manually and through web site, the usefulness 
of this tool is focused only for a small areas or few satellite pixels. For this reason, NCEP 
profiles were used only on AHS sensor and Landsat series for cal/val purposes. 
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2.2. IN-SITU DATA 

In-situ data is the key of cal/val activities because it estimates our ground or sea true 
temperature values. Mostly of in-situ data is measured by radiometers or pyrgeometers 
(taking in account only the TIR region) that provide radiance values in a spectral range 
of 8–14 μm and 4.5–50 μm respectively, from which it is possible to extract LST or SST. 
Contact thermometers are not used for temperature estimations (except for SST) because 
of the difficulty to take measurements for surfaces thickness of only 1 µm (which is the 
width representative of remote sensing methods). In this section, in-situ sea temperatures 
are presented. Because of the time and work dedicated to the establishment of the ground 
fixed stations and the viability studies performed, ground data will be developed in the 
next chapter. 

2.2.1. Sea temperature measurements 

The Iberian Peninsula is surrounded by the Atlantic Ocean and the Mediterranean Sea 
which are located north-eastward and westward, respectively. Atlantic Ocean is the 
second largest of the world's oceans with a total area of about 106,460,000 km2. The 
Mediterranean Sea is located between latitudes 30–46º N and longitudes from 6º W to 
36º E (see Figure 2.1). In this study, only a little fraction of the sea area were used. 
Concretely, the area delimited by the coastal shape of the Iberian Peninsula. In this area, 
the State-owned Spanish Port System includes anchored buoys (SeaWatch type) network 
data that provide real time data of the state of the sea. Data include sea temperature, speed 
and direction of stream and air, air temperature and atmospheric pressure. Sea parameters 
are taken at a depth of 3 m, while atmospheric parameters are taken at 3 m above the 
surface (see Figure 2.2). 

Because the goal of this work is the validation of SST retrievals, only the buoys with sea 
temperature, wind speed measurements (because wind speed is the key parameter to 
relate buoy temperature and SST) and located at least 5 km from the coast (in order to 
avoid mixed pixels sea-ground) were taken in account. Following this, six Atlantic and 
five Mediterranean buoys were used. Locations of the buoys are shown in Figure 2.1 and 
in Table 2.1. 

Sea temperature is retrieved with a contact thermometer with a precision of ±0.03 K 
which register data every hour with an instantaneous measurement. The wind speed is 
measured every 10 min and averaged and registered every hour with a precision of ±0.3 
m/s. As posted in Embury et al. (2012), hourly depth temperature variations are lower 
than 0.1 K (registered below 1 m), therefor hourly temporal resolution is enough for 
validation activities.  
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Table 2.1. Buoys location in the Atlantic Ocean and Mediterranean Sea. 
Atlantic Buoy Location Mediterranean Buoy Location 

Golfo de Cádiz 36.48° N, 6.96° W Tarragona 40.68° N, 1.47° E 

Cabo Silleiro 42.12° N, 9.43° W Dragonera 39.56° N, 2.10° E 

Villano-Sisargas 43.50° N, 9.21° W València 39.52° N, 0.21° E 

Estaca de Bares 44.12° N, 7.67° W Cabo de Palos 37.65° N, 0.33° W 

Cabo de Peñas 43.75° N, 6.16° W Cabo de Gata 36.57° N,2.32° W 

Bilbao-Vizcaya 43.64° N, 3.05° W   

 

 

 

 

Figure 2.1. Buoys location over the surrounding seas of Iberian Peninsula. 
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(a) 

 
(b) 

Figure 2.2. (a) Anchored buoy scheme and (b) buoy picture. 

 

The buoys showed in Table 2.1 cover more than ten years of data, even twenty at Cádiz 
buoy, which is shown in real time in the web page http://www.puertos.es/es-
es/oceanografia/Paginas/portus.aspx and can be obtained via email. In our case, only 
three years of data were selected, from 2012 to 2014.  

 

2.3. SENSOR IMAGERY AND PROCESSING 

Forty-four and forty-seven daytime L7 and L8 scenes, respectively, were acquired in the 
period between April 2013 and June 2016, around 10:45 and 11:00 UTC for Barrax and 
Doñana, respectively. Images were downloaded from the web page 
https://earthexplorer.usgs.gov/. MODIS data were obtained from NASA web page 
https://reverb.echo.nasa.gov/reverb/. Data used goes from January 2013 to January 2016 
with more than 2,000 scenes over the Iberian Peninsula. Downloaded MODIS products 
include MOD02 (raw data for each band at 500 m and 1000 m), MOD03 (ancillary data), 
MOD07 (atmospheric data), MOD11. Finally, for SST validation, NASA product was 
downloaded although for years 2012 to 2014. SEVIRI data were obtained directly from 
the web page managed by our team (http://ceosspain.lpi.uv.es/), in which the LST product 
and ancillary data were downloaded. 
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For Vicarious Calibration and direct validation of temperature, Digital Count (DC) values 
and LST/SST product values were extracted over the pixel location of our fixed stations. 
For Landsat series, average values for an array of 3×3 pixels centered on the site and, for 
MODIS and SEVIRI, the pixel value over the site were taken in account. Moreover, 
SEVIRI, MODIS and L8/TIRS LST were validated in an indirect way (called cross-
validation) with the AHS images or between them. In these cases, a complete LST image 
was produced for the validation of a large amount of pixels.  

To obtain the radiance value of the raw images, Digital Counts of the ETM+ band 6, 
TIRS band 10 and 11 and MODIS band 29, 31 and 32 were converted to radiance units 
(W·µm4·m-2·sr-1) using image metadata (gain and offset values). These radiances were 
used for sensors band calibration and for the estimation of LST through RTE and TES 
algorithm. For the other LST retrievals (SC and SW methods), and SW SST retrieval, at-
sensor brightness temperatures were calculated with Planck’s law although with specific 
band constants (k1 and k2) in order to avoid the error introduced by using Eq. (1.3), known 
as the band-pass effect (Richter and Coll, 2002, Jimenez-Muñoz and Sobrino, 2006) 
which will be developed in the Chapter 4. From brightness temperatures and atmospheric 
parameters, LST and SST can be estimated. For SEVIRI LST product, MOD11 and SST 
NASA product, values are extracted directly from the image, using metadata gain and 
offset constants. All images were visually inspected to rule out cloud contamination. 
Table 2.2 shows a summary of sensor characteristics and cal/val procedure. 

In the case of the OLI and MODIS VNIR bands, Digital Counts were converted to Top 
Of Atmosphere (TOA) reflectance using image metadata (gain and offset). In the case of 
OLI image, a simple atmospheric correction based on the Dark Object Subtract (DOS) 
was performed to obtain at-surface reflectance (Chavez, 1996). For MODIS data, 
SMART software (Seidel et al. 2010) was used for atmospheric correction. From NDVI 
values, Fractional Vegetation Cover (FVC) was estimated according to Gutman and 
Ignatov (1998): 

ܥܸܨ  ൌ ே஽௏ூିே஽௏ூ௦

ே஽௏ூ௩ିே஽௏ூ௦
																																																		ሺ2.1ሻ 

where NDVIs and NDVIv are representative NDVI values for bare areas and green 
vegetation, respectively. These values were estimated as 0.15 and 0.9, respectively. FVC 
values were used to obtain the surface emissivity as presented in Section 1.6. For L7, 
emissivity values were obtained from in-situ measurements and not from VNIR data. 

Atmospheric profiles required for computation of τ, Lu, and Ld parameters (as required in 
the inversion of the RTE and TES algorithm) and w values (as required to apply the SC 
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and SW algorithms) were extracted from the atmospheric data of Section 2.1 and were 
introduced into the MODTRAN-5 radiative transfer code (Beck et al. 1999) to obtain 
spectral outputs, which are finally convoluted with the spectral response function of the 
sensor or in-situ radiometer desired thermal band. 

 

Table 2.2. Sensors characteristics summary including the amount of images provided 
over the Iberian Peninsula, the atmospheric correction applied for VC and direct-indirect 
validation (DIR) as well as the sensor pixel area chosen for radiance/LST extraction. 
M7v5 refers to MOD07 version 5, M7v6 refers to MOD07 version 6 and NCEP to 
reanalysis data. 

Sen 
sor 

N. 
Images 

Spatial 
Resolution 

(m)

IF 
OV 

NEΔT 
(K) 

Calibration 
control 

Atmosphere 
product 

Pixels 

SEVIRI 
72 

per day 
3500×4500 45º 

0.13 

0.21 
On-board - 1×1 

MODIS 
5-6 

per day 
1000 – 4000 63º 0.05 On-board 

VC – M7v6 

DIR – M7v6 
1×1 

TIRS 
1-2 

per 16 days 
100 7º 0.10 

Vicarious  

On-board 

VC – NCEP 

DIR – M7v6 
3×3 

ETM+ 
1-2 

per 16 days 
60 7º 0.20 

Vicarious  

On-board 

VC and DIR 

M7 v5, M7v6 

NCEP 

3×3 

AHS 
Campaign 

dependent 
3–8 45º 0.25 Vicarious 

DIR – M7v6 

DIR – NCEP 
- 

 

 

2.4. RESAMPLING METHODS 

Usually, TIR bands of sensors onboard satellite have spatial resolution data lower than 
other spectra data such as visible or near-Infrared bands. Therefore for studies with high 
spatial resolution requirements it is not always possible to estimate LST precisely. In the 
case of MODIS the spatial resolution is two or even four (for red and infrared bands) 
times lower than for VNIR and SWIR channels and, for L8/TIRS, it is three times lower. 
Therefore, it is very necessary to increase the spatial resolution of LST images in order 
to meet the needs of many studies (Clinton et al. 2014; Nichol et al. 2009) requiring pixel 
scale to identify the LST variation in agricultural or rural environments. 
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Downscaling refers to the process of deriving local to regional-scale information from 
disaggregation of a coarse spatial resolution (thermal) data to finer spatial resolution (sub-
pixel temperatures) through sharpening or unmixing algorithms by using an empirical 
relationship between the two resolutions (Mechri et al. 2016). Different methods exist for 
sharpening of coarse spatial resolution data which include those based on statistical 
regression schemes (Kustas et al. 2003, Agam et al. 2007), data assimilation based 
approaches (Kallel et al. 2013), principal components analysis (Wang et al. 2015) or data 
fusion using multi sensor data (Zhu et al. 2010), among others. Between many statistical 
regression models, the NDVI-LST relationship has been commonly used for downscaling 
cokriging methods (Rodriguez-Galiano et al. 2012) or empirical fits (Jeganathan et al. 
2011) over agricultural or urban areas. 

The main advantage of statistical regression models is that it can be automatized (i.e. a 
classification process is not necessary), obtaining synthetic images without human 
interaction and based only on the image data. On the other hand, the main disadvantage 
of pixel decomposition with statistical regression methods is that they are not able to 
maintain the pixel TIR radiance unchanged (to maintain radiometry) after decomposition. 
Differences between coarse image and disaggregated image are always generated due to 
local influences and differences in soil and vegetation types, soil moisture or emissivity 
as well as the precision of the model used. 

Between statistical regression methods, local models use relationships reduced to a local 
neighborhood area (size of n×n pixels) instead of global models that use the relation for 
the complete image and generate unique relationship between LST and other variable. 
The advantage of local models are that local changes have less influence in the regression 
and then radiometry is well maintained (Mukherjee et al. 2014). Furthermore, NDVI or 
other vegetation index are not completely sensible to soils, and thus to emissivity 
differences. For this reason, the introduction of SWIR spectra is needed for soil 
discrimination (Vaughan et al. 2003) and accurate LST disaggregation. 

2.4.1. Nearest Neighbor Temperature Sharpening method 

Here is proposed a new sharpening method called Nearest Neighbor Temperature 
Sharpening (NNTS) and based on the local variant model proposed by Jeganathan et al. 
(2011) called Temperature Sharpening (TsHARP) local variant. The difference between 
models lies on the relationship between NDVI and LST: while in TsHARP model the 
LST is estimated by ordinary least square regression, the NNTS method is based on 
similar pixel properties and its distance, both over an n×n area. This procedure was 
chosen because, sometimes, the relationship between the NDVI and LST is poor and then 
the LST estimation is not accurate. In this way, it is possible to apply disaggregation in 
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presence of water body, river bed or even clouds. For more accurate predictions, SWIR 
spectra relation with LST was also included in the model. 

In the scheme of Figure 2.3, the NNTS method procedure is explained as follows: NDVI 
and SWIR thin image were up-scaled to the coarse spatial resolution image, obtaining at 
the same time the standard deviation of each coarse pixel (and therefore assessing the 
purity of each coarse pixel) and the average NDVI and SWIR value of coarse pixels. 
Then, with LST, NDVI and SWIR images at coarse resolution, a sliding window of N×N 
pixels is applied to all the coarse image pixels (in our case, a window of 5×5 pixels was 
used). The method, from here is divided in two steps: 

 

 

Figure 2.3. Summary scheme of the Nearest Neighbor Temperature Sharpening method. 
STD refers to standard deviation (σ), Thin refers to sharpened image, ws is the similarity 
weight coefficient, wdist is the distance weight coefficient, nsd is the number of pixels 
taken in account for the least square regression and pcoar is the number of coarse pixels 
used for vdist (LST dependent of distance) and vs (LST dependent of pixel similitude) 
computation. 
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In the first step, only the coarse pixels in the sliding window with less than 25% of 
standard deviation in comparison to average value (Kustas et al. 2003) were considered 
(nsd) for the regression, in which the correlation coefficient (r2) for both fits (NDVI and 
SWIR) were obtained, selecting the highest one. Slope and intercept parameters (a and 
b) were also obtained for LST computation. If r2 is high, it means that the similitude or 
relation between pixels is more important than the distance between them giving to 
similarity weight coefficient (ws) high values (ws = r2) and to distance weight coefficient 
(wdist) low values (wdist = 1-r2). On the contrary, if r2 is low, it means that the distance, 
pixel closeness, is more important than the properties similitude, giving low values for 
ws and high for wdist. 

Once the first step is over, with the distance and similitude weight distribution, the second 
step consist into fill with LST values the thin pixels contained in the central coarse pixel 
(sub-pixels of the coarse pixel) of the N×N window. Eq. 2.2 shows how is computed the 
final LST for thin pixels. 

ܵܮ ்ܶுூே ൌ ௗ௜௦௧ݓ ൈ ௗ௜௦௧ݒ ൅ ௦ݓ ൈ  ሺ2.2ሻ																																								௦ݒ

where vdist is the LST value retrieved with inverse distance average values (Eq. 2.3) and 
vs is LST retrieved with: a) the least square regression (Eq. 2.4.1) obtained in step one – 
if r2 is higher than 0.6 – or b) simply averaging coarse values (Eq. 2.4.2). Both average 
equation (Eq. 2.3 and Eq. 2.4.1) are applied only for coarse pixels included in the N×N 
window that meet NDVI o SWIR coarse values of ±25% of NDVI o SWIR thin pixel 
value considered (pcoar) – the most similar coarse pixels to thin pixel. 

ݐݏ݅݀ݒ ൌ
∑ ݅݁ݏݎܽ݋ܿܶܵܮ ൈ

1
݀݅ൗ

ݎܽ݋ܿ݌
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																																														ሺ2.3ሻ 
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													ሺ2.4ሻ 

 

Depending of r2 results, vs is retrieved with Eq. 2.4.1 or 2.4.2. Applying these two steps 
for the whole coarse image, thin LST (LSTTHIN) can be obtained. Finally, if gaps are 
leaved in LSTTHIN image when the process is over, repetition of all the method is 
performed increasing window size to 7×7, 9×9, etc. until all the gaps were filled. 
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2.4.2. Temperature Sharpening local variant method 

The procedure of the TsHARP local variant method is similar to the NNTS method 
although step two is avoided and LSTTHIN image is directly obtained from slope and 
intercept parameters estimated for N×N pixels window. In order to improve the method, 
a SWIR spectra was added additionally to NDVI and the fit with better r2 in each window 
was used for the LSTTHIN estimation. The local method can be expressed as: 

ܵܮ ்ܶுூே ൌ ܽ ൈ ுூே்ܴܫܹܵ/ܫܸܦܰ ൅ ܾ																												ሺ2.5ሻ 

where a and b are the slope and intercept parameters of the coarse fit window. 

The mean advantage of this method is that is computationally faster than the NNTS, as it 
is only based on the Eq 2.5, but is less accurate on water or cloud pixels (because of the 
poor relationship of NDVI and SWIR parameters to LST) 

 

2.5. CALIBRATION AND VALIDATION PROCEDURE 

As was said, the goal of this thesis is to contribute to quality data control of the EOS with 
the cal/val activities. In this section, a summary of the process followed for VC and 
algorithms validation was explained. 

2.5.1. Vicarious Calibration (VC) 

Over the last 10-20 years VC has become widely adopted as the means to provide 
independent assurance of the quality of remotely sensed data from space-borne sensors. 
VC refers to methods that make use of natural or artificial targets of the Earth for the 
post-launch calibration of sensors. In TIR spectra, VC makes use of RTE to simulate the 
radiance of the ground/water targets on the TOA. By comparing sensor radiance and 
simulated radiance from VC it is possible to establish a relation between the sensor data 
and the simulated data that sensor should measure. The process shown in Figure 2.4 and 
Figure 2.5 is repeated for each sensor band, simulating in each case the radiance by the 
application of the band spectral response function. VC was performed over TIR bands 
used for temperature retrievals on ETM+, TIRS and MODIS sensors. 
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Figure 2.4. Scheme of the VC procedure over ground test sites. 

 

2.5.2. Temperature Validation 

Unlike the VC which is focused on the raw data provided by sensors, validation is a main 
way to prove algorithm usefulness for the retrieval of bio-physical parameters. In our 
case, the algorithm analysis was focused on the temperature retrievals which were tested 
in two ways: direct validation and indirect validation. 

- Direct Validation is the comparison of satellite LST or SST products with ground 
or sea true temperature values. Combination of atmospheres, algorithms and 
sensors for satellite LST retrieval is shown in Figure 2.5. 
 

- Indirect Validation (or cross-validation) is the comparison of satellite LST 
products with ground temperature values measured with airborne or 
satelliteborne sensors. Cross-validation was performed mainly with the AHS 
sensor over TIRS, MODIS and SEVIRI sensors. The Figure 2.8 shows the 
procedure for cross-validation, which includes algorithms, sensors and 
sharpening procedures used in this work. 

The main advantage of indirect validation is that it is possible to validate the algorithm 
over a large amount of different kind of pixels in the same image which is not always 
possible for the in-situ validation. Another advantage is that the atmospheric effect is 
reduced by the use of the same atmospheric profile - totally in the case of satelliteborne-
satelliteborne validation or partially in the case of airborne-satelliteborne validation) for 
the sensors considered in the cross-validation. In the case of AHS, the sensor takes 
measurements at 3 km a.s.l. approximately which implies the share of this atmospheric 
path. 

The mean disadvantages of the indirect validation are the up-scaling process and the geo-
reference between the sensors.  
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Figure 2.5. Steps followed for the VC (left) and the LST-SST (right) validation. Colors 
are referred to a combination of atmospheric profile (blue), algorithm (green) and sensor 
(grey) used for the LST estimation. In the case of VC, the black boxes symbolizes sensor 
bands. 

 

In the up-scaling process, it is not always clear how to combine the different pixels in 
order to obtain a coarse pixel. Usually a Gaussian function or a simple average are used 
for this purpose. Another problem is that the high spatial resolution pixels not always fit 
with the size of coarse pixel so that the final values are disturbed by outside pixels. In our 
case, to partially avoid this problems, for high amount of thin pixels the Gaussian function 
was used for coarse pixel simulation (see Figure 2.6).  

Sensor geo-location are designed to enable pixel position with a certain accuracy. In the 
case of MODIS, the geo-location accuracy is approximately 50 m at nadir (Wolfe et al. 
2002) and on L8/TIRS is about 10 m (Storey et al. 2014). This leads to an uncertainty in 
the up-scaling process because the retrieved coarse pixel is contaminated with stray pixels 
or some ‘good pixels’ are not included in the simulated pixel. 
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Figure 2.6. Scheme of cross-validation process which includes description of up-scaling 
process (in orange the function used for simulation of coarse pixel), and of down-scaling 
procedure (in blue). In yellow boxes, sensor spatial resolution and simulated spatial 
resolution are shown. 
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In-situ data measurements are a key procedure for the development of cal/val activities. 
The accuracy of VC and validation process is strongly related to the validity of the in-
situ data. For this reason, in this Chapter a wide description of the permanent stations for 
in-situ measurements as well as data processing, are described. Field campaigns – in the 
framework of Calibration of Earth Observation Satellites in SPAIN (CEOS-SPAIN) 
project – are also described as part of indirect validation and complementary and 
necessary information for LST estimation. 
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3.1. TEST SITES 

Three test sites were considered for permanent cal/val activities plus one for indirect 
validation. All of them are situated in the Iberian Peninsula and have different 
characteristics in terms of surface covers and sizes of the samples which make them 
useful for the cal/val of a wide range of sensors. The sites considered are: i) the 
agricultural area of Barrax (Albacete; 39˚N, 2˚W, 700 m a.s.l.), ii) the Doñana National 
Park (Huelva; 37˚ N, 6˚25’ W, sea level), iii) Cabo de Gata National Park (Almería, 37˚ 
N, 2˚ W, 100 m a.s.l.) and the Miajadas area in Extremadura (Caceres, 40˚ N, 5˚46’ W, 
250 m a.s.l.). The location and the plots of the permanent areas for cal/val are shown in 
the Figure 3.1. 

 

Figure 3.1. Test site location over Landsat images and Iberian Peninsula map. 
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3.1.1. Barrax 

Barrax area has been selected in many field campaigns since year 2002 for cal/val 
activities because of its flat terrain and the presence of large, uniform land-use units 
(approximately 100 ha), suitable for validating moderate resolution satellite image 
products. Most of the area is cultivated and includes dry land (e.g. winter cereals, fallow) 
and irrigated land (e.g. corn, alfalfa, vegetables). In winter, the major part of the surface 
is not cultivated and a wide extension of bare soil (Inceptisols in terms of soil taxonomy) 
are available for cal/val of low spatial resolution sensors. Barrax has a Mediterranean-
type climate, with heavy rainfall in spring and autumn and lighter rainfall in summer. It 
presents a continental climate, with sudden changes from cold months to warm months 
and high thermal oscillations in all seasons between maximum and minimum daily 
temperatures. 

Specifically, two plots were considered for the installation of the fixed stations: a green 
grass terrain (in which El Cruce station lays) that covers an area of 120 m × 200 m and 
is located at 39.061º N, 2.099º W; and a bare soil or crop cover (depending on season and 
in which Las Tiesas station lays) which is located at 39.059º N, 2.099º W and covers a 
circular area of 1 km of diameter. On both sites, fixed station have been installed for 
continuous LST measurements and other variables as air temperature, energy fluxes or 
soil moisture. 

3.1.2. Doñana 

Doñana National Park is located in South Western Spain near the Atlantic Ocean coast. 
The Doñana Biological Reserve is a scientific and technological infrastructure located 
inside Doñana National Park, and it operates different meteorological stations and 
scientific instrumentation for the long-term monitoring of different geo-biophysical 
parameters. Approximately half of its area is marshland and it includes also areas covered 
by bushes, pine forest and sand dunes, in addition to small lagoons. The marshes undergo 
a yearly cycle of inundation in autumn and drying out during the spring season and its 
flood extension varies considerably between years depending on the precipitation. The 
topography of the marshes is extremely flat, with a maximum elevation difference of 2.5 
m. 

Three plots were considered in Doñana National Park for the installation of fixed stations: 
two marshland areas (Fuente Duque: 36.998˚ N, 6.434˚ W and Juncabalejo: 36.946˚ N, 
6.389˚ W), with a huge and uniform extension covered with senescent or green 



CHAPTER 3: PERMANENT STATIONS AND FIELD CAMPAIGNS   
 

52 
 

vegetation, bare soil or water (depending of season); and a pine forest area (Cortes: 
36.996˚ N, 6.513˚ W) that covers an extension of 2.5 km × 3 km. In all of them continuous 
LST measurements were taken with one or more radiometers. 

3.1.3. Cabo de Gata 

Cabo de Gata National Park is located in Southern Spain near the Mediterranean Sea. Of 
volcanic origin and an extension of 38,000 ha, the park is characterized by a semi-arid 
climate with low rainfall (approximately 400 mm year–1). Balsa Blanca field is located 6 
km from the coast with surface cover characterized by perennial vegetation (green in 
rainfall periods and senescent in summer) and bare soil which covers approximately 40% 
of the field extension (Morillas et al. 2013). 

A plot that covers approximately 4 km × 4 km has been considered for the installation of 
a fixed station (Balsa Blanca: 36.939˚ N, 2.034˚ W). 

3.1.4. Miajadas 

The test site is located in La dehesa Extremeña. La dehesa is a clear forest of holm oak, 
cork oak and other species, with a grassland and bush soil cover. The forest is an 
ecosystem derived of the human activity which is destined to pastureland. Because of its 
heterogeneity characteristics (lack of wide clears and tree random distribution), the site 
has not been taken in account for the installation of permanent stations. However, it was 
included in the work because of the airborne data obtained during a field campaign. 

 

3.2. INSTRUMENT SET UP AND FIXED STATIONS 

Many instruments have been used for the in-situ measurements as part of the fixed 
stations or as a complement for field campaigns measurements. Only the instruments 
used for the aim of this thesis are described although additional instruments have been 
installed on the test sites. Figure 3.2 show these instruments which are listed as: 

- Datalogger: It is a kind of multiplexor that measures electrical signals and 
converts the measurements to engineering units, performs calculations and 
reduces acquired data to statistical values. This data acquisition system provides 
data files easier to ingest in a PC. 
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- Thermal Radiometers: The thermal radiometers were used for the brightness 
temperature measurements at ground level. These are a single-band radiometers 
with spectral range from 8 μm to 14 μm (see Figure 3.3). The IR120 and the 
Apogee SI100 radiometer have a wider field of view (20º half-angle) with an 
operative range of temperatures from -25ºC to +60ºC. Some of these instruments 
– as the Apogee handheld radiometer (see Figure 3.2d) – can display and save 
the temperature measurements so that they can be used for field campaigns. 

- Flux Radiometers: The NR01 measures the 4 separate components of the surface 
radiation balance. It uses pyranometers to measure the solar radiation (global and 
reflected radiation) and pyrgeometers to measure the infrared radiation (emitted 
by the sky and emitted by the ground). The pyranometers measures the solar 
radiation flux from a field of view of 180º and has a spectral response from 0.3 
μm to 2.8 μm. The pyrgeometers measure the far infra-red radiation flux from a 
field of view of 180º and has a spectral response from 4.5 μm to 50 μm. The 
upper pyrgeometer was used for Ld estimations. 

- Temperature and Humidity: the HMP45C sound contains a platinum resistance 
temperature detector and a capacitive relative humidity sensor. The temperature 
sensor has a measurement range (-40º to +60º) with a max accuracy of +0.4ºC. 
The relative humidity sensor has an accuracy of +3%. Downward radiance can 
be estimated with the temperature and humidity data using the down-welling 
equation proposed by Prata (1996). 

- GPS: The GPS16-HVS sensor, manufactured by Garmin, consisted of a receiver 
and an integrated GPS antenna. It receives signals from Global Positioning 
System (GPS) satellites, and then uses the signals to calculate its position and 
velocity. 

- Multiband Radiometer: The CIMEL model CE312-2 ASTER is a radiance-based 
thermal-infrared radiometer composed of an optical head and a data storage unit. 
The CE312-2 detector includes 6 bands, a wide one, and five narrower filters, 
(see Figure 3.3). Temperature and emissivity values can be estimated from this 
instrument. 

Many of those instruments were installed in the fixed stations as part of the Calibration 
of Earth Observation Satellites in SPAIN project, funded by the Spanish economy and 
competitiveness department. To ensure their correct performance, the instruments are 
calibrated every two years (as manufacturer recommends) in the Global Unit Change 
(GCU) laboratory. 
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(a)  (b) (c) 

  
(d)  (e) (f) 

Figure 3.2. Images of the instruments described above: (a) Flux Radiometers NR01, (b) 
IR120 broadband radiometer, (c) CIMEL CE312-2 multiband radiometer, (d) Apogee 
handheld broadband radiometer, (e) HMP45C temperature and humidity cover and (f) 
datalogger.  

 

 

Figure 3.3. Normalized spectral response functions for the thermal bands of the IR120, 
CIMEL CE312-2 and Apogee handheld radiometers. In color, broadband spectral 
response functions are plotted. 
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3.3. PERMANENT STATIONS SET UP AND DATA 

From year 2011 to current date, six fixed stations have been set up in order to provide 
continuous LST measurements for cal/val purposes. The stations, introduced in the 
Section 3.1, obtain data over different plots trying to encompass as many ground surfaces 
as possible and to be representative of as many spatial resolutions as possible. Each 
station has its particularities: changes in the land cover (and then in emissivity), 
atmospheric conditions, or more or less instruments for LST retrieval. These influences 
are important in quality of the obtained data and in data uncertainties which will be 
analyzed in the next chapter. Images of the fixed stations can be found in Figure 3.4. 

3.3.1. Stations characteristics 

The instruments installed at the fixed stations and the LST measurements timeline of each 
station are resumed in the Table 3.1 and Figure 3.5, respectively. A brief description of 
the stations is provided: 

- Fuente Duque station (Doñana) was the first one to be installed at the beginning 
of year 2011 (January 10). Initially, the station included one radiometer for LST 
measurements, although in the next years the number of radiometers was 
extended to four and a NDVI sensor was added. Currently the sensors cover is 
about 5 m2 and data are obtained through the mobile web.  

- Juncabalejo station (Doñana) was set up on September 10 of year 2014. The 
station has one radiometer (covering an area of 2 m2) that provides data through 
the mobile web. 

- Three radiometers were installed at Cortes station (Doñana) on April 8, 2014. 
The station, which takes additional measurements as NDVI, solar radiation and 
air humidity and temperature, provides LST values covering an area of 5 m2. As 
the above stations, data are received directly through the mobile web. 

- El Cruce station (Barrax) is a mobile mast which was installed on June 30, 2011 
over the grass field but, during the next two years, the mast was moved to Las 
Tiesas location during crop harvesting period (from April to July). From year 
2014, the station remains fixed over grass field. This station provides LST with 
one radiometer among other variables as wind direction and speed, soil flux, 
moisture and temperature, air humidity, air temperature as well as net radiation. 
LST measurement footprint is around 1 m2 and the data are obtained from direct 
download to a dedicated computer. 
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(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

Figure 3.4. (a) Las Tiesas, (b) El Cruce, (c) Balsa Blanca, (d) Fuente Duque, (e) 
Juncabalejo and (f) Cortes stations. 

 
- Las Tiesas station (Barrax) was installed permanently on April 2, 2014 over the 

arm of an irrigation pivot. Because the pivot spins for irrigation purposes, the 
station is continuously changing its location. For this reason, additionally to the 
air temperature and humidity sensor, a GPS was installed to track the location of 
the station. One radiometer with a footprint of 3 m2 is measuring the LST. As in 
El Cruce station, data are downloaded to a computer. 

- Balsa Blanca station (Cabo de Gata) was the last one installed on December 16, 
2015. Taking advantage of the bare mast available in the area, a radiometer with 
a footprint of 2 m2 was installed for LST purposes. Additionally to the 
radiometer, air temperature, air humidity sensor as well as soil temperature and 
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humidity instrumental are available. Data are received via email through Almería 
University personal. 

In all the stations, the measurements of the radiometers are performed every 10 seconds, 
storing mean measured data in the datalogger every 5 min.  

 

Table 3.1. Summary of the instruments installed in our test sites. 

Station nº Radio 
meters 

Flux Temp & 
humidity

Others 

El Cruce 1 Yes Yes 
Wind direction and speed 

Soil flux, moisture and temperature 

Las Tiesas 1 No Yes GPS 

Fuente Duque 4 No No NDVI 

Juncabalejo 1 No No  

Cortes 2 No Yes NDVI 

Balsa Blanca 1 No Yes Soil temperature and moisture 

 

 

 

Figure 3.5. Timeline of LST measurements on Balsa Blanca, Cortes, Juncabalejo, Fuente 
Duque, Las Tiesas and El Cruce stations. 
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3.3.2. Data quality control 

Data obtained through datalogger are stored in a raw database sorted by years and 
stations. To transform this data from engineering units to physical variables and in order 
to control the quality of data, a specific program made in C++ programming environment 
by our team is used for these purposes. The program, called Station Data Quality and 
Control (StaDa QC) is divided in two parts, and is able to validate and generate a 
processed station database. 

The first program is designed to sort variables and dates, to include LSE values (which 
are not included into the datalogger file) to perform a preliminary data check. The 
program store data in text files with physical variables and units, and an alphabetic code 
describing its quality. It can detect and solve possible problems with repetition or date 
gap ensuring in this way the uniformity of the text file. Values are labeled with specific 
letters that have different meanings; letter ‘a’ means that the measurement is correct; ‘b’ 
means that the measurement is correct but that the standard deviation of the averaged five 
minutes is higher than 2 K; ‘c’ means that the measurement is correct but it was 
performed in a low battery condition. Finally, the program can calculate hourly and daily 
averages for each station (see Figure 3.6). 

The second part is a graphic interface that allows plotting and visualizing all station data. 
The program shows the five minute data for visual validation. The wrong or suspected to 
be wrong values can be ‘erased’ with the program by the direct selection of given values. 
The ‘erase’ procedure means that the alphabetic code of the selected value is changed for 
new letters; ‘o’, ‘p’ and ‘q’ are the opposite letters of ‘a’, ‘b’ and ‘c’ code, respectively. 
Once the code is changed (it can be undone if necessary), the values marked as ‘erase’ 
data are not used for cal/val activities and for average computation. This graphic interface 
allows an easy, quick and secure way for data validation (see Figure 3.7). If necessary, it 
is possible to activate the automatic detection tool for abnormal data which can control 
as an example very high values, inconsistency between data obtained from past periods 
or changes from standard behavior. After this process control, data are finally ready to 
use. 
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(a) (b) 

Figure 3.6. Screenshot of the: (a) StaDa QC software and (b) annual txt file generated 
for Las Tiesas station (2015). 

 

 

Figure 3.7. Screenshot of the graphic interface included in the StaDa QC software where 
graphic black points symbolizes data selected for its deletion. 
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3.4. FIELD CAMPAIGNS 

3.4.1. Airborne campaigns 

During the CEOS-SPAIN project, five field campaigns with different purposes were 
performed with the AHS sensor in our test sites (except for Cabo de Gata because of 
technical problems in the aircraft). The campaigns were designed for cross-validation and 
ground homogeneity LST purposes – among others that are not taken in account in this 
work – in which the flight lines (see Figure 3.8) tried to encompass as much test site area 
as possible. For these reasons, the spatial resolution of the AHS images has a test site 
dependence. In Table 3.2 information about the field campaigns can be found (only the 
days used in this thesis). Barrax, Miajadas, Almeria and Doñana – only the year 2013 – 
campaigns were used for homogeneity LST analysis while Doñana and Miajadas 
campaigns were used for indirect validation of LST. 

  
(a)  (b) 

Figure 3.8. Example of flight lines over (a) Doñana on May 7, 2013 and (b) Barrax on 
June 12, 2011 field campaigns. 

Additionally to AHS data, ground measurements were taken simultaneously to airborne 
pass in order to validate the LST product retrieved from the AHS sensor, to characterize 
the emissivity of the ground covers. Instruments described above, especially the CIMEL 
radiometer and the Apogee handheld radiometer, were used for these purposes because 
of its practicality and mobility. With the CIMEL radiometer, it was possible to retrieve 
the emissivity with the use of the TES algorithm while the handheld radiometers were 
used for transects. 
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Table 3.2. Sensor characteristics summary including the amount of images provided over 
the Iberian Peninsula and the atmospheric correction applied for cal/val. 

Test site Year Date UTC Time Images 
Number 

Spatial 
Resolution 

Max image 
size (Km) 

Barrax 2011 
June 12 09:00-10:20 8 

4 m 8.0 × 2.8 
June 13 01:00-02:00 6 

Barrax 2012 July 25 
08:40-09:40 8 

4 m 16.0 × 2.8 
21:30-22:40 6 

Miajadas 2012 October 04 11:00-13:00 12 4 m 16.0 × 2.8 

Almeria 2013 May 28 11:00-12:00 7 4 m 16.0 × 2.8 

Doñana 2013 May 07 10:40-12:10 9 7 m 52.0 × 7.0 

Doñana 2015 May 11 10:10-12:10 8 7 m 70.0 × 7.0 

 

3.4.2. LSE and LST homogeneity campaigns 

Because emissivity is a key factor for LST retrieval, dedicated field campaigns have been 
performed during these years in order to characterize land surface emissivity. For this 
purpose, regular measurements with CIMEL radiometer and photos with the land cover 
evolution have been realized in our test sites. Figure 3.9 shows the evolution of the LSE 
during the year 2014 for our stations. While in some stations – Cortes and Balsa Blanca 
– the LSE is quasi-constant, in others it depends of the period considered and it can 
change dramatically, such as at Las Tiesas during harvest (in July). 

To see more clearly this land cover evolution and the importance of the need of the field 
campaigns for LSE evolution, Figures 3.10, 3.11 and 3.12 show the evolution (through 
images) of the fallow-crop land, marshland and grass land covers, respectively.  

The cover and Land Surface Emissivity of Las Tiesas station changes along with 
agricultural needs. Half of the year the cover remains fallow and the access to the station 
is easy. The other half, when crops covers station area, the emissivity increases with green 
cover (NDVI). At El Cruce, the emissivity remains constant while the grass cover 
remains green. When cold temperatures come, the grass turns senescent and LSE 
decreases to values of 0.96. 
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(a)  (b) 

Figure 3.9. LSE evolution of our fixed stations during year 2014. Values were obtained 
with the CIMEL broadband radiometer. 

 

(a) (b)

 (c)  (d) 

Figure 3.10. Evolution of the fallow-crop land during year 2015: (a) February, (b) May, 
(c) August and (d) December. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

 
(g) 

 

Figure 3.11. Evolution of the marshland during year 2014: (a) February, (b) March, (c) 
April (d) May, (e) Jun, (f) August and (g) November. 

The marshland evolution highly depends of the flood periods and in the case of Figure 
3.11, this period starts before February flooding the senescent vegetation that lives in the 
area. As time goes, the water cover diminishes and the vegetation turns green. Finally, in 
the beginning of summer, the senescent vegetation starts to cover once again the 
marshland. Only in this summer-autumn periods it is possible to access the marshland 
stations. 
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(a) 

 
(b) 

 

Figure 3.12. Grass plot evolution during the year: (a) April-December, (b) January-
March. 

 

Additionally to the LSE, LST homogeneity was monitored for each campaign. With 
the Apogee handheld radiometer – which can store one hundred measurements – 
transects around the station were performed covering an area no superior to 100 × 
100 m2. With these measurements, it was possible to retrieve the inhomogeneity 
(INH) index of the area near the station that, in most of the cases, represents the pixel 
size of a high-medium spatial resolution sensor. Temperature measurements were 
realized in different seasons in order to check the representativeness of the area for 
cal/val activities. Figure 3.13 shows, as an example, transect performed around El 
Cruce station on Barrax. 

 

(a)  (b) 

 

Figure 3.13. (a) Image of transect performed on February, 2016 and (b) the results 
obtained. 



 

 

 

 

 

 

CHAPTER 4: 

UNCERTAINTY OF IN-SITU 

MEASUREMENTS 
 

 

 

 

 

 

 

In-situ LST cannot be measured directly with radiometers because complementary 
information and data processing are required. In this chapter, the influence of each 
component for LST retrieval process was analyzed. Pass band effect, uncertainty of 
emissivity, down-welling radiance retrieval and additional influences from radiometer 
calibration or LST heterogeneity have been studied. Finally, LST measurements 
uncertainty is provided for each station. 

 



CHAPTER 4: UNCERTAINTY OF IN-SITU MEASURMENTS   
 

66 
 

4.1. LST RETRIEVAL FOR IN-SITU MEASUREMENTS 

In Chapter one, RTE was introduced as a way to estimate TIR radiance coming from 
the ground at the TOA level. At few meters above ground level, RTE can be used for 
radiance estimation although with the inclusion of one assumption: the atmosphere 
between ground and radiometer is negligible. This is true for our fix measurements in 
which the radiance path to the radiometer is less than a few meters. This ‘null’ 
atmosphere implies two approximations of RTE: atmospheric emission in the upward 
direction (Lu) is zero and atmospheric transmissivity (τ) is set to one. Therefore, with 
these assumptions, for radiometers that take measurements at ground level, the RTE can 
be expressed as: 

୅ୈ,஛ୖܮ ൌ ୐ୗ୘,஛ܤ஛ߝൣ ൅ ሺ1 െ  ሺ4.1ሻ																																												ௗ,஛൧ܮ஛ሻߝ

where ܮோ஺஽ is the TIR radiance registered by the radiometer, ܤ௅ௌ் is the black body 
radiance emitted by the surface and ሺ1 െ  ௗ is the reflected down-welling radianceܮሻߝ
emitted by the atmosphere. Retrieving ܤ௅ௌ் and, by Planck’s law, LST is obtained. 
Scheme describing the different contributions of radiometer measurements are shown in 
the Figure 4.1.  

 

Figure 4.1. Graphic description of sources that influence radiance measurements 
performed by radiometer at surface level. 
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4.2. PASS BAND EFFECT 

LST is obtained from ܤ௅ௌ் by inversion of Planck’s law (see Eq. 1.1) using the 
effective wavelength calculated with the following expression: 

௘௙௙ߣ ൌ
׬ ߣ ݂ሺߣሻ݀ߣ

݂ሺߣሻ݀ߣ൘ 																																												ሺ4.2ሻ 

where ߣ are the wavelengths included in the filter function and ݂ሺߣሻ is the response of 
the filter to a given 	ߣ. The use of the effective wavelength in order to simplify the 
calculus instead of the sensor filter function generates an error in LST estimation. This 
error increases when the Full Width Half-Maximum (FWHM) value of the filter 
function is wider (Jimenez-Muñoz and Sobrino, 2006). It should be noted that this error 
can be avoided if the filter functions of the sensor are known, however, in some cases 
(as broadband radiometers) the filter functions are not available. 

In order to convert temperature to radiance and vice versa avoiding the use of Eq. 4.2, 
radiance values were simulated for each temperature with steps of 0.1 K in a range of 
260 – 330 K for filter function of in-situ radiometers and for MODIS bands 29, 31 and 
32 (see Figure 4.2). Fitting those simulations to Planck’s law structure, specific 
constants have been retrieved for Temperature-Radiance conversion. Table 4.1 shows 
k1 and k2 constants retrieved for each filter function. Landsat ETM+ and TIRS thermal 
bands functions were directly copied from the Landsat handbook. For even more 
precise conversion, values retrieved in Figure 4.2 can be directly used. 

 

Table 4.1. Specific constants (k1 and k2) retrieved for Planck’s law to avoid the pass-
band effect. Landsat constants have been extracted from Landsat handbook. 

Sensor Band k1 k2 Planck’s law 

L8 TIRS 
b10 774.89 1321.08

஻ܶ ൌ
݇ଶ

lnሺ݇ଵ ⁄௦௘௡ܮ ൅ 1ሻ
 b11 480.89 1201.14 

L7 ETM+ b6 666.09 1282.71 

MODIS b29 2699.35 1692.65 

஻ܶ ൌ
݇ଶ

lnሺ݇ଵ ⁄௦௘௡ܮ ሻ
 

MODIS b31 789.37 1323.71 

MODIS b32 518.15 1217.83 

IR120 Campbell broadband 1169.58 1448.68 

SI100 Apogee broadband 1080.69 1425.32 
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(a)  (b) 

Figure 4.2. Temperature – Radiance conversion for (a) MODIS bands and (b) 
broadband radiometers. 

 

By not using k1 and k2 constants, we introduces an inaccuracy in Temperature-Radiance 
conversion of -0.2 K to -3.0 K, depending of the FWHM width (if we compare the 
temperature obtained of Planck’s law with specific constants minus Planck’s law with 
effective wavelength). Table 4.2 shows the uncertainty associated to the pass band 
effect for a broadband (8-14 µm) and some narrow function filters (sensor filters). Note 
that the uncertainty associated is an accuracy problem that leads always to an 
overestimation of temperature. Broadband radiometers are the most affected by pass 
band effect as it is shown in Table 4.2. 

 

Table 4.2. Pass band effect for broadband radiometers and some TIR sensor bands. 
Results are expressed in radiances (temperatures in brackets). 

 Pass band effect W/m2·str·µm (K) 
LST 8-14 µm b6 ETM+ b10 TIRS b11 TIRS b29 MODIS 

280 
-0.386 
(-3.14) 

-0.037 
(-0.33) 

-0.020 
(-0.17) 

-0.021 
(-0.20) 

-0.021 
(-0.15) 

300 
-0.287 
(-1.89) 

-0.038 
(-0.28) 

-0.024 
(-0.17) 

-0.023 
(-0.19) 

-0.021 
(-0.15) 

320 
-0.067 
(-0.37) 

-0.036 
(-0.23) 

-0.028 
(-0.17) 

-0.025 
(-0.18) 

-0.021 
(-0.15) 

 

However, in the process of conversion from radiometer temperature (TRAD) to 
radiometer radiance (LRAD) and vice versa (BLST to LST) – once the Eq. 4.1 is applied to 
correct emissivity and atmospheric effects (see Figure 4.1) – it may seem that the pass 
band effect is annulled and no uncertainty is associated to LST (because of the double 
conversion). In spite of this double radiance-temperature conversion, the use of the 
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effective wavelength leads to an inaccuracy – overestimation of LST – of -0.1 to -0.4 K 
as is shown in Table 4.3 and Figure 4.3. 

 

Table 4.3. Differences in the conversion process of brightness temperature to LST (in 
Kelvin) due to use of effective wavelength in Planck’s law instead of the own filter 
function constants (see Figure 4.1). The inaccuracy is given for three down-welling 
radiances and five Land Surface Emissivity (LSE) values. See also Figure 4.3. 

LST (K) 
Ld 

(W/m2·str·µm) 
LSE 

0.95 0.96 0.97 0.98 0.99 

275 
0.5 -0.22 -0.18 -0,13 -0.09 -0.05 
2.0 -0.21 -0.17 -0.13 -0.09 -0.05 
4.5 -0.21 -0.17 -0.13 -0.09 -0.05 

285 
0.5 -0.22 -0.17 -0.12 -0.08 -0.03 
2.0 -0.20 -0.16 -0.11 -0.07 -0.03 
4.5 -0.18 -0.14 -0.10 -0.06 -0.02 

295 
0.5 -0.25 -0.20 -0.15 -0.09 -0.04 
2.0 -0.23 -0.18 -0.13 -0.08 -0.03 
4.5 -0.19 -0.15 -0.11 -0.07 -0.03 

305 
0.5 -0.30 -0,24 -0,18 -0.12 -0.07 
2.0 -0.27 -0.21 -0.16 -0.11 -0.06 
4.5 -0.23 -0.18 -0.14 -0.09 -0.05 

315 
0.5 -0.31 -0.25 -0.18 -0.12 -0.06 
2.0 -0.28 -0.22 -0.16 -0.11 -0.06 
4.5 -0.23 -0.18 -0.14 -0.09 -0.05 

325 
0.5 -0.37 -0.29 -0,21 -0.13 -0.06 
2.0 -0.32 -0.25 -0.18 -0.12 -0.05 
4.5 -0.26 -0.21 -0.15 -0.09 -0.04 

 

Because there is a relation between LST, LSE and down-welling radiance, inaccuracy is 
dependent on these values as is shown in Table 4.3. The lower the LSE – down-welling 
radiance and higher the LST, the higher the inaccuracy due to pass band effect, 
reaching values of -0.4 K for a LST of 325 K, Ld of 0.5 W/m2·str·µm and LSE of 0.95. 
For high LSE surfaces, the inaccuracy is minimal but it should be accounted as LST 
value is biased. 

For our stations, even if the pass-band effect is avoided, an uncertainty due to not 
knowing filter function remains, which implies uncertainties on k1 and k2 and then on 
LST. This uncertainty was calculated and computed as 0.1 K for our broadband 
radiometers. 
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Figure 4.3. LST differences on conversion process from brightness temperature to 
LST. ΔLST symbolizes the difference between the specific and effective wavelength 
Planck’s law equation for a fixed down-welling radiance (Ld = 1.5 W/m2·str·µm). 
Violet, blue, yellow, orange and red colors symbolize LSE values. 

 

4.3. LAND SURFACE EMISSIVITY 

Emissivity values were characterized for our test sites as a part of LST estimation 
process. CIMEL CE 312-2 multiband radiometer is used for this purpose however it is 
not used for continuous measurements in our fixed stations. As was presented in the 
previous chapter, CIMEL radiometer and other broadband radiometers – used for in-
situ measurements – present slight broadband filter function differences and therefor, 
different values of LSE for the same surface – as LSE values are wavelength dependent. 
For this reason, CIMEL emissivity is not totally representative of the other radiometers.  

In order to retrieve these differences, a relation – using the ASTER spectral library as a 
database – between CIMEL and IR120 and SI100 broadband radiometers was retrieved 
for accurate emissivity conversion (see Figure 4.4). Computing soils, vegetation and 
water database, more than 85% of the values present absolute differences below 0.005 
and mean absolute difference of 0.003 (see Table 4.4). Because there are higher 
differences in soils and not in vegetation and water, a regression fit for soils was 
performed in order to reduce this difference. Applying the fit results, mean differences 
are reduced to 0.0008 in comparison to 0.0038. This means that the uncertainty 
associated to LSE values due to measuring it with a CIMEL radiometer is reduced to 
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0.003. Because the IS100 and IR120 radiometers present similar results, only IR120 
comparison is shown in Figure 4.4 and Table 4.4. 

 

(a)  (b) 

Figure 4.4. (a) Direct broadband emissivity comparison between CIMEL CE 312-2 and 
IR120 radiometer. (b) Emissivity differences (CIMEL CE 312-2 minus IR120) versus 
CIMEL CE 312-2 emissivities. Values have been extracted from ASTER spectral 
library and filtered for each radiometer. 

 

Table 4.4. Bias, standard deviation, RMSE, slope, offset and correlation coefficient 
obtained from CIMEL CE 312-2 vs IR120 emissivity comparison. In brackets, new 
bias, standard deviation and RMSE, applying the correction terms between emissivities 
(slope and offset) to CIMEL CE 312-2 values are also shown (see Figure 4.4). 

 bias sigma RMSE slope offset R2 

Soils 
0.0032 

(0.0004) 
0.0022 

(0.0007) 
0.0038 

(0.0008) 
0.0090 0.0981 0.99 

Water/Vegetation 0.0007 0.0012 0.0014 - - - 

 

Additionally to conversion, the measurement uncertainty was also computed. With 
CIMEL values obtained in field campaigns – time measurements within 30 min in the 
same point – the standard deviation has been calculated in order to check radiometer 
stability, over four different surfaces: Green grass, bare soil (Barrax), senescent 
vegetation and mixed vegetation-soil (Cabo de Gata). Results obtained in the Table 4.5, 
show us a standard deviation values of 0.005, which is considered as the uncertainty of 
emissivity measurements. Adding the conversion uncertainty (0.008 or 0.0014 – see 
Table 4.4 – depending of the surface type) to IR120 and IS100 stability values, the total 
LSE uncertainty associated to our test sites can be calculated as a sum of Root Mean 
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Square Errors (RMSE). In our case, the average uncertainty obtained for LSE is ߜఌ ൌ
0.006 that in terms of temperature is associated to an uncertainty of 0.4-0.5 K for an 
LSE value of 0.97. It should be noted that the measurement uncertainty was obtained in 
periods (spring and summer) of high atmospheric contribution, increasing, in this way, 
the uncertainty of our measurements, which are probably a little bit lower in other 
seasons of the year. 

 

Table 4.5. Average and standard deviation value of LSE measured by CIMEL CE 312-
2 over four surface covers. 

 
Green grass 
Jul 25, 2012 

Bare soil 
Jun 13, 2011 

Senescent vegetation 
May 07, 2013 

Mixed 
May 28, 2013 

εmean 0.981 0.965 0.965 0.974 

ẟε 0.005 0.005 0.005 0.006 

 

 

4.4. DOWN-WELLING RADIANCE 

In addition to LSE, Ld is the other factor that can influence LST estimation. Ld can be 
measured directly by the pyrgeometer pointing to the sky. Values retrieved in W/m2 
must to be transformed to W·m-2·sr-1·µm-1 by applying the spectrum response function 
of desired radiometer and integrating hemispherically this value. In this way, it is easy 
to retrieve Ld with high precision.  

Because the pyrgeometer is not available in all of our test sites (only in Barrax), 
alternative procedures have been tested for accurate Ld estimation. Of these procedures, 
the model proposed by Prata (1996) – which basically follows Brutsaert (1975) 
derivation using adjusted slab emissivity – was selected because of the performance 
obtained in Carmona et al. (2014). The model proposed is given by the following 
expression: 

ܮ ௗܹ ൌ ൣ1 െ ሺ1 ൅ ൫െሾܽ݌ݔሻ݁ݓ ൅  ሺ4.3ሻ																														ସܶߪሿଵ/ଶ൯൧ݓܾ

where a=1.2, b=3 cm2·g-1, and w is the precipitable water content calculated as 
46.5·(εair/Tair) g·cm−2 and where εair is the air emissivity and Tair is the air temperature. 
ܮ ௗܹ is the down-welling radiance given in W/m2. The constants in the Eq. 4.3 are 
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location dependent and it should be readjusted for high precision estimations (not 
performed in this work). 

In Doñana marshland stations, there is not availability of air temperature and humidity 
and Ld measurements must to be obtained by alternative means. One of them is through 
the use of atmospheric profiles which can be processed with MODTRAN-5 to extract 
Ld. In this way the location dependence of Prata (1996) model is avoided. In our case, 
the values are extracted from the MOD07 product. Because Ld is an hemisphere-
integrated down-welling radiance, it should be estimated for multiple angles – 11.6º, 
26.1º, 40.3º and 53.7º (Gaussian angles) plus 0º, 65º , 70º , 80º , 85º , and 89º for a 
better description at larger angles –  which implies multiple simulations (Galve et al. 
2008). Typically, a unique simulation of Ld (in the MODTRAN-5 code) is performed 
assuming only λ dependence. 

To compute the uncertainties on the down-welling radiance estimations for cloudless 
days, a comparison between in-situ measurements performed at El Cruce station with 
the pyrgeometer versus Prata (1996) model and MOD07 estimations (multi-angle and 
nadir) was carried out from 2013 to 2015. Figure 4.5 shows these differences as a 
function of the day of year. It is appreciated that the Prata’s model is very stable during 
the year while MOD07 profiles have two differenced periods: one for summer time, and 
another one for the rest of the year. From days 150 to 300, bias (in-situ minus model) 
decreases, showing multi-angle values overestimating in-situ Ld and, in the case of 
nadir approximation, underestimating the in-situ Ld values. To show better the models 
results, in Table 4.6 statics of the Ld comparison are shown. Prata model and multi-
angle computation (for no summer period) show a negligible bias and a standard 
deviation below 0.7 W·m-2·sr-1·µm-1 while for summer period shows absolute biases 
above 0.7 W·m-2·sr-1·µm-1. This means that the nadir computation always underestimate 
the down-welling radiance which implies an overestimation of LST. At the contrary, in 
the summer period, the multi-angle computation of MOD07 product overestimates Ld 
and, then underestimates LST. 

Finally, setting the LSE at 0.97, it is possible to obtain the influence of Ld uncertainty 
on LST estimation (see Table 4.6). All the models retrieve RMSE values below 0.3 K 
with a bias of 0.2 K for nadir approximation. Taking in account the results obtained in 
the study, Prata model (when it is possible) and a combination of multi-angle (no 
summer period) and nadir (summer period) model can be used for Ld retrievals in our 
stations, assuming an uncertainty (ẟLd) below 0.2 K. 
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(a)  (b) 

Figure 4.5. (a) In-situ down-welling radiance measured at El Cruce station; (b) Down-
welling radiance differences ΔLdown (In-situ minus predicted MOD07 – nadir and multi-
angle – and Prata’s model) versus the day of year. Three years were considered for the 
study: 2013, 2014 and 2015. 

 

Table 4.6. Statistics of predicted down-welling radiances, where bias is the In-situ data 
minus model data. Winter encompasses the first 150 and the last 60 days of year while 
summer is referred to the rest of days. The influence on LST (supposing a LSE value of 
0.97) is also shown. 

 
Model/ 

Profile computation 
Ld (W·m-2·sr-1·µm-1) ΔLST (K) 

bias sigma RMSE bias sigma ẟLd 

Barrax 
(El 

Cruce) 

MOD07 nadir winter 0.739 0.568 0.933 0.2 0.1 0.2 

MOD07 nadir summer 1.284 0.407 1.346 0.2 0.1 0.2 

MOD07 multi-angle winter -1.221 0.975 1.562 -0.2 0.2 0.3 

MOD07 multi-angle summer 0.027 0.688 0.689 0.0 0.2 0.2 

Prata et al. (1996) 0.073 0.354 0.362 0.0 0.1 0.1 

 

 

4.5. RADIOMETERS CALIBRATION 

Additionally to the estimation of variables involved in Eq 4.1 and Planck’s law 
approximation, LST uncertainty is also influenced by accuracy and precision of 
measurements performed with the radiometers. Continuous measurements require a 
stable uncertainty with little changes through the radiometers life. To ensure and control 
these changes, the radiometers should be calibrated in the laboratory as often as 
possible but it is not always possible due to the location of the test sites and the 
availability of substitution radiometers. For these reason, two types of calibrations are 
performed to guaranty radiometer’s good quality data: 
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- Direct calibration: Performed with a Black Body (BB) source in indoor or 
outdoor conditions where indoor is referred to controlled temperature 
conditions that can be set on BB source (see Figure 4.6a) and outdoor refers to 
simultaneous measurements performed on BB source with radiometer and 
contact thermometer in which temperature is determined by external factors, as 
temperature or solar radiance (see Figure 4.6b). Advantage of the outdoor 
calibration is that it simulates better the field conditions than the indoor 
calibration and that it provides more calibration points. The negative point is 
that the value range is determined by external factors. 

- Indirect calibration: Consists on a direct comparison between radiometers of 
which one is calibrated. In this way, accuracy can be tested. The great 
disadvantage is that only a few points can be extracted for calibration.  

Indirect calibration is performed in each field campaign and is the first test of the 
correct radiometer function. Meanwhile the direct calibration is carried out every one-
two years – as manufacturer recommends or when malfunction is detected – and it is 
used to set the accuracy to zero and to obtain the new precision of the radiometer. 

 

(a)  (b) 

Figure 4.6. Sources (black body) of calibration used for: (a) direct indoor calibration – 
LAND P80P – and (b) direct outdoor calibration performed with platinum thermometer. 

 
The precision of a new radiometer is specified by manufacturer – below 0.2 K – but, the 
precision decreases with time due to its use. For this reason, Table 4.7 shows precision 
of IR120 radiometer for gaps of two years and calibration of CIMEL and Optris (simple 
broadband radiometer). To complement the information, Figures 4.7 and 4.8 show plots 
of direct calibrations performed for indoor and outdoor conditions for IR120, CIMEL 
and Optris radiometers. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.7. Direct outdoor calibration of IR120 radiometer against Black Body 
temperature – (a), (c) and (e) – and Black Body-IR120 difference – (b), (d) and (f). 

 

Figure 4.7 and Table 4.7 show that the precision of IR120 radiometer increases with its 
use, reaching values of 0.4 K in the sixth year of use (from the previous 0.2 K). 
Comparing with Optris radiometer – which does not have surrounding temperature 
influence correction – the IR120 is twice as precise. It is also observed that the indoor 
calibration shows better precision than the outdoor. This is probably due to a precision 
of the BB temperature estimation (LAND P80P has precision of ±0.01 K while 
platinum thermometer retrieves precision of ±0.03 K) and because of the laboratory 
conditions which are more stable in terms of air temperature and zero solar radiation. 
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(a) (b) 

(c) (d) 

Figure 4.8. Direct indoor calibration against LAND P80P BB temperature of: (a)-(b) 
CIMEL CE 312-2 and (c)-(d) IR120 and Optris radiometers.  

 
 
Table 4.7. Summary of radiometers calibration results shown in this section which 
include indoor and outdoor calibrations. Slope, offset and correlation coefficient of the 
calibration fit as well as radiometers precision (ẟTCAL) are shown. 

Calibration 
type 

Radiometer Band slope offset 
ẟTCAL 
(K) r2 

Outdoor 

IR120 2-years 

broadband 

1.004 0.043 0.15 0.999 

IR120 4-years 0.971 -1.181 0.26 0.997 

IR120 6-years 1.022 -0.203 0.39 0.997 

Indoor  
(Laboratory) 

IR120 2-years 

broadband 

0.996 0.211 0.07 0.999 

IR120 4-years 1.035 -0.665 0.15 0.999 

Optris 6-years 0.945 3.371 0.78 0.997 

CIMEL CE312-2 

band 1 1.052 0.043 0.05 0.999 

band 2 1.038 -2.181 0.12 0.999 

band 3 1.041 -0.203 0.11 0.999 

band 4 1.073 -1.732 0.28 0.999 

band 5 1.068 -1.589 0.22 0.999 

band 6 1.051 -1.209 0.25 0.999 
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4.6. LST HOMOGENEITY 

As was indicated in the Introduction, field homogeneity in terms of LST is the most 
important factor of uncertainty for cal/val activities. It is not strictly associated to in-situ 
measurements because it depends of the selected area that, at the same time, is related 
to the considered spatial resolution of Earth Observation Sensor (EOS). The 
inhomogeneity (INH) of an area is directly related to the situation of sensor on the field 
and the surroundings. Usually, most common statistics as minimum, maximum, 
standard deviation or bias have been used to determinate the INH. Some authors as Coll 
et al. (2005) or Hale et al. (2011) used these statistics with high spatial resolution EOS 
to determinate the homogeneity. In these studies, L7 ETM+ or ASTER sensor had been 
used to analyze the variation of the LST within a low spatial resolution pixel such as 
MODIS or SEVIRI. Other authors as Göttsche et al. (2013) used multiple in-situ 
measurements (transects) across a site to determine spatial LST homogeneity. 

In our case, the INH index for moderate spatial resolutions (≤ 100 m) was obtained 
through transects and AHS images. L8 TIRS was used for retrieving low spatial 
resolution data. To obtain the INH of our test sites trough sensor images in terms of 
LST, bias and standard deviation have been computed to obtain the INH index over a 
window of n pixels. This window slides across every pixel of the image as is showed in 
Figure 4.9. Bias, standard deviation and INH index of the area shown in Figure 4.9 are 
expressed as follows: 

ݏܾܽ݅ ൌ 1 ݊ൗ ෍ ஼ܶ െ ௜ܶ

௡

௜ୀଵ

																																																						ሺ4.4ሻ 

ߪ	 ൌ ඩ
1

݊ െ 1
෍| ௜ܶ െ തܶ|
௡

௜ୀଵ

																																																				ሺ4.5ሻ 

ܪܰܫ	 ൌ ඥܾ݅ܽݏଶ ൅  ሺ4.6ሻ																																																								ଶߪ

where ஼ܶ  is the LST of central pixel of the window, ௜ܶ is the LST of the window pixels, 
തܶ is the mean LST over the window and n is the number of pixels of the window, which 
depends of the sensor image used. Eq. 4.4 is the mean difference between the chosen 
pixel and the neighbor pixels, Eq. 4.5 is the variability in the window and, finally, Eq. 
4.6 is the INH index of the central pixel respect to the considered window area. In other 
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words, INH is the uncertainty due to heterogeneity at a given spatial resolution, when 
measurements are performed for the central pixel.  

 

 

Figure 4.9. Graphic procedure to compute the INH index. The window (in green over 
the main image) slides across every pixel of the LST image. 

 

To consider one pixel as a candidate for carring out cal/val activities, the INH index 
should to be lower than a certain value that depends of the LST uncertainty. For 
example, for moderate resolution sensors (< 100 m), the uncertainties for LST 
estimation range between 0.5 K-1.5 K as described in Hook et al. (2007) or Coll et al. 
(2010) and for low resolution sensors, the uncertainties are about 2 K (Wan 2014, Coll 
et al. 2009) for MODIS sensor. Based on these values, the INH index obtained in AHS 
image and TIRS image should to be lower than 1.5 K and 2 K respectively to consider 
the pixel suitable for cal/val activities. 

The AHS spatial resolution covers approximately the same footprint as the in situ 
measurements. For this reason, in this study it is assumed that the LST values obtained 
with the AHS sensor are representative of ground measurements. In contrast, the spatial 
resolution of the TIRS is lower than the AHS sensor and covers a considerably larger 
area than the in-situ measurements. For this reason, only the areas that allow the cal/val 
of moderate spatial resolution sensors are suitable for low spatial resolution sensors. 
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4.6.1. INH for moderate spatial resolution (< 100 m) 

Figure 4.10 shows the INH values derived from the AHS images for a spatial resolution 
of 100 meters. Depending of the image pixel size, a window of 14×14 pixels – Doñana 
– or 25×25 pixels – Barrax and Cabo de Gata – was used for INH index. Because 
initially the Balsa Blanca station was not foreseen as a test site, Cabo de Gata field 
campaign was performed in the west part of the National Park, leaving out the Balsa 
Blanca area. In that case, a similar zone was chosen as representative of the Balsa 
Blanca area. 

 
(a) (b) 

 
(c) (d) 

Figure 4.10. INH index retrieved from AHS sensor for moderate spatial resolution 
sensors. Images (a) and (b) represents Barrax test site on 12 June 2011 and on 25 July 
2012, respectively. The (c) and (d) images are referred to Doñana on 9 May 2013 and 
Cabo de Gata on 28 May 2013 respectively. Black rectangles in figure (c) and (d) show 
the marshland and an area similar to Balsa Blanca test site, respectively. 
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The images were analyzed over two periods for Barrax area – crop growth period and 
after crop harvest – and only in one period for Doñana – with partial flood of the 
marshland – and Cabo de Gata – where the land cover conditions change little 
throughout the year. Due to narrow images width for each flight, a composite image of 
all the images obtained in each field campaign was built in order to calculate the INH 
index of the whole area and to better present the final results. Errors associated with 
differences of flight times can be neglected because the INH index was calculated over 
individual AHS images. 

Looking at Figure 4.10, three zones can be considered for the cal/val activities due to its 
high homogeneity: marshland, in Doñana, with an INH index below 1.5 K; Some parts 
of Cabo de Gata, where values range between 1 K and 2 K and some fields of Barrax 
where the INH index is below 1 K. 

4.6.2. INH for low spatial resolution (< 2 Km) 

As the pixel size of low resolution sensors have zenith view angle dependence – from 1 
km (zenith angle of 0º) to 3 km (zenith angle of 60º) as reported in Wolfe et al., (2002) 
–and the location of the pixels change in every new image acquired through the day, a 
sliding window of 66×66 pixels of TIRS was chosen as representative of low spatial 
resolution sensors. The limit of 2×2 km was chosen because it is more precise to 
perform cal/val activities with low zenith angles (Wang et al, 2008). Table 4.8 lists the 
number and dates of the L8 images acquired for the temporal analysis of the 
homogeneity. Only clear sky images over our test sites were used for this purpose.  

Table 4.8. Acquisition date of L8 images used to retrieve INH index for our test sites. 
Test Site nº L8 images Acquisition date 

  2013 2014 

Barrax 14 
14, 30 April 

23 May 
1, 24 Jun 

10 July 
 4, 11 August 

 

5 Sep 
24 Nov 
12 Dec   

19 Feb 
 7, 23 March 

 

Doñana 12 

19 April 
5 May  
22 Jun 

8, 24 July 

9 August 
28 Oct 
13 Nov 

29 Nov 
15, 31 Dec 

 
21 March 

Cabo de Gata 12 
1 Jun 

 3, 19 July 
4, 20 August 

7 Oct 
11 Nov 
26 Dec 

27 Jan 
12 Feb 

16 March 
17 April 
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Figure 4.11 shows the evolution of the INH for different astronomical seasons at Cabo 
de Gata, Doñana and Barrax. The seasonal images were retrieved as a seasonal average 
value of the images presented in Table 4.8. 

 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

 

Figure 4.11. Temporal evolution of the INH index at three Spanish test sites: Cabo de 
Gata: images (a), (b), (c) and (d); Doñana: images (e), (f), (g) and (h); Barrax: images 
(i), (j), (k) and (l). From left to right, the images are sorted by astronomical seasons: 
winter, spring, summer and autumn. Black rectangles mark the considered areas for the 
temporal analysis. 
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Figure 4.11 shows that in summer and spring there are more inhomogeneity than in 
winter and autumn. Analyzing only the zones selected within the black rectangle, it is 
observed that the seasonal variability is higher in Doñana and Barrax than Cabo de Gata 
(see Table 4.9). Particularly, Doñana’s marshland presents the maximal homogeneity in 
autumn and winter with some values of INH below 0.5 K. When the rainfall period 
starts, in late autumn, the INH increases and reaches its maximum in the early summer, 
with values near to 2 K. Barrax presents the maximal homogeneity in autumn and early 
winter when fallow lands cover the area. In late winter, when the crops start to grow, 
the INH increases reaching maximal values in summer. Barrax is only recommendable 
for cal/val activities in autumn and early winter. Finally, as Cabo de Gata has minimal 
seasonal variations in the ground cover, the INH index hardly changes, with range 
values of 0.5–2 K (except in spring, when INH index show values above 2.0 K). Table 
4.9 shows the INH index summary for low spatial resolution sensors. 

 

Table 4.9. Summary of the INH index obtained in Barrax, Doñana and Cabo de Gata in 
the black rectangle of Figure 4.11. Annual range is the maximal and minimal INH 
index and the last column is the number – in percentage – of INH values below 2 K 
when considering all acquired images for each test site. 

Zone Seasonal average (K) 
Annual range 

(K) 
INH below 2 K  

 Winter Spring Summer Autumn min-max (%) 
Barrax 1.2 2.8 3.9 0.9 0.5 – 7.0 30-50 
Doñana 0.8 1.6 1.8 0.5 0.5 – 3.0 > 90 

Cabo de Gata 1.1 2.4 1.7 1.0 0.5 – 3.5 > 90 

 

4.6.3. INH over fixed stations 

To conclude the study, INH index at the location of our fixed stations has been 
retrieved for moderate and low spatial resolution sensors. Additionally, the INH index 
of SEVIRI pixel was also retrieved. As the SEVIRI pixel does not change – the location 
of the pixel is always the same – the INH of the nearest SEVIRI pixel to the fixed 
stations was simulated with TIRS data. The area simulated was of 132×132 pixels – 
little more than the SEVIRI real pixel – centered in the nearest SEVIRI pixel. 
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The INH retrieved with AHS images for the coordinates of fixed stations (see Figure 
4.10) shows values below 1.5 K at Las Tiesas, Fuente Duque, Juncabalejo and at the 
black rectangle of Cabo de Gata (with the same characteristics as Balsa Blanca). The 
stations can be considered suitable for cal/val activities for high-medium sensors when 
INH index is below 1.5 K. These values of INH index were obtained in spring and 
summer, so, considering the results of temporal analysis retrieved with Landsat data, 
the INH index in other seasons will be lower, especially in winter and autumn. 
Consequently, the INH index for moderate resolution sensors is overestimated for the 
other seasons. 

In Figure 4.12, the evolution of the INH index for low spatial resolution sensors and 
SEVIRI pixel is shown. For sensor with low resolution, Doñana and especially Cabo de 
Gata show the lowest values. Homogeneity in Balsa Blanca is always lower than 2.6 K 
while in Fuente Duque and Juncabalejo it depends of the marshland flooding. If 
marshland is completely flooded or dry, the homogeneity is high while when the 
marshland is partialy flooded (usually in spring), the INH index around 2 K. In general, 
it is possible to consider that in Doñana the INH is below 2 K in summer, autumn and 
winter. For Barrax, only in autumn and winter, the homogeneity is high, coinciding 
with the period when the majority of fields are without crops. In Figure 4.12, SEVIRI 
variability was also retrieved showing the same pattern as low resolution sensor pixel 
although with higher values of INH. 

 

Figure 4.12. Temporal evolution of the INH index in four fixed locations: Fuente 
Duque, Juncabalejo, Balsa Blanca and Las Tiesas. Open symbols represents an area of 
2×2 km while filled symbols represents approximately a SEVIRI pixel. 
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Finally, it can be concluded that the ideal periods to perform cal/val activities are the 
late summer, autumn and winter. In these periods the INH index is below 2 K. Table 
4.10 summarizes the results for our fixed stations. 

 

Table 4.10. Summary of the INH results obtained at four fixed stations for three spatial 
resolutions: 100 m (high-medium EOS), 2 km (low EOS) and 4 km (approximately 
SEVIRI spatial resolution). Mean and min – max values have been retrieved as the 
average and minimal-maximal INH value of our study. 
Zone (Name) 100 m 2 km (MODIS) SEVIRI 

 Sample (K) Mean (K) min – max (K) Mean (K) min – max (K) 
Las Tiesas 1.0 3.2 1.0 – 7.5 3.4 1.0 – 7.0 

Fuente Duque 
Juncabalejo 

0.7 
1.2 

1.1 
1.2 

0.5 – 3.5 
0.5 – 4.0 

1.7 
1.5 

0.5 – 4.0 
0.5 – 4.0 

Balsa Blanca 1.4* 1.2 0.5 – 2.2 1.6 1.0 – 3.0 
* Obtained in a similar area to Balsa Blanca 

 

4.6.4. INH with transects 

Complementary to high-moderate spatial resolution pixels, as there was not possible to 
analyze the temporal evolution because of the not high spatial resolution data 
availability, transects were performed to complement the seasonal INH index. Because 
it was not always possible the access to the test sites – e.g. when the marshland is 
flooded – transects do not cover all the season of the year for some fixed stations. In 
these cases, sporadic measurements were performed in these test sites – especially 
Fuente Duque and Balsa Blanca – for INH estimation. 

The transect measurements were performed as quickly as possible, typically in a lapse 
of 3 minutes, in which 10-15 values were taken around the fixed radiometer location 
and on the radiometer location itself. Eq. 4.2, 4.3 and 4.4 were used to obtain the INH 
index. Because in 3 min it is not possible to cover an area of 100 m, the process was 
repeated 3-4 times and the average value was selected as INH index. Table 4.11 shows 
transects performed for INH estimation, and includes the date and number of 
measurements performed. The sporadic measurements are not shown, although they 
were taken in account for the seasonal evolution, shown in the next section. 
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Table 4.11. Transects performed for inhomogeneity (INH) retrievals. The number of 
measurements (n) and date is also shown. 

Location Date n INH (K) Location Date n INH (K) 

Balsa Blanca 
15/12/2015 50 0.6 

Fuente Duque 
05/09/2014 
31/10/2016 

27 1.0 

24/02/2017 47 0.5 35 0.8 

Juncabalejo 
05/09/2014 38 1.1 

Cortes 
05/09/2014 
31/10/2016 

29 1.4 

31/10/2016 27 0.8 32 0.8 

Las Tiesas 

20/07/2015 59 1.1 

El Cruce 
20/07/2015 
10/11/2016 
23/02/2017 

46 1.0 

10/11/2016 83 0.4 47 0.5 

23/02/2017 48 0.6 50 0.8 

 

4.7. TOTAL IN-SITU UNCERTAINTY 

To summarize the uncertainties contribution, Table 4.12 shows the main characteristics 
of fixed stations and the expected total LST uncertainty for low and moderate spatial 
resolution sensors. Following the classic error theory, the final LST uncertainty can be 
retrieved as the root mean square of all the contributions involved in the LST 
estimation, as long as uncertainties are independent one from another – radiometer filter 
function effect (ߜிூ௅்ாோ) was also included as ±0.1 K.  

Some difficultness have been found in INH index uncertainties assumption and in 
confection of the summary table: 

- For INH index estimation of moderate spatial resolution, it was not possible to 
establish seasonal evolution because of lack of airborne sensor data. Only real 
available data was retrieved with transects although the values are only 
representative of conditions prevailing at that time. For this reason, despite of 
the data showed in Table 4.12, these values are not extracted from real values 
(because it was not possible) but have been estimated using the real transect 
data and complementary material as station pictures, differences between 
radiometer measurements or even with VNIR data of Landsat sensors. 

- For INH index estimated for low spatial resolution, temporal evolution is 
available although the analysis performed in this work encompasses only one 
year. Due to probably undergo changes of test sites cover and keeping in mind 
that satellite data was extracted for punctual days, the INH index can change 
year after year, not always meeting the expected uncertainties. 



  CHAPTER 4: UNCERTAINTY OF IN-SITU MEASURMENTS 
 

87 
 

Table 4.12. Summary of main fixed stations characteristics managed in Doñana, Barrax 
and Cabo de Gata test sites. Type field cover was defined as: PN is pine forest, W is 
water, BS is bare soil, GV is green vegetation, SV is senescent vegetation, CR is crop 
and GG is green grass. Moderate and low are moderate and low spatial resolution 
sensors, respectively. The inhomogeneity was divided in seasons: Wi, Sp, Su and Au 
are Winter, Spring, Summer and Autumn seasons respectively. LST uncertainty was 
calculated as the root sum square of errors due to: LSE (ẟε), downward radiance (ẟLd), 
radiometer calibration (ẟTCAL) and surface inhomogeneity (INH). 

Test sites Doñana Barrax 
Cabo de 

Gata 

Names Cortes 
Fuente 

Duque 
Juncabalejo Las Tiesas El Cruce 

Balsa 

Blanca 

Location  
36.996 N 

6.513 W 

36.998 N 

6.434 W 

36.946 N 

6.389 W 

39.059 N 

2.099 W 

39.061 N 

2.099 W 

36.939 N 

2.034 W 

Field cover PN W or BS/SV W or BS/SV BS or CR GG 
BS/SV or 

BS/GV 

Field 

extension 

(km × km) 

2.5 × 3 > 10 × 10 2 × 5 1 × 1 0.12 × 0.20 4 × 4 

Measured area 5 ݉ଶ 5 ݉ଶ 2 ݉ଶ 3 ݉ଶ 1 ݉ଶ 2 ݉ଶ 

ε range 0.97-0.99 0.95-0.99 0.95–0.99 0.95–0.99 0.97–0.99 0.96-0.98 

ẟε (K) 0.3 0.4 0.4 0.4 0.3 0.4 

ẟLd (K) 0.2 0.2 0.2 > 0.1 > 0.1 0.1 

ẟTCAL (K) 0.3 0.3 0.3 0.2 0.2 0.2 

INH INDEX 

(10-1 K) 

Wi-Sp-Su-Au 

MODERATE 

7-21-11-5 

MODERATE 

4-10-7-4 

MODERATE 

5-12-9-4 

MODERATE 

5-8-11-4 

MODERATE 

5-8-10-5 

MODERATE 

5-14-9-6 

/-/-/-/ 

LOW 

8-20-9-5 

LOW 

8-25-11-6 

LOW 

10-/-/-8 * 

LOW 

/-/-/-/ 

LOW 

7-22-11-7 

LOW 

LST 

Uncertainty  

(10-1 K) ** 

Wi-Sp-Su-Au 

MODERATE 

8-22-12-7 

MODERATE 

6-11-9-6 

MODERATE 

7-13-10-6 

MODERATE 

7-9-12-6 

MODERATE 

7-9-11-7 

MODERATE 

7-15-12-8 

/-/-/-/ 

LOW 

9-21-11-7 

LOW 

9-26-13-8 

LOW 

12-/-/-10 * 

LOW 

/-/-/-/ 

LOW 

9-23-13-9 

LOW 

* Only computed for autumn/winter season. 

ܶܵܮߜ ** ൌ ටߜிூ௅்ாோ
ଶ ൅ ଶߝߜ ൅ ௗܮߜ

ଶ ൅ ߜ ஼ܶ஺௅
ଶ ൅  ଶܪܰܫߜ
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Keeping in mind the INH index estimation, in general, the final LST uncertainty for 
moderate and low resolution sensors was retrieved to be below 1.5 K, excluding the 
spring season for low spatial resolution sensors. Spring is the season were the 
uncertainty is higher – following the INH index estimated in the section above – and 
autumn-winter period is the ideal for cal/val activities. The main contribution of 
uncertainty is due to inhomogeneity which varies for each station and season. LSE can 
contribute with a 50% of indetermination in some periods. The other components have 
less influence, especially in seasons where the inhomogeneity is high. As the 
uncertainty in spring is above 2 K, this period was excluded for the direct validation 
and Vicarious Calibration performed for MODIS sensor, but not for Landsat sensors. 

Finally, to summarize which fixed station fit with what sensor, Table 4.13 shows the 
test site and the time period in which the cal/val activities can be performed with 
uncertainties below 2 K, for ETM+, TIRS – moderate resolution sensor – and for 
MODIS and SEVIRI – low resolution sensor. Spring was excluded in all the stations for 
MODIS/SEVIRI because of the high inhomogeneity while for Cortes station ETM+ and 
TIRS cal/val is possible only in autumn and winter. 

Because of the short field dimensions of El Cruce station and because of the available 
data of Balsa Blanca from beginning of year 2016, El Cruce and Balsa Blanca only 
allowed cal/val activities for ETM+ and MODIS, respectively.  

 

Table 4.13. Summary of suitable periods for cal/val activities for ETM+, TIRS 
(moderate spatial resolution) and MODIS, SEVIRI (low spatial resolution). Period 
validity is shown in colors: green for valid periods (uncertainty below 2 K) and red for 
not allowed seasons. 

Test site ETM+/TIRS MODIS/SEVIRI 
 Winter Spring Sumer Autumn Winter Spring Sumer Autumn 

Las Tiesas Yes Yes Yes Yes Yes No No Yes 
El Cruce * Yes Yes Yes Yes No No No No 

Cortes Yes No No Yes No No No No 
Juncabalejo Yes Yes Yes Yes Yes No Yes Yes 

Fuente Duque Yes Yes Yes Yes Yes No Yes Yes 
Balsa Blanca ** Yes Yes Yes Yes Yes No Yes Yes 
* Only available for ETM+ cal/val activities 
** Only used for MODIS cal/val activities 
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This chapter presents the results of cal/val activities developed in the framework of 
CEOS-SPAIN project. The chapter is divided in five sections that include the 
atmospheric analysis uncertainty, the TIR VC, the LST and SST algorithms validation 
and the test of the sharpening methods described in this work. Additionally, 
presentation of possible down-scaled LST products and a MODIS SST product were 
presented for future inclusion on the group processing scheme. 
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5.1. ATMOSPHERIC INFLUENCE ON CAL/VAL ACTIVITIES 

Before showing cal/val results, the expected uncertainty of VC and LST validation was 
calculated in order to assess its validity. The in-situ LST measurements uncertainty was 
retrieved in the previous chapter for each station although the atmospheric influence – 
the radiance disturbance through the path to the sensor – due to the inaccurate 
knowledge of the atmospheric profile was not estimated. In order to retrieve this 
influence, a comparison of a real atmospheric profile – sounding measurements – and 
the MOD07 version 6 atmospheric product was performed for years 2013, 2014 and 
2015. MOD07 product was selected because it was used in all the cal/val activities and 
because of its easy access and data extraction. Because each sensor has different filter 
function in TIR spectrum, the MOD07 inaccuracy should be retrieved for each sensor 
band, algorithm and test site. TIRS and MODIS bands – MODIS band 31 with TIRS 
band 10 and MODIS band 32 with TIRS band 11 – were put together in the study due 
to the similitude of the retrieved results. 

Only two locations of real sounding are available near our test sites: Madrid (inland 
atmosphere) and Murcia (coastal atmosphere), which were selected as representative of 
Barrax (inland atmospheric profile) and Doñana - Cabo de Gata (coastal atmospheric 
profiles) test sites. Retrieving the atmospheric parameters (τ, Ld, Lu and w) for sounding 
and MOD07 product and introducing them as input of LST retrievals, the difference in 
radiance or temperature between the profiles can be obtained and then, the uncertainty 
(respect to sounding, which is considered our profile-true) of the MOD07 product. The 
uncertainty is conditioned by the time difference between the sounding and the MODIS 
measurement, which ranges from plus 0:30 hours to 2:30 hours. In order to minimalize 
time error, the maximal gap accepted in this study was about plus 1:30 hours – shorter 
gap could be accepted although number of data available would have been small for 
study requirement. Furthermore, despite of the time of sounding launch, the complete 
analysis of the profile require more than 30 min, which reduces time gap between 
MODIS measurement and sounding data.  

Two LST retrievals were analyzed: RTE and SCw algorithm. SW algorithm was 
excluded because of its low atmospheric dependence (around 0.1 K as was indicated in 
the Chapter 1). Figure 5.1 and 5.2 show the results retrieved for Single-Channel water 
vapor approximation (SCw) and RTE respectively in function of the atmospheric water 
vapor content (w), while in Table 5.1 and 5.2 a summary of the figures results is shown. 
As is expected, the gap between the atmospheric results increases when the w grows, 
especially for SCw algorithm. If we divide the w in two groups, e.g. below 1.6 g/cm2 
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and above 1.6 g/cm2 (Qin et al. 2002), it is appreciated that the RMSE of SCw rises 
above 1 K or more with high atmospheric w content, while the RTE increases 0.2-0.5 
K, depending on the band selected. In terms of bias, no significant changes have been 
observed (less than 0.2 K) as the standard deviation – especially on SCw – is four or five 
times higher. 

 

(a) (b) 

Figure 5.1. SCw differences (in Kelvin) between real sounding and MOD07 
atmospheric product (ΔT), in function of the sounding atmospheric water vapor content. 
The analysis was performed for (a) ETM+ band 6 and (b) TIRS band 10. 

 

(a) (b) 

Figure 5.2. RTE differences (ΔL) – sounding minus MOD07 product – (in W·m-2·sr-

1·µm-1) versus the sounding atmospheric water vapor content (w) for: MODIS (b29, b31 
and b32), TIRS (b10 and b11) and ETM+ (b6) into two locations: (a) Madrid and (b) 
Murcia. 
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Comparing the inland (Madrid) and coastal (Murcia) profiles retrieved with MOD07, 
there is not location influence on the RTE results while in SCw these are more 
pronounced, especially for the ETM+ sensor. ETM+ has a coarser band filter function 
than TIRS which is more located in the w absorption spectrum. For this reason, ETM+ 
band is more affected by the w inaccuracy than TIRS band 10. One factor that explains 
the location differences is the mean w obtained in the analysis which is higher in 
Murcia than in Madrid (2.48 g/cm2 versus 2.08 g/cm2). Another factor is the extreme 
differences retrieved between sounding and MOD07 profiles at Murcia (see Figure 
5.3a) which in some cases reach values above 2-4 g/cm2. This, sometimes, implies 
over-underestimations of more than 10 K on the LST (see Figure 5.1a). The high 
inaccuracies in w estimation can drive to dramatically bias changes into the SCw 
algorithm (see Table 5.2) while the RTE is more stable and little changes in LST 
estimation between high-low atmospheric w content – below 0.5 K – are. Excluding the 
values with high w differences (sounding minus MOD07) of the Figure 5.3 (above-
below two standard deviations ±2σ g/cm2), MOD07 uncertainty decreases – especially 
at Murcia test site – between 0.2-0.4 K (depending on the band) for the RTE and above 
1 K for the SCw algorithm. These values – shown in brackets into Table 5.1 and 5.2 – 
were used for the algorithm uncertainty analysis. 

 

Table 5.1. RTE uncertainty due to MOD07 version 6 inaccuracy in comparison to 
sounding values at Murcia and Madrid test sites (in brackets is included the number of 
data analyzed). Results summary of the Figure 5.2 is given in Kelvin for each thermal 
MODIS, ETM+ and TIRS band. Finally, in brackets, RMSE is also given for the w 
difference values (sounding minus MOD07) that are between above-below 2 standard 
deviations (exclusion of extreme Δw that can be found in Figure 5.3). 

RTE ΔLSOUNDING-MOD07 (W·m-2·sr-1·µm-1) 
  Murcia (808) Madrid (681) 

w (g·cm2)  b29 b31/b10 b32/b11 b6 b29 b31/b10 b32/b11 b6 

< 1.6 

Bias 0.0 0.1 0.2 0.1 0.0 0.1 0.2 0.1 
σ 0.7 0.7 0.9 0.8 0.7 0.7 0.9 0.8 

RMSE 
0.7 

(0.5) 
0.7 

(0.5) 
0.9 

(0.6) 
0.8 

(0.5) 
0.7 

(0.6) 
0.7 

(0.5) 
0.9 

(0.7) 
0.8 

(0.6) 

> 1.6 

Bias 0.0 0.1 0.2 0.2 -0.2 0.1 0.2 0.1 
σ 0.8 1.1 1.5 1.3 0.9 1.1 1.4 1.3 

RMSE 
0.8 

(0.7) 
1.2 

(0.9) 
1.5 

(1.1) 
1.4 

(1.0) 
0.9 

(0.8) 
1.1 

(0.9) 
1.4 

(1.0) 
1.3 

(0.9) 
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Table 5.2. SCw uncertainty results (Figure 5.2b) given for ETM+ band 6 (b6) and TIRS 
bands 10 and 11 (b10, b11). Bias (sounding minus MOD07), σ and RMSE results are 
given in K. In brackets, results without high w differences (excluding ≥ 2σ g/cm2 Δw 
values) are also given. 
w (g·cm2) Mean w (g·cm2)  Madrid Murcia 

 Madrid Murcia  b6 b10 b6 b10 

< 1.6 1.01 1.09 
Bias -0.07 -0.04 -0.29 -0.10 

σ 0.79 (0.70) 0.59 (0.52) 1.98 (0.76) 0.95 (0.50) 

RMSE 0.80 (0.72) 0.59 (0.53) 2.00 (0.79) 0.96 (0.51) 

> 1.6 2.08 2.48 
Bias -0.06 -0.22 -0.06 -0.22 

σ 2.37 (1.49) 1.43 (1.05) 3.10 (1.78) 1.52 (0.79) 

RMSE 2.37 (1.50) 1.45 (1.05) 3.10 (1.79) 1.53 (0.79) 

 
Finally, total uncertainty associated to VC can be computed as the root sum square of 
the uncertainties due to in-situ LST measurements plus the atmospheric inaccuracy. The 
inhomogeneity contribution was averaged for each sensor band considering the 
homogeneity for each measurement, test site and season. In order to obtain the highest 
atmospheric precision and, in addition, the smallest uncertainty in the VC, the total 
amount of water vapor in the atmosphere was taken as small as possible. For this reason 
only the atmospheric w values below 1.6 g/cm2 were used for the VC. In Table 5.3 the 
uncertainty for each station and sensor band is shown. In the case of ETM+ and TIRS 
VC, the use of NCPC atmospheric data can lower the LST uncertainty as the reanalysis 
profiles have obtained more accurate results than the MOD07 product, as is described 
in Jimenez-Muñoz et al. (2010). 
 
 

(a) (b) 

Figure 5.3. Diagrams of the water vapor difference – Sounding minus MOD07 product 
– versus the atmospheric water vapor registered by the soundings. (a) refer to Murcia 
test site and (b) to Madrid test site. 
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 Table 5.3. Expected uncertainty associated to TIR bands and fixed stations. The values 
are given in Kelvin. 

 Band El Cruce Las Tiesas 
Fuente 
Duque

Cortes Juncabalejo Balsa Blanca 

ẟVCMODIS (K) 
29 - 1.2 1.1 - 1.2 1.1 
31 - 1.1 1.0 - 1.1 1.0 
32 - 1.2 1.1 - 1.2 1.1 

ẟVCETM+ (K) 6 0.7 0.7 0.8 0.8 0.8 - 

ẟVCTIRS (K) 
10 - 0.8 0.8 0.9 0.8 - 
11 - 0.9 1.0 1.0 1.0 - 

Values between 0.7-1.2 K are expected for the VC uncertainty. It should be noted that 
the brightness temperature inaccuracy in the EO sensors above that values can be 
detected in our test sites. If sensor band inaccuracy is below, the results must be 
accepted as valid and radiance correction should not be implemented at the sensor band. 
Results are a preliminary test of the VC suitability and should not be considered as a 
final VC uncertainty as it will be retrieved statistically in the VC process. 

Validation expected uncertainties for our algorithms are also obtained with the root sum 
square of the algorithm uncertainty (extracted from Table 1.8), INH index (see Table 
4.11) and atmospheric uncertainty (Table 5.1 and 5.2). Because TES algorithm does not 
have theoretical algorithm uncertainty – as it use the RTE for each sensor thermal band 
–, TES uncertainty was computed as a RTE uncertainty plus the emissivity MMD 
contrast uncertainty (0.3 K). 

Table 5.4 shows validation expected uncertainties separated for two atmospheric w 
values (above and below 1.6 g/cm2).  

 

Table 5.4. Expected uncertainty associated to LST algorithms for atmospheric w below 
1.6 g/cm2 and, in brackets, for w above 1.6 g/cm2. The values are given in Kelvin. 

 Band El Cruce Las Tiesas 
Fuente 
Duque

Cortes 
Junca 
balejo 

Balsa Blanca 

ẟVCMODIS (K) 
SW - 2.1 2.1 - 2.1 2.1 

MOD11 - 1.4 1.2 - 1.3 1.3 
TES - 1.2 (1.5) 1.1 (1.4) - 1.2 (1.5) 1.1 (1.4) 

ẟVCETM+ (K) SCw 1.3 (3.0) 1.3 (3.0) 1.4 (3.2) 1.3 (3.2) 1.4 (3.2) - 
RTE/SC 0.7 (1.1) 0.7 (1.1) 0.8 (1.2) 0.8 (1.2) 0.8 (1.2) - 

ẟVCTIRS (K) 
SCw - 1.5  (1.5) 1.6 (1.7) 1.5 (1.7) 1.6 (1.7) - 
RTE - 0.8 (1.1) 0.8 (1.1) 0.9 (1.2) 0.8 (1.1) - 
SW - 1.7 1.7 1.7 1.7 - 
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It is noticed that the lowest validation uncertainty is expected for RTE and for Landsat 
sensors (between 0.8-1.2 K, depending of atmospheric w) while for MODIS the lowest 
expected validation uncertainty is shared by MOD11 and TES product (1.1-1.5 K). As 
is expected, the highest values are retrieved for SCw algorithms with expected 
uncertainties of 1.7 K (band 10 TIRS) and 3.2 K (band 6 ETM+). As the atmospheric w 
content has a minimal influence in SW algorithm, its uncertainty remains constant. 
These values are expected values which can meet (or not) with the statistical values of 
validation procedure. 

 

5.2. VICARIOUS CALIBRATION 

5.2.1. ETM+ and TIRS 

Predicted at-sensor radiances through inverse RTE have been compared to the values 
registered with ETM+ and TIRS in order to retrieve the calibration assessment. ETM+ 
was evaluated with three different atmospheric profiles while TIRS atmospheric 
correction was performed with reanalysis NCEP data. 

Thirty-five predicted radiances for three atmospheric profiles – MOD07 version 5 and 6 
and reanalysis NCEP data – and forty-four TIRS values were used for the VC. Because 
of the high amount of in-situ and Landsat’s data used in VC, Appendix A shows the 
registered values through the years 2013 to 2016. Specifically, Appendix A shows in 
Table A1 and A2 the ETM+ values and in Table A3 and A4 the TIRS registers. Data 
considered for VC is marked in bold type – w below 1.6 g/cm2. 

The results for each station are presented in Figure 5.4 and 5.5 and in Tables 5.5 and 
5.6. Details of bias, 1-sigma standard deviation (σ), slope, coefficient of determination 
(R2) and RMSE are given in Table 5.7. Predicted and L7 derived radiances show a high 
linear correlation, with values for each profile within the 1:1 line. Results show an 
almost constant bias below -0.03 W·m-2·sr-1·µm-1 or -0.2 K (see Figure 5.4 and Table 
5.7) that underestimate radiance values (bias was calculated as ETM+ radiance minus 
predicted VC radiance). As Table 5.5 shows, there are no significant differences (less 
than 0.2 K) between the atmospheric profiles. Furthermore, differences of less than 0.5 
K in bias and standard deviation were obtained comparing the VC for each station. 
Because the magnitude of retrieved bias is lower than the uncertainty of VC (σ), the 
bias was considered negligible for the algorithms validation. 
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(a) (b) 

Figure 5.4. VC results for L7 ETM+ sensor: (a) is the sensor radiance versus the VC-
based (TOA predicted) radiance, (b) is the plot of residual bias error through three 
years. Results present values for each test site and for three atmospheric profiles: In red: 
NCEP data, in blue: MOD07 version 6 data and in green: MOD07 version 5 data. 

 

Table 5.5. Results of VC for three atmospheric profiles between L7 ETM+ versus TOA 
predicted radiance data. N is the number of data used in VC and, in brackets, the data 
considered in each fixed station. Bias and σ (1-sigma standard deviation) are given in 
W·m-2·sr-1·µm-1 and, in brackets, the temperature equivalency at 300 K is also included. 

N=35 
MOD07 v5 MOD07 v6 NCEP 

Bias σ Bias σ Bias σ 

El Cruce (9) -0.03 (-0.2) 0.06 (0.5) -0.03 (-0.2) 0.06 (0.5) -0.02 (-0.2) 0.08 (0.7) 
Las Tiesas (9) -0.01 (-0.1) 0.08 (0.7) -0.04 (-0.3) 0.07 (0.6) -0.02 (-0.2) 0.08 (0.7) 

Fuente Duque (9) -0.01 (-0.1) 0.06 (0.5) -0.03 (-0.3) 0.08 (0.7) -0.05 (-0.4) 0.10 (0.8) 
Cortes (6) 0.03 (0.2) 0.05 (0.5) 0.01 (0.1) 0.06 (0.5) -0.02 (-0.1) 0.05 (0.4) 

Juncabalejo (2) -0.01 (-0.1) 0.04 (0.4) -0.03 (-0.3) 0.05 (0.4) -0.06 (-0.5) 0.05 (0.4) 

In the case of TIRS, RMSE variability (see Table 5.6) between stations show minimal 
differences (below 0.4 K) for both bands, and stray light effect is minimal and very 
equal for our stations, probably due to the surroundings of the considered image which 
are similar to our plots. Predicted and TIRS-derived radiances show also a high linear 
correlation, with values for band 11 showing more scatter than band 10. For this reason, 
grouping the station values, Table 5.8 shows bias values for two bands and for three 
reference brightness temperature. It can be appreciated that TIRS overestimates 
radiance values for brightness temperature above 300 K and underestimates below 295 
K. These differences are clearer in the band 11, where the bias is more brightness 
temperature dependent.  
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(a)  (b) 

Figure 5.5. VC results for L8 TIRS sensor: (a) sensor radiance versus the VC-based 
(TOA predicted) radiance and (b) plot of residual bias error through three years. Results 
present plots for each test site and for the two thermal bands: band 10 in blue and band 
11 in green color. 

 

Table 5.6. Results of VC between L8 TIRS versus in situ predicted radiance data for 
four Spanish test sites. N is the number of data used in VC and, in brackets, the data 
considered in each fixed station. Bias, σ and RMSE are given in W·m-2·sr-1·µm-1 and, in 
brackets, the temperature equivalency at 300 K is included too. 

N=44  Las Tiesas (14) Fuente Duque (16) Juncabalejo (5) Cortes (8) 

VCB10 

Bias -0.01 (-0.1) -0.01 (-0.1) -0.07 (-0.5) -0.04 (-0.3) 
σ 0.11 (0.8) 0.11 (0.8) 0.11 (0.8) 0.16 (1.1) 

RMSE 0.11 (0.8) 0.11 (0.8) 0.13 (1.0) 0.17 (1.2) 

VCB11 

Bias -0.06 (-0.5) -0.06 (-0.5) -0.05 (-0.4) -0.04 (-0.3) 
σ 0.13 (1.1) 0.17 (1.4) 0.13 (1.1) 0.16 (1.3) 

RMSE 0.14 (1.2) 0.18 (1.5) 0.13 (1.1) 0.16 (1.3) 

 

Table 5.7. VC summary of the L7 ETM+ sensor (see Table 5.5) and L8 TIRS (see 
Table 5.6). Bias, σ and RMSE are given in radiances (W·m-2·sr-1·µm-1) and, in brackets, 
the equivalency in temperatures at 300 K is also shown.  

   Slope R2 bias  RMSE 

L8 TIRS 
VCB10 NCEP 1.018±0.016 0.985 -0.01 (-0.1) 0.11 (0.8) 0.12 (0.9) 

VCB11 NCEP 1.073±0.028 0.973 -0.05 (-0.4) 0.14 (1.2) 0.15 (1.3) 

L7 EMT+ VCB6 

NCEP 1.003±0.019 0.991 -0.03 (-0.2) 0.08 (0.7) 0.09 (0.7) 

MOD v6 1.006±0.016 0.990 -0.03 (-0.2) 0.07 (0.6) 0.07 (0.6) 

MOD v5 1.006±0.015 0.991 -0.01 (-0.1) 0.06 (0.5) 0.06 (0.5) 
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Table 5.8. Bias (TIRS minus VC) values for three different brightness temperature 
measured in Kelvin. The results are given in radiances (W·m-2·sr-1·µm-1) and, in 
brackets, the equivalency in temperatures (K). 

  Brightness Temperature (K) 

 Bands 280 295 310 

Radiance 
(Temperature) Offset 

B10 
-0.04  
(-0.2) 

-0.01 
(-0.1) 

0.03 
(0.2) 

B11 
-0.11 
(-0.9) 

0.00 
(0.0) 

0.10 
(0.8) 

 

Finally, results presented in Table 5.7 show an almost average bias – calculated as 
TIRS radiance minus predicted (VC) radiance – for band 11 of -0.05 W·m-2·sr-1·µm-1 or 
-0.6 K, whereas the bias for band 10 is close to zero. Because the magnitude of standard 
deviation is greater than the bias (σ of 0.8 K and 1.2 K for band 10 and 11 respectively), 
it can be considered negligible for both bands. 

To end the analysis of Landsat’s sensors, the statistical VC uncertainty agrees with the 
expected uncertainty retrieved in Section 1, with statistical values of 0.5-0.7 K vs 
predicted values of 0.7 K for ETM+, 0.8 K (statistical) vs 0.9 K (predicted) for TIRS 
band 10 and a slightly underestimation in the case of TIRS band 11 (1.2 K, statistical vs 
1.0 K, predicted) probably due to stray light influence.  

5.2.2. MODIS 

Predicted radiances (398 for Aqua and 381 for Terra platform) for the three MODIS 
TIR bands – with the respective in-situ measurements – were compared for the VC. 
Figure 5.6 and Table 5.9 show the results obtained for each band and station. Excluding 
Las Tiesas station, – which results differ in comparison to other stations – RMSE 
variability show minimal differences (below 0.3 K) for the considered bands, even 
between day and night values. Night performance, due to increase of homogeneity, is 
slightly better than the daytime result. Bias differences between stations are below 0.7 
K while day-night gap shows values below 1.0 K in the same station. These biases gap 
are expected as the expected uncertainty retrieved in Section 5.1 (approximately 1.0 K) 
barely differs from these values. Fuente Duque shows the highest day-night range (1.0 
K) while Balsa Blanca demonstrates to be the more stable (0.2 K). 
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(a) 

(b) 

(c) 

(d) 

Figure 5.6. Comparison of MODIS Terra (left side) and Aqua (right side) radiances 
versus the VC-based (TOA predicted) radiances. Results are presented for each test site 
– (a) Balsa Blanca (b) Las Tiesas (c) Fuente Duque (d) Juncabalejo – and band, where 
colors symbolize the band 29 (in red), band 31 (in blue) and band 32 (in green). A say-
night split was also differenced in the figures. 
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Table 5.9. Results of the MODIS VC – Terra and Aqua platforms – at four Spanish test 
sites and for the three TIR bands (29, 31 and 32) considered in this work. Bias, σ and 
RMSE are given in W·m-2·sr-1·µm-1 and, in brackets, the equivalency in temperature at 
300 K is also given. The values have been divided for day and night periods. At the 
bottom part of the table, the number of values (N) used in the VC is shown. 

  Period Balsa Blanca Fuente Duque Juncabalejo Las Tiesas 

Terra 
VCB29 

Bias 
Day 0.08 (0.5) 0.08 (0.5) 0.06 (0.3) -0.04 (-0.2) 

Night 0.08 (0.5) 0.00 (0.0) 0.10 (0.6) -0.11 (-0.7) 

Sigma 
Day 0.14 (0.8) 0.15 (0.9) 0.15 (0.9) 0.16 (0.9) 

Night 0.09 (0.6) 0.12 (0.7) 0.12 (0.7) 0.16 (0.9) 

RMSE 
Day 0.16 (0.9) 0.17 (1.0) 0.16 (0.9) 0.17 (1.0) 

Night 0.12 (0.7) 0.12 (0.7) 0.16 (0.9) 0.19 (1.1) 

Terra 
VCB31 

Bias 
Day 0.04 (0.3) 0.04 (0.3) -0.01 (-0.1) -0.11 (-0.8) 

Night 0.03 (0.2) -0.05 (-0.4) 0.02 (0.1) -0.16 (-1.2) 

Sigma 
Day 0.10 (0.7) 0.13 (1.0) 0.14 (1.0) 0.14 (1.0) 

Night 0.08 (0.6) 0.11 (0.8) 0.12 (0.9) 0.15 (1.1) 

RMSE 
Day 0.11 (0.8) 0.14 (1.0) 0.14 (1.0) 0.18 (1.3) 

Night 0.09 (0.7) 0.12 (0.9) 0.12 (0.9) 0.22 (1.6) 

Terra 
VCB32 

Bias 
Day 0.07 (0.6) 0.06 (0.5) 0.01 (0.1) -0.09 (-0.8) 

Night 0.05 (0.4) -0.02 (-0.2) 0.04 (0.3) -0.12 (-1.0) 

Sigma 
Day 0.09 (0.8) 0.11 (0.9) 0.12 (1.0) 0.12 (1.0) 

Night 0.07 (0.6) 0.09 (0.8) 0.11 (0.9) 0.14 (1.2) 

RMSE 
Day 0.11 (0.9) 0.13 (1.1) 0.12 (1.0) 0.15 (1.3) 

Night 0.09 (0.8) 0.09 (0.8) 0.12 (1.0) 0.19 (1.6) 

Aqua 
VCB29 

Bias 
Day -0.04 (-0.2) 0.05 (0.3) -0.04 (-0.2) -0.02 (-0.1) 

Night -0.05 (-0.3) 0.08 (0.5) 0.08 (0.5) -0.04 (-0.2) 

Sigma 
Day 0.12 (0.7) 0.16 (0.9) 0.13 (0.8) 0.16 (0.9) 

Night 0.11 (0.7) 0.11 (0.7) 0.12 (0.7) 0.20 (1.2) 

RMSE 
Day 0.13 (0.8) 0.17 (1.0) 0.13 (0.8) 0.16 (0.9) 

Night 0.12 (0.7) 0.13 (0.8) 0.14 (0.8) 0.21 (1.2) 

Aqua 
VCB31 

Bias 
Day -0.07 (-0.5) 0.01 (0.1) -0.08 (-0.6) -0.05 (-0.3) 

Night -0.08 (-0.6) -0.12 (-1.0) 0.01 (0.1) -0.06 (-0.4) 

Sigma 
Day 0.10 (0.7) 0.14 (1.0) 0.12 (1.0) 0.13 (1.0) 

Night 0.11 (0.8) 0.10 (0.7) 0.12 (0.9) 0.20 (1.4) 

RMSE 
Day 0.13 (1.0) 0.14 (1.0) 0.15 (1.1) 0.14 (1.0) 

Night 0.14 (1.0) 0.15 (1.1) 0.12 (0.9) 0.21 (1.5) 

Aqua 
VCB32 

Bias 
Day -0.02 (-0.2) 0.03 (0.3) -0.05 (-0.4) -0.02 (-0.2) 

Night -0.05 (-0.4) -0.08 (-0.7) 0.03 (0.3) -0.04 (-0.3) 

Sigma 
Day 0.08 (0.7) 0.12 (1.0) 0.12 (1.0) 0.12 (1.0) 

Night 0.09 (0.8) 0.09 (0.8) 0.10 (0.9) 0.17 (1.5) 

RMSE 
Day 0.09 (0.8) 0.12 (1.0) 0.13 (1.1) 0.12 (1.0) 

Night 0.11 (0.9) 0.12 (1.0) 0.10 (0.9) 0.18 (1.6) 
NTERRA (Day, Night) (12, 30) (67, 159) (26, 41) (22, 24) 
NAQUA (Day, Night) (18, 44) (77, 130) (30, 42) (30, 27) 
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Precision value of Las Tiesas station – between 0.9-1.5 K (see Table 5.9) – was slightly 
higher than expected – 1.1-1.2 K (see Table 5.3) – which probably is due to the change 
on INH index year after year. Las Tiesas lays on an agricultural area, where the 
distribution of crops and fallows change yearly (even in autumn and winter). Because 
of this, the INH index at Barrax is not stable – for low resolution sensors – and should 
be controlled yearly for a precise prediction. 

Finally, summarizing the results in Table 5.10, mean values for each band and platform 
were estimated. Biases of Aqua bands present values of -0.1 to 0.2 K while Terra shows 
values range of -0.4 to -0.1. As the case of Landsat’s sensors, the magnitude of standard 
deviation is greater than the bias (σ is approximately 0.8-1.0 K) and then the inaccuracy 
can be considered negligible for all the bands. 

 

Table 5.10. VC summary of Table 5.9. Bias, standard deviation and RMSE are given in 
radiances (W·m-2·sr-1·µm-1) and, in brackets, the equivalency in temperatures at 300 K 
is also given. 
Platform  n slope R2 bias  RMSE 

Terra 
B29 

381 
1.002±0.014 0.98 -0.02 (-0.1) 0.13 (0.8) 0.13 (0.8) / (0.7)* 

B31 0.998±0.016 0.98 -0.06 (-0.4) 0.12 (1.0) 0.14 (1.0) / (0.8)* 
B32 1.009±0.011 0.98 -0.03 (-0.3) 0.11 (0.9) 0.11 (0.9) / (0.8)* 

Aqua 
B29 

398 
1.012±0.019 0.97 0.03 (0.2) 0.14 (0.8) 0.15 (0.9) / (0.8)* 

B31 1.014±0.018 0.96 -0.02 (-0.1) 0.13 (1.0) 0.13 (1.0) / (0.7)* 
B32 1.018±0.016 0.97 0.00 (0.0) 0.12 (1.0) 0.12 (1.0) / (0.8)* 

* Without Las Tiesas test site 

 

5.3. DIRECT VALIDATION 

The algorithms presented in Chapter 1 were tested with the in-situ data measured by our 
fixed stations or buoys. The results have been presented by sensors, indicating in each 
case the performance of the algorithms. 

5.3.1. ETM+ LST algorithms 

Table 5.11 shows the validation results with ground-based measurements of the RTE 
and SC algorithms. Detailed in-situ and ETM+ data can be found in Appendix A (Table 
A1 and A2). Because LST uncertainty increases with the amount of w (and also with 
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the LST, see Figure 5.7), the validation was separated in three ranges as has been done 
for the VC.  

All LST methods provide similar results when w content is low, with RMSE below 1.0 
K and 1-sigma standard deviation around 0.7 K. Note that the bias changes with the 
algorithm: RTE and SC߰ algorithm show positive values near 0.3 K while for SCw 
algorithm it is negative or near zero. When the w content increases, the magnitude of 
the bias gets larger and turns negative, especially for SCw datasets (see Figure 5.7). σ 
values increase for all the algorithms with greater or lesser extension depending on the 
atmospheric datasets considered. 

 

Table 5.11. Comparison between Land Surface Temperatures measured in situ 
(LSTSITU) and LST obtained with different algorithms (LSTALG) (RTE: inversion of the 
Radiative Transfer Equation; SC߰: Single-Channel general algorithm; SCw: Single-
Channel water vapor approximation algorithm, where the sub index indicates the 
atmospheric dataset used in the approximation). The algorithms were tested with 
MOD07 profiles and reanalysis data. Validation was performed for three total 
atmospheric water vapor content ranges: below 1.5 g/cm2 (with N=35 values), above 
1.5 g/cm2 (with N=29 values) and all data. 

 ΔLSTSITU-LSTALG (K) 

Atmospheric 
Profile 

Algorithm 
w < 1.5 g/cm2 w > 1.5 g/cm2 w 

bias σ RMSE bias σ RMSE bias σ RMSE 

MOD v5 

RTE 0.2 0.8 0.8 -0.1 1.6 1.7 0.0 1.3 1.3 
SC߰ 0.1 0.8 0.8 -0.4 1.7 1.7 -0.1 1.3 1.3 

SCw STD -0.3 1.0 1.0 -3.2 2.5 4.0 -1.5 2.3 2.8 
SCw TIGR61 -0.2 1.0 1.0 -2.7 2.2 3.5 -1.3 2.0 2.4 

SCw TIGR1761 -0.3 1.0 1.0 -3.7 2.5 4.5 -1.7 2.5 3.0 
SCw TIGR2311 0.0 1.0 1.0 -2.5 2.3 3.4 -1.0 2.1 2.4 

MOD v6 

RTE 0.1 0.8 0.8 -0.7 2.1 2.2 -0.2 1.6 1.6 
SC߰ 0.1 0.8 0.8 -1.0 2.2 2.4 -0.4 1.7 1.7 

SCw STD -0.5 0.8 1.0 -2.7 3.3 4.3 -1.4 2.5 2.9 
SCw TIGR61 -0.3 0.8 0.9 -2.2 2.9 3.7 -1.1 2.3 2.5 

SCw TIGR1761 -0.5 0.9 1.0 -3.2 3.4 4.6 -1.6 2.7 3.1 
SCw TIGR2311 -0.2 0.9 0.9 -2.0 3.1 3.7 -0.9 2.3 2.5 

NCEP 

RTE 0.3 0.7 0.8 0.3 1.4 1.5 0.3 1.2 1.2 
SC߰ 0.3 0.7 0.8 0.1 1.5 1.5 0.2 1.2 1.2 

SCw STD -0.5 0.7 0.8 -1.5 2.2 2.6 -1.0 1.7 2.0 
SCw TIGR61 -0.3 0.7 0.7 -1.3 2.0 2.4 -0.8 1.6 1.8 

SCw TIGR1761 -0.4 0.7 0.8 -2.0 2.3 3.0 -1.2 1.9 2.3 
SCw TIGR2311 -0.1 0.7 0.7 -1.0 2.1 2.3 -0.5 1.7 1.8 
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In order to show how the atmospheric differences in w values generate differences in 
the LST retrievals, Table 5.12 shows how LST change (for RTE and for SCw algorithm) 
in comparison to w differences between atmospheres. 

 

Table 5.12. LST differences obtained by applying different atmospheric profiles to 
RTE and SCw algorithm. ΔATM is the difference between: MOD07 version 5 (M5) 
profile, MOD07 version 6 (M6) profile and reanalysis (NCEP) profile. Δ (difference), σ 
(1-sigma standard deviation) and RMSE (Root mean square error) are the statistics of 
atmospheric comparison for water vapor total column (w), inversion of the Radiative 
Transfer Equation (RTE) and Single-Channel water vapor approximation algorithm for 
a TIGR2311 dataset. Results are separated for three total atmospheric water vapor 
content ranges: below 1.5 g/cm2 (N=34), above 1.5 g/cm2 (N=29) and all data. 

  
w < 1.5 g/cm2 w > 1.5 g/cm2 All w 

Δ σ RMSE Δ σ RMSE Δ σ RMSE 

ΔATMM5-NCEP 
w (g/cm2) 0.1 0.2 0.3 0.2 0.4 0.5 0.2 0.3 0.3 
RTE (K) 0.3 0.5 0.5 0.7 0.7 1.0 0.5 0.6 0.8 

SCw TIGR (K) -0.1 0.2 0.2 -1.1 1.4 1.8 -0.5 1.1 1.2 

ΔATMM6-NCEP 
w (g/cm2) 0.0 0.2 0.2 0.1 0.4 0.4 0.0 0.3 0.3 
RTE (K) 0.1 0.4 0.4 1.0 1.2 1.6 0.5 1.0 1.1 

SCw TIGR (K) 0.0 0.1 0.1 -0.9 1.3 1.5 -0.4 1.0 1.1 

ΔATMM5-M6 
w (g/cm2) 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.3 
RTE (K) 0.2 0.3 0.3 -0.7 0.9 1.1 -0.2 0.8 0.8 

SCw TIGR (K) -0.1 0.2 0.2 -0.2 1.1 1.1 -0.1 0.8 0.8 

 

 

(a)  (b) 

Figure 5.7. Plots of in-situ LST minus algorithm LST versus: (s) in-situ LST 
measurements and (b) MOD07 v6 atmospheric w content. 
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For RTE, the divergence between w atmospheric profiles (see Table 5.12) generates 
differences three times greater between high and low atmospheric w content (RMSE 
change from 0.3-0.5 K for w < 1.5 g/cm2 to 1.0-1.6 K for w > 1.5 g/cm2). These 
differences between high and low w becomes more important for SCw as the uncertainty 
in LST increases nearly 10 times from 0.1-0.2 K for w < 1.5 g/cm2 to 1.1-1.8 K for w > 
1.5 g/cm2. This means that the atmospheric contribution between atmospheres to the 
SCw validation RMSE of Table 5.11 represents approximately 15-20% for low w (0.1-
0.2 K of 0.8-1.0 K) but increases dramatically for high w (1.1-1.8 K of 2.3-3.7 K) up to 
50%, while the contribution to the RTE remains constant, around 50-60% (0.3-0.5 K of 
0.8 K and 1.0-1.6 K of 1.5-2.2 K). RTE/SC߰ algorithms are more stable, independently 
of the atmospheric profile chosen. 

In general, for low w content, all the atmospheric profiles retrieve similar results, but 
for high w content, NCEP has demonstrated the best performance, especially for the 
SCw algorithm with RMSE differences of 1.0 K or more in contrast to MOD07 profiles. 
Two factors can be considered to explain these differences. The first one, which agrees 
with Jiménez-Muñoz et al. (2010), is the mean overestimation of the atmospheric w 
content of 0.1-0.2 g/cm2 in comparison to the NCEP estimation (see Δw in Table 5.12 
for high w). This implies an overestimation in the LST of 1.1 K for MOD07 v5 and 0.9 
K for MOD07 v6 (see Table 5.12). The second one implies the atmospheric profiles 
obtained with the MOD07 product. High differences in comparison to the NCEP 
profiles were observed in the last atmospheric pressure levels (from 1000 hPa to 800 
hPa) for the air temperature (approximately 5 K) and for the dew point temperature 
data. These differences, more pronounced in the MOD07 version 6 on August 4, 2014 
in Cortes and on July 6 and 22, 2015 in Fuente Duque (see Table 5.13), are the cause of 
the underestimation and overestimation of the τ and w parameters respectively. 
Consequently, the LST is overestimated for the SCw algorithm and inversion of the 
RTE. These extreme values have been observed in the Section 5.1 where a few high w 
values were detected in the coastal (Murcia) atmospheric profiles. 

Additionally, in the values shown into Table 5.13, a lack of data was also observed for 
the first 4 pressure levels (from 5 hPa to 40 hPa) in the MOD07 v6 profiles which have 
influenced the results of LST retrievals. Because the MODIS sensor does not have the 
appropriate channels for information retrieval at the last atmospheric levels, 
performance of the MOD07 product in this region is poor (or lacking data as in our 
three cases) in comparison to NCEP or sounding data which implies in some cases large 
differences (25 K) in dew point data (Jiménez-Muñoz et al. 2010). 
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Table 5.13. Atmospheric parameters (transmissivity; up-welling radiance, given in 
W·µm-1·m-2·sr-1; total water vapor, given in g/cm2) and LST validation of the RTE 
(ΔSITU-RTE) and the SC TIGR2311 dataset (ΔSITU-SC) for each Atmospheric profile 
(MOD07 v5, MOD07 v6 and NCEP) in Doñana test site. 

Date Profile τ LU w ΔLSTSitu-RTE (K) ΔLSTSitu-SC (K) 

06 July, 2015 
(Fuente Duque) 

MOD5 0.72 2.27 2.86 -2.2 -8.2 
MOD6 0.61 3.29 3.25 -6.0 -11.6 
NCEP 0.70 2.64 2.74 -1.4 -7.3 

22 July, 2015 
(Fuente Duque) 

MOD5 0.81 1.65 1.88 -2.5 -4.9 
MOD6 0.76 2.05 2.06 -4.2 -6.0 
NCEP 0.80 1.77 1.74 -1.8 -4.2 

04 August, 2014 
(Cortes) 

MOD5 0.68 2.64 2.99 -1.6 -6.6 
MOD6 0.65 2.86 2.65 -2.8 -4.7 
NCEP 0.75 2.10 2.09 -0.3 -2.1 

Excluding data showed in Table 5.13 from the validation, MOD07 v6 retrieve similar 
results to the MOD07 v5 product. For example, in high w values, the RMSE of 
inversion of the RTE, SC߰ and SCwT2311 decrease from 2.2 K, 2.4 K and 3.7 to 1.5 K, 
1.6 K and 2.4 K respectively, near to MOD07 v5 results (1.6 K, 1.6 K and 2.7 K for 
RTE, SC߰ and SCwT2311 respectively). 

Finally, a comparison of validation uncertainties (expected versus statistical) is shown 
in Table 5.14. While RTE and SC߰	show good agreement (differences between 0.0 K to 
0.4 K excluding the three extreme values of Table 5.13), SCwT2311 shows an 
overestimation of the expected uncertainty, probably due to the imprecisions in the 
computation of the algorithm’s expected value. In the case of high w values, the 
agreement is more precise (3.1 K vs 3.1 K) without the exclusion of extreme values, 
which demonstrates the difficult of the uncertainty computation for SCw algorithm as it 
needs a precise algorithm and atmospheric estimation, which is not possible attending 
to data range variation retrieved for the algorithm (set between 2.0-3.0 K as it is shown 
in Table 1.9) and the atmosphere (set between 1.5-3.1 K as it is shown in Table 5.2) 

 

Table 5.14. Expected and statistical uncertainties for LST algorithms of ETM+ sensor 
for high and low atmospheric w content. In brackets, the statistical uncertainties without 
the three extreme values included in the Table 5.13 are also shown. 

 w < 1.5 g/cm2 w > 1.5 g/cm2 

 RTE SC߰ SCwT2311 RTE SC߰ SCwT2311 

Expected (K) 0.8 0.8 1.4 1.2 1.2 3.1 
Statistical (K) 0.8 0.8 1.0 2.1 (1.5) 2.2 (1.6) 3.1 (2.4) 
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5.3.2. TIRS LST algorithms 

Table 5.15 and Figure 5.8a show the validation for RTE and SC-SW algorithms for 
each fixed station. Detailed in-situ and TIRS data can be found in Appendix A (Table 
A3 and A4). Retrieved results show similar values of σ between stations – differences 
below 0.5 K – increasing for high atmospheric w content (see Figure 5.8b). SCw 
contrast in σ can be observed in Juncabalejo and Fuente Duque – probably because of 
higher mean w in comparison to Las Tiesas (2.2-2.7 g/cm2 versus 1.9 g/cm2) – while in 
Cortes the results are not significant because only two values are available. The high σ 
values in Juncabalejo are also explained because of the few data available (only four 
values) which is highly influenced by punctual values. Because not enough data is 
available for high w values, the stability of the stations was analyzed for all the w range 
(see Table 5.16) and for all the stations in the three w ranges proposed (see Table 5.17).  

 

Table 5.15. Validation of TIRS LST algorithms for each station (in brackets the 
number of LST values analyzed for low, high atmospheric w content). Bias is the 
difference between in-situ LST values and estimated LST for all algorithms. All the 
values are given in Kelvin. 

  
Las Tiesas  

(11, 4) 
Fuente Duque  

(9, 20) 
Juncabalejo 

 (5, 4) 
Cortes  
(7, 2) 

Algorithm 
w (g/cm2) 
mean w 

< 1.6 > 1.6 < 1.6 > 1.6 < 1.6 > 1.6 < 1.6 > 1.6 

1.0 1.9 1.3 2.7 1.2 2.2 1.4 2.4 

RTE 
bias 0.0 0.8 0.4 -0.2 0.8 -0.6 0.1 -0.5 
σ 1.0 1.6 0.8 1.7 0.9 2.1 1.3 1.4 

RMSE 1.0 1.8 0.9 1.7 1.2 2.2 1.3 1.4 

SCw 

bias 0.4 2.3 0.9 1.2 1.6 0.0 1.1 1.3 
σ 1.2 1.4 0.9 2.3 0.8 3.1 1.1 1.9 

RMSE 1.3 2.7 1.3 2.6 1.8 3.1 1.6 2.3 

SW 
bias -0.7 1.0 -0.3 -0.6 0.1 -1.6 -0.2 -1.7 
σ 1.5 1.6 1.3 1.8 1.9 2.8 1.6 0.7 

RMSE 1.7 1.9 1.3 1.9 1.9 3.2 1.6 1.8 

 

Comparing data altogether for each station, bias and σ show similar values (see Table 
5.16) which demonstrates the uniformity of the station’s data. Differences below 0.5 K 
– except for SCw standard deviation – were retrieved.  
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(a)  (b) 

Figure 5.8. Diagrams of in-situ LST measurements minus LST retrieved by the 
algorithms – in blue, SC algorithm; in green SW algorithm; in red RTE – are shown in 
function of (a) in-situ LST and (b) atmospheric w content. 

 

Table 5.16. Validation of TIRS LST algorithms in each station (in brackets the number 
of LST values analyzed). Bias is the difference between in-situ LST values minus 
estimated LST through the algorithms. All the values are given in Kelvin. 
Algorithm  Las Tiesas (15) Fuente Duque (29) Juncabalejo (9) Cortes (9) 

RTE 
bias 0.2 0.0 0.0 0.0 
σ 1.2 1.5 1.6 1.2 

RMSE 1.2 1.5 1.6 1.2 

SC 
bias 0.9 1.1 0.7 1.2 
σ 1.5 2.0 2.1 1.1 

RMSE 1.8 2.2 2.3 1.6 

SW 
bias -0.2 -0.5 -0.5 -0.5 
σ 1.7 1.6 2.4 1.6 

RMSE 1.7 1.7 2.4 1.7 

 

Taking into account the final results for each algorithm (see Table 5.17), RTE shows 
the lowest RMSE values while SW shows the major stability between high-low 
atmospheric w. In general, RMSE is below 2.0 K, with a pronounced bias for SCw 
algorithm (1.0 K) which is not observed in the other algorithms. This inaccuracy is 
detected for all stations (0.7-1.2 K) which indicates no location or atmospheric 
dependence (see the bias of Table 5.17) and probably is due to algorithm sensitivity. 
These results are slightly higher than the validation performed over different 
atmospheric datasets presented in the Chapter 1 – 1.1 K vs 1.8 K for SW algorithm and 
1.7 K vs 2.0 K for SCw algorithm. 
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Table 5.17. Validation of TIRS LST algorithms for three w ranges. 
 LSTSITU-LSTALG (K) 

Algorithm 
w < 1.5 g/cm2 w > 1.5 g/cm2 w 

bias σ RMSE bias σ RMSE bias σ RMSE 
RTE 0.2 1.0 1.0 -0.1 1.7 1.7 0.1 1.4 1.4 
SCw 0.8 1.1 1.4 1.2 2.3 2.6 1.0 1.8 2.0 
SW -0.3 1.5 1.5 -0.6 1.9 2.0 -0.5 1.7 1.8 

 

Note that the divergences between the VC and the validation of RTE for low w content 
– below 0.2 K in the standard deviation – are due to atmospheric profile (MOD07 
version 6 for validation and NCEP profiles for VC). Note also that the SCw algorithm 
retrieves opposite bias for ETM+ and TIRS data – negative and positive respectively – 
which show differences between them of more than 3.0 K for high w content. This is 
probably due to the atmospheric dataset used for the relationship, as is shown in the 
validation with simulated data in which biases higher than -1.0 K (referred to absolute 
values) have been obtained with other datasets used for ETM+ SCw simulations (see 
Table 1.4). For TIRS, GAPRI dataset was used while for ETM+, TIGR atmospheres 
were fitted for w relation.  

Finally, comparing the expected uncertainty results versus the σ values obtained in 
validation, similar results were retrieved for low w values in the RTE (0.8-0.9 K versus 
0.8-1.3 K) and slightly higher prediction was obtained for SCw (1.5 K vs 0.8-1.2 K) 
while for high w values, the expected values underestimate the validation uncertainty by 
0.5 K in the RTE and 1.0 K in SCw. If the expected uncertainty extreme values had been 
included, the gap would have been smaller (0.3 K in RTE and 0.5 K in SCw). Finally, 
for the SW algorithm, little differences were observed and the expected forecast showed 
small differences with σ values (1.7 K vs 1.3-1.9 K). 

5.3.3. MODIS LST algorithms 

Figure 5.9 shows the validation results retrieved for the SW algorithms – MOD11 and 
Jimenez-Muñoz et al. (2011) – and the TES algorithm, which are summarized in Table 
5.18. Because there is angle dependence in the validation uncertainty (see Figure 5.10) 
as reported by Wang et al. (2002), the data was divided in three conditions: For angles 
and atmospheric w content below 35º and 2 g/cm2; for angles below 35º and for all 
angles. The results were separated for each station and algorithm (see Appendix B, 
Table B1 and B2 for more detailed information). 
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(a) 

(b) 

(c) 

Figure 5.9. Comparison of MODIS Terra (left) and Aqua (right) LST retrievals – in 
blue, TES algorithm; in green MOD11 product; in red SW algorithm – versus the in-
situ LST measurements. Results are presented for three different conditions: (a) w < 2 
g/cm2 & θ < 35º (b) θ < 35º (c) θ < 65º. 
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Table 5.18. MODIS LST algorithms versus in-situ values retrieved at our test sites. 
Validation was performed for three conditions and for both platforms. ΔLST-ALG is the 
bias between in-situ LST values minus estimated LST through the algorithms. 

Condition Platform Algorithm n m r2 ΔLST-ALG 

(K) 
σ 

(K) 
RMSE 

(K) 

θ < 35º 
w < 2 g/cm2 

Aqua 
TES 398 0.974 0.972 0.2 1.3 1.3 (1.3) 
SW 398 0.962 0.959 0.2 1.4 1.4 (1.4) 
M11 398 0.916 0.947 0.1 1.6 1.6 (1.5) 

Terra 
TES 378 0.948 0.966 -0.2 1.2 1.2 (1.2) 

SW 
M11 

378 0.968 0.963 0.2 1.2 1.2 (1.2) 
378 1.006 0.954 0.9 1.5 1.7 (1.7) 

θ < 35º 

Aqua 
TES 559 0.974 0.976 0.2 1.4 1.4 (1.3) 
SW 559 0.973 0.970 0.3 1.5 1.6 (1.5) 
M11 559 0.976 0.968 0.2 1.6 1.6 (1.5) 

Terra 
TES 499 0.979 0.984 -0.3 1.2 1.3 (1.2) 
SW 499 0.988 0.981 0.3 1.3 1.4 (1.4) 
M11 499 1.034 0.963 1.1 1.5 1.8 (1.8) 

θ < 65º 

Aqua 
TES 1244 0.974 0.976 0.3 1.4 1.5 (1.4) 
SW 1244 0.968 0.974 0.5 1.5 1.6 (1.5) 
M11 1244 0.954 0.972 0.4 1.7 1.7 (1.6) 

Terra 
TES 1109 0.971 0.980 -0.3 1.4 1.5 (1.4) 
SW 1109 0.989 0.976 0.2 1.5 1.5 (1.5) 
M11 1109 1.026 0.961 1.2 1.6 2.0 (2.0) 

 

General results show a small increase in the precision value with the angle (see Figure 
5.10), about 0.1-0.3 K, and minimal changes in the accuracy (0.1-0.3 K). Between 
algorithms, TES retrieved the highest precision but with no significant differences with 
the SW methods. It should be noted that MOD11 LST retrieved through Terra platform 
presents a noticeable bias of 1.0 K that underestimates the LST value – on Aqua 
platform accuracy of the algorithms is very similar. This bias increases with the LST as 
the slope values (1.00 to 1.03) and the left plots of the Figure 5.9 suggest and it is very 
similar for all of our test sites – differences of 0.5 K (see Appendix B). As for TES 
algorithm, bias differences reaches maximal values of 1.5 K. In comparison to SW 
algorithm, which shares similar mathematical structure and is based on similar physical 
principles, mean differences of 0.8 K are observed. 
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(a)  (b) 

Figure 5.10. In-situ measurements minus MODIS Terra (a) and Aqua (b) LST 
algorithms – in blue, TES algorithm; in green MOD11 product; in red SW algorithm – 
versus MODIS zenith angle. 

 

Between stations, bias differences are no higher than 0.9 K for TES algorithm, going in 
the worst case from -0.4 K in Juncabalejo to 0.5 K in Balsa Blanca on Aqua platform 
and for angle values below 35º. This bias is acceptable because it is below the precision 
of our validation (1.4 K). As it was mentioned in the VC section, Las Tiesas presents 
the highest σ values because of its higher inhomogeneity. As a validation complement 
(see Table 5.18) in brackets, the RMSE was also given without these data. 

Precision obtained for the algorithms was in consensus with our predictions with a 
slightly better SW σ than expected (2.1 K versus 1.2-1.5 K) and higher σ than expected 
(0.2-0.3 K higher) in the MOD11 product.  

 

5.3.4. MODIS SST algorithms 

Figure 5.11 and Figure 5.12 show SST validation results for the Mediterranean Sea and 
Atlantic Ocean respectively. Validation was divided in two zones because of the 
particularity of the Mediterranean Sea – closed versus open waters – and because of 
NASA data, which were only extracted for the Mediterranean Sea. As is shown in the 
figures, the precision of the algorithms strongly depends on sensor zenith view angle 
and wind velocity, decreasing and increasing respectively the precision of the results. 
Table 5.19 shows the algorithms precision as a function of the zenith angle and Table 
5.20 as a function of the wind velocity. 
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On the one hand, a σ increase of 0.15-0.25 K can be observed if the measurements are 
taken at large zenith angles (above 55º), which is directly related with the fit uncertainty 
of the WPSST algorithm at large angles and with the atmospheric disturbance for both 
algorithms. On the other hand, for moderate wind velocities – between 4 m/s to 10 m/s 
– a σ decreases of 0.20-0.15 K is observed. Because of the waves movement increase at 
high wind velocities, the temperature layers that stratify the first meters of the sea depth 
break, reducing in this way the bulk-skin effect. The generated uniformity in the 
temperature is the cause of the precision lift. In ideal conditions – zenith angles below 
45º and wind velocity between 3 m/s and 10 m/s – the precision of the algorithms 
reaches values for Aqua-Terra platforms of 0.522-0.558 K and 0.518-0.548 K for 
WPSST and NLSST algorithm respectively. 

 

VIEW ANGLE  WIND VELOCITY 

  
(a)  (b) 

   
(c)  (d) 

Figure 5.11. Buoy minus SST algorithm – in blue NLSST and in orange WPSST – in 
the Mediterranean Sea versus zenith angle (a)-(c) and wind velocity (b)-(d). Aqua is 
represented on (a), (b) while Terra is represented on (c)-(d). 
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(a)  (b) 

Figure 5.12. Buoy minus WPSST algorithm in the Atlantic Ocean versus (a) the zenith 
angle and (b) the wind velocity. Aqua is plotted in orange while Terra is plotted in blue. 

 

Table 5.19. Results of SST validation versus MODIS zenith angle. Precision (σ) is 
given for each angle (in Kelvin). 

 Platform Algorithm 
MODIS Zenith angle (º) 

5 15 25 35 45 53 60 

Mediterranean 
Sea 

Aqua 
WPSST 0.63 0.59 0.59 0.60 0.65 0.75 0.81 
NLSST 0.62 0.56 0.57 0.59 0.64 0.70 0.76 

Terra 
WPSST 0.58 0.63 0.64 0.60 0.66 0.74 0.84 
NLSST 0.58 0.60 0.62 0.59 0.63 0.67 0.75 

Atlantic Ocean 
Aqua WPSST 0.57 0.60 0.67 0.58 0.62 0.66 0.82 
Terra WPSST 0.71 0.66 0.77 0.68 0.69 0.73 0.85 

 

Table 5.20. Results of SST validation versus wind velocity. Precision (σ) is given for 
each speed (in Kelvin). 

 Platform Algorithm 
  Wind velocity (m/s) 

0.5 1.5 2.5 3.5 4.5 5.5 6.5 8 >10 

Mediterran 
Sea 

Aqua 
WPSST 0.75 0.79 0.75 0.68 0.62 0.64 0.62 0.58 0.62 
NLSST 0.72 0.75 0.71 0.62 0.58 0.62 0.59 0.55 0.58 

Terra 
WPSST 0.83 0.70 0.69 0.66 0.62 0.63 0.65 0.62 0.55 
NLSST 0.79 0.66 0.65 0.61 0.58 0.58 0.59 0.61 0.64 

Atlantic 
Ocean 

Aqua WPSST 0.75 0.79 0.75 0.68 0.62 0.64 0.62 0.58 0.60 
Terra WPSST 0.94 0.83 0.76 0.69 0.64 0.67 0.67 0.61 0.66 

 

Results were also separated between day and night measurements avoiding in this way 
the influence of the solar radiation in the validation. Table 5.21 and 5.22 show the 
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validation of the algorithms for daytime and nighttime data over Mediterranean Sea and 
Atlantic Ocean. A clear gap in the precision of day-night data of 0.06 K (Terra) and 
0.12-0.15 K (Aqua) is observed in the Mediterranean Sea while in the Atlantic Ocean a 
difference of 0.10 K is evidenced. As solar radiation is one of the factors that induces 
the stratification of the sea as is reported e.g. in Gentemann et al. (2003), the precision 
of the algorithms is highly influenced by this factor and a decrease of the precision 
value is observed for nighttime measurements. With all the data, a precision of 0.67-
0.68 K and 0.64 K is obtained for WPSST and NLSST algorithms respectively, which 
implies a better performance for NASA product of 0.03 K. This result may not be 
significant as the buoy temperature uncertainty measurement is ±0.03 K. 

Taking the ideal measurements conditions of zenith angle and wind velocity plus the 
nighttime data, σ values for Aqua-Terra platforms of 0.488-0.544 K and 0.470-0.541 K 
can be retrieved for WPSST and NLSST algorithm respectively. These are the maximal 
precision values that can be retrieved in the anchor buoys validation by both algorithms 
for the SST retrievals. In this case, the differences between algorithms are minimal 
(0.018 K for Aqua and 0.003 K for Terra). 

 

Table 5.21. Results of SST algorithms validation with anchor buoys in the 
Mediterranean Sea. N is the number of data used for the validation which was splitted 
into day and night time values. 

Platform  All Day Night 

  WPSST NLSST WPSST NLSST WPSST NLSST 

Aqua 
Accuracy (K) -0.226 -0.211 -0.085 -0.076 -0.406 -0.383 
Precision (K) 0.673 0.637 0.722 0.698 0.599 0.551 

NAQUA 4492 2343 2148 

Terra 
Accuracy (K) -0.218 -0.141 -0.112 -0.031 -0.340 -0.268 
Precision (K) 0.683 0.641 0.714 0.668 0.642 0.605 

NTERRA 4169 2123 2046 

 

Table 5.22. Results of Water vapor Path length SST algorithm validation with anchor 
buoys in the Atlantic Ocean. N is the number of data used for the validation. 

Algorithm  All Day Night 

  Terra Aqua Terra Aqua Terra Aqua 

WPSST 
Accuracy (K) -0.189 -0.347 -0.132 -0.136 -0.434 -0.386 
Precision (K) 0.729 0.651 0.738 0.732 0.638 0.627 

NVALUES 2574 2664 2084 412 489 2252 
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Finally, Figure 5.13 shows the biases (bulk-skin differences) obtained with the SST 
algorithms respect to the buoys measurements. Differences of 0.1 K to -0.2 K were 
observed for daytime data and values of -0.2 K to -0.5 K for nighttime. It is reported 
that the buoy temperature at 3 m is always lower than the skin temperature especially 
for nighttime periods with differences of -0.3 K (Schluessel et al. 1990). The pattern 
between algorithms is very similar, showing only higher differences for the lowest and 
highest temperatures. 

 

(a)  (b) 

Figure 5.13. Buoy bulk temperature minus NLSST (in blue) and WPSST (in orange) 
SST algorithms as a function of buoy bulk temperature. Squares and crosses represent 
the daytime and nighttime values, respectively. Accuracy was extracted for (a) 
Mediterranean Sea and (b) Atlantic Ocean. 

 

5.4. DOWN-SCALING RESULTS VALIDITY 

As was commented in Chapter 3, statistical methods proposed for LST sharpening do 
not maintain the radiometry of the original image. Because of this, the distortion 
between the original (coarse resolution) and the sharpened image (thin resolution 
image, up-scaled to original resolution) should be retrieved over our test sites for 
MODIS and L8 imagery in order to quantify the uncertainty (and bias) introduced to the 
down-scaled images. For this reason, year 2014 data – for MODIS, 345 daytime images 
were computed – and all the data available between 2014 and 2016 – for L8, 69 Barrax 
and 54 Doñana images – were analyzed, computing for each image the accuracy and the 
precision (bias, σ) combined with the percentage of pixels (PPT) that show differences 
below 0.5 K (PPT0.5) and 1.5 K (PPT1.5) between original and sharpened images. 
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Figure 5.14 shows σ and PPT0.5 for MODIS and L8 images in Doñana and Barrax test 
site. Results show a clear seasonal pattern (for both algorithms), with high σ values and 
low PPT0.5 pixels in spring and in summer images, and vice versa in autumn and winter 
seasons – following the LST homogeneity pattern described in the previous chapter. 
NNTS method presents lower σ values in all the cases, showing better PPT0.5 especially 
for high solar radiation periods. Differences between methods present σ values of 0.2 K 
to 0.5 K (see Table 5.23) and PPT0.5 of 10% or even 20% for L8 images (see Table 
5.24). These percentages drop to 1-8% for PPT1.5 values.  

The peaks observed in Figure 5.14 are due to cloudy days, for which the uncertainty of 
the down-scaled images increases. Because of this, in the summary of the results shown 
in Table 5.23 and 5.24, a cloud percentage separation was performed. For cloudless 
images σ shows lowest values than for cloudy days which indicates a better 
performance of the algorithms for clear skies. For L8 images these difference (cloudly-
cloudless) are below 0.1 K while for MODIS the reduction is more important, with 
decreases of 0.4 K in Doñana and 0.7 K in Barrax. 

In Tables 5.23 and 5.24 and Figure 5.14 one can also observe that the down-scaled L8 
images show better stability in the radiometry than the MODIS images. This means that 
the sharpening is more precise in middle resolution sensors than in low resolution 
sensors in spite of the pixel size reduction applied, which is greater in L8/TIRS (third 
part of the coarse LST pixel) than in MODIS (half of the coarse spatial resolution) – 
L8/TIRS images by a higher factor sharpened than the MODIS images. 

 

Table 5.23. Minimal, maximal and average (σ) values obtained in the comparison of 
down-scaled and coarse L8/TIRS and MODIS images. Results are divided for each 
method, test site and two percentage range of image clouds. 

 Doñana Barrax 
Average  NNTS (K) TsHARP (K) NNTS (K) TsHARP (K) 

(%) Clouds min max σ min max σ min max σ min max σ 
MOD < 70% 0.35 5.40 1.29 0.43 6.24 1.84 0.41 7.72 1.69 0.45 9.48 2.13 
MOD < 30% 0.35 1.47 0.87 0.43 2.68 1.30 0.41 1.50 1.00 0.45 3.03 1.27 

L8 < 70% 0.12 1.39 0.35 0.17 1.64 0.57 0.13 1.40 0.59 0.20 1.95 0.99 
L8 < 30% 0.12 0.77 0.33 0.17 1.10 0.55 0.13 1.09 0.50 0.20 1.65 0.89 
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Table 5.24. Average percentage of pixels that show radiometry changes below 0.5 K 
(T0.5) and 1.5 K (T1.5).  

(%) Average 
values 

Doñana Barrax 
NNTS TsHARP NNTS TsHARP 

(%) clouds T0.5 (%) T1.5 (%) T0.5 (%) T1.5 (%) T0.5 (%) T1.5 (%) T0.5 (%) T1.5 (%) 
MOD < 70% 56.42 97.23 44.24 91.41 55.06 96.84 46.11 88.74 
MOD < 30% 61.82 98.39 50.57 94.55 58.57 97.97 51.39 94.84 

L8 < 70% 93.37 99.13 80.52 98.02 88.11 98.59 67.39 92.38 
L8 < 30% 93.59 99.15 80.85 98.08 89.26 98.63 68.92 92.46 

 

DOÑANA BARRAX 

.
(a)  (b) 

(c)  (d) 

Figure 5.14. Plots of standard deviation (crosses) and percentage of values below 0.5 K 
(squares) between the coarse images versus the NNTS (in blue) and TsHARP (in green) 
sharpened images. Diagrams represent the radiometry changes on down-scaled images 
for Doñana and Barrax test sites. Data was extracted for year 2014 – MODIS imagery 
(a)-(b) – and from year 2013 to 2016 – L8 imagery (c)-(d). 

 

Finally, it should be noted that the major part of the pixels (more than 97% in the 
NNTS method and above 90% in the TsHARP method) show radiometry changes 
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below 1.5 K and that the bias between coarse and down-scaled images is near zero. This 
is important because the pixel radiometry changes have, in general, less contribution to 
the final down-scaled LST uncertainty than the validation uncertainty obtained in the 
previous section – which was retrieved as 1.5-2.0 K. If radiometry changes had been 
greater than the validation uncertainty or bias had not been zero, those would have had 
high influence on the precision and accuracy of the down-scaled product. 

 

5.5. INDIRECT VALIDATION 

Direct validation has allowed us to test the performance of the algorithms over punctual 
landscapes and for several images in different time periods. With the indirect 
validation, the algorithms can be tested over a high number of pixels and, in our case, 
for a few air-borne images. This is another type of validation that can be considered 
complementary to the in-situ tests. Furthermore, the use of AHS images allows for the 
validation of the sharpened images, as AHS spatial resolution shows a high pixel 
variability which cannot be obtained with our fixed station measurements. The test of 
the SEVIRI SW algorithm is also included in this section.  

5.5.1. TIRS 

The TIRS validation was performed on May 11, 2015 over the Doñana test site. Figures 
5.15 and 5.16 show the plots of the validation which are summarized in Table 5.25. 
Furthermore, in Appendix C (Figure C5b), the up-scaled AHS image versus the TIRS 
image can be found. 

Bias validation results (-0.7/-0.8 K for RTE, -0.7/-0.4 for SCw and 0.0/0.4 K for SW) at 
coarse spatial resolution of 90 m (close to the TIRS spatial resolution which is 100 m) 
are similar to the direct validation results of that day (see Appendix A, Table A3) with 
negative values of RTE (-0.7 K in Fuente Duque and -1.2 K in Juncabalejo) and SCw (-
0.6 K in Fuente Duque and -1.3 K in Juncabalejo) and a positive bias for SW (1.2 K in 
Fuente Duque and 0.6 K in Juncabalejo). Regarding the precision values, these are in 
agreement with the direct validation uncertainties retrieved above (see Table 5.17). 
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RTE SCw SW 

(a) (b)  (c) 

(d)  (e)  (f) 

Figure 5.15. LST validation of TIRS algorithms versus AHS data. The top and bottom 
figures represents the AHS pass taken at 10:51 UTC and 11:09 UTC, respectively. 

 

USGS TsHARP NNTS 

(a) (b)  (c) 

(d)  (e)  (f) 

Figure 5.16. Validation of resampled LST obtained with inverse RTE versus AHS data. 
The top and bottom figures represents different AHS passes. 
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Table 5.25. Main statistics of the up-scaling AHS process on TIRS coarse image and 
on sharpened images. N symbolizes the number of pixels used in the validation at 90 m 
and, in brackets, at 30 m. See also Figure 5.15 and 5.16. 

 Statics ΔSW ΔSC ΔRTE90 ΔUSGS ΔTsHARP ΔNNTS 

10:51 UTC 
 

N=30,648 
(271,097) 

r2 0.921 0.909 0.913 0.873 0.822 0.882 

Bias 0.0 -0.7 -0.8 -0.8 -0.8 -0.7 
Sigma 1.9 2.1 2.1 2.6 3.0 2.4 
RMSE 1.9 2.3 2.3 2.7 3.1 2.5 

11:09 UTC 
 

N=42,115 
(372,742) 

r2 0.903 0.902 0.914 0.839 0.831 0.863 
Bias 0.4 -0.4 -0.7 -0.7 -0.6 -0.6 

Sigma 1.8 2.0 1.9 2.6 2.8 2.4 
RMSE 1.9 2.0 2.1 2.7 2.8 2.5 

 

Regarding the down-scaled RTE images, in the validation it is appreciated that the bias 
values does not change and that the σ values are slightly higher than the coarse RTE 
image with increases of 0.3-1.0 K, which are expected as the up-scaling process 
generates uncertainties in the simulated pixel due to the imperfect combination of the 
high resolution pixels for the coarse pixel retrieval. Furthermore, the uncertainty of the 
radiometry changes must to be added in TsHARP and NNTS regression model, which 
in this particular image is approximately of 0.80 K and 0.44 K respectively. 

Comparing the models, NNTS retrieves the lowest RMSE values (0.2 K and 0.6 K 
lower than the USGS and TsHARP respectively) and the highest correlation coefficient 
(0.88-0.86) probably because of the low radiometry changes in comparison to TsHARP 
method and because NNTS method represents better the LST at 30 m than the USGS 
interpolation method (see the r2 in Table 5.25). This is also shown in the Figure 5.17 in 
which the LST of the roads in Doñana are neatly seen in comparison to the USGS 
image. 

5.5.2. MODIS 

Figure 5.18 and Tables 5.26 and 5.27 show the MODIS indirect validation during three 
field campaigns. The area of the simulated pixels obtained with the up-scaling method 
applied to the AHS pixels can be found in Appendix C (Figures C2, C3a and C4a).  
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(a) (b) 

Figure 5.17. Down-scaled LST image obtained with the inverse RTE in Doñana test 
site: (a) is the LST obtained with NNTS method; (b) is the original USGS LST. 
Doñana’s roads are marked in the figures with a circle. 

 

 

Figure 5.18. LST validation of MODIS algorithms versus AHS data. Colors represent 
field campaigns: Blue, Doñana 2015; Red, Doñana 2013 and purple Miajadas 2012. 
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These tables show unequal RMSE due to the zenith angle at which the data was 
archieved. In Doñana, the MODIS overpass was carried out with zenith angles of more 
than 55º, while in Miajadas the view angle was about 40º. This large angle increases 
location pixel uncertainty in addition to algorithm precision. Miajadas validation 
matches with the direct validation results (Table 5.18), even for the bias estimation (0.9 
K vs 0.8 K, 0.2 K vs 0.4 K and -0.2 K vs -0.2 K for MOD11, SW and TES respectively) 
while in Doñana the RMSE results overestimate the direct validation values. In spite of 
the larger angle in the Doñana 2015 field campaign, the RMSE obtained was lower than 
in the Doñana 2013 campaign. This is due to the cloud cover which in year 2013 was 
higher (25%) than in year 2015 (8%). Additionally to the factors mentioned above, the 
AHS thin pixels that simulate the up-scaled pixel show dramatic changes on the land 
cover (see the Appendix C images) as flooded lakes versus dry surfaces over the 
marshland area or a coast line that separates sand dunes (hot spot) and Ocean water 
(cold spot). This huge difference between pixels and the high Doñana’s INH index in 
the spring season (higher than 1.5 K) adds even more uncertainty to the up-scaling 
process and then, to the validation results. If these pixels with high land cover variance 
are not taken into account, the RMSE values improve towards 0.5-1.0 K. 

 

Table 5.26. Bias, standard deviation and RMSE (given in kelvin) between LST 
retrieved by MODIS algorithms and LST obtained with AHS. In brackets, these values 
are shown without the high land cover variance pixels. In the campaign column, the 
mean MODIS measurement angle (θ) and number of pixels (n) tested (in brackets n for 
0.5 km product) were included.  

Campaign Estadística SWM11 SWUCG TES1 Km TES0.5 Km 

Doñana 
11/05/2015 10:35 

θ = -63º n = 28 (144) 

Bias 2.9 (2.4) 1.6 (1.2) -2.1 (-1.3) -0.6 (-0.4) 
Sigma 3.1 (2.6) 3.2 (2.8) 2.6 (2.5) 3.3 (3.1) 
RMSE 4.2 (3.6) 3.6 (3.0) 3.4 (2.8) 3.3 (3.1) 

Doñana 
07/05/2013 11:55 
θ = 55º n = 12 (48) 

Bias 3.5 (2.7) 2.9 (2.0) 1.7 (0.6) 2.3 (1.5) 
Sigma 3.4 (3.2) 3.8 (3.5) 3.1 (2.8) 4.0 (3.6) 
RMSE 4.9 (4.1) 4.8 (4.0) 3.6 (3.0) 4.6 (3.9) 

Miajadas 

04/10/2012 11:45 
θ = 41º n = 14 (80) 

Bias 0.8 0.4 -0.2 0.4 
Sigma 1.1 1.1 1.2 1.5 
RMSE 1.3 1.2 1.2 1.6 

 

Applying the NNTS method to the TES algorithm, a LST product at 0.5 km was also 
validated. Table 5.27 shows that 95% of pixels in Miajadas have differences below 1 K 
respect to the original image, while in Doñana this percentage drops to 70-80%. This 
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generates an extra uncertainty to the σ values in the validation – as is shown in Table 
5.26 and in Figure 5.18 – especially in Doñana. RMSE of sharpened images increases 
in all the cases except for Doñana 2015, where in spite of σ increase the RMSE does 
not change because of the bias diminution in terms of absolute values. This bias 
behavior is observed in all the cases with increases of 1.5 K in Doñana 2015 campaign 
and of 0.6 K in Miajadas 2012 and Doñana 2013 campaigns in spite of the bias result 
(see Table 5.27) obtained in the coarse-sharpened comparison. The bias change can be 
explained because of the fill of the gaps performed with the NNTS method. The TES 
original image shows striping effects and, when the NNTS method is applied, these 
gaps are filled as the sharpened LST is based on the visible-infrared relationship which 
does not show striping effects. This gap fill explains part of the bias modification. If we 
do not consider these values for the validation, the bias turns closer to its original values 
(-0.9 K to -0.4, 0.9 K to 0.6 K and 0.0 K to -0.2 K for Doñana 2015, 2013 and Miajadas 
2012 respectively). Even so, there is a change in the bias, although it can be neglected 
in comparison to the σ values. 

 

Table 5.27. Bias and standard deviation values (in Kelvin) in addition to the correlation 
coefficient and clouds percentage obtained in the comparison of down-scaled and 
coarse MODIS images for the three field campaigns. PPT is the percentage of pixels 
that show radiometry changes below certain LST value. 

     PPT (%) 
 r2 Clouds (%) bias (K) sigma (K) < 0.5 0.5-1 1-2 > 2 

Doñana 0.986 8 % -0.04 0.92 48.6 34.5 12.1 4.8 
Doñana 0.988 25 % 0.00 2.29 36.7 33.3 13.2 16.8 

Miajadas 0.922 0 % 0.01 0.60 56.8 37.9 5.1 0.1 

 

5.5.3. SEVIRI 

Only an indirect validation was performed for the SEVIRI SW algorithm. Because there 
are several SEVIRI images during 1-2 hours (mean time of field campaigns), several 
AHS overpasses were selected for validation. For each overpass, only few pixels were 
obtained because of SEVIRI pixel size which, in some cases, were not totally filled 
with AHS pixels – in these cases, the pixels were simulated with 80% or more of valid 
AHS values. To ensure the SEVIRI SW validation with a high amount of filled pixels, 
the SEVIRI image was also cross-validated with the TIRS LST product. The simulated 
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pixels for the AHS sensor and TIRS can be found in Appendix C (Figures C1, C3b, 
C4b and C5a). 

Figure 5.19 and Table 5.28 show the validation with the TES AHS product and with all 
the algorithms tested for TIRS. In the case of AHS comparison, the highest RMSE 
values were obtained for Doñana 2013 campaign (6.8 K), as it occurred for the MODIS 
validation, and the lowest in Miajadas (2.5 K). As was explained in the MODIS case, 
the coast lines generate high uncertainties in the up-scaling process which explains in 
part these high values. For this reason, when the costal pixels are not considered, the 
validation results improve, reducing the RMSE values in 2.5 K. Even so, Doñana 2013 
retrieves higher results than the other two campaigns (2.0 K higher) which, as in the 
case of MODIS, is probably due to cloud presence. 

Results between TIRS and SVIRI agree with the AHS validation. The bias is positive 
which indicates an overestimation of TIRS values (as it was reported form in-situ and 
indirect TIRS validations) and the σ values are close to root sum square of the TIRS-
SEVIRI validation sigmas (3.2 K vs 2.9-3.1 K, depending on the TIRS algorithm and 
erasing the line coast effects). As was expected, SEVIRI and TIRS SW bias difference 
is near zero, in opposition with RTE and SCw (RTE and SCw overestimate the SW 
SEVIRI LST). 

 

Table 5.28. Bias, standard deviation and RMSE (given in kelvin), of the cross-
validation performed on SEVIRI SW algorithm with the AHS sensor and TIRS. The 
results were split with the inclusion or not (in brackets for Landsat) of the coastal 
pixels.  
Up-scaled AHS Landsat 
Campaign Doñana 2015 Doñana 2013 Miajadas Doñana 2015 

 coast no coast coast no coast no coast SC SW RTE 
Bias (K) -1.3 0.2 -4.6 -2.7 -1.6 0.3 (1.0) -0.6 (0.2) 0.5 (1.2) 

Sigma (K) 4.8 2.6 5.0 3.4 1.8 4.5 (2.7) 4.9 (3.1) 4.6 (2.8) 
RMSE (K) 5.0 2.6 6.8 4.4 2.5 4.5 (2.9) 4.9 (3.1) 4.6 (3.1) 

N 74 67 67 53 9 198 (168) 
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(a) (b) 

Figure 5.19. LST validation of SEVIRI SW algorithm versus (a) AHS TES product and 
(b) TIRS algorithms. 

 

5.6. LST VALIDATION SUMMARY 

Finally, a summary of the LST results – in-situ (direct) and cross-validation (indirect) – 
is shown in Table 5.29. The results were sorted by sensor and algorithm, in which the 
sharpening NNTS results were also included (sharpened RTE image for TIRS and 
sharpened TES algorithm for MODIS). In the table, the better and the worst RMSE 
cases are shown. 

 

Table 5.29. Summary of direct (in-situ) and indirect (cross) validation results of ETM+, 
TIRS, MODIS and SEVIRI sensors given in Kelvin. The validation of the NNTS 
method was also included. 
Algorithm  Type Val RTE SCw SW M11 TES NNTS 

ETM+  In-situ 1.2-1.6 1.8-3.0 - - - - 

TIRS 
 In-situ 1.0-1.4 1.4-2.0 1.5-1.8 - - - 
 Cross 2.1-2.3 2.0-2.3 1.9 - - 2.5 

MODIS 
MYD In-situ - - 1.4-1.6 1.6-1.7 1.3-1.5 - 

MOD 
In-situ - - 1.2-1.5 1.7-2.0 1.2-1.5 - 
Cross - - 1.2-4.0 1.3-4.0 1.2-3.0 1.6-3.9 

SEVIRI  Cross - - 2.5-4.0 - - - 
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The results show that the algorithms, in general, retrieve LST with an uncertainty of 
1.2-1.8 K (depending of the sensor) in the most favorable conditions – i.e with low 
atmospheric water vapor content (below 1.6 g/cm2) and minimal land cover 
inhomogeneity. Because it is not always possible to obtain the LST in these conditions, 
the algorithms allow the LST retrieval with an uncertainty below 2.0 K which strongly 
depends on the instantaneous atmospheric conditions and the adequate characterization 
of the surface. In general, RTE, TES and SW retrievals obtain the lowest RMSE values 
with little changes due to atmospheric conditions, while SCw algorithm retrieve 
acceptable results only for low w conditions. These results have been confirmed by the 
cross-validation results which – avoiding the up-scaling difficulties – agree, in general, 
with the in-situ validations. In MODIS cases, with large angles, the RMSE differences 
are notable (1.5 K). 

NNTS method has demonstrated to be useful for LST sharpening as it shows that the 
LST could be down-scaled with an increase of the uncertainty below 1.0 K – in respect 
to the coarse MODIS LST product – and below 0.5 K in respect to the coarse TIRS 
LST. 

5.7. LST/SST PRODUCTS 

As a last part of the chapter, three different temperature products – which have been 
validated in this chapter – have been proposed for implementation as a part of the 
MODIS chain process, which has been implemented in the installations of our group, 
the Global Change Unit (GCU) that is integrated in the Image Processing Laboratory. 
The process chain is part of the CEOS-SPAIN project, which supplies in near-real time 
MODIS products as fire detection, emissivity or NDVI, among others. For this purpose, 
the GCU team receives MODIS raw images with the group’s antenna which are 
processed and transformed in the products previously mentioned. These products are 
available from the web page http://ceosspain.lpi.uv.es/ and can be downloaded 
providing a previous registration. Additionally to MODIS data, SEVIRI data are also 
available from this web page. 

The products proposed for their implementation are: MODIS TES algorithm with a 
spatial resolution of 500 m; MODIS SW algorithm for SST retrieval and Landsat-8 
TIRS LST with the RTE at 30 m. Because the products are not yet implemented (but 
are expected its integration in the chain process in the near future), only an example is 
shown in this section. 
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5.7.1. MODIS 

From radiance data of bands 29, 31 and 32 and the atmospheric product MOD07 
version 6 up-scaled to 20×20 km (as mentioned in Chapter 2) – also generated by our 
team – the LST can be estimated. In order to show the striping problems in band 29 and 
how it is possible to reconstruct the gaps by the application of the NNTS method, – 
which it is not the primary objective of the method – Figure 5.20 shows a quicklook of 
the TES product over the Iberian Peninsula at 500 m and 1 km. The final product shows 
the image without gaps and sharpened LST. 

Considering sea temperature, a yearly SST product was generated for years 2011 and 
2012 (see Figure 5.21). The average was performed with all the valid data provided by 
Terra and Aqua platforms – excluding the cloud pixels, which are detected by cloud 
mask estimated in the GCU process chain. The image shows the expected SST 
distribution (colder in the north and hotter in the south part and in the Mediterranean 
Sea) and the changes between the analyzed years. Comparing the image values over the 
Mediterranean buoys, a little drop is observed in the SST of year 2012 (in comparison 
to year 2011) which agrees with the difference extracted directly from buoys values 
(see Table 5.30). Differences retrieved between buoys and satellite data can be 
attributed to algorithm uncertainty, to the averaging procedure – which include hourly 
data for the buoys in contrast to the 2-3 daily valid values obtained from satellite data – 
or to the cloud detection through satellite images. In spite of these uncertainty sources, 
data show the same pattern with minimal and maximal differences of -0.12 K and -0.40 
K. 

5.7.2. Landsat-8 TIRS 

LST product at 30 m was estimated for Barrax and Doñana test sites (see Figure 5.22 
and 5.23, respectively). USGS offers by default the product at 30 m (for agreement with 
the other Landsat bands) but, as was obtained with the indirect validation, with higher 
RMSE values and correlation coefficients than the NNTS method. Both products are 
shown in order to compare visually the differences. 
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(a) (b) 

Figure 5.20. MODIS LST image of the Iberian Peninsula for August 13, 2014 at 11 
o’clock provided by Terra platform with spatial resolution at (a) 500 m (b) 1000 m. 

 

  

 
(a) (b) 

Figure 5.21. MODIS SST retrieved by the WPSST algorithm for Atlantic Ocean and 
Mediterranean Sea. Image (a) shows the average SST for year 2011 while (b) provides 
the difference between year 2012 and year 2011. 
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Table 5.30. SST and bulk temperature differences between years 2011 and 2012 (2012 
minus 2011). ΔB symbolizes buoys difference while ΔSST symbolizes SST difference 
(given in K). 

Cabo de Gata Cabo de Palos Valencia Dragonera Tarragona 
ΔB ΔSST ΔB ΔSST ΔB ΔSST ΔB ΔSST ΔB ΔSST 

-0.67 -0.79 -0.50 -0.78 -1.01 -0.65 -0.86 -0.46 -0.14 0.02 

 

In Barrax and Doñana images, sharp land cover types can be appreciated with the 
NNTS method which present a more real contrast between LST. For example, in Barrax 
the contour of the crop-bare lands is clearer than in the USGS image as well as the 
roads and little pools that covers Doñana. The proposed LST product is operative and 
only needs the MOD07 atmospheric product as atmospheric input. 

 

 

Figure 5.22. LST product estimated with RTE at 30 m over Barrax test site. The 
amplified images show the results of NNTS and USGS sharpening methods. 
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Figure 5.23. LST product estimated with RTE at 30 m over Doñana test site. The 
circles in the amplified images show the shapes of the roads and lakes with the NNTS 
and USGS down-scaling methods. 



 

 

 

 

 

   

CONCLUSIONS 
 

 

 

 

 

 

 

 

 

 

The importance of the high quality data is essential to ensure a consistent temporal 
study that require high precision and accuracy. In this thesis, a contribution to TIR data 
was added in the framework of the WGCV needs. In this work, three important 
activities were developed for the improvement of TIR cal/val data: The establishment 
of permanent and automatic station for the cal/val, the VC of the TIR data collected by 
EO sensors and the validation of the Land/Sea Surface Temperature through different 
algorithms. Additionally to these activities, three algorithms – two for TIRS LST 
estimation and one for MODIS SST estimation – and one method for LST sharpening 
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were developed in order to integrate three new LST/SST products in the process chain 
of our group. 

The setup of the fixed stations was the first step for the beginning of the cal/val 
activities. As one station was not enough for covering all the land and atmospheric 
characteristics (different land emissivities and covers or dry and wet atmospheres), 
through time and depending on budget availability (high costs of the necessary 
instruments for the automatic station set up) the web of stations started to grow in order 
to obtain more in-situ data and to encompass as much EO sensors as possible – 
regarding the spatial resolution. Now, three automatic stations are operating in Doñana 
National Park, two more in Barrax and one in the National Park of Cabo de Gata. All 
the stations are managed by our team in collaboration with Doñana, Barrax and Almeria 
staff. 

Because of the increase of available TIR in-situ data, a quality control – with specific 
programs created by our team – and a unified procedure for the in-situ LST retrieval 
was required. The first step was the control of the emissivity, with dedicated field 
campaigns that included direct emissivity measurements and the evolution of the land 
covers where the stations laid. This last was important, as the uncertainty had a strong 
land cover dependence. The second one was the establishment of the down-welling 
radiance estimation and the control of the direct measurements performed by the 
radiometers that included a calibration protocol and the conversion of the radiance to 
LST and vice versa – in order to avoid the pass band effect. The third and most 
important step was to quantify the INH index for each EO sensor type. This study was 
essential as it was demonstrated to be the major uncertainty source for cal/val activities. 
Finally, with each uncertainty source contribution it was possible to establish the 
precision of our in-situ measurements regarding the sensor’s spatial resolution: 0.6 K 
and 0.7 K as a maximal precision for middle and low resolution sensors respectively in 
the best measurement conditions, and 1.0 K as an average values of our measurements. 

Additionally to this uncertainty, the amount of atmosphere between in-situ data and 
satellite, plays a strong role in the sensor data collection. This uncertainty was also 
taken into account to establish a final expected uncertainty for our cal/val activities. The 
expected values obtained ranged between 0.6-1.2 K for the VC and between 0.7-3.0 K 
for algorithm validation. These values strongly depends on the sensor spatial resolution 
and the type of LST algorithm considered. As in other works, e.g. Coll et al. (2010) or 
Wang (2014), the validation uncertainty retrieved for the EO sensors was below 1.5-2.0 
K. These values agreed with the expected precision obtained in this work, allowing us 
the realization of cal/val activities with the required precision to retrieve appropriate 
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results. If expected uncertainties had been above the validation requirements, the 
stations would not have obtained a high quality comparison. 

VC was performed on Landsat (TIRS and ETM+) and Terra/Aqua (MODIS) TIR 
bands. According to the results obtained in the VC, a near zero bias was retrieved for all 
the analyzed bands except for band 11 of the TIRS sensor, which was found to be 
brightness temperature dependent with values for 280 K and 310 K of -0.9 K 
(temperature underestimation) and 0.8 K (temperature overestimation) respectively. 
Because the statistical uncertainty of VC (1.2 K for the TIRS 11 band) was above the 
bias absolute values, it was not possible to consider the results as definitive and 
additional measurements should be performed to obtain a significant conclusions. 

In general, the direct validation of the LST algorithms for ETM+ and TIRS showed 
uncertainties below 2.0 K, always dependent of the atmospheric conditions and the 
algorithm used. The RTE shows the lowest RMSE values for both sensors and for the 
major part of atmospheric conditions (below 1.5 K) while the SCw algorithm shows the 
poorest performance with values around 2.0 K or more (especially for atmospheric 
conditions of high w content in which the RMSE reaches values of 3.0 K). 

Atmospheric profiles analyzed for L7, MOD07 and reanalysis profiles used in the VC 
and LST validation showed to be useful for low w atmospheric content (with slightly 
lower RMSE for NCEP) but, in general and especially for high w values, the use of 
NCEP data for Landsat-7 platform is recommended. 

The TIRS SW algorithm shows a stable value – independently of the atmospheric w 
content – with average RMSE of 1.8 K. Although in our test sites deviations for band 
11 were not as dramatic as expected, – because of stray light – band 11 is still providing 
worse accuracies than band 10. Even if band 11 is still affected by undesired noise, the 
SW approach provided a moderate uncertainty. This can be attributed to the SW 
technique itself, since the highest contribution to the LST retrieval is coming from band 
10, and then the atmospheric correction is performed by using the difference between 
band 10 and band 11. Therefore, absolute values of band 11 are not used in the SW 
technique, which somehow minimizes the calibration problems in this band (at least 
when these calibration errors are not extremely huge). However, we emphasize that 
these results should be considered with caution, since the stray light problem could 
influence TIRS bands differently depending on the site and temporal period (Barsi et al. 
2015). 

MODIS algorithm validation showed similar values for the SW/TES algorithm and 
MOD11 product with uncertainties ranging between 1.2 K and 2.0 K. TES algorithm 
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retrieved a slightly higher precision than the SW methods but only 0.1-0.2 K better. 
MOD11 product on Terra platform shows the highest RMSE values due to its higher 
inaccuracy in comparison to the other two methods. This inaccuracy which presents 
values of 1 K, underestimates the LST and is the cause of the high RMSE retrieved (2.0 
K in the worst case). Even so, the results obtained agree with other independent 
validations that shows values of 1.5 K for TES algorithm and 1.0-2.0 K for MOD11 
product. 

Taking into account these results and the spatial and temporal cover of current 
atmospheric products – with which it is possible to retrieve the atmospheric parameters 
of transmissivity, up-welling and down-welling radiance around the world – it is 
recommended, in stable atmospheric conditions, the use of RTE, TES and SC  general 
equation for the LST estimation. SCw algorithm can be also used, but only for low 
atmospheric water vapor contents. SW algorithm retrieved a little higher RMSE values 
than RTE or TES, but more stable results (less standard deviation variability) regarding 
the atmospheric conditions, which makes it more suitable for analysis of global data. 
Furthermore, SW and SCw algorithm only require w input which implies a faster 
computational time as no atmospheric profile nor radiative transfer code execution are 
required. For these reasons, SW is more operative for global LST estimation although, 
in general, the precision values is little higher than TES or RTE. 

The cross-validation has been performed over a high amount of pixels at the same time 
and with an air-borne sensor (in our case the AHS) differing with the direct validation 
in the retrieval of the ground-true measurements (in the direct validation it comes from 
in-situ radiometers while in the indirect validation the truth is the air-borne data which 
is up-scaled to a desired sensor resolution). Products with their original spatial 
resolution have been validated, retrieving similar results as the direct validation – 
differences below 0.3 K – which demonstrates by other way the validity of our results. 
The major discrepancies come from the MODIS data obtained at very large angles > 
55º in which case the validation results show uncertainties of 3.0 K. 

Because of the pixels heterogeneity in the AHS image and its high pixel resolution – 
between 3-5 m – it was possible to test the down-scaled MODIS TES algorithm and 
TIRS RTE product at 500 m and 30 m respectively.  The comparison between the two 
sharpening models and the USGS 30 m TIRS LST product showed highest 
imprecisions (0.5-0.8 K) in comparison to the coarse image (90 m) probably due to the 
uncertainties involved in the up-scaling process. The comparison between products 
show that the NNTS method retrieves lower RMSE values than the USGS and TsHARP 
method. Although NNTS down-scaling method does not maintain the radiometry of the 



  CONCLUSIONS 

135 
 

original image, the precision is higher than for the USGS image because of the low 
uncertainty due to radiometric changes (0.5 K) which have a minimal contribution in 
the final LST estimation in comparison to the algorithm uncertainty (2.1 K). 

Results similar to TIRS down-scaling were retrieved for MODIS. Comparing the results 
of the sharpened versus the coarse image, a slightly higher imprecisions of 0.4-1.0 K 
was obtained, but with the difference that the bias is not maintained, which is not 
detected in TIRS down-scaling process. The bias increase is not dramatic (around 0.4 
K) and can be considered acceptable as the mean radiometry change between the 
sharpened and coarse image is approximately 0.9 K. 

To conclude the algorithm analysis, the WPSST and the NASA SST product have been 
validated over the Mediterranean and Atlantic Sea. Validation has been performed over 
the anchor buoys and has shown similar results between the algorithms, with precision 
values of 0.67-0.68 K and 0.64 K for WPSST and NASA algorithms respectively. In 
spite of the minimal gap between the algorithms, the WPSST algorithm is more 
operative than the other one as it does not need external information for the SST 
estimation unlike the NASA algorithm, which needs the OISST data as input. 
Differences decreased when the best conditions for SST were selected: Moderate wind 
speed, view zenith angle below 45º and no solar or minimal radiation. In these 
conditions, the precision of the algorithms is near 0.48 K and 0.54 K for Aqua and 
Terra platforms respectively, with differences between them of 0.01 K. This means that 
the SST retrieval through satellite data applying the SW methods cannot obtain lower 
uncertainties (through buoys validation) than 0.5 K instead of the 0.2-0.3 K that can be 
retrieved with the M-AERI (robust, accurate, self-calibrating, seagoing Fourier-
transform infrared spectro-radiometer) skin SST. This has important consequences as 
the SST validation through buoys cannot guarantee the climate studies requirement – a 
precision below 0.3 K (Emery et al. 2001) – as SST skin measurements do. Anyway, 
buoys validation is necessary as it provides a very long sea temperature series data 
which cannot be retrieved with ship transects, and are necessary for a continuous long-
time SST validation. 

With the results of the VC and the algorithms validation, it is possible to estimate 
whereas the fixed stations are in agreement between them. Regarding the bias results of 
the cal/val activities, it is appreciated that the bias differences are minimal between the 
stations – comparing the same EO sensor – in comparison to the standard deviation 
obtained in the cal/val process. In the worst case, the bias gap reaches a value of 1.0 K 
but usually this difference is lower and closer to 0.6-0.3 K, especially for Landsat 
sensors. This demonstrates that station data are consistent, and that the procedure 
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followed for the in-situ LST estimation is the appropriated. Furthermore, the expected 
uncertainty analysis is consistent with the statistical uncertainties retrieved from the 
cal/val activities which indicate good computation performance – except for Las Tiesas 
station, in which the inhomogeneity for low spatial resolution sensors should be 
controlled every year. This analysis between biases is important as it is one of the better 
ways in which it is possible to retrieve the malfunction of the radiometers or of the 
punctual steps in the LST retrieval procedure.  

In order to try to improve the precision of our cal/val activities, some upgrades can be 
performed on our fixed stations. These encompass the improvement of the emissivity 
control (as it is the main contribution to LST uncertainty) through time periods with 
dramatic land cover changes and the installation of various sensors in the same fixed 
station in order to guarantee maximal accuracy of TIR measurements. With these 
improvements, uncertainty of LST estimation can be reduced in 0.1-0.2 K for the 
periods of low INH index value, which is the main contribution of cal/val uncertainties 
and cannot be lowered as it is environment dependent. 

Results of VC and LST algorithms validation retrieved in this work are referred to our 
test sites, but the results can be extrapolated to other regions with similar surfaces and 
atmospheric conditions. In spite of test sites representing different land covers (bare 
soil, vegetation and water) with a moderate emissivity range (0.95-0.99) and with 
variable w values (0.5 g/cm2 to 3.5 g/cm2), validation over additional test sites is 
recommended in order to test LST algorithms over extreme atmospheric conditions like 
dry atmospheres in desert, Artic zones with glaciers or permanents snow covers as well 
as in humid tropic atmospheres such as Amazonia. 

As part of possible future actions, the installation of additional fixed stations should be 
accomplished in order to test satellite raw data and LST algorithms over an extended 
emissivity land surface range and in order to enlarge the amount of valid data with more 
independent points, which can contribute to the land quality control data between 
stations and to reinforce the validity of the VC and validation activities. Moreover, the 
implementation of the LST and SST new products on the processing chain of the GCU 
group will allow improved bio-physical studies that involve the LST or temporal 
studies that require precise SST. 
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In the next tables, it is detailed in-situ and sensor values taken in account for VC and 
validation process for L7 ETM+ and L8 TIRS. Table A1, A2, A3 and A4 show a 
comparison between sensor radiances and brightness temperatures versus predicted TOA 
values through inverse RTE. All the values were used for algorithm validation while the 
data used for VC purposes is shown in bold type. LSTS symbolizes the land surface 
temperature measured in situ; ETM+ and TIRS represents radiances (temperatures) 
measured by sensors; ɛ is the ETM+ and TIRS Land Surface Emissivity; ΔL7-MODv5, ΔL7-

MODv6 and ΔL7-NCEP in Table A1 and A2 are the differences between predicted TOA 
radiance for three atmospheric profiles (MOD07 version 5, MOD07 version 6 and 
reanalysis data provided by NCEP respectively) and radiance obtained from band 6. ΔRT, 
ΔSC and ΔSW in Table A3 and A4 are the differences between in-situ LST values minus 
estimated LST through RTE, SC and SW algorithm, respectively. Finally, S-CT is the 
Station-Cover Type of tour fixed stations. 
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Table A1. Band 6 ETM+ and in-situ values obtained in Doñana test site: FUENTE 
DUQUE (F) and JUNCABALEJO (J), covered by Water (WA), senescent vegetation 
(SV) or green vegetation (GV); CORTES (C), situated in a pine forest (PF) area. 

Date 
ddmmyy S-CT 

ETM+ 
W·µm-1·m-

2·sr-1 (K) 

ε 
(band 

6) 

LSTS 

(K) 

ΔL7-MODv5 

W·µm-1·m-

2·sr-1 (K) 

ΔL7-MODv6 

W·µm-1·m-

2·sr-1 (K) 

ΔL7-NCEP 

W·µm-1·m-

2·sr-1 (K) 

14.06.13 F-SV 9.39 (299.7) 0.970 306.1 -0.14 (-1.0) -0.16 (-1.2) -0.22 (-1.6) 
30.06.13 F-SV 9.88 (303.3) 0.970 308.2 -0.07 (-0.5) 0.00 (0.0) -0.09 (-0.6) 
02.09.13 F-SV 10.25 (305.9) 0.950 311.0 0.22 (1.6) 0.34 (2.4) 0.24 (1.7) 
04.10.13 F-SV 9.06 (297.3) 0.950 305.6 -0.41 (-3.0) -0.16 (-1.2) -0.08 (-0.6) 
07.12.13 F-SV 7.87 (287.9) 0.950 292.4 -0.06 (-0.5) -0.07 (-0.6) -0.11 (-0.9) 
23.12.13 F-GV 7.47 (284.6) 0.980 286.3 0.05 (0.4) 0.02 (0.2) -0.01 (-0.1) 
13.03.14 F-GV 7.77 (287.1) 0.980 288.8 0.08 (0.7) 0.08 (0.7) 0.11 (0.9) 
29.03.14 F-SV 7.79 (287.3) 0.970 291.7 0.01 (0.1) -0.07 (-0.6) -0.07 (-0.6) 
30.04.14 F-WA 9.18 (298.2) 0.985 302.1 -0.08 (-0.6) -0.09 (-0.7) -0.10 (-0.7) 
16.05.14 F-GV 9.35 (299.4) 0.980 301.9 0.16 (1.2) 0.19 (1.4) 0.19 (1.4) 
04.08.14 F-SV 10.59 (308.3) 0.950 318.3 -0.20 (-1.4) -0.03 (-0.2) -0.21 (-1.4) 
20.08.14 F-SV 10.27 (306.1) 0.950 315.1 -0.20 (-1.4) -0.08 (-0.6) -0.26 (-1.8) 
05.09.14 F-SV 10.09 (304.8) 0.950 313.3 0.07 (0.5) 0.17 (1.2) 0.00 (0.0) 
07.10.14 F-SV 9.24 (298.6) 0.950 304.6 0.20 (1.5) 0.20 (1.5) 0.03 (0.2) 
23.10.14 F-SV 9.48 (300.4) 0.950 303.9 0.29 (2.1) 0.27 (2.0) 0.16 (1.2) 
10.12.14 F-WA 6.95 (280.2) 0.985 282.5 -0.10 (-0.9) -0.12 (-1.1) -0.15 (-1.3) 
26.12.14 F-WA 7.14 (281.8) 0.985 283.5 -0.05 (-0.4) -0.06 (-0.5) -0.09 (-0.8) 
11.01.15 F-WA 7.10 (281.5) 0.985 283.0 0.00 (0.0) -0.02 (-0.2) -0.04 (-0.4) 
12.02.15 F-WA 7.27 (282.9) 0.985 286.0 -0.07 (-0.6) -0.09 (-0.8) -0.07 (-0.6) 
28.02.15 F-SV 7.43 (284.3) 0.960 288.3 0.00 (0.0) 0.05 (0.4) -0.11 (-0.9) 
01.04.15 F-GV 8.92 (296.2) 0.980 299.9 -0.07 (-0.6) -0.12 (-0.9) -0.20 (-1.5) 
19.05.15 F-GV 8.94 (296.3) 0.980 299.2 0.04 (0.3) 0.06 (0.4) 0.09 (0.7) 
20.06.15 F-SV 11.05 (311.4) 0.970 317.9 -0.03 (-0.2) 0.17 (1.2) -0.03 (-0.2) 
06.07.15 F-SV 11.14 (312.0) 0.970 319.4 0.18 (1.2) 0.51 (3.5) 0.09 (0.6) 
22.07.15 F-SV 11.56 (314.8) 0.970 319.1 0.31 (2.1) 0.49 (3.3) 0.22 (1.4) 
07.10.14 J-SV 9.24 (298.6) 0.970 304.5 -0.02 (-0.2) -0.02 (-0.1) -0.08 (-0.6) 
23.10.14 J-SV 9.46 (300.2) 0.970 304.0 0.09 (0.6) 0.10 (0.8) 0.00 (0.0) 
26.12.14 J-GV 7.15 (281.9) 0.980 283.5 -0.01 (-0.1) -0.03 (-0.2) -0.05 (-0.5) 
11.01.15 J-GV 7.10 (281.5) 0.980 283.4 -0.01 (-0.1) -0.03 (-0.3) -0.06 (-0.5) 
04.06.15 J-SV 10.39 (306.9) 0.970 312.6 -0.04 (-0.3) 0.00 (0.0) -0.07 (-0.5) 
30.04.14 C-PF 10.25 (305.9) 0.985 312.6 -0.29 (-2.0) -0.24 (-1.7) -0.23 (-1.6) 
16.05.14 C-PF 10.01 (304.2) 0.985 311.1 -0.18 (-1.3) -0.09 (-0.7) -0.18 (-1.2) 
04.08.14 C-PF 10.11 (304.9) 0.985 309.6 0.16 (1.2) 0.26 (1.9) 0.03 (0.2) 
20.08.14 C-PF 9.85 (303.1) 0.985 308.9 -0.06 (-0.4) 0.05 (0.3) -0.21 (-1.5) 
07.10.14 C-PF 8.99 (296.7) 0.985 303.2 -0.03 (-0.2) -0.01 (-0.1) -0.24 (-1.8) 
23.10.14 C-PF 9.33 (299.3) 0.985 302.5 0.13 (1.0) 0.07 (0.6) -0.05 (-0.4) 
10.12.14 C-PF 7.25 (282.8) 0.980 285.2 -0.06 (-0.5) -0.08 (-0.7) -0.10 (-0.8) 
26.12.14 C-PF 7.28 (283.0) 0.980 284.4 0.03 (0.2) 0.02 (0.2) -0.01 (-0.1) 
11.01.15 C-PF 7.35 (283.6) 0.980 284.7 0.09 (0.8) 0.07 (0.6) 0.05 (0.4) 
27.01.15 C-PF 7.35 (283.6) 0.985 284.9 0.02 (0.2) 0.01 (0.1) -0.01 (-0.1) 
28.02.15 C-PF 8.14 (290.1) 0.985 296.4 -0.29 (-2.3) -0.24 (-1.9) -0.37 (-2.9) 
16.03.15 C-PF 8.32 (291.5) 0.980 294.8 0.04 (0.3) 0.06 (0.5) -0.01 (-0.1) 
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Table A2. Band 6 ETM+ and in-situ values obtained in Barrax test site. EL CRUCE (EC) 
covered by Green Grass (GG) area; LAS TIESAS (LT) covered by Wheat (WH) or Bare 
Soil (BS) area. 

Date 
ddmmyy S-CT 

ETM+ 
W·µm-1·m-

2·sr-1 (K) 

ε 
(band 

6) 

LSTS 

(K) 

ΔETM-MODv5 

W·µm-1·m-

2·sr-1 (K) 

ΔETM-MODv6 

W·µm-1·m-

2·sr-1 (K) 

ΔETM-NCEP 

W·µm-1·m-

2·sr-1 (K) 

31.05.13 EC-GG 8.19 (290.5) 0.990 291.9 -0.01 (-0.1) 0.04 (0.3) 0.08 (0.6) 
16.06.13 EC-GG 9.05 (297.2) 0.990 301.2 -0.22 (-1.7) -0.04 (-0.3) -0.11 (-0.8) 
25.06.13 EC-GG 9.27 (298.8) 0.980 302.7 -0.04 (-0.3) -0.10 (-0.7) -0.12 (-0.9) 
11.07.13 EC-GG 9.63 (301.5) 0.985 305.3 0.00 (0.0) 0.02 (0.1) 0.00 (0.0) 
04.09.13 EC-GG 9.23 (298.5) 0.985 301.1 -0.02 (-0.1) 0.01 (0.1) 0.02 (0.2) 
20.09.13 EC-GG 9.26 (298.7) 0.985 302.3 -0.07 (-0.5) -0.07 (-0.5) -0.11 (-0.8) 
31.10.13 EC-GG 7.90 (288.2) 0.985 290.5 -0.05 (-0.4) -0.07 (-0.6) -0.06 (-0.5) 
23.11.13 EC-GG 6.97 (280.3) 0.980 283.2 -0.14 (-1.2) -0.13 (-1.2) -0.13 (-1.1) 
25.04.14 EC-GG 8.04 (289.3) 0.990 291.1 0.05 (0.4) 0.02 (0.2) 0.06 (0.5) 
10.11.14 EC-GG 7.50 (284.9) 0.985 286.6 0.00 (0.0) 0.00 (0.0) 0.01 (0.1) 
06.01.15 EC-GG 7.04 (281.0) 0.980 282.3 0.02 (0.2) 0.03 (0.3) 0.05 (0.4) 
16.04.14 LT-WH 8.49 (292.9) 0.990 295.7 -0.05 (-0.4) -0.07 (-0.6) -0.02 (-0.1) 
25.04.14 LT-WH 7.45 (284.5) 0.990 286.1 0.03 (0.2) 0.00 (0.0) 0.01 (0.1) 
18.05.14 LT-WH 7.80 (287.4) 0.990 290.8 -0.13 (-1.1) -0.09 (-0.8) -0.20 (-1.6) 
03.06.14 LT-WH 8.74 (294.8) 0.985 298.7 -0.12 (-0.9) -0.14 (-1.1) -0.09 (-0.7) 
12.06.14 LT-WH 8.60 (293.7) 0.980 296.5 0.08 (0.6) 0.05 (0.4) 0.05 (0.4) 
19.06.14 LT-BS 8.94 (296.3) 0.975 301.0 0.07 (0.6) 0.04 (0.3) 0.16 (1.2) 
10.11.14 LT-BS 7.59 (285.6) 0.975 287.2 0.10 (0.9) 0.09 (0.8) 0.09 (0.7) 
19.11.14 LT-BS 7.91 (288.3) 0.975 291.2 0.03 (0.3) -0.02 (-0.2) 0.06 (0.5) 
06.01.15 LT-BS 7.17 (282.1) 0.975 283.3 0.10 (0.9) 0.08 (0.7) 0.07 (0.6) 
13.01.15 LT-BS 7.64 (286.0) 0.975 289.2 -0.05 (-0.4) -0.09 (-0.7) -0.04 (-0.3) 
11.03.15 LT-BS 9.38 (299.6) 0.975 302.7 0.02 (0.2) -0.03 (-0.2) -0.04 (-0.3) 
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Table A3. Band 10 and 11 TIRS and in-situ values obtained in Barrax test site: FUENTE 
DUQUE (F), covered by Water (WA), senescent vegetation (SV), green vegetation (GV) 
or senescent-green vegetation (SG). 

Date 
ddmmyy 

S-CT 
TIRSB10 

W·µm-1·m-

2·sr-1 (K) 

TIRSB11 

W·µm-1·m-

2·sr-1 (K) 

LSTS 

(K) 
ε (×10-3) 
b10/b11 

ΔRT 

(K) 
ΔSC 

(K) 
ΔSW 

(K) w 

19.04.13 F-WA 8.71 (293.4) 7.89 (290.8) 297.0 990/985 0.4 0.9 -2.4 2.8 
05.05.13 F-WA 8.96 (295.3) 8.17 (293.3) 296.9 985/985 -2.6 -1.2 -2.8 2.1 
22.06.13 F-GV 9.69 (300.6) 8.74 (298.2) 305.6 970/975 -0.3 -0.3 -0.3 3.4 
25.08.13 F-SV 10.01 (302.9) 8.87 (299.3) 308.5 960/970 -2.9 -1.6 -3.1 3.7 
10.09.13 F-SV 10.33 (305.1) 9.13 (301.5) 311.2 960/970 0.1 0.6 -2.5 2.6 
26.09.13 F-SV 9.67 (300.5) 8.53 (296.4) 307.0 960/970 -2.8 1.0 -3.9 3.8 
29.11.13 F-SG 7.73 (285.7) 7.20 (284.5) 288.1 975/980 0.1 0.5 -0.7 1.2 
15.12.13 F-SG 7.97 (287.6) 7.37 (286.1) 290.8 970/975 0.9 1.1 -0.2 1.0 
05.03.14 F-GV 7.88 (286.9) 7.23 (284.8) 290.4 980/980 0.8 1.6 -1.4 1.5 
21.03.14 F-GV 8.13 (288.9) 7.44 (286.7) 291.7 980/980 -0.6 0.7 -2.3 1.6 
06.04.14 F-WA 8.88 (294.7) 8.13 (292.9) 297.2 990/985 -0.8 -0.4 -1.4 1.6 
22.04.14 F-WA 8.12 (288.8) 7.43 (286.6) 293.9 990/985 1.1 3.6 -0.1 2.2 
08.05.14 F-GV 9.11 (296.4) 8.25 (294.0) 302.3 980/980 0.5 2.3 0.3 3.2 
11.07.14 F-SV 10.82 (308.4) 9.59 (305.2) 318.4 960/970 0.0 3.6 2.7 2.9 
29.09.14 F-SV 9.47 (299.0) 8.40 (295.3) 309.1 960/670 2.8 5.7 0.6 3.0 
31.10.14 F-SV 9.50 (299.2) 8.53 (296.4) 305.4 970/975 0.7 2.6 -0.6 1.6 
02.12.14 F-SG 7.64 (285.0) 7.14 (283.9) 290.2 975/980 2.7 3.6 2.3 2.0 
18.12.14 F-SG 7.33 (282.5) 6.89 (281.6) 283.8 980/980 -0.3 -0.2 -1.4 1.5 
19.01.15 F-WA 7.08 (280.4) 6.59 (278.7) 282.7 990/985 0.2 0.7 -1.7 1.2 
04.02.15 F-WA 7.14 (280.9) 6.70 (279.8) 282.7 990/985 -0.7 0.0 -1.2 1.0 
08.03.15 F-SG 8.00 (287.9) 7.53 (287.5) 290.8 970/975 -0.4 0.4 0.8 1.3 
11.05.15 F-GV 9.83 (301.6) 9.04 (300.7) 304.3 980/980 -1.2 -1.3 0.6 1.6 
27.05.15 F-GV 9.90 (302.1) 8.98 (300.2) 307.4 980/980 0.4 0.3 0.9 2.5 
05.12.15 F-SV 8.12 (288.8) 7.55 (287.7) 293.6 970/975 1.5 2.5 1.8 1.1 
21.12.15 F-SV 7.96 (287.5) 7.42 (286.5) 291.5 970/975 1.3 1.9 1.3 1.5 
06.01.16 F-SV 7.67 (285.2) 7.04 (283.0) 291.0 970/975 2.7 4.9 0.8 2.2 
10.03.16 F-GV 8.24 (289.8) 7.63 (288.4) 291.6 985/985 -2.1 -0.6 -1.5 1.6 
29.05.16 F-SG 8.87 (294.6) 8.10 (292.6) 299.5 970/975 -0.9 1.7 -0.2 2.5 
14.06.16 F-GV 10.24 (304.5) 9.22 (302.2) 310.0 980/980 -0.5 -2.9 0.0 4.1 
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Table A4. Band 10 and 11 TIRS and in-situ values obtained in Barrax and Doñana test 
sites. LAS TIESAS (LT) covered by Crop (CR) or Bare Soil (BS) area; JUNCABALEJO 
(J), covered by Water (WA), senescent vegetation (SV), green vegetation (GV) or 
senescent-green vegetation (SG); CORTES (C), situated in a pine forest (PF) area. 

Date 
ddmmyy S-CT 

TIRSB10 

W·µm-1·m-

2·sr-1 (K) 

TIRSB11 

W·µm-1·m-

2·sr-1 (K) 

TST 

(K) 
ε (×10-3) 
b10/b11 

ΔRT 

(K) 
ΔSC 

(K) 
ΔSW 

(K) w 

01.06.13 LT-CR 8.63 (292.8) 8.05 (292.2) 292.9 990/990 -2.3 -2.2 -1.7 0.6 
24.06.13 LT-CR 9.47 (299.0) 8.72 (298.0) 302.7 990/990 0.3 0.8 1.8 1.2 
10.05.14 LT-CR 9.31 (297.8) 8.45 (295.7) 301.5 990/990 0.0 0.7 -0.7 1.6 
19.05.14 LT-CR 8.61 (292.6) 7.89 (290.8) 295.4 990/990 0.0 0.6 -0.9 1.5 
04.06.14 LT-CR 9.15 (296.7) 8.48 (296.0) 298.4 985/985 -0.9 -0.8 0.2 1.2 
11.06.14 LT-CR 8.67 (293.1) 7.82 (290.2) 299.5 980/980 2.8 4.2 0.0 2.4 
27.06.14 LT-BS 9.81 (301.5) 8.83 (298.9) 305.7 960/970 -0.4 0.3 -1.9 1.6 
23.08.14 LT-BS 11.03 (309.8) 9.86 (307.4) 317.9 960/970 1.4 2.3 2.3 1.5 
18.11.14 LT-BS 7.76 (286.0) 7.15 (284.0) 289.0 960/970 0.6 0.8 -1.8 0.7 
20.12.14 LT-BS 6.97 (279.5) 6.54 (278.2) 282.5 960/970 1.3 1.1 0.2 0.5 
29.12.14 LT-BS 6.58 (276.2) 6.28 (275.7) 278.5 960/970 0.6 0.5 0.4 0.3 
08.01.16 LT-BS 7.38 (282.9) 6.81 (280.8) 284.8 960/970 -0.2 0.1 -2.9 0.9 
24.01.16 LT-BS 7.53 (284.1) 6.97 (282.3) 286.1 960/970 -0.5 0.2 -2.1 1.1 
07.04.16 LT-CR 8.23 (289.7) 7.60 (288.2) 294.5 980/980 1.2 2.8 1.4 1.4 
25.05.16 LT-CR 9.20 (297.0) 8.44 (295.6) 302.6 985/985 -0.8 2.1 2.4 1.6 
29.09.14 J-SV 9.52 (299.4) 8.41 (295.4) 306.3 965/970 -0.9 2.2 -3.4 3.0 
31.10.14 J-SV 9.59 (299.9) 8.57 (296.7) 304.0 965/970 -1.7 0.3 -3.7 1.8 
18.12.14 J-SG 7.27 (282.0) 6.84 (281.1) 284.3 970/975 0.4 0.8 -0.3 1.5 
19.01.15 J-WA 7.11 (280.6) 6.61 (278.9) 283.4 990/985 0.1 1.6 -1.6 1.2 
04.02.15 J-WA 7.16 (281.0) 6.70 (279.8) 284.2 990/985 0.6 1.3 -0.4 1.0 
08.03.15 J-SG 8.00 (287.9) 7.53 (287.5) 293.0 970/975 2.1 2.7 2.9 1.3 
11.05.15 J-GV 9.85 (301.7) 9.05 (300.8) 304.9 985/980 -0.7 -0.6 1.2 1.6 
27.05.15 J-GV 10.04 (303.1) 9.09 (301.1) 309.7 980/980 2.6 2.2 2.4 2.2 
14.07.15 J-SV 11.22 (311.0) 10.10 (309.2) 313.5 965/970 -2.2 -4.3 -1.8 2.3 
22.04.14 C-PF 8.75 (293.7) 7.90 (290.9) 296.9 985/985 -0.9 0.5 -3.5 1.6 
29.09.14 C-PF 9.21 (297.1) 8.23 (293.8) 303.2 980/980 0.5 2.6 -2.2 3.1 
31.10.14 C-PF 9.11 (296.4) 8.26 (294.0) 301.9 980/980 -0.1 2.1 0.1 1.6 
18.12.14 C-PF 7.51 (283.9) 7.04 (283.0) 287.4 980/980 0.9 1.5 1.0 1.5 
19.01.15 C-PF 7.28 (282.0) 6.78 (280.5) 285.6 980/980 1.3 1.7 -0.1 1.5 
04.02.15 C-PF 7.44 (283.4) 6.99 (282.5) 286.4 980/980 0.8 1.1 0.4 1.1 
08.03.15 C-PF 8.80 (294.1) 8.15 (293.1) 295.8 985/985 -2.2 -0.9 -0.6 1.5 
05.12.15 C-PF 7.98 (287.7) 7.44 (286.7) 291.9 980/980 1.1 2.0 1.5 1.2 
10.03.16 C-PF 8.37 (290.8) 7.72 (289.2) 292.8 985/985 -1.4 0.0 -1.3 1.6 
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In next tables, it is detailed in-situ and MODIS measurements taken in account for 
validation process of the SW methods and TES algorithm. In Table B1 and B2 results of 
validation are shown for different atmospheric conditions related to atmospheric water 
vapor content and the radiance path length. SW algorithm (Jimenez-Muñoz et al. 2011), 
MOD 11 product and TES algorithm were validated in four test sites. ΔLST-ALG is the bias 
between in-situ LST values minus estimated LST through the algorithms, σ is the 1-sigma 
standard deviation, n is the number of values used in each station, m and r2 are the slope 
and correlation coefficient of the fit. The values are separated for Terra and Aqua 
platforms. 
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Table B1. MODIS LST algorithms and in-situ values retrieved at Cabo de Gata and 
Barrax test site: Balsa Blanca and Las Tiesas.  

Test Site Condition Platform Algorithm n m r2 

ΔLST-

ALG 

(K) 

σ 
(K) 

RMSE 
(K) 

BALSA 
BLANCA 

θ < 35 
w < 2 

Aqua 
TES 62 0.990 0.992 0.4 1.0 1.1 
SW 62 0.982 0.988 0.3 1.3 1.3 
M11 62 0.979 0.955 0.0 1.3 1.3 

Terra 
TES 41 0.965 0.990 -0.6 0.7 1.0 
SW 41 0.971 0.981 -0.1 1.0 1.0 
M11 41 1.121 0.990 0.7 1.2 1.4 

θ < 35 

Aqua 
TES 72 0.988 0.992 0.5 1.0 1.1 
SW 72 0.975 0.988 0.3 1.3 1.3 
M11 72 1.049 0.972 0.4 1.3 1.4 

Terra 
TES 44 0.982 0.990 -0.7 0.8 1.0 
SW 44 0.986 0.983 -0.1 1.0 1.0 
M11 44 1.121 0.990 0.7 1.2 1.4 

θ < 65 

Aqua 
TES 152 0.999 0.99 0.6 1.1 1.2 
SW 152 0.984 0.986 0.4 1.3 1.3 
M11 152 0.972 0.975 0.2 1.2 1.2 

Terra 
TES 96 0.987 0.981 -0.7 1.1 1.3 
SW 96 1.006 0.975 -0.1 1.3 1.3 
M11 96 1.133 0.990 0.7 1.3 1.4 

LAS 
TIESAS 

θ < 35 
w < 2 

Aqua 
TES 57 0.972 0.969 0.1 1.6 1.6 
SW 57 0.965 0.964 0.0 1.8 1.8 
M11 57 0.856 0.961 0.8 1.6 1.8 

Terra 
TES 46 0.918 0.962 0.3 1.7 1.7 
SW 46 0.939 0.965 0.4 1.5 1.6 
M11 46 0.922 0.957 1.0 1.8 2.0 

θ < 35 

Aqua 
TES 63 0.969 0.968 0.0 1.6 1.6 
SW 63 0.969 0.962 0.1 1.8 1.8 
M11 63 0.917 0.98 1.1 1.7 2.1 

Terra 
TES 46 0.918 0.962 0.3 1.7 1.7 
SW 46 0.939 0.965 0.4 1.5 1.6 
M11 46 0.922 0.957 1.0 1.8 2.0 

θ < 65 

Aqua 
TES 144 0.965 0.962 0.3 1.7 1.8 
SW 144 0.970 0.959 0.4 1.8 1.8 
M11 144 0.899 0.968 1.5 1.9 2.4 

Terra 
TES 106 0.928 0.938 0.1 1.9 1.9 
SW 106 0.953 0.941 0.3 1.8 1.9 
M11 106 0.921 0.944 1.1 1.9 2.2 
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Table B2. MODIS LST algorithms and in-situ values retrieved at Doñana test site: Fuente 
Duque and Juncabalejo. 

Test Site Condition Platform Algorithm n m r2 

ΔLST-

ALG 

(K) 

σ 
(K) 

RMSE 
(K) 

FUENTE 
DUQUE 

θ < 35 
w < 2 

Aqua 
TES 207 0.944 0.962 0.3 1.2 1.3 
SW 207 0.967 0.963 0.3 1.3 1.3 
M11 207 0.934 0.946 0.2 1.6 1.6 

Terra 
TES 224 0.954 0.965 -0.2 1.1 1.2 
SW 224 0.972 0.962 0.3 1.2 1.2 
M11 224 1.027 0.950 1.0 1.4 1.7 

θ < 35 

Aqua 
TES 319 0.959 0.977 0.3 1.3 1.3 
SW 319 0.964 0.970 0.6 1.4 1.5 
M11 319 0.980 0.971 0.3 1.5 1.5 

Terra 
TES 326 0.987 0.988 -0.2 1.1 1.2 
SW 326 0.991 0.984 0.4 1.3 1.3 
M11 326 1.051 0.959 1.2 1.4 1.8 

θ < 65 

Aqua 
TES 716 0.961 0.976 0.5 1.4 1.5 
SW 716 0.958 0.973 0.6 1.5 1.6 
M11 716 0.955 0.970 0.4 1.7 1.7 

Terra 
TES 732 0.975 0.984 -0.2 1.3 1.4 
SW 732 0.990 0.979 0.2 1.5 1.5 
M11 732 1.033 0.960 1.4 1.5 2.0 

JUNCA 
BALEJO 

θ < 35 
w < 2 

Aqua 
TES 72 1.022 0.931 -0.2 1.3 1.3 
SW 72 0.999 0.916 0.0 1.4 1.4 
M11 72 0.993 0.929 -0.6 1.3 1.5 

Terra 
TES 67 1.037 0.914 -0.6 1.1 1.3 
SW 67 1.030 0.904 0.0 1.2 1.2 
M11 67 1.054 0.869 0.4 1.4 1.5 

θ < 35 

Aqua 
TES 105 0.997 0.939 -0.4 1.5 1.5 
SW 105 0.972 0.927 0.0 1.6 1.6 
M11 105 1.050 0.947 -0.6 1.5 1.6 

Terra 
TES 83 0.951 0.951 -0.7 1.4 1.6 
SW 83 0.964 0.943 -0.1 1.5 1.5 
M11 83 1.099 0.962 0.6 1.5 1.6 

θ < 65 

Aqua 
TES 232 0.986 0.967 -0.1 1.4 1.4 
SW 232 0.965 0.961 0.1 1.6 1.6 
M11 232 1.007 0.976 -0.2 1.5 1.5 

Terra 
TES 175 0.947 0.956 -0.7 1.4 1.6 
SW 175 0.979 0.947 -0.1 1.5 1.5 
M11 175 1.093 0.949 0.7 1.6 1.8 
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Simulated pixels obtained through the up-scaling process are shown in this section. 
Composite of AHS images retrieved in field campaigns performed in Doñana – May 2013 
and 2015 – and Miajadas – October 2012 – test sites were used to simulate TIRS, MODIS 
and SEVIRI pixels. In the images, squares were set in order to mark the edges of the 
simulated pixels. As general condition, if up-scaled pixels is not composed by 80% or 
more of valid data, it is not taken in account for validation process and it is not marked 
in the below figures. Figures are sorted by campaign and sensor, showing in each case 
LST scale. 

 
 
 
 
 



APPENDIX C   
 

148 
 

 

  
(a) (b) 

Figure C1. Borders of SEVIRI simulated pixels in (a) northern and (b) southern Miajadas 
area. 

 

 

 

Figure C2. Borders of MODIS simulated pixels in southern Miajadas area. 
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(a) (b) 

Figure C3. Borders of: (a) MODIS simulated pixels and (b) SEVIRI simulated pixels in 
Doñana field campaign of year 2013. 
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(a) (b) 

Figure C4. Borders of: (a) simulated pixels for two MODIS images and (b) SEVIRI 
simulated pixels in Doñana field campaign of year 2015. 

 

 

 

 

 
 
 
 
 
 
 
 
 



  APPENDIX C 
 

151 
 

(a) (b) 

Figure C5. (a) Borders of SEVIRI pixels over TIRS LST image and (b) TIRS simulated 
image by up-scaled AHS data. 
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