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Preface 
 

This Thesis is presented as "a compendium of publications", as it is 
regulated by the University of Valencia (Reglamento 29/11/2011, ACGUV 
266/2011). Accordingly, the first part of the thesis contains a general introduction 
where all the articles are presented, with justification of the subject and also 
explaining the original contribution of the PhD candidate. The PhD student has 
contributed substantially in all stages of development of all the articles, from the 
development of the idea, literature search, experimental realization, analysis and 
interpretation of data, drafting and preparation of the manuscript, and monitoring 
and final correction thereof according to the recommendations of the referees. 
Then the published articles are included. These correspond entirely to indexed 
journals. All articles have been written by Aarón Escrig Doménech (identified as 
first author), with corrections and final review by the supervisors of this Thesis. 
According to the regulation quoted above, the last part of the thesis contains a 
comprehensive summary of results, discussion and conclusions. 
 

Esta Tesis se acoge a la modalidad “compendio de publicaciones”, 
contemplada en el Reglamento de la Universidad de Valencia de 29/11/2011 
(ACGUV 266/2011). De acuerdo con dicha normativa, la primera parte de la Tesis 
contiene una introducción general, donde se presentan los trabajos compendiados, 
justificando su temática y explicando la aportación original del doctorando. El 
doctorando ha contribuido sustancialmente en todas las etapas de desarrollo de 
todos los artículos, desde la elaboración de la idea, búsqueda bibliográfica, 
realización experimental, análisis e interpretación de los datos, redacción y 
preparación del manuscrito, y seguimiento y corrección final del mismo de acuerdo 
con las recomendaciones de los evaluadores. A continuación, se incluyen los 
artículos ya publicados, los cuales corresponden en su totalidad a revistas 
indexadas. Todos los artículos han sido escritos por Aarón Escrig Doménech 
(identificado como primer autor), con correcciones y revisión final por parte de los 
supervisores de esta Tesis. De acuerdo con la normativa citada, la última parte de 
la Tesis contiene un resumen global de resultados, discusión y conclusiones. 
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La presente memoria se enmarca dentro de una de las líneas de 

investigación del grupo, y cuyo objeto general es el desarrollo de métodos 

analíticos para el control industrial de componentes de productos de limpieza. Los 

objetivos responden a las exigencias de continuidad de dicha línea, conjugando el 

interés, calidad y actualidad desde ambos puntos de vista, el científico y el de 

transferencia tecnológica. De hecho, en esta misma línea de investigación, el grupo 

ha venido trabajando durante bastantes años en el marco de sucesivos convenios 

de colaboración con una empresa, realizando actividades periódicas de 

transferencia tecnológica. En consecuencia, el objetivo principal de los trabajos 

presentados en esta memoria es la puesta a punto de métodos de análisis rápidos y 

fiables para diferentes analitos de la industria de la detergencia. Otro de los 

aspectos descritos en esta tesis, relacionado también con otra de las actuales líneas 

de investigación del grupo, es el desarrollo de columnas monolíticas poliméricas 

y su aplicación para la electrocromatografía capilar (CEC, capillary 

electrophoresis). Estas columnas permiten poder seleccionar las condiciones de 

polimerización, ya sean tipo de iniciación, iniciador, monómeros y disolventes 

porogénicos, con el fin de obtener diferentes prestaciones de las mismas 

caracterizándose mediante un sistema de analitos estándar.  

Esta memoria está dividida en cinco grandes bloques. El primer bloque, 

constituido por los capítulos 1-3, contiene una introducción general que describe 

las generalidades de los detergentes, su composición y métodos de análisis de los 

surfactantes más utilizados en su fabricación (capítulo 1), una breve descripción 

de la cromatografía líquida de alta resolución (HPLC, high performance liquid 

chromatography), principal técnica de análisis empleada en el desarrollo de esta 

tesis (capítulo 2) así como un capítulo dedicado a la electrocromatografía capilar 

y la síntesis de columnas monolíticas (capítulo 3). 
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El segundo bloque está dedicado a la revisión de reacciones de 

derivatización comúnmente empleadas con el fin de mejorar la señal analítica en 

HPLC y electroforesis capilar (CE, capillary electrophoresis) en la determinación 

de compuestos con grupos funcionales hidroxilo (capítulo 4). 

El tercer bloque, detalla el desarrollo de técnicas avanzadas de 

cromatografía líquida para el control de calidad de detergentes y materias primas. 

En esta sección se describe un método de 2D-HPLC para la determinación de 

surfactantes no-iónicos en materias primas (capítulo 5) así como un método para 

la determinación conjunta de las principales familias de surfactantes presentes en 

detergentes (capítulo 6). 

El cuarto bloque describe la preparación y caracterización de columnas 

monolíticas para electrocromatografía capilar centrándose en las diferencias entre 

diversos modos de iniciación de la polimerización (capítulo 7). Por último, el 

quinto bloque presenta un resumen de los resultados y conclusiones más relevantes 

procedentes de los tres bloques previos. 

En esta sección de la tesis doctoral, y como lo exige la citada normativa de 

la Universidad de Valencia, se presenta un resumen de la tesis indicando los 

objetivos, metodología y conclusiones de la tesis. 

En las últimas décadas se han producido avances muy significativos en el 

desarrollo de la cromatografía líquida de alta eficacia y en las técnicas de detección 

acopladas. Todo ello ha permitido atender la demanda de un mejor control de la 

calidad industrial y de la evaluación de su impacto ambiental. Concretamente, 

estos avances son de especial interés en el sector de los detergentes y otros 

productos químicos utilizados en las formulaciones de productos de limpieza y 

cuidado personal. Dada la complejidad de estos formulados desde el punto de vista 

analítico, en muchos casos, no se dispone de métodos suficientemente rápidos y 

selectivos para el control de calidad, o bien, los métodos descritos exigen 



  Abstract 
 

 
23 

 

inversiones excesivas para su implementación por parte de la pequeña y mediana 

industria. El trabajo llevado a cabo durante la realización de esta tesis ha consistido 

principalmente en el desarrollo de métodos cromatográficos avanzados para la 

determinación de surfactantes en materias primas y detergentes y productos de 

limpieza mediante cromatografía líquida. En la composición química de productos 

de limpieza, los surfactantes constituyen la principal materia activa. En general, 

los formulados de limpieza no están constituidos únicamente por una clase de 

surfactantes sino por la combinación de diferentes clases y en diferentes 

proporciones de forma que se complementan sinérgicamente. La cromatografía 

líquida, especialmente en fase reversa (RP-LC, reverse phase liquid 

chromatography) es la técnica preferida de análisis para la caracterización y 

determinación de las diferentes clases de surfactantes. Los métodos desarrollados 

a lo largo de la tesis, tratan de cubrir la demanda por parte de las industrias de 

disponer de métodos de control de calidad de confianza para la verificación de 

materias primas, así como la de sus productos, para poder asegurar que la 

producción se realiza de acuerdo a las leyes que rigen su manufactura.  

La ausencia de grupos cromóforos en muchos compuestos ha implicado la 

necesidad del empleo de sistemas alternativos a la detección ultravioleta visible. 

Como sustitución de este, se han empleado sistemas de derivatización. 

Especialmente, las reacciones de derivatización se han llevado a cabo en 

surfactantes de tipo alcohol polietoxilado. Dada la facilidad de derivatización del 

grupo OH, estos han sido sometidos a diversos sistemas de derivatización, tanto 

oxidando el grupo OH como el anclaje sobre él de grupos cromóforos. Dichas 

derivatizaciones en algunos casos han dado lugar a desplazamientos de la 

distribución de homólogos, dadas las posibilidades de ruptura de las cadenas 

polietoxiladas. Por ello se ha estudiado la separación de dicha familia en ausencia 

de reacciones de derivatización. Esto requiere de sistemas de detección que sean o 
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presenten una mayor inespecificidad. El empleo de detector evaporativo de luz 

dispersada (ELSD, evaporative light scattering detector) es una posible alternativa 

a los planteamientos anteriormente expuestos. El inconveniente del ELSD estriba 

en la falta de una respuesta lineal con la concentración, asignándole una respuesta 

exponencial. La linearización de la señal se ha llevado a cabo mediante la 

logaritmización de la respuesta. Sin embargo, la falta del cero químico, el cero de 

la concentración, ha llevado al ajuste de la respuesta a polinomios de grado 2. Estos 

sistemas se pueden emplear para concentraciones relativamente bajas, y 

permitiendo además la inclusión del cero de concentración. La respuesta en ELSD, 

para cada una de las familias estudiadas en función de su naturaleza, ha sido objeto 

de la presente tesis. Se realizaron curvas de calibrado, estudiándose la influencia 

de la eficacia del pico en la respuesta analítica. Si bien estos estudios no se han 

incluido en la tesis por encontrarse en fase de redacción, si se desea hacer 

constancia de los mismos  

A nivel de estudios de familias de compuestos, hasta la actualidad se han 

desarrollado trabajos relacionados con la carcaterización individual de cada una de 

las familias de tensioactivos. Desde nuestro conocimiento, estudios incluyendo 

tanto tensioactivos aniónicos como neutros, y dentro de los aniónicos cada una de 

las familias más comúnmente empleadas en formulados de detergentes nunca se 

han llevado a cabo. En la presente tesis se plantea la posibilidad, mediante una sola 

inyección, de realizar el análisis de una muestra de detergente determinando cada 

uno de los surfactantes que lo componen. Además, se llevará a cabo la 

caracterización de los mismos, determinándose su distribución tanto en función 

del número de átomos de carbono que componen la cadena alquílica, la parte 

hidrofóbica del mismo, como del número de moles de óxido de etileno que 

constituyen la parte hidrofílica. Esta caracterización es fundamental dado que las 

características de detergencia, mojabilidad y espuma, están relacionados 
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íntimamente con su distribución hidrofílica e hidrofóbica, en definitiva, de su 

relación entre ambas partes y de la naturaleza de estas.  

Estos estudios se compararán con los resultados obtenidos mediante 

técnicas inespecíficas como es la tritración de los tensioactivos anionicos llevada 

a cabo a dos pHs (ácido y básico) con el fin de determinar tensioactivos aniónicos 

totales y oleínas. Estos estudios se encuentran en fase de redacción por lo que no 

han sido incluidos en la Memoria de esta Tesis Doctoral. Este procedimiento 

publicado como norma UNE, y empleado como sistema de referencia contiene una 

serie de fallos. Las aminas empleadas comúnmente como valorantes han de ser 

estandarizadas a los dos pHs de estudio, dado que no son productos puros y su 

concentración varía dependiendo del pH de trabajo. Además, otros parámetros 

como son la naturaleza del emulsificante y su concentración, volúmenes 

empleados de detergente y disolvente orgánico, temperatura de trabajo y velocidad 

de adquisición también requieren de un proceso de optimización. 

 

Objetivos 

I. Revisión de reacciones de derivatización de compuestos con grupos 

hidroxilo 

La búsqueda bibliográfica sobre información y métodos de análisis de 

surfactantes condujo a la recopilación de una gran cantidad de datos sobre la 

derivatización de compuestos con grupos funcionales hidroxilo, por lo que se 

pretende ampliar la búsqueda para la redacción de un artículo de revisión centrado 

en el empleo de estas reacciones para su posterior análisis mediante técnicas de 

separación cromatográficas. Este artículo de revisión puede resultar de tremenda 

utilidad como punto de partida para otros grupos de investigación o empresas, pues 

presenta de forma ordenada una relación actualizada de métodos de derivatización 

de analitos con grupos hidroxilo. 
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II. Métodos cromatográficos de análisis de surfactantes 

II.1. 2D-HPLC aplicado a la determinación de alcoholes grasos etoxilados  

En trabajos anteriores del grupo de investigación en el seno del cual se ha 

realizado la presente Tesis, y en el marco de una de sus líneas de investigación, se 

desarrolló un montaje de 2D-HPLC para la determinación de alcoholes grasos 

etoxilados (FAE, fatty alcohol ethoxylates). Los FAE son los surfactantes no 

iónicos actualmente más empleados. Se producen por condensación de óxido de 

etileno (EO, ethylene oxide) con alcoholes alifáticos de cadena larga. Esta 

condensación da lugar a complejas mezclas de oligómeros con distinto número de 

unidades de EO. En la presente tesis, se pretende la puesta a punto de un montaje 

automatizado para 2D-HPLC, basado en la impulsión con una sola bomba y juego 

de dos válvulas, con mejoras significativas respecto a un montaje anterior. El 

montaje y procedimiento establecidos se aplicarán a la caracterización y 

determinación de alcoholes grasos en muestras de materias primas utilizados en la 

fabricación de detergentes y productos cosméticos. 

II.2. Determinación de las cuatro grandes clases de surfactantes en productos 

de limpieza mediante cromatografía líquida en fase reversa con detección UV 

seguida de detección evaporativa de luz dispersada 

Como se ha comentado anteriormente, un detergente es un tipo de muestra 

de extremada complejidad desde el punto de vista analítico. En este sentido, se 

desarrollará un método de HPLC capaz de determinar en un solo análisis los cuatro 

tipos de surfactantes comúnmente presentes en productos de limpieza: FAE, y 

surfactantes aniónicos, incluyendo sulfonatos de alquilbenceno lineares (LAS, 

linear alkylbenzene), alkyl eter sulfatos (AES, alkyl ether sulfates) y jabones. LAS 

y AES eluyen antes que los surfactantes no iónicos (FAE) y los jabones. No se 

encontró ningún método RP-LC capaz de separar LAS y AES. La estrategia que 
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se seguirá para su determinación será usar la detección UV conectada en serie con 

ELSD. Dado que únicamente el LAS presenta grupos cromóforos, podrá llevarse 

a cabo su cuantificación mediante la curva de calibrado de UV. La concentración 

de AES se obtendrá por sustracción de la concentración de LAS de la 

concentración total de LAS y AES obtenida de la interpolación en la curva de 

calibrado efectuada con la señal total en ELSD de ambos surfactantes. El método 

se aplicará a la determinación de las cuatro clases mayoritarias de surfactantes en 

productos de limpieza. 

III. Fases estacionarias monolíticas 

III.1. Preparación y caracterización de monolitos de acrilato de octadecilo 

para electrocromatografía capilar mediante iniciación fotoquímica, térmica y 

química 

Se pretende describir la preparación de columnas monolíticas para CEC, 

usando acrilato de octadecilo (ODA, octadecyl acrylate) como base para sintetizar 

el polímero. La polimerización se llevará a cabo mediante radiación UV e 

iniciación térmica utilizando peróxido de lauroilo (LPO, lauroyl peroxide) como 

iniciador, o mediante iniciación química utilizando N,N,N’,N’-

tetrametiletildiamina (TEMED, N,N,N’,N’-tetramethylethyldiamine). Para 

obtener resultados satisfactorios se optimizará la composición de la mezcla de 

polimerización, es decir, relaciones de monómeros/porógenos y 

monómeros/agente entrelazante, así como la composición de los disolventes 

porogénicos). La caracterización morfológica de las columnas se llevará a cabo 

mediante fotografías de micoscopía electrónica de barrido, (SEM, scanning 

electron microscopy). Las prestaciones de estas columnas desde el punto de vista 

de CEC se realizará mediante medida de los factores de retención y eficacias de 

una serie de analitos no cargados. Además, se compararán las fases estacionarias 
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obtenidas mediante fotopolimerización con las obtenidas con iniciación térmica y 

química. 

Metodología y conclusiones 

I. Revisión de reacciones de derivatización de compuestos con grupos 

hidroxilo 

Las reacciones de derivatización se usan frecuentemente para introducir un 

cromóforo o un fluoróforo a un analito con el fin de permitir o mejorar la señal 

mediante detección UV, fluorescencia o espectrometría de masas (MS, mass 

spectrometry). Esta revisión, se centró en la derivatización de moléculas que 

presentan grupos funcionales hidroxilo para su análisis por cromatografía líquida 

y electrocromatografía capilar. 

Los métodos de derivatización han sido clasificados según el grupo reactivo 

del agente derivatizante, incluyendo cloruros de acilo, anhídridos orgánicos, 

isocianatos y otros reactivos. Las reacciones y métodos se ordenaron 

convenientemente en tablas para obtener una visión global de las principales 

características de cada método. 

La mayoría de las reacciones revisadas se usan para introducir un cromóforo 

o un fluoróforo en analitos que tienen un grupo alcohol alifático, con el fin de 

permitir su detección o para aumentar la sensibilidad. Otras reacciones se dirigen 

a introducir un grupo ionizable o una carga permanente para realizar separaciones 

mediante CE, mejorar la sensibilidad en MS o disminuir la volatilidad, 

aumentando así la sensibilidad de los analitos volátiles en los detectores 

evaporativos. 

En cuanto a las aplicaciones, una gran cantidad de las reacciones revisadas 

implican la derivatización de analitos con grupos funcionales hidroxilo, como 

tensioactivos alifáticos no iónicos (principalmente FAE) y otros compuestos de 
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interés industrial como etilenglicol y sus polímeros condensados como el 

polietilenglicol (PEG, polyethylen glycol) o alcoholes alifáticos de cadena corta. 

Las matrices estudiadas en todos estos métodos comprenden desde muestras 

ambientales típicas como agua dulce, aguas residuales, sedimentos y lodos hasta 

matrices biológicas como cultivos celulares, fluidos biológicos o tejidos, 

incluyendo también varias muestras industriales como materias primas, alimentos 

y bebidas. 

II. Métodos cromatográficos de análisis de surfactantes 

II.1. 2D-HPLC aplicado a la determinación de alcoholes grasos etoxilados  

En este trabajo, se diseñó un sistema de cromatografía líquida 

bidimensional de corte medular, impulsado por una sola bomba y provisto de una 

válvula de 6-puertos y 2 posiciones (V6/2) y una válvula selectora de columnas 

(VCS), para la determinación de alcoholes grasos etoxilados en materias primas. 

En primer lugar, se seleccionaron tanto las fases estacionarias como las 

fases móviles que se emplearían en la primera y la segunda dimensión de acuerdo 

a las propiedades de los oligómeros de FAE. Para la separación en la primera 

dimensión, se probaron columnas con diferentes sustituyentes alquílicos. El uso de 

gradientes de ACN/agua sobre columnas C8 no permitían la separación de las 

series hidrocarbonadas sin separar los oligómeros entre sí. Sin embargo, el uso de 

gradientes MeOH/agua sí que consiguió la elución de cada serie hidrocarbonada 

como picos aislados. Llevando a cabo la separación a 60 ºC se mejoró la resolución 

entre las series hidrocarbonadas y se consiguieron tiempos de análisis más cortos. 

La separación de los oligómeros de FAE de cada serie hidrocarbonada se consigue 

de forma satisfactoria mediante columnas C8 y mezclas ACN/agua, por lo que se 

escogieron estas condiciones para la elución en la segunda dimensión. Se 

optimizaron también las concentraciones iniciales y finales del gradiente de ACN 
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para la elución de los oligómeros de cada serie hidrocarbonada. Mediante estas 

condiciones, se obtuvieron buenas separaciones a lo largo de la primera dimensión 

de mezclas de FAE que contenían series hidrocarbonadas pares e impares, mientras 

que los oligómeros dentro de cada serie se separaron satisfactoriamente en la 

segunda dimensión. 

El método optimizado de separación en ambas dimensiones, se empleó para 

la determinación de FAEs y su proporción en función de sus series 

hidrocarbonadas en muestras industriales. Para ello, se propuso un factor de 

respuesta medio para cada serie. Estos factores tienen en cuenta los diferentes 

factores de respuesta UV-vis de los diferentes oligómeros etoxilados, y se 

tabularon en función de la longitud de la cadena hidrocarbonada (n) y la longitud 

media de la cadena etoxilada ( m ). Estos factores de respuesta promedio, se 

utilizaron para corregir el área de pico de las series hidrocarbonadas en la primera 

dimensión. También se demostró que la dependencia del factor de respuesta 

promedio con respecto a m  es pequeña cuando m >5. Esto permite el uso de 

valores inexactos de m  sin que ello afecte considerablemente a las 

determinaciones de cada serie hidrocarbonada. 

En conclusión, se ha demostrado que se puede utilizar un sistema de 

cromatografía líquida bidimensional de corte medular, constituido por una sola 

bomba, una válvula de 6 puertos y 2 posiciones y una válvula selectora de 

columnas para la caracterización de FAEs en materias primas. En la primera 

dimensión los FAE se separaron de acuerdo a su cadena hidrocarbonada, mientras 

que en la segunda dimensión cada serie de FAE se separó de acuerdo a la longitud 

de la cadena etoxilada. La ortogonalidad en la separación se consiguió mediante el 

uso de fases móviles complementarias en cada dimensión. También se propuso un 

factor de respuesta promedio para corregir el área de pico correspondiente a cada 

serie hidrocarbonada. 
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II.2. Determinación de las cuatro grandes clases de surfactantes en productos 

de limpieza mediante cromatografía líquida en fase reversa con detección UV 

seguida de detección evaporativa de luz dispersada 

Se desarrolló un método para la determinación simultanea de LAS, AES, 

FAEs y oleínas o jabones (sales de ácidos grasos) en productos de limpieza 

mediante una única inyección cromatográfica. Las fases estacionarias de fase 

reversa comúnmente empleadas (C8, pentafluorofenil y bifenilo), no fueron 

capaces de separar los surfactantes aniónicos LAS y AES; sin embargo, dado que 

solamente el LAS absorbe en el UV, estas dos clases se pudieron cuantificar 

independientemente usando una columna C8 y un detector UV conectado en serie 

con un ELSD. 

Para encontrar las mejores condiciones de separación se probaron diferentes 

columnas de fase reversa, así como combinaciones de todas ellas unidas en serie. 

En relación a las fases móviles, se probaron tanto combinaciones de ACN/agua 

con MeOH/agua. Los mejores resultados para resolver las cuatro clases de 

surfactantes y los oligómeros dentro de cada clase se consiguió empleando una 

columna C8 y gradientes ACN/agua. Para mejorar la retención de los surfactantes 

aniónicos, se añadió acetato amónico, compatible con la detección ELSD, a la fase 

móvil como agente formador de pares iónicos. La presencia de este aditivo, no 

modificó la elución de los FAE y las oleínas. La presencia de ácido acético en la 

fase móvil también se estudió, y se observó que afectaba principalmente a la 

retención de las oleínas respecto a los oligómeros de FAE. Con estas observaciones 

en mente, se decidió implementar la modulación de la fase móvil durante la 

separación, utilizando acetato de amonio durante la elución de LAS y AES y ácido 

acético tras la elución de estos, aumentando la retención de LAS y AES y 

desplazando de forma independiente los picos de la oleína en función del pH de la 

fase móvil. Por último, se estudió el efecto de la temperatura sobre la separación, 
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siendo significante para la resolución de los oligómeros, pero manteniendo 

prácticamente invariable la separación del resto de surfactantes. El método 

cromatográfico optimizado consistió en la separación sobre una columna C8 a 15 

ºC, mediante un gradiente de 40 a 90% de ACN en 40 min en presencia de 10 mM 

acetato amónico hasta t = 12 min, sustituyéndolo por 17,5 mM de ácido acético a 

partir de ese tiempo hasta el final de la elución. 

La cuantificación de LAS y AES, se consiguió utilizando un detector UV 

para cuantificar LAS y el ELSD para determinar la concentración de AES por 

diferencia de la concentración de LAS sobre la concentración total de LAS y AES. 

Sin embargo, la sensibilidad está influenciada por el ratio LAS/AES. Para superar 

esta dificultad, se probaron dos estrategias. La primera aproximación fue utilizar 

un modelo de calibración linear simple para calcular la concentración de AES 

considerando tanto la concentración de AES como la señal conjunta de LAS y AES 

proporcionada por el ELSD. Por otro lado, se observó que para mezclas de LAS y 

AES, cuando el porcentaje de LAS se encontraba entre 0,1 y 0,5 %, la sensibilidad 

dependía poco del porcentaje de LAS. Para evitar esta desviación, la alternativa 

fue medir los patrones y las muestras únicamente en este intervalo. Para ello, las 

muestras se adicionaron con una cantidad elevada de AES. Las concentraciones de 

AES en las muestras se obtuvieron restando a la concentración predicha por la 

calibración la cantidad adicionada. Los LODs y LOQ fueron 2 y 6 mg L-1 para el 

LAS y 20 y 60 mg L-1 para AES respectivamente. 

Por otro lado, la determinación de FAE y oleína se puede llevar a cabo 

fácilmente mediante sus rectas de calibrado individuales. El área de los picos de 

FAE que se solapan con los picos de oleína se obtuvieron por interpolación con 

los picos de FAE vecinos. Las correcciones aumentaron ligeramente los errores en 

la determinación de FAE y los redujeron en el caso de la oleína. Los LODs y LOQ 

fueron 50 y 150 mg L-1 para FAEs y 10 y 30 mg L-1 para AES respectivamente. 
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En conclusión, se desarrolló un método cromatográfico para la 

determinación simultánea de las cuatro grandes clases de surfactantes empleadas 

en la preparación de productos de limpieza. La separación se llevó a cabo mediante 

modulación de la fase móvil, consistiendo en un cambio de los aditivos de la fase 

móvil, esto es, acetato amónico en una primera fase de elución y ácido acético a 

continuación. Además, la falta de un método apropiado para resolver los 

oligómeros de LAS y AES, y por tanto su cuantificación adecuada, se superó 

gracias al uso de un detector UV conectado en serie con un ELSD. Por último, el 

problema de la variación de la sensibilidad de la respuesta del ELSD respecto al 

ratio LAS/AES se rectificó aumentando la concentración de AES en las muestras.  

III. Fases estacionarias monolíticas 

III.1. Preparación y caracterización de monolitos de acrilato de octadecilo 

para electrocromatografía capilar mediante iniciación fotoquímica, térmica y 

química 

En este trabajo, se compararon las propiedades cromatográficas de 

columnas monolíticas basadas en ODA para CEC, sintetizadas mediante diferentes 

sistemas de iniciación (iniciación por irradiación UV, térmica y química) 

utilizando LPO como iniciador de la polimerización. Para cada sistema de 

iniciación se evaluó la influencia de la composición de disolventes porogénicos 

(1,4-butanodiol/1-propanol) sobre las propiedades morfológicas y 

elctrocomatográficas. Las cualidades electrocromatográficas de las diferentes 

columnas se evaluaron midiendo el factor de retención y la eficacia de una mezcla 

test de hidrocarburos aromáticos policiclicos (PAHs, polyciclic aromatic 

hydrocarbons) y sus características morfológicas se evaluaron a partir de imágenes 

de los monolitos obtenidos mediante SEM. 
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Se llevó a cabo una comparación de los tres modos de iniciación en términos 

de eficacia, permeabilidad y reproducibilidad para las condiciones óptimas de 

polimerización. Se observó que los monolitos polimerizados por iniciación 

química y fotoquímica proporcionaban mejores eficacias (alturas de plato mínimas 

de 6,9-10,7 y 6,5-12,6 µm, respectivamente), mayores permeabilidades y tiempos 

de análisis más cortos que las iniciadas térmicamente. Las reproducibilidades 

columna-a-columna y lote-a-lote también se evaluaron bajo las condiciones 

óptimas y dieron valores de RSD por debajo de 9,2, 10,6 y 9,8 % para las columnas 

UV, térmica o químicamente iniciadas respectivamente. Además, por un lado, la 

iniciación UV proporciona una forma más rápida de preparación del monolito, 

mientras que los monolitos iniciados químicamente no necesitarían de 

equipamiento adicional (baño de agua o lámparas UV).  

En conclusión, se prepararon fases estacionarias monolíticas basadas en 

ODA para su uso en CEC utilizando diferentes sistemas de iniciación (iniciación 

por irradiación UV, térmica y química). El estudio de sus propiedades 

electrocromatográficas y su morfología, reveló que las columnas monolíticas 

iniciadas por radiación UV y químicamente procuraban los mejores resultados, 

haciendo de ambos sistemas de iniciación excelentes candidatos para la 

preparación de columnas monolíticas más largas y dispositivos miniaturizados. 
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1.1. Detergents 

Since ancient times people has been concerned to be neat and live in a clean 

environment. Soaps are some of the oldest chemical products of mankind. They 

were obtained by saponification of plant or animal fats and vegetal ashes or natural 

soda (alkaline carbonates). The original formula was already known by Egyptians, 

Babylonians and Phoenicians; the first records of the preparation of soap were 

found on Sumerian clay tablets (2500 BC) on which the amounts of the necessary 

raw materials, the manufacture procedure as well as its application to clean textile 

pieces were described in detail.  

The use of soaps became more important around the II century, when the 

Greek physician Galen recommended the use of soaps not only for textile cleaning 

and bathing but also by its medicinal and cleansing properties. With the evolution 

of the Roman society so did bathing. After the fall of the Roman Empire, the 

decline in bathing habits led to unsanitary living conditions contributing severely 

to the great plagues of the Middle Ages. The use of soap became appreciated again 

in the 17th century, when cleanliness and bathing came back into fashion when 

doctors realized of the importance of hygiene on health. 

Soap became a more accessible product thanks to research conducted by 

Chevreul, about the structure of oils and fats, and Leblanc who patented a process 

for synthesizing sodium carbonate, commonly used combined with fat to form 

soap.  

These scientific discoveries, together with the development of power to 

operate factories, made fabrication of soaps easier and helped to broad its 

availability, and becoming an item of everyday necessity. Soap manufacturing did 

not advance much until 1916, when the first synthetic detergent was developed in 

Germany to overcome the shortage of soap during World War I. Detergents are 
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mixtures of different compounds whose purpose is to support the removal of dirt 

from a surface [1]. 

1.1.1. Typical detergent composition 

Nowadays detergents and other cleaning products can be composed by 20 

or more ingredients depending on the dirt to be removed and the washing 

conditions. Also their combination in different proportions is important either to 

seek a specific use of the detergent or a more general use. The main active 

ingredients of a cleaning product formulation are surfactants, which provide the 

basis of the cleaning power. Many other components are added to the formulation 

to complement and enhance the effect of surfactants, in order to obtain the best 

blending for a specific use. The following is a general overview of the more 

common ingredients in detergent formulations and their roles. 

1.1.2.1. Surfactants 

Surfactants wet surfaces and reduce the interfacial tension between dirt and 

water, removing the dirt from the surface to be cleaned and dispersing it in the 

aqueous phase. [1]. 

1.1.2.2. Builders and quelants 

The purpose of using builders is to enhance the cleaning performance of the 

surfactants. The primary function of builders is to reduce the amount of free cations 

responsible for the hardness of water (mainly calcium and magnesium) to avoid 

their interaction with anionic surfactants leading to their precipitation and thus 

reducing the effective concentration available for cleaning. Cation removal is 

accomplished by chelation, precipitation or by ion exchange. A very well-known 

chelating agent is sodium tripolyphosphate (STPP, Na5P3O10) but its effects on the 

environment has led to the use of a number of substitutes. Other commonly used 
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chelants include ethylenediaminetetraacetate (EDTA), citric acid, which can also 

be employed for the removal of transition metals such as copper, zinc or iron ions, 

and sodium nitrilotriacetate. Sodium carbonate (Na2CO3) and noncrystalline 

sodium silicates (xNa2O-ySiO2) form insoluble salts in the presence of calcium 

and magnesium ions. Abstraction of divalent cations by ionic exchange is often 

accomplished by the use of insoluble inorganic compounds such as zeolites or 

sodium aluminium silicates (Na2O – Al3O3 – 2SiO2 – xH2O) [1]. Builders can also 

provide and maintain alkalinity, which assists cleaning especially of acid stains, 

helps on keeping the removed dirt from being redeposited during washing by 

maintaining negative charged surfaces, and stimulates the emulsification of oily 

and greasy stains. 

1.1.2.3. Bleaching agents 

For the removal of persistent stains bleaching agents are often used. Their 

action arises by either oxidatively modifying the stain in such a way that it becomes 

more water soluble and easier to remove, or by decolorizing the stain such that it 

is no longer visible. The most common bleaching agents are peroxygenated 

inorganic salts, such as sodium perborate tetrahydrate (NaBO3∙4H2O), sodium 

percarbonate or peroxyhydrated sodium carbonate (2Na2CO3∙3H2O2). Their action 

mode consists in their decomposition in water, liberating hydrogen peroxide which 

is actually theo xidizing agent. Sodium hypochlorite is more active and aggressive 

than perborate, thus being particularly effective on the oxidation of substances 

containing nitrogen. Apart from having a bleaching action (even at low 

temperature) hydrogen peroxide is an effective bactericide. Due to its action on 

nitrogenated substances, it cannot be formulated as granular detergents or as liquid 

in detergent formulation that contain ammonium salts, amine, amides, etc. That is 

why it is commonly used as an aside ingredient. Perborate and similar salts exhibit 
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a less aggressive bleaching power, but as they are solids they are compatible with 

most of the powder detergents [1-3]. 

1.1.2.4. Optical brighteners 

Whiteness of bleaching agents can be enlarged using optical brightener 

agents (OBA). These substances are fluorescent polyaromantic organic dyes that 

absorb ultraviolet light and emit back visible blue light. At daylight, they add a 

blue tone which conceales any yellowing that may be present in the fabric, thus 

improving whiteness and intensifying the colours. Depending on its final purpose, 

these dyes possess more or less amounts of polar groups to adsorb onto hydrophilic 

fabrics such as those based on cotton or more hydrophobics such as polyester. 

Several types of compounds can be used as optical brighteners including 

coumarins, naphthotriazolylstilbenes, benzoxazolyl, benzimidazoyl, 

naphthylimide and diaminostilbene [2,4]. 

1.1.2.5. Polymers 

The use of polymers in detergent formulas has increased as detergent 

formulations have evolved. Polymers started to replace phosphates that lapsed into 

disuse due to its environmental impact. The focus was on polyacrylate-type 

polymers with the goal of replacing some of the lost building and dispersancy 

power of STPP. Carboxymethyl cellulose has been also one of the earlier polymers 

used for this purpose. Success obtained with the use of polymers boosted the 

appearance of a great number of polymers for a variety of purposes [5]. Among 

many other uses, new water-soluble polymers with dispersive and dye transfer 

inhibition properties, have been broadly commercialized. For every new polymer 

actually commercialized there are countless ones patented, attesting the level of 

interest in the area [1,6]. 
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1.1.2.6. Softeners 

After washing with synthetic detergents containing quelants, dry fabrics 

usually present a surface that can result unpleasant in contact with the skin. The 

adsorbed remnants of the synthetic surfactants enhance the static charge of the 

fibres, and the absence of lubricating substances makes the fabric relatively rigid. 

Softeners counteract both occurrences: on the one hand they reduce the static 

charge and on the other hand they settle a lubricant layer. Overall, softeners 

improve textile softness, smoothness, hand feel, and also fibre lubricity, flexibility, 

elasticity and processibility [7]. A lot of cationic surfactants produce these effects, 

but are incompatible with the anionic surfactants used in most of the commercial 

formulations, thus they should be used separately. Substituted quaternary 

ammonium and imidazolium salts are the most extensively used cationic softeners. 

There is a tendency to produce formulations containing softeners compatible with 

the cleaning agents. These softeners are surfactants with certain cationic character 

which adsorb onto the textile fibres, but that are also compatible with the 

commonly used anionic surfactants. To this end, non-ionic surfactants with a 

nitrogen moiety, or some amphoteric surfactants usually containing an amine or 

an amide group are employed [1,2]. 

1.1.2.7. Anti-redeposition agents 

These substances are added to detergents to keep dirt from setting back on 

the materials that have been washed. Most used anti-redeposition agents are 

carboxymethylcellulose derivatives, other non-ionic cellulose derivatives and 

polyethylene glycol. Commercial synthetic polymers such as PVP, PVA and some 

of their copolymers are also used [2]. 

  



Aaron Escrig Doménech 
 

 
44 

 

1.1.2.8. Foaming and anti-foaming agents 

Contrary to the popular believe, foam generation has nothing to do with the 

cleaning power. In some applications, most notably hand dishwashers and 

shampoos, it is desirable for the detergent formulation to generate a large-volume 

of stable foam. While most surfactants are capable of generating and sustaining 

foam in the absence of dirt, these foams rapidly collapse in the presence of dirt, 

especially with particulate and fatty stains. In applications where foam must be 

maintained throughout the course of detergent use, specific boosters may be added, 

such as sodium lauryl sulfate and non-ionic nitrogenated surfactants [1,2]. 

Nevertheless, in other applications it is desirable to minimize foam generation. For 

example, in automatic dishwashing foam generation can interfere with rotation of 

the spray arm leading to degradation in the performance of the dishwasher. 

Antifoam agents act to reduce or eliminate foams. They either prevent formation 

of the foam or accelerate its collapse. Alkyl ethoxylate nonionic surfactants, 

calcium soaps of long-chain fatty acids and antifoams consisting of colloidal 

hydrophobic silica particles suspended in a silicone oil like polydimethyl siloxane 

are particularly effective antifoaming agents [1,2]. 

1.1.2.9. Enzymes 

Used primarily in cleaning formulations, enzymes promote dirt removal by 

catalytic breakdown of specific soil components. They are also biodegradable, 

thus, making them a good choice for today’s increasingly environmentally 

conscious consumers. Proteases (enzymes that degrade proteins) are the most 

common of all the detergent enzymes, but amylases (starch degraders), lipases 

(lipid degraders), and cellulases (cellulase degraders) are also used [8]. Enzymes 

are able to fastly degrade stains in alkaline pH and at temperatures up to 60 ºC. 
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They are designed to be active at room temperature, being widely employed in the 

formulation of laundry liquid detergents [2].  

1.1.2.10. Thickeners 

It is often desirable to modify the rheology of a detergent formulation, that 

is, the consistency (the viscosity) of the detergent in flowing dynamic conditions, 

to fit a particular application. For example, gel-type automatic dishwashing 

detergents are thickened to help suspend phosphates and other solids that would 

otherwise separate out from the liquid phase. Thickening can be achieved through 

the use of inorganic electrolytes, e.g., NaCl, clays, such as laponite or hectorite, or 

a high-molecular-weight polymer like carboxymethylcellulose, guar foam, or 

xanthan gum. The Carbopol® series of polymers from Noveon, homo and 

copolymers of acrylic acid cross linked with polyalkenyl polyether, are particularly 

effective thickeners for household cleaning detergent formulations [1]. 

1.1.2.11. Perfumes 

From a technical viewpoint, perfumes add no cleaning power to a detergent. 

However, from the consumer point of view perfumes have a major impact on the 

overall impression of how well a detergent works. Odor has been proven to be an 

important driver for consumer acceptance, and thus, it should be carefully 

considered when formulating a product. Perfumes are complex mixtures of organic 

compounds. For example, a detergent perfume may be composed of 30, 50, or even 

over 100 different organic materials. Given this complex nature, perfumes can 

have complex interactions with the detergent actives that affect both the perfume 

character and possibly the actives’ performance. In domestic use detergents, 

particularly for dishwasher and disinfectants, most of the added perfumes are 

terpenes, whose structure is composed by 5 or 10 linked isoprene units (2-methyl-

butadiene) [2,6]. 
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1.1.2.12. Solvents 

The selection of solvents to use in detergent formulation depends on the 

nature of the actives being formulated, the intended application of the detergent, 

and economics. Water is the dominant solvent in most household and industrial 

cleaning formulations. However, many common detergent actives have limited 

solubility in water requiring formulation of a co-solvent and/or a hydrotrope. 

Typical co-solvents used in household cleaning formulations include ethanol, 

glycerol, and 1,2-propanediol [1]. 

1.1.2.13. Hydrotropes 

In liquid detergents, it is often necessary to include hydrotropes to guarantee 

the stability of the detergent in a broad range of temperatures. Hydrotropes are 

hydrophilic substances with a nonpolar group, whose purpose is to increase the 

solubility of surfactants in water-based liquid formulations. Hydrotropes have no 

surfactant properties by themselves, but act as co-solubilizers at high 

concentrations. Common hydrotropes are toluene, xylene and cumene sodium 

sulfonates [1,2]. 

1.1.2.14. Bactericides 

Some formulas contain bactericides, which can be amphoteric surfactants 

that can act also as calcium dispersing agents. Cationic compounds which also 

present softening properties are also oftently used. Disinfectants may also contain 

bactericide compounds and substances with deodorant properties [2]. In liquid 

detergents, especially in the most diluted ones, in which water constitutes the 

greater part of the total volume of the product, the formulation usually includes 

biocides, such as isothiazolinones, to prolong the product shelf-life [6, 9]. 
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1.2. Surfactants 

1.2.1. Introduction 

The word surfactant derives from the contraction of the terms surface-active 

agent and covers a group of chemicals which are able to modify the interfacial 

properties of the liquids in which they are present. The peculiar properties of these 

molecules are due to their typical molecular structure, essentially linear and 

asymmetric, and to their amphiphilic character, which stems from the presence of 

both a hydrophilic part and a hydrophobic (or lipophilic) part. As a result, they 

concentrate at the interfaces separating immiscible liquid phases, thereby 

decreasing the interfacial tension. The hydrophobic part is a linear or branched 

aliphatic chain, usually containing between 10 and 18 carbon atoms. In natural 

products, such as vegetal oils (mainly palm and coconut oils) or other renewable 

resources used in the surfactant manufacturing, as well as derivative products from 

those sources, non-branched chains with an even number of carbon atoms in the 

aliphatic chain prevail. However, in petroleum derivatives and in synthetic 

products, a high amount of branched chains, with both odd and even numbers of 

carbon atoms in the aliphatic chain can be found. The hydrophilic part, which 

determines the water solubility, can be an acidic polar group such as a sulfate, 

sulfonate or carboxylate or a basic group such as an amine, a quaternary 

ammonium salt or the pyridinium ion, although it can also be a non-ionic polar 

group. These characteristics provide the surfactants with the property of 

detergency, phenomenon characterized by the following effects (see Fig. 1.1.1, 2, 

3 and 4): 

1) destabilization of the adhesion of hydrophobic particles to surfaces,  

2) stabilization of the dispersion of those particles, 

3) reduction of their wettability (increasing the contact angle), and 

4) micellar solubilization of hydrophobic compounds and particles. 
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Fig. 1.1.1. Destabilization of the adhesion of a hydrophobic particle to a surface. 

 
Fig. 1.1.2. Stabilization of a hydrophobic particle dispersion. 

 
Fig. 1.1.3. Reduction of the wettability of the hydrophobic particles. 

 
Fig. 1.1.4. Micellar solubilization. 
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Surfactants, either natural or synthetic, organize the medium in which they 

are present thanks to the formation of micelles and other nanostructures, changing 

the solubility and the state of other constituents present in the medium. The 

surfactant properties of a compound are not only dependent of the nature of the 

hydrophilic group, but also on the position of the group in the molecule (at the end 

or in the middle of the chain). There are also surfactants with two or more 

hydrophobic groups, such as dialkyildimethyl ammonium salts, or with two or 

more hydrophilic groups, such as betaines or the alkyl sulfosuccinates. 

1.2.2. Surfactant classification 

According to their charge, surfactants can be divided into four major 

classes: anionic, cationic, amphoteric and nonionic [10]. Although each surfactant 

has its own particularities, there are some common characteristics to each class. 

1.2.2.1. Anionics 

They are characterized by having an acidic hydrophilic group, thus easily 

forming an anion. They are historically the earliest and the most common 

surfactants. They are usually considered to be the “workhorse” in the detergency 

world. Accordingly, they are produced with the highest volumes and most of them 

are inexpensive. The oldest and most known are soaps and the following families 

are usually distinguished: linear alkylbenzene sulfonates (LAS), alkyl sulfates 

(AS), alkyl ether sulfates (AES), alkyl phenol ether sulfates (APES), α-olefin 

sulfonates (AOS), alkyl sulfonates, α-sulfonate fatty acids (ionic and alkyl esters), 

mono- and di-alkyl sulfosuccinates and sulfonates petroleum derivatives. (Fig. 

1.2). 

Anionic surfactants are especially beneficial for their excellent detersive 

action, owing to the fact that many substrates are negatively charged, so they do 

not get adsorbed onto them, avoiding the redeposition of undesirable soils. 
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Depending on the nature of the negatively charged head group, they show a 

variable resistance to hydrolysis. For example, sulfates hydrolyze easily, while 

sulfonates are very stable. Some anionic surfactants show the property to generate 

viscous aqueous phases, thereby yielding self-thickened products. A limitation of 

anionic surfactants is that they have tendency to precipitate in the presence of 

calcium and magnesium ions, which are present in high concentration in hard 

water, although AESs are much less sensitive to alkaline-earth ions than ASs. On 

the other hand, the lower water solubility and the peculiar interfacial properties of 

sulfonate Mg salts are sometimes positively exploited to optimize the detergent 

performance. 

 
Fig. 1.2. Structure and names of the main anionic surfactant families. 
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1.2.2.2. Cationics 

Cationic surfactants have a basic hydrophilic group, providing them with a 

positively charged group. They usually are grouped in alkyl amines, amidoamines, 

alkylimidazolines, tetraalkyl(-aryl) ammonium salts, heterocyclic ammonium 

salts, alkyl betaines, ethoxylated alkyl amines, cationic polymeric compounds and 

amine oxides. The structure and the names of the main cationic surfactant families 

are indicated in Fig. 1.3. 

 

Fig. 1.3. Structure and names of the main cationic surfactant families. 
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aminopropylamines are used as corrosion inhibitors and in the cleaning process of 

metals when HCl is used to dissolve rust. The amine is orientated in the interface 

between the metal and the acidic solution, with the hydrophobic tails compressed 

against themselves, establishing a protecting layer of one or two molecules width. 

This layer is so tight that avoids the attack of the acid to the clean underlying metal 

surface. Other application of cationic surfactants that depends on the surface 

activity and the orientation of the surfactant ions, is the softening of textiles. The 

cationic surfactant adsorbs and orientates at the interface formed between the 

fabric and the water. Likewise, they have affinity for the hair surface, thus being 

used as hair softeners and conditioners products which are usually applied after the 

hair wash, countering the matting effect of anionic surfactants. 

1.2.2.3. Nonionics 

In this class of surfactants, the hydrophilic group is incapable of hydrolysing 

and forming salts. Nonionics are especially useful because of their low sensitivity 

to water hardness and pH. Since they are compatible with charged molecules, they 

are easily used in mixtures with other ionic surfactants, which often results in 

beneficial associations. For instance, nonionics can help to solubilize calcium or 

magnesium salts of anionic surfactants. The hydrophilic-lipophilic balance in these 

surfactants can be adjusted properly, balancing the amount and the nature of the 

polar units and the hydrophobic part of the molecule (carbon chain length). The 

hydrophilic part of these molecules is frequently an ethylene oxide chain. Ether 

groups may also be used to provide the required polarity to assure their solubility 

in water by hydrogen bond formation. Fatty alcohol ethoxylates are the most 

employed nonionics in cleaning products, cosmetics, herbicides, etc. Alkyl phenol 

ethoxylates (APEs), mostly octylphenol ethoxylates (OPEs) and nonylphenol 

ethoxylates (NPEs), also have a chain with EO units, but unlike FAE, they absorb 
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in the UV region. Application of APEs in detergents is legally restricted, due to 

their low biodegradability of the most hydrophobic metabolites, specifically non 

ethoxylated alkylphenols and monoethoxylates. Further, they were banned in most 

countries due to their ability of mimeting some hormones, thus disrupting the 

endocrine systems of mammals. In addition, linear FAE biodegradate faster than 

APEs. Besides they have better detergency properties than LAS over different 

types of dirt and over most types of fabrics, and are especially effective to eliminate 

grease from synthetic fibres. They also perform well at low temperature, that is 

why they have become one of the major and most common ingredients in 

household detergent formulations. Amine, amide and fatty acid esters are also 

broadly employed in personal care products. For example, coconut 

dieathanolamide has good foaming properties, stabilizing the anionic surfactant 

foam. Finally, sugar based nonionic surfactants, alkylpolyglucosides (APGs) have 

an extremely fast biodegradability, low toxicity and a high dermatologic tolerance. 

Besides, they can be elaborated from natural raw materials. The structure and the 

nomenclature of the main nonionic surfactant families are shown in Fig. 1.4. 
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Fig. 1.4. Structure and nomenclature of the main nonionic surfactant families. 
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1.2.2.4. Amphoterics 

Finally, molecules with acidic and basic characteristics are amphoterics or 

double ions. They are compounds that carry both a positive and a negative charge 

simultaneously. Some of these compounds have weak acidic or basic groups and 

they can act as anionics or cationics depending on the pH. They are usually used 

in conjuction with other surfactants (anionics or nonionics) to boost desired 

properties such as foam or detergency. Since the optimal activity of amphoterics 

takes place around neutral pH, they are particularly appreciated in personal care 

products (shower gels, foam baths, shampoos, etc.) for their mildness and skin 

compatibility, being less irritating than cationic and anionic surfactants. 

Formulation of these products is not easy due to the possible precipitation of the 

surfactant when the pH is near to their isoelectric point. They can be used, with 

NaOH, in alkaline cleaners for greasy surfaces, and as acidic cleaners with HCl for 

rusted surfaces, as a result of their stability and functionality over wide pH ranges. 

A big number of amphoteric surfactants are extensively known natural products, 

as lecithin. An additional family of amphoteric surfactant that show a quaternary 

ammonium group are the alkyllbetaines (Fig. 1.5) 

 
Fig. 1.5. Structure and nomenclature of the main amphoteric surfactant families. 
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1.2.3. Fatty alcohol ethoxylates 

These kind of surfactants, produced from the reaction of fatty alcohols with 

EO, are obtained as complex mixtures of oligomers with the structure: 

CH3(CH2)n-1(OCH2CH2)mOH 

that can be shortened as CnEm, where n adopts values between 8 and 18 and where 

m ranges between 0 and 30, and average EO being often represented by m  .  

1.2.3.1. Properties and applications 

The most used nonionic surfactants nowadays in household products are 

FAEs, being also used in the formulation of cosmetics, dispersing agents in 

herbicides, etc. The ether groups provide them with enough polarity to guarantee 

their water solubility. Even though the EO chain is not so polar as an ionized group, 

the combination of 5 to 10 EO units can be enough to reach a remarkable 

hydrophilic character. FAE are excellent moisturizing agents, compatible with 

both anionic and cationic surfactants, and their detergency is not reduced by the 

presence of Ca+2 or Mg+2. They tend to be liquids or waxes with a low melting 

point, therefore, they are not usually employed in the formulation of powder 

detergents. Another drawback is their tendency to precipitate at high temperatures 

or at high ionic strengths, due to the decreased solvation of the EO chains 

compared to the ionic groups. Besides, at high temperatures, the statistical weight 

of the polar conformations of the EO chain is reduced, so that the polar zone loses 

much of its hydrophilic character. In these conditions the surfactant splits from the 

aqueous medium forming a different phase (cloud point). Linear FAE are roughly 

characterized, by both the range of n (also known as “hydrophobic cut”), and the 

average number of EO; however, for both industrial quality control and 

environmental analysis, information of the oligomer distribution is often required. 

Characterization of FAE is important because their physico-chemical properties, 
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are strongly influenced by the lengths and distributions of their hydrophobic and 

hydrophilic chains [12-18]. 

1.2.3.2. Analysis methods 

The determination and full characterization of FAE is not an easy task. Due 

to their low volatility and the low thermal stability of the EO chain, FAEs with m 

> 4 cannot be determined by gas chromatography (GC) [12, 19-21]. The lack of a 

suitable detector has been the main drawback for the analysis of FAE by high 

HPLC [12, 22]. This problem has been partially solved with the use of detectors 

such as the refractive index detector (RID) [23-26] and mainly by the evaporative 

light scattering detector (ELSD) [24, 27- 31]; however, the limits of detection 

(LODs) for the RID detector are high, and the unfeasibility to use gradient elution 

hinder the rapid elution of the more hydrophobic oligomers. As for the use of 

ELSD, its sensitivity is compromised for volatile compounds such as non-

ethoxylated alcohols and FAE oligomers with a low ethoxylation grade (m < 3) 

[32, 33]. Lowest LODs can be attained with precolumn derivatization with 

chromogenic and fluorogenic agents [13, 34-51]. 

In the determination of FAE using mass spectrometry (MS), formation of 

aducts with positive ions, using both electrospray ionization (ESI) or Atmospheric 

pressure chemical ionization (APCI), is problematic due to the decrease of 

sensitivity as m decreases, which is especially noteworthy for m < 4. Finally, non-

ethoxylated alcohols (m = 0) cannot be detected by MS [12, 20, 22, 51-56]. To 

overcome this drawback, derivatization procedures on which a chromophore group 

or a permanent charge is added to the FAE oligomers have been developed [36, 

38, 41, 46, 47, 51, 54-56]. However, FAE derivatization is not an easy task, 

because an anhydrous medium is frequently needed [43, 51, 54, 57], so the excess 

of derivatization reagent and byproducts of the reaction may increase the risk of 
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interferences [39, 40, 48, 49, 54]. On the other hand, and due to the risk of losing 

the lower ethoxymers by volatilization, water content in samples must be carefully 

reduced, what prolongs the time of analysis [54]. Nevertheless, derivatization with 

cyclic anhydrides tolerates the presence of small amounts of water in the samples 

[48-51]. 

1.2.4. Alkyl ether sulfates 

Alkyl ether sulfates are an anionic surfactant class broadly used in cleaning 

products and personal hygiene [58, 59]. They are obtained by esterification of FAE 

using sulfur trioxide or chlorosulfuric acid. The molecular structure of AES is 

formed by a hydrocarbon chain linked to an EO chain with a sulfate group at the 

end [60-62]. These compounds are rarely pure, being generally mixtures, due to 

the raw material where they come from and to the wide range of EO numbers of 

the oligomers. They are obtained as complex mixtures of oligomers with the next 

structure: 

-
3 2 -1 2 2 3CH (CH ) (OCH CH ) OSOn m  

that can be abbreviated as CnEmS, where n  adopts values between 12 and 16 and 

where m ranges between 0 and 3, and the average EO is represented by m . 

1.2.4.1. Properties and applications 

Alkyl ether sulfate aqueous solutions show a special behaviour, because 

their viscosity increases at the beginning by the addition of electrolytes as sodium 

chloride at low concentrations, but diminishes with further additions. The highest 

viscosity, as for the salt concentration to add, depends on the ether sulfate structure. 

In comparison to ASs, the corresponding AESs are more water soluble and show 

better resistance to the presence of Ca+2 and Mg+2. The addition of an EO chain to 

the AS tends to increase the foaming power of the surfactant, especially in hard 
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water, since it allows an intensification of the interfacial adsorption. Moisturizing 

and emulsifying properties are also enhanced. Thus AES are often used in bar soap 

formulations, in different cosmetic and pharmaceutical products and in the 

treatment of textiles [63, 64]. 

1.2.4.2. Analysis methods 

The main features of these surfactants (viscosity, detergency, foam 

formation and skin compatibility), as their environmental impact, depend on the 

distribution of their hydrocarbon and EO chains [12-18, 62, 65]. Hence, it is 

important to develop analytical methods for their characterization and 

determination. However, due to the complexity of the samples, the lack of 

chromophores and the wide range of polarity of the oligomers, the detailed analysis 

of AES is not an easy task. Besides, the absence of commercial standards difficults 

their accurate determination.  

Classical methods for the AES determination include the methylene blue 

test or the two-phase mixed indicator titration method [66] which are used to 

determine the total amount of anionic surfactants. Determination of ASs and AESs 

has been achieved by ion pair chromatography with indirect UV detection [67, 68], 

ionic chromatography with conductometric detection [69, 70]. CE with indirect 

UV detection has also been used for the analysis of AES [71, 72]. The use of GC 

for direct analysis is limited to AS and AES due to required hydrolysis and 

derivatization reactions in order to increase their volatility [73, 74]. 

Transesterification with cyclic aromatic anhydrides has been also reported for 

HPLC-UV analysis of AES [75, 76]. Liquid chromatography (LC) with tandem 

MS is lately the preferred technique for AES determination and several methods 

applied to different environmental matrices have been reported [77-80]. 
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1.2.5. Linear alkylbenzene sulfonates 

Linear alkylbenzene sulfonates are the most widely used anionic surfactants 

in the formulation of laundry and industrial detergents. Commercial LAS consist 

of a mixture of homologues mainly containing the C10-C13 homologues. Each 

homologue comprises from four to six positional isomers which differ in the 

attachment point of the p-sulfonate phenyl group to the linear alkyl chain, which 

can be found at any position except in the terminal carbon atoms. LAS is produced 

by sulphonation of linear alkylbenzene (LAB) using oleum, sulfuric acid, or 

gaseous sulfur trioxide. On an industrial scale, sulfonation with SO3 is the most 

common process. LAB, the precursor of LAS, is manufactured in large scale 

industrial processes by alkylating benzene with linear mono-olefins or alkyl 

halides such as chloro-paraffins by using HF or AlCl3 as the alkylation catalyst 

[81]. 

1.2.5.1. Properties and applications 

Linear alkylbenzene sulfonates are nowadays one of the most frequently 

used anionic surfactants because of its relatively low production cost, good 

cleaning performance, the fact that it can be easily dried to a stable powder, and 

also because of its biodegradable environmental friendliness, making it a very cost-

effective surfactant. The distribution of isomers significantly determines the 

physical properties of LAS; although symmetric isomers are more water soluble 

compared to external ones, alkaline-earth salts of external isomers are more 

soluble. Optimum general properties of LAS are reached for carbon chain lengths 

ranging between 9 and 15. The C11-C12 range favors wetting and foaming, 

whereas the C13-C14 range is more beneficial for detergency. Due to its very high 

detersive action, LAS has a low compatibility with skin and is scarcely used in 

cosmetics. LAS is also used as foaming agent in the manufacture of plaster boards, 
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as an emulsifier in phytosanitary liquids and emulsion polymerization and as 

dispersing agent for dyes in paper and textile industries [10].  

1.2.5.2. Analysis methods 

Classical spectrophotometric methods have been commonly used for 

analysis of LAS, mostly in aqueous matrices [82-85]. Sensitivity improves when 

an ion pair between the surfactant and a cationic dye is formed. Determination of 

LAS by GC is not possible directly because the LAS oligomers are not volatile 

enough, thus derivatization procedures should be applied to obtain their sulfonyl 

chloride or methyl ester derivatives [86-88]. The presence of a chromophore group 

(the phenyl group) allows the relatively easy detection of LAS by HPLC-UV or 

fluorescence detection [89-92]. HPLC-MS is also a commonly used technique, 

especially for the environmental analysis of LAS and other surfactants, because it 

ensures the correct assignment of the chromatographic peaks [93-95]. In the 

absence of additives, and using isocratic or gradient elution with hydroorganic 

mobile phases, reverse phase liquid chromatography (RP-LC) with a C4 or a C8 

column give rise to wide bands with poor repeatability [76]; however, retention of 

LAS becomes reproducible and efficiency improves largely by adding either 

sodium perchlorate or tetraalkylammonium salts to the mobile phase [89, 90, 96, 

97]. Another technique for the determination of LAS is CE. The advantages with 

regard to HPLC are the use of small sample volumes, low consumption of solvent, 

a reduced time of analysis and the possibility to separate the positional isomers. 

[98, 99].  

1.2.6. Soaps 

Carboxylate salts or soaps can be directly produced by the alkaline 

hydrolysis (or saponification) of animal and vegetable glycerides or can result 

from the neutralization of fatty acids obtained by the acidification of carboxylates. 
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Commercial fatty acids coming from natural sources are generally not pure and 

involve mixtures of different fatty acids with various chain lengths and 

unsaturation degrees. 

1.2.6.1. Properties and applications 

Free fatty acids are not used as surfactants, due to their low solubility in 

water. However water-soluble fatty acids salts show good water affinity and are 

widely used, especially the alkaline ones and those resulting from the 

neutralization with short-chain amines (ethanol amine, diethanol amine, triethanol 

amine). Potassium and alkanolamine soaps are more fluid and also more soluble 

than sodium soaps. The extremely low solubility of alkaline-earth and heavy metal 

fatty acid salts makes this class of surfactants unappropriate for use in hard water. 

The main applications of fatty acid carboxylates are the fabrication of soap bars 

for hand washing of fabrics, but they are also extensively used in liquid laundry 

detergents in combination with other surfactants. Water-soluble soaps are mainly 

used in skin cleansers, shaving products and deodorant sticks [10]. 

1.2.6.2. Analysis methods 

The traditional analysis technique for the carboxylate salts analysis is GC, 

previous esterification in order to increase the volatility, enhance detection 

sensitivity and improve chromatographic resolution. The most widely 

derivatization route is the direct transesterification of the fatty acids into methyl 

esters using methanol. However, the derivatization procedures can cause a variety 

of inconveniences limiting their applications. The use of HPLC has been also 

broadly reported for soap analysis. Fatty acids are typically separated according to 

the increasing alkyl chain length on RP columns with MeOH/water or ACN/water 

mobile phases. Retention increases if the pH is lowered. Analysis is performed 
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either at low pH without an ion-pairing agent or at a high pH (7-8) with ion-pairing. 

Low wavelength UV, RID, and evaporative detectors are adequate. The ESI-MS 

sensitivity in the ion-negative mode is also enhanced by buffering the mobile phase 

to pH 7 (e.g., with ammonium acetate), or by post column addition of an 

ammonium solution to ionize the carboxylate terminal group and to form adducts 

with ammonium in the gas phase [100]. 
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2.1. Liquid Chromatography 

Liquid chromatography is a physical separation method in which the 

analytes are separated according to their distribution between two phases: the 

stationary phase which remains fix, and the mobile phase, which flows in a defined 

direction. A chromatographic system (Fig. 2.1) is composed at least of a pumping 

module, a device to introduce the sample or injector, a column, a detector and an 

appropriate data acquisition and control system. 

Depending on the elution mode, pumps employed in LC can be of two 

kinds: isocratic or gradient pumps. In the isocratic mode, the mobile phase 

composition remains constant throughout separation, whereas in gradient elution 

the mobile phase composition is modified during the separation process. The 

gradient pump modules generate mixtures of variable composition. Depending on 

the design of the pump module, mixtures are produced at low or high pressure, 

being different the characteristics, advantages and limitations of each type. 

 
Fig. 2.1. Flow chart of the essential components of a liquid chromatograph. 
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Either in LC as in other analytical techniques, the sample is introduced in 

the flow of the mobile phase through an injection loop using a 6-port-2 position 

valve that can be manual or automatic. The loop is inserted between the pump 

module and the column.  

The type of column to be used depends on the desired retention mechanism. 

The more common LC modes are: 

i) Partition chromatography: a column with a bounded liquid phase. Depending on 

the relative polarities of the mobile phase and the stationary phase, two modalities 

can be distinguished: reverse-phase, in which the stationary phase is nonpolar and 

the mobile phase is polar, or normal-phase, where the stationary phase is polar and 

the mobile phase is nonpolar. A special chromatographic mode in NP is 

hydrophilic interaction liquid chromatography (HILIC), in which the mobile phase 

is less polar than the stationary phase, but keeps miscibility with water. 

ii) Ion chromatography: the stationary phase is a cationic or an anionic exchanger 

consisting either of a strong acid, strong base, weak acid or a weak base. A cationic 

stationary phase is used to separate anions whereas an anionic stationary phase is 

used to separate cations. The mobile phase contains anions or cations, and the 

elution of the analytes can be accomplished by running mobile phases with high 

concentration of the competitive ions through the column.  

iii) Size-exclusion chromatography: the porous of a microporous solid or a gel is 

used as stationary phase. In this mode molecules are sorted by size. Small 

molecules penetrate deep into the pores eluting later than larger molecules that 

cannot enter the pores. 

On the other hand, it is important to degas the solvents to prevent the 

formation of air bubbles in the instrument, which can disturb the separation and 

cause detection noise. For that, liquid chromatographs usually include an on-line 

degasser, inserted before the passage of the mobile phase to the pump. 
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Miniaturization, an emerging trend in analytical chemistry along the last 

third of the last century, has been also introduced in the different chromatographic 

modes. Among the advantages of miniaturization, it is worth noting the reduction 

of the time analysis, the volume of the generated wastes and the amount of sample 

that is required. At the same time, improvement in the sensitivity, reduction of the 

LODs and higher efficiencies is obtained. The higher instrumental requirements, 

as the use of micro-pumps and micro/nano-nebulizers can be indicated as the main 

drawbacks. Among the developments in chromatography, multidimensional liquid 

chromatography (MDLC) is a high performance separation technique that is 

getting more and more popular over the years for the separation of complex 

samples including biomedical, pharmaceutical, food and industrial samples such 

as synthetic polymers or surfactants [1,2]. In MDLC the sample is subjected to 

more than one separation mechanism. Each mechanism is considered an 

independent separation dimension. The two dimensional version of MDLC, 2D-

HPLC, has gained popularity as a column-based separation method with much 

higher resolution, selectivity and peak capacity than a single-column separation 

method. 

2.1.1. Detectors 

Today, the most employed detection techniques in LC are UV-vis 

spectrophotometry and MS. As alternative detectors, refractive index (RID) and 

evaporative detectors such as ELSD and charged aerosol detector (CAD), are also 

used. For specific applications, amperometric and fluorimetric detectors are used. 

Conductometric detection is commonly used in ion chromatography. 

2.1.1.1. UV-Vis detector 

In UV-vis spectrophotometry, the signal is proportional to the molar 

concentration of the solute, whose molar absorptivity depends on the nature of the 
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absorbent group or groups. When the LOD is not low enough, preconcentration 

techniques can be used. Alternatively, the sensitivity can be enhanced by 

derivatization. Spectrophotometric detectors follow two types of design: variable 

wavelength and diode array detector (DAD). In the former, a fixed wavelength is 

selected for the measurement, while the later detectors are able to scan the whole 

UV-vis spectrum several times per second. In these detectors, the monochromator 

is placed after the radiation of all frequencies that reaches the sample. Once the 

beam goes through the sample, the transmitted radiation is dispersed so that each 

photodiode measures the corresponding intensity within a small range of 

wavelengths. 

2.1.1.2. Evaporative light scattering detection 

The evaporative light scattering detector is a quasi-universal detector 

mainly used in LC that responds to all compounds that are less volatile than the 

mobile phase and is independent of the compound’s optical properties. The 

operation principle of ELSD consists mainly of three successive processes (as 

shown in Fig. 2.2): nebulization of the chromatographic effluent, evaporation of 

the mobile phase and detection of the non-volatile residual particles, by means of 

the measurement of the scattered light [3]. In the first step, the chromatographic 

eluent passes through the heated nebuliser and is mixed with the incoming 

nebuliser gas stream, usually nitrogen. The mixed gas and eluent stream form an 

aerosol containing a cloud of dispersed droplets that passes into the evaporation 

section. In the evaporation tube, the solvent is evaporated and the size of the 

aerosol droplets is reduced. In this step the evaporation temperature should be 

selected in accordance to the mobile phase and analyte volatilities and to the 

mobile phase flow rate. The nebuliser temperature and the flow rate of the 

nebulizing gas can be used to optimize signal response in addition to the evaporator 
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temperature. Lastly the aerosol, after the evaporation process, enters the optical 

cell and passes through a light beam. When only the mobile phase is being 

evaporated, only its vapor passes through the light path and the amount of light 

scattered to the photomultiplier is small and gives a constant baseline response. 

When a non-volatile solute is present a particle cloud passes through the light path, 

causing light to be scattered. This scattered light enters the optical aperture of the 

detection system and generates a signal response from the photodiode in real time. 

The quantity of light detected is dependent on the solute mass rate and solute 

particle size detection. 

 
Fig. 2.2. Scheme of the main steps of ELSD operation. 

This detector has a number of advantages over other detectors. In many 

applications the need for spectrophotometric derivatization can be avoided with 

the use of an ELSD. Other special characteristics are its compatibility with gradient 

elution and insensitivity to temperature variations (unlike RID), better detectability 

than RID for most molecular classes and its lower cost and easy operation (in 

comparison to mass spectrometers). On the other hand, this detector presents also 

some limitations. The main drawback is the restriction on the mobile phase 

volatility. Non-volatile modifiers, several ion pairing reagents and a restricted list 
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of acids, bases and buffers cannot be used with ELSD. If it is used with other 

detectors it should be the last in the line because it is a destructive detector. Another 

drawback, especially in the frame of routine work is that in most applications 

ELSD presents a non-linear response, thus exponential and polynomial regressions 

have to be used in order to achieve a good correlation between peak areas and the 

analyte mass [4-6]. A solution would be to use a CAD, whose response is more 

linear as that of the ELSD along a wider calibration range. A CAD works 

essentially as an ELSD but the final measurement is not made on the scattered 

light, but on the amount of electrical current the aerosol is capable of carrying 

under a certain bias voltage. 

2.1.2. Measurement of chromatographic parameters 

To carry out a chromatographic separation, the analyst has to stablish if it 

is possible to appropriately separate the analyte from the rest of components of the 

sample, and if the amount of analyte present in the samples is enough to be detected 

and/or quantified. The time that elapses from the injection until the analyte 

detection is its retention time or tR. Besides, the capacity factor or relative retention 

(k) expresses the overall retention in units of the dead time, t0, or the retention time 

of a non-retained compound: 

0

0i,R

t
tt

k
−

=           (2.1) 

where tR,i is the retention time of analyte i. The optimal range of k values is between 

1 and 5, even though values between 0.2 and 10 are acceptable. Values lower than 

0.2 indicate low retention, excessive preference of the solute for the mobile phase. 

On the contrary, k values higher than 20 indicate too high retention, produced by 

an excessive preference of the solute by the stationary phase. This involves very 
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long analysis times and generally wide and short peaks, difficult to be detected and 

measured accurately, thus with higher LODs and lower accuracy than expected. 

The capacity of a chromatographic system to distinguish between two 

solutes is expressed using the selectivity factor αi,j, that can be calculated as the 

relation between the relative retention of both solutes: 

i

j
ji k

k
=,α           (2.2) 

being i and j two neighbouring peaks and i the less retained. 

The separation degree between two solutes is measured by the resolution, 

R, which is calculated as: 

)(5,0
,,

ji

jRiR

ww
tt

R
+

−
=          (2.3) 

being wi and wj the width of the base of the peaks of compounds i and j. 

For its part, efficiency describes the band broadening degree in relation to 

the retention volume. A high efficiency is achieved when all the peaks remain 

narrow despite requiring a high volume of mobile phase for elution. The global 

efficiency is described by the number of theoretical plates (N), and the efficiency 

per length unit by the equivalent height to a theoretical plate (H), or by its reverse 

(1/H). For a given solute, N can be calculated from the expressions: 

2
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
⋅=

w
tN R    and   
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
⋅=

w
tN R   (2.4) 

where tR is the retention time of the solute and w and w1/2 are the peak width at its 

base, and its width at medium height, respectively. Additionally, H is related with 

N through the expression: 

H
LN =    (2.5) 
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where L is the column length. 

The Van Deemter equation describes the contributions to H, this is, it 

indicates how the different building and working factors of the column affect over 

the efficiency. In the case of microparticulated columns in GC, HPLC and CEC, 

the next simplified expression can be used: 

uC
u
BAH ⋅++=         (2.6) 

where u  is the average linear velocity of the mobile phase.  

The A term of the van Deemter equation is known as the eddy-diffusion 

parameter, which is related to the different length of the followed paths and the 

different velocities of the solutes on their movement through the chromatographic 

bed. (Fig. 2.3, part A). The contribution to the band broadening is due to the fact 

that molecules move at different velocities depending on the width of the followed 

route. Furthermore, the mobile phase moving through the centre of the channels 

travels faster than the one moving close to the walls. This contribution to H is just 

a function of the filling geometry, this is, not depending on u . 
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Fig. 2.3. A) Eddy diffusion B) longitudinal molecular diffusion. 

The B term represents the longitudinal molecular diffusion (in the axial 

direction), which is related to the diffusion of the solutes at a molecular level (Fig. 

2.3, part B). This diffusion is proportional to the solutes diffusibility and the 

dwelling time within the column. The longer the solutes stay in, the bigger the 

diffusion is, thus the B term becomes important at low flows. This time dependence 

is reflected on the invers proportionality to the contribution on u . 

The C term corresponds to the combined contribution of the mass transfer 

of the solute rates between the mobile phase and the stationary phase. This can be 

calculated in two terms, CM and CS, depending on the diffusion coeffcients within 

each phase. This term is proportional to u  because the movement of the mobile 

phase strives in terms of velocity with the mass transfer of the solute between both 

phases, thus the importance of the C term increases with the velocity of the mobile 

phase as the equilibration time between both phases is more seriously delayed. The 

delay in the mass transfer after each “stage” of advance of the mobile phase origins 

a broadening in the zone occupied by the solute. 

The terms A and C of the van Deemter equation indicate that the column 

efficiency can be improved using smaller particles of the stationary phase, or more 

uniform packing. The shape of the van Deemter plot gives information about the 

quality of the packaging of the chromatographic column. The lower the 

contributions of the A and C terms the higher the number of theoretical plates can 

be achieved at a certain mobile phase flow. In Fig. 2.4 a typical representation of 

this equation is shown. 
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Fig. 2.4. H versus ū (van Deemter plot). 

2.2. Two-dimensional chromatography  

One-dimensional chromatography is a well-known technique used to the 

analysis of a widespread range of samples in several fields. However, such 

separation methods often do not provide sufficient resolving power for the 

separation of target components in many real-world samples. As previously 

introduced, in multidimensional chromatograpy a much higher resolving power 

can be achieved thanks to the use of multiple separation stages. The most 

commonly used MDLC technique is 2D-HPLC, in which complex samples are 

separated using two different columns. By positioning these columns in the proper 

order, and by selecting the mobile phase composition of the two separations, it is 

possible to selectively take elements from the first column and transfer them to a 

second columns for additional separation. 

The first 2D-HPLC separation was described by Erni and Frei [7]. They 

separated glycosides on a gel permeation column as first dimension, and RP 

conditions by means of a C18 column as second dimension. As shown in Fig. 2.5 

the instrumental setup consisted on an eight-port loop valve (valve 2) combined 

with the action of two pumps. 
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Fig. 2.5. Scheme of the online 2D-HPLC described by Erni and Frei . 

The effluent of the first column fills alternatively one or another of the two 

loops connected to valve 2. While one loop is being filled, the other one is eluted 

by the second pump through the second column. A requirement of this setup, that 

limits their possible applications, is the fact that the eluate from the first column 

has to have a less eluent force than the mobile phase used in the second column. 

Otherwise, dilution effects are produced when the content of the loops is 

introduced in the second column. 

In 2D-HPLC two main approaches can be considered: either heart-cutting 

or comprehensive [8]. In the heart-cutting mode of operation, one or several 

discrete zones are collected from the first-dimension column and reinjected into 

the second-dimension separation system. The resulting data are one or more 

individual one-dimensional datasets and are useful for resolving fused peaks from 

specific region(s) of the first-dimension separation system. In fully comprehensive 

separation the entire effluent from the first column, divided in small fractions, is 

sequentially introduced in a second column with a different selectivity. The 

resulting chromatograms are put into the rows of a matrix that is usually 

represented as a contour map or topological map, with the time of the 

corresponding separations over the two cartesian axes [9]. 
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Commercial surfactants are not usually used as a single compound, but as a 

mixture of compounds with a similar structure that have distributions of chain 

lengths but with a charged group of constant size, for example sulfate, phosphate 

or sulfonate. These surfactants constitute complex mixtures susceptible to be 

analysed by 2D-HPLC. Many applications of 2D-HPLC to the analysis of 

surfactants are focused on the separation of FAE, due to the dual distributions 

(alkyl and ethylene oxide) and the lack of full resolution in one-dimensional 

separation system. Separation of underivatized FAE by 2D-HPLC was first 

described by Murphy et al. [9] using the setup shown in Fig. 2.6. 

 
Fig. 2.6. Experimental setup used by Murphy [9]. 

In this setup a quaternary pump drives the mobile phase to the first column 

where a separation in normal phase is produced. In this column an ACN/water 

gradient partially separates the FAE oligomers according to the EO chain. Thanks 

to the 8-port valve, the eluate is alternatively stored in one of both 50 µL loop. 

While one loop is being filled, the other one is inserted in the flow path coming 

from the isocratic pump, bringing the content of the loop to the reverse phase 
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column. In this column a 95/5 MeOH/water isocratic mobile phase separates the 

oligomers according to the length of the hydrocarbon chain. The use of miscible 

phases (ACN/water and MeOH/water) is necessary to avoid mixing problems at 

the beginning of the second column. 

Separation of FAE by 2D-HPLC was also explored by Trathnigg et al. [10-

12]. The first approach proposed by these authors combined LC under critical 

conditions (LCCC) in the first dimension, and liquid exclusion-adsorption 

chromatography (LEAC) in the second dimension. In the first dimension, the 

separation was consistent with the hydrocarbon series, and in the second dimension 

the oligomers within each series were separated according to degree of 

ethoxylation. Detection of underivatized FAEs was achieved using a RID and a 

density detector. LCCC separations are not common. For instance, the separation 

of FAE can be achieved using a C18 column and with high concentrations of 

MeOH, such as 95-97 % and a 5-3 % of water. The for separation in LEAC, it is 

carried out in a C18 column with a 10 nm pore size, using ACN/water phases that 

are miscible with the eluate of the first dimension.  

A comprehensive 2D-HPLC approach for the separation of a FAE mixture 

was tackled by Raust et al. [13] based on the separation on a C18 column according 

to the hydrocarbon chain with a MeOH/water gradient, whereas an isocratic flow 

of isopropanol/water on a polar Chromolith Si column gave the separation 

according to the oligomer chain length. Detection was accomplished using ELSD 

and the method allowed to separate mixtures of FAE with a hydrophobic chain 

length from 10 to 18 and a 6-7 EO average value and nonylphenol ethoxylates with 

an average of EO chain length of 10 as can be observed in Fig. 2.7. 
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Fig. 2.7. Two-dimensional plot of the FAE model blend (20 mg/mL in methanol–water 

80/20); end-group separation (first dimension) along the Y-axis and oligomer separation 

(second dimension) along the X-axis [13]. 

Different heart-cutting 2D-HPLC methods have been developed for the 

separation of FAE. Okada et al [14] presented the procedure to separate heart-cuts 

of the eluate corresponding to the series n = 12, 14, 16 and 18, separated on a 

styrene-divinylbenzene copolymer gel. These cuts were sequentially introduced in 

the second dimension to separate the ethylene oxide oligomers or ethoximers 

within each series. For the separation along the second dimension, a strong cation 

exchanger (SCX) column was used. The homologues were separated depending 

on the degree of complexation with the K+ cation, using a KCl methanolic mobile 

phase. The separating system was constituted by three pumps and three columns, 

two of them were separating columns and the third one was used for 

preconcentration. The focusing of fractions was also employed by Thrathnigg et 

al. using the separation mechanisms previously described [10], but incorporating 

an intermediate retention step of the solutes between both dimensions consisting 

on a full absorbtion/desorption (FAD) technique [12]; the sections of interest in 

the first dimension were trapped in the FAD column and reinjected in the second 

column to separate the analites according to the number of EO units. This same 
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bidimensional system was used for the separation of fatty acid polyglycol ethers 

[12]. In all the described methods the instrumental setup used at least two or more 

pumps to achieve the bidimensional separation. Micó et al. [15] used a column 

selection valve and a 6-port 2-position injection valve to implement bidimensional 

LC in a system driven by a single pump for the separation of FAE. For the 

separation in the first dimension, according to the hydrocarbon series of FAE, a 

propyl-diol column and an ACN/aqueous ammonium acetate gradient were used. 

Selected segments of the first dimension separation were transferred to the second 

column, where the successive oligomers within the isolated series were resolved 

using a C8 column and an ACN/water gradient. 

Separation of complex mixtures of different kind of surfactants has been 

also accomplished using 2D-HPLC. Haefliger [16] described a setup for 2D 

chromatography capable of separating a complex mixture of cationic, amphoteric, 

non-ionic and anionic surfactants. A diol column was set as first dimension on 

which separation by surfactant families was achieved. Elution on this column was 

performed with ACN/water mobile phases in the presence of 0.1% trifluoroacetic 

acid. Proportions of ACN/water, near to the proportion 60:40, were optimized in 

order to achieve the maximum retention of the oligomers on the diol column. 

Separation on the second dimension was done on RP columns, being a C4 and C2 

the recommended stationary phases. Elution over these columns was performed 

with ACN/water gradients, adjusting in each case the elution strength to the nature 

of the surfactant family to be separated. In all cases ELSD was used. 

Fig. 2.8 shows the experimental setup, which was based on a 10-port 2-

position valve. One of the disadvantages of this system is the necessity of three 

pumps. The first pump is used to elute the analytes along the diol column. A 

column with 1 mm of diameter is used to minimize the dispersion effect that can 

involve pumping eluate portions with a high eluent strength into the second 
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dimension. The second pump is used to reduce the eluent strength, and focus the 

solutes at the head of the second column. Finally, the third pump is used to 

implement the gradient along the second dimension. The 10-port valve allows the 

connection of the C4 and C2 alternatively in one or another of the next positions: 

(a) inserted between the exit of the first dimension and the waste, in order 

to transfer an eluate cut from one dimension to another. 

(b) Inserted between the quaternary pump and the detector, in order to 

examine the chromatogram in the second dimension. 

Complex surfactant mixtures were analysed with this system, allowing fast 

separation but with low efficiency. Its main advantage was the separation in a 

single bidimensional chromatogram of a mixture of at least 6 surfactants with very 

different properties. 

 
Fig. 2.8. Experimental setup for two-dimensional HPLC analyses described by Haefliger 

[16]. 
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The separation of a mixture of fatty alcohol derivatives including anionic 

(AES and AS), non-ionic (APGs and FAE) and amphoteric (cocamidopropyl 

betaines) surfactants has been also accomplished by comprehensive 2D-HPLC 

coupled with mass spectrometry [17]. In this work several columns were first 

evaluated in order to select the best conditions for the separation of the surfactant 

mixtures according to their characteristics. For the first dimension a ZIC-HILIC 

column was selected to separate the polyethoxylated surfactants according to their 

EO number. For this purpose, ACN with an NH4AcO buffer was used. A 10-port 

2-position valve was used as the interface to transfer the first dimension eluate to 

the second dimension column, which consisted in a Reprosphere 100 C8-Aqua 

column. In this dimension MeOH with a NH4AcO buffer allowed the separation 

by the alkyl chain length. Two different LCxLC-QTOF MS systems were assayed 

with similar conditions to demonstrate that a transfer of the method was possible. 

However, small differences in delay volume and extra-column volume between 

the systems led to changes concerning peak shape, sensitivity and analysis time. 
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3.1. Capillary electrochromatography 

Capillary electrochromatography is a chromatographic technique that 

combines the high efficiency of capillary zone electrophoresis and the high 

selectivity of HPLC. In CEC, separation is accomplished in capillary columns 

which are totally or partially filled with a stationary phase. In presence of high 

electric fields, the electroosmotic flow (EOF) acts as the pumping system of the 

mobile phase. This flow is generated in the capillary due to the presence of charges 

on the surface of the column packing. The EOF gives rise to a planar flow profile 

inside the capillary, different from parabolic profile obtained in hydrodynamic 

flows, which makes possible to achieve higher efficiencies than in systems driven 

by pressure. 

In CEC the separation mechanism is double [1]. On one hand, there is a 

chromatographic mechanism, because there is a distribution of the solutes between 

a mobile and a stationary phase. On the other hand, ionic solutes are also separated 

with an electrophoretic mechanism, based on the differences of their 

electrophoretic mobilities. Thus the nature of the packing determines the EOF and 

affects the separation selectivity. 

An instrument for CEC (see scheme in Fig. 3.1) is comprised by a high 

voltage power source, a solvent and/or sample delivery system to the vials in the 

inlet and outlet of the column, a capillary column with a stationary phase on which 

the EOF is generated and where takes place the electrochromatographic separation, 

an isothermal compartment for the capillary column and a detection system 

capable to detect the concentration profiles of the analites in the background 

electrolyte (BGE). 
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Fig 3.1. Scheme of a CEC instrument 

The same instrumentation used for CE can be used for CEC, but in the later 

a pressurization system of the inlet and outlet vials is necessary. Pressurization is 

needed to avoid the formation of bubbles that can disrupt the current. Bubbles can 

be originated because of several reasons, either local differences in the EOF flow 

[2], in the electric field, loss of trapped gas in the porous of the stationary phase, 

gas produced electrochemically [3] or by heating [4, 5], or in the case of packed 

columns, because of cavitation at the frits that retain the packing [6]. Pressurization 

is applied to the inlet and outlet vials to assure a reproducible flow. To pressurize 

the vials an inert gas, usually N2, at approximately 10 bars is used. In commercially 

available CE instruments, these parameters are automatically controlled, thus 

giving significant improvements in the reproducibility and security of the 

separations. 

Detection is done in the column itself, using as detection cell a small section 

made by removing the protective polymeric layer, adjacent to the bed/packing. 

This step is not necessary for capillaries with transparent coatings. 

Spectrophotometric UV-vis detection is the most employed in CEC [7-10] being 

also possible to work in the indirect detection mode. Other widely used detection 

techniques are laser-induced fluorescence [11-13] and MS [14-16]. 
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3.2. Monolithic columns and its application to CEC 

The word “monolith” comes from greek meaning a single stone, which in 

chromatographic terms is equivalent to a separation over a “continuous bed”. The 

porous structure of monoliths allows to work in HPLC with high flows obtaining 

fast separations, without a significant increase in the back-pressure, as happens 

with particulated columns. In CEC, monolithic columns are also alternatives to 

packed columns, with some interesting advantages. Given their continuous 

structure, it is not necessary to use frits at the ends of the monolithic bed, since 

they are covalently attached to the wall of the capillary. Besides, they can be 

prepared in situ, making the manufacturing of monolithic beds relatively easy 

compared to the particle packing techniques.  

Monolithic columns can be classified into two main categories, silica based 

and polymeric. Silica columns are prepared using the sol-gel technique [17]. The 

structure of a silica monolith is composed by interconnected frameworks which 

create a particular pore distribution. In Fig. 3.2 the cross-section of a silica 

monolith (Fig. 3.2A) and a zoom of the surface (Fig. 3.2B), obtained by scanning 

electron microscopy (SEM) are shown. These images show a bimodal porous 

structure composed by macroporous from 1 to 3 µm (pore size related to the 

framework size) and mesoporous from 10 to 20 nm*. 

                                                 
*The IUPAC divide the porous into three categories according to their size: Macroporous, with diameters 
over 50 nm; mesoporous, with diameters comprised between 50 and 2 nm; and microporous with a size 
lower than 2 nm.  
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Fig. 3.2. Microphotographs showing the morphology of silica monolithic columns. (A) 

Cross-section. (B) Zoom of the surface. 

On the other hand, preparation of polymeric monolithic columns is easily 

accomplished by filling capillary columns with a polymerization mixture 

comprised by monomers, a cross-linker, a porogenic mixture of solvents and a 

radicalary initiator. The resultant hydrophobicity of the monolith can be controlled 

selecting the nature of the monomer [18, 19]. The presence of monomers derived 

from acrylic and sulfonic acids or quaternary ammonium salts in the 

polymerization mixture [20] guarantees the EOF. Polymerization starts thermally, 

chemically or by UV radiation. The latter option also allows the formation of 

monoliths in a specific area by the use of transparent capillaries, passing the 

radiation through a mask in a pseudo-lithographic process. Once the 

polymerization is completed, the seals are removed and the capillary is connected 

to a pump to eliminate the porogens and other soluble compounds that can remain 

within the monolith. 

To avoid any displacement of the monolith along the column, it is necessary 

to attach the polymer to the inner wall of the capillary. To do so, before introducing 

the polymerization mixture into the capillary, the inner walls of the capillary are 

a) 
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silanized. For this purpose, 3-(trimethoxysilyl)propyl methacrylate (silane 

binding) is used in most cases. 

To synthesize monoliths different types of polymers have been used, 

distinguishing mainly between derivatives of acrylamide, polystyrene and esters 

of methacrylate or acrylate. The first described monolithic columns were prepared 

with acrylamide and methacrylamide [21-23]. These polymers were synthesized 

by the polymerization of acrylamide, methacrylamide or derivatives thereof in the 

presence of methylenebisacrylamide or piperazine diacrylamide as cross-linking 

agents. Monolithic columns based on polystyrene [24, 25] are obtained by 

polymerization of styrene and derivatives with divinylbenzene as cross-linking 

agent. Monoliths based on methacrylate esters [26-28] are prepared by 

polymerization of butylmethacrylate or other methacrylate ester derivatives, using 

ethyleneglycol dimethacrylate as cross-linking agent. 

3.2.1. Monolithic columns based on methacylate and acrylate esters 

Monolithic columns based on polymethacrylate are more common and 

better characterized, being extensively developed by Svec et al. [27, 28], who have 

described either HPLC and CEC applications. Methacrylate and acrylate polymers 

have mechanical and chemical characteristics that make them highly appropriate 

as stationary phases. They are stable in a wide pH range (2-12), unlike silica based 

stationary phases, which degrade easily over pH 9. Their synthesis is fast and easy, 

and it is possible to start from monomers of very diverse polarity.  

Polymerization of methacrylate and/or acrylate monoliths is carried out by 

a radical reaction, generally initiated by an elevated temperature, UV irradiation, 

or by chemical agents at room temperature. For the thermal initiation, 

azobisisobutyronitrile (AIBN) [27-29], benzoyl peroxide [30] or other peroxides 

[31] are usually added to the monomer mixture. 
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The formation mechanism of the macroporous monolith is based on a 

radical reaction, where the monolith is prepared in situ through a chain 

polymerization. The set of reactions could be described as follows: 

First, the radical initiator, which is capable of generating free radicals from 

weak bonds, is decomposed and polymerization is initiated. 

The monomer reacts with the formed radical, with subsequent growth of the 

polymer chain. In the case of methacrylate esters, this step can be generally 

represented by the following scheme: 
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As the polymer chains grow, the solubility in the medium decreases and the 

generated nuclei are separated from the remaining mixture. The monomers are 

thermodynamically better solvents of the polymer than the porogens, thus the 

nuclei are preferably solvated with the remaining monomers in the polymerization 

mixture. As the monomer concentration inside the nuclei is higher than in the 

solution, polymerization preferentially continues in the nuclei for kinetic reasons 

[32], resulting in an increase in size and formation of microbeads. These continue 

to increase in size and become interconnected, creating the final morphology of 

the monolith. The process finally gives rise to a two-phase system: a continuous 

white monolithic solid and an inert porogenic liquid that fills the pores of the 

structure. The volume occupied by the porogens corresponds therefore to the 

volume of macropores of the monolithic bed. 

The resulting morphology of the macroporous monoliths constitutes a 

complex system, with a structure constituted by a series of interconnected 

microbeads, partially aggregated in larger clusters, that form the polymer body. 

Irregular gaps between the microglobule groups are the macropores. The 

organization of the globules and their aggregates depends both on the composition 

of the polymerization mixture and on the reaction conditions used in the 

preparation of the monolith. 

Svec et al. [27, 28] have shown that the chromatographic properties 

(efficacy, selectivity, permeability, etc.) of these materials can be altered by 

varying the composition of the polymerization mixture (monomers, cross-linker, 

porogenic solvent and/or initiator), as well as the type of initiation used, which is 

an interesting way, not only for the development and optimization of 

chromatographic separations, but also for applications of environmental, 

biochemical and industrial interest. 
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3.2.2 Monolith characterization 

Monolithic materials can be characterized by studying both their 

morphological and electrochromatographic properties. There are numerous 

techniques that provide information about the influence of various factors on the 

morphological properties of monolithic materials. 

For the study of the morphological properties of monolithic materials, there 

are numerous methods and analytical tools. Among them it is worth to mention 

SEM [33], mercury intrusion porosimetry [34], nitrogen adsorption/desorption, 

evaluated by the Brunauer-Emmet-Teller equation [35] and chromatographic 

permeability. The monolithic columns used in this thesis have been physically 

characterized by SEM. 

Using SEM, images of the structure of a material can be obtained. A beam 

of electrons is focused on the surface of the material. This beam scans the surface 

of the material, producing mainly the emission of secondary electrons of low 

energy and backscattered electrons of greater energy, both being collected by 

means of suitable detection systems [36]. The information obtained varies 

according to the characteristics of the detector used. The secondary electrons are 

formed in a thin surface layer, in the order of 5 to 10 nm in thickness. Part of the 

signal consists of electrons that emerge from the sample with energy lower than 

50 eV. On the other hand, being low energy electrons, they can easily vary their 

initial path, and information can be obtained from areas that are not in sight of the 

detector. This particularity is fundamental to give the signal the possibility of 

providing a three-dimensional information of the topography of the sample, being 

perhaps the most well-known feature of this technique. 

On the other hand, the main utility of the backscattered electron signal, 

which consists of the electrons that emerge from the sample with an energy greater 

than 50 eV, lies in the fact that its emission depends strongly on the atomic number 
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of the elements of the sample. For this reason, two zones with different chemical 

composition will be revealed with different intensity, although there are no 

topography differences between them. 

To apply SEM the sample to be analyzed must be dry. Otherwise, the low 

pressure in the microscope would cause the evaporation of the volatile components 

that would be violently fired, altering the structure of the sample. In addition, the 

surface must be conductive, which is achieved by coating it with a film of 

conductive material. For this purpose, high vacuum cathodic spray techniques are 

used. On the other hand, the reduced thermal stability of the polymers limits the 

voltage that can be applied to obtain the images. 

The electrochromatographic behaviour of monolithic columns can be 

evaluated from the same chromatographic parameters used to characterize 

chromatographic separations in conventional liquid chromatography. These 

parameters have been already explained in section 2.2.1. 
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ABSTRACT 

The derivatization reactions commonly used to enhance the analytical signal in 

the HPLC and CE determination of compounds with hydroxyl functional groups are 

revised. Focus is placed on the determination of compounds having aliphatic alcohols and 

phenols while lacking other reactive functional groups. The derivatization with acyl 

chlorides, organic anhydrides, isocyanates and a variety of other approaches, including 

oxidation of primary and secondary alcohols, sulfonation, esterification with carboxylic 

acids, and the use of azides, sulfonyl chlorides and other reagents having miscellaneous 

leaving groups, is covered. Reactions mainly addressed to introduce a chromophore or a 

fluorophore in the analyte molecule, or to introduce a charge to enhance sensitivity in MS 

detection, or to enable CE separation are included. Applications related to the industrial 

quality control of raw materials and manufactured products, and to the evaluation of their 

environmental impact are emphasized. The problem of the different response factors of 

the derivatives when complex mixtures of oligomers are derivatized, as occurs with non-

ionic surfactants (mainly fatty alcohol ethoxylates) and soluble synthetic polymers, is 

discussed. Other applications related to the biochemical, biomedical, pharmaceutical, 

nutritional and toxicological fields are also reviewed. The reactions, the criteria to be 
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applied to select the reagent, and the characteristics of the derivatives in relation to 

separation and detection, are discussed.  

 

Keywords: Acyl chlorides / Derivatization / Fatty alcohol ethoxylates / Hydroxyl 

functional groups/ Isocyanates / Organic anhydrides 
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4.1. Introduction 

Analyte derivatization is commonly used in HPLC and CE to enhance the 

detector response. Ideally, derivatization reactions should proceed rapidly and 

quantitatively under soft conditions, giving rise to derivatives exhibiting a large 

molar or mass response in the selected detector. Derivatization can be carried out 

either in the pre-column or post-column mode. Excellent discussions about the 

advantages and limitations of each approach can be found elsewhere [1]. 

Derivatization procedures mostly designed to be used in the pre-column mode, 

which is much simpler and less demanding than the post-column approach, are 

collected in this review. 

Most frequently, derivatization is performed to add a chromophore or a 

fluorophore to the analyte molecule. The introduction of a charge has also become 

a fairly common resource to enhance the response at a mass spectrometer, being 

also useful to provide non-zero mobility in CE. The introduction of a charge is also 

a way of procuring an enhanced response for volatile analytes when a light-

scattering or charged-aerosol evaporative detector is used. Several commercial 

autosamplers also provide an increased capability for mixing, heating and 

extracting, which makes pre-column derivatization much attractive. On the other 

hand, there are many compounds of industrial, environmental or biomedical 

interest with hydroxyl functional groups while lacking a chromophore or a charge, 

thus giving very low sensitivities in relation to UV-vis, fluorescence and APCI-

MS and ESI-MS detection. Further, in many cases, mainly in the environmental 

and biomedical fields, the sensitivity given by the analyte at the selected detector 

is not enough to reach the very low limits of detection which are required. In these 

cases, sensitivity enhancement by derivatization can provide good solutions. 

Derivatization relies on the presence of a reactive group in the analyte molecule, 

including amino, hydroxyl (either aliphatic alcohol or phenol), ketone, aldehyde, 
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carboxylate, thiol and other groups. Excellent reviews covering the derivatization 

of these functional groups have been published along the last decade [2-6]. A wide 

variety of fluorogenic derivatization methods, mainly related to biomedical 

applications, were revised by Yamaguchi and Ishida [2]. In the review by 

Toyo’oka [3], the focus was on chiral drug resolution upon diastereomer formation 

with chiral derivatization reagents. In the reviews by Gao et al. [4], Santa [5] and 

Iwasaki et al. [6], the main topic was sensitivity enhancement for atmospheric 

pressure mass spectrometry detection, including APCI-MS and ESI-MS. The 

increase of chromatographic retention and efficiency upon derivatization was also 

discussed.  

In this work, an overview with emphasis on the derivatization of analytes 

having a hydroxyl group, including mainly aliphatic alcohols but also phenols, 

while lacking other reactive groups, is given. Chromogenic and fluorogenic 

reactions and those addressed to enhance detection in APCI-MS and ESI-MS, and 

to enable separation in CE by introducing a charge in the analyte molecule, are 

covered. Industrial and environmental applications are mainly discussed; however, 

methods used to quantify analytes of biomedical interest are also included, since 

successful approaches in this field could be useful to develop industrial and 

environmental applications, and vice versa. Hydroxyl functional group 

derivatization has been frequently applied to the determination of fatty alcohol 

ethoxylates (FAE), since these non-ionic surfactants lack both a chromophore and 

a charge. Also, the low volatility of the oligomers with more than four ethylene 

oxide (EO) units prevents the use of GC. Derivatization of FAE and other related 

non-ionic surfactants, and soluble polymers as polyethyleneglycol (PEG), has been 

mainly applied to quality control of industrial raw materials and manufactured 

products, as well as to the evaluation of its impact on the aquatic environment. 

Thus, influents and effluents of sewage treatment plants, sewage sludge, and river 
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and sea water, have been also analyzed. On the other hand, toxic compounds, 

hormones, nutrients, drugs and other biologically active compounds have been 

analyzed in a wide variety of matrices, including urine, plasma, tissues, cosmetics 

and food. 

The reagents have been classified by groups, including acyl chlorides 

(Section 4.3), organic anhydrides (Section 4.4), isocyanates (Section 4.5) and 

miscellaneous (Section 4.6), involving oxidation reactions for primary and 

secondary alcohols, sulfonation, esterification with carboxylic acids, and the use 

of azides, sulfonyl chlorides and other reagents having different leaving groups. 

The reagents used to quantify some analytes, followed by the separation and 

detection of the derivatives by HPLC or CE, are critically compared, and trends 

are indicated.  

4.2. The problem of the response factors in compound classes constituted by 

complex mixtures of oligomers 

In the characterization and determination of compound classes constituted 

by mixtures of oligomers (homologues or isomers), as occurs with surfactants, the 

variation of the response factors of the oligomers with the number or position of 

structural repetitive units or groups in the molecule is an important issue. This 

point will be discussed first, since it is common to all these compound classes, 

independently from the derivatization reaction to be used. The response factor of 

an oligomer is established as the sensitivity ratio with respect to a standard 

compound which is used as reference. The response factors could depend on both, 

the variations in the derivatization yield and differences of detection sensitivity. 

However, since the reactions commonly used in analysis are thoroughly 

quantitative, usually the response factors are mainly dependent on the differences 

of detection sensitivity among the oligomers and the reference compound. For 
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instance, in UV detection, the response factors will depend on the variations 

produced by the analyte residue on the electron density of the chromophore, and 

in MS they could depend on the variations of volatility, charge, or readiness to 

form adducts. In the case of ethoxylated surfactants, the response factor of the 

derivatizated oligomers of a given hydrocarbon series (same number of carbon 

atoms in the alkyl chain) varies mainly with the number of EO units of the 

oligomer, and in a lesser amount also with the length of the alkyl chain. However, 

these variations are strongly dependent on both the derivatizing reagent used and 

the detection technique.  

When the derivatives show a narrow range of response factors, all the 

individual oligomers and the whole compound class can be quantified using a 

single compound as reference. For this purpose, a single oligomer, or even a 

mixture of oligomers with a known composition, can be used. When response 

factors are not needed, the evaluation of the oligomer distribution and the 

quantitation of the compound class is greatly simplified. Otherwise, when the 

response factors of the derivatives vary largely, either multi-oligomer calibration, 

or the application of previously tabulated response factors, is required. This will 

make unbiased quantification of the compound class to be long and tedious, as well 

as prone to accumulate systematic errors. In addition, with the exception of the 

light oligomers of the most common classes of compounds, heavy oligomers in a 

sufficiently purified form to be used as calibration standards will be expensive, and 

likely those oligomers belonging to less common compound classes (as alkyl ether 

sulfates, AES) will not be commercially available. In these cases, a solution could 

be the use of mixtures of known composition as standards, but in this case the 

oligomer distribution of both sample and standard should satisfactorily match to 

reduce the calibration systematic error as much as possible. 
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4.3. Acyl chlorides 

Acyl chlorides are very reactive carboxylic acid derivatives frequently used 

to derivatize hydroxyl functional groups, and also to prepare acid anhydrides, 

esters and amides. Since the chloride group is an excellent leaving group, acyl 

chlorides react even with weak nucleophiles, such as aliphatic alcohols, in the 

presence of a base to give esters (Fig. 4.1). As shown in Table 4.1, acyl chlorides 

have been used to introduce a chromophore or fluorophore in a wide variety of 

compounds having an aliphatic alcohol or a phenol group. 

 
Fig. 4.1. Derivatization reaction of hydroxyl functional groups with acyl chlorides and 

chemical structures of the derivatizing reagents discussed in Section 4.3. 
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Bachus and Stain [7] used 2-furoyl chloride to derivatize FAE. The 

procedure was also applied to the anionic surfactant class of AES, previous 

hydrolysis of the ester bond to yield the corresponding FAE and free inorganic 

sulfate. In comparison to other derivatizing reagents for FAE and AES, an 

advantage of 2-furoyl chloride was the small variation of the UV response factors 

of the derivatized oligomers. Using a C18 column and an ACN/water gradient, the 

2-furoyl chloride derivatives of FAE oligomers were eluted in the order of 

increasing number of carbon atoms of the hydrocarbon series, with fairly good 

resolution between the successive oligomers within the series. The 2-furoyl 

chloride method was applied to the industrial surfactants Brij 30 and Brij 56. 

Morvan et al. [8] also used 2-furoyl chloride to derivatize FAE and, previous 

hydrolysis of the ester bond, also to AES and other anionic surfactant classes 

including alkyl sulfosuccinates, alkyl sulfoacetates and alkyl phosphates. 

Correction of the injected volume variations was achieved by using biphenyl as 

internal standard. To correct the hydrolysis, extraction and derivatization yields, 

nonyl sulfate was also used as internal standard. The two internal standards, which 

eluted at the beginning of the chromatogram, did not interfere. 

Zanette et al. [9] studied benzoyl chloride (BC), 4-nitrobenzoyl chloride, 1-

naphthoyl chloride (NC), 2-naphthoyl chloride and 1-naphthyl isocyanate (NIC, 

see Section 4.5) to evaluate the biodegradation of FAE and PEG in aqueous 

environments. The molar absorptivities were 2.3 and 2.0 times larger for the 

naphthyl derivatives (NIC gives carbamates instead of esters, see Section 4.5), than 

for the phenyl esters obtained with BC and 4-nitrobenzoyl chloride, respectively, 

also enabling fluorimetric detection. Further, the molar absorptivities of the 

derivatives obtained with NIC were a ca. 10% larger than those of the esters 

obtained with NC and 2-naphthoyl chloride. On the other hand, the fluorescence 

quantum yield of the NIC derivatives was ca. 1.7 times that obtained using NC and 



Chapter 4. Derivatization of hydroxyl functional groups 
 

 
121 

 

2-naphthoyl chloride. The fluorescence quantum yields of the NIC and NC 

derivatives were independent of the EO number of the FAE oligomers, with the 

exception of the derivatives of the non-ethoxylated alcohols which exhibited 

slightly lower sensitivities.  

Separation of the NC derivatives of FAE oligomers was studied using a C18 

stationary phase. With an ACN/water gradient, the oligomers within the 

hydrocarbon series were resolved, whereas a MeOH/water gradient led to the 

isolation of the consecutive FAE series without separation of the oligomers 

differing in the number of EO units within the series [9]. This behavior is common 

to the FAE derivatives obtained with several derivatization reagents, including 

acyl chlorides and organic anhydrides [10-12]. The advantage obtained with a 

MeOH/water gradient is the possibility of quantifying the surfactant, including the 

relative percentages of the hydrocarbon series, without overlapping of peaks of 

oligomers belonging to different series. Further, using a MeOH/water gradient 

only a single peak per hydrocarbon series should be integrated; however, as 

commented in Section 4.2, a systematic error arises if the response factors of the 

derivatives vary with the EO number of the oligomer. Derivatization with NC and 

NIC followed by HPLC-UV and HPLC-FL was also applied to the determination 

of PEG [9]. The fluorescence quantum yield was very low for n < 3, and increased 

at higher polymerization numbers, at least up to n = 600. The fate of FAE and PEG 

oligomers during activated sludge sewage treatment was investigated using 

derivatization with NC followed by HPLC-FL [13]. This method was used to 

monitor FAE in sludge samples from several European countries [14]. Zgola-

Grześkowiak and Grześkowiak [15] also used NC to derivatize FAE followed by 

either HPLC-FL or HPLC-MS. Derivatization with NC followed by HPLC-FL has 

been also used to determine polypropylene glycol homologues (PPG) in 

environmental samples [16]. Cassani et al. [17] have compared three approaches 
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to detect FAE in waste water treatment plant influents and effluents and sludge 

using RP-HPLC-MS, i.e. in the ion-positive mode as Na+ adducts of underivatized 

FAE, in the ion-negative mode previous sulfation to convert FAE into AES, and 

as NC derivatives.  

Derivatization with acyl chlorides has been also applied to the 

determination of light glycols, glycerol and other compounds of toxicological, 

pharmaceutical and biomedical interest. Ethylene glycol is a toxic liquid, widely 

used as antifreeze, having the risk of being accidentally consumed due to its sweet 

taste. Thus, the rapid detection of ethylene glycol in serum is important in defining 

appropriate clinical management. Ethylene glycol in serum was determined by 

derivatization with BC and HPLC-UV [18]. 1,3-Propanediol was used as internal 

standard, and no interference by other common glycols and alcohols was observed. 

Propylene glycol (1,2-propanediol), which is used as an excipient for medications 

as well as in personal care products, was determined in plasma after derivatization 

with BC followed by HPLC-UV [19]. In this method, ethylene glycol was used as 

internal standard. BC has been also used to derivatize glycerol in serum [20]. 

Glycerol was not quantitatively derivatized; however, ca. 100% recoveries were 

achieved using 1,2,4-butanetriol as internal standard. This method was extended 

to the determination of total lipids (previous hydrolysis to fatty acids and glycerol), 

myo-inositol and other polyhydroxy compounds in plasma and tissues [21]. 

Phloroglucinol was used as internal standard. The determination of free choline in 

bacterial culture media was accomplished using BC derivatization followed by RP-

HPLC [22]. 

As indicated, in comparison to BC, naphthoyl chloride (NC) has the 

advantages of a higher molar absorptivity of the derivatives and the possibility of 

using fluorimetric detection, which is of particular interest in the determination of 

compounds present in very low concentrations in biological matrices. Thus, NC 
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followed by HPLC-FL has been used to determine phytosteroids and steroidal 

glycosides. Steroidal glycosides, including digoxin (a cardiac stimulant) and its 

metabolites in serum [23], and oleandrin (a toxic steroidal glycoside found in 

Nerium oleander L.) in gastrointestinal contents of cattle [24], have been 

determined by HPLC-FL previous derivatization with NC. Veticine and other 

alkaloids of bulbs of Fritillaria were determined by derivatization with NC 

followed by either HPLC-UV or HPLC-MS [25]. 

Nozawa and Ohnuma [12] introduced 3,5-dinitrobenzoyl chloride (DNBC) 

to derivatize FAE previous to HPLC-UV. Derivatization with DNBC has been also 

used for the determination of FAE in products employed to enhance mineral oil 

recovery from reservoir rocks [26]. An advantage of DNBC is a similar response 

factor for the derivatized FAE oligomers, independently from the alkyl chain 

length and number of EO units [10]. DNBC derivatives of FAE oligomers were 

also separated using 2D-HPLC [27]. DNBC has been used to derivatize PEG [28] 

and 1,2-diacylglycerols [29]. The DNBC derivatives of PEG oligomers up to 0.4 

kDa (ca. 9 EO units) were separated using RP-HPLC-UV on a C8 column, whereas 

derivatives up to 2 kDa (ca. 45 EO units) were separated using NP-HPLC-UV on 

an amino-propyl-silica column. DNBC was also used to analyze PEG in textile 

finishers [28]. Derivatization with DNBC followed by NP-HPLC-UV was used to 

determine 1,2-diacylglycerols in tissues (muscle) [29] using a silica column and a 

cyclohexane/diethyl ether/ethanol mobile phase. 

Meissner and Engelhardt [30] described the use of carbazole-9-carbonyl 

chloride (CCC) and fluorenylmethyloxycarbonyl chloride (FMOC) for the 

fluorogenic derivatization of FAE, followed by RP-HPLC-FL. The sensitivity 

obtained with CCC was twice that obtained with FMOC or NC, but the CCC excess 

led to a broad and strongly tailing reagent peak which hindered trace determination 

of FAE. This problem was overcome by removing the reagent excess by SPE. 

http://en.wikipedia.org/wiki/Fluorenylmethyloxycarbonyl_chloride
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Huang et al. [31] reported the use of FMOC to derivatize low-molecular-weight 

aliphatic alcohols, and applied the method to the determination of methanol in 

laboratory air and ethanol content in beer. Derivatization with FMOC followed by 

RP-HPLC-FL was used in the determination of erythromycin and oleandomycin 

(antibiotics against a wide range of Gram-positive bacteria) in food of animal 

origin including meat, liver, kidney, raw milk and egg [32]. The determination of 

these two antibiotics demonstrated that FMOC was useful not only as a labeling 

reagent for amino groups, but also for hydroxyl groups. 

Yoshida et al. [33] developed a novel fluorimetric method for the 

determination of bisphenols based on derivatization with 4-(1-pyrene)butanoyl 

chloride (PBC). The reagent labeled the two hydroxyl groups of bisphenols 

forming an intramolecular excimer (excited dimer). The migration of bisphenol A, 

a component of polycarbonate and other plastic materials also exhibiting hormone-

like properties, from baby bottles to water was evaluated. Also, PBC was used for 

the determination of tyrosine and related compounds in urine by HPLC-FL [34]. 

The LC-MS analysis of the derivatization reaction products confirmed that PBC 

labeled both the amino and the hydroxyl functional groups of tyrosine, as also 

occurs with FMOC [32].  

Nakashima et al. [35] analyzed phenol, cresols and xylenols in human urine 

using derivatization with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride 

(DIBC) followed by HPLC-FL. Derivatization with DIBC was also used to 

determine bisphenol A in microdialysis samples of rat brain with a column 

switching HPLC setup consisting of dual C18 semi-microcolumns [36]. Ohyama et 

al. [37] used DIBC to label 1-naphthol and 2-naphthol, followed by HPLC-FL. 

These substances, which are metabolites of naphthalene, were analyzed in plasma. 

The derivatives were isocratically separated with ACN/water on a C18 column. 

Finally, Arai et al. [38] used 4-N-chloroformylmethyl-N-methylamino-7-N,N-
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dimethylaminosulfonyl-2,1,3-benzoxadiazole (DBDC) to determine anandamide, 

an endogenous cannabinoid neurotransmitter, in rat brain. The determination was 

performed using coupled-column RP-HPLC-FL.  

4.4. Organic anhydrides 

Organic anhydrides contain two acyl groups bonded to the same oxygen 

atom. As shown in Fig. 4.2, organic anhydrides react with alcohols to afford an 

ester. Usually a basic compound as pyridine or imidazol is added to speed up 

esterification. Symmetric anhydrides should be used for analytical purposes, since 

asymmetric anhydrides give rise to two different esters per analyte. Hemiesters 

with an ionizable carboxylate group are obtained by using cyclic anhydrides, 

whereas non-cyclic anhydrides yield uncharged derivatives. Then, the correct 

choice for analysis is usually a symmetric cyclic anhydride. However, symmetric 

aliphatic anhydrides, as propionic anhydride can be conveniently used for HPLC-

MS, with the advantage of the increased volatility of the uncharged derivatives. 

For UV detection, an aromatic anhydride should be preferred; however, maleic 

anhydride which provides two carbonyls conjugated through a double bond in the 

middle has been also used. In comparison to the use of aromatic anhydrides, maleic 

anhydride yields derivatives with lower molar absorptivities. Benzoic anhydride, 

which is symmetric but not cyclic, is of interest for both HPLC-MS and HPLC-

UV [39]. Further, benzoic anhydride, which gives derivatives lacking a ionizable 

carboxylate group, could be of interest to derivatize highly polar analytes which 

are weakly retained on reversed phase stationary phases. However, the solubility 

of the benzoic anhydride derivatives in water rich mobile phases will be lower than 

that of the corresponding phthalic anhydride derivatives. On the other hand, cyclic 

anhydrides are frequently used to introduce a ionizable carboxylic acid group in 

the analyte molecule, as required to gain sensitivity in HPLC-ESI-MS [40], and to 

http://en.wikipedia.org/wiki/Cannabinoid
http://en.wikipedia.org/wiki/Neurotransmitter
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enable electrophoretic mobility for CZE separation [41]. To increase retention of 

the resulting hemiesters on reversed phase stationary phases by protonation of the 

carboxylate group, as well as to suppress ionization of the silanol groups of the 

stationary phase, a small concentration of acetic acid or any other weak acid, is 

usually added to the mobile phase. 

 

 

Fig. 4.2. Derivatization reaction of hydroxyl functional groups with organic anhydrides 

and chemical structures of the derivatizing reagents discussed in Section 4.4. 

Symmetric anhydrides react also with esters to yield a new ester and a 

carboxylic acid (two esters per analyte and two carboxylic acids are obtained with 

an asymmetric anhydride). Thus, transesterification with symmetric anhydrides is 
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useful for the chromogenic or fluorogenic derivatization of esters, but may 

interfere in the determination of alcohols. In the frequent case where a sample 

contains both alcohols and esters, these two functional groups will be jointly 

derivatized by the anhydride. Even if all the water is carefully removed from the 

sample, esterification of the alcohols will provide enough water to promote partial 

or total transesterification of the esters. In the case of esters containing the same 

alcohol residue than the free alcohols present in the sample, the derivatives coming 

from the alcohols and the corresponding esters will be indistinguishable. This is a 

frequent case in many fields, including surfactants [42], essential oils [43] and 

cosmetics [44]. If the sample contains sufficient water, or more hydroxyl 

functional groups than the corresponding ester groups, the peak areas will be 

proportional to the sum of both functional groups. Therefore in these cases, the 

separation of the alcohols and the corresponding esters previous to derivatization 

with an anhydride is necessary to separately quantifying the analytes. When the 

esters have a charge, as occurs with AES, separation can be carried out by ion-

exchange on SPE cartridges [42]. The joint quantification of alcohols and the 

corresponding esters is not a problem exclusive to derivatization with organic 

anhydrides. Other derivatization reagents, as acyl chlorides, also yield derivatives 

with the alcohol residue of the esters if water is present in the sample. 
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Concerning to the methods summarized in Table 4.2, and as could be 

expected, two derivatives per analyte were obtained by using the asymmetric 1,2,4-

benzenetricarboxylic anhydride (BTA or trimellitic anhydride) [45]. However, 

BTA was used to derivatize PEG followed by CZE. Oudhoff et al. [46] also used 

BTA for the determination of the monomer-number distribution in PEG and PPG. 

Another asymmetric cyclic anhydride, 3-nitrophtalic anhydride, was used to 

determine farnesol and geranylgeraniol in rat liver and testis [47]. In this case, 

owing to the electron-withdrawing inductive effect of the nitro group, 

esterification was produced mainly at the 2-position (next to the nitro group). 

However, Micó-Tormos et al. [48] also tried 3-nitrophthalic anhydride to esterify 

1-dodecanol, but two peaks showing a ca. 30:70 area ratio were obtained. 

Exceptions to the symmetry rule are 2-sulfobenzoic anhydride (SBA), isatoic 

anhydride and N-methyl isatoic anhydride. These reagents are asymmetric, but the 

ester can be formed exclusively through the carbonyl side, giving rise to a single 

derivative per analyte. Thus, Zu et al. [49] developed an HPLC-MS procedure for 

the characterization of commercial FAE with precolumn derivatization with SBA. 

Also, in the determination of citokinins, a class of substances that promote cell 

division in plants, isatoic anhydride reacted with the hydroxyl groups of ribose to 

yield fluorescent anthraniloyl derivatives [50]. Isatoic and N-methyl isatoic 

anhydrides have been also used to derivatize saccharides [51] and peptides [52], 

respectively.  

Phthalic anhydride, classically used to determine hydroxyl compounds by 

titration after derivatization [53,54], has been also extensively applied to 

precolumn derivatization for HPLC and CZE analysis. Primary and secondary 

aliphatic alcohols were determined by HPLC-UV after derivatization with phthalic 

anhydride [55], and to evaluate the oligomer distributions of FAE and PEG by 

capillary gel electrophoresis (CGE) [41] and CZE [46,56,57]. FAE were also 

http://en.wikipedia.org/wiki/Plant_growth_substance
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derivatized with maleic and phthalic anhydrides, and the derivatives were 

separated by CZE [58]. The method included a previous rinsing of the capillary 

with a quaternary diammonium salt to provide effective EOF control. The reaction 

rates and derivatization yields of FAE with maleic anhydride increased largely by 

adding grinded urea to the reaction mixture [59]. The procedure was tolerant to the 

presence of relatively large amounts of water. Grinded urea also showed a 

moderate positive influence on the reaction rate for the derivatization of FAE with 

phthalic anhydride [60]. Phthalic anhydride derivatization was also used to 

determine the degree of polymerization and polydispersity of glycerin-based 

polyols by CZE [61]. Sparham et al. [40] derivatized FAE in sewage influent and 

effluent samples with phthalic anhydride, followed by HPLC-ESI-MS. The 

derivatization of FAE with maleic, phthalic and diphenic anhydrides followed by 

HPLC-UV were compared by Micó et al. [48]. Diphenate derivatives provided 

significantly higher sensitivity than that achieved with phthalates, and much higher 

when compared to maleates. The procedure was applied to raw materials, cleaning 

products, sewage effluents, and river and sea water. Naphthoic anhydride was also 

tried, but the FAE derivatives, which were rapidly formed, could not be dissolved 

in water, nor in any of the hydroorganic mixtures and hydrophobic solvents tried. 

This was attributed to the presence of both the highly hydrophobic naphthyl group 

and the hydrophilic carboxylate group of the hemiesters in the molecular structure 

of the derivatives. Diphenic anhydride was also used to characterize FAE using a 

novel single-pumped 2D-HPLC system [62]. Lerma-García et al. [63] used 

diphenic anhydride to derivatize the alcoholic fraction of vegetable oils. Separation 

and identification of the derivatives by both HPLC-UV and HPLC-MS, followed 

by linear discriminant analysis (LDA) of the chromatographic data allowed the 

classification of vegetable oils according to their botanical origin.  
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The derivatives of compound classes containing an EO chain, as FAE and 

AES, also show the properties of the parent underivatized oligomers. These 

include an increased polarity at decreasing temperatures, a slightly higher polarity 

of the oligomers having an odd number of EO units with respect to those having 

an even EO number, and an enhanced polarity of the first oligomers of a 

hydrocarbon series, i.e. those with less than three EO units, with respect to the 

oligomers with at least three EO units [60,64]. The last effect is due to coiling of 

the EO chain by formation of intramolecular bonds between the EO units, which 

increases the hydrophobicity of the oligomers with three or more EO units. Coiling 

of the EO chain in the hydroorganic mobile phases is not possible with one or two 

EO units, which enhances the polarity and hydrophilicity of the light oligomers of 

the hydrocarbon series. For this reason, when a hydrocarbon series of derivatized 

FAE or AES is eluted in RP-HPLC, the peaks of the two or three first members of 

the series overlap with those of other oligomers of the same series. The relative 

retention of the peaks of the lighter oligomers with respect to the heavier oligomers 

of the same series varies with the column temperature, and also with the nature of 

the derivatizing agent. Almost perfectly resolved series, well ordered according to 

the EO number, were obtained in RP-HPLC by using diphenic anhydride 

derivatives and low column temperatures [62]. 

Propionic anhydride and benzoic anhydride have been used to esterify the 

hydroxyl group of cytokinins and other biochemically important compounds such 

as AMP, ADP and ATP, in Arabidopsis thaliana [39]. Derivatization reduced the 

polarity range of the compounds, making them more hydrophobic, which allowed 

their separation in a single chromatogram, also improving the ESI-MS response. 

A rather different approach was developed by Berendsen et al. [65] to derivatize 

endectocides, which are important antihelmitic drugs, including avermectins and 

milbemycins. These compounds bear a tetrahydrofuran ring with two hydroxyl 
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substituents which were derivatized in two steps. Trifluoroacetic anhydride and 1-

methylimidazole were used first to esterify the hydroxyl functional groups. In a 

second step, a strong base as triethylamine was used to cleave the ester bonds and 

form fluorescent derivatives bearing a phenyl group. This procedure, followed by 

RP-HPLC-FL, was applied to the determination of endectocides in milk [65,66]. 

4.5. Alkyl and aryl isocyanates 

Isocyanates (R–N=C=O, where R can be either an alkyl or aryl residue) are 

derivatives of isocyanic acid. Isocyanates are extremely reactive towards a variety 

of nucleophiles including alcohols, amines and water. Their reactions typically 

involve an attack on the carbon atom of the isocyanate group by the nucleophile to 

form urethanes or “carbamates” (Fig. 4.3). As shown in Table 4.3, analytical 

methods making use of both alkyl and aryl isocyanates to derivatize hydroxyl 

functional groups have been described. 
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Fig. 4.3. Derivatization reaction of hydroxyl functional groups with isocyanates and 

chemical structures of the derivatizing reagents discussed in Section 4.5. 
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Derivatization with phenyl isocyanate (PIC) followed by RP-HPLC-UV 

was used to determine FAE in effluents of sewage treatment plants [67]. Chavez 

et al. [68] investigated the use of microwave irradiation to speed up the off-line 

and on-line derivatization of both FAE and light aliphatic alcohols up to 12 carbon 

atoms with either PIC or BC. Pre-column off-line derivatizations were completed 

in 2 min. Also, using a flow-reactor located in a 450 W microwave oven, 

derivatization was completed in 45 s. The derivatives were separated on C8 and 

C18 stationary phases with MeOH/water [68]. The use of microwave irradiation 

to derivatize FAE with PIC was also studied by Arias et al. [69]. Irradiation at 600 

W for 30 s was used, and the derivatives were separated by non-aqueous capillary 

electrophoresis (NACE). In biodegradation studies, PEG was isolated from river 

water matrices, derivatized with PIC, and the derivatives were separated on a C18 

column with a MeOH/water mobile phase [70]. Baillet et al. [71] also used 

derivatization with PIC and HPLC-UV for the determination of phenolic 

antioxidants in synthetic polymers. Although the analytes absorb in the UV, 

derivatization improved the limits of detection in a factor of 5-10 times. 

Derivatization with either PIC or 4-nitrophenyl isocyanate (NPIC) was used for 

the chiral analysis of 1,2-sn- and 2,3-sn-diacylglycerol enantiomers [72]; using 

HPLC-UV with a chiral stationary phase and n-hexane/ethanol as mobile phase, 

the stereopreferences of triacylglycerol lipases were investigated. 

Derivatization with NIC followed by RP-HPLC-UV was used for the 

determination of trace amounts of n-octanol, n-decanol and n-dodecanol in 

industrial alkyl sulfates [73]. Phenyl and 2-anthryl isocyanates were also tried for 

derivatization, but NIC, which showed the best balance between reaction rate and 

molar absorptivity of the derivatives, was preferred. NIC was also applied to the 

derivatization of PEG, and the derivatives were separated by RP-HPLC-UV [74]. 

The NIC derivatives of PEG 600, PEG 1000 and PEG 3000 were separated by 
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Rissler et al. [75] using gradient elution with ACN-THF-water mobile phases on 

bare silica columns. This unusual pseudo-reversed-phase separation yielded better 

efficiencies than the common alkyl-bonded stationary phases. Biodegradation of 

PPG was monitored by RP-HPLC-FL and RP-HPLC-MS after derivatization with 

NIC [70,76]. 2-Ethoxyethanol, which is potentially hazardous to humans, was 

analyzed in cosmetics by derivatization with NIC followed by RP-HPLC-UV [77]. 

NIC was also used to determine free choline in plasma. Dry magnesium oxide was 

added to the reaction mixture to remove most of the water. Since the choline 

molecule has a permanent positive charge on the quaternary ammonium group, a 

cationic derivative, 2-(1-naphthylurethane)-ethyltrimethylammonium, was 

obtained. This derivative was separated by HPLC on an ion-exchange cationic 

column. The mobile phase contained 10 mM tetramethyl ammonium hydroxide, 

20 mM glycolic acid and 15 % water in ACN [78]. 

The use of chiral isocyanates as derivatizating agents has been also 

investigated. Laakso and Christie [79] used (R)- or (S)- forms of 1-(1-

naphthyl)ethyl isocyanate (NEIC) to derivatize diacyl-sn-glycerols. Separation of 

the diastereomeric diacylglycerol derivatives was carried out by NP-HPLC-UV on 

a silica gel column using a 2-propanol/hexane mobile phase. (S)-(+)-NEIC was 

also used to derivatize (S)-(+)- and (R)-(-)-eliprodil, a neuroprotector drug [80]. 

The analytes were first preconcentrated using on-line clean-up of the plasma and 

urine samples, then the diastereoisomeric derivatives were formed and separated 

by HPLC-FL with column switching. As indicated in Section 1, more about chiral 

derivatization reagents can be found in the review by Toyo’oka [3]. 

3-Isopropenyl-α,α-dimethylbenzylisocyanate and 2,4-dimethoxy 

phenylisocyanate were synthetized by Vandenabeele-Trambouze et al. [81], in an 

attempt to find universal reagents to derivatize nucleophilic pollutants including 

alcohols, phenols, amines, thiols and oximes; however, the derivatization yield of 
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alcohols, phenols and thiols decreased largely as the analyte concentration 

decreased. Uchiyama et al. [82] designed fluorogenic reagents with the benzofuran 

skeleton in order to derivatize linear n-alcohols previous to RP-HPLC-FL. Among 

them, 7-phenylsulfonyl-4-(2,1,3-benzoxadiazoyl) isocyanate (PSBD-NCO) gave 

the highest quantum yield, and thus it was recommended to determine biologically 

important alcohols, including steroids and prostaglandins.  

p-Toluenesulfonyl isocyanate (TS-NCO) was successfully used by Zuo et 

al. [83] to derivatize hydroxyl functional groups. An advantage of this reagent is 

the enhanced reactivity towards nucleophiles, which is due to the polar sulfonyl 

group next to the isocyanate group. The reagent was used to derivatize two 

pharmacologically active 3-hydroxy metabolites of tibolone, a synthetic steroid 

used in the hormonal replacement therapy for postmenopause. Separation was 

achieved on a C18 stationary phase, using gradient elution with MeOH/ aqueous 

ammonium acetate. TS-NCO was also used by Zhou et al. [84] to derivatize 

diethylene glycol and propylene glycol in drugs, prior to HPLC-UV.  

4.6. Miscellaneous derivatization reactions 

In this Section, alternatives to the use of acyl chlorides, organic anhydrides 

and isocyanates to derivatize hydroxyl functional groups for analysis are 

presented. The reagents and the reaction schemes are given in Fig. 4.4, and the 

related analytical methods are summarized in Table 4.4. 
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Fig. 4.4. Derrivatization of hydroxyl functional groups with the miscellaneous reactions 

discussed in Section 4.6. 
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Fig. 4.4. (Continued) 

4.6.1. Oxidation 

Beneito et al. [85] oxidized primary aliphatic alcohols and FAE dissolved 

in acetone with a chromic oxide solution in a water/sulfuric acid mixture. The 

resulting carboxylic and ethoxy-carboxylic acids were isolated by extraction in 

ethyl acetate, and the extracts were directly infused on the ESI source of a MS. 

The method was useful to quantify cetyl and stearyl alcohols in cosmetics, and a 

variety of fatty alcohols and phytol in sea water. However, the sum of the primary 

alcohols and the corresponding carboxylic acids present in the samples were 

quantified by this method. On the other hand, pyridinium dichromate and 

pyridinium chlorochromate, which are soluble in a variety of organic solvents, can 

be used to oxidize primary and secondary alcohols to aldehydes and ketones, 

respectively. To enhance RP-HPLC retention, Doehl et al. [86] have oxidized 

prostaglandins to the corresponding oxo prostaglandins with pyridinium 

dichromate. 

Une et al. [87] developed a method for the determination of bile alcohols 

which makes use of an enzymatic reaction to convert first a secondary alcohol to 

a ketone, which is next derivatized using a common reaction for ketones. Namely, 

the 3α-hydroxy group of the analytes was oxidized with NAD and 3α-

hydroxysteroid dehydrogenase, with subsequent derivatization of the resulting 

keto groups with 2,4-dinitrophenylhydrazine (DNPH, Fig. 4.4A). Ketones react 

with the hydrazide group of DNPH to yield a hydrazone linkage. The method 
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allowed the separation of bile alcohol stereoisomers on a phenyl column using a 

MeOH/water gradient.  

4.6.2. Sulfonation 

Cassani et al. [88,89] used the sulfur trioxide dimethylformamide complex 

(SO3-DMF) to convert FAE into AES (Fig. 4.4B). The reaction is an esterification 

where anhydrous SO3 instead of sulfuric acid is used. The resulting AES were 

separated on a C18 stationary phase with a MeOH/water gradient, followed by 

HPLC-MS. The advantage of converting non-ionic FAE to anionic AES is that MS 

detection in the ion-negative mode can be used.  With the ion-negative mode, all 

the AES oligomers gave almost constant response factors; on the contrary, FAE 

oligomers should be detected in the ion-positive mode as adducts of Na+ or other 

cations present in the mobile phase. The molar response of these adducts varies 

largely with the number of EO units of the oligomer, being almost zero for the 

non-ethoxylated alcohols, increasing rapidly with the length of the alkyl chain at 

least up to 8 EO units. The SO3-DMF-pyridine complex has been also used to 

determine sterols at the attomol level [90].  
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4.6.3. Esterification with carboxylic acids  

Bisphenol A was determined in rat serum by RP-HPLC-FL after 

derivatization with 2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole (CDB, Fig. 

4.4C) [91]. Yamashita et al. [92] used a mixture of 2-methyl-6-nitrobenzoic 

anhydride and picolinic acid to introduce pyridine-carboxylate moieties into 

hydroxysteroids to enhance sensitivity in RP-HPLC-ESI-MS/MS. It should be 

noted that derivatives of picolinic acid were formed, while the anhydride worked 

as activator and dehydrating agent. Probably esters of the anhydride were not 

formed due to steric hindrance with the ortho methyl and nitro groups. The method 

was applied to the quantification of aldosterone, testosterone, 7α-hydroxy-4-

cholesten-3-one and dihydrotestosterone in human serum [93-95].  

4.6.4. Sulfonyl chlorides 

Analogously to acyl chlorides, aryl-sulfonyl chlorides have a chloride 

leaving group, and react with hydroxyls to yield aryl-sulfonates of the alcohol 

residue. 5-(Dimethylamino)naphthalene-1-sulfonyl chloride, popularly known as 

dansyl chloride, a typical reagent for the derivatization of amino groups, has been 

also used in the derivatization of estrogenic hormones (Fig. 4.4D). These 

compounds have both a phenol group and one or two aliphatic hydroxyl groups; 

however, the former is derivatized with dansyl chloride. The reaction was used to 

enhance the sensitivity in the RP-HPLC-ESI-MS/MS determination of 

ethinylestradiol, an estrogen used in contraceptive preparations [96]. This estrogen 

was determined in plasma. Dansylation was also used to determine estrogenic 

hormones in river and waste water using HPLC-MS/MS [97-102]. Xu and Spink 

[103] have used dansyl chloride and other sulfonyl chlorides, including 1,2-

dimethylimidazole-4-sulfonyl chloride (DMISC), pyridine-3-sulfonyl (PS) 

chloride, and 4-(1H-pyrazol-1-yl)benzenesulfonyl (PBS) chloride, to enhance the 

sensitivity in the ESI-MS detection of estrogens. Fragmentation of the derivatives 

in the gas phase to give specific MS transitions also improved detection reliability. 

Unlike phenols, derivatization of aliphatic hydroxyl functional groups with 
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sulfonyl chlorides has not been extensively reported. Thus, Tang and Guengerich 

[104] reported a RP-HPLC-MS method to determine testosterone, vitamin A, 

hydrocortisone and 12-hydroxydodecanoic acid after derivatization of the aliphatic 

hydroxyl groups with dansyl chloride.  

4.6.5. Miscellaneous leaving groups 

In acyl nitriles, like 9-anthroyl nitrile (9-AN, Fig. 4.4E), the leaving group 

is hydrogen cyanide. Główka et al. [105] determined triamcinolone, a synthetic 

corticosteroid used to reduce the body’s immune responses in the presence of 

endogenous corticosteroids. In pharmacokinetic studies, the analyte was labeled 

with 9-AN, followed by RP-HPLC-FL.  

Another common leaving group is fluoride. Dunphy et al. [106] developed 

an HPLC-ESI-MS method for the determination of FAE in water and wastewater 

samples. The terminal hydroxyl group of FAE was derivatized using 2-fluoro-N-

methylpyridinium p-toluenesulfonate (FMPTS, Fig. 4.4F), which provided a 

permanent positive charge. This made possible the ESI-MS detection of the 

analytes in the ion-positive mode without relying on the formation of adducts. 

Dyer et al. [107] applied this method to the study of the FAE oligomer distributions 

in river sediments. Using solvent extraction followed by derivatization with 

FMPTS and HPLC-MS, an average LOD of 6 ng g-1 for individual oligomers was 

reached. Morin et al. [108] used FMPTS to derivatize the phytosterol fraction of 

rape seed oil. The derivatized phytosterols bear a positive charge and possess UV 

absorbance due to the pyridinium group, which allowed separation and detection 

by CZE-UV. A non-aqueous buffer containing trimethyl-β-cyclodextrins, which 

improved selectivity and resolution, was used as background electrolyte. FMPTS 

has been also used to determine testosterone and dihydrotestosterone [109] and the 

hypnotic agent propofol [110]. Differently from FMPTS, 1-(2,4-dinitro-5-

fluorophenyl)-4-methylpiperazine (PPZ, Fig. 4.4G) does not introduce a charge 

into the analyte molecule, but it is a strong fluorofor [111]. 

As shown in Fig. 4.4H, using an N-hydroxysuccinimidyl carbamate, the 

leaving group is succinimide, and a carbamate of the alcohol residue is formed. 
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Similarly, N-hydroxysuccinimidyl esters yield the corresponding esters of the 

alcohol residue. A method for the determination of n-alcohols and secondary 

alcohols in alcoholic beverages after fluorimetric derivatization with 6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) was described by Motte 

et al. [112] (Fig. 4.4H). Full resolution of the derivatized alcohol mixture was 

achieved by HPLC-FL using a C18 column and gradient elution with ACN/sodium 

acetate. Similarly, N-methyl-nicotinic acid N-hydroxysuccinimide ester (C1-

NANHS) has been used to enhance the MS detection of Vitamin E components 

[113].  

4.6.6. Azides 

Azides, which react via the formation of an isocyanate intermediate, have 

been used for the derivatization of hydroxyl functional groups (Fig. 4.4I). Thus, 

brevetoxins, which are cyclic polyether neurotoxins, have been determined in fish 

using 7-methoxycoumarin-3-carbonyl azide (MCCA) [114]. Separation was 

performed by MEKC using a sodium borate/SDS running buffer, followed by UV 

and LIF detection. MCCA was also used by Saisho et al. [115] to determine 7α-

hydroxycholesterol in dog plasma. Separation was performed on an HPLC phenyl 

column with ACN/water. Higashi et al. [116] developed a method for the 

determination of 5α-androstane-3α,17β-diol, a neurosteroid, in rat brain. The 

derivatives, obtained with isonicotinoyl azide (NA, Fig. 4I), were analyzed using 

RP-HPLC with ion-positive ESI-MS/MS detection. The method was extended to 

other neurosteroids [117-119]. Nishio et al. [111] used 4-(4-methyl-1-piperazyl)-

3-nitrobenzoyl azide (APZ, Fig. 4.4I) and PPZ (Fig. 4.4G) for the HPLC-ESI-MS 

determination of estrogens and 5-ene-steroids/5α-reduced steroids bearing 

hydroxyl functional groups in serum. Derivatization with these reagents provided 

a 500-2000 fold increase of sensitivity compared to the intact analytes.  
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4.7. Conclusions 

A variety of reagents and reaction schemes addressed to introduce a 

chromophore, a fluorophore, a ionizable group or a permanent charge in analytes 

having an aliphatic alcohol or a phenol group while lacking other reactive groups, 

have been described. The introduction of a charge is of interest both to enhance 

MS sensitivity, to enable CE separation, as well as to decrease volatility, thus to 

enhance the sensitivity of volatile analytes in evaporative detectors. Derivatization 

reagents with the same reactive group may also differ in reactivity, which depends 

on the presence of activating groups, as well as in the extension of the chromogenic 

or fluorogenic conjugated system. However, an increase of reactivity is frequently 

offset by the reduced stability of the reagent, and reagents having either high 

reactivity and a large conjugate system are usually expensive. Reagents containing 

a single aromatic ring are usually adequate for industrial quality control, but large 

conjugated systems, which assure a large molar absorptivity or a high fluorescence 

quantum yield, are frequently required for both environmental studies and 

biochemical applications. Reagents containing condensed rings usually provide 

large fluorescent quantum yields. However, it should be noted that condensed ring 

systems tend to be carcinogenic. Further, reagents with large hydrophobic regions 

will led to derivatives with increased retention in the common RP-HPLC stationary 

phases, but they can be also incompatible with the common hydro-organic mobile 

phases if excessively hydrophobic. For this reason, large conjugated systems are 

frequently complemented with polar groups strategically located along the reagent 

molecule. Among the anhydrides, symmetric cyclic aromatic structures have the 

advantages of giving rise to a single derivative per analyte, providing both a 

chromophore and a ionizable carboxylate group. However, asymmetric reagents 

as SBA and isatoic anhydride, and non-cyclic symmetric anhydrides, as those used 

to enhance volatility for MS detection or GC separation, can be also useful.  
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Several authors have compared acyl chlorides and isocyanates. A few 

studies have also compared different organic anhydrides for the derivatization of 

FAE, as well as a few other reagents for the derivatization of other analytes. 

Concerning to the stability of the derivatives, it should be noted that esters are 

slowly hydrolyzed in aqueous and hydroorganic media. Therefore, the derivatives 

formed by reaction with acyl chlorides and organic anhydrides should be analyzed 

immediately or stored in a freezer. Otherwise, since hydrolysis proceeds at 

different rates for analytes having different alcohol residues (for instance, the 

esters of non-ethoxylated alcohols hydrolyze much slowly than those of 

ethoxylated oligomers with same alkyl chain), biased conclusions will be obtained. 

Concerning to the application fields, derivatization of hydroxyl functional 

groups has been mainly used in industrial quality control and evaluation of the 

environmental impact of non-ionic aliphatic surfactants (mainly FAE). In a few 

cases, it has been also applied to the determination of anionic surfactants which 

are esters of inorganic acids as sulfuric or phosphoric acids. Other analytes of 

interest in the industrial and environmental fields which have been also derivatized 

with the reactions here reported include soluble polymers (as PEG), and small 

polar molecules (as glycols and others). Among the analytes with a remarkable 

biological activity, phytosterols, hormones, di- and mono-glycerides, and many 

others have been derivatized. These include simple molecules as choline, or very 

complex as endectocides. The matrices include all types of cell cultures, biological 

fluids, tissues, food and others. The different reagents and sample preparation 

procedures used in the biochemical and related fields can be of interest in other 

fields also requiring high sensitivities, as it is the usual case in environmental 

studies, and vice versa. 
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ABSTRACT 

A setup for heart-cutting bi-dimensional liquid chromatography (LC–LC), 

constructed with a chromatograph provided with a single pump, an auxiliary 6-

port 2-position valve (V6/2) and a column selector valve (VCS), is described. The 

possible ways of connecting the two valves for LC–LC, namely with V6/2 first 

followed by VCS and vice versa, are compared. The possibility of using the setups 

for preconcentration followed by the backwards transfer of the preconcentrated 

solutes to the detector or to a second column is also shown. The V6/2-first 

configuration for LC–LC was applied to the characterization of industrial fatty 

alcohol ethoxylates (FAEs) using UV–vis detection. For this purpose, the 

phthalates of the FAE oligomers were first obtained. The hydrocarbon series were 

separated along the 1st dimension by MeOH/water gradient elution on a C8 

column at 60 ºC. Selected segments of the eluate were transferred to the 2nd 

dimension, where the EO oligomers of the isolated series were resolved by 

gradient elution with a complementary ACN/water mobile phase on a C8 column 

at 25 ºC. In addition, an average response factor of the hydrocarbon series of FAEs 

was proposed. To apply the factors, the average EO number of the series is first 

established by the chromatographic profile of one of the series along the 2nd 

dimension. Then, the factors are used to correct the peak areas of the isolated series 
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which are obtained along the 1st dimension chromatogram, thus allowing the fast 

and accurate determination of the series in industrial FAEs. The method is 

particularly useful to characterize FAEs having large average EO numbers or 

constituted by mixtures of even and odd series. 

 

Keywords: Average response factor of an ethoxylated series; Complementary 

mobile phases; Fatty alcohol ethoxylates; Heart-cutting bi-dimensional liquid 

chromatography. 
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5.1. Introduction 

Fatty alcohol ethoxylates (FAEs) are widely used non-ionic surfactants [1–

3]. Industrial and household cleaners, and many other commercial products, 

contain large concentrations of them. Obtained by condensation of fatty alcohols 

with ethylene oxide (EO), industrial FAEs are mixtures of oligomers with the 

structure: 

CH3(CH2)n−1(OCH2CH2)mOH 

where n indicates the length of the hydrocarbon chain and m is the number of EO 

units of the polar chain. The oligomer distributions of a FAE mixture are usually 

described by the hydrophobic cut or range of n values of the oligomers which are 

present at significant concentrations, and by the average number of EO units, m. 

FAEs with 10 ≤ n ≤ 18 and  values ranging from 3 to 8 are usually found in 

commercial cleaners; however, some specialty surfactants have much larger EO 

chains. To characterize FAEs in raw materials and manufactured products, both 

the proportion of the hydrocarbon series in the mixture and the EO distribution of 

the series should be established [3–5]. 

A variety of methods for the quality control of FAEs in raw materials, and 

for the characterization and determination of FAEs in samples also containing 

other surfactant classes, including manufactured products [6–17] and 

environmental waters and sediments [2, 18–25] have been described. Whether 

underivatized or derivatized with a variety of chromogenic and fluorogenic 

reagents, FAE oligomers with short EO chains are well separated using RP-HPLC 

with ACN/water mobile phases on C8 columns [11–15]. Separation is primarily 

achieved by series, in the order of increasing values of n, with fairly good 

resolution of the EO oligomers within the series. However, using mono-

dimensional HPLC, mixtures containing large EO chains are not well resolved, the 

m
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last eluting oligomers of a series overlapping with the first eluting oligomers of the 

following series [14]. Further, mixtures containing short EO chains cannot be 

resolved either if series with both even and odd values of n are present. This badly 

limits the use of HPLC for the characterization of FAEs. The problem of FAE 

characterization in these difficult cases can be tackled by two-dimensional HPLC 

(2D-HPLC). 

Two different 2D-HPLC approaches have been applied to the 

characterization of mixtures of surfactants, namely heart-cutting 2D-HPLC (LC–

LC), in which selected segments of the 1st dimension eluate are transferred to the 

2nd dimension column, and comprehensive 2D-HPLC (LC × LC) in which small 

segments of the 1st column eluate are continuously transferred. The LC–LC 

approach has been used to isolate cationic, amphoteric, non-ionic and anionic 

surfactant classes [26]. Complex mixtures of surfactant classes have been analyzed 

by LC × LC [27] and by comprehensive two-dimensional GC (GC × GC) of the 

silylated derivatives [28,29]. LC–LC and LC × LC have been also used to 

characterize industrial FAEs. Thus, using LC–LC, Okada [30] separated first the 

hydrocarbon series on a styrene–divinylbenzene copolymer gel, followed by the 

separation of the EO oligomers on a strong cation-exchanger in the presence of 

potassium ions. Trathnigg et al. [31,32] separated the series by RP-HPLC on C18, 

followed by exclusion/adsorption chromatography to resolve the EO oligomers 

within the series. Using LC × LC, FAE oligomers have been separated first 

according to the EO distribution on a silica column, followed by separation of the 

alkyl chains on a C18 column [33]. Raust et al. [34] used RP-HPLC followed by 

adsorption HPLC to separate FAE oligomers according to the alkyl chain length 

and the EO distribution, respectively. Elsner et al. [27] used HILIC to separate first 

the FAE oligomers by the EO number, followed by separation of the alkyl chains 

by RP-HPLC on a C8 column. 
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As shown in a previous work [35], heart-cutting LC–LC can be 

implemented in a simple way by complementing a single pump chromatograph 

with both an auxiliary 6-port 2-position valve (V6/2) and a column selector valve 

(VCS). In the present work, it is shown that these two valves can be combined in 

two non-equivalent ways, namely V6/2 first followed by VCS and vice versa, and 

that each one of these two combinations can be used either for LC–LC or for solute 

preconcentration followed to backwards transfer to the detector. The V6/2 first 

configuration can be also used to backwards transfer the preconcentrated solutes 

to a second column for further separation. Thus, depending on which valve is 

located first, and which ports are used, four non-equivalent ways of connecting 

these two valves are possible. In our previous work [35], the VCS-first 

configuration for LC–LC was introduced and applied to the characterization of 

FAEs. Instead of this, in the present work we have used the V6/2-first configuration 

for LC–LC. The main advantage of this approach is the possibility of selecting 

different stationary phases to resolve the solute groups with rather different 

properties that can be found in the eluate segments of the 1st dimension. Other 

advantages and limitations of the four configurations for either LC–LC or solute 

preconcentration are also discussed. 

Also, in our previous work [35], separation of the FAE oligomers was 

carried out by first isolating the series on a propyl-diol column. Selected segments 

of the eluate were transferred to a C8 column, on which the EO oligomers within 

the series were resolved. Both columns were eluted with ACN/water gradients, 

using room temperature for the 1st dimension and a lower temperature for the 2nd 

column. Thus, orthogonality was mainly achieved by using different stationary 

phases to implement the 1st and 2nd dimensions. However, owing to the limited 

inter-series resolution along the 1st dimension, FAE mixtures containing series 

with both even and odd values of n were not resolved. In the present work, we have 
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largely improved the selectivity of the LC–LC separation of the FAE series along 

the 1st dimension by using a MeOH/water gradient on a C8 column. According to 

literature [20,33], the use of a MeOH/water gradient on a C18 column is excellent 

to achieve the separation of the FAE series without distinguishing the EO 

oligomers; however, we found that isolation of the series was better achieved with 

C8 which required lower MeOH concentrations than C18. Also, according to 

reported data [11,36], the polarity of the EO chain is enhanced at low temperatures, 

also increasing the polarity differences between the successive EO oligomers. 

Then, a superior focusing of the series into narrower bands was achieved by using 

a MeOH/water gradient at high column temperatures. On the other hand, to resolve 

the oligomers within the series (2nd dimension separation), the use of an 

ACN/water gradient on a C8 column was maintained. As indicated, this system is 

usually recommended for this purpose [11–15]. Also, the V6/2-first configuration 

offers the possibility of automatically changing the column used for the 2nd 

dimension separation, which is useful when segments containing solutes with 

rather different properties are transferred. However, since FAE oligomers with the 

same EO number but belonging to different series have rather similar properties, 

stationary phases different from C8 were not required to chromatograph the 

consecutive series. Excellent separations of the successive oligomers were 

achieved by simply adjusting the initial and final ACN gradient concentrations 

according to the polarity of the n-series. Thus, orthogonality between the two 

dimensions was achieved by changing both the mobile phase and the column 

temperature. Mixtures of FAEs containing consecutive even and odd series were 

very well resolved, independently from the length of the EO chain.  

The isolation of the FAE series along the 1st dimension, without 

distinguishing the oligomers according to the EO number, is of interest for the 

quick total determination of FAEs, also providing information about the proportion 
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of the series in the mixture. However, owing to the different UV–vis response 

factors of the oligomers, the peak areas obtained along the 1st dimension 

chromatogram for the isolated series cannot be directly related to the series 

concentrations. In this work, this problem was sorted out by introducing an average 

response factor of the series. This factor, which is a function of both the response 

factors of the oligomers and their EO distribution within the series, made possible 

the quick FAE quantification along the 1st dimension, with correction of the 

systematic error associated to the use of a given single oligomer as calibration 

standard. Another application of the proposed series response factors is the quick 

unbiased evaluation of the proportions of the series by using the 1st dimension 

chromatogram. To calculate the average response factor of a series, the EO chain 

distribution of the series, as measured by , should be known. However, in a 

given FAE raw material, all the series have the same EO distribution. This is so 

because fatty alcohols are condensed with ethylene oxide giving rise to closely 

similar values of , almost independently from the length of the alkyl chain. 

Cleaner formulations contain one or at most two FAE raw materials, which could 

have the same or different values of ; therefore, in raw materials and in most 

samples, all the series along the 1st dimension chromatogram can be accurately 

determined after having established the  values by chromatographing one or two 

series along the 2nd dimension. Further, it is shown that if  is large, the average 

response factors of the series depend only slightly on . Then, for FAE 

separations where mono-dimensional LC is not enough to separate the series and 

LC–LC is needed, accuracy in the determination of  is not required. This method 

was applied to the characterization and determination of FAE mixtures containing 

both even and odd series, also including a specialty FAE with very long EO chains. 

m

m

m

m

m

m

m
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5.2. Experimental 

5.2.1. Instrumentation and reagents 

An 1100 Series liquid chromatograph (Agilent Technologies, Waldbronn, 

Germany), provided with a quaternary pump, a thermostated column compartment, 

an auxiliary 6-port 2-position valve (part G1316#055), a column selector valve 

(part G1159A) and a UV–vis diode array detector, was used. A second 

thermostated column compartment for HPLC (STH 585, Dionex Softron GmbH, 

Germering, Germany) was used for the 2nd dimension column. Two Ascentis 

Express fused-core C8 columns (Sigma–Aldrich, Steinheim, Germany) were used 

for the 1st (5 µm, 90 Å, 10 cm × 4.6 mm) and 2nd (2.7 µm, 90 Å, 15 cm × 4.6 mm) 

dimensions. The following analytical grade reagents were used: acetic acid, 

methanol (MeOH), acetonitrile (ACN), 1,4-dioxane (Scharlab, Barcelona, Spain) 

and urea (Fluka, Buchs, Switzerland). Phthalic anhydride (Sigma–Aldrich, 

Steinheim, Germany) was used for FAE derivatization. The following industrial 

FAE mixtures were used: Dehydol LT-7 (n = 12, 14, 16 and 18, = 7), Lutensol 

AO7 (n = 13and 15,  = 7) (BASF, Germany) and Brij 35 (n = 12, 14 and 16,  

= 23, Sigma–Aldrich). Also Dehydol LS-2 DEO, Dehydol LS-3DEO-N (n = 12, 

14, 16 and 18,  = 2 and  = 3, respectively) and Lutensol AO3 (n = 13 and 15, 

and  = 3) were purposely synthetized for this work and kindly donated by BASF 

(Barcelona, Spain). Decaethylene glycol mono-dodecylether (DEGDE, nominally 

C12E10OH, Sigma–Aldrich) was also used. It should be noted that DEGDE is not 

C12E10OH, in fact contains large concentrations of the n = 12–18 even series, all 

them showing the typical EO distributions with  = 10. 

 

 

m

m m

m m

m

m
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5.2.2. Instrumental setup for single-pump LC–LC 

Two possible ways of connecting a 6-port 2-position valve (V6/2) and a 

column selector valve (VCS) to implement LC–LC, namely withV6/2 first followed 

by VCS and vice versa, are shown in Fig. 5.1. For the two configurations, the 

operations to be performed to implement either LC–LC or solute preconcentration, 

as well as the necessary position of the valves, are summarized in Table 5.1. As 

further discussed in Section 5.3.2, the two configurations are not equivalent. In this 

work, only the V6/2-first configuration (Fig. 5.1A) for LC–LC was used, whereas 

the reversed VCS-first configuration (Fig. 5.1B) was used in the previous work 

[35]. To implement LC–LC using theV6/2-first configuration, the flow was fed to 

port 1 of V6/2, which was used to select either the mainpass through the 1st 

dimension (position I, continuous lines in Fig. 5.1) or a bypass to VCS (position II, 

dashed lines in Fig. 5.1). Valve VCS was used to direct the flow towards a 2nd 

dimension column (C2, inserted between the paired ports 1-1’ in Fig. 5.1) or to 

bypass the 2nd dimension through the shorted ports 3-3’. Five out of the six paired 

ports of VCS remained available for use with different 2nd dimension columns if 

necessary. With V6/2 in mainpass (position I) and VCS in bypass (3-3’) it was 

possible to optimize the 1st dimension separation, and to elute in a single 

dimension those parts of the chromatogram not requiring further separation. With 

V6/2 in mainpass (position I) and VCS in the 1-1’ channel, selected segments of the 

eluate of the 1st column were transferred into the 2nd column. With both valves in 

bypass (V6/2 in II and VCS in 3-3’), the system was flushed with the new mobile 

phase required to either start gradient elution on the 2nd column or to resume 

elution on the 1st column with the previously used mobile phase. Finally, with V6/2 

in bypass (position II) and VCS in 1-1’, gradient elution along the 2nd dimension 

was carried out. Independent temperature control of the two columns was also 

implemented. Automatic control of the times to operate both the injection valve 
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and the pump module (to control the flow rate), and to switch both V6/2 and VCS, 

was programmed using the ChemStation LC software (v.10.02, Agilent). A 

drawback of this software was the low maximal number of rows of program, which 

was limited to a sequence of 22 commands. To overcome this problem, instead of 

a single method, a sequence of methods, the first one to start elution along the 1st 

dimension, and the following ones to start elution along the 2nd dimension after 

each transfer of eluate to C2, followed by resuming elution of C1, was 

programmed. The sample was injected only once, with the first method, and all the 

other methods that followed were programmed with false or “zero volume” 

injections. 

 
Fig. 5.1. The V6/2 first (A) and VCS first (B) ways of connecting a 6-port 2-positionvalve 

(V6/2) with a column selector valve (VCS) to carry out LC–LC (continuous lines). Positions 

of V6/2: continuous thick lines, I; dashed lines, II. The dashed lines between ports 4 and 

4’ of VCS and ports 4 and 5 of V6/2 can be optionally used for solute preconcentration on 

either C1(A) or C2(B), followed by flow inversion; other details in Table 5.1. 
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Table 5.1. Operations to perform for either LC-LC or solute preconcentration, and 
required position of the valves for the V6/2-first and VCS-first configurationsa. 

Purpose Operations 
V6/2-first VCS-first 

V6/2; VCS VCS; V6/2 

LC-LC 

Condition or elution of C1 I; 3-3’ 1-1’; II 

Transfer of C1 to C2 I; 1-1’ 1-1’; I 

System flush II; 3-3’ 3-3’; II 

Condition or elution of C2 II; 1-1’ 3-3’ or 4-4’; I 

Preconcentration 
optionally followed by 
mono-dimensional LC 

Condition or preconcentration in C1 II; 4-4’ - 

Backwards elution of C1 to detector I; 3-3’ or 4-4’ - 

Backwards transfer of C1 to C2 I; 1-1’ - 

System flush II; 3-3’  

Condition or elution of C2 II; 1-1’ - 

Preconcentration (not 
followed by LC) 

Condition or preconcentration in C2 - 3-3’; I 

Backwards elution of C2 to detector - 4-4’; II 

System flush - 3-3’; II 
a Valve positions according to Fig. 5.1: continuous and dashed lines (positions I and II in 
Fig. 5.1, respectively) for V6/2, and connected paired ports for VCS; in addition to 1-1’, 
other columns can be inserted in the other channels of VCS, but preserving one for shorting 
and optionally another one for nesting (e.g. 3-3’ and 4-4’, respectively, in this table and 
in Fig. 5.1). 
 

5.2.3. Derivatization and elution conditions 

Derivatization was performed according to the procedure described 

elsewhere [14]; briefly, ca. 40 mg of the samples (industrial FAEs and their 

mixtures), 1 g phthalic anhydride and 0.5 g grinded urea were directly weighed in 

screw-cap tubes, and 4 mL 1,4-dioxan was added. The tubes were shaken and 

introduced in a silicone-oil thermostatic bath at 105◦C for 90 min. After cooling, 

the residue was dissolved with a 2:1 MeOH/water mixture containing 0.1 M NH3. 

The volume was completed up to 10 mL with this mixture. The solutions were 

injected immediately or stored at -20 ºC. The gradient along the 1st dimension was 

achieved by mixing 50:50MeOH/water (A) with 100% MeOH (B). Gradient 

elution along the 2nd dimension was performed by mixing 50:50 ACN/water (C) 

with 100% ACN (D). Phases A–D also contained 0.1% acetic acid. Except during 



Aaron Escrig Doménech 
 

 
174 

 

eluate transfer or valve operation, the flow rate was1 mL/min. Detection was 

performed at 230 ± 10 nm (360 ± 40 nm as reference). Before injection of the 20 

µL aliquots, all solutions were passed through a 0.45 µm pore-size nylon filter. 

5.3. Results and discussion 

5.3.1. System selection 

According to literature [11–15], a C8 column and an ACN/water gradient 

performs very well in separating the oligomers within the hydrocarbon series. 

Thus, this system, using a core-shell type C8 column to achieve an enhanced 

efficiency, was selected to perform the 2nd dimension separations. In addition, 

FAE oligomers with the same EO number but belonging to different hydrocarbon 

series have rather similar properties, only differing slightly on the hydrophobicity 

of the hydrocarbon chain. This made unnecessary to select a different stationary 

phase, such as C4 or C18, to chromatograph the different series after their isolation 

along the 1st dimension. Further, as shown below, all the series from n = 12 to 18 

were well resolved using ACN/water gradients with similar concentration ranges. 

After fixing the 2nd dimension system, the stationary and mobile phases for the 

1st dimension separations were selected. Orthogonality between the two 

dimensions is most frequently achieved by selecting different stationary phases. 

With this aim, we tried several alkyl columns, including C1, C4 and C18, as well 

as propyl-amide, propyl-cyan and propyl-penta-fluoro-phenyl. Using ACN/water 

gradients, none of these systems was able of separating the series without also 

separating the oligomers within them. Instead of this, a single band for each series 

was achieved using MeOH/water gradients. This also agreed with reported data 

[11,36]. Focusing of the series into bands without distinguishing the oligomers 

within them was better achieved with alkyl columns. Among them, C18 gave 

excessive retention of the n = 16 and 18 series. On the other hand, the differences 



Chapter 5. 2D-HPLC determination of FAE 
 

 
175 

 

between the C1, C4 and C8 columns were small. However, as shown below, further 

focusing of the series into narrow bands along the1st dimension was achieved by 

using high column temperatures. Then, since the pH and thermal stability of 

bonded alkyl chains shorter than C8 are low [37,38], C8 was selected. The 

blindness of MeOH/water mobile phases to the presence of the EO chain is a rarity, 

then, the successful substitution of MeOH/water by any other mobile phase in 

combination with another stationary phase to resolve the series without also 

resolving the EO oligomers is unlikely. In fact, we believe that the relative success 

achieved in our previous work [35] with an alkyl-diol stationary phase to resolve 

at least mixtures of even FAE series can be explained by the similarity of the diol 

group to MeOH. Both are basic ligands, in which retention by acceptance of 

protons predominates. Thus, the lack of acidic protons along the EO chain could 

explain its unusual chromatographic behaviour. 

5.3.2. Comparison of the V6/2-first and VCS-first configurations for either 

LC–LC or solute preconcentration 

The V6/2-first and VCS-first configurations for either LC–LC or for solute 

preconcentration are illustrated in Fig. 5.1. To implement LC–LC, the following 

operations should be possible: (i) to alternatively bypass the 1st or the 2nd column, 

thus to independently conditioning or eluting each dimension; (ii) to serially 

connect the two columns for eluate transfer; and (iii) to simultaneously bypass the 

two columns for system flushing. As shown in Table 5.1, these operations can be 

performed using either the V6/2-first and VCS-first configurations. However, V6/2 

provides only two alternative pathways, one of which being required for 

bypassing, whereas VCS provides up to five alternative channels plus the bypass. 

In LC–LC, the 1st dimension is normally used to separate the sample into families 

or groups of compounds, groups which will be next separated along the 2nd 
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dimension. Since the properties of the solutes may largely differ from a group to 

another, then, in a large number of applications, different columns will be required 

to carry out the 2nd dimension separation. The reverse situation, in which a sample 

is separated using different columns to give rise to solute groups which can be 

treated with the same 2nd dimension column, is much less common. Then, in 

relation to the VCS-first configuration of the previous work [35], the V6/2-first 

configuration used in this work is potentially applicable to a much larger number 

of real cases. However, in this work we have always used the same C8 column 

along the 2nd dimension because the eluate segments of the 1st dimension 

contained FAE hydrocarbon series with rather similar properties. For all the series, 

the oligomers were very well resolved using a C8 column and ACN/water 

gradients, other stationary phases being not required. On the other hand, both the 

V6/2-first and VCS-first configurations also provide the possibility of inverting the 

flow in the column inserted in the mainpass of V6/2, which is useful for solute 

preconcentration. To implement this, the ports of one of the channels of VCS (4 and 

4’ in Fig. 5.1, parts A and B) should be connected with ports 4 and 5 of V6/2. In 

this way, V6/2 is “nested” in VCS (dashed line connections in Fig. 5.1). The 

necessary valve positions required to invert the flow in the column inserted in V6/2 

are also indicated in Table 5.1. Solute preconcentration at one end of this column 

should be first achieved by using a weak mobile phase. High sensitivities can be 

obtained by subsequently inverting the flow and using a strong mobile phase. 

However, as shown in Table 5.1, there is again an important difference between 

the two configurations. Thus, using V6/2-first, the inverted flow through C1 can be 

driven to the detector either through C2 or bypassing C2. Instead of this, using 

VCS-first, the inverted flow through C2 can be driven only directly to the detector. 

Thus, the V6/2-first configuration is again the most useful; however, solute 

preconcentration was not performed in this work. Finally, instead of a valve of 
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each type, either two V6/2 or two VCS valves of the same type can be also combined 

to implement LC–LC, but solute preconcentration can be achieved only by 

combining a valve of each type. 

5.3.3. Optimization of the 1st dimension separation 

Optimization was performed with a mixture of Dehydol LT7 and Lutensol 

AO7 (ca. 20 mg each). This mixture contains FAE series with even and odd values 

of n, all them with wide EO distributions (  = 7). Elution of this mixture using 

ACN/water gradients on a C8 column (2.7 µm, 15 cm) led to the separation of the 

consecutive hydrocarbon series with excellent resolution of the successive EO 

oligomers; however, the series overlap largely (chromatograms not shown). The 

oligomers of Brij 35, which contains only even series but with significant 

concentrations of EO oligomers with very large values of m, could not be resolved 

either. As reported [20,33], a much better inter-series resolution, at the cost of lack 

of resolution between the EO oligomers, can be achieved by using MeOH/water 

gradients. As shown in Fig. 5.2, traces A and B, with a MeOH/water gradient, the 

Dehydol LT7 and Lutensol AO7 mixture was resolved into isolated peaks, one 

single peak per each series, with little dispersion of the EO oligomers within the 

series. Further, at increasing temperatures, the inner dispersion of the series was 

reduced more than the average retention times of the series, which resulted in an 

improvement of the inter-series resolution. This is shown in Fig. 5.2, trace B, 

where superior resolution between consecutive series up to n = 18 with a short total 

analysis time (less than 20 min) was achieved at 60 ºC. Further, in these conditions, 

portions of flat baseline between the peaks allowed easy eluate segment transfer 

from the 1st to the 2nd dimensions without cross-contamination between 

consecutive series. Also, the capability of the method to also isolate the very long 

EO chain series of Brij 35 is shown in Fig. 5.2, part C. As deduced by comparing 

m
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traces B and C of Fig. 5.2, the width of the single peaks of the series increased 

only slightly by increasing  from 7 to 23. 

 
Fig. 5.2. Chromatograms of a derivatized mixture of Dehydol LT-7 and Lutensol AO7 

obtained along the 1st dimension at 25ºC (A) and 60 ºC (B), and chromatogram of Brij 

35 at 60 ºC (C). A gradient elution from 75 to 90% MeOH in 25 min on a C8 column (5 

µm, 10 cm) was used. The number of carbon atoms of the series (n) is indicated at the 

peaks. 
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5.3.4. Transfer of eluate segments to the 2nd dimension 

A scheme of the system operation for LC–LC is shown in Fig. 5.3. The two 

columns should be eluted in series during transfer of eluate segments from the 1st 

to the 2nd dimension. Thus, to avoid overpressure during transfer, the particle size 

and length of the 1st dimension column were limited to 5 µm and 10 cm, whereas 

2.7 µm and 15 cm were used for the 2nd dimension column, respectively. An 

advantage of this approach was short analysis times along the 1st dimension 

separations. Also, the flow rate, which was 1 mL min-1during elution along either 

the 1st or 2nd dimensions, was reduced to 0.5 mL min-1 during transfer. A high 

column temperature in the 1st dimension also helped in reducing backpressure 

during eluate transfer. To avoid leaking, the flow was momentarily reduced down 

to zero before the switching of any valve, and restored immediately after. As 

further commented below, the 1stdimension chromatograms are of much interest 

in industrial quality control for the quick evaluation of both the FAE contents and 

the proportions of the series. 

5.3.5. Optimization of the 2nd dimension separation  

After optimization of the 1st dimension separation, selected segments of the 

eluate of C1, each one comprising a given series, were transferred to C2. 

Optimization of the separation along the 2nd dimension was also performed with 

a C8 column, which was inserted in one of the channels of VCS (Fig. 5.1A). After 

transfer of an eluate segment, the shorted 3-3’ channel of VCS was used to flush 

the system with ACN/water, thus displacing the previously used MeOH/water 

mixture. Separation of the oligomers was achieved by eluting the 2nd dimension 

column with an ACN/water gradient. For this purpose, the ACN concentration was 

initially increased from 50 to 95%. Satisfactory separations of the oligomers of all 

the series were achieved; however, to save analysis time, the starting and ending 
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concentrations of the ACN gradients, and the gradient times, were optimized 

according to the length of the hydrocarbon chain of each series. The optimized 

values are indicated in Figs. 5.4 and 5.5, where chromatograms of the resolved 

peaks of selected series of Dehydol LT-7, Lutensol AO7 and Brij 35 are shown. 

Using the optimized conditions, the separation of the most hydrophilic oligomers 

of all series (e.g. m ≈ 20 for Dehydol LT-7 and Lutensol AO7 which have  = 7) 

began a few minutes after starting the ACN gradient, the most hydrophobic 

oligomer (m = 2) eluting a few minutes before ending the gradient time. This 

reduced the elution time along the 2nd dimension for all series to a minimum. As 

expected [11,14], the peaks of the oligomers followed the decreasing order of m, 

except for the derivatives of the m = 0 and 1 oligomers, which are more hydrophilic 

than the m = 2 and 3 oligomers, thus overlapping with the peaks of other oligomers 

of the corresponding series. Thanks to the separation by series along the 1st 

dimension, it was possible to observe oligomers with m > 20 in mixtures containing 

both even and odd series, without any sign of cross-contamination between 

consecutive series. As also shown in Fig. 5.4, traces B and D, the 2nd dimension 

chromatograms of the Lutensol AO7 series were more complex than those of 

Dehydol LT7 series, the oligomers showing double peaks. This was attributed to 

the presence of both branched isomers and impurities, likely corresponding to 

FAEs of mineral origin. Finally, Fig. 5.5 shows the 2nd dimension chromatograms 

of the n = 12, 14 and 16 series of Brij 35. As observed, the series were resolved up 

to m > 40 without inter-series cross-contamination. 

m
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Fig. 5.4. Chromatograms obtained by gradient elution along the 2nd dimension of 

segments of the 1st dimension eluate for a mixture of Dehydol LT-7 and Lutensol AO7 

(Fig. 5.2, trace B). The time is counted from the beginning of the ACN gradient; ACN 

increased within the following ranges: 60–85%, 63–88%, 66–91% and 69–94%, for the 

n = 12, 13, 14 and 15 series, respectively. Gradient time was 23 min. On the peaks of the 

Dehydol LT-7 series, the EO numbers of some representative oligomers are indicated. 
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Fig. 5.5. Chromatograms along the 2nd dimension for the n = 12 (A), n = 14 (B) and n = 

16 (C) series of Brij 35. Elution of the n = 16 series, 72–97% ACN in 23 min; other 

conditions as in Fig. 5.4. 

 

5.3.6. Evaluation of the series distribution using the 1st dimension 

chromatogram 

After optimization of the LC–LC separation, the possible use of the 1st 

dimension chromatograms to determine FAEs and to establish the proportion of 

the hydrocarbon series in industrial samples was studied. In comparison to the 

integration of the peaks of all the oligomers along the 2nd dimension 

chromatograms of the successive series, to integrate a single peak per series along 

the 1st dimension saves time and reagents, and is much simpler. However, the areas 

of the peaks of the series cannot be related to the series concentration without 

taking into account the different UV–vis response factors of the EO oligomers with 

respect to the compound used as calibration standard. Lauryl alcohol, C12OH, has 

been frequently used as standard, the response factors of the oligomer being 
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calculated with respect to it [6]. The response factors of the oligomers usually 

differ from one. Thus, the response factors of the phthalates increase slightly with 

n and decrease with m at least up to m = 4 [14]. Since the response factors of the 

oligomers depend on m, to establish the molar concentration of a series by using 

the peak areas of the series along the 1st dimension having a single compound as 

reference standard is not straightforward. However, as next deduced, this is 

possible if the peak areas of the series are divided by an average response factor of 

the series. To establish the average factors of the series, a condition is that, for a 

series with n carbon atoms in the alkyl chain and an average EO number m, the 

peak area of the series along the 1st dimension should equal the sum of the peak 

areas of the oligomers of the same series along the 2nd dimension: 

          (5.1) 

where the sum is extended to all the significant peaks of the oligomers of the series 

along the 2nd dimension chromatogram. We have checked Eq. (5.1) using the 

experiments given in Figs. 5.2, 5.4 and 5.5 (and other chromatograms), having 

found a perfect agreement between the peak areas, with relative standard 

deviations of the differences ranging from 0.6% to 2.9% for the n = 12 and n = 14 

series, respectively. The concentration of a given series with n carbon atoms in the 

alkyl chain, Cn, should equal the peak area of the series along the 1st dimension, 

, divided by the sensitivity (slope of the calibration curve) for the derivative 

of the reference compound (C12OR), s12,0, and by the proposed average response 

factor of the series, : 

        (5.2) 
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where Cn,m is the concentration of the derivative of the m-oligomer of the n-series, 

CnEmOR, also including that of the non-ethoxylated alcohol (m = 0), and where the 

sum is extended to all the EO oligomers which constitutes the n-series. In Eq. (5.2), 

the bar over the subscript  indicates that the area corresponds to the peak of a 

series along the 1st dimension chromatogram, and that the response factor is an 

averaged value for the whole series. The total FAE concentration is the sum of the 

concentrations of all the series of the mixture: 

          (5.3) 

By substituting Eq. (5.2) in Eq. (5.3), the molar fraction of an n-series can be 

obtained as: 

        (5.4) 

The average response factors of the series, , can be established as next 

explained. For the derivative of a given oligomer, CnEmOR, we have: 

          (5.5) 

where An,m and fn,m are the peak area of the oligomer derivative along the 2nd 

dimension and the response factor of the oligomer derivative with respect to that 

of the reference compound, respectively. Reorganizing in Eq. (5.2), and 

substituting the value of Cn,m given by Eq. (5.5), we have: 

          (5.6) 
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As deduced from Eq. (5.6), the proposed average response factors of the series 

depend on both the response factors of the EO oligomers and the distribution of 

their peak areas within the series. Therefore, the average response factors also 

depend on the concentration distributions of the EO oligomers. The EO 

distributions of the n = 12 and 14 series of surfactants having = 3, 7, 10 and 23, 

calculated as molar fractions of the oligomers, are plotted in Fig. 5.6. To obtain 

the molar fractions, the peak areas of the oligomers along the 2nd dimension 

chromatograms were first corrected by dividing by their respective response 

factors [14]. Then, the corrected peak areas were divided by the sum of all the 

corrected peak areas of the EO oligomers of the series. As observed, by comparing 

the traces for the n = 12 and 14 series, the EO molar distributions are approximately 

the same for all the series which constitute an industrial FAE. Therefore, the 

average response factors of the series can be tabulated as functions of n and  for 

all industrial FAEs. 

 
Fig. 5.6. Distribution of the EO oligomers of the n = 12 and 14 series of industrial FAEs: 

Dehydol LS-3 DEO-N (𝑚𝑚�  = 3), Dehydol LT-7 (𝑚𝑚�  = 7), DEGDE (𝑚𝑚�  = 10) and Brij 35 (𝑚𝑚�  

= 23). On the vertical axis the molar fractions of the EO oligomers within the series are 

plotted. 
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To calculate the average factors of the series, , the oligomer distributions of 

Fig. 5.6 and the UV–vis response factors of the oligomers, fn,m, which were taken from a 

previous work [14], were used. A plot of  as a function of m at increasing values of 

n is given in Fig. 5.7, and for convenience, tabulated values of , including the 

experimental and a few extrapolated data, are given in Table 5.2. To use this table, the 

value of m should be known. If not known, it can be obtained by chromatographing one 

of the series along the 2nd dimension. However, for industrial products containing 

mixtures of raw materials with different values of , it would be necessary to 

chromatograph more than one series. 

 

Fig. 5.7. Dependence of the average response factor of the hydrocarbon series of 

industrial FAEs with both n and 𝑚𝑚� . Values of  calculated according to Eq. (5.6) 

using the EO distributions of Fig. 5.6 and others.  
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Table 5.2. Average response factors of the series 
for industrial FAEs 

𝑚𝑚�  n 
12 14 16 18 

0 1.00 0.98 1.10 1.03 
2 0.58 0.67 0.72 0.76* 
3 0.50 0.59 0.65 0.66* 
7 0.44 0.56 0.66 0.68 
10 0.44 0.56 0.69 0.72* 
23 0.47 0.56 0.69 0.72* 

*Extrapolated values 
 

In Table 5.3, the molar fractions of the series of the industrial FAEs, 

obtained by the proposed quick method, based on measuring the series peak areas 

along the 1st dimension chromatogram followed by application of Eq. (5.4), are 

compared to those obtained by using the uncorrected peak areas of the series. As 

observed, if the peak areas are not corrected, the n = 12 series is underestimated in 

all cases, the other series being overestimated. The accuracy in establishing the 

relative series concentrations according to this procedure depends on both the 

accuracy of the response factors of the oligomers and that of the EO distribution. 

As shown, this later is established by chromatographing a series along the 2nd 

dimension, which can be done either within the same run in which the peak areas 

of the other series along the 1st dimension are established, or with a separate run. 

On the other hand, the UV–vis response factors of the phthalates of the oligomers 

used in this work were established in a previous work using a large number of 

standards [14]. The response factors should be established again if either a 

different derivatization reaction or another detection technique is used. Another 

question of practical interest is the influence of the accuracy of both the m values 

and the global response factors of the series on the accuracy of the determinations, 

including both the series distribution and the FAE concentration. As deduced from 

Fig. 5.7,  has little influence on the average response factor of the series, except m
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when  < 5. Then, for  > 5, inaccurate values of  can be used without 

diminishing the accuracy of the determinations. This is due to the negligible weight 

of the  < 3 oligomers on the global response factors of the series when  is 

large. This is important, because the main interest of using the peak areas of the 

series along the 1st dimension is in the analysis of mixtures having large values of 

m. When m = 3 or lower, an ACN/water gradient over one-dimension is enough to 

separate both the series and the oligomers within them with negligible overlapping 

of consecutive series [6,39]. Further, this can be extended to mixtures having up 

to m = 5 if series with only even or odd values of n are present. Then, accurate 

values of m are needed only when both even and odd series with m values ranging 

from 3 to 5 are present in the mixture. 

Table 5.3. Comparison of the molar fractions of the series (in percentages) obtained by 
using Eq. (5.4) and by dividing the uncorrected peak areas of the series by the sum of the 
peak areas along the 1st dimension chromatograms 

Industrial 
FAE 𝑚𝑚�  

n = 12 n = 14 n = 16 n = 18 

Eq. (5.4) Uncorr. Eq. (5.4) Uncorr. Eq. (5.4) Uncorr. Eq. (5.4) Uncorr. 

Dehydol 
LS-2 2 76.3 73.5 22.6 25.2 1.1 1.3 - - 

Dehydol 
LS-3 3 77.1 74.0 21.8 24.6 1.1 1.4 - - 

Dehydol 
LT-7 7 64.6 56.1 20.3 23.8 7.7 10.1 7.4 10.0 

Brij 35 23 75.4 71.8 21.7 24.2 2.9 4.0 - - 

 

5.4. Conclusions 

Two ways of combining a 6-port 2-position valve and a column selector 

valve to implement a single-pump LC–LC system have been described and 

compared. Both the V6/2-first and VCS-first configurations have the capability of 

using different mobile and stationary phases to elute the 1st and 2nd dimensions, 

and also offer the possibility of automatically selecting different columns along 

m m m

m m
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the dimension where VCS is located. Both configurations also provide the ability 

of inverting the flow in the mainpass of V6/2, which can be useful for the on-line 

preconcentration of solutes in the sample; however, further separation of the 

preconcentrated solutes on a 2nd column is only possible with the V6/2-first 

configuration. The VCS-first configuration was used in a previous work [35]. In 

this work, the V6/2-first configuration was applied to the LC–LC separation of 

industrial FAEs according to the hydrocarbon series and the EO oligomers along 

the 1st and 2nd dimensions, respectively. For this purpose, two C8 columns and 

two MeOH/water and ACN/water complementary mobile phases at two different 

temperatures were used. Mixtures of FAEs containing both even and odd 

hydrocarbon series with long EO chains were well resolved along the 

1stdimension, and the EO oligomers within the series were well separated along 

the 2nd dimension. This method is also of interest at preparative scale, to obtain 

purified fractions of the EO oligomers, particularly those having large values of m. 

In addition, the use of the 1st dimension chromatogram to accurately quantify the 

proportion of the series in industrial FAEs has been demonstrated. For this 

purpose, the use of an average response factor of the series has been proposed. The 

average response factors depend on both the length of the alkyl chain of the series, 

n, and the average EO number, . However, all FAE raw materials with a given 

nominal value of the average EO number, contain series with closely similar values 

of that number; further, samples containing just one FAE or as much as two raw 

materials are the most common. Thus, if not previously known,  can be 

established by chromatographing only one or two of the FAE series along the 2nd 

dimension. Although not common in industrial analysis, full resolution of all the 

series along the second dimension could be necessary with complex samples. 

Further, the average response factors depend only slightly on  when > 5. Thus, 

accurate values of m are required only when  < 5, then, for samples which will 

m

m

m m

m
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probably not require LC–LC separation. The proposed method is quick and simple, 

and can be implemented in any industrial laboratory provided with an ordinary 

HPLC system with minimal investment in new equipment. Further, the time 

required to operate a heart-cutting two-dimensional system can be largely reduced 

by using the currently available two-pumped 2D systems [40,41]. With them, the 

idle times for column conditioning and system flushing (ca. 15 min each time a 

mobile phase is replaced) will be avoided. In addition, quick elution at high 

pressures along one or the two dimensions may be also provided. 
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classes in cleaning products by reversed-

phase liquid chromatography using serially 

connected UV and evaporative light-
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ABSTRACT 

A method for the simultaneous determination of the most frequently used 

surfactant families- linear alkyl benzenesulphonates (LAS), alkyl ether sulphates 

(AES), fatty alcohol ethoxylates (FAE) and oleins (soaps, fatty acid salts) – in 

cleaning products, has been developed. The common reversed phase octyl (C8), 

pentafluorophenyl and biphenyl columns were not capable of separating the 

anionic LAS and AES classes; however, since only LAS absorbs in the UV, these 

two classes were independently quantified using a C8 column and serially 

connected UV and ELSD detection. The best compromise to resolve the four 

surfactant classes and the oligomers within the classes was achieved with a C8 

column and an ACN/water gradient. To enhance retention of the anionic 

surfactants, ammonium acetate, as an ion-pairing agent compatible with ELSD 

detection, was used. Also, to shift the olein peaks with respect to that of the FAE 

oligomers, acetic acid was used. In the optimized method, modulation of the 

mobile phase, using ammonium acetate during elution of LAS and AES, and acetic 

acid after elution of LAS and AES, was provided. Quantitation of the overlapped 

LAS and AES classes was achieved by using the UV detector to quantitate LAS 

and the ELSD to determine AES by difference. Accuracy in the determination of 

AES was achieved by using a quadratic model, and by correcting the predicted 
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AES concentration according to the LAS concentration previously established 

using the UV chromatogram. Another approach also leading to accurate 

predictions of the AES concentration was to increase the AES concentrations in 

the samples by adding a standard solution. In the samples reinforced with AES, 

correction of the predicted AES concentration was not required. FAE and olein 

were quantified using also quadratic calibration.  

Keywords: Evaporative light scattering detection, fatty acids, fatty alcohol 

ethoxylates, alkyl ether sulphates, linear alkyl benzenesulphonates, olein, cleaning 

products. 
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6.1. Introduction 

Industrial and household cleaners mainly contain four major classes of 

surfactants, namely linear alkylbenzene sulfonates (LAS), alkyl ether sulfates 

(AES), fatty alcohol ethoxylates (FAE) and oleins or soaps, which are mixtures of 

salts of fatty acids [1, 2]. LAS and AES are anionic at all pHs and FAE are non-

ionic, whereas the olein components are ionized at pH values over pH = pKa ≈ 5. 

LAS is obtained as mixtures mainly containing the C10-C13 homologues. Each 

homologue comprises from four to six isomers which differ in the attachment point 

of the p-sulfonate phenyl group to the linear alkyl chain, starting from the second 

carbon atom. LAS is most frequently analyzed by HPLC-UV using C8 columns 

and ACN/water in the presence of an ion-pairing agent such as sodium perchlorate 

[3-7] or a tetraalkylammonium salt [4, 8, 9, 10]. 

Both AES and FAE contain series of oligomers that differ both in the 

length of the hydrocarbon chain (the hydrophobic cut), and in the number of the 

condensed ethylene oxide (EO) units of the hydrophilic moiety. AES are the 

sulfuric acid esters of FAE, and then AES and FAE only differ in the nature of the 

terminal group of the hydrophilic tail, a sulfate and a hydroxyl, respectively. The 

separation of underivatized AES and FAE oligomers is most conveniently carried 

out using HPLC on C8 columns with an ACN/water gradient; however, an ion-

pairing agent should be added to enhance retention of the oligomers of both LAS 

and AES [11]. Finally, the palm olein components (fatty acid salts) are also well 

resolved using the same chromatographic mode [12, 13].  

LAS are normally detected using UV [14], although fluorescence can be 

also used [15]. The olein components can be also detected using UV at a low 

wavelength, but their molar absorptivities are low. Instead of this, UV detection of 

AES and FAE requires previous derivatization. This can be achieved with 

anhydrides [16-23] and other reagents [17, 18, 24]; however, upon hydrolysis of 
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the sulfate ester bond, AES gives rise to the same derivatives as FAE. For this 

reason, if these two classes should be independently characterized and quantified, 

separation of them before derivatization is mandatory. This can be achieved by 

ion-exchange on SPE cartridges [7, 8]. Instead of derivatization followed by UV, 

mass spectrometry [24-28], evaporative-light-scattering (ELSD) [18, 29] or 

charged-aerosol detection (CAD) [30, 32] of the underivatized AES and FAE 

oligomers can be used. However, it should be noted that the non-ethoxylated FAE 

oligomers (the fatty alcohols) are too volatile to be detected in an evaporative 

detector, and that the mono-ethoxylated FAE oligomers, that are also fairly 

volatile, are underestimated. Underestimation of these oligomers results in a small 

systematic error, unless FAE standards having the same EO distribution as that in 

the samples would be used for calibration. This is not a problem in quality control 

of manufactured products, since the EO distribution of the samples is known, but 

requires correction according to the observed EO distribution when an unknown 

sample is analyzed [33]. 

At the present time, HPLC-MS has become the preferred technique for the 

analysis of surfactants in industrial and environmental samples [15, 34, 35] 

because of its specificity, high capacity for identification of homologues and 

ethoxymers and capability of determining different surfactants at the same time 

[36, 37]. Another powerful tool which is gaining more importance in the analysis 

of cleaning product samples, due to the elevated amount of components of different 

nature that these samples contain, is two-dimensional HPLC (2D-HPLC) [33. 38, 

39]. However, the development of HPLC-MS and 2D-HPLC methods, requires 

expensive instrumentation, which is not affordable for a big range of small 

industries and quality control laboratories. Instead of this, traditional and cheaper 

detection methods, such as UV-vis and ELSD, can still be used for quality control 
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of raw materials and industrial samples, where high sensitivity is not required as 

occurs for environmental samples. 

Therefore, in this work, a cheap, practical and simple method capable of 

determining the four major surfactant classes mainly used in all types of cleaning 

products (LAS, AES, FAE and oleins) all in a single chromatographic run using 

UV-ELSD detection, has been developed. The best separation was achieved with 

a single C8 column, an ACN/water gradient, and with modulation of the 

concentrations of ammonium acetate (NH4AcO, used as an ELSD compatible ion-

pairing agent [40]) and acetic acid (HAcO) in the mobile phase. Using RP-HPLC, 

and in the presence of an ion-pairing agent, anionic surfactants elute first, followed 

by FAE and oleins. We have not found any RP system capable of separating the 

LAS and AES classes; however, in this work, we present an alternative method to 

HPLC-MS [37] for the independent evaluation of these two classes. First, using 

the UV chromatogram the LAS concentration was established, followed by the 

subtraction of this concentration from the sum of the LAS and AES concentrations 

obtained using ELSD, to finally obtain the AES concentration. The difficulties 

derived from the non-linear nature of the ELSD signal were overcome by using 

two different strategies which consisted in performing a quadratic calibration and 

the addition of an excess of AES to the samples. On the other hand, the olein peaks 

also overlap with the peaks of a few FAE oligomers; however, the successive FAE 

oligomers were well resolved, following a highly regular distribution pattern that 

made possible the accurate prediction of the areas of the overlapped peaks. Using 

this procedure, the high cost in instrumentation or the required time to make 

successive extractions of the different surfactant classes, using SPE protocols [7,8] 

and further derivatization can be avoided. 
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6.2. Experimental 

6.2.1. Reagents, samples and standard solutions  

The following analytical grade reagents were used: acetic acid (HAcO), 

methanol (MeOH), acetonitrile (ACN) (Scharlab, Barcelona, Spain) and 

ammonium acetate (NH4AcO, Riedel de Haën, Seeltze, Germany). The industrial 

surfactants Dehydol LT-7 (fatty alcohol ethoxylates, FAE, with n = 12, 14, 16 and 

18 carbon atoms in the hydrophobic tail, and an average EO number of 7, Cognis, 

Monheim, Germany), Lutensol AO7 (FAE with n = 13 and 15 and an average EO 

number of 7, BASF, Germany), alkyl ether sulfates (AES, sodium salts, with 12 ≤ 

n ≤ 18 and average EO number of 3, Limsa, Barcelona, Spain), lineal 

alkylbenzenesulfonates (LAS, mixture of the 10 ≤ n ≤ 13 homologues, Fluka, 

Steinheim, Germany) were used. Palm olein and other components of cleaning 

products were kindly supplied by Químicas Oro (San Antonio de Benagéber, 

Valencia, Spain). In Table 6.1, the structure and specifications of the used 

standards can be observed. Stock standard solutions of 10 g L-1 of LAS and AES, 

and 5 g L-1 of FAE, were prepared in water. A stock standard solution of 5 g L-1 of 

palm olein was prepared by dissolving the proper amount with a NaOH solution 

in methanol, followed by dilution with water. Dilutions of the stock standard 

solutions were made with water. Samples of liquid detergents and dishwashers, 

supplied by Químicas Oro, were prepared in ca. 1 kg batches according to the full 

formulations of 6 different commercial products including laundry cleaners, 

handwashers and dishwashers. These formulations are constituted, by one or more 

surfactants and other components including water, boric acid, sodium chloride, 

triethanolamine, ethylendiaminetetraacetic sodium salt, alkyl phosphonate sodium 

salts, colorants, fragrances, opacifiers and preservatives. Portions of these samples 

were weighed and diluted with water. Deionized water (Barnstead deionizer, 

Sybron, Boston, MA) was used in all cases. Identification of the olein components 
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was made by injecting 100 mg L–1 standard solutions of the following fatty acids: 

palmitic (C16:0), stearic (C18:0) (Sigma-Aldrich, St. Louis, USA), myristic 

(14:0), myristoleic (14:1) and oleic (C18:0) acids (Fluka, Steinheim, Germany). 

These solutions were prepared in a 85:15 propanol-methanol mixture containing 

40 mM NH3.  

Table 6.1. Structure and main features of the main surfactant classes studied in this work. 

Name Structure n m 

Linear alkyl 
benzenesulfonate 

(LAS) 
 

n+m = 7-10 

Alkyl ether 
sulfate (AES) CH3(CH2)nO(CH2CH2O)mOSO3-Na+ 11 ≤ n ≤ 17 m  = 

3 

Olein/Soap CH3(CH2)nCOO-Na+ 13 ≤ n ≤ 17  

Fatty Alcohol 
Ethoxylate 

(FAE) 
CH3(CH2)nO(CH2CH2O)mH 

Lutensol AO7 
n = 12,14 m  = 

7 Dehydol LT-7 
n= 11, 13, 15, 

17 
 

6.2.2. Instruments and HPLC separation  

A 1100 Series HPLC chromatograph (Agilent Technologies, Waldbronn, 

Germany), provided with a quaternary pump, including a thermostated column 

compartment and a UV-Vis diode array detector connected in tandem with an 

ELSD (385-ELSD, Agilent Technologies), was used. For the optimized procedure, 

an Ascentis Express fused-core C8 column (Sigma-Aldrich, Steinheim, Germany, 

2.7 μm, 90 Å, 15 cm x 4.6 mm) was used. Other tested columns were an Ascentis 

Express fused-core C8 column (Sigma-Aldrich, 5 μm, 90 Å, 10 cm x 4.6 mm), a 

Kinetex pentafluorophenyl column (F5, Phenomenex, 2.6 μm, 100 Å, 10 cm x 4.6 

mm) and a Kinetex biphenyl column (BP, Phenomenex, 2.6 μm, 100 Å, 10 cm x 

CH3(CH2)n

SO3
-
Na+CH

CH3(CH2)m
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4.6 mm). The solutions were passed through a 0.45 μm pore-size nylon filter 

(Albet, Barcelona, Spain) and 20 μL was injected. The flow rate was 1 mL min-1. 

UV detection was set at 225 ± 10 nm using 360 ± 60 nm as reference. For ELSD, 

the nebulizer and evaporator temperatures were set at 40 ºC, and the gas flow was 

set at 1.6 SLM (standard liter per min). In the optimized procedure, separations 

were performed at 15 ºC using an ACN-water gradient achieved by mixing four 

solutions by pairs (A-B and C-D) as follows. Thus, solution A contained 10 mM 

NH4AcO (pH = 6.7) in water and solution B was a 90:10 ACN-water mixture also 

containing 10 mM NH4AcO. Solution C was a 17.5 mM (0.1%) HAcO aqueous 

solution (pH = 3.2), whereas solution D also contained 17.5 mM (0.1%) HAcO but 

in a 90:10 ACN/water mixture. Lower and higher NH4AcO and HAcO 

concentrations were used during optimization of the chromatographic separation. 

Gradient elution was started by mixing A and B. For the optimized procedure, the 

percentage of B was linearly increased from 50 to 65% in 12 min. After t = 12 min, 

solutions A and B were substituted by solutions C and D, respectively, but 

maintaining 65% of D at the time of replacing the solutions. Then, D was increased 

from 65 to 100 % in 28 more min (the total ACN gradient time was 40 min). 

Substitution of the solutions was easily implemented by programming the 

quaternary pump.  

6.3. Results and discussion 

6.3.1 Selection of the stationary and mobile phases 

In order to resolve the four surfactant classes in a single run, the following 

RP columns were tried: C8, F5 and BP. A mixture of the four surfactant classes 

(500 µg mL–1 of each) was injected. Concerning the mobile phase, both ACN-

water and MeOH-water were tested. The F5 and BP columns always showed 

closely similar chromatograms. That obtained with the F5 column with ACN/water 

is shown in Fig. 6.1A. As observed, in the absence of ionic additives in the mobile 
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phase, the anionic surfactant classes, LAS and AES, were not sufficiently retained 

[11]. After a few minutes, the successive hydrocarbon series of the FAE oligomers, 

and the peaks of the components of olein (mainly palmitic and oleic acids), were 

eluted. Also in the absence of an ion-pairing agent, the C8 column gave the same 

elution order as the two other columns, but with a low-efficient separation of the 

bands of the four LAS homologues that overlapped with the bands of the 

unresolved AES oligomers (Fig. 6.1C). Instead of this, the peaks of the EO 

oligomers within the FAE hydrocarbon series were well resolved by the C8 

column. According to the literature, retention of the LAS oligomers on a C8 

column increases and becomes reproducible in the presence of ion-pairing agents 

as NaClO4 [3-6], a tetraalkylammonium salt [9] or using NH4AcO [10, 40]; 

NH4AcO which is compatible with ELSD detection, was used in this work. Also, 

an ion-pairing agent has been recommended to increase retention of the AES 

oligomers [11]. As shown in Fig. 6.1B for the F5 column, retention of both LAS 

and AES, increased in the presence of NH4AcO, and the LAS homologues and 

AES oligomers were also resolved within the respective classes, although these 

two anionic surfactant classes, LAS and AES, largely coeluted. On the other hand, 

the presence of NH4AcO did not modify the elution of the FAE and olein 

components. In the presence of NH4AcO, both the BP and C8 columns showed 

chromatograms similar to that obtained with the F5 column (Fig. 6.1B), with the 

only remarkable difference that the C8 column also resolved the EO oligomers 

within the FAE series. With respect to the absence of ionic additives, both LAS 

and AES also showed a slightly higher retention and high-efficiency reproducible 

peaks by adding HAcO to the mobile phase (chromatograms not shown), which is 

assumed to be mainly due to the modification of the stationary phase [40].  



Aaron Escrig Doménech 
 

 
206 

 

 
Fig. 6.1. Chromatograms of a mixture of the four surfactant classes (500 µg mL–1 of each 

class, Dehydol was used as FAE); from 40 % to 90% ACN in 20 min. F5 column, in the 

absence (A) and presence of 20 mM NH4AcO (B); C8 column in the absence of ionic 

additives (C). Flow rate: 1 mL min–1. Column temperature: 25 ºC. ELSD detection. 

In any case, retention of the FAE oligomers was not significantly modified 

by the presence of NH4AcO and HAcO; however, retention of the olein 

components increased by increasing the HAcO concentration of the mobile phase, 

which should be attributed to protonation of the carboxylate groups of these 

analytes. Substitution of ACN by MeOH gave rise to similar chromatograms, with 

the only remarkable difference that the EO oligomers of the FAE series were not 

resolved.  

In order to distinguish the oligomers of the coeluting LAS and AES series, 

both the UV-Vis and ELSD detectors were serially connected. In this way, UV-

Vis was used to monitor LAS, whereas the ELSD, that detected all the surfactant 

classes, was used to quantify AES by difference, as well as to quantify the FAE 

oligomers and the olein components. On the other hand, the conditions to achieve 

the best separation of the four classes were explored using pairs of serially 

connected columns. For this purpose, the C8 columns and the combinations F5-C8 

and BP-C8, as well as the reverse combinations, were tried. In all cases, 

ACN/water gradients in the presence of 20 mM NH4AcO, and HAcO 

concentrations ranging from 0 up to 35mM (0.2%), were tried. The best resolution 

200

150

100

50

0
0 5 1510

In
te

ns
ity

(m
V

)

Time (min)

250 A 150

100

50

0
0 5 1510

Time (min)

B

80

60

40

20

0
0 5 10

Time (min)

100

2015

C

LAS+
AES FAE

n = 12

Olein 

LAS+
AES

FAE
n = 12

Olein 

LAS+
AES

FAE
n = 12

Olein 



Chapter 6. Surfactant classes determination 
 

 
207 

 

between the successive oligomers of all classes was obtained with the C8 columns. 

Thus, the 15-cm long C8 column was selected. In Fig. 6.2, parts A-C, the effect of 

increasing the NH4AcO concentration using this column is shown. As observed, 

the retention of LAS and AES increased, but that of the FAE oligomers was only 

slightly modified. Then, to preserve a segment of flat baseline between the last 

peak of the AES class and the first one of FAE, 10 mM NH4AcO was selected. 

The chromatogram obtained with both additives, namely 10 mM NH4AcO and 

17.5 mM (0.1%) HAcO (pH = 4.3), is shown in Fig. 6.2D. The effect of increasing 

the HAcO concentration using 3.5, 17.5 and 87.5 mM (0.02, 0.1 and 0.5%, 

respectively), while keeping constant the NH4AcO concentration at 10 mM, was 

investigated. LAS and AES were more retained at increasing HAcO 

concentrations, thus HAcO further reduced the flat baseline region before elution 

of the first eluting oligomer of the n = 12 series of FAE. The peaks of the FAE 

oligomers were not shifted when the HAcO concentration was increased, but the 

olein components eluted at progressively longer retention times.  
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Fig. 6.2. Chromatograms of a mixture of the four surfactant classes (500 µg mL–1 of each 

class, Dehydol was used as FAE): C8 column (Ascentis Express, 2.7 µm, 150x4.6mm), 

from 45% to 90% ACN in 40 min in the presence of: 5 (A), 10 (B) and 20 mM NH4AcO 

(C); both 10 mM NH4AcO and 17.5 mM HAcO (D). Flow rate: 1 mL min–1. Column 

temperature: 25 ºC. ELSD detection Identification of components: n=12 to n=18 are the 

successive FAE hydrocarbon series, showing the resolved oligomers according to their 

EO numbers; (14:1) myristoleic acid, (16:0) palmitic acid, (18:0) stearic acid and (18:1) 

oleic acid, the two last peaks are Dehydol impurities. 

Using the optimized conditions of Fig. 6.2D, mobile phase modulation was 

implemented in order to enhance retention of LAS and AES and independently 

shifting the peaks of the olein components according to the pH of the mobile phase. 

For this purpose, a 10 mM NH4AcO was selected to provide enough retention of 
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the LAS and AES peaks by ion-pairing, while preserving a 2-min long flat baseline 

region after elution of the anionic surfactants and before elution of the n = 12 FAE 

series. By introducing the HAcO after t = 12 min, modifications of the pH of the 

mobile phase, which are required to modify retention of the olein components, can 

be performed without altering the elution of the LAS and AES classes. To preserve 

the retention time region before t = 12 min unaltered was also essential to avoid 

changes in the slopes of the calibration curves of the LAS and AES classes during 

the quantitation studies. Then, elution of the FAE oligomers and olein components 

was made in the absence of NH4AcO but in the presence of variable amounts of 

HAcO. For this purpose, at t = 12 min phases A and B, each containing 10 mM 

NH4AcO, were substituted by phases C and D, which could contain variable HAcO 

concentrations. This allowed the modification of the retention of the olein 

components with respect to that of the FAE oligomers without disturbing retention 

of the already eluted LAS and AES oligomers. The ACN gradient, was not altered 

by the substitution of the phases, since phases A and B contained the same ACN 

concentrations as phases C and D, respectively, and they were mixed also in the 

same proportions. Namely a 65% of B was substituted by a 65% of D when t = 12 

min. A chromatogram obtained in these optimized conditions, with a C8 column, 

and by substituting the constant 10 mM NH4AcO concentrations by a constant 17.5 

mM (0.1%) HAcO concentration at t = 12 min, just before elution of the n = 12 

FAE series, is shown in Fig. 3, part B. The effect of the HAcO during the second 

part of the chromatogram was to delay the peaks of the olein components with 

respect to that of the FAE oligomers. Thus, using 17.5 mM (0.1%) HAcO, the first 

peak of the olein components, corresponding to the 14:1 oligomer (myristoleic 

acid), appeared at the end of elution of the n = 14 FAE series, whereas the main 

peaks of palm olein, that of the 16:0 and 18:1 components (palmitic and oleic 

acids) overlapped with the peaks of the oligomers of the n = 16 FAE series. 
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Overlapping of the FAE and olein peaks is not a problem, since the areas of the 

overlapped FAE peaks can be accurately predicted by interpolation, using the areas 

of the neighbouring peaks within the same hydrocarbon series and along the EO 

series. Further, the interpolated areas can be subtracted from the total peak area to 

obtain the corrected area of the corresponding olein component. If necessary, 

retention of the olein components can be increased without altering the retention 

times of the other surfactant classes by increasing the HAcO concentration in 

mobile phase components C and D.  

In Fig. 6.3, the effect of temperature on the optimized procedure is also 

shown. As observed, elution of LAS and AES was not modified by varying the 

column temperature from 15 to 35 ºC, respectively. However, the successive EO 

oligomers within the FAE series were better resolved at a low temperature; thus, 

15 ºC was selected to perform the quantitation studies. In Figs. 6.2 and 6.3, the last 

two peaks of the traces were exclusively present in the injections of the Dehydol 

standards and in mixtures containing Dehydol, then, they were attributed to 

impurities of this raw material. They could correspond to esters because their 

retention times did not vary by modifying the HAcO concentrations, indicating 

that they were not fatty acids.  
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Fig. 6.3. Chromatograms of a mixture of the four surfactant classes: C8 column, from 

45% to 90% ACN in 40 min in the presence of 10 mM NH4AcO before t = 12 min and 

17.5 mM HAcO afterwards. Chromatograms were obtained at 15 ºC (A), 25 ºC (B) and 

35 ºC (C). Other details as in Fig. 6.2. 

6.3.2. Quantitation of the LAS and AES classes. 

Calibration curves of the surfactant classes were next constructed. Since 

anionic and non-ionic surfactants did not overlap each other, then binary mixtures 

of the LAS and AES classes on one side, and FAE (both Dehydol and Lutensol) 

and olein solutions on the other side, were prepared for calibration. Series of 

standard mixtures containing different amounts of LAS and AES were prepared as 

follows. The sum of the LAS and AES concentrations, x1, can be defined as: 

x1 = CLAS + CAES         (6.1) 

CLAS and CAES being the total LAS and AES concentrations in mg L–1, 

respectively. The percentage of LAS in the mixtures, x2, can be defined as: 
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x2 = 100% · CLAS/ x1 = 100% · CLAS / (CLAS + CAES)      (6.2) 

Accordingly, seven series of six standards each were prepared for 

calibration. The series contained the following six values of the sum of 

concentrations, x1 = 100, 300, 500, 800, 1000 and 1200 mg L–1. The series differed 

from each other in the LAS percentage as follows: x2 = 0, 10, 25, 50, 75, 90 and 

100%. Unfortunately, the chromatograms did not show any region with wholly 

isolated peaks of either, LAS nor AES, also showing enough intensity. Then, as 

indicated in Fig. 6.4, calibration was tried by integrating the peaks along four 

different retention time zones, as well as by using the sum of all the four time zones 

(integration along all the peaks of the two classes from line a to line b of Fig. 6.4). 

Only region 3 of Fig. 6.4 corresponded to a partially isolated peak of AES, the 

other three zones containing extensively overlapped peaks of both LAS and AES. 

The small peaks that appeared after elution of the last LAS homologue also 

correspond to isolated AES oligomers, but they were too small in relation to the 

total area of the surfactant class, then, this final elution region was not used for 

calibration. Calibration to establish the total concentrations of the two classes was 

tried using the calibration approaches next explained, by using both the 

independent areas of the zones 1 to 4, and the sum of them (from the time a to time 

b lines of Fig. 6.4).  
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Fig. 6.4. Chromatograms of a mixture of LAS and AES obtained as indicated in Fig. 3A, 

Detection: UV (A) and ELSD (B). Sections 1 to 4 indicate the time intervals used for 

calibration of LAS and AES; Total area in the time interval from a to b was eventually 

used in the optimized calibration procedures. In part A, the labels on the groups of two 

peaks indicate the LAS homologues. 

This latter approach is the simplest, and provided the smallest systematic 

errors with all the calibration approaches that were tried, thus, it was eventually 

adopted. As expected, the UV chromatogram gave rise to a linear calibration for 

LAS, whereas convex curves were obtained in all cases for ELSD. It has been 

reported [41, 42] that the ELSD convex curves fit well to a potential equation: 

y1 = a x1b          (6.3) 

where y1 is the integrated peak area, and a and b are the fitted model parameters; 

however, as shown in Fig. 6.5, another excellent fit was obtained using the 

quadratic equation: 
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y1 = a1 + b1 x1+ c1 x12        (6.4) 

 

 
Fig. 6.5. ELSD calibration curves of LAS+AES mixtures according to the mixtures of 

standards (see text for details). Continuous line: quadratic fitting according to Eq. (6.4); 

dashed line: potential fitting according to Eq. (6.3); Total peak area corresponds to the 

total area obtained for the sum of the LAS and AES peaks (from line a to line b of Fig. 

6.4).  

An advantage of the quadratic model is that the zero point can be included, 

which is not possible using the exponential equation. The quadratic model was 

selected. Then, at the sight of the excellent fittings, it seemed possible to use ELSD 

calibration according to Eq. (6.4) to estimate the sum of the LAS and AES classes, 

x1, and then to obtain the AES concentration, CAES, after subtraction of the LAS 

concentration, CLAS, that can be obtained from the UV chromatogram. We have: 

yUV = bUV  CLAS          (6.5) 

where yUV is the area of the LAS peaks on the UV chromatogram. Then, we have: 

CAES = x1 – CLAS         (6.6) 
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where x1 and CLAS are obtained from Eqs. (6.4) and (6.5), respectively. As shown 

in Table 6.2, the CAES values calculated using Eqs. (6.4), (6.5) and (6.6), were 

biased because the fitted parameters, b1 and c1 (the 1st and 2nd degree ELSD 

sensitivities), also depended on the percentage of LAS in the mixture, x2. The 

dependence of the peak areas respecting x2 was observed for the 4 integration 

zones of Fig. 6.4, as well as for the sum of them. For the sum of the four integration 

zones, the dependence of the peak areas regarding x2 is depictured in Fig. 6.6.  

 
Fig. 6.6. Total peak area of the mixtures of LAS and AES obtained using ELSD detection 

plotted against the LAS percentage, x2, at increasing values of the sum of the 

concentrations, x1= CLAS+CLES. The numbers at the right of the lines are total 

concentrations, x1, in mg L–1. Chromatographic conditions as in Fig. 6.3A. 

In this figure, the total peak area, y1, is plotted against x2 at increasing values 

of the sum of concentrations of the classes, x1. As observed in Fig. 6.6, the 

sensitivity depended very little on x2 along an extensive region, roughly within the 

limits 0.1 ≤ x2 ≤ 0.5, and particularly at low x1 values, increasing significantly 

outside this region. Thus, direct application of the quadratic model of Eq. (6.4) 

produces systematic errors if the influence of the LAS/AES ratio on the sensitivity 

is not taken into account. This can be observed on Table 6.2 (results according to 

footnote a of the table), where the quadratic model (Eq. 6.4) was applied to the 

analysis of 6 commercial cleaning products without any further correction. As 
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observed, CAES was obtained with large positive systematic errors in all cases. 

Thus, to avoid bias, two strategies based on the modification of either the 

calibration model or the sample composition was tried. A possibility is to use 

multiple quadratic regression:  

y1 = a1 + b1 x1+ c1 x12 + b2 x2  =  a1 + b1 x1+ c1 x12 + b2 CLAS / x1     (6.7) 

The main drawback of this and other similar approaches is that they result 

in complex models with many fitting parameters, being also of a 3rd or higher 

degree in x1. A more simple solution is to predict x1 using the quadratic model of 

Eq. (6.4), followed by a correction of the predicted value of x1. For this correction, 

the already known value of CLAS can be used. We have used the following simple 

linear model: 

CAES = a2 + b2 y1 + c2 CLAS       (6.8) 

The coefficients of Eq. (6.8) were obtained by linear fitting using the calibration 

data. These were a2 = –0.036, b2 = –1.124, and c2 = –0.906. Eq. (6.8) was used to 

correct the CAES values obtained by using Eqs. (6.4) to (6.6). As also shown in 

Table 6.2, this calibration approach, that is, to correct the CAES value obtained from 

Eq. (6.4) according to Eq. (6.8) led to a significant reduction of the systematic 

errors. As observed in Table 6.2 (results according to footnote b of the table), these 

did not surpassed 7.7% for the prediction of CAES in any of the six real samples.  

However, another approach based on a modification of the sample 

composition was also tried. As observed in Fig. 6.6, within the region 0.1 ≤ x2 ≤ 

0.5, the sensitivity depended only slightly on x2. Thus, another solution tried to 

avoid bias was to use only standards and samples within the limits 0.1 ≤ x2 ≤ 0.5, 

making sure that the samples were also confined within these limits. Usually, 

detergents contain higher amounts of LAS than AES (CLAS > CAES), then, virtually 

all samples can be made to contain a LAS percentage within the 0.1 ≤ x2 ≤ 0.5 



Chapter 6. Surfactant classes determination 
 

 
217 

 

limits by adding a large fixed amount of AES to them. Accordingly, a fixed amount 

of AES was added to the 6 real samples before injection. This was made by adding 

an aliquot of the 10 g L–1 AES stock solution to all the samples, thus to increase 

the AES concentration of the injected solutions in an additional amount equal to 

2000 mg L–1. Then, the simple quadratic model, Eq. (6.4), was obtained by fitting 

using only the calibration mixtures with 0.1 ≤ x2 ≤ 0.5. The values of CAES of the 

samples were obtained by subtracting 2000 mg L–1 from the predicted CAES. This 

subtraction did not increase significantly the systematic error of the predicted CAES 

values, since the amount of standard added to the samples was always accurately 

known. As also shown in Table 6.2 (results according to footnote c of the table), 

the systematic errors for the AES spiked samples were small, even smaller than 

those obtained by correcting the predictions according to Eq. (6.8).  

The limits of detection (LOD) and quantization (LOQ) of the method, were 

obtained using the ratios 3sb/b and 10 sb/b respectively. Where, sb is the standard 

deviation of the background and b the curve calibration slope. The Sb was 

estimated by measuring 10 standard of each surfactant in a concentration close to 

their respectively LOD. Calibration slope, b, was obtained from the linear fitting 

for the standards located within the low concentration range. LOD and LOQ were 

2 and 6 mg L-1 for LAS and 20 and 60 mg L-1 for AES, respectively.  
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6.3.3. Quantitation of FAE and olein 

To determine the FAE and the olein classes a blank independent series of 

six standard solutions of Dehydol, Lutensol and palm olein containing from 50 to 

2000 mg L–1 were injected. In all cases, the quadratic expression of Eq. (6.4) was 

used for calibration. The total concentration of the FAE and olein classes in the 

samples was established by measuring the sum of all the oligomers. The areas of 

the FAE peaks overlapping with olein peaks were established as the average area 

of the peaks of the two neighboring FAE oligomers. The interpolated areas were 

added to the total area of the FAE peaks and subtracted from the area of the 

corresponding olein peak. The corrections slightly increased the positive errors of 

FAE and decreased that of oleins. As observed in Table 6.3, satisfactory accuracy 

was obtained in all cases.  

The LODs and LOQs for FAEs and olein were obtained as described 

previously for LAS and AES in section 6.3.2. LOD and LOQ were, 50 and 150 mg 

L-1 for FAEs and 10 and 30 mg L-1 for olein, respectively. 

Table 6.3: Determination of FAE and olein in 6 real cleaning products. 

Sample 
FAE (%) Olein (%) 

Declared Founda 

(Rel. Error %) Declared Founda 
(Rel. Error %) 

1 4.3 4.5 (4.3) 3.1 3.2 (3.0) 

2 0.0 0 (n. c) 4.6 4.5 (-2.2) 

3 5.4 5.6 (4.2) 2.5 2.5 (-1.3) 

4 4.1 4.1 (-0.6) 3.0 3.0 (-1.4) 

5 5.6 6.1 (8.2) 3.4 3.4 (0.6) 

6 3.4 9.0 (8.7) 4.4 4.4 (-0.1) 
a Mass percentage of the class predicted according to Eq. (6.4). 
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6.4. Conclusions 

An affordable HPLC procedure capable of determining, using a single 

chromatographic run, the four major surfactant classes present in household 

cleaning products, has been developed. Anionic surfactants, including LAS and 

AES, elute earlier than non-ionic surfactants (fatty alcohol ethoxylates) and fatty 

acid salts (soaps); however, a reversed-phase HPLC system capable of separating 

the anionic LAS and AES classes was not found; then, the strategy followed was 

to use serially connected UV and ELSD detection. Only LAS provides peaks by 

using UV, then the LAS concentration can be obtained from the UV record and 

the resulting value can be subtracted from the sum of the LAS and AES 

concentrations predicted from the ELSD chromatogram, thus to obtain the AES 

concentration; however, the ELSD calibration is non-linear also depending slightly 

on the LAS/AES ratio. For this reason, quadratic calibration gives rise to a 

systematic error. Two solutions were successfully tried in this work. First, to 

linearly correct the predicted AES concentrations making use of the LAS 

concentrations obtained from the UV chromatogram. Second, to raise the AES 

concentrations of the samples, thus to perform the determinations at low LAS/AES 

concentration ratios, within the region where the sensitivity depends very little 

from this factor. This later was achieved by adding a known amount of AES to the 

samples before analysis. These two approaches maybe of interest in any other 

cases in which coeluting species are calibrated using UV and ELSD. The 

procedure has been applied to the quantification of the four most frequently found 

surfactant classes in a range of common cleaning products with success. 
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ABSTRACT 

Octadecyl acrylate based monolithic stationary phases for capillary 

electrochromatography using different initiating systems (UV irradiation, thermal 

and chemical initiation) in the presence of lauroyl peroxide as initiator were 

synthesized. For each initiation mode, the influence of porogenic solvent 

composition on both morphological and electrochromatographic properties of the 

resulting monoliths was investigated. Under optimal conditions, excellent 

efficiencies for photo- and chemical polymerized monoliths (minimum plate 

heights of 6.9-10.7 µm and 6.5-12.6 µm, respectively) were achieved. Thermal 

initiated columns gave lower efficiency values, permeabilities and longer analysis 

times compared to these initiating systems. The produced monolithic stationary 

phases were evaluated in terms of reproducibility, giving RSD values below 9.2, 

10.6 and 9.8 % for UV-, thermal- and chemical-initiated columns, respectively. 

 

 

Keywords: Acrylate ester-based monolithic columns/ Capillary 

electrochromatography / Initiating systems/ Lauroyl peroxide 
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7.1. Introduction 

Capillary electrochromatography (CEC) is a separation technique defined 

as a hybrid of CE and HPLC [1], which combines the use of an electroosmotically 

driven mobile phase (EOF) and the typical separation mechanism of a stationary 

phase. Among CEC supports, polymeric stationary phases based on acrylate- and 

methacrylate-based monoliths, introduced in the early 1990s by Svec et al. [1, 2], 

are the most popular materials for CEC applications. The advantages of these 

stationary phases are its easy preparation, facile functionalization and outstanding 

chemical stability over a wide pH range [2-4]. These monoliths are usually 

prepared via a free-radical polymerization of a mixture containing one or more 

functional monomers, including a cross-linker, a porogenic solvent and an 

initiator. Heat [5-13] and UV irradiation [10, 14-20] are the most common ways 

of initiating polymerization. Photopolymerization provides several advantages 

over thermal initiation such as fast preparation, higher bed uniformity and easy 

selection of polymerization regions by using masks, which is particularly 

important in relation to the manufacturing of microfluidic chips [21]. However, 

UV initiation requires the use of transparent capillaries, which are not compatible 

with some commercially available instruments (i.e. conventional and capillary LC 

systems), being thermal initiation commonly adopted. Additionally, thermal and 

UV initiation need a water bath or a UV lamp to initiate the polymerization 

reaction, respectively. Apart from heat and UV light, the polymerization of 

acrylate or methacrylate monoliths can also be initiated by redox initiators [22-24]. 

Usually, the redox initiation system for these monoliths contains a peroxide 

oxidant and an aromatic amine reductant that compose the redox initiator-couple.  

On the other hand, most of literature concerning acrylate-based monoliths 

is focused on the use of short alkyl chain monomers, such as butyl acrylate [9, 14, 

16] and hexyl acrylate [15, 25-27] as bulk monomer. However, few studies related 
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to the employ of other longer alkyl chain non-polar monomers such as lauryl 

acrylate (LA) [9, 24, 28], stearyl acrylate [5-7] or octadecyl acrylate [29-32] can 

be found.  

Furthermore, the search of an adequate initiator compatible with the 

initiating systems described in this paper for the synthesis of long alkyl chain 

monolithic columns is not a trivial task. In this way, lauroyl peroxide (LPO), as 

other diacyl peroxides, constitutes a source of free radicals when decomposed by 

thermolysis, UV irradiation or activated by several promoters such as tertiary 

amines [33-35]. In fact, this compound has been employed as thermal- [10, 36, 37] 

and photo-initiator [10, 38] for the preparation of methacrylate/acrylate monoliths 

and also its combination with N,N,N’,N’-tetramethylethylenediamine (TEMED) 

has demonstrated to be a feasible choice as chemical initiating system for the 

preparation of LA-based monoliths [24]. Thus, LPO could constitute a good 

candidate to perform a comparative study between these radical polymerization 

modes to obtain long alkyl chain acrylate-based monolithic columns. To our 

knowledge, this investigation has not yet been described in the literature. 

In this work, the preparation of ODA-based monolithic columns for CEC 

by photochemical, thermal and chemical initiation is described. The influence of 

porogenic solvent composition on morphological and CEC properties was 

evaluated for each initiation system. SEM images were used to characterize the 

morphology of monoliths, whereas CEC performance of different columns was 

evaluated by measuring the retention factor and efficiency of a test mixture of 

neutral solutes. Additionally, a comparison in terms of efficiency, permeability and 

reproducibility of columns polymerized under each initiating mode was 

performed. 
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7.2. Experimental 

7.2.1 Chemicals and materials 

ODA, 1,3-butanediol diacrylate (BDDA), [2-(methacryloyloxy)ethyl] 

trimethyl ammonium chloride (75% in water, META), 1,4-butanediol, LPO and 3-

(trimethoxysilyl)propyl methacrylate were purchased from Aldrich (Milwaukee, 

USA); 1-propanol, ACN and methanol were obtained from Scharlau (Barcelona, 

Spain); TEMED and Tris were provided by Fluka (Buchs SG, Switzerland). 

Thiourea and the following polycyclic aromatic hydrocarbons (PAHs) standards: 

naphthalene, fluorene, phenanthrene, anthracene, pyrene, benz[a]anthracene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, perilene, benzo[e]pyrene, 

benzo[a]pyrene, dibenz[a,h]anthracene and benzo[g,h,i]perilene (Riedel de Haën, 

Seelze, Germany) were used. Deionized water was obtained by using a Barnstead 

deionizer (Sybron, Boston, MA). Uncoated fused-silica capillaries of 375 µm od 

× 100 µm id with either polyimide or UV-transparent coating (Polymicro 

Technologies, Phoenix, AZ, USA) were used. 

7.2.2 Instrumentation 

CEC experiments were performed on a HP3DCE instrument (Agilent 

Technologies, Waldbronn, Germany) equipped with a diode array UV detector and 

connected to an external nitrogen pressure source. Data acquisition was performed 

with ChemStation Software (Rev.A.10.01, Agilent). Prior to use, all mobile phases 

for CEC were degassed with a D-78224 ultrasonic bath (Elma, Germany). To 

photoinitiate polymerization, the capillaries were placed into an UV crosslinker 

(Model CL1000) from UVP (Upland, CA, USA) equipped with 5 UV lamps of 8 

W emitting a wavelength of 254 nm. SEM images were taken with a scanning 

electron microscope (S-4100, Hitachi, Ibaraki, Japan) provided with a field 

emission gun, a back secondary electron detector and an EMIP 3.0 image data 
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acquisition system (Rontec, Normanton, UK). For SEM analysis, the capillary 

ends were cut off and the capillary tube was fixed to the sample holder, through 

the use of double-sided carbon type. Then, they were sputtered with a thin Au/Pd 

layer. The photomicrographs of the monoliths materials were taken at 10 kV under 

several magnifications (900 or 9000 ×), according to the best visualization of the 

morphology of the stationary phase. 

7.2.3 Preparation of polymeric monolithic columns 

To ensure covalent attachment of monolithic beds to the inner capillary 

wall, a previous surface modification of this wall was performed with 3-

(trimethoxysilyl)propyl methacrylate [3]. Monoliths were prepared from 

polymerization mixtures obtained by weighing amounts of ODA (functional 

monomer), BDDA (crosslinker), META a (a positively charged monomer to 

generate EOF), and as porogenic solvents, 1,4-butanediol and 1-propanol, and 

LPO as initiator. The details of compositions of the monolith solutions prepared 

are given in Tables 7.1-3. After mixing these compounds, polymerization mixtures 

were sonicated for 10 min and purged with nitrogen for 10 min.  

For each initiating system, one end of a 33.5 cm long modified capillary 

was immersed in the final polymerization mixture and filled up to a length of either 

8.5 or 25 cm. Thermal polymerization was performed at 70ºC for 20 h, whereas 

UV initiation was carried out at room temperature at 0.9 J/cm2 (maximum 

irradiation energy supplied by the crosslinker oven) for 10 min. For chemical 

polymerization, a proper amount of a 40 wt% TEMED solution in methanol was 

added to reach a 1.5 wt% TEMED in the polymerization mixture, and the 

polymerization reaction proceeded at room temperature for 24 h.  

After polymerization and using an HPLC pump, the resulting columns were 

flushed first for 30 min with methanol, thus to remove the pore-forming solvents 

and any possible unreacted components, and then with mobile phase. When it was 
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required, a detection window was made adjacent to the monolithic material by 

burning the polyimide coating. 

Table 7.1. CEC properties of ODA-based monoliths prepared by photo-polymerization 
1,4-Butanediol/ 

1-propanol 
(wt/wt) 

u  
(mm s-1)a kpyrenea 

Hmin 

naphthalene 

(μm) 

Hmin  

anthracene 
(μm) 

Hmin  

benzo(k)fluorantene 
(μm) 

25:75 3.40 NMb NMb NMb 41.8 

20:80 3.15 2.18 15.7 17.8 15.2 

17:83 3.02 2.86 10.7 8.5 6.9 

10:90 2.90 2.94 20.6 14.4 9.4 

6:94 1.94 3.84 23.4 19.7 17.3 

aFlow rate and retention measured at 25 KV. Mobile phase, 80:20 (v:v) 
ACN:water (5 mM Tris buffer pH = 8.0). 
bNot measured 

 

Table 7.2. CEC properties of ODA-based monoliths prepared by thermal initiation with 
LPO 

1,4-Butanediol/ 
1-propanol 

(wt/wt) 

u  
(mm s-1)a kpyrenea 

Hmin 

naphthalene 

(μm) 

Hmin  

anthracene 
(μm) 

Hmin  

benzo(k)fluorantene 
(μm) 

25:75 2.57 1.92 NMb NMb 53.0 

20:80 1.96 2.72 21.5 24.3 22.9 

17:83 1.68 3.74 18.4 18.4 17.9 

14:86 1.42 4.21 31.5 31.2 28.7 

aMeasured in the same conditions as Table 7.1. 
bNot measured. 
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Table 7.3. CEC properties of ODA-based monoliths prepared by chemical initiation with 
LPO-TEMED 

1,4-Butanediol/ 
1-propanol 

(wt/wt) 

u  
(mm s-1)a kpyrenea 

Hmin 

naphthalene 

(μm) 

Hmin  

anthracene 
(μm) 

Hmin  

benzo(k)fluorantene 
(μm) 

17:83 2.14 2.70 23.3 21.2 14.3 

10:90 2.20 2.95 17.5 15.4 13.2 

6:94 2.10 3.17 12.6 9.0 6.5 

3:97 1.94 3.91 31.5 25.2 16.7 

aMeasured in the same conditions as Table 7.1. 
 

7.2.4 CEC procedures 

Each monolithic column was placed in the CEC instrument and equilibrated 

with mobile phase by applying a stepwise increase in voltage from 5 kV up to 25 

kV, until a stable current and baseline was observed at each voltage. Separations 

were performed at 25 ºC and at several voltages. In all cases, nitrogen was used to 

pressurize at 10 bar (1 MPa) both vials. To prepare mobile phases, an aqueous 100 

mM Tris buffer was adjusted to pH 8.0 with 1 M HCl, diluted and mixed with 

ACN at several volume ratios. A total Tris buffer content of 5 mM was used in the 

resulting mobile phases. Test mixtures containing PAHs (six or thirteen) and 

thiourea as EOF marker (100 µg mL-1 of each compound) were prepared in mobile 

phase and used to evaluate the CEC performance of columns. The sample solution 

was injected electrokinetically at 5 kV for 3 s. Detection was performed at 214 and 

254 nm. 

Chromatographic permeability of columns (K) was determined by using 

Darcy’s law: 

P
uLK

∆
⋅⋅

=
η          (7.1) 
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where η is the mobile phase viscosity, L the column length, u the average mobile 

phase velocity and ∆P the pressure drop across the column. K was measured in the 

CEC instrument by injecting thiourea in 8.5 cm long columns and applying a 

pressure of 10 bar to move it from the outlet end to the detection window. The u-

value was obtained as the ratio between monolithic bed length and retention time 

of thiourea. The viscosity of the 80:20% (v/v) ACN:H2O was taken as 5.3⋅10-4 Pa⋅s 

[39].  

7.3. Results and discussion 

7.3.1 Preparation and characterization of photo-, thermal- and chemical-

initiated ODA-based monolithic columns 

The conditions to prepare photopolymerized ODA-based monoliths were 

adapted from a previous work, where LA-based monoliths were synthetized using 

LPO as initiator [24]. The selected composition contained 40 wt% of monomers 

(69.8 wt% ODA, 29.9 wt% BDDA and 0.3 wt% META) and 60 wt% of porogens 

(17 wt% 1,4-butanediol, 83 wt% 1-propanol). When a PAH test mixture was 

injected in this monolith, a satisfactory separation of all the analytes was achieved 

(Fig. 7.1).  

 



Chapter 7. ODA monoliths for CEC 
 

 
237 

 

 
Fig. 7.1. CEC separation of a PAH test mixture in ODA-based monoliths of optimized 

composition prepared by UV irradiation. Details of composition of the polymerization 

mixtures are given in the text. CEC conditions: mobile phase, 80:20% (v/v) ACN: 5 mM 

Tris (pH = 8.0); 8.5 cm monolithic bed length; UV detection at 254 nm; applied voltage, 

25 kV; injection, 5 kV for 3 s. Peak identification: (1) thiourea, (2) naphthalene, (3) 

fluorene, (4) anthracene, (5) pyrene, (6) benz[a]anthracene and (7) benzo[b]fluoranthene. 

In order to check the possibility of achieving shorter analysis time while 

keeping satisfactory resolution between analytes, the influence of porogenic 

solvent composition on the monolith morphology and CEC performance was next 

investigated (Table 7.1). For this purpose, morphology was evaluated by SEM 

images, and the mixture of PAHs was used to measure the retention and efficiency 

values (by giving the minimum plate heights, Hmin obtained from van Deemter 

plots). 

When the ratio of 1,4-butanediol/1-propanol was reduced (from 25:75 to 

6:94), a decrease in u-values and an increase in the retention properties (k-values) 

of columns were produced. This behaviour was consistent with SEM pictures of 

these monoliths (Figs. 7.2A and 7.2B), where a decrease in the size of globules 

and voids was observed with decreasing 1,4-butanediol content. Similar effect of 
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the composition of porogens on the monolith morphology has been also reported 

for monoliths prepared by UV-initiated polymerization [10, 38].  

Regarding to the efficiency, the 17:83 (wt/wt) 1,4-butanediol/1-propanol 

ratio provided the best Hmin values (6.9-10.7 µm) with low mass transfer 

contributions (C-term) (6.3-11.0 ms), giving naphthalene the highest deviating 

mass transfer behavior. Fig. 7.3A shows the van Deemter plot obtained for the 

optimal photopolymerized ODA-based monolith for naphthalene, anthracene and 

benzo[k]fluorantene. Fig. 7.1 shows the separation of PAH solutes obtained under 

the best polymerization conditions for UV-initiated ODA monoliths. 

 
Fig. 7.2. SEM photographs of ODA-based monoliths polymerized under different 

initiating systems: Photopolymerized(UV-initiated) columns prepared at several ratios 

1,4-butanediol/1-propanol: (A) 17:83 and (B) 6:94 (wt/wt), (C) thermally initiated 

monolith prepared with 17:83 (wt/wt) 1,4-butanediol/1-propanol, and (D) chemically 

initiated monolith prepared with 6:94 (wt/wt) 1,4-butanediol/1-propanol. Other details of 

polymerization conditions are given in the text.  

BA

DC
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Fig. 7.3. Van Deemter plots of ODA-based monolithic columns of optimized composition 

prepared by (A) UV irradiation, (B) thermal and (C) chemical initiation. Compounds: (♦) 

naphthalene, (▲) anthracene, (+) benzo[k]fluoranthene. CEC conditions: mobile phase, 

80:20% v/v ACN: 5mM Tris (pH = 8.0); UV detection at 254 nm; injection, 5 kV for 3 s. 

A similar optimization study of the porogenic solvent composition was 

performed with thermally and chemically polymerized monoliths. Thus, a series 

of thermal ODA-based monolithic columns were first prepared by modifying the 

percentage of 1,4-butanediol in the porogenic solvent, at fixed ratios of 

monomers/porogens (40:60 wt%) and ODA/BDDA (70:30 wt%) (Table 7.2). 

Monoliths prepared at ≤ 10:90 (wt/wt) 1,4-butanediol/1-propanol exhibited poor 

permeabilities, whereas ratios above 25:75 (wt/wt) led to poor separation 

performances. As shown in Table 7.2, when the 1,4-butanediol/1-propanol ratio 

was decreased, a decrease in u- and an increase in k-values were observed. This 

behavior was consistent with the SEM pictures of these monoliths (see Fig. 7.S1) 

and with that previously described in several reports for thermal polymerization 

[3, 4, 8, 10, 37]. An example of porous structure of these monoliths (prepared at 

17:83 (wt/wt) 1,4-butanediol/1-propanol) is given in Fig. 7.2C. 

The column efficiency was also evaluated on thermally polymerized 

monoliths. As shown in Table 7.2, the limits of the studied range of 1,4-butanediol 

(14:86 and 25:75 wt/wt) gave the highest Hmin values, which could explained as 

follows. The low efficiency achieved for the lower limit of 1,4-butanediol range 
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could be explained by the peak broadening resulting from the double-layer overlap 

[4, 8]. On the other hand, the upper limit could be justified taking into account the 

large globule size found at this 1,4-butanediol content (see Fig. 7.S1). Fig. 7.3B 

shows the van Deemter plot for the column prepared with 17:83 (wt/wt) 1,4-

butanediol/1-propanol using the PAH analytes. Using these column, the solutes 

provided the lowest Hmin from thermally initiated ODA-based monoliths, with C-

term values comprised between 11.4 and 17.3 ms. Fig. 7.4 shows the 

electrochromatogram of the PAH test mixture obtained under the best 

polymerization conditions for thermal ODA-based monoliths. 

 
Fig. 7.4. CEC separation of a PAH test mixture in ODA-based monoliths of optimized 

composition prepared by thermal initiation. Details of composition of the polymerization 

mixtures are given in the text. Other conditions as in Fig. 7.1. 

Next, the preparation of ODA monolithic columns by chemical 

polymerization was carried out. The influence of 1,4-butanediol/1-propanol on 

CEC properties is shown in Table 7.3. Thus, the 1,4-butanediol content was varied 

between 3 and 17 wt% in the porogenic solvent. Columns made with < 3 wt% 1,4-

butanediol showed a reduced permeability with certain resistance to flow, giving 
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minor variations in u-values, with a slight increase in k-values were observed. This 

behavior was consistent with the SEM pictures, where small changes in 

morphology along the studied 1,4-butanediol range were observed (Fig. 7.S2). 

This trend was in agreement with that previously reported for methacrylate and 

acrylate monoliths prepared by chemical initiation mode [22-24]. A representative 

example of porous structure of these monoliths is given in Fig. 7.2D. Since the 

effect of porogenic solvent composition on porous properties of chemical column 

is less pronounced in chemical ODA monoliths than in UV- and thermal-initiated 

ODA columns, this initiation mode is more suitable for a fine control of the pore 

size of ODA-based monoliths.  

Regarding to the efficiency, chemical initiated monoliths prepared with 6 

wt% 1,4-butanediol in the porogenic solvent provided the best Hmin values ranged 

between 6.5 and 12.6 µm, with very low C-term values ranged between 3.0 and 

8.4 ms (see van Deemter curves given in Fig. 7.3C). Under these optimum 

polymerization conditions, the PAHs were separated within 5 min (Fig. 7.5). 

 
Fig. 7.5. CEC separation of a PAH test mixture in ODA-based monoliths of optimized 

composition prepared by chemical initiation. Details of composition of the 

polymerization mixtures are given in the text. Other details as in Fig. 7.1.  
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7.3.2 Comparison of photo-, thermal- and chemical-initiated ODA based 

monolithic columns 

Although different experimental conditions (polymerization temperature, 

1,4-butanediol/1-propanol ratio, etc.) have been employed for each initiation 

mode, several findings related to the morphology and CEC performance for each 

polymerization process could be derived and critically discussed. The features of 

columns prepared under similar 1,4-butanediol range, are shown in Tables 7.1-3. 

At a given 1,4-butanediol/1-propanol ratio (i.e. 17:83 wt/wt), photoinitiated 

columns gave lower retention than the corresponding thermal columns, whereas 

the chemical monoliths showed similar k-values than those obtained for UV 

initiation. These results were consistent with SEM pictures of these monoliths 

(Figs. 7.2A, 7.2C and 7.2D), showing that thermally polymerized monoliths had 

smaller globule sizes compared with the photo- and chemical-initiated ones.  

The different retention characteristics showed for each polymerization 

process could be attributed to the differences in preparation conditions. The 

differences in 1,4-butanediol content and polymerization temperature will affect 

the solvating power and viscosity of the porogenic solvents, and consequently the 

morphological properties of the resulting polymers [40]. Furthermore, the 

temperature causes variations in the polymerization kinetics [41, 42]. Thus, the 

low polymerization temperature used in photopolymerization (room temperature 

in this work) in relation to that selected for thermal initiation (70ºC) favors a 

reduction in the decomposition rate of the initiator, the number of growing radicals 

and the overall polymerization rate [41, 43]. The formation of lower number of 

chains but with longer chain lengths is preferentially produced compared with 

polymerization at higher temperatures, where short-chain polymers are generated, 

giving as a result, monoliths with larger pore and globule size [40, 41, 43]. 

Furthermore, a change in solvency of porogens could result from an increase in the 
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polymerization temperature. Then, an increase in the solubility of the monomer 

could happen, thereby resulting in late phase separation, giving differences in 

morphology between thermal and UV initiation modes. Also, differences between 

the nucleation mechanisms observed for the chemical mode compared to UV- and 

thermal-initiated polymerizations should be considered. As we described in Tables 

7.1-3, in general, better efficiencies were achieved for photo- and chemical 

polymerized columns than for those thermally initiated. The optimum thermal 

polymerized column showed higher Hmin values for PAHs (17-9-18.4 µm) and 

slightly worse C-term values (11.4-17.3 ms) than those obtained for photo- and 

chemical polymerized monoliths. A comparison in terms of efficiency with 

reported monolithic columns synthetized with ODA was also performed. Thus, our 

efficiencies were slightly higher than those obtained for neutral ODA columns 

thermally initiated with AIBN [29], where the average Hmin values for alkyl 

benzene compounds was ca. 6 µm.  

Figs. 7.1, 7.4 and 7.5 shows the CEC separation of a test mixture of PAHs 

in ODA monoliths polymerized by UV irradiation, thermally and chemically 

respectively under its respective optimal conditions. As observed, the photo- and 

chemical initiated columns showed similar efficiencies, although the former one 

provided shorter analysis time. The monoliths thermally initiated gave the lowest 

efficiencies and the longest analysis times.  

The significant differences shown above in monolithic structure between 

the different initiated monoliths gave rise to changes in permeability. Thus, the 

permeability measured for the optimal photoinitiated monolith was 7.8⋅10-13 m2, 

the chemically initiated monolith was 5.1⋅10-13 m2 whereas thermally polymerized 

column was 8.5⋅10-15 m2. These permeability differences could deteriorate the 

quality of separation or even hindering the preparation of long monolith columns. 

When a test mixture containing thiourea and 13 PAHs was injected in ODA 
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columns of bed length of 25 cm polymerized by UV irradiation, thermally and 

chemically under its respective optimal polymerization conditions, excellent 

separations of all analytes were achieved for photo- and chemical polymerized 

monoliths within 20-25 min (Fig. 7.6). However, the monolith thermally initiated 

gave lower efficiencies, with some peak coelutions in a longer analysis time. 

 
Fig. 7.6. CEC separation of a test mixture containing thiourea and 13 PAHs in ODA-

based monoliths of optimized composition prepared by (A) UV irradiation, (B) thermal 

and (C) chemical initiation. Details of composition of the polymerization mixtures are 

given in the text. CEC conditions: mobile phase, 70:30% (v/v) ACN: 5 mM Tris (pH = 

8.0); 25 cm monolithic bed length; UV detection at 254 nm; applied voltage, 25 kV; 

injection, 5 kV for 3 s. Peak identification: (1) thiourea, (2) naphthalene, (3) fluorene, (4) 

phenanthrene, (5) anthracene, (6) pyrene, (7) benz[a]anthracene, (8) 

benzo[b]fluoranthene, (9) benzo[k]fluoranthene (10) benzo[e]pyrene, (11) perilene, (12) 

benzo[a]pyrene, (13) dibenz[a,h]anthracene and (14) benzo[g,h,i]perylene.  

 

The reproducibility of monolithic columns prepared using the three initiating systems 

was also evaluated. For this purpose, polymerization mixtures that provided the optimum 

separation performance in each polymerization process were selected. Several column 

parameters (EOF time, retention factor of pyrene and Hmin of naphthalene) were 

determined to both test column-to-column and batch-to-batch reproducibilities. Three 

separated batches of three columns for each polymerization process (photochemically, 

thermally or chemically initiated), yielding a total of eighteen columns, were prepared 

and examined. The results are summarized in Table 7.4. The column-to-column 

reproducibility obtained for UV-initiated ODA-based monoliths was satisfactory with 
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RSD values for the three parameters comprised between 4.1 and 6.2%. These values were 

very similar to those obtained for thermal (4.5-6.7%) and chemical (3.8-5.4%) 

polymerized columns. The batch-to-batch reproducibilities were also examined in both 

columns, and quite acceptable RSD values for photo-polymerized (9.2%), thermal 

(10.6%) and chemical (9.8%) monoliths were achieved, which confirmed the good 

reproducibility of both column fabrication processes. 
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7.4. Conclusions 

ODA-based monolithic columns for CEC have been prepared using either 

UV irradiation, thermal and chemical initiation. Photo- and thermal-polymerized 

columns were initiated with LPO, whereas the couple LPO-TEMED was used for 

chemical polymerization. The effect of composition of porogenic solvent on the 

porous and chromatographic properties for each initiating system has been studied. 

Differences in retention properties and morphologies observed for each initiation 

mode could be explained taking into account several factors such as 

polymerization temperature, 1,4-butanediol/1-propanol content, nucleation 

mechanism, among others. Additionally, under chemical initiation system, a fine 

control of the pore size in monoliths over the 1,4-butanediol/1-propanol ratio could 

be more easily accomplished with respect to the other initiating systems. Under 

optimized conditions, a comparison in terms of efficiency, permeability and 

reproducibility, for the three initiation modes was performed. Columns synthetized 

under UV- and chemical-initiation showed higher permeabilities and better 

efficiencies than those prepared by thermal. Besides, UV initiation provides a fast 

preparation of monoliths, whereas the chemical initiation does not require 

additional equipment (water bath or UV lamp) for its synthesis. These good 

features make both initiation modes excellent candidates to be used in the 

preparation of long monolithic columns and miniaturized devices. Additionally, 

the three initiating systems provided a satisfactory column-to-column and batch-

to-batch reproducibilities in their electrochromatographic behavior.  
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Supplementary Material 

 
Fig. 7.S1. SEM photographs of ODA-based monoliths thermally polymerized at different 

ratios 1,4-butanediol/1-propanol: (A) 25:75 and (B) 14:86 (wt/wt). Other details of 

polymerization conditions are given in the text.  

 
Fig. 7.S2. SEM photographs of ODA-based monoliths chemically polymerized at 

different ratios 1,4-butanediol/1-propanol: (A) 17:83 and (B) 3:97 (wt/wt). Other details 

of polymerization conditions are given in the text.  
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This PhD thesis reports the development of advanced chromatographic 

methods for the determination of different families of surfactants present in raw 

industrial material and household cleaning products. The proposed methods try to 

cover the demand of the industries to have reliable quality control methods to 

properly check raw materials and their products to secure that they are produced 

according to the laws that regulate their manufacture. In this sense, the analysed 

samples are complex mixtures of surfactants and other components, representing 

difficult analytical challenges. Another part covered by this thesis was the 

development of ODA monolithic columns for capillary electrophoresis comparing 

different initiation methods for their polymerization. 

In this section of the PhD Thesis and, as required by the aforementioned 

regulations of the University of Valencia, a summary of the results and the most 

relevant conclusions is presented. 

 

Part I: Revision on derivatization reactions of hydroxyl groups 

I. Derivatization of hydroxyl functional groups for liquid chromatography 

and capillary electroseparation 

Derivatization reactions are frequently used to introduce a chromophore or 

a fluorophore to an analyte in order to achieve detection or enhance the detection 

signal in UV, fluorescence or MS. In this revision, we focused on the derivatization 

of molecules bearing hydroxyl functional groups for their analysis by liquid 

chromatography and capillary electrochromatography. 

The derivatization methods have been classified by the reactive group of 

the derivatizing agent, including acyl chlorides, organic anhydrides, isocyanates 

and other miscellaneous derivatization reactions. The reactions and methods have 
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been conveniently sorted in a series of tables for a global overview of the main 

features of each method.  

Most of the reviewed reactions are used to introduce a chromophore or a 

fluorophore in analytes having an aliphatic alcohol group, in order to enable their 

detection or to enhance sensitivity. Other reactions are addressed to introduce an 

ionisable group or a permanent charge to perform CE separations, enhance MS 

sensitivity or decrease volatility, thus to enhance the sensitivity of volatile analytes 

in evaporative detectors. 

 Concerning to the applications, a high amount of the reviewed reactions 

involve the derivatization of analytes with hydroxyl functional groups which are 

of interest in industrial quality control and evaluation of the environmental impact 

of non-ionic aliphatic surfactants (mainly FAE), and other compounds of industrial 

interest as ethylene glycol and their condensed polymers such as PEG, glycerine 

based polyols or light aliphatic alcohols. The derivatization of other remarkable 

substances in the biological field such as hormones, mono- and di- glycerides or 

endocrine disruptors has been also covered. The studied matrices in all these 

methods comprise from typical environmental samples as fresh water, wastewater, 

sediments and sludges to biological matrices as cell cultures, biological fluids or 

tissues, also including several industrial samples as raw materials, food and 

beverages.  

 

Part II: Chromatographic methods for surfactant analysis 

II.1. Single-pump heart-cutting two-dimensional liquid chromatography 

applied to the determination of fatty alcohol ethoxylates 

In this work, the application of a heart-cutting bi-dimensional liquid 

chromatography system driven by a single pump and using an auxiliary 6-port 2-
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position valve (V6/2) and a column selector valve (VCS) for the determination of 

fatty alcohol ethoxylates in raw materials has been developed. 

First, the selection of the stationary and mobile phases for both the first and 

the second dimensions were made according to the properties of the FAE 

oligomers. The separation of the FAE oligomers within the hydrocarbon series is 

well performed with C8 columns and ACN/water mixtures, thus these conditions 

were chosen as second dimension. For the first dimension separation, different 

alkyl columns were tried. The use of ACN/water gradients on a C8 column did not 

permit the separation of the series without also separating the oligomers within 

them. On the contrary, single peaks for each series were achieved using 

MeOH/water gradients. An improvement of the inter-series resolution and a short 

analysis time was achieved at 60 ºC. As aforementioned, in the second dimension 

separation with ACN/water gradients on a C8 column at 25 ºC were used for the 

oligomer separation, optimizing the starting and ending concentrations of the ACN 

gradients according to the length of the hydrocarbon chain of each series. Mixtures 

of FAE containing both even and odd hydrocarbon series with long EO chains 

were well resolved along the 1st dimension, and the EO oligomers within the series 

were well separated along the second dimension. 

The optimized LC-LC separation was used for the determination of FAE 

and the proportion of the hydrocarbon series in industrial samples. For this 

purpose, an average response factor of the series has been proposed. These factors 

take into account the different UV-vis response factor of the EO oligomers and 

have been tabulated for each series as functions of n and m . The average response 

factors are used to correct the peak areas of the isolated series along the 1st 

dimension chromatogram. It has also been demonstrated that the average response 

factors depend slightly on m  when m >5. This allows the use of inaccurate values 

of m  without diminishing the accuracy of the determinations. 
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In conclusion, a heart-cutting bi-dimensional liquid chromatography setup, 

constructed with a chromatograph provided with a single pump, an auxiliary 6-

port 2-position valve and a column selector valve can be used for the 

characterization of raw FAE samples. In the first dimension FAE are separated 

according to their hydrocarbon chain, whereas in the second dimension each FAE 

series can be separated according to the length of the EO chain. Orthogonality in 

the separation is achieved by using complementary mobile phases in the different 

dimensions. An average response factor of the hydrocarbon series for the 

correction of the peak areas was also proposed. 

 

II.2. Determination of the four major surfactant classes in cleaning products 

by reversed-phase liquid chromatography using serially connected UV and 

evaporative light-scattering detection. 

A method for the simultaneous determination of the most frequently used 

surfactant families- LAS, AES, FAE and oleins (soaps, fatty acid salts) in cleaning 

products using a single chromatographic injection, has been developed. The 

common reversed phases octyl (C8), pentafluorophenyl and biphenyl were not 

capable of separating the anionic LAS and AES classes; however, since only LAS 

absorbs in the UV, these two classes were independently quantified using a C8 

column and serially connected UV and ELSD detectors.  

Different RP columns (C8, F5 and BP) as well as combinations of serially 

connected columns were tried. Concerning to the mobile phase, both ACN/water 

and MeOH/water gradients were tried. The best results to resolve the four 

surfactant classes and the oligomers within the classes was achieved with a C8 

column and an ACN/water gradient. To enhance retention of the anionic 

surfactants, ammonium acetate, as an ion-pairing agent compatible with ELSD 

detection, was used. The presence of the ionic additive did not modify the elution 
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of the FAE and olein components. The presence of acetic acid in the mobile phase 

was also studied and was observed that it mainly affected the retention of the olein 

peaks with respect to the FAE oligomers. Modulation of the mobile phase was 

implemented using ammonium acetate during elution of LAS and AES, and acetic 

acid after elution of LAS and AES, in order to enhance retention of LAS and AES 

and independently shifting the peaks of the olein components according to the pH 

of the mobile phase. Finally, the effect of the temperature was also investigated, 

being significant in the resolution of the EO oligomers, but mantaining practically 

invariable the separation of the rest of surfactants. The optimized chromatographic 

method consisted in the separation on a single C8 column with a gradient starting 

from 40 % until a 90 % ACN in 40 min in the presence of 10 mM NH4AcO before 

t = 12 min and using 17.5 mM HAcO afterwards at 15 ºC. 

Quantitation of the overlapped LAS and AES classes was achieved by using 

the UV detector to quantitate LAS and the ELSD to determine AES by substraction 

of the LAS concentration to the total LAS and AES concentration. However, 

sensitivity was influenced by the LAS/AES ratio. Two strategies were tried to 

overcome this difficulty. The first approach was to use a simple linear calibration 

model to calculate the AES concentration, which considers both the LAS 

concentration and the ELSD signal as the sum of LAS and AES. Also, it was 

observed for LAS and AES mixtures, that in the region of 0.1 ≤ % LAS ≤ 0.5 the 

sensitivity depended only slightly on the percentage of LAS. To avoid bias, the 

alternative solution was to use only standard and samples within these 

concentration limits. To do so, samples were spiked with a large fixed amount of 

AES. The values of the AES concentration of the samples were obtained by 

subtracting the known amount from the predicted AES concentration. The LODs 

and LOQs were 2 and 6 mg L-1 for LAS and 20 and 60 mg L-1 for AES respectively. 
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Determination of the FAE and olein can be easily done with their individual 

calibration curves. The areas of the FAE peaks overlapping with olein peaks were 

established as the average area of the two neighboring FAE oligomers. The 

corrections slightly increased the positive errors of FAE and decreased that of 

oleins. The LODs and LOQs were 50 an 150 mg L-1 for FAE and 10 and 30 mg L-

1 for oleins, respectively. 

In conclusion, a chromatographic method for the simultaneous 

determination of the four major surfactant classes in cleaners by RP-HPLC using 

a single run was developed. The separation was achieved by mobile phase 

modulation, consisting on a change of the mobile phase additives, i.e. ammonium 

acetate in a first elution stage and acetic acid afterwards. Also, the lack of a proper 

method to resolve LAS and AES oligomers, and therefore their proper 

quantitation, was overcomed by the use of serially connected UV and ELSD 

detectors. Finally, the problem of the variation of sensitivity of the ELSD response 

with the LAS/AES ratio was tackled by increasing the AES concentration of the 

samples. 

 

Part III: Monolithic stationary phases 

III.1. Preparation and characterization of octadecyl acrylate monoliths for 

capillary electrochromatography by photochemical, thermal and chemical 

initiation 

In this work, monolithic stationary phases based on octadecyl acrylate for 

CEC using different initiating systems (UV irradiation, thermal and chemical 

initiation) in the presence of lauroyl peroxide as initiator were synthesized and 

their chromatographic performance was compared. The influence of porogenic 

solvent composition (1,4-butanediol/1-propanol ratio) on the morphological and 
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electrochromatographic properties was evaluated for each initiation system. The 

CEC performance of the different columns was evaluated by measuring the 

retention factor and efficiency of a test mixture of PAHs, whereas SEM images 

were used to evaluate the morphological characterization of the monoliths. 

 The comparison of the three initiation modes in terms of efficiency, 

permeability and reproducibility under optimized conditions was performed. It was 

observed that the photochemically and chemically polymerized monoliths gave 

better efficiencies (minimum plate heights of 6.9-10.7 and 6.5-12.6 µm, 

respectively) and higher permeabilities than the termally initiated columns, which 

also gave longer analysis times, compared to the other two inititation systems. 

Column-to column and batch-to-batch reproducibilities were also evaluated under 

optimal conditions giving RSD values below 9.2, 10.6 and 9.8 % for UV, 

thermally, and chemically initiated columns respectively. Further, UV initiation 

provides a fast way of monolith preparation, whereas chemical initiation does not 

require additional equipment (water bath or UV lamp). 

In conclusion, the preparation of octadecyl acrylate monolithic stationary 

phases using different initiating systems (UV irradiation, thermal, and chemical 

initiation) and the study of their CEC properties and morphology, revealed that UV 

and chemical initiation gave monolithic columns with the best performances, 

making both initiation modes excellent candidates to be used in the preparation of 

long monolithic columns and miniaturized devices. 
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Other developments 

This PhD thesis should also include three other chapters whose 

experimental parts are today finished, but the writing is still being done. Because 

of time requirments to present the thesis, these three parts have not been included 

in this report but have been recorded here to be considered as genuine part of the 

thesis. These three parts are next shortly comented: 

a) Comparative study of different chromatographic methods for the 

determination of biocides commonly used in cleaning products and cosmetics. 

b) Revision of the UNE-EN 14669 standard which establishes the standard 

method of determination of anionic surface agents and soaps in detergents and 

cleaning products, determining the associated errors in the application of the same. 

c) Study of the dependence of the ELSD response on analyte concentration. A 

dependence of the analyte concentration with the peak efficiency in the ELSD 

response has been determined to obtain linear calibrations, what makes possible to 

simplify the calculations carried out for the joint determination of LAS and AES 

described in Chapter 6. 
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