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Abstract

We show that the coupling of the “standard” Higgs boson to Majorons,
that could lead to a very fast decay of the neutral Higgs scalar to invisible
modes, can be bounded using astrophysical arguments. We discuss the
relevance of this bound for low-energy phenomenology related to majoron
production. The bound so obtained may also jeopardize the stability of
the VEV hierarchy in the doublet and triplet majoron models if the mass
of the top quark is less than the W mass. A similar analysis applies to
any model which exhibits Goldstone - or pseudo-Goldstone - bosons in

the spectrum.
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The idea that a natural framework for a solution of the standing solar neutrino problem
[?7] through matter enhanced neutrino oscillations [?] may be provided by the spontaneous
breaking of lepton number has been recently investigated by various authors [7,7]. In par-
ticular, a simple extension of the standard electroweak model in which the majoron [7,7],
the Goldstone boson associated with the spontaneous braking of lepton number, belongs to
an SU(2)p doublet has been proposed by the present authors [?] as a predictive model for
solar neutrino oscillations. Due to its minimality the model is in fact sharply constrained
by present phenomenology, thus allowing for a test of solar neutrino oscillation parameters
in conventional experiments. Among them, the new scalar contributions to neutrino-like Z°

decays and to y — ey provide two of the most sensitive tests [7].

In more recent papers we emphasized the relevance of the majoron-Higgs boson coupling
for some topical phenomenological issues, as a possibly large contribution to the I —
7t 4+ nothing decay [?] or an elusive decay to majorons as the main decay mode for
the “standard” Higgs boson over a large mass range [?]. In this respect it is particularly
interesting that the study of the stability of the vacuum-expectation-value (VEV) hierarchy,
present in general in non-singlet majoron models, leads, at the one-loop level to a relation
among scalar couplings which limits, as a function of the top mass, the arbitrariness of the

majoron-Higgs coupling [?].

In this paper we analize the consequences of the presence of the Higgs coupling to
majorons on the evolution of helium burning red giant stars. It is known that the emission
of light and weakly interacting particles in red giant stars may lead to a too rapid cooling
of the core, thus preventing helium ignition [7]. This generally leads to strong limits on the
rate of the processes associated with their production. In particular, for non singlet majoron

models these considerations are at the origin of the strong bound on the lepton breaking






VEV v (v£10 KeV [?]), related to majoron emission via the Compton process y+e — e+.J
(the coupling of the majoron .J to electrons is proportional to the mixing with the standard
doublet and, therefore, to the lepton breaking VEV). The process we consider here is the
analogous Compton emission in which two majorons are produced through the exchange of
a virtual Higgs boson which couples to electrons via the standard Yukawa coupling. Due
to the existing bound on v we may a priori expect this process to be highly competitive
with the single majoron emission and therefore lead to a sharp bound on the Majoron-Higgs
boson coupling. Our analysis shows indeed that the astrophysical constraint is suflicient
to limit the Higgs boson mediated contribution to the rare process Kt — n" + nothing
(through the JJ or prpr modes), which could be by far the dominant one [?], to be of the
same order of the gauge boson mediated contributions. The same bound, when applied to
the question of the stability of the VEV hierarchy under radiative corrections in non-singlet
majoron models, may require, for the perturbative consistency of the models, a top mass
heavier than the W mass. Affected by the bound is also the size of the contribution to the
width of the neutral Higgs boson related to “invisible” majoron modes. It is wortwhile to
remark that the phenomenological issues related to the majoron-Higgs boson coupling are
generally relevant for models which exhibit Goldstone or pseudo-Goldstone bosons, other
than the majoron. The “invisibile” axion of Dine, Fischler and Srednicki [?] provides an
example. The analysis and most of the conclusions of this paper, which explicitely refer to

the cases of the triplet and doublet majoron models, are easily extended to other models.

The most general form of the Higgs potential in models with Goldstone bosons exhibits
quartic terms that couple the standard Higgs doublet to the new multiplets introduced in the
model. These terms are in general required by the renormalizability of the theory and after
symmetry breaking lead to a coupling of the standard IHiggs boson to a pair of Goldstone

bosons proportional to the vacuum expectation value (VEV) of the standard doublet. In the
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case of the doublet and triplet majoron models the relevant coupling can be written as [?]

Lo~ ——qu(J? + p2)H (1)
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where uw ~ 174 GeV is the standard VEV and py, is the light scalar partner of the majoron
whose mass is of the order or smaller than the lepton breaking VEV v (m,, <10 KeV).
For the time being, we take the conservative approach of considering only majoron emission,
since the Compton emission of a pair of py,, otherwise analogous to JJ, may be kinematically

disfavoured.

In order to evaluate the energy loss due to the process depicted in fig. 1, we have to
evaluate the following expression
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where ¢ represents the energy emission per unit mass at temperature 7' due to the produc-
tion of two majorons of energy E; and FE, respectively, M being the S-matrix element for
the process considered. The electron and photon number densities dn. and dn., are given

respectively by
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where pu is the electron chemical potential and we have set the Boltzman constant to unit.
It is worth noting that for the densities and temperatures typical of a red giant star we have
Net+ << ne [7] and therefore we may neglect the energy loss due to the Compton scattering

over positrons. The three body phase space d®, is given, following the notation of fig. 1, by
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Finally, the factor 1 — f(E'), where f(E) = (e®=#/T 4 1)71, represents the Pauli blocking
effect, which, for electrons in a degenerate regime may substantially reduce the efficiency of

the reaction.

The expression in eq. (?7) can be greatly simplified if we consider that for temperatures
T ~ 10 KeV and densities p ~ 10* g/em?®, typical of red giant stars, we may use, to a good
approximation, the nonrelativistic and nondegenerate limit for the electron distribution. In
this limit we may replace E; + E» by E.,, neglect the Pauli blocking factor and write the
expression for the emissivity directly in terms of the cross section for the process under

consideration. After some trivial integrations one obtains
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The electron number density n, is related for a neutral plasma to the proton number density
np by ne — ne+ = ny,. In our case n. ~ n,, and considering that the chemical composition of
the star is dominated by Hydrogen and Helium we can write the electron number density as
ne = (p/2my)(1 + Xg), where Xpg is the fractional mass abundance of Hydrogen and my

is the nucleon mass.

The transition amplitude for the process ye — eJJ is readily written from the diagrams

in fig. 1:
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where we used the relations my = 4\ u* and Gp/ V2 =1 /4u? and e is the conventionally

)n%mmx

_ v
et Py — e De— by — e

defined proton charge. After averaging and summing over polarizations we obtain
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where m is the electron mass and the invariants s, u and s, are defined as s = (pe + py)?,

u = (p, — py)? and s, = (q1 + g2)*. Integrating over the three body phase space we finally

derive the (exact) expression
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where z = (s — m?2)/m? and the function f(z) is defined as
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In the nonrelativistic limit z — 2E,/m. < 1 and f(z) — 82*/15 . Thus the required cross

section in the nonrelativistic limit is given by

o(E,) = t— (11)
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where £ is a dimensionless parameter proportional to the relevant coupliugs
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We are now ready to evaluate the energy loss due to the emission of two majoron mediated

by the Higgs boson. By implementing the result of eq. (??) in eq. (?7) we obtain after

integration

ne 120€ T4C(6) (13)
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where ((6) = 7%/945 ~ 1.017. By comparing eq. (?77) with the corresponding expression
for the emissivity due to single majoron emission [7], one notices that the temperature
dependence is the same. This allows us to immediately obtain a bound on the majoron-
Higgs boson coupling from the result of ref. [7] on the majoron coupling to electrons :

gse < 1.4 x 1072, By simple substitution we obtain

As
2\

< 0.96 (14)






Before discussing the implications of the bound obtained in eq. (?7) let us recall that if
the mass of py, is substantially smaller than the typical temperature of the star (~ 10 KeV),
then the process ye — eprpr, will give a contribution comparable to the two majoron enus-
sion, thus further reducing the value of the bound by about a factor V2. 1t is also worth
noting that replacement of the virtual Higgs by Z° gives rise, in non-singlet majoron models,
to the process yve — eJpr . However, the derivative nature of the Z°Jpy coupling leads to
a further (T%/m?) suppression factor in the emissivity with respect to the two previously
considered processes. This is in fact analogous to the emission of neutrino-antineutrino pairs,
where the emissivity depends on T® as well [?,7]. In passing, let us remark that in a su-
pernova, where much higher temperatures (and densities) are present, the coherent neutral
current interaction ou heavy nuclei, responsible for the neutrino trapping, may also trap ma-
jorons (and pg), thus spoiling any bound on the lepton breaking VEV (or other couplings)
derived from the energy radiated in the SN87 event. In this case, finite temperature effects
have also to be taken into account, which may lead to the restoration of the lepton number

symmetry [?].

The bound of eq. (?77) affects a number of phenomenological issues. Among them is the
possible majoron contribution to the rare decay K+ — 7 + nothing [?]. The Higgs boson
mediated K+ — 7t + JJ, prpr processes could indeed produce a large enhancement with
respect to the standard model prediction BR(K* — nt + nothing) ~ 1071%. For instance,
for A3 ~ 0.1 and myg = 20 GeV the Higgs induced contribution to the decay rate would
produce an enhancement of more than two orders of magnitude with respect to the three
neutrino-antineutrino modes, leading to a BR at the verge of the present experimental limit.
Consideration of the bound of eq. (77) limits instead this contribution to be of the same

order of the standard ones.
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Another interesting issue is given by the possibility that the neutral Higgs boson decays
mainly in “invisible” majoron modes. This problem has been studied in some detail in ref.
[?]. Implementation of the bound here obtained in the aforementioned analysis shows that
the branching ratio to majorons is bounded to be less than 70% for a substantial interval of

the Higgs boson mass (dashed line in fig. 1 of ref. [?]).

Finally, the astrophysical bound on the Majoron-Higgs boson coupling may affect the
problem of the stability of the VEV hierarchy, generally present in non-singlet majoron
models [7,7]. In fact, if we were to take face value the result of eq. (77) together with
the conditions imposed, in the analysis of the VEV hierarchy, on the ratio Az/X; by con-
sidering only the gauge contributlions to the eflective Higgs potential, we would find some-
what problematic to reconcile the astrophysical bound with the relation required by per-
turbative stability in the Gelmini-Roncadelli model, namely )\gT) = 2(4 — n))\gT) [7], where
7 = 4cos? O /(1 4 2cos? Gy ) =~ 1.08. On the other hand, eq. (?7) would be barely consis-
tent with the analogous relation for the doublet majoron model, A3 = 2); [?]. We pointed
out however that the presence of a heavy top quark (m; > 50 — 60 G'eV') may substantially
modify the previous relations. The new condition for the triplet majoron is indeed given by
(1 —-nt)/\gT) = 2(4—17))\?) , with t = m{/mj,,, whereas for the doublet majoron model reduces
to (1 — nt)Az = 2X;. The astrophysical bound on the coupling allows us now to constrain
the range of variation of the top mass. In particular, we may conclude that the requirement
of stability of the VEV hierarchy in the triplet majoron model implies m; < 100 GeV with

a milder result for the doublet majoron model.

As a final remark, let us mention that consideration of extra-contributions to the energy
loss related to the the Majoron-Higgs bosou coupling, as the Bremsstrahlung production of

two majorons or plasmon eflects are expected, for the range of densities and temperatures






relevant for red giant stars, to give only a small correction to the bound, as can be infered

from the existing analysis of energy loss through neutrino [7,7] or one majoron emission [7].
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Figure Captions

Fig. 1 Leading diagrams contributing to the process vy e — e J J.
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