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1. Adult stem cells (SCs): functional units of homeostasis and tissue repair 

1.1. Tissue-specific SCs 

Adult stem cells (SCs) are unique tissue-resident cells with the ability to 

perpetuate (self-renewal) while producing new tissue-specific differentiated cells 

(multipotency) and represent the essential component for the maintenance of 

tissue homeostasis and repair in multicellular organisms (Barker et al., 2010). The 

totipotent zygote soon starts to divide after fecundation giving rise to the inner 

cell mass (ICM) and the trophectoderm (TE). During the initial stages of embryonic 

development, the pluripotent cells from the ICM expand until they generate the 

three germ layers (endoderm, mesoderm and ectoderm). From here and along the 

embryonic development, pluripotent cells start a process of increasing 

commitment losing their pluripotency and generating all the variety of 

differentiated tissue-specific cell types. However, not all the somatic cells are 

differentiated and discrete populations of multipotent SCs persist during the adult 

lifespan to ensure tissue renewal and a certain degree of tissue regeneration in 

response to injury (Fuchs et al., 2004; Weissman, 2000). 

In homeostatic conditions, SCs are relatively quiescent cells that divide 

infrequently to produce new SCs and non-renewing, rapidly cycling cells or transit 

amplifying progenitor (TAP) cells that will proliferate for a discrete number of 

cycles to eventually differentiate into functional cells of the particular tissue. This 

hierarchical relation represents a conservative mechanism that preserves the SC 

genomic integrity by limiting the number of times SCs divide thereby preventing 

their premature differentiation and guaranteeing the availability of SCs during 

adulthood. However, this process requires a finely regulated equilibrium between 

self-renewal, proliferation and differentiation to ensure efficient replacement of 

cells while limiting pathological situations such as cancer (Biteau et al., 2011). 
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The inherent abilities of SCs for tissue regeneration convert them, together 

with the use of embryonic pluripotent stem cell (ESC), in fundamental candidates 

for regenerative medicine and tissue repair. Thus, the identification of bona fide SCs 

and the understanding of their biology and regulation and how organs maintain 

and repair themselves in the postnatal organism are crucial requirements before a 

successful cell therapy is achieved. Furthermore, the evidences that cancer stem 

cells (CSCs) are originated from somatic SCs (Alcantara Llaguno et al., 2009; Barker 

et al., 2009; Lapouge et al., 2011; Youssef et al., 2010) not only reinforce the idea 

that a precise control of stem cell proliferation is required to prevent tumour 

formation, but also opens new perspectives for the identification of molecular 

similarities between CSCs and tissue-specific SCs that would undoubtedly yield new 

targets for cancer therapy. 

1.2. Dynamics and heterogeneity of adult SCs in homeostasis 

In the last decades, different SCs have been identified and proven to act as 

true stem cells in many tissues. The discovery of hematopoietic stem cells (HSCs) 

residing at the bone marrow represented the first demonstration about the 

existence of cells with self-renewal and multipotency properties (Till and Mc, 1961) 

and, since then, this system has played a leading role in the stem cell field and has 

greatly helped in setting the standards for the characterization of other tissue-

specific SCs (Weissman, 2000). The discovery of SCs in a variety of tissues with 

different cell replacement dynamics such as the intestinal epithelium, the hair 

follicles, the peripheral and central nervous system, the skin or the muscles has 

highlighted the existence of a remarkable diversity of SCs differing in their 

identifying markers, degree of multipotentiality, or proliferative dynamics and thus, 

contrary to what it was previously thought, SCs do not constitute a homogeneous 

population. Instead, they rather represent an ensemble of single cells in different 

proliferative states (quiescent or active) with different predispositions to respond 

to external stimuli (Biteau et al., 2011; Chaker et al., 2016; Li and Clevers, 2010) 
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(Figure 1). Nowadays there are known several tissues were quiescent and active 

SCs coexist and participate in the long-term cell turnover; however, it is not fully 

understood whether they represent two states of the same cell or they are rather 

different pools, being the quiescent SCs a reservoir of the active pool. In any case, 

in order to maintain tissue homeostasis, the SC activity actually seems to be 

controlled at different levels: (1) as mentioned above, the balance between self-

renewal, proliferation and differentiation; (2) the induction of SC proliferation in 

response to injury; and (3) return to a quiescent state after regeneration is 

achieved.  

Figure 1. Adult SCs are dynamically heterogeneous. (A) Initially, it was proposed that tissue self-
renewal relied on a single relatively quiescent stem cell population which asymmetrically divided 
to balance self-renewal and differentiation. (B) Instead, SCs co-exist in different proliferative 
states (quiescent and active) representing separated populations which are maintained by 
inhibitory and stimulatory cross-signalling. In this currently prevailing model, tissue turnover and 
regeneration is driven by the interconversion of quiescent and active SCs. Conversely, active 
stem cells may replace lost quiescent stem cells and, together with the progeny, may contribute 
to maintain quiescence. The figure depicts the particular situation of intestinal SC as an example. 
Adapted from Li et al. 2010. 
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Apart from the heterogeneity in cell dynamics, recent data has evidenced that 

SCs are also diverse in their self-renewal and differentiation potentials and suggest 

that different stem cell types co-exist under homeostatic conditions (Dykstra et al., 

2007; Ousset et al., 2012; Stange et al., 2013; Van Keymeulen et al., 2011). 

Furthermore, each SC type seems to have a pre-defined role under normal 

conditions but they show flexibility after perturbations and can adapt to other 

functions when required (Goodell et al., 2015). Therefore, the conception of stem 

cell hierarchy is still currently evolving and new models have been proposed in 

different tissues such as the hematopoietic and the intestinal stem cell systems 

(Figure 2). These proposals suggest that SCs initially have different lineage biases 

to generate specific restricted progenitors that produce a specific differentiated 

cell. Moreover, the distinct SC types are also progressively committed to a more 

restricted SC. However, after injury, committed progenitors may revert to a 

partially-committed stem-like state. Thus, the complexity of this heterogeneous 

systems with SCs that differ in their dynamics and multipotency has caused that, 

despite all the progress made since SC discovery, the stem cell regulation is still 

under thorough study. 

Figure 2. Adult SCs are functionally heterogeneous. Tissue-specific SCs have a pre-defined role 
under normal conditions and give rise to specific committed progenitors but they show flexibility 
after perturbations and can adapt to other functions when required. Additionally, progenitors 
may revert to a stem cell state upon extreme injury. Two examples of this are (a) the intestinal 
and (b) the hematopoietic SC systems. Adapted from Goodell et al. 2015. 
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1.3. Quiescence in adult SC populations: a novel level of regulation during 

homeostasis and injury 

Quiescence is a reversible cell cycle arrested state (G0) and, unlike post-mitotic 

cells, quiescent SCs keep the ability to re-enter cell cycle and proliferate. This 

property of stem cells represents a key factor in preserving both the stemness for 

long-term tissue renewal and their DNA integrity to avoid dysregulation of SCs 

proliferation and tumorigenesis (Orford and Scadden, 2008). Cellular quiescence is 

characterized by an un-replicated genome, a specific metabolic status 

characterized by predominant glycolytic activity, a decreased cell size with 

increased nuclei to cytoplasm ratio and a reversible suppression of global RNA and 

protein synthesis. Contrary to the traditional view of quiescence as an inactive 

default cell state, it is currently known that this condition is rather an active 

regulated state where molecular changes are taking place in response to niche 

signals (Rumman et al., 2015). In fact, quiescent SCs are maintained by either 

growth inhibiting signals or absence of growth-promoting signals and loss of 

quiescence is associated with compromised tissue regeneration (Daynac et al., 

2016; Delgado et al., 2014; Fleming et al., 2008; Porlan et al., 2013a). Furthermore, 

quiescent SC exhibit better survival ability under adverse conditions and, 

interestingly, they are activated upon injury to generate new SCs and progenitors 

(Mich et al., 2014; Rodgers et al., 2014; Rossi et al., 2012; Tian et al., 2011). This 

current knowledge has generated a novel area of research that is gaining biological 

significance and relevance within the SC field but, unlike regulation of the 

activation state of SC, the regulation of quiescence is vastly unknown. 

Satellite cells are considered the tissue-specific SC in skeletal muscle (MuSCs) 

and are characterized by an extremely low turn-over rate during homeostasis. 

However, after injury, this mainly quiescent population dramatically increases 

proliferation displaying a huge regenerative capacity (Dhawan and Rando, 2005). 

Additionally, Rodgers et al. have recently found that the quiescent MuSC residing in 
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a muscle contralateral to a mechanically injured muscle respond to the distant 

injury displaying cycling properties different to the previously characterized for 

quiescent and activated pools. This quiescent ‘alert’ state (Galert) of MuSCs, as it has 

been defined, and compared to the quiescent ‘dormant’ state (G0), shows a higher 

predisposition to enter proliferation, an accelerated cell-cycle entry, a higher 

mitochondrial activity and a slightly bigger size. Moreover, global transcription 

profiles suggest that it represents an intermediate state between G0 and active SCs 

(Rodgers et al., 2014). MuSCs appear to adopt this state in response to remote 

injuries whose impact on the physiology of the tissue is not enough to trigger SC 

activation and, hence, expansion of the SC population. Additionally, it has also 

been observed that other SC population, like the fibroadipogenic progenitors and 

long-term HSCs, adopt similar alert properties upon distant injury indicating that 

this quiescent transition is not an isolated phenomenon and may represent a 

general response to injury. Interestingly, the Galert state reverts to the dormant 

state following resolution of the inducer (Rodgers et al., 2014). Together, all these 

data has demonstrated that SCs also undergo dynamic transitions between 

functional phases in the quiescent state stablishing a novel reversible quiescence 

cycle model (Figure 3). Moreover, this novel functional state also indicates that 

dormant SCs in different tissues can adopt an adaptive state in response to signals 

produced in remote regions of the organism, suggesting the existence of a 

homeostatic control of adult SCs. 

The existence of a quiescence cycle that precedes activation opens a new 

regulatory level of SC dynamics. The signalling through the hepatocyte growth 

factor (HGF) receptor cMet was found to activate the mTOR complex 1 (mTORC1) 

signalling pathway to mediate the G0-Galert transition in MuSCs. Furthermore, 

inhibition of mTORC1 completely abolished the acquisition of a Galert state indicating 

that this pathway may play a central role in the “quiescence cell cycle” (Rodgers et 

al., 2014) and indicates that this transition must also be a regulated process. 

Nevertheless, the relevance of the quiescence cycle regulation in tissue 
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homeostasis and repair or the nature of effectors that control the acquisition of an 

alert or a dormant state are not already known.  

 

Figure 3. The quiescence SC cycle. (A) In the activated state, SCs progress through the different 
cell cycle phases to achieve cell division. Once accomplished, cells may enter G0 quiescent state. 
This state may be also be regulated for maintenance or release by both intrinsic and extrinsic 
signals. (B) A quiescence cell cycle has been proposed that would be characterized by two 
distinct phases: deep or dormant state and alert or primed state. Enrty into the alert phase can 
be induced by injury signals and is regulated by mTORC1 signalling pathway. The cycle takes into 
account the reversibility of the alert state indicated by the experimental data. Adapted from 
Rumman et al. 2015. 
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1.4. Adult SC niches 

SCs reside on specific well-organized neighbourhoods termed ‘niches’. The SC 

niche refers to the specialized microenvironment that surrounds, interact and 

regulate the SC behaviour to keep a proper balance between quiescence or 

activation and self-renewal or differentiation, thus playing a fundamental role in 

tissue homeostasis. The term was initially proposed by R. Schofield in 1978 after 

observing that HSC proliferative potential differed depending on the location they 

were isolated from: the spleen or the bone marrow (Schofield, 1978). From there, 

the hypothesis has been vastly supported by a variety of co-culture experiments 

(Dexter et al., 1977; Moore et al., 1997; Rios and Williams, 1990) or by SC 

transplantation into niches in which its components were previously removed 

through irradiation or drug administration (Brinster and Zimmermann, 1994; Li and 

Xie, 2005). Schofield proposed that a niche would act as ‘‘an environment…to 

explain the unlimited proliferation and failure to mature of ...stem cells’’ by 

regulating restriction on stem cell entry into cell cycle and differentiation 

programs, integration of signals reflecting tissue and organismal state, 

mechanisms for limiting “mutational errors”, and imposition of stem cell features 

on daughter cells. Experimental evidence gathered since then has provided strong 

support to Schofield´s postulates. 

Invertebrate models with simpler stem cell-microenvironment relation like 

germ stem cells (GSC) in the gonad tips of Drosophila and C. elegans provided the 

first examples of discrete niches and their characterization has greatly helped to 

the identification of SC niches in vertebrates (Morrison and Spradling, 2008; Voog 

and Jones, 2010). So far, different SC niches have been identified in many tissues, 

including the germline, bone marrow, skeletal muscle, skin and hair follicles, 

mammary gland, and digestive, respiratory or central and peripheral nervous 

systems and their current characterization is starting to resolve the critical 

components in the SC niche (Wagers, 2012) (Figure 4).  
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Cell-to-cell interactions between SCs and mesenchymal, vascular, neuronal, 

glial or inflammatory cells participate in the structural support of the niche, 

regulates adhesion of SC and produce soluble and membrane-bound signals that 

control SC function (Wagers, 2012). In particular, adhesion molecules such as 

integrins or cadherins and signalling molecules such as Sonic hedgehog (Shh), Wnt, 

bone morphogenetic factors (BMPs), Noggin, Notch, fibroblast growth factors 

(FGFs) or transforming growth factor-β (TGF-β) have been implicated in the 

regulation of SCs in tissues like the intestinal epithelium, bone marrow or hair 

follicles (Li and Xie, 2005). Vasculature, for example, is tightly associated to SC in 

bone marrow or brain were it plays an important role both in secreting and 

transporting factors that mediate stem cell self-renewal and proliferation such as 

vascular endothelium derived factor (VEGF) or pigmented epithelium-derived 

factor (PEDF) (Bautch, 2011; Ramirez-Castillejo et al., 2006) (see Rafii et al., 2016 for 

a review). Cells from the immune system are increasingly gaining relevance as an 

essential stem cell niche component that regulates SCs upon injury but also during 

homeostasis (Aurora and Olson, 2014) and, due to the topic of this thesis, it 

requires an independent section that will be later extensively introduced. 

Aside the cellular components, SCs interact with non-cellular components like 

the extracellular matrix (ECM) which participates as a mechanical signal by itself, 

but also as a reservoir of growth factors, chemokines or other regulatory 

molecules (Wagers, 2012). The basal lamina directly contacting MuSCs or epidermal 

stem cells plays a main role during tissue muscle and skin regeneration as they 

release retained factors after ECM disruption (Choi et al., 2015; Thomas et al., 2015). 

In the brain, discrete functional aggregates of heparan sulfate proteoglycans and 

laminin termed fractones are deposited around the neurogenic niches and bind to 

growth factors with heparin-binding motifs such as FGF-2, heparin-binding 

epidermal growth factor (HB-EGF) or leukaemia inhibiting factor (LIF) and 

cytokines such as interleukins (IL), interferons (IFN) or tumour necrosis factor 

(TNF) controlling their activity on the SCs (Mercier, 2016). More specifically, 
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expression of the laminin receptor alpha6beta1 integrin allows brain SCs to interact 

with the basal lamina of irrigating blood vessels and this interaction modulates 

their activity (Shen et al., 2008). 

Finally, different physical parameters such as matrix rigidity, temperature or 

oxygen tension also influence the stem cell response to the microenvironment 

(Wagers, 2012). In particular, the oxygen availability greatly influences the adult SC 

biology (Kimura et al., 2015). O2 partial pressure varies along the different tissues 

and it ranges from less than 1% up to 8-9%. It is worth noting that several SC reside 

in relative hypoxic microdomains such as at the hematopoietic, the mesenchymal 

or the neural stem cell niche. Interestingly, hypoxia has been related to quiescence 

maintenance trough the stabilization of the hypoxia inducible factor-1 alpha (HIF-

1α) which translocates to the nucleus and regulates the expression of genes 

related to oxygen homeostasis, glucose metabolism, proliferation or the 

expression of growth factors such as VEGF or erythropoietin (EPO) (Mohyeldin et 

al., 2010). 

 

Figure 4. The SC niche. SCs reside in specialized niches composed of both cellular and acellular 
components that, in general, are common to the vast majority of SC compartments, despite 
some tissue-specific variations. Cell-cell interactions with mesenchymal, vascular, neuronal, glial 
or inflammatory cells and soluble factors secreted by these cells, interaction with the ECM and 
physical parameters as oxygen tension are known regulators of SC behaviour. Adapted from 
Wagers et al. 2012. 
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At the organismal level, the crucial role of innervation, i. e. sympathetic 

innervation to the bone marrow or nerve terminals within neurogenic niches,  and 

systemic circulation, as revealed by parabiosis experiments, in regulating SC niche 

homeostasis and regeneration in different tissues has strongly emerged in the 

recent years and has added a new level of complexity to the understanding of 

niche biology (Conboy and Rando, 2012; del Toro and Mendez-Ferrer, 2013). 

 

2. Subependymal neural stem cells (NSCs) and adult neurogenesis 

Nowadays, it is well established that, in the adult vertebrate brain, new 

neurons are continuously produced throughout adult lifespan (Bond et al., 2015). In 

adult mammals, neurogenesis mainly occurs in two germinal zones: the sub-

granular zone (SGZ) of the dentate gyrus in the hippocampus and the sub-

ependymal zone (SEZ; also known as ventricular-subventricular zone or V-SVZ) 

adjacent to the lateral ventricles. These brain regions harbour discrete populations 

of neural stem cells (NSCs) which are maintained undifferentiated while they 

generate new differentiated progeny (Bond et al., 2015). Like in other systems, the 

discovery of adult neurogenesis (Altman and Das, 1965) and the identification of 

the responsible tissue-specific SCs (Doetsch et al., 1999a; Seri et al., 2001) led to a 

shift in our understanding of neural plasticity and opened new perspectives based 

on the use of this previously denied potential for brain repair upon injury or 

neurodegeneration. To this goal, the study and knowledge of the NSC biology and 

regulation may provide the essential tools for an eventual manipulation of 

endogenous NSCs. 

2.1. Adult subependymal NSCs have an embryonic origin 

The adult central nervous system (CNS) is derived from the embryonic 

neuroectoderm, a pseudo-stratified neuroepithelium in the dorsal surface of the 

developing embryo that invaginates during neurulation to form the neural tube. 
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The neuroepithelial cells of the neural tube are the embryonic primary precursors 

of the CNS and proliferate dividing symmetrically to expand the neural tube until 

the ventricular zone (VZ) is formed. These primary precursors eventually transform 

into radial glial cells (RGCs) which divide both symmetrically and asymmetrically to 

generate two RGCs or one RGC and a neuroblast which migrates radially away from 

the VZ to the expanding neural parenchyma, respectively. Asymmetric division 

becomes more prominent following the onset of neurogenesis. RGCs have a long 

basal cytoplasmic process contacting the pial surface which is used by the newborn 

neurons as guiding scaffolds to migrate up to marginal zones where they 

differentiate and connect with other neurons (Bjornsson et al., 2015; Kriegstein and 

Alvarez-Buylla, 2009). At mid-gestation, RGCs can also divide asymmetrically to give 

rise to intermediate progenitor cells which also contribute to neuron generation. 

These intermediate progenitors accumulate above the VZ forming a new germinal 

layer, the sub-ventricular zone (SVZ) which acts as a second germinal zone 

(Bjornsson et al., 2015). At the end of foetal development, RGCs switch to produce 

glial and ependymal cells (Figure 5). Thus, foetal RGCs are responsible for the 

generation of the majority of neurons and of glial and ependymal cells of the adult 

CNS (Anthony et al., 2004; Malatesta et al., 2000; Miyata et al., 2001; Noctor et al., 

2001; Spassky et al., 2005).  

After birth, the remaining RGCs in the VZ differentiate either into ependymal 

cells, that will line the lateral ventricles, or into glial cells, including NSCs that retain 

many of the RGC features and populate the two adult neurogenic niches (Merkle et 

al., 2004; Tramontin et al., 2003). Additionally, different recent studies have also 

demonstrated that during intermediate embryonic stages (E13.5-E15.5), RGCs can 

eventually derive into NSCs that remain relatively quiescent until adulthood when 

they can be re-activated (Fuentealba et al., 2015; Furutachi et al., 2015).    
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Figure 5. Adult NSCs are lineage-related to embryonic radial glial cells. During development, 
radial glial cells (RGCs) in the ventricular zone (VZ) first generate neurons and intermediate 
progenitors (IPCs) and then glial and ependymal cells. Additionally, from mid-gestation to 
postnatal stages, some RGCs give rise to NSCs that will remain quiescent in specific locations of 
the brain until postnatal/adults ages. Adapted from Kriegstein et al. 2009. 

 

2.2. The SEZ neurogenic niche: neurogenesis and gliogenesis 

The SEZ is a very active neurogenic niche and the largest germinal zone in the 

adult brain, properties that have promoted its thorough characterization during 

the last decades. Furthermore, the early establishment of “neurosphere” cultures 

from this region for molecular and biochemical studies have converted the SEZ into 

an attractive niche to study NSC regulation. Subependymal NSCs and their progeny 

are distributed along the entire extent of the lateral ventricle walls, embedded 

between the ependymal cell layer that coat the ventricular space and the striatum. 

These residing tissue-specific SCs are responsible of the production of new OB 

neurons along life. This process follows a hierarchical progression where 

multipotent NSCs, initially identified as type B1 cells, when activated give rise to 

TAPs or type C cells which divide a few more times before becoming migrating 

neuroblasts or type A cells (Doetsch et al., 1999a; Doetsch et al., 1997). 

This neurogenic niche continuously generates large numbers of neuroblasts 

which migrate from the SEZ through the rostral migratory stream (RMS) to the 
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olfactory bulb (OB). New-born neuroblasts are organized in chains surrounded by a 

layer of astrocytes and migrate tangentially along this ‘gliotubes’ to the OB 

(Doetsch and Alvarez-Buylla, 1996; Lalli, 2014). Here, the arriving immature 

neuroblasts continue migrating radially to the granule (GCL) and the glomerular 

(GL) cell layers until they are differentiated and integrated as mature interneurons 

(Doetsch and Alvarez-Buylla, 1996). SEZ neurogenesis provide different subtypes of 

interneurons that integrate in the OB contributing to OB function and the neural 

plasticity of olfactory information processing (Chaker et al., 2016; Livneh et al., 

2014; Lledo and Valley, 2016) (Figure 6).  

 Figure 6. Adult OB neurogenesis from the mouse SEZ. (A) New-born neuroblasts or type A cells 
produced in the SEZ in the walls of the lateral ventricle (LV) migrate through the rostral 
migratory stream (RMS) surrounded by astroglial cells to the olfactory bulb (OB). Here, 
neuroblasts migrate radially and differentiate into mature neurons that integrate in the granular 
(GCL) and glomerular layers (GL). Adapted from Lim et al. 2016. 
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Additionally, the SEZ also contributes, although to a lesser extent, to the 

production of either new niche astrocytes that migrate to the RMS and the corpus 

callosum (CC), and oligodendrocytes that mainly contribute to the CC re-

myelination (Menn et al., 2006; Sohn et al., 2015). Although SEZ gliogenesis is not 

as productive as neurogenesis under homeostatic conditions, the generation of 

new oligodendrocytes and astrocytes increases after injury which migrate to the 

lesioned site and play an active role in tissue repair (Benner et al., 2013; Nait-

Oumesmar et al., 1999; Picard-Riera et al., 2002). 

2.3. The subependymal NSC lineage 

Type B1 NSCs are glial cells that show ultrastructural and molecular features of 

other brain astrocytes such as the expression of the markers glial fibrillary acidic 

protein (GFAP), glutamate aspartate transporter (GLAST) and brain lipid-binding 

protein (BLBP) (Doetsch, 2003; Doetsch et al., 1999a). However, unlike non-

neurogenic niche astrocytes which show a branched morphology, B1 cells display a 

more radial shape (Doetsch et al., 1997) and retain an apical-basal polarity similar to 

embryonic RGCs contacting the cerebrospinal fluid (CSF) that fills the ventricles 

through an apical process that ends in a single primary cilium. This primary cilium 

intercalates among multiciliated ependymal cells organized in structures displaying 

a pinwheel pattern (Mirzadeh et al., 2008). Type B1 cells also have long basal 

processes that run radially or tangentially to the ventricular surface for long 

distances to contact the basal lamina of capillaries of the extensive planar plexus of 

blood vessels that irrigate this area through specialized cell endings (Shen et al., 

2008; Tavazoie et al., 2008) (Figure 7).  

It has been long demonstrated that type B1 astrocytes are relative quiescent 

cells that behave as NSCs under homeostasis and regeneration. The administration 

of antimitotic drugs revealed the presence of quiescent B1 cells that survive the 

treatment and completely regenerate the SEZ afterwards (Doetsch et al., 1999b). 

Additionally, cell-lineage genetic tracing of GFAP cells demonstrated their ability to 
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generate TAPs and neuroblasts that migrate to the OB (Doetsch et al., 1999a). 

Furthermore, type B1 cells are also able to form multipotent self-renewing 

neurospheres in vitro that can be maintained and expanded for many passages 

thus fulfilling in vivo and in vitro hallmarks of SCs (Doetsch et al., 1999a). 

From there, several lineage-tracing strategies have been used to identify the 

NSC pool studying the potentiality of different marker expressing-cells to behave 

as NSCs and generate progeny. Inducible Cre drivers such as Gfap (Mich et al., 

2014), Glast (Calzolari et al., 2015; Mich et al., 2014), Nestin (Chaker et al., 2015; 

Imayoshi et al., 2008) and Gli1 (Ahn and Joyner, 2005; Mich et al., 2014) has 

demonstrated the ability of this cells to behave as multipotent NSCs generating 

either OB neurons and astrocytes and oligodendrocytes. Additionally, other 

lineage-tracing reporters such as Dlx1 (Mich et al., 2014), Ascl1 (Kim et al., 2011; Kim 

et al., 2007; Mich et al., 2014), Sox1 (Venere et al., 2012), Sox2 (Kang and Hebert, 

2012), Fgfr3 (Young et al., 2010), Tlx (Liu et al., 2008), Musashi (Takeda et al., 2013), 

Id1 (Nam and Benezra, 2009) or Hes5 (Giachino et al., 2014) expressing-cells has also 

showed the ability of this cells to generate new OB neurons but not 

oligodendrocytes or astrocytes. However, whether a single tripotent NSC exists or, 

alternatively, there are separated neurogenic and gliogenic compartments is still 

unclear. 

Once activated, type B1 NSCs cells can undergo asymmetric division to self-

renew and generate type C cells (Ortega et al., 2013a; Ortega et al., 2013b) which 

behave as TAP cells dividing symmetrically approximately three times before 

becoming type A cells, which remain proliferative for one or two more rounds 

(Ponti et al., 2013).  Type C cells start a process of commitment losing the astroglial 

features of NSCs such as the expression of GFAP or GLAST. Instead, type C cells are 

characterized by the expression of the transcription factor achaete-scoute 

homologue 1 (ASCL1) or the ependymal growth factor receptor (EGFR) (Doetsch et 

al., 2002a). Type A cells, in contrast, are distinguished by the expression of the 
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neuronal isoform of tubulin β-III-tubulin, doublecourtin (DCX), and polysialylated 

neural-cell-adhesion molecule (PSA-NCAM) (Doetsch et al., 1997). 

Figure 7. Cell composition and cytoarchitecture of the SEZ. Type B1 NSCs displaying a radial 
morphology present (I) an apical domain, (II) an intermediate domain and (III) a basal domain. 
The apical domain ends in a primary single cilium that contacts the lateral ventricle through the 
ependymal cell layer. Type B1 cells are activated to generate proliferating type C cells and 
migrating type A cells which are in close contact with the cell body of NSCs in the intermediate 
domain. The basal domain corresponds to long specialized processes that contact with blood 
vessels. Adapted from Lim et al. 2016. 

 

Embryonic RGCs, which are highly proliferative, exit the cell cycle during mid-

gestation to become NSCs that remain quiescent until they are activated in the 

adulthood for the generation of OB neurons (Fuentealba et al., 2015; Furutachi et 

al., 2015). This return to quiescence is an essential event for the establishment and 

maintenance of the adult NSCs (Furutachi et al., 2013). In the adulthood, unlike 

other tissues such as the muscle or the liver where almost all SCs remain quiescent 

under homeostatic conditions, adult NSCs can be found at multiple stages of 

activation (Codega et al., 2014; Llorens-Bobadilla et al., 2015; Mich et al., 2014). 

During the earlier characterization of B cells at the ultraestructural level it was 
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already observed that two types of B cells coexisted lining the ventricles: type B1 

cells have light cytoplasm, contact the ventricle and show null replication activity, 

and type B2 cells with darker cytoplasm, are closer to blood vessels and replicate 

the DNA content incorporating traceable nucleoside analogues (Doetsch et al., 

1997). This description soon suggested the existence of at least two different 

proliferative states. More recently, it has been shown that a subset of GFAP+ and 

Glast+ astrocytes expressing EGFR are sensitive to antimitotic drugs such as 

cytosine β-D-arabinofuranoside (Ara-C) or temozolomide (TMZ) indicating that this 

subset of NSCs is actively dividing. In contrast, a pool of EGFR- NSCs remain 

quiescent, survive the treatments, and retain the ability to restore the production 

of new OB neurons through the regeneration of the entire lineage (Codega et al., 

2014; Mich et al., 2014; Pastrana et al., 2009). It is now clear that both pool of cells, 

quiescent and active NSCs (qNSCs and aNSCs), participate in tissue homeostasis; 

however, whether they represent two states of the same cell or different SC 

populations that can interconvert is still unknown. 

Due to all the features shared between neurogenic and non-neurogenic 

astrocytes like the expression of the same glial markers such as GFAP or GLAST, the 

identification and isolation of bona fide NSCs has been a challenging task. 

Moreover, the existence of a pool of NSCs that remain quiescent from embryonic 

stages and along adulthood (Codega et al., 2014; Fuentealba et al., 2015; Furutachi 

et al., 2015; Llorens-Bobadilla et al., 2015; Mich et al., 2014) has called into question 

nucleoside retaining methods as ways to unequivocally label quiescent cells as 

some of them may never become labelled. Slow-cycling cells such as those label-

retaining cells (LRCs) that incorporate and retain nucleoside analogues may only be 

attributed to a previously activated population and thus, cannot be generally used 

to distinguish between quiescent dormant neurogenic astrocytes and niche 

astrocytes. 
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Unfortunately, so far there is no single marker that unequivocally identifies 

each pool of NSCs like there is in other systems such as the case with Lgr5 and Bmi1 

in the intestinal epithelium (Tian et al., 2011) or Pax7 in the skeletal muscle (Rodgers 

et al., 2014). However, several different strategies based in fluorescence activated 

cell sorting (FACS) have been used to successfully isolate SEZ cells that display 

functional in vivo and in vitro properties of aNSCs and qNSCs (Codega et al., 2014; 

Daynac et al., 2013; Giachino et al., 2014; Khatri et al., 2014; Llorens-Bobadilla et al., 

2015; Mich et al., 2014). Interestingly, EGFR expression is used in all cases to 

differentiate between a quiescent and an activated state. Nevertheless, they differ 

in the marker combinations used to distinguish between qNSCs and other niche 

astrocytes including CD133 and GFAP::GFP reporter mice (Codega et al., 2014) or 

GLAST (Llorens-Bobadilla et al., 2015), LeX (Daynac et al., 2013), PlexinB2 and GLAST 

(Mich et al., 2014) or the Hes5::GFP reporter mice and BLBP (Giachino et al., 2014). 

Additionally, the expression of CD24 has also been used to discard immature 

neuroblasts (Codega et al., 2014; Daynac et al., 2013; Llorens-Bobadilla et al., 2015; 

Mich et al., 2014). 

Isolation of NSC pools displaying different activation states has allowed a 

deeper characterization of each of them. Transcriptome analysis of both 

populations has revealed that qNSCs and aNSCs are molecularly heterogeneous 

(Codega et al., 2014). qNSCs show enrichment in gene categories of cell-cell 

adhesion, extracellular-matrix-response and anchorage-dependent niche signals, 

but also of cell communication, signalling receptors, transmembrane transporters 

and ion channels, a combination that reflects their active regulation and 

communication with the microenvironment. In contrast, aNSC transcriptome is 

more related with cell-cycle and DNA repair gene categories (Codega et al., 2014). 

Furthermore, qNSCs and aNSCs also differ in the expression of metabolism-related 

genes displaying the quiescent pool a preference in glycolysis and fatty acid 

metabolism whereas aNSCs up-regulate oxidative phosphorylation genes (Codega 
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et al., 2014). Additionally, and accordingly with their active state, aNSCs also display 

higher translational rates than qNSCs (Llorens-Bobadilla et al., 2015).    

Following this line, a recent work has further refined the transition of NSCs 

from quiescence to activation to eventually become immature neuroblasts 

(Llorens-Bobadilla et al., 2015). Taking advantage of the novel single-cell RNA-seq 

technologies, the authors described a more detailed sequence of molecular 

changes that take place between qNSCs, aNSCs, TAPs and neuroblasts which has 

revealed the existence of different quiescent and active states. Clustering of 

individual NSC transcriptomes by principal component analysis revealed the 

existence of four different cell populations which, placed in a pseudo-time line of 

‘differentiation’, suggested a gradual transition from a ‘dormant’ state (qNSC1) 

that is ‘primed’ (qNSC2) before actively dividing states (non-mitotic aNSC1 and 

mitotic aNSC2). It is worth noting that a similar progression has been observed in a 

parallel cell-single transcriptome analysis of SGZ NSCs (Shin et al., 2015). The 

molecular hallmarks of each state also suggested that NSC activation and early 

lineage progression is organized as a continuum of successive molecular events. 

For example, dormant qNSC1 showed the highest levels of glial markers while 

aNSCs have already started a down-regulation of the glial gene expression 

programme. Instead, aNSCs up-regulate the expression of lineage-specific 

transcription factors such as Ascl1. Interestingly, the qNSC2 pool displayed 

intermediate features between dormant and active cells such as the activation of 

the protein synthesis machinery (Llorens-Bobadilla et al., 2015) (Figure 8). It is 

worth noting that the existence of a ‘primed’ quiescent state that is set-up for 

activation vastly resembles to the Galert state observed in MuSCs (Rodgers et al., 

2014). In agreement with this, the qNSC2 pool increases upon ischaemic brain injury 

suggesting that qNSCs detect injury signals which may regulate their transition to a 

primed state for a subsequent activation. However, it has not been explored 

whether this is a reversible state or which are the molecular mechanisms or the 

effectors that regulate priming and activation of qNSCs. 
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Figure 8. NSC states are molecularly heterogeneous. qNSC transcriptome is enriched in genes 
related with lipid metabolism and glycolysis, cell adhesion, G protein-coupled receptor (GPCR) 
and membrane receptors for cell-to-cell communication. Before activation, qNSC adopt a primed 
state that up-regulates translational machinery. Upon activation, NSCs suffer profound molecular 
changes particularly up-regulating genes involved in oxidative phosphorylation metabolism, cell-
cycle regulation, EGFR signalling, and DNA repair. Adapted from Chacker et al. 2016. 

 

Another source of heterogeneity that is currently under debate is whether 

individual NSCs differ in their long-term self-renewal potential. Lineage-tracing 

using Ascl1 or Dlx1 inducible Cre-drivers, which are supposed to label only active 

NSCs and TAP cell progeny, show a declined production of new offspring in less 

than one month. Nevertheless, Glast or Gfap expressing cells, which label qNSCs as 

well, displayed a sustained neurogenesis to the OB even 2 months after induction 

(Mich et al., 2014). However, lineage tracing of nestin+ cells, which are known to be 

already activated NSC, allowed the detection of new OB neurons even more than 

one year after Cre induction (Chaker et al., 2015; Imayoshi et al., 2008). Additionally, 

Hes5, Fgfr3 or Gli1+ NSCs also display long-term neurogenic potential although 

these markers do not appear to label a specific proliferative state (Ahn and Joyner, 
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2005; Giachino et al., 2014; Young et al., 2010). These data suggest that qNSCs may 

present a more sustained self-renewal potential while aNSCs seem to have a more 

limited self-renewal potential. Furthermore, these results also question whether 

aNSCs are capable of returning to quiescence thus maintaining a long-term self-

renewal potential. Recent clonal analysis of single NSCs either using the confetti 

reporter mice (Calzolari et al., 2015) or embryonic retroviral library bar-coding 

(Fuentealba et al., 2015) and inducible Cre under the Glast promoter support this 

idea as the majority of individual NSCs, once activated, produced the expansion of 

neurogenic progeny for a limited number of rounds before becoming exhausted. 

Nevertheless, it is worth noting that a few clones contained both OB neurons and 

SEZ NSCs after long periods indicating that at least some activated NSCs may revert 

to a quiescent state keeping a long-term self-renewal potential. Although this is still 

under debate, it is currently clear that NSCs are dynamically, molecularly and 

functionally heterogeneous.  

2.4. Subependymal NSC in vitro culture: the neurosphere assay 

Several tissue-specific SCs were initially isolated and characterized by 

culturing tissue dissociates under conditions that promote their selective 

expansion. Initial work by Reynolds and Weiss led to the establishment of defined 

culture conditions that allowed the isolation and expansion of individual cells from 

young adult (2-month old) mouse periventricular tissue under non-adhesive 

conditions. These cells were initially maintained in a serum-free medium containing 

EGF to induce their proliferation. Under these culture conditions most of the cells 

died during the first days in culture, but a small population of cells began to divide 

and formed floating aggregates of cells with immunocytochemical features of 

neuroepithelial cells, called primary “neurospheres” (Reynolds and Weiss, 1992). 

Subsequent mechanical dissociation and subculture of these neurospheres allowed 

propagation of the cultures, revealing the self-renewal capacity of some of the 

cells. Additionally, when cultured onto an adhesive substrate in the presence of 
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serum, they could produce both astrocytes and neurons. This provided the first in 

vitro evidence that multipotential SCs were present in the adult mammalian brain 

and a method to expand large numbers of postnatal NSCs (Reynolds and Weiss, 

1992). 

Since these early experiments, the neurosphere culture has evolved into a 

powerful tool that enables the study of NSC proliferation, self-renewal and 

developmental potential under highly controlled environmental conditions 

(Belenguer et al., 2016). Once primary neurospheres are obtained from the SEZ 

tissue, they can be expanded for extended periods of time by dissociating them 

after 4-7 days and seeding individual cells under the same conditions. Either 

primary or secondary cultures can be assayed for the neurosphere assay (NSA), the 

gold standard of the NSC studies in vitro which allows the study of the clonogenic 

capacity and self-renewal of NSCs. Additionally, NSCs cultures can be challenged 

for differentiation to study the process itself and quantify the different populations 

of differentiated progeny or to assess the multipotency of individual clones. It is 

worth noting that the establishment of in vitro cultures allows to characterize NSCs 

from a molecular and biochemical point of view that otherwise could not be 

fulfilled (Belenguer et al., 2016) (Figure 9). Although the neurosphere assay 

approach only grants an operational definition of a stem cell, the culture of NSCs 

has notably increased our knowledge on how these cells are regulated, for 

example by signals from their microenvironment or niches (Porlan et al., 2013b). 

However, this type of culture is not exempt of limitations. The most important 

one is that neurosphere cultures contain a heterogeneous population of cells as 

NSCs coexist with their progeny (different types of more committed progenitors 

and even differentiated cells). Stem cells unavoidably produce cell progeny in vitro 

and some of the highly proliferative committed progenitors or TAP cells appear 

also capable of forming neurospheres, albeit only for a few passages (Doetsch et 

al., 2002a; Reynolds and Rietze, 2005). Indeed, only a fraction of the total cells in 
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the culture behave as bona fide NSCs and, therefore, the assays need to carefully 

address their specific properties. In addition, qNSCs only extremely rarely form 

neurospheres while the strong mitogenic stimulation of culture conditions 

promote the selective expansion of aNSCs or TAPs (Codega et al., 2014; Mich et al., 

2014). Therefore, the neurosphere assay in the current culture conditions better 

reflects the potential of aNSC and TAPs (Belenguer et al., 2016; Pastrana et al., 

2011). However, the development and application of new NSC culture protocols to 

isolated populations of qNSCs and aNSCs appears as a promising strategy to 

further understand the fundamental properties and behaviour of the different 

types of NSCs. 

Figure 9. Subependymal NSCs in vitro culture is a powerful tool that enables the study of NSC 

proliferation, self-renewal, differentiation and molecular features. SEZ NSCs can be cultured in a 

serum-free medium containing EGF and FGF where they are stimulated to proliferate and 

generate heterogeneous clones called neurospheres. After the establishment of a primary NSC 

culture, NSCs can be maintained and expanded for several passages. Interestingly, the in vitro 

culture allows the NSCs to be transfected (i.e. by nucleofection) for molecular characterization. 

Under these proliferative conditions, NSCs can be challenged in a neurosphere assay (NSA), the 
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gold standard in vitro approach, which allows the evaluation of the NSC clonogenic capacity, 

either from primary or secondary cultures. Additionally, performing a sequential NSA by 

disaggregating initial clones and sub-culturing them again allows the evaluation of NSC self-

renewal. Finally, after mitogen retrieval, NSCs are differentiated into neurons, astrocytes and 

oligodendrocytes in serum-containing media allowing the study of differentiated progeny and 

the clonal analysis of NSC potential. 

 

3. The regulation of adult subependymal NSCs 

A proper cell turnover during homeostasis or a functional tissue repair upon 

injury is the consequence of a finely regulated balance between quiescence and 

activation, self-renewal, proliferation, cell fate and differentiation of SCs. Current 

increasingly knowledge in the adult neurogenic niches is revealing the active 

participation of multiple players, either cell intrinsic determinants or signals from 

the extrinsic niche.  

3.1. Intrinsic regulators of adult subependymal NSCs  

Regulation of NSC gene expression by transcription factors (TF) is a crucial 

mechanism that regulates adult NSCs (Hsieh, 2012). For instance, the transcription 

factor SRY (sex determining region Y)-box 2 (Sox2) is expressed in multiple SEZ cell 

types including NSCs (Ellis et al., 2004) and its deletion results in NSC depletion and 

impaired neurogenesis (Ferri et al., 2004). Achaete-scoute homologue 1 (Ascl1) is 

expressed in aNSC and TAPs and target cell-cycle regulators promoting an active 

state and blocking a re-entry into quiescence (Urban et al., 2016). Moreover, Ascl1 is 

required for both neuronal and oligodendroglial lineages (Parras et al., 2004). Olig2 

is also expressed in some NSCs and TAPs and appears to repress the neuronal 

lineage to promote oligodendrogenesis (Marshall et al., 2005; Menn et al., 2006). 

Interestingly, the recent data obtained from the single-cell RNA-seq has identified 

different TF that may be related to quiescence maintenance such as Sox9, Id2 or 

Id3, while Egr1, Fos, Sox4, Sox11 or Ascl1 are associated with an active state 

(Llorens-Bobadilla et al., 2015). 
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Regional heterogeneity is emerging as a key component of SEZ SC identity 

and cell fate. Fate mapping experiments have revealed that the diversity of OB 

interneurons subtypes or the production of astrocytes and oligodendrocytes is 

regionally specified and this is also correlated with a regional expression of specific 

TF. Thus, the observed different lineages may actually be intrinsically defined by 

the combinations of lineage transcription factors that, in addition, seem to be 

already defined during embryonic stages (Chaker et al., 2016; Llorens-Bobadilla and 

Martin-Villalba, 2016). 

NSC maintenance and neurogenesis also depends on the tightly regulated cell 

cycle progression which is controlled by multiple regulators including cyclins, 

cyclin-dependent kinases (CDK), CDK inhibitors or TF. For instance, up-regulation of 

CKIs p16 and p19 impairs NSC self-renewal (Molofsky et al., 2003; Molofsky et al., 

2006). Instead, CKI p27 has been related to TAP regulation and prevention of 

premature differentiation (Doetsch et al., 2002b). Furthermore, other regulators 

such as p21 has been implicated in NSC cell-cycle regulation preventing qNSCs 

release but also with non-cell autonomous functions preventing a premature 

differentiation through the inhibition of bone morphogenetic protein 2 (BMP2) 

over-expression (Kippin et al., 2005b; Porlan et al., 2013a). Moreover, p21 also 

displays a direct regulation of SOX2 expression eventually modulating NSC self-

renewal (Marques-Torrejon et al., 2013). 

Additional controls of NSC behaviour come from the regulation of gene 

expression by heritable epigenetic modifications. DNA methylation through DNA 

methyl transferase 3A (DNMT3A) or histone modification mediated by BMI1, a 

component of the poly-comb repressive complex 1 (PRC1), are good examples of 

this novel component of NSC regulation as they regulate the expression of key 

neurogenic genes that participate in NSC maintenance (Mich et al., 2014; Molofsky 

et al., 2003; Wu et al., 2010). 
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Recent studies have revealed changes in energetic demands during different 

stem cell behaviours. Activation of qNSCs is accompanied by down-regulation of 

glycolytic metabolism and up-regulation of mitochondrial oxidation in both SEZ and 

SGZ (Llorens-Bobadilla et al., 2015; Shin et al., 2015). These evidences suggest that a 

glycolytic metabolism may be important for maintaining NSC self-renewal and 

multipotency while oxidative phosphorylation is needed to fulfil the higher 

energetic demands that sustain proliferating states. In fact, it has been shown that 

NSCs have a stronger dependency on glycolytic metabolism than neurons and 

lower requirements for oxidative metabolism (Candelario et al., 2013). Additionally, 

lipid metabolism, mitochondrial metabolism and protection to the associated 

generation of reactive oxygen species (ROS) are also emerging as potential 

regulators of NSC activity (Knobloch and Jessberger, 2017). 

3.2. Niche-dependent regulation of adult subependymal NSCs  

The SEZ is a specialized microenvironment containing a variety of cells types 

which actively participate in the global decision making of NSCs. Moreover, this 

neurogenic niche presents a remarkable cellular architecture which allows the 

interaction with local cells and the surrounding ECM while receiving soluble factors 

from different sources, either locally or systemically produced. On their apical side, 

NSCs contact the CSF that fills the ventricles and continuously flows beaten by 

multiciliated ependymal cells (Mirzadeh et al., 2008). On their basal side, NSCs 

contact with an extensive vascular plexus that runs parallel to the SEZ (Shen et al., 

2008; Tavazoie et al., 2008). Additionally, NSCs receive external signals from neural 

innervation and from the immune system through residing microglia (Bjornsson et 

al., 2015) (Figure 10).   
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Figure 10. Multiple signals produced by SEZ niche components regulate adult subependymal 
NSCs. The SEZ is a specialized microenvironment containing a variety of cell types and non-
cellular components with remarkable tissue-specific features: NSCs interact through adhesion 
molecules and signalling receptors with different support cells including astrocytes and 
ependymal cells, with differentiated progeny as well as with the surrounding ECM. On their apical 
side, NSCs contact the cerebrospinal fluid (CSF) of lateral ventricle, whereas they contact with 
the vasculature on their basal side from where NSCs receive different soluble and angiocrine 
factors. Additionally, NSCs receive external signals from neural innervation and from the immune 
system. Finally, gradients of non-cellular components as O2 and small ions also participate in the 
global regulation of NSCs. 

 

Ependymal cells are connected through gap junctions forming a simple 

epithelium that delimitates the SEZ niche from the ventricle. They form a 

specialized layer with elaborated adherens junctions that express several channel 

proteins, conferring a permissive interchange between the CSF and the interstitial 

fluid. They also express numerous molecules that regulate adult neurogenesis and 

NSCs including Noggin, a BMP antagonist, and PEDF (Colak et al., 2008; Lim et al., 

2000; Ramirez-Castillejo et al., 2006). Cell-cell interactions between ependymal 
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cells and NSCs through N-cadherin have been also implicated in the maintenance of 

NSC quiescence and the cleavage of these connections through the matrix 

metallopeptidase MT5-MMP is required for proper activation of NSCs (Porlan et al., 

2014). Likewise, NSC apical end-feet express high levels of the adhesion and 

signalling molecule vascular cell adhesion molecule-1 (VCAM1) for interaction with 

ependymal cells which is required for pinwheel organization and quiescence 

(Kokovay et al., 2012). Cell-cell interactions with derived progeny are also relevant, 

acting as negative feedback signals to prevent NSC exhaustion. Membrane-bound 

notch-ligand Dll1 is expressed in aNSCs and TAPs and send pro-dormancy signals to 

qNSCs, which express the receptor Notch2 (Kawaguchi et al., 2013; Llorens-

Bobadilla et al., 2015). Mature astrocytes secrete delta-like homologue 1 (DLK1) that 

binds to the membrane-bound isoform present in NSCs to regulate self-renewal 

(Ferron et al., 2011). 

The motile cilia present in ependymal cells actively beat the CSF which 

contains multiple factors secreted by the choroid plexus (ChP), a thin highly 

vascularized epithelium floating attached to the lateral ventricle cavity. It 

participates both in brain homeostasis (Redzic et al., 2005) and in neurogenic 

regulation through the secretion of signalling factors (Lun et al., 2015). For 

instance, the CSF provides migratory cues that guide neuroblasts to reach the RMS 

(Sawamoto et al., 2006). A recent global transcriptome analysis of the ChP has 

revealed the expression of multiple growth factors and signalling molecules with 

previously known effects on NSCs and neurogenesis, including neurotrophin 3 

(NT3) (Delgado et al., 2014), insulin growth factor 2 (IGF2) (Ziegler et al., 2012) or 

FGF2 (Zheng et al., 2004) and novel candidates such as BMP5 or IGF1 (Silva-Vargas 

et al., 2016). 

The intimate connection between NSCs and the parallel vascular plexus 

strongly suggests that NSCs reside in a vascular niche which provides important 

extrinsic signals (Shen et al., 2008; Tavazoie et al., 2008). Moreover, NSCs contact 
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the blood vessels at specialized sites with a relatively permissive blood-brain barrier 

(BBB) due to the lack of astrocyte end-feet (Tavazoie et al., 2008). Therefore NSCs 

receive both local extrinsic signals from the endothelial cells, known as angiocrine 

factors (Rafii et al., 2016), and distant produced factors from the blood stream 

including hormones, cytokines, metabolites and gases that can cross the BBB. 

Endothelial cells produce a variety of described NSC regulating molecules such as 

VEGF and PEDF which participate in NSC self-renewal (Ramirez-Castillejo et al., 

2006; Shen et al., 2004), NT3 involved in quiescence maintenance (Delgado et al., 

2014), or the chemokine stromal cell-derived factor 1 (SDF1)  that regulates survival 

and migration of the NSC lineage (Kokovay et al., 2010). Additionally, direct cell-cell 

contact between NSCs and endothelial cells has also been demonstrated to 

promote quiescence (Ottone et al., 2014). 

NSCs express receptors and respond to a variety of neurotransmitters (Berg 

et al., 2013). For instance, neuroblasts produce and release gamma-aminobutyric 

acid (GABA) to promote NSC quiescence thus auto-regulating the neuroblast 

demand (Liu et al., 2005a). The SEZ is also innervated by a variety of mature 

neurons including dopaminergic, serotonergic, cholinergic or nitric oxide (NO) 

neurons. Serotonin and acetylcholine increase NSC proliferation (Paez-Gonzalez et 

al., 2014; Tong et al., 2014) whereas studies of NO and dopamine suggest dual 

actions on NSC and progenitor proliferation (Hoglinger et al., 2004; Kippin et al., 

2005a; Romero-Grimaldi et al., 2008). In addition, supraependymal 5HT 

serotoninergic axons originating from the raphe nucleus directly interact with NSCs 

to increase their proliferation via 5HT2C (Tong et al., 2014).  

NSCs are located in a relatively hypoxic environment and this low oxygen 

tension has been suggested to facilitate stemness and prevent NSC differentiation 

(Mohyeldin et al., 2010). Although NSCs are in contact with blood vessels, the cell 

body of the qNSC resides closer to the ependymal cell layer, far from regions with 

higher gas renewal, what suggests that hypoxia may be related to a quiescent 
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state. Additionally, a less dependency on oxidative phosphorylation of qNSCs 

further supports this idea (Candelario et al., 2013; Llorens-Bobadilla et al., 2015). 

Hypoxia is known to regulate gene expression through the transcriptional factor 

HIF-1α, which has been recently implicated in NSC maintenance and SEZ vascular 

stability (Li et al., 2014).  

 

4. Regulation of adult NSCs by the innate immune system 

4.1. The role of inflammation in regeneration 

Living organisms are constantly exposed to a variety of internal and external 

stimuli and some of them can be classified as danger signals that either represent a 

direct consequence of tissue damage (like the release of proteins and metabolites 

normally sequestered within cells, hypoxia, mechanical or chemical traumas, 

among others) or indicate the presence of harmful agents that may threaten tissue 

and even organism integrity (like invading microbes of viral and bacterial origin). 

When such signals are detected, a complex response is set in motion that is aimed 

at eliminating the danger signals and eventually restoring tissue and organism 

homeostasis. This response is generically referred to as inflammation, which 

represents a fundamental part of the innate immune system and its overall 

blueprint has been determined early in the evolution of metazoans, as indicated by 

the presence of a typical inflammatory response to wounds in invertebrates 

(Aurora and Olson, 2014). Inflammatory responses appear both essential for 

homeostasis and potentially dangerous. Activation of the immune system and its 

response to injury has evolved in vertebrates in the direction of promoting wound 

sealing and scarring to protect the damaged tissue of adult homeothermic 

individuals from pathogen invasion in a very rapid and efficient way. The down-side 

effect of this refined adaptive immune response is the loss of epimorphic 
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regeneration that is characteristic of cold-blooded organisms (Aurora and Olson, 

2014). 

Despite the loss of extensive regenerative capacity, adult mammalian tissues 

contain resident SCs that support cell turnover and production of new cells under 

physiological conditions. Inflammation has been shown to act on several SC niches, 

but the observation of changes in tissue turnover that could reflect both 

detrimental and beneficial effects has left the precise role of inflammation in tissue 

maintenance and regeneration as controversial and generated an area of intense 

investigation (Kizil et al., 2012a; Kizil et al., 2015; Kyritsis et al., 2014). 

The initial phase of inflammation recruits the participation of resident immune 

cells, such as macrophages outside the CNS and microglial cells in the brain, which 

then secrete pro-inflammatory cytokines that initiate a cascade of molecular 

events. Acute inflammation is followed by active resolution by anti-inflammatory 

molecules. Within this complex temporal progression, the response of cells, 

including SC, to the changing landscape of cytokines is an intense research field 

which includes the study of the specific cross-talk between inflammation and stem 

cells (Kizil et al., 2015). Failed resolution results in chronic inflammation which is 

considered as hazardous to tissues, as reflected in its involvement in the onset and 

progression of many diseases. 

4.2. Microglia, neuroinflammation and neurogenesis 

Microglia are the resident macrophages and serve as primary immune effector 

cells of the CNS. These cells have a foetal hematopoietic origin and are derived 

from a specific type of myeloid progenitors that infiltrate the brain through blood 

vessels between E8.5 and E9.5 and hence are observed in the neuroepithelium of 

rodents before the onset of foetal neurogenesis. Moreover, their numbers increase 

throughout embryogenesis and postnatal stages through division within the CNS 

(Ginhoux et al., 2010). They have a multitude of functions, ranging from 
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phagocytosis to neuroprotection and immune surveillance during infection and 

injury. In the adult brain, microglia in the resting state continuously survey the local 

environment, with their dynamic processes interacting with a number of cell types, 

including astrocytes, neurons, and endothelial cells (Nimmerjahn et al., 2005). 

Microglial cells engage an innate immune reaction to various forms of 

pathogenesis and insults (Aguzzi et al., 2013). 

Effects of microglia in CNS homeostasis and reaction to injury depend largely 

on their balanced secretion of pro-inflammatory and anti-inflammatory cytokines 

and chemokines. They are also emerging as a fundamental component of the 

neurogenic niches both in homeostasis and upon injury through cytokine secretion 

and phagocytosis and debris clearance (Borsini et al., 2015; Sato, 2015; Sierra et al., 

2010). As such, recent studies have shown that adult neurogenesis is modulated by 

inflammatory cytokines in response to an activated immune system. Interestingly, 

microglia is a conspicuous component of the SEZ and RMS and, compared to other 

microglial cells, SEZ microglia comprise a morphologically and antigenically distinct 

cell subtype characterized by an activated phenotype, low expression of 

purinoceptors and lack of ATP-elicitable chemotaxis (Goings et al., 2006; Ribeiro 

Xavier et al., 2015).  

Immune cell activation is among the first responses detected in a tissue upon 

injury and a peripheral inflammatory response is transduced to the brain through 

different mechanisms, including cytokine passage through the BBB by saturable 

transport systems or peripheral cytokine-induced self-stimulated release of pro-

inflammatory molecules from CNS cell sources like microglia or endothelial cells 

(Banks and Erickson, 2010). Cytokines are low molecular-weight (8 to 40 kDa) 

glycoproteins secreted by various cell types, such some leukocytes, endothelial 

cells and resident macrophages like microglia, in response to infection, noxious 

stimuli that induce an immune response, inflammation, and trauma. Some 

cytokines act to make disease worse whereas others serve to reduce inflammation 
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and promote healing. Pro-inflammatory cytokines, such as IL-1β and IL-6, TNF-α, 

also known as cachectin, or IFN-γ are produced predominantly by activated 

macrophages and microglia and are involved in the up-regulation of inflammatory 

reactions. The anti-inflammatory cytokines are a series of immunoregulatory 

molecules that control the pro-inflammatory cytokine response. Major anti-

inflammatory cytokines include IL-4, IL-10, IL-11, and IL-13. LIF, IFN-α, IL-6, and TGF-β 

can act as either anti-inflammatory or pro-inflammatory cytokines. Among all the 

anti-inflammatory cytokines, IL-10 is a cytokine with potent anti-inflammatory 

properties, repressing the expression of inflammatory cytokines such as TNF-α, IL-6 

and IL-1 by activated macrophages and microglia (Zhang and An, 2007). 

Experimental evidence has accumulated in the last decade indicating that 

inflammation can play a negative role in mammalian neurogenesis (Carpentier and 

Palmer, 2009; Gonzalez-Perez et al., 2010; Kizil et al., 2015; Montgomery and 

Bowers, 2012). Maternal inflammation induced by viral infection results in reduced 

ventricular proliferation in the foetal brain (Stolp et al., 2011). Intracerebral 

injection of the bacterial cell wall component lipopolysaccharide (LPS), which is a 

potent activator of the innate immune system, in adult mice causes microglial 

activation and suppression of neurogenesis in the SGZ (Ekdahl et al., 2003). 

Injecting LPS peripherally leads to a similar effect that can be antagonized by 

administration of the non-steroidal anti-inflammatory drug (NSAID) indomethacin 

(Monje et al., 2003; Wolf et al., 2009). Reduction in the production of new neurons 

in a NSAID-sensitive way has also been found in the dentate gyrus of rodents under 

chronic neuroinflammatory conditions such as irradiation, experimental epilepsy, 

experimental autoimmune encephalomyelitis, and induced inflammatory bowel 

disease (Ekdahl et al., 2003; Monje et al., 2003; Pluchino et al., 2008; Zonis et al., 

2015). These reports demonstrated clear negative effects of neuroinflammation on 

neuroblast generation and viability, as well as on neuronal physiology (Jakubs et 

al., 2008). 
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All the previously mentioned results have contributed to the generalized 

assumption that inflammation negatively regulates neuroregenerative potential. 

However, there are evidences that support a potentially beneficial role of 

inflammation in neurogenesis. Firstly, peripheral blood leukocytes and resident 

microglia can enhance the rate of production and/or survival of newly-generated 

neurons (Butovsky et al., 2006; Deierborg et al., 2010; London et al., 2013; 

Schwartz, 2010; Schwartz et al., 2009; Schwartz and Shechter, 2010). Secondly, in 

contrast to mammals, non-mammalian vertebrates exhibit a great capacity to 

regenerate lost tissue. The adult zebrafish harbours NSCs that are capable of 

regenerating brain tissue after a traumatic injury through the activation of injury-

induced molecular programs and inflammation-related signalling (Kyritsis et al., 

2012). Fish adult NSCs share many characteristics with their mammalian 

counterparts, like their position at the ventricular surface and radial glial features 

(Adolf et al., 2006). It can, therefore, be hypothesized that adult NSCs in the 

mammalian brain could respond positively to certain inflammatory signals, a 

reaction that would be obscured by the more dramatic detrimental effects of 

inflammatory cytokines on neurogenesis. Added to the controversy over evidences 

indicating both positive and negative effects of inflammation and inflammatory 

cytokines (Borsini et al., 2015) in the process of adult neurogenesis, effects on 

mammalian NSCs have not been directly evaluated. 

4.3. Tumour necrosis factor alpha (TNF-α) and progranulin (PGRN): 

characteristics and signalling 

The TNF ligand superfamily member pro-inflammatory cytokine TNF-α was 

initially characterized as a molecule that could induce tumour regression through 

the induction of cell death (Carswell et al., 1975). TNF-α mainly produced by 

immune cells is prototypically involved in the innate immune response and 

apoptosis, but it is a multifunctional protein expressed in many other cell types 

with a broad range of activities in different systems and can exert different actions 
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depending on which receptor is activated (Aggarwal et al., 2012; Montgomery and 

Bowers, 2012). TNF-α is generally synthetized as a type II transmembrane protein 

precursor (tmTNF-α or pro-TNF-α) which is proteolytically cleaved at the cell 

surface by the matrix metalloprotease TNFα converting enzyme (TACE, also known 

as ADAM17) to release the soluble 17 kDa sTNF-α homotrimer. Both forms are 

biologically active and can interact with two single-pass transmembrane 

glycoprotein receptors, TNF-receptor 1 (TNFR1; also known as p55 or TNFRSF1A) 

and TNFR2 (also known as p75 or TNFRSF1B). TNFR1 is expressed by most cells, 

whereas TNFR2 expression is apparently restricted to cells of the hematopoietic 

system, including microglial and endothelial cells, and certain CNS cells. TNFα 

interaction with the TNFR1 generally triggers apoptosis and cytotoxicity whereas 

engagement of the TNFR2 is usually associated with cell protection and 

proliferation (Faustman and Davis, 2013; MacEwan, 2002; Montgomery and 

Bowers, 2012). TNFR2 agonism has been experimentally shown to be associated 

with pancreatic regeneration, cardioprotection, remyelination, survival of some 

neuron subtypes, and SC proliferation (reviewed in Faustman and Davis, 2013). 

Effects of TNFα in both the induction or the inhibition of neurogenesis in vitro have 

been reported (Bernardino et al., 2008; Keohane et al., 2010; Liu et al., 2005b). 

Some studies have focused on neural progenitor proliferation and have shown 

different, difficult to reconcile, results. Effects in promoting apoptosis, in lowering 

or increasing proliferation have been reported for different types of progenitors, 

both foetal and adult, in different rodent species (Ben-Hur et al., 2003; Bernardino 

et al., 2008; Keohane et al., 2010; Monje et al., 2003; Widera et al., 2006a; Wong et 

al., 2004). These data suggest that the effects of this molecule are complex maybe 

through the engagement of the two distinctive TNFRs. 

TNFR2 can be activated also by progranulin (PGRN), also known as granulin–

epithelin precursor (GEP), proepithelin (PEPI), acrogranin, and GP88/PC-cell derived 

growth factor (PCDGF), a secreted glycoprotein of around 600 amino acids bearing 

7.5 copies of the unique highly conserved 12-cysteine-rich granulin (GRN) repeat 
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(Bateman and Bennett, 2009; De Muynck and Van Damme, 2011). Found in most 

eukaryotes, PGRN is one of the most ancient extracellular regulatory proteins. 

Although the original name emphasizes its presence in cells of the innate immune 

system, such as granulocytes, PGRN is a multifunctional protein expressed by 

different cell types. PGRN is abundant in epithelia with a high rate of cell turnover, 

such as the intestinal crypts or the epidermis suggesting potential actions on 

proliferation of stem cells and progenitors (Daniel et al., 2000). Its expression in 

fibroblasts and endothelial cells increases notably after injury and favours the 

proliferation and migration of these cells at the injury site (He et al., 2003). 

In the adult CNS, PGRN is present in neurons and microglia (Petkau et al., 

2010). Inactivating mutations in the human GRN gene give rise to frontotemporal 

lobar degeneration with ubiquitinated TDP-43-positive inclusions (FTLD-TDP), a 

neurodegenerative disorder characterized by a prominent atrophy of the frontal 

and temporal lobes of the brain resulting in severe cognitive and memory 

impairments and profound personality changes (McKhann et al., 2001). Variant 

alleles of GRN resulting in reduced expression of the gene have also been reported 

in cases of Alzheimer’s disease (Brouwers et al., 2008). Homozygous GRN 

mutations result in adult onset neuronal ceroid lipofuscinosis, a lysosomal storage 

disease characterized by accumulation of lipofuscin that manifest with progressive 

loss of vision, retinal dystrophy, cerebellar ataxia, and seizures (Smith et al., 

2012).These data together with experimental in vitro evidence (Van Damme et al., 

2008) indicate that PGRN is involved in the survival of mature neurons.  

Interestingly, PGRN expression increases dramatically when microglia 

becomes activated by injury (Petkau et al., 2010; Philips et al., 2010). After 

secretion, the full-length protein can be proteolytically cleaved in seven granulin 

peptides (GRN A-G) and a one-half granulin-containing paragranulin by 

metalloproteinases such as matrix metalloproteinase-9 (MMP-9), MMP-14 and a 

disintegrin and metalloproteinase with thrombospondin type 1 motif 7 (ADAMTS-
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7), and the neutrophil-secreted serine proteases elastase and proteinase 3 (De 

Muynck and Van Damme, 2011). Interestingly, both PGRN and its constituent GRNs 

exhibit biological activity; PGRN is generally anti-inflammatory whereas 

proteolytically released GRNs promote inflammation. Full-length PGRN acts as an 

anti-inflammatory molecule and antagonizes the effects of TNFα by acting as a 

ligand of the TNFR2 (Kessenbrock et al., 2008; Zhu et al., 2002).  

Figure 11. TNFR1 and TNFR2-mediated signalling of TNF-α. The binding of TNF-α induces the 
trimerization of TNFR1 and TNFR2. TNFR1 activation leads to the formation of different signalling 
complexes in which the receptor interacts, through the adaptor protein TRADD, with procaspase 
8, triggering the apoptotic process, or TRAF2 and RIP1 to activate NF-κB, p38 or JNK pathways. 
TRAF2 also interacts directly with TNFR2 upon activation. This complex triggers signals leading to 
the activation of the transcriptional factor AP-1 through the activation of MKK3, MKK1/7 and JNK. 
Additionally, Rip1 activates the IKK complex that leads to several ubiquitin modifications needed 
for the correct activation of the transcriptional factor NF-κB implicated in the activation of 
proliferation and cell survival genes. 
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TNF receptors lack catalytic activity, but their cytoplasmic domains can, upon 

ligand engagement, induce the assembly of adaptor proteins that mediate the 

intracellular responses. TNFR1, but not TNFR2 has a death domain that allows the 

association of the TNF receptor-associated death domain (TRADD) and subsequent 

recruitment of Fas-associated death domain (FADD), DED caspases, and induction 

of apoptosis. In addition to caspase activation through TNFR1, cytoplasmic 

association of TNF receptor-associated factor 2 (TRAF2) and cellular inhibitors of 

apoptosis (cIAP 1 and 2) to TNF-R1-bound TRADD or to TNF-R2 directly, results in 

the activation of receptor interacting protein (RIP) and induction of downstream 

nuclear factor kappa B (NFκB), or in the activation of mitogen-activated protein 

kinases (MAPK) or stress-activated protein kinases (SAPKs) JNK and p38 (Cabal-

Hierro and Lazo, 2012; Escos et al., 2016; Gaestel, 2006; Wajant et al., 2003) (Figure 

11). 

Initially discovered in the immune system where NF-kB-regulated gene 

expression is essential for the processes of inflammation and host defense, NF-kB 

comprises a group of dimeric transcription factors which have demonstrated to 

play a major role in various aspects of brain function. NF-kB transcription factors 

are expressed throughout the brain in both in neurons and glial cells and are 

present in neurogenic areas, suggesting potential roles in NSC behavior (Aggarwal, 

2000; Sethi et al., 2008). NF-kB controls the expression of numerous genes 

involved in cell division, apoptosis, and inflammation (Chen and Green, 2004), but 

has never been implicated in stem cell self-renewal. Before stimulation, the family 

of transcription factors Rel/ NF-kB is retained in the cytoplasm in a latent form by 

association with inhibitor proteins of the inhibitor kB (IkB) family, with the most 

common neuronal species being the p50–p65 heterodimer and the p50–p50 

homodimer. Of the five mammalian proteins of the Rel/NF-kB family (NF-kB 1/p50, 

p105, NF-kB 2/p49/52, p100, RelA/p65, RelB and c-Rel), only p65 (RelA) is expressed 

by B cells of the adult SEZ (Denis-Donini et al., 2005). The canonical mechanism of 

NF-kB activation involves phosphorylation of the inhibitory IkB subunit by the IkB 
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kinase complex (IKK) leading to its ubiquitination and subsequent proteasomal 

degradation, thereby releasing the active NF-kB factor dimmer. Free Rel/NF-kB 

then moves to the nucleus where it activates transcription of target genes (Widera 

et al., 2006a; Widera et al., 2006b). 

The binding of TNF-α to cell surface receptors engages other signal 

transduction pathways, including three groups of mitogen-activated protein 

kinases (MAPK): extracellular-signal-regulated kinases (ERKs); and the stress-

activated protein kinases (SAPK) c-Jun N-terminal (JNK) and p38 kinases 

(Bogoyevitch et al., 2010; Sabio and Davis, 2014). TNF-induced activation of the JNK 

and p38 pathways occurs through a non-apoptotic TRAF2-dependent pathway. 

MAP kinase pathways share a common structure formed by three sequentially 

acting protein kinases, generally including a MAP kinase kinase (MAP2K or MKK) 

and a MKK kinase (MAP3K or MKKK) (Sabio and Davis, 2014). JNK and p38 

pathways are engaged by similar MAP3K isoforms, but diverge during the 

activation of MAP2K isoforms that selectively activate them. The JNK family 

includes three members (JNK1, JNK2, and JNK3) and four members of the p38 MAP 

kinase family have been identified (p38α, p38β, p38γ, and p38δ) (Gaestel, 2006; 

Sabio and Davis, 2014).  The different JNK isoforms are activated by dual 

phosphorylation (Lee et al., 1997; Wajant et al., 2003; Yeh et al., 1997). JNK is 

activated by the MAP2K isoforms MKK4 and MKK7. MKK4 and MKK7 preferentially 

phosphorylate JNK on tyrosine and threonine, respectively and efficient dual 

phosphorylation therefore requires collaborative actions of both kinases. Indeed, 

compound MKK4/7-deficiency prevents TNFα-stimulated JNK activation (Tournier 

et al., 2001; Wajant et al., 2003). Upon activation, JNKs translocate into the nucleus 

and phosphorylate, thereby enhancing, the activity of transcription factors c-Jun, 

AP-1 or ATF2 (Chang and Karin, 2001; Shaulian and Karin, 2002). TNF not only 

robustly activates the JNK-inducing MAP kinase cascade, but also the p38-MAPK 

signalling cascade (Gaestel, 2015). The p38 MAP kinases can be activated by MKK3, 

MKK4, and MKK6 in vitro, but p38 MAP kinase activation in vivo is primarily 
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mediated by MKK3 and MKK6 (Brancho et al., 2003). The activation of p38 MAP 

kinases (by MKK3 and MKK6) and JNK (by MKK4 and MKK7) is induced by 

members of the MAP3K protein kinase family. Roles for ASK1, MEKK, MLK, TAK1, 

and TPL2 isoforms of MAP3K in the TNFα response have been reported. The 

relative importance of these pathways appears to be cell type-dependent and 

context-specific. Mechanisms that account for the selective involvement of these 

MAP3K isoforms in TNFα signalling have not been completely defined (Sabio and 

Davis, 2014). 
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Tissue-specific SCs appear co-exist in two states of activation in most adult niches, 

but the transitions between these states as well as their regulation remain largely 

unknown. Moreover, some adult SCs appear to respond to remote injuries in ways 

that are not fully understood. This work proposes the hypothesis that adult NSCs 

react to inflammatory signals triggered in the periphery by modifying their 

activation state within the stem cell quiescence cycle. 

 

The specific objectives proposed to test this hypothesis are: 

1.- Development of a cell cytometry-based protocol for the prospective 

identification and analysis of adult subependymal NSCs and their progeny. 

2.- Characterization of the quiescent cell cycle of adult subependymal NSCs during 

regeneration and in response to inflammation. 

3.- Analysis of the effects of the inflammatory mediators TNF-α and progranulin and 

their common receptor TNFR2 on NSCs. 
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1. Experimental animals 

1.1. Mice handling 

All animals used along this thesis were acquired from Charles River 

Laboratories and then were breed and housed at the local animal housing facility 

(University of Valencia, Burjassot) according to the European Union 86/609/EEC 

and Spanish RD-1201/2005 guidelines and under official veterinary supervision. All 

experimental procedures with animals were approved by the corresponding local 

ethics committee.  

When performance of highly invasive techniques was inevitable, mice were 

prior deeply anesthetized by intraperitoneal (i.p) injection of a mixture of 

medetomidine (0.5-1 mg per gram of body weight) and ketamine (50-75 mg per 

gram of body weight) diluted in saline solution (0.09% NaCl). 

1.2. Mice strains 

All experiments were done using adult mice of 2 to 4 months of age in all 

cases. The following mouse strains were used along this thesis: 

- C57BI6 (WT): wild-type strain used as a source of biological samples along 

the different in vivo or in vitro experiments. These mice were also used as a 

control reference to compare with genetically modified mice strains. 

- B6;129S-Tnfrsf1atm1Imx/J (R1KO): null mutant mice lacking Tnfrsf1a (TNFR1) 

gene expression. The mice colony was kept in homozygosis.  

- B6;129S-Tnfrsf1btm1Imx/J (R2KO): null mutant mice lacking Tnfrsf1b (TNFR2) 

gene expression. The mice colony was kept either in homozygosis or in 

heterozygosis and inter-crossed to generate homozygous mice. 
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- B6;129S-Tnfrsf1atm1Imx Tnfrsf1btm1Imx/J (DKO): double null mutant mice 

lacking both Tnfrsf1a and Tnfrsf1b gene expression. The mice colony was 

kept in homozygosis. 

1.3. Genotyping 

The genotype of the different genetically modified mice was determined by 

end-point Polimerase Chain Reaction (PCR) of genomic DNA extracted from tail 

samples. Tail tissue was lysed and processed for gDNA extraction using the 

Maxwell® 16 Mouse Tail DNA Purification Kit (Promega, cat no. AS1120) and a 

Maxwell® 16 instrument (Promega, cat no. AS2000). The presence of mutant or 

wild-type alleles was determined using 2 μl of gDNA and specific primers designed 

to amplify fragments of different length (see Table 1). PCR was performed with 

GoTaq® G2 Flexi DNA Polymerase (Promega, cat no. M7801). The PCR products 

were resolved by electrophoresis in a 2.5% agarose gel in TAE buffer (Tris, glacial 

acetic acid, 1 mM EDTA). 

 

 Gene Primer sequence amplicon allele Ta  (ºC) Nr cycles 

Tnfrsf1a 

JAX834 GGATTGTCACGGTGCCGTTGAAG 
120 bp WT 

64TD58 12 + 23 
JAX835 TGACAAGGACACGGTGTGTGG 

JAX836 TGCTGATGGGGATACATCCAT 
155 bp KO 

JAX837 CCGGTGGATGTGGAATGTGTG 

Tnfrsf1b 

JAX838 AGAGCTCCAGGCACAAGGGC 
275 bp WT 

69 35 
JAX839 AACGGGCCAGACCTCGGGT 

JAX837 CCGGTGGATGTGGAATGTGTG 
160 bp KO 

JAX838 AGAGCTCCAGGCACAAGGGC 

Table 1. Genotyping primers and PCR amplification conditions.  64TD58 indicates a touch-down 
PCR protocol where annealing temperature (Ta) starts at 64ºC and decreases to 58ºC during the 
first 12 cycles at a rate of 0.5ºC per cycle. The remaining 23 cycles are perfomed at 58ºC. 
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2. In vivo methods 

2.1. Drug administration 

Different drugs were administered for in vivo experiments: 

- Lipopolysaccharide (LPS) (from E. Coli O111:B4, Sigma, cat no. L2630) was 

reconstituted at 1 mg/ml in saline solution and intraperitoneally injected at 

a single dose of 5 mg/kg. 

- Temozolomide (TMZ) (Sigma, cat no. T2577) was reconstituted at 10 mg/ml 

in 25% DMSO saline solution and heated at 65oC until it was dissolved. 

Room temperature (RT) TMZ was intraperitoneally administered at 100 

mg/kg/day for 3 consecutive days. 

2.2. In vivo labelling of proliferating SEZ cells by thymidine analogues 

administration 

Mitotically active cells that reside in the SEZ differ in their proliferative state 

and cell cycle kinetics, a property that has been extensively used to distinguish 

slow-cycling NSCs from highly proliferative TAPs and neuroblasts. In order to 

evaluate the proliferative state of NSCs, mice first received a regimen of seven i.p. 

injections (one every 2 h) with 10 mg/ml 5-Chloro-2’-deoxyuridine (CldU; Sigma, cat 

no. C6891) in saline solution (0.09% NaCl) dispensing a final dose of 50 mg of 

thymidine analogues per Kg. After 28 days, highly proliferative cells are expected 

to have diluted the incorporated CldU into their progeny, while slow-cycling cells, 

mainly active NSCs, are expected to retain the label defining this population as LRC 

(Porlan et al., 2014). Finally, to score all the proliferating cells, a single i.p. pulse of 

10 mg/mL 5-Iodo-2’-deoxyuridine (IdU; Sigma, cat no. I7125) diluted in saline 

solution with 40% dimethyl sulfoxide was administered i.p. 1 h prior of sacrifice. 
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2.3. Perfusion and histology 

In order to preserve brain structures and cell integrity for the subsequent 

histological analysis, mice were transcardially perfused with 27.5 mL of saline 

solution followed by 82.5-110 mL of 4% paraformaldehyde (PFA) in 0.1M Phosphate 

Buffer Saline (PBS) at a flow rate of 5.5 mL/min. Then, brains were extracted and 

post-fixed in 4% PFA during another hour at RT. After washing the tissue with 

abundant PBS, brains were included in warm 2% agar solution and cooled until 

solidification. Serially collected coronal sections of 30 µm of thickness were 

obtained in a Leica VT1000 vibratome and kept in PBS-0.05% azide at 4ºC until the 

analysis. 

2.4. Immunohistochemistry (IHC) 

Prior to specific antigen detection with primary antibodies, potential 

unspecific binding sites were neutralized incubating the tissue slices in blocking 

solution (5% Foetal Bovine Serum (FBS), 1% Glycine, 1% Bovine Serum Albumin (BSA), 

0.1-0.2% TritonTM X-100 (TX-100) and 0.05% azide in 0.1M phosphate buffer (PB)) for 1 

h at room temperature. Next, samples were incubated with primary antibodies 

diluted in blocking solution (see Annex 1) at 4ºC for 24 h. After 3 washes with 0.1M 

PB, primary antibodies were detected with fluorescent-labelled secondary 

antibodies (see Annex 1) diluted in blocking buffer and incubated for 1 h at RT. 

Finally, cell nuclei were stained with 4’,6-diamidine-2’-phenylindole dihydrochloride 

(DAPI; 1 mg/mL in distilled water) during 5 min. Labelled tissue was extended over 

glass microscope slides and mounted with FluoromountG (Electron Microscopy 

Sciences, cat. no. 17984) medium. 

For detection of thymidine analogues, an initial step of chromatin 

denaturalization was required so the tissue was previously incubated in 2N HCl for 

20 min at 37ºC. Then acid pH was neutralized with 0.1 M sodium borate buffer 

pH8.5 and before the blocking step, tissue was extendedly washed with 0.1 M PB. 
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2.5. SEZ cell counting 

For the counting of the GFAP/Ki67/EGFR population, immunostained slide 

series containing the anterior horn of lateral ventricles were photographed in an 

Olympus FluoView FV10i confocal laser scanning microscope equipped with 405, 

458, 488 and 633 nm lasers and images were processed using FV10-ASW 2.1 viewer 

software. Cell populations were manually counted and data was obtained as a 

percentage of positive cells relative to a subpopulation or total cells (DAPI count) 

in the lateral ventricle wall. 

CldU+, IdU+ and CldU/IdU+ cells laying the ventricle were manually counted in 

two entire series of tissue (10-11 slices) under a fluorescence microscope (NIKON 

eclipse Ni) and the number of total cells of each type in the SEZ was estimated 

applying the Cavalieri method, which takes into account the number of cells 

counted, the number of tissue slices counted, the number of total tissue series and 

the slice thickness. 

2.6. SEZ dissection  

Adult mice were sacrificed by cervical dislocation. Figure 12 illustrates the 

step-by-step procedure of SEZ dissection. The brain was removed (Figure 12a) and 

placed in a plate with ice-cold PBS (Biowest, cat no. X0515) where we discarded the 

olfactory bulbs and cerebellum to obtain a 4-5 mm thick slice that contains the 

lateral ventricles (Figure 12b). Both hemispheres were then separated for fine 

dissection (Figure 12c). First, the tissue was opened following the corpus callosum 

line (Figure 12d) separating the hippocampus, septum and diencephalon from the 

cortex and exposing the SEZ (Figure 12e). Next, the SEZ area was delimited by 

removing the surrounding tissue using as reference the white matter tracts (corpus 

callosum dorsal and anterior capsule/stria terminalis ventral to the SEZ) (Figures 

12f-i). Finally, the SEZ block was finely cut under the surface of the ventricle wall to 
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obtain a tissue slice as thin as possible, separating the SEZ from the subjacent 

striatal parenchyma (Figures 12j-l). 

 Figure 12. Dissection of the SEZ with detailed pictures of the step-by-step process. The whole 
dissection procedure is thoroughly described in the text, with references to each picture (a–l). 
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Black dashed lines mark where to cut while white dashed lines plot the shape of the SEZ. A: 
anterior region, P: posterior region. 

 

2.7. SEZ wholemount preparations and analysis of migrating neuroblasts 

Migrating neuroblast chains were directly analysed in the intact SEZ as whole-

mount preparations. After dissection, fresh tissue was fixed and permeated in PFA 

4% with 0.5% Tx-100 at 4oC. The next day, the tissue was washed three times with 

0.5% Tx-100 PBS and incubated for 1 h in blocking buffer (0.5% Tx-100, 10% FBS in 

PBS). Primary antibodies (see Annex 1) were added to fresh blocking buffer and 

SEZ samples were incubated at 4ºC for 2 days. After washing three times with 0.1% 

Tx-100 PBS, fluorescent-labelled secondary antibodies were incubated in blocking 

buffer at 4ºC. The following day, the tissue was washed and incubated with 1 μg/ml 

DAPI in 0.1% Tx-100 for 10 minutes. Finally, wholemount preparations were 

mounted in abundant FluorMount-GT medium. The whole SEZ area was 

photographed in a Fluoview FV10iW confocal microscope (Olympus) and the SEZ 

area occupied by DCX+ chains was quantified using the image J analysis software. 

2.8. SEZ dissociation, flow cytometry analysis and MACS® separation  

In order to preserve antigen integrity and reduce the presence of debris or 

dead cells, the preparation of SEZ samples was optimized for flow cytometry 

analysis or cell sorting. After dissection, both SEZs from each mice were minced 

and enzymatically digested at 37oC for 20 min with 1 ml of enzymatic mix (Hanks 

balanced salt solution (HBSS) without Calcium and Magnesium, 10 mM HEPES, 0.4 

mM EDTA and 1:10 Trypsin/EDTA (GIBCO-BRL, cat no. 25200-056)). Digestion was 

quenched with 3 ml of 100 μg/ml trypsin inhibitor (Sigma, cat no. T6522) diluted in 

washing medium (0.6% Glucose, 0.1% NaHCO3, 5 mM HEPES, 2 mM L-glutamine, 0.4% 

BSA, 1X Antibiotic/Antimicotic in DMEM/F-12) and the digested pieces were 

centrifuged at 15 xg for 5 min. After removing the medium, remaining tissue was 

mechanically dissociated in 2 ml of washing medium with 10 μg/ml DNase I (Roche, 
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cat no. 000000004716728001) pipetting up and down 10 times through a fire-

polished glass Pasteur pipette. Cell suspension was diluted with 3 ml of washing 

medium and then it was filtered through a 40 μm nylon filter. After washing the 

filter with extra 5 ml of washing medium, cells were pelleted (300 xg, 10 min) and 

incubated with 100 μl of Dead cell removal microbeads (Miltenyi, cat no. 130-090-

101) at RT for 15 min. Magnetically labelled cells were then diluted in 0.5 ml of 

binding buffer (Miltenyi, cat no. 130-090-101) and passed through a previously 

equilibrated MS column (Milteny, cat no. 130-042-201) on an OctoMACS® magnetic 

separator (Miltenyi, cat no. 130-042-109). The columns were washed 4 times with 

binding buffer and all the eluted fractions were collected together. Finally, the 

eluted living fraction was pelleted (300 xg, 10 min), resuspended in 100 μl blocking 

buffer (HBSS without Calcium and Magnesium, 10 mM HEPES, 2 mM EDTA, 0.1% 

Glucose, 0.5% BSA) and incubated with the specific primary antibodies and reagents 

(see Table 2) at 4ºC for 30 min. After washing with 1 ml of blocking buffer, labelled 

samples were centrifuged (300 xg, 10 min at 4oC) and resuspended in 0.5 ml of 

blocking buffer. Cells were analysed using a LSR-Fortessa cytometer (Becton 

Dickinson) with 350, 488, 561 and 640 nm lasers. 

Antibody/ Reagent 
Working 

concentration 
Provider Cat no. 

CD45-BUV395 1:200 BD 565967 

O4-Biotin 1:30 Miltenyi 130-095-895 

CD31-BUV395 1:100 BD 740239 

Ter119-BUV395 1:200 BD 563827 

Streptavidin-Alexa350 1:200 Molecular Probes s11249 

Dapi 50 μg/ml 1:500 Sigma D9542 

EGF-Alexa488 1:300 Molecular Probes E13345 

Mitotracker® Orange CM-
H2TMRos 

1:2000 Molecular Probes M7511 

CD24-PerCP-Cy5.5 1:300 BD 562360 

GLAST-APC 1:20 Miltenyi 130-095-814 
 

PSA-NCAM-APC 1:50 Miltenyi 130-093-273 
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CD9-Vio770 1:20 Miltenyi 130-102-384 

CD45-Biotin 1:100 BD 553077 

O4-Biotin 1:20 BD 130-095-895 

CD31-Biotin 1:100 BD 558737 

Ter119-Biotin 1:100 BD 553672 

CD24-Biotin 1:100 Miltenyi 553260 

Table 2. Fluorescent and biotin-labelled antibodies and reagents used in the flow-cytometry and 
MACS® sorting strategies. 

 

For cell MACS® isolation of Lin- cells, SEZ samples were dissociated and 

filtered as mentioned above. Then, samples were incubated at 4ºC for 30 minutes 

in 100 μl of blocking buffer with biotinylated antibodies against CD45, CD31, Ter119, 

CD24 and O4 (see Table 2). Cells were washed with 3 ml of blocking buffer and 

centrifuged at 300 xg for 10 min. The resultant pellet was resuspended in 70 μl of 

blocking buffer and incubated with 30 μl of anti-biotin microbeads (Miltenyi) at 4ºC 

for 15 min. Excess of beads were washed with 3 ml of blocking buffer and, after 

pelleting the cells (300 xg, 10 minutes), magnetically labelled samples were 

resuspended in 0.5 ml of blocking buffer and loaded into a previously equilibrated 

MS column held in an OctoMACS® separator magnet. The eluted fraction was 

collected and the column was washed 3 times with 0.5 ml of blocking buffer. 

Finally, the column was removed from the magnet and the retained fraction eluted 

in 1 ml of blocking buffer by gently pushing with a plunger. Both fractions were 

centrifuged at 300 xg for 10 min and the pellet was incubated in 100 μl of Dead cell 

removal microbeads for 15 min at RT. Finally, using the OctoMACS® separator, the 

living fraction was collected as previously described. The eluted cells were pelleted 

(300 xg, 10 min) and resuspended in neurosphere growing medium for cell culture 

or in blocking buffer for flow cytometry analysis. 
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3. In vitro cell culture methods 

3.1. Cell culture media 

3.1.1. NSCs 

 

Reagent Working conc. 
Stock conc./ 

storage T 
Provider Cat. no. 

DMEM/F12 (1:1) with L-Glutamine 1x 1x (4 ºC) Gibco, BRL 11320-074 

D(+)-Glucose 0.6 % 30% (-20 ºC) Panreac 141341 

NaHCO3
 0.1 % 7.5% (4 ºC) Biowest L0680-500 

HEPES 5 mM 1M (4 ºC) Biowest L0180-100 

L-Glutamine 2 mM 200nM (-20 ºC) Gibco, BRL 25030-081 

Antibiotic/Antimycotic 1x 100x (-20 ºC) Gibco, BRL 15240-062 

“Hormone mix” 1x 10x (-20 ºC) Homemade (Table 4) 

Heparin sodium salt 0.7 U/ml 350U/ml (4 ºC) Sigma H3149 

Bovine Serum Albumin (BSA) 4 mg/ml powder (4 ºC) Sigma B4287 

Table 3. Preparation of “control medium”. DMEM/F12 (Dulbecco's Modified Eagle Medium /  

Ham's F12 Nutrient Mixture) 

 

Reagent Working conc. 
Stock conc./ 

storage T 
Provider Cat. no. 

DMEM/F12 (1:1) with L-
Glutamine  

1x 1x (4 ºC) 
Gibco, 

BRL 
11320-074 

D(+)-Glucose 0.6 % 30 % (-20 ºC) Panreac 141341 

NaHCO3  0.1 % 7.5 % (4 ºC) Biowest L0680-500 

HEPES 5 mM 1 M (4 ºC) Biowest L0180-100 
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Apo-Transferrin 0.8 mg/ml Powder Sigma T2252 

Bovine insulin 500 nM 5 M in 0.01N HCl Sigma I6634 

Putrescine 0.1 mg/ml 1 mg/ml Sigma P7505 

Progesterone 0.2 nM 2 mM in 95% EtOH Sigma P6149 

Sodium Selenite 0.3M 3 mM Sigma S9133 

Table 4. Preparation of 10x “hormone mix” 

 

Reagent Working conc. 
Stock conc./ 

storage T 
Provider Cat. no. 

Control medium As described in Table 3 

EGF 20 ng/ml 4 µg/ml (-20 ºC) Gibco, BRL 53003-018 

bFGF 10 ng/ml 25 µg/ml (-20 ºC) Sigma F0291 

Table 5. Preparation of “complete medium” 

 

3.1.2. N13 cell line 

 

Reagent Working conc. 
Stock conc./ 

storage Tª 
Provider Cat. no. 

RPMI 1x 1x (4 ºC) Gibco, BRL 21875-091 

FBS 10% 100% (-20 ºC) Biowest S181B-500 

L-Glutamine 2 mM 200nM (-20 ºC) Gibco, BRL 25030-081 

Penicillin/Streptomycin 1x 100x (-20 ºC) Gibco, BRL L0018-100 

Table 6. Preparation of N13 culture medium 
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3.2. Reagents and drugs 

Along the different experimental procedures, a variety of treatments were 

added to the NSC cultures: recombinant mouse TNF-α (R&D, cat no. 410-MT-010) 

was reconstituted at 10 μg/ml in sterile PBS with 0.1% BSA and used at 

concentrations from 0.1 to 20 ng/ml. TNF-α was added at 10 ng/ml unless otherwise 

is stated. Recombinant mouse PGRN (R&D, cat no. 2557-PG) was reconstituted at 

250 μg/ml in sterile PBS and used between 10 and 500 ng/ml. The final 

concentration of PGRN used was 100 ng/ml unless otherwise is stated. TNFR1 was 

specifically activated with 1 μg/ml of an anti-TNFR1 antibody (R&D, cat. no. AF-425-

PB) with described agonistic properties (Tesz et al., 2007). TNFR2 was stimulated 

with 5 μg/ml of an agonistic anti-TNFR2 antibody (Hycult biotech, cat. no. 

HM1011)(Marchetti et al., 2004). P38 inhibitor SB203580 (Sigma, cat. no. S8307) 

was added 30 minutes before other treatments and used at a final concentration of 

1 μM. 

3.3. Establishment of primary NSC culture and estimation of the number of SEZ 

neurosphere-forming cells 

For general purposes, adult NSC cultures from the SEZ were obtained from 2 

to 4 month-old mice. Both SEZs from each mice were minced together and 

enzymatically digested in 1 ml of a previously activated (30 minutes at 37ºC) 

enzymatic solution (12 U/ml of papain (Worthington Biochemical Corporation, cat. 

no. LS003120), 0.2 mg/ml L-cysteine hydrochloride (Sigma, cat. no. C8277) and 0.2 

mg/ml EDTA (Sigma, cat. no. E6511) in EBSS (Earle´s Balanced Salt Solution, GibcoTM, 

cat. no. 24010-043). After an incubation of 30 min in a thermostatic bath at 37ºC, 

digestion was stopped by diluting papain with 3 ml of control medium (see Table 3 

and Table 4). The pieces were centrifuged at 100 xg for 2 min and after removing 

the supernatant, the tissue was mechanically dissociated in 1 ml of control medium 

pipetting up and down through a p1000 micropipette tip. Then the homogenate 

was washed in 10 ml of control medium and centrifuged at 200 xg for 10 min. 
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Finally, the pellet was re-suspended and plated in complete medium (see Table 5). 

For standard primary culture establishment, we distributed cells obtained from 2 

SEZs (one brain) into 8 wells of a p48-well plate containing a final volume of 0.5 ml. 

SEZ homogenates were incubated at 37ºC in a 5% CO2 humidified incubator for 7-10 

days. During this time differentiated cells will die while NSCs and some progenitors 

will start to proliferate and to form neurospheres (Figure 13a). 

 

Figure 13. Culture and expansion of adult NSCs. (a) Bright-field pictures of primary neurospheres. 
(b) Bright-field pictures of 5 days in vitro (5 DIV) secondary spheres. (c ) 2-D composition of a 
whole 96-well with clonal neurospheres derived from a neurosphere assay (NSA). Scale bars: 100 
mm in a, b. 

 

In experiments where the number of SEZ-derived primary neurospheres was 

compared, the cell density of the re-suspended homogenate was previously 

determined using a propidium iodide-based automatic cell counter ADAM (Digital 

Bio). 20.000 cells were plated per 48 well and 5-7 days after incubating at 37ºC in a 

5% CO2 humidified incubator, the number of neourospheres was manually counted 
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on an inverted microscope with phase contrast optics. The total number of primary 

neurospheres per SEZ was estimated using the formula (N/C) x S where: 

 N: is the average number of neurospheres per well. 

 C: is the number of viable cells seeded per well. 

 S: is the total number of viable cells per SEZ. 

3.4. Subculture and bulk expansion of established NSC cultures 

Once primary neurospheres are obtained from the SEZ tissue, they can be 

expanded for extended periods of time by dissociating them after 4-7 days and 

seeding individual cells under the same conditions. 

Grown neurospheres were transferred to a 15 ml conical tube and centrifuged 

5 min at 100-130 xg depending on the overall neurosphere size. Pelleted cells were 

dissociated with 200 μl of Accutase® solution (Sigma, cat. no. A6964). After 10 min 

at RT, Accutase® was diluted with 800 μl of control medium and neurospheres 

were mechanically dissociated by thoroughly pipetting 10-15 times with a p1000 

micropipette. After washing the cell suspension in 8-10 ml with control medium, 

individual cells were centrifuged 10 min at 200 xg. The resultant pellet was re-

suspended in complete medium to estimate the concentration of viable cells using 

the automatic ADAM cell counter system.  

For culture passage and bulk expansion, 10.000-viable cells/cm2 were seeded 

on fresh pre-warmed complete medium and incubated at 37ºC in a 5% CO2 

humidified incubator. After 5-7 days, new neurospheres were ready for 

subculturing (Figure 13b). 

3.5. The neurosphere formation assay (NSA) 

Proliferation and self-renewal of NSCs was assessed evaluating the ability of 

individual cells to generate new neurospheres. After obtaining a single cell 

suspension as mentioned above, cells were plated at pseudo-clonal density (5 



Material and methods 

65 

cel/μl) seeding 1000 cells in 200 μl of complete medium per 96 well. When different 

treatments were evaluated, cells were prepared at twice the concentration 

required (10 cel/ μl) to plate cells in 100 μl of complete medium and mix them with 

the same volume of double concentrated treatment diluted in complete medium as 

well. After 5-6 days at 37ºC in a 5% CO2 humidified incubator, neurospheres were 

manually counted on an inverted microscope under phase contrast optics. For 

diameter assessment, neurospheres were photographed in an INCELL Analyzer 

2000 (General Electric) (Figure 13c) and sphere diameter was measured by image 

analysis using the Image J software. 

An increase in self-renewal might not lead to higher number of neurospheres 

in a NSA, but obtained neurospheres would be enriched in NSCs. Consequently, if 

these neurospheres are dissociated and submitted to a second round of NSA, more 

secondary neurospheres will be scored revealing the phenotype. In parallel, from 

the same original cell suspension, NSC were plated in 24-well plates by seeding 

25,000 in 1 ml of NSC complete medium per well. The different treatments were 

added to each well maintaining the final volume of 1 ml. After 5 days at 37ºC in a 5% 

CO2 humidified incubator neurospheres were collected from the 24-well plates and 

dissociated with 40 μl of Accutase® solution as previously described. Accutase® 

was diluted with 160 μl of complete medium and after obtaining a single cell 

suspension and estimating the number of viable cells, a second round of NSA assay 

was set up as mentioned above. 

3.6. Activated microglia conditioned medium and immunodepletion of TNF-α  

N13 microglia cells were grown in their specific culture medium (see Table 6) 

at 37ºC in a 5% CO2 humidified incubator and passed every 2-3 days with 

Trypsin/EDTA (T/E) (Gibco-BRL, cat no. 25200-056). For NSC medium conditioning, 

400.000 cells were plated in a 6-well plate and the next day the cells were 

stimulated to a pro-inflammatory M0 state with 250 ng/ml LPS. After 3 h, the 

growth medium containing LPS was removed and the cells were washed twice 
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with abundant PBS. Next, 3 ml of NSC control medium without BSA were 

conditioned for 24 h. Finally, the conditioned media was collected and filtered 

through a 0.45 μm pore-size filter. 

The conditioned media was incubated with 2.5 μg/ml of anti-TNF-α antibody 

(Abcam, cat no. ab1793) or with a non-related antibody (anti-Nestin antibody, 

Abcam, cat no. ab6142) at the same concentration overnight at 4ºC in constant 

agitation. The next day, 40 μl of previously washed Dynabeads® Protein G (Life 

technologies, cat no. 10003D,) were added to the medium for an additional 

incubation of 1 h at 4ºC in constant agitation. Finally, Dynabeads® were 

magnetically removed from the media using a DYNAL® magnet (Invitrogen). The 

resultant conditioned media was diluted 1:4 in fresh NSC complete medium for 

treatment of NSC cultures in a neurosphere assay. 

3.7. Cell viability assessment by MTS assay 

Viability of NSCs in the presence of TNF-α was measured by MTS 

determination using the CellTiter 96® Aqueous Non-radioactive Cell Proliferation 

Assay (Promega, cat. No G5421). 5000 cells were plated in a 96-well with 100 μl of 

complete medium and incubated at different time points with a MTS/PMS working 

solution (20:1) at 37ºC in a 5% CO2 humidified incubator. Absorbance at 490nm of 

each well was measured after 1 h in a Victor®3 Multilabel Plate Reader 

(PerkinElmer). Each experimental point was done by triplicate and the cell viability 

was calculated with the formula (tx A490 – blank A490/ t0 A490 – blank A490) x 100 

where: 

 tx A490: is the average absorbance at 490nm of each time point. 

 t0 A490: is the average absorbance at 490nm of the initial time point. 

 blank A490: is the average absorbance at 490nm of the complete medium 

without cells. 
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3.8. Cell cycle analysis 

Single cells were plated in complete medium at a density of 10.000 cells/cm2 

and, after 24 h at 37ºC in a 5% CO2 humidified incubator, cells were pelleted and 

dissociated in 50 μl of Accutase® solution. After 10 min, 200 μl of DNA PREP LPR 

reagent (Beckman Coulter, cat. no. 6607055) were directly added to permeate and 

fix the cells during 5 min. Finally, cells were stained with 250 μl of 100 μg/ml 

propidium iodide and 20 ng/ml of RNaseA. After 45 min at 37ºC, the DNA content 

was assessed in a FACSVerse (BD) flow cytometer.    

3.9. Immunocytochemistry 

In general, prior to antigen detection with specific antibodies, cells were 

attached and fixed for antigen preservation. Therefore, the day before, glass 

coverslips were incubated with Matrigel® (Corning®, cat. no. 354230) diluted 1:100 

in control medium at 37ºC in a 5% CO2 humidified incubator. The next day, before 

attaching cells, Matrigel-coated coverslips were washed twice with sterile dH2O. 

Cells were plated on 48-well plates with coated coverslips and were incubated for 

20 min to allow cell attachment. Next, cells were fixed in 1% PFA at 37ºC for 15 min 

and washed 3 times with PBS. 

Before immunolabelling, unspecific binding of antibodies was minimized 

incubating the cells in blocking buffer (10% FBS, 1% Glycine, 0.1 M PBS) for 30 min. 

After that, samples were incubated with specific primary antibodies (see Annex 1) 

diluted in blocking buffer overnight at 4ºC. Primary antibodies were washed three 

times with PBS before incubating the cells with the corresponding fluorescent-

labelled secondary antibodies (see Annex 1) diluted in blocking buffer for 1 h at RT. 

Finally, cells were washed with PBS and incubated with 1 μg/ml DAPI for 5 minutes 

before mounting the coverslips in microscope slides with FluorsaveTM Reagent 

(Millipore, cat. no. 345789). 
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3.10. Cell-pair assay for mode of division assessment  

Symmetry of cell division was evaluated in recently-divided cells. Single cells 

were plated in complete medium at very low density (4.000 cel/cm2) to minimize 

the aggregation of individual cells and were incubated at 37ºC in a 5% CO2 

humidified incubator. After 24 h, cells were gently dispensed in Matrigel®-coated 

coverslips for fixation and detection of EGFR expression by immunocytochemistry. 

At least 100 cell-pairs per condition were manually counted under a fluorescence 

microscope (NIKON eclipse Ni) to obtain the percentage of each type of division. 

3.11. Evaluation of multipotency of NSC cultures 

Pre-treated NSC cultures were dissociated and plated at a density of 25,000 

cells in a 60 mm dish with 4 ml of complete medium to obtain isolated clones. 

Neurospheres were ready for clonal differentiation after 7 days at 37ºC in a 5% CO2 

humidified incubator. The day before picking clones, 96-well plates were coated 

with Matrigel® diluted 1:100 in control medium. The next day, Matrigel®-coated 

plates were washed twice with sterile dH2O and filled with 100 μl of control 

medium. Individual clones were picked under a dissecting microscope in a 

horizontal laminar flow cabinet using a p20 micropipette and were transferred to 

the Matrigel®-coated wells (1 neurosphere/well). The plates were placed in the 

incubator for at least for 2 h to let neurospheres attach to the matrix. Empty wells 

and those containing more than one clone were discarded for subsequent 

differentiation. Once neurospheres were completely attached to the matrix, 

control medium was carefully aspirated and replaced with 200 μl of differentiation 

medium I (NSC control medium supplemented with 10 ng/ml of bFGF). After the 

initial 2 days of incubation, the differentiation medium I was replaced by the 

differentiation medium II (NSC control medium supplemented with 2% FBS). 

Differentiated clones were ready for immunocytochemistry analysis of the 

presence of the three different lineages after 5 days. Each clone was analysed in a 

fluorescent inverted microscope and classified as unipotent (A, if only astrocytes 
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could be found), bipotent (AO/AN, if, besides astrocytes, there were neurons or 

oligodendrocytes in the well) or tripotent (AON, if all three lineages were 

observed). 

3.12. Evaluation of cell proliferation dynamics by dilution of fluorescent tracers 

SEZ homogenates were obtained as previously described except for 

mechanical dissociation of tissue pieces after papain digestion that was done in 1 

mL of 10 mM HEPES and HBSS to avoid BSA-sequestering of the membrane-

permeant fluorescent tracers. Then, 2 μg/ml of Cell Trace Far Red DDAO-SE 

(Thermo Fischer, cat. no. C34553) was directly added for incubation at 37ºC for 7 

minutes. After that, cells were washed with control medium and centrifuged at 200 

xg for 10 min. Finally the loaded pellet was seeded in NSC complete medium. After 

10 days, when primary neurospheres had arose and the fluorescent tracer had 

heterogeneously diluted between the progeny, a second round of cell tracer 

loading was performed using the Cell trace Oregon Green 488 Carboxy-DFFDA-SE 

(Thermo Fischer, cat. no. C34555). Primary neurospheres were dissociated as 

described above and single cells were washed with 10 mM HEPES and HBSS and 

then were loaded with the second cell tracer in the same conditions. Double-

loaded cells were finally plated in complete medium for a second round of 

proliferation to assess the proliferation dynamics of the label retaining cells. After 3 

days at 37ºC in a 5% CO2 humidified incubator, secondary neurospheres were 

dissociated and the fluorescence intensity of each cell tracer was measured in a 

FACS Fortessa flow cytometer (BD). 

3.13. Transduction of NSC by Nucleofection® 

Transient introduction of exogenous DNA for expression of the 5x κB 

luciferase-based reporter (5x κB-luc) was done by Nucleofection®, a method that 

combines electroporation with cell-type specific reagents developed by Amaxa. In 

general, a total number of 1.5 x 106 cells were used for transduction. Cells were 
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pelleted at 200 xg for 10 min and 5 μl of a mix containing the different plasmids 

were directly added to the cell pellet: 0.5 μg of 5x κB-luc was mixed with 0.05 μg of 

pRenilla endogenous control vector, 3 μg of pcDNA3.1 as adjuvant and 0.5 μg of 

pGFPmax (Lonza) reporter plasmid to monitor the transfection efficiency. The 

pellet was then resuspended in 95 μl of Nucleofection Solution from the Mouse 

Neural Stem Cell Nucleofector® Kit (Lonza, cat. no. VPG-1004) and placed in a 

Nucleofector® cuvette. The cells were electroporated in a Nucleofector® 2b device 

using the A-031 nucleofection program. Electroporated cells were gently collected 

with warm complete medium, seeded in a P100 cell culture plate containing 8 ml of 

complete medium and incubated for 24 h at 37ºC in a 5% CO2 humidified incubator 

before using the cells for reporter expression under the different treatments. 

3.14. Mitochondrial activity staining 

After obtaining a single cell suspension as described above, cells were 

incubated with MitoTrackerTM Orange CM-H2TMRos diluted 1:2000 in 0.5 ml of 

blocking buffer for 30 min on ice. Then stained cells were washed with 1 ml of 

blocking buffer, centrifuged at 200 xg 10 min and resuspended in 0.5 ml of blocking 

buffer for flow cytometry analysis.  

 

4. Molecular methods 

4.1. RNA extraction, retro-transcription and real-time PCR 

SEZ RNA samples were obtained using the Maxwell® 16 LEV simplyRNA Tissue 

Kit (Promega, cat. no. AS1280) following the instructions provided by the 

manufacturer. The RNA obtained was then quantified using the Qubit® RNA HS 

Assay Kit (Thermo Fischer, cat. no. Q32852) in a Qubit Fluorometer (Thermo 

Fischer). 
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In general, a total amount of 0.5 – 1 μg of RNA was retrotranscripted to cDNA 

using the PrimeScript™ RT-PCR Kit (Clontech, cat. no. RR014B) according to the 

manufacturer instructions. 

Gene expression analysis was assessed by real-time PCR using 5-10 ng of 

cDNA, specific Taqman probes (Applied Biosystems) (see Table 7) and the Premix 

Ex TaqTM (Probe qPCR) Kit (Clontech, cat. no. RR390A). Real-time PCR was 

performed in a Step One Plus real-time PCR device (Applied Biosystems). The 

expression level of each gene was obtained by relative quantification (2e-ΔΔCt) 

using constitutive expression of Gapdh and 18S genes as housekeeping 

endogenous controls. 

 

Gene Taqman probe reference Gene Taqman probe reference 

18S Hs99999901_s1 Grn Mm00433848_m1 

Aif1 Mm00479862_g1 Hes1 Mm00468601_m1 

Ascl1 Mm04207567_g1 Hes5 Mm00439311_g1 

Ccnd1 Mm00432359_m1 Id1 Mm00775963_g1 

Pecam1 Mm01242584_m1 Ifng Mm01168134_m1 

Ptprc Mm01293577_m1 Il1b Mm00434228_m1 

Cdkn1a Mm04205640_g1 Il6 Mm00446190_m1 

Cspg4 Mm00507257_m1 Nes Mm00450205_m1 

Dcx Mm00438400_m1 Nr2e1 Mm00455855_m1 

Egfr Mm01187858_m1 Olig2 Mm01210556_m1 

Fabp7 Mm00445227_m1 Prom1 Mm00477115_m1 

Fgfr1 Mm00438923_m1 S100b Mm00485897_m1 

Fgfr2 Mm00438941_m1 Slc1a3 Mm00600697_m1 

Fgfr3 Mm00433294_m1 Sox2 Mm03053810_s1 

Gapdh Mm99999915_g1 Tnf Mm00443258_m1 

Gfap Mm01253033_m1 Tubb3 Mm00727586_s1 

Table 7.  List of Taqman probes used 

 

http://www.clontech.com/xxclt_ibcGetAttachment.jsp?cItemId=10242&embedded=true
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4.2. Protein extraction, electrophoretic separation, transference and 

immunodetection by Western Blot 

Cells or SEZ samples were lysed in cold RIPA buffer (NaCl 150 mM, 0.5 % 

sodium deoxycholate, 50 mM Tris-HCl pH 8.0, 1% Tx-100 and 1% SDS) supplemented 

with Complete® protease inhibitor cocktail (Roche, cat. no. 11836153001) and 

placed on ice for 30 min. Then the lysates were homogenized with sequential 

passing through a 23G and then a 20G needle. Finally, protein samples were 

centrifuged at 12000 xg for 10 min at 4ºC and the supernatant was transferred to a 

new Eppendorf tube. 

The concentration of each sample was determined using the Pierce® BCA 

Protein Assay Kit (Thermo Fisher, cat. no. 23227) following the instruction of the 

manufacturer. BSA was used to stablish a standard curve and A560 was measured in 

a Victor®3 Multilabel Plate Reader. 

Direct conditioned media or 20-80 µg of cell lysates were mixed with 4X 

sample buffer (Glicerol 20%, 10% SDS, 10% β-mercaptoethanol, 40 μg/ml Bromo 

phenol blue and 250 mM Tris-HCl 1M pH6.8,) and boiled at 95ºC for 10 min. 

Samples were loaded in 10% poly-acrylamide gels and proteins were resolved 

by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) at 20 

mA/gel in an electrophoresis running buffer (25 mM Tris-base, 192 mM glycine and 

1% SDS). Proteins were transferred to PVDF membranes using the Trans-Blot Turbo 

Transfer Pack (Bio-Rad, cat. no. 1704157) and the Trans-Blot Turbo transfer device 

(Bio-Rad). 

The membrane was washed in TBS-T buffer (0.1 M Tris-HCl pH 7.5, 0.9% NaCl 

and 0.05% Tween®-20 (Sigma, cat. no P9416)) and incubated for 1h with blocking 

buffer (5% skimmed milk in Tris buffer) to minimize unspecific binding. Primary 

antibodies (see Annex 1) were diluted in blocking buffer and the membrane was 

incubated overnight at 4ºC or 1h at RT in continuous agitation. Next, after washing 
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the membrane with TBS-T several times, HRP-labelled secondary antibodies (see 

Annex 1) were added in blocking buffer and were incubated at RT for 1 h. Finally, 

after washing the membrane with TBS-T, proteins were revealed with Western 

Lightning® Plus-ECL (Perkin-Elmer, cat. no. NEL103001EA) and chemoluminescence 

was captured in an Alliance Mini HD9 (Uvitec) image capture system. 

4.3. Luciferase activity detection 

Transduced cells were collected and centrifuged at 200 xg for 10 min. The 

pellet was lysed in 50 μl of Passive Lysis Buffer (Promega, cat no. E1941) and 

homogenised by vortexing 10 min. Firefly luciferase (reporter-dependent) and 

Renilla luciferase (constitutively expressed) activity were determined in 10 μl of cell 

lysate with the Dual-Luciferase® Reporter Assay System (Promega, cat. no E1960) 

and luminescence was measured in a Victor®3 Multilabel Plate Reader. 

4.4. Multiplex analysis of the phophorilated state of cell signalling mediators 

Cells were collected, centrifuged and lysed in MILLIPLEX MAP Lysis buffer 

(Millipore, cat no. 43-040). Cell lysates were homogenized by vortexing 10 min at 

4ºC and stored at -80ºC until they were processed by Neuron Biolabs S.L.U 

(Granada, Spain). The phosphorylated state and the total amount of CREB, JNK, 

NF-κB, p38, AKT, p70S6K and STAT3 was measured with the MILLIPLEX® MAP 9-

plex Multi-Pathway Magnetic Bead Signaling kit Phosphoprotein (Millipore, cat no.: 

48-680MAG) and the MILLIPLEX® MAP 9-plex Multi-Pathway Magnetic Bead 

Signaling kit Total (Millipore, cat no.: 48-681MAG) kits respectively following the 

instructions of the manufacturer. The same amount of protein in each 

experimental group was loaded per well (2.7-3.3 μg) and each condition was 

measured in two experimental replicates. The detection of phosphoproteins and 

total proteins was performed in a MAGPIX® luminex MAP® system coupled with 

two lasers. The phosphoprotein levels were normalized by the total amount of 

each protein and relativized to the untreated condition. 
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5. Statistical analysis 

Significance differences between experimental groups were assessed using 

the unpaired or paired two-tailed Student t-test or one-way ANOVA with 

Bonferroni correction when appropriate using the GraphPad PRISM® 5 software. 

Relative values were transformed using the formula arcsen(square root (value)) 

and percentages were transformed using arcsen(square root (value/100)) before 

statistical analysis. Significance lower than p=0.05 were considered as significant 

differences in all cases. All data is expressed as mean + standard error of the mean 

(sem) and the number of experiments carried out with independent cultures or 

animals (n) is specified in each figure. When data are represented, * refers to p< 

0.05, ** to p< 0.01 and *** to p< 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 



Material and methods 

75 

6. Annex 1 

Primary Antibody Host Provider Cat. No Application Dilution 

BrdU (CldU detection) Rat Abcam ab6326 IHC 1:800 

BrdU (IdU detection) Mouse BD 347580 IHC 1:500 

Cleaved-Caspase 3 Rabbit Cell Signalling 9661 ICC 1:100 

Phospho-P38 Rabbit Cell Signalling 9211 WB 1:1000 

P38 Rabbit Cell Signalling 9212 WB 1:1000 

DCX Goat Santa Cruz sc-8066 Wholemount 1:150 

EGFR Rabbit Cell Signalling 4267 ICC/IHC 1:100 

GFAP Chicken Millipore ab5541 ICC/IHC 1:800 

Ki67 Rabbit Abcam ab15580 IHC 1:100 

O4 Mouse Homemade - ICC 1:300 

TNF-alpha Mouse Abcam ab1793 Western Blot 1:250 

TNFR1 Goat R&D 410-MT Agonist 1:200 

TNFR2 Rat Hycult biotech HM1011 Agonist 1:20 

βIII-tubulin Rabbit Sigma T2200 ICC 1:400 

Secondary Antibody Host Provider Cat. No Application Dilution 

AlexaFluor®488 anti-
mouse 

Donkey Life Technologies A-21202 IHC 1:800 

AlexaFluor®647 anti-
chicken 

Donkey 
Jackson 

ImmunoResearch 
703-

605-155 
ICC/IHC 1:800 

Biotinylated anti-mouse Horse Vector Laboratories 
BA-

2000 
ICC 1:1000 

CyTM3 streptavidin - 
Jackson 

ImmunoResearch 
016-160-

084 
ICC 1:2000 

AlexaFluor® 488 anti-
rabbit 

Donkey 
Jackson 

ImmunoResearch 
711-547-

003 
ICC/IHC 1:800 
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HRP anti-mouse Goat Dako P0447 WB 1:1000 

HRP anti-rabbit Goat 
Santa Cruz 

Biotechnology 
Sc-2004 WB 1:5000 

CyTM3 anti-rat Donkey 
Jackson 

ImmunoResearch 
712-165-

153 
IHC 1:800 

AlexaFluor® 647 anti-goat Donkey 
Jackson 

ImmunoResearch 
705-

606-147 
Wholemount 1:800 

CyTM3 anti-rabbit Donkey 
Jackson 

ImmunoResearch 
711-165-

152 
ICC/IHC 1:800 

 List of primary and secondary antibodies used along the different applications.  
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1. Characterization of the quiescent cell cycle in adult subependymal NSCs  

1.1. Prospective identification of subependymal NSCs and their progeny 

Since their discovery, identification of bona fide adult NSCs has been a 

challenging task because single specific markers that could unequivocally identify 

the different SEZ populations have not been found and the SEZ astrocytic lineage 

which includes the NSC population/s shows morphological, molecular and 

functional heterogeneity (Morrens et al., 2012). To overcome these limitations, 

different genetic lineage-tracing strategies and/or immunohistochemical 

approaches combining retention of thymidine analogues with different astroglial 

or stem cell markers have been classically used in histological analyses to study 

NSCs and their progeny (Kuhn et al., 2016). Nevertheless, recent evidences 

demonstrating that adult stem cells coexist in different quiescent (dormant qNSC1 

vs. alert qNSC2 or primed) (Llorens-Bobadilla et al., 2015; Rodgers et al., 2014) and 

active (aNSC) states (Codega et al., 2014; Daynac et al., 2016; Giachino et al., 2014; 

Llorens-Bobadilla et al., 2015; Mich et al., 2014), have revealed a new level of 

complexity rendering these classical approaches insufficient to finely resolve the 

different pieces of this tricky puzzle. 

In the last few years several groups have assayed different strategies to label 

and isolate NSCs or their progeny by flow cytometry (Codega et al., 2014; Daynac et 

al., 2016; Giachino et al., 2014; Llorens-Bobadilla et al., 2015; Mich et al., 2014). These 

approaches are usually based on the combination of multiple markers, either using 

transgenic reporters and/or labelling with fluorescent antibodies against cell 

surface proteins to then analyse the marker profile of each individual SEZ cell. 

Despite having proved their relative accuracy, none of the protocols published so 

far ensures the detection of the complete population of NSCs and their different 

proliferative states. Furthermore, strategies that rely on the expression of reporter 

transgenes such as hGFAP::GFP or Hes5::GFP mouse strains (Codega et al., 2014; 

Giachino et al., 2014), cannot be directly applied to the study of NSCs in other 
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genetic backgrounds. For these reasons, we first decided to develop our own 

strategy to identify, not only NSC in different activation states, but also the 

resulting progeny, using published cell surface markers and including CD9, a 

marker identified in a transcriptomic analysis at the single cell level (Llorens-

Bobadilla et al., 2015; Mich et al., 2014). 

Taking into account the heterogeneity of the SEZ niche and the potentially 

overlapping expression of markers among different cell types, we opted for a two-

step strategy in which non-neurogenic differentiated cell types (microglia and 

circulating lymphocytes, endothelial cells, erythrocytes, ependymal cells, and 

oligodendrocytes) are first excluded using well established cell markers (Table 9). 

Subsequently, cells are stratified into NSCs/astrocytes, TAPs and neuroblasts 

according to the expression of the glial marker GLAST, the activation marker EGFR 

and the progeny marker CD24. In contrast to some early reports, we discarded the 

use of Prominin1 as a true NSC marker as it has been shown that in the GFAP+ 

Prominin1– fraction there are also cells that behave as NSCs in vitro, indicating that 

Promini1 labels only a subset of NSCs (Codega et al., 2014). Instead, we decided to 

include the expression of CD9 to fractionate the GLAST+ population as it has been 

recently shown that this member of the tetraspanin family is highly expressed in 

neurogenic astrocytes when compared to parenchymal astrocytes (Llorens-

Bobadilla et al., 2015). Table 9 summarizes the different markers used in this work 

and the cell types in which they are expressed. 

 

Antigen Cell type expression  Reference 

CD45 Microglia, lymphocytes 
Mich et al. 2014; Llorens-Bobadilla et al. 
2015 

CD31 Endothelial cells Crouch et al. 2015 

Ter119 Erythrocytes Mich et al. 2014 

O4 Oligodendrocytes 
Mich et al. 2014; Llorens-Bobadilla et al. 
2015 

CD24 Ependymal cells, neuroblasts Pastrana et al. 2009; Codega et al. 2014; 
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Mich et al. 2014; Llorens-Bobadilla et al. 
2015; Daynac et al. 2016 

PSA-NCAM Neuroblasts 
Mich et al. 2014; Llorens-Bobadilla et al. 
2015 

GLAST Astrocytes, oligodendrocytes, TAPs 
Mich et al. 2014; Llorens-Bobadilla et al. 
2015 

CD9 Neurogenic astrocytes, microglia, 
oligodendrocytes 

Llorens-Bobadilla et al. 2015 

EGFR aNSC, TAPs, neuroblasts 
Pastrana et al. 2009; Codega et al. 2014; 
Mich et al. 2014; Llorens-Bobadilla et al. 
2015; Daynac et al. 2016 

Table 9. List of cell markers selected for cytometry analysis, their target population(s) and 
references of previous use as a cell marker. 

  

In our procedure, SEZ cells are first gated by size and cellular complexity 

(forward scatter -FSC- vs. side scatter -SSC-, respectively) to discard cell debris, 

myelin, and most of the dead cells (Figure 14a). Ependymal cells or neurons are 

expected to be also excluded due to their size and complexity (Murayama et al., 

2002). After eliminating cell aggregates, we select the populations of interest as 

CD45–/CD31–/Ter119–/O4– alive cells (Figure 14b,c). Although CD24 is reportedly 

restricted to neuroblasts and ependymal cells (Pastrana et al., 2009) we found 

different levels of this marker among SEZ cells, ranging from complete negativity 

up to high expression levels. The highest CD24 expression co-distributed with PSA-

NCAM expression, suggesting that neuroblasts can be indeed recognized by high 

CD24 (Figure 14d). Furthermore, we realized that EGFR first appears in CD24– cells 

and continues to be present as CD24 increases its expression until it disappears in 

the CD24high population (Figure 14e). We believe that this progression is compatible 

with a situation where CD24– NSCs, once activated (EGFR+), start expressing very 

low levels of CD24 that increase during transition to TAPs (CD24mid/EGFR+) and 

become maximum in undifferentiated (CD24high/EGFR+) and migrating 

(CD24highEGFR–) neuroblasts. Because of the continuum of CD24 expression along 

the neurogenic lineage, we took into consideration different levels of this marker 

to gate CD24–/low, CD24mid, and CD24high fractions (Figure 14e). The CD24high fraction 

can be subsequently divided into EGFR– and EGFR+ as well, corresponding 
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respectively to migrating and non-migrating neuroblasts (Figure 14e), while 

virtually all CD24mid cells are compatible with TAPs, since all of them express EGFR 

(Figure 14e).  

Subependymal NSC-derived neuroblasts migrate through the RMS up to the 

OB where they differentiate and integrate as functional mature neurons (Chaker et 

al., 2016). This last step is a direct reflection of NSC dynamics in the SEZ and 

therefore we decided to include the analysis of OB neuroblasts in our flow 

cytometry strategy as a read-out for the production of newly-generated neurons. 

Flow cytometry analysis of CD24 and PSA-NCAM revealed the presence of a CD45–

/CD31–/Ter119–/O4– subset of cells that highly co-expressed both markers and which 

represented around 25% of all OB cells (Figure 14f). This provided us with a method 

to also evaluate neurogenesis in the same animals in which we were analysing NSC 

dynamics by flow cytometry. 

Figure 14. Prospective identification of NSC and their progeny from adult SEZ. (a-f) 
Representative FACS plots showing SEZ NSC-lineage gating strategy and OB neuroblast 
identification. (a) SEZ cells are selected by size (FSC) and cell complexity (SSC) and (b) after 
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excluding cell aggregates, (c) a negative selection is performed discarding cells positive for CD45, 
O4, CD31, Ter119 and Dapi (dead cells). (d-f) Then cells are gated based on their CD24 expression. 
(d) CD24high levels co-localize with PSA-NCAM+ neuroblasts (e) whereas EGFR is expressed along 
the different CD24 levels which are used to define the gating for EGFR negative and positive 
neuroblasts (CD24high), EGFR+ TAPs (CD24mid) and the NSCs containing pool (CD24low). (f) After 
excluding CD45, O4, CD31, Ter119 positive cells and dead cells, OB neuroblasts are identified by 
co-localization of PSA-NCAM and CD24 high levels. 

 

According to our surface marker strategy, the CD45–/CD31–/Ter119–/O4–CD24– 

fraction should be enriched in NSCs and, therefore, we decided to test for the 

enrichment in NSC markers and neurosphere forming capacity. To do so, we 

applied a gentle separation strategy based on a positive magnetic exclusion 

(MACS®) of all differentiated cell markers to obtain a negative fraction enriched in 

viable NSCs. SEZ homogenates were incubated with a mixture of biotinylated 

antibodies against CD45, CD31, Ter119, O4 and CD24 antigens and then the cells 

were labelled with anti-biotin magnetic microbeads. Labelled samples were passed 

through a column on a magnetic field and the eluted fraction was collected as the 

CD45/CD31/Ter11/O4/CD24 lineage-negative fraction or Lin–. Additionally, the 

retained fraction was recovered and kept as the CD45/CD31/Ter11/O4/CD24 lineage-

positive fraction or Lin+ (Figure 15a). Flow cytometry analysis of both fractions 

confirmed that Lin– and Lin+ were greatly excluded (Figure 15b). GLAST+ NSCs can 

be separated from GLAST+ non-neurogenic astrocytes by their CD9high expression. 

Flow cytometry analysis of both fractions confirmed that the Lin– portion was 

greatly enriched in GLAST+/CD9high cells (as much as 60%). Almost half of them 

exhibited EFGR suggesting that this fraction would contain activated and quiescent 

NSCs (Figure 15c). 

Furthermore, analysis of mRNA expression corroborated that the expression 

of NSC markers Glast, Gfap and Egfr was enriched in Lin– samples, whereas 

microglia and lymphocyte markers Iba1 and Cd45, the endothelial cell marker Cd31, 

the neuroblast marker Dcx and the ependymal cell and mature astrocyte-related 

S100b were expressed selectively by the Lin+ fraction (Figure 15d). Moreover, when 
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cultured in neurosphere medium supplemented with EGF and FGF for 7 DIV, 

neurosphere-forming capacity was enriched in Lin– cells when compared to 

unsorted or Lin+ samples (Figure 15e). Together, this data demonstrated that after 

exclusion of CD45, CD31, Ter119, O4 and CD24 positive cells, the remaining negative 

fraction is clearly enriched in cells with NSC properties. 

 

Figure 15. MACS®-sorted Lin- fraction (CD45/O4/CD31/Ter119/CD24–) is enriched in cells with NSC 
features. (a) Schematic representation of the MACS® separation strategy. After SEZ dissociation, 
CD45, O4, CD31, Ter119 and CD24-positive (Lin+) cells are magnetically labelled and separated 
from the Lin– fraction. (b) Representative plots showing the correct exclusion of markers in Lin+ 
and Lin– cells and (c) the NSC gating of Lin– cells which are greatly enriched in cells with NSC 
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molecular features (CD24low GLAST+ CD9high +/- EGFR cells). (d) qRT-PCR gene expression analysis 
of NSC (Glast, Gfap and Egfr) and Lin+ (Aif1 (Iba1), Ptprc (CD45), Pecam1 (CD31), Dcx and S100b) 
related markers in RNA samples from Lin– and Lin+ purified fractions (n=3). (e) The Lin– fraction is 
enriched in neurosphere forming cells (n=3). 

 

As previously described (Llorens-Bobadilla et al., 2015), the different NSC 

states can be classified by GLAST intensity and EGFR expression. After excluding 

non-neurogenic GLAST+ astrocytes from GLAST+ NSCs by CD9 levels (Figure 16a,b) 

the presence of the EGFR determines activation in subependymal NSCs and GLAST 

levels correlate with the two states previously characterized by transcriptomic 

analysis. In this way, inside the CD45–/CD31–/Ter119–/O4–/CD24–/low/GLAST+/CD9high, 

qNSC1 are GLASThigh/EGFR– cells, qNSC2 are GLASTlow/EGFR– cells and aNSC are 

GLAST+/EGFR+ cells (Figure 16c). Within the GLAST+/CD9high fraction, qNSC1 and 

qNSC2 cells represent around 30% each while the aNSC population represents up to 

40%. 

 

Figure 16. Identification of quiescent and activated NSC states. (a,b) Representative FACS plots 
showing SEZ NSC gating strategy. (a) The CD24lo fraction contains GLAST+CD9high NSCs that are 
separated from GLAST+ CD9low niche astrocytes and striatum astrocytes or other CD24loGLAST– 
cells. (b) GLAST and EGFR expression define three NSC populations: qNSC1 (GLASThigh EGFR–), 
qNSC2 (GLASTlow EGFR–) and aNSC (GLASTlow EGFR+). 
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Cell Type Defining combination of markers %  

qNSC1 Excl–/CD24–/low/GLASThigh/CD9high/EGFR–  1.85 ± 0.28 

qNSC2 Excl–/CD24–/low/GLASTlow/CD9high/EGFR– 1.05 ± 0.16 

aNSC Excl–/CD24–/low/GLAST+/CD9high/EGFR+ 2.30 ± 0.18 

TAPs Excl–/CD24mid/EGFR+ 4.77 ± 0.25 

SEZ neuroblasts Excl–/CD24high/EGFR+ 15.43 ± 0.50 

Migrating neuroblasts Excl–/CD24high/EGFR– 51.55 ± 1.40 

Table 10. Specific combination of markers that define the different SEZ populations and the 
percentage of representation of each population relative to the total number of cells in the SEZ. 
Excl– = CD45–/CD31–/Ter119–/O4–. 

 

Cell size and mitochondrial activity has been proposed to reflect different cell 

states and correlate positively with proliferation and cell cycle progression in cells, 

including some SCs (Knobloch and Jessberger, 2017; Llorens-Bobadilla et al., 2015; 

Rodgers et al., 2014). Therefore, we decided to evaluate whether we could 

correlate changes in cell size and/or mitochondrial activity within the different 

populations we had defined, by labelling SEZ homogenates with MitoTracker in 

combination with our marker panel. Additionally, we measured the mean cell size 

of each population using FSC parameter. Our analysis showed that both traits 

nicely correlate with the lineage progression being the lowest in quiescent NSCs 

and increasing progressively along the increasingly proliferating states (aNSC, 

TAPs, and EGFR+ neuroblasts) (Figure 17a,b). Furthermore, we could even follow 

the progression up to non-proliferative CD24high/EGFR– neuroblasts, which are 

expected to be less metabolically active, finding that they have lower FSC and 

MitoTracker level than CD24high/EGFR+ cells (Figure 17a,b). Of notice, qNSC2 

presented a slightly bigger size than the dormant pool, a trait that has been 

previously reported for alerted MuSCs (Rodgers et al., 2014)(Figure 17b).  
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Figure 17. Proliferating cells exhibit increased cell size and high mitochondrial activity. (a) 
Representative histogram of the FSC intensity in qNSC1, qNSC2 and aNSCs and quantification of 
the mean FSC intensity in each cell type (n=5) reflecting that the proliferative populations 
(aNSCs, TAPs and EGFR+ neuroblasts) display bigger cell size. (b) Representative histogram 
showing MitoTracker intensity in qNSC1, qNSC2 and aNSC and quantification of mean intensity in 
each cell type (n=3). Note that proliferating aNSCs, TAPs and EGFR+ neuroblasts increase their 
mitochondrial activity until they become EGFR– neuroblasts. 

 

1.2. qNSC2 or alerted NSCs represent an intermediate state between dormancy 

and activation 

As a first validation of our cell classification strategy, we decided to 

interrogate our populations in a regeneration paradigm. Subependymal NSCs can 

completely regenerate the structure following near complete elimination of their 

proliferating cell progeny with a subacute treatment with anti-mitotic agents, such 

as Ara-C or TMZ, which kill the different proliferative SEZ cell types including aNSCs 

while sparing quiescent cells (Doetsch et al., 1999a; Mich et al., 2014; Pastrana et 

al., 2009). We performed some initial experiments with AraC infused intra-cortically 
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for 6 days using osmotic minipumps, but the surgery induced a very high brain 

microglial reaction in both saline and AraC-injected animals, as detected with 

antibodies to IBA-1 (data not shown). Because we wanted to evaluate effects of 

inflammation in subependymal NSCs, we decided to use the alternative anti-mitotic 

drug TMZ which is administered to the animals by intraperitoneal (i.p.) injection. It 

has been shown that 3 doses of TMZ during 3 days effectively eliminate the 

activated NSCs and neurosphere forming cells, forcing the remaining qNSCs to exit 

from dormancy, become activated, and regenerate the SEZ (Mich et al., 2014). TMZ 

or vehicle DMSO was intraperitoneally administered for 3 consecutive days and 

mice were sacrificed 3 days after the last injection. The effectiveness of the 

treatment was confirmed by scoring the number of primary neurospheres in vitro 

and quantifying neuroblast chains in whole-mounts of the lateral ventricle wall 

immunostained for neuroblast marker DCX (Figure 18b,c). Flow cytometry analysis 

of TMZ-treated SEZ tissue showed the almost complete abolition of the CD24mid/high 

cell fraction containing neuroblasts and TAPs (Figure 18d). Additionally, at the OB 

we could observe that the portion of cells co-expressing CD24 and PSA-NCAM 

(arriving immature neuroblasts) had also disappeared after the treatment (Figure 

18f). Interestingly, the CD24–/low fraction was greatly enriched after the anti-mitotic 

treatment; moreover, the vast majority of them could be identified as quiescent 

NSCs whereas aNSC were almost completely absent (Figure 18e) in line with 

previous reports showing their sensitivity to anti-mitotic drugs (Doetsch et al., 

1999a; Mich et al., 2014; Pastrana et al., 2009). This result supports the concept that 

the selected CD45–/CD31–/Ter119–/O4–CD24–/low/GLAST+/CD9high/EGFR– cells are 

mainly quiescent and that the absence of EGFR distinguish them from the activated 

pool of NSCs. 

To further confirm this idea, we tested the ability of the remaining quiescent 

NSCs to be activated and to replenish the TAP and neuroblast populations 

analysing the SEZ and OB of TMZ lesioned mice after 35 days. Although it has been 

described that cell replenishment is complete by 90 days, signs of regeneration can  
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Figure 18. Proliferating but not quiescent predicted states are effectively targeted by 
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temozolomide administration and are partially restored 35 days after the lesion. (a) Schematic 
representation of experimental design. Mice were intraperitoneally injected with vehicle or TMZ 
(100 mg/kg/day) for 3 consecutive days and sacrificed 3 or 35 days later to analyse the initial and 
intermediate stages of SEZ regeneration. (b) Reconstruction of confocal images obtained from 
immunostained SEZ wholemount preparations showing the reduction of DCX+ neuroblast chains 
3 days after TMZ administration and their restoration after 35 days. (c) Quantification of primary 
neurospheres and DCX+ neuroblast chains in vehicle (n=6), 3 days (n=3) and 35 days (n=4) after 
TMZ administration confirms that proliferating cells are efficiently eliminated and progressively 
restored. (d) Representative FACS plots of CD45/O4/CD31/Ter119-negative cells showing the 
reduction and re-apparition of EGFR+ cells in the CD24low (NSCs), CD24mid (TAPs) and CD24high 
(neuroblasts) fractions after TMZ administration. (e) Representative plots of the NSC gating 
showing that aNSC are greatly affected by TMZ treatment whereas qNSC are resistant. Note that 
the aNSC pool re-appeared 35 days later. (f) Representative plots of OB neuroblast (PSA-NCAM+ 
CD24high) showing that TMZ supresses the migration of neuroblasts to the OB, migration that is 
restored after 35 days. 

already be observed as early as 35 days (Mich et al., 2014). We confirmed the 

successful regeneration of the neurogenic niche as the number of SEZ-derived 

primary neurospheres and neuroblast migrating chains were restored to a 

significant extent after 35 days (Figure 18b,c). We could observe the reappearance 

of cells with increasing levels of CD24 which likely included TAPs and neuroblasts in 

analyses with flow cytometry after this period of regeneration (Figure 18d,e). 

Moreover, we could observe increased numbers of CD24high/PSANCAM+ cells in the 

OB confirming that the migration of neuroblasts to the OB was also restored 

(Figure 18f). Altogether, these results support the accuracy of gating strategy for 

the specific detection of SEZ NSCs in different proliferative states as well as their 

resulting committed progeny. 

It has been proposed that activated NSCs should be able to self-renew and 

return to a quiescent state, since regeneration seems to be conservative and is not 

accompanied by a reduction in the qNSC pool (Mich et al., 2014). Nevertheless, it is 

not known whether the acquisition of an alerted qNSC2 phenotype is an obligated 

step between quiescent and activated states during this process. To gain insight 

into this possibility, we analysed the different proliferative states of NSCs at 

different time points after the treatment. Interestingly, among the qNSCs that 

were spared by the treatment most of the remaining ones were in a qNSC1 

dormant state (Figure 19a,b). This observation suggested that pre-existing qNSC2 
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might have either been activated and died during the days of treatment, or 

returned to a q1 state. In any case, in this scenario, remaining qNSCs are expected 

to regenerate the missing populations and indeed, 35 days after the lesion, some of 

them were in an active state in line with the partial restoration of the TAP and 

neuroblast populations in the SEZ (figure 19b,c). Moreover, in agreement with 

previous reports, we could see that the total number of qNSCs remained roughly 

constant during the entire process (Figure 19b). However, compared with 3 days 

after treatment when most of them were qNSC1, at this moment of active 

regeneration, around 50% of qNSCs were again qNSC2 (Figure 19a). These data 

suggested that the alert state seems to be an intermediate step in the transition 

from deep quiescence to activation and that, even in a situation where dormant 

NSCs are forced to activate and divide, a parallel mechanism must exist that, 

coupled with self-renewal, ensures the maintenance of the quiescent pool, 

supporting the idea of the reversibility of the system. 

Figure 19. Dormant qNSCs are resistant to TMZ antimitotic treatment and transit through an 
intermediate alert state in order to activate and regenerate the niche. (a-c) Quantification by 
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flow cytometry of the different NSC states, TAPs and EGFR+ and EGFR– neuroblasts during a TMZ-
based regeneration paradigm. (a) 3 days after TMZ, most of the quiescent NSCs that remain in 
the SEZ are in a dormant qNSC1 state, but 35 days later, qNSC2 have re-appeared and the balance 
between both populations has returned to basal levels. (b) qNSCs remain roughly constant 
whereas TMZ administration drastically reduces the total number of aNSCs observed at 3 days, 
which are partially restored 35 later. (c) NSC progeny, i.e. TAPs, EGFR+ and EGFR– neuroblasts, is 
greatly reduced 3 days after TMZ administration and is partially restored 35 days after.  (vehicle 
n=6; TMZ 3d n=3; TMZ 35d n=3). 

 

2. The effects of inflammation in the quiescent cell cycle of adult 

subependymal NSCs 

2.1. LPS-induced systemic inflammation disrupts SEZ homeostasis and modulates 

NSC activity  

One of the main objectives of this thesis was to assess the effects of 

inflammation on subependymal NSCs and neurogenesis. Thus, initially, in order to 

get a general picture of the SEZ response, we induced systemic inflammation with 

a well-established and extensively used procedure, consisting in the i.p. injection of 

LPS. Mice were injected with saline or 5 mg/kg of LPS and the SEZ was analysed at 

1h, 24h, 3 days or 6 days after the administration. As a first approach to evaluate 

the effect of inflammation on SEZ homeostasis, we performed quantitative real 

time PCR (qRT-PCR) analysis of a set of genes selected as representative markers 

of the different populations on the SEZ neurogenic niche. Significant changes were 

observed at 24h after injection that were mainly characterized by a downregulation 

of most of the genes (Sox2, Hes5, Fabp7, Cyclind1, S100β, Ascl1, Nr2e1, Nestin, Olig2, 

Cspg4, Egfr, Dcx, Hes1, Tubb3, Fgfr1 or Fgfr2) (Figure 20a) indicating potentially 

negative effects of inflammation over most of the SEZ populations. However, we 

simultaneously found increased expression of some NSC-related genes (Gfap, 

Prom1, Cdkn1a, Id1 or Fgfr3) suggesting that positive effects might have been 

specifically promoted in these cells (Figure 20a). Interestingly, during the days 

following the initial perturbation, expression profile of the evaluated genes 

returned to the initial pre-inflammation levels (Figure 20a). This analysis 
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corroborated that peripheral inflammatory signals can affect SEZ homeostasis and 

suggested a complex cellular response where detrimental effects might be 

coexisting transiently with a stimulation of the NSC pool. 

In an attempt to further test this hypothesis, we scored the total number of 

cells acutely extracted from SEZ tissue at the same time points after LPS injection, 

finding a considerable reduction in cell yield that was most evident at 3 days and 

maintained even at 6 days after LPS treatment (Figure 20b). However, when these 

SEZ dissociates were seeded in neurosphere culture medium, we could see that the 

portion of SEZ cells capable of forming neurospheres was significantly enriched 

after 24h of LPS treatment, suggesting again that inflammation causes global 

detrimental effects on the SEZ niche and a positive response in NSCs (Figure 20c). 

To look specifically at this population, we injected wild-type mice with the 

nucleoside analogue CldU and waited 28 days to induce acute inflammation with 

LPS, so we could analyse its effects on subependymal activated label-retaining (LR) 

NSCs. After the treatment with LPS, animals were injected with a different 

analogue, IdU, which can be distinguished from CldU by specific antibodies 

(Moreno-Estelles et al., 2012), 1h before the sacrifice. According to the previous 

results, LPS-injected mice showed a significant reduction in total proliferating cells 

(IdU+ cells) (Figure 20d). The number of CldU+ LR-NSCs  was unaffected indicating 

no changes in the survival of aNSCs that had incorporated the nucleoside 28 days 

before the treatment; but interestingly, the proportion of CldU+ LR-NSCs that had 

re-entered the cell cycle and, hence, become IdU+ cells increased after LPS 

administration (Figure 20e,f). Furthermore, 3 days after LPS induction, a moment 

when detrimental effects on total cell numbers were evident (Figure 20b), the 

proportion of GFAP+ cells co-expressing the activation markers EGFR and Ki67  in 

the intact SEZ was also higher (Figure 20g). These results confirmed that peripheral 

inflammation, despite having an overall negative effect on the SEZ niche, promotes 

the activation of the NSC pool. 
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Figure 20. LPS-induced systemic inflammation causes global detrimental effects on SEZ 
populations but positively modulates NSC activity. (a) qRT-PCR detection of the expression 
levels of multiple genes expressed by different SEZ populations in the SEZ of LPS-injected mice at 
1h, 24h, 3 days and 6 days relative to saline basal expression. Up-regulation of some NSCs-related 
genes and down-regulation of many others at 24h reflects a complex scenario that tends to 
return to homeostasis after 6 days (n=5). (b) Quantification of the total number of viable cells 
retrieved form the SEZ shows that LPS produces a long-term (3-6 days) detrimental effect (n=5). 
(c) The number of SEZ-derived primary neurospheres after LPS administration reveals an 
enrichment of neurosphere-forming cells at 24h (n=5). (d) The proportion of SEZ cells labelled 
after a single pulse of IdU 1h before sacrifice is reduced 24h after LPS administration (saline n=4; 
LPS n=3). (e) Quantification after 24h of saline or LPS injection of the LRC fraction labelled after 
28 days of CldU administration showing that the LRC pool is not negatively affected. (f) Analysis 
of LRC that are labelled after a single pulse of IdU 1h before sacrifice reveals that LPS induces the 
LRC fraction to re-enter cell-cycle (saline n=8; LPS n=6). (g) Confocal images of SEZ samples 
immunostained for GFAP, EGFR, Ki67 and Dapi and quantification of GFAP+ cells co-expressing 
EGFR and Ki67 markers 3 days after LPS administration showing increased GFAP+ cells displaying 
activated markers (n=3). 
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In order to evaluate effects of LPS in the different NSC populations the SEZs 

of naïve, saline or LPS-injected mice were dissociated 24h after the injection and 

prepared for flow cytometry. While naïve and saline groups showed similar 

proportion of activated NSCs, as expected, we found that qNSC/aNSC profile 

shifted towards activation in the LPS-injected mice (Figure 21a). Additionally, we 

could see that this increased activation led to a significant enrichment in TAPs and 

EGFR+ neuroblasts but not in EGFR– neuroblasts (Figure 21b-d). These results 

corroborated that acute inflammation is promoting activation of both aNSCs, as 

indicated by the nucleoside incorporation experiments shown above, and qNSCs, 

as indicated by the flow cytometry analysis. The observation that this activation 

does not result in increased levels of EGFR– neuroblasts is in line with reportedly 

reduced neurogenesis observed after LPS treatment and suggests direct 

deleterious effects of inflammation in neuroblasts (Monje et al., 2003). 

Figure 21. LPS-induced systemic inflammation activates NSCs and increases the production of 
TAPs and EGFR+ neuroblasts. (a-d) Flow cytometry analysis of NSCs, TAPs and neuroblasts in 
naïve, saline and LPS groups. Quantification of each cell type 24h after LPS injection shows (a) a 
higher proportion of NSCs in activated state and (b) increased TAPs (c) and EGFR+ neuroblasts 
but not (d) EGFR– neuroblasts in the SEZ (naive n=6; saline n=4; LPS 24h n=4). 

 

We further stratified the NSC population in our LPS paradigm. Apart from the 

previously observed increase in activated NSCs, we found that the remaining 

quiescent pool contained more alert cells (qNSC2) at the expense of the qNSC1 

population compared to the naïve basal situation (Figure 22a) suggesting that 

inflammation was indeed activating qNSC1 to promote a qNSC2 state. 
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2.2. A mild peripheral lesion drives quiescent NSCs into an alert state  

In the course of the previous experiments, we found a surprising result. 

Although we did not find more activated aNSCs in saline-injected mice compared to 

the naïve non-injected animals (Figure 22b), this group showed exactly the same 

alert phenotype in the quiescent population than the LPS group (Figure 22a). 

Therefore, although unexpected, it seemed that acute inflammation targets the 

qNSC pool promoting its activation, but these quiescent cells can also respond to 

mild peripheral stimuli, such as an i.p. sterile saline injection, acquiring an alert 

state. 

NSCs responding to the i.p. administration of saline solution generated an 

interesting scenario where qNSCs in the SEZ become alert but not activated, in 

contrast to LPS-induced inflammation where qNSCs are alerted and also activated. 

This suggested the interesting possibility that the intensity and/or type of 

peripheral remote signals could differentially regulate NSC dynamics in the SEZ. 

Despite the mentioned finding of the existence of a pool of qNSC displaying an 

alerted phenotype, little is known about the regulation of this process and its 

potential reversibility. To address this question, we analysed the alerted state of 

NSCs over time after a single i.p. injection of sterile saline. After the initial increase 

in qNSC2 24h post-injection, we observed a progressive regression of the 

q2NSC/qNSC1 ratio back to basal naïve levels during the following 3 to 6 days 

(Figure 22a). Interestingly, in contrast with LPS, peripheral injection-mediated 

response did not lead to an increase in the activated NSC pool (Figure 22b) 

suggesting that qNSC are not only able to acquire an alerted phenotype but also 

they retain the ability to revert to a dormant state. 
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Figure 22. I.p. injection of sterile saline or LPS induces qNSCs to acquire a reversible alert state 
but only LPS drives qNSC into activation. (a,b) Flow cytometry analysis of qNSCs and aNSC in 
saline-injected mice at 24h, 3 days and 6 days compared to LPS-induced systemic inflammation at 
24h. (a) Proportion of total qNSC in dormant or alert state showing a shift towards qNSC2 24h 
after LPS or saline injection which reverts to basal levels after 6 days. (b) LPS but not saline i.p. 
injection increases the proportion of aNSC in the SEZ. (naïve n=6; saline 24h n=4; saline 3d n=4; 
saline 6d n=4; LPS 24h n=4). 

 

2.3. Common patterns of cytokine expression in the SEZ following peripheral 

intervention injections 

LPS injection is a well-known model of systemic inflammation and it has been 

described that these peripheral signals can reach the CNS causing secondary 

neuroinflammation. Systemic administration of LPS causes a peripheral 

inflammatory cascade that is transduced to the brain via IL-1β from the cerebral 

vasculature and causes a strong up-regulation of central pro-inflammatory cytokine 

production by microglia (Godbout et al., 2005; Qin et al., 2007; Turrin et al., 2001). 

Accordingly, we found increased mRNA levels of several pro-inflammatory 

molecules in the SEZ tissue after LPS administration: TNF-α and IL-1β presented a 

fast induction (1h) that increased at 24h and remained upregulated even after 6 

days (Figure 23a). Additionally, IL-6, PGRN and IFN-γ expression was also higher at 

24h but were downregulated to normal levels after 3 days (Figure 23a). 

We hypothesised that some of these molecules might be mediating the 

observed changes in NSC alert and activation, so we assessed their expression in 

the saline and TMZ injected animals. Almost identical to the LPS profile, 24h after 
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saline injection, we saw an induction of TNF-α, IL-1β, IL-6 and PGRN, but not IFN-γ, 

although at much lower intensity (Figure 23b). Moreover, in line with the 

cytometry results indicating a transitory response, all these cytokines returned to 

basal levels during the following 3 to 6 days (Figure 23b). Curiously, we could see 

that, during the initial hours of regeneration after the TMZ lesion, only TNF-α and 

PGRN mRNAs presented a transient up-regulation, while expression of IL-β, IL-6, or 

IFN-γ remained unaltered (Figure 23c).  

Figure 23. LPS, sterile saline and TMZ peripheral administration induce the expression of several 
cytokines with a common cytokine expression in the SEZ. (a-c) Gene expression levels of Il1b, 
Tnfa, Grn, Il6 and Infy detected by qRT-PCR in SEZ samples obtained from (a) saline (n=4) or LPS-
injected mice at 1h, 24h, 3 days and 6 days (n=5), (b) naïve (n=8) or saline-injected mice at 24h 
(n=8), 3 days (n=4) and 6 days (n=4) and (c) vehicle (n=8) or TMZ-injected mice at 24h (n=8) and 
35 days (n=4). Note that Tnfa and Grn are upregulated in all three situations 24h after i.p 
administration. 
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Taken together, these results indicated that, in response to different stimuli 

that have in common the conservative mobilization of the dormant NSC pool, 

either to become activated (TMZ and LPS injections) or just to acquire a transient 

alert phenotype (saline injection), inflammatory mediators TNF-α and PGRN are 

induced in the SEZ tissue and might, therefore, be act as niche factors regulating 

these processes. 

 

3. Dual effects of TNF-α in adult subependymal NSCs 

3.1. Mixed dose-dependent effects of TNF-α 

In order to study the effects of TNF-α in NSCs in greater depth, we decided to 

take advantage of the neurosphere assay. Neurospheres contain a heterogeneous 

population of cells where a small fraction of NSCs coexist with their progeny 

(different types of more committed progenitors and even some differentiated 

cells). As a consequence, in order to address specific effects of a factor on the NSC 

population, neurosphere formation must be evaluated both in the presence of the 

tested molecule and in a sequential assay by disaggregating the treated 

neurospheres and sub-culturing them in the absence of the factor (Belenguer et al., 

2016). NSCs were plated at very low density and treated with increasing 

concentrations of recombinant murine TNF-α. After 5 div, compared to untreated 

controls, cultures treated with the lowest concentration (0.1 ng/ml) formed more 

neurospheres, whereas increasing concentrations of TNF-α (10–20 ng/ml) led to a 

reduction in the number of neurospheres (Figure 24b). These results suggested 

that TNF-α modulates NSC proliferation and/or survival in a complex manner. 

Nevertheless, when dissociated and plated again in the absence of the factor, TNF-

α pre-treated cells, at any concentration, consistently gave rise to a greater number 

of neurospheres (Figure 24c) suggesting that, besides its effects in 

proliferation/survival, TNF-α is specifically promoting the expansion of the 

population of neurosphere forming cells. 
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Figure 24. TNF-α treated NSC cultures display mixed effects in a dose dependent manner: a 
decrease in neurosphere formation is accompanied by an enhance expansion of the culture 
after the treatment. (a) Schematic representation of the experimental design. Neurosphere 
formation of single cells is evaluated first in the presence of TNF-α (proliferation) and in a 
sequential assay by disaggregating the treated neurospheres and sub-culturing them in the 
absence of the factor (self-renewal). (b) Quantification of the number of neurospheres formed in 
the presence of increasing doses of TNF-α. Compared to untreated control, TNF-α at 0.1 ng/ml 
stimulates neurosphere formation whereas doses higher than 10 ng/ml are detrimental (n=3-10) 
(c) Quantification of the number of neurospheres generated from dissociated pre-treated 
neurospheres relative to untreated neurospheres showing an increased expansion potential of 
TNF-α treated cultures (n=4-7). 

 

Since concentrations of TNF-α higher than 10 ng/ml reduced the formation of 

neurospheres, we tried to address whether this was caused by a loss of cell viability 

and/or a cell-cycle arrest. After 24h in the presence of TNF-α at 10 ng/ml, we could 

see an increase in apoptosis as we scored more activated caspase-3 positive cells 

(Figure 25a). Accordingly, treated cells displayed reduced viability in an enzymatic 

MTS assay (Figure 25b). Additionally, when we analysed their DNA content, we 

found that this loss of cell viability was accompanied by impaired proliferation since 

we found fewer cells in S and G2/M phases of the cell cycle (Figure 25c). Taken all 

data together, we concluded that TNF-α at high concentrations exerts a negative 

effect on neurosphere formation by a combination of cell cycle arrest and 

induction of apoptosis. 
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Figure 25. Negative effects of TNF-α on NSC proliferation are related to reduced cell viability 
and a cell cycle arrest. (a) Immunocytochemistry detection of activated caspase-3 (left) and the 
proportion of cells displaying aCaspase-3 respect to total cell nuclei (DAPI) in untreated or TNF-α- 
treated cells (right) (n=3) where it is observed that TNF-α at 10 ng/ml increases the number of 
aCaspase-3+ cells. (b) Cell viability assessment with MTS assay of untreated or TNF-α treated 
cultures at different time points referred to the initial plated cells (100%) reflects a progressive 
loss in cell viability in TNF-α-treated cultures (n=3). (c) Representative histogram showing the 
different cell cycle phases determined by cell DNA content in untreated or TNF-α-treated cultures 
(left). Quantification of cells in S and G2 cell cycle phases reveals a decreased proportion of cells 
those phases in the presence of 10 ng/ml of TNF-α (right) (n=3). 

 

Although the increment in neurospheres seen in the presence of low levels of 

TNF-α pointed to a direct positive effect on NSC biology, the higher numbers of 

secondary neurospheres found after treatment might be the result of the 

neurosphere forming cells not being affected by negative effects of TNF-α and, 

therefore, being indirectly enriched in its presence. In order to clarify this, primary 

neurosphere cultures where grown in the continuous presence of 10 ng/ml of TNF-

α during 4 serial passages. As expected, TNF-α reduced the number of cells 
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obtained in the first passage (P1). However, additional treatments of TNF-α during 

P2, P3 and P4 not only did not result deleterious, but also progressively generated 

cultures with greater expansion ability (Figure 26a). Additionally, after reaching 

passage 3, we evaluated the neurosphere forming potential of continuously 

treated or untreated control cells in the presence or absence of 10 ng/ml TNF-α. In 

line with our previous observation, a punctual treatment of naïve control cells 

yielded less neurospheres (Figure 26b). However, cells that had been grown 

continuously exposed to TNF-α, when assayed in the absence of the factor, formed 

more secondary neurospheres and even more intriguing, an additional treatment, 

instead of reducing their number, significantly promoted the formation of a higher 

number of neurospheres (Figure 26b). Interestingly, the size of the neurospheres 

after TNF-α treatment was reduced in both cases (Figure 26c) suggesting that 

negative effects on survival/proliferation were still present, although not in 

neurosphere-forming NSCs. Altogether, these results revealed that TNF-α negative 

and positive effects are separated phenomena and that the increased expansion of 

TNF-α-treated cells is rather due to an amplification of a specific pool of NSCs. 



Results 

103 

Figure 26. Continuous exposure to TNF-α promotes the expansion of NSCs in neurosphere 
cultures. (a) Evaluation of the number of cells obtained after each cell passage (P1 to P4) 
referred to the initial number of plated cells in each passage. NSC cultures continuously treated 
with 10 ng/ml of TNF-α show increased expansion potential after 3 serial passages. (b) Scoring of 
the number of neurospheres obtained from untreated, punctually treated or continuously 
treated cells during 4 serial passages with 10 ng/ml TNF-α reflects an exacerbation of 
neurosphere formation after a TNF-α reiterative treatment. (c) Representation of the mean 
neurosphere diameter in untreated or TNF-α treated cells reveals a reduction of neurosphere size 
when TNF-α is present. (n=3)      

 

In order to test if TNF-α produced by microglia had the same effect as the 

recombinant one, we forced the acquisition of a pro-inflammatory state in the 

microglia cell line N13 by stimulation with LPS. Then we cultured activated microglia 

cells in neurosphere growth medium to obtain a medium conditioned by activated 

microglia (MCM) that could be added afterwards to NSCs. We observed that NSCs 

grown in the presence of MCM formed more neurospheres and that, when 

disaggregated and plated again in regular medium, MCM-treated cells continued to 

form more secondary neurospheres compared to MCM-untreated ones (Figure 

27a,b). This result highlighted that activated microglia produce factors that 

increase not only NSC proliferation and/or survival, but also the expansion of the 

NSC pool through self-renewal. 

Because activated microglia secrete several cytokines and modulators other 

than TNF-α, to test its specific contribution to this process we eliminated this 

cytokine from the MCM by immunoprecipitation with an excess of a TNF-α specific 

antibody (Figure 27c). NSCs cultured in the presence of immunodepleted medium 

or in medium immunoprecipitated with a non-related antibody of the same isotype 

as a control, still formed more neurospheres than those on regular medium (Figure 

27d). This result revealed that microglia secreted factors, other than TNF-α, 

promote the proliferation and/or survival of NSCs in vitro. Nonetheless, when 

dissociated and submitted to a sequential neurosphere assay in regular medium, 

cells pre-treated with TNF-α immunodepleted medium did not show any increase in 
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their expansion capacity (Figure 27e), indicating that TNF-α specifically participates 

in NSC self-renewal, most likely increasing symmetrical divisions. 

Figure 27. TNF-α secreted by activated microglia modulates neurosphere expansion in vitro. (a) 
LPS-activated microglia conditioned medium (MCM) stimulates neurosphere formation of NSC 
cultures. (b) Neurospheres formed in the presence of MSC, after dissociation and plating in fresh 
media, generate higher numbers of neurospheres (n=4). (c) A control Western blot showing the 
presence of TNF-α in MCM immuprecipitated with a non-related antibody (NRL Ab) and the 
complete immune-depletion of the cytokine with TNF-α specific antibodies (TNF-α  Ab). (d) TNF-α 
immuno-depleted MCM stimulates neurosphere formation but (e) not the expansion of 
neurosphere forming cells (n=4). 

   

3.2. TNF-α induces self-renewal of NSCs  

To test whether TNF-α promoted an expansion of the NSC pool by increasing 

symmetrical divisions of neurosphere-forming cells, we plated individual NSCs at 

very low density and fixed them just 24h later in order to capture their first division. 

As NSCs grow in suspension forming clonal aggregates, recently divided cells 

remain attached to each other forming a ‘cell-pair’. Symmetrical or asymmetrical 

divisions were scored by immunostaining cell-pairs to detect the expression of 
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EGFR, as it has been previously demonstrated to present a symmetrical or 

asymmetrical distribution in NSC cultures (Andreu-Agullo et al., 2009). As 

predicted, TNF-α treatment increased the probability of finding cell doublets with 

symmetrical distribution of EGFR in both cells, while reducing the proportion of 

asymmetric EGFRhi/EGFRlo cell pairs (Figure 28a). This indicated that TNF-α is indeed 

expanding the NSC pool through symmetrical divisions. 

Figure 28. TNF-α modulates self-renewal of NSC in vitro promoting symmetrical divisions and 
expanding multipotent NSCs. (a) Images of EGFR immunocytochemistry showing symmetric 
EGFRlo/lo and EGFRhi/hi or asymmetric EGFRlo/hi cell pairs (left) and assessment of the proportion of 
each type in recently divided cells growing in presence or not of TNF-α (right) (n=3). (b) 
Immunocytochemistry of a single neurosphere clone differentiated into astrocytes (GFAP+), 
oligodendrocytes (O4+) and neurons (Tuj1+) (left). The classification of each clone as unipotent 
(A), bipotent (AO/AN) or multipotent (AON) reveals an increased proportion in multipotent 
clones in TNF-α treated cultures (right) (n=6).   

 

It has been previously mentioned that neurosphere cultures consist of a 

heterogeneous mixture of different populations where only true stem cells retain 
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the maximum potential (tripotency) while different progenitor cells will give rise to 

one (unipotency) or two at most (bipotency) cell types. Therefore, we sought to 

determine whether the augmented pool of NSCs induced by TNF-α retained its 

potential. Neurospheres formed in the presence of TNF-α were dissociated and the 

individual cells plated again at low density to allow them to generate new 

neurospheres; the latter were then individually transferred to matrigel-coated 

wells to start a differentiation protocol (Belenguer et al., 2016). After 7 days of 

differentiation, immunostaining with markers of the three neural lineages (GFAP 

for astrocytes -A-, Tuj1 for neurons -N-, and O4 for oligodendrocytes -O-) revealed 

that neurospheres from TNF-α-treated cultures were enriched in cells with full NSC 

potential (tripotent clones, AON) (Figure 28b), indicating that the observed 

expansion of neurospheres after TNF-α treatment is the consequence of an 

increase in self-renewing symmetric divisions of multipotent NSCs. 

3.3. Differential effects TNF-α signalling are mediated by distinct receptors  

We had found a combination of positive and negative effects of TNF-α on 

NSCs. It is well known that TNF-α is a multifunctional cytokine that can exert its 

functions binding to two different receptors, TNFR1 and TNFR2 (Cabal-Hierro and 

Lazo, 2012; MacEwan, 2002). In order to test whether the different effects of TNF-α 

on NSC behaviour were indeed mediated by different receptors, we established 

NSC cultures from wild-type (WT), single knockout for each receptor (R1KO and 

R2KO) and double knockout lacking both of them (DKO) mice, and treated them 

with low (0.1 ng/ml) or high (10 ng/ml) concentrations of TNF-α for 5 days to study 

neurosphere formation. Neither of the treatments had any influence on DKO cells 

(Figure 29b,c), confirming that the observed effects were mediated exclusively by 

these two receptors. However, when we analysed R1KO cells, instead of finding a 

dual effect depending on the concentration as it happens with WT cells, both 

concentrations of TNF-α promoted the formation of more neurospheres, either 

when present or in the next passage after treatment (Figure 29b,c). These data 
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supported our hypothesis that TNF-α negative effects on NSC cultures require an 

active TNFR1 and that, in its absence, TNF-α can only promote NCS expansion, 

presumably through TNFR2. 

Figure 29. TNF-α signalling through TNFR1 is detrimental for neurosphere formation but its 
binding to TNFR2 expands the neurosphere-forming population in vitro. (a) Schematic 
representation of the experimental design. Neurosphere formation of WT, R1KO, R2KO or DKO 
cells is evaluated first in the presence of TNF-α (proliferation) and then in a sequential assay by 
disaggregating the treated neurospheres and sub-culturing them in the absence of the factor 
(self-renewal). (b) Number of neurospheres formed in presence of TNF-α and (c) sequential 
formation of neurospheres of untreated or TNF-α-treated cells relative to untreated cells in each 
genotype reflects the dual role of each receptor. (WT n=3; R1KO, R2KO and DKO n=4) (d) 
Proportion of symmetric or asymmetric cell pairs based in EGFR distribution scored in untreated 
or TNF-α treated R1KO and R2KO cells (n=3).  
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On the other hand, we observed that the elimination of TNFR2 abrogated all 

the positive effects on NSCs since R2KO cells formed less neurospheres than 

untreated controls in the presence of both concentrations of TNF-α, as well as 

failed to produce more neurospheres after passage (Figure 29b,c). This was further 

evidenced when we analysed the effect of TNF-α on cell-pairs of R1KO and R2KO 

cells. Expectedly, the only presence of TNFR2 in R1KO cells was sufficient to 

increase the number of symmetric EGFR+ cell divisions while the percentage of 

symmetric cell-pairs in TNF-α-treated R2KO cells was not affected (Figure 29d). 

The experiments performed with knockout cells had evidenced the specific 

requirement of TNFR1 for negative and of TNFR2 for positive effects of TNF-α on 

NSCs, but we wanted to assess whether the sole activation of each receptor was 

sufficient to trigger the response, so we decided to treat cells with specific TNFR1 

or TNFR2 agonistic antibodies. First, we cultured WT NSCs in the presence of R1-

agonist or R2-agonist to test neurosphere formation. The reduced number of 

neurospheres observed in R1-agonist-treated cells confirmed that the specific 

activation of this receptor is responsible for the negative effects on NSC survival 

and proliferation (Figure 30a). However, in accordance with the previous data, the 

specific stimulation of TNFR2 resulted in an increased number of neurospheres 

with higher expansion potential (Figure 30a,b). Furthermore, the resultant 

neurospheres from an R2-agonist treatment, when challenged for differentiation, 

gave rise to a higher number of multipotent clones (Figure 30c). 
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Figure 30. Specific activation of TNFR1 reproduces negative effects on neurosphere formation 
whereas specific TNFR2 signalling mediates symmetrical division of multipotent NSCs. (a) 
Number of neurospheres formed in the presence of TNF-α (n=4), R1 agonist (n=9) or R2 agonist 
(n=5) and (b) analysis of the neurosphere expansion potential of TNF-α (n=4) and R2 agonist 
(n=4) treated cells represented as fold-change relative to untreated controls. (c) Proportion of 
clones generated in the absence or presence of R2 agonist showing unipotent (A), bipotent 
(AO/AN) or multipotent (AON) differentiation capability (n=3).  

  

Along with TNF-α, we had found PGRN up-regulated during our inflammation 

and regeneration experiments (Figure 31a-c). Interestingly, PGRN is a natural 

agonist of the TNFR2 and cannot activate TNFR1 (Wang et al., 2015), so we 

envisioned a scenario where activation of TNFR1 would lead to apoptosis and 

proliferation arrest, whereas signalling through TNFR2, in response to TNF-α and/or 

PGRN might promote symmetrical divisions and hence the expansion of the NSC 

pool in the culture. Treatment with PGRN (10-500 ng/ml) resulted in an increment 

of neurosphere formation of about 20% (Figure 31b). Additionally, when these 

treated neurospheres were passed and plated again in the absence of the factor, 

compared to untreated controls, PGRN-treated cultures yielded more secondary 

neurospheres (Figure 31c). These data indicated that PGRN mimics only the positive 

effects seen with TNF-α and seems to expand the population of NSCs in vitro 

without affecting the overall proliferation of the culture. Finally, we tested 

whether TNFR2 was also required by PGRN to exert its positive effect on NSCs. In 

line with the observations with TNF-α, presence of PGRN did not change the 

number of neurospheres formed by R2KO cells. Accordingly, the expansion of 

these cells was not affected after the treatment (Figure 31b,c). 
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Figure 31. PGRN stimulates neurosphere formation and expands NSCs in vitro acting through 
TNFR2. (a) Schematic representation of the experimental design. Neurosphere formation of 
single cells is evaluated first in the presence of PGRN (proliferation) and then in a sequential 
assay by disaggregating the treated neurospheres and sub-culturing them in the absence of the 
factor (self-renewal). (b,c) Quantification of the number of neurospheres formed (b) in the 
presence or (c) after pre-treatment of increasing doses of PGRN compared to untreated WT 
(n=7) or R2KO (n=4) NSC cultures. PGRN stimulates neurospheres formation and their expansion 
potential in WT but not in R2KO cells.  

 

3.4. TNFR2 signalling is mediated by the p38 MAP kinase  

We next sought to explore the signal transduction pathway downstream of 

TNFR2 that could be mediating the observed effects. TNF-α receptors have been 

classically associated with different signalling pathways including NF-κB, p38, JNK, 

and the ceramide/sphingomyelinase signalling pathways (Cabal-Hierro and Lazo, 

2012). Among them, NF-κB controls the expression of numerous genes involved in 

cell division, apoptosis, and inflammation. Therefore, we first tested whether TNF-

α was able to induce the transcriptional activity of NF-κB through TNFR2 activation. 

WT, R1KO and R2KO NSCs were transfected with a luciferase reporter, bearing 5 in-

tandem copies of the κB binding sequence, and cultured with TNF-α for 24h. As 

expected, TNF-α greatly activated the reporter expression in WT NSCs, but this 

induction was also observed in the absence of TNFR2 (R2KO cells) (Figure 32a). In 

contrast, the activation of the κB-luciferase reporter was completely abrogated 
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when cells lacking TNFR1 were treated with TNF-α. In agreement with these results, 

5x κB-luc transfected WT cells treated with R1-agonist also showed higher reporter 

activity while R2-agonist failed to activate the reporter expression (Figure 32a). 

These results indicated that the NF-κB pathway is a downstream target of TNF-α 

but, in response to the binding to TNFR1 and not TNFR2. 

In an attempt to identify possible signalling pathways downstream of TNFR2, 

once discarded the canonical transcriptional activation of NF-κB, we performed a 

multiplex assay based in the Luminex® technology. This technique allows the 

simultaneous analysis of the phosphorylation state of multiple downstream 

signalling mediators, in our case: CREB, JNK, NF-κB, p38, ERK, AKT, p70S6K and 

STAT3. We obtained cell lysates from untreated or TNFR2-stimulated NSCs after 1h 

in culture and quantified the ratio between active (phosphorylated) and total 

amount of each protein. Among all tested candidates, the p38 MAP kinase 

displayed a higher phosphorylated state after treatment with the R2-agonist 

suggesting that it is a downstream target of TNFR2 (Figure 32b). Accordingly, 

western blot analysis confirmed that cells treated with either TNF-α or TNFR2 

agonist present higher levels of phosphorylated p38 (Figure 32c). 

Figure 32. TNFR2 signalling in NSCs is related to the p38 MAP kinase signalling pathway but not 
to the transcriptional control of Nf-κB. (a) Transcriptional activity of NF-κB-dependent genes 
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measured in WT (n=6), R1KO or R2KO (n=3) cells transfected with a 5x κB-luciferase reporter 
plasmid and treated with TNF-α, R1 or R2 agonistic antibodies for 24h. (b) Quantification of 
phosphorylated levels of CREB, JNK, NF-κB, p38, ERK, AKT, p70S6K and STAT3 proteins relative 
to the total amount of each protein assessed in R2 agonist treated cells by Luminex®-based 
multiplex assay. The data is normalized to phosphorylated levels in untreated cells (n=2). (c) 
Representative western blot images illustrating the induction of the phosphorylated state of p38 
after TNF-α or R2 agonist treatments. 

 

In order to test whether p38 activation is required for TNFR2 to exert its 

effects on NSCs, we decided to use a specific pharmacological p38 inhibitor 

(SB203580) in combination with TNF-α or R2-agonist treatments. Neurosphere 

assay showed, as expected, that the presence of TNF-α diminished the number of 

neurospheres whereas TNFR2 agonist produced the opposite effect (Figure 33b). 

Moreover, the presence of SB203580 did not prevent TNF-α from being 

detrimental to the culture (Figure 33b). Conversely, under p38 inhibiting 

conditions, R2-agonist failed to increase neurosphere formation (Figure 33b). 

Furthermore, when these neurospheres were dissociated and plated again for a 

second round of neurosphere assay in the absence of any treatment, we observed 

that neither TNF-α nor R2-agonist pre-treated cells that had been incubated with 

p38 inhibitor, displayed the increased expansion potential that was observed in 

non-inhibited cultures (Figure 33c). Therefore, p38 activation seems to be required 

for TNFR2 to promote neurosphere expansion of NSCs in vitro. 
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Figure 33. The activation of p38 mediates the TNFR2-induced expansion of neurosphere-forming 
cells. (a) Schematic representation of the experimental design. Neurosphere formation of single 
cells is evaluated first in the presence of TNF-α or R2 agonist combined with the p38 inhibitor 
SB203580  (proliferation) and then in a sequential assay by disaggregating the treated 
neurospheres and sub-culturing them in the absence of the factor (self-renewal). (b) Relative 
neurosphere formation of TNF-α and R2 agonist-treated cells in presence of SB203580 (n=5) and 
(c) assessment of subsequent neurosphere expansion potential of treated cells (n=8) showing 
that R2-induced positive effects, but not TNF-α detrimental ones on neurosphere formation, are 
abolished in the presence of the p38 inhibitor SB203580.  

  

4. Effects of TNF-α in adult subependymal quiescent NSCs 

4.1. In vitro properties of qNSCs 

Our in vitro data indicated that TNFR2 signalling induced a subset of 

multipotent neurosphere-forming cells to self-renew. Our data also showed that 

mild peripheral signals, i.e. induced by an intra-peritoneal saline injection, caused in 

the SEZ a transient up-regulation of TNF-α and PGRN and a shift of quiescent NSCs 

towards an alert qNSC2 state without affecting the activated pool. The description 

of the transition from dormancy to an alert state in NSCs is relatively recent, and 

the subjacent molecular mechanisms that might be involved are largely unknown. 

Therefore, one possibility worth testing was that TNFR2 signalling could be 

promoting the transition from qNSC1 to qNSC2. However, it is currently unclear 

whether neurosphere cultures preserve NSCs in different states. It has been 

reported that isolated qNSC rarely form neurospheres under mitogenic stimulation 

(Codega et al., 2014; Mich et al., 2014). Nevertheless, it is worth noting that Mitch et 

al. defined the quiescent pool of NSCs as those GLASThigh/EGFR– cells, a fraction 

which actually corresponds to a dormant state. On the other hand, Codega et al. 

observed that some qNSCs can be activated in vitro and behave as colony forming 

multipotent cells, and that both states can be dynamically interconverted, maybe 

contributing to the heterogeneity of the neurosphere culture. However, they did 

not subdivide the quiescent NSCs into qNSC1 and qNSC2, so it remains unsolved if 

the activation they observed was affecting both populations. Actually, due to its 
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recent identification, we lack experimental evidences of the behaviour of alert 

qNSC2 in vitro and both scenarios, i.e. they either behave as quiescent cells or get 

activated and form neurospheres, seem equally plausible. Interestingly, Galert 

MuSCs have been described as being prone to enter proliferation when challenged 

in vitro with mitogens (Rodgers et al., 2014).  

We, therefore, sought to test whether the transient induction of qNSC2 

following i.p. injection of saline translated in vitro into a higher number of 

neurospheres, reflecting an activation of qNSC2, or, conversely, had no impact on 

neurosphere formation, revealing that qNSC2 behave as quiescent cells also in 

vitro. Thus we injected mice with saline and performed primary SEZ cultures 24 

hours later scoring the number of primary neurospheres after 7 DIV. We observed 

that SEZ homogenates obtained from saline-injected mice yielded more 

neurospheres than their naïve non-injected counterparts (Figure 34a), suggesting 

that qNSC2 had been activated under in vitro culture conditions of mitogenic 

stimulation and behaved as neurosphere-forming cells. 

 

 

Figure 34. I.p. saline injection in vivo induces SEZ NSCs to 
form higher number of primary neurospheres when 
cultures under mitogenic stimulation. (a) Total number of 
SEZ-derived primary neurospheres obtained from naïve and 
saline-injected mice showing a higher proportion of cells 
that proliferate and give rise to neurospheres 24 h after the 
i.p. saline-injection (n=4).  

 

To gain insight into this process and to directly study potential effects of 

TNFR2 activation on qNSCs, we returned to our magnetic separation of the Lin–

fraction, which is enriched in both quiescent qNSC1 and qNSC2 states along with 

aNSCs. Once isolated from naïve wild-type mice, we cultured Lin– cells for 24h or 7 

days in neurosphere growing medium supplemented with EGF and FGF in the 
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presence or not of R2-agonist. After 24h in vitro, we could observe many Lin– cells 

that had started to divide and were already forming 2-3 cell aggregates. In line with 

our previous data, after 7 days in culture, we observed that treatment with R2-

agonist induced Lin–cells to generate a higher number of neurospheres (Figure 

35b). 

Figure 35. The specific stimulation of TNFR2 enhances neurosphere formation of isolated NSCs 
but culture conditions do not maintain the cell surface marker profile of SEZ NSCs. (a) 
Schematic representation of the experimental design. After dissociating SEZ samples, Lin– cells 
are magnetically isolated and cultured in the presence of TNFR2 agonist. Recently isolated Lin– or 
cultured under mitogenic stimulation for 24h or 7 days are analysed by flow cytometry and 
neurosphere formation. (b) The number of Lin–-derived primary neurospheres formed under 
culture conditions is increased in presence of R2 agonist (n=3). (c,d) Representative plots of Lin– 
cells showing the evolution of NSC cell surface markers (GLAST, CD9, EGFR and CD24) under 
culture conditions. Note that after 24h and 7 days in vitro, none of the Lin– cells maintains the 
expected marker expression profile displaying (c) homogeneous levels of GLAST and CD9, and 
(d) low but evident level of EGFR combined with high levels of CD24. 
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In an attempt to study the acute effect of TNFR2 stimulation, we collected 

cells after just 24h in vitro and labelled them with the whole set of cell surface 

markers that we used for the characterization of the different SEZ populations. 

Flow cytometry analysis indicated that all cells were still expressing GLAST and CD9 

after 24h in culture (Figure 35c). However, instead of finding a great range of 

expression of CD24 and EGFR (from negative to high for both markers), virtually all 

cells in both treated and untreated samples, showed some level of CD24 and EGFR 

(Figure 35d). And even more, 7 days after plating, all cells from Lin–derived 

neurospheres had GLAST and CD9 but expressed aberrantly higher levels of CD24 

and homogeneous although lower than expected levels of EGFR (Figure 35c,d). 

This indicated that the expression of some of our classifying markers was highly 

sensitive to culturing conditions. Thus, classical in vitro culture conditions, despite 

maintaining stemness properties of NSCs, such as self-renewal and multipotency 

(Pastrana et al., 2011), seem to be forcing an artificial expression of progeny 

markers, precluding the analysis of the quiescence-activation dynamics based on 

the features seen in vivo.  

Cytometry experiments had, therefore, evidenced that we could not directly 

identify the presence of quiescent cells once NSCs have been placed under in vitro 

culture conditions. In an attempt to visualize this population, we measured cell size 

and mitochondrial activity of NSCs in culture, since we had observed a positive 

correlation between these parameters along the quiescent, alert and active states 

in vivo. First, we disaggregated neurospheres derived from naïve or saline-injected 

mice, labelled them with MitoTracker and analysed them in a flow cytometer to 

detect changes in those parameters. We did not find clear differences in the size 

distribution between cells from naïve or saline-derived neurospheres (Figure 36a). 

However, we could clearly identify a small discrete population of cells displaying 

high mitochondrial activity and low cellular complexity in naïve cultures which was 

greatly increased in the saline-injected group (Figure 36b).  
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Figure 36. NSCs cultured in vitro contain a population of TNFR2-responsive cells that display 
enhanced mitochondrial activity. (a) Analysis of cell size by mean intensity of FSC parameter in 
naïve and saline-injected mice-derived cultures (n=4). (b) Representative FACS plots displaying 
MitoTracker and SSC intensity (left). Compared to naïve untreated cultures, the proportion of 
MitoTrakerhi cells in NSC cultures obtained from saline-injected mice and R2-agonist-treated naïve 
cultures is significantly increased (right) (n=4). (c) Representative histograms of Mitotracker 
intensity in untreated or R2 agonist treated cultures in the presence or not of the p38 inhibitor 
SB203580 (left) and the percentage  of MitoTrackerhi cells in each condition (n=4). The presence 
of SB203580 completely abolishes the TNFR2-induced increase of MitoTrackerhi cells.  

 

Additionally, we performed the same analysis on naïve cultures but 

specifically stimulating TNFR2 with an agonistic antibody during 4 days. Analysis of 

MitoTracker staining revealed that activation of TNFR2 reproduced the effect of 

the saline injection and led to an increment of cells with higher mitochondrial 

activity in the culture (Figure 36b). These data suggested that TNFR2 activation 

targets a population, which might be reminiscent of qNSCs, that does remain in the 

culture and can be followed in vitro by its increased mitochondrial activity. Finally, 
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we quantified the mitochondrial activity of R2-agonist-treated cells grown in 

presence of SB203580. In line with the previous result, we could observe that the 

increased number of cells with high mitochondrial activity promoted by the 

treatment with the specific R2-agonist completely disappeared when p38 was 

pharmacologically inhibited (Figure 36c). Although further characterization will be 

needed to clearly identify all the molecular mediators downstream of TNFR2 

transduction signal and their role in regulating the quiescence-alert cycle of NSCs, 

our results demonstrate that p38 is an essential component of this pathway. 

Previous experiments performed in our lab had evidenced that NSC cultures 

display proliferative heterogeneity and that a small population of cells that divide 

at an evident slower kinetics exists within the neurospheres. Interestingly, this 

slow-cycling population seems to be responsible for the long-term expansion and 

maintenance of the culture (S.R. Ferrón, unpublished data). Therefore, we decided 

to test whether this population might be targeted by TNFR2 stimulation. In order 

to track cells with different division kinetics, we used two different fluorescent 

probes (Cell Trace Far Red DDAO-SE -DDAO- and Cell Trace Oregon Green 488 

Carboxy-DFFDA SE -DFFDA-). These molecules can enter passively through the 

plasma membrane of living cells, get retained intracellularly, and are progressively 

diluted during the successive rounds of division through their homogeneous 

distribution among daughter cells. SEZ dissociates were first loaded with the far 

red DDAO cell tracer and plated for primary neurosphere formation. After 10 days 

in vitro, the generated primary neurospheres were dissociated to analyse the 

intensity of DDAO in each single cell by flow cytometry. Compared to the initial 

load, all living cells displayed lower levels of DDAO evidencing that all cells had 

divided at least a few times. However, we could observe a wide range of tracer 

retention in the culture with cells displaying high levels of DDAO (close to the initial 

load level) whereas others showed intermediate intensity or complete dilution of 

the probe (Figure 37a). This situation reflected that, under culture conditions, most 
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of the cells go through multiple rounds of cell division while others only cycle a few 

times, despite the strong EGF-dependent mitogenic stimulation.  

In this context, we decided to evaluate if TNFR2 stimulation targets the slow-

cycling population. Thus, we submitted DDAO primary neurospheres to a second 

round of proliferation in the presence or not of TNFR2 agonistic antibody. To be 

able to assess cell division during the second round of culture, we labelled cells 

derived from DDAO neurospheres with green DFFDA, a second cell tracer 

conjugated with a different fluorophore. Then, double labelled cells were cultured 

for 3 days to allow dilution of both cell tracers in the presence or not of R2-agonist. 

As expected, after 3 days in culture, we could see that all cells had proliferated and 

had diluted to some extent the green DFFDA tracer (Figure 37b). Interestingly, 

after 2 rounds of culture and 13 days under mitogenic stimulation, we could still 

identify cells that retained different levels of the initial DDAO load (DDAO retaining-

cells, DRCs) (Figure 37a) that, according to their slow cycling dynamics, also 

retained high levels of green DFFDA (Figure 37b). Of notice, R2-agonist treated 

cultures presented a remarkable increase in DRCs (Figure 37c). This might be the 

result of the treatment causing a proliferative arrest preventing the dilution of the 

probe; however, the TNFR2 increased DRC pool retained lower levels of the second 

cell tracer compared to the untreated DRCs (Figure 37d) revealing that TNFR2 

activation had actually induced the proliferation of the DRC population, yet 

maintaining their slow-cycling kinetics. 

These data evidenced that, under in vitro culture conditions, TNFR2 activation 

targets a subset of slow-cycling NSCs and promotes their expansion without 

changing their cell division kinetics, supporting the idea that TNFR2 promotes a 

quiescent state that, in vitro, behaves as a slow-proliferating cell. 
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Figure 37. NSCs cultured in vitro contain a population of TNFR2-responsive cells that display 
slow cycling rate. (a) Representative FACS plots displaying far-red DDAO intensity of DDAO-
loaded SEZ homogenates and the marker intensity present in the initial load, and in 
disaggregated neurosphere cells from primary or secondary formed neurospheres. Dashed 
vertical line indicates the threshold stablished to select DDAO-retaining cells (DRC+). Secondary 
neurosphere were grown in the presence or not of R2-agonist during 3 days in vitro (DIV). (b) 
After 10 DIV, primary neurospheres were dissociated and loaded with green DFFDA and cultured 
for additional 3 DIV. The histograms are representative of DFFDA intensity in recently loaded cells 
or secondary neurospheres after 3 DIV. Note that DRCs show higher retention of DFFDA. (c) 
Quantification of DRC+ cells present in untreated or R2-agonist-treated secondary neurospheres 
(n=6) showing a great enrichment upon TNFR2 stimulation. (d) Representative histogram 
displaying DFFDA intensity in the DRC+ fraction in untreated or R2-agonist-treated cultures and 
the quantification of DFFDA mean intensity retained in DRCs after 3 DIV showing that the R2-
mediated increment in DRC+ is actually consequence of cell division (dilution of DFFDA)(n=6). 

4.2. Direct actions of TNF-α in the alert state 

Our in vivo experimental evidences pointed to inflammatory signals, such as 

TNF-α and PGRN, most probably acting through TNFR2, promoting the exit form 

quiescence and the acquisition of an alert qNSC2 state. Additionally, in vitro data 

had revealed the existence of a subpopulation of NSCs in the neurosphere cultures, 

which might retain some features of qNSCs and is specifically expanded by TNFR2 

activation. However, so far we had not been able to visualize the qNSC1 to qNSC2 

transition in vitro. We proposed that this might be accomplished by a specific 

activation of TNFR2 in vivo followed by cytometry analysis. Unfortunately, any 
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manipulation in vivo, such as intracerebral infusion of R2 agonist, would cause 

some level of inflammation potentially leading to confounding results. We, 

therefore, decided to set-up an intermediate approach consisting in the 

organotypic ex vivo culture of a whole SEZ, in trying to keep the NSC environment 

as intact as possible and maintain the qNSC population, at least for a short period 

of time. After dissection, SEZ whole-mounts were placed on a culture dish with the 

ependymal layer facing upwards and covered with neurosphere growing medium 

supplemented with EGF and FGF. We replaced regular EGF with fluorescent-

labelled EGF-A488, to be able to detect EGFR positive cells without having to 

perform an extra starvation step to avoid ligand pre-occupation of the receptor. 

Each SEZ was cultured in the presence or not of TNFR2-agonist for 3h before tissue 

dissociation and labelling with SEZ populations marker panel, including 

MitoTracker for mitochondrial activity. 

Flow cytometry analysis showed that, after 3h in culture, we were able to 

nicely identify each NSC linage, finding that the marker profile of each population 

did not differ from a recently-dissected control tissue (Figure 38a). However, 

compared to non-cultured tissue, we found a certain shift from qNSC1 to qNSC2, 

probably induced by the culture conditions (Figure 38b). Furthermore, in line with 

the idea that qNSC2 respond and adapt to the culture, we found that, compared to 

basal levels in the SEZ, they greatly increased their mitochondrial activity, more 

even than activated NSCs, as well as their cell size (Figure 38d,e). 

Under these conditions, we could observe that qNSC1 remained mostly 

unaltered and displayed a similar mitochondrial activity and cell size than those 

directly obtained from the animal. According to our hypothesis, we could 

appreciate that the quiescent pool shifted from the dormant to the alert state 

upon TNFR2 stimulation while the activation/quiescence ratio remained unaltered 

(Figure 38b,c). 
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Figure 38. Organotypic ex vivo culture of SEZ tissue preserves the quiescence of NSCs and 
reveals that TNFR2 stimulation promotes the transition from dormant qNSC1 to alert qNSC2 
state. (a) FACS strategy for NSC identification in organotypic ex vivo culture of a whole SEZ. Note 
that cultured SEZ maintain the NSC containing gate (CD24lo EGFR+/-). (b) Evaluation of the 
proportion of qNSC displaying qNSC1 or qNSC2 state indicates that the presence of R2 agonist 
drives a shift to the alert state but (c) the proportion of aNSC is not altered upon TNFR2 
activation (n=4). (d,e) Relative increase in cell size (FSC intensity) and mitochondrial activity 
(MitoTracker intensity) of qNSC1, qNSC2 and aNSC displayed under culture conditions respect to 
their average size in the ‘naïve’ SEZ. Note that qNSC2 are suffering a remarkable cell size and 
mitochondrial activity remodelling when cultured in vitro (n=4).  
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The two major findings of the present thesis are (1) that adult NSCs in the SEZ 

niche can sense and respond to remote peripheral mild lesions and that (2) TNFR2 

signalling is involved in this process and mediates positive effects of inflammation 

on NSC behaviour. The first finding is in line with recent data indicating that adult 

SCs of different systems can react to distant injuries, suggesting a homeostatic 

control of their activity at the organismal level. The second one increases our 

understanding of the role of inflammation in the neurogenic process. Although the 

most accepted view is that acute or chronic inflammation plays a negative role in 

neurogenesis, our data uncover concomitant beneficial effects of inflammatory 

cytokines in at least a fraction of NSCs. 

Additionally, we have found that responding to either peripheral signals or 

acute inflammation, entails the transition of quiescent NSCs from a dormant to a 

primed pre-activation state. This alert qNSC2 state had remained undetected within 

the quiescent pool of NSCs until a couple of years ago, and very little is known 

about its behaviour and regulation. Here we provide new data uncovering the 

implication of TNFR2 signalling, most probably transduced intracellularly through 

p38, in the regulation of these qNSC2 cells, their behaviour in vitro and their role 

during regeneration and in response to injury. These previously undescribed effects 

add another piece of knowledge to the incipient research of regulation of 

quiescence/activation in NSCs. 

The quest to find specific cell markers to unravel the unforeseen heterogeneity of 

adult NSCs.  

In the absence of unique distinctive markers, the heterogeneity of adult SCs 

can only be revealed by the prospective isolation of the different proliferative 

states and subpopulations with combinations of labels. Understanding the 

heterogeneity of SCs has become in the last few years an obligated step in the 

journey to unravel the behaviour and regulation of these cellular entities. This 

heterogeneity comprises different levels of the SC biology, and has revealed that 
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we must undertake their study without disregarding that, instead of a specific cell 

type with singular characteristics, they behave as a dynamic network of 

interchangeable states showing distinctive regional identity, lineage commitment, 

self-renewal potential, gene expression programs and cell cycle dynamics (Biteau 

et al., 2011; Chaker et al., 2016; Dykstra et al., 2007; Li and Clevers, 2010; Ousset et 

al., 2012; Stange et al., 2013; Van Keymeulen et al., 2011). Therefore, the 

development of lineage-tracing and molecular strategies that allow the 

identification and isolation of all this variety of states and subpopulations is 

essential for the proper advance of our knowledge about SCs. 

As the leading field in SCs, the HSC lineage is probably the best characterized 

SC system where several HSC types and intermediate states have been identified 

(Goodell et al., 2015; Tian and Zhang, 2016). This success has heavily relied in the 

availability of multiple surface markers that, in combination with FACS-based 

technologies, has allowed the isolation of discrete populations with common 

molecular features for their subsequent functional characterization (Tian and 

Zhang, 2016). The NSC field, however, has been limited for many years by the 

sparse availability of markers, especially cell surface proteins that would have 

enabled their isolation and further characterization. NSCs were initially defined and 

functionally characterized using in vitro criteria (Reynolds and Weiss, 1992) and 

later by ultrastructural, morphological and functional in vivo features (Doetsch et 

al., 1999a; Doetsch et al., 1997, 1999b). Since then, their identification has mainly 

relied upon the expression of cytoskeletal proteins such as the glial marker GFAP or 

Nestin, in combination with transcription factors such as Sox2 or proliferation 

markers such as ki67 and/or retention of nucleoside analogues. Of notice, none of 

these markers is compatible with the FACs separation of living cells, due to their 

intracellular localization, which has imposed the search for alternative strategies to 

circumvent this limitation. 
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The use of reporter transgenic mice such as GFAP::GFP provided the first 

reliable approach for FACS isolation of NSCs but, their glial nature required the 

combination with other markers in order to discriminate neurogenic from non-

neurogenic astrocytes (Pastrana et al., 2009). It has not been until recently that a 

few laboratories have successfully isolated SEZ cells that display SC features using 

different combinations of both reporter expression mouse strains and/or surface 

markers. Moreover, the application of either bulk or single cell global 

transcriptomic assays to these isolated populations has led to the identification of 

different quiescent and proliferative states among NSCs, broadening our vision of 

their biology (Codega et al., 2014; Daynac et al., 2013; Giachino et al., 2014; Khatri et 

al., 2014; Llorens-Bobadilla et al., 2015; Mich et al., 2014). 

In this thesis, we have developed a new strategy, based exclusively on the 

detection of surface markers, to allow the identification of SEZ NSCs at different 

quiescent and proliferative states, along with their more committed progeny until 

their transformation into OB neuroblasts. Analogously to the LSK-based strategy 

for HSC identification, which is based on the exclusion of eight differentiation 

markers (Lin+ cells) and the subsequent selection of c-Kit and Sca-1 positive HSC 

(Tian and Zhang, 2016), we first excluded non-neurogenic lineages using CD45, 

CD31, Ter119 and O4 to later perform a positive selection of CD9+ neurogenic, 

GLAST+ astrocytes. Although GFAP has been for years the gold standard for the 

identification of astroglial cells, the localization of GLAST in their membrane has 

overcome the need for reporter mouse strains, allowing the identification of living 

astrocytes in mice of any genetic background (Jungblut et al., 2012). However, both 

GFAP and GLAST are also expressed by non-neurogenic astrocytes, so inclusion of 

additional markers that distinguish NSCs from parenquimal astrocytes is 

compulsory. Prominin (CD133) has been found in primary cilium of NSCs (Cesetti et 

al., 2011; Pinto et al., 2008) and has been used in combination with GFAP to identify 

this population (Beckervordersandforth et al., 2010; Mirzadeh et al., 2008). 

Nonetheless, despite being quite specific, it appears to label only a subset of NSCs 
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(Codega et al., 2014). Hence, taking advantage of the single-cell RNA-Seq 

performed by Llorens-Bobadilla et al., we decided to include CD9, in combination 

with GLAST, to identify neurogenic astrocytes (Llorens-Bobadilla et al., 2015). It is 

worth noting that, despite the fact that its broad expression among different cell 

types might make it unsuitable as specific marker, we could observe that SEZ NSCs 

expressed much higher levels of this protein compared to non-neurogenic 

astrocytes from other areas such as the cortex or the striatum. 

Despite being initially alleged as a progenitor marker, EGFR is now widely 

accepted as a marker of active NSCs (Codega et al., 2014; Daynac et al., 2013; 

Giachino et al., 2014; Khatri et al., 2014; Llorens-Bobadilla et al., 2015; Mich et al., 

2014) that are consequently eliminated by anti-mitotic drugs. However, we found 

slight discrepancies with previous reports that associated CD24 mainly with 

neuroblasts, defining NSCs as a CD24 negative population (Codega et al., 2014; 

Daynac et al., 2013; Llorens-Bobadilla et al., 2015; Mich et al., 2014). Our data 

suggest instead that this marker starts being expressed in aNSCs and increases 

with the progression through the neurogenic lineage becoming the highest in PSA-

NCAM+ neuroblasts. Of notice, single-cell RNA-seq analysis also supports this idea 

and, similarly to Ascl1 expression that is already present in activated aNSCs, 

presence of Cd24a mRNA is detected increasingly in aNSCs, TAPs and neuroblasts 

(Llorens-Bobadilla et al., 2015). Similarly, the expression of GLAST in TAPs is also 

under debate. While others define TAPs as GLAST+/EGFR+ cells (Llorens-Bobadilla et 

al., 2015), we believe that CD24mid/EGFR+ TAPs are in the process of silencing 

astroglial features and can still show residual levels of GLAST. It is worth noting 

that the detection of surface markers is highly dependent on the chosen protocol 

for the enzymatic dissociation of the SEZ tissue. Most of the strategies for the 

disaggregation of neural tissue rely on a combination of mechanical dissociation 

along with an enzymatic digestion with papain or trypsin. During the development 

of our protocol, we could observe that GLAST and CD24 were highly sensitive to 

papain. Similarly, although trypsin is clearly gentler with both markers, the amount 
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of enzyme and the incubation time have a deep impact in the preservation of these 

antigens in the cell membrane. Therefore, protocols slightly more aggressive with 

these two markers might have led to the classification of low-expressing cells as 

negative. 

We are aware that the ultimate validation of our marker panel and gating 

strategy will only be achieved by the molecular and cellular analysis of each FACS-

separated population. However, we strongly believe that we provide enough 

evidences of its accuracy with the regeneration experiments, neurosphere 

formation assays, and analysis of the expected morphological and metabolic 

changes we performed over the course of this thesis. 

The dilemma of being a quiescent cell in vitro 

As previously mentioned, neurosphere cultures contain a heterogeneous 

population of cells as NSCs coexist with their progeny (different types of more 

committed progenitors and even differentiated cells). Moreover, NSCs unavoidably 

produce cell progeny in vitro and some of the highly proliferative committed 

progenitors or TAP cells appear also capable of forming neurospheres, albeit only 

for a few passages (Doetsch et al., 2002a; Reynolds and Rietze, 2005) Nonetheless, 

since neurospheres reproduce the defining characteristics of SC such as self-

renewal, clonal long-term expansion and multipotency, their cell division in the 

culture must be self-maintaining and at least a small percentage of them should 

remain somehow equivalent to the NSCs found in the niche in vivo.  

General protocols for the in vitro culture of mammalian cells rely on the 

presence in the culture medium of proliferative signals either in the form of 

different kinds of serum or by defined growth factors that act as mitogens. This 

fact imposes a strong pressure over the culture, selecting the most proliferative 

cells as the culture is successively passaged. Therefore, any kind of non-
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proliferative cell will necessarily be negatively selected and under-represented or 

removed from the culture. 

NSCs are no exception to this rule, and commonly used protocols include 

strong mitogenic stimulation with a combination of EFG and FGF2 (Belenguer et al., 

2016). Consequently, it is conceivable that the quiescent population that would be 

initially present in the SEZ tissue homogenate might either be forced to activate 

and adapt to the culture conditions, or, conversely, remain quiescent and be 

progressively eliminated. As a matter of fact, it has been reported that isolated 

qNSC rarely form neurospheres in vitro (Codega et al., 2014; Mich et al., 2014) but 

that they can get activated contributing to the neurosphere forming pool of the 

culture (Codega et al., 2014). On the other hand, a different scenario where NSCs 

alternate between quiescent and active states during their time in vitro has also 

been proposed (Codega et al., 2014) and would justify the presence of qNSCs in the 

culture, even after several passages under strong mitogenic stimulation. This 

phenomenon, though, remains controversial and the characterization of the 

quiescent cells in the culture, if present, has not been done. Additionally, due to 

their recent discovery, few data are available about the specific behaviour of 

qNSC2 in vitro. 

Most of the results we have obtained during this thesis can only be explained 

by in vitro culture conditions driving NSCs, at least qNSC2, to exit quiescence, start 

expressing EGFR and proliferate. This raises the question of whether these in vitro 

activated qNSC2 are functionally different form the aNSCs already present in the 

culture and if any of them retain the capacity of returning to quiescence. Be as it 

may, we have found that in vitro culture conditions have a profound impact on the 

expression of surface markers, specially GLAST, CD24 and EGFR, preventing us 

from unequivocally identify quiescent cells in the culture, at least by our cytometry-

based assay. However, we could find evidences of heterogeneity among the NSC 

population in vitro that might reflect the presence of an adapted form of quiescent 
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NSC to the culture conditions or, alternatively, be the consequence of the returning 

of aNSCs to a more quiescent state after a few rounds of cell division in each 

passage. This is supported by the observation of a subset of cells displaying 

differential mitochondrial activity and the fact that cells with considerably slower 

cell cycle kinetics coexist in the culture among highly proliferative ones. 

Additionally, these populations seem to be targeted by TNFR2 stimulation leading 

to their expansion in the culture but without losing their particular characteristics. 

Together these evidences have prompted us to hypothesise that the expansion of 

the neurosphere forming cells that we observe after TNFR2 stimulation in vitro, is 

actually a consequence of TNFR2 targeting a subpopulation of quiescent cells that 

are adapted to the in vitro conditions and, hence, cannot behave as fully quiescent 

cells. This hypothesis would conciliate our in vitro and in vivo observations because 

TNFR2 seems to be promoting changes among the quiescent populations of NSCs 

in vivo, without necessarily leading to their activation, whereas, in vitro, 

incremented EGFR+ symmetrical divisions and enhanced neurosphere formation 

rather suggest an activation signal.  

The SEZ niche constitutes a complex environment where a great plethora of 

signals that actively regulate NSC stemness, quiescence and activation (Porlan et 

al., 2013b). Consequently, withdrawing them from their natural habitat and placing 

them in vitro, no matter how optimised the culture medium might be, will 

unquestionably affect their biology and behaviour. In line with this, the only 

method that we found to maintain quiescent cells in vitro, at least for a short 

period of time, was the organotypic ex vivo culture of the whole SEZ, and even so, 

we could appreciate slight sings of emerging activation in the control explants. This 

result evidences that key niche factors such as cell adhesion to components of the 

niche (Porlan et al., 2014) and especially hypoxic environment (Mohyeldin et al., 

2010), among others, being absent from the culture conditions, might be necessary 

for the full expression of quiescence in vitro. 
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It is all about that alert quiescent state 

Adult stem cells, regardless of their tissue localization, are known to alternate 

between a quiescent non proliferative state and an active, progeny-producing one. 

However, it has recently been reported that some adult quiescent SCs, such as 

HSCs or MuSCs, are found in a primed or alert state, non-cycling but prone to 

activation and that the probability of this state increases with mild and/or remote 

insults (Rodgers et al., 2014; Rodgers et al., 2017). As mentioned before, the 

potential existence of this intermediate state between quiescence and activation in 

the SEZ niche remained undetected until a couple of years ago when single-cell 

transcriptome analysis of isolated NSCs revealed their presence (Llorens-Bobadilla 

et al., 2015). 

Analogously to other SC systems, the alert state of NSCs was initially defined 

molecularly as an intermediate state between dormancy and activation, suggesting 

a prone-to-activation state. However, aside from their molecular identity, very little 

is known about this pool of NSCs. For instance, although bioinformatics analysis 

suggests a linear qNSC1-qNSC2-aNSC progression during the NSC activation 

process, this has not been functionally tested and an alternative scenario where 

qNSC2 correspond to an accessory population that is only recruited and activated 

in the presence of specific signals, might also be plausible. Nevertheless, our data 

indicate that dormant qNSCs, at least in the functional scenarios we have analysed, 

acquire an intermediate alert qNSC2 phenotype before reaching full activation. 

Additionally, we could see that the transition to an alert state under mild non-

pathological stimulation is a reversible process and primed qNSC2 can 

progressively return to dormancy without reaching activation. We have not 

explored all the variety of signals that might lead to NSC activation, but it would be 

interesting to analyse whether perturbations distinct in nature, intensity and/or 

duration might regulate differently the response of qNSCs. Additionally, it is not 

known whether different types of injury would trigger specific signalling pathways 



Discussion 

133 

and recruit specific subpopulations of qNSCs and if this will be reflected in the 

generation of functionally different cohorts of qNSC2. Curiously, in a zebrafish 

model, it has been observed that quiescent radial glia cells, equivalent to murine 

SEZ qNSCs, get activated upon injury, but that different types of stimuli target 

discrete subgroups of these cells (Than-Trong and Bally-Cuif, 2015). Similarly, the 

existence of stimulus-specific subpopulations of qNSCs in the murine hippocampus 

has also been described (Jhaveri et al., 2015). In the adult murine SEZ, NSCs display 

regional heterogeneity and it has been demonstrated that specific subtypes of OB 

neurons arise from definite subpopulations of NSCs with distinctive localization 

along the lateral ventricle wall (Kelsch et al., 2007; Lopez-Juarez et al., 2013; Merkle 

et al., 2014; Young et al., 2007). Although it has not been explored, it might be 

possible that stimulus-specificity and regional heterogeneity be intrinsic 

characteristics of dormant qNSC1 and that, once targeted for activation, transition 

through an alert qNSC2 state might be a common cellular mechanism. We have 

found that qNSC1 respond to inflammatory signals such as TNF-α and progranulin 

through TNFR2, but it would be interesting to know if what we observed is a 

general mechanism or if we just targeted a specific TNFR2 responsive 

subpopulation of quiescent NSCs. Further work will be required to address all these 

questions but the fact that MuSCs, HSCs, among other types of SCs, undergo a 

transition from G0 to Galert state in response to multiple types of distant injuries 

(Rodgers et al., 2014; Rodgers et al., 2017) suggests that this primed state might be 

a general mediator in the response to any kind of injury. 

On the other hand, we consistently found that around one third of the 

quiescent NSCs in wild-type control SEZ tissue, were qNSC2. This might be the 

consequence of multiple local and/or systemic potentially damaging signals being 

constantly surveyed by qNSCs and/or other niche components such as microglia 

and endothelial cells, anticipating the need of an eventual rapid response by 

maintaining a pool of alert qNSC2. If that were the case, this would mean that the 

qNSC2 population could be a reflection of the general systemic health of an 
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individual at a specific moment. Conversely, the existence of a basal population of 

qNSC2 might reflect that there is a homeostatic equilibrium between dormant and 

active NSCs that entails the presence of a transitional pool of qNSC2. However, in 

vivo tracing experiments suggested that active NSCs are short-lived and actively 

divide generating multiple waves of progenitors before becoming exhausted 

(Calzolari et al., 2015), what would explain the decline in neurogenesis that is 

observed with aging (Shook et al., 2012). Although this work challenged the idea of 

active NSCs returning to quiescence in vivo after a period of proliferation, their data 

could not conclusively exclude the possible existence of a few GFAP+ neurogenic 

cells that could do so. Moreover, they did not explore the possible role of qNSC2 in 

this process. We speculate that, after reaching activation, NSCs might divide giving 

rise to another active, proliferating aNSC and a daughter cell that might return to 

dormancy through an intermediate qNSC2 state. Interestingly, it has been reported 

that, although neurogenesis to the OB declines with age, and total number of 

NSCs, pinwheel units and NSCs per pinwheel is reduced, the percentage of actively 

mitotic NSCs increases (Shook et al., 2012). Therefore, it is tempting to hypothesise 

that aging involves the impairment of the reversible quiescence/activation cycle 

leading to the exhaustion of the quiescent NSC pool rather than the active one. 

Although we did not explore the behaviour of qNSC2 in aged animals, it would be 

really interesting to assess the role of these cells during aged-related neurogenesis 

decline. 

Remote insults: no matter how far, NSCs know what is going on 

Tissue specific SC harbour the ability to sense and respond to pathological 

situations, such as traumatic injury or ischemia, activating the production of 

committed progenitors that migrate to the damaged area and contribute to the 

reparation and return to homeostasis of the tissue (Kokaia and Lindvall, 2003, 

2012). In the CNS, although regeneration is actively impaired by the formation of a 

reactive glial scar (Ohtake and Li, 2015) and the inhibiting properties of central 
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myelin (Boghdadi et al., 2017), among other factors, NSCs respond to a great 

variety of insults initiating a regenerative program that involves the activation of 

qNSCs (Barazzuol et al., 2017; Daynac et al., 2013; Llorens-Bobadilla et al., 2015; 

Pineda et al., 2013). The way that qNSCs respond to injury, however, is barely 

known and is now beginning to be examined. Additionally, the identification of the 

alert state of NSCs, adds a new level of complexity and raises the question of their 

specific role in homeostasis and during regeneration after injury. Interestingly, 

acute ischemia induces an IFNγ-dependent priming of dormant NSCs (Llorens-

Bobadilla et al., 2015).  

It is clear, however, that signals released by injured cells can travel long 

distances through the blood stream arriving to distant niches where local cells and 

resident or infiltrating immune cells react and eventually regulate SCs (Kizil et al., 

2015). The CNS has been widely considered as an immune privileged organ due to 

the presence of the BBB. However, now it is well known that immune responses 

occur in the CNS driven by the activation of resident microglia, circulating immune 

cells and the production of cytokines, chemokines, neurotransmitters and ROS 

(Waisman et al., 2015). Furthermore, the SEZ is considered a specialized vascular 

niche with a “relaxed” BBB (Shen et al., 2008; Tavazoie et al., 2008) that may allow 

the crossing of some circulating factors including hormones, cytokines, 

metabolites and gases. For instance, heterochronic parabiosis models where young 

and old animals share the same blood, show that circulating factors can rejuvenate 

adult neurogenesis in the aged mouse (Katsimpardi et al., 2014). Moreover, SEZ 

endothelial cells are also activated by circulating inflammatory factors including 

LPS, IL-1β and TNF-α transmitting these signals to the CNS (Skelly et al., 2013). 

Therefore, even peripheral stimuli that do not trigger BBB dysfunction might 

trigger a systemic inflammatory response that could be, directly or indirectly, be 

transmitted to NSCs.  
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Along this thesis we have explored the response of NSCs to two clearly 

damaging insults such as systemic inflammation caused by LPS, and massive 

eradication of proliferative cells by TMZ. The first one is the most extended model 

of acute systemic inflammation and, although peripherally administered, some of 

the inflammatory mediators that it induces, either directly or indirectly, reach the 

CNS conveying the apparition of secondary neuroinflammation (Skelly et al., 2013). 

In the case of TMZ, although the existence of concomitant neuroinflammation 

associated with the massive cell loss it causes in the SEZ has not been previously 

reported, it is frequently observed in oncologic patients treated with 

chemotherapeutic agents (Vyas et al., 2014). In fact, we observed the up-regulation 

of TNF-α and PGRN in the SEZ tissue from TMZ injected mice. In line with previous 

reports, we observed that local neuroinflammation, in both scenarios, was 

accompanied by the shift of SEZ qNSC1 to an alert qNSC2 state. We cannot discard 

that signals other than inflammation are playing a role in this process, especially in 

the TMZ treatment since it is well-known that feedback signals from TAPS and 

neuroblasts regulate NSC behaviour (Aguirre et al., 2010; Kawaguchi et al., 2013). 

However, the fact that we could reproduce this effect by the specific ex vivo 

stimulation of TNFR2, common receptor to both molecules, suggests that in both 

scenarios the binding of TNFα and/or PGRN to TNFR2 is the subjacent mechanism 

that promotes the alert state. 

During the aforementioned analysis, we came across to an unexpected result 

when we saw that a single IP injection of sterile saline, not only derived in mild 

neuroinflammation, but also induced a shift towards qNSC2, but not aNSCs, of the 

dormant NSC population that progressively returns to basal levels. Similar 

behaviour has been reported for HSCs or MuSCs, finding that they can respond to 

contralateral muscle or bone injury and to minor remote skin wound, moving to a 

Galert state (Rodgers et al., 2014). However, we provide the first evidence that adult 

NSCs respond to mild non-threatening remote signals acquiring an alert quiescent 

state. Curiously, peripheral saline injection also induced mild neuroinflammation 
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characterized by up-regulated TNF-α and PGRN. Therefore, we propose that 

inflammation, and specifically TNFR2, plays a central role in the response of qNSCs 

to local or remote signals that may imply the production of new differentiated 

progeny. In this scenario, an additional level of regulation must be taken into 

account, since local or remote inflammatory signals are most probably being 

sensed, modulated and transferred to NSCs by other cellular component of the SEZ 

niche such as endothelial cells and microglia. Specifically, microglia, although 

disregarded for years as niche element, is now known to be a fundamental 

component regulating NSCs not only upon injury, but also in basal homeostatic 

conditions (Borsini et al., 2015; Sato, 2015; Sierra et al., 2010). Additionally, it has 

been described that microglia from the SEZ is unique in their activation state and 

functional properties (Goings et al., 2006; Ribeiro Xavier et al., 2015) and is found in 

close association with NSCs and their progeny (Solano Fonseca et al., 2016) 

Microglia activity has been related to both enhanced and decreased hippocampal 

neurogenesis (Ekdahl et al., 2003; Monje et al., 2003; Ziv et al., 2006). Moreover, 

changes in microglia with age have been associated with impaired subependymal 

neurogenesis (Solano Fonseca et al., 2016). Therefore, it would be interesting to 

assess whether microglia activation is a necessary step to initiate, modulate and/or 

extinguish the NSC response to remote stimuli that we have described in this 

thesis. 

Inflammation: not as bad as they say. The central role of TNFR2 and p38. 

Our data clearly indicate that TNF-α and PGRN positively regulate 

neurosphere proliferation and expansion through the signalling of a common 

receptor: TNFR2. Effects of PGRN on NSC have been previously suggested in 

hippocampal NPC (Nedachi et al., 2011) but the impact on adult NSCs and the 

implication of TNFR2 has not been previously tested. In contrast, several reports 

have implicated TNF-α in NSC proliferation, lineage commitment and neuroblast 

survival but their conclusions are largely contradictory showing both negative and 
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positive effects (Ben-Hur et al., 2003; Bernardino et al., 2008; Chen and Palmer, 

2013; Iosif et al., 2008; Iosif et al., 2006; Keohane et al., 2010; Liu et al., 2005b; 

Widera et al., 2006a; Wong et al., 2004; Wu et al., 2000). Here, we have been able 

to dissect TNF-α negative and positive effects that concomitantly occur in different 

subset of neurosphere forming cells: some cells activate apoptosis and a cell-cycle 

arrest while others are activated to divide symmetrically. Although a few previous 

reports have suggested the differential role of each receptor in NSCs (Chen and 

Palmer, 2013; Iosif et al., 2008; Iosif et al., 2006), here we demonstrate with knock-

out cells and specific agonistic antibodies that TNFR1 activation leads to 

detrimental effects in neurosphere survival and proliferation while TNFR2 

activation promotes the expansion of the population of neurosphere forming cells. 

Furthermore, the fact that both effects occur at the same time in the culture, as 

reflected in the response of continuously treated cells, suggest a differential 

distribution of TNF-α receptors in different subset of cells. Thus, further analysis of 

the expression of each receptor along the NSC lineage will help to clarify the 

double-sided effects of TNF-α in neurogenesis. In line with our results, a few 

reports have also related TNFR2 signalling with SC emergence in other systems. For 

instance, TNFR2 is required for cardiac stem cells emergence upon TNF-α 

treatment in heart organ cultures promoting a cell-cycle entry (Al-Lamki et al., 

2013). Additionally, embryonic HSC emergence is mediated by inflammatory signals 

and TNFR2 deficiency leads to lower numbers of HSCs and HSC defects (Espin-

Palazon et al., 2014; He et al., 2015). Together suggest that instead of being a 

specific mechanism of neural tissue, TNFR2 may play a general role in the pre-

activation of quiescent SCs. 

The discovery of the Galert state in NSCs is relatively recent, and the subjacent 

molecular mechanisms that might be involved are completely unknown. Here we 

have identified p38 as an essential component of TNFR2 signalling in NSCs and, 

hence, it emerges as a candidate for the transduction of external stimuli that 

regulate the exit from dormancy. The p38 MAPK pathway is involved in the 
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response to environmental stress and inflammatory cytokines but its activation 

leads to a multiple cellular processes including senescence, apoptosis, cell-cycle 

arrest, regulation of RNA splicing, tumour development or differentiation. 

Although we have not deepened in the complete mechanism so far, we can 

speculate with reported connections between p38 and other cell signalling 

components known to be relevant for quiescence emergence or alert transition. 

Interestingly, p38 translocates to the nucleus where it phosphorylates components 

of the policomb repressive complex 1 (PRC1) such as Bmi1 (Gaestel, 2006), which 

has been reported to be essential for qNSC maintenance (Mich et al., 2014). 

Furthermore, p38 activates MAPK-activated protein kinases (MAPKAPs) including 

MK2, with reported connections with components of the mTOR pathway, whose 

activation has been shown to be required for the transition of MuSCs from 

quiescence to Galert (Rodgers et al., 2014; Rodgers et al., 2017). MK2 phosphorylates 

TSC1 and TSC2 inhibitors to activate 4E-BP1 phosphorylation resulting in the 

activation of protein translation (Gaestel, 2006), one of the functional defining 

features of the Galert state. Therefore, it would be plausible that, likewise other SCs 

such as MuSCs, HSC and MSCs, mTOR, as a target of p38, could be also implicated 

in the regulation of the transition from dormancy to alert states (Rodgers et al., 

2014; Rodgers et al., 2017). 

Inflammation, evolution and the road to regeneration 

Injury or disease triggers an inflammatory response that can either promote 

functional tissue regeneration or fast healing that may protect the organism at the 

expense of preserving the normal function and structure of the tissue. 

Regenerative responses are usually associated with resolution of inflammation 

whereas maintenance of the inflamed state often associates to wound healing and 

scar formation. Interestingly, non-mammalian vertebrates exhibit a great capacity 

to regenerate lost tissue, including the CNS. In the adult zebrafish, NSCs are 

capable of regenerating brain tissue after a traumatic injury through the activation 
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of injury-induced molecular programs and inflammation-related signaling (Kizil et 

al., 2012b; Kyritsis et al., 2012). In contrast, the neural tissue in mammals possesses 

a limited regenerative potential (Figure 39). Although neurogenesis is negatively 

impaired by neuroinflammatory processes, injury plays a double-sided role where 

detrimental effects are partially counteracted by a transient regenerative response 

triggered in part by NSCs (Kizil et al., 2015). Although it is currently unclear which 

stage is targeted by injury, the fact that TNF-α and progranulin predispose qNSCs 

to activation indicates that the dormant NSC could act as switch of the response to 

injury. In fact, the enriched expression of surface receptors described in qNSCs 

suggests that the quiescent pools are highly predisposed for injury response 

(Llorens-Bobadilla et al., 2015). We propose that the acquisition of a Galert state 

represents an adaptive response of NSCs to the innate immune system that might 

reflect a reminiscent form of inflammation-induced regeneration seen in non-

mammalian vertebrates. In regenerating vertebrates, initial phases of inflammation 

take place similarly to mammals, but prolonged inflammation does not occur 

(Kyritsis et al., 2012). In our model of peripheral saline injection, cytokine 

expression subsides a few days after the lesion suggesting that we have 

encountered a favorable scenario for the analysis of beneficial effects of 

inflammation. 

Adult mammals appear to have gained a scar, fast wound healing response at 

the expense of regeneration capability. But because during prenatal development 

and early in life, mammals can exhibit some repair potential, one possibility is that 

regenerative genetic programs are present in some cells but turned off during 

development. Therefore, we could predict some beneficial pro-regenerative effects 

of inflammation that could rely on an adequate balance between cytokines and/or 

in selective responses on specific types of cells. Thus, pro-regenerative 

components of the immune response could still be maintained within the context 

of a more advanced immune system, like that of mammals, even if they are not 

easily apparent. To sum up, the elucidation of mechanisms that operate similarly in 
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regenerating and non-regenerating organisms can provide clues to boost SC-based 

regenerative potential in mammalian adult tissues.  

Figure 39. Schematic drawing showing the inverse coevolution of immune system and 

regenerative potential. 
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1. We have developed and tested in different scenarios, a new cytometry panel, 

based exclusively on the detection of surface markers, for the identification of 

SEZ NSCs in different quiescent (qNSC1 and qNSC2) and proliferative states, 

along with their more committed progeny. 

 

2. In the adult SEZ, inflammatory signals such as TNF-α and progranulin drive 

dormant qNSC1 to exit quiescence but, before reaching full activation, they 

acquire a transient quiescent yet prone-to-activation alert qNSC2 state. 

 

3. Mild peripheral insults, such as an intraperitoneal injection of sterile saline, 

induce the expression of inflammatory signals in the SEZ promoting the 

transition from qNSC1 to an alert qNSC2 that progressively returns to dormancy 

upon resolution of neuroinflammation. 

 

4. TNF-α, acting through TNFR1, causes detrimental effects on NSC proliferation 

and survival whereas TNF-α and PGRN expand the population of multipotent 

NSCs in vitro maintaining stemness, through their binding to TNFR2. 

 

5. TNFR2 signalling, most probably transduced intracellularly through p38, targets 

qNSC1 and prompts them to switch to an alert qNSC2. 

 

6. In vitro culture conditions unavoidably force qNSCs to activation; however, a 

small fraction of cells in the culture that can be expanded by TNFR2 stimulation, 

retain some features reminiscent of the quiescent state found in vivo. 
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Introducción 

Células madre adultas: unidades funcionales de la homeostasis y la reparación 

tisular. Las células madre (SCs, del inglés Stem Cell) adultas son células únicas con 

capacidad de perpetuarse (auto-renovación) mientras producen nuevas células 

diferenciadas propias de cada tejido (multipotencia) y representan el componente 

esencial para el mantenimiento de la homeostasis y la reparación de tejidos en 

organismos multicelulares. En condiciones homeostáticas, las SCs son células 

relativamente quiescentes que se dividen infrecuentemente para producir nuevas 

SCs y células de ciclo rápido no auto-renovantes, o progenitores de rápida 

amplificación (TAPs, del inglés Transit Amplifying Cells) que proliferarán durante un 

número discreto de ciclos para terminar diferenciandose en células funcionales de 

cada tejido en particular. Este proceso requiere un equilibrio finamente regulado 

entre auto-renovación, proliferación y diferenciación celular para garantizar el 

correcto reemplazo de células dañadas y al mismo tiempo limitar situaciones 

patológicas como el cáncer. 

En las últimas décadas, se han identificado multitud de poblaciones de SCs 

residiendo en muy diversos tejidos y su caracterización ha puesto de manifiesto la 

existencia de una notable diversidad en cuanto a los marcadores de identificación, 

el grado de multipotencialidad o su dinámica proliferativa. En realidad, las SCs 

representan un conjunto de células individuales en diferentes estados 

proliferativos (quiescentes o activos) con distintas predisposiciones en la respuesta 

a estímulos externos. 

La quiescencia es un estado del ciclo celular no proliferativo reversible (G0) y, a 

diferencia de células post-mitóticas, las SCs quiescentes mantienen la capacidad de 

re-entrar en ciclo y proliferar. Actualmente se conoce que esta condición no es un 

proceso celular inactivo por defecto sino que más bien representa un estado 

activamente regulado por multiples señales del nicho que les rodea. Además, en 

distintos tejidos, se ha visto que después de una lesión esta población es capaz de 



Resumen 

174 

aumenta drásticamente su proliferación mostrando una enorme capacidad 

regenerativa. Recientemente se ha descrito en músculo y en tejido 

hematopoyetico que las SCs quiescentes son capaces de responder a una lesión 

distante mostrando propiedades de un estado pre-activado. Este estado 

quiescente en alerta (Galert), como se ha definido, y comparado con el estado 

inactivo (G0), muestra una mayor predisposición a entrar en proliferación, una 

entrada acelerada en el ciclo celular, una mayor actividad mitocondrial y un tamaño 

ligeramente más grande. Además, los perfiles globales de transcripción sugieren 

que representa un estado intermedio entre G0 y las SC activas. Estas poblaciones 

de SCs parecen adoptar este estado en respuesta a las lesiones remotas cuyo 

impacto en la fisiología del tejido no es suficiente para promover su activación. 

Estos datos han demostrado que las SCs también experimentan transiciones 

dinámicas entre las distintas fases funcionales de quiescencia e indican que las SCs 

quiescentes adoptan un estado adaptativo en respuesta a señales que pueden ser 

producidas en regiones remotas del organismo, sugiriendo la existencia de un 

control homeostático global de las SCs adultas. Sin embargo, la relevancia de la 

regulación de esta transición en homeostasis y regeneración tisular o la naturaleza 

de los reguladores que controlan la adquisición de un estado alerta o un estado 

inactivo no se conocen todavía. 

Células madre neurales (NSCs) subependimales y neurogénesis adulta. En el 

cerebro adulto de los mamíferos se detecta neurogénesis en dos “nichos 

neurogénicos”: el giro dentado (SGZ) y la zona subependimaria o ventricular-

subventricular (SEZ o V-SVZ). Las células madre neurales (NSCs, del inglés Neural 

Stem Cells) de la SEZ y su progenie están distribuidos a lo largo de las paredes 

laterales delos ventrículos laterales y son responsables de la producción continua 

de nuevas neuronas destinadas al bulbo olfactorio (OB). Este proceso sigue una 

progresión jerárquica en la que las NSCs multipotentes, identificadas inicialmente 

como células de tipo B1, tras activarse,  dan lugar a TAPs o células de tipo C que se 
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dividen unas pocas veces más antes de convertirse en neuroblastos migratorios o 

células de tipo A. 

Las NSCs adultas o células tipo B1 son células gliales derivadas de la glia radial 

embrionaria que comparten características ultraestructurales y moleculares con 

otros astrocitos cerebrales como la expresión de los marcadores GFAP, GLAST y 

BLBP. Una vez aisladas de la SEZ, las NSCs pueden ser cultivadas in vitro en 

presencia de factor de crecimiento epidérmico (EGF) o fibroblástico básico (FGF2). 

En estas condiciones, las NSCs proliferan activamente y pueden ser cultivadas de 

forma prácticamente ilimitada. Además son capaces de diferenciarse a neuronas, 

oligodendrocitos y astrocitos, lo que demuestra su multipotencialidad. 

En los últimos años, varios trabajos han demostrado la co-existencia de NSCs que 

difieren en el grado de actividad dentro de su relativa quiescencia encontrándose 

NSCs en estado “durmiente” (G0) o NSCs quiescentes (qNSCs) y, por otra parte, 

NSCs en estado “activado” (aNSCs, en ciclo activo, aunque lento). Además, el 

análisis del perfil de expresión de NSCs a nivel individual, tanto en condiciones 

homeostáticas como en condiciones de daño cerebral, han sugerido la existencia 

de células quiescentes en un estado ‘alerta’ (qNSC2) o competentes para la 

activación en respuesta a distintas señales, diferenciándose del resto de 

quiescentes en estado durmiente (qNSC1). Sin embargo, todavía se desconoce si la 

transición al estado alerta es reversible y cuál es su posible implicación en el 

mantenimiento del reservorio de NSCs. Una adecuada renovación tisular, tanto en 

homeostasis como tras una lesión, depende de un equilibrio finamente regulado 

entre quiescencia y activación, auto-renovación, proliferación y diferenciación de 

las SCs. En los nichos neurogénicos adultos se han descrito múltiples factores, 

tanto determinantes intrínsecos de las propias NSCs como señales externas 

provenientes del nicho, que participan en el control la función de las NSCs, como 

son interacciones directas con células mesenquimales, vasculares, neuronales, 
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gliales o inflamatorias, factores solubles producidos por éstas, señales de la matriz 

extracelular o parámetros físicos como la disponibilidad de oxígeno. 

Regulación de las NSCs adultas por el sistema inmune innato. Actualmente no 

existe duda de que la neuroinflamación, tanto en situaciones agudas como 

crónicas, afecta de múltiples maneras a las NSCs. Las SCs adultas en distintos 

tejidos pueden ser activadas por lesión para producir progenie y contribuir a la 

reparación del tejido, aunque actualmente se desconoce en profundidad cuáles son 

los factores desencadenantes y los reguladores moleculares de esta activación. Los 

organismos vivos están constantemente expuestos a una variedad de estímulos 

internos y externos y algunos de ellos pueden clasificarse como señales de peligro. 

Cuando se detectan tales señales, se pone en marcha una respuesta compleja que 

está dirigida por un lado a eliminar dichas señales de peligro y, por otro, a restaurar 

la homeostasis de los tejidos. Esta respuesta se conoce como inflamación y es 

parte del sistema inmune innato presente en todos los metazoos. En vertebrados, 

la activación del sistema inmune en respuesta a una lesión ha evolucionado para 

promover el sellado de heridas y cicatrices protegiendo el tejido dañado de 

mamíferos homeotermos adultos de la invasión de patógenos de una manera muy 

rápida y eficiente. Sin embargo, esta refinada respuesta inmune adaptativa 

conlleva la pérdida de regeneración epimórfica característica de los vertebrados de 

sangre fría. A pesar de esta pérdida de capacidad regenerativa, las SCs residentes 

en los tejidos de mamíferos adultos mantienen cierto recambio celular a través de 

la producción de nuevas células y podrían, por lo tanto, ser consideradas como 

contrapartidas naturales de las células implicadas en la regeneración previa a la 

evolución. 

Las células madre adultas son sensibles a su nicho ya que se comportan integrando 

acciones de reguladores intrínsecos en respuesta a las señales que emanan tanto 

de su microambiente más inmediato así como de la circulación. Se ha demostrado 

que la inflamación es capaz de actuar sobre varios nichos de SCs, pero la 
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observación tanto de efectos perjudiciales como beneficiosos mantiene en 

controversia el papel preciso de la inflamación en el mantenimiento y la 

regeneración de los tejidos. En el caso del sistema nervioso central, en particular, 

existe evidencia experimental acumulada en la última década que indica que la 

inflamación puede desempeñar un papel negativo en la neurogénesis de 

mamíferos adultos. En cambio, en el cerebro de vertebrados no mamíferos existen 

NSCs que son capaces de regenerar el tejido cerebral después de una lesión 

traumática a través de la activación de programas moleculares inducidos por la 

propia lesión y la señalización relacionada con inflamación. 

El factor de necrosis tumoral alfa (TNF-α, del inglés Tumor Necrosis Factor alpha) y 

progranulina (PGRN): TNF-α es una proteína caracterizada inicialmente como 

citoquina pro-inflamatoria implicada en la respuesta inmune innata. Sin embargo, 

en los últimos años se ha descrito que es una proteína multifuncional con múltiples 

actividades en diferentes sistemas. En el cerebro adulto, TNF-α es producida por 

microglía y macrofagos infiltrantes pero también por astrocitos y neuronas tras un 

proceso de daño. Se expresa inicialmente en forma de proteína precursora 

transmembrana de tipo II (tm-TNF-α o pro-TNF-α) la cual es cortada 

proteolíticamente en la membrana celular por la metaloproteasa TACE (del inglés 

TNF-α Converting Enzyme) para dar lugar a la forma soluble homotrimerica sTNF-α. 

Ambos ligandos son biológicamente activos e interaccionan con dos receptores 

trans-membrana glicosilados, TNF-Receptor 1 (TNFR1) and TNF-Receptor 2 (TNFR2). 

La unión de TNF-alfa con TNFR1 generalmente induce apoptosis y citotoxicidad 

mientras que la activación de TNFR2 se ha asociado con protección celular y 

proliferación. TNFR1, a diferencia de TNFR2, presenta un dominio de muerte celular 

(TRADD, del inglés TNF Receptor-Asociated Death Domain) el cual permite el 

reclutamiento de caspasas y la consiguiente inducción de apoptosis. Además, la 

unión del Factor Asociado a Receptor TNF 2 en ambos receptores (TRAF2, del 

inglés TNF Receptor-Asociated Factor 2) resulta en la activación de RIP (del inglés 
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Receptor Interacting Protein) y la inducción de las vías de señalización NFkB, p38, 

JNK y ceramida/esfingomielinasa. 

TNFR2 puede ser activado también por progranulina (PGRN), una glicoproteína de 

secreción que, en el sistema nervioso central adulto, está presente en neuronas y 

microglía. Además, la expresión de PGRN aumenta dramáticamente cuando la 

microglía se activa por lesión. Una vez es secretada, PGRN puede ser cortada en 

siete péptidos de granulina (GRN) y una paragranulina que contiene una mitad de 

la granulina por metaloproteinasas tales como MMP-9, MMP-14 y ADAMTS-7, o las 

proteasas de serina como elastasa y proteinasa 3. Curiosamente, tanto PGRN como 

las GRNs constituyentes muestran actividad biológica; PGRN actúa como factor 

anti-inflamatorio y antagoniza los efectos del TNF-α a través de TNFR2 mientras 

que las GRN liberadas promueven inflamación. 

Objetivos 

En la mayoría de los tejidos, las células madre adultas parecen coexistir en dos 

estados de activación, pero la transición entre estos estados, así como su 

regulación, siguen siendo ampliamente desconocidas. Además, algunas células 

madre adultas parecen responder a lesiones remotas de maneras que no se 

entienden completamente. En este trabajo se propone la hipótesis de que las NSCs 

adultas reaccionan a señales inflamatorias generadas en la periferia mediante la 

modificación de su estado de activación dentro del ciclo de quiescencia de células 

madre. 

Los objetivos específicos propuestos para probar esta hipótesis son: 

1.- Desarrollo de un protocolo basado en citometría de flujo para la identificación y 

análisis de NSCs de la zona subependimaria así como de su progenie. 

2.- Caracterización del ciclo celular quiescente en NSCs durante regeneración y en 

respuesta a inflamación. 
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3.- Análisis de los efectos de los mediadores inflamatorios TNF-α y progranulina y su 

receptor común TNFR2 en NSCs. 

Metodología 

Cepas: se han utilizado ratones como modelo de experimentación para la 

obtención y estudio de las NSCs de la SEZ. A lo largo del trabajo se han usado cepas 

de varios fondos genéticos: C57Bl6 (silvestre o Wild-type), tnfrsf1a-/- (TNFR1 KO), 

tnfrsf1b-/- (TNFR2 KO) y tnfrsf1a-/-;tnfrsf1b-/- (TNFR DKO). 

Inmunohistoquímica y análisis in vivo: para realizar las detecciones de retención de 

análogos de timidina en células de división lenta en el cerebro adulto (LRCs), los 

ratones recibieron siete inyecciones intraperitoneales de CldU a una dosis de 50 

μg/g de peso corporal del animal cada dos horas, y se sacrificaron 28 días después. 

1h antes del sacrificio, se inyectó también intraperitonealmente una dosis de 10 

mg/ml de IdU para la detección de células en proliferación. Posteriormente, los 

ratones se perfundieron intracardíacamente con paraformaldehído 4% (PFA) en 

tampón fosfato 0.1M, pH 7.4 (PB). Después de toda la noche en PFA, los cerebros 

se lavaron con PB durante 2 horas y el tejido se procesó en un vibratomo. La 

detección de CldU e IdU se realizó mediante inmunofluorescencia con anticuerpos 

específicos. Para la detección de células GFAP+, EGFR+ o Ki67+ se usaron 

anticuerpos primarios específicos y posteriormente se utilizaron los secundarios 

fluorescentes correspondientes. Para el análisis de cadenas de DCX en 

wholemount, el tejido fresco recién diseccionado se fijó en PFA 4% durante 24h. 

Tras permeabilizar y bloquear con 10% FBS y 0.5% TX-100, las cadenas de 

neuroblastos se analizaron mediante inmuhistoquímica con un anticuerpo 

específico para DCX y sus correspondientes anticuerpos secundarios. 

Citometría de flujo en muestras de SEZ: para el estudio de los distintos estados de 

las NSCs y su progenie se ha puesto a punto un protocolo de detección por 

citometría de flujo. Tras disección de la SEZ, el tejido se disgregó primero 
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enzimáticamente con Tripsina/EDTA y después mecánicamente con pipeta de vidrio 

pulida. El homogenado de tejido se filtró por 40 μm y se incubó con el kit de 

eliminación de muerte celular (Miltenyi). Tras separación magnética con columnas 

MS (Miltenyi), la fracción eluida se incubó con anticuerpos primarios marcados 

para la detección de las distintas poblaciones residentes en la SEZ: CD45-BUV395, 

CD31-BUV395, Ter119-BUV395, CD24-PerCP-Cy5.5 (BD), O4-biotin, Glast-APC, CD9-

Vio770 (Miltenyi) y EGF-Alexa488 (Invitrogen). Las células muertas se descartaron 

por la incorporación de Dapi. Las muestras marcadas se analizaron en un equipo 

LSR Fortessa (BD). 

Separación magnética de células Lin– (MACS®): por otra parte se ha puesto a punto 

la obtención de muestras de tejido enriquecidas en NSCs. Previamente, tras 

disociar las muestras de SEZ y filtrarlas, las muestras se incubaron con anticuerpos 

biotinilados contra CD45, CD31, Ter119, CD24 y O4. Posteriormente, las muestras se 

incubaron con 30 μl de micropartículas magnéticas anti-biotina (Miltenyi). Las 

muestras marcadas magnéticamente se cargaron en una columna MS previamente 

equilibrada en un separador magnético OctoMACS®. La fracción eluida se recogió 

como fracción Lin– y la fracción retenida Lin+ se eluyó una vez separada la columna 

del imán. 

Inducción de inflamación: para la activación de inflamación sistémica se inyectaron 

intraperitonealmente 5mg/kg de LPS (Sigma-Aldrich). A distintos tiempos se 

sacrificaron un grupo de animales para el análisis del proceso de inflamación 

cerebral en tejido mediante la expresión de citoquinas pro-inflamatorias 

(extracción de mRNA). Para el análisis in vivo de la neurogénesis se realizaron 

técnicas inmunohistoquímicas y de análisis por citometría 24h después de la 

inyección de LPS. Como control se utilizaron ratones pinchados con suero salino 

0.9% y ratones no inyectados (naive). Además, ratones pinchados con suero salino 

esteril y naive se analizaron a los 3 y 6 días por citometría para analizar el estado 

NSCs quiescentes al resolverse la inflamación periférica. 
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Paradigma de regeneración: para la estimulación de la regeneración de la SEZ se 

inyectó el antimitótico temozolomida (TMZ) a 100 mg/kg/día en salino al 25% DMSO 

o vehículo durante 3 días de manera consecutiva. A los 3 y a los 35 días se evaluó 

los efectos de la lesión en SEZ y la reaparición de las distintas poblaciones mediante 

citometría, formación de esferas primarias y la presencia de cadenas de 

neuroblastos (DCX+) por inmunohistoquímica en wholemounts. 

Cultivo y ensayos celulares en NSCs: ver metodología del grupo de investigación 

detallada en Belenguer et al., 2016. A partir del establecimiento de cultivos 

primarios de NSCs, se realizaron ensayos de proliferación y auto-renovación 

mediante ensayo de neuroesferas, además de estudios de ciclo celular por tinción 

con ioduro de propidio y de viabilidad celular mediante ensayo enzimático MTS o 

detección de la actividad caspasa 3 por inmunocitoquímica. La expansión de NSCs 

en cultivo se analizó mediante inmunocitoquímica para EGFR en células recién 

divididas y mediante el análisis de la capacidad diferenciativa de clones aislados. 

Durante los experimentos con cultivos de NSCs, se han utilizado distintos reactivos 

como TNF-α recombinante murino (R&D) y anticuerpos agonistas específicos para 

TNFR1 (R&D) y TNFR2 (Hycult Biotech). Además, para ensayos de rutas de 

señalización se ha utilizado el inhibidor específico de la ruta de p38, SB203580. 

Medios condicionados por microglía activada: se han utilizado células de la línea de 

microglía para el acondicionamiento del medio de NSCs. Previamente, se 

estimularon las células a un estado pro-inflamatorio M0 con 250 ng / ml de LPS. El 

medio de NSCs condicionado por microglía se incubó con 2,5 μg / ml de anticuerpo 

anti-TNF-α o con un anticuerpo no relacionado a la misma concentración para la 

inmunodepleción específica de TNF-α mediante la unión a Dynabeads® magnéticas 

acopladas a Protein G y separación usando un imán DYNAL® (Invitrogen). El medio 

condicionado resultante se diluyó 1: 4 en medio NSCs fresco para el tratamiento de 

cultivos de NSCs en un ensayo de neuroesferas. 
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Evaluación de la dinámica de proliferación celular por dilución de marcadores 

fluorescentes: homogenados celulares obtenidos a partir la SEZ se marcaron el 

trazador fluorescente permeable DDAO-SE (Thermo Fischer, nº cat. C34553). 

Después de 10 días, las neurosferas primarias resultantes fueron disociadas para 

una segunda ronda de carga usando el trazador fluorescente Oregon Green 488 

Carboxy- DFFDA-SE (Thermo Fischer, cat. C34555 ). Después de 3 días en cultivo, se 

disociaron las neurosferas secundarias y se midió la intensidad de fluorescencia de 

cada marcador celular en un citómetro de flujo FACS Fortessa (BD). 

Medida de actividad mitocondrial: células individuales se tiñeron con la sonda 

fluorescente MitoTrackerTM Orange CM-H2TMRos y la actividad mitocondrial se 

determinó mediante análisis de la intensidad fluorescente por citometría de flujo 

en FACS Fortessa (BD).  

Análisis de expresión génica por ARN: se obtuvieron muestras de ARN a partir de 

SEZ o de células aisladas utilizando el Kit de Tejido de ARN simple Maxwell® 16 LEV 

(Promega, nº de cat. AS1280) y se convirtió a ADNc por RT-PCR utilizando el kit 

PrimeScript™ RT-PCR Kit (Clontech, cat. no. RR014B). El análisis de expresión génica 

se evaluó mediante PCR en tiempo real usando 5-10 ng de ADNc, sondas Taqman 

específicas (Applied Biosystems) y el kit de amplificación Premix Ex TaqTM (Probe 

qPCR) (Clontech, nº de cat. RR390A). La PCR en tiempo real se realizó en un 

dispositivo Step One Plus (Applied Biosystems). El nivel de expresión de cada gen 

se obtuvo por cuantificación relativa (2e-ΔΔCt) utilizando la expresión constitutiva 

de genes Gapdh y 18S como controles endógenos. 

Ensayos de activación de la vía de NFκB: se introdujo en las células un plásmido 

reportero de luciferasa de la vía NFκB (5xkB-luc) junto con un reportero control de 

luciferasa de Renila,  mediante electroporación con un Nucleofector (II)® (Amaxa 

Biosystems) y el Kit de Nucleofección de NSCs de ratón (Mouse NSC Nucleofector 

Kit; Amaxa Biosystems). Para las determinaciones, tras la estimulación con el factor 

TNF-alfa o agonistas específicos para cada receptor, se lisaron las células y se 

http://www.clontech.com/xxclt_ibcGetAttachment.jsp?cItemId=10242&embedded=true
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analizó la expresión del reportero mediante el Dual Luciferase Assay System Kit, de 

Promega. Los extractos celulares se obtuvieron mediante lisis en Passive Lysis 

Buffer (Promega). La actividad luciferasa se determinó mediante un equipo 

Victor®3 (Perkin Elmer) en placas de 96 con 20 μl del lisado celular por pocillo, tras 

añadir solución Stop & Glo (Promega) y usando la actividad luciferasa de Renila 

como control positivo. 

Determinaciones de la actividad de vías de señalización mediante western blot y 

Milliplex®: se realizaron extracciones de proteínas de NSCs en cultivo crecidas 

durante 1h utilizando el tampón de lisis MILLIPLEX MAP (Millipore, cat no. 43-040). 

Por una parte se midió el estado fosforilado y la cantidad total de CREB, JNK, NF-

κB, p38, AKT, p70S6K y STAT3 con el kit de señalización de multiplex MILLIPLEX® 

MAP 9-plex Phosphoprotein (Millipore, nº de cat .: 48- 680MAG) y el kit de 

señalización MILLIPLEX® MAP 9-plex Multi-Path Magnetic Bead Signaling Total 

(Millipore, nº de catálogo: 48-681MAG) siguiendo las instrucciones del fabricante. 

Además se realizó una detección por western blot de la actividad de p38 utilizando 

anticuerpos específicos de las formas totales y fosforiladas y anticuerpos 

secundarios conjugados con HRP y el sistema de detección quimioluminiscente 

(ECL; Amersham). 

Resultados 

Este trabajo ha abordado la posibilidad de que las células madre neurales adultas 

del cerebro de roedor puedan responder positivamente a ciertas señales 

inflamatorias, una reacción que parece ser oscurecida por los efectos perjudiciales 

más dramáticos de las citoquinas inflamatorias en la neurogénesis.  

Para ello, previamente hemos puesto a punto y validado una estrategia de 

identificación de NSCs y su progenie en la SEZ y en el OB mediante la utilización de 

marcadores de superficie. Tras una exclusión de marcadores CD45, CD31, Ter119, 

CD24 y O4, las NSC, los TAPs y neuroblastos son identificados en base a GLAST, CD9 
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y CD24. Hemos encontrado, en concordancia con un trabajo anterior, que la 

elevada expresión de CD9 distingue las NSCs de astrocitos no neurogénicos dentro 

de la población GLAST+. Por otro lado, contrariamente a lo que se había descrito, 

observamos que las NSCs pueden mostrar un cierto nivel de expresión de CD24, 

marcador que siempre se había asociado a neuroblastos. Proponemos que durante 

la transición de NSCs hacia neuroblasto, las células comienzan a expresar CD24, 

incrementando progresivamente su expresión en al convertirse en TAPs, llegando a 

la máxima expresión en neurobñastos. Finalmente, la presencia de EGFR dentro de 

la población de NSCs GLAST+/CD9+ permite diferenciar entre estados activados y 

quiescentes.  

La identificación de distintos estados quiescentes (qNSC1 y qNSC2) nos ha 

permitido además determinar que el estado alerta de las qNSCs representa un 

estado intermedio reversible entre latencia y activación. Además, este estado 

muestra propiedades de pre-activación como son un mayor tamaño, la 

predisposición a formar neuroesferas y el aumento de actividad mitocondrial 

cuando son cultivadas in vitro. En este trabajo hemos observado que las NSCs 

adquieren este estado incluso tras un pinchazo intraperitoneal de suero salino 

estéril pero, a diferencia de una inflamación sistémica mediada por LPS o durante 

un proceso de regeneración inducida por TMZ, donde las NSCs sufren además un 

proceso de activación, en este caso las qNSC2 no llegan a activarse volviendo 

progresivamente a su estado basal. Curiosamente, en respuesta a estos estímulos 

que tienen en común la movilización del reservorio de qNSCs, ya sea para activarse 

(inyecciones de TMZ y LPS) o simplemente para adquirir un fenotipo alerta 

transitorio (inyección salina), se observa un aumento de los mediadores 

inflamatorios TNF-α y PGRN en la SEZ sugiriendo que ambos podrían actuar como 

factores de nicho regulando estos procesos. 

Ensayos en cultivos de NSCs muestran que TNF-α, a través de su unión a TNFR1, 

reduce la proliferación y viabilidad de las NSCs. Sin embargo, la unión tanto de TNF-
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α como de progranulina a TNFR2 modula la auto-renovación de las NSCs, 

promoviendo divisiones simétricas y expandiendo una población de NSCs 

multipotentes que mantienen propiedades de ciclo lento y una actividad 

mitocondrial alta. Además, esta señalización de TNFR2 en NSCs está relacionada 

con la vía de señalización p38 MAP quinasa, pero no con el control transcripcional 

de Nf-κB, y dicha activación media la expansión de NSCs inducida por TNFR2. Sin 

embargo, análisis de cultivos organotípicos de SEZ ex vivo, el cual hemos 

descubierto que preserva la quiescencia de NSCs, revela que la estimulación TNFR2 

promueve la transición de un estado qNSC1 latente a un estado qNSC2 de alerta. 

En este trabajo hemos encontrado que las NSCs pueden detectar y responder a las 

lesiones periféricas remotas y que la señalización TNFR2, en respuesta a las 

citoquinas TNF-α y progranulina, participa en este proceso y media efectos 

positivos de la inflamación en el comportamiento de las NSCs y la neurogenesis. El 

primer hallazgo es congruente con datos recientes que indican que las células 

madre adultas de diferentes sistemas pueden reaccionar a lesiones lejanas, lo que 

sugiere un control homeostático de su actividad a nivel organizacional. El segundo 

aumenta nuestra comprensión del papel de la inflamación en el proceso 

neurogénico. Aunque la opinión más aceptada es que la inflamación aguda o 

crónica juega un papel negativo en la neurogénesis, nuestros datos revelan efectos 

beneficiosos concomitantes de citoquinas inflamatorias en al menos una fracción 

de células madre neurales. 

Además, hemos encontrado que la respuesta a señales periféricas o inflamación 

aguda, implica la transición de NSC quiescentes de un estado inactivo a un estado 

de pre-activación. Este estado de alarma qNSC2 no se conocía hasta hace un par de 

años, y por lo tanto, se sabe muy poco sobre su comportamiento y regulación. En 

este trabajo se proporcionan nuevos datos que revelan la implicación de la 

señalización de TNFR2, muy probablemente a través de la transducción intracelular 

de p38, en la regulación de estas células qNSC2, su comportamiento in vitro y su 
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papel durante la regeneración y en respuesta a lesión. Estos efectos previamente 

desconocidos añaden una pieza más a la incipiente investigación de la regulación 

de la quiescencia / activación en NSCs. 

Conclusiones 

1. Hemos desarrollado y probado en diferentes escenarios, un nuevo panel de 

citometría de flujo, basado exclusivamente en la detección de marcadores de 

superficie, para la identificación de células madre neurales de la zona 

subependimaria en diferentes estados de quiescencia (qNSC1 y qNSC2) y 

proliferación, así como de su progenie más comprometida. 

2. En la zona subependimaria adulta, señales inflamatorias tales como TNF-α y 

progranulina promueven una salida del estado quiescente qNSC1 pero, como paso 

previo a la activación completa, adquieren un estado transitorio de alerta qNSC2 

que presenta mayor predisposición a la activación. 

3. Daños periféricos leves, como una inyección intraperitoneal de solución salina 

estéril, inducen la expresión de señales inflamatorias en la zona subependimaria 

promoviendo la transición de un estado durmiente qNSC1 a un estado alerta 

qNSC2, el cual regresa progresivamente al estado latente tras la resolución de la 

neuroinflamación. 

4. TNF-α, a través de TNFR1, produce efectos perjudiciales sobre la proliferación y 

supervivencia de las células madre neurales, mientras que TNF-α y PGRN expanden 

la población de células madre neurales multipotentes in vitro, manteniendo sus 

propiedades, a través de su unión a TNFR2. 

5. La señalización mediada por TNFR2, muy probablemente a través de la 

transducción intracelular por p38, actúa sobre las células madre neurales en estado 

qNSC1 promoviendo un cambio al estado alerta qNSC2. 
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6. Las condiciones del cultivo in vitro promueven la activación forzosa de las qNSCs; 

sin embargo, una pequeña fracción de células del cultivo, la cual puede expandirse 

mediante la estimulación de TNFR2, conserva algunas características que recuerdan 

al estado quiescente encontrado in vivo. 

 


