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SUMMARY 

Food spoilage caused by molds that produce mycotoxins is of primary 

concern and represents an important food safety problem. Cereal grains and their 

processed food products, such as bread, are frequently contaminated with 

mycotoxigenic fungi. Therefore, in this PhD Thesis, the occurrence of 17 

mycotoxins in 80 samples of bread loaf and the risk exposure of the population to 

these toxic compounds were determined. Aflatoxins (AFs), zearalenone (ZEA) and 

enniatins (ENs) were detected respectively in 20%, 65% and 96% of bread samples 

analyzed.  

The presence of these mycotoxins and, above all, the samples in which AFs 

and ZEA, exceeded the maximum limits established, raised the interest of 

reducing these compounds. In particular, two natural alternatives to the 

conventional preservatives were studied: isothiocyanates (ITCs) in active 

packaging and lactic acid bacteria (LABs) as starter cultures. ITCs are originated 

from the hydrolysis of glucosinolates (GLSs), which are found in mustard, broccoli, 

cauliflower, cabbage, etc. Different packaging with ITCs and mustard flour were 

evaluated for their ability to extend the shelf life and reduce the presence of 

mycotoxins in cereals contaminated by Aspergillus parasiticus or Penicillium 

expansum. Furthermore, the potential of AITC to react with ZEA and α-zearalenol 

(α-ZOL) was determined; reaction products were characterized and 

bioaccessibility and bioavailability of the mycotoxins and adducts with AITC were 

studied.  

LABs were added during the baking process to extend the shelf life and 

reduce the production of AFs in bread contaminated with A. parasiticus. Finally, 

the ability of different LABs to reduce the bioaccessibility of aflatoxins B1 (AFB1) 

and B2 (AFB2), through a model of in vitro dynamic, digestion was studied.  
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Among the ITCs, only AITC extended the shelf life and reduced AFs in bread 

contaminated with A. parasiticus and patulin (PAT) produced by P. expansum. 

Among the two mustard flours studied, the oriental mustard flour was more 

effective in reducing AFs while the yellow flour in the reduction of PAT. AITC can 

react directly and reduce α-ZOL and ZEA in vitro at levels up to 97%, forming 

adducts ZEA/α-ZOL-AITC. A reduction of mycotoxins and their reaction products 

was observed after simulated digestion. Reaction products of mycotoxins with 

AITC were more bioavailable compared to the isolated mycotoxins. The use of 

LABs in bread fermentation increased the shelf life of bread and reduced the 

formation of AFs. Finally, some of the bacteria studied were able to reduce the 

bioaccessibility of AFB1 and AFB2 contained in contaminated bread up to 99%. 
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RESUMEN 

El deterioro de los alimentos causado por los hongos que producen 

micotoxinas representa un problema importante en seguridad alimentaria. Los 

cereales en grano y sus productos derivados, como el pan, frecuentemente están 

contaminados con hongos micotoxigénicos. Es por ello que en la presente Tesis 

Doctoral se han estudiado la presencia de 17 micotoxinas en 80 muestras de pan 

de molde y el riesgo de exposición de la población a estos compuestos. 

Aflatoxinas (AFs), zearalenona (ZEA) y eniatinas (ENs) han sido detectadas 

respectivamente en el 20%, 65% y 96% de las muestras de pan analizadas.  

La presencia de dichas micotoxinas y, sobre todo, de las muestras en las que 

las AFs y la ZEA superan el límite máximo legislado, planteó la necesidad de buscar 

metodologías que permitieran reducir estos compuestos. En concreto, se han 

estudiado dos alternativas naturales a los conservantes convencionales: los 

isotiocianatos (ITCs) en envases activos y las bacterias ácido lácticas (BALs) como 

cultivos starters. Los ITCs se originan de la hidrólisis de los glucosinolatos (GLSs), 

que se encuentran en mostaza, brócoli, coliflor, repollo, etc. Se han evaluado 

diferentes envases con ITCs y harina de mostaza por sus capacidad para extender 

la vida útil y reducir la presencia de micotoxinas en los cereales contaminados con 

Aspergillus parasiticus o Penicillium expansum. Además, se ha determinado el 

potencial del AITC para reaccionar con ZEA y α-zearalenol (α-ZOL); se han 

identificado los productos de reacción y se han estudiado la bioaccesibilidad y la 

biodisponibilidad de las micotoxinas y de los aductos con el AITC.  

Las BALs se han añadido durante el proceso de cocción para prolongar la vida 

útil y reducir la producción de AFs en pan contaminado con A. parasiticus. 

Finalmente, se ha estudiado la capacidad de diferentes BALs para reducir la 

bioaccesibilidad de las aflatoxinas B1 (AFB1) y B2 (AFB2), a través de un modelo de 

digestión dinámica in vitro. 
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De los ITCs, únicamente el AITC ha alargado la vida útil y reducido las AFs en 

pan contaminado con A. parasiticus y la patulina (PAT) producida por P. 

expansum. Entre las dos harinas de mostaza estudiadas, la harina de mostaza 

oriental ha sido más eficaz en la reducción de las AFs mientras la harina amarilla 

en la reducción de la PAT. El AITC puede reaccionar y reducir α-ZOL y ZEA in vitro a 

niveles de hasta el 97%, formando aductos ZEA/α-ZOL-AITC. Una reducción de las 

micotoxinas y de sus productos de reacción se ha observado tras el tratamiento 

de la digestión. Los productos de reacción de las micotoxinas con AITC fueron más 

biodisponibles durante el estudio de biodisponibilidad comparado con las 

micotoxinas aisladas.  

El uso de BALs en la fermentación del pan ha aumentado la vida útil del pan y 

ha reducido la formación de las AFs. Por último, algunas de las bacterias 

estudiadas fueron capaces de reducir la bioaccesibilidad de las AFB1 y AFB2 

contenidas en pan contaminado hasta un 99%. 
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1. INTRODUCTION 

1.1. Food spoilage 

1.1.1. Fungal spoilage and mycotoxin production 

Food spoilage is defined as an unpleasant change in food’s normal state 

due to alterations in sensory characteristics (tactile, visual, olfactory, or flavor) 

which makes foods undesirable or unacceptable for human consumption. 

Bacteria, fungi, yeasts and insects can be responsible for food spoilage but 

microorganisms represent the main reason for food deterioration and decay. 

Microbial spoilage is characterized by visible mold growth, production of gas, 

diffusible pigment and enzymes which may cause softening and rotting 

(proteolysis), slime, off-odor, and off-flavor (Erkmen & Bozoglu, 2016).  

Spoiled foods may not cause illness if they are free of pathogens or toxins, 

or they may be unsafe. In particular, spoilage caused by molds that produce toxic 

secondary metabolites called mycotoxins is of primary concern and represents an 

important food safety problem. Cereal grains and their processed food products 

are frequently contaminated with mycotoxigenic fungi. Mycotoxins are known to 

cause sickness or death in humans or animals and are produced by a number of 

fungal genera, primarily Aspergillus, Penicillium, Alternaria, Fusarium, and 

Claviceps. However, considering the worldwide occurrence of fungi in foods and 

their capability to produce mycotoxins three genera stand out: Aspergillus, 

Fusarium and Penicillium, which include the largest number of mycotoxins 

producer species (Soriano, 2007). Fusarium species are called field molds because 

they produce mycotoxins before, or immediately after harvest. They are plant 

pathogens on cereal crops and other commodities. On the otherside, Aspergillus 

and Penicillium are more commonly associated with commodities and foods 

during drying and storage so that they are considered storage molds.  

 



 
Introduction                                                                                                                                                                                                                                                                                                                                   

8 
 

1.1.1.1.  Genus Aspergillus and Penicillium 

Aspergillus is a large genus with more than 100 recognized species. Colony 

colours are those of the conidia, which may be black, yellow, brown, white, or 

green. Penicillium includes more than 200 recognized species (Pitt, 2000); among 

them, 50 or more are of common occurrence. They are characterized by green 

conidia and a slow growth (Pitt, 2012). The most significant mycotoxigenic species 

in Aspergillus genera are: A. flavus, A. parasiticus and A. nomius, which produce 

aflatoxins (AFs); A. ochraceus and related species, A. carbonarius, A. niger (Pitt, 

2012) which produce ochratoxin A (OTA). On the other side, the most important 

species in Penicillium genera are P. verrucosum and P. nordicum (EFSA, 2006) 

which produce OTA and P. expansum that produces patulin (PAT). 

AFs are difuranocoumarins that contaminate foods and feeds causing 

serious economic and health problem worldwide. They are often detected in 

cereals and their derivates, nuts and species. The main AFs are aflatoxin B1 (AFB1), 

B2 (AFB2), G1 (AFG1), G2 (AFG2) (Baranyi et al., 2013). The International Agency for 

Research on Cancer (IARC) assigned all AFs to group 1 (carcinogenic to humans; 

IARC, 2012). They have shown to be extremely potent carcinogens in all animal 

species investigated, i.e. mice, rats, hamsters, fish, ducks, and monkeys, and in 

several organ, the liver being the primary target. Furthermore, AFs are genotoxic 

compounds. AFB1 is often the most frequent in the mixture of AFs (Marin et al., 

2013). It exhibits hepatocarcinogenic and hepatotoxic properties, and is 

considered the most potent naturally occurring carcinogen (IARC, 2012), and it is 

usually the major AF produced by toxigenic strains. Chronic toxicity is the most 

common form of aflatoxicosis in humans whereas occurrence of acute 

aflatoxicosis is more frequent in animals due to the high contamination of feed. 

Chronic consumption of AF-contaminated foods has been linked to various 

diseases: liver cancer, effects on the reproductive system and on the immune 
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system, encephalopathy and pulmonary interstitial fibrosis. Moreover, aflatoxin 

M1 (AFM1) is a hydroxylated metabolite found primarily in animal tissues and 

fluids (milk and urine) as a metabolic product of AFB1 (Varga et al., 2009, 2015) 

and it is classified as possibly carcinogenic to humans (group 2B) (IARC, 1993, 

2002). AFs are very stable and may resist quite severe processes like roasting, 

extrusion, baking, and cooking so that they can be a problem in processed foods, 

such as roasted nuts and bakery products (Marin et al., 2013).  

OTA is a phenylalanyl derivative of a substituted isocumarin. OTA is 

structurally similar to the amino acid phenylalanine (Phe). For this reason it has an 

inhibitory effect on a number of enzymes that use Phe as a substrate such as Phe-

tRNA synthetase which can result in the inhibition of protein synthesis. Moreover, 

it can cause mitochondrial damage, oxidative burst, lipid peroxidation and 

interferes with oxidative phosphorylation and it can also increase apoptosis in 

several cell types (Kuiper-Goodman & Scott, 1989). It is classified as possibly 

carcinogenic to humans (group 2B) (IARC, 1993). OTA can cause nephropathies in 

humans because kidney results the major target organ; in animals it increases the 

incidence of testicular cancer. Furthermore, OTA is recognized as teratogenic, 

genotoxic, carcinogenic, and immunotoxic but its neurotoxic effect remains 

unconfirmed. Contamination with OTA was reported in dried fruits, cacao and 

derived products, wine, cereals and spices. It is not destroyed by common food 

preparation procedures; temperatures above 250°C for several minutes are 

necessary to reduce the concentration of this toxin (Boudra et al., 1995; Marin et 

al., 2013). 

PAT is produced by a wide range of fungal species of the Penicillium and 

Aspergillus genera but P. expansum is the most important (Morales et al., 2007). 

PAT has been found as a contaminant in many moldy fruits, vegetables, cereals 

and other foods. However, the major sources of contamination are apples and 
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apple products, which are also the most important source of PAT in the human 

diet (Baert et al., 2007; Murillo-Arbizu et al., 2009; Reddy et al., 2010). It is 

included in a group of compounds known as toxic lactones and it has affinity for 

sulfhydryl groups, thus can inhibits several enzymes. In long-term studies with 

animals, PAT has been reported to be mutagenic and to cause neurotoxic, 

immunotoxic, genotoxic and gastrointestinal effects in rodents. Moreover, it was 

demonstrated that it can alter the intestinal barrier function (Mahfoud et al., 

2002). PAT is classified by IARC in group 3 (IARC, 1993) due to the inadequate 

evidence for its carcinogenicity in experimental animals (Wright, 2015).   

 

1.1.1.2. Genus Fusarium 

Infection of Fusarium species may occur during seedling, especially in 

cereals, and also in maturing fruits and vegetables. The very important role of 

Fusarium species as mycotoxins producers has remained unknown until the 

1970s. The main Fusarium toxins reported in foods are fumonisins B1 and B2 (FB1 

and B2), thricothecenes (TCs), zearalenone (ZEA) and the emerging mycotoxins 

that include fusaproliferin (FUS), moniliformin (MON), beauvericin (BEA), and 

enniatins (ENs).  

At least 12 fumonisins are known but the B series (FBs) result to be the 

most important and in particular FB1 and FB2. FBs are mostly found in maize. F. 

verticillioides (syn. F. moniliforme) and F. proliferatum are the main producing 

species. They present a structural similarity to sphinganine which is the precursor 

of sphingolipids. The main reason for their toxicity and possibly carcinogenicity is 

their capacity to inhibit the enzyme ceramide synthase causing an increase of the 

intracellular sphinganine and other sphingoid bases which are highly cytotoxic 

compounds (Solfrizzo et al., 2004). The IARC has classified FB1 as possibly 

carcinogenic to humans (group 2B) (IARC, 2002). FBs content is reduced only 
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during processes in which the temperature exceeds 150°C and they can be little 

degradated during fermentation (EFSA, 2005).  

TCs are compounds characterized by a common tetracyclic 

sesquiterpenoid 12,13-epoxytrichothec-9-ene ring system. They are divided into 

four types A-B-C-D according to variations in the functional hydroxyl and acetoxy 

side groups (Bennett & Klich, 2003). Types A represented by HT-2 and T-2 toxins 

and type B by deoxynivalenol (DON) and nivalenol (NIV) are the most important 

whereas C and D groups include some TCs of lesser importance. F. 

sporotrichioides, F. langsethiae, F. acuminatum, and F. poae are the main 

producers of T-2 and HT-2 and F. graminearum, F. culmorum, and F. cerealis the 

most important producing species of DON. These mycotoxins can inhibit 

eukaryotic protein synthesis by binding to the 60S ribosomal subunit and by 

interacting with the enzyme peptidyltransferase. HT-2, T-2 toxin and DON are 

classified by the IARC in group 3 (not classifiable as to its carcinogenicity to 

humans) (Marin et al., 2013). Even if TCs are in general very stable during 

storage/milling and the processing/cooking of food and they can resist high 

temperatures, it was demonstrated that baking of bread, cookies and biscuits can 

lead to a DON reduction up to 71% (Bullerman & Bianchini, 2007). Furthermore, a 

detoxification over 95% was achieved by extrusion cooking (Cazzaniga et al., 

2001). TCs are also stable at neutral and acidic pH and consequently, they are not 

hydrolyzed in the stomach after ingestion (Yazar & Omurtag 2008). Since DON is 

water soluble, its level is reduced in cooked pasta (Sobrova et al., 2010). 

Processing cereals will substantially reduce T-2 and HT-2 contamination in most 

food products because T-2 and HT-2 toxins are mostly attached to the outer hull 

of the grain so that cleaning, sorting, sieving and, de-hulling of grains leads to 

marked increases in T-2 and HT-2 toxins in cereal by-products such as bran. 

Malting leads to substantially lower levels of T-2 and HT-2 toxins in malt, 
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compared to the original barley, although the ratio varies considerably (EFSA, 

2011b). 

ZEA is mainly produced by F. graminearum and also by F. culmorum, F. 

cerealis, F. equiseti, F. verticillioides and F. incarnatum. These fungal species 

contaminate pre and postharvest cereal crops such as corn, barley, wheat, rice 

and oats mainly from temperate and warm regions (Zinedine et al., 2007). ZEA 

and its derivatives α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) elicit estrogenic 

response upon binding to the estrogen receptor (Drzymala et al., 2015), although 

the estrogenic potential of α-ZOL is three to four times higher than that of ZEA 

and β-ZOL (Yang et al., 2007). Several studies have demonstrated hepatotoxic, 

haematotoxic, immunotoxic, genotoxic and teratogenic effects of these 

mycotoxins to a number of mammalian species (Zinedine et al., 2007). IARC 

carcinogenic evaluation of ZEA concluded that it is not classifiable regarding its 

carcinogenicity to humans (group 3) (IARC, 1993). Cooking does not degrade ZEA 

but under alkaline conditions or during extrusion cooking can be reduced more 

than 40%. As for T-2 and HT-2, ZEA is redistributed between milling fractions.  In 

particular, its concentration is 3- to 30- fold higher in the by-products obtained 

from cleaning the raw cereals grains than the cleaned cereal grains and bran 

contains up to 2-fold higher concentrations (EFSA, 2011a). 

Data available on emerging mycotoxins are limited due to their late 

recognition and understanding of their role as toxic compounds.  

FUS is a sestertepene produced mostly by F. proliferatum and F. 

subglutinans. It is toxic to Artemia salina, human B lymphocytes IARC/LCL 171 and 

SF-9 insect cells and has teratogenic and pathogenic effects on chicken embryos 

(Jestoi, 2008). 

MON is a very strong acid produced by F. avenaceum, F. tricinctum, F. 

proliferatum, F. subglutinans, and F. verticillioides. MON can interfere with the 
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tricarboxylic acid cycle and with carbohydrate mechanisms inhibiting enzymes 

such as pyruvate dehydrogenase (Pirrung & Nauhaus, 1996). It also inhibits 

glutathione peroxidase and glutathione reductase inducing oxidative damage in 

myoblasts (Chen et al., 1990; Reams et al., 1996). It is not a genotoxic carcinogen 

according to the Ames test (Knassmuller et al., 1997).  MON could be stable in 

food processes such as baking or wet milling whereas alkaline cooking conditions 

may cause a partial or a complete reduction of MON depending on the 

temperature and time of processing. Freeze-drying did not affect the stability of 

MON (Abramson et al., 2002). 

ENs (A, A1, B and B1) and BEA are a group of structurally related cyclic 

hexadepsipeptides consisting of three d-2 hydroxycarboxylic acid and N-

methylamino acid residues linked alternately. ENs producers include F. 

trincinctum, F. poae, F. sporotrichioides, and F. langsethiae (Thrane, 2001). BEA is 

produced by F. sambucinum, F. poae, F. langsethiae, F. verticillioides, F. 

sporotrichioides, F. proliferatum, and F. subglutinans (Logrieco et al., 1998; 

Thrane, 2001). Finally, F. avenaceum can produce both ENs and small amounts of 

BEA (Logrieco et al., 1998). These mycotoxins are cytotoxic (Uhlig et al., 2006), 

and their apolar nature enables them to insert into cell membranes creating 

cation selective channels (Ovchinnikov et al., 1974), thereby disturbing the 

intracellular ionic homeostasis (Kamyar et al., 2004). Toxicological data on these 

mycotoxins is insufficient. It was demonstrated that thermal treatment (pasta 

cooking simulation) can reduce ENs in a time dependent manner whereas the 

variation of the pH does not produce any effect in the ENs stability (Serrano et al., 

2013).  A treatment of 200°C during 20 min of incubation in a model solution can 

completely degrade BEA. Furthermore, BEA degradation results variable from 20 

to 90% in experiments carried out using crispy breads as a system used to 
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simulate food preparation at three different temperatures of 160, 180 and 200°C 

and at 3, 6, 10, 15 and 20 min incubation (Meca et al., 2012). 

 

1.2. Bread 

1.2.1. Nutritional importance and consumption 

Bread in its many forms is one of the most consumed foods by humanity 

(Cauvain, 2015).  

The basic ingredients in bread includes: flour to give strength and 

structure of products by starch and protein contained in the flour; water as a 

solvent to act with flour to form dough; yeast to act on natural sugars in the flour 

to generate carbon dioxide, and to make the dough rise through fermentation. 

Yeast is necessary for dough fermentation; salt is important not only to contribute 

to flavour but also to strengthen the gluten and control the action of yeast for loaf 

volume. Moreover, small amounts of extra ingredients are added to improve 

dough performance during processing or to improve the quality of finished bread. 

For example, sugar is added to provide nutrients to yeast in the early stages of 

fermentation. Fat and/or milk derivatives are used to enhance the quality of the 

product by contributing softness, moistness and improving flavour and texture. In 

addition, other functional components including additives and preservatives 

might be used in flour or dough to better baking quality of bread and yeast-raised 

fine bakers’ wares (Williams & Pullen, 2007). 

A healthy diet is the foundation of good health and bread is part of a 

healthy lifestyle. It provides most of the essential nutrients for life: carbohydrates 

(mainly starch), proteins, vitamins (A, B1, B2, niacin, folic acid, etc.) and minerals 

(calcium, magnesium, phosphorus, iodine, iron and zinc). Nutritional contributions 

are greater in wholemeal breads that are characterized by a bigger concentration 

of proteins and dietary fibers. Furthermore, many other types of breads exist 
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today that are enriched with different ingredients such as non-wheat grains, seeds 

or pulses sometimes trying to improve nutritional quality, especially with respect 

to fiber intake (Cauvain, 2015). The consumption of bread in Europe is of 63 kg 

per capita per year. It differs widely within the European countries but most of 

them have an average consumption of 50 kg of bread per person per year.  

Moreover, bread represents a strong economic sector in Europe. The 

European Bakery sector is composed by more than 190,000 small and medium-

sized enterprises (SMEs) and includes 2.200 large companies employing more 

than 2 million people in the European Union (EU) (Bread-Initiative.eu, 2016). 

 

1.2.2. Bread spoilage 

Bread is a perishable product. Microbial spoilage causes significant 

economic losses for the bakery industry and also for the consumers (Melikoglu & 

Webb, 2013). In 2011, Novozymes enterprise surveyed over 4000 bread 

consumers throughout Europe and found evidence that the principal cause of 

throwing bread away was because it had become mouldy (Van Sint Fiet, 2015). 

The pH of yeast-raised bread is about 5.4-6.0 whereas in sourdough 

fermented bread is about 3.5-4.8. This low pH and the high water activity (aw 0.94-

0.97) which characterized bread are the main reasons why it is mostly spoiled by 

molds as opposed to yeast and bacteria, that are rare due to low aw during baking 

(Guynot et al., 2005; Smith et al., 2004). 

In the absence of preservatives, visible mould growth is observed after 3-4 

days of storage at room temperature although the characteristic odour composed 

of volatile metabolites can be noted after 2 days (Nielsen & Rios, 2000). 

Penicillium and Aspergillus are the most common molds causing bread 

spoilage (Dal Bello et al., 2007). The Penicillium colonies on bread produce a blue 

fuzzy texture or “bloom” and can be blue or green. Pigments produced by 
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Aspergillus can be yellow, reddish yellow or reddish brown in the ascosporic 

stage, or green in the conidial stage. Some species of Aspergillus which 

contaminates bread can produce AFs that are carcinogens (Nielsen & Rios, 2000). 

Both Penicillium and Aspergillus growth is promoted upon bread which presents 

values of aw around 0.6-0.85 and temperature ranging between 22 and 30°C, 

because the conidia are usually abundant in the atmosphere (Smith, 2004). 

Fusarium mycotoxins can be detected in bread because this genus contaminates 

the raw material used to produce bread. The SCOOP project (Collection of 

occurrence data of Fusarium toxins in food and assessment of dietary intake by 

the population of EU member states: 

http://europa.eu.int/comm/food/fs/scoop/task3210.pdf) underlines that wheat 

and wheat products like pasta and bread represent the major source of intake of 

DON (Terzi el al., 2007).  

The variety of the breads, the recipe used, the bakery processing, and the 

localization of products can affect the type and number of spoilage fungi present 

on bread (Pateras, 2007; Seiler, 1992; Smith et al., 2004). Aspergillus and 

Penicillium together with Eurotium are the predominant spoilages in Spanish 

bakery products (Guynot et al., 2005). In Northern Ireland Penicillium spp. is the 

most common bread spoilage fungi, whereas Aspergillus spp. is more 

predominant in India (Pateras, 2007). Increased acidity will have an effect such as 

slowing mould growth (Nielsen & Rios, 2000). Bulk-fermented bread will have a 

slightly longer shelf life compared with the no-time dough bread, which is due to 

highly alcohol content in fermented breads (Pateras, 2007). 

Fungi spoilage is also influenced by relative humidity (RH) and storage 

temperature. Research showed that when breads were stored at 25˚C and 70% 

Rh, 85% of bread spoilage was caused by Penicillium spp. and less than 7% due to 

yeast spoilage (Smith et al., 2004). Penicillium spp. was predominant in 90 to 
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100% and Aspergillus spp. in nearly 50% of bread loaves collected from 46 

bakeries over a one year period, packaged in plastic bags and stored at 22˚C for 5-

6 days.  

Generally, bread contains few microorganisms after baking due to thermal 

inactivation of viable vegetative molds and molds spores. However, bread 

contamination mainly results from post-bakery processes such as cooling, slicing 

and packaging operations either indirectly by airborne spores or directly by 

contact with contaminated equipment. Sliced breads have a higher probability of 

mold growth since the internal surfaces are exposed, condition indispensable 

because molds are aerobic and grow only on the surface of bread. Packaging 

warm bread also can promote fungal growth due to localized areas of condensate 

within the package. Moreover, the presence of spores in flour and their ability to 

spread throughout the production environment with air movement facilitate their 

widespread in bakeries (Pateras, 2007; Erkmen & Bozoglu, 2016). Finally, it has to 

be considered that reduction of mycotoxins, already present in the dough, during 

baking can be relatively low and it varies with the toxins (Kaushik et al., 2015). 

An EC regulation (No. 1881/2006) and an EC recommendations (No. 

165/2013) define maximum levels for some mycotoxins (Table 1). However, for 

some Fusarium mycotoxins like NIV, ENs, and MON no maximum level has been 

set yet. 
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Table 1. Maximum levels for mycotoxins in bread.  

Mycotoxins Foodstuffs 

Maximum 

levels 

(μg/kg) 

AFB1 All cereals and products derived from cereals 2 

Sum of AFB1, 

AFB2, AFG1 and 

AFG2 

All cereals and products derived from cereals 4 

OTA All cereals and products derived from cereals 3 

DON 
Bread (including small bakery wares), pastries, biscuits, 

cereal snacks and breakfast cereals 
500 

ZEA 

Bread (including small bakery wares), pastries, biscuits, 

cereal snacks and breakfast cereals, excluding maize- 

snacks and maize-based breakfast cereals 

50 

T-2+HT-2 
Bread (including small bakery wares), pastries, biscuits, 

cereal snacks and pasta 
25 

FB1+FB2 
Maize intended for direct human consumption, maize- 

based foods for direct human consumption 
1000 
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1.3. Bread preservation techniques 

1.3.1. Conventional preservatives 

Conventional chemical preservatives used to inhibit the growth of 

undesired microorganisms and to prolong the shelf life of bakery products are 

weak organic acids such as propionic and sorbic acid. In particular, the forms 

commonly used are potassium, sodium or calcium salts of propionic and sorbic 

acid because they are characterized by higher water solubility and easier handling 

(Magan et al., 2003). These preservatives are allowed only in prepacked bread 

whereas they are not permitted for unpacked wheat bread made only from wheat 

flour, water, yeast or sourdough and salt. For prepacked unsliced bread 

propionate is allowed only up to 0.1% (w/w) of flour weight and for prepacked 

sliced bread and rye bread up to 0.2% of sorbate or up to 0.3% of propionate (EC, 

2008).  

The mechanism of action of these acids consists of decreasing 

phosphofructokinase activity which is a key enzyme of glycolysis and, hence, 

reducing the ATP yield. In fact, these acids are in their undissociated form at lower 

pH so that they can penetrate the plasma membrane and dissociate inside the cell 

acidifying cell cytoplasm. This drop of pH interferes with the activity of the 

aforementioned enzyme (Krebs et al., 1983). Sorbic acid can also inhibit the 

plasma membrane H+-ATPase proton pump working as an antimicrobial 

compound (Stratford et al., 2013a, 2009). 

Some disadvantages regarding the use of these preservatives have been 

evidenced by different authors. Sub-optimal concentrations lower than 0.03 % can 

result in an enhancement of fungal growth (Marin et al., 2002) and higher 

mycotoxin production (Arroyo et al., 2005). On the other side, the use of high 

concentrations of sorbate and propionate are necessary for antifungal activity but 

they can alter the sensory properties of the product. Furthermore, a prolonged 
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usage of these preservatives can lead to the development of fungal resistance to 

those chemicals (Levinskaite, 2012; Stratford et al., 2013b; Suhr & Nielsen, 2004). 

Suhr & Nielsen (2004) demonstrated that propionate has only slight effect in mold 

inhibition when it is included in bread at pH 6. The germination of conidia of 12 

fungal species tested was only partially prevented using 0.3% of calcium 

propionate. Sorbate is rarely used in bread because it negatively affects bread 

fermentation, especially causing volume reduction, even if it seems to be more 

efficient in inhibiting spoilage than propionate (Lavermicocca et al., 2000).  

Ethanol also showed strong inhibition of mould in bread at concentration 

ranging between 0.5 and 3.5% of loaf weight in both surface spraying of bread 

loaves and active packaging. However, an unacceptable odour affected the 

sensory quality of the product (Legan, 1993; Seiler, 1984). Finally, the addition of 

benzoic acid to bakery products has been tested but it is not authorized (Guynot 

et al., 2005; Suhr & Nielsen, 2004). 

 

1.3.2. Alternative preservatives  

As discussed above, the use of conventional preservatives presents 

several drawbacks. Additionally, health-conscious consumers and, thus, the 

demand for “natural” foods without chemical preservatives and additives have 

increased. For this reason more studies are centered on replacing traditionally 

preservatives by natural ones. This thesis is focused on two natural alternatives: 

lactic acid bacteria (LABs) and isothiocyanates (ITCs) (Axel et al., 2016). LABs 

encompass a heterogeneous group of Gram-positive, non-sporeforming, non-

motile, aerotolerant, rod and coccus-shaped organisms, which produce lactic acid 

as a major end product during carbohydrate fermentation (Crowley et al., 2013). 

ITCs are originated by glucosinolates (GLSs) that are plant derived compounds 

(Axel et al., 2016).  
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1.3.2.1. Lactic acid bacteria  

LABs represent a promising low-cost and biological solution to alleviate 

fungal decay of foods and also of feeds, especially with the increased pressure of 

consumers towards more natural food preservatives. For centuries, they have 

been exploited as biopreservative microorganisms which could control food 

spoilage and the occurrence of their mycotoxins (Crowley et al., 2013). LABs are 

the microorganisms most widely used as starter cultures in bakery products 

because they produce and release the preservative compounds in situ so that they 

can be applied, for example, in sourdough production. Biological preservation 

refers to the food’s shelf-life extension and improvement of their microbial safety 

by inoculating protective cultures in the food matrix (in situ production of 

antimicrobial compounds), or incorporation of purified microbial metabolites 

(Gaggia et al., 2011; Pawlowska et al., 2012). Additionally, LABs play an important 

role in enhancing texture, sensory characteristics, nutritional value, and overall 

quality of the fermented products offering beneficial outcomes to consumers (Di 

Cagno et al., 2012; Peres et al., 2012; Ravyts et al., 2012; Vignolo et al., 2012). 

LABs are mainly divided into four genera: Lactococcus, Lactobacillus, Leuconostoc 

and Pediococcus. These microorganisms are widely used for the production of 

fermented foods and are also part of intestinal microflora. They are 

microaerophilic and their growth is strictly dependent on the available sugars. 

They ferment carbohydrates to produce various end-products (Dalié et al., 2010). 

LABs have been included in the QPS (Qualified Presumption of Safety) list for 

authorized use in the food and feed chain within the European Union (EFSA, 2012; 

EC, 2008). Furthermore, in the US, LABs are generally recognized as safe (GRAS) by 

the U.S. Food and Drug Administration.  

LABs can act inhibiting mould growth and some of them can also 

potentially interact with mycotoxins. Their antifungal activity depends on 
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different factors such as antifungal substance together with their production 

levels and mode of action, temperature, incubation period and the effects of 

growth media, nutritional factors and pH (Dalié et al., 2010).  

LABs antimicrobial activity is primarily attributed to a wide variety of 

metabolites that include: organic acids (lactic, acetic, formic, propionic, butyric, 

hydroxyl-phenyllactic acid, and phenyllactic acid (PLA)), or antagonistic 

compounds (carbon dioxide, ethanol, hydrogen peroxide, fatty acids, acetoin, 

diacetyl, antifungal compounds (propionate, phenyl-lactate, hydroxyphenyl-

lactate, cyclic dipeptides and 3-hydroxy fatty acids, PLA), bacteriocins (nisin, 

reuterin, reutericyclin, pediocin, lacticin, enterocin, etc.), or bacteriocin-like 

inhibitory substances (Muhialdin et al., 2011; Reis et al., 2012; Schnürer & 

Magnusson, 2005). The production of the acids results in an acidic environment 

which restricts the growth of spoilage organisms (Schnürer & Magnusson, 2005). 

Additionally, organic acids increase the plasma membrane permeability and 

neutralize the electrochemical proton gradient, thus killing microorganisms. The 

production of organic acids alone does not explain the antifungal activity (Ström 

et al., 2002). Other mechanisms that can explain the inhibition are synergistic 

effects with the others antimicrobial compounds, competition of LABs for 

nutrients, space and exclusion of the pathogen from entry sites in the matrix, and 

finally alteration of spore membrane, viscosity and permeability (Pawlowska et al., 

2012). Lactic and acetic acids are the most produced whereas PLA is one of the 

most extensively studied antifungal organic acids from LABs, which possesses 

broad spectrum antibacterial and antifungal action (Crowley et al., 2013). Other 

compounds that have been subject of many studies and have showed the highest 

antifungal activity were proteinaceous compounds with low molecular weight, 

hydrogen peroxide, phenolic compounds, hydroxyl fatty acids and reuterin (Dalié 

et al., 2010). 
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If on the one hand LABs can reduce microbial growth, on the other hand 

they can reduce mycotoxins. In particular, two specific processes such as binding 

and inhibition of biosynthesis may be involved in the interaction between LABs 

and the accumulation of some mycotoxins. Most data about these mechanisms 

focused on AFs. The inhibition of mycotoxin biosynthesis could be due to 

molecules releases during cell lysis and also to “anti-mycotoxigenic” metabolites 

produced during LAB growth.  

Several studies investigated the ability of LABs to bind AFs, TCs, ZEA, OTA 

and FBs demonstrating that these toxins can be trapped by bacterial pellet or can 

be bound on the surface of the microorganisms (Dalié et al., 2010). Viability of 

LAB strains was not essential, suggesting that binding probably took place on the 

cell wall involving carbohydrates and/or protein components. Peptidoglycans and 

polysaccharides have been suggested to be the two most important elements 

responsible for the binding by LABs (Niderkorn et al. 2006, 2009). The absence of 

detection of degradation products of these toxins may confirm that binding, no 

metabolism, was the mechanisms by which toxins were removed in these studies. 

The efficiency of LABs to reduce mycotoxins varied depending on the strains and 

on the compounds tested (Kabak et al., 2009; Gratz et al., 2004; El-Nezami et al., 

2002a, 2002b; Del Prete et al., 2007). The capacity of these bacteria to bind 

mycotoxins can be applied also to reduce their absorption in the intestinal tract, 

increasing the excretion of mycotoxins bound to bacterial cells. Certain LABs that 

show considerable adhesion to intestinal cells lose this property when they bind 

to mycotoxins such as AFB1. Consequently, in the gastrointestinal tract, the 

bacteria–mycotoxin complex is rapidly excreted (Gratz et al., 2004; Kankaanpää et 

al., 2000).  
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1.3.2.2. Isothicyanates 

ITCs are degradation products from GLSs, secondary metabolites which 

constitute a group of more than 140 different compounds, found in all plants 

belonging to the Cruciferae family (Fahey et al., 2001). GLSs are stored within cell 

vacuoles and are released when the plant suffers mechanical damage. Once in the 

cytoplasm they come into contact with the enzyme myrosinase. GLSs are then 

hydrolyzed to a number of products, ITCs being the quantitatively dominant 

compound. It is known that GLSs degradation products possess biological 

activities including beneficial effect on human health, fungicidal, herbicidal, and 

nematocidal properties (Dufour et al., 2012). Among them, ITCs exhibit strong 

antimicrobial activity and they have been added to various food products 

(Obaidat & Frank, 2009; Deng et al., 2014).  

More information about ITCs is provided in the Book Chapter (1.5.). 
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Abstract 
The use of natural antimicrobial compounds is receiving much attention and is 
becoming very frequent by the importance that nowadays is given to natural 
resources. Natural components have been applied in several sectors such as 
agriculture, biomedicine and food preservation. The development of resistance to 
conventional antibiotic by pathogenic bacteria makes necessary to find alternative 
antimicrobials to eradicate these microorganisms. Many food products are 
perishable and require protection from spoilage to improve quality and shelf life. 
Numerous efforts are conducted to find safe natural alternatives to prevent 
microorganism growth in plants and food products, because of the consumer 
concern regarding synthetic pesticides and preservatives. Natural antimicrobials 
can be obtained from different sources including plants, animals, bacteria, algae, 
and fungi. Among them, glucosinolates and their derived products have been 
recognized for their benefits to human nutrition, plant defense, and as potent 
antimicrobial agents. This chapter describes the antimicrobial activity of 
glucosinolates and their hydrolysis products against different bacterial and fungal 
species, as well as the mechanism of action of these active compounds. 
 
Springer International Publishing Switzerland 2016, J.-M. Mérillon, K.G. Ramawat (eds.), 
Glucosinolates, Reference Series in Phytochemistry, DOI 10.1007/978-3-319-26479-0_18-1 
 
 



 
Introduction                                                                                                                                                                                                                                                                                                                                       

36 
 

Keywords 
Glucosinolates • Isothiocyanates • Antifungal activity • Antibacterial activity • 
Bioactive compounds 
 
 
Abbreviations 
AAM Allylamine 
AC allyl cyanide 
AITC allyl isothiocyanate 
ASC Ascorbigen 
ATC ally thiocyanate 
BAM Benzylamine 
BC benzyl cyanide 
BITC benzyl isothiocyanate 
CEPT 1-cyano-2,3-epithiopropane 
DIM 3,3′-di-indolylmethane 
EITC ethyl isothiocyante 
GLS Glucosinolate 
I3C Indole-3-carbinol 
IAN Indole-3-acetonitrile 
ITC Isothiocyanate 
MAP modified atmosphere packaging 
MCT medium chains triglyceride 
MITC methyl isothiocyanate 
PAM 2-Phenylethylamine 
PEC 2-Phenylethyl cyanide 
PEITC phenylethyl isothiocyanate 
PITC phenyl isothiocyanate 
SBO soybean oil  
SFN Sulforaphane 
TC Thiocyanate 
 
 
 
 
 
 
 
 
 



 
   Introduction 

37 
 

1. Introduction 

In agreement with the current trend to value the natural and renewable 

resources, the interest in the use of natural antimicrobial compounds is increasing 

for biomedical, agricultural, and especially food applications [1, 2].  

Food products are perishable by nature and can be subjected to 

contamination by bacteria and fungi. Many of these microorganisms can cause 

undesirable reactions that deteriorate flavor, odor, color, sensory, and textural 

properties of foods. Some of them can also potentially cause food-borne illness. 

For all these reasons, food products require protection from spoilage during their 

preparation, storage, and distribution to give them desired shelf life. Furthermore, 

the dramatic rise of antibiotic-resistant microorganisms is of concern and includes 

food-borne pathogens that are also more tolerant to several food processing and 

preservation methods. The consumer concern regarding synthetic products, such 

as food additives and pesticides, and the necessity to overcome the emergence of 

antibiotic-resistant pathogens led to the research of alternative compounds with 

potent antimicrobial activity which can reduce the impact of synthetic products 

on human and animal health [1]. 

Natural antimicrobials can be obtained from different sources including 

plants, animals, bacteria, algae, and fungi. To select the appropriate biocidal 

product, the microorganism strain must be identified and the spectrum of 

antimicrobial activity of the compound considered [2–4]. Several reports have 

demonstrated the efficacy of plant-derived compounds, most of all in food 

applications. Antimicrobials derived from plants are mostly secondary metabolites 

that possess various benefits including antimicrobial properties against 

pathogenic and spoilage microbes. The structural diversity of plant-derived 

compounds is immense, and the impact of antimicrobial action they produce 

against microorganisms depends on their structural configuration [5]. 
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Among the potent natural antimicrobials, glucosinolates (GLS) are an 

important class of secondary plant products found in seeds, roots, stems, and 

leaves of cruciferous plants including 16 families of dicotyledonous angiosperms, 

mainly Brassicaceae [6]. There are about 120 different GLS identified, derived 

from amino acids (alanine, leucine, isoleucine, valine, phenylalanine, tyrosine, and 

tryptophan) and a number of chain-elongated homologues [7]. They are classified 

as aliphatic, aromatic, methylthioalkyl, and heterocyclic, which have a 

thioglucoside component in common structure and differ at their side chains [8]. 

Located within vacuoles, GLS are physically separated but accompanied by 

β-thioglucosidase enzymes known as myrosinases [9]. Following plant tissue 

disruption, the enzyme and GLS come into contact, which, in the presence of 

water, generates a hydrolysis forming an aglycone moiety, glucose, and sulfate. 

The aglycone moiety is unstable and rearranges to form three main 

groups of substances: nitriles, thiocyanates (TCs), and isothiocyanates (ITCs) (Fig. 

1) [3, 10, 11]. 

GLS and their enzymatic hydrolysis products are responsible for a 

characteristic pungent flavor [12, 13]. These compounds have shown several 

biological activities including plant defense (against insects and microbial 

infections) and benefits to human health (anticarcinogenic, antioxidant, and 

antimicrobial properties) and might be potential natural agents for food 

preservation [14]. Their response to microbial population varies according to their 

structural characteristics. The biocidal effect of cruciferous tissues on other 

microorganisms has been attributed mainly to volatile degradation products of 

GLS, released from their plants. Among derived products, ITCs are the major 

inhibitors of microbial activity, and they have been studied mainly for food 

preservation and plant pathogen control [5, 12]. ITCs are volatile substances that 



 
   Introduction 

39 
 

display an inhibitory effect on several microorganism species at low 

concentrations [15]. 

 
Figure 1. Enzymatic degradation of glucosinolates and the antifungal spectrum 
activity of their derived products.  
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Therefore, the objective of this chapter was to present results of studies 

on antimicrobial activity of GLS and their enzymatically degradation products and 

highlight important aspects on the application. 

 

2. Antibacterial Activity 

GLS and, above all, their hydrolysis products elicit a wide spectrum of 

antimicrobial activity against a variety of bacteria. The concentrations of these 

compounds required to inhibit microorganisms are difficult to compare given 

differences in methodologies, materials, and test strains employed. There are 

considerably more data for the ITCs, and in particular for AITC, than others GLS 

products. Furthermore, the mode of delivery to target microorganisms has a large 

impact on the antibacterial effect. Dissolution of these compounds in liquid media 

can result in a weak antimicrobial activity, while lower concentrations in the vapor 

phase are sufficient to inhibit microorganisms [10]. On Table 1 are summarized 

some studies which report the antibacterial potential of these compounds. 

Horseradish vapors, containing GLS hydrolysis products, showed stronger 

antibacterial activities against several bacterial strains [16, 17]. Later, also studied 

and compared were the bacteriostatic and bactericidal effects of AITC, EITC, and 

MITC against 10 strains. MITC was the most effective, in both solution and vapor 

phases, followed by AITC and EITC. Escherichia coli and Staphylococcus aureus 

appeared to be the more resistant strains, while the least resistant were Bacillus 

subtilis, Bacillus mycoides, and Serratia marcescens. 

Virtanen [18] reported the antimicrobial activity of BITC and β-

phenylethyl, m-methoxybenzyl, and methoxybenzyl ITCs against S. aureus. The 

activity of these ITCs was higher than the antimicrobial activity of a series of 

aliphatic ITCs. Zsolnai [19] demonstrated that the same concentration of AITC and 

PITC, used to severely inhibit the growth of yeasts and fungi, was not effective 
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against Streptococcus pyogenes, S. aureus, and other Gram-negative bacteria. 

BITC was effective against Staphylococci but not on other bacteria. 

Kanemaru and Miyamoto [20] studied the antibacterial activity of brown 

mustard and its major pungent compound, AITC, on the growth of E. coli 3301, S. 

aureus IFO 3761, Proteus vulgaris IFO 3851, Pseudomonas fragi IFO 3458, and 

Pseudomonas aeruginosa IFO 3755. To prepare the extract of black mustard 

extract was prepared as 20 % mustard in ethanol (70 %) after myrosinase 

treatment. AITC was also dissolved in 70 % ethanol to form an equivalent 

concentration. The nutrient broth in which the bacteria were cultured contained 

the mustard extract or AITC and was stored at 30 °C on a shaker. Turbidimetry 

was used to determine bacterial growth. The results obtained evidenced that the 

antibacterial effect of mustard was mainly due to AITC. The concentrations of 

mustard in the medium that inhibited bacterial growth for 24 h were 0.138 %, 

0.104 %, 0.064 %, 0.043 %, and 0.089 % and those of AITC were 14.5, 12.3, 6.5, 

3.6, and 7.2 ppm for S. aureus, E. coli, P. vulgaris, P. fragi, and P. aeruginosa, 

respectively. A bacteriostatic effect was shown by mustard on S. aureus and E. coli 

(0.8 %), while the effect was bactericidal on P. aeruginosa at 0.2 %. 

Shofran et al. [21] tested the antimicrobial activity of sinigrin and four 

sinigrin hydrolysis products, in broth culture, against different species of bacteria. 

Sinigrin is a GLS that, upon injury or mechanical disruption of plant tissue, is 

hydrolyzed by myrosinase producing up to four distinct compounds: AITC, allyl TC 

(ATC), allyl cyanide (AC), and 1-cyano-2,3-epithiopropane (CEPT). Sinigrin had little 

effect upon the growth of microorganisms [22], but its hydrolysis products were 

effective in inhibition of growth. The species of bacteria studied in the experiment 

were E. coli 33625, E. coli NC101, Pseudomonas fluorescens MD13, Aeromonas 

hydrophilia 7966, S. aureus 4220, B. subtilis IS75, Pediococcus pentosaceus FFL48, 
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Leuconostoc mesenteroides FFL44, Lactobacillus brevis MD42, and Lactobacillus 

plantarum MOP3. 

Table 1. Antibacterial potential of glucosinolate-derived products against several 
species on food products. 
Glucosinolate 
derivative 

Bacterial strain Food product Reference 

Allyl 
isothiocyanate 

Bacillus thermoacidurans Fresh apple 
juice 

[44] 

Allyl 
isothiocyanate 

Bacillus subtilis IFO-13722 
Bacillus cereus IFO-13494 
Staphylococcus aureus IFO-12732 
Staphylococcus epidermidis IFO-
12993 
Escherichia coli JCM-1649 
Salmonella typhimurium A TCC-
14028 
Salmonella enteritidis JCM-189 
Vibrio parahaemolyticus IFO-
12711 P.  
Pseudomonas aeruginosa IFO-
13275 

Fresh beef 
Cured pork 
Sliced raw 
tuna 
Cheese 
Egg sandwich 
Noodles 
Pasta 

[45] 

Allyl 
isothiocyanate 
Phenethyl 
isothiocyanate 
Allyl 
thiocyanate 

Staphylococcus aureus Cooked roast 
beef 

[46] 
Escherichia coli O157:H7 
Staphyloccus typhimurium 
Listeria monocytogenes 
Serratia grimesii 
Lactobacillus sake 

Allyl 
isothiocyanate 
Phenethyl 
isothiocyanate 
Allyl 
thiocyanate 
1-butane 
isothiocyanate 

Pseudomonas spp.  
Enterobacteriaceae Lactic acid 
bacteria 
 

Precooked 
roast beef 
slices 

[47] 

  (continued) 
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Table 1. (continued) 

Glucosinolate 
derivative 

Bacterial strain Food product Reference 

Methyl 
isothiocyanate 
Allyl 
isothiocyanate 
 

Rifampicin-resistant strain of 
Salmonella Montevideo 
streptomycin-resistant strains of 
Escherichia coli O157:H7 and 
Listeria monocytogenes Scott A 

Apples 
Tomatoes 
Iceberg 
lettuce 

[48] 

Allyl 
isothiocyanate 

Escherichia coli O157:H7 Fresh ground 
beef 

[49] 

Allyl 
isothiocyanate 
 

Pediococcus pentosaceus 
Staphylococcus carnosus 
Escherichia coli O157:H7 

Dry fermented 
sausage 

[50] 

Allyl 
isothiocyanate 
 
 

Lactobacillus algidus 
Leuconostoc mesenteroides 
Leuconostoc carnosum 
Carnobacterium maltaromaticum 
Carnobacterium divergens 
Brochothrix thermosphacta 
Serratia proteamaculans 

Marinated 
pork 
 

[51] 
 

Allyl 
isothiocyanate 

Salmonella Fresh 
cantaloupe 

[52] 

Allyl 
isothiocyanate 

Leuconostoc mesenteroides 
Lactobacillus plantarum 

Kimchi [53] 

Allyl 
isothiocyanate 

Escherichia coli 
Listeria monocytogenes 

Fresh cut 
onions 

[54] 

Allyl 
isothiocyanate 

Listeria monocytogenes 
Salmonella typhimurium 

Chicken breast [56] 

4- 
hydroxybenzyl 
isothiocyanate 

Salmonella Sauce with 
particulates 

[55] 

Sinigrin, AC, and CETP at 1000 ppm did not show inhibitory effects against 

any of the bacteria tested. ATC was inhibitory to the growth of 3 strains of Gram-
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negative (E. coli 33625, E. coli NC101, P. fluorescens MD13) and 1 strain of Gram-

positive bacteria (S. aureus 4220) with minimum inhibitory concentration (MIC) 

values ranged between 200 and 400 ppm. The antimicrobial activity of ATC was 

due to its conversion to AITC, sinigrin hydrolysis products with the highest 

antibacterial activity. AITC was effective against all the bacteria tested, except L. 

plantarum MOP3. The MIC of AITC against Gram-negative and Gram-positive non 

lactic acid bacteria ranged between 100 and 200 ppm, while lactic acid bacteria 

were more resistant with MIC between 500 and 1000 ppm. It should be 

highlighted that the antimicrobial activity of AITC can be different if it is used in 

gaseous form or dissolved in broth culture. Furthermore, a lot of factors can 

influence the generation of AITC from sinigrin. 

Kyung and Fleming [23] tested sinigrin and its derivate products against 15 

species of bacteria: Pediococcus pentosaceus LA3, P. pentosaceus LA76, L. 

mesenteroides LA10, L. mesenteroides LA113, L. plantarum LA97, L. plantarum 

LA70, L. brevis LA25, L. brevis LA200, Listeria monocytogenes B67, L. 

monocytogenes B70, S. aureus B31, E. coli B34, Enterobacter aerogenes B146, B. 

subtilis B96, and Salmonella typhimurium B38. Sinigrin itself was not antimicrobial 

because it did not inhibit growth up to 1000 ppm and microorganisms did not 

degrade it to its antimicrobial aglycones. AITC is known to be antimicrobial, and 

the MICs found ranged from 50 to 500 ppm for bacteria, including Grampositive, 

Gram-negative, pathogenic, and lactic acid bacteria. 

Delaquis and Sholberg [24] evaluate the microbistatic and microbicidal 

properties of gaseous AITC against bacterial cells of S. Typhimurium (ATCC 14028), 

L. monocytogenes (strain 81–861), E. coli O157:H7 (ATCC 43895), and 

Pseudomonas corrugata (isolated from lettuce). S. typhimurium, L. 

monocytogenes, and E. coli O157:H7 were inhibited when exposed to 1000 μg L-1 

AITC. P. corrugate failed to grow in the presence of 500 μg L-1. Variations at 
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different incubation temperatures were observed. Bactericidal activities varied 

with strain and increased with time of exposure. The most resistant bacterium 

was E. coli. 

The antibacterial properties of the GLS and their hydrolysis products 

became of big interest and importance also in the eradication of pathogenic 

microorganisms that is complicated by the development of resistance to 

conventional antimicrobial agents. Helicobacter pylori is one of the most 

prevalent human pathogens in the world. Gastric infections with H. pylori are 

known to cause gastritis and peptic ulcers and dramatically enhance the risk of 

gastric cancer. Antibiotic therapy is recommended for infected patients with 

gastric or duodenal ulcers or gastric mucosa-associated lymphoid tissue 

lymphoma, but this treatment is not universally successful. Even with the 

combination of two or more antibiotics, H. pylori is difficult to eradicate due to 

the development of resistance of this bacteria to these antibiotics and the 

persistence of organisms within gastric epithelial cells and, furthermore, due to 

logistic, sociologic, and economic reasons. The ITC sulforaphane (SFN) appears to 

overcome all of these problems. SFN is abundant in certain varieties of broccoli 

and broccoli sprouts in the form of its GLS precursor called glucoraphanin. It has 

been demonstrated that SFN is a potent bacteriostatic agent against 3 reference 

strains and 45 clinical isolates of H. pylori. The MIC for 90 % of the strains is <4 μg 

mL-1, irrespective of their resistance to conventional antibiotics. It is a potent 

bactericidal agent against both extra- and intracellular H. pylori in vitro. Further, 

brief exposure to SFN eliminated intracellular H. pylori from a human epithelial 

cell line (HEp-2). Although higher concentrations are required to achieve 

bactericidal activity for the intracellular forms, SFN accumulates intracellularly to 

high levels, as its glutathione conjugate. It can be safely administered to humans 
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because it is present in high concentrations in edible cruciferous vegetables and 

can be directly delivered to the stomach [25]. 

Haristoy et al. [26] evaluated the effect of SFN in vivo against H. pylori by 

using human gastric xenografts in nude mice. H. pylori was completely eradicated 

in 8 of the 11 SFN-treated grafts, after short-term administration of SFN at a dose 

that can be achieved in the human diet.  

Haristoy et al. [27] analyzed the activities of 12 ITCs including 

sulforaphane on 25 strains of H. pylori using an agar dilution assay. The ITCs 

tested were iberin, cheirolin, erucin, D,L-SFN, D-SFN, L-SFN, L-sulforaphane, 

erysolin, berteroin, alyssin, hirsutin, PEITC, BITC, and 4-(α-L-

rhamnopyranosyloxy)benzyl ITC. Furthermore, the bactericidal activities of the six 

ITCs (cheirolin, L-sulforaphane, erysolin, berteroin, hirsutin, and 4-(α-L-

rhamnopyranosyloxy)benzyl ITC) that showed the lowest MICs were determined 

both directly and against intracellular bacteria in cultured human epithelial cells. 

The MIC90 values for these ITCs ranged between 4 and 32 μg mL-1. It has been 

demonstrated that, in addition to SFN, four (cheirolin, berteroin, hirsutin, and 4-

(α-L-rhamnopyranosyloxy)benzyl ITC) of the most active compounds exhibited 

high bactericidal activity against both extra- and intracellular bacteria. 

Ono et al. [28] screened, isolated, and identified antibacterial compounds 

occurring in some common foods for bactericidal use, against E. coli and S. aureus. 

Among the different foodstuffs studied, wasabi stems, banana fruits, coriander 

leaves, and mustard seeds showed antibacterial activity. In particular, the lower 

minimal bactericidal concentration was obtained for wasabi stems, so their 

activity was highest. The compound with the antibacterial activity was identified 

as the 6-methyl-sulfinylhexyl ITC. The ethyl, butyl, hexyl, and octyl homologues of 

this ITC were determined in some Cruciferae plants. The main component 

contained in wasabi was the hexyl homologue, whereas horseradish contained 
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the ethyl and hexyl homologues. Broccoli, Chinese cabbage, radish, and turnip 

almost exclusively contained the butyl homologue, and cabbage contained only 

the hexyl homologue. These homologues were also active against E. coli and S. 

aureus with minimal bactericidal concentration ranged between 0.1 and 2.0 mg 

mL-1.  

Liu and Yang [29] studied the stability and the antimicrobial activity of 

AITC in two medium-chain triglyceride (MCT) and soybean oil (SBO), dispersed in 

an oilin-water system during long-term storage. It has been shown that the 

stability and antimicrobial activity were affected by the content, type, and 

oxidative stability of the oil. In particular, high oil content is favorable for AITC 

stability in the emulsion. AITC with MCT were more effective than AITC with SBO 

in inhibiting Gram-negative bacteria E. coli O157:H7, Salmonella enterica, and 

Vibrio parahaemolyticus and Gram-positive bacteria S. aureus and L. 

monocytogenes. 

Luciano and Holley [30] evaluated the antibacterial activity of AITC against 

E. coli O157:H7 at different pH values and examined the inhibitory action of this 

compound against two enzymes important in the metabolism of this food-borne 

pathogen (thioredoxin reductase and acetate kinase). AITC showed greater 

antimicrobial activity at low pH values (4.5 and 5.5). Decomposition products of 

this ITC were also studied, and they did not show antibacterial activity toward E. 

coli O157:H7. Only AITC is antimicrobial in its original form. Furthermore, it has 

been demonstrated that only 1 μL L-1 of AITC could decrease the activity of 

thioredoxin reductase and AITC at 10–100 μL L-1 was able to significantly inhibit 

both thioredoxin reductase and acetate kinase. 

The antimicrobial properties of different GLS autolysis products of 

Hornungia petraea were investigated against two isolates of S. aureus, Salmonella 

enteritidis, Klebsiella pneumoniae, Sarcina lutea, E. coli, Shigella sp., and Bacillus 
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cereus. The tested compounds were showed to be active against all tested 

microorganisms, with the activity ranging from 1 to 1250 mg mL-1 for inhibitory 

and 1 to 5000 mg mL-1 for microbicidal activity. In particular, the assays showed a 

very high antibacterial activity of the tested ITCs against S. lutea [31]. 

Olaimat and Holley [32] determined the minimum inhibitory and 

minimum bactericidal concentrations of AITC from mustard against five strains 

each of Salmonella and L. monocytogenes individually and combined. The MIC and 

MBC values of AITC ranged from 60 to 100 ppm and 120 to 180 ppm, respectively, 

at 37 °C and ranged from 10 to 40 ppm and 200 to 600 ppm, respectively, at 21 °C 

against both pathogens. AITC had no antimicrobial activity at low temperatures (4 

°C or 10 °C) and alkaline pH over 10, but at neutral pH, L. monocytogenes is 

reduced. At acidic pH, AITC was more effective against Salmonella. However, AITC 

was more effective at combinations of 21 °C and neutral pH against L. 

monocytogenes and at combinations of higher temperature and acidic pH against 

Salmonella. 

A lot of data are available about the antimicrobial activity of ITCs, but the 

results are difficult to compare. Accordingly, Wilson et al. [33] studied the 

antibacterial activity of a large number of ITCs on a wide range of microorganisms, 

using for all the same experimental conditions. Ten ITCs were tested, and, among 

them, six were investigated for the first time: SFN, iberin, AITC, BITC, MITC, PITC, 

PEITC-, propyl-, 3-methylthiophenyl-, and 3-methylthiopropyl-ITC. The bacteria 

tested were fourteen and included 8 Gram-positive species (B. cereus CIP 78.3, B. 

subtilis ATCC 6633, Enterococcus faecalis G9h, Enterococcus faecium ATCC 19434, 

L. plantarum DSM 9843 [299v], L. monocytogenes LC 10, S. aureus ATCC 6538, and 

Staphylococcus xylosus LC 57) and 6 Gram-negative species (K. pneumoniae DSM 

681, E. coli ATCC 25922, P. aeruginosa DSM 1128, S. enteritidis LC 216, S. 

typhimurium LC 443, and S. marcescens LC 448). A turbidimeter was used to 
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monitor the growth of bacteria, and the antimicrobial activity was expressed as 

antimicrobial efficacy index that is a function of the growth delay, the reduction in 

the maximum population, and the reduction in maximum specific growth rate. All 

the ITCs tested displayed antimicrobial activity, depending on the target bacteria 

and the structural features of the molecule considered. BITC showed the highest 

value of antimicrobial efficacy index, followed by PEITC. Different from other 

studies, AITC was the least active ITC, and not necessarily aromatic ITCs were 

more active than aliphatic compound. For example, 3-methylthiopropyl-ITC was 

much more active than PITC. Gram-negative bacteria were overall more sensitive 

to ITCs than Gram-positive bacteria, and considerable variations in sensitivity 

were evidenced between species even within the same Gram type. 

AITC, BITC, and PEITC purified from cruciferous plants were evaluated 

against 15 isolates of methicillin-resistant S. aureus (MRSA) isolated from diabetic 

foot ulcer patients. In general, the AITC always presented the higher MIC values 

and thus lower antimicrobial activity, while BITC and PEITC presented the lowest 

MIC. Therefore, these ITCs showed the highest antimicrobial activity. The AITC 

and PEITC were essentially bacteriostatic, whereas BITC was bactericidal in 11 

isolates of MRSA. Based on this, BITC is more effective in suppressing MRSA 

strains than PEITC. The antibacterial effectiveness of these compounds depends 

on the dose tested and on the chemical structure [34].  

GLS and their derivate products are useful also in inhibiting the growth of 

pathogenic bacteria that can contaminate vegetable seeds. This contamination 

can occur at any point, from the field to the sprouting process and during 

subsequent handling of sprouts until they are consumed. Populations of E. coli 

O157:H7 have been reported to reach 106–107 cfu g-1 of sprouts produced from 

contaminated seeds. E. coli O157:H7 causes life-threatening hemorrhagic colitis, 

hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura in the 
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young, old, and immunocompromised. The efficacy of AITC in killing E. coli 

O157:H7 on dry and wet alfalfa seeds was investigated. AITC was lethal to E. coli 

inoculated onto agar disks, but, unfortunately, the enhanced effectiveness of AITC 

in killing the pathogen onto alfalfa seeds is offset by a dramatic reduction in seed 

viability. Nevertheless, the use of AITC for the purpose of killing E. coli O157:H7 in 

other fields and, perhaps, other pathogens on alfalfa seed holds promising [35]. 

GLS hydrolysis products also displayed antimicrobial activity against plant 

pathogenic microorganisms, and this feature reinforces the potential for using 

them as alternatives to the traditional chemical control of phytopathogenic 

bacteria. Aires et al. [36] evaluated the antibacterial effects of GLS hydrolysis 

products against six relevant plant pathogenic Gram-negative bacteria, using a 

disc diffusion assay: Agrobacterium tumefaciens, Erwinia chrysanthemi, 

Pseudomonas cichorii, Pseudomonas tomato, Xanthomonas campestris, and 

Xanthomonas juglandis. The GLS hydrolysis products used in the in vitro assay 

were AITC, AC, SFN, BITC, benzyl cyanide (BC), PEITC, 2-phenylethyl cyanide (PEC), 

indole-3-acetonitrile (IAN), indole-3-carbinol (I3C), and ascorbigen (ASC). A mix of 

AITC, BITC, and PEITC also was tested. The strongest inhibitory effect was showed 

by PEITC and SFN. Among the different GLS hydrolysis products studied, the ITCs 

were more efficient than the other products, and the antimicrobial effects were 

dose-dependent. 

A transgenic Arabidopsis thaliana that overexpressed p-hydroxybenzyl 

GLS was used to evaluate the capacity of GLS and their breakdown products to 

influence and modify the natural rhizosphere community. It was showed that the 

proteobacteria and also the fungal community in the rhizosphere of the 

transgenic plant were significantly affected. Modification of the GLS content of 

the plant could be an alternative to the use of pesticides [37]. 
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Aires et al. [38] evaluated the antimicrobial activity of intact GLS and their 

hydrolysis products and microbial catabolites, against human pathogenic or 

gastrointestinal tract bacteria: the Gram-positive E. faecalis, S. aureus, and 

Staphylococcus saprophyticus and the Gram-negative Acinetobacter baumannii, 

Citrobacter freundii, Enterobacter asburiae, Enterobacter cloacae, Enterobacter 

hormaechei, E. coli (two strains), Hafnia alvei, Klebsiella oxytoca, K. pneumoniae, 

Morganella morganii, Proteus mirabilis, P. aeruginosa, S. typhi, and 

Stenotrophomonas maltophilia. The intact GLS examined were sinigrin, 

glucoraphanin, glucotropaeolin, gluconasturtiin, and indole glucobrassicin, while 

the enzymatic hydrolysis products were AITC, SFN, BITC, PEITC, I3C, AC, BC, PEC, 

and 3,3’-di-indolylmethane (DIM). Allylamine (AAM), benzylamine (BAM), and 2-

phenylethylamine (PAM), which are microbial metabolites of GLS, were also 

tested. Among the compounds tested, only ITCs were effective, but GLS, nitriles, 

and amines were ineffective at all the doses used. The highest activity was shown 

by SFN and BITC. IAN had some inhibitory activity against the Gram-negative 

bacteria. I3C had some inhibitory effects against the Gram-positive bacteria but 

had no effect, even at the highest dose, against the Gram-negative bacteria. The 

compound, the concentration used, and the microorganism tested influence the 

antimicrobial activity of the GLS hydrolysis products. Some of these were more 

effective than conventional antibiotics in inhibiting the growth of pathogenic 

microorganisms, such as ITCs. The data reported in this study demonstrate the 

potential for using these natural antimicrobials as an alternative or in combination 

with antibiotic-based therapies for treating infectious diseases. 

Some ITCs display a synergy with conventional antibiotics. Tajima et al. 

[39] examined different hydroxy ITCs for antimicrobial synergism with various 

antibiotics against E. coli and S. aureus. It was demonstrated that 2-(4-

hydroxyphenyl) ethyl ITC displayed antimicrobial synergism with aminoglycosides, 
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such as streptomycin, against E. coli and S. aureus grown in glucose-containing 

medium. However, small changes in the concentrations of both ITC and 

streptomycin affect their combined action from synergism to suppression of 

antimicrobial activity. The mechanism of synergism and suppression remains 

unclear [40]. 

Palaniappan et al. [41] examined the synergistic interaction between 

natural antimicrobials and antibiotics to which the target bacteria were resistant. 

Among the agents studied, AITC was effective in reducing the MIC of 

erythromycin when tested against S. pyogenes. 

The antibacterial effect in vitro of PEITC and its synergistic effect with 

antibiotics against different E. coli from human and animal were demonstrated by 

Freitas et al. [42]. 

Many of the older references about the antimicrobial properties of ITCs 

were often related to the use of these compounds as preservatives in foods. 

Tressler and Joslyn [43] suggested that the Romans added large quantities of 

mustard seed to crushed grape for preservative purposes. The use of mustard oils 

to fruit juices and wines has apparently been practiced for generations in some 

parts of the world. Kosker et al. [44] showed the possibility of using AITC as 

preservative in fresh apple cider at a concentration of 20 ppm. Furthermore, it 

was shown that the thermal resistance of Bacillus thermoacidurans can be greatly 

reduced using AITC 10 ppm in buffer and fruit juices. Kostova et al. [9] studied the 

use of AITC in the disinfection of eggs. It was reported that AITC could control the 

growth of microorganisms on the surface of goose and hen eggs by application of 

the solution or as vapor. This method was not pursued because the AITC was 

absorbed through the shell. 

The major pungent component of black mustard (Brassica nigra) and 

brown mustard (B. juncea), which is the same as that of wasabi (Eutrema wasabi 
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Maxim.), is AITC. The antimicrobial activity of brown mustard AITC vapor and the 

possibility of its use as modified atmosphere packing were studied by Isshiki et al. 

[45]. The bacteria used were B. subtilis IFO-13722, B. cereus IFO-13494, S. aureus 

IFO-12732, Staphylococcus epidermidis IFO-12993, E. coli JCM-1649, S. 

typhimurium A TCC-14028, S. enteritidis JCM-1891, V. parahaemolyticus IFO-

12711, and P. aeruginosa IFO-13275. First, the antibacterial activity of AITC vapor, 

against each microorganism, was evaluated in Petri dishes, and then application 

experiments were carried out with different foods. AITC vapor inhibited the 

growth of all microorganisms examined in the experiments. In the application 

experiments, none of the tested samples were spoiled after 7 days, while the 

controls grew sufficiently after 2 days [45]. 

Ward et al. [46] evaluated the effectiveness of different concentrations of 

a volatile distillate extracted from fresh horseradish root against the growth of 

spoilage and pathogenic bacteria inoculated on agar and roast beef slices at 12 °C. 

The distillate was composed by about 90 % AITC and 9 % 2-phenethyl ITC, and the 

bacteria tested were S. aureus, E. coli O157:H7, S. typhimurium, L. 

monocytogenes, Serratia grimesii, and Lactobacillus sake. L. sake was the most 

resistant: 20000 nL distillate L-1 air were required to completely inhibit growth on 

agar. On the other side 4000 nL distillate L-1 air completely inhibited the growth of 

S. aureus, E. coli O157:H7, S. typhimurium, L. monocytogenes, and S. grimesii on 

agar for 7 days in aerobic storage at 12 °C. These bacteria were more resistant 

when inoculated on roast beef: 20,000 nL distillate L-1 were required to 

completely inhibit the growth, and L. sake was weakly inhibited at this 

concentration. 

Delaquis et al. [47] determined the effect of vaporized horseradish 

essential oil (HEO) on microbial growth in precooked roast beef slices 

contaminated with Pseudomonas spp. and Enterobacteriaceae and lactic acid 
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bacteria. The slices were stored 28 days at 4 ± 2 °C in air or 100 % N2 with and 

without HEO. The results showed that 20 μL L-1 of HEO inhibited the growth of 

most spoilage bacteria and Pseudomonas spp. And Enterobacteriaceae were 

strongly inhibited than lactic acid bacteria that were more resistant. The chemical 

changes and sensory properties of precooked roast beef treated with HEO were 

also evaluated and revealed that the development of off-flavors and odors 

derived from fat oxidation products was delayed by HEO. 

The bactericidal activity of AITC and MITC was tested on iceberg lettuce 

inoculated with a rifampicin-resistant strain of Salmonella Montevideo and 

streptomycin-resistant strains of E. coli O157:H7 and L. monocytogenes Scott A in 

sealed containers at 4 °C for 4 days. MITC was more active against L. 

monocytogenes than the other bacteria, while AITC showed stronger activity 

against E. coli O157:H7 and S. Montevideo. Furthermore in this study, the AITC 

was tested also on tomato stem scars and skin contaminated with S. Montevideo 

and on apple stem scars contaminated with E. coli O157:H7. S. Montevideo 

inoculated on tomato skin was more sensitive to AITC than that on stem scars. 

Treatment with vapor generated from 500 mL of AITC caused an 8-log reduction 

in bacteria on tomato skin but only a 5-log reduction on tomato stem scars. The 

bactericidal activity of AITC was weaker for E. coli O157:H7 on apple stem scars; 

only a 3-log reduction in bacteria occurred when 600 mL of AITC was used [48]. 

The incorporation of mustard flour (non-deheated) as an ingredient in 

packaged ground beef to inactivate E. coli O157:H7 was tested by Nadarajah et al. 

[49]. The results showed that it is possible to use mustard flour at levels of 

between 5 and 10 % to eliminate E. coli O157:H7 from fresh ground beef. The 

sensory evaluation of cooked ground beef was carried out and showed that there 

were no significant differences between the overall sensory acceptability of 

ground beef formulated with 5 % and 10 % mustard [49]. 
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Four sausage batters (17.59 % beef, 60.67 % pork, and 17.59 % pork fat) 

were inoculated with P. pentosaceus and Staphylococcus carnosus and a five-

strain cocktail of nonpathogenic variants of E. coli O157:H7. Microencapsulated 

AITC was added to three batters at 500, 750, or 1000 ppm to determine its 

antimicrobial effects. E. coli O157:H7 was reduced by 6.5 log10 CFU g-1 in sausages 

containing 750 and 1000 ppm AITC after 21 and 16 days of processing, 

respectively. E. coli O157:H7 numbers were reduced by 4.75 log10 CFU g-1 after 28 

days of processing in treatments with 500 ppm AITC, and the organism was not 

recovered from this treatment beyond 40 days [50]. 

The antimicrobial activity of AITC against growth of typical spoilage 

bacteria (Lactobacillus algidus, L. mesenteroides, Leuconostoc carnosum, 

Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix 

thermosphacta, Serratia proteamaculans) from marinated pork was also 

investigated in vacuum-packed pork meat. MICs for AITC were difficult to 

determine because of the absence of gastight barrier between the wells of a 

single plate used in the experiment. As AITC exerts antimicrobial activity in both 

liquid and gas phases, the addition of AITC to one well affected bacterial growth in 

adjacent wells. In fact, the addition of AITC completely inhibited the growth of S. 

proteamaculans and B. thermosphacta even in control wells containing no AITC. 

To determine the MIC for AITC in liquid phase, experiments with sealed wells 

would have to be carried out. The ability of AITC to exert antimicrobial effects in 

its gas phase even at low concentrations may make it more useful for applications 

in modified atmosphere-packaged foods [51]. 

AITC was also incorporated into chitosan coatings to develop an 

antimicrobial application against Salmonella that would improve the safety and 

extend shelf life of whole fresh cantaloupe. It has been demonstrated that with 

AITC concentrations increasing from 10 to 60 μL mL-1, the antibacterial effects of 
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coating treatments against Salmonella increased, and no visual changes in overall 

appearance and color of cantaloupe rind and flesh due to coating treatments 

were observed [52]. 

AITC was encapsulated using gum Arabic and chitosan to overcome the 

problem of its high volatility to investigate the effect of microencapsulated AITC 

as a natural additive on the shelf life and quality of Kimchi, a traditional Korean 

fermented vegetable food. Encapsulated AITC addition to Kimchi resulted in 

positive changes in pH, titratable acidity, and microbial analysis compared to that 

of control. The number of Leuconostoc and Lactobacillus species in Kimchi 

decreased with an increase in the concentration of AITC. However, with regard to 

sensory analysis, AITC concentrations of 0.10 % or lower are recommended for 

manufacturing Kimchi [53]. 

The antimicrobial effect of AITC entrapped in alpha and beta cyclodextrin 

inclusion complexes (IC) against different target organisms, among them 

Escherichia coli and Listeria monocytogenes, was determined. AITC entrapped in 

beta IC exhibited a significantly better antimicrobial effect compared to 

unentrapped AITC. The antimicrobial effect of beta IC was determined during 

aerobic storage of packaged fresh-cut onions. This application of beta IC (200 mL 

L-1) to packaged fresh-cut onions effectively decreased numbers of L. 

monocytogenes [54]. ITCs are used in food active packaging to reduce, inhibit, or 

retard the growth of microorganisms on food products. White mustard essential 

oil (WMEO) showed antimicrobial activity against Salmonella recovered from 

inoculated frozen vegetables and chicken particulates. The antibacterial property 

was due to the production of 4-hydroxybenzyl ITC obtained by the hydrolysis of 

the GLS sinalbin, present in white mustard essential oil derived from white 

mustard seeds (Sinapis alba L.) [55]. 
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AITC in combination with modified atmosphere packaging (MAP) was 

tested to control the growth of L. monocytogenes and S. typhimurium on fresh 

chicken breasts during refrigerated storage for 21 days. On day 21, the microbial 

counts in the products packaged with AITC and MAP were lower than ambient air 

and MAP, even if AITC was less effective against L. monocytogenes than S. 

typhimurium. Furthermore, vapor AITC has been found to be more effective than 

liquid AITC [56], but its strong odor can limit its use in food systems. The use of 

AITC as a flavoring substance has been evaluated by the Joint FAO/WHO Expert 

Committee on Food Additives (JECFA) and by the EFSA (European Food Safety 

Authority) Panel on Food Additives, Flavourings, Processing Aids and Materials in 

Contact with Food (AFC). This report concluded that there were no safety 

concerns from AITC consumption at the estimated levels of intake [57]. 

 

3. Antifungal Activity 

One of the first studies that demonstrated antifungal activity of 

cruciferous plant was carried out in the 1930s, when these authors demonstrated 

in vitro toxicity of volatile compounds (AITC, PITC, MITC, EITC, ethyl TC, allyl 

sulfide, ethyl sulfide, and sinigrin) toward certain fungi (Colletotrichum circinans, 

Botrytis allii, Aspergillus niger, A. alliaceus, and Gibberella saubinetti) [58]. The 

antifungal property was corroborated by Hooker et al. [59], and after this, many 

others investigations were followed. In general, volatile sulfur compounds 

demonstrate more potent inhibitory effects toward fungi than bacteria [60]. 

Studies have shown that GLS did not present antimicrobial activity in their 

intact form, only after enzymatic hydrolysis. Therefore, sinigrin which is one of the 

most important GLS present in oriental mustard presented no effect against 

Paecilomyces fumosoroseus [61]. Sinigrin also did not affect Alternaria brassicae 

(causative agent of black spot) in Czapek-Dox agar medium, as well as sclerotium 
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formation of Sclerotinia sclerotiorum (causative agent of stem rot) [62]. Native 

GLS had no fungitoxic activity, whereas their hydrolytic products, in particular 

glucoiberin, glucoerucin, glucoheirolin, and glucotropaeolin, inhibited growth of 

Rhizoctonia solani, S. sclerotiorum, Diaporthe phaseolorum, and Pythium 

irregulare with different inhibitory responses depending upon the chemical 

nature of the hydrolytic products [3, 63]. 

The composition of hydrolysis products from GLS varies according to 

substrate, pH conditions, presence of ferrous ions, and specific protein factors. 

The chemical nature of the breakdown products depends mainly on the structure 

of the GLS, plant species, and reaction conditions [64]. They are classified as 

nitriles, TCs, epithionitriles, oxazolidine-2-thiones, ITCs, and epithioalkanes with 

different antimicrobial activity [65]. 

From these groups, ITC is the major inhibitor of microbial populations, and 

differences in the potential are related to the nature of their side chain [66]. 

Assays with ITCs have been conducted directly as a component of a growth 

medium and a model food system and (generally more antimicrobial effective) in 

the gaseous form [49]. Volatiles released from GLS, predominantly 2-propenyl 

GLS, showed toxic effects to the blackleg fungus, Leptosphaeria maculans, in vitro 

[67]. AITC gaseous at 0.1 mg L-1 for 4 h showed a fungistatic effect against Botrytis 

cinerea (gray mold) reducing by over 45 % the incidence of the gray mold on 

strawberries [68]. AITC (2 ppm) inhibited the growth of Penicillium roqueforti, P. 

corylophilum, Eurotium repens, A. flavus, and Endomyces fibuliger on rye bread 

slices in airtight environment [69]. 

Sellam et al. [70] demonstrate that ITCs were effective in vitro in different 

development stages of A. brassicicola and A. brassicae. Moreover, antifungal 

activity of 57 substituted derivatives of PEITC was determined on A. niger, 

Penicillium cyclopium, Rhizopus oryzae, A. flavus, A. oryzae, A. fumigatus, P. 



 
   Introduction 

59 
 

brevicompactum, Cladosporium herbarum, Trichoderma viride, Alternaria tenuis, 

Monilia sitophila, Cytospora sp., Schizophyllum commune, Fusarium sp., 

Cephalothecium roseum, and Trichophyton gypseum in culture medium. The 

authors describe that several PEITC derivatives, as well as the most active natural 

ITC analogues, represent remarkable antifungal compounds; however, there are 

some differences in their antifungal potential [13]. 

Several studies have been conducted using glucosinolate-derived products 

against molds and yeast (Table 2). These examples show the efficiency of ITCs 

against saprophytic and parasitic fungal species, usually applied at low levels in 

culture medium, food products, and plant defense. In agricultural sciences, ITCs 

such as AITC have been effective fumigants on the control of insects and fungal 

species [71]. Among ITCs, allyl isothiocyanate (AITC) is one of the most studied. 

Beneficial biological effects have been reported including antibacterial, 

antifungal, anti-nematode, and anti-insect activities [72]. Its uses as natural 

preservative have been growing because of its food origin and low toxicity [30]. 

The antimicrobial activity of AITC, as well as other ITCs, is related with the 

concentration of the compound applied, time of exposure, strains, microbial 

loading, temperature, food composition, pH conditions, water activity, and on 

diffusion of the vapor in food packaging systems [48, 71, 73]. However, its use on 

food products usually is limited by the interference of organoleptic characteristics, 

its poor aqueous solubility, instability at high temperature, and intrinsic food 

compounds. 

GLS-derived products have also been presenting antibiocidal potential 

against yeast. Kyung and Fleming [23] reported that AITC showed antifungal 

effects against fermentative yeasts on culture media with an MIC ≤ 4 ppm. 

Candida albicans, a fungus potentially pathogenic to human, was inhibited by 

fresh cauliflower juice (Brassica oleracea var. botrytis) [74].  
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Table 2. Antifungal potential of glucosinolate-derived products against several 
species on food products. 
Glucosinolate 

derivative  

Fungal strain Food product Reference 

4-Hydroxybenzyl 

Isothiocyanate 

Zygosaccharomyces 

bailii 

Acidified fruit 

drink 

[75] 

Yellow and oriental 

mustard 

(based on allyl 

isothiocyanate 

and p-hydroxybenzyl 

isothiocyanate) 

Aspergillus parasiticus 

CECT 2681 

Peanut, cashew, 

almonds, 

walnut, 

pistachio, 

hazelnut 

[81] 

Allyl isothiocyanate Penicillium roqueforti, 

P. corylophilum, 

Eurotium 

repens, A. flavus, 

Endomyces fibuliger 

Rye bread slices [69] 

Allyl benzyl phenyl 

Isothiocyanates 

Gibberella moniliformis 

strains 2983, 5847, 

5850 

Bread [78] 

Allyl isothiocyanate Botrytis cinérea Strawberries [68] 

Allyl isothiocyanate Aspergillus parasiticus Fresh pizza crust [77] 

Allyl isothiocyanate Aspergillus parasiticus, 

Fusarium poae 

Wheat flour [80] 

Benzyl 

isothiocyanate 

Alternaria alternata Tomato [79] 

Ethyl isothiocyanate Penicillium expansum Apple [71] 
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In the use of BITC and 3- and 4-methoxybenzyl ITCs, antifungal effects 

against Aspergillus fumigatus and C. albicans were revealed with MIC of 1 μg mL-1 

(Radulovic et al., 2012). An essential oil obtained from white mustard seeds 

containing 25 mg L-1 of 4-hydroxybenzyl isothiocyanate (4HBITC)/L was able to 

stabilize an acidified fruit drink against acid-tolerant bacteria (Gluconobacter 

species) and preservativeresistant yeast (Zygosaccharomyces bailii) for 28 days at 

ambient temperature [75]. 

Thus, the ability of ITCs to reduce mycotoxigenic molds and mycotoxins 

was also investigated. P. expansum (patulin producer) was inhibited with > 50 mg 

of AITC, whereas A. parasiticus (aflatoxin producer) in culture medium was 

sensible to doses > 5 [76]. Aspergillus parasiticus was inactivated in fresh pizza 

crust after 30 days of AITC exposition and suppressed aflatoxin formation [77]. 

AITC, BITC, and PITC inhibited the growth of Gibberella moniliformis strains 2983, 

5847, and 5850 and reduced 2.1–89.7 % of the mycelium size. ITCs also reacted 

with FB2 in bread reducing the levels by 73–100 % [78]. Benzyl-ITC showed 

antifungal activity against Alternaria alternata on tomato [79] and ethyl-ITC 

against P. expansum on apple [71], both patulin producers. AITC gaseous at 0.1 μL 

L-1 was investigated to reduce aflatoxin produced by A. parasiticus and 

beauvericin and enniatins produced by Fusarium. The authors observed reduction 

of 6.9 % to 23 % mycotoxin levels while at 10 μL L-1; AITC completely inhibited the 

production of mycotoxins for 30 days [80]. In a commercial packaging simulation, 

GLS present in yellow and oriental mustard flours reduced aflatoxin B1, B2, G1, and 

G2 in nuts (peanut, cashew, almonds, walnut, pistachio, and hazelnut). This 

reduction ranged from 83.1 to 87.2 % in the oriental mustard flour, whereas it 

was 27.0–32.5 % in the yellow flour [81]. AITC reacted with beauvericin in 

solution, reducing from 20 % to 100 %, and in a food system, beauvericin was 

reduced from 10 % to 65 %, in a dose-dependent manner [82]. AITC, BITC, and 
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PITC diminished fumonisin B1 (FB1) and B2 (FB2) levels in solution from 42 % to 100 

%, and on fumigation treatment (50, 100, and 500 μL L-1), ITCs were able to reduce 

53–96 % of FB1 and 29–91 % of FB2 contained in corn products, with four reaction 

products identified through the reaction [83]. 

 

3.1. Plant Protection 

GLS-derived products have been recognized as antimicrobial agents, and 

several studies demonstrated the ability to control soil-borne plant pathogens 

[84–87]. The GLS content in plant reaches about 1 % (highly variable) of dry 

weight in some tissues of Brassica vegetables [88]. Plant species and age are the 

major determinants of GLS composition [89], but also other factors such as 

nutritional status of the plant, fungal infection, and insect damage have significant 

effect on the content in growing plants [64]. 

Qualitative and quantitative differences of GLS composition vary also 

among plant organs [89]. GLS are found mainly in seeds, siliques, and young 

leaves, while intermediate contents are detected in leaves, stems, and roots [90]. 

Indole GLS and their hydrolysis products found in large amounts in roots may be 

related to their higher stability in the soil than air [91]. These compounds play a 

role in the development of root disease, caused by Plasmodiophora brassicae 

[92]. Volatile compounds from macerated Brassicae root tissue inhibited the 

fungal pathogen of wheat, Gaeumannomyces graminis [87]. Nevertheless, roots 

of a transgenic Arabidopsis thaliana had altered the profile of GLS compared with 

non-transgenic, with influence in the microbial community on roots and active 

populations in the rhizosphere [37]. The rhizospheric strains of Fusarium showed 

a protective effect on Lepidium sativum against Pythium ultimum. Accumulation 

of ITCs in roots not only increases resistance of the plant but also gives a 

competitive advantage to Fusarium strains [93]. 
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Degradation products of GLS showed an inhibition of L. maculans at 

concentrations greater than 40 μg mL-1 [94]. Cauliflower plants (Brassica oleracea 

var. botrytis) infected by Peronospora parasitica resistant to downy mildew 

presented higher sinigrin content than the susceptible variety. The susceptible 

seedlings exhibited a 12 % decrease in glucobrassicin and a 25 % increase in 

methoxyglucobrassicin when compared with healthy ones six days after 

treatment whereas no difference in glucobrassicin and a 10 % increase in 

methoxyglucobrassicin were observed in healthy and inoculated resistant 

seedlings [95]. 

The disease resistance may be dependent on fungal pathogen species and 

the composition of GLS-derived products present in the plant [91]. Arabidopsis 

thaliana mutant extracts were investigated on B. cinerea and Alternaria 

brassicicola isolates. A. brassicicola was more affected by aliphatic GLS and ITCs, 

while B. cinérea isolates showed variable composition-dependent sensitivity to 

GLS and their hydrolysis products [96]. Propenyl ITC and EITC demonstrated 

fungistatic potential at 0.3 μL, which inhibited mycelial growth and completely 

suppressed conidial and chlamydospore germination of four Fusarium oxysporum 

isolates. EITC, BITC, and PEITC were fungitoxic to F. oxysporum conidia and 

chlamydospores [97]. ITCs released from cabbage tissues were effective toward P. 

parasitica, P. ultimum, and Sclerotium rolfsii [98]. PEITC inhibited the growth of a 

range of fungi, oomycetes, and bacteria [99]. Pedras and Sorensen [100] observed 

that 5-(methylsulfamyl)-pentyl-1-ITC, 6-(methylsulfamyl)-hexyl-1-ITC, and 6-

(methylsulfinyl)-hexyl-1-ITC inhibited spore germination of Phoma lingam virulent 

isolate BJ 125 at a concentration of 5 X 10-4 M. Alternaria infection was positively 

correlated with GLS content in 33 oilseed rape lines (Brassica napus L. ssp. 

oleifera) [101]. 
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4. Structure Activity Relationships 

The mechanism of ITC antimicrobial action is unclear, but some 

hypotheses have been proposed. The central electrophilic carbon of ITCs (R-N = C 

= S) undergoes rapid reaction with hydroxyls, amines, and thiols, generating 

products such as carbamates, thiourea, and thiocarbamates, respectively [102, 

103]. Thereby, AITC reacted with glutathione, amino acids, proteins, water, 

alcohol, and sulfites [104, 105], and it was able to disintegrate the cysteine 

disulfide bond through an oxidative process [104, 106]. 

Zsolnai [19] reported that thioglycolate and cysteine could diminish the 

antibacterial action of ITCs. The study also describes that the antimicrobial action 

of ITCs may be linked to the inhibition of sulfhydryl enzymes. This finding is 

consistent with those observations of Luciano et al. [106], who reported that AITC 

was able to react with glutathione and cysteine naturally present in meat, which 

interfered on their antimicrobial activity. In addition, the presence of proteic 

substances reduced genotoxic activity of AITC, PEITC [107], and MITC [108], on 

which the compounds were able to cause DNA damage in Salmonella, E. coli, and 

human cells (Hep G2) [109]. 

Kojima and Ogawa [110] suggested that ITCs act by inhibiting the oxygen 

uptake by yeast through the uncoupler action of oxidative phosphorylation in the 

mitocondria of yeast, inhibiting the coupling between the electron transport and 

phosphorylation reactions, thus hindering the ATP synthesis. However, the levels 

to achieve both enzymatic and oxygen uptake inhibitions used in the study were 

200 times greater than the actual MIC of the ITCs for those organisms [30]. 

It is not clear if AITC crosses membranes and enters the cytoplasm of 

prokaryotic and eukaryotic cells or if it has an effect on cell membranes. Inside a 

cell, AITC can react with glutathione, sulfites, amino acids, oligopeptides, proteins, 

and water [111]. Delaquis and Mazza [10] suggest that AITC might cause 
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inactivation of essential intracellular enzymes through oxidative cleavage of 

disulfide bonds. Lin et al. [112] observed damages on the bacteria cell by 

exposition to AITC, creating pores on cell membranes and inducing leaking of 

cellular substances. AITC was able to modify the internal structure of L. 

monocytogenes when compared to non-treated cells when analyzed by 

transmission electron microscopy [104]. On the other hand, Ahn et al. [113] 

observed no damage in cell wall or leakage of ATP when AITC was tested against 

L. monocytogenes. The reduction of ATP could be the result of inhibition of 

enzymes related to ATP formation or depletion of proton motive force.  

The mechanism of fungal death by ITCs was investigated by Calmes et al. 

[114]. Exposure of AITC, PEITC, and BITC in A. brassicicola decreased oxygen 

consumption rate, intracellular accumulation of reactive oxygen species (ROS), 

and mitochondrial membrane depolarization. The two major regulators of the 

response to oxidative stress, MAP kinase AbHog1 and the transcription factor 

AbAP1, were activated in the presence of ITCs. Once activated by ITC-derived ROS, 

AbAP1 may promote the expression of different oxidative-response genes. 

Besides, fungal strains deficient in AbHog1 or AbAP1 were hypersensitive to ITCs, 

and it might be useful to understand the mechanism of fungal resistance. In other 

studies, the authors [13] suggest some differences on the mode of action of 57 

ITCs and related compounds investigated against A. niger, P. cyclopium, Rhizopus 

oryzae, and other species. These variations occurred in compounds in which -NCS 

group is directly bound on the aromatic moiety compared with the bounds on 

aliphatic radical. Normally, aromatic ITCs are more toxic than aliphatic, and the 

fungal toxicity of aliphatic ITCs decreased with the increasing length of the side 

chain [64]. 

Furthermore, it may be considered that AITC degraded in aqueous 

solution at 37 °C, generating allyl dithiocarbamate, diallyl tetra- and pentasulfide, 
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sulfur, and N, N’-diallylthiourea, dependent on temperature and pH conditions 

[104] However, there is no information relating this degradation to ITC’s 

antimicrobial potential [30]. 

 

5. Conclusions 

With the current trend, natural compounds are preferred and widely 

studied. Considering the data from several studies carried out, it may be observed 

that glucosinolates demonstrate a biocidal effect after their enzymatic hydrolysis. 

These breakdown products show a huge antibacterial and antifungal capacity, and 

they may be used on food preservation as well as plant defense. Several studies 

have demonstrated that the structure of glucosinolates and the microbial strain 

are responsable for their antimicrobial potential. Among the GLS hydrolysis 

products, ITCs are the main group that demonstrated an efficiency to reduce 

microbial growth. Allyl isothiocyanate is the most investigated ITCs against 

microorganisms, and its use as a fumigant agent on food preservation has been 

investigated. 

There is not enough information regarding the mechanism behind the 

antimicrobial activity of GLS. Studies indicated that the central electrophilic 

carbon of ITCs may react with hydroxyls, amines, and thiols. However, it is not 

clear if ITC crosses the membrane and enters the cytoplasm or if they have an 

effect on cell membranes. Thus, further studies are necessary to clarify the 

mechanism of these active compounds on microorganisms and evaluate the 

feasibility application of GLS products as food preservative through fumigation 

treatment. 
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2. OBJECTIVES 

The general objective of the present work is the application of chemical and 

biological methods to reduce the presence of fungi and mycotoxins in bread. 

To achieve this objective, the following specific objectives have been 

proposed: 

1. To evaluate the risk exposure to mycotoxins present in bread loaves 

purchased from different supermarkets of Valencia. 

2. To study the inhibition of the P. expansum growth and PAT production in 

wheat tortillas packed with oriental mustard flour, yellow mustard flour 

and AITC. 

3. To study the permanence of the AITC into the packaging using different 

systems of volatilization. 

4. To study the use of ITCs to extend the shelf life of bread loaf and piadina 

contaminated with A. parasiticus by inhibiting the growth of the fungus 

and the production of AFs. 

5. To evaluate AITC ability to react with α-ZOL and ZEA, to identify reaction 

products and to determine in vitro bioaccessibility and bioavailability of 

the studied mycotoxins and the reaction products. 

6. To study shelf life extention and reduction of AFs employing diverse LABs 

in bread loaf contaminated with A. parasiticus. 

7. To evaluate the ability of LABs to reduce the bioaccessibility of AFB1 and 

AFB2 using an in vitro dynamic digestion model. 
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2. OBJETIVOS 

El objetivo general del presente trabajo es la aplicación de métodos químicos 

y biológicos para reducir la presencia de hongos y micotoxinas en pan. 

Para conseguir este objetivo se han planteado los siguientes objetivos 

especificos:  

1. Evaluar el riesgo de exposición a micotoxinas presentes en muestras de 

pan de molde procedentes de los comercios de Valencia. 

2. Estudiar la inhibición del crecimiento de P. expansum y la reducción de 

PAT en tortillas de trigo envasadas con harina de mostaza oriental, harina 

de mostaza amarilla y AITC. 

3. Estudiar la permanencia del AITC en el envase utilizando diferentes 

sistemas de volatilización. 

4. Estudiar la utilización de ITCs para alargar la vida útil del pan de molde y 

de piadina contaminados con A. parasiticus inhibiendo el crecimiento del 

hongo y la producción de AFs. 

5. Evaluar el potencial del AITC para reaccionar con α-ZOL y ZEA, identificar 

los productos de reacción y determinar la bioaccesibilidad y 

biodisponibilidad in vitro de las micotoxinas estudiadas y de los productos 

de reacción. 

6. Estudiar la extensión de la vida útil y la reducción de AFs debido a la 

acción de distintas bacterias ácido lácticas (BALs) en pan de molde 

contaminado con A. parasiticus. 

7. Evaluar la capacidad de las BALs para reducir la bioaccesibilidad de AFB1 y 

AFB2 mediante el uso de un modelo de digestión dinámico in vitro. 
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Abstract 

In this study, 80 commercial samples of bread loaves were purchased from 

different supermarkets located in Valencia (Spain). These samples were 

investigated for the presence of legislated and non-legislated mycotoxins. Results 

showed that samples were contaminated with Aflatoxins (AFs), Zearalenone (ZEA) 

and Enniatins (ENs) with a frequency of 20, 96, and 65% respectively. Aflatoxin B1 

(AFB1), Aflatoxin B2 (AFB2) and Aflatoxin G1 (AFG1) were detected with 

concentrations ranged from 0.5 to 7.1 µg/kg. The samples contaminated with 

AFB1 showed values exceeding the maximum limit allowed in the EU. The sum of 

AFs also exceeded the maximum limit allowed in 6 samples. ENs contamination 

data ranged from 0.2 to 54 µg/kg and ENB was the most prevalent one. ZEA 

values ranged from 27 to 905 µg/kg and 30% of the contaminated samples were 

above the limits enforced by the EU. Finally, dietary exposure of the population 

living in Valencia to AFs, ENs and ZEA was estimated using the deterministic 

approach, through the evaluation of the consumption of commercial loaf bread 

and relating this data with the contamination of the loaf bread, for the calculation 

of the estimated daily intake (EDI) for each mycotoxin detected. 

Keywords: Mycotoxins, LC-MS/MS, loaf bread, risk assessment, estimated daily 

intake. 
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1. Introduction 

Mycotoxins are secondary metabolites produced by a wide variety of 

filamentous fungi, including species from the genera Aspergillus, Fusarium, 

Penicillium, Alternaria and Claviceps that grow under different climatic conditions 

on agricultural commodities. Approximately 25% of all cereals produced in the 

world are contaminated with mycotoxins and they are also found in other foods 

such as spices, coffee, nuts and fruits (Marin, Ramos, Cano-Sancho, & Sanchis, 

2013; Zöllner & Mayer-Hel, 2006). Mycotoxins comprise a variety of chemical 

structures with biological properties (Varga, Glauner, Berthiller, Krska, 

Schuhmacher, & Sulyok, 2013). The most important mycotoxins in foods and 

animal feed are: aflatoxins (AFs), produced by Aspergillus species; ochratoxin A 

(OTA) produced by both Aspergillus and Penicillium; trichothecenes (TCs) [type A: 

HT-2 and T-2 toxin, and type B: deoxynivalenol (DON)], zearalenone (ZEA), 

fumonisin B1 (FB1) and B2 (FB2). There are also emerging mycotoxins such as 

fusaproliferin (FUS), moniliformin (MON), beauvericin (BEA), and enniatins (ENs) 

produced mainly by Fusarium species that are commonly found in grains and 

grain-derived products (Marin, Ramos, Cano-Sancho, & Sanchis, 2013; Krska et al., 

2008). These mycotoxins can be harmful to both human and animal health, even 

after the food or feed product has been processed. Most mycotoxins are stable 

compounds to many processing operations such as heating, sorting, trimming, 

cleaning, milling, brewing, cooking, baking, frying, roasting, canning, flaking, 

alkaline cooking, nixtamalization and extrusion (Bullerman & Bianchini, 2007). 

These toxins may produce acute toxicity (ex. oestrogenic effect) as well as long-

term effects, namely carcinogenicity, mutagenicity, teratogenicity or 

immunotoxicity in animals and humans (Bennett & Klich, 2003). Humans are 

mainly exposed to mycotoxins by cereals and cereal-derived products. Bread is a 

staple food worldwide and, like other perishable products, is susceptible to fungal 
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contamination. Spoilage of bakery products represents a significant source of 

economic losses to the industry and a potential safety risk due to the production 

of mycotoxins by different molds (ex. Aspergillus and Penicillium) (Cauvain 2012a; 

Saranraj & Geetha, 2012; Smith, Daifas, El-Khoury, Koukoutsis, & El-Khoury, 2004). 

Bread posses a relatively high water activity (aw = 0.94-0.97) with a pH of 

approximately 6 (Legan, 1993). These properties are favorable for to the 

germination and growth of a wide range of molds. Bread loaves have a higher 

probability of mold growth since they are commonly sliced, which increases the 

surface area for microbial spoilage (Cauvain, 2012b). The Commission Regulation 

(EC) No 1881/2006 establishes maximum levels for mycotoxin contamination in 

foods. Indicative maximum levels for the sum of T-2 and HT-2 toxins have been 

recently issued (Commission recommendation 2013/165/EU) while ENs, BEA, FUS, 

NIV and MON, that belong to the group of emerging mycotoxins, do not present 

any specific legislation yet. 

The occurrence of mycotoxins has been highly investigated in several 

foods as breakfast cereals (Iqbal, Rabbani, Asi, & Jinap, 2014), Italian cereal 

products (Juan, Mañes, Raiola, & Ritieni, 2013), pasta (Serrano, Font, Mañes, & 

Ferrer, 2013) and cereals (Meca, Zinedine, Blesa, Font, & Mañes, 2010). 

Monitoring studies for mycotoxin presence in foodstuffs have to be conducted 

continuously in order to obtain reliable information about the exposure of human 

population to these toxic compounds (Rodríguez-Carrasco, Ruiz, Font, & Berrada, 

2013). 

The goals of this study were: a) to determine the presence of AFB1, AFB2, 

AFG1, AFG2, OTA, HT-2 and T-2, DON, ZEA, FB1 and B2, FUS, BEA, ENB, ENB1, ENA 

and ENA1 in 80 bread loaf samples; b) to evaluate the risk exposure of the 

population in Valencia to the these mycotoxins through the deterministic risk 

assessment focused on the evaluation of the Estimated Daily Intake (EDI) and its 
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comparison with the Tolerable Daily Intake for each compound studied.  

 

2. Materials and methods 

2.1. Chemicals and reagents  

AFB1, AFB2, AFG1, AFG2, OTA, HT-2 and T-2, DON, ZEA, FB1 and B2, FUS, 

BEA, ENB, ENB1, ENA, ENA1 (purity of all mycotoxins > 99%), formic acid (analytical 

grade, purity > 98%) and ammonium formate (analytical grade, purity ≥ 99.0%) 

were obtained from Sigma-Aldrich (St. Louis, MO, USA). Methanol (LC-MS grade, 

purity ≥ 99.9%) was purchased from Fisher Scientific (Hudson, NH, USA). 

Deionized water (<18MΩ cm resistivity) was obtained from a Milli-Q water 

purification system (Millipore, Bedford, MA, USA). Chromatographic solvents and 

water were filtered through a 0.45 µm cellulose filter from Scharlau (Barcelona, 

Spain). All stock solutions were prepared by dissolving 1 mg of the mycotoxin in 1 

mL of pure methanol, obtaining a 1mg/mL solution. These stock solutions were 

then diluted with pure methanol in order to obtain the appropriated work 

solutions. All solutions were stored in darkness at -20°C before use. 

 

2.2. Bread samples 

A total of 80 commercial packages of bread loaves were purchased from 

different supermarkets located in Valencia (Spain) from January to July 2015. 

These samples were studied and divided into six categories according to the 

Spanish Ministry of Agriculture, Food and Environment (MAGRAMA - Ministerio 

de Agricultura, Alimentación y Medio Ambiente, 2014). MAGRAMA is responsible 

for proposing and implementing government policies against change climate, and 

for the protection of natural heritage, biodiversity, sea, water, rural development, 

agricultural, livestock and fisheries resources, and food. The six categories studied 

were: 16 white, 16 whole wheat, 16 crustless white, 16 crustless whole wheat, 16 
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special bread loaves. Special bread loaves include multi-grain, oatmeal, corn, 

kamut, rye, lactose and gluten free.  All products were within their shelf lives. 

Bread slices of each sample were finely ground, added to a plastic bag and kept at 

-20 °C until analysis.  

 

2.3. Mycotoxin extraction 

Extraction of mycotoxins was performed using the method described by 

Serrano et al. (2013) with some modifications. Each bread sample was ground 

using a food grinder (Oster Classic grinder 220-240V, 50/60 Hz, 600W; Oster, 

Valencia, Spain). The bread powder obtained was vigorously shaken and three 5 g-

aliquots of each sample were weighed in 50 mL plastic tubes. Then, 25 mL of 

methanol were added to each tube and samples were extracted using an Ultra Ika 

T18 basic ultraturrax (Staufen, Germany) for 3 min. The organic extract was 

centrifuged at 4000 rpm for 5 min at 5°C and the supernatant was transferred to a 

flask and evaporated to dryness with a Büchi Rotavapor R-200 (Postfach, 

Switzerland) at 35°C. The residue was dissolved in 5 mL of methanol, transferred 

to a 15 mL plastic tube and evaporated to dryness with gaseous nitrogen at 35°C 

using a multi-sample Turbovap LV Evaporator (Zymark, Hoptikinton, USA). Then, 

the extract was reconstituted in 1 mL of methanol, filtered through a 13mm/0.22 

μm filter and transferred to a 1 mL glass vial. 

 

2.4. LC-MS/MS analysis 

The liquid-chromatography (LC) system (Agilent 1200 Chromatograph, 

Agilent Technologies, Palo Alto, CA, USA) was consisted of a binary LC-20AD pump 

and a SIL-20AC homoeothermic auto sampler. The LC was coupled to a 

3200QTRAP mass spectrometer (Applied Biosystems, Foster City, CA, USA) 

equipped with an ESI interface in positive mode for detection in multiple reactions 
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monitoring (MRM). A CMB-20A controller Analyst Software 1.5.2 was used for 

data acquisition and processing. The separation of mycotoxins was performed on 

a Gemini NX C18 column (150×2.0 mm I.D, 3.0 μm, Phenomenex, Palo Alto, CA) at 

room temperature (20 °C). The mobile phase was composed of solvents A (5 mM 

ammonium formate and 0.1% formic acid in water) and B (5 mM ammonium 

formate and 0.1% formic acid in methanol) at a flow rate of 0.25 mL/min. The 

elution gradient was established initially with 10% B, increased to 80% in 1.5 min, 

then kept constant from 1.5 to 4 min, increased to 90% from 4 to 10 min, 

increased again to 100% from 10 to 14 min and finally returned to the initial 

conditions for 10 min. The injection volume was 20µL. The main MS parameters 

were optimized and finally set as follows: nebulizer gas (GS1), 55 psi; auxiliary gas 

(GS2), 50 psi; curtain gas (CUR) 15 psi; capillary temperature 550 °C; ion spray 

voltage (IS) 5500 V. Nitrogen was used as the nebulizer, heater, curtain and 

collision gas. The precursor-to-product ion transitions were m/z 313.1/241.3–

284.9 for AFB1, m/z 315.1/259.0–286.9 for AFB2, m/z 329.0/243.1–311.1 for AFG1, 

m/z 331.1/313.1–245.1 for AFG2, m/z 404.3/102.1-358.1 for OTA, m/z 

484.3/185.1-215.1 for T2, m/z 442.2/215.4-262.8 for HT-2, m/z 297.1/161.0-249.2 

for DON, m/z 319.0/282.9-301.0 for ZEA, m/z 722.4/334.3-352.3 for FB1, m/z 

706.4/336.2-318.3 for FB2, m/z 355.0/175.0-246.7 for FUS, m/z 801.2/784.1-244.1 

for BEA, m/z 657.3/196.1-214.0 for ENB, m/z 671.2/214.2-228.1 for ENB1, m/z 

699.4/210.2-228.2 for ENA, m/z 685.4/214.2-210.2 for ENA1. 

 

2.5. Dietary exposure 

One of the most important aspects assessing the risk of mycotoxins is to 

determine the degree of human exposure to these compounds. Therefore, the 

dietary exposure of Valencia’s population to mycotoxins present in bread loaves 

was calculated through Estimated Daily Intakes (EDIs) as described below:  
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EDI (ng/kg bw/day) = mean conc. (ng/kg) * bread consumption (kg/kg bw/day) 

Bread consumption data were available in the statistical database of the Spanish 

Ministry of Agriculture, Food and Environment (MAGRAMA). Consumption of 

bread loaves was 0.12, 0.03, 0.07 and 0.03 g/kg bw/day respectively for white, 

whole wheat, special and crustless breads loaves (MAGRAMA, 2014). Assuming 70 

kg as the average body weight (bw) for the population in Valencia, the daily 

consumption per kg of bw was calculated.  

The health risk characterization of each mycotoxin was performed by 

dividing the EDI previously calculated with the tolerable daily intake (TDI) (ng/kg 

bw/day) of the respective mycotoxins (when available) as indicated in the 

equation: 

                                 %TDI = (EDI/TDI)*100 

International expert groups have not specified the TDI for AFs because no 

completely safe level can be established for chemicals that cause cancer. 

Exposure through food should be reduced to As Low As Reasonably Achievable 

(ALARA). Therefore, the calculated EDI cannot be directly compared with tolerable 

level for AFs. Since no TDI is available for ENs, the approximation to the risk 

assessment was carried out according to the safety guidelines established for 

other Fusarium mycotoxins. A hypothetic value of 1000 ng/kg bw/day was used 

(JECFA, 2001; SCF, 2002). The TDI for ZEA was set at 250 ng/kg bw/day (EFSA, 

2014). 

In addition, two exposure scenarios were considered to calculate mean 

values in the EDI study: the lower bound scenario (LB) and the upper bound 

scenario (UB). The first one underestimates contamination and exposure levels, 

while the second one generally overestimates them. The LB was obtained by 

assigning a zero value to those samples in which the analyte was non-detected or 

non-quantified and using these values to estimate dietary exposure. UB dietary 
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exposure was estimated by assigning the Limit of Detection (LOD) to all samples 

with non-detected results and the Limit of Quantification (LOQ) to all samples 

with less than the LOQ but more than the LOD (EFSA, 2010). 

 

3. Results and discussion 

3.1. Method validation 

The method validation consisted in studies of linearity, recovery, repeatability, 

reproducibility, LODs and matrix effect for each mycotoxin. For the estimation of 

linearity and matrix effects, the standard calibration curves were carried out for 

each mycotoxin by plotting the signal intensity versus the mycotoxin 

concentration. All mycotoxins exhibited good linearity over the working range in 

the standard solution, a matrix-matched calibration assay and a fortified sample 

assay. The resulting coefficients of determination (R2) were always higher than 

0.9923. Linearity was evaluated using matrix-matched calibrations in triplicate at 

concentrations between 5 and 500 µg/Kg for mycotoxins with high sensitivity and 

between 50 and 2000 µg/Kg for mycotoxins with lewer sensitivity. The matrix 

effect (Table 1) for each mycotoxin was calculated according to the formula 

defined as the percentage of the matrix-matched calibration slope divided by the 

slope of the standard calibration and multiplied by 100. Recovery analyses were 

performed in triplicate during 3 consecutive days by spiking blank samples at 

three levels: LOQ, 2 times LOQ and 10 times LOQ. Spiked samples were left 

overnight at RT to allow solvent evaporation and stabilization of the mycotoxins 

on the matrix. Results were between 72% and 97% and relative standard 

deviation (RSD) was lower than 17%. The values for intra-day repeatability (n = 3), 

expressed as repeatability relative standard deviation (RSDr), ranged from 7.4% to 

11.7%; and inter-day reproducibility (n = 5), expressed as reproducibility relative 

standard deviation (RSDR), ranged from 8.1% to 17.2% for the same linearity 
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addition values. LODs and LOQs were calculated by analyzing blank samples 

spiked with the standard mycotoxins (Table 1); they were determined as the 

lowest concentration of the selected compounds that produce a chromatographic 

peak at a signal-to-noise ratio (S/N) of 3 and 10 for LOD and LOQ, respectively. 

 

Table 1. LODs, LOQs and matrix effects (ME) (%) for different mycotoxins in bread 
loaf.  

Mycotoxin LOD (µg/Kg) LOQ  (µg/Kg) ME (%) 

AFB1 0.08 0.27 37 
AFB2 0.08 0.27 29 
AFG1 0.16 0.53 27 
AFG2 0.30 1.00 34 
OTA 0.05 0.17 102 
FB1 50.00 166.67 132 
FB2 30.00 100.00 139 
ZEA 7.80 26.00 106 
T-2 1.76 5.87 72 
HT-2 4.95 16.50 77 
ENA 2.50 8.33 14 
ENA1 0.50 1.67 21 
ENB 0.03 0.10 49 
ENB1 0.06 0.20 49 
BEA 7.00 23.33 32 
DON 20.50 68.33 60 
FUS 0.65 2.17 35 

 

3.2. Occurrence of mycotoxins in bread loaf 

The occurrence of the aforementioned mycotoxins was determined in 80 

units of bread loaf. The mycotoxins detected were: AFB1, AFB2, AFG1, ZEA, ENA1, 

ENB and ENB1. Results of the natural occurrence of AFs are summarized in Table 2.  
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        Table 2. Presence of Aflatoxins in analyzed samples. 

Samples  

N. 
of 

samples  

Aflatoxins (µg/Kg) 
  

Positive 
samples 

 and  
frequency 

(%)  

AFB1     
Positive 
samples  

and 
frequency 

(%)  

AFB2     
Positive 
samples  

and 
frequency 

(%)  

AFG1     

  

Mean Max. 
level 

Min. 
level 

Mean Max. 
level 

Min. 
level 

Mean Max. 
level 

Min. 
level 

White 16 2 (12.5) 5.6 7.1 4.2 2 (12.5) 3.6 4.2 3.1 1 (6.2) 2.9 2.9 ND 
Whole wheat 

bread 16 1 (6.2) 6.1 6.1 ND 3 (18.7) 2.2 3.2 0.5 0 0 ND ND 
Special 16 1 (6.2) 5.2 5.2 ND 0 ND ND ND 1 (6.2) 2.5 2.5 ND 

Crustless 
white 16 0 ND ND ND 3 (18.7) 4.1 5.3 1.0 0 ND ND ND 

Crustless 
whole wheat 16 0 ND ND ND 5 (31.3) 1.8 3.5 0.8 0 ND ND ND 
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The frequency of contamination of total samples with AFs (AFB1, AFB2 

and/or AFG1) was 20% with concentrations ranging from 0.5 to 7.1 µg/kg. AFs are 

often detected in cereals cereal-based products due to their stability to 

environmental conditions and through harsh processes, such as baking (Marin, S., 

Ramos, A.J., Cano-Sancho, G., & Sanchis, V., 2013).   

Frequencies of sample contamination with AFB1 were 12.5, 6.2 and 6.2% 

for white, whole wheat and special bread loaves, respectively. The average 

concentration found was of 5.6 µg/kg and the highest level (7.1 µg/kg) was 

detected in a white bread sample. Two samples of white (4.2 and 7.1 µg/kg), one 

of special (5.2 µg/kg) and one of whole wheat bread (6.1 µg/kg) were 

contaminated with AFB1, whereas this mycotoxin was not found in crustless 

bread. All samples contaminated with AFB1 showed values exceeding the 

maximum limit (2.0 µg/kg) set by the European legislation for this mycotoxin in 

bread (European Commission, 2010).  

AFB2 was detected in a total of 13 samples, namely, two white, three 

whole wheat, three crustless white and five crustless whole wheat bread. The 

mean concentration of AFB2 in the contaminated samples was 2.7 µg/kg, and the 

highest and the lowest were 5.3 and 0.5 µg/kg, respectively. AFG1 was only 

detected in 2 samples at 2.9 µg/kg in a white bread unit and 2.5 µg/kg in a special 

bread unit. These units were also contaminated with AFB1. Overall, six bread 

samples (7.5%) presented a sum of AFs that exceeded the maximum allowed (4.0 

µg/kg) by the EC for the presence of total AFs in bread (European Commission, 

2010).  

Iqbal et al. (2014) analyzed aflatoxins, ochratoxin A and zearalenone in 

breakfast cereals. Their results have shown that 41% of the samples were positive 

for the presence of AFs, twofold higher than the frequency obtained in our study. 

The authors have also shown that 16% and 8% of the samples presented levels of 



  
   Results 

97 
 

 

AFB1 and total AFs, respectively, above the limits enforced by the European 

legislation. Moreover, the co-occurrence and risk assessment of different 

mycotoxins in cereals and cereal-based products from Mediterranean area was 

also evaluated (Serrano et al., 2012), where 10.2% of the samples were 

contaminated with AFs at much higher concentrations (4.2-66.7 µg/kg) than the 

contamination found in our study.  

Among all emerging mycotoxins tested, only ENs (Table 3) were found in 

the bread loaves sampled. The frequency of contamination of ENs (ENA1, ENB, 

ENB1) was 96.2%. Only ENA was not detected in the samples analyzed. The co-

occurrence of ENs was found in 61 samples (76.2%). ENA1 was found in 14 

samples (17.5%), with higher frequencies in whole wheat (31.3%), special (25%) 

and white (18,3%) breads. ENB was the mycotoxin most frequently detected 

(96.2% of total samples) at an average concentration of 13.7 µg/kg (0.4 - 54 

µg/kg). ENB1 was detected in 63 of the 80 samples (78.7%) with frequencies of 

81.3, 81.3, 75.0, 87.5 and 68.8% for white, whole wheat, special, crustless white 

an crustless whole wheat bread, respectively. The average concentration of this 

mycotoxin in the contaminated samples was 5.1 µg/kg, with values ranging from 

0.2 to 14.8 µg/kg. ENB was also found as the most prevalent enniatin in Italian 

cereal products (Juan et al., 2013). However, the levels of enniatins in these 

products were ten-fold higher (ENA1 8.3 µg/kg, ENB 133.60 µg/kg and ENB1 8.1 

µg/kg) than the concentrations found in the present study.  

Meca et al. (2010) also investigated the presence ENs, BEA and FUS in 

cereals available in the Spanish market. The authors showed a frequency of 73.4% 

for ENA1 (ranging from 33.38 to 814.42 mg/kg), 7.8% for ENB (ranging from 2.23 

to 21.37 mg/kg) and 4.6% of ENB1 (ranging from 4.34 to 45.94 mg/kg). Our study 

detected lower values of ENA1, ENB1, ENB in bread.  
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Table 3. Presence of Enniatins in analyzed samples.  
Samples 

N. of 
sampl

es 

Enniatins (µg/Kg)       
   

 

Positive 
samples 

and 
frequency 

(%) 

ENA1 
  

Positive 
samples and 

frequency 
(%) 

ENB 
  

Positive 
samples and 

frequency 
(%) 

ENB1 
  

 

Mean Max. 
level 

Min. 
level 

Mean Max. 
level 

Min. 
level 

Mean Max. 
level 

Min. 
level 

White 16 3 (18.7) <LOQ <LOQ <LOQ 15 (93.8) 9.8 18.7 2.0 13 (81.3) 2.9 6.0 0.2 
Whole 

wheat bread 16 5 (31.3) 2.4 2.6 2.2 16 (100) 16.5 41.1 1.3 13 (81.3) 6.5 14.8 1.5 
Special 16 4 (25) 2.6 2.6 <LOQ 16 (100) 16.9 54.0 0.4 12 (75.0) 6.3 14.0 0.2 

Crustless 
white 16 1 (6.2) <LOQ <LOQ <LOQ 16 (100) 14.8 8.7 1.4 14 (87.5) 4.6 13.0 0.4 

Crustless 
whole wheat 16 1 (6.2) <LOQ <LOQ <LOQ 14 (87.5) 10.6 31.0 1.0 11 (68.8) 5.1 13.0 2.4 
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Results of ZEA contamination in the bread samples analyzed are 

presented on Table 4. This mycotoxin was detected in 52 out of the 80 samples 

studied (65.0%). The frequency for white, whole wheat, special, crustless white 

and crustless whole wheat bread loaves was 50.0, 56.2, 56.2, 87.5 and 75.0%, 

respectively. The average concentration of ZEA in the contaminated samples was 

89.6 µg/kg, while the highest and lowest values were 905 and 27 µg/kg, 

respectively. Thirty percent of the samples were above the limits enforced by the 

European legilsation (European Commission, 2006) for ZEA in bread (50 µg/kg).  

 

Table 4. Presence of Zearalenone in analyzed samples. 
Samples  

N. of 

samples  

Zearalenone (µg/Kg) 

  Positive 
samples and 

frequency 
(%) 

ZEA 
  

  

Mean Max. 
level 

Min. 
level 

White 16 8 (50) 56.8 80.0 36.0 
Whole wheat bread 16 9 (56.2) 48.8 100.0 29.0 
Special 16 9 (56.2) 178.6 905.0 27.0 
Crustless White 16 14 (87.5) 96.8 214.0 40.0 
Crustless whole wheat 16 12 (75.0) 67.0 135.0 30.0 
 

3.3. Estimation of the daily intake 

The EDIs and health risk characterization of the mycotoxins (% of relevant 

TDI) detected in the samples analyzed are presented on table 5. EDIs for ENs 

ranged from 0.005 (ENA1 LB) to 0.808 ng/kg bw/day (ENB UB) and for the sum of 

ENs the EDIs were 1.037 and 1.079 ng/Kg bw/day, respectively for the LB and UB 

scenarios. Considering that there is no TDI available for this class of mycotoxin, an 

estimated risk assessment was carried out according to the guidelines for other 

Fusarium mycotoxins, using a TDI of 1000 ng/kg bw/day. In this case, all EDI values 
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were lower than the TDI. The health risk characterization expressed as %TDI for 

ENs ranged from 0.001 to 0.081%, while it was found as 0.104% (LB) and 0.108% 

(UB) for the sum of ENs.  

 

Table 5. Mycotoxins’ exposure estimation and risk assessment of the population 
in Valencia through the consumption of bread.  

Mycotoxin EDI (ng/kg bw/day)   % TDI 

  LB UB   LB UB 

AFB1 0.030 0.035   - - 

AFB2 0.022 0.026   - - 

AFG1 0.008 0.018   - - 
Sum of AFs 0.021 0.078   - - 
ZEA 2.380 2.923   0.952 1.169 

ENA1 0.005 0.047   0.001 0.005 
ENB 0.808 0.808   0.081 0.081 

ENB1 0.223 0.224   0.022 0.022 
Sum of ENs 1.037 1.079   0.104 0.108 

 

The EDIs calculated for ZEA were 2.380 and 2.923 ng/kg bw/day 

considering the LB and UB scenarios, respectively. The %TDI was 0.952% for LB 

and 1.169% for UB. EDI values calculated for ZEA through the consumption of 

different commodities commonly consumed in Catalonia ranged between 0.3-0.5 

ng/kg bw/day (Cano-Sancho et al., 2012), which is 5-6 times lower than the results 

found in the present study. Moreover, Aldana et al. (2014) found EDIs of 0.049 

and 0.090 µg/kg bw/day in Portugal and the Netherlands, respectively, through 

the consumption of contaminated wheat flour, which is the main ingredient of 

bread.  

EDIs of AFs ranged from 0.008 (AFG1 LB) to 0.035 ng/kg bw/day (AFB1 UB) 
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and 0.021 (LB) and 0.078 (UB) ng/kg bw/day for the sum of AFs. EDIs of AFB1, 

AFB2, AFG1 and AFG2 obtained by García-Moraleja et al. (2015) for the adult 

Spanish population through the consumption of coffee were of 0.003, 0.001, 

0.006 and 0.014, respectively. However, there is a lack of studies to evaluate the 

EDI of AFs in the total diet of the Spanish population. In addition, the EDI of AFs 

could not be compared with the TDI because carcinogenic compounds do not 

have a specific TDI (Azaiez, Font, Mañes, & Fernández-Franzón, 2015). Exposure of 

carcinogenic substances through food consumption should be reduced to As Low 

As Reasonably Achievable (ALARA).  

 

4. Conclusion 

Bread loaves purchased in the community of Valencia were tested 

positive to aflatoxins (AFs), zearalenone (ZEA) and enniatins (ENs) with a 

frequency of 20, 96 and 65%, respectively. More importantly, some samples 

presented levels of AFB1 (5% of total samples), ZEA (30% of total samples) and 

sum of AFs (7.5% of total samples) that exceeded the maximum content 

established by the European legislation. Although the contamination levels for 

some mycotoxins are above the maximum limits allowed, all calculated EDIs were 

lower than the correspondent TDIs. However, further studies are necessary to 

analyze the levels of these mycotoxins in several other foods to have a complete 

risk assessment about the intake of these mycotoxins in the whole diet of the 

population in Valencia.  
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Abstract 

Patulin (PAT) is a toxic fungal metabolite produced by Penicillium, Aspergillus and 

Byssochlamys growing especially in fruit and cereals. PAT exhibits a number of 

toxic effects in animals and its presence in food is undesirable. In this study the 

reduction of the mycotoxin PAT produced by a strain of Penicillium expansum, on 

wheat tortillas was studied using volatile bioactive compounds present in the 

oriental and yellow mustard flour and also using the standard solution of the 

antifungal compound allyl isothiocyanate (AIT), developing an active packaging 

with two different systems of release of those bioactive compounds. Also the 

kinetic of volatilization of the compounds used in the bioactive packaging was 

evaluated using the technique of the gas chromatography (GC) coupled to the 

flame ionization detector (FID). The PAT was extracted from the samples using the 

QUECHERS methodology and was determined using the technique of the liquid 

chromatography (LC) coupled to the mass spectrometry detector in tandem 

(MS/MS). The maximum of volatilization of the AIT in the bioactive packaging is 

produced between 1 and 24h depending on the volatilization technique and is 

stable during two months, whereas the reduction of PAT evidenced in the samples 

treated ranged from 80 to 100%. 

Keywords: Glucosinolates, isothiocyanates, Penicillium expansum, chemical 

control, PAT. 

 

 

 

 
 
 
 
 



 
Results 

    

111 
 

1. Introduction 

Patulin (Fig. 1) (PAT) is a toxic secondary metabolite produced by a wide 

range of fungal species of the genera Penicillium, Aspergillus and Byssochlamys. 

Among the different genera, the most important PAT producer is P. expansum 

(Moake, Padilla-Zakour, & Worobo, 2005). PAT has been found as a contaminant 

in many mouldy fruits, vegetables, cereals and other foods. However, the major 

sources of contamination are apples and apple products, which are also the most 

important source of PAT in the human diet (Baert et al., 2007; Murillo-Arbizu, 

Amézqueta, González-Peñas, & de Cerain, 2009; Reddy et al., 2010).  

 

 

Figure 1. Patulin chemical structure. 

 

PAT has been classified in Group 3 by IARC that means not classifiable as to 

its carcinogenicity to humans, although it has been shown to cause neurotoxic 

and mutagenic effects in animals (IARC, 2002). In 1995, the Joint Food and 

Agriculture Organization/ World Health Organization Expert Committee on Food 

Additives (JECFA, 1995) recommended a provisional tolerable daily intake (pTDI) 

of 0.4 µg PAT/kg body weight/day based on long-term exposure (JECFA, 1995). As 

a result, the levels of PAT in fruits are subjected to legislative control. The Codex 

Alimentarius recommends levels of PAT in fruits and fruit juices to be lower than 



 
Results 
 

112 
 

0.05 mg/kg. 

PAT causes gastrointestinal effects as distension, ulceration and hemorrhage 

in acute and short-term in vivo studies. Recent studies have also demonstrated 

that PAT alters the intestinal barrier function. PAT has electrophilic properties and 

high reactivity to cellular nucleophiles. At cellular level it can cause enzyme 

inhibition and chromosomal damage. PAT causes cytotoxic and chromosome-

damaging effects mainly by forming covalent adducts with essential cellular thiols 

(Fliege, & Metzler, 2000; Glaser, & Stopper, 2012). 

Vegetables like broccoli, cauliflower, cabbage, Brussels sprouts, belong to the 

Brassica genus and are widely consumed. A healthy diet should include Brassica 

vegetables because these vegetables are rich in health-promoting compounds like 

ascorbic acid, soluble fiber, selenium, glucosinolates (GLS), etc. Among these 

compounds, GLS have been extensively studied in the past decades. GLS are 

secondary metabolites that can be classified as aliphatic, aromatic or indolic 

depending on their side chain (Fahey, Zalcmann, & Talalay, 2001). GLS are 

hydrolysed by a group of endogenous β-glucosidases termed myrosinase (Fig. 2). 

Myrosinase (MYR) is stored separately from GLS in the plants, but will mix with 

GLS upon tissue damage (Kissen, Rossiter, & Bones, 2009). Hydrolysis of the 

thioglucosidic bond by myrosinases releases an aglycone that can either rearrange 

into an isothiocyanate or be converted to other products such as nitriles, 

epithionitriles or organic thiocyanates depending on the presence of specific 

proteins and certain structural prerequisites.  

Fungi growth inhibition by isothiocyanates has been reported since the late 

1930's (Luciano & Holley, 2009). These compounds are very unique in comparison 

to other essential oils, since they are only formed when the plant cell suffers some 

kind of injury such as insect bite, grinding, milling or fungi contamination in the 

presence of water (Luciano & Holley, 2009). Then, the isothiocyanate precursors, 
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called GLS, are transformed by the enzyme myrosinase. Therefore, 

isothiocyanates are not present in dry mustard flour, unlesswater is added to it.  

          

Figure 2. Chemical structure of the bioactive GLCs a) sinigrin and b) sinalbin c) and 
of the ITCs c) AIT and d) PHBITC.  

 

ITCs exhibit biocidal activity against microorganisms including fungi (Nielsen 

& Rios 2000) and bacteria (Luciano & Holley 2011), as well as insects (Tsao, Yu, 

Potter, & Chiba, 2002b) and nematodes (Flemming, Turner, & Hunt, 2006). In 

particular, it has been demonstrated that AIT effectively inhibits the growth of a 

variety of pathogenic microorganisms at low concentrations (Lin, Preston, & Wei, 

2000; Luciano & Holley 2009). The potential of AIT as a natural antimicrobial in 

different food matrices, including chicken breast (Shin, Harte, Ryser, & Selke, 

2010), ground beef (Nadarajah, Han, & Holley, 2005), dry-cured ham (Graumann 

& Holley 2007), fermented dry sausages (Chacon, Muthukumarasamy, & Holley, 

2006), and tuna meet (Hasegawa, Matsumoto, Hoshino, & Iwashita, 1999) has 

been studied.  

 

a) c) 

b) d) 
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The aims of this study were to study a) the quantity of the GLS present in 

yellow and oriental mustard flours b) the kinetic of volatilization of the 

antimicrobial AIT present in two active packaging and c) the inhibition of the 

Penicillium expansum growth and PAT production in wheat tortillas treated with 

AIT. 

 

2. Materials and methods 

2.1. Materials and chemicals 

PAT, sinalbin and sinigrin (98% purity), formic acid (HCOOH), AIT (94% purity), 

para-hydroxybenzylisothiocyanate (PHBITC), tetrabutylammonium hydrogen 

sulfate (TBA), ammonium formate, and sodium chloride (NaCl) were obtained 

from Sigma-Aldrich (St. Louis, USA). Oriental (Brassica juncea) and yellow mustard 

(Brassica alba) flours were provided by G.S. Dumm dry mustard millers (Hamilton, 

Ontario, Ca). Methanol was purchased from Fisher Scientific (New Hempshire, 

USA). Deionized water (<18 MΩ cm resistivity) was obtained from a Milli-Q water 

purification system (Millipore, Bedford, MA, USA). Chromatographic solvents and 

water were degassed for 20 min using a Branson 5200 (Branson Ultrasonic Corp., 

CT, USA) ultrasonic bath. The strain of Penicillium expansum CECT 2278, was 

obtained from the Spanish Type Culture Collection (CECT, Valencia, Spain). The 

plastic trays used for the experiments were composed by multilayer polyethylene 

(13" × 9.6" clear, rectangular, with an oxigen trasmission of 6509 cm3/mil/m2/24h) 

and were provided by Saplex (Barcelona, Spain). 

 

2.2. GLS extraction and determination  

GLS from oriental and yellow mustard flours were extracted using the 

method of Prestera et al. (1996) with modifications. Twenty grams of each flour 

were placed in a 50 mL glass tube and autoclaved at 115 °C during 15 minutes to 
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inactivate the enzyme myrosinase. Then, the samples were added with 200 mL of 

boiling distilled water in a 500 mL Erlenmeyer flask and the mixture was stirred for 

10 min at 350 rpm. The mixtures were cooled at room temperature, centrifuged 

at 2500 rpm for 5 min at 4 °C and filtered through Whatman no. 4 filter paper into 

50 mL screw-capped tubes. The extracts were filtered again through a 0.22 µM 

filter. Separation and quantification of GLS were performed using a Shimadzu LC 

system (Shimadzu, Japan), equipped with a Gemini C18 column (4.6 × 150 mm i.d. 

5 μm; Phenomenex, Palo alto, CA). Elution was carried out isocratically for 20 min 

at a flow rate of 1 mL/min, using a solvent system containing 20% (v/v) 

acetonitrile and 80% water+0.02 M tetrabutylammonium hydrogen sulfate (pH 

5.5). The injection volume used was 20 μL. A UV detector was used to measure 

the absorbance at 227 nm in order to verify and quantify the presence of GLS 

sinigrin (SN) and sinalbin (SA) with reference retention time of 2.23 and 1.83 min. 

respectively. 

 

2.3. Headspace analysis of AIT 

The study of the release of the AIT used to preserve the wheat tortillas 

(stored in plastic trays) against P. expansum growth and PAT production was 

carried out performing two different sets of experiments and in particular: 

1) It was evaluated the AIT released in the plastic tray by the conversion of 

the GLS contained in the oriental mustard flour into AIT through myrosinase 

conversion in presence of water. The flour (4g) was weighted and placed in a 

small plastic bag containing 3 mL of water, and after the homogenization of the 

mustard flours matrices were pasted on the cover tray. 

 2) It was evaluated the AIT released by the evaporation of a 50 µL of the 

standard solution of the AIT placed on a 2.5 × 2.5 cm paper-filter plastic and 

pasted on the cover tray.  
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The AIT evaporated in the headspace of the plastic trays described above was 

determined using a gas chromatograph (GC) equipped with flame ionization 

detector (FID) (GC 6890, Agilent Technologies Inc., Santa Clara, Calif., U.S.A.), 

equipped with a 30m × 0.25 mm CP-SIL 88 fused capillary column (Varian, 

Middelburg, Netherlands). The inlet temperature was set at 200 °C, whereas the 

detector temperature was 250 °C. H2 served as carrier gas (5 ml/min), and the FID 

gasses were H2 (40mL/min), and purified air (450 mL/min). The temperature 

program was as follow: initial temperature of 60 °C was held for 1 min, raised at 8 

°C/min until 100 °C and held for 5 min, then raised at 15 °C/min until 200 °C, 

totalizing 16.6 min per sample analysis. Identification and quantification of AIT 

was carried out comparing the samples areas with points standards curve (1-100 

mg/Kg). 

Test trays were stored at room temperature (0-2 months) and then 100 µL of 

the head space was injected in the chromatograph through a septum applied in 

the tray cover. Three replicates were carried out for each test condition.  

 

2.4. Wheat tortillas food system experiments 

In a multilayer plastic tray of 1 L (Saplex, Barcelona, Spain) was inserted a 

sample of wheat tortilla (10 g). The samples were treated with: 

a) Three quantities of oriental and yellow mustard flours (0.5, 1 and 2 g) 

placed in a small plastic bag with the same quantity of water to promote the 

reaction of conversion of the GLS into ITCs and pasted on the tray plastic cover. 

b) Three different quantities of the standard solution of the AIT (50-100-200 

µL/L) placed on a 2.5 × 2.5 cm paper-filter pasted on the plastic tray cover. 

The wheat tortillas (50 g) were contaminated with one mL of P. expansum 

CECT 2681 grown in Potato Dextrose Broth (PDB) (Oxoid, UK) medium containing 

106 conidia/mL. Conidial concentration was measured by optical density at 600 
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nm in sterile water and adjusted to 106 conidia/mL in PDB as reported Kelly, 

Grimm, Bendig, Hempel, & Krull, (2006). The control group did not receive any 

mustard flours or AIT treatments. The plastic trays were closed and incubated at 

23 °C during 30 days.  

 

2.5. PAT extraction 

For wheat tortilla samples 10 ± 0.01 g test portion was weighed into a 50 mL 

Falcon polypropylene tube (Becton Dickinson, Le Pont de Claix, France). Ten 

milliliters of acetonitrile were added in all samples, and the resulting slurry was 

vigorously hand-mixed and placed onto an automated shaker for 5 min. 

Partitioning Step: A magnesium sulfate (MgSO4)/sodium chloride (NaCl) salt 

mixture (4:1, w/w) (5.0 ± 0.2) was added to the slurry, which was immediately and 

vigorously hand shaken for a few seconds before centrifugation at room 

temperature at 4000 g for 15 min. 

Cleanup by Dispersive Solid-Phase Extraction (dSPE): The resulting 

acetonitrile-based supernatant (6 mL) was transferred to a 15 mL Falcon 

polypropylene tube already filled with 400 mg of Primary Secondary Amine (PSA), 

400 mg of C18, and 1200 mg of MgSO4, and the tubes were vigorously hand-shaken 

for about 30 s. After centrifugation (4000 g at room temperature for 10 min), the 

supernatant (1 mL) was transferred into a new 15 mL Falcon polypropylene tube 

filled beforehand with 10 μL of a 5% formic acid solution in water (v/v). Sample 

was mixed and evaporated to dryness at 40 °C under a stream of nitrogen. 

Final Treatment of the Extract: The residue was reconstituted in H2O (200 μL) 

before being filtered over a Polytetrafluoroethylene (PTFE) syringe filter, 0.2 μm, 

13 mm, and collected into a amber glass vial for further liquid chromatography 

tandem mass spectrometry (LC-MS/MS) analysis (Desmarchelier, Mujahid, 

Racault, Perring, & Lancova, 2011). 
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2.6. LC-MS/MS PAT determination  

LC analysis was performed on a 150 mm × 4.6 mm, 2.1 mm i.d., 2.5 μm, 

Gemini C18 column (Phenomenex, Palo Alto, CA) using an Agilent 1100 binary 

pump system. The mobile phase was constituted by H2O (A), and acetonitrile (B). 

A linear gradient program was set up with 0.2 min, 5% B; 2.5 min, 95% B; a hold at 

95% B for 2 min; and a return to 5% B in 0.5 min (the LC column was 

reconditioned at 5% B for an additional 10 min). The flow rate was 0.3 mL/min, 

and 20 μL of the extract were injected. MS detection was performed using an 

4000 QTrap (Applied Biosystems, Toronto, CA) equipped with a Turbo Ion Spray 

ionization source. MS tuning was performed in positive electrospray ionization 

(ESI) by syringe-infusing separately a 10 μg/mL solution of PAT. The block source 

temperature was maintained at 500 °C, and the gas set values were as follows: 

curtain gas, 40 psi; nebulizer gas, 30 psi; turbo gas, 30 psi; collision gas, 1.2 × 104 

psi. The entrance potential and the collision exit potential were settled at 10 and 

15 V, respectively, and the electrospray capillary voltage was set at +4 kV. 

Quantitative analysis was performed using tandem MS in selected reaction 

monitoring (SRM) mode using as quantification transition the ion with a m/z of 

153, whereas as analyte confirmation the ions with a m/z of 109 and 81. Data 

processing was carried out using Analyst software 1.5. PAT was quantitated by 

means of an external calibration curve (Desmarchelier et al., 2011). 

 

3. Results and discussion 

3.1. GLS evaluation in yellow and oriental mustard flours 

The GLS presents in the yellow and oriental mustard flours were analytically 

characterized to know the total amount of the GLS that can be converted in ITCs 

through the action of the enzyme myrosinase. Both flour matrices were extracted 

with an aqueous extraction and analyzed using the LC-DAD technique (Fig. 3).  
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Figure 3. LC-DAD chromatograms of the a) sinalbin and b) sinigrin presents in the 

yellow and oriental mustard flours respectively. 

 

The principal GL present in the oriental mustard flour was the sinigrin (SN), 

with a retentij detected in the quantity of 46 g/Kg, whereas the yellow mustard 

flour was characterized for the presence of the GL sinalbin (SA) in the 

concentration of 42 g/Kg. These two GLS, SN and SA, are the precursor of the 

antimicrobial compounds AIT and parahydroxybenzyl isothiocyanate (PHITC) 
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respectively that are the compounds that through the reaction with the enzyme 

myrosinase were used to reduce the growth of the strain of P. expansum 

inoculated on wheat tortillas.  

To improve the safety of bakery products, the addition of other agents during 

manufacture to control the presence of the mycotoxigenic fungi is of great 

interest. One alternative to the synthetically antimicrobial compounds with 

promise is the mustard flour, which has natural antimicrobial properties. All plants 

in the Brassicaceae family contain GLS as secondary metabolites, and yellow (B. 

juncea) and oriental (B. alba) mustards contains the GLS SN and SA. Upon physical 

damage of the plant tissue, hydrolysis of GLS is catalyzed by the endogenous 

enzyme myrosinase in the presence of moisture to produce the antimicrobials 

compounds AIT and PHBITC (Delaquis, & Mazza, 1995; Ekanayake et al., 2006). 

The mechanism of action of these antimicrobial compounds is uncertain, but it 

may inhibit essential enzymes and cause membrane damage (Lin et al., 2000). 

 

3.2. Gas chromatography evaluation of the AIT volatilization 

The volatilization of the bioactive compound AIT employed to reduce the 

growth of the strain of P. expansum CECT 2278 in wheat tortillas samples was 

studied using three different methodologies. The first methodology was based on 

the employment of the oriental mustard flour inserted in a small plastic bag with 

water that catalyze the reaction conversion of the GL SN in the AIT mediated by 

the enzyme myrosinase, whereas the second methodology was developed 

absorbing 50 µL of the AIT standard solution on a paper filter pasted under the 

plastic tray cover used for the wheat tortillas storage. The volatilization of the 

bioactive compound AIT was studied with and without the presence of the food 

matrix employed in this study at room temperature during two months storage. 
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In particular as shown in Fig. 4a, using the oriental mustard flour, the 

maximum level of AIT detected in the headspace with and without the sample 

were of 34.3 and 50.7 mg/L respectively. This difference on the AIT volatilization 

could be related to several factors: 

a) During the incubation time studied the concentration of the AIT 

decrease until 15 mg/L evidenced at 24 h incubation, and then continue to 

decrease probably due to the absorption of the AIT in the plastic matrix that 

compose the tray and also for the absorption of the bioactive compound in 

the food matrix tested.  

b) Another important aspect that has to be considered is that the AIT 

during the volatilization can be converted in other compounds with less 

antimicrobial activity as thiocyanates and nitrils (Meca, Luciano, Zhou, Tsao, 

& Mañes, 2012).   

Employing the second AIT volatilization system (50 µL of AIT standard 

solution absorbed on a paper filter) the maximum AIT dispersion in the headspace 

was detected during the first incubation hour and was of 130 and 115 mg/L 

considering the presence and the absence of the food matrix present in the plastic 

tray (Fig. 4b). The concentration of the bioactive compound in the head space 

decrease between the second and the fifth incubation hour arriving at 20 mg/L at 

48h incubation and remain constant to 5 mg/L until the end of the experiments. 

Employing this AIT volatilization system the concentration of the AIT present in 

the headspace in the first 48h was 2.0 fold highest than the data evidenced using 

the oriental flour as AIT generation system. This application of the AIT has the 

advantage to promote a more rapid AIT volatilization in the first incubation hours 

reducing the possibility of growth/germination of the mycotoxigenic fungi in food 

matrices. Considering the data evidenced in ours study the presence of the food 

matrix does not influence significatively the vaporization of the AIT. 
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Figure 4. Volatilization kinetics of the AIT contained in the plastic trays a) 
employing 4 g of oriental mustard placed in a small plastic bag containing 3mL of 
water to promote the sinigrin conversion in AIT, b) employing the AIT released by 
the evaporation of a 100 µL of the standard solution of the bioactive compound 
placed on a 2.5 x 2.5 cm paper-filter and pasted on the cover tray (Black=with 
food, grey= without food). 
 
 
3.3. PAT reduction in wheat tortillas  

The sample preparation for PAT analysis in wheat tortillas was based on the 
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QuEChERS procedures described in AOAC International official method 2007.01 

and CEN standard method (2008). All the parameters optimized for LC-MS/MS 

analysis are described below: 

The limit of detection (LOD) was defined as the lowest concentration 

producing a chromatographic peak with a signal-to-noise ratio (S/N)≥3. 

Despite closely depending on the cleanliness of the MS source, and thus 

submitted to small variations over the time, the LOD was broadly estimated 

within a 0.2 μg/kg for the food matrix studied. The limit of quantitation (LOQ) was 

arbitrarily defined as the lowest fortification level, that was, 5 μg/kg. 

Internal standard corrected recoveries were within a 94-104% range, 

whereas precision data, that is, RSDr and RSDIR, were of 1.3 and 3.3 %, 

respectively. 

All of these results were compliant with the analytical requirements of the 

European Committee for Standardization (2010). 

The bioactive compound AIT used in this study was tested for the reduction 

of the P. expansum growth in wheat tortillas samples and also the production by 

the microorganism of the mycotoxin PAT was evaluated to understand if the 

fungal growth reduction can influence the mycotoxin reduction. The wheat 

tortillas were treated with two different AIT applications as explained in the 

material and method section. 

The PAT present in the food products treated with those two methodologies 

was analyzed using the technique of the LC-MS/MS (Fig. 5). 

As evidenced in the Fig. 6, the mean reduction of the PAT observed using the 

two different AIT applications was of 92.58%. The highest PAT reduction was 

evidenced in the experiments carried out using 2.0 g of yellow mustard flour with 

a 99.1%, whereas the lowest was observed using the 0.5 g of oriental mustard 

flour with 85.5%. Comparing the results obtained using the two mustard flours no 
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significative differences were detected using 0.5 and 1.0 g of both flours, whereas 

using 2.0 g, the PAT reduction observed using the yellow and oriental mustard 

flour were of 99.1 and 92.9% respectively. The results obtained using the standard 

solutions of the AIT were comparable with the data obtained with the two flours 

matrices employed. 

 

 
Figure 5. LC-MS/MS chromatogram of the patulin present in the control wheat 
tortilla treated without AIT treatment. 
 

This article can be considered the first where a chemical approach based on 

the use of the bioactive compounds ITCs was employed to reduce the PAT 

produced by P. expansum in food matrices, whereas the use of other strategies to 
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reduce the PAT present in food products was evaluated by many authors.

 
Figure 6. Patulin reduction in wheat tortillas contaminated with the strain of 
Penicillium expansum CECT 2278 (patulin producer) and treated with yellow (YM) 
and oriental (OM) mustard flours and also with three different quantities of the 
standard solution of the AIT. 
 

In particular Drusch, Kopka, & Keading, (2007) studied the stability of PAT in 

an aqueous juice-like model system. At acidic pH, the presence of ascorbic acid 

reduced the stability of PAT. After 34 days, PAT was reduced to 30% of its initial 

concentration in the presence of ascorbic acid compared to 68–71% in samples 

without ascorbic acid. Conditions during storage (presence of light, oxygen and/or 

metal ions) influenced the stability of PAT. Furthermore, it was possible to induce 

degradation of PAT by either generating hydroxyl radicals or by adding the rather 

stable radical diphenyl-1-picrylhydrazyl (DPPH). The data evidenced by the 

authors indicate that PAT is decomposed by free radicals generated by oxidation 

of ascorbic acid to dehydroascorbic acid. The percentages of PAT reduction 

evidenced in this study are 0.5 fold lower than the data evidenced in our study. 

Yun et al. (2008) studied the effects of organic acids, amino acids, and 

ethanol on the radio-degradation of PAT by gamma irradiation in an aqueous 
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model system. The PAT, dissolved in distilled water at a concentration of 50 ppm, 

was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 

33% of the PAT remained in apple juice. In the aqueous model system, the radio-

degradation of PAT was partially inhibited by the addition of organic acids, amino 

acids, and ethanol. The proportions of remaining PAT after irradiation with the 

dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, 

ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, 

respectively. During 30 days of storage, the remaining PAT was reduced gradually 

in the solution of ascorbic acid and malic acid compared to being stable in other 

samples. The amino acids, serine, threonine, and histidine, inhibited the radio-

degradation of PAT. It was suggested that 1 kGy of gamma irradiation 

(recommended radiation doses for radicidation and/or quarantine in fruits) is 

effective for the reduction of PAT, but the nutritional elements should be 

considered because the radio-degradation effects are environment dependent. 

Gao, Yue, Yuan, Fu, & Peng, (2009), evaluated the ultrasonic degradation 

technology of PAT to reduce the content of this bioactive compound in apple juice 

and improve the security of the food product. Based on the single-factor test, the 

optimum condition of ultrasonic was developed through orthogonal design. The 

results showed that the best process parameters of PAT ultrasonic degradation in 

apple juice is power 420 W, time 90 min, frequency 28 kHz, temperature 30 °C, 

with the PAT degradation rate of 69.43%. There is minor impact on the key quality 

parameters of apple juice. The data evidenced in this study are 30% lowest than 

the data evidenced in our study. 

Zhu, Koutchma, Warriner, Shao, & Zhou, (2013) evaluated the feasibility of 

monochromatic ultraviolet (UV) radiation at 253.7 nm as a possible commercial 

application for the reduction of PAT in fresh apple cider and juice. It was shown 

that 56.5%, 87.5%, 94.8% and 98.6% reduction of PAT can be achieved, 
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respectively, in the model solution, apple cider, apple juice without ascorbic acid 

addition and apple juice with ascorbic acid addition in 2-mm thickness sample 

initially spiked by 1 mg/L of PAT after UV exposure for 40 min at UV irradiance of 

3.00mWcm2. 

Funes, Gómez, Resnik, & Alzamora, (2013) investigated the effect of pulsed 

light (PL) dose on PAT degradation in McIlvaine buffer, apple juice and apple 

purée. The exposure of all samples to PL doses between 2.4 and 35.8 J/cm2 

resulted in a significant decrease in PAT levels. PAT reduction in McIlvaine buffer 

did not depend markedly on the initial concentration of the mycotoxin. At the 

maximum dose tested, the remaining average PAT level dissolved in McIlvaine 

buffer ranged from 5 to 15%, while in apple juice the values declined up to 22%. In 

apple purée naturally contaminated with 29 mg/kg of PAT, exposure to a PL dose 

of 12 J/cm2 provoked a 51% reduction in PAT concentration, while no residual 

contamination was detected for higher irradiation times. These results suggested 

that PL treatment would be a potential alternative method to reduce PAT 

contamination in apple products. However, further investigations need to be 

conducted to evaluate toxicological safety of PAT degradation product(s). The 

results evidenced in this study are 1.0 fold lower than the data produced in our 

study. 

4. Conclusion 

The results evidenced in this study demonstrate that the bioactive 

compounds present in yellow and oriental mustard flours can reduce the growth 

of the strain of Penicillium expansum, PAT producer in wheat tortillas samples. No 

significative differences were observed on the reduction of PAT produced by the 

strain tested using the two different methodologies of the release of the ITCs. 

Also the results obtained by the kinetic of the ITCs volatilization demonstrate that 
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this isothiocyanates are stable in the bioactive packaging maintaining antifungal 

concentration during two months. The results obtained in this study could be 

considered of particular interest considering the potential application that those 

bioactive compounds could have in the industries to improve the shelf life of 

many food products. 
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Abstract 

Aflatoxins (AFs) are mycotoxins produced mainly by the molds Aspergillus flavus, 

A. parasiticus and A. nomius. These mycotoxins are contaminants of cereals. AFB1,

the most abundant and toxic metabolite, is known to cause several toxic

responses, such as hepatotoxicity, teratogenicity and mutagenicity.

Isothiocyanates (ITCs) are natural compounds produced by the enzymatic

hydrolysis of glucosinolates (GLs), which have shown potent antimicrobial activity

in food applications. In this study, ITCs derived from oriental and yellow mustard

(0.1, 0.5 and 1 g of flour) were used to avoid the production of AFs in piadina (a

typical Italian flatbread) contaminated with A. parasiticus CECT 2981. In addition,

the antifungal activity of the ITCs toward A. parasiticus was also evaluated. The

mustard flours employed in this study inhibited the growth of A. parsiticus,

reducing the mycelium size by 12.2 to 80.6%, noticing that the oriental mustard

flour was more active. The ITCs produced in situ also reduced the AFs biosynthesis

in Italian piadina. In particular, the use of oriental mustard flour reduced the AFs

content by 60.5 to 89.3%, whereas the reduction caused by yellow mustard flour

ranged from 41.0 to 69.2%. Therefore, yellow and oriental mustard flour could be

used as sources of ITCs in intelligent packaging systems to increase the shelf life

and safety of piadina.

Keywords: Aflatoxins, oriental and yellow mustard flour, isothiocyanates,

mycotoxin reduction, Aspergillus spp.
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1. Introduction 

Aflatoxins (AFs) are a group of mycotoxins produced mainly by Aspergillus 

flavus, Aspergillus parasiticus and A. nomius (Bayman & Cotty, 1993). These 

species are ubiquitous in nature and as saprophytes they grow on a wide variety 

of substrates, including decaying plant and animal debris. Aflatoxins are 

carcinogenic contaminants found in foods and animal feed that are frequently 

responsible for health and economic concerns in many countries. Aflatoxin B1 is 

the most toxic metabolite among aflatoxins and presents hepatotoxic, teratogenic 

and mutagenic properties. It has been classified as a Class 1 human carcinogen by 

the International Agency for Research on Cancer (IARC, 2002). 

Generally, agricultural commodities are naturally contaminated with 

Aspergillus spp. in the field and it may be difficult to completely prevent aflatoxin 

formation in these products (Kumar, Shukla, Singh, Prasad, & Dubey, 2008; Reddy, 

Reddy, & Muralidharan, 2009). In addition, aflatoxins are resistant to food 

processing and it is very difficult to mitigate them once they are present in foods 

and food ingredients (IARC, 2002). Presence of AFs is one of the main food-safety 

concerns in field crops, particularly in commodities that are produced in tropical 

and subtropical weather, where the high temperature and humidity promote the 

growth and proliferation of Aspergillus spp. Examples of crops that are frequently 

contaminated with AFs include rice (Bansal, Tam, Cavlovic, & Kwong, 2011; 

Makun, Dutton, Njobeh, Mwanza, & Kabiru, 2011), peanuts (Shank, Wogan, 

Gibson, & Nondasuta, 1972), beans (Pitt et al., 1994), herbs and spices (Adzahan, 

Jalili, & Jinap, 2009; Candlish et al., 2001; Colak, Bingol, Hampikyan, & Nazli, 

2006), chillies (Paterson, 2007), processed spices (Cho et al., 2008), dried fruits 

(Trucksee & Scott, 2008), wheat (Riba, Bouras, Mokrane, Mathieu, Lebrihi, & 

Sabaou, 2010) and corn (Kim et al., 2013).  

Glucosinolates (GLs) are bioactive metabolites (Manson et al., 1997) 
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present in plants of the Brassicaceae family, and their hydrolysis products possess 

antimicrobial properties against foodborne microorganisms (Luciano & Holley, 

2009). More than 300 GLs have been described and they are cultivar-dependent 

(Tsao, Peterson, & Coats, 2002b). Sinigrin is the major GL found in oriental 

(Brassica juncea) and black (Brassica nigra) mustard, whereas sinalbin (SNB) is the 

major glucosinolate in yellow mustard (Sinapis alba) (Kushad et al., 1999). After 

hydrolysis, these GLs can generate allyl isothiocyanate (AITC) and ρ-hydroxybenzyl 

isothiocyanate (ρ-HBITC), respectively (Fig. 1). 

 

 

Figure 1. Molecular structure of the principal isothiocyanates formed in Brassica 
juncea and Sinapis alba, which are (1) allyl isothiocyanate and (2) ρ-hydroxybenzyl 
isothiocyanate, respectively. 

 

ITCs exhibit biocidal activity against microorganisms including fungi 

(Nielsen & Rios, 2000) and bacteria (Luciano & Holley, 2010), as well as insects 

(Tsao, Yu, Potter, & Chiba, 2002a) and nematodes (Flemming, Turner, & Hunt, 

2006). In particular, it has been demonstrated that AITC effectively inhibits the 

growth of a variety of pathogenic microorganisms at low concentrations (Lin, 

Preston, & Wei, 2000; Luciano & Holley, 2009). The potential of AITC as a natural 
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antimicrobial in different food matrices has been studied, including chicken breast 

(Shin, Harte, Ryser, & Selke, 2010), ground beef (Nadarajah, Han, & Holley, 2005), 

dry-cured ham (Graumann & Holley, 2007), fermented dry fermented sausage 

(Chacon, Muthukumarasamy, & Holley, 2006) and tuna meat (Hasegawa, 

Matsumoto, Hoshino, & Iwashita, 1999).  

Italian piadina is a traditional flatbread that contains high-moisture 

(>15%) and is very susceptible to microbial, especially fungal, spoilage (Pittia & 

Antonello, 2016). In addition, mycotoxigenic fungi can potentially grow in this 

product, which represents a food safety concern. 

The objectives of the present study were to observe the effect of volatile 

ITCs produced by the addition of water to oriental or yellow mustard flour against 

1) the growth of Aspergillus parasiticus CECT 2681 in vitro and 2) the production 

of aflatoxins by this same microorganism inoculated on Italian piadina. 

 

2. Materials and methods 

2.1. Chemicals 

AFs B1, B2, G1, G2, and sinigrin (98% purity), phosphate buffer saline (PBS) at 

pH 7, formic acid (HCOOH), AITC, tetrabutylammonium hydrogen sulfate (TBA), 

ammonium formate, and sodium chloride (NaCl) were obtained from Sigma–

Aldrich (St. Louis, USA). Sinalbin and ρ-HBITC were gently provided by Prof. 

Alberto Ritieni of the University of Naples “Federico II”. Oriental and yellow 

mustard flours were provided by G.S. Dunn Dry Mustard Millers (Hamilton, 

Ontario, Canada). Methanol was purchased from Fisher Scientific (New 

Hempshire, USA). Deionized water (<18 MX cm resistivity) was obtained from a 

Milli-Q water purification system (Millipore, Bedford, MA, USA). Chromatographic 

solvents and water were degassed for 20 min using a Branson 5200 (Branson 
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Ultrasonic Corp., CT, USA) ultrasonic bath. Aspergillus parasiticus CECT 2681 was 

obtained from the Spanish Type Culture Collection (CECT, Valencia, Spain).  

 

2.2. Glucosinolates extraction and determination from oriental and yellow 

mustard flours  

GLs from oriental and yellow mustard flours were extracted using the 

method of Presteraet al. (1996) with modifications. Twenty grams of flour were 

introduced in a 50 mL glass tube and autoclaved at 115 °C during 15 minutes to 

inactivate the enzyme mirosinase (Luciano, Belland, & Holley, 2011). Then, 

samples were added with 200 mL of boiling distilled water in a 500 mL Erlenmeyer 

flask and the mixture was stirred for 10 min at 350 rpm. The mixtures were cooled 

at room temperature, centrifuged at 2500 rpm for 5 min at 4 °C and filtered 

through Whatman no. 4 filter paper into 50 mL screw-capped tubes. The extracts 

were filtered again through a 0.22 µm filter. Separation and quantification of GLs 

was performed using a Shimadzu LC system (Shimadzu, Japan), equipped with a 

Gemini C18 column (4.6 × 150 mm i.d. 5 μm; Phenomenex, Palo alto, CA). Elution 

was carried out isocratically for 20 min at a flow rate of 1 mL/min, using a solvent 

system containing 20% (v/v) acetonitrile and 80% water + 0.02 M 

tetrabutylammonium hydrogen sulfate (pH 5.5). The injection volume used was 

20 μL. GLs were detected at 227 nm. All samples were filtered through a 0.22 mm 

syringe filter (Phenomenex) prior to injection (20 μl) into the column. 

Quantification of GLs was carried out by comparing peak areas of investigated 

samples to the calibration curve of sinigrin and sinalbin standards (1-100 mg/L). 

 

2.3. Small-scale piadina experiments  

Samples of Italian piadinas (10 g approximately) were individually introduced 

in multilayer polyethylene plastic bags for food packaging (Saplex, Barcelona, 
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Spain). The samples were treated with three different quantities of oriental and 

yellow mustard flour (0.1, 0.5 and 1 g) that were put in Petri dish bottoms and 

added with 2 mL of water to promote the activation of mirosinase, and formation 

of ITCs vapors. The Petri dish bottoms were placed inside the plastic bag together 

with the piadina samples. Then, samples were contaminated with 1 mL of 

Aspergillus parasiticus CECT 2681 grown in potato dextrose broth (PDB, Oxoid, 

UK) containing 106 conidia/mL. Conidial concentration was measured by optical 

density at 600 nm in sterile water and adjusted to 106 conidia/mL in PDB as 

reported Kelly, Grimm, Bendig, Hempel, & Krull (2006). The control group did not 

receive any treatment with mustard flour. The plastic bags were sealed and 

incubated at 23 °C for 15 days. Then, bags were opened and the samples were 

extracted for AFs quantification using liquid chromatography coupled to the mass 

spectrometry in tandem (LC-MS/MS). 

 

2.4. Aflatoxin extraction 

Extraction of aflatoxins was carried out using the method described by Liu et 

al. (2013) with a few modifications. Briefly, 5 g of finely ground piadina samples 

(Oster Classic grinder, Oster, Valencia, Spain) were weighed in a 50 mL plastic 

tube. Samples were added with 0.5 g of sodium chloride (NaCl) and 25 mL of a 

methanol/water mixture (80:20, V/V). Then, samples were extracted using an 

Ultra Ika T18 basic Ultraturrax (Staufen, Germany) for 3 min. The mixture was 

centrifuged at 4500 g for 5 min and the supernatant was evaporated to dryness 

with a Büchi Rotavapor R-200 (Postfach, Switzerland). The residue was re-

dissolved in 1 mL of extraction solvent, filtered through a 0.22 µM filter and 

injected into the LC-MS/MS system.  
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2.5. LC-MS/MS aflatoxins identification and quantification 

The liquid-chromatography analysis system consisted of a binary LC-20AD 

pump, a SIL-20AC homoeothermic auto-sampler, a CTO-20A column oven and a 

CMB-20A controller and an Analyst Software 1.5.2 was used for data acquisition 

and processing. The separation of AFs was performed on a Gemini NX C18 column 

(150x2.0 mm I.D, 3.0 µm; Phenomenex, CA, USA) at room temperature (20 °C). 

The mobile phase was composed of solvents A (0.1% formic acid in water) and B 

(0.1% formic acid in acetonitrile) at a flow rate of 0.2 mL/min. After 0.6 min of 

holding time, 10% of B reached 95% at 1.6 min and was kept constant for 0.3 min. 

Afterwards, the column was re-equilibrated with 10% solvent A until the end of 

the run at 4.0 min. An API-4000 triple-quadruple MS/MS system (Applied 

Biosystems, Foster City, CA, USA) equipped with ESI interface in positive mode 

was used for detection in multiple reactions monitoring (MRM) mode. The main 

MS parameters were optimized and finally set as follows: nebulizer gas (GS1), 55 

psi; auxiliary gas (GS2), 50 psi; curtain gas (CUR) 15 psi; capillary temperature 550 

°C; ion spray voltage (IS) 5500 V. Nitrogen was used as the nebulizer, heater, 

curtain and collision gas. The precursor-to-product ion transitions were m/z 

313.3/241.3-228.5, m/z 315.3/259.0-288.4, m/z 329.7/243.3-200.5, m/z 

331.9/189.3-217.1 for AFB1, AFB2, AFG1 and AFG2 respectively.  

 

2.6. Effect of ITCs on Aspergillus parasiticus growth 

Aspergillus parasiticus CECT 2681 employed in this assay was firstly 

inoculated on potato dextrose agar (PDA) medium for 7 days. Agar plugs (5 mm 

diameter) containing the fungal mycelium were removed from the margins of 

actively growing cultures and were transferred to commercially available Petri 

dishes (100 mm x 15 mm), which are physically divided in 2 halves (Insulab, 

Valencia, Spain). The inoculum was placed in the middle of the half-plate 
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containing PDA, while oriental or yellow mustard flour (0.1, 0.5 and 1 g) was 

added on the other side of the plate (Fig. 2).  

 

 

Figure 2. Schematization of the antifungal assay performed to test the 
antimicrobial activity of ITCs produced by the hydrolysis GLs present in yellow and 
oriental mustard flours toward the Aspergillus parasiticus CECT 2681. a) An agar 
plug was removed from a grown culture of A. parasiticus; b) the plug was 
introduced on top of the PDA located on the right side of the petri dish; c) the left 
side of the petri dish received different amounts of mustard flour; d) and it was 
added with water to promote myrosinase activation and, therefore, formation of 
gaseous ITCs.  
 

The flours were mixed with 2 mL of water to promote the activation of 

myrosinase, and therefore, the conversion of GLs into ITCs. Immediately after the 

addition of water, plates were sealed with parafilm and incubated at 25 °C during 

148h in the dark. The diameter of radial mycelial growth was determined after 24, 

48, 100, 124 and 148 h. When mycelial growth was asymmetrical, four diameter 
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measurements were taken and averaged. The inhibitory effect on mycelia growth 

was calculated as the percentage of mycelium size inhibition comparing the 

treated and control fungi: 

IG(%) = Dc- Dt/Dc*100;  

where IG means growth inhibition, Dc is the mycelium diameter (mm) in control 

dishes and Dt is the mycelium diameter (mm) in treated dishes (Kurt, Gunes, & 

Msoylu, 2011). 

 

3. Results and discussion 

3.1. GLs determination in oriental and yellow mustard flours 

Fig. 3 shows the LC-DAD chromatograms of the glucosinolates determined in 

the two flour matrices employed in this study. The oriental mustard flour is 

characterized for the presence of sinigrin with a retention time (RT) of 1.6 min, 

whereas the yellow mustard flour is contains sinalbin with a RT of 2.3 min. 

Concentrations of the GLs detected in the two matrices analyzed were 46.04 and 

78.25 g/Kg, respectively. Sinigrin and sinalbin are the precursors of the 

antimicrobial compounds AITC and ρ-HBITC, respectively. Studies have shown that 

ITCs exhibit biocidal activity against microorganisms including fungi and bacteria, 

as well as insects and nematodes. In particular, it has been demonstrated that 

AITC effectively inhibits a variety of pathogenic fungi at low concentrations 

(Isshiki, Tokuoka, Mori & Chiba, 1992; Lin et al., 2000; Luciano & Holley, 2009; 

Mari, Leoni, Iori & Cembali, 2002; Nielsen & Rios, 2000).  
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Figure 3. LC-DAD chromatograms of a) sinigrin (SNG) and b) sinalbin (SNB) present 
in the oriental and yellow mustard flour, respectively. 
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3.2. Inhibition of AFs production in Italian piadina 

Inhibition of AFs B1, B2, G1, and G2 production in Italian piadina spiked with 

Aspergillus parasiticus was tested. Piadina is elaborated with wheat flour, water 

and olive oil in a pizza-like shape. Typically, this product suffers the contamination 

by Aspergillus and Penicillium strains during storage (Belz et al., 2012). In this 

study, Aspergillus parasiticus CECT 2981 was inoculated on piadina to naturally 

produce AFs. After inoculation, the product was introduced in a storage plastic 

bag and treated with three concentrations of yellow and oriental mustard flours 

as explained on Section 2.3. As shown on Fig. 4, inhibition of AFs production by 

ITCs produced by the mustard flours was dose-dependent and oriental mustard 

was more effective in inhibiting the production of AFB1, with an average reduction 

of 78.6%. The highest reduction was achieved with the use of 1 g of mustard flour, 

which lowered AFB1 production by 89.3% in comparison to the control group. 

Average reduction of AFB2 and AFG1 was 74.5%. Again, the use of 1 g of oriental 

mustard flour was the most efficient treatment, resulting in 82.7 and 87.3% 

reduction of AFB2 and AFG1, respectively. The results found for AFG2 were similar 

to those found for AFG1. 

p-HBITC derived from yellow mustard flour also inhibited the production of 

AFs by Aspergillus parasiticus CECT 2981. The mean reductions of AFs belonging to 

the group B in piadina were 55.7 and 59.6% for AFB1 and AFB2, respectively. In 

addition, the yellow flour also presented a dose-dependent response with the 

highest reductions in AFs production when used at 1 g/package (Fig. 4). The 

average production of AFs belonging to the group G was reduced by 58.5%. The 

highest reductions were also observed when using 1 g of yellow flour, where AFG1 

and AFG2 concentrations were lowered by 67.2 and 69.2%, respectively.  

Comparing the AFs reduction data produced by the application of yellow 

mustard and oriental mustard, it is clear that the latter has much higher potential 
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to be applied as an anti-AFs agent. This phenomenon may be partially related to 

the stability of the isothiocyanates generated by both flours used. ρ-HBITC, which 

is formed in yellow mustard flour, is less stable than AITC (Luciano & Holley, 

2009). Moreover, ρ-HBITC is much less volatile than AITC, which may set these 

antimicrobials apart when they are used as gaseous antimicrobial agents. 

 

 

 
Figure 4. Reduction rates of AFs B1, B2, G1, G2 in Italian piadina contaminated with 
the strain of Aspergillus parasiticus CECT 2681 promoted by the presence of a) 
oriental and b) yellow mustard flour (white = 0.1 g, black = 0.5 g, grey = 1 g). 
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Other authors have used essential oils to inhibit the growth and, 

consequently, the production of aflatoxins in culture media and food products. 

Soliman and Badea (2002) studied the inhibitory activity of 12 essential oils 

derived from medicinal plants against A. flavus, A. parasiticus, A. ochraceus and 

Fusarium moniliforme. Anise, thyme and cinnamon essential oils were the most 

efficient in inhibiting the growth of all fugal species and when applied to wheat, 

2% of these oils were necessary to completely inhibit fugal growth. In addition, it 

is important to highlight that anise and thyme essential oils were able to 

completely inhibit aflatoxins, ochratoxin A and fumonisins production when 

applied at 0.1% to wheat grains. Moreover, Kumar et al. (2008) also evaluated 14 

odoriferous angiospermic essential oils against several fungal species, including a 

toxigenic strain of Aspergillus flavus. Thyme essential oil (Thymus vulgaris L.) 

showed highest antifungal efficacy and totally inhibited the mycelial growth of A. 

flavus at 700 μl/l. It also exhibited a broad fungitoxic spectrum against Fusarium 

oxysporum, Cladosporium herbarum, Curvularia lunata, Aspergillus terreus, 

Aspergillus niger, Aspergillus fumigatus, Alternaria alternata and Botryodiploidia 

theobromae, which are species implicated with food spoilage. The oil also showed 

significant antiaflatoxigenic efficacy and totally inhibited AFB1 production when 

used at 600 μl/l. 

Another study used the essential oil of Zataria multiflora to inhibit the 

growth and aflatoxin formation by A. flavus in culture media and white cheese 

(Gandomi et al., 2009). Although Z. multiflora essential oil completely inhibited 

the fungal growth in potato dextrose agar at levels ≥ 400 ppm, it was not able to 

inhibit the production of aflatoxin in cheese even at 1000 ppm. The main 

constituents of this essential oil were phenolic compounds such as carvacrol, 

thymol and eugenol.  
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Razzaghi-Abyaneh et al. (2008) also tested the essential oil of summer savory 

leaves (Satureja hortensis L.) against the production of AFB1 and AFG1 by 

Aspergillus parasiticus NRRL 2999 in potato dextrose broth. This essential oil not 

only inhibited the production of mycotoxins, but also reduced the fungal growth 

in a dose-dependent manner. Carvacrol and thymol were identified as the major 

components of the essential oil, and these could also reduce the levels of AFB1 

and AFG1 when used individually. The calculated IC50 of carvacrol against AFB1 and 

AFG1 were 0.50 and 0.06 mM, respectively, whereas these levels were found as 

0.69 and 0.55 mM for thymol. Similarly to the mustard essential oils (specially that 

derived from oriental mustard), these compounds could inhibit the production of 

AFs at very low concentrations. More recently, the aqueous extract of Ocimum 

tenuiflorum (holy basil) was used to reduce the levels of AFB1 in rice (Panda & 

Mehta, 2013). The combination of the extract with high temperature (85 °C/4 h) 

was able to decrease the concentration of this mycotoxin by 74.7% in vitro and by 

70.2% in rice. This was a direct detoxification and it was not dependent on fungi 

growth inhibition. Direct detoxification was also found when allyl isothiocyanate 

from oriental mustard was added to fumonisin and beauvericin-spiked foods 

(Azaiez, Meca, Manyes, & Fernández-Franzón, 2013; Meca, Luciano, Zhou, Tsao, & 

Mañes, 2012). Isothiocyantes are very reactive compounds (Zhang, 2004), and 

their electrophilic nature enables their reaction with thiol, amino and hydroxyl 

groups, forming conjugates, dithiocarbamate and thiourea structures (Cejpek, 

Valusek, & Velisek, 2000). Therefore, the direct reaction of isothiocyanates and 

AFs should also be tested as this may lead to direct detoxification of aflatoxin-

contaminated food products. 
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3.3 Antifungal activity of oriental and yellow mustard flours in vitro  

Yellow or oriental mustard flours were added with water to activate 

myrosinase and placed in the same environment as PDA inoculated with 

Aspergillus parasiticus (Fig. 2). The data related to the inhibition of the mycelial 

growth are presented on Table 1. Reduction of mycelial growth was directly 

proportional to the incubation time and quantity of mustard flour used. Yellow 

mustard flour inhibited the mycelial growth by 12.10 to 21.36% at 24 h, whereas 

the oriental mustard decreased the mycelial diameter by 48.2 to 60.4% at this 

same time point. Fungal growth inhibition was more pronounced at longer 

incubation times with the highest reductions observed at 148h, where the fungal 

diameter was inhibited by 30.15% with 1 g of yellow mustard and by 80.6% with 1 

g of oriental mustard flour. Similarly to the results observed for the effect of these 

flours in the production of AFs in piadina, the gas generated from the oriental 

mustard flour was much stronger in affecting Aspergillus growth than the volatile 

products derived from the yellow flour. Again, this may be explained by higher 

volatility of allyl isothiocyanate in comparison to ρ-hydroxybenzyl isothiocyanate 

(Luciano & Holley, 2010). 

This article can be considered the first where the antifungal activity of 

gaseous ITCs formed from food matrices in situ was tested on an Aspergillis 

parasiticus strain. This could be used as a strategy to avoid the growth of this and 

other mycotoxinogenic species in several food products. Other authors have used 

pure isothiocyanates and extracts of brassica plants to inhibit the growth of 

several fungi. In special, Dhingra, Jham, Rodrigues, Silva, and Costa (2009) have 

used synthetic mustard oil to inhibit the growth of Aspergillus glaucus and A. 

parasiticus in groundnuts. The products were fumigated with the oil at 100 ppm 

and stored at controlled room temperature (25 °C) for 90 days. The oil was able to 

keep the population of both Aspergillus glaucus and A. parasiticus below the 
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inoculation level during the entire period of storage when the moisture content 

was kept below 8.2%, whereas non-fumigated groundnuts presented fungal 

growth after 15 days. Moreover, mustard oil treatment was also able to 

significantly reduce the rate of fungal growth at higher moisture content (up to 

10.5%). Tunc, Chollet, Chalier, Preziosi-Belloy, and Gontard (2007) also evaluated 

the effect of AITC against Penicillium notatum growth at 30 °C. The oil presented a 

minimum inhibitory concentration (MIC) of 3.8 mmol/L of air. Since AITC is a very 

pungent compound, the authors also tested the possible synergistic effect of AITC 

and other antimicrobial gases in order to reduce the sensorial impact that this oil 

may have in food products. Synergism was found for the combination of AITC with 

sulfur dioxide and cinnamaldehyde. The present study did not evaluate the 

influence of the gases formed from oriental and yellow mustard flours on the 

taste and aroma from piadina, but it is predicted to be very low. As presented on 

Section 3.1, the oriental mustard flour contained 46.04 g of sinigrin/Kg, while the 

yellow mustard flour had 78.25 g of sinalbin/Kg. Considering an ideal situation 

where the whole GLs content would be converted in ITCs, these flours would form 

11.48 ng of AITC/g and 30.39 ng of ρ-HBITC/g, respectively. In this study, these 

quantities would result in a maximum of 0.146 and 0.387 ppm of AITC and ρ-

HBITC, respectively, after total volatilization. Nielsen and Rios (2000) have shown 

that the taste and aroma of AITC were only recognized at concentrations higher 

than 2.4 ppm (gaseous phase) in rye bread and 1.8-3.5 ppm in hot dog bread. 

However, further studies are necessary to evaluate the maximum AITC and ρ-

HBITC gaseous concentrations that can be used to treat piadina without 

negatively impacting its sensory profile. 
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                       Table 1. Aspergillus parasiticus CECT 2681 mycelia growth inhibition (%) produced by ITCs generated by glucosinolates  
                       present in oriental and yellow mustard flours. 
 
 
 
 
 

    Incubation time (h) 
Strain Mustard flour (g) 24 48 100 124 148 

Aspergillus parasiticus 
CECT 2681 

Yellow 0.1 12.10±0.5 17.25±0.8 20.16±0.7 22.47±0.4 25.47±1.3 
Yellow 0.5 15.36±0.3 21.36±2.1 24.55±0.8 26.47±0.5 29.31±1.2 
Yellow 1.0 21.36±1.1 24.56±2.2 26.74±1.1 28.51±0.8 30.14±1.1 

Oriental 0.1 48.25±2.2 53.88±2.6 58.69±3.3 64.25±3.7 68.46±3.2 
Oriental 0.5 52.26±3.4 55.36±2.5 60.14±3.5 65.69±3.1 71.04±2.9 
Oriental 1.0 60.47±3.9 64.01±3.3 70.36±3.1 74.25±3.3 80.69±3.3 
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4. Conclusion 

The present study showed the capacity of the AITC and ρ-HBITC to reduce the 

concentration of AFs naturally produced in wheat piadina by Aspergillus 

parasiticus. In addition, ITCs were able to reduce the mycelial growth of the 

mycotoxigenic fungus in vitro. This study shows that these compounds may be 

formed in situ through the addition of water to inexpensive products such as 

mustard flour, and be used as natural preservatives for bakery products and other 

foods that are commonly contaminated by Aspergillus species. Further studies will 

investigate the possible development o a bioactive sachet that could be included 

inside the packed product that promotes the controlled vaporization of the AITC 

through GLCs myrosinase conversion, increasing the shelf life of the treated 

product. Also the reaction between the ITCs and AFs, and the impact of ITCs on 

the sensory properties of piadina will be studied. 
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Abstract 

Fungal growth inhibition and aflatoxins (AFs) reduction using allyl (AITC), benzyl 

(BITC) and phenyl (PITC) isothiocyanates were studied in loaf bread contaminated 

with Aspergillus parasiticus. Two inoculated loaf bread slices were introduced into 

a plastic tray together with paper filters or small plastic bags paper filters soaked 

with AITC, BITC or PITC, the final concentration inside the package was of 0.5, 1 or 

5 µL/L. The plastic trays, incubated at room temperature, were visual examined 

for the shelf life evaluation during 8 days. The quantification of the AFs was 

carried out using liquid chromatography coupled to mass spectrometry (LC-

MS/MS). Shelf life increase of three and four days was obtained with small plastic 

bag paper filter and paper filter soaked with AITC 5 µL/L, respectively. These 

treatments also showed the highest reductions of AFs. All treatments with small 

plastic bag paper filter significantly reduced the content of AFs at percentages 

above 60% except the reduction of AFB1 in the samples treated with BITC 0.5 µL/L 

and PITC 1 µL/L. The AFs reduction observed in the packaging with paper filter 

were above 60% only using AITC at the concentrations of 1 and 5 µL/L.  

Keywords: Aspergillus spp., Loaf bread, Isothiocyanates, Shelf life 

improvements, aflatoxin reduction. 
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1. Introduction 

Aflatoxins (AFs) are a group of natural food toxins which are recognized as 

toxic and carcinogenic secondary metabolites mainly produced by certain strains 

of Aspergillus flavus, Aspergillus paraciticus and Aspergillus nomius (Iqbal, 

Mustafa, Asi, & Jinap, 2013). AFs are found as contaminants in various agricultural 

commodities including bread, corn, peanut, cottonseed, Brazil nut, pistachio nut, 

fig, spices and copra (El-tawila, Neamatallah, & Serdar, 2013). The International 

Agency for Research on Cancer (IARC) has classified AFB1 as a group I carcinogen 

which primarily affects the liver (IARC, 2002; Iqbal, Asi, & Jinap, 2014). 

Acute exposure to AFs can cause aflatoxicosis, and in severe 

hepatotoxicity cases the mortality rate is approximately 25%. Chronic exposure to 

AFs is associated with hepatocellular carcinoma, especially in the presence of 

hepatitis B infection. Other probable health impacts are immunological 

suppression, impaired growth and nutritional interference (Strosnider et al., 

2006). These impacts have been demonstrated in various species of livestock and 

fish, and while they may have similar effects on humans, causal evidence is still 

lacking.    

In bakery products, preservatives (salts of propionic and sorbic acids) are 

added to prevent growth of spoilage fungi. However, in recent years, there has 

been consumer pressure to reduce the use of such preservatives. Previous studies 

have suggested that the use of suboptimal concentrations of these preservatives 

may stimulate the growth and AFs production of some spoilage fungi of bread 

(Arroyo, Aldred, & Magan, 2005). Thus, suboptimal doses could pose a problem 

and allow mould spoilage to occur. In the last decade, however it has increased 

the interest for biological methods to prevent the fungal growth using lactic acid 

bacteria (LAB) or natural antimicrobial compounds (Gerez, Torino, Obregozo, & 

Font de Valdez, 2010; Ryan, Dal Bello, & Arendt, 2008; Ryan et al., 2011). 



 
 Results                                                                                                                                                                                                                                                                                                                                  

164 
 

Bread is known as a high moisture product with aw values between 0.96 

and 0.98 (Smith, Daifas, El-Khoury, Koukoutsis, & El-Khoury, 2004). As 

demonstrated by Doerry (1990), microbial spoilage is the main cause for shelf-life 

in intermediate and high moisture food products. Nowadays, mould growth is still 

a cause of high losses to the bread-producing industry (Pateras, 2007; Smith et al., 

2004). 

Glucosinolates are metabolites found in plants belonging to the family 

Brassicaceae (Nielsen & Rios, 2000). These compounds are located within 

vacuoles and are released when the plant suffers mechanical damage (e.g. 

wounding, cutting). Once in the cytoplasm, they are hydrolyzed by the enzyme 

myrosinase (EC 3.2.1.147), resulting in the formation of three main groups of 

substances: nitriles, thiocyanates and isothiocyanates (ITCs) (Delaquis & Mazza, 

1995; Luciano & Holley, 2009). The last group contains diverse compounds with 

strong antimicrobial activity and they have been added to various food products 

(Lin, Preston & Wei, 2000; Obaidat & Frank, 2009). Food processing may influence 

the production of ITCs in different way bringing glucosinolates into contact with 

myrosinase, degrading them, leaching them or preserving them by thermal 

inactivation of the enzyme responsible of the conversation (Deng, Zinoviadou, 

Galanakis, Orlien, Grimi et al., 2014). Allyl, benzyl and phenyl isothiocyanates 

(AITC, BITC and PITC) have been previously studied due to their antibacterial 

(Wilson et al., 2013) and antifungal properties (Smolinska, Morra, Knudsen & 

James, 2003). These compounds are strong electrophilic reagents and can react 

easily with nucleophiles such as amines, amino acids, alcohols, water, and sulfites 

during food treatment and under physiological conditions (Cejpek, Valusek, & 

Valisek, 2000). Recently, it has been found that AITC was able to react with the 

aminic groups of BEA in aqueous solutions and foods (Azaiez, Meca, Manyes, & 

Fernandez-Franzón, 2013a;  Meca, Luciano, Zhou, Tsao, & Mañes, 2012).  
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The aims of this study were: a) to study the antifungal activity of AITC, BITC and 

PITC against Aspergillus parasiticus in an in vitro model, b) to evaluate the 

potential industrial application of these compounds as preservative of loaf bread 

against A. parasiticus spoilage, evaluating the shelf life and AFs production using 

two different bioactive compounds devices as the sticker and the filter.  

 

2. Materials and methods 

2.1. Chemicals  

AFB1, AFB2, AFG1, AFG2, formic acid (HCOOH), AITC, BITC and PITC, 

ammonium formate, and sodium chloride (NaCl) were obtained from Sigma-

Aldrich (St. Louis, USA). HPLC-MS grade methanol was purchased from Fisher 

Scientific (New Hempshire, USA). Deionized water (<18 MX cm resistivity) was 

obtained from a Milli-Q water purification system (Millipore, Bedford, MA, USA). 

Chromatographic solvents and water were degassed for 20 min using a Branson 

5200 (Branson Ultrasonic Corp., CT, USA) ultrasonic bath. The strain of A. 

parasiticus CECT 2681 was obtained from the Spanish Type Culture Collection 

(CECT, Valencia, Spain). Potato dextrose agar (PDA) and potato dextrose broth 

(PDB) were provided by Oxoid (Madrid, Spain). 

 

2.2. Antifungal activity of AITC, PITC, and BITC in liquid medium 

The fungal strain of A. parasitcus was cultured in PDB and the antifungal 

activity was assessed with the method of Bolivar et al. (2011) with some 

modifications (Mikiciuk, Mikiciuk & Szterk, 2016a; Mikiciuk, Mikiciuk, Wronska & 

Szterk, 2016b). AITC, BITC and PITC oils were dissolved in water with 2% of DMSO 

to facilitate compounds solution and to obtain concentrations ranging from 10 to 

15000 mg/L.  

For the antifungal tests, 9.8 mL of PDB were added to screw-capped 
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tubes, followed by 0.1 mL A. parasiticus (OD∼0.6). After the inoculum was added, 

the tubes were treated with 0.1 mL of the ITCs solution obtaining final 

concentrations that ranged from 0.1 to 150 mg/L. Control groups contained 9.9 

mL of PDB with water at 2% dimethyl sulfoxide and 100 μL of inoculum. The tubes 

were incubated for 48h and 72h at 30 °C under orbital shaking to calculate 

Minimum Inhibotory Concentration (MIC) and Minimum Fungicidal Concentration 

(MFC), respectively. MIC and MFC are defined as the lowest concentration of an 

antimicrobial compound that will inhibit the visible growth of a microorganism 

after 48 and 72h of incubation, respectively. After that, 100 μL of each tube were 

inoculated in PDA Petri dishes and incubated at 30 °C during 48h. The cells 

colonies were also counted to perform the viability curve of the microorganism 

exposed at the different concentration of the ITCs. All the experiments were 

performed in triplicate.  

 

2.3. Samples preparation and antifungal treatment 

The recipe for loaf bread preparation: 600 g of wheat flour, 20 g of 

sucrose, 10 g of NaCl, 40 g of yeast for bakery products (Levital, Spain) and 350 mL 

of water. The ingredients were kneaded manually for 5 min and the dough 

produced was left rising for 1 h at room temperature. Baking was performed at 

200°C for 40 min in a deck oven (MIWE, Arnstein, Germany). The oven was 

presteamed (300 mL of water) before loading. The breads were kept for 30 min 

on cooling racks at room temperature. Breads were cut in slices of 30 g each.  

Each slice was inoculated in 9 spots with 100 µL of a suspension 

containing 1x107 conidia/mL A. parasiticus CECT 2681. Conidial concentration was 

measured by optical density at 600 nm and adjusted to 107 conidia/mL in PDB as 

reported Kelly, Grimm, Bendig, Hempel, and Krull (2006). Inoculated bread slices 
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received two different antimicrobial treatments to test respectively a rapid and a 

controlled release of the volatile active compounds: 

1. Two inoculated bread slices were introduced in the plastic tray 

together with paper filters (2.5 x 2.5 cm) soaked with AITC, BITC and PITC giving a 

final concentration of 0.5, 1 or 5 µL/L of the essential oils inside the package. 

2. Two inoculated bread slices were introduced in the plastic tray 

together with small plastic bags paper filters (2.5 x 2.5 cm) soaked with AITC, BITC 

and PITC, giving a final concentration of 0.5, 1 and 5 µL/L of the essential oils 

inside the package. 

A control group without antimicrobial treatment was used for each set of 

assays. All the experiments were performed in triplicate. A total of 60 plastic 

trays, correspondent to 120 slices, were used for this experiment. All plastic trays 

were closed hermetically and incubated at room temperature during 10 days. 

During that time each day the bread slices were examined to control the visible 

fungal growth and to establish the effect of the treatment on the shelf life. Then, 

all packages were opened and samples analyzed for AFs using liquid 

chromatography coupled to mass spectrometry in tandem (LC-MS/MS). 

 

2.4. Aflatoxin extraction 

AFs extraction was performed using the method described by Hontanaya, 

Meca, Luciano, Mañes, and Font (2015). Briefly, the two bread slices were finely 

grounded with a blender (Oster Classic grinder, Oster, Valencia, Spain) and 5 g 

samples were placed in a 50mL plastic tube. Then, 0.5 g of sodium chloride (NaCl) 

and 25 mL of a methanol/water (80:20, V/V) mixture were added. Samples were 

homogenized using Ultra Ika T18 basic Ultraturrax (Staufen, Germany) for 3 min. 

The mixture was centrifuged at 4500 x g for 5 min and the supernatant was 

evaporated to dryness with a Büchi Rotavapor R-200 (Postfach, Switzerland). The 
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residue was re-dissolved in 1 mL of extraction solvent, filtered through a 0.22 µM 

syringe filter and injected to the LC-MS/MS system. 

 

2.5. AFs identification and quantification by LC-MS/MS 

LC-MS/MS analyses were performed with a system consisting of an 

Agilent 1200 chromatograph (Agilent Technologies, Palo Alto, CA, USA) coupled to 

a 3200QTRAP mass spectrometer (Applied Bio-systems, AB Sciex, Foster City, CA, 

USA) equipped with a turbo ionspray electrospray ionisation (ESI) interface. The 

instrument data were collected and processed using the Analyst version 1.5.2 

software. Separation of analytes was performed using a reversed-phase analytical 

column (Gemini C18 column, 150 X 2 mm, I.D. 3 µm particle size), equipped with a 

security guard cartridge C18 (4 X 2 mm, I.D.; 5 µm) all from Phenomenex, Madrid, 

Spain. The mobile phases were composed of two eluents, both containing 5 mM 

ammonium formate (Sigma-Aldrich, St. Louis, USA), the eluent A was water + 0.1% 

formic acid and the eluent B methanol + 0.1% formic acid. The elution gradient 

was established initially with 10% eluent B, increased to 80% in 1.5 min and kept 

constant during 2.5 min. The eluent B was increased to 90% in 6 min and then 

100% in 4 min. Afterwards, the initial conditions were maintained for 5 min. The 

flow rate was 0.25 mL/min. MS/MS analysis was achieved in the selected reaction 

monitoring (SRM) mode using ESI in positive mode. For LC-MS/MS analysis, 

scheduled SRM was used with a 120 s SRM detection window and 1 s of target 

scan time. The applied parameters were: ion spray voltage, 5500 V; source 

temperature, 450 °C; curtain gas, 20; ion source gas 1 (sheath gas), 50 psi; 

ionsource gas 2 (drying gas), 55 psi. Nitrogen served as nebulizer and collision gas. 

The ionization and fragmentation parameters used for the detection and 

quantification of the AFs were set according to Liu et al. (2013). 
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3. Results and discussion 

3.1. Antifungal activity of AITC, BITC and PITC 

The data related to the growth inhibition induced by AITC, BITC and PITC 

on A. parasiticus in liquid medium are shown in Fig. 1. All the three ITCs resulted 

active against the A. parasiticus and reduction of fungal growth and AFs were 

proportional to the concentrations of the bioactive compounds: % of viability 

decreased with increasing concentration of the antimicrobial. Fungal growth is 

higher after 72 h than 48 h because the fungi have more time to develop. The 

viability is lower than 50% using AITC, BITC or PITC with concentrations ≥ 0.5 

mg/L. MIC and MFC values, defined respectively as the lowest concentration of an 

antimicrobial that inhibits the growth or kills the microorganism, were calculated 

for each compound (Table 1). AITC and BITC showed the lowest MIC of 20 mg/L, 

while the MIC obtained for PITC was 50 mg/L. On the other side, BITC was the 

active compound with the lowest MFC (20 mg/L), while AITC and PITC showed a 

MFC value of 50 mg/L. 

Applications of ITCs as antimicrobial substances have been tested by 

several authors. Azaiez et al. (2013a) studied the efficacy of AITC, BITC and PITC as 

antimicrobials against three mycotoxigenic strains of Gibberella moniliformis on 

solid medium. The ITCs employed inhibited the growth of the three strains, 

reducing 2.1-89.7% of the mycelium size. The reduction resulted proportional to 

the incubation time employed but no to the quantities of the bioactive 

compounds tested. BITC was the compound with the lowest inhibitory activity on 

the three mycotoxigenic strains. 

Mejía-Garibay, Palou, and López-Malo (2015) quantified the antimicrobial 

activity of the essential oil (EO) of black mustard (Brassica nigra) when applied by 

direct contact into the liquid medium or by exposure in the vapor phase against 

Aspergillus niger, Aspergillus ochraceus, or Penicillium citrinum (in laboratory 
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media or in a bread-type product).  

 

 
Figure 1. Viability curves of Aspergillus parasiticus exposed at different 
concentrations of AITC, BITC and PITC at 48h (blue) and 72h (red) of incubation. 
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Table 1. Minimum inhibitory concentration and minimum fungicidal 
concentration evidenced by AITC, BITC and PITC on Aspergillus parasiticus. 

Compound A. parasiticus 

 MIC (mg/L) MFC (mg/L) 

AITC 20 50 

BITC 20 20 
PITC 50 50 

 
AITC is the most abundant compound of B. nigra EO (more than 98% of 

the identified components). Black mustard EO applied by direct contact into the 

liquid medium inhibited the growth of A. ochraceus and P. citrinum using 2 μL/mL 

(MIC), while for A. niger, the MIC of B. nigra EO was 4 μL/mL. Mold exposure to 

41.1 μL/L of B. nigra EO in vapor phase showed that P. citrinum and A. niger 

growth was delayed 10 days, while A. ochraceus growth was delayed 20 days. 

Exposure to concentrations ≥47 μL of B. nigra EO per liter of air (MIC) inhibited 

the growth of the tested molds to 30 days, and they were not able to recover 

after further incubation time into an environment free of EO due to the fungicidal 

effect. Mustard EO was also effective against the previous molds inhibiting their 

growth for 30 days in a bread-type product by vapor contact. 

Manyes, Luciano, Mañes, and Meca (2015) tested the antifungal activity 

of AITC against Aspergillus parasiticus and Penicillium expansum employing solid 

medium. The P. expansum strain was inhibited with >50 mg of AITC after 20 days 

incubation, whereas the strain of A. parasiticus was sensible to AITC doses >5 mg. 

Janatova et al. (2015) tested the antifungal activity of seven volatile EO 

components from plants against Aspergillus niger: AITC, carvacrol, 

cinnamaldehyde, diallyl disulfide, eugenol, thymol, and thymoquinone. The 

evaporation rate of these compounds pure and encapsulated was also 

determined. In this experiment AITC appeared to be almost ineffective and only 
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slightly effective when encapsulated. The evaporation rate assay confirmed that 

AITC had completely evaporated during the first day. The difference from previous 

studies, in which the AITC resulted highly effective, could be explained by the lack 

of restriction of air circulation in petri dishes. AITC probably escaped before 

antifungal activity was produced.  

 

3.2. Shelf life improvement of loaf bread treated with AITC, PITC and BITC and 

mycotoxin reduction 

After evaluation of AITC, BITC and PITC antimicrobial activity in the in vitro 

model, their capability to inhibit fungal growth and reduce AFs production was 

tested in a food system. It is important to underline that AITC have been granted 

GRAS status according to the U.S. Food and Drug Administration (FDA, 2005) for 

its use as a shelf-life extension agent or antispoilage agent in food. In Japan, AITC 

is permitted for use as a preservative and AITC-containing antimicrobial films are 

commercially available (Lee, 2005). In Europe, The Panel on Food Additives and 

Nutrient Sources added to Food (ANS) provides a scientific opinion on the safety 

of AITC when used as a food preservative that deals with the safety of AITC for the 

proposed uses as a food additive (preservative) (EFSA, 2010). The Panel derived 

an ADI of 0.018 mg/kg bw/day which was rounded up to 0.02 mg/kg bw/day 

based on a LOAEL of 9 mg/kg bw/day (EFSA; 2010). No scientific opinions and no 

restrictions about the use of BITC and PITC have already been emitted.  

 The shelf life improvement of the samples treated with AITC, BITC and PITC 

is showed in Table 2. In the control experiment (loaf bread without antimicrobial 

treatment) the growth of A. parasiticus resulted visible after four days of 

incubation, while in the treatment with paper filter and the small plastic bag 

paper filter soaked with AITC 5 µL/L the growth started after eight and seven days 

of incubation, showing an improvement of the shelf life of four and three days, 
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respectively (Fig. 2). All the other treatments did not extend the shelf life of the 

samples.  

 

     
Figure 2. Visual observation of the loaf breads contaminated with Aspergillus 
parasiticus at six days of incubation, in the a) control experiment where is clearly 
visible the presence of the fungal contamination, b) and c) the loaf breads 
packaged with paper filter and small plastic bag paper filter soaked with AITC 
5µL/L, respectively, where is possible to observe the absence of the 
mycotoxigenic fungi. 

 

Considering that the strain of the A. parasiticus used in this study was AFs 

producer, the studied loaf breads were extracted for AFs detection and 

quantification using the LC-MS/MS. As evidenced in Table 3, the two treatments 

that showed an improvement of the shelf life produced the highest reductions of 

the AFs production. In particular, the reduction levels ranged from 91.1 to 94.4% 

in the breads treated with AITC 5 µL/L on paper filter and from 89.9 to 100.0% for 

AITC 5 µL/L small plastic bag paper filter considering all the four aflatoxins. Using 

the paper filter treatments, the % of reduction ranged from 5.3 to 91.8% for AFB1, 

from 7.2 to 94.0 % for AFB2, from 0.6 to 91.1 % for AFG1 and from 7.8 to 94.4% for 

AFG2. All treatments tested employing small plastic bag paper filter significantly 

reduced the content of AFs with percentages ranging from 78.5 to 100.0% using 

AITC, from 59.0 to 89.7 using BITC and from 57.9 to 82.7% using PITC. The 

percentage of reduction ranged between 57.9 and 89.9% for AFB1, between 66.3 

to 100% for AFB2, between 60.4 and 91.1 for AFG1 and from 71.1 to 98.1 for AFG2.  
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Table 2. Shelf life, expressed in days, of the loaf breads contaminated with 
Aspergillus parasiticus and packaged together with a) paper filters soaked with 
AITC, BITC and PITC and b) small plastic bag paper filters soaked with AITC, BITC 
and PITC (+ = Loaf breads contaminated with visible colonies of Aspergillus 
parasiticus and, - =  Loaf breads without any visible sign of Aspergillus parasiticus 
growth).  
 

a) Treatment Incubation time (days) 
 1 2 3 4 5 6 7 8 
 Control - - - + + + + + 
 AITC 0.5 µL/L - - - + + + + + 
 AITC 1 µL/L - - - + + + + + 
 AITC 5 µL/L - - - - - - - + 
 BITC 0.5 µL/L - - - + + + + + 
 BITC 1 µL/L - - - + + + + + 
 BITC 5 µL/L - - - + + + + + 
 PITC 0.5 µL/L - - - + + + + + 
 PITC 1 µL/L - - - + + + + + 
 PITC 5 µL/L - - - + + + + + 

 
 

b) Treatment Incubation time (days) 
 1 2 3 4 5 6 7 8 
 Control - - - + + + + + 
 AITC 0.5 µL/L - - - + + + + + 
 AITC 1 µL/L - - - + + + + + 
 AITC 5 µL/L - - - - - - + + 
 BITC 0.5 µL/L - - - + + + + + 
 BITC 1 µL/L - - - + + + + + 
 BITC 5 µL/L - - - + + + + + 
 PITC 0.5 µL/L - - - + + + + + 
 PITC 1 µL/L - - - + + + + + 
 PITC 5 µL/L - - - + + + + + 
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Table 3. AFs reduction evidenced in the loaf breads contaminated with Aspergillus 
parasiticus and treated with AITC, BITC and PITC on a) soaked paper filters and b) 
small plastic bag paper filters. 
 
 

a) Treatment % of Reduction 

 
 AFB1 AFB2 AFG1 AFG2 

 AITC 0.5 µL/L 38.9 ± 4.4 41.0 ± 3.6 45.6 ± 4.2 34.5 ± 3.0 
 AITC 1 µL/L 77.3 ± 2.3 79.5 ± 4.3 80.8 ± 1.7 87.6 ± 0.9 
 AITC 5 µL/L 91.8 ± 1.7 94.0 ± 2.7 91.1 ± 4.1 94.4 ± 2.7 
 BITC 0.5 µL/L 7.9 ± 0.5 7.2 ± 3.7 0.6 ± 1.2 7.8 ± 5.9 
 BITC 1 µL/L 34.6 ± 4.2 32.5 ± 4.6 24.8 ± 5.6 29.3 ± 2.6 
 BITC 5 µL/L 48.6 ± 3.8 47.0 ± 1.0 44.0 ± 4.6 48.9 ± 1.7 
 PITC 0.5 µL/L 5.7 ± 3.4 8.4 ± 5.2 26.2 ± 2.2 17.0 ± 3.9 
 PITC 1 µL/L 5.3 ± 3.3 27.7 ± 2.3 28.5 ± 2.2 33.9 ± 3.8 
 PITC 5 µL/L 8.7 ± 1.6 21.7 ± 0.6 32.0 ± 0.6 26.1 ± 0.5 

 
 

b) Treatment % of Reduction 

 
 AFB1 AFB2 AFG1 AFG2 

 AITC 0.5 µL/L 78.5 ± 0.5 86.7 ± 4.7 85.8 ± 0.5 88.3 ± 4.0 
 AITC 1 µL/L 84.7 ± 0.6 88.0 ± 6.3 87.0 ± 0.6 90.7 ± 1.8 
 AITC 5 µL/L 89.9 ± 1.9 100.0 ± 0.9 91.1 ± 2.1 98.1 ± 2.8 
 BITC 0.5 µL/L 59.0 ± 8.9 66.3 ± 6.1 60.4 ± 2.5 71.1 ± 1.2 
 BITC 1 µL/L 73.9 ± 4.7 75.9 ± 6.9 77.7 ± 5.7 84.1 ± 3.4 
 BITC 5 µL/L 86.1 ± 1.4 89.2 ± 3.1 86.1 ± 2.0 89.7 ± 2.9 
 PITC 0.5 µL/L 66.6 ± 1.4 72.3 ± 4.5 74.2 ± 2.1 72.3 ± 4.3 
 PITC 1 µL/L 57.9 ± 3.1 71.1 ± 5.1 68.3 ± 4.8 72.8 ± 3.0 
 PITC 5 µL/L 69.9 ± 2.7 79.5 ± 4.4 79.3 ± 5.0 82.7 ± 3.1 
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All these reduction levels were above 60% except the reduction of AFB1 in 

the samples treated with BITC 0.5 µL/L and PITC 1 µL/L. On the other hand, the 

AFs reduction observed in the packaging with paper filter was above 60% only 

using AITC at the concentrations of 1 and 5 µL/L. Active packaging with ITCs has 

been studied by other authors. Quiles et al. (2015) tested active packaging devices 

containing AITC or oriental mustard flour (OMF) to inhibit the growth of A. 

parasiticus and AFs production in fresh pizza crust after 30 days, obtaining similar 

results to our study. The antimicrobial and anti-aflatoxin activities were compared 

to a control group (no antimicrobial treatment) and to a group added with 

commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth 

was only inhibited after 30 days by AITC in filter paper at 5 µL/L and 10 µL/L, AITC 

sachet at 5 µL/L and 10 µL/L and OMF sachet at 850 mg + 850 mL of water. AFs 

production was inhibited by all antimicrobial treatments in a dose-dependent 

manner. More importantly, AITC in a filter paper at 10 µL/L, AITC sachet at 10 

µL/L, OMF sachet at 850 mg + 850 mL of water and sorbic acid + sodium 

propionate at 0.5 and 2.0 g/Kg completely inhibited AFs formation. 

Nazareth, Bordin, Manyes, Meca, Manes, and Luciano (2016) evaluated the 

capacity of gaseous AITC in inhibiting the production of AFs by A. parasiticus in 

wheat flour. Petri dish lids filled with 2 g of wheat flour were inoculated with 104 

conidia/g of A.parasiticus placed in a 1 L mason jar. AITC was added at 0.1, 1 or 10 

μL/L in the gaseous phase. Ten μL/L AITC totally inhibited the production of AFs 

while 0.1 and 1 μL/L were able to inhibit AFs production in up to 23.0% and 52.3%, 

respectively. 

Otoni, Soares, Silva, Medeiros, and Baffa Junior (2014) evaluate the 

antifungal effect of AITC against another strain of Aspergillus AFs producer, A. 

flavus, developing an AITC-containing sachet (similar to small plastic bag paper 

filters employed in our study) to control A. flavus sporulation in peanuts during a 
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90 day period. The differences between then survival of A. flavus in the control 

and AITC-treated peanuts were remarkable. AITC-containing sachets were able to 

reduce the A. flavus cell count by four log cycles after a month of storage at 25°C, 

a temperature that simulates the commercial distribution and storage processes 

of peanuts.  

AITC, BITC and PITC have been also employed in paper filter inserted into jar 

of 1 L at final concentrations of 50, 100, 500 μL/L to reduce FB2 present in loaf 

bread contaminated with Gibberella moniliformis (Azaiez et al., 2013a). All ITCs 

showed similar reduction profile and the mean FB2 reduction after 24h incubation 

was 84.9%. AITC at 500 μL/L presented the highest reduction (95.77%) whereas 

the lowest occurred with the 50 μL/L PITC treatment.   

Moreover the same concentrations of AITC (50, 100, 500 μL/L) were tested 

by Azaiez, Meca, Manyes, Luciano, and Fernández-Franzón (2013b) to reduce FBs 

in corn kernels and corn flour contaminated with Gibberella moniliformis. ITC 

fumigation treatment was able to reduce 53 to 96% of FB1, 29 to 91% of FB2 and 

29 to 96% of FB3. The higher degradation rates of FBs were found with higher 

doses of ITCs. 

Nielsen & Rios (2000) tested volatile EO and oleoresins (OL) from spices and 

herbs against a range of fungi commonly found on bread: Penicillium commune, P. 

roqueforti, Aspergillus flavus and Endomyces fibuliger were assayed on hot-dog 

bread and rye bread. A. flavus was more resistant than the other microorganisms 

while P. roqueforti was the most sensitive. Results of sensory evaluation showed, 

that hot-dog bread was more sensitive to AITC than rye bread. The minimal 

concentration of AITC that had a fungicidal effect was 2.4 mg/mL in gas phase for 

rye bread and between 1.8 and 3.5 mg/mL in gas phase for hot-dog bread. These 

findings showed that an improvement of on shelf-life of rye bread could be 

achieved by active packaging with AITC. However, hot-dog bread, may 
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nevertheless require the additional effect of other preserving factors to avoid off-

flavor formation.  

The effects of AITC (18 and 36 μg/L) in vapor phase on Pseduomonas 

aeruginosa in fresh catfish fillet using modified atmosphere (MA; 49% CO2, 0.5% 

O2, and 50.5% N2), at different temperatures (8, 15, and 20 ◦ C) were evaluated by 

Pang et al. (2013). Lag phase, maximum growth rate, and shelf life parameters 

were studied to detect the antimicrobial effects. Both gaseous AITC and MA alone 

inhibited the growth potential of P. aeruginosa effectively, prolonging the shelf 

life by 1.5 to 3.4 times compared to the control at temperatures between 8 and 

20 °C. Synergistic effect was observed at 8 °C, extending the shelf life of fresh 

catfish by more than 6.5 times (≥ 550 h), so that this combination may be used as 

an effective antimicrobial system to improve the shelf life of fresh catfish fillet. 

Hontanaya et al. (2015) evaluated the reduction of the AFs present in dried 

fruits (peanut, cashew, walnut, almond, hazelnut and pistachio) by ITCs generated 

by the enzymatic hydrolysis of the glucosinolates (GLCs) present in oriental and 

yellow mustard flours. An in vitro model and a food system were used. The ITCs 

produced through GLCs hydrolysis reduced the A. parasiticus growth in both 

systems. The AFs reduction ranged meanly from 83.1 to 87.2% using the oriental 

mustard flour, whereas employing the yellow flour the mean reduction observed 

ranged from 27.0 to 32.5%. In the food system experiments carried out employing 

only the oriental mustard flour the mean AFs reduction observed ranged from 88 

to 89%. 

 

4. Conclusion 

In this study it has been demonstrated that AITC, BITC and PITC possess 

antimicrobial activity against A. parasiticus in liquid medium. In the loaf bread, 

AITC showed the highest activity, being the only one of the three compounds that 
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improved the shelf life of the loaf bread contaminated with the fungus and 

reduced significantly the production of AFs in the packaging using paper filter. 

However, BITC and PITC, such as AITC, showed a significantly reduction of the AFs 

in almost all the concentrations used in the packaging with a controlled release of 

the active compounds.  

The use of ITCs in active packaging devices could be a natural alternative 

to avoid the growth of mycotoxinogenic fungi and inhibit the production of AFs in 

different food products in substitution of common commercial preservatives. 
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Abstract 

This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-

ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the 

bioaccessibility and bioavailability of the reaction products isolated and identified 

by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased 

more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no 

difference (p ≤ 0.05) between pH 4 and 7. Overall, simulated gastric 

bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and 

mycotoxin-AITC conjugates, with duodenal fractions representing ≥63.5% of the 

original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-

AITC) was lower than 42.13%, but significantly higher than the original 

mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also 

evaluated, with toxic effects observed at higher levels than 75 µM. Further studies 

should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-

AITC. 

Keywords: Zearalenone, α-Zearalenol, allyl isothiocyanate, reaction products, 

chemical reduction. 

 

 

 

 

 
 
 
 
 
 
 
 



 
   Results 
 

189 
 

1. Introduction 

Zearalenone (ZEA) and its derivative α-zearalenol (α-ZOL) are non-steroidal 

estrogenic mycotoxins produced by fungi belonging to the genus Fusarium and 

Gibberella (Yang, Wang, Liu, Fan, & Cui, 2007). These fungal species contaminate 

pre and postharvest cereal crops such as corn, barley, wheat, rice and oats mainly 

from temperate and warm regions (Zinedine, Soriano, Molto, & Mañes, 2007). 

Several studies have demonstrated hepatotoxic, haematotoxic, immunotoxic, 

genotoxic and teratogenic effects of these mycotoxins to a number of mammalian 

species (Zinedine et al., 2007). ZEA elicit estrogenic response upon binding to the 

estrogen receptor (Drzymala et al., 2015). Moreover, it can be metabolized in the 

human body to α-ZOL, which possesses three to four times higher estrogenic 

activity (Wang et al., 2014). 

There are some strategies proposed for the detoxification and 

biodegradation of ZEA in foods through chemical/enzymatic methods using ozone 

(McKenzie et al., 1997), H2O2 (Abd Alla, 1997) and lactonohydrolase (Takahashi-

Ando, Kimura, Kakeya, Osada, & Yamaguchi, 2002); biological methods using lactic 

acid bacteria (Mokoena, Chelule, & Gqaleni, 2005), Aspergillus niger strain FS10 

(Sun et al., 2014) and Lactobacillus plantarum Lp22, Lp39 and Lp4 (Zhao et al., 

2015); and physical methods such as the use of adsorbent materials 

(Avantaggiato, Havenaar, & Visconti, 2003; Ramos, Hernández, Plá-Delfina, & 

Merino, 1996) or extrusión (Cetin & Bullerman, 2005). However, there is little 

information concerning the metabolites produced through these processes and 

their potential toxicity. 

Glucosinolates (GLs) are a group of phytochemicals found in vegetables of 

the Brassicaceae (Syn. Cruciferae) family, which includes broccoli, cauliflower, 

mustard and horseradish (Meca, Luciano, Zhou, Tsao, & Mañes, 2012). Damage to 

the plant tissue leads to the hydrolysis of GLs by endogenous myrosinase, 
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producing numerous biologically active compounds, including isothiocyanates 

(ITCs), thiocyanates and nitriles (Borges, Simões, Saavedra, & Simões, 2014). ITCs 

have several biological activities including plant defense (against insects and 

microbial infections) (Luciano & Holley, 2009; Mansour et al., 2012; Santos, 

Faroni, Sousa, & Guedes, 2011), benefits to human health (chemopreventive and 

anti-angiogenic properties) (Cavell, Sharifah, Donlevy, & Packham, 2011; 

Fimognari, Turrini, Feruzzi, Lenzi, & Hrelia, 2012; Zhang, 2004) and might be used 

as natural food preservatives (Borges et al., 2014; Saavedra et al., 2010). Allyl 

isothiocyanate (AITC) is one of the most common ITC, which has been reported as 

potent antimicrobial (Luciano & Holley, 2009). Previous studies have also 

demonstrated its capacity to react with mycotoxins such as beauvericin (BEA) 

(Meca, Luciano, et al., 2012) and fumonisins (FBs) (Azaiez, Meca, Manyes, Luciano, 

& Fernández-Frazón, 2013) in buffered solutions and in food matrices. AITC was 

able to react with both mycotoxins forming adducts, which may reduce their 

toxicity. 

Toxins ingested through food products can be degraded or modified by 

metabolic processes of the human body, and only a fraction of the initial content 

may be accessible for absorption (Angelis, Monaci, Mackie, Salt, & Visconti, 2014). 

In this sense, bioavailability is defined as the portion of ingested contaminant that 

reaches the bloodstream (Kabak & Ozbey, 2012). These studies in combination 

with cell models can provide important information concerning the impact of 

these compounds on human health (Meca, Mañes, Font, & Ruiz, 2012). 

Bioavailability and toxicity evaluated through cellular systems has been widely 

used by rapid and cost-effective assays of easy standardization, which reduce the 

use of experimental animals and enables the investigation of specific mechanisms 

using different cultured cells (Fernández-Garcia, Carvajal-Lérida, & Pérez-Gálvez, 

2009). 
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The objective of the present study was to assess the potential of AITC to 

react with α-ZOL and ZEA in buffered solutions and to determine the 

bioaccessibility and bioavailability in vitro of the reaction products. 

 

2. Materials and methods 

2.1. Materials and apparatus  

ZEA (MW = 318.36 g/mol; P98% purity) and a-ZOL (MW = 320.38 g/mol; 97% 

purity) standards, AITC (MW = 99.15 g/mol; 95% purity), formic acid (HCOOH), 

potassium chloride (KCl), potassium thiocyanate (KSCN), monosodium phosphate 

(NaH2PO4), sodium sulfate (NaSO4), sodium chloride (NaCl), sodium bicarbonate 

(NaHCO3), urea, a-amylase, hydrochloric acid (HCl), pepsin, pancreatin and bile 

salts were obtained from Sigma–Aldrich (St. Louis, MO, USA). The stock solutions 

were prepared in methanol and kept at -20 °C. Acetonitrile, methanol and ethyl 

acetate of LC–MS grade were purchased from Fisher Scientific (New Hampshire, 

USA). Deionized water (<18MX cm resistivity) was obtained from a Milli-Q water 

purification system (Millipore, Bedford, MA, USA).  

Cell culture materials including Dulbecco’s modified Eagle’s medium (DMEM), 

penicillin, amphotericin B, HEPES, no essential aminoacids (NEAA), streptomycin, 

phosphate buffer saline (PBS), Hank’s balanced salt solution (HBSS) and dimethyl 

sulfoxide (DMSO) were also provided by Sigma-Aldrich. Fetal calf serum (FCS) was 

purchased from Cambrex Co. (Belgium). 

 

2.2. Reduction of a-ZOL and ZEA with AITC in vitro 

ZEA and α-ZOL standards were diluted to 78 µM in phosphate buffer at pH 4 

or 7. AITC at 2, 20, 100 or 200 mM was added to the reaction vials (final volume of 

1 ml), which were tightly closed, shaken with the use of a vortex for 1 min and 

kept at room temperature. Aliquots were draw after 0, 4, 8, 24 and 48 h of 
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reaction for further analyses. Assays were carried out in triplicate and compared 

with a standard curve ranging from 0.3 to 300 µM. The results were expressed in 

percentage (%) of reduction of mycotoxins based on a control sample prepared 

with the mycotoxin standard. 

 

2.2.1. HPLC analysis 

ZEA and α-ZOL were determined using Merk HPLC with a diode array detector (LC-

DAD) L-7455 (Merk, Darmstadt, Germany) at 236 nm and Hitachi Software Model 

D-7000 version 4.0 was used for data analysis. A Gemini C18 column 

(Phenomenex, Torrance, USA) 4.6 X 150 mm, 3 µm particle size was used as the 

stationary phase. The isocratic mobile phase was consisted of water/acetonitrile 

(55:45, v/v) with a flow rate of 0.7 ml/min. The samples were filtered through 

0.22 µm nylon membrane and 20 µl was injected into HPLC system. There was a 

new peak identified on LC-DAD chromatograms corresponding to the reaction 

product of AITC and either α-ZOL or ZEA. The structures of these compounds were 

confirmed by a linear ion trap spectrometer (MS-LIT). Assuming that 1 mol of AITC 

and 1 mol of α-ZOL or ZEA produces 1 mol of adducts, the molecular weight (MW) 

was considered 418.7 and 418.4 g/mol of ZEA-AITC and α-ZOL-AITC respectively. 

This ratio was used to calculate its theoretical concentration. 

 

2.2.2. MS-LIT characterization of α-ZOL and ZEA-AITC  

A 3200 QTRAPTM linear ion trap mass spectrometer (AB SCIEX Concord, 

Ontario, Canada) coupled to a Turbo Ion Spray source was used. This instrument is 

based on a triple-quadrupole path (QqQ) in which the third quadrupole also 

operates as a linear ion trap (QqLIT) with improved performance. In the QqLIT 

configuration, Q TRAPTM operates in enhanced resolution (ER) and enhanced 
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product ion (EPI) scan modes. Applied Biosystem/MDS SCIEX Analyst software 

version 1.3.2 was used for data acquisition and processing. 

The electrospray ionization mass spectrometry (ESI-MS) analyses were 

performed in positive ion mode. The equipment was set as follows: ESI needle 

voltage at 5500 V, curtain gas at 35 (arbitrary units), GS1 and GS2 were set to 35 

and 40 °C, respectively, and probe temperature at 350 °C. Nitrogen served both as 

turbo-gas and collision gas. The method was optimized based on mycotoxin 

reduction, and α-ZOL/ZEA-AITC reaction products were obtained from the 

combination of 200 mM of AITC and 78 µM of each mycotoxin (α-ZOL or ZEA). 

Products were extracted from the buffer solution with 3 ml of ethyl acetate 

(99.9%). The extraction was repeated with another 3 ml of ethyl acetate and the 

solvent was evaporated using nitrogen flow. The isolate was diluted in 1 ml of 

methanol and infused into the ion source at a flow rate of 20 µl/min introduced 

via a model 11 Harvard infusion pump. Full-scan spectra were analyzed for the 

identification of products formed through the reaction between ZEA or α-ZOL and 

AITC. Spectra were preliminarily recorded by connecting the Harvard infusion 

pump to the interface. The characterization of isolated compounds were 

performed using the modality of ER scan, the mass range from 200 to 500 Da to 

obtain the general spectra of the molecule. The utilization of the mass 

spectrometry associated at the detection with the linear ion trap allowed the total 

characterization of the isolated compounds. 

 

2.3. In vitro digestion model 

The static in vitro digestion model used was performed according to Gil-

Izquierdo, Zafrilla, and Tomás-Barberá (2002) with some modifications. All 

digestive solutions were warmed to 37 ± 3 °C before the experiment. Methanol 

solutions (1 ml) of α-ZOL, ZEA or adducts (α-ZOL/ZEA-AITC) were added to 
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polyethylene tubes at 15, 30 or 60 µM. Then, digestion started by adding 0.6 ml of 

artificial saliva [10 ml KCl (89.6 g/l), 10 ml KSCN (20 g/l), 10 ml NaH2PO4 (88.8 g/l), 

10 ml Na2SO4 (57 g/l), 1.7 ml NaCl (175.3 g/l), 20 ml NaHCO3 (84.7 g/l), 8 ml urea 

(25 g/l) and 290 mg of α-amylase completed to 0.5 L and adjusted the pH to 6.8 to 

the tubes]. The solution was homogenized, added to 10 ml of water and pH was 

adjusted to 2 with HCl 1 N. Immediately after, 0.05 ml of pepsin solution (0.04 

g/ml in HCl 0.1 N) was added and the samples were incubated at 37 °C for 2 h in a 

shaker water bath (100 rpm) (Stuart, SBS30, Staffordshire, UK). To simulate the 

duodenal compartment, 20 ml of water was added and the pH was increased to 

6.5 with NaHCO3 1 N, followed by addition of 0.125 ml of a solution of pancreatin 

(4 g/l) and bile salts (25 g/l) (1:1; v/v). The mixture was homogenized and 

incubated at 37 °C for 2 h in a water bath with orbital shaker at 100 rpm. Samples 

of 5 ml were drawn to evaluate the concentrations of the compounds after the 

gastric and duodenal digestion (bioaccessibility). These aliquots were centrifuged 

at 4000 rpm and 4 °C for 5 min. The supernatant obtained was filtered and 

injected into the LC to quantify the mycotoxins and reaction products. 

 

2.4. Cell culture 

Caco-2/TC7 cell were routinely maintained and grown with DMEM 

supplemented with 25 mM HEPES, 1% NEAA, 100 U/ml penicillin, 100 mg/ml 

streptomycin, 2.5 lg/ml amphotericin B, and 10% heat inactivated FBS. Incubation 

conditions were pH 7.4, 37 °C and 5% CO2 in a 95% relative humidity atmosphere. 

Absence of mycoplasma was checked routinely using the Mycoplasma Stain Kit 

(Sigma-Aldrich, St. Louis-MO, USA). 
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2.5. In vitro cytotoxicity assays 

The cytotoxicity of ZEA and a-ZOL in Caco-2/TC7 cells was determined by MTT 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte trazolium bromide and protein content 

(PC) assays. MTT assay measures the ability of live cells, but not dead cells, to 

reduce a colourless tetrazolium salt to purple formazan salt by the mitochondria; 

whereas PC assay indicates the relative determination of cell number by 

measuring the collective protein content on a cell culture dish. The MTT assay was 

performed as described by Ruiz, Festila, and Fernández (2006) with some 

modifications and PC assay was analyzed according to the procedure described by 

Pichardo et al. (2007). Caco-2/TC7 cells were plated in 96-well tissue culture 

plates at a density of 3x104 cells per well and grown to 90% confluence. The 

growth medium was removed and ZEA and α-ZOL, at concentrations from 6.25 to 

100 µM, were added to the medium, allowing uptake to proceed for 24 h. Then, 

the medium was removed and each well received 200 µl of fresh medium 

containing 50 µl of MTT for 4 h (37 °C in darkness). The resulting formazan was 

solubilized with DMSO. The cell viability or protein content was determined using 

an automatic ELISA plate reader MultiscanEx (Thermo Scientific, MA, USA) wit 

wavelength of 570 nm.  

PC assay was also conducted spectrophotometrically at 24 and 48 h in the 

same 96-well culture plates where the MTT assay was performed. The medium 

with formazan was then removed and the cells were washed with PBS and 

homogenized in NaOH for 2 h at 37 °C. Then, the NaOH was removed and an 

acidic solution of Coomassie Brilliant Blue was added at room temperature. 

Protein content was measured after 30 min at 620 nm using an automatic 

ELISA plate reader MultiscanEx (Thermo Scientific, MA, USA). Results were 

expressed as percentage relative to control cells (1% DMSO). Mean inhibition 

concentration (IC50) values were calculated from full dose-response curve. 
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2.6. In vitro bioavailability 

Differentiated Caco-2/TC7 were exposed to α-ZOL/ZEA-AITC adducts 

produced through α-ZOL/ZEA and AITC reaction to analyze the in vitro 

bioavailability of these compounds according to Meca, Mañes, et al. (2012). 

Briefly, Caco-2/TC7 cells were seeded at 1.35 X 106 cells/cm2 on a 6-well Transwell 

Permeable Supports, 12 mm diameter (Corning, NY, USA) and 0.4 mm of pore 

size, and grown for 21 days until morphological differentiation. The medium was 

renewed every 2–3 days. After this period, apical (upper compartment) and 

basolateral (lower compartment) medium were removed, and cells were washed 

twice with PBS, followed by a final wash with HBSS (transport medium). The apical 

solution composed of 1.5 ml of HBSS and α-ZOL/ZEA-AITC adducts (at initial levels 

of 15, 30 and 60 µM) was subjected to simulated duodenal digestion (Fig. 1) and 

digested sample obtained was diluted in HBSS (1:1, v/v). Bioavailability was 

assessed by transepithelial passage of this solution to the basolateral side, which 

contained 0.5 ml of HBSS. Control samples composed by transport medium with 

methanol 1%, were also evaluated. Aliquots (150 µl) were drawn from the 

basolateral compartment after 1, 2, 3 and 4 h of incubation and analyzed by LC-

DAD. 

 

2.7. Statistical analysis 

Graphpad Prism version 6.0 (Graphpad Software Inc., La Jolla, CA, USA) was 

used for the statistical analysis of data. All experiments were performed in 

triplicate and differences between groups analyzed with one-way ANOVA 

followed by the Tukey HSD post-hoc test for multiple comparisons. The level of 

significance considered was p ≤ 0.05. 
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3. Results and discussion 

3.1. ZEA and α-ZOL in vitro reduction   

The reaction between α-ZOL/ZEA (78 μM) and AITC (2, 20, 100 or 200 mM) 

were monitored by LC-DAD in PBS at different pH levels (4 and 7) and incubation 

times (0, 4, 8, 24 and 48 h). As shown on Table 1, the reduction ranged from 0 to 

89.5 ± 1.2% for α-ZOL and 0.2 ± 0.3% to 96.9 ± 2.4% for ZEA. There was no 

difference (p≤0.05) between the pH levels investigated. The effect of AITC was 

dose-dependent towards both mycotoxins. However, the reaction occurred 

rapidly with most doses reaching a plateau already at 0 h, with a few exceptions 

that presented this same reaction plateau after 4 h.  

AITC seems to be more reactive with ZEA than α-ZOL. At 20 mM (pH 4), 

AITC was able to reduce more than half of ZEA’s initial concentration, whereas α-

ZOL was reduced by a maximum of 28.9 ± 8.9% with this same dose. ZEA was also 

reduced by 74.5 ± 10.3% (pH 4) and 77.2 ± 3.6% (pH 7) promptly after addition of 

100 mM of AITC, while α-ZOL was reduced by 54.1 ± 3.8% and 67.7 ± 6.4% at pH 4 

and 7, respectively. ZEA and α-ZOL are important mycotoxins in animal 

production, and the use of allyl isothiocyante in animal feed could be an 

alternative to mitigate this problem, since 20 mM AITC can reduce levels up to 

68.0% in vitro. 

Previous studies have reported the use of gaseous allyl, benzyl and phenyl 

isothiocyanates (ITCs) to reduce mycotoxins levels. Meca, Luciano, et al. (2012), 

evaluated the reduction of beauvericin (BEA) by AITC in buffered solutions and in 

wheat flour. AITC at 1 mM was able to reduce this mycotoxin (25 mg/l) in buffered 

solutions by 100% after 48 h. Similar to the results obtained in this study, no 

significant difference was found for the extent of reaction between AITC and BEA 

at pH 4 and 7. 
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Table 1. Reduction of α-ZOL and ZEA through in vitro reaction with AITC at different pH and incubation time. 
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 In addition, wheat flour treated with gaseous AITC (50, 100 and 500 μL/l) 

was able to reduce the initial BEA concentration (25 mg/Kg) by 10-65% in a 

dosedependent fashion.  

Reaction of isothiocyanates (allyl, benzyl and phenyl – 1 mg/l) and 

fumonisins (FB1, FB2 and FB3 – 1 mg/l) at pH 4, 7 and 9 was also surveyed (Azaiez, 

et al., 2013). The reduction of FB1 and FB2 in solution ranged from 42% to 100% in 

a time-dependent manner and was greatly influenced by pH. In general, lower pH 

levels facilitated the reaction between ITCs and FBs, where four reaction products 

were identified. Moreover, gaseous ITCs were used to fumigate corn kernels and 

corn flour contaminated with FBs. ITC fumigation (50, 100 and 500 μL/l) was able 

to reduce 53%-96% of FB1, 29%-91% of FB2 and 29%-96% of FB3. Reduction of 

these FBs could be due to the free amino group contained in these mycotoxin 

structures, which act as an electron donor and react with the electrophile carbon 

present within the isothiocyanate (ITC) group.  

 

3.2. Identification of ZEA/α-ZOL-AITC reaction products 

MS-LIT total ion chromatograms of isolated α-ZOL-AITC and ZEA-AITC 

reaction products are shown in Fig. 1a and b. The results obtained in the present 

study show that ZEA and α- ZOL can react with AITC and form adducts. Despite 

the structural similarity, the reduction of ZEA was higher than α-ZOL (Table 1). ZEA 

(C18H22O5) and its metabolite α-ZOL (C18H24O5) contain some nucleophile groups 

that may react with the central carbon. 

Fig. 1 shows the mass spectra obtained of ZEA-AITC and α-ZOL-AITC adduct 

in enhanced resolution (ER). Several diagnostic fragments were found in the 

spectra, confirming the structure of the compound. The molecular weight of the 

reaction compound ZEA-AITC is the fragment with m/z of 419.2 [M + H]+.  
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Figure 1. ER mass spectra of reaction products: (a) ZEA with AITC and (b) α-ZOL 
with AITC. 
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The fragment with m/z of 437.0 corresponds to [M + 2H + H2O]+, whereas the 

fragment with m/z of 461.0 represents the sodium adduct [M +2H + H2O + Na]+. 

Another important fragment is the ion with m/z of 478.9 that represents the ion 

corresponding to the m/z of 461.0 with the addition of water [M + 2H + 2H2O + 

Na]+. The characterization of the reaction product between α-ZOL and AITC is 

shown on Fig. 1b, with the ER mass spectra of the isolated compounds. The ion 

with m/z of 461.3, corresponding to the sodium adduct of α-ZOL-AITC plus a 

molecule of water [M + H2O + Na]+ confirm the correct identification of the α-ZOL 

adduct. 

 

3.3 Bioaccessibility of α-ZOL/ZEA-AITC adducts  

The bioaccessible fraction is the amount of an ingested compound that is 

available for absorption in the body after digestion (Versantvoort, Oomen, Van de 

Kamp, Rompelberg, & Sips, 2005). In this sense, the amount of α-ZOL, ZEA and α-

ZOL/ZEA-AITC adducts under simulated human digestive fluids were determined 

and are presented on Table 2. α-ZOL showed higher gastric bioaccessibility than α-

ZOL-AITC at 30 μM. Duodenal bioaccessibility was also higher for α-ZOL (80.9 ± 

1.0% and 84.8 ± 5.9%) than α-ZOL-AITC (63.7 ± 7.3% and 71.4 ± 2.8%) at 30 and 60 

μM, respectively. At 15 μM, α -ZOL had no difference with α -ZOL-AITC for the 

gastric fraction and duodenal fraction. Gastric bioaccessibility of ZEA and ZEA-AITC 

were also similar to all levels investigated. The results of gastric and duodenal 

bioaccessibility of ZEA obtained in the present study are higher than Ferrer, 

Manyes, Manes, and Meca (2015), which recovered 54.6 ± 3.2% and 44.3 ± 2.5% 

of ZEA content administered in vitro under gastric and duodenal model. These 

compounds can be structurally transformed or degraded during the digestion, but 

this mechanism is difficult to assess by the complex processes that comprise the 

digestion system (Versantovoort et al., 2005). 
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Table 2. In vitro bioaccessibility assessment of α-ZOL, ZEA and α-ZOL-AITC and ZEA-AITC adducts. 
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3.4. In vitro cytotoxicity and duodenal bioavailability    

Caco-2/TC7 cell monolayers were used in the design of a simulated in vitro 

intestinal model in order to assess the absorption of α-ZOL/ZEA-AITC adducts. 

However, ZEA and α-ZOL are cytotoxic and could reduce the viability of Caco-

2/TC7. This could interfere with the interpretation of the results, since the 

absorption should occur through viable cells. Therefore, cytotoxicity of ZEA and α-

ZOL towards Caco-2/TC7 was analyzed. MTT assay shows that ZEA did not 

decrease cell viability at doses up to 100 µM (p ≥ 0.05) at 24 h and ≥ 50 µM were 

necessary to affect (p≤ 0.05) Caco-2/TC7 viability at 48h. However, α-ZOL at ≥ 37.5 

µM and ≥ 18.75 µM were able to reduce cell viability (p≤ 0.05) after 24 and 48 h, 

respectively (Fig. 2). The IC50 value of 95 µM was obtained for α-ZOL after 48 h of 

exposure. Results from PC assays show that ZEA did not damage the cells at doses 

up to 100 µM after 24 and 48 h (Fig. 3a). Moreover, α-ZOL only damaged the cells 

at 100 µM and ≥ 18.75 µM after 24 and 48 h of exposure, respectively (Fig. 3b).  

The evaluation of the duodenal bioavailability of α-ZOL/ZEAAITC conjugates 

was carried out by determining the concentrations in the basolateral 

compartment after 1, 2, 3 and 4 h considering the initial concentrations of each 

compound. 

The initial concentrations applied to the in vitro digestion model were 15, 

30 and 60 µM of each compound. However, the gastric and pancreatic juices 

diluted the toxins. If these compounds were totally bioaccessible, their 

concentration in the simulated intestine would be 0.27, 0.54 and 1.08 µM in 

respect to their initial concentration of 15, 30 and 60 µM, respectively. As 

presented in Figs. 2 and 3, much higher concentrations were necessary to cause 

cell damage and to reduce cell viability after 24 h. 

As it can be observed in Table 3, ZEA-AITC presented a higher bioavailability 

than α-ZOL-AITC. The former compound presented a similar profile among all 
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concentrations studied. The bioavailability obtained for the initial concentration 

of 15 µM ranged from 3.92% after 2 h to 15.84% after 4 h for α-ZOL-AITC and 

from 8.61 to 37.61% for ZEA-AITC. α-ZOL-AITC showed a bioavailability ranging 

from 0.98 (1 h) to 15.67% (4 h) for the initial concentration of 30 µM and from 

0.74 to 12.72% using an initial concentration of 60 µM. Bioavailability ranging 

from 9.99 to 36.15% (0–4 h; 30 µM) and 10.14 to 42.13% (0–4 h; 60 µM) were 

obtained for ZEA-AITC. In addition, the mycotoxins themselves presented 

significantly lower bioavailability than the reaction products or the original 

mycotoxins were metabolized to a higher extent. 

Videman, Mazallon, Tep and Lecouer, (2008) evaluated the metabolism and 

transfer of ZEA using Caco-2 cell line as a model of intestinal epithelial barrier 

demonstrating that ZEA easily crosses the cell barrier. After 3 h of ZEA exposure at 

10 μM, about 30% crossed the cell monolayer. The metabolites produced were 

evaluated and the composition was as follows: 40.7 ± 3.1% α-ZOL, 31.9 ± 4.9% β-

ZOL, 8.2 ± 0.9% ZEA-glucuronide and 19.1 ± 1.3% α-ZOL-glucuronide.  

Another study Pfeiffer, Kommer, Dempe, Hilebrand, & Metzier, (2011) 

determined theabsorption of ZEA and α-zearalanol (α-ZAL) in vitro using 

monolayers of differentiated Caco-2 cells. Cells were exposed to ZEA or α-ZAL (10, 

20, 30 and 40 μM) for 6 h. Unconjugated ZEA appeared to decrease with first-

order kinetics at the apical side, while basolateral reached a plateau after 2 h. 

After 3-h incubation of 40 μM of ZEA, 57.5% were recovered unconjugated, 11.1% 

were metabolized to glucoronides and 26.2% were found as α- or β-ZOL. In vivo 

and in vitro studies of ZEA kinetics showed early appearance of dietary ZEA in the 

plasma demonstrating that ZEA can be efficiently absorbed in the proximal part of 

the small intestine (Avantaggiato et al., 2003; Kuiper-Goodman, Scott, & 

Watanabe, 1987; Ramos et al., 1996). Furthermore, α-ZOL, β-ZOL, ZEA-

glucuronide and α-ZOL-glucuronide are rapidly produced and easily cross the cell 
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membranes, being detectable at both apical and basolateral sides since the first 

hour of exposure to ZEA. α-ZOL is the main metabolite produced by the Caco-2 

cells and it shows the strongest estrogenic activity (Videmann, Mazallon, Tep, & 

Lecoeur, 2008). The present study suggests that the reaction products of the 

mycotoxins with AITC were more stable during the bioavailability study, and 

perhaps it could avoid the formation of more estrogenic metabolites. However, 

the toxic effects of these compounds still need to be assessed. 

 

 
Figure 2. Dose response curve of Caco-2/TC7 cells viability in the presence of 
a) ZEA and b) α-ZOL measured by MTT. Cells were incubated for 24 (–▲–) and 
48 h (–■–). All values are expressed as mean ± SD of 3 replicates. *Represent 
significant difference (p ≤ 0.05) between the treatment and the control (100% 
viability). 
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Figure 3. Dose response curve of Caco-2/TC7 cells viability in the presence of 
a) ZEA and b) α-ZOL measured by PC. Cells were incubated for 24 (–▲–) and 
48 h (–■–). All values are expressed as mean ± SD of 3 replicates. *Represent 
significant difference (p ≤ 0.05) between the treatment and the control 
(100% viability). 
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Table 3. Bioavailability of the products obtained by α-ZOL/ZEA and AITC reaction products after digestion treatment through Caco-2/TC7 
cell monolayers. 
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4. Conclusion 

The results of this trial indicate that allyl isothiocyanate can react and 

reduce α-ZOL and ZEA in vitro at levels up to 96.9%, and form ZEA/α-ZOL-AITC 

conjugates. Reduction of mycotoxins and their reaction products were identified 

after gastric and duodenal treatments, probably due structural transformation 

during digestion. Moreover, the data obtained in this study suggested a lower 

bioavailability in vitro of ZEA, α-ZOL in comparison to their AITC conjugates. 

Further investigation may focus on the evaluation of the possible utilization of 

AITC to control ZEA and α-ZOL levels in food and animal feed.  In addition, the 

toxicological assessment of the ZEA-AITC and α-ZOL-AITC must be performed. 
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Abstract 

Food spoilage caused by mycotoxigenic fungi represents an important food safety 

problem. Lactic acid bacteria (LAB) are used as starter cultures in a larger number 

of food products. In this study, 16 strains of LAB were cultivated in MRS broth 

under anaerobiosis. Then, cell free supernatants were obtained by centrifugation 

and their antifungal activity against Aspergillus parasiticus and Penicillium 

expansum was tested using the disc-diffusion method. Furthermore, the LABs that 

showed in vitro antifungal activity were used in bread fermentation with yeast in 

order to study fungal growth inhibition and aflatoxin (AF) reduction in processed 

bread previously inoculated with A. parasiticus. The compounds present in the 

fermented medium of six LAB strains induced inhibition of P. expansum growth, 

whereas five probiotic strains produced antifungal compounds against A. 

parasiticus. The analysis by liquid chromatography coupled to mass spectrometry 

in tandem showed a reduction of the AF content in bread samples fermented with 

yeast and LABs. The reduction of AFs ranged from 84.1 to 99.9%. Moreover, bread 

sample studies showed a shelf life increase of about 3-4 days.  

Keywords: Antifungal compounds, lactic bacteria, mycotoxins. 
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1. Introduction 

Moulds cause a high degree of deterioration in food, feed and other 

agricultural commodities and are responsible for considerable economical losses. 

They destroy about 30% of crop yields and damage more than 30% of perishable 

crops in developing countries by lowering their quality and quantity. Furthermore, 

moulds produce mycotoxins which are potentially toxic to consumers and cause 

illness and death (Matasyoh, Wagara, Nakavuma & Kiburai, 2011; Pawlowska, 

Zannini, Coffey & Arendt, 2012). The ubiquitous nature of moulds, their ability to 

colonize different substrates and the lack of effective control measures have 

contributed to the high incidence of mould and mycotoxin contamination in food 

and feed (Ahlberg, Joutsjoki, & Korhonena, 2015; Hassan, Zhou, & Bullerman, 

2015). 

Agricultural products are susceptible to fungal invasion such as 

Aspergillus, Penicillium, Fusarium and Claviceps species, which may produce 

mycotoxins in the field before harvest, during harvesting, or during storage and 

processing. Among all food contaminants, mycotoxins are of greatest concern in 

terms of chronic toxicity as well as economics. Their incidence depends on various 

factors, such as the commodity, climatic conditions, agricultural practices, storage 

conditions and seasonal variation (Warth, Parich, Atehnkeng, Banyopadhyay, 

Schuhmacher, Sulyok, et al., 2012).  

Aflatoxins (AFs) are mycotoxins produced by certain species of Aspergillus, 

particularly Aspergillus flavus, Aspergillus parasiticus and Aspergillus nomius. 

There are more than 20 distinct but structurally related AF compounds but the 

four most commonly found are known as aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), 

aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) (Hernandez-Martìnez & Navarro-

Blasco, 2010; Tam et al., 2006). Aflatoxin B1 (AFB1) is carcinogenic and genotoxic in 
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vitro and in vivo (EFSA, 2007), and it has been classified in the group 1 by the 

International Agency for Research on Cancer (IARC, 2002). Extensive 

contamination of food and drinks with mycotoxins is the main problem over the 

world since they can also compromise the safety of food and feed supplies and 

adversely affect health to humans and animals (Marin, Ramos, Cano-Sancho, & 

Sanchis, 2013). One of the most used types of food bioconservation is 

fermentation, a process based on the growth of microorganisms in foods. Among 

bakery products, the microorganisms most widely used are lactic acid bacteria 

(LAB) applied as starter cultures for sourdough. LABs have been included in the 

QPS (Qualified Presumption of Safety) list for authorized use in the food and feed 

chain within the European Union (EFSA, 2012; EC, 2008); furthermore, in the US 

they are given the generally regarded as safe (GRAS) status by the U.S. Food and 

Drug Administration. Formerly, it was believed that the organic acids produced by 

LAB, particularly lactic and acetic acid, and also the phenolic acids produced by 

these bioactive strains were the main agents responsible for antifungal activity 

due to the lower pH. Besides organic acids, a range of other secondary 

metabolites produced by LABs has been identified additionally as the source of 

the antifungal activity (Moore, Dal Bello, & Arendt, 2008; Crowley, Mahony, & Van 

Sinderen, 2013; Ahlberg, Joutsjoki, & Korhonena, 2015; Hassan, Zhou, & 

Bullerman, 2015). 

The aims of this study were: a) to evaluate the antifungal activity of LAB 

cell-free supernatant (CFS) against A. parasiticus and Penicillium expansum; b) to 

determine the inhibition of fungal growth and estimate the shelf-life of breads 

fermented with yeast and LAB and c) to analyze the reduction of AFs content in 

bread inoculated with A. parasiticus. 
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2. Materials and methods 

2.1. Microorganisms and culture conditions 

The strain of A. parasiticus CECT 2681 and P. expansum CECT 2268 and the 

lactic acid bacteria used in this study (Bifidobacterium longum CECT 4551, B. 

bifidum CECT 870T, Bifidobacterium breve CECT 4839T, Bifidobacterium 

adolescentis CECT 5781T, Lactobacillus rhamnosus CECT 278T, Lactobacillus 

ruminis CECT 1324, Lactobacillus casei CECT 4647, L. rhamnosus CECT 288, 

Lactobacillus johnsoni CECT 289, L. casei CECT 475, Lactobacillus plantarum CECT 

749, Lactobacillus reuteri CECT 725, Lactobacillus bulgaricus CECT 4005, 

Lactobacillus paracasei CECT 4022, Lactobacillus salivarius CECT 4062, L. salivarius 

CECT 4305) were obtained from the Spanish Type Culture Collection (CECT, 

Valencia, Spain). 

All these microorganisms were maintained in sterile 18% glycerol at -80°C 

before use. Then, the mycotoxigenic fungi were recovered in Potato Dextrose 

Broth (PDB) at 25 °C.  until they were inoculated to PDA Petri dishes. On the other 

hand, the LABs were recovered in MRS broth at 37 °C.  for 48 h under anaerobic 

conditions before experiments (Meroth, Walter, Hertel, Brandt, & Hammes, 

2003).  

 

2.2. Preparation of cell-free supernatant  

The LABs were inoculated at a concentration of 105 cells/mL in 2 liters of 

MRS broth and incubated at 37 °C.  for seven days under anaerobic conditions. 

CFS was prepared by centrifugation at 5000 rpm for 15 min. Then, aliquots of  2, 

5, 10 and 20 mL of CFS were completely dried using a flow of nitrogen through 

evaporator workstation Turbovap at 35 °C.  (Biotage, Madrid, Spain) and each one 

of these were resuspended in 1 mL fresh sterile MRS broth so as to get 
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concentrated solutions of 1:2; 1:5; 1:10, and 1:20. The concentrated MRS 

solutions containing the bioactive antifungal compound produced by probiotic 

bacteria were filtered using a 0.22 μm filter and stored at -20 °C.  until the 

antifungal activity test against A. parasiticus and P. expansum (Vinderola, 

Mocchiutti & Reinheimer, 2002). 

 

2.3. Antifungal activity tests 

The disc-diffusion method used to evaluate the antimicrobial activity of 

the LAB cell-free supernatant was performed according to Madhyastha, 

Marquardt, Masi, Borsa, and Frohllch (1994). Ten microliters of either cell-free 

sterile concentrated supernatant, prepared as described in the paragraph 2.2, 

were added on sterile discs (6-mm Whatman No. 1, Madrid Spain). The 

microorganisms used for the inoculums were cultured on 9 mm Petri dishes 

prepared with 20 mL of PDA, and incubated for 7 days at 30 °C. . After that, 1 mL 

of distilled water was added on the agar surface, the microorganisms were 

scraped with a sterile loop and 0.1 mL of the inoculums were introduced in 

another plate containing only 10 mL of growth medium. The treated discs were 

placed on the agar surface just after inoculation. After refrigeration at 4 °C.  for 6 

h to allow the bioactive compounds to diffuse into the agar, the plates were 

incubated seven days at 30 °C. . According to Castlebury, Sutherland, Tanner, 

Henderson, and Cerniglia (1999), the microorganisms were considered positive to 

the antimicrobial activity of the bioactive compounds if an inhibition zone of at 

least 8 mm wide was observed around the disc.  

 

2.4. Baking with probiotic bacteria 

The loaf bread recipe included 400 g of wheat flour, 3 g of sucrose, 6 g of 

NaCl, 20 g of yeast for bakery products (Levital, Spain) and 500 mL of tap water. 
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The probiotic bacteria were added during the baking process (Gerez, Torino, 

Rollan, & de Valdez, 2009). Briefly, an overnight culture of each probiotic bacteria 

was used to inoculate (at 1% level) 80 mL of MRS broth and was incubated for 24 

h at 37 °C.  in anaerobic conditions. The probiotic bacteria tested in this study 

were cultivated and tested in bread individually carrying out a triplicate of each 

experiment. Cells were harvested by centrifugation at 2000 rpm for 10 min, 

washed twice with sterile PBS at pH 7.4 and resuspended in 40 mL sterile water 

(containing ca. 5 x 107 CFU/mL).   

The ingredients were kneaded manually for 5 min and the dough 

produced was left rising for 6 h at room temperature. Baking was performed at 

230 °C.  for 30 min in a deck oven (MIWE, Arnstein, Germany). The oven was 

presteamed (300 mL of water) before cooking. The loaves were kept for 30 min on 

cooling racks at room temperature. Loaves were cut in slices of 30 g each.  

The slices were inoculated with 500 µL of a suspension containing 1 x 105 

conidia/mL A. parasiticus CECT 2681. Conidial concentration was measured by 

optical density at 600 nm and adjusted to 105 conidia/mL in PDB as reported by 

Kelly, Grimm, Bendig, Hempel, and Krull (2006) and introduced in 1L plastic trays.  

The control group did not receive any treatment during baking with the probiotic 

bacteria.  

All plastic trays were closed hermetically and incubated at room 

temperature during 15 days. Each day until the analysis the bread slices were 

examined to determine the visible fungal growth and to evaluate the shelf life 

extension. Then, all packages were opened and samples were used to determine 

the AFs content by liquid chromatography coupled to mass spectrometry in 

tandem (LC-MS/MS). 
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2.5. Aflatoxin extraction 

Extraction was performed using the method described by Hontanaya, 

Meca, Luciano, Mañes, and Font (2015). Briefly, the two bread slices were finely 

grounded with a blender (Oster Classic grinder, Madrid, Spain) and 5 g samples 

were placed in a 50 mL plastic tube. Then, 0.5 g of sodium chloride (NaCl) and 25 

mL of a methanol/water (80:20, v/v) mixture were added. Samples were 

homogenized using Ultra Ika T18 basic Ultraturrax (Staufen, Germany) for 3 min. 

The mixture was centrifuged at 4500 rpm for 5 min and the supernatant was 

evaporated to dryness with a Büchi Rotavapor R-200 (Postfach, Switzerland). The 

residue was re-dissolved in 1 mL of extraction solvent, filtered through a 0.22 µm 

syringe filter and injected to the LC-MS/MS system. 

 

2.6. AF identification and quantification by LC-MS/MS 

LC-MS/MS analyses were performed with a system consisting of an 

Agilent 1200 chromatograph (Agilent Technologies, Palo Alto, CA, USA) coupled to 

a 3200QTRAP mass spectrometer (Applied Bio-systems, AB Sciex, Foster City, CA, 

USA) equipped with a turbo ionspray electrospray ionisation (ESI) interface. The 

instrument data were collected and processed using the Analyst version 1.5.2 

software. Separation of analytes was performed using a reversed-phase analytical 

column (Gemini C18 column, 150 X 2 mm, I.D. 3 µm particle size), equipped with a 

security guard cartridge C18 (4 X 2 mm, I.D.; 5 µm) all from Phenomenex, Madrid, 

Spain. The mobile phases were composed of two eluents, both containing 5 mM 

ammonium formate (Sigma-Aldrich, St. Louis, USA), the eluent A was water + 0.1% 

formic acid and the eluent B methanol + 0.1% formic acid. The elution gradient 

was established initially with 10% eluent B, increased to 80% in 1.5 min and kept 

constant during 2.5 min. The eluent B was increased to 90% in 6 min and then 
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100% in 4 min. Afterwards, the initial conditions were maintained for 5 min. The 

flow rate was 0.25 mL/min. MS/MS analysis was achieved in the selected reaction 

monitoring (SRM) mode using ESI in positive mode. For LC-MS/MS analysis, 

scheduled SRM was used with a 120 s SRM detection window and 1 s of target 

scan time. The applied parameters were: ion spray voltage, 5500 V; source 

temperature, 450 °C. ; curtain gas, 20; ion source gas 1 (sheath gas), 50 psi; 

ionsource gas 2 (drying gas), 55 psi. Nitrogen served as nebulizer and collision gas. 

The ionization and fragmentation parameters used for the detection and 

quantification of the AFs were set according to Liu, Qiu, Kong, Wei, Xiao, and Yang 

(2013). 

 

3. Results and discussion 

The CFS obtained by the fermentation of the MRS broth inoculated with 

the probiotic bacteria was concentrated under nitrogen flow and resuspended in 

fresh MRS to obtain concentrations of the dried extract of 1:2; 1:5; 1:10, and 1:20 

(Section 2.3). The results related to the antifungal activity of the CFS against A. 

parasiticus (AFs producer) and P. expansum (PAT producer) in solid medium of 

PDA are shown in Table 1. The analysis of the data shows that the CFS 

concentrated 2:1, 5:1, and 10:1 did not possess any antifungal activity against the 

mycotoxigenic fungi tested. On the other side, the 20:1 concentrated CFSs, 

obtained by the fermentation of B. bifidum, L. ruminis, L. rhamnosus (CECT 288), L. 

johnsoni, L. plantarum and L. bulgaricus in MRS medium, produced the inhibition 

of P. expansum growth (Fig. 1). The same CFSs, excluding only the fermented 

medium obtained by the fermentation of L. bulgaricus, resulted effective also 

against A. parasiticus, probably due to the antimicrobial properties of 

fermentation products (phenolic compounds and bioactive proteins and peptides) 
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of LAB present in the media. The control composed of MRS broth treated in the 

same way did not show evidence of any antifungal property against the 

mycotoxigenic fungi tested (Fig. 1).  

For the first time, the antifungal components present in the fermented 

media of the probiotic bacteria were tested on these two species of 

mycotoxigenic fungi, whereas the antifungal properties of bioactive components 

produced by LAB have been investigated by other authors. In particular, Valerio, 

Favilla, De Bellis, Sisto, De Candia, and Lavermicocca (2009), studied a total of 125 

presumptive LAB isolates. Eight out of 17 LAB, namely W. cibaria (3 strains), W. 

confusa (1 strain), Lactobacillus citreum, Lactobacillus mesenteroides, L. 

plantarum and Lactobacillus rossiae, almost completely inhibited (more than 90%) 

the growth of the yeast Endomyces fibuliger compared to control. Fermentation 

products of LAB also influenced the growth of the filamentous fungus Penicillium 

roqueforti, which was inhibited by almost all strains at a percentage higher than 

65.5%. In particular, L. plantarum was the most effective against the bread 

microbial contaminant, P. roqueforti. Finally, L. citreum, W. cibaria and L. rossiae 

completely inhibited (>98%) the growth of the other filamentous fungus, 

Aspergillus niger. The results obtained by the authors confirmed the data 

evidenced in our study, in particular related to the antifungal activity of the 

bioactive compounds produced by L. plantarum.  

Ryan, Dal Bello, and Arendt (2008) evidenced similar results on the 

antifungal properties of the bioactive metabolites produced by L. plantarum, in 

fermented sourdoughs using an agar diffusion assay. L. plantarum in fermented 

sourdough showed the highest inhibitory activity against all the fungi tested. 

Additionally, the authors evaluated also the ability of L. plantarum sourdoughs to 

extend the shelf life of wheat bread.  
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Table 1. Antifungal activity on solid medium of MRS agar of the bioactive compounds presents in cell-free supernatants of the MRS broth 
fermented with several probiotic strains against Aspergillus parasiticus and Penicillium expansum. Calculation of antifungal activity: 8 mm 
diameter clearing zone (+), 10 mm diameter clearing zone (++), and more than 10 mm diameter clearing zone (+++). 
 

  Concentration of extracelular medium 

Strains                       2:1 5:1                   10:1           20:1 

  P. 
expansum 

A. 
parasiticus 

P. 
expansum 

A. 
parasiticus 

P. 
expansum 

A. 
parasiticus 

P. 
expansum 

A. 
parasiticus 

Control - - - - - - - - 
B. longum CECT 4551 - - - - - - - - 
B. bifidum CECT 870T - - - - - - ++ ++ 
B. breve CECT 4839T - - - - - - - - 
L. adolescentis CECT 5871T - - - - - - - - 
L. rhamnosus CECT278T - - - - - - - - 
L. ruminis CECT 1324 - - - - - - + ++ 
L casei CECT 4647 - - - - - - - - 
L. rhamnosus CECT 288 - - - - - - + ++ 
L. johnsoni CECT 289 - - - - - - + + 
L. casei CECT 475 - - - - - - - - 
L plantarum CECT 749 - - - - - - ++ ++ 
L. reuteri CECT 725 - - - - - - - - 
L. bulgaricus CECT 4005 - - - - - - + - 
L. paracasei CECT 4022 - - - - - - - - 
L. salivarius CECT 4062 - - - - - - - - 
L. salivarius CECT 4305 - - - - - - - - 
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Figure 1. Inhibition zone evidenced by bioactive compounds presents in cell-free 
supernatant of the MRS broth fermented with the probiotic strain of L. plantarum 
concentred 20:1 on a) Penicillium expansum and b) Aspergillus parasiticus. 

Comparison with the spoilage rate in the control breads revealed that L. 

plantarum sourdough breads retarded the outgrowth of A. niger, F. culmorum and 

P. expansum, but no inhibition was observed against P. roqueforti. All controls, 

Lactobacillus sanfranciscensis LTH2581 sourdough bread, the non-fermented 

control and the chemically acidified breads showed no effect against the selected 

fungi. The bread slices were completely spoiled after 3 days. Additionally, there 

was no significant difference in the moisture, pH and total titratable acidity (TTA) 

values for all the fermented and chemically acidified breads. The data obtained by 

these authors was in concurrence with the values evidenced in our study. 

The strains of L. bulgaricus, L. plantarum, L. johnsoni, L. rhamnosus (CECT 

288), L. ruminis and B. bifidum that evidenced the highest antifungal activity 

against the two mycotoxigenic strains of A. parasiticus and P. expansum in the in 

vitro assay were employed for the study of the shelf life improvement of loaf 
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bread. In the control experiment (loaf bread fermented only with yeast, without 

probiotic bacteria, and stored at the same conditions of the treated loaf bread), 

the visual growth of the A. parasiticus started in the fifth day of incubation, 

obtaining for this sample a total shelf life of four days (Table 2). An important 

increment of the shelf life was observed in the loaf breads that were inoculated 

with probiotic bacteria (L. bulgaricus and L. plantarum) during the baking process. 

In the loaf breads fermented with L. bulgaricus, the visual fungal growth started at 

the eighth day of storage obtaining a total shelf life of seven days, whereas in the 

loaf breads fermented with L. plantarum, the fungal growth of A. parasiticus was 

detectable in the ninth day of incubation obtaining a total shelf life of 8 days (Fig. 

2).  

Table 2. Shelf life expressed in days of the loaf breads contaminated with 
Aspergillus parasiticus and fermented using several lactic acid bacteria with 
antifungal properties showed in the antimicrobial assay in solid medium of MRS 
agar.+ = Loaf breads contaminated with visible colonies of A. parasiticus and, - = 
Loaf breads without any visible sign of A. parasiticus growth.  

  Incubation time (days) 
Strains 1 2 3 4 5 6 7 8 9 
Control - - - - + + + + + 
L. bulgaricus - - - - - - - + + 
L. plantarum  - - - - - - - - + 
L. johnsoni - - - - + + + + + 
L. rhamnosus - - - - + + + + + 
L. ruminis - - - - + + + + + 
B. bifidum - - - - + + + + + 

 

The experiments carried out using the probiotic bacteria (L. bulgaricus and 

L. plantarum) during the fermentation of the loaf breads, evidenced an increment 

of the shelf life of the loaf bread compared with the control of three and four days 
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respectively. The loaf bread fermented with the other strains used in this part of 

the experiments did not show any significant improvement of the shelf life 

compared with the control experiment (Table 2). 

Considering that the strain of the A. parasiticus used in this study was AFs 

producer, the control and treated loaf breads were extracted for AFs detection 

and quantification using the LC-MS/MS. In particular in the control loaf bread at 

the ninth day of incubation, the strain of A. parasiticus produced 550.16 μg/Kg of 

AFB1, 166.76 μg/Kg of AFB2, 679.34 μg/Kg of AFG1 and 108.09 μg/Kg of AFG2. As 

evidenced in Table 3, the mean reductions of AF production by A. parasiticus in 

the loaf bread fermented with the probiotic bacteria L. bulgaricus and L. 

plantarum were 99.9 and 99.4%, respectively.  

 
Figure 2. Visual observation of the loaf breads contaminated with Aspergillus 
parasiticus at seven day incubation, in the a) control where is clearly visible the 
presence of the fungal contaminant, b) and c) in the loaf bread produced with L. 
bulgaricus and L. plantarum respectively, where is possible to observe the 
absence of the mycotoxigenic fungi. 

This result is very important, considered that the strains that produced 

the highest shelf life improvement of the loaf bread were also the ones that 

reduced the production of these important contaminants. The mean AFs 

reduction evidenced by the other probiotic strains used in the experiments 
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carried out in this study ranged from the 84.1 and 93.5%. Considering that the 

other strains do not improve the shelf life of the loaf breads compared with the 

control experiments, this data could have a special interest because the 

compounds produced by the probiotic bacteria during the fermentation of the 

loaf breads do not reduce the fungal growth in comparison with the control 

experiments but inhibited the production of the AFs by the A. parasiticus strains.  

The present results suggest that metabolism products of LAB, due to their 

potential to reduce the growth of the mycotoxigenic fungi and the biosynthesis of 

the mycotoxins, could be promising for the bioconservation of packaged food 

such as loaf bread.  

Table 3. AFs reduction promoted by the inhibition of the mycotoxigenic 
Aspergillus parasiticus, by fermentation of the loaf bred with antifungal lactic acid 
bacteria. 

  % of Reduction   

Strains AFB1 AFB2 AFG1 AFG2 Mean 
Control 0.0 0.0 0.0 0.0 0.0 
L. bulgaricus 99.9±4.4 99.9±3.3 99.9±5.5 100.0±5.7 99.9±5.2 
L. plantarum  99.0±5.2 99.4±4.2 99.2±5.1 100.0±3.1 99.4±3.8 
L. johnsoni 84.6±3.6 86.8±3.7 87.3±4.9 77.8±6.1 84.1±4.1 
L. rhamnosus 91.4±2.6 93.6±3.9 95.6±3.5 93.3±4.1 93.5±3.9 
L. ruminis 85.6±5.8 91.1±4.1 90.7±3.9 92.3±2.8 89.9±5.2 
B. bifidum 76.5±2.9 93.8±2.9 84.9±4.4 88.4±3.9 85.9±4.4 

 

4. Conclusion 

In this study for the first time the components present in the fermented 

media of the probiotic bacteria were tested against these two mycotoxigenic fungi 

A. parasiticus and P. expansum. The components produced by 6 of the tested 

LABs showed antifungal activity against A. parasiticus and/or P. expansum. 

Furthermore, the use of LAB as starter cultures with yeast in manufacture bread 



 
 Results                                                                                                                                                                                                                                                                                                                                  

230 
 

extended the shelf-life of contaminated bread with A. parasiticus and reduced 

AFs. The reduction of AFs production in contaminated bread is primarily due to 

inhibition of fungal growth by the bioactive compounds synthesized during 

fermentation by LAB, as well as the bond between AFs and non-viable LAB after 

processing. Further investigations will be focused on the isolation and 

identification of bioactive compounds responsible of the antifungal activity on the 

two mycotoxigenic strains tested.  
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Abstract 

Aflatoxins (AFs) are produced mainly by the molds Aspergillus flavus and 

Aspergillus parasiticus. Aflatoxin B1 (AFB1) is classified as carcinogenic to humans. 

The aim of this study was to evaluate the capacity of different strains of 

Lactobacilli (Lb.) and Bifidobacteria (Bf.) to reduce the bioaccessibility of AFB1 and 

aflatoxin B2 (AFB2), spiked in loaf bread, using a dynamic in vitro simulated 

gastrointestinal digestion system. Aliquots of 20 mL of gastric and duodenal fluids 

were sampled for the determination of the mycotoxins gastric and duodenal 

bioaccessibility respectively, by liquid-chromatography coupled to the mass 

spectrometry in tandem (LC-MS/MS). A reduction of AFs bioaccessibility 

compared to the control (digestion without bacterial strains) was evidenced. The 

strains that evidenced the highest gastric and duodenal bioaccessibility reductions 

of AFB1 and AFB2 were Lb. johnsoni CECT 289, Lb. reuteri CECT 725, Lb. plantarum 

CECT 220 and Lb. casei CECT 4180, with values ranging from 76.38 to 98.34% for 

AFB1 and from 77.14 to 98.66% for AFB2. These results suggest that a food 

enriched with specific probiotic microorganisms and consumed at the same time 

as food contaminated with AFs, could reduce the risk associated to the intake of 

these toxic compounds contained in food.  

Keywords: Aflatoxins, bioaccessibility, probiotic bacteria, Lactobacillus, 

Bifidobacterium. 
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1. Introduction 

Aflatoxins (AFs), a group of structurally related toxic secondary metabolites 

of fungi, are primarily produced by Aspergillus flavus and Aspergillus parasiticus, 

groups of fungi that could be found in corn, nuts, peanuts, coconut, dried fruits 

and beer (Frenich et al., 2009; Li et al., 2009a; Li et al., 2009b; Williams et al., 

2004). There are four major AFs named as B1, B2, G1 and G2. Among them, 

aflatoxin B1 (AFB1) is classified as a carcinogenic substance of group 1 by the 

International Agency for Research on Cancer (IARC) as it may interfere with the 

inductive of specific enzymes and forbid the synthesis of RNA 5 (IARC, 2012; 

Merrick et al., 2013; Wild and Montesano, 2009). Owing to the highly resistance 

to degradation during food processing, AFB1 could enter the food chain and 

provide a threat to human health (Castells et al., 2007). Therefore, the regulatory 

limits for AFs (B1 + B2 + G1 + G2), even for AFB1, have been established in several 

countries. The European Commission has set strict limits for the maximum 

allowed levels (MAL) of AFB1 in ground-nuts, dried fruits and their products, in 

which the MAL of AFB1 could not be greater than 2 μg kg-1 for Retail Ready Foods 

(Van Egmond, 1995). It has been proved that the intake of AFB1 over a long time 

may be dangerous even at a very low concentration.  

Therefore, the assays with high sensitivity and specificity are required to 

determine AFs at trace level in foods and agricultural products.  

Even though the consumption of food contaminated with AFs should be 

strictly avoided due to its toxicity and carcinogenic effect, several studies show 

presence of AFs in different cereal products (Saladino et al., 2017; Iqbal et al., 

2014; Serrano et al., 2012), sometimes above the limits enforced by the European 

legislation. For this reason different strategies have been developed to prevent 

the growth of mycotoxin producing fungi on food and feed, as well as to 

decontaminate and/or detoxify mycotoxin contaminated products. One of the 
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most used strategy to reduce the mycotoxins bioaccessibility during the 

gastrointestinal digestion is the employment of probiotic bacteria. Lb. and Bf. 

have shown AF-binding ability. This mechanism is unclear but it is suggested that 

is a physical phenomenon associated with bacterial cell wall structure. 

Peptidoglycans and polysaccharides have been suggested to be the two most 

important elements responsible for the binding (Kabak et al., 2009).  

In human health risk assessment, ingestion of food is considered a major 

route for exposure to many contaminants. The total amount of an ingested 

contaminant (intake) does not always reflect the quantity that is available to the 

body, because only a smaller amount will be available for absorption. As a 

consequence, bioaccessibility, defined as the amount of contaminant released 

through the gastrointestinal tract from the food matrix and then potentially 

absorbable, can be considered a measure for the assessment of mycotoxin 

bioavailability in food (Versantvoort et al., 2005).  

Recently is increasing the interest in the use of microorganisms to reduce the 

absorption of mycotoxins, present in food and feed, in the gastrointestinal tract. 

In particular, Kabak and Ozbey (2012a) studied the effectiveness of some 

probiotic bacteria to reduce the amount available for intestinal absorption of AFs 

from different contaminated food materials obtaining reductions in the 

bioaccessibility up to 35.6% for AFB1, 35.5% for AFB2, 31.9% for AFG1 and 33.6% 

for AFG2. Kabak and Ozbey (2012b) obtained a reduction between 15.5% and 

31.6% in AFM1 bioaccessibility (in milk) in the presence of probiotic bacteria and 

Serrano-Niño et al. (2013) showed reduction of AFM1’s bioaccessibility in 

phosphate buffer saline (PBS) from 22.72 to 45.17% using five different probiotic 

strains. 
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This is the first report in which is evaluated the effect of the intake of a 

simulated food enriched with probiotic microorganisms on reducing AFs 

bioaccessibility if consumed at the same time as contaminated loaf bread. 

The aim of this study was to evaluate the capacity of probiotic 

microorganisms to reduce the bioaccessibility of AFB1 and AFB2 using a dynamic 

in vitro simulated gastrointestinal digestion system.  

 

2. Materials and methods 

2.1. Chemicals  

Potassium chloride (KCl), potassium thiocyanate (KSCN), sodium 

dihydrogen phosphate (NaH2PO4), sodium sulfate (Na2SO4), sodium chloride 

(NaCl), sodium hydrogen carbonate (NaHCO3), urea (CO(NH2)2), α-amylase (930 U 

mg−1 A3403), hydrochloric acid (HCl), sodium hydroxide (NaOH), formic acid 

(HCOOH), pepsin A (674 U mg−1 P7000), pancreatin (762 U mg−1 P1750), bile salts 

(B8631), phosphate buffer saline (PBS, pH 7.5) and standard solutions of AFB1 and 

AFB2 (≥98% purity), were purchased from Sigma-Aldrich (Madrid, Spain). 

Methanol and ethyl acetate were supplied by Fisher Scientific (Madrid, Spain). 

Deionized water was purchased from a Milli-Q water purification system 

(Millipore, Bedford, MA, USA). Chromatographic solvents and water were 

degassed for 20 min using a Branson 5200 (Branson Ultrasonic Corp., CT, USA) 

ultrasonic bath.  

 

2.2. Bacterial strains and growth conditions 

Fifteen commercial probiotic strains were used in the in vitro system to 

evaluate the capacity to reduce AFs bioaccesibility during simulated 

gastrointestinal digestion. In particular, Lb. rhamnosus CECT 278T (1), Lb. ruminis 

CECT 4061T, Lb. casei CECT 475 (1), Lb. rhamnosus CECT 288 (2), Lb. johnsonii 
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CECT 289, Lb. casei CECT 4180 (2), Lb. plantarum CECT 220, Lb. reuteri CECT 725, 

Lb. bulgaricus CECT 4005, Lb. paracasei CECT 277, Lb. salivarus CECT 4062, 

Bifidobacterium Longum CECT 4551, Bf. bifidum CECT 870T, Bf. breve CECT 4839T, 

and Bf. adolescentis CECT 5781T were obtained from the Spanish Type Culture 

Collection (CECT Valencia, Spain), in sterile 18% glycerol. The bacterial strains 

were tested individually and were added in the simulated saliva before the gastric 

digestion step at ~105 CFU mL-1 to simulate the intake of a food enriched with 

probiotic microorganisms and consumed at the same time as spiked loaf bread 

produced in this study. 

For longer survival and higher quantitative retrieval of the cultures, they 

were stored at −80 °C. When needed, the recovery of strains was undertaken by 

two consecutive subcultures in appropriate media prior to use. 

 

2.3. Loaf bread preparation 

The recipe for loaf bread preparation was composed by: 600 g of wheat flour, 

20 g of sucrose, 10 g of NaCl, 40 g of yeast for bakery products (Levital, Spain) and 

350 mL of water. The ingredients were kneaded manually for 5 min and the dough 

produced was left rising for 1 h at room temperature. Baking was performed at 

200 ºC for 40 min in a deck oven (MIWE, Arnstein, Germany). The oven was 

presteamed (300 mL of water) before loading. The breads were kept for 30 min 

on cooling racks at room temperature. Twenty grams of loaf bread were spiked 

with 90 μL AFB1 and AFB2 at 14.79 and 6.14 mg kg-1, in 9 spot of 10 μL each to 

cover significatively the bread loaf surface respectively, using a stock methanolic 

solution (1000 μM) of each AFs. After 12 h contact at room temperature to 

completely remove the solvent, the bread was used for the in vitro dynamic 

digestion. 
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2.4. In vitro dynamic digestion model 

Gastrointestinal digestion in the in vitro dynamic model was carried out using 

5L bioreactors Infors (Bottmingen, Switzerland) (Fig. 1) with a working volume of 4 

L. For agitation, two Rushton turbines (Ø=45 mm) were used. The agitation rate 

during all the gastrointestinal digestion steps was set at 2 g. The incubation 

temperature was maintained at 37 °C. 

 

 
Figure 1. Schematic representation of the in vitro simulated gastrointestinal 
digestion system used for the digestion of the loaf bread spiked with AFB1 and 
AFB2. 

 

Twenty grams of spiked loaf bread were mixed with 60 mL of artificial saliva 

(composed of: 10 mL of KCl (89.6 g L−1), 10 mL of KSCN (20 g L−1), 10 mL of 

NaH2PO4 (88.8 g L−1), 10 mL of Na2SO4 (57 g L−1), 1.7 mL of NaCl (175.3 g L−1), 20 mL 

NaHCO3 (84.7 g L−1), 8 mL of urea (25 g L−1), and 290 mg of α-amylase). The 

bacterial strains were also added individually at ~105 CFU mL-1 to simulate the 

intake of a food enriched with probiotic microorganisms and consumed at the 



 
 Results                                                                                                                                                                                                                                                                                                                                  

242 
 

same time as contaminated loaf bread. The pH of this solution was increased to 

6.8 with a 0.1 N NaOH solution. The mixture was placed in a plastic bag containing 

1 L of water at 37 °C, homogenized with a Stomacher IUL Instrument (Barcelona, 

Spain) for 30 s and introduced in the fermenter vessel. Five g of pepsin (14 800 U) 

dissolved in 250 mL of 0.1 N HCl was introduced into this mixture, through a 

fermenter insert. The pH of the mixture was decreased to 2 with the addition of 

0.5 N HCl contained in a glass bottle, by means of a peristaltic pump. The 

incubation temperature was set at 37 °C, by transferring the mixture to the 

fermenter vessel through a heater plate. All fermentation parameters were 

regulated through the software Iris 5.0 (Infors AG CH-4103, Bottmingen, 

Switzerland). The total incubation time was 2 h. An aliquot of 20 mL of gastric fluid 

was sampled for the determination of the mycotoxins’ gastric bioaccessibility. 

After gastric digestion, pancreatic digestion was simulated by increasing the 

pH to 6.5 with NaHCO3 (0.5 N), which was contained in a glass bottle and 

introduced into the fermenter vessel through a peristaltic pump. Thereafter, 25 

mL of pancreatin (8 mg mL−1) and 25 mL of bile salts (50 mg mL−1) dissolved in 200 

mL of water, were introduced into the fermenter vessel and incubated at 2 g at 37 

°C for 2 h. An aliquot of 20 mL of the duodenal fluid was sampled for the 

determination of the mycotoxins’ duodenal bioaccessibility (Manzini et al., 2015) 

 

2.5. Mycotoxin extraction from the simulated intestinal fluids 

AFs B1 and B2 contained in gastric and gastric+duodenal fluids were extracted 

as follows (Tafuri et al., 2008). Five milliliters of each mixture were placed in a 14 

mL plastic test tube, and extracted three times with 5 mL of ethyl acetate using a 

vortex VWR International (Barcelona, Spain) for 1 min. The mixtures were then 

centrifuged (Centrifuge 5810R, Eppendorf, Germany) at 2880 g for 10 min. at 4 °C. 

The organic phases were completely evaporated with a rotary evaporator (Buchi, 



  
   Results 

243 
 

Switzerland) at 30°C and 30 mbar pressure, resuspended in 1 mL of methanol and 

filtered with a 0.22 μM filter (Phenomenex, Madrid, Spain) before being analyzed 

by liquid-chromatography coupled to the mass spectrometry in tandem (LC-

MS/MS). 

 

2.6. LC-MS/MS aflatoxin identification and quantification 

The liquid-chromatography system consisted of a binary LC-20AD pump, a 

SIL-20 A C homoeothermic auto-sampler, a CTO-20A column oven and a CMB-20A 

controller (Agilent, Santa Clara, USA) an Analyst Software 1.5.2 (Applied 

Biosystems, Foster City, USA) was used for data acquisition and processing. The 

separation of AFs was performed on a Gemini NX C18 column (150 X 2.0 mm I.D, 

3.0 mm; Phenomenex, CA, USA) at room temperature (20 °C).  

The mobile phase was composed of solvents A (5 mM ammonium formate 

and 0.1% formic acid in water) and B (5 mM ammonium formate and 0.1% formic 

acid in methanol) at a flow rate of 0.25 mL/min. The elution gradient was 

established initially with 10% eluent B, increased to 80% in 1.5 min, then kept 

constant from 1.5 to 4 min, increased to 90% from 4 to 10 min, increased again to 

100% from 10 to 14 min and finally return to the initial conditions and requilibrate 

during 10 min. The injection volumen was 20 mL. An API-4000 triple-quadruple 

MS/MS system (Applied Biosystems, Foster City, CA, USA) equipped with ESI 

interface in positive mode was used for detection in multiple reactions monitoring 

(MRM) mode. The main MS parameters were optimized and finally set as follows: 

nebulizer gas (GS1), 55 psi; auxiliary gas (GS2), 50 psi; curtain gas (CUR) 15 psi; 

capillary temperature 550 °C; ion spray voltage (IS) 5500 V. Nitrogen was used as 

the nebulizer, heater, curtain and collision gas. The precursor-to-product ion 

transitions were m/z 313.1/241.3-284.9 and m/z 315.1/259.0-286.9 for AFB1 and 

AFB2, respectively. Quantification of AFs was carried out by comparing peak areas 
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of investigated samples with the calibration curve performed with standards 

(concentrations ranging from 0.1 to 100 μg L-1). 

 

2.7. Statistical analysis of data 

Graphpad Prism version 6.0 (Graphpad Software Inc., La Jolla, CA, USA) was 

used for the statistical analysis of data. Differences between groups were carried 

out using analysis of variance (ANOVA followed by Dunnet's multiple comparison 

tests. Differences were considered significant if p ≤ 0.05. 

 

3. Results and discussion 

3.1. Method performance 

Mean recoveries were operated on the fortified intestinal fluids (free from 

contamination of AFs) (n=3) at levels of AFs (0.1-100 μg L-1). The recoveries 

evidenced for AFB1 and AFB2 were 88.3±3.4% and 83.6±4.2%, respectively. Intra-

day 

(n=3) and interday (3 different days) variation values ranged between 2.6 and 

4.2%. The detection limit (LOD) and the limit of quantification (LOQ) values were 

calculated according to s/n=3 and s/n=10, respectively. The LODs and the LOQs of 

AFs were 0.04 and 0.15 μg L-1 for AFB1 and 0.21 and 0.72 μg L-1 for AFB2, 

respectively. 

 

3.2. Evaluation of the AFs contained in the gastric and duodenal fluids 

(bioaccessibility) 

Tables 1 and 2 show the bioaccessibility data of the AFs B1 and B2 present in 

loaf bread spiked with these two contaminants (the initial concentrations present 

in the food matrix were 14.79 and 6.14 mg kg-1 for AFB1 and AFB2, respectively), 

after being digested using an in vitro method to mimic the conditions of human 
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gastrointestinal digestion in presence of different probiotic strains. In particular, 

in the control experiment (consisting of a spiked loaf bread digested without 

probiotic strains), the AFB1 bioaccessibility of the stomach and the duodenal 

digestion were 53.89 and 25.76%, respectively. All tests performed with the 

probiotic strains, evidenced a reduction of the AFB1 bioaccessibility compared 

with the control experiments. The mean AFB1 bioaccessibility (considering both 

stomach and duodenal compartments) ranged from 0.94% (with Lb. johnsoni) to 

30.71% (with Lb. bulgaricus). The lowest AFB1 bioaccessibility was obtained with 

Lb. johnsoni, displaying gastric and duodenal bioaccessibility reductions of 98.09 

and 96.73%, respectively. In the treated samples, the mean AFB1 bioaccessibility 

reduction was equal to 59.12%. The strains that evidenced the highest AFB1 

bioaccessibility reductions were Lb. johnsoni, Lb.reuteri, Lb. plantarum and Lb. 

casei (2), with values ranging from 76.38 to 98.34%.  

Regarding AFB2, its bioaccessibility at gastric and duodenal levels were 57% 

and 36.48%, respectively. In the samples treated with the probiotic strains during 

the gastrointestinal digestion, the mean lower and higher bioaccessibility for this 

contaminant were detected in samples treated with L. reuteri (3.09%) and Bf. 

Bifidum (39.90%). When comparing the data of the treated samples with those of 

the control ones, a mean AFB2 bioaccessibility reduction of 52.65% was noted. The 

strains that showed the highest bioaccessibility reductions of AFB1 (Lb. johnsoni, 

Lb. reuteri, Lb. plantarum and Lb. casei (2)) also showed the highest AFB2 

bioaccessibility reductions (77.14-98.66%). In particular, as can be observed in 

Tables 1 and 2, the relation between bioaccessibility reductions of AFB1 and AFB2 

is rather similar among the same probiotic strain and also among all the strains. 

The observed differences among probiotic strains in reducing AFs 

bioaccesibility is unclear, however it has been speculated that cell surface 

hydrophobicity can be related to AF-binding (Oatley et al., 2000). It is thought that 
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AF molecules are bound on the cell wall components of specific bacteria so that 

the different efficacy of the bacteria might be due to completely different binding 

sites present in different strains or minor differences in similar binding sites that 

varies in a strain dependent manner (Hernandez-Mendoza et al., 2009). In 

previous studies have been found that some strains of Lb. and Bf. have AF-binding 

ability. El-Nezami et al. (1998) showed that within 24 h cultures of Lb. rhamnosus 

strain GG and Lb. rhamnosus strain LC-705 were able to remove approximately 

80% of the AFB1. In other research by Peltonen et al. (2000) the binding of AFB1 by 

Lb. paracasei F19, Bf. lactis Bb-12, Lb. crispatus M247 and MU5, Lb. salivarius 

LM2-118 and Lb. johnsonii LJ-1 was 12 found to range from 5.8 to 31.3%. Lb 

johnsonii LJ-1 and Lb paracasei F19 were the best binders with approximately 30% 

binding. Kabak and Var (2004) determined that the ability of Lb. acidophilus 

NCC12, Lb. acidophilus NCC36, Lb. acidophilus NCC68, Bf. bifidum Bb13, Bf. 

bifidum NCC3881 and Lb. rhamnosus to bind AFM1 ranged between 25.7–32.5% 

and 21.2–29.3% in phosphate-buffered saline and skimmed milk, respectively. 

Table 1. Gastric and duodenal bioaccessibility reduction of AFB1 present in loaf 
bread, subjected to digestion with probiotic microorganisms. Significantly 
different from the control, p ≤ 0.05 (*), p ≤ 0.001 (**), p ≤ 0.0001 (***). 

Samples Aflatoxin B1 

  Concentration (ppm) Bioacc. (%) Mean Bioacc. Red. (%) 
Control1 S2 7.97±0.40 53.89 

39.82 
  

Control D3 3.81±0.10 25.76   
Bf. longum S 3.97±0.20 26.81 

17.80 
50.25*** 

Bf. longum D 1.30±0.030 8.79 65.88*** 

Bf. bifidum S 4.82±0.20 32.60 
22.38 

39.51*** 

Bf. bifidum D 1.80±0.01 12.17 52.76*** 

Bf. breve S 3.18±0.20 21.49 
16.53 

60.12*** 
Bf. breve D 1.70±0.08 11.56 55.11*** 
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Table 1. (continued) 

Samples Aflatoxin B1 

  Concentration (ppm) Bioacc. (%) Mean Bioacc. Red. (%) 
Bf. adolescentis S 5.45±0.40 36.88 26.05 31.57** 
Bf. adolescentis D 2.25±0.20 15.21 40.94*** 
Lb. rhamnosus (1) S 3.20±0.40 40.15 

25.82 
25.49** 

Lb. rhamnosus (1) D 1.70±0.03 11.49 55.38*** 
Lb. ruminis S 3.31±0.03 22.35 16.58 58.58*** 
Lb. ruminis D 1.60±0.01 10.82 58.01*** 
Lb. casei (1) S 2.44±0.02 16.47 

12.29 
69.43*** 

Lb. casei (1) D 1.20±0.03 8.11 68.50*** 
Lb. rhamnosus (2) S 3.45±0.40 23.30 16.31 56.73*** 
Lb. rhamnosus (2) D 1.38±0.07 9.30 63.89*** 
Lb. johnsoni S 0.15±0.01 1.03 

0.94 
98.09*** 

Lb. johnsoni D 0.12±0.02 0.84 96.73*** 
Lb. casei (2) S 0.46±0.03 3.12 

2.72 
94.21*** 

Lb. casei (2) D 0.34±0.03 2.31 91.02*** 
Lb. plantarum S 0.13±0.01 0.90 

0.98 
98.34*** 

Lb. plantarum D 0.16±0.01 1.06 95.90*** 
Lb. reuteri S 1.43±0.03 9.67 7.88 82.06*** 
Lb. reuteri D 0.90±0.02 6.09 76.38*** 
Lb. bulgaricus S 6.74±0.40 45.58 30.71 15.41* 
Lb. bulgaricus D 2.34±0.03 15.84 38.49** 
Lb. paracasei S 5.26±0.40 35.57 25.25 34.00** 
Lb. paracasei D 2.20±0.05 14.93 42.06*** 
Lb. salivarus S 5.69±0.70 38.50 

28.22 
28.55** 

Lb. salivarus D 2.64±0.30 17.93 30.39** 
1The control consisted of spiked loaf bread digested without probiotic strains. 
2Stomach. 
3Duodenum. 

Kabak et al. (2009) studied the release of AFB1 and ochratoxin A (OTA) from 

different food products in the gastrointestinal tract in the absence and presence 

of probiotics, as possible adsorbents. The average bioaccessibility of AFB1 and OTA 
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without probiotics was about 90% and 30%, respectively, depending on several 

factors such as food product, contamination level, compound and type of 

contamination (spiked versus naturally contaminated). The six probiotic bacteria 

showed a variable AFB1 and OTA binding capacities, which depended on the 

bacterial strain, toxin, type of food and contamination level. A reduction of 37% 

and 73% was observed for the AFB1 and OTA bioaccessibility in the presence of 

probiotic bacteria, respectively. 

Raiola et al. (2012) analyzed 27 samples of dried pasta characterized by size, 

packaging and marketing intended for young children consumption, by liquid 

chromatography (LC) and liquid chromatography–tandem mass spectrometry (LC–

MS/MS) for Deoxynivalenol (DON), OTA and AFB1 determination. The samples 

that showed the highest amounts of one of the mycotoxins were cooked for 10 

min, digested with an in vitro gastrointestinal protocol and bioaccessibility values 

were calculated. Seven of the 27 samples exceeded by 120-225% the European 

legal limit set for DON in processed cereal-based baby foods (Commission 

Regulation (EC) 1126/2007). The mean value of gastric bioaccessibility of DON was 

23.1%, whereas the mean duodenal bioaccessibility was equal to 12.1%. 

Kabak and Ozbey (2012) investigated the bioaccessibility of AFs from various 

spiked food matrices (peanut, pistachio, hazelnut, dried figs, paprika, wheat and 

maize) and evaluated the effectiveness of six probiotic bacteria in reducing AF 

bioaccessibility using an in vitro digestion model. The bioaccessibility of AFs from 

seven food matrices ranged from 85.1% to 98.1% for AFB1, 83.3% to 91.8% for 

AFB2, 85.3% to 95.1% for AFG1 and 80.7% to 91.2% for AFG2. The bioaccessibilities 

of all four compounds were independent of the spiking level and food matrix. The 

inclusion of probiotic bacteria showed a significant (p < 0.05) reduction in the 

bioaccessibility of AFs: up to 35.6% for AFB1, 35.5% for AFB2, 31.9% for AFG1 and 

33.6% for AFG2. AF-binding activity of probiotic bacteria in simulated 
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gastrointestinal conditions was reversible, and 10.3–39.8% of bound AFs were 

released back into the digestion juices from the bacteria–AF complexes. 

 

Table 2. Gastric and duodenal bioaccessibility reduction of AFB2 present in loaf 
bread, subjected to digestion with probiotic microorganisms. Significantly 
different from the control, p ≤ 0.05 (*), p ≤ 0.001 (**), p ≤ 0.0001 (***). 

Samples Aflatoxin B2 
  Concentration (ppm) Bioac. (%) Mean  Bioac. Red (%) 

Control1 S2 3.50±0.2 57.00 
46.74 

  
Control D3 2.24±0.3 36.48   
Bf. longum S 3.00±0.1 48.86 

36.64 
14.29* 

Bf. longum D 1.50±0.3 24.43 33.04** 
Bf. bifidum S 3.10±0.2 50.49 

39.90 
11.43* 

Bf. bifidum D 1.80±0.1 29.31 19.64* 
Bf. breve S 2.20±0.3 35.83 

24.43 
37.14** 

Bf. breve D 0.80±0.1 13.03 64.29*** 
Bf. adolescentis S 2.80±0.4 45.60 

33.39 
20.00** 

Bf. adolescentis D 1.30±0.2 21.17 41.96** 
Lb. rhamnosus (1) S 2.10±0.2 34.20 

24.43 
40.00** 

Lb. rhamnosus (1) D 0.90±0.1 14.66 59.82*** 
Lb. ruminis S 2.20±0.3 35.83 

24.43 
37.14*** 

Lb. ruminis D 0.80±0.2 13.03 64.29*** 
Lb. casei (1) S 2.00±0.3 32.57 

21.99 
42.86*** 

Lb. casei (1) D 0.70±0.1 11.40 68.75*** 
Lb. rhamnosus (2) S 2.40±0.2 39.09 

31.76 
31.43** 

Lb. rhamnosus (2) D 1.50±0.3 24.43 33.04** 
Lb. johnsoni S 0.80±0.1 13.03 

8.96 
77.14*** 

Lb. johnsoni D 0.30±0.08 4.89 86.61*** 
Lb. casei (2) S 0.50±0.2 8.14 

4.89 
85.71*** 

Lb. casei (2) D 0.10±0.02 1.63 95.54*** 
Lb. plantarum S 0.40±0.1 6.51 

3.66 
88.57*** 

Lb. plantarum D 0.05±0.01 0.81 97.77*** 
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Table 2. (continued) 

Lb. reuteri S 0.35±0.06 5.70 
3.09 

90.00*** 
Lb. reuteri D 0.03±0.01 0.49 98.66*** 
Lb. bulgaricus S 2.30±0.08 37.46 

27.69 
34.29*** 

Lb. bulgaricus D 1.10±0.3 17.91 50.89*** 
Lb. paracasei S 2.20±0.2 35.83 

26.06 
37.14** 

Lb. paracasei D 1.00±0.2 16.29 55.36*** 
Lb. salivarus S 2.30±0.3 37.46 

31.76 
34.29** 

Lb. salivarus D 1.60±0.2 26.06 28.57** 
1The control consisted of spiked loaf bread digested without probiotic strains. 
2Stomach. 
3Duodenum. 

4. Conclusions 

The present study showed the capacity of probiotic bacteria to reduce the 

bioaccessibility of AFB1 and AFB2 in spiked loaf bread. In particular, the highest 

bioaccesibility AFs reduction was obtained when the spiked loaf bread was 

digested together with Lb. johnsoni CECT 289, Lb. casei CECT 4180, Lb. plantarum 

CECT 220 and Lb. reuteri CECT 725, reaching reduction up to 98.66%. 

Results from this study suggest that a food enriched with specific probiotic 

microorganisms and consumed at the same time as food contaminated with AFs, 

could reduce the risk associated to the intake of these toxic compounds contained 

in food. 

 

 

 

 

 

 

 



  
   Results 

251 
 

Acknowledgements 

The research was supported by the project for emerging research groups GV-

2016-106 from the Generalitat Valenciana, by the pre PhD program of University 

of Valencia “Santiago Grisolia” and by the European Project (H2020-Research and 

Innovation Action) MycoKey “Integrated and innovative key actions for mycotoxin 

management in the food and feed chain" GA 678781. E. Posarelli is grateful for 

the traineeship granted by the Erasmus + Mobility program of the University of 

Bologna (Italy). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 Results                                                                                                                                                                                                                                                                                                                                  

252 
 

References 
Castells, M., Ramos, A.J., Sanchis, V., Marin, S.(2007). Distribution of total 

aflatoxins in milled fractions of hulled rice. Journal of Agricicultural and Food 
Chemistry, 55(7), 2760-2764. 

Commission Regulation (EC) 1126/2007. Official Journal of the European Union L 
255/14, 20 August 2008. 

El-Nezami, H., Kankaanpaa, P., Salminen, S., Ahokas, J. (1998). Ability of dairy 
strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. 
Food and Chemical Toxicology, 36, 321-326. 

Frenich, G., Vidal, J., Romero-Gonzalez, L.M.R., Aguilera-Luiz, M. (2009). Simple 
and high-throughput method for the multimycotoxin analysis in cereals and 
related foods by ultra-high performance liquid chromatography/tandem 
mass spectrometry. Food Chemistry, 117, 705-712. 

Hernandez-Mendoza, A., Garcia, H.S., Steele, J.L. (2009). Screening of Lactobacillus 
casei strains for their ability to bind aflatoxin B1. Food and Chemical 
Toxicology, 47, 1064–1068. 

IARC, 2012. Chemical agents and related occupations. IARC Monographs on the 
Evaluation of Carcinogenic Risks to Humans. 100F:1–599. PMID:23189753. 

Iqbal, S.Z., Rabbani, T., Asi, M.R., Jinap, S. (2014). Assessment of aflatoxins, 
ochratoxin A and zearalenone in breakfast cereals. Food Chemistry, 157, 257-
262. 

Kabak, B., Brandon, E.F.A., Var, I., Blokland, M., Sips, A.J.A.M. (2009). Effects of 
probiotic bacteria on the bioaccessibility of aflatoxin B1 and ochratoxin A 
using an in vitro digestion model under fed conditions. Journal of 
Environmental Science and Health, 44, 472-480. 

Kabak, B., Ozbey, F. (2012a). Assessment of the bioaccessibility of aflatoxins from 
various food matrices using an in vitro digestion model, and the efficacy of 
probiotic bacteria in reducing bioaccessibility. Journal of Food Composition 
and Analysis, 27, 21-31. 

Kabak, B., Ozbey, F. (2012b). Aflatoxin M1 in UHT milk consumed in Turkey and 
first assessment of its bioaccessibility using an in vitro digestion model. Food 
Control, 28, 338-344. 

Kabak, B., Var, I. (2004). Binding of aflatoxin M1 by Lactobacillus and 
Bifidobacterium strains. Milchwissenschaft, 59, 301–303. 



  
   Results 

253 
 

Li, P., Zhang, Q., Zhang, W., Zhang, J., Chen, X., Jiang, J., et al. (2009b). 
Development of a class-specific monoclonal antibody-based ELISA for 
aflatoxins in peanut. Food Chemistry, 115, 313-317. 

Li, P.W., Zhang, Q., Zhang, W. (2009a). Immunoassays for aflatoxins. Trac-Trends 
in Analytical Chemistry, 28, 1115-1126. 

Manzini, M., Rodriguez-Estrada, M.T., Meca, G., Mañes, J. (2015). Reduction of 
beauvericin and enniatins bioaccessibility by prebiotic compounds, evaluated 
in static and dynamic simulated gastrointestinal digestion. Food Control, 47, 
203-211. 

Merrick, B.A., Phadke, D.P., Auerbach, S.S., Mav, D., Stiegelmeyer, S.M., Shah, 
R.R., et al. (2013). RNA-Seq profiling reveals novel hepatic gene expression 
pattern in aflatoxin B1 treated rats. PLoS ONE, 8(4), e61768. 

Oatley, J.T., Rarick, M.D., Ji, G.E., Linz, J.E. (2000). Binding of aflatoxin B1 to 
bifidobacteria in vitro. Journal of Food Protection, 63, 1133–1136. 

Peltonen, K., El-Nezami, H., Pierides, M., Salminen, S., Ahokas, J.T. (2000). Binding 
of aflatoxin B1 by probiotic bacteria. J.ournal of the Science of Food and 
Agriculture,80, 1942-1945. 

Raiola, A., Meca, G., Mañes, J., Ritieni, A. (2012). Bioaccessibility of deoxynivalenol 
and its natural co-occurrence with ochratoxin A and aflatoxin B1 in Italian 
commercial pasta. Food and Chemical Toxicology, 50, 280-287. 

Saladino, F., Quiles, J.M., Mañes, J., Fernández-Franzón, M., Bittencourt, F.L., 
Meca, G. (2017). Dietary exposure to mycotoxins through the consumption of 
commercial bread loaf in Valencia, Spain. LWT - Food Science and 
Technology, 75, 697-701. 

Serrano, A.B., Font, G., Ruiz, M.J., Ferrer, E. (2012). Co-occurrence and risk 
assessment of mycotoxins in food and diet from Mediterranean area. Food 
Chemistry, 135, 423-429. 

Serrano-Niño, J.C., Cavazos-Garduño, A., Hernandez-Mendoza, A., Applegate, B., 
Ferruzzi, M.G., San Martin-González, M.F., García, H.S. (2013). Assessment of 
probiotic strains ability to reduce the bioaccessibility of aflatoxin M1 in 
artificially contaminated milk using an in vitro digestive model. Food Control, 
31, 202–207. 

Tafuri, A., Meca, G., Ritieni, A. (2008). A rapid high-performance liquid 
chromatography with fluorescence detection method developed to analyze 
ochratoxin A in wine. Journal of Food Protection, 71, 2133-2137. 



 
 Results                                                                                                                                                                                                                                                                                                                                  

254 
 

Van Egmond, H.P. (1995). Mycotoxins: regulations, quality assurance and 
reference materials. Food Additives and Contaminants, 12(3), 321-330.  

Versantvoort, C., Oomen, A., Van de Kamp, E., Rompelberg, C., Sips, A. (2005). 
Applicability of an in vitro digestion model in assessing the bioaccessibility of 
mycotoxins from food. Food and Chemical Toxicology, 43, 31-40. 

Wild, C.P., Montesano, R. (2009). A model of interaction: aflatoxins and hepatitis 
viruses in liver cancer aetiology and prevention. Cancer Letters, 286(1), 22-
28. 

Williams, J.H., Phillips, T.D., Jolly, P.E., Stiles, J.K., Jolly, C.M., Aggarwal, D. (2004). 
Human aflatoxicosis in developing countries: a review of toxicology, 
exposure, potential health consequences, and interventions. The American 
Journal of Clinical Nutrition, 80(5), 1106-1122. 



 
    

 
 

 

 

 

 

 

 

                  4. GENERAL DISCUSSION 

 

 

 

 

 



 
 

 



 
   General discussion 

257 
 

4. DISCUSIÓN GENERAL 

El trabajo de investigación llevado a cabo a lo largo de esta Tesis Doctoral 

se ha concretado en el análisis de micotoxinas en pan de molde y  en el estudio de 

métodos químicos y biológicos capaces de reducir la presencia de hongos y 

micotoxinas en pan y productos similares a base de cereales. 

En el primer trabajo se ha validado un método analítico para el análisis de 

diecisiete micotoxinas en pan. Posteriormente se ha evaluado la exposición de la 

población valenciana a dichas micotoxinas a través del consumo de pan de molde 

y el riesgo asociado a su exposición mediante el análisis de 80 muestras de pan de 

molde procedentes de pequeños comercios y grandes superficies de la ciudad de 

Valencia.  

La presencia de estas micotoxinas en las muestras analizadas planteó la 

necesidad de reducir estos compuestos o evitar su producción en el pan. Para ello 

se han estudiado métodos químicos y biológicos, como los isotiocianatos (ITCs) y 

algunas bacterias lácticas (BALs), y sus efectos sobre el crecimiento del hongo y la 

producción de micotoxinas. Los ITCs se encuentran en la mostaza oriental y 

mostaza amarilla por lo que se estudia el efecto de estas harinas sobre los hongos 

y distintos sistemas de volatilización para determinar su efectividad y posible 

aplicación en la industria alimentaria. Por otro lado, el efecto antifúngico de los 

ITCs se ha estudiado tanto in vitro como en productos derivados de cereales. El 

AITC es el ITC que presenta mayor efecto antifúngico, por lo que se ha evaluado 

su capacidad de reaccionar con zearalenona (ZEA) y α-zearalenol (α-ZOL) en 

soluciones tamponadas, además de la bioaccesibilidad y de la biodisponibilidad 

tanto de las micotoxinas como de los productos de reacción formados.  

Las BALs engloban un grupo heterogéneo de microorganismos capaces de 

producir ácido láctico a partir de la fermentación de azúcares. Su utilización en la 

producción de numerosos alimentos hace que su empleo como bioconservante 
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sea una alternativa a otros métodos para prevenir el desarrollo de los hongos en 

los alimentos, por lo que se han utilizado las BALs con el objetivo de extender la 

vida útil del pan. Además, se ha estudiado la capacidad de algunas BALs para 

reducir la bioaccesibilidad de las aflatoxinas B1 (AFB1) y B2 (AFB2) a través de un 

modelo de digestión dinámico in vitro.  

 

4.1. Micotoxinas en pan de molde 

4.1.1. Validación del método analítico  

En un primer trabajo se validó un método para el análisis de 17 

micotoxinas por cromatografía liquida acoplada a espectrometría de masas en 

tándem (CL-EM/EM), previa extracción con metanol y utilización del 

homogeneizador Ultra-Turrax®. Las micotoxinas estudiadas son: AFB1, AFB2, 

aflatoxina G1 (AFG1), aflatoxina G2 (AFG2), ocratoxina A (OTA), toxina HT-2 (HT-2) y 

toxina T-2 (T-2), deoxinivalenol (DON), ZEA, fumonisina B1 (FB1) y fumonisina B2 

(B2), fusaproliferina (FUS), beauvericina (BEA), eniatina B (ENB), eniatina B1 (ENB1), 

eniatina A (ENA) y eniatina A1 (ENA1).  

En la validación del método se han evaluado la linealidad, la precisión 

mediante el estudio de la repetibilidad (intradía) y reproducibilidad (interdía), la 

exactitud con el estudio de la recuperación, la sensibilidad con los límites de 

detección (LDs) y límites de cuantificación (LQs) y por último el efecto matriz (EF). 

Para la estimación de la linealidad y del efecto de la matriz se han realizado rectas 

de calibrado para cada micotoxina. Todas las micotoxinas mostraron buena 

linealidad con coeficientes de correlación (R2) siempre superiores a 0,9923. Para 

evaluar el efecto matriz (Tabla 1), la pendiente de la recta de calibrado obtenida al 

adicionar el patrón al extracto se comparó con la pendiente de la recta patrón en 

metanol. Se observó una supresión de la señal (14-77%) para la mayoría de las 

micotoxinas, mientras que para cuatro de las micotoxinas se observó un aumento 
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de la señal (106-139%). Los análisis de recuperación se han realizado por 

triplicado a tres concentraciones diferentes (LQ, 2 veces el LQ y 10 veces el LQ), 

utilizando la recta de calibrado de distintas concentraciones de micotoxinas 

adicionadas a los extractos. Los resultados obtenidos varían entre 72% y 97% y la 

desviación estándar relativa es inferior al 17%. La repetibilidad intradía (n = 3) 

oscila entre el 7% y el 12%; y la reproducibilidad interdía (n = 3) oscila entre el 8% 

y el 17%. El LD es la cantidad más baja de analito que puede ser detectada en una 

muestra. El LQ es la cantidad más baja de analito en una muestra que puede ser 

utilizado para la cuantificación (Tabla 1). Los LD varían desde 0,03 µg/Kg de la ENB 

hasta 20,5 µg/Kg del DON. 

Tabla 1. LD, LQ y EM (%) de diferentes micotoxinas en pan de molde. 
Micotoxinas LD (µg/Kg) LQ  (µg/Kg) EM (%) 
AFB1 0,08 0,27 37 
AFB2 0,08 0,27 29 
AFG1 0,16 0,53 27 
AFG2 0,3 1 34 
OTA 0,05 0,17 102 
FB1 50 166,67 132 
FB2 30 100 139 
ZEA 7,8 26 106 
T-2 1,76 5,87 72 
HT-2 4,95 16,5 77 
ENA 2,5 8,33 14 
ENA1 0,5 1,67 21 
ENB 0,03 0,1 49 
ENB1 0,06 0,2 49 
BEA 7 23,33 32 
DON 20,5 68,33 60 
FUS 0,65 2,17 35 

LD= límite de detección; LQ= límite de cuantificación; EM= efecto matriz. 
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4.1.2. Análisis de micotoxinas en muestras de pan de molde comercializadas en 

Valencia 

Mediante esta metodología se han analizado 80 muestras de pan de 

molde, seleccionadas al azar, y compradas en distintos comercios de la ciudad de 

Valencia entre enero y julio 2015. De las diecisiete micotoxinas estudiadas se han 

detectado ocho: AFB1, AFB2, AFG1, AFG2, ZEA, ENA1, ENB y ENB1.  

Las AFs (AFB1, AFB2 y/o AFG1) se encontraron en el 20% de las muestras a 

concentraciones que oscilan entre 0,5 y 7,1 μg/kg. Todas las muestras 

contaminadas con AFB1 muestran valores superiores al límite máximo (2 μg/kg) 

establecido por la Legislación Europea para el pan. La AFB2 se ha encontrado en 13 

muestras mientras la AFG1 solo en 2 muestras que también estaban contaminadas 

por la AFB1. En total, 6 muestras de pan superaron el límite máximo legislado (4 

μg/kg) en Europa para la suma de AFs (EC, 2006). Otros autores han detectado 

AFs, en cereales y productos derivados procedentes de países Mediterráneos 

(Serrano et al., 2012) y en cereales para el desayuno procedentes de Pakistán 

(Iqbal et al., 2014). En este último trabajo, el 16% (38 muestras de 237) y el 8% (19 

muestras de 237) de las muestras de cereales para el desayuno presentaban 

niveles de AFB1 y suma de AFs, respectivamente, por encima de los límites 

establecidos en la legislación (Iqbal et al., 2014). 

De las cuatro ENs estudiadas, la ENA es la única EN que no se ha 

encontrado en las muestras analizadas. La incidencia de la ENB es la más alta de 

todas las micotoxinas con un 96% (76 muestras de 80), seguida de la ENB1 con un 

79% (63 muestras) y la ENA1 con un 18% (14 muestras). Las concentraciones 

encontradas oscilaron entre 0,2 y 54 μg/kg. La ENB fue la micotoxina que se 

detectó con mayor frecuencia en los cereales italianos analizados por Juan et al., 

2013. Sin embargo, los niveles de ENs encontrados en otros estudios superan las 
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concentraciones obtenidas en el presente estudio (Meca et al., 2010; Juan et al., 

2013). 

La ZEA se ha detectado en el 65% (52) de las muestras de pan con un 

rango de concentración entre 27 and 905 μg/kg. El 30% (24) de las muestras están 

por encima de los límites máximo legislados en Europa (EC, 2006) para ZEA en pan 

(50 μg/kg). 

 

4.1.3. Estimación de la exposición a micotoxinas a través del pan de molde y 

evaluación del riesgo  

El grado de exposición de la población a micotoxinas a través de los 

alimentos depende de la composición de la dieta en la zona geográfica 

considerada y de la contaminación por micotoxinas de los alimentos consumidos 

por dicha población. La ingesta diaria estimada (IDE) se calcula multiplicando los 

datos de consumo de los alimentos analizados por la media de los niveles de 

micotoxina encontrada en los mismos y se expresa considerando el peso corporal 

medio de 70 kg. En el estudio realizado sobre la exposición a micotoxinas de la 

población valenciana se han considerado dos escenarios posibles de exposición: 

nivel bajo de exposición, asignando un valor de cero a aquellas muestras <LD o 

<LQ; nivel de exposición alto, asignando el valor del LD para muestras <LD y el 

valor del LQ para muestras >LD pero <LQ (EFSA, 2010). La información sobre el 

consumo de pan de molde se ha obtenido a partir de la bases de datos de 

consumo en hogares valencianos del Ministerio de Agricultura, Alimentación y 

Medio Ambiente (MAGRAMA, 2014).  

Se ha realizado una aproximación a la evaluación del riesgo comparando 

los valores de IDE obtenidos con los valores de ingesta diaria tolerable (IDT) 

establecidos para algunas de las micotoxinas por las instituciones y comité 

científicos competentes (Comité Mixto FAO/OMS de Expertos en Aditivos 
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Alimentarios, JECFA; Comité Científico sobre la Alimentación Humana, SCF; 

Autoridad Europea de Seguridad Alimentaria, EFSA). Para las micotoxinas 

emergentes no se han establecido IDTs por lo que se ha realizado una estimación 

de la exposición de la población a estas micotoxinas a través de la dieta y se ha 

comparado con las IDTs del DON de 1000 ng/kg p.c. por día.  

Las IDEs obtenidas para las ENs varían entre 0,005 y 0,808 ng/kg p.c. por 

día y para la suma de ENs la ingesta calculada resulta aproximadamente de 1 

ng/kg p.c. por día. La exposición alimentaria a la ZEA mediante el pan de molde ha 

sido estimada entre 2,380 y 2,923 ng/kg p.c. por día. Comparando con otros 

estudios realizados en Europa, las IDEs obtenidas para ZEA a través del consumo 

de diferentes productos comúnmente consumidos en Cataluña (Cano-Sancho et 

al., 2012) y mediante el consumo de harina de trigo, principal ingrediente del pan, 

en Portugal y en los Países Bajos (Aldana et al., 2014), las IDEs obtenidas en 

nuestro estudio son mas bajas.  

Las IDEs calculadas para las AFs varían entre 0,008 y 0,035 ng/kg p.c. por 

día y entre 0,021 y 0,078 ng/kg p.c. por día para la suma de AFs. Valores de 

ingesta de 0,003, 0,001, 0,006 y 0,014 ng/kg p.c. por día se han obtenido para 

AFB1, AFB2, AFG1 y AFG2 respectivamente a través del consumo de café (García-

Moraleja at al., 2015). Sin embargo, no hay estudios publicados que evalúen las 

IDEs de AFs en la dieta total de la población valenciana. Por otro lado, no existen 

IDTs para las AFs debido a que no se puede establecer un nivel considerado como 

seguro para productos cancerígenos genotóxicos.  

En la aproximación de la evaluación del riesgo por exposición a 

micotoxinas a través del consumo de pan de molde por la población valenciana, el 

riesgo más alto es debido a la ZEA, siendo aproximadamente del 1% de la IDT. La 

estimación del riesgo de las ENs varía entre lo 0,001% y lo 0,081% de la IDT 

considerada, alcanzando lo 0,1% para la suma de ENs.  
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Todas las IDEs calculadas demuestran que la contribución del pan de 

molde a la ingesta de micotoxinas está por debajo de la IDT establecida incluso 

teniendo en cuenta un escenario de exposición sobreestimado por lo que el 

consumo de pan de molde no supone un riesgo para la población valenciana, sin 

embargo habría que considerar que hay muchos otros alimentos susceptible de 

ser contaminados por micotoxinas y que la exposición a través del pan de molde 

es solo una pequeña parte de la exposición total.  

 
4.2. Reducción de hongos y micotoxinas 

4.2.1. Empleo de ITCs 

Los glucosinolatos (GLSs) son metabolitos bioactivos presentes en plantas de 

la familia Brassicaceae, como col, coliflor, brócoli, coles de Bruselas y mostaza. Los 

productos de hidrólisis de los GLSs, mayoritariamente los ITCs, poseen 

propiedades antimicrobianas frente diferentes microorganismos patógenos que 

se pueden encontrar en los alimentos. En los vegetales, los GLSs se encuentran en 

vacuolas específicas distintas de donde está la mirosinasa, enzima responsable de 

catalizar la reacción de hidrólisis. Cuando la planta sufre un daño físico, sustrato y 

enzima entran en contacto produciéndose los ITCs y sus consiguientes efectos. La 

sinigrina es el GLS principal de la mostaza oriental (Brassica juncea) mientras la 

sinalbina de la mostaza amarilla (Sinapis alba). Después de la hidrólisis, la sinigrina 

genera AITC y la sinilbina genera ρ-hidroxibencil isotiocianato (ρ-HBITC) (Saladino 

et al., 2016). 

 

4.2.1.1. Actividad antimicrobiana in vitro 

La actividad antimicrobiana de las harinas de mostaza oriental y amarilla 

se ha estudiado a distintas concentraciones (0,1, 0,5 y 1 g) añadiendo agua (2 mL) 

para activar la reacción catalizada por la mirosinasa. Se han colocando las harinas 
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en medio sólido PDA inoculado con A. parasiticus. La inhibición del crecimiento 

del hongo ha sido expresada como porcentaje de reducción del diámetro del 

micelio del hongo tratado con harina con respecto al control no tratado con las 

harinas.  

La inhibición del crecimiento del hongo es directamente proporcional al 

tiempo de incubación y a la cantidad de harina de mostaza utilizada. La mayor 

reducción se ha observado con 1 g de mostaza oriental a las 148 h con una 

reducción del diámetro del micelio del 81% y del 30% con 1 g de harina de 

mostaza amarilla.  

Los compuestos generados a partir de la harina de mostaza oriental han 

sido mas efectivos en la inhibición del crecimiento de A. parasiticus que los 

productos volátiles derivados de la harina amarilla y eso puede ser debido a la 

mayor volatilidad del AITC en comparación con el ρ-HBITC (Luciano y Holley, 

2010). 

Es la primera vez que se ha evaluado la actividad antifúngica de los ITCs 

obtenidos a partir de matrices alimentarias in situ frente A. parasiticus. Otros 

autores han utilizado ITCs puros o extractos de plantas del genero brassica para 

estudiar la inhibición del crecimiento de diferentes hongos. El aceite sintético de 

mostaza se ha utilizado frente a A. glaucus y A. parasiticus en cacahuetes (Dhingra 

et al., 2009) logrando mantener la población de los mismos por debajo de la 

inoculación inicial durante todo el período de almacenamiento. También se ha 

estudiado el efecto del AITC frente a P. notatum (Nielsen & Rios, 2000).  

Por otro lado, se ha evaluado la actividad antimicrobiana in vitro de 

soluciones estándar de AITC, BITC y PITC en medio líquido en concentraciones que 

variaban entre 0,1 y 150 mg/L frente A. parasiticus para calcular la mínima 

concentración inhibitoria (MCI) y la mínima concentración fungicida (MCF). La MCI 

es la concentración más baja de un antimicrobiano que inhibe el crecimiento de 
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un microorganismo mientras la MCF se refiere al agente que disminuye en 99,9% 

las colonias a partir de un inoculo inicial. 

Los tres ITCs estudiados son activos frente a A. parasiticus y la inhibición 

es proporcional a las concentraciones ensayadas. AITC y BITC muestran un MCI 

por debajo de 20 mg/L, mientras que la MCI obtenida para el PITC es de 50 mg/L. 

El BITC es el compuesto activo con menor MCF (20 mg/L), mientras que el AITC y 

el PITC muestran un valor de MCF de 50 mg/L. 

Azaiez et al. (2013a) han evaluado la actividad antimicrobiana de AITC, 

BITC y PITC frente tres cepas de Gibberella moniliformis en medio sólido 

alcanzando el 90% de reducción del micelio. Manyes et al. (2015) han estudiado la 

actividad antifúngica del AITC frente A. parasiticus y P. expansum en medio sólido 

resultando el primer hongo más sensible al compuesto antimicrobiano. Por otra 

parte, Janatova et al. (2015) han evaluado diferentes aceites esenciales volátiles 

de los cuales, el AITC resulta ser casi ineficaz frente A. niger y sólo presenta algún 

efecto cuando el AITC se encuentra encapsulado. La baja actividad del AITC podría 

ser explicada por la falta de restricción a la circulación del aire en las placas Petri 

utilizadas en el ensayo, por lo tanto el AITC probablemente desaparece antes de 

que la actividad antifúngica se produzca. 

 

4.2.1.2. Estudio de volatilización del AITC 

Para determinar la permanencia del compuesto bioactivo AITC en un 

envase se han estudiado dos sistemas de volatilización diferentes. El primero se 

basa en el empleo de harina de mostaza oriental insertada en una pequeña bolsa 

de plástico con agua para catalizar la reacción de conversión de la sinigrina en 

AITC mediante la enzima mirosinasa, mientras que para el segundo sistema se 

impregna una tira de papel de filtro con 50 μL de la solución estándar del AITC, y 

se pega a la tapa del envase. La volatilización del compuesto con ambos sistemas 
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se ha estudiado sin y con el alimento (tortilla de trigo) en el envase, a temperatura 

ambiente inyectando 100 μL del espacio de cabeza del envase a un cromatógrafo 

de gases con detector de ionización de llama (CG-DILL) en 16 diferentes tiempos a 

lo largo de dos meses. 

Utilizando la mostaza oriental, el nivel máximo de AITC detectado en el 

espacio de cabeza con y sin el alimento ha sido de 34,3 y 50,7 mg/L, 

respectivamente. La diferencia es debida probablemente a la absorción del AITC 

por parte de la matriz alimentaria. Además, hay que considerar que el plástico 

también absorbe el compuesto y que durante la volatilización el AITC puede 

convertirse en otros compuestos como tiocianatos y nitrilos (Meca et al., 2012). 

Empleando el segundo sistema de volatilización del AITC (50 μL de 

solución estándar de AITC) la máxima concentración se ha detectado durante la 

primera hora de incubación y ha sido de 130 y 115 mg/L con y sin el alimento, 

respectivamente. Empleando este sistema la concentración del compuesto 

bioactivo presente en el espacio de cabeza en las primeras 48 h ha sido 2 veces 

más alta que en el caso del empleo de la harina como sistema de generación del 

AITC. Esta aplicación tiene la ventaja de promover una volatilización del AITC más 

rápida en las primeras horas de incubación reduciendo la posibilidad de 

crecimiento/germinación de los hongos micotoxigénicos en matrices alimentarias.  

Considerando los resultados obtenidos en este estudio se observa que la 

aplicación de AITC impregnado en tiras de papel de filtro es más efectiva que la 

utilización de las bolsas de plástico con agua y harina de mostaza y por otro lado 

la presencia del alimento no influye de forma destacable en la volatilización del 

AITC. 
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4.2.1.3. Efectos sobre el hongo y las micotoxinas producidas por éste 

4.2.1.3.1. Reducción de PAT en tortillas de trigo  

En el siguiente estudio se han tratado muestras de 10 g de tortillas de 

trigo contaminadas con P. expansum y envasadas en bolsas de plástico con:  

- 0,5, 1 y 2 g de harina de mostaza oriental o amarilla colocados en una 

pequeña bolsa de plástico (pegada en el interior del envase) con la misma 

cantidad de agua para promover la reacción de producción de los ITCs. 

- 50, 100 y 200 μL/L de AITC en tiras de papel de filtro pegadas en el interior de 

los envases.  

Considerando todos los tratamientos estudiados se ha obtenido una 

reducción media de la PAT del 93%. La mayor reducción de PAT se ha evidenciado 

en los estudios con 2 g de harina de mostaza amarilla, obteniendo una reducción 

del 99%, mientras que la más baja se ha observado empleando 0,5 g de harina de 

mostaza oriental (86%). Tenido en cuenta sólo los envases con harina de mostaza, 

se han detectado reducciones del 99% y 93% utilizando 2 g de harina amarilla y 

oriental, respectivamente.  

Para conocer la cantidad total de GLSs presentes en la harina de mostaza 

amarilla y oriental que pueden convertirse en ITCs se han caracterizado 

analíticamente los GLSs. Ambas matrices de harina se han extraído con una 

solución acuosa y se han analizado mediante cromatografía líquida acoplada a 

detector diodo array (CL-DAD). La sinigrina se ha detectado a la concentración de 

46 g/kg mientras que la sinalbina a 42 g/kg.  

Este estudio puede ser considerado el primero en el cual se ha empleado 

un enfoque químico basado en el uso de compuestos bioactivos para reducir la 

PAT producida por P. expansum en los alimentos. La PAT se encuentra en fruta y 

derivados, especialmente manzana y zumo de manzana, pero también  puede 

contaminar otros alimentos como los cereales (Assunção et al., 2016) o 
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encontrarse en el mismo alimento cereales y manzanas contaminadas como en 

algunos cereales de desayuno. Diferentes estrategias de reducción han sido 

evaluadas por otros autores. Drusch et al. (2007) han demostrado que la PAT 

puede descomponerse por los radicales libres generados por oxidación del ácido 

ascórbico a ácido deshidroascórbico. Los porcentajes de reducción de la 

micotoxina evidenciados en este estudio resultan 0,5 veces más bajos que los 

resultados obtenidos en nuestro estudio. Yun et al. (2008) han demostrado que la 

adición de ácidos orgánicos, aminoácidos y etanol inhibe parcialmente la 

degradación de la PAT por gamma irradiación en un sistema modelo acuoso. Gao 

et al. (2009) han evaluado la utilización del ultrasonido para reducir el contenido 

de PAT en zumo de manzana obteniendo una reducción del 30% más baja con 

respecto a nuestro estudio. Se han logrado reducciones de PAT del 57%, 88%, 95% 

y 99%, respectivamente en solución (tampón citrato con pH 3,4), sidra de 

manzana, zumo de manzana sin ácido ascórbico y con adición de ácido ascórbico 

mediante el uso de radiación ultravioleta monocromática (UV) a 253,7 nm (Zhu et 

al., 2013). Funes et al. (2013) han evaluado el efecto de la luz pulsada sobre la 

degradación de la PAT en tampón McIlvaine en zumo de manzana y puré de 

manzana, obteniendo resultados más bajos que los datos obtenidos en nuestro 

estudio.  

En nuestro estudio todos los envases utilizados han logrado reducciones 

de la PAT superiores al 80% y los resultados obtenidos utilizando las soluciones 

estándar de AITC son comparables con los datos obtenidos con las dos harinas de 

mostaza empleadas. 

 

4.2.1.3.2. Inhibición de la producción de AFs en piadina italiana  

La inhibición de la producción de AFs ha sido estudiada en muestras de 

piadina italiana inoculadas con A. parasiticus y envasadas con tres 
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concentraciones diferentes de harina de mostaza oriental y amarilla (0,1, 0,5 y 1 

g). En todos los ensayos realizados la inhibición obtenida dependía de las dosis 

utilizadas siendo la harina de mostaza oriental la más eficaz. La mayor reducción 

se ha obtenido utilizando 1 g de harina de mostaza oriental logrando una 

disminución de la producción del 89% de la AFB1, del 83% de la AFB2 y del 87% de 

la AFG1 en comparación con el grupo control. Los resultados obtenidos para AFG2 

son similares a los de la AFG1. Las reducciones obtenidas con la harina amarilla 

son todas inferiores al 70%.  

Otros autores han estudiado diferentes aceites esenciales y su capacidad 

para inhibir el crecimiento del hongo y reducir la producción de AFs en distintos 

medios de cultivo y alimentos. Soliman y Badeaa (2002) han evaluado 12 aceites 

esenciales procedentes de plantas medicinales frente A. Flavus, A. parasiticus, A. 

ochraceus y F. moniliforme demostrando que los aceites de anís, tomillo y canela 

son los más efectivos en inhibir el crecimiento de dichas especies. El crecimiento 

fúngico se ha inhibido completamente al aplicar el 2% de estos aceites al trigo, 

por otro lado con el 0,1% se ha conseguido inhibir totalmente la producción de 

AFs, OTA y FBs. Kumar et al. (2008) han evaluado 14 aceites esenciales frente a 

distintos hongos incluyendo una cepa tóxica de A. flavus. El tomillo resulta ser el 

más efectivo y ha inhibido totalmente la producción de AFB1 a la concentración de 

600 μL/L. En otro estudio se ha observado que el aceite esencial de Zataria 

multiflora compuesto principalmente por carvacrol, timol y eugenol inhibe 

completamente el crecimiento y la formación de AFs por A. flavus en medio de 

cultivo pero no en el queso, incluso utilizando 1000 ppm (Gandomi et al., 2009). 

Razzaghi-Abyaneh et al. (2008) han demostrado la capacidad del aceite esencial 

de Satureja hortensis L., compuesto principalmente por carvacrol y timol, de 

inhibir el crecimiento de A. parasiticus y la producción de AFB1 y AFG1.  
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En nuestro estudio se observa que el AITC y el ρ–HBITC pueden reducir la 

concentración de AFs producidos por A. parasiticus en piadina de trigo, siendo el 

AITC el más eficaz. Además, se ha demostrado que el AITC y el ρ–HBITC pueden 

formarse in situ a través de la adición de agua a las harinas de mostaza por lo que 

podrían ser utilizados como conservantes naturales en alimentos contaminados 

por especies de Aspergillus. 

 

4.2.1.3.3. Aumento de la vida útil del pan de molde empleando AITC, BITC y PITC 

Los estudios de vida útil aportan datos del tiempo que puede un producto 

conservar inalteradas sus propiedades organolépticas y físicoquímicas. Mediante 

la utilización de los ITCs se pretende prevenir el crecimiento del hongo y la 

presencia de micotoxinas. Se ha estudiado la capacidad de los ITCs para aumentar 

la vida útil del pan de molde envasado con respecto al control no tratado con los 

ITCs. En las muestras de pan de molde utilizadas como control se ha observado un 

crecimiento visible del hongo A. parasiticus al cuarto dia, sin embargo 5 μL/L de 

AITC impregnado en una tira de papel de filtro (liberación rápida) pegada en el 

interior del envase ha conseguido un alargamiento de 4 días. Por otro lado se ha 

observado una extensión de tres días utilizando la misma tira de papel de filtro 

pero insertada en una pequeña bolsa de plástico para que el compuesto se 

liberara en el interior del envase en un tiempo más prologado (liberación lenta). 

Considerando que el  A. parasiticus es un hongo productor de AFs, se ha 

estudiado también la reducción de estas micotoxinas. Los dos tratamientos 

estudiados y que han logrado alargar la vida útil son los mismos que han 

mostrado los mayores porcentajes (entre 90 y 100%) de reducción de las cuatro 

AFs. En los estudios en los que se han utilizado los envases de liberación rápida 

todas las reducciones son proporcionales a la cantidades de compuestos utilizadas 

pero solo se han obtenido reducciones superiores al 60% empleando AITC a 
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concentraciones de 1 o 5 μL/L mientras con los envases de liberación lenta las 

reducciones en casi todos los casos son superiores al 60%.  

Otros autores han utilizado los ITCs en envases para inhibir el crecimiento 

de diferentes hongos  y reducir la producción de micotoxinas. Quiles et al. (2015) 

han obtenido resultados similares a nuestros estudios utilizando envases con AITC 

o harina de mostaza para inhibir el crecimiento de A. parasiticus y la producción 

de AFs en masas de pizza fresca. Después de treinta días no se observaba 

crecimiento del hongo en los envases de liberación rápida y lenta de AITC a 

concentraciones de 5 y 10 μL/L y en los envase con 850 mg de harina de mostaza 

oriental y 850 ml de agua. Todos los tratamientos han inhibido la producción de 

AFs proporcionalmente a las concentraciones utilizadas tanto con los dos tipos de 

envases con AITC de liberación rápida y lenta como con la harina de mostaza 

oriental. Nazareth et al. (2016) han logrado una inhibición total de la producción 

de AFs utilizando 10 μL/L de AITC en harina de trigo contaminada con A. 

parasiticus mientras reducciones del 23 y 52% se han obtenido empleando 

respectivamente 0,1 y 1 μL/L de AITC. La actividad antifúngica del AITC se ha 

estudiado también frente el hongo A. flavus en cacahuetes utilizando envases 

parecidos a nuestros envases de liberación lenta obteniendo una reducción 

significativa de 4 unidades logarítmicas con respecto al control (Otoni et al., 

2014). El AITC a 50, 100 y 500 μL/L se ha utilizado para inhibir la producción de FB2 

en pan de molde (Azaiez et al., 2013a) y de FBs en grano y harina de maíz (Azaiez 

et al., 2013b). Las reducciones más altas se han obtenido con la mayor 

concentración de AITC (500 µL/L): 96% de FB2 en pan de molde, FB1 y FB3 en maíz 

y 91% de FB2 en maíz. Nielsen y Rios (2000) han evaluado diferentes aceites 

esenciales, entre ellos el AITC, en pan de centeno y pan para perritos calientes 

frente diferentes hongos que se encuentran en el pan. La concentración mínima 

de AITC con efecto fungicida ha sido de 2,4 mg/mL en fase gaseosa para el pan de 
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centeno y entre 1,8 y 3,5 mg/mL en fase gaseosa para pan de perritos caliente, sin 

embargo este último tipo de pan resulta más sensible al AITC tras la prueba 

sensorial. La reducción de AFs se ha estudiado también en frutos secos (maní, 

anacardo, nuez, almendra, avellana y pistacho) mediante el empleo de los ITCs 

derivados de la harina de mostaza oriental y amarilla. Se han obtenidos 

reducciones entre 88 y 89% utilizando la harina de mostaza oriental (Hontanaya et 

al., 2015). Por último, se ha observado un efecto sinérgico entre el AITC y el uso 

del atmósfera modificada (49% CO2, 0,5% O2, and 50,5% N2) en la extensión de la 

vida útil de pescado fresco contaminado con Pseudomonas aeruginosa (Pang et 

al., 2013).  

En nuestro estudio el AITC tiene la mayor actividad, siendo el único de los 

tres compuestos que ha logrado alargar la vida útil del pan contaminado con el 

hongo y, al mismo tiempo, reducir significativamente la producción de AFs. Sin 

embargo, BITC y PITC, como AITC, muestran una reducción significativa de las AFs 

en casi todas las concentraciones utilizadas en el envase a liberación lenta de los 

compuestos activos. El empleo de envases activos con ITCs podría ser una válida 

alternativa al uso de conservantes comerciales para controlar el crecimiento de 

hongos y la producción de AFs. 

 

4.2.1.4. Acción directa del AITC sobre las micotoxinas y productos de reacción 

producidos 

4.2.1.4.1. Reacción AITC – ZEA/α-ZOL, identificación de los productos de reacción, 

estudio de bioaccesibilidad y biodisponibilidad 

Además de estudiar la capacidad de los ITCs de inhibir el crecimiento de 

hongos micotoxigénicos y las micotoxinas producidas por dichos hongos, se ha 

evaluado la acción directa del AITC sobre patrones de micotoxinas mediante 

reacciones directas entre el AITC y la ZEA o el α-ZOL. Para dicho estudio se ha 
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utilizado el AITC a diferentes concentraciones (2, 20, 100 y 200 mM) y a dos pH (4 

y 7). Tras poner en contacto el AITC con las micotoxinas se ha agitado la solución a 

diferentes tiempos (0, 4, 8, 24 y 48 h) y se ha analizado mediante CL-DAD. Los 

resultados se han expresado en porcentaje de reducción respecto a un control 

que contenía solo las micotoxinas. El efecto del AITC fue dosis-dependiente para 

ambas micotoxinas logrando una reducción máxima del 89% para el α-ZOL y del 

97% para la ZEA. No se observa diferencia significativa entre los pH estudiados. 

Casi todas las reacciones alcanzaron el valor máximo de reducción al tiempo cero. 

El AITC resulta ser más reactivo con ZEA que con α-ZOL ya que se observa siempre 

una mayor reducción de dicha micotoxina.  

En otros estudios, se han utilizado el AITC y también el BITC y el PITC para 

reducir otras micotoxinas. El AITC se ha ensayado con la BEA en soluciones 

tamponadas y en la harina de trigo (Meca et al., 2012). La BEA se ha reducido 

completamente después de 48 h en solución tamponada con 1 mM de AITC. 

Como en nuestro estudio no se ha observado diferencia entre los dos pH 

ensayados y los resultados fueron proporcionales a la concentración de AITC 

utilizada (50, 100 y 500 μL/L) obteniendo en la harina de trigo reducciones entre 

el 10 y el 65%.  Azaiez et al. (2013a) han evaluado 1 mg/L de AITC, BITC y PITC 

para reducir las FB1 y FB2 a pH 4, 7 y 9 en soluciones tamponadas obteniendo 

porcentajes de reducción entre 42 y 100%. En este caso los diferentes pH tienen 

un efecto distinto según el compuesto estudiado. Las mayores reducciones se han 

obtenido con el AITC y el PITC. Estos mismos ITCs se han utilizado en maíz y harina 

de maíz a concentraciones de 50, 100 y 500 μL/L. El PITC ha sido más eficiente 

contra la FB3 en el maíz y la FB2 en la harina de maíz, mientras que el AITC ha 

presentado mayor actividad contra FB1 y FB3 en ambos productos. BITC reacciona 

con todas las FBs de una manera similar, con la excepción de la FB3 en la harina, 

ya que el compuesto bioactivo es menos reactivo. La reducción media de las FBs 
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en el maíz oscila entre 62 y 87%, mientras que en la harina de maíz la reducción 

de las tres toxinas varía entre 66 y 68%. 

Además de estudiar la reducción de ZEA y α-ZOL, en este trabajo se han 

identificado los productos de reacción. En los cromatogramas obtenidos por CL-

DAD, se observa un pico correspondiente al producto de reacción del AITC con la 

ZEA o el α-ZOL. Se ha tenido en cuenta que 1 mol de AITC y 1 mol de α-ZOL o ZEA 

producen 1 mol de aductos y que los pesos moleculares considerados para los 

aductos son 418,7 y 418,4 g/mol para ZEA-AITC y α-ZOL-AITC, respectivamente. 

Esta proporción se ha utilizado para calcular las concentraciones teóricas. La 

estructura de estos productos ha sido confirmada mediante espectrometría de 

masas de trampa iónica lineal (EM-LIT) a través de los diferentes fragmentos que 

se han encontrado en los espectros.  

Por último, se ha estudiado la bioaccesibilidad y la biodisponibilidad de las 

dos micotoxinas y de los productos de reacción formados con el compuesto 

antimicrobiano.  

La bioaccesibilidad se define como la solubilización de un determinado 

compuesto de la matriz alimentaria durante el proceso de digestión 

gastrointestinal. La fracción solubilizada, denominada fracción bioaccesible, está 

disponible para su absorción a través de la pared gástrica e intestinal y su 

posterior paso a la circulación sistémica. La biodispinibilidad es la cantidad de un 

nutriente o contaminante alimentario que tras su solubilización durante la 

digestión gastrointestinal es absorbida a través del epitelio gastrointestinal y llega 

a la circulación sistémica. 

La bioaccesibilidad se ha estudiado a través de un modelo de digestión 

simulada in vitro a tres concentraciones diferentes (15, 30 y 60 μM) de las 

micotoxinas y de los productos de reacción. Se han determinado las cantidades de 

α-ZOL, ZEA y de los aductos α-ZOL/ZEA-AITC después de las fases gástrica y 



 
   General discussion 

275 
 

duodenal de la digestión. La bioaccesibilidad es similar para la ZEA y su producto 

de reacción con el AITC a todas las concentraciones estudiadas y en los dos 

compartimentos. El mismo efecto se ha observado para el α-ZOL y su producto de 

reacción a 15 μM. Por otro lado, el aducto del α-ZOL ha mostrado una 

bioaccesibilidad gástrica menor que el α-ZOL a 30 μM y una bioaccesibilidad 

duodenal menor que la micotoxina a 30 y 60 μM. Posteriormente, se ha calculado 

la biodisponibilidad celular utilizando el modelo de células Caco-2 y analizando los 

niveles de las micotoxinas en el compartimento basolateral después de 1, 2, 3 y 4 

h. La biodisponibilidad no presenta diferencias significativas entre las 

concentraciones estudiadas obteniendo después de 4 h un valor de 0,5 μM para 

α-ZOL, 1 μM para ZEA, 16 μM para 15 y 30 μM de α-ZOL-AITC, 13 μM para 60 μM 

de α-ZOL-AITC, 38 μM para 15 μM de ZEA-AITC, 36 μM para 30 μM de ZEA-AITC y 

42 μM para 60 μM de ZEA-AITC.  

Vidermann et al. (2008) han demostrado que los metabolitos de la ZEA como 

α-ZOL, β-ZOL, ZEA-glucurónido y α-ZOL-glucurónido se producen rápidamente y 

cruzan fácilmente las membranas celulares. El α-ZOL es el principal metabolito 

producido por las células Caco-2 y también posee la mayor actividad estrogénica.  

En nuestro estudio la biodisponibilidad de los productos de reacción ha 

resultado mayor que la de las micotoxinas de forma aislada, lo que puede ser 

debido a la formación de productos de degradación de las micotoxinas. 

Vidermann et al. (2008) observaron que estos productos, que son más tóxicos, se 

forman rápidamente, por lo tanto la producción de los aductos con el AITC podría 

evitar la formación de metabolitos con mayor efecto estrogénico. Sin embargo, es 

necesario realizar estudios de los efectos tóxicos de los compuestos para conocer 

realmente si se está consiguiendo una detoxificación de estas micotoxinas. 
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4.2.2. Empleo de BALs  

4.2.2.1. Empleo de BALs para alargar la vida útil del pan 

En primer lugar se ha realizado un ensayo previo para evaluar la actividad 

antimicrobiana de los componentes antifúngicos presentes en el medio 

fermentado de  16 BALs frente A. parasiticus y P. expansum. De las BALs 

estudiadas, Bifidobacterium bifidum, Lactobacillus ruminis, L. rhamnosus (CECT 

288), L. johnsoni, L. plantarum y L. bulgaricus han inhibido el crecimiento de P. 

expansum y estas mismas BALs, excepto L. bulgaricus, han resultado activas 

también frente A. parasiticus. Las 6 cepas con actividad antifúngica in vitro han 

sido empleadas en la fermentación de pan contaminado con A. parasiticus y de 

esta forma se ha estudiado la posibilidad de alargar la vida útil de este producto 

inhibiendo el crecimiento fúngico y la producción de AFs.  

Tras este estudio, se ha observado en los panes fermentados con L. 

bulgaricus y L. plantarum un importante incremento de la vida útil de tres y 

cuatro días, respectivamente, si se comparan con los controles preparados sin 

BALs. Posteriormente, se han analizado las AFs de las muestras de pan 

fermentado con BALs, observándose una reducción total de las micotoxinas, 

respecto al control (pan fermentado únicamente con levadura). La reducción 

media de las AFs oscila entre 84 y 100%. Los porcentajes más altos se han 

obtenido con L. bulgaricus (99%) y L. plantarum (100%), que son también las 

cepas que más han alargado la vida útil del pan. Las otras 5 cepas utilizadas no 

han aumentado la vida útil del pan pero han reducido las micotoxinas, este efecto 

podría ser debido a las uniones que se establecen entre las AFs y las BALs una vez 

que hayan perdido viabilidad después del procesado.  

En este estudio se ha evaluado la actividad antifúngica del medio fermentado 

por diferentes LABs, mientras que otros autores estudian la actividad 

antimicrobiana de compuestos bioactivos producidos por las mismas.  Valerio et 
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al. (2009) han estudiado diferentes cepas de BALs observando que el L. plantarum 

es el más efectivo frente P. roqueforti. Ryan et al. (2008) han evidenciado 

resultados similares a los de nuestro estudio. El L. plantarum presenta la mayor 

actividad antimicrobiana frente todos los hongos ensayados en medio sólido. 

Además, los autores han observado una inhibición del crecimiento de A. niger, F. 

culmorum y P. expansum en muestras de pan de trigo fermentado con L. 

plantarum, en comparación con muestras de pan control. 

 

4.2.2.2. Influencia de BALs en la bioaccesibilidad de las AFs B1 y B2 

Tras llevar a cabo una digestión dinámica simulada en presencia de 15 BALs, 

se ha estudiado la capacidad de reducir la bioaccesibilidad de las AFs B1 y B2 

contenidas en pan de molde con respecto al control (digestión sin bacterias). Para 

calcular la bioaccesibilidad se han tomado alícuotas de los fluidos de la digestión y 

se han analizado por CL-EM/EM. 

En primer lugar, se ha validado un método para la detección y cuantificación 

de las AFs en los fluidos de la digestión. Se han obtenido recuperaciones del 88 y 

84% para ambas AFs, LDs de 0,04 y 0,21 µg/L y LQs  de 0,15 y 0,72 µg/L para la B1 

y la B2, respectivamente. Las precisiones intradía e interdía varían entre 2,6 y 

4,2%.  

En segundo lugar se ha calculado la bioaccesibilidad y la reducción de las 

micotoxinas respecto al control, empleando diferentes BALs. La bioaccesibilidad 

duodenal del control es del 26 y del 36% para las AFB1 y AFB2, respectivamente. 

Las mayores reducciones de bioaccesibilidad se han obtenido con las siguientes 

BALs para ambas las AFS: el L. johnsoni (97% AFB1 – 87% AFB2), el L. plantarum 

(96% AFB1 – 98% AFB2), el L. casei (2) (91% AFB1 – 96% AFB2) y el L. reuteri (76% 

AFB1 – 99% AFB2). El mecanismo de acción de las bacterias no está claro aunque 

se piensa que las diferencias observadas entre las cepas en la reducción de la 
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bioaccesibilidad de las AFs puedan ser debido a la habilidad de los probíoticos 

para unirse a las AFs. La capacidad de unión entre los probíoticos y las AFs se ha 

observado que es especie y cepa específica y que se establece a través de los 

componentes de la pared celular (Oatley et al., 2000; Hernández-Mendoza et al., 

2009).  

Otros autores han demostrado la habilidad de diferentes cepas de 

Lactobacillus y Bifidobacterium para unirse a la AFB1 (El-Nezami et al., 1998; 

Peltonen et al., 2000) y la AFM1 (Kabak & Var, 2004). Kabak et al. (2009) han 

estudiado el efecto sobre la AFB1 presente en diferentes productos alimenticios 

en el tracto gastrointestinal y en ausencia y presencia de BALs, como posibles 

adsorbentes. Las seis bacterias estudiadas han mostrado diferente capacidad de 

unirse a la AFB1, lo que dependía de diversos factores (cepa bacteriana, toxina, 

tipo de alimento y nivel de contaminación) y además, se ha observado una 

reducción máxima de la bioaccesibilidad de la AFB1 del 37% en presencia de las 

bacterias probióticas.  

Kabak & Ozbey (2012) han investigado la eficacia de seis bacterias probióticas 

en la reducción de la bioaccesibilidad de las AFs presentes en diferentes matrices 

alimenticias (cacahuete, pistacho, avellana, higos secos, paprika, trigo y maíz) 

utilizando un modelo de digestión in vitro. La inclusión de bacterias probióticas 

han reducido significativamente la bioaccesibilidad de las AFs: hasta el 36% para la 

AFB1 y la AFB2, hasta el 32% para la AFG1 y hasta el 34% para AFG2.  

 

Tanto los ITCs como las BALs consiguen una buena extensión de la vida útil 

del pan hasta 4 días y una reducción de las micotoxinas hasta el 100%. La única 

diferencia se refiere a la forma en que se aplican: los ITCs en envases y las BALs 

como cultivos starters. Las BALs pueden ser fácilmente aceptadas por el 

consumidor ya que desde hace mucho tiempo se utilizan también en otros 
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alimentos.  Además, como se ha observado en los resultados del último estudio, 

un alimento enriquecido con determinadas BALs podría reducir el riesgo asociado 

a la ingesta de las AFs, disminuyendo sus bioaccesibilidad. Por otro lado, el hecho 

que los ITCs se apliquen en envases puede tener interés para el consumidor ya 

que se trata de compuestos naturales presentes en los alimentos. Además, estos 

compuestos reaccionan con las micotoxinas y originar productos de reacción que 

pueden ser menos tóxicos y pueden reducir la bioaccesibilidad de estas sustancias 

tóxicas.  
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5. CONCLUSIONES 

1. Se detectaron AFs, ZEA y ENs en el 20, 65 y 96% de las muestras de pan 

commercial analizadas, respectivamente. En algunas de ellas, AFs y ZEA 

superaron los límites máximos establecidos por la Unión Europea. 

2. Aunque todos los valores de IDE fueron más bajos de los valores de IDT 

establecidos, se necesitan estudios adicionales para tener una evaluación mas 

completa del riesgo de estas micotoxinas en la población de Valencia. 

3. Tanto los envases con AITC como los envases con harina de mostaza han 

reducido la PAT en tortillas de trigo contaminadas con P. expansum. 

Considerando todos los tratamientos estudiados se ha obtenido una 

reducción media de la PAT del 93%. 

4. Las tiras de papel de filtro impregnadas de AITC promueven una volatilización 

más rápida del AITC que el envase con las bolsas de plástico con agua y harina 

de mostaza. Además, la presencia del alimento no influye de forma 

destacable en la volatilización del AITC. 

5. De las harinas de mostaza empleadas para reducir la producción de AFs en 

piadina italiana, la harina de mostaza oriental resultó más efectiva con una 

reducción maxima del 89,3% mientras que la harina de mostaza amarilla del 

69,2%. De los ITCs, empleados como compuestos aislados, únicamente el AITC 

ha alargado la vida útil y, al mismo tiempo, reducido las AFs en pan de molde 

contaminado con A. parasiticus alcanzado el 100% de reducción.  

6. El AITC puede reaccionar y reducir α-ZOL y ZEA in vitro a niveles de hasta el 

97%, formando aductos con el AITC. Se observó una reducción de α-ZOL y ZEA 

y de sus productos de reacción tras el tratamiento de la digestión. Por otro 
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lado la biodisponibilidad de las micotoxinas fue inferior al la de los productos 

de reacción, lo que puede ser debido a la formación de otros productos de 

degradación durante el proceso. Es necesario completar estos estudios con la 

evaluación de la toxicidad de los productos de reacción. 

7. Entre las BALs empleadas, únicamente L. bulgaricus y L. plantarum han 

logrado extender la vida útil. Todas las BALs estudiadas han reducido la 

producción de AFs entre el 76,5% y el 100%. 

8. Algunas de las BALs estudiadas lograron reducir la bioaccesibilidad de las AFB1 

y AFB2 contenidas en el pan contaminado hasta un 99%. Estos resultados 

sugieren que un alimento enriquecido con BALs puede reducir el riesgo 

asociado a la ingesta de estos compuestos tóxicos contenidos en los 

alimentos. 

9. Tanto los ITCs en envases como las BALs empleadas como ingredientes 

consiguen reducir las micotoxinas hasta el 100% y extender la vida útil del pan 

hasta 4 días. Además pueden reducir la bioaccesibilidad de las micotoxinas. 

Los consumidores demandan alimentos seguros por lo que la utilización de los 

ITCs  y de las BALs puede ser una alternativa a los conservantes clásicos.  
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