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THESIS ABSTRACT 

The use of ART in HIV+ subjects has increased considerably the life expectancy restoring the 

CD4+ T-cell counts and maintaining at low levels the viral load. However, their life expectancy is 

10 years lower than the average population. This reduction is given due to unrelated AIDS illness, 

such as cardiovascular diseases and atherosclerosis that are caused by persistent immune activation 

and chronic inflammation. A possible explanation for this phenomenon is a constant bacterial 

translocation from the intestinal lumen to the systemic circulation given a prior disruption of the 

GALT. Moreover, the loss of the lymphoid tissue leads to a microbial imbalance that could be 

related to the systemic immune activation. 

In the present thesis, we describe in a holistic way the fundamental role of the microbiome in the 

pathogenesis of HIV infection. Here we present the results of a cross-sectional study of a cohort of 

three different HIV-infected groups of subjects (with a different response to the ART) and controls 

target to understand the alterations of the gut-microbiome given the HIV infection. The microbiome 

was characterized implementing different “omic” technologies and the impact on the host health 

was determined based on measuring clinical data related to the immune response and the bacterial 

translocation. Finally, a pilot study based on dietary supplementation with prebiotics and glutamine 

was carried out with the aim of ameliorating the HIV-associated dysbiosis. 

The HIV infection causes a disruption of the GALT leading the dysbiosis of the microbial 

community that cannot be restored by the ART. Moreover, the infection time would affect the 

diversity of the microbiota and the ecosystem stability. This dysbiotic community is enriched in 

Gram-negative species which are adapted to the inflammatory environment of the gut produced by 

HIV infection and produces pro-inflammatory metabolites which trigger the systemic immune 

activation and inflammation. Moreover, the HIV-dysbiosis is depleted for SCFA producer species 

and in the expression of genes related to anti-inflammatory metabolic pathways such as butanoate 

metabolism, propanoate metabolism or fatty acid metabolism. 
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The prebiotic has an effect on a community whose original configuration is receptive to the 

nutritional intervention; this is related to the time exposure to HIV infection. The prebiotic 

intervention increases the butyrate levels by means of the increase of SCFA-producer species such 

as Faecalibacterium sp. The increment of the levels of the butyrate is related to the decrease of the 

bacterial translocation and systemic inflammation. 

Finally, we show that the dysbiotic-community is able to establish a stable-community which is 

associated with the deterioration of the patient's health. More importantly, we suggest that the 

microbiota may be a new target for clinical interventions in patients infected with HIV and 

proposed putative candidates for been viable targets for such interventions. 
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1. GENERAL INTRODUCTION 

1.1. Human gut microbiome 

The term “microbiome” was first suggested by Joshua Lederberg and was further coined to signify 

“the ecological community of commensal, symbiotic, and pathogenic microorganisms that literally 

share our body space and have been all but ignored as determinants of health and disease’’ [1,2]. 

The gut microbiome has the largest number of bacteria and the greatest number of species 

compared to other areas of the body. The gut microbiota is a complex community of bacteria that 

coexist in the gastrointestinal tract (GIT), particularly in the large intestine. Its composition depends 

on age, diet, genotype, and health status. Due to its co-evolution with the host, it is involved in 

important mutualistic functions such as the correct development of the immune system, the 

fermentation of dietary fiber, the synthesis of essential amino acids and vitamins and the protection 

against the pathogens. 

In the last decade, due to the development of the next generation sequence (NGS) technologies, the 

scientific community turned their efforts in the characterization of the uncultivable bacteria that 

reside in the gut microbiome. Nowadays, the number of available metagenomes retrieved from the 

gut and other body sites exceed 2000 from individuals spanning across five continents [3]. 

1.1.1. Overview of the human gut associated microbiome  

The GIT is an organ which takes in food, digests it to extract and absorb energy and nutrients, and 

expels the remaining waste as feces and urine [4,5]. The GIT includes the pharynx, esophagus, 

stomach, the small intestine (composed by the duodenum, jejunum, and ileum) and large intestine 

(composed by the cecum, ascending colon, transverse colon, descending colon, sigmoid colon and 

the anus) [4,5] (Figure I.1a). The gastrointestinal wall that surrounds the lumen of the GIT is 

composed of four concentric layers (Figure I.1b): the mucosa, the submucosa, the muscular layer 



 

 

18 

 

and the serosa/adventitia layer. The mucosa is the innermost layer of the GIT and it is in direct 

contact with the digested food and the bacterial population. The submucosa, which consists of a 

dense and irregular layer of connective tissue, is composed of blood vessels, lymphatics vessels and 

nerves branching the mucosa and the muscular layer. The muscular layer, made of the inner and 

outer muscle layers, controls the peristalsis. Finally, the serosa/adventitia layer is the outermost 

layer of the GIT and consists of different sublayers of connective tissue, which depending on the 

part of the GIT, could work for lubrication (the serosa layer) or to binds tissues layers (adventitia 

layer) [4] (Figure I.1b). 

Figure I.1 Human intestinal tract. Panel a: Components of the digestive system. Panel b: Layers of the alimentary canal. 

Reproduced from: OpenStax College with permission of the Rice University under a Creative Commons Attribution License (CC-

BY 3.0), and is an Open Educational Resource. 
 

The GIT contains an assembly of distinct ecological habitats that harbor different bacterial 

populations. For instance, the stomach acidic environment harbors a reduced bacteria community 

dominated by species of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and 

Fusobacteria (Figure I.2). The small intestine shows a bigger and more diverse bacterial 

community than the one observed in the stomach (Figure I.2), but the peristalsis together with the 

bile and the pancreatic secretions maintain small bacterial population comparing to those observed 

in the colon [6]. The small-intestine-associated microbiome is mainly composed of facultative 

species from the genera Streptococcus, Lactobacillus but also strict anaerobes such as Clostridium 

and Veillonella [7].  
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The human colonic-associated microbiome possesses more than 1,000 ‘species-level’ or phylotypes 

[8] and contains around 1010 to 1013 CFU/g of intestinal contents (Figure I.2), being 99% of them 

anaerobic species [9]. This bacterial community is the most studied from all the GIT, being the 

most common method for its characterization the fecal sampling. However, although the microbial 

composition retrieved from the fecal samples does not mimic the observed in the mucosal samples 

it has been reported that luminal microbial contents of the colon correlate with feces in terms of 

species diversity and bacterial abundance [10–12]. For all these reasons in the present thesis we use 

the fecal samples as a proxy of the colon-associated microbiome and will be referred as the gut-

microbiome. 

 

Figure I.2 Microbiota composition and physiological conditions along the digestive tract. The figure illustrates the composition 

of the most abundant genera found in the digestive tract. It also highlights how the pH, the oxygen concentration, and the bacterial 

load vary along the gut. Reproduced from: Mondot and Lepage (2016)[6] Wiley Online Library Copyright © 1999-2017 John Wiley 

& Sons, Inc. All Rights Reserved. 
 

In adult populations, most of the gut associated microbiota mainly belong to the phyla Bacteroidetes 

and Firmicutes, whereas Actinobacteria, Proteobacteria, and Verrucomicrobia, although found in 

most of the human microbiomes, are generally minor constituents [13–18] (Figure I.3a). 

Methanogenic archaea (mainly Methanobrevibacter smithii), eukaryotes (mainly yeasts) and viruses 

(mainly bacteriophage) are also present as members of the gut microbiome [19]. Despite the 

consistency of these main phyla, the relative proportions of the gut microbiome species vary 
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markedly across individuals being Faecalibacterium prausnitzii, Roseburia intestinalis and 

Bacteroides uniformis the most abundant [16]; however, in some individuals, even these can 

represent less than 0.5% of the microbes present [18]. In 2011, the MetaHit consortia published 

their results about the diversity in gut associated-metagenomes in European western populations 

[14]. They showed that the western individuals could be classified, based on the differences of their 

microbial composition in three clusters denominated enterotypes. Each of the enterotypes was 

enriched in different species from a specific genus: Enterotype 1 (Bacteroides and Parabacteroides 

species), enterotype 2 (Prevotella and Desulfovibrio) and the most frequent of the three, the 

enterotype 3 (Ruminococcus and Akkermansia) (Figure I.3b). However, those enterotypes could 

not be found in higher size cohort and in non-European population, as shown in the results of the 

Human Microbiome Project [15]. This study found that the US individuals’ microbiomes were 

enriched in Bacteroides species while the Malawin-Amerindian population was in Prevotella 

species, being the differences attributed to the lifestyle (Figure I.3c). 

Figure I.3 Phylogenetic 

composition of the gut-associated 

human microbiome and differences 

between healthy individuals. Panel 

a: Phylogenetic composition, at the 

phylum level, from 648 samples 

collected as part of the NIH Human 

Microbiome Project (HMP). Panel b: 

Principal component analysis (PCA) 

of the distribution of the healthy 

samples from the Metahit project 

representing the three enterotypes 

clusters retrieved from 154 

pyrosequencing-based on 16S rRNA 

gene sequences. Panel c: Principal 

coordinates analysis (PCoA) of the 

unweighted UniFrac distances for the 

fecal microbiota from 181 adults from 

the Malawian and Amerindian 

agrarian-communities and US 

subjects. Adapted from: Eloe-Fadrosh 

and Rasko (2013) [20], Arumugam et 

al. 2011 [14] and Yatsunenko et al. 

(2012) [15] with permission of 

Annual Review of Medicine® and 

Nature Publishing Group 
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1.1.2. Composition, diversity, and sources of variation of the gut microbial 

communities 

The definition of a “healthy microbiome” is not an easy task given the vast microbial diversity that 

exists over the time and across individuals [8,21,22]. Several factors influence the microbial 

composition being in addition to host genotype, the diet and the age the principal drivers of 

variation in the healthy microbiome. However, there are other sources of variation such as disease 

and the use of antibiotics or medication [23] that produce altered microbial communities defined as 

dysbiotic in the setting of the disease. 

1.1.2.1. Host genotype 

Recently, several works have shown the microbiome heritability and its association with several 

loci of the host genome, as reviewed in Goodrich et al. (2014) [24]. For instance, it has been 

identified relationships such as members of the phylum Firmicutes and variants of the host-genes 

involved in the Toll-like receptor and T-cell receptor [25,26]; species from the Rikenellaceae family 

with a region encompassing signaling Toll-like receptors kinase IRAK4 [27] and Prevotellaceae sp. 

with the TGFB3, a cytokine that modulates barrier function of the intestine [27].  

Although most of the relationships are with genes related to the immune system [28], it has also 

been observed associations between species related to diet and several loci related to the food 

intake. For instance, the associations between species from the genus Bifidobacterium and the gene 

that encodes for the lactase enzyme [29]; another example is shown in Akkermansia, a mucin-

dwelling and degrading genus, that has been associated with several loci related to lipids [28,30] 

and with the SIGLEC15, a sialic acid binding lectin (sugar epitopes of the mucin) [31]. Some 

species have been associated to cancer-related-genes. In humans and murine models, species from 

the Turicibacter genus has been associated with tissue-specific expression QTLs [30] inflammation 

and cancer [32,33]. In murine models, such species are associated with a QTL on MMU7 that 

overlaps with the HCS1 QTL for susceptibility to murine hepatocellular carcinomas [33]. 
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1.1.2.2. Host age 

The gut microbial community compositions vary over human lifetimes [15] (Figure I.4). The 

microbial colonization may begin in the uterus and it is established at three years after birth [34,35]. 

At birth, neonates are already colonized by species from the Firmicutes, Proteobacteria, and 

Actinobacteria with lower levels of Bacteroidetes [36–38].  

The infant’s microbiome is considerably less diverse than those observed in adults [15,39] and 

varies depending on if the birth was given by cesarean or vaginally delivered [39–44] and by the 

feeding habits: breast feeding versus formula feeding [41,45–47]. The infant gut microbiota 

becomes more diverse over time mainly with the introduction of solid food. The microbial 

composition in the childhood has shown an increase of the species related to Roseburia, 

Faecalibacterium and Ruminococcus genera and the species Bacteroides vulgatus and Bacteroides 

xylanisolvens when comparing with the adults´ gut-microbiota [48].  

The adult microbiome configuration is reached approximately at 1-3 years of life and it’s vary 

depending on the diet and geographical location, [15] remaining stable (except perturbations) until 

the age 65 years [49]. In the old age, the microbiota is different from the one observed in adults 

[50]. The elderly´s microbiome exhibits a higher Firmicutes to Bacteroidetes ratio [50] and a 

reduction of species from the Bifidobacteria genus [50] and F. prausnitzii [50,51]. The factors that 

shape the elder´s microbiome are probably the overall increased use of medication, dietary 

deficiency, as well as changing hormonal levels [52]. The GIT microbiome is thought to influence 

the overall health of the elderly, as changes in its composition have been associated with an increase 

of species from the Enterobacteriaceae family [53] and a decline in the health [54]. 
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Figure I.4 Development of the gut-microbiome over time. Adapted from: Greenhalgh et al. (2016) [55] with permission of John 

Wiley & Sons, Inc. 

1.1.2.3. Host diet 

The diet is an essential factor for the establishment of the gut-microbiome assembly in the earlier 

steps and remains as an important factor in the adulthood [12]. In fact, it is considered that the diet 

has a dominant role in comparison with all the other causes of variation in the healthy gut-

microbiome [56]. For example, when comparing US protein-rich diet versus the 

Malawi/Amerindian starch-rich diet [15] several genes related to the degradation of starch 

(glutamate synthase and alpha-amylase enzymes) were increased in the agricultural populations. On 

other hand, the US microbiomes had significant over representation of enzymes related to metabolic 

pathways of vitamin biosynthesis, the lipoic acid, the xenobiotics metabolism and the degradation 

of amino acids. Additionally, the taxonomic composition varies depending on the population and 

diet; a trade-off between Prevotella and Bacteroides has been observed in agrarian and western diet 

populations [15,56]. The Prevotella-rich-microbiomes have been associated with high-fiber diets, 

such as the diet that follows the agrarian communities (Amerindian, Malawian, and Burkina Faso 

villagers). Prevotella species are known to be involved in the fermentation of xylan and cellulose 

through carbohydrate-active enzymes such as xylanase, carboxymethylcellulase, and endoglucanase 
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[56]. Contrary to this, the Bacteroides-rich-microbiomes have been linked to western diet [15]. The 

western diet is associated with the consumption of sugar, animal fat and calorie-dense foods [15]. 

Microbiomes enriched in species of the Bacteroides genus also present a higher number of enzymes 

related to the degradation of amino acids, the catabolism of simple sugars and the vitamin 

metabolism [15]. 

The adaptive effect is more evident when comparing the microbiota of animals with a different type 

of diets. This was remarkable for the carnivores and herbivores by clearly separating the samples 

into two groups [57], indeed the effect of the microbial-diet adaptation is so high that the clustering 

retrieved from the gut-associated microbial communities does not mirror the clustering retrieved by 

the mammalian phylogeny [57]. The microbiome from herbivores was enriched in enzymes 

involved in the amino acid biosynthesis, meanwhile, the carnivores’ metagenomes present an 

increase of enzymes related to the degradation of amino acids and not a single gene was related to 

amino acid biosynthesis. The results of Muegge et al. study [57] established that the carnivorous 

microbiomes have specialized to degrade proteins as an energy source, whereas herbivorous 

communities have specialized to synthesize amino acid building blocks.  

1.1.2.4. Dysbiosis and host health 

It has been suggested that the human microbiome is ecological stable [21], this refers to the ability 

of a community to resist changes in the setting of an ecologic stress or to return to an equilibrium 

state following a stress-related perturbation [58] (Figure I.5). The healthy microbial state could be 

seen as an attractor that represents a group of species towards which the microbiome tends to evolve 

independently from its initial condition [58] (Figure I.5). An important feature of those attractors is 

their high diversity, which brings a high tolerance against the pathogenic invasion [15,22,59] and 

environmental changes. This feature is commonly referred as the resilience and it is defined as the 

amount of stress or perturbation that a system can tolerate before its changes in a different 

equilibrium state [60] (Figure I.5). However, when the environmental perturbation is high enough 

the microbiome moves to a disease state which is known as dysbiosis. The term dysbiosis refers to 

an imbalance of the microbiome commensal species and its replacement with a pathogen or 

opportunistic bacteria [61]. The gut microbiome dysbiosis has been related to numerous diseases 
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such as cancer, allergies, HIV, inflammatory bowel disease (IBD), diabetes (types 1 and 2), obesity 

and asthma. Here, I am going to review the most important of this microbial imbalance states.  

Figure I.5 Energy landscape. The microbiome development can 

be characterized in terms of its dynamics and represented as a 

conceptual energy landscape. The infant microbiome (yellow 

point) evolves into an adult microbiome (black point) which 

often falls into one healthy attractor (green depression). The 

attractor normally supports alterations (red lines) which return to 

the microbiome to its original attractor or its moves to another 

healthy attractor (black lines). However, if the perturbation is 

high enough the microbiome moves to a disease state (red 

depression) and states a dysbiotic microbiome (red point). 

Adapted from: Lloyd-Price, Abu-Ali, and Huttenhower (2016) 

[21] with permission of BioMed Central 

Antibiotic and dysbiosis 

Nowadays, most of the administered antibiotics have broad-spectrum activity and are used to treat 

many infections [62]. Thus, the antibiotic therapies affected not only the specific pathogens but also 

related members of the human microbiota. The overuse of the antibiotics caused a reduction in the 

microbiome diversity [63–66] associated with a transiently or permanently dysbiosis state. 

The antibiotic effects depend on the initial microbial diversity, the drug concentration and the 

different microbial growth stages [67]. For instance, oral amoxicillin exposure caused microbial 

shifts that long on average 30 days but the effects have been observed until 60 days after the 

treatment [68]. The amoxicillin treatment has a strong effect on specific groups of the gut 

environment, among aerobic and anaerobic species, leading a decrease in Clostridium and 

Eubacterium and an increase in Enterobacteriaceae, Bacteroides and Prevotella taxa [69,70]. Other 

antibiotics, such as the clindamycin or tigecycline, are particularly active against the anaerobic 

bacteria of the gut-microbiome [71,72] and increases susceptibility to Clostridium difficile infection 

(CDI) [73,74]; particularly these antibiotics deplete the bile acid-hydroxylating activity of 

Clostridium scindens, which is required for protection against CDI [75]. Similarly, the use of the 

streptomycin and vancomycin has shown to cause an increased susceptibility to Salmonella 

typhimurium infection [76]. Finally, it has been observed that the triple antibiotic therapy 

(clarithromycin, metronidazole, and omeprazole) against the H. pylori gastritis decrease many 

beneficial species from the Clostridia and Bifidobacteria classes [77,78]. 
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The use of antibiotics interferes with the immune-system-microbiome interactions [79,80], affects 

the mitochondrial gene expression [81] and increases the pathogen susceptibility [73,76,82]. In fact, 

high concentrations of antibiotics reduce or eliminate most of the beneficial bacterial metabolites 

such as short-chain fatty acids (SCFA) [83,84] and secondary bile acids (reviewed in [85]). Those 

effects seem to be independent of the antibiotic class and be more dependent on the dose [86]. 

A common side effect of the antibiotics is the appearance of diarrhea, given by the drug itself or by 

the loss of the fiber-degrading bacteria due to the antibiotic. This is because the normal digestion of 

these compounds prevents episodes of osmotic diarrhea [87]. However, opportunistic bacteria such 

as Clostridium perfringens, Klebsiella oxytoca, Candida albicans or C. difficile [88] can also be the 

factors that trigger the disease. 

Infection and dysbiosis 

One of the most important functions of the gut-microbiome is to protect against the pathogen 

colonization [89]. For instance, the commensal microbiota produces bacteriocins and proteinaceous 

toxins that specifically inhibit pathogenic bacterial species [90]. It also is known that the 

microbiome alters the gut environment conditions (e.g., pH or the oxygen concentrations) in order 

to avoid pathogen colonization [90,91]. Moreover, an alternative strategy utilized by the indigenous 

microbial community is the preferential consumption of nutrients, which in consequence outsource 

the growth of competing pathogens. 

Commensal bacteria, through the production of specific metabolites, can also affect the expression 

of pathogenic virulence factors or totally inhibit the pathogen growth. It has been shown that the 

bacteria-butyrate production downregulates the expression of several virulence genes including 

those encoding the type 3 secretion system (T3SS) in Salmonella enterica Serovar Enteritidis and 

Typhimurium [92]. Similarly, R. obeum can restrict the V. cholerae colonization by the expression 

of the luxS (autoinducer-2 (AI-2) synthase) and AI-2 production, a furanosyl-borate-diester member 

of a family of signaling molecules used in quorum sensing. 

Commensal bacteria also prevent pathogen colonization and infection indirectly by enhancing host 

defense mechanisms such as functionally promoting mucosal barrier function and enhancing either 

innate immune response. This section will be reviewed in the section "1.2.2. The role of the 

microbiota in the adaptation and maturation of the immune system".  
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When the pathogen evades all the defense lines, the bacterial infections could disturb the microbial 

balance in the gut-microbiome. For instance, some pathogens such as V. cholerae, cause an acute 

infection that disrupts the microbial community. The microbial composition of the subjects infected 

is dominated on average of a 56% of V. cholerae bacteria [93], however after the patient gets 

stabilized, the bacteria composition shows an increase of unidentified Streptococcus or 

Fusobacterium species [93]. Similarly, in a salmonellosis infection, species from the Salmonella 

genus used the hydrogen produced by the gastrointestinal microbiota and triggers potent 

inflammatory responses which generate an alternative terminal electron acceptors (reviewed in 

[94]). Salmonella species exclusively utilize these electron acceptors for anaerobic respiration, 

permitting metabolic access to abundant substrates such as ethanolamine to power growth blooms. 

Thus, the potent inflammatory response and the Salmonella resource availability cause a reduction 

of the bacterial diversity and an overgrowth of the pathogen species [94]. 

Inflammatory bowel disease dysbiosis 

The IBD is a multi-factorial disorder characterized by chronic and relapsing intestinal inflammation 

and is mainly defined as either ulcerative colitis (UC) or Crohn’s disease (CD) [95]. Although the 

factors that cause IBD are unknown, the most accepted hypothesis is that an exacerbate reaction of 

the immune response against the gut microbiota is triggered by environmental factors in a 

genetically susceptible host [95]. There are around 160 IBD susceptibility genes [96] that are 

mainly related to the acquired immunity, bacterial recognition, autophagy and mucosal barrier [95].  

The IBD is characterized by a reduced bacterial diversity [97–100], a decrease of Firmicutes, and an 

increase of Proteobacteria [98,99,101,102]. Among Firmicutes, a decrease in the Clostridium 

leptum groups, especially F. prausnitzii, has been reported in many studies [103,104].  

Metagenomic studies in IBD patients have shown a decrease in genes responsible for carbohydrate 

and amino acid metabolism and an increase in those in the oxidative stress pathway [105], raising 

the possibility that oxidative stress from the gut microbiota causes intestinal inflammation in IBD 

patients. The inflammation could also be given by the reduction of the butyrate-producer species 

such as F. prausnitzii. 
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Rheumatoid arthritis dysbiosis 

The rheumatoid arthritis is a long-term autoimmune disorder that primarily affects joints caused by 

a combination of genetic and environmental factors. Studies of the gut microbiota in murine 

rheumatoid-arthritis models have shown an increase of the bacteria P. copri which strongly 

correlated with disease in new-onset untreated rheumatoid arthritis patients [106]. The P. copri 

dominate the intestinal microbiota and resulted in an increased sensitivity to chemically induced 

colitis [106]. 

Obesity dysbiosis 

The microbial gut composition of obese subjects has been associated with changes in the relative 

abundance of the two dominant phyla, Bacteroidetes and Firmicutes, a reduced bacterial diversity, 

and an altered representation of bacterial genes and metabolic pathways [18,107]. The obese 

microbiome has an increased capacity to harvest energy from the diet. Furthermore, this obese-

associated microbial community is transmissible as it has been observed in mouse experiments 

where the inoculation of the human-gut microbiome in the lean mice results in a significantly 

greater increase in total body fat [107]. These results identified the gut microbiota as an additional 

contributing factor to the pathophysiology of obesity [107] and that deviations from this “microbial-

core” were associated with different physiological states of the obesity [18]. 

Cancer dysbiosis 

Studies on colorectal cancer in murine models revealed an association between colonic microbiota 

and the cancer development [108]. The mice that presented colitis had lower diversity in their gut 

microbiota than wild-type mice and an increased number of Escherichia coli bacteria. The increase 

in the abundance of E. coli is related to the increase in the production of the genotoxic colibactin, 

which is an important toxin that induces DNA damage and it is critical to triggers cancer. 

Importantly, this toxin was detected in clinical isolates from patients with IBD (14 of 35; 40.0%) or 

colorectal cancer (14 of 21; 66.7%), demonstrating that genotoxic E. coli is associated with chronic 

intestinal inflammation and colorectal cancer in humans [108]. Interestingly, the mice that were 

inoculated with the human-commensal Enterococcus faecalis rarely developed tumors, despite 

similar levels of intestinal inflammation. 
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1.1.3. Nutritional functions of the human gut microbiota  

The gut microbiome, known as “our forgotten organ”, encodes about 10 million genes, which 

perform many of the functions required for host physiology. Thus, the gut microbiome plays an 

important role in the maintenance of a healthy state in adulthood. In this section, I am going to 

review the most important aspects of these functions. 

Protein metabolism and catabolism 

Amino acids biosynthesis, such as lysine and threonine, mainly occurs from the urea degradation by 

Bacteroides, Roseburia, and Streptococcus in the distal colon [15]. This function of the microbiota 

is particularly relevant when diets are deficient in protein [109]. The microbiota can also degrade 

the amino acids as an energy source. The amino acid fermentation yields both beneficial short chain 

fatty acids (SCFAs), branched-chain fatty acids (BCFA) [110] and other potentially toxic 

metabolites such as ammonia, amines, N-nitroso compounds, phenolic compounds and sulfides; 

however, the products of the fermentation depend on the type of the side chain molecule in amino 

acids [111].  

The protein fermentation results in the formation of hydrogen-sulfide (H2S) by sulfate-reducing 

bacteria that utilize hydrogen and sulfate, which can be diet-derived or released from sulfated 

mucins [112]. H2S is highly toxic to humans as it increases mucosal apoptosis, goblet cell depletion, 

superficial ulceration, and causes genomic DNA damage [113]. 

Metabolic transformations of bile acids by gut microbiota 

Ingested lipids can be transformed in bio-active metabolites by the intestinal bacteria, for instance, 

the bile acids that are not absorbed are normally used by the colonic microbiota [114]. Although it 

has been discovered that the microbiota has the potential to de-conjugate bile acids [115], mostly 

species of Bifidobacterium and Lactobacillus genera are the most likely producers [116]. The 

metabolic transformation of bile acids might also be beneficial for health, as deconjugation of bile 

acids by the intestinal microbes is a mechanism by which the colonic epithelium is protected from 

these, otherwise, genotoxic agents [117]. 

Vitamins metabolism and synthesis 
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In humans, it has been shown that gut-microbial species such as lactic acid bacteria and 

Bifidobacteria can de novo synthesize and supply the vitamins K and the B complex (biotin, 

cobalamin, folates, nicotinic acid, pathogenic acid, pyridoxine, riboflavin, and thiamine) [118–120]. 

Indeed, it has been observed that vitamin metabolism pathways were presented in each of the 

human-gut enterotypes [14]. As an example, folate is metabolized by species of the genera 

Bifidobacterium [120] and Lactobacilli (reviewed in [121]). The vitamin B-2 (riboflavin) 

biosynthesis starts from the precursor guanosine triphosphate and D-ribulose 5-phosphate and it is 

mostly synthesized by Bacillus subtilis [122] and E. coli [123]. The vitamin B12 (cobalamin) is 

exclusively produced by microorganisms, particularly by anaerobes [124–126] such as 

Lactobacillus reuteri [127,128], meanwhile, the production of the vitamin B complex (niacin and 

pyridoxine) has been reported for certain lactic acid bacteria such as Lactobacillus helveticus or 

Bifidobacterium longum [129]. Finally, vitamin K daily requirement is fulfilled by dietary 

phylloquinone and, to an undetermined extent, by bacterial metabolism [130,131]. 

Fiber degradation and production of SCFA 

Non-digestible carbohydrates, as dietary fiber, are fermented in the proximal colon by saccharolytic 

bacteria, being mainly primary fermenters Bacteroidetes and Clostridia species. Major bacterial 

metabolic routes are the glycolysis and the pentose-phosphate pathway, which convert 

monosaccharide in phosphoenolpyruvate (PEP). Subsequently, PEP is converted into fermentation 

products such as the SCFA or alcohols. The acetate (C2H3O2−), propionate (C3H6O2), and butyrate 

(C4H7O2−) represented 90–95% of the SCFA present in the colon [132].  

In the colon and feces, the approximate molar ratio of the acetate, propionate, and butyrate are of 

60:20:20 [133–135], but depending on the diet, the total concentration of SCFAs decreases from 70 

to 140 mM in the proximal colon to 20 to 70 mM in the distal colon [136]. For example, a high-

fiber diet with low-fat-meat consumption is characterized by the presence of higher amount of fecal 

SCFA than diets with reduced fiber intake [56,137,138]. 

The acetate is the most abundant SCFA in the colon [139] and it is mainly produced by species 

from the Bacteroidetes phylum [140]. Two different metabolic routes can synthesize it: Via the 

acetyl-CoA pathway or via the hydrolysis of acetyl-CoA (Figure I.6a). Most of the acetate 

production will be mostly introduced in the lipid biosynthesis. The acetate has been found to be a 
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key player in the ability of Bifidobacteria to inhibit enteropathogens [141] and interact with the 

central nervous system [142]. The propionate is also mainly produced by species from the 

Bacteroidetes phylum via the succinate pathway [143] (Figure I.6b). However, this is not the only 

metabolic route for its production, species from the families Veillonellaceae and Lachnospiraceae 

can metabolize it via the acrylate pathway [144] and it has been observed that in phylogenetically 

distant bacteria, including members of families Proteobacteria and Lachnospiraceae, the propionate 

can be obtained by means of the propanediol pathway [145,146]. 

The butyric acid is produced by members of the Firmicutes phylum [140]. The acetate CoA-

transferase pathway is the most common way to produce butyrate (Figure I.6c) and it is carried out 

by some of the most abundant genera of the intestinal microbiota, such as Faecalibacterium, 

Eubacterium, and Roseburia. Interestingly, the production of butyrate and propionate by the same 

bacterium is not common and only a few anaerobes, such as Roseburia inulinivorans and 

Coprococcus catus, are able to produce both [145]. An alternative route for the butyrate synthesis is 

via the butyrate kinase pathway, which employs the phosphotransbutyrylase and butyrate kinase 

enzymes to convert butyryl-CoA in butyrate [147]. However, this route is not very common in 

bacteria and is only found in members of the Coprococcus genus [144].  
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Figure I.6 Schematic overview of the short-chain fatty synthesis. Panel a: The pyruvate is reduced to lactate (sub panel 1) or to 

Acetyl CoA by the ferredoxin oxidoreductase (Fd(ox)) and hydrogenase (Fd(red)) (sub panel 2a). Similarly, the Fd(ox) and Fd(red) 

can reduce the NADH to molecular H2 (2b). Finally, PEP can be reduced using the primitive anaerobic electron transport chain for 

reducing NADH (3). Panel b: The acetate production is given by the acetyl CoA or via the Wood-Ljungdahl pathway using formate. 

The propionate is obtained through the acrylate pathway in which lactate is reduced to acrylate and then reduced to propionate or by 

the succinate de-carboxylation pathway. Panel c: The butyrate is metabolized by the condensation of two molecules of acetyl CoA, 

by the enzyme butyrate-kinase, or by utilizing acetate through the enzyme butyryl- CoA:acetate-CoA-transferase. Reproduced from 

den Besten et al. (2013) [148] with permission of the American Society for Biochemistry and Molecular Biology. 

1.1.3.1. Biological functions of the short chain fatty acid 

Nowadays several molecular mechanisms of action have been ascribed to acetate, propionate, and 

butyrate that are relevant to their therapeutic potential to promote intestinal health, reduce 
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inflammation and inhibit cancer (reviewed in [149]). All three SCFAs are used as energy substrates, 

with propionate serving as a substrate for gluconeogenesis, while acetate and butyrate serve as 

substrates for fatty acid synthesis (reviewed in [149]). The production of SCFA reduced the luminal 

pH, which by itself inhibits pathogenic microorganisms and increases the absorption of ions [150]. 

Also, the SCFA have the capacity to promote mucus production by intestinal goblet cells, induce 

secretory IgA and regulates the inflammasome (a multiprotein oligomer which is responsible for 

activation of inflammatory processes) and has been shown to induce cell pyroptosis (a process of 

programmed cell death distinct from apoptosis) [151,152]. A decrease in luminal SCFAs is 

associated with ulcerative colitis and intestinal inflammation, which can be ameliorated with dietary 

fiber or administration [153–155]. For these reasons, several studies have investigated the 

therapeutic potential of SCFAs and fermentable fibers (reviewed in [149]). 

The effect of the SCFAs extends beyond the gut. SCFAs have shown to confer anti-inflammatory 

effects in the lung [156,157] and brings protection against inflammatory arthritis [158]. 

Additionally, they are implicated in the improving of the kidney function [159] and are essential in 

the arterial response to injury, vessel development, and atherogenesis by inhibiting the vascular 

smooth muscle cell proliferation and migration [160]. The mechanisms underlying these effects 

appear to center largely on the histone deacetylases (HDAC) inhibition and protein-coupled 

receptor 43, 41 and 109A (GPR43, GPR41, and GPR109A) [161–163]. These three receptors are 

present throughout the gastrointestinal tract, as well as on immune cells and adipose tissues, and 

have been implicated in the regulation of inflammation and cancer. 

Butyrate 

Butyrate is the main source of energy of the colonocytes through the fatty acid b-oxidation and 

tricarboxylic acid cycle pathways [146]. The butyrate oxidation by epithelial cells isolated from 

normal human colonic mucosa produced more ATP than acetate, propionate, and glucose [164]. 

The butyrate that is not absorbed by colonocytes is transported by the hepatic vein and goes directly 

to the liver [148].  

The butyric acid modulates the transcription of numerous genes through its ability to inhibit the 

histone HDAC activity [165]. The HDAC inhibition induces cell proliferation and differentiation of 

the gut epithelial cells [166]; improves tight-junctions integrity [167] and increases mucin 
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production, by the induction of the MUC2 gene [168], which is related to the bacterial adhesion 

[169]. Additionally, it inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κ B) pathway, a prototypical proinflammatory signaling pathway that expresses genes for 

cytokines, chemokines and adhesion molecules, [170–174]. Similarly, it is important to induce the 

intestinal immune tolerance through the regulation of the intestinal macrophages [175], the 

development of the regulatory T (Treg) cells [176,177] and the regulation of their cytokine 

production [178]. A reduction in the butyrate concentrations has related to UC [179], obesity and 

insulin resistance syndrome [180]. 

In acute inflammations, such as the ones from the IBD patients, it has been observed a butyrate-

oxidation deficiency given to a decrease of the expression of the colonic butyrate transporter MCT1 

(reviewed in [181]). This leads to a switch from butyrate to glucose as the main source of energy. 

This shift affects the balance between cell death and proliferation and hence to increase the risk of 

colorectal cancer [182]. Indeed, it has shown to have a significant role in cancer prevention by 

promoting colon motility, reducing inflammation, increasing visceral irrigation, inducing apoptosis, 

and inhibiting tumor cell progression [145,183,184]. 

Propionate 

The propionic acid induces the production of gut hormones, thus reducing food intake [185] and 

induce the differentiation of Treg cells. Additionally, it lowers fatty acids content in liver and 

plasma, exerts immunosuppressive actions and probably improves tissue insulin sensitivity. 

Therefore, the propionate is considered beneficial in the context of prevention of obesity and 

diabetes type 2 [186]. Additionally, it possesses anti-fungal [187] and antimicrobial activity against 

the colonization of the gastrointestinal tract by pathogenic bacteria such as Salmonella [188], via 

the inhibition of the expression of the invasion genes in Salmonella typhimurium [189].  

The propionic acid via the GPCR43 activation has shown to control inflammatory diseases such as 

colitis, arthritis, and asthma (reviewed in [186]). Additionally, it has a moderate inhibitory activity 

on cyclooxygenase [190], a major enzyme in the production of pro-inflammatory eicosanoids. 

Studies in mice have shown that a prebiotic diet [191] and cyclooxygenase inhibition [192] are 

associated with reduced incidence of colorectal cancer. 
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Acetate 

The acetate is probably the most debated in terms of its beneficial or detrimental metabolic effects. 

Some studies in rats confirm a direct link between the acetate and obesity [193] while others point 

out its beneficial effects [142,194]. For instance, a high fiber diet, which increases the acetate 

concentrations, was found to suppressed allergic airway disease by HDAC inhibition and increased 

the forkhead box P3 (FOXP3) acetylation in adult mice. This effect was conferrable to fetal mice, in 

which a high-fiber or acetate maternal diet was able to suppress the expression of certain genes 

related to asthma [157]. Similarly, “The Canadian Healthy Infant Longitudinal Development study” 

[195] found that infants at risk for asthma showed transient alterations in the composition of their 

gut microbiota compared to low-risk infants during the first 100 days of life [196]. These at-risk 

infants had reduced levels of microbial taxa involved in SCFA formation (specifically Lachnospira, 

Veillonella, Faecalibacterium and Rothia) and reduced fecal acetate.  

Contrary to this observation, Perry et al. (2016) [193] showed that the microbiota-derived acetate 

may lead to obesity, insulin resistance, and metabolic syndrome in rats. In this work, they 

established that the increase of acetate produced by an altered gut microbiota in rodents leads to 

activation of the parasympathetic nervous system, which in turn promotes increased glucose-

stimulated insulin secretion, increased ghrelin secretion, hyperphagia, obesity and related sequelae. 

This implies that the increased of acetate production is a driver of metabolic syndrome and that the 

microbial products can directly modify the host´s hormonal response. 
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1.2. Gut mucosa 

The gut mucosa is the largest and most dynamic immunological environment of the body. It is often 

the first point of pathogen exposure and many microbes use it as a beachhead in the rest of the 

body. The gut mucosa is the innermost layer of the gastrointestinal tract, which surrounds the 

lumen. It evolves as a protective epithelial three-layered barrier which regulates the microbial-host 

interactions [197]. Those layers are:  

- The epithelium layer: It consists of a single layer of columnar epithelial cells associated with 

several specialized secretory cells. It is responsible for the absorptive and secretory 

processes and is the principal component of the intestinal mucosal barrier (Figure I.1b).  

- The lamina propia layer: a layer of connective tissue that along with the desmosomes, 

provide the adhesive bonds that maintain the integrity of the tissue, promote intracellular 

communication and are the principal determinant of mucosa permeability [198] (Figure 

I.1b). 

- The muscularis mucosae, a thin layer of smooth muscle that aids the passing of material and 

enhances the interaction between the epithelial layers (Figure I.1b).  

These layers work as a scaffold for the different immune cells, which in collaboration with the 

epithelial cells protect the host for pathogen invasion. Therefore, the mucosa main functions are: to 

segregate the luminal microbiota from the intestinal environment; to limit bacterial invasion in host 

tissues; to attenuate the immune response to beneficial-commensal bacteria and to guarantee the 

vital functions of the intestinal mucosa and the gut microbiota [197].  

1.2.1. The gut mucosa lymphoid tissue  

The gastrointestinal tract is a lymphoid organ, and the lymphoid tissue within it is collectively 

referred to as the gut-associated lymphoid tissue (GALT). Its importance lies in the regulation of 

the innate and adaptive immune system [198]. The GALT lays throughout the intestine, covering an 

area of approximately 260–300 m2 [199] and it is the largest collection of lymphoid tissues in the 

body. Although its cell composition is homogeneous throughout the GI, it exists differences 

depending on the intestine zone [200]. In the large intestine, Paneth cells are absent and the 
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absorptive cells are termed colonocytes. Furthermore, due to the greater number of bacteria that 

exist in the colon, it is cover with a thick mucus layer which segregates microbiota from the 

intestinal epithelium [200] (Figure I.7). In contrast, in the small intestine, absorptive requirements 

for enterocytes results in discontinuous mucus layer [200] (Figure I.7). 

The GALT is formed by different cells types which will be briefly described (Figure I.7): 

-Paneth cells: They are the principal cell types of the epithelium of the small intestine and provide 

host defense against microbes in the small intestine. Paneth cells secrete a number of antimicrobial 

molecules into the lumen such as defensins [201]. 

-Colonocytes/enterocytes: columnar epithelial cells, which are predominant in the mucosa's villus. 

The colonocytes or enterocytes are involved in nutrient absorption such as water, ions, sugar, 

peptide and amino acid, lipids or the vitamin B12. Additionally, they are related to the secretion of 

immunoglobulins. 

Figure I.7 Anatomical containment of 

the microbiota along the intestine. The 

intestinal epithelium comprises a single 

layer of enterocytes or colonocytes, and 

it is the role of the immune system to 

protect the integrity of this barrier. In 

the small intestine, absorptive 

requirements for enterocytes results in a 

discontinuous mucus layer, with fewer 

goblet cells. Here Paneth cells are 

enriched in the crypts, secreting 

antimicrobial peptides (AMPs), which 

can cross-link with the mucus layer. 

Through this barrier, a sampling of 

microbe-associated molecular patterns 

(MAMPs) can be mediated through 

antigen uptake by M cells and goblet 

cells to dendritic cells (DCs), along with 

a direct trans-epithelial luminal 

sampling from DCs. The RORγt innate 

lymphoid cells (ILCs) can sense 

microbial signals and produce 

Interleukin 22 (IL-22) to aid in intestinal epithelial cells (IEC) barrier function. Commensal-specific IgA is produced by plasma cells 

in the lamina propria, mediated by DCs in a T-cell–independent mechanism. The large intestine uses a thick, continuous mucus layer 

to compartmentalize the microbiota, with the immunoglobulin A (IgA) and AMPs having a secondary role. Reproduced from: Brown 

et al. (2013) [200] with permission of the Nature Publishing Group. 

-M cells: these groups of cells initiate the mucosa immunity [202] by taking up antigen from the 

lumen, by means of the endocytosis, phagocytosis, or transcytosis, and crossing them to the 

immunity cells [202]. 
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-Goblet cells: glandular epithelial cells, which are found sparse among other cells in the gut 

epithelium. Their main function is to secrete mucus. The mucus is composed of the mucin proteins, 

a heavily glycosylated family of proteins that form a viscous fluid. The mucus creates a barrier that 

prevents large particles, including bacteria, to contact directly the epithelial cell layer [203] as well 

as to maintain the intestinal hydration [204].  

-Enteroendocrine cell: specialized cells of the gastrointestinal tract with endocrine function [205].  

-Intestinal villi: villi are small protuberances (0.5–1.6 mm in length) that extend into the lumen of 

the intestine to increase the absorption area the nutrient intake. 

-Peyer's patches: the Peyer's patches are an aggregated of lymphoid nodules which normally are 

found in the lowest portion of the small intestine, mainly in the distal jejunum and the ileum, but 

also could be detected in the duodenum [206]. The Lymphocytes B are often located in the follicles' 

germinal center whereas T lymphocytes are found in the zones between follicles. Its main role is to 

monitor the intestinal bacteria population and to prevent the growth of pathogenic bacteria. Also, 

the Payer’s patches induce the antigen-specific immunoglobulin A (IgA) responses in the gut [207] 

that plays a crucial role in the immune function of the mucosa membranes.  

-T helper cells (Th cells): are a type of T-cell produced in the Thymus that play an important role in 

the adaptive immune system by suppressing or regulating immune responses by releasing cytokines. 

They activate T-killer cells (cytotoxic T cells) and B cells to kill infecting bacteria or cells that are 

infected by viruses. Mature Th cells express the surface protein CD4 and are referred to as CD4+ T-

cells which are generally treated as having a pre-defined role as helper T cells within the immune 

system. These cells are preferentially infected by the HIV [208]. 

-T helper 17 cell (Th17): the Th17 cells are a subset of the proinflammatory T helper cells defined 

by the production of interleukin 17 (IL-17). The Th17 cells are very important to maintain the 

homeostasis of the GALT, indeed there is a relation of the Th17 population decay with the increase 

of the bacterial-metabolites translocation. The Th17 cells also promote neutrophil recruitment, the 

production of antimicrobial peptides (defensins) (reviewed in [209]) and produce IL-22 which 

enhances epithelial regeneration [210]. 
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-Regulatory T-cells (Treg): Treg cells are a lineage of CD4+ T-cells that express the transcription 

factor Foxp3. They play a central role in the effective control of self-tolerance and maintenance of 

immune homeostasis [211]. The absence of the Treg cells is related to inflammatory diseases, 

autoimmune diseases or lymphoproliferative syndrome including inflammatory IBS, arthritis 

rheumatoid and systemic lupus erythematosus in humans and animals [212–215]. The secondary 

functions of this immunosuppressors cells are related to the regulation of the fucosylation (a type of 

glycosylation) of epithelial cells [216]. Glycosylation of the intestinal epithelium is a key 

component of the maintenance of the microbial-host interactions providing the first line of defense 

against pathogens [217]. The Treg cells also act as a central component in regulating the immune 

response T helpers 1 (Th1) cells [218], the humoral response cells T helpers 2 (Th2) [219] and the 

Th17 cells [218]. 

-Macrophages: a type of white blood cells that phagocyte debris, microorganisms and pathogens 

and cancer cells which were not recognized by the immune system. The macrophages also produce 

lysozyme, which is used as an antibacterial protein [220] and the IL-36α protein, which is a central 

mediator of cross-talk among intestinal epithelial and mesenchymal cells and macrophages for 

mucosal healing [221]. 

-Dendritic cells: Antigen presenting cells, which serve as the link between the innate and the 

adaptive immune system presenting antigens to the T-cell populations. They are in contact with the 

external environment and serve as agents of active transcytosis or uptake of luminal 

microorganisms [222,223]. Additionally, dendritic cells possess the capacity to rapidly produce 

interleukins to a rapid response of the immune system. For instance, the production of the IL-12 is a 

signal that helps in the differentiation of naive T-cells in Th1 cells [224] and stimulates the 

production of interferon-gamma (IFN-γ) [225]. 

-B-lymphocytes: specific types of white blood cells of the adaptive immune system that are involved 

in the humoral immunity by the antibody production. In the GALT, the B- lymphocytes are located 

in the Peyer's patches. 
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1.2.2. The role of the microbiota in the adaptation and maturation of the 

immune system  

The GALT and the microbiota are closely related in a way in which the immune system maintains 

the bacterial population under control and the microbiota stimulates various cell populations [226]. 

The gut microbiome regulates the production of antibodies by the immune system [227,228] such as 

IgA that binds to microbes at mucosal surfaces, neutralizes toxins and contributes to microbial 

tolerance [226].
 

Additionally, the microbiota has a role in the maintenance of the intestinal 

epithelial cell by triggering signaling cascades that promote colonocyte regeneration, lymphocyte 

differentiation and the proliferation of the thigh junctions [229]. Furthermore, the microbiota 

contributes to the inflammasome induction by promoting the transcription of cytokines [230]. 

One of the most important tasks of the GALT is to distinguish innocuous antigens from pathogenic 

microorganisms in order to avoid an excessive immune response [231]. For instance, it has been 

demonstrated that the polysaccharide A from Bacteroides fragilis stimulates the generation of Treg 

cells via the Toll-like receptor 2 (TLR2) activation [232]. Similarly, F. prausnitzii induces the 

differentiation of the immunosuppressors CD4CD8αα T lymphocytes, which secretes the IL-10. 

Another important group of bacteria that regulate the immune response segmented filamentous 

bacteria (SFB) that are members of the Gram-positive Clostridiaceae family [233,234] and are 

potent promoters of T helper Th17 cells in the intestine [235] and inducer of the production of the 

IL-22 production [232]. 

A reduction in the gut microbial diversity in infants is associated with an allergic risk in school age 

children [236] and the development of food allergy [237]. Indeed, low abundance of species from 

the genus Bifidobacterium, Akkermansia and Faecalibacterium, and the high abundance of 

particular fungi including Candida and Rhodotorula in the newborn are associated to allergy 

susceptibility by influencing T-cell differentiation [238]. Moreover, it is well known that the Lipid 

A of the LPS is responsible for much of the toxicity of some pathogenic Gram-negative bacteria, 

given its capacity to produce a systemic inflammation. The lipid A activates cells via Toll-like 

receptor 4 (TLR4) in association with the lymphocyte antigen 96 (also known as MD-2) and the 

cluster of differentiation 14 (CD14), which in consequence triggers the inflammation response 

[239–241]. 
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1.3. Human Immunodeficiency Virus infection 

Although the clinical community has put their attention in the blood, it is important to note that 

two-thirds of the CD4+ T-cells are in the GALT, converting the Human Immunodeficiency Virus 

(HIV) infection in a gut disease. Indeed, the HIV infection is characterized by profound disruption 

of the GALT and a chronic inflammatory state that persists even after restoration of circulating 

CD4+ T-cells by successful antiretroviral therapy (ART). Additionally, the infection and the 

mucosal breakdown lead to compositional and functional dysbiosis of the gut-microbiome. 

As the main objective of the present thesis is the study of the role of the microbiota in HIV 

infection, here I am going to review the most important aspect of the HIV infection, its effects on 

the gut mucosa and the HIV gut-associated dysbiosis.  

1.3.1. Main features of HIV and AIDS 

The HIV is a Lentivirus that causes the HIV infection and later on the acquired immunodeficiency 

syndrome (AIDS). The virus is roughly spherical with a diameter of about 120 nm [242]. It is 

composed of two copies of a single-stranded RNA genome of 9.2kb [243,244] that contain nine 

genes enclosed by a conical capsid composed of 2,000 copies of the viral capsid-protein p24. The 

nine viral genes encode for the nucleocapsid protein p7 and enzymes needed for the development of 

the virion such as reverse transcriptase, proteases, ribonuclease, and integrase. The HIV includes a 

diverse group of viruses as the HIV type 1 (HIV-1) and HIV-2 [245]. The HIV-1 type is more 

prevalent and pathogenic than the HIV-2. Homology-based analyses suggest that both HIV-1 and 

HIV-2 are the result of cross-species transmissions of simian immunodeficiency virus (SIV) from 

chimpanzees and sooty mangabeys, respectively. The origin of the HIV-pandemic infection occurs 

by the spread of the virus from non-human primates to humans sporadically throughout the 1900s 

[246,247]. Infection with HIV could occur by the transfer of blood, semen, vaginal fluid, pre-

ejaculate, or breast milk. Within these body fluids, HIV is present as both free virus particles and 

virus within infected immune cells. By 1980s the virus comes to the world’s attention when 

homosexual men in urban centers presented an advanced and unknown immunodeficiency [248].  

UNAIDS organization [249] estimates that 75 million people worldwide have been infected, being 

approximately 36,7 million located in sub-Saharan Africa. The AIDS is defined in terms of either a 
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CD4+ T-cell count below 200 cells per µL, or the occurrence of specific diseases in association 

with AIDS such as the manifestation of infections from opportunistic microbes, as Pneumocystis 

pneumonia as well as viral-induced cancers including the Kaposi's sarcoma, Burkitt's lymphoma, 

primary central nervous system lymphoma and cervical cancer [250,251].  

1.3.1.1. HIV replication and infection  

The HIV enters the CD4+ T helper cell [252–254], particularly the Th17 type by the adsorption of 

glycoproteins on its surface to receptors on the target cells (CC-chemokine receptor 5 (CCR5)) or 

primers CXC-chemokine receptor 4 (CXCR4) followed by fusion of the viral envelope with the cell 

membrane and the release of the HIV capsid in the cell. After the fusion, the virus releases its RNA 

genome and by means of the reverse transcriptase, it is copied in DNA. The per-integration 

complex is imported to the lymphocyte nucleus and integrated into the host genome. Then, the host 

enzymes transcribe the viral genes which later on are exported to the cytoplasm where translation 

occurs to make viral proteins and eventually mature virions [208] (Figure I.8). Although the 

preferred targets for infection are activated T lymphocytes, other blood cells such as dendritic cells 

and macrophages are infected by the virus, being the infection of these considerably smaller.  

During HIV infection, the GALT is disrupted given the loss of the Th17 cells. The depletion of the 

Th17 cells is greater in the gastrointestinal tract (reviewed in [209]) maybe because the Th17 

lymphocytes express the HIV co-receptors CCR5 and CCR6, which are the receptors that the virus 

recognizes and uses to infect the cell [255]. The loss of the Th17 in the GALT leads to villous 

atrophy [256], a decrease in the lumen IgA level (reviewed [209]), B-cell dysfunction, damage of 

the colonocytes (reviewed in [209] and [209]), abnormal enterocyte differentiation [257] and 

enterocyte apoptosis [258] (Figure I.9). When the enterocyte harassment is severe, the tight 

junction also starts decaying only 14 days post-infection. All this together leads to an increase of the 

epithelial barrier permeability that facilitates the translocation of microbial products [259] (Figure 

I.9). Additionally, the loss of the Th17 reduces the capacity to control the microbiota and to 

regenerate the gut epithelium by the recruitment of neutrophils and macrophages. 
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Figure I.8 Schematic overview of the HIV-1 replication cycle. The virus binds to the CD4 receptor and co-receptors (CCR5) to be 

fused with the lymphocyte membrane. The virus is uncoated in the host cytosol where the HIV-RNA genome and the viral proteins 

are released into the cytoplasm. Then, its genome is reverse-transcribed to DNA to form the pre-integration complex (PIC) which is 

translocated into the nucleus. The DNA-virus genome is integrated into the host DNA and subsequently transcribed and translated to 

a new viral RNA genome and new viral proteins. These elements are translocated to the cell surface to assemble a new immature 

virus. Then, the virus realized from the host-cell and, by means of the virus-protease, is mature by the cleavages of the structural 

polyprotein to form mature Gag proteins, resulting in the production of new infectious virions. In green are represented the major 

families of antiretroviral drugs indicating the life cycle that they block. In red is shown the key HIV restriction factors (tripartite 

motif-containing 5α (TRIM5α), APOBEC3G, SAMHD1 and tetherin) and in blue their corresponding viral antagonist (Vif, Vpx, and 

Vpu). CCR5, CC-chemokine receptor 5; LTR, long terminal repeat; NRTIs, nucleoside reverse transcriptase inhibitors; NNRTIs, 

non-nucleoside reverse transcriptase inhibitors. Image and text adapted from Barré-Sinoussi et al. (2013) [208] with permission of 

the Nature Publishing Group. 

1.3.1.2. HIV treatment: the standard antiretroviral therapy 

The ART consists of the combination of antiretroviral drugs to maximally suppress the HIV and to 

stop the progression of HIV disease [260]. The ART implements a specific drug for each step of the 

virus replication cycle (Figure I.8) such as nonnucleoside reverse transcriptase inhibitors, a 

protease inhibitor, entry inhibitors and integrase inhibitors. Nowadays several studies have shown 

that starting ART early after the infection has beneficial effects, indeed the World Health 

Organization recommends treatment initiation at 500 CD4 + cells/mm3 per blood or less [261]. The 
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success of life-long ART is now clear, which markedly reduced morbidity and mortality [262–264] 

of the HIV infected subjects. 

Although ART has markedly improved survival in HIV-infected individuals, the profound CD4+ T-

cell depletion in the GALT is incompletely reversed by ART and microbial translocation continues 

long after peripheral CD4+ T-cell restoration [265,266]. This breakdown of the mucosal barrier 

results in a chronic exposure to microbial antigens and subsequently, to chronic activation of the 

innate and adaptive immune system contributing to an excess of morbidity and mortality during 

treated HIV infection [267,268]. However, this will be deeply reviewed in the next section. 

1.3.1.3. Bacterial translocation and inflammation 

HIV-infected individuals present a chronic systemic immune activation and inflammation [269–

271] that have been associated with the metabolite bacterial translocation; this occurred 

independently of the response to the ART (reviews in [209]). In fact, among the subjects enrolled in 

the Strategies for Management of Antiretroviral Therapy (SMART), the level of the indirect marker 

of the bacterial translocation, the soluble cluster of differentiation 14 (sCD14), was the one that 

best-predicted mortality. Remarkably, less than 10% of the deaths were caused by opportunistic 

infections while the remaining 90% were mostly related to cardiovascular events [209]. The 

microbial translocation affects locally the GALT by driving a local immune activation that causes 

lymphatic tissue fibrosis and thereby interfere with the correct Th17 cell recovery [272]. 

Additionally, this microbial translocation triggers the systemic immune activation and chronic 

inflammation which is related to atherosclerosis and cardiovascular disease. 
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Figure I.9 The GALT in healthy and during HIV infection. Panel a: The intestinal epithelium in a healthy individual, which 

consists of a continuous layer of enterocyte with intact tight junctions that prevents the bacterial translocation. Neutrophils (recruited 
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by T helper 17 (Th 17) cells in GALT, defensins (produced by Th 17 cells) and secretory immunoglobulin A (IgA) maintain control 

over the growth of commensal bacteria, further impeding microbial translocation. Panel b: The intestinal epithelium in an HIV-

infected individual is drastically modified by the loss of the Th17 cell. The decreased villus height/crypt depth ratio may be the result 

of abnormal enterocyte differentiation and enterocyte apoptosis, which may be caused by the failure of the cells to maintain ionic 

balance and by increased production of interferon-γ (IFNγ) and tumor necrosis factor (TNF). The loss of the enterocytes and the 

increase of the TNF production could lead to the destruction of the tight junctions. B cell dysfunction and the absence of Th17 cells 

contribute to decreased luminal IgA concentrations and to the increased microbial translocation. Reproduced from Sandler and 

Douek (2012) [209] with permission from © 2017 Macmillan Publishers Limited, part of Springer Nature. All Rights Reserved. 

The cardiovascular disease occurs as a consequence of increased levels of microbial products such 

as LPS and flagellin, which induce the expression of tissue factors that initiate the coagulation 

cascade on the surface of monocytes [273]. The coagulation cascade leads to the production of 

fibrin, which is degraded into D-dimers (fibrin degradation product that serves as a proxy for 

sensing blood coagulation) [274,275], and to the cardiovascular disease. In addition, other diseases 

have been related to the bacterial translocation as the neurocognitive impairment and the brain 

atrophy. Individuals with HIV-associated dementia have higher lipopolysaccharide (LPS) and 

sCD14 levels and lower endotoxin core antibody levels than HIV-infected subjects without 

detectable cognitive disorders [276,277]. 

Finally, it has been observed a significant decrease in the Th17/Treg ratio in the HIV-infection. This 

decay is related to the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is an intracellular 

heme-containing enzyme that is the first step of the kynurenine pathway, the O2-dependent 

oxidation of L-tryptophan to N-formyl kynurenine. An important downstream metabolite is the 3-

hydroxy anthranilic acid that has been related to the decrease of IL-17 and IL-22 production [278]. 

These cytokines are involved in the control of extracellular bacteria and they promote mucosal 

repair. The IDO1 enzyme can also be upregulated by TLR agonists such as LPS and bacterial and 

viral DNA, which is congruent with it over expression in the HIV infection. The expression of the 

enzyme correlates with the increased CD8 + T-cell activation and with a reduction in CD4 + T-cell 

counts [279]. Thus, the bacterial translocation and systemic immune activation are perpetuated by 

inducing the production of the 3-hydroxyanthranilic acid, which in turn increases the Treg cell 

frequency and reduce the Th17 and NK (Natural killer cells) levels with a reduction in the secretion 

of the IL-17 and IL-22 cytokines (reviewed in [209]). 
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1.3.2. HIV gut-associated dysbiosis 

The Th17 cell depletion and the consequent mucosa breakdown lead to a shift in the gut-associated 

microbiome. Since 2011, thirteen publications have described the HIV gut-associated dysbiosis 

(Table I.1) using different methodological approaches, including cohort size, taxonomic profiling 

method, sequence technology, type of biological sample (tissue/feces) or the nationality population. 

Although there is no a full consensus between all the studies, consistent findings have been made in 

the field. 

1.3.2.1. HIV gut-associated microbiota 

The HIV-gut-associated dysbiosis is characterized by an increase in Gram-negative bacteria [280] 

particularly those from Prevotella genus [281–284] in both fecal samples [281–283] and colon 

biopsies [284], being called “HIV Prevotella enterotype”. Indeed, the whole HIV+ microbiota 

composition was closely related to those from agrarian communities enriched in Prevotella species 

[281,282]. Other species enriched in the HIV-condition were species related to Negativicutes class 

(Veillonellaceae, Selenomonadaceae, and Acidaminococcaceae). Desulfovibrionaceae and 

Erysipelotrichaceae families and the Clostridium cluster XIII. Members of the Enterobacteriaceae 

family [280,285] were found in anal swabs and duodenal biopsies. Contrary, the HIV infection 

causes a decrease in the abundance of species from the genera Bacteroides, Alistipes, 

Parabacteroides [281–285] and the family Lachnospiraceae [284].  

The current evidence indicates that the ART does not restore the HIV gut-associated dysbiosis 

[281–283,286,287] neither in the short-term treatment [286] nor in the long-term (more than a year) 

[258,259]. However, Santiago et., al (2013) [287] found that, after ART, less microbial 

translocation, less systemic immune activation, and less gut T lymphocyte proliferation occurred. 

Additionally, it has been observed differences in the fecal microbiota from HIV-negative, HIV-

positive, and ART-treated infected individuals. Nowak et al. (2015) [286] suggested that the distinct 

microbial composition within HIV+ individuals may stem from differences in HIV viral load. Then, 

the HIV+ individuals with controlled viral load have a microbial composition that is distinct from 

that of viremic patients, and overall more similar to healthy controls. 
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It is important to state that there are microbial differences given the sampling method, and thus 

more work is in need to clarify this point. Dillon et al. (2014) [284] characterized the HIV-gut-

associated dysbiosis in colonic biopsies, mucosa samples, fecal aspirates and rectal swabs. They 

discovered that the abundance of the bacteria species depended on the sampling zones. For instance, 

the increase of Proteobacteria (Comamonadaceae, Campylobacteraceae, Helicobacteraceae, and 

Moraxellacceae) was detected in the mucosa samples but was undetectable in the fecal aspirates or 

rectal swabs of the HIV+ subjects. The decrease of Lachnospiraceae and Ruminococcaceae families 

in HIV+ individuals was observed in fecal aspirates, but not in stool samples. Similarly, exploring 

other regions of the gut, Mutlu et al. (2014) [288] found that the different compositional patterns 

among the HIV+ patients that were under the ART and HIV- individuals were also present in 

samples obtained from the ileum and colon. Specifically, the HIV+ terminal ileum and the colon 

presented a reduced species richness (i.e., alpha diversity); while the luminal microbiota featured 

less pronounced differences. Those results were contrary to the ones found by Lozupone et al. 

(2013) [281] in fecal samples, where the HIV+ group of patients (a mixed cohort of HIV+ under the 

ART and naïve subjects) showed an increase of diversity. However, Noguera-Julian et al. (2016) 

[289] in two independent well-sampled cohorts showed that independently of HIV-1 status, the 

sexual preference markedly leads the shift in the microbiota species composition. Men who have 

sex with men (MSM) predominantly belonged to the Prevotella-rich enterotype whereas most non-

MSM subjects were enriched in Bacteroides. Additionally, MSM had a significantly richer and 

more diverse fecal microbiota than non-MSM individuals. However, the HIV infection remained 

consistently associated with reduced bacterial richness. 

1.3.2.2. Effects of the bacteria population on the immune response 

It has been observed that HIV gut-associated dysbiosis correlates with an increased mucosal cellular 

immune activation, microbial translocation and blood T-cell activation [284]. Moreover, the CD4+ 

T-cells decrease was also related to the reduction of the bacterial diversity and richness [290]. 

Particularly, Enterobacteria species are prone to trigger the immune response. Species from this 

family have been related to the duodenal CD4+ T-cell depletion [280]; the increase of the bacterial 

translocation marker sCD14 [291]; the increase of the cytokine systemic inflammation markers 
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interleukin 1β [291], and the IL-6 [285] and the activation of the immunostimulatory and 

immunomodulatory cytokine, the interferon γ [291]. 

Species from the Bacteroidales order have also shown to be important factors related to the innate 

and immune activation. The Prevotella genus has shown positive correlations between the CD8+ 

and CD4+ T-cell activation [280,284] and the levels of the myeloid dendritic cells [284]; similarly, 

species from the Barnesiella genus correlates positively with systemic inflammation marker TNF 

[291]. Nevertheless, no all the species from this order trigger the immune response, the Bacteroides 

genus has shown negative correlations with the systemic inflammation marker IL-6 [288]. 

The TNF, indicator of systemic inflammation, has shown positive correlations with members of the 

Firmicutes phylum [288], such as the species from the Erysipelotrichaceae family [291]. However, 

it is important to note that several species related to this phylum seems to be related to the 

immunosuppression. The genus Faecalibacterium, abundant in colonic biopsies, correlates 

negatively with the bacterial translocation marker sCD14 [288] and the levels of the lipoteichoic 

acid, the major constituent of the cell wall of gram-positive bacteria. Moreover, species from the 

Ruminococcus genus show negative correlations with the systemic inflammation marker IL-6 [288]. 

Some other species depleted in the HIV-gut-associated dysbiosis such as the ones from the genus 

Lactobacillus were also associated with lower markers of microbial translocation (sCD14), higher 

CD4+ T-cells counts and lower viral load [287]. 
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Table I.1 Studies related to the HIV gut-associated dysbiosis. 

Study Cohort Sequencing Technique Sampling method Main findings 

Ellis et., al (2011) 12 Antiretroviral (ART)-naive 5 seronegative qPCR 16rDNA Stool samples and duodenal biopsy • A greater proportion of gram-negative bacteria, Order Enterobacteriales was seen in HIV positive individuals compared with seronegative controls. 

• The proportions of Enterobacteriales and Bacteroidales correlated with duodenal CD4+ T-cell depletion and peripheral CD8+ T-cell activation, respectively. 

Santiago et., al (2013) 

 

13 HIV positive individuals (before and 

during ART) 

Pyrosequencing of the V6 region of 16S rRNA 

gene 

Anal swabs • Enrichment of Lactobacillales in HIV infected individuals before ART was associated with lower viral loads, higher CD4 T-cell concentrations and lower markers of microbial 

translocation.  

• Enrichment of Lactobacillales in HIV infected individuals after ART initiation was associated with lower translocation, lower systemic immune activation and higher  

CD4 T-cell concentrations 

Mutlu et., al (2013) 21 subjects 
with HIV under the ART and 22 control 

subjects 

Pyrosequencing of the V1-V3 region of 16S rRNA 
gene 

Colonoscopy from terminal ileum, right 
colon, left colon and stool samples 

• Reduced alpha diversity in the terminal ileum and colon were observed in HIV infection. 
• Bacteria that increased in the HIV positive group are potentially pathogenic in other disease states. 

• Higher diversity between microbiota samples in the HIV positive group compared with the seronegative group. 

• A significant increase in Brachyspira, Campylobacter, Catenibacterium, Escherichia, Mogibacterium, Prevotella, and Ralstonia was observed in the HIV positive group. 

• An increase in Akkermansia, Bacteroides, Blautia, Coprococcus, Dialister, Dorea, Faecalibacterium, Lachnospira, Roseburia, Ruminococcus, Odoribacter, Oscillospira was observed in 

the seronegative individuals group. 

Lozupone et., al (2013) 22 chronic HIV infected individuals (with or 

without ART), 3 recently infected HIV 

positive individuals, 13 HIV seronegative 

individuals 

Illumina sequencing of the V4 region of 16S rRNA  

gene 

Stool samples • Recently infected individuals have a microbiota that differs only slightly from the microbiota of uninfected individuals.  

• Short-term ART did not restore the microbiota to its uninfected composition.  

• Increase abundances of Prevotellaceae, Erysipelotrichaceae, Veillonellaceae, Clostridium cluster XIII and the genus Desulfovibrio in chronically untreated individuals compared to HIV 

seronegative individuals.  

• HIV seronegative individuals had increased abundance of Bacteroidaceae, Rikenellaceae, and Porphyromonadaceae. 

McHardy et., al (2013) 20 HIV seronegative individuals, 20 HIV 

positive individuals on ART, 20 HIV positive 

individuals not on ART. 

Illumina sequencing of the V4 region of 16S rRNA 

gene 

Rectal mucosa secretions • Depletion of specific Lachnospira and Eubacterium and enrichment of Porphyromonas and Anaerococcus in HIV positive individuals not on ART.  

• HIV positive individuals on ART showed similar trends but to a lesser extent.  

• Differences in attributed functionality were found between HIV positive individuals not receiving ART and healthy controls  

Vujkovic-Cvijin et., al 

(2013) 

22 HIV positive individuals (6 viremic 

untreated, 16 on HAART) and 9 seronegative 

Phylochip 16S rDNA profiling Rectosigmoid biopsies • Dysbiotic mucosal adherent microbiota.  

• Enrichment of Proteobacteria and depletion of Bacteroidia in HIV infected individuals.  

• Dysbiosis in individuals on HAART was correlated with the kynurenine pathway of tryptophan catabolism and plasma concentrations of IL-6 

Dillon et., al (2014) 18 HIV+ subjects and 14 seronegative Illumina sequencing of the V4 region 16S rRNA 

gene 

Colon biopsies, mucosa samples, fecal 

aspirates or rectal swabs 

• Increased abundance of Proteobacteria and decreased abundance of Firmicutes in colon biopsies of HIV infected individuals compared with seronegative individuals.  

• Within the Bacteroidetes phylum, an increase in Prevotellaceae and a decrease in Bacteroidaceae, Prophyromonadaceae and Rikenellaceae was observed HIV positive individuals.  

• Within the Firmicutes phylum, Lachnospiraceae, Christensenellaceae and Ruminococcaceae were decreased in HIV-infected patients.  

• The increased abundance in Proteobacteria seen in mucosal samples of HIV positive individuals, was not observed in fecal aspirates or rectal swabs.  

• The decrease in mucosal Firmicutes in HIV infected individuals was observed in fecal aspirates, but not in stool samples.  

• Trends seen in mucosal abundances of Proteobacteria and Firmicutes families and genera were not consistent in stool samples and fecal aspirates. 

Nowak et., al (2014) 31 HIV positive individuals (28 viremic, 3 
elite controllers), 9 HIV seronegative 

individuals 

Illumina sequencing of the V3-V4 region of 16S 
rRNA gene  

Stool samples • Decreased alpha diversity in untreated HIV infected before and after the ART.  
• Prevotella genus significantly reduced during ART in HIV positive individuals.  

• Higher relative abundance of Bacteroidetes in elite controllers compared to viremic patients.  

• Increased abundance of Actinobacteria and Proteobacteria in viremic patients compared to elite controllers.  

• Elite controllers did not differ significantly from seronegative controls at the phylum level.  

• Increased relative abundance of Lactobacillus in viremic patients compared to seronegative individuals.  

• Lachnobacterium, Faecalibacterium, and Haemophilus were significantly reduced in viremic patients compared to seronegative individuals. 

Lozupone et., al (2014) 40 HIV positive individuals (of them 28 on 

ART), 15 HIV seronegative individuals. 

Illumina sequencing of the V4 region of 16S rRNA 

gene 

Stool samples • Prevotella genus, the Paraprevotellaceae family, and Eubacterium biforme increase with HIV infection, abundance varies in individuals undergoing ART (do not reach  

typical low levels of HIV-negative individuals).  

• Peptococcus genus increased in untreated HIV infected individuals and decreases with ART.  

• Desulfovibrio and Catenibacterium genera increase in untreated HIV infected individuals, while in individuals on ART they trended back to levels seen in HIV seronegative  
individuals.  

• The microbiota composition of individuals on ART was more similar to that of individuals with untreated HIV infection than seronegative Individuals. 

Dinh et al., (2015) 21 HIV positive individuals on ART, 16 

seronegative individuals 

Pyrosequencing of the V3-V5 regions of the 16S 

rRNA gene 

Stool samples • Greater abundance of Proteobacteria in HIV positive individuals compared to controls.  

• Enrichment in Gammaproteobacteria, Enterobacteriales and Enterobacteriaceae in the Proteobacteria phylum in HIV positive individuals compared to controls.  

• Enrichement in Erysipelotrichi, Erysipelotrichales, and Erysipelotrichaceae in the Firmicutes phylum in HIV positive individuals compared to controls.  

• Enrichement in Barnesiella and reduction in Rikenellaceae and Alistipes in the phylum Bacteroidetes in HIV positive individuals compared to controls. 

Noguera-Julian et al., 

(2016) 

HIV-1-infected subjects and HIV-1- negative 

controls in Barcelona (n=156) and 
Stockholm(n=84) 

Illumina sequencing of the V3-V4 regions of 16S 

rRNA gene 

Stool samples • Sexual preferences could be related to the HIV-gut asosciated dysbiosis, increasing the abundance species from the Prevotella genus. 

Ling et al., (2016) 67 HIV-1-infected patients (32 receiving 

HAART and 35 HAART naïve) and 16 

healthy controls 

Pyrosequencing of the V1-V3 regions of the 16S 

rRNA gene 

Stool samples • Prevotella, were prevalent in HIV infected patients Phascolarctobacterium, Clostridium XIVb, Dialister and Megamonas were significantly correlated with systemic inflammatory 

cytokines 

Monaco et al. (2016) 40 HIV positive individuals on ART, 42 HIV 

positive individuals not on ART, 40 HIV 

seronegative individuals 

Illumina sequencing of the V4 region of 16S rRNA 

gene and Viral shotgun metagenomics 

Stool samples • Low peripheral CD4 T-cell concentration associated with an increase in a group of bacteria such as Enterbacteriaceae, Enterococcaceae and Lactobacillaceae. 
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1.4. Clinical intervention to the microbiota 

The prebiotics and probiotics are modulators of the microbiota composition that contribute to the 

well-being of their host. Currently, multiple studies have investigated their use to modify the gut 

microbiota to replace or augment conventional therapies. The microbiota-based therapy has grown 

markedly, due in large part to an improved safety profile with fewer side effects when compared to 

traditional therapy. 

1.4.1. Prebiotics 

Prebiotics are nondigestible food ingredient that promotes or induce the growth of beneficial 

microorganisms in the intestine. Prebiotics are normally non-digestible fibers that pass through the 

GIT until the large intestine, where commensal bacteria use it as a substrate. The overgrowth of 

these bacterial groups induces changes in SCFA production in healthy individuals [292], in patients 

with IBS [293,294] and in obese individuals [295]. The use of prebiotics has also been tested in the 

HIV infection. For instance, HIV-infected individuals not receiving ART have maintained the 

immune functions using a combination of probiotics and/or prebiotics or a mixture (Symbiotics) 

[296–298]. The trials have been focused on the use of the fructo-oligosaccharides (FOS) [297], 

mixtures of galacto-oligosaccharides (GOS) and poly-unsaturated acids [296].One of the pioneer 

studies in the prebiotic use was the one performed by Gori et al., (2011) [299]. In a pilot double-

blind, randomized, placebo-controlled study they measured the effectiveness of a prebiotic 

oligosaccharide mixture (15 or 30 g short chain galactooligosaccharides/long chain 

fructooligosaccharides/pectin hydrolysate-derived acidic oligosaccharides (scGOS/lcFOS/pAOS) 

daily), or a placebo for 12 weeks in ART-naïve HIV-1-infected adults. Their results showed that the 

prebiotic administration increased the abundance of Bifidobacteria species and reduced the 

abundance of the pathogenic species Clostridium lituseburense and Clostridium histolyticum group. 

Additionally, the levels of the T-cell activation (%CD4+ CD25+ T-cells) and sCD14 levels 

decreased after the prebiotic intake [299]. Nevertheless, this work has been performed using qPCR 

so that only a fraction of the microbial species could be characterized leaving aside the effect of the 

prebiotic over the whole bacterial community. 

1.4.2. Probiotics 

The probiotics are living microorganisms that are known to provide benefits to the host [300]. They 

are used to restore microbial dysbiosis such as the one produced by the C. difficile infection [301], 
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acute infectious diarrhea, Crohn’s disease and IBS. Additionally, it has been observed that lactic 

acid bacteria have the potential for reducing serum cholesterol levels [302,303] and may help 

lactose-intolerant individuals [302]. Normally, species from the Lactobacillus and Bifidobacterium 

are the most widely used as probiotics. For the HIV gut-associated dysbiosis, Lactobacillus 

rhamnosus, Lactobacillus reuteri and Bifidobacterium lactis Bi-07 [297,298] have been used as 

probiotics, given their anti-inflammatory properties. Additionally, Bifidobacteria species has shown 

to normalize circulating LPS levels in a mouse model of endotoxemia (the presence of endotoxins 

in the blood stream) [304]. Moreover, Stiksrud et al., (2015) [305] and Villar-García et al. (2015) 

[306] showed that the use of probiotics in a cohort of HIV+ individuals reduced significantly the 

inflammation [305,306]. 

The use of a mixture of prebiotics/probiotics in SIV-infected macaques beginning ART has resulted 

in an increased of the frequency of gastrointestinal antigen-presenting cells, enhanced reconstitution 

and functionality of Th17 cells, and reduced fibrosis of lymphoid follicles in the colon [307]. 

1.4.3. Fecal transplantation 

A new way of restoring the whole microbiota is the fecal microbial transplantation (FMT) that 

consists in the transfer of the fecal microbiota from a healthy donor in the gastrointestinal tract of a 

subject with a dysbiosis. Although it was first described in the scientific literature in 1958 [308], 

there are records that fecal transplantations have been used as a remedy for recurrent diarrhea for at 

least 1700 years [309]. 

The FMT has shown excellent results for the control of the antibiotic-resistance C. difficile 

infection. The idea behind the microbial transplantation is that the healthy fecal microbes suppress 

C. difficile blooms through niche competition, however, the exact mechanism is still unknown 

(reviewed in [85]). Moreover, it is arguably the most complete and ideal probiotic, one can see its 

potential value in other bacteria-mediated diseases such as UC, IBD, celiac disease, allergies, 

neurodevelopmental disorders, endocrinopathies, and other autoimmune disorders [310]. Indeed, 

more than a half a dozen clinical trials have been registered to study FMT in IBD (reviewed in 

[311]). In the same way, in a study of 10 children with UC treated with FMT showed 78% clinical 

response within a week [312]. Similarly, a study performed in a small cohort of six subjects 

reported the success of FMT documenting the complete clinical and histological reversal of UC 

[313].  
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However, in some cases, it has been observed adverse events such as transient fever, abdominal 

pains, bloating, and even no clinical improvement with only transient effects on the host’s fecal 

microbial composition in patients with Crohn’s disease [314]. Furthermore, there are risks that the 

FMT can spread infectious diseases such as HIV or hepatitis [311] or there are also theoretical 

hazards that FMT could change the microbiome to make people more susceptible to chronic 

conditions such as obesity or autoimmune disorders [311]. Then, more long-term studies based on 

larger cohorts are needed to determine the effects of the FMT in different microbiome related 

diseases and human health. 
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2. OBJECTIVES 

Nowadays, the use of ART in HIV+ subjects has increased considerably their life expectancy 

restoring the CD4+ T-cell counts and maintaining at low levels the viral load. However, their life 

expectancy is 10 years lower than the average population. This reduction is due to unrelated AIDS 

illness, such as cardiovascular diseases and atherosclerosis that are caused by a persistent immune 

activation and chronic inflammation. This phenomenon could be due to a constant bacterial 

translocation from the intestinal lumen to the systemic circulation because of the prior disruption of 

the GALT by HIV. Moreover, the loss of the lymphoid tissue would lead to a microbial imbalance 

that could be related to the systemic immune activation. 

In the last decade, the high-throughput molecular techniques as metagenomics, 

metatranscriptomics, meta-metabolomics, and metaproteomics allow the whole characterization of 

the structure, functions, and interactions of the human gut microbiome. However, several 

pathologies related to the disturbance of the gut homeostasis remains to be investigated, such as the 

HIV infection. For this reason, the general aim of this thesis was to gain insight into the effect of the 

HIV infection on the gut microbiome and its implications in human health applying these 

approaches and different multivariable analysis. This main objective was divided into three specific 

objectives, which were focused on different aspects of the HIV gut-associated dysbiosis. 

Objective 1: Study the contribution of the altered metabolism of the gut microbiota in the 

chronic immune activation in the HIV-infected ART-responder individuals.  

Since long-term ART incompletely reverses the profound CD4+ T cell depletion in the GALT, the 

immune activation and inflammation continue long after peripheral CD4+ T-cell restoration. 

Although it has been characterized the dysbiotic microbiota in ART HIV+ subjects, the extent of 

the community perturbation has not been fully understood. Current studies lack from a functional 

characterization of the gut-microbiome as well as the clinical impact of the host health. 



 

 

56 

 

The first objective was to characterize the structure (diversity and microbial composition) and 

functions (metagenome) of the microbial ecosystem in an HIV and ART environment in order to 

identify the interactions between functional and structural dysbiosis and host health.  

Objective 2: Study the effects of prebiotics on microbial dysbiosis, butyrate production and 

immunity in HIV-infected subjects. 

Although different studies in HIV patients have described changes in the immunity and in the 

intestinal bacteria after prebiotic, probiotic, or symbiotic administration, a deeper understanding of 

the ecological effects of such interventions on the structure of gut bacterial communities is needed, 

especially in the context of HIV-infected individuals who are undergoing ART. 

The second objective was to study the effect of a dietary supplementation with prebiotics and 

glutamine on the HIV-associated dysbiosis and the innate and adaptive immunity. 

Objective 3: Implement a holistic characterization of the HIV gut-associated dysbiosis using a 

“multiomic” approach and the determination of the ecological and functional network 

structure. 

Despite a large number of studies focused on HIV-associated dysbiosis, the studies of the gene 

content and gene expression in the gut-associated dysbiosis have not been well characterized. 

Additionally, the gut-microbiome is a complex community in which exists several relationships 

between the microbial species and genes. In that sense, the network analysis is a powerful tool to 

study the combination of a tightly interlinked complex system that happens in the biological 

systems. Finally, although nowadays exist several studies based on different “omic” technologies, 

there is no an integrative effort to study the HIV gut-associated dysbiosis in a holistic perspective.  

The objectives of chapter three are the characterization of the gut-microbiota using different “omic” 

technologies, the study of the ecological and functional networks in the HIV-dysbiotic community 

and the implementation of a “multiomic” approaches to predict the effect of the metagenomic, 

metatranscriptomic and metabolomic data in the immune response. 
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3. MATERIAL AND METHODS 

3.1. Cohort 

A total of 95 subjects were recruited from HIV clinics of two University hospitals in Madrid, Spain 

(University Hospital Clínico San Carlos and University Hospital Ramón y Cajal) and randomly 

assigned to the active or placebo group, using centralized allocation via a telephone randomization 

system. Patients and researchers were blinded to study allocation until statistical analysis. Inclusion 

criteria were serologically documented HIV infection, age 18 years or older. Controls were healthy 

HIV-uninfected volunteers (most of them staff working in either institution) and were recruited 

aiming to reach a group of similar ages.  

Exclusion criteria were: use of concomitant medications; use of systemic antibiotics during the 

previous three months; and any acute or chronic condition other than chronic HIV infection, 

including gastrointestinal symptoms (constipation, bloating or diarrhea) or co-infections by hepatitis 

B or C viruses. Study subjects completed a dietary survey detailing the number of servings of 

various diet-related food groups per day during a five-day framework, including the weekend.  

To capture a wide spectrum of HIV immunopathogenesis, we recruited viremic untreated (VU) 

HIV-infected subjects, immunological ART responders and non-responders (IR and INR, ≥350 and 

<350 CD4+ T-cell counts after >2 years of viral suppression, respectively) [1], and unmatched 

HIV-uninfected (HIV-) individuals. From the 95 individuals screened in the study, 35 were not 

eligible and 60 underwent randomization to the prebiotic intervention or placebo (2:1). A total of 44 

individuals completed the 6-week-treatment. 34 subjects were in the active arm (20g mixture of 

prebiotics, including 5g of short chain galacto-oligosaccharides (Purimune®), 10g of long chain 

fructo-oligosaccharides (Orafti-HP® and Actilight®), and 5g of glutamine (Nutrición Médica®) 

and 10 individuals in the placebo arm (20g of maltodextrin): 12 VU (9/3), 8 INR (8/0), 15 IR 

(10/5), and 9 (7/2) controls (HIV-). Nine patients dropped out of the study (3 in the active arm and 6 
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in the placebo arm). See Figure M.1 for a detailed schema of all the process. Fecal and plasma 

samples were obtained for each subject in the cohort. 

 

Figure M.1 Study profile. INR, immunological non-responder; IR, immunological responder; VU, viremic untreated. Reproduced 

from Serrano-Villar et al. (2012) [315] with permission from © 2017 Society for Mucosal Immunology. 

This study was approved by the Ethics Committee at both recruiting institutions (University 

Hospital Clínico San Carlos [approval number 11/284], ceic.hcsc@salud.madrid.org and University 

Hospital Ramón y Cajal, ceic.hrc@salud.madrid.org). The fecal and blood samples were obtained 

for each patient before and after the prebiotic administration. Briefly, 20 ml of blood was drawn 

into EDTA tubes by fasting sterile venipuncture for at least 8 hours and two stool samples were 

collected in Falcon tubes with 10 ml of later RNA, which were immediately frozen at -80°C. 
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All participants signed an informed consent prior to initiation of study procedures and all blood and 

fecal samples analyzed in the study was obtained from participants who signed the consent from 

Clinical Trials Registry Identification Number Identifier (clinicaltrials.gov): NCT01838915. 
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3.2. Clinical measurements of the systemic biomarkers 

of disease progression 

As mention before, the HIV gut-associated dysbiosis is related to the bacteria translocation and a 

chronic immune activation that is associated with cardiovascular diseases and atherosclerosis. In 

collaboration with Hospital and Clinical centers from Madrid and Sevilla, we measured different 

markers from the thymic function, T-cell markers, bacterial translocation, endothelial functions and 

several plasma biomarkers related to systemic inflammation from the blood samples. 

3.2.1. Flow mediated dilation 

The flow mediated dilation (FMD) measures the dilation of the brachial artery during reactive 

hyperemia after brief arterial occlusion, involves endothelium-dependent mechanisms and predicts 

coronary events [316], therefore the FMD marker is a cardiovascular disease marker. Since the gut 

microbiota has demonstrated to promote atherosclerosis through the metabolism of L-carnitine 

[317], in the present thesis we measure the effect of the prebiotic treatment to the improvement of a 

surrogate marker of cardiovascular disease. 

3.2.2. Markers of innate immune activation and bacterial translocation 

All the plasma biomarkers related to the systemic inflammation, thrombosis, bacterial translocation 

and the disease progression markers were measured in collaboration with the department of 

infectious diseases from the Hospital Universitario Ramón y Cajal (Universidad de Alcalá, Madrid 

Spain). 

The clinical markers related to the systemic inflammation: the interleukin-6 (IL6), the high-

sensitivity C-reactive protein (hs-CRP) were measured using classic enzymatic methods and 

nephelometry (VISTA System, Siemens Healthcare Diagnostics Inc, Deerfield, IL) respective. 

Similarly, the plasma biomarkers related to cardiovascular diseases: the concentrations of glucose, 

the total cholesterol, high-density lipoprotein and cholesterol and triglycerides levels were measured 

in the blood samples using standard enzymatic methods. The marker of thrombosis: the fibrin 

degradation product and D-dimers were measured using turbidimetry method (Beckman-Coulter, 

Inc, Munster, Germany). The bacterial translocation markers, bactericidal permeability increasing 

protein (BPI, Hycult Biotech) and soluble CD14 (sCD14, Biovendor), were determined by 
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immunoassay. The BPI is a 50kDa protein [318] with a potent killing activity against Gram-

negative bacteria which bind to the lipopolysaccharides of the bacteria membrane; likewise the 

sCD14 acts as a co-receptor for the detection of bacterial lipopolysaccharide. 

Finally, the disease progression marker, the plasma viral load (VL) was measured using the Cobas 

Taq-Man HIV-1 assay (Roche Diagnostics Systems, Inc, Branchburg, NJ).  

3.2.3. Markers of adaptive immune activation 

The systemic chronic immune activation is considered today as the driving force of CD4+ T-cell 

depletion and acquired AIDS [319]. The adaptive immune activation markers measure the infection 

progression [320,321], immunosenescence [322] and the response of the innate immune system to 

the microbial translocation (reviewed in [323]). For these reasons in collaboration with the Hospital, 

Universitario Virgen del Rocío (Sevilla, Spain) and the Department of Infectious Diseases from the 

University Hospital Ramón y Cajal (Madrid, Spain) different markers of the adaptive immune 

activation were measured from the blood samples. 

3.2.3.1. T-cell immunophenotyping 

In collaboration with the Department of Infectious Diseases from the University Hospital Ramón y 

Cajal (Madrid, Spain), we obtain the clinical variables related to the HIV immune cell harassment, 

the CD4+, and CD8+ T-cells count. The percentage of cells expressing markers of activation 

(CD25+, CD38+, HLADR+ or CD38+/HLA-DR+) and senescence (CD57+). These values were 

measured from the fresh EDTA anticoagulated whole blood using the following antibody 

combination: CD3-eFluor450, CD4-peridinin chlorophyll protein complex-Cy5.5 (PerCP-Cy5.5), 

CD8- Horizon V500, CD25-Allophycocyanin (APC), CD8-phycoerythrin-Cy7 (PE-Cy7), CD38-

APC700 and HLA-DR-APC-Cy7. Antibodies were from Becton Dickinson (Becton Dickinson, 

New Jersey, USA), and unstained controls were performed for all samples. Cells were collected 

using a Gallios flow cytometer (Beckman Coulter, California, USA) and analyzed with Kaluza 

software (Beckman Coulter) to quantify the percentage of CD4+ and CD8+ T-cells expressing 

markers of activation (CD25+, CD38+, HLADR+ or CD38+/HLA-DR+) and senescence (CD57+). 

3.2.3.2. sj/β-TREC ratio quantification 

In collaboration with the Hospital Universitario Virgen del Rocío (Sevilla, Spain) the thymic 

function was calculated in peripheral blood mononuclear cell DNA using the ratio of two different 
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T-cell receptor excision circles (TRECs): The signal-joint T-cell receptor excision circles (sj-

TREC) and the DβJβ-TREC. The TRECs are small circles of DNA created in T-cells during their 

passage through the thymus as they rearrange their T-cell receptor (TCR) genes. Therefore, the ratio 

of such TRECs, often expressed as the sj/β-TREC ratio, is a direct estimator of the thymic function 

which has the advantage to take into account the DβJβ-TREC, which is the product of the β chain 

TCR rearrangement at the most immature thymocyte subset and the sj-TREC, product of the α 

chain TCR rearrangement. The sj/β-TREC ratio was estimated by the subsequent PCR reactions as 

previously described [324] with minor modifications as shown in [315]. 

3.2.4. Plasma concentrations of trimethylamine N-oxide  

High levels of trimethylamine N-oxide (TMAO) are associated with an increased risk of major 

adverse cardiovascular events and atherosclerosis [325,326]. Interestingly, the gut microbiota has 

the potential to metabolized choline or carnitine to TMAO increasing its levels in the blood stream. 

Therefore, in collaboration with the Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de 

Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, (Madrid, Spain) using liquid 

chromatography techniques, as described in [315], the blood levels of TMAO were measured in the 

cohort participants. 
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3.3. Metagenomic and metatranscriptomic sequence 

analysis 

In order to characterize the colonic microbiome fecal samples were taken from each of the 

participants of the cohort, before and after the prebiotic administration. The fecal sampling has the 

advantage of being an easy-to-sample non-invasive method which has been widely used for the gut-

microbiome study. Additionally, it has been reported that luminal microbial contents of the colon, 

in which reduced transit time and high nutrient availability are observed, correlate with feces in 

terms of species diversity and bacterial abundance [10–12]. For these reasons, nucleic acids from 

the colonic bacteria populations, retrieved from the fecal samples, were used to characterize the 

taxonomic and functional profile of the microbiome. 

3.3.1. Nucleic acid purification 

Fecal samples were stored in RNAlater (Life Technologies, Carlsbad, CA) at -80ºC until use. The 

fecal samples were defrosted and homogenized and 5 ml of each were diluted with 5 ml of 

phosphate buffered saline (PBS) (containing, per liter, 8 g of NaCl, 0.2 g of KCl, 1.44 g of 

Na2HPO4, and 0.24 g of KH2PO4 [pH 7.2]). Then, they were centrifuged at 2000 rpm at 4ºC for 2 

min to remove fecal debris. The supernatant was centrifuged at 13000 rpm for 5 min to pellet the 

cells Total DNA was extracted from pelleted cells using QIAamp DNA Stool Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Total RNA was extracted using the 

RiboPureTM Bacteria kit (Ambion, Austin, TX, USA) and then treated with Baseline-ZEROTM 

DNAse (Illumina, Eindhoven, Netherlands) as described in Pérez-Cobas et al., (2013) [327]. The 

efficiency of the DNase treatment was checked by amplifying each RNA sample by PCR. Then, the 

rRNA removal was performed using Ribo-Zero Magnetic Kit (Bacteria) (Illumina, Eindhoven, 

Netherlands). 

3.3.2. Analysis of the 16S rRNA gene 

3.3.2.1. 16S rRNA gene amplification and sequencing  

For each sample, the hypervariable V1-V3 region of the 16S rRNA gene was amplified by 

polymerase chain reaction (PCR) with the universal primers E8F (5′-

AGAGTTTGATCMTGGCTCAG-3′) and 530R (5′-CCGCGGCKGCTGGCAC-3′). The E8F 
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primer included a sample-specific Multiplex Identifier (MID) to be multiplexed and sequenced 

simultaneously. To amplify the 16S rRNA gene we used the following protocol. 

For each sample, a 50µl PCR mix was prepared to contain: 5µl of Buffer Taq (10X) with 20mM 

MgCl2, 2µl of dNTPs (10mM), 1µl of each primer (10mM), 0.4µl of Taq FastStart polymerase 

(5u/µl), 39.6µl of nuclease-free water and 1µl of DNA template. PCR was run under the following 

conditions: 95º for 2 min followed by 25 cycles of 95º for 30 s, 52º for 1 min and 72º for 1 min and 

a final extension step at 72º for 10 min. The amplification process was checked by electrophoresis 

in agarose gel (1.4%). PCR products were purified using NucleoFast® 96 PCR Clean-Up Kit 

(Macherey-Nagel) and quantified with Nanodrop-1000 Spectrophotometer (Thermo Scientific) and 

with the QuantiT PicoGreen dsDNA Assay Kit (Invitrogen). The PCR products were purified using 

the NucleoFast 96 PCR Clean-Up Kit (Macherey-Nagel, Duren, Germany). The pooled PCR 

products were directly pyrosequenced using a Roche GS FLX sequencer and Titanium chemistry in 

the Centre for Public Health Research (FISABIO-Salud Pública, Valencia Spain. The raw 

sequences retrieved from the Roche GS FLX sequencer were subject to quality trimming using the 

prinseq-lite.pl script [328] (parameters: -min_len 170 -min_qual_mean 20 -ns_max_n 1 -

trim_qual_left 20 -trim_qual_right 25 -trim_qual_type min -trim_qual_rule lt -trim_qual_window 5 

-trim_qual_step 1). The reads that did not accomplish one of the following criteria: read length 

above the 170 nucleotides (nts), mean quality score above 20 or contain less than the 1% of the 

ambiguous base were removed. Additionally, the prinseq-little script trims the low quality 3´ end of 

the sequences by the sliding window method, which takes five bases at the end of the sequences and 

removes them if at least one of the bases has a quality score below 25. If the 5-base window is 

removed then the window moves one base to the left and redoes the process. 

3.3.2.2. 16S OTU characterization 

The Amplicon data were analyzed following the recommendations of the metagenomic state-of-the-

art pipeline QIIME (v 1.8.0.) [329]. The master-script pick_otus_through_otu_table.py (master-

script) from the QIIME pipeline [329] was used to picks Operational Taxonomic Units (OTUs) 

from the 16S rDNA amplicons. Briefly, an OTU is an operational definition used to classify groups 

of closely related individuals [330]. In the metagenomic analysis, the OTUs are defined as clusters 

of 16S small subunit (SSU) rRNA gene which normally shares at least the 97% of sequence 

identity. The OTUs are often considered a synonym of bacteria species; however, the identity 

threshold to separate the sequences in different species OTUs could vary depending on the species. 
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In the present thesis, it is referred as an OTU a set of sequences which share at least a 97% of 

sequence identity. The classification of species or genus was carried by adding all the OTUs who 

share the same taxonomic label at the determined taxonomic level. 

OTUs are the backbone of established workflows such as the QIIME pipeline which implement the 

pick_otus_through_otu_table.py master script to quantify the OTUs from the 16S rDNA amplicons 

following the next steps: 

1) OTU creation: The script pick_otus.py performs sequence denoising, chimera detection, and 

OTU-clustering. The USEARCH [331] pipeline was first used for filtering chimeric sequences 

given PCR amplification. Two strategies of chimera detection were used: The reference based 

approximation (parameters: usearch --usersort –chimeras –uchime) using as template the curated 

16S rDNA database rRNA16S.gold.fasta (from 2010-04-29) and the de novo chimera detection 

(usearch --usersort –chimeras --abskew 2 –uchime). Next the USEARCH pipe-line cluster all 

sequences who share at least 97% of similarity (parameters: usearch –cluster --id 0.97 --w 64 --

maxrejects 32). Finally, those sequences which were not allocated in a cluster were label as putative 

sequence artifacts and were removed from the dataset. 

2) Obtain the reference sequences for each OTU: the script pick_rep_set.py took the reference 

sequences for each of the clusters in the dataset. 

3) Assign OTU taxonomy: the script assign_taxonomy.py assign the taxonomy from each of the 

OTUs reference sequences. The script calls the Ribosomal Database Project-II (RDP) script [332], 

which infers the taxonomy using as reference the Greengenes database [333] (gg_13_8_otus cluster 

at 97% of identity available in the Qiime package v1.8). The annotation was accepted when the 

bootstrap confidence estimation value was over 0.8, stopping the assignation at the last well-

identified phylogenetic level. 

4) Alignment of the reference sequences: the reference sequences were carried out by the 

align_seqs.py script. The script calls the PyNastAligner alignment software [334] (parameters: 

algorithm: NAST, min_len: 246, min_pct: 75, pairwise_alignment_method: UCLUST) using as 

reference the greengenes core_set_aligned.fasta (available in the Qiime package v1.8). Then, the 

filter_alignment.py removes positions, which are gaps in every sequence. 
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5) Make a phylogeny: The script make_otu_table.py used the FastTree [335] (parameters:-

root_method midpoint) to generate a phylogenetic tree using as template the alignment generated by 

PyNastAligner. 

6) Finally, the abundance OTU table was created using the script make_otu_table.py, the script 

merged the reference OTU taxonomic assignation with its relative abundance in the samples. The 

OTU table was also summarized in the genus taxonomic level using the script 

summarize_taxa_through_plots.py. 

Rarefaction curves of fecal microbiota at genus, species and OTU taxonomic levels were 

constructed (library “vegan” function “rarecurve”) to assess the saturation of the 16S rRNA gene 

sequencing. As shown in Figure M.2, the curves reached a plateau for all three taxonomic levels, 

indicating that the species level was well represented in the study. Additionally, 5 rarefactions of 

2185 sequences per sample were performed to validate the 16S-amplicon sequencing analysis. The 

results were compared with the analysis using the entire dataset using a Procrustes test (library 

“vegan” function “protest”) and the Mantel test (library “vegan” function “mantel.rtest”). We did 

not find any significant difference (mantel.rtest = 0.001 and protest p-value < 0.001) between the 

OTU table obtained with the whole dataset and that obtained for each of the rarefied samples. 

 

Figure M.2 Rarefactions curves. Rarefactions curves from the total samples used in the cohort at genus (a), species (b) and OTUs 

(c) levels. Modified from Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal Immunology. 

3.3.2.3. Microbial quantification by quantitative PCR  

The qPCR reactions were performed using LightCycler 480 instrument (Roche) and KAPA SYBR® 

FAST qPCR Kit (Kapa Biosystems). Amplification reactions were run on total DNA purified from 

the fecal sample as stated before using 0.2 μM of the universal bacterial primer 8F (5′-

AGAGTTTGATCCTGGCTCAG) and the broad-range bacterial primer 338R (5′-
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TGCTGCCTCCCGTAGGAGT-3′). Final assay volumes of 20μL were dispensed in duplicate in 96-

well plates. We used 25 ng average of genomic DNA per 20 μL reaction as template. Standard 

curves were prepared by serial dilution of the PCR product of Enterococcus faecalis 16S rRNA 

gene obtained using the primers described above. The reaction conditions were 95°C for 10 min 

followed by 40 cycles of 95°C for 30 s, 52°C for 30 s, and 72°C for 1 min. The results were 

expressed as the number of 16S rDNA copies per ng of total DNA. 

3.3.3. Metagenomics and metatranscriptomics sequencing 

In the present thesis, we used two different sequence technologies to obtain the taxonomic and 

functional assignation within the gut-microbiome. The 454 sequencer Genome Sequencer FLX with 

GS FLX Titanium technology and the Illumina MiSeq Reagent Kit v3 (600 cycles) sequencing. The 

two sequence technologies were used given that at the time that we started the project the Illumina 

sequencing was not affordable and the read length was no longer than 100 bp. However, with the 

acquisition of a MiSeq sequencer in the research center in which I realized the thesis, the 

“Fundación para el Fomento de la Investigación Sanitaria y Biomédica”, the Illumina sequencing 

was affordable for my thesis project. With these sequencing technologies available, I took 

advantages of the read-length of the 454 sequences and the coverage of the Illumina MiSeq reads to 

characterize the gene content and the taxonomic profile of the microbiome. Specifically, the 

metagenomic data (DNAseq) included both sequence technologies while the metatranscriptomic 

data (RNAseq) only includes the MiSeq sequencing. The sequencing analysis and treatment are 

specified in the “Material and Methods” section of Chapter 1, Chapter 2 and Chapter 3 according to 

the sequencing technology used. 

3.3.3.1. 454 pyrosequencing  

The 454 libraries for shot-gun pyrosequencing were performed following the protocol of “Rapid 

Library preparation for FLX Titanium, Roche” using the Roche GS FLX Titanium Sequencing Kit 

XL. Briefly, the total DNA from fecal samples was fragmented by nebulization and purified by 

column centrifugation (Qiagen MinElute PCR Purification Kit). The DNA-end fragments were 

repaired and ligated to the sequencing adaptor and the Multiplex Identifier (MID, Roche) by 

incubating for 10 min at 25ºC with the “RL MID Adaptor mix”. Then, the small DNA fragments 

were removed by AMPure magnetic beads. Finally, the library was quantified with the QuantiT 

PicoGreen dsDNA Assay Kit (Invitrogen). The DNA libraries were then pyrosequenced using the 
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Roche GS FLX sequencer and Titanium chemistry in the Centre for Public Health Research 

(CSISP-FISABIO, Valencia Spain)  

3.3.3.2. Illumina sequencing 

The Illumina libraries for shot-gun V3 sequencing were performed following the protocol of 

“Nextera® XT DNA Sample Preparation Guide”. Briefly, the total DNA was tagged and 

fragmented by the Nextera XT transposome. The Nextera XT transposome simultaneously 

fragments the input DNA and adds adapter sequences to the ends, allowing amplification by PCR in 

which the index primers are added to each sequence. Similarly, to the 454 libraries construction, the 

Illumina libraries were purified by the magnetic Ampure XP beads. Finally, the library was 

quantified with the QuantiT PicoGreen dsDNA Assay Kit (Invitrogen). 

The RNA was processed with ScriptSeq V2RNA-Seq Library Preparation kit (Illumina, Eindhoven, 

Netherlands) to generate the double strand cDNA and the sequencing libraries according to the 

manufacturer's instructions. Briefly, the fragmented RNA was reverse transcribed into cDNA using 

the anneal cDNA synthesis primers and the StarScript AMV Reverse Transcriptase. Then, the 3´end 

of each cDNA fragment is tagged with a terminal tagging oligo which later was used to perform a 

PCR which added the sequencing adapters and the index primers to each sequence. The Illumina 

libraries were purified by the magnetic Ampure XP beads. Finally, the library was quantified with 

the QuantiT PicoGreen dsDNA Assay Kit (Invitrogen). The metatranscriptomes and metagenomes 

were sequenced using the Kit V3 (2X300 cycles) in MiSeq platform (Illumina, Eindhoven, 

Netherlands). The sequencing was performed at the Centre for Public Health Research (FISABIO-

Salud Pública, Valencia, Spain). 
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3.4. Phylogenetic analysis, alpha diversity, beta 

diversity, and clustering 

3.4.1. Alpha diversity 

The alpha diversity estimators for the 16S rDNA OTUs were calculated doing a rarefaction of 2185 

sequences. The Shannon index, the richness estimators Chao1 and ACE and the total number of 

taxa were calculated to assess the OTUs and genus diversity within the community using the 

alpha_diversity.py script from the Qiime v1.8.0 pipeline.  

The diversity estimators for the RNAseq and DNAseq were estimated from their taxonomic 

abundance tables (See Chapter 3 Materials and Methods section) by performing a rarefaction of 

16476 and 91719 sequences respectively. The diversity Shannon index was calculated using the 

“diversity” function (Library “vegan”), similarly, the Chao1 estimator was calculated using the 

“chao1” function (Library “fossil”) for all the data matrix.  

3.4.2. Beta diversity and clustering 

The beta diversity measures the different species composition among habitats by means of a 

dissimilarity/similarity index or the use of specific ecological distances. Within the gut microbiome, 

the ecological analyses normally take advantage of the use of clustering and ordination techniques, 

which define the structure and the cluster configuration of different human gut associated habitats. 

In the present thesis, different beta diversity distances/index, cluster algorithms, and ordination 

analyses were implemented to better characterize the different “omic-data” retrieved from the 

cohort subjects. 

The beta diversity analysis from the 16S rDNA OTUs data was estimated using a combination of 

the Qiime v1.8.0 pipeline and the free statistical package R (version 3.0.1). The clustering analysis 

of the samples was performed with the total OTU table and the table summarized at the genus level 

using the free statistical package R (version 3.0.1) as described by Arumugam et., al (2011) [14] 

and Koren et., al (2013) [336]. Prior to performing the clustering analysis, the samples were 

standardized by the total number of sequences. The Partitioning Around Medoids (PAM) algorithm 

(library “cluster”, function “pam”) was used to identify the potential cluster in our data set testing 

four different distances: Bray-Curtis (library “Vegan”, function “vegdist”), Jensen-Shannon 
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divergence (library “phyloseq”, function “distance”), Jensen-Shannon distance, calculated as 

Arumugam et., al (2011) and weighted UniFrac distance [337] (implemented by the 

beta_diversity.py script in the Qiime1.8 pipeline, using the previous calculated FastTree reference 

OTU phylogenetic tree). The last one was used only for the OTUs cluster analysis. The optimal 

cluster configuration was defined as the distance that maximized the silhouette index (library 

“cluster”, function “silhouette”); enhance the variance explained by the first component of the 

Principal Coordinates Analysis (PCoA) (function “dudi.pco” function “ad4”) and the distances that 

were based on ecological or phylogenetic principles. Considering those conditions, the weighted 

UniFrac (wUniFrac) distance and the Bray-Curtis index were used to estimate the dissimilarities 

between samples in the OTU table and the genus table, respectively. Clusters were validated 

applying the Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS 

test) (library “Vegan” function “adonis”) using the weighted UniFrac distance and default 999 

permutations. 

The annotations from the KEGG orthologous (KO) database, the Comprehensive Antibiotic 

Resistance Database (CARD) and the taxonomic annotations were standardized by the total number 

of sequences (see Chapter 3 “Materials and Methods” section), this performed for the RNAseq and 

the DNAseq shot-gun data. Then, to avoid biases given the data composition we normalize data 

using the Hellinger transformation (Library “vegan” function “decostand”). The Hellinger distance 

(Library “vegan” function “vegdist”) and the Bray-Curtis index (Library “vegan” function 

“vegdist”) were calculated from the abundance matrix from the functional and taxonomic 

composition, respectively, to quantify the compositional dissimilarity between two different 

communities. Similar to the 16S rDNA analyses, the PAM algorithm was used to determine the 

cluster configuration. The optimal cluster configuration for the RNAseq/DNAseq KO functional 

and taxonomic annotations were established as the one that maximized the silhouette index. Those 

cluster configurations were validated using the ADONIS test. 

For all the different “omic” approaches, the compositional differences between the groups of the 

cohort as well as the one given by the prebiotic administration were tested using the ADONIS test 

(library “Vegan” function “adonis”). 

The non-metric multidimensional analysis (Library “vegan” function “metaMDS”), as well as the 

PCoA (function “dudi.pco” function “ad4”) were performed to reduce dimensionality in the 

taxonomic and functional distance matrix (Library “vegan” function “metaMDS”). The comparison 
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between the ordination analysis was performed using the Procrustes test (Library “vegan” function 

“protest”), similarly, the Mantel test was performed to measure the correlation between the distance 

matrix (Library “vegan” function “mantel.rtest”). The representation of each of the ordination 

analysis and the clustering analysis was given by the use of the s.class (Library “ade4” function 

“s.class”) and the vegan functions Ordihull and Ordispider (Library “vegan” functions “Ordihull” 

and “Ordispider”); those which represented as ellipses which represent the percentage of the 

samples that belongs to a cluster. 
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3.5. Biomarker discovery 

The linear discriminative analysis (LDA) effect size (LEfSe) [338] is an algorithm for high-

dimensional biomarker discovery of genomic features (species, pathways, and genes) between two 

or more groups. LEfSe first identifies the significant differences in taxa/function composition 

between groups by applying the Kruskal-Wallis test. Then, the Wilcoxon test was used to check all 

pairwise comparisons within the groups. Finally, the LDA is estimated for those taxa/function 

whose Kruskal-Wallis test and Wilcoxon test p-value were below 0.05, the threshold used to 

consider a discriminative feature for the logarithmic LDA score was set to >2. The LDA is 

supported by bootstrapping over 30 cycles, each sampling two-thirds of the data with replacement 

and subsequent averaging. In the present thesis, LEfSe was used to identify specific taxa, genes, and 

metabolic pathways as biomarkers for the HIV+ subjects and the HIV- controls and within the four 

groups. 
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3.6. Generalized linear models 

The Generalized Linear Models (GLM) are a flexible generalization of ordinary linear regression 

that allows for response variables that have error distribution models other than a normal 

distribution. The GLMs were estimated using the glment R package [339], which fits a generalized 

linear model via penalized maximum likelihood. The regularization path is computed for the least 

absolute shrinkage and selection operator (lasso) or elasticnet penalty at a grid of values for the 

regularization parameter lambda. Glmnet fits models by solving the following problem: 
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over a grid of values of λ covering the entire range. Here l(y,η) is the negative log-likelihood 

contribution for observation l; e.g. for the Gaussian case, it is 1/2(y−η)2. The elastic-net penalty is 

controlled by α and bridges the gap between lasso (α = 1, the default) and ridge (α = 0). The tuning 

parameter λ controls the overall strength of the penalty [340]. 

The ridge penalty shrinks the coefficients of correlated predictors towards each other while the lasso 

tends to pick one of them and discard the others. The elastic-net penalty mixes these two; if 

predictors are correlated in groups, an α = 0.5 tends to select the groups in or out together. This is a 

higher-level parameter, and users might pick a value up front, else experiment with a few different 

values. One use of α is for numerical stability; for example, the elastic net with α = 1 − ε for some 

small ε > 0 performs much like the lasso but removes any degeneracies and wild behavior caused 

by extreme correlations [340].  

In the present thesis, several GLM were implemented to associate the effect of the dysbiosis over 

the immune system and the association between metabolites and pathways with specific taxa. Those 

GLM implementations are described in the method sections of its corresponding chapter. 
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3.7. Bayesian networks 

The Bayesian networks (BN) are probabilistic directed acyclic graphical (DGA) models in which 

the nodes represent random variables and the edges conditional dependencies. In a DGA the 

connecting edges are represented by arrows (Xi → Xj) and represent a statistical dependence 

between the corresponding variables as can be seen in the example represented in Figure M.3a 

[341]. This means that a value taken by variable Xj depends on the value taken by variable Xi. In 

this case, the Xi is then referred to as a parent of Xj and, similarly, Xj is referred to as the child of Xi. 

The structure of the acyclic graph guarantees that there is no node that can be its own parent or its 

own child [342]. 

The BN enable an effective representation and computation of the joint probability distribution 

(JPD) over a set of random variables [341] and its corresponding factorization. This is achieved by 

the fact that in a BN each variable node is independent of its non-descendants in the graph given the 

state of its parents’ nodes. This is consistent with the Markovian property [343], where the 

conditional probability distribution (CPD) at each node depends only on its parents. Thus, the joint 

distribution of a collection of variables can be determined uniquely by these local conditional 

probabilities. This property is used to reduce the number of parameters that are required to 

characterize the JPD and allow the estimation of BN when the datasets are highly multivariable, 

such as the ones observed in the metagenomic studies. Bayesian Networks are formally defined as: 

A Bayesian network BN is an annotated acyclic graph that represents a JPD over a set of random 

variables V. The network is defined by a pair BN = {G, Θ}, where G is the DAG whose nodes X1, 

X2, X3 . . . , Xn represents random variables, and the edges represent the direct dependencies between 

these variables. The graph G encodes independence assumptions, by which each variable Xi is 

independent of its nondescendants given its parents in G. The second component Θ denotes the set 

of parameters of the network. This set contains the parameter θxi|πi= PB (xi |πi) for each realization xi 

of Xi conditioned on πi, the set of parents of Xi in G. Accordingly, BN defines a unique JPD over V, 

namely: (Definition taken from [342] ⁠). 
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With cross-sectional data, the connecting arrows represent mutual associations rather than causality 

[59] those networks are also called Markov networks [342] and provide a simple definition of 
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independence between any two distinct nodes based on the concept of a “Markov blanket” (MB) 

(Figure M.3b). The MB of a node A, noted Mb(A), is the set of nodes that shield the node A from 

the rest of the nodes of the BN. This implies that every set of nodes in the BN is conditionally 

independent of node A when conditioned on the set of nodes from the Mb(A). The MB of the node 

A has the Markov property; formally, for distinct nodes A and B. 

( )( ) ( )( )AMb|AP=B,AMb|AP  

Indicating that only the nodes from the Mb(A) are the only ones’ conditional dependents from the 

node A. The MB of a node A is conformed by its parents, children, and children’s other parents 

(Figure M.3b).  

 

 

Figure M.3 Bayesian network. Panel a: Example of the backache BN. It considers a person who might suffer from a back injury, an 

event represented by the variable Back (B). Such an injury can cause a backache, an event represented by the variable Ache (A). The 

back injury might result from a wrong sport activity, represented by the variable Sport (S) or from new uncomfortable chairs installed 

at the person’s office, represented by the variable Chair (C). In the latter case, it is reasonable to assume that a coworker will suffer 

and report a similar backache syndrome, an event represented by the variable Worker (W). All variables are binary; thus, they are 

either true (“T”) or false (“F”). The conditional probability tables of each node are listed beside the node. In this example, the parents 

of the variable Back are the nodes Chair and Sport. The child of Back is Ache, and the parent of Worker is Chair. Following the BN 

independence assumption, several independence statements can be observed in this case. For example, the variables Chair and Sport 

are marginally independent, but when Back is given they are conditionally dependent. This relation is often called explaining away. 

When Chair is given, Worker and Back are conditionally independent. When Back is given, Ache is conditionally independent of its 

ancestor's Chair and Sport. The conditional independence statement of the BN provides a compact factorization of the JPD. Instead 

of factorizing the joint distribution of all the variables by the chain rule, i.e., P(C,S,W,B,A) = 

P(C)P(S|C)P(W|S,C)P(B|W,S,C)P(A|B,W,S,C),the BN defines a unique JPD in a factored form, i.e. P(C,S,W,B,A) = 

P(C)P(S)P(W|C)P(B|S,C)P(A|B). Panel b: The MB of a node into a BN is the set of nodes composed of its parents, its children’s and 

the children’s other parents. The MB of a node contains all the variables that shield the node from the rest of the network. This means 

that the MB of a node is the only knowledge needed to predict the behavior of that node [Judea Pearl 1998]. In the current example 

the blue circle encompasses all the nodes that belong to the MB of the orange node A. Text and image reproduced from Faltin and 

Kenett (2007) [342] with permission of John Wiley & Sons, Inc., and from https://en.wikipedia.org/wiki/Markov_blanket with 

permission of Wikipedia® Wikimedia Foundation, Inc. 

BN has been used in metagenomic studies [315,344–347] given they can deal with noisy data [344] 

in multivariate complex modeling. This approach offers two attractive properties. First, it allows 

discovering hidden relationships among multiple variables, and second, the network is structured in 
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modules represented by statistically related subgraphs, namely, the Markov Blankets that predict 

the behavior of a node given its neighborhood.  

In the current manuscript, we used three BN in order to find a putative association between the 

immune system and different conditions and elements of the microbiome.  
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3.8. General statistical analysis 

All the correlation analyses were performed using the Spearman's rank correlation coefficient 

(library ‘‘stats’’, function ‘‘cor.test’’). To evaluate differences between groups in continuous 

variables, the Kruskal–Wallis test was used. Between-group comparisons of continuous variables 

were analyzed using Wilcoxon rank-sum test. All p-values were adjusted using the Benjamini-

Hochberg's correction (library “stats”, function “p.adjust” from R package). 

3.8.1. Statistical robustness 

Given the high-dimensional data and to control the false discovery rate, we validated the statistical 

tests using the following strategies. First, we estimated the power (R library “pwr” functions: 

“power.anova.test” and “power.t.test”) of each of the statistical tests to verify the robustness of the 

results (Table S12.2.8, Appendix section). Second, a permutation test based on 9999 Monte-Carlo 

steps over each of the statistical test used in the current work was performed (Table S12.2.8, 

Appendix section). These kinds of tests are used when the sample size is low or when the 

distribution of data is unknown. Permutation tests are able to construct sampling distributions by 

resampling the observed data. These analyses were performed using the R package, coin library, 

(library “coin”, function “wilcoxsign_test”) and (library “coin”, function “oneway_test”).
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4. CHAPTER 1 

ALTERED METABOLISM OF GUT 
MICROBIOTA CONTRIBUTES TO CHRONIC 
IMMUNE ACTIVATION IN HIV INFECTED 

INDIVIDUALS 

 

 

The results of the present chapter have been published in: 

Vazquez-Castellanos JF*, Serrano-Villar S*, Latorre A, Artacho A, Madrid N, Vera M, et al. 

Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-

infected individuals. Mucosal Immunol. 2014;8:760–72. [348]. 
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4.1. Introduction 

Although HIV-infected adults (HIV+) with access to modern ART regimens will presumably be 

able to suppress HIV replication indefinitely, the profound CD4+ T-cell depletion in gut-associated 

lymphoid tissue is incompletely reversed by long-term ART, and microbial translocation continues 

long after peripheral CD4+ T-cell restoration [267,349,350]. This residual activation of both the 

innate and the adaptive immune systems during treated HIV infection is also associated with 

markers of inflammation and coagulation and decreased thymic output. Furthermore, it is an 

independent predictor of morbidity and mortality [265,266,268]. In fact, in most of HIV individuals 

on long-term ART, the risk of non-AIDS disorders [266] such as cardiovascular diseases and 

atherosclerosis is higher than expected. However, the way in which the immune system shapes the 

microbiome and contributes to disease is poorly understood. As reviewed in the general 

introduction, mounting evidence suggested that disruption of gut immunity in HIV infection 

favored the dysbiosis of the gut microbial community, which negatively affected critical pathways 

for healthy immune homeostasis [16,105,351–353]. 

In other chronic inflammatory diseases, such as IBD, metagenomic [105] and metaproteomic 

surveys [352] have shown that the extent of dysbiosis is not limited to a shift in commensal 

organisms, but that it is also associated with up- or downregulation of pathways related to oxidative 

stress, virulence, and secretion [352]. In this context, the functional metagenomic analysis is useful 

to understand the metabolic influence of the dysbiotic bacterial community in the maintenance of 

persistent immune dysfunction during ART. For this reason, the present chapter determines from 

fecal samples the functional capacity profile of the intestinal microbiota of HIV+ patients without 

comorbidities during effective ART using shot-gun metagenomic sequences and its relationship 

with the immune dysfunction and the disease progression. Additionally, the 16S rRNA gene 

analysis was used to obtain a deep taxonomic characterization of the ART-gut associated 

microbiome and to examine its associations with bacterial translocation and immune activation. 

Finally, in the current chapter, a Bayesian network [341] was estimated to model the interactions of 

the main factors in HIV infection allowing the identification of potential targets for intervention. 
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4.2. Materials and Methods 

4.2.1. Study design, participants, setting, and eligibility 

In the present chapter, a subset of 30 participants was selected to perform a case-control study (15 

cases and 15 controls) on the HIV gut-associated dysbiosis. Cases were HIV-infected subjects with 

an effective response to the ART attending the HIV clinics of two University hospitals in Madrid, 

Spain (University Hospital Clínico San Carlos and University Hospital Ramón y Cajal). The 

inclusion criteria were serologically documented HIV infection, age 18 years or older, at least 2 

years under ART-mediated HIV RNA suppression with a regimen containing at least three 

antiretroviral drugs, and a CD4+ T-cell count ≥ 350 cells per ml. The controls were healthy non-

HIV-infected volunteers, who were recruited to form an age-matched control group. The exclusion 

criteria were the use of concomitant medications, use of systemic antibiotics during the previous 3 

months, and any acute or chronic condition other than chronic HIV infection, including 

gastrointestinal symptoms (constipation, bloating, or diarrhea) or co-infections by hepatitis B or C 

viruses. The fecal samplings were only collected for 12 controls and 9 HIV+ subjects, this given to 

the patients' indisposition. The nucleoid acid purification from the fecal samples was performed as 

described in Material and Methods section 3.3.1 and sequencing according to Material and Methods 

section 3.3.2.1. All sequences were deposited in the public European Nucleotide Archive server 

under accession number PRJEB5185. 

4.2.2. Metagenome analysis  

Sequence trimming, dereplication, and removal of host sequences were performed using the MG-

RAST pipeline (Release version 3.2) (default parameters) (http://metagenomics.anl.gov/) [354]. 

Functional assignments were obtained from the MG-RAST pipeline using BLAT software 

(https://genome.ucsc.edu/FAQ/FAQblat.html) (e-value e-5, minimum identity 60%, and minimum 

alignment length 15 amino acids) against the KO database for each hierarchical level (Level 1, 

Level 2, Pathway level, and KO group). 

4.2.3. Clustering and ordination analysis  

The ordination analysis for the 16S rDNA amplicons was performed as described in the general 

method section “3.4.2. Beta diversity and clustering”.  



 

 

82 

 

A hierarchical clustering analysis (Library “stats” function “hclust” method = ward) was performed 

for those LEfSe biomarkers from the genus and pathway annotations and was represented using in a 

heatmap using the functions heatmap (library "stats" function heatmap) and heatmap.2 (library 

"gplots" function “heatmap.2”) respectively.  

4.2.4. Correlation analyses  

The correlations between markers of innate and adaptive immune activation, markers of innate 

immunity, and the first component of the principal coordinates analysis (PCoA) of microbiota 

composition, were assessed as described elsewhere [285]. Linear regression coefficients (library 

‘‘stats’’, function ‘‘lm’’) were calculated for all correlations with a significant p-value (α < 0.05) in 

the Spearman correlation index (library ‘‘stats’’, function ‘‘cor.test’’). Correlation analyses were 

also performed between clinical variables and metabolic pathways. All p-values were adjusted 

using the Benjamini–Hochberg correction (library ‘‘stats’’, function ‘‘p.adjust’’). Functional 

pathway abundances were correlated using the Spearman correlation index (library ‘‘stats’’, 

function ‘‘cor.test’’) with a p-value cutoff of α < 0.1, with the markers of innate and adaptive 

immune activation and innate immunity. 

4.2.5. Bayesian network  

The statistical R package “Bayesian network learning and inference” (bnlearn) [355] was used to 

estimate a probabilistic graph model among bacterial genera, functional composition, and clinical 

parameters. The network topology was created using a hill-climbing (HC) score-based learning 

algorithm. The algorithm states the optimal network and in consequence the “father” to “child” 

node relationships as the one that maximizes the Bayesian Information Criterion (BIC).  

For the analyses in HIV-infected individuals, the input variables were as clinical variables: markers 

of adaptive immunity, thymic function and bacterial translocation; as bacterial genera: biomarker 

genera and taxa with relative abundance above 0.5%; as metabolic functions: pathways biomarkers, 

glutathione metabolism pathway (ko00480) and the D-glutamine and D-glutamate metabolism 

(ko00471). We did not include the HIV+ sample H02 in network estimation given that it was the 

most dissimilar sample in terms of genus composition. 

The underlying graphical structure of the network and the conditional probability, given the model 

parameters, were estimated using the HC algorithm, utilizing the BIC as the criteria for model 

selection (function “hc”, package “bnlearn”). The option blacklist (R Package “bnlearn” function 
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“hc”) was used to define the set of arcs that was not included in the model, excluding those 

variables with a correlation Benjamini-Hochberg (BH) adjusted p-value above 0.1 (R Package 

“stats”, function “cor”, method “Spearman”). Similarly, those arcs with significant correlations that 

were not included in the final graph were incorporated by the “withelist” option (function “hc”, 

package “bnlearn”). Function mb (R Package “bnlearn” function “mb”) was employed to estimate 

the Markov Blanket from the lipopolysaccharide biosynthesis, zeatin biosynthesis, Coprococcus, 

and the markers of immune activation/senescence %CD4+CD38+ T-cells and %CD8+CD57+ T-

cells. 
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4.3. Results 

4.3.1. Differences in the clinical variables between ART-treated HIV+ 

individuals and healthy subjects 

From the cohort of 15 chronically HIV-infected individuals on suppressive ART and 15 healthy 

controls, clinical measure comparisons were performed. Patients had a median CD4+ T-cell nadir of 

203 cells/ml, median cumulative ART exposure of 6 years, good CD4+ T-cell reconstitution (584 

cells/ml (466–794)), and had almost reached normal CD4/ CD8 ratios (1,2 (0.9–1.3)). No 

meaningful differences were detected in age, body mass index, or glycemic and lipid plasma 

profiles, and there were non-statistically significant higher proportion of women in the control 

group. As for plasma biomarkers, only sCD14 levels were higher in patients than in controls (p-

value=0.05). As shown in Table S12.1.1 (Appendix section), ART-treated HIV-infected individuals 

displayed lower CD4+ T-cell counts and lower CD4/CD8 ratios than controls and significantly 

increased frequencies of CD4+ and CD8+ T-cells expressing markers of T-cell 

activation/senescence (HLA-DR/+CD38+, CD38+, CD25+) and senescence (CD57+). 

4.3.2. Differences in gut microbiota composition between HIV-infected 

individuals under ART and healthy subjects 

An average of 5,392 16S rRNA gene sequences per sample was obtained from the multiplex 

pyrosequencing from DNA extracted from fecal samples of a subset of our cohort (12 controls and 

9 ART-treated HIV+ patients). The remaining nine participants initially consented to participate in 

the study but then refused to provide stool samples. Taxonomical assignation was performed at 

operational taxonomic units (OTUs) (97%) and at the genus level, as they allowed a higher 

discriminatory power between samples. We used the weighted UniFrac distance and Bray–Curtis 

dissimilarity index for the cluster analysis, because these metrics gave the optimal cluster 

configuration at OTU (97%) and genus level, respectively (Figure S12.1.1, Appendix section). The 

clustering showed that the samples formed two clear groups for both taxonomic levels (Figure 4.1). 

These clusters and the group category (HIV- vs. HIV+) were validated by an ADONIS test at OTU 

(97%) and genus level p-value=0.001 and p-value=0.04 for the cluster analysis and p-value=0.001 
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and p-value=0.01 for the group category, respectively). The PCoA retrieved from the OTUs 

(Figure 4.1a) showed three patients (H14, H18, and H24) located in the control cluster. The heat 

map showed in Figure 4.2 also revealed two main clusters. One cluster (in red) was composed 

mainly of HIV+ individuals, with a high abundance of Prevotella (44.1%) and Succinivibrio 

(14.6%). Subject C49, who harbored a high proportion of Prevotella genus, was also included in 

this cluster. The other cluster (in blue) was composed mainly of HIV- individuals in whom 

Bacteroides (27.5%) and Faecalibacterium (16.7%) were the most abundant genera (Figure 4.2). 

Analysis of the clustering at the genus level showed that the subject H02 clustered with the control 

group (Figure 4.1b). This patient presented an unusual microbiota composition with a high 

abundance of Bacteroides and low level of Faecalibacterium. Intriguingly, the bacterial community 

of HIV+ individuals had a much higher proportion of Gram-negative bacteria than HIV- individuals 

(ratio %Gram negative/%Gram positive: 71/18 vs. 45/44, respectively). 

Comparison of richness estimators, ACE and Chao1, and the Shannon index revealed statistically 

significant differences only at OTU (97%) level (Table 4.1), being the bacterial community of 

HIV- individuals more diverse. However, the overall bacterial load (expressed as a number of 16S 

rRNA gene copies) was significantly higher in HIV+ subjects than in HIV- subjects (Table 4.1). 

 

 

 

Figure 4.1 Comparison of microbiota between HIV+ART and uninfected subjects. Principal coordinates analysis of the bacterial 

composition in controls (blue dots) and cases (red dots) at (a) operational taxonomic unit (OTU) (97%) level and (b) the genus level. 

The stars in blue and red correspond to the medoid retrieved from the PAM algorithm. The centroid is represented by a capital letter 

denoting the condition of the cluster (C for controls and H for HIV+ subjects), while the blue and red ellipses represent the 95% of 

the samples belonging to each condition. Each point contains a halo proportional to its silhouette index value: as larger is the halo, 

more dissimilar is the element to its corresponding object. Modified from Vazquez-Castellanos et al. (2014) [348] with permission 

from © 2017 Society for Mucosal Immunology. 
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Table 4.1 Diversity parameters of microbiota. 

 Patients on HAART a Controls a p-value b q-value c 

OTU level     

Shannon index 5.96 ± 1.03 7.00 ± 0.51 0.01 0.04 

Chao1 estimator 567.69 ± 175.21 776.27 ± 166.63 0.02 0.05 

Ace estimator 563.69 ± 176.44 794.90 ± 172.46 0.01 0.04 

Genus level     

Shannon index 1.82 ± 0.32 2.03 ± 0.23 0.43 0.60 

Chao1 estimator 29.28 ± 7.22 27.39 ± 6.03 0.62 0.72 

ACE estimator 30.57 ± 7.56 29 ± 5.68 0.86 0.86 

Bacterial density     

Number of 16S RNA 

gene copies/ngDNA 
1451434.41 ± 899075.31 762212.50 ± 317670.42 0.03 0.05 

aValues are expressed as the mean ± standard deviation (SD).  

bAnalysis was performed using a Wilcoxon rank-sum test. P is probability at α=0.05. 

cp-value adjusted according to the Benjamini-Hochberg method. 

 

The LEfSe biomarker discovery tool was used to elucidate which genera were driving divergences 

between the groups. It was found 11 biomarkers for the HIV+ cluster: 7 belonged to the Firmicutes 

phylum: Acidaminococcus (p-value=0.01), Butyrivibrio (p-value=0.00), Eubacterium (p-

value=0.02), Mitsuokella (p-value=0.00), Bulleidia (p-value=0.00), Megasphaera (p-value=0.01), 

and Catenibacterium (p-value=0.00); 3 belonged to the Proteobacteria phylum: Succinivibrio (p-

value=0.00), Trabulsiella (p-value=0.03), and Desulfovibrio (p-value=0.02); and finally, a single 

genus from the Bacteroidetes phylum: Prevotella (p-value=0.00). In the control group, it was 

observed nine biomarkers: six belonged to the Firmicutes phylum: Faecalibacterium (p-

value=0.00), Roseburia (p-value=0.00), Ruminococcus (p-value=0.04), Blautia (p-value=0.00), 

Coprococcus (p-value=0.03), and Anaerostipes (p-value=0.00); two belonged to Bacteroidetes 

phylum: Bacteroides (p-value=0.00) and Parabacteroides (p-value=0.00); and a single genus 

representing Proteobacteria phylum: Escherichia (p-value=0.00) (Figure 4.3a). These biomarkers 

presented high LDA scores (LDA = 4.35) and generated sample clustering similar to those obtained 

using all taxa (Figure 4.2 and Figure 4.3b). The Prevotella biomarker had the highest LDA score 
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(5.2) and was 7.8 times more abundant in HIV+ subjects than in HIV- subjects (1542 ± 641.9 vs. 

196.9 ± 288.2), whereas Succinivibrio (LDA score = 4.8) was not present in HIV- subjects. In 

control group, Bacteroides and Faecalibacterium presented the highest discriminative power (LDA 

score = 5.1 and 4.8, respectively). 

To elucidate whether specific clinical parameters might correlate with the extent of dysbiosis, the 

correlations (Spearman rank correlation coefficient (ρ)) between the first component of the principal 

coordinates analysis (PC1) and the CD4+ T-cell counts, CD8+ T-cell counts, CD4/CD8 ratio, CD4 

nadir, time from HIV diagnosis to ART initiation, and duration of ART were calculated. Only the 

CD4/CD8 ratio correlated 

with the PC1 (ρ = -0.4, p-

value=0.045), although 

statistical significance was 

lost after adjustment for 

multiple comparisons 

(adjusted p-value=0.117). 

 

 

 

Figure 4.2 Heat map of the samples 

at the genus level. HIV+ subjects are 

marked in red and controls in blue. 

The top dendrogram is divided in two 

main sub trees highlighted in red or 

blue, according to the predominance of 

samples from HIV+ individuals or 

controls, respectively. In the heat map 

the percentage range of sequences 

assigned to main taxa (abundance >1% 

in at least one sample) is represented 

by a color gradient. Reproduced from 

Vazquez-Castellanos et al. (2014) 

[348] with permission from © 2017 

Society for Mucosal Immunology. 
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Figure 4.3 Taxonomic biomarkers. (a) linear discriminative analysis (LDA) effect size LEfSe) analysis between the case cluster (in 

red) and control cluster (in blue). LDA scores (log 10) for the most prevalent taxa in controls are represented on the positive scale, 

whereas LDA-negative scores indicate enriched taxa in cases. (b) Heat map of genus biomarkers. Biomarkers are represented in red 

and blue for cases and controls, respectively. In the heat map, the percentage range of sequences assigned to main taxa (abundance 

41% in at least one sample) is represented by a color gradient. Reproduced from Vazquez-Castellanos et al. (2014) [348] with 

permission from © 2017 Society for Mucosal Immunology.  

4.3.3. The impact of total microbiota on immunological predictors of 

disease progression 

Correlation analysis was performed between the first component of the PC1 at OTU level (97%) 

and markers of bacterial translocation (BPI, sCD14), monocyte activation (T-cell activation %HLA 

DR+/CD38+/CD25+) and senescence (%CD57+), thymic function (sj/b-TREC ratio), inflammation 

(hs-CRP and IL6), and thrombosis (D dimers). PC1 correlated positively with the inflammation 

marker hs-CRP and with markers of T-cell activation, including %CD4+HLA-DR+CD38+ T-cells, 

%CD4+CD25+ T-cells, %CD8+HLA-DR+CD38+ T-cells, and %CD8+CD38+ T-cells (Figure 

4.4a–e). No significant correlation was observed between PC1 and the markers of bacterial 

translocation (sCD14, ρ = 0.2, adjusted p-value=0.56 and BPI, ρ = 0.3, adjusted p-value=0.45), 

thrombosis (D-dimers, ρ = 0.3, p-value=0.41), inflammation (IL6, ρ = -0.2, adjusted p-value=0.45), 

and thymic function (sj/b-TREC ratio, adjusted ρ = -0.25, adjusted p-value=0.43). 

As lipopolysaccharide is one of the principal antigens translocated from the gut to the bloodstream 

driving chronic immune activation, the correlation between PC1 and the number of sequences 
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assigned to LPS biosynthesis pathway (see metagenome analyses below) were assessed, showing a 

significant positive correlation (Figure 4.3f). 

 

 

Figure 4.4 Associations between PC1 and markers of immune activation, inflammation, and bacterial translocation. (a–d) 

Correlation between PC1 and %CD4+HLA-DR+CD38+, %CD4+CD25+, %CD8+HLA-DR+CD38+, and %CD8+CD38+ T-cells. (e) 

Correlation between PC1 and hs-CRP. (f) Correlation between PC1 and the lipopolysaccharide (LPS) biosynthesis pathway, as a 

marker of bacterial translocation. The best-fitted linear model that predicted T-cell markers and the LPS pathway is represented as a 

solid line. Dashed lines represent the 95% confidence interval for the linear regression coefficients. In blue are represent the controls 

while in red the HIV+ individuals. ρ represents the Spearman correlation coefficient and its corresponding p-value. q-value BH is the 

P-value adjusted using the Benjamini–Hochberg correction. Reproduced from Vazquez-Castellanos et al. (2014) [348] with 

permission from © 2017 Society for Mucosal Immunology. 
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4.3.4. Differences in microbiota metabolic functions between HIV- and 

ART-treated HIV+ subjects 

To explore functional hallmarks of the HIV-associated dysbiotic bacterial community, the shot-gun 

metagenome data was analyzed in both groups. Pyrosequencing of the samples yielded a total of 

659Mb with an average length of 655±32 bp. All the high-quality reads (average 18.5Mb per 

sample) were compared with the KO database at different hierarchical levels (level 1, top level; 

level 2, subcategories of the top level; pathway level, and KO, gene level), 16 giving a high 

functional assignment to 34% of the reads (49,517 open reading frames per sample). 

At level 2, the functional profiles were fairly homogeneous for all individuals. The most abundant 

categories were ‘‘carbohydrate metabolism’’ (19.2%), ‘‘amino acid metabolism’’ (13.8%), ‘‘energy 

metabolism’’ (9.2%), and ‘‘nucleotide metabolism’’ (8.8%), thus highlighting the importance of the 

gut microbiota in these metabolic pathways. Similarly, major pathways in both groups were related 

to purine and pyrimidine metabolism, amino and nucleotide sugar metabolism, alanine, aspartate 

and glutamate metabolism, and transport systems. 

The LEfSe analysis identified significant variations in the functional profile of both groups at 

different hierarchical levels. At level 2, HIV+ individuals showed a unique differential category, 

i.e., ‘‘infectious diseases’’ (Wilcoxon test adjusted p-value=0.001), while ‘‘carbohydrate 

metabolism’’ (Wilcoxon test adjusted p-value=0.02) and ‘‘endocrine system’’ (Wilcoxon test 

adjusted p-value=0.04) were significantly more abundant in the HIV- group. However, 173 KOs 

were significantly different between both groups. In order to gain insights in the metabolic routes 

that had high discriminative power, the KEGG pathways were also subject to the LEfSe analysis. 

Figure 4.5 shows the biomarkers found at pathway level: 12 in the HIV+ group and 23 in the HIV- 

group. All biomarkers presented similar percentages of sequencing coverage in both groups (Table 

S12.1.2, Appendix section). For HIV+ subjects, the pathways with the highest discriminative power 

were the ‘‘ribosome’’ and ‘‘LPS biosynthesis’’ pathways (LDA score = 3.2 and p-value=0.01 and 

LDA score = 3.2 and p-value=0.00, respectively), followed by the ‘‘phenylalanine tyrosine and 

tryptophan biosynthesis’’ pathway (ko00400) (LDA score = 2.8, p-value=0.00). In this group, 

functional biomarkers were mainly involved in biosynthetic pathways as ‘‘terpenoid backbone 

biosynthesis’’, ‘‘fatty acid biosynthesis’’, ‘‘ubiquinone and other terpenoid-quinone biosynthesis,’’ 

and ‘‘zeatin biosynthesis’’. The KO-annotated genes belonging to pathogenesis processes as 

‘‘Legionellosis’’ and ‘‘Vibrio cholerae pathogenic cycle’’ pathways were overrepresented in the 



 

 

91 

 

HIV+ group. In the HIV- subjects, nine biomarkers were related to metabolite degradation and eight 

to metabolism, with the ‘‘starch and sucrose metabolism’’ pathway presenting the highest LDA 

score (LDA score = 3.1, p-value=0.03). 

One of the biomarkers in this group, the peroxisome proliferator-activated receptor signaling 

pathway (LDA score = 2.6, p-value=0.01), contained phosphotransferases that have been related to 

anti-inflammatory responses. The heat map obtained using the pathway biomarkers found for HIV+ 

patients and controls is shown in Figure 4.6. In contrast to that observed in the compositional 

clustering analysis, subject C49 (HIV-) showed a healthy functional profile, whereas subject H24 

(HIV+) clustered with the HIV+ group and had a dysfunctional microbiota. Only subject H14 

remained clustered with the HIV- group (sample H02 was not included in this analysis). In the 

HIV+ group, the microbiota was depleted in genes belonging to main energetic processes as 

pyruvate metabolism, glycolysis, and gluconeogenesis. In addition, a decrease in amino acid 

metabolism (glycine, serine, threonine, tryptophan, and histidine) was identified in this group 

(ko00260, ko00260, ko00260, ko00380, and ko00346, respectively). However, it was detected the 

enrichment for pathways involved in the metabolism of cofactors and vitamins (ubiquinone and 

other terpenoid–quinone biosynthesis, thiamine metabolism and nicotinate and nicotinamide 

metabolism) in the dysbiotic bacterial community. 

Finally, as inflammation has been associated with oxidative stress, we investigated pathways that 

could be specifically related to this process. Even though the differences did not reach statistical 

significance, the relative abundance of genes belonging to glutathione metabolism and D-glutamine 

and D-glutamate metabolism was higher in the HIV+ group compared with the HIV- group (0.66 

vs. 0.28%; 0.26 vs. 0.21%, respectively). 

4.3.5. Correlations between markers of innate and adaptive immunity, and 

gut microbiota metabolic pathways in HIV+ subjects on effective ART 

We explored the correlations between metabolic functions of the intestinal microbiota and markers 

of T-cell activation/senescence (% of CD4+ and CD8+ T-cells expressing HLA-DR/+CD38+, 

CD38+, CD25+, or CD57+), bacterial translocation (BPI and sCD14), inflammation (hs-CRP and 

IL6), thrombosis (D-dimers), and thymic function. Different associations were found (Table 4.2), 

although no relation remained statistically significant after adjusting for multiple comparisons. 

Positive correlations were detected between the percentage of CD4+HLA-DR+CD38+, and the 

‘‘LPS biosynthesis’’ and ‘‘glutathione metabolism’’ pathways (Table 4.2). Interestingly, the 
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‘‘zeatin biosynthesis’’ pathway correlated negatively with bacterial translocation markers, sCD14 

and BPI, as well as with the sj/b-TREC ratio. hs-CRP and the thrombosis D dimers correlated 

negatively with the ‘‘thiamine metabolism pathway’’ and only the ‘‘glutathione metabolism’’ 

pathway correlated positively with hs-CRP (Table 4.2). 

 

Figure 4.5 Linear discriminative analysis (LDA) effect size (LEfSe) analyses of statistically significant KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways. Negative LDA scores (red) are enriched in patients while positive LDA scores 

(blue) are enriched in controls. Reproduced from Vazquez-Castellanos et al. (2014) [348] with permission from © 2017 Society for 

Mucosal Immunology.  
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Figure 4.6 Heat map of the functional biomarkers for patients (in red) and controls (in blue). Over/underrepresentation is 

depicted by a color gradient. On the right, ‘‘H’’ identifies those pathways predicted as biomarkers for cases and ‘‘C’’ those pathways 

predicted as biomarkers for controls. The dendrogram of the pathway abundances is divided into two main groups, a blue cluster 

(controls) and a red cluster (patients). Reproduced from Vazquez-Castellanos et al. (2014) [348] with permission from © 2017 

Society for Mucosal Immunology. 

 

Table 4.2 Significant correlation between pathways and clinical variables.  
 Spearman correlation index q-valuea 

 

T-cell markers   

Ribosome ko03010|CD4 T-cells -0.71 0.06 

Terpenoid backbone biosynthesis ko00900 | CD4 T-cells 0.67 0.08 

Glutathione metabolism ko00480 | %CD4+HLA-DR+CD38+ T-cells  0.71 0.05 

Lipopolysaccharide biosynthesis ko00540 | %CD4+HLA-

DR+CD38+ T-cells  

0.71 0.05 

D-Glutamine and D-glutamate metabolism ko00471 | %CD4+CD38+ 

T-cells  

-0.71 0.06 

Nicotinate and nicotinamide metabolism ko00760 | %CD4+CD25+ 
T-cells  

0.95 0.00 

Ribosome ko03010 | %CD4+CD25+ T-cells  0.83 0.02 

Glutathione metabolism ko00480 | %CD8+CD25+ T-cells  0.79 0.03 

Toluene degradation ko00623 | %CD4+CD25+ T-cells  0.67 0.08 

D-Glutamine and D-glutamate metabolism ko00471|%CD8+CD57+ 

T-cells  

0.64 0.10 

Bacterial translocation   

Legionellosis ko05134|BPIb 0.86 0.01 

Glutathione metabolism ko00480|BPIb 0.79 0.03 

Lipopolysaccharide biosynthesis ko00540|BPIb 0.71 0.06 

Zeatin biosynthesis ko00908|BPIb -0.71 0.06 

Zeatin biosynthesis ko00908|sCD14c -0.86 0.01 

Ubiquinone and other terpenoid quinone biosynthesis 

ko00130|sCD14c 

-0.64 0.10 

Thymic function   

Zeatin biosynthesis ko00908 |sj/β-TREC ratio -0.75 0.03 

Thiamine metabolism ko00730|sj/β-TREC ratio -0.66 0.08 

Inflammation   

Thiamine metabolism ko00730 |hs-CRPd -0.65 0.08 

Glutathione metabolism ko00480|hs-CRPd 0.62 0.10 

Thrombosis   

Thiamine metabolism ko00730 | D-dimers -0.67 0.08 

a p-value adjusted according to the Benjamini-Hochberg method. α=0.1. 

b Bactericidal-permeability increasing protein. 

c Soluble CD14.  

d High sensitivity C Reactive Protein. 

4.3.6. Bayesian networks and Markov blankets estimation  

Bayesian networks are probabilistic models in which the nodes correspond to random variables and 

the arcs represent causal relationships [341]. With cross-sectional data, the connecting arrows 
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represent mutual associations rather than causality [356]. To unravel the complex interactions 

between microbiota and metabolic pathways contributing to T-cell activation, thymic function, and 

bacterial translocation, we fitted a Bayesian model. This analysis demonstrated a complex network 

in which most pathways and genera are interconnected. Most of these variables were associated 

with at least one genus or pathway, with the exception of BPI and the percentage of CD8+CD57+ 

T-cells that exhibited a greater number of interactions with other network components (Figure 

S12.1.2, Appendix section). 

The set of nodes that predicts the behavior of another node in a Bayesian network is named the 

‘‘Markov Blanket’’ [341]. We estimated the Markov Blanket for the subset of nodes that showed a 

significant correlation with the immunological predictors. Three Markov Blankets were selected as 

follows: (i) one that included lipopolysaccharide biosynthesis and zeatin biosynthesis pathways, 

hereafter referred to as lipopolysaccharide–zeatin Markov Blanket (Figure 4.7a); (ii) that included 

the %CD8+CD57+ and %CD4+CD38+ clinical variables, hereafter referred to as %CD8+CD57+ 

and %CD4+38+ Markov Blanket (Figure 7b); and (iii) the Markov Blanket of the Coprococcus 

genus (Figure 4.7c). The lipopolysaccharide–zeatin Markov Blanket contained positive correlations 

between genera of Gram-negative bacteria and pathways related to inflammation as Legionellosis, 

V. cholera pathogenic cycle or lipopolysaccharide biosynthesis. Together with glutathione 

metabolism, the lipopolysaccharide biosynthesis pathway correlated positively with BPI and the 

percentage of the CD4+HLADR+CD38+ T-cells. The sCD14 marker correlated negatively with the 

zeatin biosynthesis pathway, and unexpectedly with Prevotella abundance. Finally, we observed no 

positive correlations with the sj/b-TREC ratio (Figure 4.7a). Then, we explored the Markov 

Blanket for activated (%CD4+CD38+) and senescent (%CD8+CD57+) T-cells (Figure 4.7b). The 

depletion of Faecalibacterium was associated with an overgrowth of Eubacterium and a higher 

percentage of CD8+CD57+ T-cells, which in turn correlated positively with the genus Dorea genus, 

and D-Glutamine and D-glutamate metabolism pathway. The percentage of CD4+CD38+ T-cells 

showed a single negative correlation with the latter metabolic pathway. For Coprococcus, the 

Markov Blanket illustrated how a low abundance of this genus had an impact on different 

phenotypes of activated T-cells (%CD8+CD38+, %CD8+HLA-DR+ CD38+, and %CD8+CD25+). 

The glutathione metabolism pathway again correlated positively with markers of T-cell activation 

(%CD8+CD25+) (Figure 4.7c). 
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Figure 4.7 Markov blankets integrating genera, markers of adaptive immunity, and metabolic pathways. The Markov blanket 

subgraph of the Bayesian networks represent the relationships between genera abundance (blue ellipses), pathway abundances 

(green ellipses) and markers of adaptive immunity, thymic function, and bacterial translocation (pink ellipses) related to (a) the 

lipopolysaccharide and zeatin biosynthesis pathways (b) the %CD8+CD57+ T-cells and %CD4+CD38+ T-cells (b) and the 

Coprococcus genus. Taxa and pathway biomarkers of HIV+ group are represented in the red while the control biomarkers are 

represented in blue. Arrows indicate conditional dependencies between variables. The Spearman correlation coefficient is indicated 

next to the lines. Modified from Vazquez-Castellanos et al. (2014) [348] with permission from © 2017 Society for Mucosal 

Immunology. 
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4.4. Discussion 

Most studies show that despite modern ART, HIV+ individuals have reduced life expectancy, 

mainly owing to the increase in morbidity and mortality associated with non-AIDS-related diseases, 

which are driven in part by persistent inflammation and immune activation [357]. Several recent 

studies [280,281,284,285,287,288,353,358] have explored the relationships between gut microbiota 

composition and HIV infection using different sampling techniques (stool, anal swab, biopsy, and 

sponge collection) and bacterial classification methods (16Sr RNA gene PCR, quantitative PCR, 

and microarray). Even though stool microbiota might not be an exact reflection of the gut resident 

bacterial community [359] amplification of the16S rRNA gene in stools will probably be 

sufficiently informative, as it recovers bacteria from mucosal desquamation and is the easiest 

sampling technique to be considered standard for these investigations. Indeed, the results are 

congruent with those of previous studies based on colon biopsies that report similar dysbiotic 

microbiota depleted in Bacteroides and enriched in Prevotella [284,288]. 

Given the broad range of clinical consequences of heightened immune activation in HIV+ 

individuals, the study was focused on HIV+ subjects without comorbidities receiving long-term 

effective ART. These patients are probably good candidates for strategies aimed at shaping the gut 

microbiome. In this study, HIV+ individuals presented a distinctive microbiota composition 

characterized by high abundance of Prevotella and Succinivibrio, and depletion of Bacteroides, 

Faecalibacterium, and Roseburia. Some of these taxa were recently reported to be members of the 

gut-resident microbiota in HIV+ individuals [281,284,285,353]. The Enterobacteriaceae family has 

been associated with bacterial translocation and immune activation, [360,361] although, in contrast 

with Vujkovic-Cvijn et al., [285] and consistent with Lozupone et al., [281] we did not detect a high 

prevalence of this bacterial taxon in our HIV-infected cohort. This discrepancy is most likely due to 

the use of mucosal samples rather than luminal samples for these studies. Vujkovic-Cvijn and 

Dunham [285] examined colonic mucosal samples, which are widely colonized by 

Enterobacteriaceae, whereas Lozupone et al., [281] examined stool, as did in this study. However, 

our HIV-infected cohort showed a gut microbiota composition dominated by Gram-negative 

bacteria—representing 71% of the bacterial community—increased bacterial load and decreased 

diversity at the OTU (97%) level. Intriguingly, the two individuals (H14 and H24) with a ‘‘normal’’ 
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microbiota composition showed the highest CD4/CD8 ratio in the cohort, and this ratio was the 

only variable available in clinical practice that correlated with the extent of dysbiosis, suggesting 

that normalization of this biomarker of immunological dysfunction during ART may also predict 

normalization of gut microbiota, at least in terms of composition. In ART-treated individuals, the 

fact that the CD4/CD8 ratio correlates with activity of the kynurenine pathway of tryptophan 

catabolism, an established marker of disease progression [362], provides indirect support for the 

recent observation by Vujkovic-Cvijin and Dunham [285], who suggested that dysbiosis of the gut 

microbial community affects negatively this critical pathway in healthy immune system [285].  

In other studies, reduced diversity has been observed in treated HIV+ individuals [281,288] 

indicating that the combination of HIV infection and its treatment leads to decreased microbial 

diversity. This particular microbiota composition, characterized by Prevotella enrichment and 

Bacteroides depletion, has been described mainly in human populations with a carbohydrate-rich 

diet [15,56,138,363] and recently in HIV-infected subjects [281]. In addition, Lozupone et al., [281] 

showed that the microbiota of HIV+ subjects is closer to those of people from agrarian cultures than 

to that of healthy people from the United States. All subjects in our cohort followed a similar 

western diet, indicating that HIV infection is the likely factor driving changes in the gut microbiota. 

The observed depletion of Faecalibacterium and Roseburia, the major butyrate producers, might 

result in the lower local production of short-chain fatty acids. In the healthy human gut, short-chain 

fatty acids such as butyrate, propionate, and acetate are an important energy source for the 

maintenance of homeostasis in the colonic mucosa and display anti-inflammatory properties 

[139,364,365]. Alterations in the short-chain fatty acid ratio have been related to an amplification of 

inflammatory responses in diseases that are typically associated with bacterial dysbiosis, such as 

ulcerative colitis and bacterial vaginosis [105,366]. In fact, a drastic decrease in the number of 

genes involved in glycolysis and pyruvate metabolism was observed in the metagenomes from 

HIV-infected individuals. Further short-chain fatty acid quantification should be performed to 

address its involvement in the inflammation process. On the other hand, depletion of the anti-

inflammatory commensal genus Faecalibacterium has been reported in the anal microbiota of 

treated HIV+ patients [288] and in patients with Crohn’s disease [103]. Interestingly, the Markov 

Blankets of the %CD8+ CD57+ T-cells (Figure 4.7b) parallels previous observations in 

centenarians, in whom the depletion of Faecalibacterium genus correlates with an increase in 

Eubacterium species [367] and with an increase in %CD8+CD57+ T-cell, a hallmark of 

immunosenescence in HIV infection [265,368]. Furthermore, given that certain Bacteroides species 
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are required for differentiation of the Th17 T-cells, the significant loss of this bacterial genus in 

treated-HIV individuals might either aggravate the Th17 loss secondary to HIV infection or impair 

their reconstitution under ART [369]. 

The high number of significantly abundant pathways and KOs in the bacterial community of HIV+ 

individuals in the study revealed a functional dysbiosis that might explain, at least in part, the 

situation of chronic inflammation observed during treated HIV infection. Subject H24 (HIV+) had 

an altered metabolic profile despite clustering with individuals with a healthy bacterial composition. 

The fact that this subject was overweight (body mass index=29 kg/m -2) suggests that other 

proinflammatory factors, such as obesity-related factors, might have a role. In addition, control C49 

had an altered gut microbiota composition dominated by Prevotella genus “Prevotella enterotype” 

[14] but showed healthy functional capacity. 

The significant correlation found between PC1 and the LPS biosynthesis pathway (p-value=0, 

adjusted p-value=0, ρ = 0.89) would indicate that Gram-negative-enriched microbiota was 

responsible for the high abundance of KOs belonging to the LPS biosynthesis pathway in HIV+ 

individuals. These lipopolysaccharides are microbe-associated molecular patterns, which are potent 

immune activators that act via Toll like receptor (TLR4) by promoting the inflammatory response 

[370]. In other gut microbiota-associated diseases and in silico predictions of the HIV microbiota, 

an increase in antioxidant pathways such as riboflavin, glutathione, and glutamine metabolism has 

been described and interpreted as the bacterial compensatory mechanism that attenuates the 

oxidative stress caused by epithelial damage [105,353,365,371]. Likewise, the microbiota of treated 

HIV+ individuals was functionally enriched for ubiquinone and other terpenoid–quinone 

biosynthesis, nicotinate and nicotinamide metabolism, glutathione metabolism, and thiamine 

metabolic pathways. This latter pathway correlated negatively with hs-CRP and D-dimers. 

These results are congruent with the anti-inflammatory effect of thiamine that has been described in 

mammals [372,373] and with the fact that a depletion of this vitamin exists in other gastrointestinal 

illnesses, such as Crohn’s disease [374]. Unlike the observations in a previous study [285], we did 

not detect differences in genes involved in the kynurenine pathway of tryptophan catabolism. This 

inconsistency could be given by the different nature of the sample (colorectal biopsies vs. stool 

samples) or by the fact that the species capable to perform tryptophan catabolism are less frequent 

in the stool microbiota. In our view, the depletion of genes involved in amino acid metabolism and 

energy processes might be upregulating inflammatory pathways in HIV-infected individuals. 
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Altogether, in the present chapter, it is proposed a complex network that integrates the different 

interactions between gut microbiota, metabolic functions, and host immunity. Although no 

relationship was found between microbial composition and sCD14, we found a correlation between 

bacterial translocation markers (sCD14 and BPI) and the zeatin biosynthesis pathway. As zeatins 

belong to a class of phytocytokine involved in the complex cell signaling pathway, this observation 

suggests that the interaction between the microbiota and bacterial translocation could occur 

indirectly by cytokine signaling. Importantly, we detected a strong correlation between bacterial 

genera composition and the LPS pathway, suggesting that the abundance of Gram-negative bacteria 

in the dysbiotic microbiota of HIV infected subjects might contribute to the burden of translocated 

bacterial antigens and, consequently, to chronic immune activation. This hypothesis is also 

supported by the significant association between the LPS biosynthesis pathway and both BPI and T-

cell activation (%CD4+HLA-DR+CD38+ T-cells). Similarly, pathways related to bacterial 

antioxidant response, glutathione metabolism, and D-glutamine and D-glutamate metabolism 

correlated with different immune activation markers. 

Considering our findings and current knowledge in the field, we believe that the profound 

disruption of GALT by the HIV infection would generate a dysbiotic microbiota, both in terms of 

its composition Gram-negative bacteria-enrichment and in terms of its altered metabolic profile 

with many genes involved in the LPS biosynthesis pathway, pathogenic pathways, and processes 

related to oxidative stress. This compositional and functional dysbiosis seems to fuel chronic innate 

and adaptive immune dysfunction and may be a viable target for interventions. Further longitudinal 

studies should be performed to provide evidence of causality in the correlations. A larger sample 

size and the inclusion of HIV+ patients with a different immunological response will be necessary 

to obtain a comprehensive understanding of the role of dysbiotic microbiota in HIV infection. 

However, this last point will be addressed in the following chapters of the thesis. 
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5. CHAPTER 2 

THE EFFECTS OF PREBIOTICS ON 
MICROBIAL DYSBIOSIS, BUTYRATE 

PRODUCTION AND IMMUNITY IN HIV-
INFECTED SUBJECTS 

 

 

The results of the present chapter have been published in: 

Serrano-Villar S*, Vázquez-Castellanos JF*, Vallejo A, Latorre A, Sainz T, Ferrando-Martínez 

S, et al. The Effects of Prebiotics on Microbial Dysbiosis, Butyrate Production and 

Immunity in HIV-Infected Subjects. Mucosal Immunol. 2016; (Epub ahead). [315] 
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5.1. Introduction 

 HIV infection induces a compositional shift of the gut microbiota, with enrichment of bacterial 

populations that are either pro-inflammatory or potentially pathogenic [281,283–285,287,353] and 

changes in microbial diversity that are correlated with immune status [286]. This perturbation of the 

gut ecosystem might be reflected in the bacterial functional capabilities, with enrichment of genes 

involved in various pathogenic processes and inflammatory pathways (as shown in Chapter 1) and 

the production of metabolites that directly influence host health, such as the immunomodulatory 

derivatives kynurenine [279] and SCFAs [175,375,376]. SCFAs are the products of bacterial 

anaerobic fermentation of dietary fiber and might influence host health by different mechanisms. In 

particular, butyrate is considered the preferred energy source of colon epithelial cells because 70% 

of their energy is derived from the oxidation of this acid [377]. This metabolite activates genes 

involved in different pathways, such as colonic gluconeogenesis, or genes responsible for the 

proliferation and differentiation of epithelial cells [168]. Moreover, butyrate has been shown to 

contribute to maintaining homeostasis in the gut by promoting immunotolerance to commensal 

bacteria via the downregulation of lipopolysaccharide-induced proinflammatory mediators [175]. 

Although different studies in HIV patients [296,299,305,306,378,379] have described changes in 

immunity and in intestinal bacteria after prebiotic, probiotic, or symbiotic administration, a deeper 

understanding of the ecological effects of such interventions on the structure and function of gut 

bacterial communities is needed, especially in the context of HIV-infected individuals who are 

undergoing treatment. These therapies included fructo-oligosaccharides (FOS) [297], mixtures of 

galacto-oligosaccharides (GOS) and polyunsaturated acids [296], and the bacterial strains 

Lactobacillus rhamnosus, Lactobacillus reuteri and Bifidobacterium lactis Bi-07 [297,298]. In 

HIV-infected individuals not receiving ART, such interventions have been shown to contribute to 

the maintenance of immune functions over a longer period [296–298]. Gori et al. demonstrated, in a 

controlled study of ART-naive HIV-infected subjects, significant declines of markers of 

inflammation sCD14 and T-cell activation (%CD4+CD25+ T-cells) in association with increased 

bifidobacteria and decreased pathogenic Clostridium lituseburense and Clostridium histolyticum 

levels [299]. Subsequently, in SIV-infected macaques beginning ART, a symbiotic treatment (a 

mixture of prebiotics and probiotics) resulted in increased frequency and functionality of 

gastrointestinal antigen-presenting cells, enhanced reconstitution and functionality of CD4+ T-cells, 

and reduced fibrosis of lymphoid follicles in the colon [307]. Recently, in two placebo-controlled 
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trials with treated HIV-infected individuals, a short probiotic intervention elicited a significant 

reduction in inflammatory predictors of mortality, i.e., interleukin-6 and D-dimers [305,306]. 

Outside the field of HIV infection, glutamine has been shown to be a crucial metabolic fuel source 

for enterocytes, enhancing cell turnover, attenuating bacterial translocation and, conceivably, 

altering gut microbiota structure [380–382]. In the present chapter, we study the effect of a dietary 

supplementation with prebiotics and glutamine on the HIV-associated dysbiosis, the innate and 

adaptive immunity and the production of SCFAs.  
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5.2. Materials and Methods 
5.2.1. Study design, participants, setting, and eligibility 

To capture a wide spectrum of HIV immunopathogenesis, we recruited viremic untreated (VU) 

HIV-infected subjects, immunological ART responders and non-responders (IR and INR, ≥350 and 

<350 CD4+ T-cell counts after >2 years of viral suppression, respectively). A total of 44 individuals 

completed the 6-week study on-treatment, 34 in the active arm (20g mixture of prebiotics, including 

5g of short chain galacto-oligosaccharides (Purimune®), 10g of long chain fructo-oligosaccharides 

(Orafti-HP® and Actilight®), and 5g of glutamine (Nutrición Médica®) and 10 in the placebo arm 

(20g of maltodextrin). The distribution by groups was: 12 VU (9/3), 8 INR (8/0), 15 IR (10/5), and 

9 (7/2) controls (HIV-). Nine patients dropped out of the study (3 in the active arm and 6 in the 

placebo arm). The full description of the cohort is in the General Material and Method section “3.1. 

Cohort”. 

5.2.2. Short chain fatty acids measurements 

This work has been carried out in collaboration with the Food Technology Department, Agrotecnio 

Center, University of Lleida, Spain. They used the bacterial suspension obtained as previously 

described in the General Material and Method section “3.3.1”. The bacterial fraction was acidified 

with 45 μL of orthophosphoric acid in order to facilitate the liberation of SCFA from the fecal 

matrix. Then, the samples were centrifuged (9000 rpm, 10 min at room temperature) and the 

supernatants were directly injected into the gas chromatograph (GC). The analysis of acetic, 

propionic, butyric, isobutyric, isovaleric and valeric acids was performed by GC (Agilent 7890A 

Series) using a capillary BP-21 column (30 m, 0.25 mm, 0.25 μm) (SGE, Cromlab SL, Barcelona, 

Spain), coupled to a flame ionization detector (FID). Identification of the SCFA was made 

according to the retention time of standard compounds (Sigma-Aldrich, ST. Louis, MO, USA) and 

their quantification was determined with reference to the peak side of internal standard. The 

concentration was expressed as mM of SCFA.  

5.2.3. Short chain fatty acids clustering and GLM analysis  

An NMDS analysis (library “Vegan” function “metaMDS”) was used to determine the clustering of 

the samples based on the relative abundances of SCFAs. The input distance matrix was calculated 

using the Bray-Curtis dissimilarity index (library “Vegan” function “vegdist”) and the statistical 

difference between the HIV+ group and the HIV- controls were compared with the ADONIS test 
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(library “Vegan” function “adonis”). The envfit (library “Vegan” function “envfit”) function was 

used to determine the correlations between the NMDS analysis of each SCFA in the distance matrix 

with the assessed variables. The core of species determining the abundance of each of the six 

SCFAs was analyzed. First, we calculated the log10 ratio for the SCFA abundance and the bacterial 

taxa after/before the intervention. The resulting matrix was used to estimate the correlation between 

the bacterial species and SCFA using the Spearman's rank correlation coefficient (library “stats” 

function “cor.test”). Finally, a GLM was estimated using the log10 ratio values for each of the six 

SCFA and the relative abundance of the species using the ridge regression and 40 steps of cross-

validation. The model was calculated setting the SCFA as the response variable and the species 

matrix as the predictors. Only those regressors that showed a significantly Spearman correlation 

index (p-value < 0.01) were considered to determine SCFAs abundance. 

5.2.4. Generalized linear model of the prebiotic effect  

To assess the interactions between changes in genera contributing to HIV-associated dysbiosis 

changes in peripheral markers of disease progression and changes in SCFA abundance, we used 

GLM (penalized linear “elasticnet” models). As response variables, we selected those SCFAs and 

peripheral markers with statistically significant variations (p-value < 0.05) after the intervention 

(Table S12.2.6, Appendix section) and the inflammatory predictors of disease progression CRP and 

sCD14. As predictors, we considered all SCFA whose abundance was found significantly modified 

after the prebiotic treatment, the species-core-responders to the SCFA, all the LEfSe biomarkers 

related to the HIV+ condition and all the LEfSe biomarkers related to the prebiotic intake. The 

magnitude of the effect was measured using the difference between the values before/after of each 

of these variables measured in the study. To avoid over-fitting problems, all the models were 

validated by means of n-fold cross validation (library “glment” function “cv.glmnet”). All the 

models were represented as a network (library “Igraph” function “graph.data.frame” and “plot”). 

Only those variables included in the GLM and showed a significant Spearman correlation 

coefficient (p-value < 0.1) were included in the network. 

5.2.5. Prebiotic effect Bayesian network  

The BN was estimated using the R statistical software (package “bnlearn”, function “hc”) setting as 

input the difference (before/after prebiotic intake) of the microbial composition, the relative 

abundance of the SCFAs and the systemic biomarkers of disease progression. The white list (i.e., all 

those arcs that must be included in the network and possess a Spearman p-value < 0.05) the 
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interactions across the SCFA, the species-core-responders related to the butyric acid, the species 

that were significantly modified with the prebiotic administration and the systemic biomarkers were 

used to define the setting. The option blacklist (‘‘bnlearn’’ function ‘‘hc’) was used to define the set 

of arcs not included in the model, excluding those variables with a correlation p-value above 0.1. 

Function mb (R Package ‘‘bnlearn’’ function ‘‘mb’’) was used to estimate the Markov Blanket 

from butyric acid in the VU group in order to find all the variables significantly associated with the 

butyrate after the prebiotic intervention. We used the Bayes Information criteria and the Spearman-

correlation index to control for spurious associations. The network was plotted using the R package 

Igraph. 

5.2.6. Effect of the sexual orientation 

As reviewed in the introduction, the sexual preferences could lead the shift in the microbiota species 

composition [289]. To ponder the effects of HIV infection and sexual orientation, we used the 

ADONIS test to prove which variable can explain the variance observed in the weighted UniFrac 

distance matrix. The model formula was specified as: 

 

onTransmissiGroup+HIVwUnifrac status   

Where the "*" operator represents the interaction between the variables “study group” and “sexual 

orientation” and the "+" separates the terms “HIV status” from the study group and sexual 

orientation variables. 
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5.3. Results 
5.3.1. General characteristics of the study population and safety data 

A total of 44 individuals completed the 6-week course of treatment, with 34 receiving prebiotics 

and 10 receiving a placebo. These included 12 viremic, ART-untreated (VU) HIV-infected subjects, 

15 immunological ART responders (IR), 8 non-responders (INR), and 9 HIV-uninfected (HIV) 

controls. A characteristic of the 44 individuals and main parameters studied in this work are seen in 

Table 5.1. HIV-infected individuals on ART were representative of a medium-aged population 

undergoing long-term treatment without comorbidities (Table 5.1). No statistically significant 

differences were observed among the groups in dietary habits (Figure 5.1). The average compliance 

to the intervention in both arms was superior to 85%, and overall, the intervention was well 

tolerated.  

Table 5.1 Characteristics of the study population. 

 HIV+ART-  

(VU) (N=12) 

HIV+ART+ 

CD4<350 (INR) 

(N=8) 

HIV+ART+ 

CD4>350 

 (IR) (N=15) 

HIV- (N=9) P-value 

Age (years, IQR) 34 (33-35) 48 (41-53) 40 (33-48) 47 (31-60) 0.096 

Male gender (No., %)a 11 (91.7) 8 (100) 13 (81.2) 6 (67) 0.001 

CD4+ T-cell count 

(cells/mm3, IQR) 

558 (432-646) 291 (230-324) 561 (426-794) 762 (653-878) <0.001 

CD4/CD8 ratio (IQR) 0.53 (0.44-0.65) 0.71 (0.35-0.89) 1.13 (0.96-1.26) 1.51 (1.20-1.78) <0.001 

HIV RNA level 

(copies/mL, IQR) 

22198 (9955-

40621) 

<20 <20 - 0.0016 

Nadir CD4+ T-cell count 

(cells/mm3, IQR) 

540 (540-540) 131 (30-171) 247 (144-284) - 0.098 

Time since HIV diagnosis 

(years, IQR) 

5.4 (2.9-9.9) 11.8 (5.6-20.8) 8.0 (4.5-13.9) - 0.124 

Duration of ART (years, 

IQR) 

- 8.9 (4.6-12.7) 6.1 (4.3-11.7) - 0.56 

Framingham Risk Score 

(%, IQR) 

2 (1-2.5) 4 (4-7) 4 (1-7) 2 (1-4) 0.134 

Body mass index (kg/m2) 24.3 (22.6-27.0) 25.6 (24.0-26.6) 23.7 (22.4-24.5) 23.0 (20.8-24.3) 0.926 

Glucose (mg/dL) 86 (84-92) 92 (88-101) 93 (81-97) 95 (87-99) 0.067 

Total cholesterol (mg/dL) 164 (152-187) 152 (142-201) 198 (153-209) 184 (147-213) 0.008 

HDL cholesterol (mg/dL) 47 (42-54) 50 (43-60) 54 (50-61) 62 (48-75) 0.02 

LDL cholesterol (mg/dL) 89 (87-102) 78 (67-126) 112 (92-124) 97 (75-133) 0.046 
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Active arm (No., %) 9 (75) 8 (100) 10 (62.5) 7 (77.8) 0.682 

Abbreviations: ART, antiretroviral therapy; HIV-, HIV-uninfected healthy controls; INR, HIV infected patients’ immunological non-

responders to antiretroviral therapy; IR, HIV- infected patients’ immunological responders to antiretroviral therapy; VU, HIV-

infected subjects viremic untreated. All values are expressed as P50 (P25-P75) unless otherwise expressed. P-values were calculated 

using the Kruskal–Wallis to compare median values across all groups and the Mann–Whitney test was used to compare the values 

between two groups. 
aPercentages are calculated over the total number of subjects in each group. 

 

Figure 5.1 Dietary habits of study 
participants. Standardized values are 
shown as “number of servings per 5 days” 
and mean ± SD. No comparison reached the 
threshold of statistical significance (p-
value<0.05). Abbreviations: VU, viremic 
untreated; INR, immunological non-
responder, IR, immunological responder. 
Reproduced from Serrano-Villar et al. 
(2016) [315] with permission from © 2017 
Society for Mucosal Immunology. 
 

The frequency of adverse effects is 

summarized in Table 5.2. During 

the intervention, a non-statistically significant higher proportion of patients were lost to in the 

placebo arm for reasons other than adverse effects. One patient in the active arm and two in the 

placebo arm dropped out of the study because of gastrointestinal-related effects. A higher 

proportion of patients reported mild gastrointestinal effects in the active arm, but the difference did 

not reach the threshold of statistical significance. No other adverse effects were registered during 

the study. 

Table 5.2 Description of adverse events. 

 

5.3.2. Effects of the nutritional prebiotic intervention on gut microbiota 

structure 

Alpha diversity is used to measure the richness and evenness of bacterial taxa within a community. 

We found that, before intervention, VU subjects had the highest microbial richness of the cohort for 

each of the four-different metrics (ACE, Chao1, Shannon, and the total of observed species), 

followed by HIV- individuals, while INR subjects showed the lowest diversity (Figure 5.2a and 

Table S12.2.1, Appendix section). The nutritional intervention did not result in a significant 

variation of the alpha diversity parameters, as the microbiota of VU individuals was still the most 

 Active arm (N=37) Placebo arm (N=16) P value (Fisher’s exact 

test) 

Gastrointestinal symptoms leading 
to discontinuation 

1 (2.7%) 2 (12.5%) 0.213 

Diarrhea/Loose stools 8 (21.6%) 1 (6.2%) 0.248 

Bloating/Flatulence 11 (29.7%) 1 (6.2%) 0.080 
Others - - - 



 

 

109 

 

diverse at the end of the study, whereas that of INR individuals remained the least diverse (Figure 

5.2a and Table S12.2.2, Appendix section). Analysis of changes in beta-diversity showed that the 

prebiotic intervention significantly modified the microbiota structure in all the groups (Figure 5.2b 

and Tables S12.2.3 and S12.2.4, Appendix section).  

 

Figure 5.2 Diversity parameters of microbiota. (a) Alpha diversity at baseline and after prebiotics. (b) Beta diversity parameters of 

microbiota at baseline and after the prebiotic intervention. HIV+, HIV-uninfected control; INR, immunological non-responder, IR, 

immunological responder; VU, viremic untreated. Reproduced from Serrano-Villar et al. (2016) [315] with permission from © 2017 

Society for Mucosal Immunology. 
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Then, we asked whether the differences in the gut microbiota before and after the treatment might 

be representative of the disease status. Before treatment, partitioning around medoids analysis 

revealed distinct clustering in the subject groups, representing the extremes of health and disease, 

the HIV- and HIV+ individuals (Figure S12.2.1a; ADONIS; p-value=0.001, Appendix section). In 

addition, all HIV+ individuals harbored a dysbiotic microbiota compared with HIV- individuals 

(Figure S12.2.1d,f,g; ADONIS, p-value<0.01, Appendix section). Given the evidence that HIV-

associated dysbiosis might be explained by sexual practices [289], we performed a permutational 

multivariate analysis to simultaneously adjust for this covariate. In keeping with recent 

observations, sexual orientation appeared as an 

environmental influence on microbiota composition, 

explaining 9% of the variance in the microbiota 

composition across groups (ADONIS p-value<0.001). 

However, this effect was weaker than the impact 

elicited by HIV itself, which explained 12% of the 

microbiota variability (ADONIS p-value<0.001) after 

adjusting for sexual orientation (Table S12.2.5, 

Appendix section). 

Unsupervised clustering analyses revealed that although 

the intervention did not cause the bacterial communities 

in IR individuals to approximate those of the HIV- 

group, VU individuals and, to a lesser extent, INR 

individuals experienced a compositional shift towards 

the control group (Figure 5.3). Among the patients 

receiving the placebo, only one migrated to the HIV- 

cluster, indicating that the observed alterations were 

attributable to the prebiotic intervention. 

Figure 5.3 Changes in gut bacterial communities of each group in 

response to the intervention (prebiotic and placebo arms). NMDS 

analysis of the composition distribution at OTU level based on the 

weighted UniFrac distance matrix. (a) VU (red dots) vs. HIV- at baseline 

(blue dots). (b) IR (green dots) vs. HIV- at baseline (blue dots). (c) INR 

(orange dots) vs. HIV- at baseline (blue dots). Each point is connected 

with a dashed line to another dot corresponding to the sample at the end of 

follow-up. Purple dash lines indicated those samples that significantly 

migrated from their baseline species profile, black dash lines indicated 

those samples that did not significantly change their baseline species 

profile based on the weighted UniFrac significance test. Dots framed by a 

rectangle represent individuals after treatment in the active arm; dots 
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framed by a diamond represent individuals after treatment in the placebo arm. Centroids for HIV- individuals are represented as ‘‘1’’ 

and those for HIV+ patients are represented as ‘‘2’’. Ellipses represent 70% of the samples belonging to each condition. Community 

differences were calculated using ADONIS test. INR, immunological non-responder; IR, immunological responder; VU, viremic 

untreated. Reproduced from Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal Immunology. 
 

We further investigated which genera determined baseline divergences of microbial communities 

across groups using the LEfSe biomarker discovery tool (Figure 5.4 and Figure S12.2.2a, 

Appendix section). As observed in previous studies [281,283–285,288], before the intervention, 

Prevotella copri was the most enriched species in all three groups of HIV+ subjects (Figure 

S12.2.2a). Other genera in the Firmicutes phylum, including Eubacterium, Acidaminococcus, and 

Mitsuokella, were consistently enriched. In contrast, the most depleted genus was Bacteroides. 

Faecalibacterium was also consistently depleted among HIV+ individuals (Figure 5.4 and Figure 

S12.2.2a–c, Appendix section). This genus includes Faecalibacterium prausnitzii, an important 

butyrate producer in the human gut that has anti-inflammatory effects and induces the novel 

immunoregulatory T-cell subset CD4CD8αα [383]. LEfSe analysis confirmed the depletion of F. 

prausnitzii in the fecal microbiota of HIV+ individuals and the depletion of other butyrate-

producing genera, such as Lachnospira, Anaerostipes, Butyricimonas, Coprococcus (Figure 

S12.2.2a, Appendix section) and Roseburia (Figure 5.4) [375]. When we evaluated which specific 

species’ abundance differed after the prebiotic treatment, microbiota variation was apparent only in 

the VU individuals (Figure 5.5), with an increase in Firmicutes (Faecalibacterium, 

Catenibacterium, Blautia, Eubacterium) and Actinobacteria (Collinsella and Corynebacterium). 
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Figure 5.4 Bacterial taxa driving HIV-associated dysbiosis using LEfSe analysis in each group. (a) At baseline. (b) After the 

prebiotic intervention. The linear discriminative analysis (LDA) scores (log 10) for the most prevalent taxa among HIV+ individuals 

are represented on the positive scale, whereas LDA-negative scores indicate those taxa enriched in HIV- individuals at baseline. 

HIV- HIV-uninfected controls (blue); INR, immunological non-responders (orange); IR, immunological non-responders (green); VU, 

viremic untreated (red). Reproduced from Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal 

Immunology. 
 

Taken together, alpha diversity analyses showed that the number of taxa is not influenced by the 

dietary intervention. However, the intervention significantly modified microbiota structure, as 

shown by changes in beta diversity (Figures 5.2b and 5.3). Interestingly, compared with healthy 

controls, the VU group treated with the prebiotic showed attenuated HIV-associated dysbiosis and 

increased growth of beneficial genera, which was not observed among ART-treated patients 

(Figure 5.5). 
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Figure 5.5 Changes in bacterial communities after the prebiotic 

intervention using LEfSe biomarker discovery tool at baseline and 

after the prebiotic intervention. We used the linear discriminative 

analysis (LDA) effect size (LEfSE) algorithm between the basal 

condition and the prebiotic administration in the (a) viremic untreated 

group (VU); (b) immunological responder group (IR); (c) 

immunological non-responder group (INR); (d) uninfected group 

(HIV-) LDA scores (log 10) (log 10 LDA > 2) for the most prevalent 

taxa in the basal samples are represented on the positive scale, whereas 

the prebiotic related species are represented on the negative scale. This 

analysis identified bacterial biomarkers after the prebiotic intervention 

only in the VU group, indicating that the intervention promoted the 

growth of determined bacteria in this group. Reproduced from Serrano-

Villar et al. (2016) [315] with permission from © 2017 Society for 

Mucosal Immunology. 

 

 

5.3.3. Short chain fatty acid profile of HIV-dysbiotic bacteria and effects of 

the intervention 

The above analysis implicated butyrate bacterial producers as potential key bacteria in HIV 

immunopathogenesis. To provide mechanistic insights into the influence of the altered bacterial 

communities on the host’s health, we measured the abundance of SCFAs, including acetate, 

propionate, butyrate, valerate, isobutyrate, and isovalerate, in fecal bacteria (Figure 5.6). At 

baseline, a different SCFA profile characterized the HIV-infected group (Figure S12.2.3; ADONIS 

p-value=0.019, Appendix section) with more abundant propionate and lower levels of acetate (p-

value=0.05 and 0.036, respectively) and no significant variation in the other four acids, including 

butyrate. After the prebiotic intervention, the propionate abundance increased in HIV-uninfected 

individuals, and only butyrate significantly increased in VU individuals (Figure 5.7, p-value=0.05). 

It should be noted that among all of the SCFAs, butyrate seems to exert the most profound effects 

on gut health [64]. 
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Figure 5.6 Relative abundance of SCFA in fecal bacteria per groups. The p-value reflects the differences in the relative 

abundance for the grouped comparison using a Kruskal–Wallis test. The concentration is expressed as millimolar of SCFA. INR, 

immunological non-responder, IR, immunological responder; SCFA, short-chain fatty acid; VU, viremic untreated. Reproduced from 

Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal Immunology. 

 

 
Figure 5.7 Relative abundance of SCFA in fecal bacteria. The abundance of each SCFA before (light gray) and after (dark gray) 

the prebiotic intervention. To calculate differences across groups in continuous variables, we used the Kruskal–Wallis test; and for 

differences between groups, we used Wilcoxon rank-sum tests. The concentration is expressed as millimolar of SCFA. INR, 

immunological non-responder, IR, immunological responder; SCFA, short-chain fatty acid; VU, viremic untreated. Reproduced from 

Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal Immunology. 
 

The bacterial species whose abundance changed in response to the prebiotic intervention (Figure 

5.5) are salient candidates to the metabolism of the SCFAs, directly, or in association with a third 

species. Hence, we examined whether shifts in species abundance determined changes in SCFA 
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abundance. We found that butyrate abundance correlated positively with butyrate-producer species, 

including Roseburia faecis (p-value=0.0003), Lachnospira (p-value=0.0016), Ruminococcus 

torques (p-value=0.0093) and F. prausnitzii (p-value=0.0121; Table S12.2.6, Appendix section). 

5.3.4. Changes in plasma biomarkers of activation of innate immunity 

A number of bacterial species have been suggested to enhance pro-inflammatory pathways during 

chronic HIV infection [284,285] and that structural changes of the epithelial barrier persist even 

during successful ART [384], we hypothesized that an intervention aimed at restoring the gut 

microbiota and enhancing the gut barrier would affect markers of innate immunity activation, i.e., 

markers involved in inflammatory signaling (interleukin-6 and hs-CRP), D-dimers indicating 

thrombosis, asymmetric dymethilargininine indicating vascular dysfunction and sCD14 and BPI 

indicating bacterial translocation; (Figure 5.8a). No significant decreases were observed after the 

intervention, except for the BPI levels. This protein is produced by neutrophils and epithelial cells 

in response to proinflammatory stimuli and neutralizes the lipopolysaccharide. Hence, it is 

considered an indirect marker of bacterial translocation and a predictor of severe atherosclerosis 

[37]. The BPI levels decreased in all the groups to the levels observed at baseline in the HIV- group 

(Delta change: VU, -24±11, p-value=0.154; INR, -21±14, p-value=0.074; IR, -56±24, p-

value=0.009).  

5.3.5. Changes in plasma trimethylamine n-oxide concentrations 

Metabolism of dietary choline by gut bacterial communities is a pathway with the potential to 

promote atherosclerosis in non-HIV-infected patients by producing proatherogenic TMAO [317]. 

After the prebiotic treatment, we found no significant differences in the median TMAO 

concentrations at baseline among groups, and a significant increase was noted in the IR group 

(Delta change: VU, 1.2±0.6, p-value=0.298; INR, -0.2±0.9, p-value=0.803; INR, 7.3±0.5, p-value 

<0.001; HIV-, 18.5 = 16.6, p-value=0.134; Figure 5.8a). 

5.3.6. Changes in markers of activation of adaptive immunity 

HIV-associated dysbiosis has also been linked to activation of adaptive immunity, which can 

predict disease progression during ART [39]. Hence, we evaluated changes in T-cell activation 

Markers (HLA-DR+ CD38+ and CD25+) and senescence (CD57+). At baseline, T-cell activation 

markers were higher in HIV-infected patients than in healthy individuals. After the intervention a 

decrease was observed especially for the percentage of the HLA-DR+CD38+ CD4+ T-cells (Delta 

change: VU, -1.6±0.7, p-value=0.006; INR, -0.2±0.5, p-value=0.552; IR, -0.4±0.2, p-value=0.040; 
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HIV-, 0.2±0.2, p-value=0.402) and the percentage of HLA-DR+ CD38+ CD8+ (Delta change: VU, 

-3.2±1.5, p-value=0.015; INR, 0.1±0.7, p-value=0.788; IR, 0.5±0.5, p-value=0.533; HIV-, -0.5±0.3, 

p-value=0.104) in the VU and IR groups. The percentage of CD25+CD8+ T-cells (Delta change: 

VU, -0.4±0.7, p-value=0.015; INR, -0.4±0.3, p-value=0.646; IR, -0.05±0.8, p-value=0.854; HIV-, 

0.1±0.2, p-value=0.821) in VU showed as well a decrease. In contrast, we did not observe changes 

in the percentage of CD57+ T-cells (Figure 5.8b). Impaired thymic function is a hallmark of 

immunosenescence and is associated with a proinflammatory state and poor immunological 

recovery during treated HIV infection [40]. We studied thymic output by measuring levels of T-cell 

receptor rearrangement excision circles (the TRECratio). Overall, after treatment, thymic output 

improved in all groups of HIVs+ individuals, although it remained impaired compared with that in 

the HIV- controls, and the increase only reached statistical significance in VU individuals (Delta 

change: VU, 61±51, p-value=0.002; INR, 47±38, p-value=0.179; IR, 51±47, p-value=0.827; HIV-, 

60±78, p-value=0.748; Figure 5.8b). 

 
 
Figure 5.8 (a) Changes in systemic inflammatory markers in the prebiotic arm. (b) Changes in systemic markers of immune 

activation and thymic output in the prebiotic arm. INR, immunological non-responder, IR, immunological responder; VU, viremic 

untreated. Reproduced from Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal Immunology. 
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5.3.7. Potential microbial targets for treatment of immune dysfunction in 

patients 

The above analyses helped us identify taxa that might ameliorate the sustained proinflammatory 

state characteristic of HIV infection through the butyrate synthesis pathway and are thus of 

therapeutic interest. To untangle the impact of the prebiotic intervention on the complex interactions 

among key microbiota components, butyrate production, and circulating immunological predictors 

of disease progression, we speculated that the observed effects on systemic markers might be a 

consequence of changes in a subset of key bacteria, which could serve as potential microbial targets 

for interventions. Hence, we investigated whether changes in genera contributing to HIV-associated 

dysbiosis were associated with significant differences in SCFA abundance and peripheral markers 

of disease progression using generalized linear models and Bayesian networks (Figure 5.10 and 

Table S12.2.7, Appendix section). First, the analysis suggested that the disturbances in some of the 

taxa driving HIV-associated dysbiosis might contribute to the maintenance of persistent immune 

dysfunction, while changes in the abundance of other genera seemed a mechanism to alleviate it 

(Figure 5.10a). For example, Bacteroides was the most depleted genus in VU and IR (Figure 5.4), 

and their decrease strongly correlated with an increase in T-cell activation (Figure 5.10a). 

Similarly, Prevotella and Acidaminococcus were among the most enriched genera in HIV-infected 

individuals, and their increase further led to increased T-cell activation (Figures 5.4 and 5.10a). 

Hence, Bacteroides, Prevotella, and Acidaminococcus represent central components of the HIV-

associated dysbiosis that seems to contribute to chronic immune dysfunction. In contrast, other taxa 

followed the reverse pattern of associations between their abundance at baseline and the effects of 

their changes on peripheral markers, likely representing a beneficial adaptation of the gut 

ecosystem. For example, all the groups of HIV-infected individuals were consistently enriched for 

Butyrivibrio species, and an increase in this species further correlated with a decrease in T-cell 

activation. These findings argue that some adaptive changes of the gut microbial ecosystem might 

help alleviate the consequences of the original perturbation (i.e., acute HIV infection) in the 

intestinal habitat, but others might perpetuate a vicious circle of dysbiosis and immune dysfunction. 

As described above, the analysis of UniFrac distances suggested that the microbiota configuration 

was easier to modulate in VU individuals, who experienced a significant increase in butyrate 

production. Thus, in this group, we modeled the interactions among the bacterial biomarkers, SCFA 

production, and the peripheral biomarkers in a Bayesian network, and we estimated the Markov 

Blanket for the butyrate (Figure 5.10b). This method is able to infer multiple causal relationships 
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for a given effect. We found that increases in the abundance of F. prausnitzii determined an 

increase in butyrate, which in turn correlated with a decrease in the levels of two inflammatory 

predictors of mortality, high-sensitivity CRP, and soluble CD14[2]. Finally, because the analyses 

repeatedly implicated butyrate as a key SCFA, we aimed to identify the most likely bacterial 

determinants of butyrate abundance in VU individuals, and we modeled the interaction using 

generalized linear models. As shown in Figure 5.10c, the generalized linear model analysis 

identified F. prausnitzii and Lachnospira as major drivers of butyrate abundance. 
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Figure 5.10 Network integrating genera abundance, SCFA abundance, and markers of innate and adaptive immunity. (a) 

Interactions between changes in genera contributing to HIV-associated dysbiosis, SCFAs, and peripheral markers of disease 

progression using generalized linear models are represented in (a). Red edges represent negative correlations and blue edges positive 

correlations. Gray squares represent the peripheral markers of disease progression and the green rectangles represent the SCFAs. 

Blue gradient circles correspond to species to the Firmicutes phylum, red gradient circles correspond to species to the Bacteroidetes, 

purple gradient corresponds to the Actinobacteria phylum and gold gradient corresponds to the Fusobacteria phylum. In (a,) the 

generalized linear model (GLM)-based network of all the HIV+ subjects of the cohort and illustrate the interactions between the 

microbiota, immunological markers, and SCFA production are shown. (b, c) Highlight the positive findings in the VU group with the 

prebiotic intervention by means of a Bayesian Network and a GLM, respectively. Arrows indicate conditional dependencies between 

variables in the Bayesian Network plotted in (b). The networks (b and c) highlight the interactions of F. prausnitzii, as well as other 

known butyrate producers, with butyrate production and the inflammatory markers high-sensitivity C-reactive protein (CRP) and 

soluble CD14 (sCD14). The increase of the butyrate predicts an increase of species related to SCFA production and a decrease of the 

inflammatory markers CRP and sCD14. SCFA, short-chain fatty acid. Reproduced from Serrano-Villar et al. (2016) [315] with 

permission from © 2017 Society for Mucosal Immunology. 
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5.4. Discussion 

In the present chapter 5, it is reported the results from a pilot study on HIV-infected individuals 

analyzing the effects of a nutritional intervention with prebiotics on both gut bacterial composition 

using next generation sequencing and the impact on the intestinal SCFA abundance in feces. The 

results show evidence of interplay between intestinal microbial ecology and the levels of 

inflammatory predictors of disease progression and characterized key components of the 

microbiota. This interaction occurred at least partially via the production of butyrate by fecal 

bacteria. It is also showed that the response to prebiotics depends on the stability and resilience of 

the whole bacterial community, which appears to depend on the control of HIV replication and the 

extent of ART-mediated immunological restoration. Furthermore, the findings argue that some 

adaptive changes in the gut microbial ecosystem might serve to alleviate the consequences of the 

perturbation in the intestinal habitat secondary to acute HIV infection, whereas others might 

perpetuate a vicious circle of dysbiosis and immune dysfunction. 

The human gut microbiota comprises an extremely complex bacterial ecosystem that has co-

evolved with its host, establishing entangled symbiotic relationships. Carbohydrates, which are a 

major component of the human diet, include plant derived polysaccharides (cellulose, 

hemicellulose, and pectin), starches, and sugars [385]. Human cells are able to hydrolyze some 

disaccharides and absorb monosaccharides as glucose or galactose, but they cannot break down 

most of the polysaccharides. Thus, a considerable number of dietary carbohydrates and proteins 

pass to the colon after having escaped digestion in the small bowel, and they are then metabolized 

by the gut microbiota, which contains a large repertoire of hydrolytic enzymes, producing mainly 

SCFAs [16,385–387]. It is now widely accepted that SCFAs have an important role in maintaining 

health and that they are associated with a wide range of diseases, including IBD, type 2 diabetes, 

obesity, celiac disease, allergies, colon cancer, and autoimmune disease [103,179]. As observed 

under other proinflammatory conditions [388], dietary modulation of gut microbiota with a diet rich 

in non-digestible but fermentable carbohydrates significantly promoted beneficial groups of bacteria 

and increased butyrate-producers, specifically the F. prausnitzii and Lachnospira species, which 

contributed to the alleviation of inflammation in HIV-infected patients. Hence, the dietary 

modulation of gut microbiota holds promise as a viable intervention strategy for HIV infection to 

attenuate persistent immune defects. The results also suggest, however, that the modulatory 

capacity of these interventions might vary depending on the fermentative capability of the baseline 
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altered bacterial community and on the type and chemical structure of prebiotics [388]. For 

example, whereas GOS are mainly degraded by Actinobacteria (Bifidobacterium, Collinsella), FOS 

can be metabolized by many microorganisms of different phyla (Firmicutes, Bacteroidetes, and 

Actinobacteria), and the observed effects would depend on the microbial digestion of each 

oligosaccharide [385]. 

We observed a spectrum of HIV-associated dysbiosis, reflecting the disease status of the study 

participants and determined by the extent of immunovirological control. Consistent with previous 

studies in HIV-infected subjects [283,284,288], we observed enrichment for Prevotella, a member 

of the Bacteroidetes phylum that has been linked with heightened T-cell activation in HIV+ 

individuals [284], and depletion of Bacteroides [281,285,288]. In addition, we found decreased 

levels of butyrate-producers, such as Faecalibacterium, Lachospira and Roseburia, and enrichment 

of pro-inflammatory genera, such as Succinivibrio, Desulfovibrio, and Fusobacterium. In chapter 4 

was shown that in treated HIV-infected individuals that this pattern of dysbiosis is characterized by 

an enrichment of genes involved in lipopolysaccharide biosynthesis and a depletion of genes 

involved in amino acid metabolism and energy processes, suggesting that an altered functional 

profile could contribute to chronic bacterial translocation and immune dysfunction (mention in 

Chapter 1). In contrast to previous studies in HIV-infected subjects [281,285,389], we found 

decreased levels of Erysipelotrichaceae. Given the strong impact of diet on this family [390] and its 

correlation with obesity, this could have been affected by the Mediterranean diet and normal body 

mass index that characterized our study population. Still, whether HIV-associated dysbiosis is a 

result of HIV infection itself or an effect of a combination of several putative drivers, including 

ART and lifestyle factors, remains debated [289,391,392]. Indeed, at least two different studies in 

SIV infected macaques have failed to detect differences in the intestinal microbiota composition 

[393–395], in striking contrast with human studies, although a recent study of untreated acute SIV 

infection of non-human primates demonstrated depletion of Lactobacilli, supporting previous 

findings in HIV-infected individuals [396]. 

Because FOS stimulate the growth of bacteria such as the F. prausnitzii, E. rectale, R. 

inulinivorans, and Lachnospira species, all of them butyrate-producer species [139,385], we 

expected an increase in these taxa after administration of prebiotics. In VU individuals, the 

nutritional supplement increased the abundance of the depleted Faecalibacterium, a bacterium that 

is also depleted in Crohn’s disease and ulcerative colitis, another inflammatory condition, [179,397] 

as well as other genera belonging to the Firmicutes (Catenibacterium, Blautia and Eubacterium) 
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and Actinobacteria (Collinsella and Corynebacterium) phyla. These changes indicate a beneficial 

impact of the intervention on HIV-associated dysbiosis. In addition to the important role of 

Faecalibacterium in inducing regulatory T-cells [383] and decreasing intestinal permeability [398], 

it has been shown that Blautia increases following fecal microbiota transplantation from healthy 

donors to individuals with recurrent C. difficile infections, who represent a subgroup of individuals 

with extremely impaired gut bacterial composition [397]. Moreover, and Catenibacterium, 

Eubacterium, and Blautia have been associated with SCFA production [399–403]. We also 

modeled the relationships among the bacteria that most likely influence the maintenance of chronic 

immunological abnormalities and found evidence that butyrate-producer species, particularly the 

fiber-fermenter and SCFA producers F. prausnitzii and Lachnospira species, might be viable 

targets for interventions. Although there is a significant increase in the butyrate levels after the 

prebiotic intervention in the VU group, it should be noted that no significant differences were noted 

between groups at baseline. The fact that the butyrate concentrations were one-third lower in VU 

than in the other groups suggests that this could be explained by the insufficient statistical power to 

detect changes at this level. 

The effects on the microbiota composition were less apparent among treated HIV+ individuals, yet 

we detected some significant effects on markers of innate and adaptive immunity in peripheral 

blood (i.e., a decrease in BPI, decreased T-cell activation, improved thymic output). The younger 

median age of the VU group might have influenced in the higher impact of the nutritional 

intervention in the bacterial community in this group. We think, however, that a more compelling 

explanation is related to the longer median exposure to HIV disease of ART-treated participants 

(IR, 8.9 years; INR, 6.1 years) compared with that of VU individuals (5.4 years). Given results in 

the present chapter a model suggests, based on ecological principles, in which shorter exposure to 

the HIV disease might have elicited dysbiosis with a degraded transient state of the bacterial 

community. The combined and perhaps synergistic effects of a prolonged situation of chronic 

immunologic dysfunction, and ART itself could result in a second transition of microbiota structure 

to a degraded stable state capable of resisting colonization by the presumably beneficial species 

selected by the prebiotics [22,404]. Based on this model, only the VU-associated microbiota, in a 

transient state and with decreased resistance to an external nutritional intervention, was able to 

respond to the prebiotics. Although the landscape of stable states for the human gut is far from 

being determined, these findings suggest that HIV-associated dysbiosis might achieve a stable 
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configuration over time and that the dysbiosis of patients who have lived with HIV for many years 

might prove more difficult to reverse than that of their counterparts. 

Some limitations must be considered when interpreting the results. First, this is a pilot study, and 

the limited sample size warrants caution regarding the conclusions. We measured many parameters 

in small groups, so we cannot rule out that some of the statistically significant changes are due to 

randomness rather than the intervention. In addition, the small number of patients receiving the 

placebo was useful in assessing the tolerability of the intervention but insufficient for comparisons 

of the assessed markers among arms. Because this study concluded before the effect of sexual 

orientation on the microbiota was appreciated [289], we had to conduct post hoc analyses to control 

for this potential confounder. Second, a limitation of most studies trying to understand the effects of 

shaping the microbiota, including ours, is that nutritional interventions could alter bacterial 

metabolism, which was not measured in our study, without altering the bacterial composition. 

Third, SCFA abundance was measured in feces, so the measurements represent the difference 

between production of SCFAs by the bacterial community and their uptake by the gut mucosa. 

Fourth, we measured bacterial translocation using only indirect markers (i.e., BPI and soluble 

CD14), and we did not sample the intestinal mucosa, which would have provided further insight 

into the bacterial communities driving mucosal disruption, immune defects, and increased gut 

permeability, so we cannot provide experimental evidence that the intervention affected gut 

immunity. Finally, the study was not designed to assess the effect of dietary changes on gut 

microbiota beyond the prebiotic intervention, and limited information on diet was collected. 

Therefore, given the strong dependence of TMAO on diet, it is difficult to interpret the significant 

increase of this metabolite that was observed in the IR group [317]. 

The field has only begun to scratch the surface of the potential implications of HIV-associated 

dysbiosis in the maintenance of immune dysfunction, and the study of gut microbiota modulation in 

this setting is in its early stages. So far, it is unclear how to best shape the gut-microbiome to 

modulate immunity. Although influencing the microbiota with a probiotic might prove harder than 

doing so with a prebiotic, studies comparing the effects of different probiotic strains and dietary 

interventions are lacking. There is, however, emerging consensus that a number of bacterial-derived 

metabolites, particularly SCFA, can impact systemic metabolism and immunity. Our study expands 

previous knowledge on the effects of microbiome-targeted interventions in HIV+ individuals by a 

comprehensive analysis of the influence of changes in gut bacterial composition and in SCFA 

production on innate and adaptive immunity. It is shown that a short and well-tolerated nutritional 
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intervention influenced gut microbiota structure and elicited downstream effects on a number of 

markers of clinical progression, although its impact would depend on the stability of the gut 

microbial community. The data show a distinct intestinal microbial makeup related to the extent of 

immunovirological control and suggest that the gut-microbiota is a viable target for interventions. 

Along with recent studies using other nutritional interventions aiming to affect gut microbiota 

[305,306], our data encourage testing new strategies aiming to affect HIV-associated dysbiosis. 

Future trials should focus on patients undergoing stable ART and analyze the long-term effects of 

therapies aiming to ameliorate HIV-associated dysbiosis. Personalized therapies based on 

microbiota structure would help to understand how we might exploit microbial–host interactions to 

restore normal health to individuals living with HIV. 
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6. CHAPTER 3 

INTERPLAY BETWEEN GUT MICROBIOTA 
METABOLISM AND INFLAMMATION IN 

THE HIV INFECTION  
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6.1. Introduction 

Most of the studies performed in the HIV gut-associated dysbiosis have been mainly focused on the 

characterization of the taxonomic profile, leaving out the potential role of functional shifts over the 

host health. Although in Chapter 1 we show that some of the metabolic pathways increased in the 

HIV+ subjects were related to the immune activation and bacterial translocation, little is known 

about the full potential of the virus infection over the metabolic capacities of the microbial 

communities and its effect on the host health. In 2016, Serrano-Villar et al., [405] showed applying 

meta-proteomic and metabolomic approaches that the HIV infection drastically modified the 

metabolism of three amino acids (proline, phenylalanine, and lysine). In congruence with the work 

of Vukovij [285], they also found that the 3-hydroxyanthranilate, a product of the kynurenine 

pathway, was accumulated in the microbiota of the HIV+ infected subjects [405]. Moreover, it was 

shown an association between an optimal response to ART and the active fraction of the gut 

microbiome, suggesting a role of the microbiota in the immune recovery [405,406]. However, 

nowadays gene expression studies in the gut-associated dysbiosis have not been addressed. 

Metatranscriptomics analysis provides key information about the microbiota metabolism, assessing 

what predicted genes are expressed in the community and in what conditions and to what extent 

[6,407–413]. 

Additionally, we should not ignore that the gut-microbiome is a complex community with highly 

interacted microbial species [414] and that the imbalance of these interactions could be an important 

factor for the dysbiosis establishment and maintenance. Such community structure has not been 

described in pathologies in which the immune system is compromised. In this context, the network 

analysis is a powerful tool to study the tightly interlinked biological systems [415–417]. For 

instance, Greenblum et al, [418] based on a community-level metabolic network of the gut-

microbiome deduced that there are topological differences associated with obesity and IBD where 

the genes enriched in those conditions were located in the periphery of the metabolic network. 

Moreover, the use of ecological co-occurrence networks has been helpful to elucidate coexistence 

patterns spanning from pairs of microbial taxa in several ecosystems [419–421]. The co-occurrence 

networks allow us to measure the importance of the species within a community (e.g., degree, 

betweenness, measures of centrality), and possibly identifying keystone species within an 

ecosystem [419,422–424]. More importantly, recent studies suggested that the microbial 
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relationships shown in correlation-networks can be used to determine their contribution to specific 

conditions, as health status or disease. [14,24,75,414,418,424–426]. 

In the present chapter, we used a combination of 454 pyrosequencing and Miseq Illumina V3 

sequencing to characterize the gene content by metagenomics and its expression level by 

metatranscriptomics of the microbiome in HIV patients. We found that in the HIV+ microbiota 

genes related to anti-inflammatory metabolic processes such as propanoate (ko00640) and 

butanoate (ko00650) pathways were under expressed while the genes related to stress resistance 

mechanisms (ko00730, ko00521 and ko4141) were overexpressed. This gene expression profile 

allows the adaptation to the inflammatory environment of the Prevotella, Acidaminococcus, and 

Streptococcus species, which were enriched in the active and total microbiota fraction. Indeed, the 

co-occurrence network retrieved from the HIV microbial community state Prevotella copri as one 

of the most important hub-species. In fact, the different discriminative biomarker species appeared 

as essential in the ecological network structure. Likewise, the KO biomarkers associated with HIV 

infection showed higher eigenvector centrality than the rest of the network enzymes indicating that 

the HIV infection causes dramatic changes in the metabolic structure of the gut microbiota. 

Finally, we implement a “multiomic” network approach which accounts metagenomic, 

metatranscriptomic, metabolomic and clinical data retrieved from HIV+ subjects to model a 

Bayesian network to understand the immune response to dysbiosis associated with HIV infection.  
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6.2. Materials and Methods 

6.2.1. Study cohort and clinical features 

The subjects involved in the present chapter were the ones that participate in the “Chapter 2”, 

before the prebiotic intake. The metagenomic samples and clinical measurements were for all 

complete set of subjects. The metatranscriptomic sequencing was performed in a subset of 33 

samples. VU (6), IR (10), INR (4) and HIV- controls (13). 

6.2.2. Sequence quality filtering and trimming 

Illumina paired-end sequences retrieved from metagenomic (DNAseq) and metatranscriptomic 

(RNAseq) sequences were trimmed for adapters and the transposase sequence using the cutadapt 

software (v1.6) [427]. Sequence artifacts and low quality reads from the raw sequences were 

removed using the fastx_artifacts_filter software and the fastq_quality_trimmer (parameters: -t 20 -l 

50) available into the fastxtoolkit [428]. Then, we used the prinseq-lite.pl script (parameters: -

min_len 50 -min_qual_mean 20 -ns_max_n 1 -trim_qual_left 20 -trim_qual_right 25 -

trim_qual_type min -trim_qual_rule lt -trim_qual_window 5 -trim_qual_step 1) to trim the 5' end 

and the 3' ends of each sequence, removing the trimmed reads that did not accomplish one of the 

following criteria: read length above the 170 nucleotides, mean quality score above 20 or contain 

less than the 1% of ambiguous base.  

The possible reads derived from the host genome was removed using the deconseq.pl script (v0.4.3) 

[429] using as reference the human genome (Human Reference GRCh38). Finally, the paired-end 

reads were assembled using the pandaseq tool (v4.0.3) [430] (parameters: -N -l 50 -o 10) to obtain 

paired-end sequences.  

6.2.3. Metagenomic functional annotation strategies 

Different variation in the KEGG functional annotation was performed to avoid bioinformatics 

biases when analyzing the whole metagenomic dataset. This because the great variety of different 

assembly software and the whether or not previous use of an open reading frame (ORF) prediction 

to assign the functional annotations. In that sense, the metagenomic pipeline benchmarking was 

focused mainly on the use of the assembler (Ray-Meta vs IDBA-Meta) and the previous use of an 

ORF prediction tool versus the direct mapping sequences (coverage) approximation. Additionally, 

we compare the functional annotations retrieved by the PICRUST [431] pipeline, using the 454 16S 
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rRNA gene data set from the Chapter 2, and the pipeline used in the work of Nielsen et al., (2014) 

[432] modifying the assembler to the Ray-Meta assembler [433]. This due to the Ray-Meta 

assembler was the one that obtains the greater contig length (based on the N50 statistic) based on 

simulated datasets [434] and observed in the current study. Additionally, the 454 reads were 

included to improve the ORF prediction. In summary, we obtained eight different KEGG functional 

annotations that can be seen in Table 6.1. The results for this section are shown in the 

supplementary results “S12.3.1. Functional metagenomic pipeline comparison”. 

6.2.3.1. Read assembly 

To obtain the contigs, the metagenomic Illumina paired-end sequences were assembled using two 

different assemblers: Ray-Meta [433] (V. 2.3.1 parameters: -k 31 -minimum-contig-length 300) and 

Meta-IDBA [435] (parameters: --pre_correction --mink 10 --step 10 -o assemblie --min_contig 

300). The K-mer size was selected as the one that maximizes the N50 value for the Ray-Meta 

assembler. 

6.2.3.2. ORF prediction 

The ORF prediction from the metagenomic contigs and the unassembled Illumina and the 454 GS 

FLX Titanium sequences were obtained through the MetaGeneMark software [436] (prokaryotic 

version 3.25).  

All the ORF were translated into amino acids (aa) sequences, and the ORF predicted from the 

metatranscriptomics data (see section 6.2.7.1. Metatranscriptomic functional annotation) were 

clustered in a non-redundant database (ORFaanr) using the USEARCH software (v8.1.1831 

parameters: -id 0.95 -threads 2 -strand both --query_cov 0.9).  

6.2.3.3. Sequence functional annotation 

The ORFaanr database was compared against the KEGG orthologous group (KO) database [437] 

and the comprehensive antibiotic resistance database (CARD) [438] using rapsearch2 software 

[439] (parameters: min align length > 60, log e-value < -5 and identity >60). The assignation 

criteria were based by the ORF best-hit, prioritizing first the e-value, then the bit-score, the 

percentage of identity and finally the alignment length. In the case of two or more KO database 

entries contain the same best-hit values, then the ORF kept the annotation of all the KO entries. 

However, most of the ORFs that contained more than one gene annotation usually belonged to the 
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same KO group. Finally, the HUMAnN pipeline [440] was used to determine the presence/absence 

and abundance of microbial pathways retrieved from the KEGG database. 

The relative abundance of each ORF was calculated mapping all the reads against the nucleotide 

sequences of the ORFaanr database using the soap aligner (version 2.21) [441] and the 

soap.coverage script (2.7.7) [441] according to the pipeline of Nielsen et al., (2014) [432].  

By contrast, the coverage approximation was performed with the aim to observe if the ORF 

prediction introduces biases in the functional characterization. This is based on the direct 

comparison of the sequences against the database without a previous ORF prediction. The 

annotations for the coverage approximation was done by first translating in amino acid sequences 

the metagenomic unassembled reads and the contigs predicted by the Meta-IDBA and Ray-Meta 

assemblers and then mapping against the KEGG database using the rapsearch2 software 

(parameters: -e -5 -b 0 -t n). The assignation criteria cut-off was the same used for the ORF 

approximation. 

The gene quantification for the coverage approximation was performed based on the work of 

Arumugam et al., (2011) [14] for the metagenomic unassembled reads and the contigs predicted by 

the Meta-IDBA and Ray-Meta, following the current equations: 

Equation 1 

( )
( )

( )gbaselength

rg,overlapbase

=gabundance Rr


   

The abundance of each gene g is calculated based on the sum of reads that overlap over g divided 

by the gene length. 

Equation 2 

( ) ( )gabundance=KOabundance
KOg




 

Table 6.1 Annotation strategies. 

Annotation strategy Assembler Sequence technology ORF prediction 

Ray_Illumina_454_ORF Ray-Meta Illumina nextera V3 and 454 
Genome FLX Sequencer 

MetaGene Mark 

ray_ORF Ray-Meta Illumina miseq nextera V3 MetaGene Mark 
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ray_coverage Ray-Meta Illumina miseq nextera V3 No ORF 
prediction 

idba_ORF Meta-IDBA Illumina miseq nextera V3 MetaGene Mark 

idba_coverage Meta-IDBA Illumina miseq nextera V3 No ORF 
prediction 

Unassembled_ORF No assembly Illumina miseq nextera V3 MetaGene Mark 

Unassembled_coverage No assembly Illumina miseq nextera V3 No ORF 
prediction 

Picrust No assembly No sequencing No ORF 
prediction 

 

6.2.3.4. Statistical analyses 

In order to determine the consistency of the KEGG functional annotations a non-metric 

multidimensional analysis (Library “vegan” function “metaMDS”) based on the Hellinger distance 

(Library “vegan” function “vegdist”) was performed for each of the functional taxonomic 

assignation. The comparison between the ordination analyses was performed using the Procrustes 

test (Library “vegan” function “protest”), similarly, the Mantel test was performed to measure the 

correlation between the distance matrix (Library “vegan” function “mantel.rtest”).  

6.2.4. Sensitive metabolic pathway detection 

The remote homolog detection was carried out by Hidden Markov Models (HMM) for each of the 

KEGG maps of the tryptophan metabolism (M00038) and the enzymes: Tryptophanase (K01667), 

Catalase-peroxidase (K03781) and the o-aminophenol oxidase (K20219). Briefly, we search a Pfam 

family (a collection of related protein regions) for each of the enzymes mentioned above in the 

Pfam database (http://pfam.xfam.org/). The Pfam database is a large collection of protein families. 

Each family consists of a curated “seed” alignment, an alignment small set of representative 

sequences of the family, and an HMM profile based on the seed alignment. We download the 

corresponding seed alignment for each of the enzymes, mention before, to construct its respective 

HMM. Those seed alignments are: PF06052 (KO: K00452), PF03301 (KO: K00453), PF01231 

(KO: K00463), PF01494 (KO: K00486), K01432 (KO: PF07859), PF00266 (KO: K01556), 

PF04909 (KO: K03392), PF04199 (KO: K07130), PF00171 (KO: K10217) and PF07859 (KO: 

K14263).  

Each of the seed alignments was used to create an HMM using the hmmbuild (v3.1b2) software 

[442]. Finally, all the HMM from the tryptophan metabolism were used to detect remote homologs 

in the ORFaanr database using the hmmsearch tool (v3.1b2) [442]. The homology detection was 

given if the full sequence e-value were below 0.001. 
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In a similar way, the enzymes related to the formation of trimethylamine (TMA) from choline and 

L-carnitine; the oxygenase component YeaW/cntA (ACCESSION APQ93983 and APP31394 

respectively) and the reductase component YeaX/cntB (ACCESSION WP_001287026 and 

APQ93983 respectively) were searched into the ORFaanr database using Blastp (v2.2.31+) 

(alignment coverage >= 0.7 and e-value < 0.00001). 

6.2.5. Taxonomic assignments 

First, we constructed our own non-redundant genome database. The sequences of the reference 

genomes from the species found in the gastrointestinal tract were downloaded from the HMP web 

site 

(http://downloads.hmpdacc.org/data/reference_genomes/body_sites/Gastrointestinal_tract.nuc.fsa). 

Similarly, all the reference genomes and the latest assemblies of the genomes of the species related 

to the HMP genome database were downloaded from NCBI RefSeq database 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/all) using the assembly_summary.txt file as a reference 

(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt). The resulting 

database contains 1,113,533 sequence entries in 39, 537, 222, 120 bp. The sequences that share the 

same taxa-id were grouped in a fasta file. Each file was then compared against itself using 

megablast (parameters: blastn -task megablast -perc_identity 95). Those sequences that share a 95% 

of sequence identity and an alignment that covers at least the 90% of the smallest of the sequences 

were clustered, taking as the reference the longest one. For this task, we excluded all the plasmid 

sequences from the database. The taxonomy of the clustered database was obtained using the 

acc_taxid.zip, taxdump.zip files available on the NCBI website. The final genome clustered 

(Genomeclust) database contains 2463 species, 76,478 sequence entries in 10,545,961,079 bp. 

The taxonomic assignation of the metagenomic and the metatranscriptomic sequences was carried 

out by mapping the unassembled reads in the Genomeclust database using the blastn tool (v2.2.31 

parameters: -task megablast -perc_identity 75). Then, all reads whose alignment length was below 

100 nts, or the percentage of identity was below 75%, or e-value was above 0.00001 were 

discharged. The assignation criterion was based by the read’s best-hit, prioritizing first the e-value, 

then the bit-score, the percentage of identity and finally the alignment’s length. In the case of two or 

more database genomes contain the same best-hit values; the read coverage was divided by the 

number of hits with the same score. 



 

 

133 

 

6.2.6. Generalized linear model for the taxonomic and functional 

biomarker associations  

The putative associations between the pathways and species biomarkers were estimated by means 

of Generalized Linear Models (GLM). The GLM was estimated setting as the response variable the 

pathway abundance and as the predictors the species matrix. In order to avoid over-fitting, each 

model was cross-validated 54 times and the least absolute shrinkage and selection operator (lasso) 

was used to perform variable selection and regularization (library “glment” function “cv.glmnet” 

alpha = 1). Additionally, the Spearman's rank correlation coefficient (library ‘‘stats’’, function 

‘‘cor.test’’) was calculated for each of pairwise taxonomic-pathway variables selecting only those 

associations whose adjusted p-value were below 0.05. 

Once the statistical associations were determined, we look whether the genomes of those biomarker 

species contained the genes of the biomarker metabolic pathways from which they had been 

associated. In order to achieve this, we downloaded the ORFs fasta file from the NCBI RefSeq 

genomes database (ftp://ftp.ncbi.nlm.nih.gov/genomes/all) from all the selected species. Then, the 

program makeblastdb (v2.2.31) produces BLAST databases for each of the species ORF translated 

to amino acid sequences fasta files. Finally, the blastp tool (v2.2.31) was used to search all the 

genes related to those metabolic pathways in each genome ORF translated database. We took a 

good hit if the alinement's length were above 60 aa, the e-value were below to 0.000001 and if the 

percentage of identity were above the 60%.  

6.2.7. Metatranscriptomic analyses 

Metatranscriptomics is a relatively new field, with the first mention around 2008 [443], which it is 

advancing rapidly [7,51,409,444,445]. Due to the novelty of this technique, there is no consensus 

on how to analyze this “omic” approach. Although nowadays there are new approaches for the 

analysis [446,447] at the time that I performed the analyses, very few bioinformatic pipelines were 

suited for the assembly and ORF annotation [448,449]. For these reason in the present thesis based 

on the recommendation of [450–452], we develop an in-house pipeline for the analysis of the 

metatranscriptomic sequences. 
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6.2.7.1. Metatranscriptomic functional annotation 

Following the literature recommendation [450–452], we assemble the metatranscriptomic Illumina 

sequences using the Trinity assembler [448] (parameters: Trinity --seqType fa --no_cleanup –

normalize_reads). The ORF prediction from the metatranscriptomic reads was done using the 

TransDecoder.LongOrfs [453] and its expression was measured by mapping the metatranscriptomic 

sequences against the ORFaanr using the RSEM tool implemented into the rsem-synthesis-

reference-transcripts [448,454]. The results were expressed in Fragments Per Kilobase of target 

transcript length per Million reads mapped (FPKM). The idea of the FPKM is to normalize for 

sequencing depth and gene length. Briefly, the total number of reads is divided by 1,000,000, the 

ratio result is known as the “per million scaling factor”. Then, the abundance of each gene, in their 

respective sample, is divided by its respective “per million scaling factor” to normalized for the 

sequencing depth. Finally, the resulting value is divided by the gene length. 

6.2.7.2. Diversity and homogeneity 

As described in Franzosa et al., (2014) [455] the homogeneity of the genus and the functional KO 

composition within the metatranscriptomic and the metagenomic matrix was calculated using the 

Bray-Curtis index (Library “vegan” function “vegdist”). Similarly, the evenness within groups was 

measured using the Pielou's index [456] estimated as: 

( )S

H
=Pielou

log
 

Where H is the Shannon index (library “vegan” function “diversity”) and S is the expected number 

of species (library “vegan” function “specnumber”). 

6.2.7.3. Biomarkers pathway expression 

The LEfSe biomarkers (See in General Methods section 3.5) from the metatranscriptomic and 

metagenomic pathways were selected to observe differential expression. A pathway was over or 

infra expressed if the logarithm of the RNAseq / DNAseq ratio was statistically different from zero 

(T-student adjusted p-value < 0.01). Then, we compared the relative expression of those pathways 

between the HIV+ and the HIV- condition using the Wilcoxon test (library “stats” function 

“wilcox.test”). The hierarchical clustering was done (Library “stats” function “hclust” method = 

ward) using the log (RNAseq/DNAseq) from those pathways that were differentially expressed. 
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6.2.8. Gut-bacterial-metabolome 

The metabolic data and the method of extraction were described in Serrano-Villar et., al (2016) 

[376] and Serrano-Villar et., al (2016) [405].  

6.2.9. Metabolite data treatment, statistical analysis, and identification 

The metabolomic data treatments were described in Serrano-Villar et., al (2016) [376] and Serrano-

Villar et., al (2016) [405]. 

The identity of the compounds selected according to their significance in the class separation was 

further confirmed using LC-MS/MS in the same LC-ESI-QTOF-MS. Ions were targeted for 

collision-induced dissociation (CID) fragmentation based on the previously determined accurate 

masses and retention times. Their identity was confirmed by comparing the fragments that were 

obtained with the structure of the proposed compound in the MS/MS spectra in a public database 

(METLIN: https://metlin.scripps.edu/metabolites_list.php) or against commercially available 

standards. In the case in which the metabolite contains more than one annotation, we prioritized the 

KEGG metabolite annotation, if exist, otherwise, we select one from the most abundant annotation 

of the METLIN database or we took one from the most abundant Sub Class annotation of the 

Lipidomics Gateway database (http://www.lipidmaps.org/data/structure/).  

The abundance matrix retrieved from the metabolomic data was standardized by the total number of 

metabolites. Then, to avoid biases given species composition we normalized data using the 

Hellinger transformation (Library “vegan” function “decostand”). The NMDS (Library “vegan” 

function “metaMDS” was performed to reduce dimensionality in the metabolomic data) and the 

ADONIS (Library “vegan” function “adonis”) test was employed to verify if exists a significant 

difference in the metabolic composition between the HIV+ groups. Finally, the Wilcoxon test 

(library “stats” function “wilcox.test”) was employed to detect the over and infra represented 

metabolites in the HIV+ groups (adjusted p-value < 0.01). 

6.2.10. Ecological and metabolic networks 

The ecological network was calculated for all the HIV+ subjects using all the species that were 

present in at least 70% of the samples and whose average relative abundance was above the 0.01%. 

The correlation matrix was estimated using the SparCC.py script [457] (parameters: -i 10). The 

statistical support was carried out by performing 1000 bootstrap resampling using the script 
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MakeBootstraps.py [457]. We only took as significant correlation if the adjusted p-value were 

below 0.01 and that the absolute value of the correlation coefficient was above 0.1. The co-

occurrence network was estimated using the R package Igraph (function “graph.adjacency” mode 

"undirected") removing all loops and unconnected nodes (Igraph functions “simplify” and 

“delete_vertices”).  

The walktrap community algorithm (Igraph function “walktrap.community”) was used to detect all 

the densely connected subgraphs, also called communities, within the ecological network. Those 

subgraphs that possess at least three nodes where later plotted as polygons in the ecological 

network. The taxonomic composition of such community’s sub-graphs was plotted as bar plots (R 

function “barplot”). The enzymatic reactions metabolic network was created using the R library 

“KEGGgraph”. First, all the KGML files from the pathways that were involved in the KEGG 

orthologous groups found in the HIV condition were downloaded from the KEGG: Kyoto 

Encyclopedia of Genes and Genomes website. The list of selected metabolic pathways was then 

parsed using the R function “parseKGML2Graph” (library “KEGGgraph”) and the direct network 

was assembly using the “mergeKEGGgraphs” function (Library “KEGGgraph”, edgemode = 

"directed"). The total network was then plotted using the Igrpah function plot.igraph.  

The centrality network statistics, betweenness (Library “Igraph” function "betweenness"), degree 

(Library “Igraph” function “degree”) and eigenvector centralities (Library “Igraph” function 

“evcent”), were calculated for both the metabolic and ecological networks. Similarly, the 

distribution comparison test Kolmogorov-Smirnov (function “power.law.fit” and 

“degree.distribution”); the calculation of the shortest path (function “shortest.paths”) were 

calculated using the Igraph library. 

The modularity was calculated by first defining the modules within the networks using the walktrap 

community algorithm (Igraph function “walktrap.community”). Then the fraction of the edges that 

fall within the given modules minus the expected fraction was calculated using the Igraph function 

“modularity”. 

The network fragmentation is defined as the relative fraction of disconnected compartments within 

a co-occurrence network [417]. Based on the work of Widder et al., (2014) [417] we compute the 

fragmentation modifying the number of unconnected subgraph from the network to the number of 

clusters within the network. The fragmentation was calculated using the number of clusters derived 

for the function “clusters” and the walktrap.community”. 
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In order to test the consistency of the results of the ecological and the functional networks, we 

simulate 10000 random networks using the Erdős–Rényi model (library Igraph function 

“erdos.renyi.game”), the probability of drawing an edge between two arbitrary nodes was sampled 

from a random distribution (mean = 0.5, sd = 0.3) for each of 10000 networks. The results are 

expressed in the Table 10.3.2 (Appendix section). 

6.2.11. Multiomic Bayesian network 

A multiomic BN was estimated using the log normalized relative abundance of the metagenome, 

metatranscriptome and metabolome data from the HIV+ infected subjects in order to create a model 

which could predict the effect of the microbiota in the markers of innate and T-cell activation 

variables, thymic function, and bacterial translocation. 

The network was estimated using the hill-climbing score-based learning algorithm (R library 

“bnlearn” function “hc”). The algorithm states the optimal network and in consequence the 

‘‘father’’ to ‘‘child’’ node relationships which maximizes the Bayes information criterion (BIC). 

The whitelist option was used to define the set of arcs that will be included in the model. For this 

task we performed a GLM using the lasso variable selection and regularization (library “glment” 

function “cv.glmnet” alpha = 1) As response variables, we selected those RNAseq and DNAseq 

pathways, species and metabolites that were overrepresented in the HIV condition and as predictor 

the clinical variables related to the markers of innate and T-cell activation variables, thymic 

function, and bacterial translocation as done in the multivariate statistical framework MaAsLin 

pipeline [458]. To avoid over-fitting problems, all the models were validated by means of n-fold 

cross validation (library “glment” function “cv.glmnet”). Additionally, we included all the 

Spearman correlation adjusted p-value was above 0.01. We used the blacklist option (R library 

‘‘bnlearn’’ function ‘‘hc’’) to exclude all the edges whose Spearman correlation adjusted p-value 

were above 0.1. 

The function mb (R Package ‘‘bnlearn’’ function ‘‘mb’’) was used to dissect all the Markov 

Blankets in the HIV+ network to perform the statistical analysis and to plot the butanoate 

metabolism ko00650 Markov blanket.  

All the network related statistics and plots were performed using the R package Igraph. 
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6.3. Results 

6.3.1. Functional characterization of the HIV-associated metagenome 

In order to characterize the HIV+ functional dysbiosis, we sequenced an average 98 Mb per sample 

(total 9.5 Gb) using a combination of Illumina and 454 sequencing technologies.  

The unsupervised PAM clustering analysis represented in Figure 6.1a showed a cluster 

configuration in which most of the HIV+ patients are separated by important changes in their gene 

composition from the HIV- subjects (ADONIS test, p-value=0.001). This differential composition 

was also found when the HIV- group was compared against each of the three different HIV+ groups 

(ADONIS test, p-value=0.001) (Figure 6.1b). 

 

Figure 6.1 Comparison of the microbiota gene composition between HIV infected and uninfected subjects. NMDS analysis of 

the KEGG Orthology (KO) gene composition retrieved from the metagenomic sequences. The VU (red), IR (green), INR (orange) 

and HIV- (blue) subjects are represented by the ellipses which represent 70% of the samples. (a) Optimal clustering configuration 

retrieved from the PAM algorithm, red ellipses represent a cluster mainly composed of HIV infected subjects while the blue ellipse 

represents the cluster mainly conformed by HIV- subjects, the cluster configuration was validated using the ADONIS test (p-

value=0.001). (b) Group cluster configuration from the four groups of the cohort, the VU (red), IR (green), INR (orange) and HIV- 

(blue) subjects. The cluster configuration was validated using the ADONIS test by the four groups of the cohort (p-value=0.001). 

INR, immunological non-responder; IR, immunological responder; VU, viremic untreated. 

The diversity of the gene composition, measured by the Shannon index, showed that the VU group 

presented the lowest gene diversity significantly different to those of healthy group. No significant 

differences were found between HIV+ on ART and HIV- subjects (Figure S12.3.2a, Appendix 

section). However, the functional homogeneity analysis within groups showed VU and HIV- groups 

presented higher homogeneity than HIV+ on ART individuals (Figure S12.3.2b, Appendix 

section). 
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To address the gene and pathways that consistently explain the differences between the groups, we 

applied the linear discriminant analysis effect size (LEfSe) method. We found 34 KEGG pathways 

(ko) and 186 KEGG orthology groups (KO) were statistically different between the HIV-infected 

patients and HIV- subjects (Figure 6.2 and S12.3.3, Appendix section). HIV+ bacterial 

communities presented an increase of pathways related to lipopolysaccharide (LPS) biosynthesis 

and peptidoglycan biosynthesis, in keeping with our previous findings (Chapter 1). Two pathways, 

alanine, aspartate and glutamate metabolism and zeatin biosynthesis, showed a significantly higher 

abundance in the HIV+ condition, suggesting that the HIV-associated microbiota might be adapted 

to mitigate a pro-oxidative environment. Also, the HIV+ bacterial communities presented an 

increase of pathways related to infectious diseases (ko05111, ko05120) and the metabolism of 

amino acids (ko00473, ko00400). On the other hand, this altered microbiota is depleted of pathways 

related to the signal transduction and membrane transport (Figure 6.2). Surprisingly, the HIV- 

subjects possessed a microbiota enriched in genes related to the antibiotic beta lactam resistance 

pathway (Figure 6.2). However, when we compared the total number of antibiotic resistance 

annotations retrieved from the Comprehensive Antibiotic Resistance Database (CARDB), we did 

not find statistical differences between groups (Kruskal-Wallis test, p-value > 0.05). 

The differences were also stated for the controls versus each HIV+ groups. Thus, the VU group 

showed the greatest number of different enriched KOs (62 VU, 28 IR, 27 INR) but we found a core 

of metabolic pathways associated with HIV infection with high abundance of KOs related to the 

resistance to the oxidative stress (Figure S12.3.3b, c, d, Appendix section). 
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Figure 6.2 Metagenomic pathways biomarkers. Linear discriminative analysis (LDA) effect size LEfSe analysis between the 

HIV+ (in red) and HIV- (in blue) subjects. LDA scores (log 10) for the most discriminative pathways in HIV- are represented on the 

negative scale, whereas LDA-positive scores indicate enriched pathways in HIV +subjects. The cladogram represents the biomarkers 

of the upper hierarchical classes within the KEGG database. 
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6.3.2. Bacteria involved in the dysbiotic metabolism 

The taxonomic annotation from the metagenomes was performed by mapping all the reads against 

Genomeclust database. The HIV- group segregated independently from the HIV+ patients, as could 

be seen in the cluster analysis represented in Figure S12.3.4a (Appendix section). The differences 

of the HIV-infected patients were given by an increase of bacterial species, mainly, from the genera 

Prevotella Acidaminococcus and Streptococcus and a decrease of commensal species such as 

Bacteroides, Bifidobacterium, Akkermansia, Odoribacter and Alistipes (Figure S12.3.4b, Appendix 

section). Strikingly, Faecalibacterium prausnitzii was not detected as a biomarker of the HIV- 

subjects as was described previously (Chapter 2). This result could be because of the reference 

sequences for this species were just a draft genome leading to a miss-annotation. We also found in 

the controls different members of Enterobacteriaceae family due to these species are 

overrepresented in the database used. 

The alpha diversity, measured by the Shannon index and Chao1 richness estimators and the 

expected number of species showed no statistical differences between the four groups of the cohort 

(Figure S12.3.4c, Appendix section). The analysis of the bacterial composition homogeneity within 

each group showed that the HIV- group possessed the most homogeneous composition in the cohort 

and that IR group was the one with the greatest taxonomic homogeneity in HIV+ groups (Figure 

S12.3.4d, Appendix section).  

In order to relate the bacterial taxa to the metabolic pathways that lead the functional dysbiosis, we 

performed a Generalized Linear Model (GLM) by setting the pathway biomarkers as the response 

variable and the species matrix as the predictors. We found a significant positive correlation 

between the respective bacterial taxa and pathway biomarkers for both groups, HIV+ and HIV- 

(Table S12.3.3, Appendix section). To determine whether the species biomarkers carried the genes 

involved in the pathways or if they promoted the growth of other members of the microbiota that 

was responsible for the metabolic functions, we mapped all the reads of each pathway biomarkers 

against the reference genomes. Then, we found that both HIV and healthy microbiota presented the 

genes involved in their respective metabolic pathways (Table S12.3.4, Appendix section). Thus, we 

detected that the dysbiotic metabolism could be mostly performed by species of Prevotella genus. 

Other Gram-negative bacteria belonging to Acidaminococcus, Dialister, Fermentomonas and 

Bibersteinia genera also presented genes for the different metabolic pathways including LPS 

biosynthesis pathway (ko00540). 
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6.3.3. Metatranscriptome of the HIV-associated microbiota 

We explored the gene expression of the gut-microbiota in a subset of samples (8 VU, 13 IR, 6 INR 

and 14 HIV-) that did not differ in their general characteristics from the whole sample. The total 

mRNA was purified and the cDNA sequenced, obtaining an average 16 Mb per sample (a total of 

715 Mb). 

We observed that 964 KOs from the metagenome (DNA-KO) were not present in the 

metatranscriptomic data while 157 KOs from the metatranscriptome (RNA-KO) were missing in 

the metagenome. This difference could be due to a transcriptional regulation of the gene, but it 

could not be discarded the low sequencing coverage. To address these differences, we calculated the 

Bray-Curtis dissimilarity and the evenness indexes for the HIV+ and HIV- groups as described in 

[455]. We found, in both groups, that RNA-KO composition between individuals was significantly 

more variable than DNA-KO composition (Figure S12.3.5a, Appendix section) but the evenness 

index was similar for both functional profiles (Figure S12.3.5b, Appendix section). Thus, the 

differences observed could be explained by a transcriptional regulation of the metagenome based on 

the environmental requirements. Additionally, at the transcriptional level (RNA-KO), the 

dissimilarity between subjects and the evenness for HIV- group was significantly higher than those 

for HIV+ group. These results suggested that the similar gene expression profile of the microbiota 

found in HIV+ subjects would be a reflection of the functional adaptation to the HIV environment. 

Moreover, unique metabolic functions would be preferentially expressed reducing the evenness of 

this group. 

The clustering analysis showed the metatranscriptomes, RNA-KO, were statistically different 

between the HIV+ individuals and the controls (ADONIS test, p-value=0.006) and across all the 

groups (ADONIS test, p-value=0.001) (Figure 6.3a). In the LEfSe analysis (Figure 6.3b), we 

observed that HIV-associated microbiota showed a significantly higher abundance of transcripts 

related to the infection diseases (ko05111) and to stress response (ko04141). Also, we found 

enrichment in pathways related to the metabolism of cofactors and vitamins (ko00730, ko00053), 

biosynthesis of other secondary metabolites (ko00521), folding sorting and degradation of proteins 

(ko03018) and those involved in glycolysis (ko00010). On the other hand, the dysbiotic microbiota 

showed a depletion of pathways related to the signaling adaptation (ko04910, ko04626), protein 

transporters (ko02010, ko02020) as well as pathways related to the metabolism of amino acids 

(ko00280, ko00300, and ko00260). Furthermore, HIV-associated microbiota showed a significantly 
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lower abundance of transcripts related to anti-inflammatory metabolic processes such as butanoate 

metabolism (ko00650), propanoate metabolism (ko00640) or fatty acid metabolism (ko00071). 

These results showed a good congruence with the low abundance of Short Chain Fatty Acid 

(SCFA) in HIV-associated microbiota described in Chapter 2.  

 

Figure 6.3 Comparison of the microbiota gene expression between HIV infected and uninfected subjects. (a) NMDS analysis 

of the KEGG Orthology (KO) gene expression retrieved from the metatranscriptomic sequences. The VU (red), IR (green), INR 
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(orange) and HIV- (blue) subjects are represented within the ellipses which represent 70% of the samples; the group's cluster 

configuration was validated using the ADONIS test (p-value=0.001). (b) The linear discriminative analysis (LDA) effect size LEfSe) 

analysis between the HIV+ (in red) and HIV- (in blue) subjects. LDA scores (log 10) for the most discriminative pathways in 

controls are represented on the positive scale, whereas LDA-negative scores indicate enriched pathways in HIV+ individuals. INR, 

immunological non-responder; IR, immunological responder; VU, viremic untreated. 

We determined that the differentially expressed genes were 49.08 % and 40.61% in HIV+ and HIV- 

groups, being overexpressed 13.89% and 11.90 %, respectively. Figure 6.4 showed the heatmap of 

those metagenomic and metatranscriptomic biomarkers that were significantly over- or under- 

expressed (T-student test for log RNA/DNA abundance ratio different from zero, adjusted p-values 

< 0.05) and also presented a significant difference of the expression level between HIV+ and HIV- 

groups (Wilcoxon test, adjusted p-value ≤ 0.05). We found that in HIV+ individuals while the anti-

inflammatory metabolic processes such as propanoate (ko00640) and butanoate (ko00650) 

pathways were under expressed, the genes related to stress resistance mechanisms (ko00730, 

ko00521 and ko4141) were overexpressed. Thus, the transcriptional profile indicated a pro-

inflammatory microbiota with a preferential expression of those metabolic pathways that attenuated 

the oxidative stress caused by the inflammation. 

Figure 6.4 Heatmap of the relative gene expression of the metatranscriptomic biomarkers. Hierarchical clustering 
representation of the biomarker gene expression ratio (|log10 RNA/DNA| >0). Only those significantly over/infra expressed 
pathways (BH corrected p-value <= 0.05) and that were statistically differentially expressed between HIV+ (red) and controls 
(blue) subjects (Wilcoxon test BH corrected p-value <= 0.05) were included in the analysis. In red is represented those 
biomarkers that were over represented in the HIV+ subjects, meanwhile in blue the ones that were represented in the 
controls. The VU (red), IR (green), INR (orange) and HIV- (blue) subjects were represented as tips of the column’s cladogram. 
The brown to purple gradient represent the relative gene expression level. 
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6.3.4. The active microbiota is distinct in HIV-infected individuals 

The metatranscriptomes were mapped against the Genomeclust database in order to obtain a 

taxonomic assignation for the active microbiota. We observed that the dominant phyla were 

Firmicutes and Bacteroidetes for both the RNA and the DNA datasets, but the relative abundance of 

Firmicutes phylum was higher in the active microbiota (mean 77.68 ± 14.27% Firmicutes and 17 ± 

12.17% Bacteroidetes) (Figure 6.5). The members of the Firmicutes phylum were commensal 

genera of the gut microbiota as Ruminococcus, Eubacterium, Streptococcus, Faecalibacterium, 

Blautia, Leuconostoc, Anaerostipes, Blautia or Roseburia (Figure S12.3.6, Appendix section). In 

the active microbiota, we also found an archaeon species belonging to the genus 

Methanobrevibacter (Figure 6.5). However, the Enterobacteriaceae family, found with the 

metagenomic assignment, was not detected as an active member. 

 

Figure 6.5 Taxonomic abundance. Relative abundance of the most abundant genera from the metagenomic data (mean relative 

abundance > 0.05 and be present in at least 70% of the samples) (a) and the metatranscriptomic data (b) for the VU (red), IR (green), 

INR (orange) and HIV- (blue) subjects. In gray are represented the Euryarchaeota, in pink the Actinobacteria, in brown gradient the 

Bacteroidetes, in blue gradient the Firmicutes and in green gradient the Proteobacteria.  

Moreover, the species profile of the HIV+ subjects was statistically different from the HIV- 

individuals (ADONIS test, p-value=0.005), being the genera Prevotella (LEfSe p-value=0.007), 
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Acidaminococcus (p-value=0.017), Coprobacillus (p-value=0.01) and Streptococcus (p-

value=0.037) differentially increased in the active HIV-associated microbiota. On the other hand, 

Bacteroides, Parabacteroides, Odoribacter, and Alistipes appeared as depleted genera in the active 

dysbiotic bacterial community. 

6.3.5. Microbial metabolism of dietary tryptophan and choline 

The degradation of the essential amino acid, tryptophan, in mammals is mainly carried out through 

the aerobic kynurenine pathway but in prokaryotes, it has only been described in few aerobic 

bacteria. In order to find a group of bacteria capable of metabolizing tryptophan via the kynurenine 

pathway, we conducted a sensitive search of remote gene homologs and species that could contain 

this pathway in the metagenome and metatranscriptome data. We found, in very low abundance, the 

gene and transcripts of three of the five steps of the metabolic route (Figure 6.6a). However, 

neither the gene content nor the transcript abundance was statistically different among the groups 

(Kruskal-Wallis test, p-value > 0.1). The missing enzymes were those that catabolize oxygen-

dependent reactions such as the enzymes of the first step, indoleamine 2,3-dioxygenase (IDO1) or 

the tryptophan 2,3-dioxygenase and the enzyme, the 3-hydroxyanthranilate 3,4-dioxygenase, that 

catabolize the 3-hydroxyanthranilate in amino-3-carboxymuconate semi aldehyde. Neither genes 

nor expression was found for the degradation of the 3-hydroxyanthranilate. Thus, this metabolite 

could only be transformed in 3-methoxyanthranilate by a methylation reaction catalyzed by a wide-

range of bacterial or human methyltransferases (Figure 6a). As well, the species that were able to 

perform the degradation of the tryptophan via the kynurenine pathway were a minor bacterial group 

belonging mainly to Proteobacteria phylum (Table S12.3.5, Appendix section). More importantly, 

none of these species correlates significantly with the Kynurenine/Tryptophan ratio (Table S12.3.5, 

Appendix section). 

The anaerobic gut environment would favor the non-oxidative degradation of tryptophan in indole 

and derivatives via bacterial tryptophanase. These catabolites play a crucial role in gut immunity 

and in mucosa homeostasis via aryl hydrocarbon receptor (AhR) promoting anti-inflammatory 

processes [149]. We have investigated the gene and transcripts content involved in the tryptophan 

fermentation in HIV+ and HIV- microbiota (Figure 6.6b). We found the abundance of transcription 

products was 100 times higher than those of the genes in both groups, indicating an overexpression 

of this pathway. Intriguing, the expression level of the tryptophanase gene was higher, although not 

significant, in HIV- subjects than in HIV+ (HIV- 2.56/0.78 vs HIV+ 2.212/0.741, p-value=0.2). 
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These results suggested an impaired expression of the tryptophanase gene would have repercussions 

in the gut inflammation.  

The trimethylamine (TMA) is a bacterial metabolite of the choline fermentation via choline TMA-

lyase, that is converted in the liver to trimethylamine-N-oxide (TMAO), being both metabolites 

related to cardiovascular disease and atherosclerosis in both the general population [325] and HIV-

infected subjects [459]. We looked for the genes and transcripts of the choline catabolism in the 

metagenomes and metatranscriptomes of HIV- and HIV + individuals (Figure 6.6c). We did not 

find significant differences among the groups for cutC gene (Choline TMA Lyase) (p-value=0.65) 

and cutD gene (Choline TMA−Lyase activating protein) (p-value=0.55) from the metagenome and 

metatranscriptome data set, although both genes were overexpressed in all the individuals. We 

found few gene homologous that catabolize the transformation of L-carnitine into TMA. 
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Figure 6.6 Metabolism of dietary tryptophan and choline. Remote homology detection (hmmsearch e-value < 0.001 and Blastp 

alignment coverage >= 0.7 and e-value < 0.00001) from the (a) metabolic routes of the IDO1 tryptophan catabolism, (b) the 

tryptophan fermentation into indole and (c) the fermentation of L-carnitine and choline to TMA. In cyan are represented the enzymes 

and the reaction flow arrows from one metabolite to the next one in the metabolic pathway. The bar plots represented the relative 

abundance of the gene and transcripts for each of the enzymes within each step from the VU (red), IR (green), INR (orange) and 

HIV- (blue) subjects. The statistical test between the relative abundance of the four groups of the cohort was carried by the Kruskal-

Wallis test. In pink is represented the metabolite 3-Hydroxyanthranilate which has been previously reported in the work of Vujkovic 

[285] and Serrano-Villar [405]. 
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6.3.6. Ecological and functional networks of the dysbiotic bacterial 

community 

In order to study the ecological interactions in dysbiotic bacterial community, we obtained a co-

occurrence network, calculating a pairwise correlation matrix, using the Sparcc tool (p-value < 

0.001 and |rho| > 0.1), for those species whose presence in the cohort were at least of the 70% to 

avoid miss-correlations given a high proportion of zero values [460].The resulting adjacency matrix 

was transformed into a network (see Materials and Methods) in which the nodes correspond to 

species and the edges to positive or negative correlations between the species (Figure 6.7a). We 

first confirmed that the HIV+ network presented the properties of the biological network for the 

connectivity distribution and the small-world effect. The connectivity distribution represents the 

distribution of edge per node and in a biological network fits a power law distribution, meaning that 

few nodes presented a high number of interactions while most nodes possessed sparse connections 

(Kolmogorov Smirnov p-value > 0.1, Table S12.3.6, Appendix section). The small world effect 

was reflected in the low shortest path mean (4.07) (Table S12.3.6, Appendix section) indicating 

that the network presented a high number of clusters with shortcuts between them. We also found a 

high connectivity degree (average of the numbers of edges per species) but the negative interactions 

were more abundant than the co-occurrence relationships (43% positive vs 57% negative 

connections). 

Modularity is another important characteristic of the biological networks. The modules or clusters 

represent link-dense areas separated by regions of low connectivity. Species within a module are 

more tightly linked than they are to species in other modules. The modularity coefficient of HIV+ 

network was 0.428 which implies a high degree of modularity. We used the “walktrap community” 

algorithm from the Igraph R package to define modules into the total network. We determined 20 

modules that contained at least three species each but the module size arrived at 34 (Figure 6.7b). 

The modules were dominated by Firmicutes and Bacteroidetes phyla and to a lesser extent by 

Actinobacteria and Proteobacteria. Interestingly in the modules in which there are members of the 

Actinobacteria phylum, there are not often species of the Proteobacteria, indicating competence 

between these two phyla.  

The betweenness centrality of a node or species is the measure of its relevance in the community 

structure allowing identifying the highest connected ones that were referred to as hub-species. 

Besides different commensal bacteria as Bacteroides or Eubacterium, Prevotella copri, HIV+ 
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biomarker, was stated as important hubs of the HIV+ community (Figure S12.3.7a, Appendix 

section). We also found Myroides odoratimimus, a bacterium that causes infection in 

immunocompromised patients [461–463], as a hub-species. Complementary to the betweenness 

centrality, the eigenvector centrality measures the importance of a node based on the closeness to 

highly connected ones. We found the eigenvector centrality coefficient revealed more hub-species 

(Figure S12.3.7b, Appendix section) than the ones observed with the betweenness centrality 

because there are bacteria that possessed direct edges with the nodes highly connected. Thus, the 

eigenvector centrality hub-species encompassed all the hub-species retrieved from the betweenness 

centrality and included several species related to the SCFA producers and others commensal species 

of the human microbiome (Figure S12.3.7b, Appendix section). Moreover, we found a significant 

positive correlation between the hub-species and the LDA score of the biomarkers (Figure S12.3.8, 

Appendix section). 

We also applied a network approach to the bacterial metabolism of the HIV dysbiotic microbiota. 

Thus, we took all the metabolic pathways for the HIV+ groups predicted by the HUMAnN pipeline 

[440] and with the enzymatic reactions we estimated a directed enzymatic metabolic network in 

which nodes (3700 nodes) represented enzymes and those enzymes that catalyze successive 

reactions (product/substrate) were connected by directed edges (31725 edges) (Figure S12.3.9, 

Appendix section). We found the enzymatic network possessed the biological network properties 

such as the small world effect and the node power law distribution (Table S12.3.6, Appendix 

section). Moreover, it showed a high degree of compartmentalization reflected into the high 

modularity value and into the fragmentation index as it has been found in others metabolic network 

studies [4, 5] (Table S12.3.6, Appendix section). To assess the relevance of the enriched and 

depleted KO biomarkers (Figure S12.3.3, Appendix section) found for the HIV+ microbiota, we 

located them in the enzymatic metabolic network. We found their degree and eigenvector centrality 

indexes were significantly higher than those of the rest of enzymes within the network (Figure 

S12.3.10, Appendix section). 
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Figure 6.7 Co-occurrence ecologic network. (a) Co-occurrence network inferred from the correlation matrix obtained using the 

SparCC algorithm (two-sided pseudo p-value ≤ 0.001 based on bootstrapping of 1000 repetitions < 0.01 and a coef > 0.1) with those 

species that were present in at least 70% of the samples. The nodes represent species belonging to the Firmicutes (cyan), Bacteroides 

(orange), Actinobacteria (pink) and Proteobacteria (green) phylum. The size of the node was scaled to the logarithm of its degree 

centrality and only the nodes belonging to the quantile 95 were labeled. The edges represent the positive correlations (blue) and the 

negative correlations (red) for each pair of species. The color polygons represent one of the cluster communities defined by the 

walktrap community algorithm. (b) Barplot representation of the phylum of each species for the communities defined by the walktrap 

community algorithm. 
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6.3.7. HIV-associated dysbiosis and host health: Bayesian network 

In order to explain the overall effect of the HIV-associated dysbiosis into the deterioration of the 

host health, we integrate the data from metagenomics (DNAseq), metatranscriptomics (RNAseq), 

metabolomics [376] and clinical variables of the HIV+ subjects into a Bayesian Network (BN). 

Briefly, BN is a graphic probabilistic model in which the nodes correspond to random variables and 

the arcs represent conditional dependencies [341]. The network contained 190 nodes and 548 edges 

(Figure S12.3.11, Appendix section) being the clinical variables and to a lesser extent the pathways 

retrieved from the metagenomic data those that showed a higher degree connectivity with the rest of 

the nodes (Figure S12.3.12a, Appendix section). The adaptive immunity markers, CD4+ T-cells 

and the %CD4+HLADR+CD38+ T-cells, the bacterial translocation marker, BPI, and the thymic 

function showed a high degree of connectivity (Table S12.3.7, Appendix section). The metabolic 

pathways that presented a high degree of direct links (Table S12.3.7, Appendix section) were 

pathways related to xenobiotics biodegradation and metabolism category as terpenoid backbone 

biosynthesis (ko00900) and aminobenzoate degradation (ko00627). Other pathways related to the 

resistance to the oxidative stress as nicotinate and nicotinamide metabolism (ko00760) and alanine 

aspartate and glutamate metabolism (ko00250) showed a high connectivity degree. Moreover, the 

expression of the metabolic pathway related to the butanoate metabolism (ko00650) (hereafter 

butanoate metabolism-RNAseq) also shows a high number of direct links. Complementary to the 

direct degree of connectivity of a node, the betweenness centrality was used to estimate the 

relevance of a node within the network. The betweenness centrality analysis showed that most of 

the central nodes (quantile 95) of the BN are related to Prevotella species such as P. sp. Oral taxon 

299, P. melaninogenica and P. salivae, to metabolic pathways related to the amino acid metabolism 

category (ko00400, ko00280) and to the resistance to the oxidative stress (ko00250). 

An interesting propriety of BN is that it could be dissected into MB. MB of a node contains all the 

variables needed to predict the behavior of that node. In order to identify the nodes that are related 

to a large number of variables, we estimate the MB size of all the variables within the network. We 

found that the MB of the nodes corresponding to metabolic pathways obtained from the DNAseq 

and RNAseq datasets have the higher size (Figure S12.3.12b, Appendix section) with a 

considerable number of clinical variables (Figure S12.3.12c, Appendix section). The MB of the 

butanoate metabolism-RNAseq (hereafter butanoate MB) appeared as the one which included a 

greater number of nodes, bearing 89 nodes of which 16 were clinical variables. Thus, to assess the 
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immune response due to the HIV-associated dysbiosis, we deeply analyzed the butanoate MB 

(Figure 6.8). We observed the butanoate metabolism-RNAseq possessed direct links with systemic 

markers related to inflammation (hs-CRP), bacterial translocation (BPI), endothelial dysfunction 

(ADMA) and coagulation (D-dimers). We also detected significant negative correlations with Nadir 

CD4+ T-cells counts but significant positive correlations with other metabolic pathways, retrieved 

from the RNAseq, related to the propanoate (ko00640) and fatty acids metabolism (ko00071). We 

found that P. copri, a central node, correlated positively in the HIV-infected subjects with important 

HIV+ associated pathways related to resistance to oxidative stress (ko00250, ko00900) and the 

metabolism of amino acids (ko00400, ko00473) and correlated negatively with the lipoic acid 

metabolism (ko00785) which is an antioxidant pathway. The CD4+ T-cell counts showed high 

connectivity but most of the links were with different types of unknown metabolites. The bile salt, 

muricholic acid, that was overrepresented in the HIV subjects showed positive correlations with the 

CD4+ T-cell counts. We also found that the oleanane triterpene-related metabolite and different 

membrane-structural lipids showed significant negative correlations with the immune activation 

markers, CD8+HLA−DR+CD38+ T−cell counts, and %CD4+HLA−DR+CD38+ T−cell counts. 

Interestingly the IR group was the one that possesses the highest abundance of such metabolites 

(Kruskal-Wallis p-value=0). 
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Figure 6.8 Butanoate Markov Blanket. A subgraph of the “multiomic” BN composed by the metagenomic (blue nodes), 

metatranscriptomic (green nodes), metabolomic (pink circle nodes) and the clinical variables (golden square nodes) from the HIV+ 

subjects. The data from the metagenomic and metatranscriptomic include the information of the relative abundance of the species 

(circles) and the pathway (squares). The labels of the nodes represent if the variable is overrepresented in the HIV- subjects (blue 

labels) or the HIV+ subjects (red label). Arrows indicate conditional dependencies between variables. The Spearman correlation 

coefficient is represented by the arrow's color, blue for a significant positive (PH adjusted p-value < 0.1), red for a significantly 

negative correlation (PH adjusted p-value < 0.1) and gray for a non-significant correlation.  
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6.4. Discussion 

The HIV-associated dysbiotic microbiota has been widely studied at the structural level and related 

to the human health by identifying associations between bacterial species and systemic markers of 

innate and adaptive immunity [280,281,284,285,287,288,290,291]. However, the knowledge on the 

metabolic shifts associated with the altered microbiota and its effects on the human health is scarce. 

To gain insight into the functional consequences of HIV-associated dysbiosis, we determined the 

gene content by metagenomics and its expression level by metatranscriptomics of the gut 

microbiome in HIV patients. 

The HIV+ microbial community presented differential gene content with unique metabolic 

functions in congruence with our previous metagenomic study based on 454 shot-gun sequencing 

(Chapter 1) and with the recently published results derived from the metabolome and proteome data 

[376,405]. The deleterious effects of the HIV infection on the immune system and gut mucosa 

result in an inflammatory environment with the production of highly reactive oxygen metabolites. 

Thus, the dysbiotic microbiota presented a significant high abundance of the pathways and 

metabolites related to the resistance to the oxidative stress. On the other hand, as the HIV-

associated microbiota is characterized by a large proportion of Gram-negative bacteria (as shown in 

Chapters 1,2 and [280,281,283,391,464]), an enrichment in metabolic functions as LPS biosynthesis 

was found in the metagenomic analysis. Also, the genes involved in pathogenesis processes were 

more abundant in the altered microbiota as occurred in another inflammatory disease [105]. 

However, the HIV infection produced a decrease in the functional diversity respect to the health 

status but no change in the diversity parameters has been detected for the microbiota composition. 

Besides the characteristic imbalance between Prevotella and Bacteroides genera of the HIV-

associated microbiota, the species biomarkers for the dysbiosis, mainly Prevotella and 

Acidominococcus species, presented the genetic potential for the dysbiotic metabolism. 

A deeper understanding of the functional changes in the microbiome in response to HIV infection 

requires a metatranscriptomic analysis to gain information on the gene expression of the metabolic 

pathways. Thus, the homogenous gene content observed in the metagenomic dataset was subjected 

to a transcriptional regulation giving a more variable functional profile. Curiously, in both group, 

most of the bacteria expressing genes belong to Firmicutes phylum, indicating that the active genera 

(Streptococcus, Leuconostoc, Anaerostipes, and Blautia), although no abundant, would play an 
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important role in the metabolism. Moreover, Methanobrevibacter smithii, a low abundant archaeon, 

emerged as an active member of the microbiota in agreement with a previous study [407]. M. 

smithii is the predominant archaeon in the human gut and plays an important role in the efficient 

digestion of polysaccharides by consuming the residual hydrogen derived from bacterial 

fermentation. The HIV infection was also reflected in the gene expression profile which was shaped 

forward the metabolic functions allowing the adaptation to the inflammatory environment, being 

Prevotella, Acidaminococcus, Coprobacillus and Streptococcus the transcriptional active genera of 

the HIV-associated microbiota. Although the dysbiotic microbiota presented a high abundance of 

genes related to the lipopolysaccharide biosynthesis, no differential expression was found. LPS 

constitutes the external part of the outer membrane of the Gram-negative bacteria and the gene 

expression of the LPS biosynthesis pathway would respond to bacterial growth rather than to the 

inflammatory environment. But, LPS as a microbe-associated molecular pattern (MAMP) can be 

recognized by Toll-like receptor 4 (TLR4) of different immune cells that promote the inflammatory 

response. Then, the inflammation induced by HIV infection could be enhanced by the high number 

of pro-inflammatory bacteria. A similar scenario has been described in rheumatoid arthritis by 

Scher et al., (2013) [106]. Although no clear pro-inflammatory responses of P. copri have been 

found [282], this bacteria has been associated with inflammation in different studies 

[280,281,283,288,391,464,465]. In turn, this dysbiotic microbiota overexpressed genes related to 

the resistance to oxidative stress gaining a selective advantage. Another important factor in the 

maintenance of the inflammation would be the depletion of anti-inflammatory bacteria as 

Bacteroides [281] and the decrease of those species related to SCFA biosynthesis (Chapter 2). 

Striking, the dysbiotic metagenome presented the genes involved in butanoate and propanoate 

metabolism but they were under-expressed in HIV-associated microbiota.  

The IDO1 involved in the tryptophan catabolism through kynurenine pathway has been correlated 

with epithelial barrier disruption and bacterial translocation in HIV infection [209,279]. Vujjkovick-

Cvijin et al., (2013) [285] suggested, based on an indirect approach, an important role of 

Pseudomonas genus promoting the immunosuppressive response by metabolizing the 3-

hydroxyanthranilic acid through the kynurenine pathway. Nevertheless, we found neither IDO1 

gene nor its expression in the bacterial metagenome or the metatranscriptome from HIV-infected 

individuals. However, Serrano-Villar et al., (2016) [405] recently described a statistical increase in 

the abundance of the 3-hydroxyanthranilic acid in the gut metabolome of HIV patients. Taking into 

account that the human IDO1 is up regulated in HIV infection [279] a metabolic complementation 
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of the bacterial pathway could be occurred giving the accumulation of 3-hydroxyanthranilic acid. 

Also, a microbial-mammalian co-metabolism has been described for the choline fermentation [466]. 

A recent study on macaques infected by SIV showed an association between the depletion of 

Lactobacillus genus and the increase of IDO1 activity [467]. In congruence with others works 

[280,281,284,285,291,353,405,406], we did not find a shift of this genus in HIV-associated 

microbiota but the observed enrichment of the active Streptococcus genus in the dysbiotic 

microbiota could be the responsible for IDO1 induction as occurred in rats [468]. Further studies 

will be needed to address specific host-microbe interactions and which mechanisms are involved. 

In anaerobiosis, the gut microbiota metabolized the tryptophan to indole and derivates as indole-3-

acetic acid (IAA) or indole-3-aldehyde (I3A). These metabolites play a beneficial role for the 

human health activating the aryl hydrocarbon receptor (AhR) and hence increasing interleukin 22 

(IL-22) secretion involved in the maintenance of the barrier integrity. However, unlike Lamas et al., 

[469] results in IBD, the HIV-associated microbiota no showed a differential gene and transcript 

abundance for the tryptophan metabolism.  

The gut microbiota metabolized the choline to trimethylamine (TMA) that is converted in the liver 

to the pro-atherogenic metabolite, trimethylamine-N-N-oxide (TMAO). The microbial enzymes 

involved in the choline catabolism were early described in Desulfovibrio genus [470] but a recent 

study revealed that is widely but unevenly distributed among Proteobacteria, Firmicutes (Clostridia 

and Bacilli), Actinobacteria and Fusobacteria but no homologous gene clusters were found in 

Bacteroidetes phylum [471]. No differences were found in the metagenomes and 

metatranscriptomes for this catabolic pathway between HIV-infected and healthy subjects in 

congruence with the no differential plasma TMAO concentration described previously (Chapter 2).  

The shift of the bacterial composition into the HIV-associated community has been widely studied 

and related to the host health [280,281,284–289,291,353,396,472]. However, the gut microbiome is 

a complex community in which exists several relationships between the microbial species 

[1,414,418,424,473] and that the imbalance of these interactions could be an important factor for 

the dysbiosis establishment and maintenance. The HIV-associated ecological network presented a 

high degree of connectivity with Prevotella copri as one of the most important hub-species. In fact, 

the different discriminative biomarker species appeared as essential in the ecological network 

structure. Moreover, the depleted Bifidobacterium genus was externally located showing a co-

exclusion with Proteobacteria species. Likewise, the KO biomarkers associated with HIV infection, 
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with high centrality degree, were the core of the metabolic network of the dysbiotic community. 

Thus, the HIV infection causes dramatic changes in the metabolic structure of the gut microbiota 

losing and gaining important core-metabolic enzymes. However, in another gut dysbiosis the highly 

abundant enzymes tend to be located at the periphery of the metabolic network [418].  

In the present work, we implemented a multiomic bayesian network to reveal the importance of 

each component within the HIV-associated microbiome. The dissection of HIV-associated BN into 

MB revealed that the metabolic pathways from the microbiome, the total and the expressing 

pathways, were the ones that included more variables into their MB. Thus, the functional potential 

of the microbiome was the most determinant factor to maintain the microbiome structure being 

congruent with the notion of the functional-core [16,21,474] that establishes that any species could 

be lost as long as its functional role can be replaced by a metabolic equivalent species. In this 

context, we observed that the expression of the butanoate metabolism-related genes was an 

important factor in the interplay between HIV-associated microbiome and the host health due to its 

known beneficial effect on the colonocytes [146,475], the mucin production [169], the tight-

junction integrity [167], the differentiation of T-regulatory cells [176,177] and the regeneration of 

the epithelial barrier [476]. In the butanoate MB, we also detected associations between the 

important taxonomic biomarker, P. copri, and several pathways increased into the HIV+ condition 

such as the alanine aspartate and glutamate metabolism which would confer resistance to the 

oxidative stress.  

We observed that the microbial metabolome also interacted with different inflammation markers in 

the butanoate MB. Particularly, the immune activation markers, %CD8+HLA−DR+CD38+ T−cells 

and %CD4+HLA−DR+CD38+ T−cells correlated negatively with several membrane-structural 

lipids as triterpenoid related component, the glycerolipid related component, and the cholesterol 

glucuronide related metabolite. All these components could be involved in the structure of the 

cellular membrane. Considering the fact that all those metabolites were preferentially enriched in 

the IR group, the ART-responder group, it could be possible that the bacterial members of gut-

microbiota acted as a transporter of those membrane precursors to the enterocytes facilitating the 

recovery of the gut environment.  

Finally, we observed a metabolite similar to the muricholic acid correlated positively with CD4+ T-

cell counts. Moreover, it has been shown that the muricholic, induced the systemic CD4+ T-cells 

[477–481]. This metabolite is a potent farnesoid X receptor (FXR) antagonist [482]. The FXR 
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mediates anti-inflammatory and immunomodulatory responses as well as bacterial overgrowth 

control and mucosal integrity and permeability maintenance in the small intestine [483,484]. On the 

other hand, the accumulation of bile acids stimulates the secretion of pro inflammatory molecules 

[477,483,484] and generated tissue damage giving an oxidative stress environment [483–487]. The 

increase of such metabolite in the HIV subjects is congruent with the proinflammatory state 

promoted by the dysbiotic microbiota; however, its positive correlation with the increase of the 

CD4+ T-cells is incongruent with the potential healthier state given the immune recovery. The 

muricholic acid metabolite is statistically increased in the IR group, followed by the VU and the 

INR group, the group with the lower CD4+ T-cells counts and probably the group in which the 

virus has caused more damage into the GALT. The Muricholic acids are a group of bile acids, this 

makes sense with the fact that in enteropathy that afflicts HIV-infected individuals it has been 

observed the malabsorption of bile acid [256,257,488]. The severe damage caused by the HIV 

infection in the INR group could be the reason why primary bile acids, the putative precursors of 

the related muricholic acid metabolite, are not been absolved by the mucosa and consequently its 

low abundance. However, deeper metabolome analysis is needed to identify the metabolites that 

interacted with the adaptive immune system. 
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7. GENERAL DISCUSSION 

The HIV infection causes a disruption of the GALT leading the dysbiosis of the microbial 

community that cannot be restored by the ART. Moreover, the infection time would affect the 

diversity of the microbiota and the ecosystem stability. This dysbiotic community is enriched in 

Gram-negative species which are adapted to the inflammatory environment of the gut produced by 

HIV infection. Then, the gene expression and metabolic profiles from the HIV-dysbiotic 

microbiome were characterized by an increase of genes related to infectious diseases and to the 

oxidative-stress and by a depletion in the expression of genes related to anti-inflammatory 

metabolic pathways such as butanoate metabolism, propanoate metabolism or fatty acid 

metabolism. These results showed congruence with the low abundance of SCFAs and the decrease 

of butyrate-producer species.  

Prebiotic administration produces in the VU group an increase of the F. prausnitzii related to the 

production of the butyric acid, which in turn possesses negative correlations with the bacterial 

translocation and the systemic inflammation. This indicates that the prebiotic administration, 

probably by bacteria-cross-feeding, stimulates the growth of butyrate-producer species such as F. 

prausnitzii and Lachnospira sp. Butyrate has been shown to contribute to maintaining homeostasis 

in the gut by promoting immunotolerance to commensal bacteria via the downregulation of 

lipopolysaccharide-induced proinflammatory mediators [175], in that sense the increase of the 

butyrate production may improve the GALT integrity and in consequence reducing the bacterial 

translocation and the systemic inflammation. It is important to highlight that such species might be 

viable targets for interventions. 

The Bayesian network has shown the butyric metabolism is the factor with the major influence on 

the growth and metabolism of the bacterial population and on the interactions with the host. It is 

consistent with previous studies [149–153] which establish the important role of this SCFA in the 

intestinal homeostasis, immune regulation and in the control of the commensal microbiota. 
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Although, further longitudinal studies should be performed increasing the number of participants; in 

the present thesis, we describe in a holistic way the fundamental role of the microbiome in the 

pathogenesis of HIV infection. More importantly, we suggest that the microbiota may be a new 

target for clinical interventions in patients infected with HIV and proposed putative candidates for 

been viable targets for such interventions. 
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8. GENERAL CONCLUSIONS 

1. The intestinal microbiota of HIV+ individuals presents a clear dysbiosis at taxonomic level. 

This dysbiosis is characterized by an increase of Gram-negative species mainly belonging to 

the Prevotella genus and pro-inflammatory species related to the genera Succinivibrio, 

Desulfovibrio and Fusobacterium and by a depletion of Bacteroides genus and the 

Faecalibacterium, Lachospira and Roseburia butyrate-producer genera. 

2. The HIV+ gut-associated microbiota is enriched in genes related to the Gram-negative 

bacteria, such as the presence of genes from the LPS biosynthesis pathway as well as genes 

related to pathogenic pathways and the oxidative stress. 

3. The long-term effective ART response does not recover a healthy microbiome composition. 

HIV+ ART positive responder shows a microbial composition similar to the other HIV+ 

groups. 

4. In the ART responder group, the systemic immune activation, inflammation, and bacterial 

translocation are related to the Gram-negative HIV-dysbiosis. 

5. The VU group present bacterial diversity similar to the one observed in the HIV- controls. 

6. The prebiotic has an effect on a community whose original configuration is receptive to the 

nutritional intervention, this was seen in the VU group which the shortest median exposure 

to HIV. 

7. The prebiotic intervention increases the butyrate levels by means of the increase of SCFA-

producer species such as Faecalibacterium sp. The increment of the levels of the butyrate is 

related to the decrease of the bacterial translocation and systemic inflammation. 

8. HIV-infection leads to a functional dysbiosis detected by metagenomic, metatranscriptomic 

and metabolomic approaches. The functional dysbiosis is congruent with the taxonomic 

alteration in a sense that the bacteria species that are overgrowth in the HIV+ subjects 
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possess the metabolic pathways enriched in the HIV-associated microbiome. This indicates 

that the dysbiosis is led by a complete set of bacteria rather than by a metabolic shift into 

their expression. 

9. The Gram-negative-enriched HIV-microbiome promotes a proinflammatory environment, 

which disrupts the GALT integrity allowing the bacterial translocation and the consequent 

systemic immune activation and inflammation. This was observed in the metagenomic, 

metatranscriptomic, metabolomic and the 16S rDNA amplicons. 

10. Although the dysbiotic microbiota presented a high abundance of genes related to the LPS 

biosynthesis, no differential expression was found. LPS constitutes the external part of the 

outer membrane of the Gram-negative bacteria and the gene expression of the LPS 

biosynthesis pathway would respond to bacterial growth rather than to the inflammatory 

environment. 

11. The HIV-dysbiotic community is depleted in the expression of genes related to anti-

inflammatory metabolic pathways such as butanoate metabolism, propanoate metabolism or 

fatty acid metabolism. 

12. The ecological network of the HIV gut associated-community shows “biological network” 

properties. This implies that this dysbiotic-community is able to conform a stable-

community which is associated with the deterioration of the patient's health. 

13. The species and genes, enriched or depleted in the HIV, are important components of the 

ecological and metabolic networks, respectively. This first indicates that the species that are 

overrepresented into the HIV-condition heavily influence the rest of the bacteria community. 

Second, the HIV infection causes a dramatic change in the metabolic structure of the gut 

microbiota losing and gaining important core-metabolic enzymes. 

14. The functional potential of the microbiome was the most determinant factor to maintain the 

microbiome network-structure being congruent with the notion of the functional-core that 

establishes that any species could be lost as long as its functional role can be replaced by a 

metabolic equivalent species. 

15. The BN analysis shows that the expression of the butanoate metabolism was the factor that 

most influence the immune system. This is congruent with the current literature that shows 
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the beneficial effects of the butyrate over the host health and with the positive effect of 

butyrate in the reduction of the systemic immune activation, inflammation and bacterial 

translocation shown in Chapter 2. 
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9. RESUMEN EN ESPAÑOL 

Introducción 

Desde la aplicación de la Terapia Antirretroviral de Gran Actividad (TARGA) la supervivencia de 

los sujetos infectados con el virus de la inmunodeficiencia humana (VIH) se ha incrementado 

considerablemente; sin embargo, su expectativa de vida es todavía 10 años menor a la de la media 

de la población. Esta reducción es debida a enfermedades no relacionadas con el síndrome de 

inmunodeficiencia adquirida (SIDA). Entre las principales causantes de este descenso se encuentra 

el aumento de la incidencia de problemas cardiovasculares. Recientemente, se ha descrito que la 

activación inmune persistente y la inflamación crónica son dos factores implicados en la 

morbimortalidad de estos pacientes.  

Un acontecimiento central en la fisiopatología del VIH es la destrucción, en fases muy tempranas de 

la infección, de los linfocitos Th17 del tejido linfoide asociado a mucosa (TLAM), órgano en el que 

residen alrededor del 90% del acervo de linfocitos totales. Junto al daño del TLAM tiene lugar 

apoptosis de las células epiteliales y la pérdida de la integridad de la mucosa que conduce a una 

translocación bacteriana anormal que se cree responsable de la inmunoactivación sistémica 

observada en los sujetos con VIH. Fisiológicamente las células Th17 juegan un papel crucial en la 

defensa frente a la translocación bacteriana, ya que estimulan la proliferación de células epiteliales 

y la expresión de defensinas antibacterianas, al mismo tiempo que promueven la quimiotaxis de 

neutrófilos hacia el TLAM para eliminar los productos bacterianos. Por tanto, la pérdida masiva de 

linfocitos Th17 determina probablemente el aumento de translocación bacteriana observado en la 

infección por VIH. Recientemente, por otro lado, se ha observado que el cambio en la composición 

de la microbiota intestinal asociada a la infección por el VIH está relacionada con la pérdida del 

TLAM, lo que podría, a su vez, ser una de las principales causas de la inflamación sistémica.  

Objetivos 

El objetivo principal de la presente tesis es caracterizar la comunidad microbiana intestinal 

disbiótica tanto en su composición como en su función, así como estudiar su efecto en la 
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immunoactivación sistémica. Como objetivo secundario, abordaremos el estudio del efecto de una 

intervención nutricional dirigida a modificar la composición bacteriana intestinal hacia una 

comunidad menos inflamatoria. 

Materiales y métodos 

Para estudiar el efecto de la infección del VIH sobre la microbiota intestinal humana, se reclutó una 

corte de sujetos HIV+ sin TARGA, sujetos HIV+ con respuesta positiva al TARGA, sujetos HIV+ 

con respuesta negativa al TARGA y sujetos sanos como controles. Adicionalmente, se realizó una 

intervención nutricional de seis semanas de 5 g de galacto-oligosacáridos de cadena corta 

(Purimune®), 10 g de fructooligosacáridos de cadena larga (Orafti-HP® y Actilight®) y 5 g de 

glutamina (Nutrición Médica®) y placebo (20 g de maltodextrina). De cada integrante de la cohorte 

se recogieron muestras fecales y sanguíneas, antes y después de la intervención nutricional, con el 

fin de poder caracterizar la microbiota intestinal, así como medir marcadores de activación inmune, 

inflamación sistémica y translocación bacteriana. La microbiota intestinal se caracterizó recurriendo 

a técnicas de metagenómica, metatranscriptómica y meta-metabolómica.  

Para cada una de las muestras sanguíneas se obtuvieron distintos marcadores de activación inmune 

sistémica innata, adaptativa, translocación bacteriana, así como un análisis completo de la química 

sanguínea de cada uno de los participantes de la cohorte. La medición de dichos marcadores se 

llevó a cabo en colaboración con el Hospital Universitario Virgen del Rocío (Sevilla, España) y el 

Departamento de Enfermedades Infecciosas del Hospital Universitario Ramón y Cajal (Madrid, 

España) 

De las muestras fecales se extrajo el ADN y el ARN bacterianos para posteriormente poder 

secuenciarlo por medio de la combinación de las tecnologías de pirosecuenciación (Roche GS FLX 

y química de Titanium) y secuenciación de cadenas pareadas de Illumnina (Miseq química V3). Del 

ADN bacteriano se amplificó el gen ribosómico 16S con el fin de poder llevar a cabo luego la 

caracterización taxonómica de la comunidad bacteriana correspondiente. La secuenciación masiva 

fue realizada en el área de Genómica y Salud de la Fundación para el Fomento de la Investigación 

Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) 

En colaboración con el Centro de Metabolómica y Bioanálisis (CEMBIO de la, Universidad CEU 

San Pablo (Madrid, España), obtuvimos el perfil metabólico de las comunidades bacterianas 

residentes del intestino humano. Los meta-metabolomas se determinaron por medio de la extracción 
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de los metabolitos totales para, posteriormente, separarlos mediante la aplicación de una 

cromatografía líquida de alta eficacia acoplada a un espectrómetro de masas ESI-QTOF. Los 

metabolitos fueron identificados por medio del servidor web METLIN, las bases de datos 

Lipidomics Gateway database y KEGG. 

Del mismo modo, en colaboración con el Departamento de Tecnología Alimentaria del Centro 

Agrotécnico, Universidad de Lleida (Lleida, España), obtuvimos las mediciones de los ácidos 

grasos de cadena corta (AGCC). 

La anotación funcional de las secuencias de metagenomas se realizó mediante el ensamblaje de los 

metagenomas, recurriendo al programa Ray-Meta. La predicción de los marcos de lectura abiertos 

(MLA) la determinamos recurriendo al programa MetaGeneMark.  

De forma similar, los metatranscriptomas se ensamblaron recurriendo al programa Trinity y sus 

MLA se predijeron por el programa TransDecoder.LongOrfs. A partir de los MLA de los 

metagenomas y de los metatranscriptomas creamos una base de datos no redundante de MLA 

aplicando el programa USEARCH. Esta base de datos se comparó, recurriendo al programa 

rapsearch2 con la base de datos funcionales KEGG y la base de datos de resistencias a antibióticos 

CARD. La cuantificación de cada MLA se llevó a cabo de forma separada para metagenomas y 

metatranscriptomas, recurriendo en el primer caso al programa soap.coverage, y el RSEM para el 

segundo. 

La anotación taxonómica de las secuencias se realizó utilizando el mapeo de las secuencias de los 

metagenomas y metatranscriptomas contra una base de datos no redundante de genomas de 

referencia de especies residentes del microbioma humano. Para el caso de las secuencias de los 

amplicones del gen ribosómico 16S recurrimos al paquete de programas de análisis ecológico 

Qiime. 

La identificación de los biomarcadores relativos a las condiciones HIV+ o HIV-, así como los 

subgrupos correspondientes de los HIV+, se identificaron por medio del programa LEfSe, de forma 

indistinta para las anotaciones taxonómicas y funcionales. 

Recurrimos a Qiime y el programa de análisis estadístico R (v.3.3) para llevar a cabo análisis de 

diversidad alfa y beta. Así mismo, el programa de análisis estadístico R se utilizó para realizar los 

análisis de correlación, regresión lineal, pruebas de rango, los modelos generalizados lineales, las 
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redes bayesianas, las redes ecológicas y funcionales, así como el resto de los análisis estadísticos de 

la presente tesis. 

Resultados y discusión 

La alteración de la mucosa intestinal provocada por el VIH genera una disbiosis que se detecta a 

partir de la comparación de los datos provenientes de la metagenómica, la metatranscriptómica y la 

meta-metabolómica en las diferentes cohortes del estudio. Del mismo modo se observa una 

correlación con las variables clínicas de activación inmune e inflamación sistémica. La disbiosis se 

caracteriza por el incremento de bacterias Gram-negativas capaces de resistir el estrés oxidativo 

generado por la inflamación intestinal. Varios compuestos metabólicos de esta comunidad 

bacteriana, tales como los lipopolisacáridos de membrana, son potentes activadores de la respuesta 

inmune e inflamatoria. Por otro lado, varias especies bacterianas conocidas por tener un papel 

antinflamatorio o ser importantes productoras de AGCC ven disminuida su abundancia en el 

microbioma asociado a los pacientes infectados por el VIH. La pérdida de dichas especies se ve 

reflejada en una reducción de la concentración de los AGCC en el intestino. Los AGCC, en especial 

el ácido butírico, poseen efectos beneficiosos sobre la salud del hospedador. Estos ayudan a la 

producción de mucina, la integridad de las uniones ocluyentes, la diferenciación de las células T 

reguladoras y la regeneración de la barrera epitelial.  

La disbiosis asociada al VIH no se ve aminorada por el uso de TARGA y la incorporación del 

prebiótico mostró un efecto moderado en la mayoría de los participantes. Sin embargo, dicho efecto 

fue más notorio en los individuos del grupo HIV+ sin TARGA. La administración del prebiótico 

mostró un incremento en la abundancia de especies productoras de ácido butírico junto con una 

mayor producción de este ácido graso. Este incremento correlacionaba con una reducción en la 

translocación bacteriana y la reducción de los marcadores de inflamación sistémica.  

El análisis de redes reveló que la comunidad bacteriana asociada al VIH muestra propiedades de 

"red biológica". Esto implica que esta comunidad disbiótica es capaz de conformar una comunidad 

estable que está asociada al deterioro de la salud del paciente. Adicionalmente, las especies y genes 

que se han enriquecido o perdido en la comunidad bacteriana intestinal asociada al VIH son 

componentes fundamentales que mantienen la estructura de las redes ecológicas y metabólicas 

correspondiente. Así, las especies que están sobrerrepresentadas en la condición del VIH influyen 

fuertemente en el resto de la comunidad de bacterias. Por otro lado, la infección del VIH causa 
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cambios dramáticos en la estructura metabólica del microbioma intestinal perdiendo y ganando 

importantes enzimas metabólicas. 

Aunque se deben realizar estudios longitudinales adicionales, así como incrementar el tamaño 

muestral de participantes, en la presente tesis mostramos en forma holística el papel fundamental 

que el microbioma intestinal tiene en la patogénesis de la infección por el VIH. Más importante aún, 

proponemos, por un lado, que la microbiota puede ser objeto de intervención clínica en pacientes 

infectados con el VIH y, por otro, sugerimos posibles candidatos bacterianos probióticos capaces de 

dar respuestas viables en las correspondientes intervenciones. 
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10. RESUM EN VALENCIÀ 

 

Introducció 

Des de l'aplicació de la Teràpia Antiretroviral de Gran Activitat (TARGA) la supervivència dels 

individus infectats amb el virus de la immunodeficiència humana (VIH) s'ha incrementat 

considerablement; no obstant això, la seva expectativa de vida és encara 10 anys menor a la de la 

mitjana de la població. Aquesta reducció és deguda a malalties no relacionades amb la síndrome 

d'immunodeficiència adquirida (SIDA). Entre les principals causes d'aquest descens es troba 

l'augment de la incidència de problemes cardiovasculars. Recentment, s'ha descrit que l'activació 

immune persistent i la inflamació crònica són dos factors implicats en la morbimortalitat d'aquests 

pacients. 

Un esdeveniment central en la fisiopatologia del VIH és la destrucció, en fases molt primerenques 

de la infecció, dels limfòcits Th17 del teixit limfoide associat a mucoses (TLAM), òrgan on 

resideixen al voltant del 90% del total de limfòcits. A més del dany del TLAM, té lloc l’apoptosi de 

les cèl·lules epitelials i la pèrdua de la integritat de la mucosa, fets que condueixen a una 

translocació bacteriana anormal, que es creu responsable de la immunoactivació sistèmica 

observada en els individus amb VIH. Fisiològicament les cèl·lules Th17 juguen un paper crucial en 

la defensa davant la translocació bacteriana, ja que estimulen la proliferació de cèl·lules epitelials i 

l'expressió de defensines antibacterianes, al mateix temps que promouen la quimiotaxi de neutròfils 

cap al TLAM, per tal d’eliminar els productes bacterians. Per tant, la pèrdua massiva de limfòcits 

Th17 determina, probablement, l'augment de translocació bacteriana observat en la infecció per 

VIH. Recentment, per una altra part, s'ha observat que el canvi en la composició de la microbiota 

intestinal, associada a la infecció pel VIH, està relacionat amb la pèrdua del TLAM, cosa que podria 

ser una de les principals causes de la inflamació sistèmica. 

 

Objectius 
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L'objectiu principal de la present tesi és caracteritzar la comunitat microbiana intestinal disbiótica, 

tant en la seva composició com en la seva funció, així com estudiar el seu efecte en la 

immunoactivació sistèmica. Com a objectiu secundari, abordarem l'estudi de l'efecte d'una 

intervenció nutricional dirigida a modificar la composició bacteriana intestinal cap a una comunitat 

menys inflamatòria. 

 

Materials i mètodes 

Per tal d'estudiar l'efecte de la infecció del VIH sobre la microbiota intestinal humana, es va reclutar 

una cohort d'individus VIH+ sense TARGA, d'individus VIH+ amb resposta positiva al TARGA, 

d'individus VIH+ amb resposta negativa al TARGA i d'individus sans com a controls. Així mateix, 

es va realitzar una intervenció nutricional de sis setmanes de 5 g de galactooligosacàrids de cadena 

curta (Purimune®), 10 g de fructooligosacàrids de cadena llarga (Orafti-HP® i Actilight®) i 5 g de 

glutamina (Nutrición Médica®) i placebo (20 g de maltodextrina). De cadascun dels integrants de la 

cohort es van prendre mostres fecals i sanguínies, abans i després de la intervenció nutricional, amb 

la finalitat de poder caracteritzar la microbiota intestinal, així com també es van mesurar marcadors 

d'activació immune, inflamació sistèmica i translocació bacteriana. La microbiota intestinal es va 

caracteritzar mitjançant tècniques de metagenòmica, metatranscriptòmica i meta-metabolòmica. 

Per a cadascuna de les mostres sanguínies es van obtenir diferents marcadors d'activació immune 

sistèmica innata, adaptativa i translocació bacteriana, i a més a més, es va realitzar una anàlisi 

completa de la química sanguínia de cadascun dels participants de la cohort. La presa de mesures 

d'aquests marcadors es va dur a terme amb la col·laboració de l'Hospital Universitari Verge del 

Rocío (Sevilla, Espanya) i el Departament de Malalties Infeccioses de l'Hospital Universitari 

Ramón y Cajal (Madrid, Espanya). 

De les mostres fecals es van extraure l'ADN i l'ARN bacterians per, posteriorment, poder 

seqüenciar-los mitjançant la combinació de les tecnologies de piroseqüenciació (Roche GS FLX i 

química de Titanium) i de seqüenciació de cadenes aparellades de Illumnina (Miseq química V3). 

De l'ADN bacterià es va amplificar el gen ribosòmic 16S amb la finalitat de dur a terme la 

caracterització taxonòmica de la comunitat bacteriana corresponent. La seqüenciació massiva va ser 

realitzada a l'àrea de Genòmica i Salut de la Fundació per al Foment de la Recerca Sanitària i 

Biomèdica de la Comunitat Valenciana (FISABIO). 
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En col·laboració amb el Centre de Metabolòmica i Bioanàlisi (CEMBIO, Universitat San Pablo 

CEU (Madrid, Espanya), es va obtenir el perfil metabòlic de les comunitats bacterianes residents a 

l'intestí humà. Els meta-metabolomes es van determinar per mitjà de l'extracció dels metabòlits 

totals per a, posteriorment, separar-los mitjançant l'aplicació d'una cromatografia líquida d'alta 

resolució acoblada a un espectròmetre de masses ESI-QTOF. Els metabòlits van ser identificats per 

mitjà del servidor web METLIN, i les bases de dades Lipidomics Gateway database i KEGG. 

De la mateixa manera, en col·laboració amb el Departament de Tecnologia Alimentària del Centre 

Agrotècnic, Universitat de Lleida (Lleida, Espanya), es van obtenir les mesures dels àcids grassos 

de cadena curta (AGCC). 

L'anotació funcional de les seqüències dels metagenomes es va realitzar mitjançant l'assemblatge 

d’aquests, utilitzant el programa Ray-Meta. La predicció dels marcs oberts de lectura (MOL) es va 

determinar amb el programa MetaGeneMark. 

De manera semblant, es va procedir a l’assemblatge dels metatranscriptomes mitjançant el 

programa Trinity i els seus MOLes van predir amb el programa TransDecoder.LongOrfs. A partir 

dels MOL dels metagenomes i dels metatranscriptomes es va crear una base de dades no redundant 

de MOL aplicant el programa USEARCH. Aquesta base de dades es va comparar, per mitjà del 

programa rapsearch2 amb la base de dades funcionals KEGG i la base de dades de resistències a 

antibiòtics CARD. La quantificació de cada MOL es va dur a terme de forma separada per 

metagenomes i per metatranscriptomes, utilitzant en el primer cas el programa soap.coverage, i en 

el segon cas el programa RSEM. 

L'anotació taxonòmica de les seqüències es va realitzar utilitzant el mapatge de les seqüències dels 

metagenomes i metatranscriptomes contra una base de dades no redundant, de genomes de 

referència d'espècies residents al microbioma humà. Per al cas de les seqüències dels amplicons del 

gen ribosòmic 16S es va fer servir el paquet de programes d'anàlisi ecològica Qiime. 

La identificació dels biomarcadors relatius a les condicions VIH+ o VIH-, així com els subgrups 

corresponents dels VIH+, es va realitzar per mitjà del programa LEfSe, de manera indistinta per a 

les anotacions taxonòmiques i funcionals. 

Es va emprar Qiime i el programa d'anàlisi estadística R (v.3.3) per dur a terme les anàlisis de 

diversitat alfa i beta. Així mateix, el programa d'anàlisi estadística R es va utilitzar per realitzar les 

anàlisis de correlació, regressió lineal, proves de rang, els models generalitzats lineals, les xarxes 
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bayesianes, les xarxes ecològiques i funcionals, així com la resta de les anàlisis estadístiques de la 

present tesi. 

 

Resultats i discussió 

L'alteració de la mucosa intestinal provocada pel VIH genera una disbiosi, que es detecta a partir de 

la comparació de les dades provinents de la metagenòmica, la metatranscriptòmica i la meta-

metabolòmica, en les diferents cohorts de l'estudi. De la mateixa manera, s'observa una correlació 

amb les variables clíniques d'activació immune i d'inflamació sistèmica. La disbiosi es caracteritza 

per l'increment de bacteris gramnegatius capaços de resistir l'estrès oxidatiu generat per la 

inflamació intestinal. Diversos compostos metabòlics d'aquesta comunitat bacteriana, tals com els 

lipopolisacàrids de membrana, són potents activadors de la resposta immune i inflamatòria. En 

canvi, diverses espècies bacterianes, conegudes per tenir un paper antiinflamatori o ser importants 

productors de AGCC, veuen disminuïda la seva abundància en el microbioma associat als pacients 

infectats pel VIH. La pèrdua d'aquestes espècies es veu reflectida en una reducció de la 

concentració dels AGCC a l'intestí. Els AGCC, especialment l'àcid butíric, posseeixen efectes 

beneficiosos sobre la salut de l'hoste. Aquests ajuden a la producció de mucina, la integritat de les 

unions oclusives, la diferenciació de les cèl·lules T reguladores i la regeneració de la barrera 

epitelial. 

La disbiosi associada al VIH no es veu minorada per l'ús de TARGA, i la incorporació del prebiòtic 

va mostrar un efecte moderat en la majoria dels participants. No obstant això, aquest efecte va ser 

més notori en els individus del grup VIH+ sense TARGA. L'administració del prebiòtic va mostrar 

un increment en l'abundància d'espècies productores d'àcid butíric, juntament amb una major 

producció d'aquest àcid gras. Aquest increment correlacionava amb una reducció en la translocació 

bacteriana i la reducció dels marcadors d'inflamació sistèmica.  

L'anàlisi de xarxes va revelar que la comunitat bacteriana associada al VIH mostra propietats de 

"xarxa biològica". Això implica que aquesta comunitat disbiótica és capaç de conformar una 

comunitat estable, que està associada a la deterioració de la salut del pacient. A més a més, les 

espècies i els gens que s'han enriquit o perdut en la comunitat bacteriana intestinal associada al VIH 

són components fonamentals, que mantenen l'estructura de les xarxes ecològiques i metabòliques 

corresponents. Així, les espècies que estan sobrerepresentades en la condició del VIH influeixen 
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fortament en la resta de la comunitat de bacteris. Per una altra part, la infecció del VIH causa canvis 

dramàtics en l'estructura metabòlica del microbioma intestinal, perdent i guanyant importants 

enzims metabòlics. 

Encara que s'han de realitzar estudis longitudinals addicionals, així com incrementar la grandària 

mostral de participants, en la present tesi vam mostrar de manera holística el paper fonamental que 

el microbioma intestinal té en la patogènesi de la infecció pel VIH. Més important encara, 

proposem, d'una banda, que la microbiota pot ser objecte d'intervenció clínica en pacients infectats 

amb el VIH i, de l'altra, suggerim possibles candidats bacterians probiòtics capaços de donar 

respostes viables en les corresponents intervencions. 
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12. APPENDIX 

12.1. Chapter 1 supplementary information 
Supplementary Figures 

 

 

 

Figure S12.1.1 Average silhouette index. Average silhouette index from all the possible numbers of cluster configurations within 

the genus (a) and OTUs (b). The Bray-Curtis index (red squares), the Jensen−Shannon distance (green diamonds) and the 

Jensen−Shannon divergence (black triangles) were tested for both taxonomical levels in order to ascertain the distance that 

maximizes the average silhouette index. Since the weighted UniFrac distance (blue circles) could only be computed by estimating a 

phylogenetic tree and was incompatible for use at higher levels, it was analyzed only at the OTU level. Modified from Vazquez-

Castellanos et al. (2014) [348] with permission from © 2017 Society for Mucosal Immunology. 
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Figure S12.1.2 Total Bayesian network. The network represents the relationships between genus abundance (blue ellipses), 

pathway abundance (green ellipses) and markers of adaptive immunity, thymic function, and bacterial translocation (pink ellipses). 

Arrows indicate conditional dependencies between variables. The Spearman correlation coefficient is indicated next to the lines. 

Modified from Vazquez-Castellanos et al. (2014) [348] with permission from © 2017 Society for Mucosal Immunology.
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Supplementary Tables 

Table S12.1.1 Clinical variables of participants. 

 Cases Controls p-valuea q-valuef 

 N = 15 N = 15   

Clinical characteristics     

Age 43 (34-48) 48.5 (31-54) 0.76 0.97 

Sex ratio (F/M) 3/12 7/8 0.13 0.33 

Hypertensive (Y/N) 1/14 2/11 0.99 0.99 

Smoker (Y/N) 7/8 2/12 0.99 0.99 

Body mass index (kg/m2) 24.5 (23.2-24.7) 23.5 (21.2-28.3) 0.63 0.92 

Framingham risk score (%) 4.5 (1-7) 2 (1-6) 0.12 0.33 

Time from HIV diagnosis to initiation of 

ART (months) 

14 (3-25) NA - 

- 

Time on HIV suppression (months) 74 (52-113) NA - - 

Nadir CD4+ T-cell count (cells/µL) 203 (127-284) NA - - 

CD4+ T-cell count (cells/µL) 584 (466-794) 762 (645-927) - - 

CD4/CD8 ratio 1.2 (0.9-1.3) 1.5 (1.2-1.9) - - 

Nadir CD4+ T-cell count (cells/µL) 203 (127-284) NA - - 

Metabolic profile in plasma     

Glucose (mg/dL) 91 (81-96) 89 (86-95) 0.84 0.97 

Creatinine (mg/dL) 1.0 (0.9-1.1) 0.9 (0.7-1.0) 0.1 0.31 

Total cholesterol (mg/dL) 190 (169-214) 201 (157-230) 0.62 0.92 

LDL cholesterol (mg/dL) 106 (97-124) 114 (81-136) 0.87 0.97 

HDL cholesterol (mg/dL) 55 (50-63) 56 (49-75) 0.56 0.92 

Triglycerides (mg/dL) 106 (78-155) 75 (61-176) 0.38 0.71 

25-hidroxy-vitamin D (mg/dL) 28.2 (21.7-36) 28.4 (21.9-33.9) 0.93 0.99 

Markers of innate immunity     

Inflammation     

hs-CRPb (mg/L) 0.18 (0.06-0.47) 0.08 (0.04-0.29) 0.24 0.54 

IL6c (pg/mL) 2 (2-2) 2 (1-2.6) 0.51 0.89 

Thrombosis     
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Dimers-D (ng/mL) 199 (168-301) 212 (122-304) 0.87 0.97 

Bacterial translocation     

sCD14d (ng/mL) 1663 (1483-1958) 1439.5 (1263-1516) 0.05 0.20 

BPIe (ng/mL) 28.3 (3.0-113.6) 10.0 (4.9-12.3) 0.66 0.92 

Endothelial function     

ADMA (µM/L) 0.97 (0.89-1.12) 1.10 (1.05-1.10) 0.25 0.54 

Markers of adaptive immunity     

T cell markers     

CD4+ T-cells      

%HLADR+CD38+ 2.2 (1.8-2.6) 1.1 (0.6-1.2) <0.001 0.01 

%CD38+ 16.1 (14.3-22.8) 11.6 (10.7-13.2) <0.001 0.01 

%CD25+ 4.3 (3.7-6.6) 2.8 (1.9-4.1) 0.01 0.06 

%CD57+ 5.7 (4.0-9.5) 2.5 (1.6-5.7) 0.04 0.19 

CD8+ T-cells     

%HLADR+CD38+ 3.6 (2.5-7.1) 1.5 (1.1-1.7) <0.001 0.01 

%CD38+ 7.3 (6.1-12.9) 5.4 (4.0-8.4) 0.01 0.06 

%CD25+ 0.4 (0.3-0.7) 5.4 (4.0-8.4) 0.29 0.58 

%CD57+ 26.5 (17.5-41.8) 23.1 (15.8-43.8) 0.77 0.97 

Thymic function     

sj/β-TREC ratio 5.7 (0-13.6) 18-5 (3.2-57.8) 0.06 0.21 

All values are expressed as median (P25-P75). 

aAnalysis was performed using a Wilcoxon rank-sum test. P is probability at α=0.05. 

bHigh-sensitivity C reactive protein. 

c Interleukin-6. 

d Soluble CD14.  

e Bactericidal-permeability increasing protein. 

f p-value adjusted according to the Benjamini-Hochberg method. 
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Table S12.1.2 LEfSe biomarker statistics for KEGG pathways. 

Condition Biomarker pathway Log LDA p-valuea %Control coverageb %Case coveragec 

Control Starch and sucrose metabolism 

[PATH:ko00500] 

3.08 0.03 51.04 47.92 

 

Control Glycolysis / Gluconeogenesis 

[PATH:ko00010] 
2.96 0.01 60.44 50.55 

 

Control Valine, leucine, and isoleucine 

degradation [PATH:ko00280] 

2.94 0.00 44.26 29.51 

 

Control Lysosome [PATH:ko04142] 2.89 0.04 18.18 8.08 

 

Control Pyruvate metabolism 

[PATH:ko00620] 
2.87 0.04 78.95 65.79 

 

Control Glycine, serine, and threonine 

metabolism [PATH:ko00260] 

2.87 0.04 45.88 42.35 

 

Control Fatty acid metabolism 

[PATH:ko00071] 

2.75 0.01 34.69 24.49 

 

Control Histidine metabolism 

[PATH:ko00340] 

2.66 0.04 51.28 56.41 

 

Control PPAR signaling pathway 

[PATH:ko03320] 

2.63 0.01 7.14 5.36 

 

Control Ascorbate and aldarate 

metabolism [PATH:ko00053] 

2.59 0.01 32.43 24.32 

 

Control Tryptophan metabolism 

[PATH:ko00380] 
2.55 0.00 16.92 15.38 

 

Control Polycyclic aromatic 

hydrocarbon degradation 

[PATH:ko00624] 

2.55 0.01 9.68 6.45 

 

Control Lysine degradation 

[PATH:ko00310] 

2.50 0.01 23.33 20.00 

 

Control Caprolactam degradation 

[PATH:ko00930] 
2.49 0.01 28.57 14.29 
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Control Dioxin degradation 

[PATH:ko00621] 
2.47 0.01 24.00 8.00 

 

Control Xylene degradation 

[PATH:ko00622] 

2.47 0.01 18.75 6.25 

 

Control Benzoate degradation 

[PATH:ko00362] 

2.47 0.03 17.24 11.49 

 

Control Steroid hormone biosynthesis 

[PATH:ko00140] 
2.44 0.00 10.53 10.53 

 

Control MAPK signaling pathway - 

yeast [PATH:ko04011] 

2.40 0.02 2.44 2.44 

 

Control Naphthalene degradation 

[PATH:ko00626] 

2.30 0.02 18.75 15.63 

 

Control Phosphonate and phosphinate 

metabolism [PATH:ko00440] 
2.30 0.03 17.65 14.71 

 

Control Proximal tubule bicarbonate 

reclamation [PATH:ko04964] 

2.29 0.03 25.00 25.00 

 

Control Geraniol degradation 

[PATH:ko00281] 

2.21 0.04 37.50 37.50 

 

Case Ribosome [PATH:ko03010] 3.19 0.01 52.78 40.28 

 

Case Lipopolysaccharide 

biosynthesis [PATH:ko00540] 

3.15 0.00 58.82 44.12 

 

Case Phenylalanine, tyrosine, and 
tryptophan biosynthesis 

[PATH:ko00400] 

2.87 0.00 53.73 53.73 

 

Case Vibrio cholerae pathogenic 

cycle [PATH:ko05111] 
2.87 0.01 13.95 20.93 

 

Case Legionellosis [PATH:ko05134] 2.87 0.00 7.35 7.35 

 

Case Terpenoid backbone 

biosynthesis [PATH:ko00900] 

2.79 0.04 41.67 33.33 
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Case Fatty acid biosynthesis 

[PATH:ko00061] 
2.68 0.04 53.33 46.67 

 

Case Nicotinate and nicotinamide 

metabolism [PATH:ko00760] 

2.68 0.03 53.66 53.66 

 

Case Thiamine metabolism 

[PATH:ko00730] 

2.59 0.01 59.09 63.64 

 

Case Ubiquinone and other 

terpenoid-quinone biosynthesis 

[PATH:ko00130] 

2.52 0.04 36.36 25.00 

 

Case Zeatin biosynthesis 

[PATH:ko00908] 

2.47 0.01 12.50 12.50 

Case Toluene degradation 

[PATH:ko00623] 

2.47 0.01 17.65 11.76 

 

a Analysis was performed using a Wilcoxon rank-sum test. P is probability at α=0.05. 

b The percentage of control coverage was calculated as the observed number of KOs per pathway divided by the total number of KOs 

for each condition. 

c The percentage of case coverage was calculated as the observed number of KOs per pathway divided by the total number of KOs 

for each condition. 

 

 

 

 



 

 

231 

 

12.2. Chapter 2 supplementary information 
 

Supplementary Figures 

 

 

Figure S12.2.1 Clustering analysis of the microbiota composition at baseline. Genera distribution composition based on a 

Nonmetric Multidimensional Scaling (NMDS) at baseline. (a) Clustering between HIV- (in blue) and HIV+ (VU, red; INR, orange, 

IR, green) (b) Clustering between INR (in orange) and VU (in red) (c) Clustering between IR (in green) and VU (in red). (d) 

Clustering between HIV- (in blue) and VU (in red). (e) Clustering between INR (in orange) and IR (in green). (f) Clustering between 

HIV- (in blue) and INR (in orange). (g) Clustering between HIV- (in blue) and IR (in green). Abbreviations: VU, viremic untreated; 

INR, immunological non-responder, IR, immunological responder. Reproduced from Serrano-Villar et al. (2016) [315] with 

permission from © 2017 Society for Mucosal Immunology. 
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Figure S12.2.2 Bacterial taxa driving HIV-associated dysbiosis using LEfSe analysis. (a) All HIV+ patients vs. HIV- 

individuals. (b) and (c) abundance of Faecalibacterium prausnitzii in different groups. Reproduced from Serrano-Villar et al. (2016) 

[315] with permission from © 2017 Society for Mucosal Immunology. 
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Figure S12.2.3 SCFA profile characterizing HIV-infected individuals at baseline. NMDS analysis was used to determine the 

clustering of the samples based on the relative abundances of SCFAs. The input distance matrix was calculated using the Bray-Curtis 

dissimilarity index and the statistical difference between the HIV+ subjects and the HIV- subjects were calculated by the ADONIS 

test. Reproduced from Serrano-Villar et al. (2016) [315] with permission from © 2017 Society for Mucosal Immunology. 
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Supplementary Tables 

Table S12.2.1 Between-group comparison of alpha diversity at baseline. 

Active arm (n=34) 

 

Reference group Mean± SD HIV+ group Mean± SD p value 

 

HIV- 

980.64±118.46 VU 1127.69±295.94 0.07 

 980.64±118.46 IR 833.47±261.79 0.19 

 980.64±118.46 INR 689.46±259.23 0.03 

ACE 

 

HIV- 

941.13±161.74 VU 1079.55±275.21 0.3 

 941.13±161.74 IR 805.06±254.08 0.27 

 941.13±161.74 INR 651.88±224.48 0.01 

Chao1 

 

HIV- 

548.71±78.1 VU 590±126.57 0.37 

 548.71±78.1 IR 458.6±140.76 0.16 

 548.71±78.1 INR 379.88±120.66 0.02 

Observed species 

 

HIV- 

7.78±0.46 VU 7.97±0.59 0.41 

 7.78±0.46 IR 7.17±0.92 0.13 

Shannon 7.78±0.46 INR 6.72±0.87 0.01 
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Table S12.2.2 Comparison of changes in alpha diversity. 

Group Index Baseline statistics 

(mean±SD) 

Post-intervention statistics 

(mean±SD) 

p-value 

VU Observed species 590±126.57 615.11±68.84 0.43 

 Chao1 1079.55±275.21 1101.42±161.58 0.57 

 ACE 1127.69±295.94 1165.79±177.6 0.5 

 Shannon 7.97±0.59 8.11±0.28 0.43 

IR 
Observed species 458.6±140.76 473.7±184.06 0.85 

 Chao1 805.06±254.08 894.33±385.37 0.43 

 ACE 833.47±261.79 914.95±408.31 0.43 

 Shannon 7.17±0.92 7.22±1.06 0.49 

INR Observed species 379.88±120.66 423.12±86.48 0.31 

 Chao1 651.88±224.48 766.01±235.06 0.11 

 ACE 689.46±259.23 784.69±220.16 0.11 

 Shannon 6.72±0.87 7.09±0.56 0.74 

HIV- 

 
Observed species 548.71±78.1 538.71±117.17 0.3 

 Chao1 941.13±161.74 967.59±245.11 0.94 

 ACE 980.64±118.46 1001.58±246.79 1.0 

 Shannon 7.78±0.46 7.72±0.58 0.38 
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Table S12.2.3 Between-group comparison of beta diversity at baseline. 

Group Distances 

Pair1 Pair2 p-value 

VU IR 0.328 

VU INR 1.0 

VU HIV- 0.192 

IR INR 0.1 

IR HIV- 0.1 

INR HIV- <0.001 

 

Table S12.2.4 Comparison of changes in beta diversity. 

Pair 1 Pair 2 statistic p-value 

Pre-VU vs. Pre-VU Post-VU vs. Post-VU 834 0.0361 

Pre-IR vs. Pre-IR Post-IR vs. Post-IR 1401 0.0015 

Pre-INR vs. Pre-INR Post-INR vs. Post-INR 579 0.0018 

Pre-HIV- vs. Pre-HIV- Post-VIH- vs. Post-HIV- 387 <0.0001 

Ab Abbreviations: Pre, pre-intervention; Post, post-intervention; VU, viremic untreated; INR, immunological non-responder, IR, 
immunological responder, HIV-, HIV-uninfected. 

 

Table S12.2.5 Effect of HIV serostatus on gut microbiota composition after adjustment by sexual 

orientation. 

Independent variable Sum of squares F model R2 p-value 

HIV serostatus 1.24 7.77 0.12 0.0002 

Study group 0.72 2.26 0.07 0.0154 

Sexual orientation 0.89 5.58 0.09 0.0004 

Study group*Sexual orientation- 0.39 1.23 0.03 0.2493 
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Table S12.2.6 Correlations between shifts in species abundance and changes in SCFA abundance. 

SCFA Taxa 

GLM 

coefficient 

Spearman 

index p-value q-valuea 

Acetic acid Bacteria_p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_f_Barnesiellaceae_s_Barnesiellaceae_unknown_specie -3,42E-044 -0,4192 0,0064 0,0099 

Acetic acid Bacteria_p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_f_Porphyromonadaceae_g_Parabacteroides_s_Parabacteroides_distasonis 6,63E-044 0,3870 0,0124 0,0139 

      

Butyric acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Lachnospiraceae_g_Roseburia_s_Roseburia_faecis 1,29E-044 0,5363 0,0003 0,0016 

Butyric acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Lachnospiraceae_g_Lachnospira_s_Lachnospira_unknown_specie 6,43E-045 0,4821 0,0016 0,0038 

Butyric acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Ruminococcaceae_g_Ruminococcus_s_Ruminococcus_torques 6,97E-044 0,4013 0,0093 0,0128 

Butyric acid Bacteria_p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_f_Rikenellaceae_g_Alistipes_s_Alistipes_indistinctus -3,29E-045 -0,3892 0,0119 0,0139 

Butyric acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Ruminococcaceae_g_Faecalibacterium_s_Faecalibacterium_prausnitzii 5,12E-038 0,3902 0,0121 0,0139 

      

Propionic acid Bacteria_p_Lentisphaerae_c_Lentisphaeria_o_Z20_f_R4-45B_s_R4-45B_unknown_specie -1,65E-044 -0,5081 0,0007 0,0023 

Propionic acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Mogibacteriaceae_s_Mogibacteriaceae_unknown_specie -3,09E-044 -0,4863 0,0013 0,0032 

Propionic acid Bacteria_p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_f_Bacteroidaceae_g_Bacteroides_s_Bacteroides_ovatus -1,28E-044 -0,4395 0,0040 0,0068 

Propionic acid Bacteria_p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_s_Bacteroidales_unknown_specie 7,01E-044 -0,4388 0,0041 0,0068 

Propionic acid Bacteria_p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_f_Bacteroidaceae_g_Bacteroides_s_Bacteroides_unknown_specie -6,90E-039 -0,4145 0,0075 0,0106 

Propionic acid Bacteria_p_Verrucomicrobia_c_Verruco-5_o_WCHB1-41_f_RFP12_s_RFP12_unknown_specie -1,02E-043 -0,3974 0,0101 0,0135 

Propionic acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Veillonellaceae_g_Mitsuokella_s_Mitsuokella_unknown_specie 1,37E-045 0,3876 0,0123 0,0139 

Propionic acid Bacteria_p_Proteobacteria_c_Betaproteobacteria_o_Burkholderiales_f_Oxalobacteraceae_g_Oxalobacter_s_Oxalobacter_formigenes -3,81E-045 -0,3777 0,0149 0,0149 

      

Valeric acid Bacteria_p_Firmicutes_c_Erysipelotrichi_o_Erysipelotrichales_f_Erysipelotrichaceae_g_Catenibacterium_s_Catenibacterium_unknown_specie 9,26E-045 0,5225 0,0005 0,0020 
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Valeric acid Bacteria_p_Firmicutes_c_Erysipelotrichi_o_Erysipelotrichales_f_Erysipelotrichaceae_g_Bulleidia_s_Bulleidia_p-1630-c5 3,01E-044 0,4611 0,0024 0,0050 

Valeric acid Bacteria_p_Proteobacteria_c_Betaproteobacteria_s_Betaproteobacteria_unknown_specie -1,50E-043 -0,3841 0,0132 0,0139 

Valeric acid Bacteria_p_Firmicutes_c_Clostridia_o_Clostridiales_f_Veillonellaceae_g_Mitsuokella_s_Mitsuokella_multacida 6,72E-044 0,3825 0,0136 0,0139 

 

a
Benjamini-Hodge adjusted P-value.
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Table S12.2.7 Associations between changes in species contributing to the HIV-associated dysbiosis, SCFA 

abundance and peripheral biomarkers using generalized linear models (GLM). 

      

GLM Models in the viremic untreated group. 

  

Response variable Predictor GLM Coef Spearman 

Correlation 

Spearman  

p-value 

Benjamini & 

Hochberg 

correction 

BUTYRIC ACID Lachnospira sp. 0.22 0.767 0.021 0.087 

BUTYRIC ACID Faecalibacterium 
prausnitzii 

0.016 0.633 0.076 0.097 

CD4/CD8ratio Faecalibacterium 
prausnitzii 

-0.001 -0.617 0.086 0.097 

hs-CRP BUTYRIC ACID -0.002 -0.717 0.037 0.087 

hs-CRP Collinsella aerofaciens -0.009 -0.7 0.043 0.087 

hs-CRP Roseburia faecis -0.029 -0.617 0.086 0.097 

hs-CRP Faecalibacterium 
prausnitzii 

-0.001 -0.6 0.097 0.097 

sCD14 BUTYRIC ACID -0.275 -0.7 0.043 0.087 

      

GLM models in the HIV+ group  

Response variable Predictor GLM Coef Spearman 

Cor 

Spearman p-

value 

Benjamini & 

Hochberg 

correction 

BUTYRIC ACID Faecalibacterium 
prausnitzii 

0.016 0.499 0.008 0.033 

BUTYRIC ACID Roseburia faecis 0.317 0.464 0.015 0.044 

BUTYRIC ACID VALERIC ACID 0.041 0.451 0.018 0.046 

BUTYRIC ACID Veillonellaceae sp. -0.024 -0.422 0.028 0.059 

BUTYRIC ACID Coprococcus eutactus 0.202 0.395 0.041 0.075 

BUTYRIC ACID Parabacteroides sp. -0.064 -0.327 0.096 0.099 

%CD4+HLA-
DR+CD38+T-cells 

Paraprevotellaceae sp. -0.003 -0.479 0.011 0.04 
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%CD4+HLA-
DR+CD38+T-cells 

Coprococcus eutactus -0.011 -0.444 0.02 0.049 

%CD4+HLA-
DR+CD38+T-cells 

Bulleidia p 1630 c5 -0.007 -0.391 0.044 0.075 

%CD4+HLA-
DR+CD38+T-cells 

Bulleidia p 1630 c5.1 -0.007 -0.391 0.044 0.075 

%CD4+HLA-
DR+CD38+T-cells 

Acidaminococcus sp. 0.003 0.366 0.061 0.089 

%CD4+HLA-
DR+CD38+T-cells 

Prevotella copri 0 0.361 0.064 0.091 

%CD4+HLA-
DR+CD38+T-cells 

Veillonellaceae sp. 0.001 0.356 0.068 0.094 

%CD4+HLA-
DR+CD38+T-cells 

Butyrivibrio sp. -0.017 -0.352 0.072 0.096 

%CD4+HLA-
DR+CD38+T-cells 

Bacteroides sp. -0.001 -0.346 0.078 0.097 

%CD4+HLA-
DR+CD38+T-cells 

Collinsella aerofaciens 0.004 0.333 0.09 0.098 

CD4/CD8ratio Enterobacteriaceae sp. 0 -0.479 0.012 0.04 

CD4/CD8ratio Veillonellaceae sp. 0 0.418 0.03 0.06 

CD4/CD8ratio Sutterella sp. 0 0.366 0.061 0.089 

CD4/CD8ratio Erysipelotrichaceae sp. 0 0.337 0.086 0.098 

IL-6 Butyricimonas sp. 1.594 0.43 0.025 0.055 

IL-6 Coprococcus sp. 0.014 0.386 0.047 0.076 

IL-6 Bacteroides ovatus 0.013 -0.374 0.054 0.084 

IL-6 BUTYRIC ACID 0.036 0.333 0.09 0.098 

hs-CRP Sutterella sp. -0.008 -0.453 0.018 0.046 

hs-CRP Collinsella aerofaciens -0.004 -0.348 0.075 0.097 

hs-CRP Mitsuokella sp. 0.002 0.344 0.079 0.097 

PROPIONIC ACID Veillonellaceae sp. 0.089 0.596 0.001 0.012 
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PROPIONIC ACID VALERIC ACID 0.182 0.536 0.004 0.031 

PROPIONIC ACID Bacteroidales sp. -0.057 -0.529 0.005 0.031 

PROPIONIC ACID Megasphaera sp. 0.153 0.52 0.005 0.033 

PROPIONIC ACID Mitsuokella sp. 0.071 0.5 0.008 0.033 

PROPIONIC ACID Mogibacteriaceae sp. -1.594 -0.497 0.008 0.033 

PROPIONIC ACID Prevotella copri 0.012 0.43 0.025 0.055 

PROPIONIC ACID Bacteroides ovatus -0.177 -0.385 0.047 0.076 

PROPIONIC ACID Parabacteroides 
distasonis 

-0.08 -0.338 0.085 0.098 

PROPIONIC ACID Enterobacteriaceae sp. -0.173 -0.328 0.095 0.099 

PROPIONIC ACID Paraprevotellaceae sp. -0.09 -0.326 0.097 0.099 

VALERIC ACID Bulleidia p 1630 c5 0.06 0.716 0 0.001 

VALERIC ACID Bulleidia p 1630 c5.1 0.06 0.716 0 0.001 

VALERIC ACID Megasphaera sp. 0.032 0.673 0 0.002 

VALERIC ACID Coriobacteriaceae sp. 0.207 0.529 0.005 0.031 

VALERIC ACID Catenibacterium sp. 0.027 0.504 0.007 0.033 

VALERIC ACID Mitsuokella sp. 0.021 0.468 0.014 0.044 

VALERIC ACID BUTYRIC ACID 0.014 0.451 0.018 0.046 

VALERIC ACID Bacteroides ovatus -0.046 -0.391 0.044 0.075 

VALERIC ACID Bacteroides uniformis -0.051 -0.337 0.086 0.098 

VALERIC ACID Blautia obeum 0.286 0.325 0.099 0.099 
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Table S12.2.8 The power of the study to detect differences in SCFA abundance. 

To detect differences in baseline vs. post-prebiotic intervention levels of systemic markers. 

Group Systemic marker Power W-T p-value 

W-T Permutation Test p-

value 

VU CD4+ T-cell counts 1 0.82 0.8189819  

VU CD8+ T-cell counts 1 0.652 0.64546455  

VU CD4/CD8 ratio 0.02587823 0.91 0.90849085  

VU 

Flow mediated 
dilation (%) 0.24333059 0.91 0.90079008  

VU 

Peak hyperemic flow 
(m/s) 0.98539999 0.652 0.65236524  

VU 

%CD4+HLA-
DR+CD38+ T-cells 0.99258252 0.027 0.02490249  

VU %CD4+ CD25+ 0.63983317 0.203 0.20942094  

VU %CD4+ CD57+ 0.99737786 0.301 0.30453045  

VU 

%CD8+HLA-
DR+CD38+ T-cells 1 0.055 0.05360536  

VU %CD8+ CD25+ 0.12006346 0.301 0.30323032  

VU %CD8+ CD57+ 0.3072068 0.91 0.90129013  

VU sj/β-TREC 0.6706314 0.203 0.20492049  

VU sj/β-TREC ratio 0.25428828 0.496 0.49824982  

VU IL6 (pg/ml) 0.70542533 0.201 0.2520252  

VU Hs-CRP (mg/L) 0.02701124 0.726 0.77337734  

VU Dimers-D (ng/ml) 1 0.859 0.84318432  

VU ADMA (uM/L) 0.04359359 0.203 0.20052005  

VU BPI (ng/ml) 1 0.294 0.38843884  

VU sCD14 (ng/ml) 1 0.91 0.90969097  

VU TP53 0.09040781 0.012 0.00650065  

VU CCR2 0.37117613 0.012 0.0070007  

VU APOBEC3G 0.10311894 0.023 0.01830183  

VU CCL2 1 0.023 0.02050205  

VU BCL2 0.03491969 0.151 0.13011301  

VU STAT1 0.10169469 0.073 0.06630663  

VU SCARB1 0.07616985 0.012 0.00770077  
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VU CXCL10 0.99999967 0.009 0.00490049  

VU IFNA1 0.54288698 0.009 0.00450045  

VU PPARG 0.03951369 0.403 0.3960396  

VU PDCD1 0.10329375 0.282 0.28972897  

IR CD4+ T-cell counts 1 0.126 0.1260126  

IR CD8+ T-cell counts 1 0.432 0.43544354  

IR CD4/CD8 ratio 0.03137404 0.232 0.23422342  

IR 

Flow mediated 
dilation (%) 0.99999045 0.16 0.16361636  

IR 

Peak hyperemic flow 
(m/s) 0.78605199 1 1  

IR 

%CD4+HLA-
DR+CD38+ T-cells 0.19686365 0.037 0.02910291  

IR %CD4+ CD25+ 0.16957274 0.625 0.6229623  

IR %CD4+ CD57+ 0.05029652 0.695 0.69866987  

IR 

%CD8+HLA-
DR+CD38+ T-cells 0.03567946 0.432 0.42884288  

IR %CD8+ CD25+ 0.03202526 1 1  

IR %CD8+ CD57+ 0.04078954 0.846 0.85028503  

IR sj/β-TREC 0.0519716 0.922 0.92289229  

IR sj/β-TREC ratio 0.07649536 0.557 0.55455546  

IR IL6 (pg/ml) 0.09619101 0.832 0.90169017  

IR Hs-CRP (mg/L) 0.04229619 0.878 0.8719872  

IR Dimers-D (ng/ml) 1 0.636 0.59145915  

IR ADMA (uM/L) 0.02742676 0.557 0.56265627  

IR BPI (ng/ml) 1 0.058 0.0560056  

IR sCD14 (ng/ml) 1 0.16 0.16251625  

IR TP53 0.04040568 0.05 0.04890489  

IR CCR2 0.10919866 0.148 0.16531653  

IR APOBEC3G 0.05058716 0.079 0.07720772  

IR CCL2 0.3731573 0.03 0.01980198  

IR BCL2 0.04444139 0.039 0.02630263  

IR STAT1 0.06908158 0.039 0.02280228  
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IR SCARB1 0.04135833 0.079 0.07930793  

IR CXCL10 1 0.013 0.01050105  

IR IFNA1 0.0603315 0.121 0.12651265  

IR PPARG 0.7566191 0.098 0.08950895  

IR PDCD1 0.19951826 0.05 0.04960496  

INR CD4+ T-cell counts 0.56873373 0.674 0.66986699  

INR CD8+ T-cell counts 1 0.461 0.46554655  

INR CD4/CD8 ratio 0.70714118 0.016 0.01610161  

INR 

Flow mediated 
dilation (%) 0.99763724 0.107 0.10581058  

INR 

Peak hyperemic flow 
(m/s) 0.25784604 0.233 0.23212321  

INR 

%CD4+HLA-
DR+CD38+ T-cells 0.06850644 0.547 0.5379538  

INR %CD4+ CD25+ 0.0483401 0.844 0.84838484  

INR %CD4+ CD57+ 0.53326776 0.195 0.19571957  

INR 

%CD8+HLA-
DR+CD38+ T-cells 0.05283075 0.547 0.54265427  

INR %CD8+ CD25+ 0.114252 0.383 0.38313831  

INR %CD8+ CD57+ 0.99246144 0.383 0.37783778  

INR sj/β-TREC 0.77408521 0.041 0.03960396  

INR sj/β-TREC ratio 0.12634462 0.383 0.38433843  

INR IL6 (pg/ml) 0.99999999 0.052 0.04550455  

INR Hs-CRP (mg/L) 0.22374038 0.035 0.03230323  

INR Dimers-D (ng/ml) 0.99205549 0.547 0.54585459  

INR ADMA (uM/L) 0.05875855 0.25 0.25112511  

INR BPI (ng/ml) 1 0.313 0.31333133  

INR sCD14 (ng/ml) 1 0.25 0.24562456  

INR TP53 0.08336272 0.042 0.04040404  

INR CCR2 0.62923391 0.014 0.00850085  

INR APOBEC3G 0.03503434 0.624 0.61236124  

INR CCL2 0.15236113 0.944 0.90409041  

INR BCL2 0.04108921 0.528 0.52565257  
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INR STAT1 0.05534426 0.528 0.53265327  

INR SCARB1 0.06314945 0.058 0.06030603  

INR CXCL10 1 0.528 0.52865287  

INR IFNA1 0.03047288 0.183 0.17981798  

INR PPARG 0.99938577 0.233 0.24182418  

INR PDCD1 0.98568278 0.107 0.10641064  

HIV- CD4+ T-cell counts 1 0.813 0.81138114  

HIV- CD8+ T-cell counts 1 0.937 0.94089409  

HIV- CD4/CD8 ratio 0.10848698 0.578 0.57325733  

HIV- 

Flow mediated 
dilation (%) 1 0.093 0.09470947  

HIV- 

Peak hyperemic flow 
(m/s) 1 0.375 0.36723672  

HIV- 

%CD4+HLA-
DR+CD38+ T-cells 0.0533615 0.469 0.47824782  

HIV- %CD4+ CD25+ 0.03898973 0.937 0.93989399  

HIV- %CD4+ CD57+ 0.09819543 0.469 0.47344734  

HIV- 

%CD8+HLA-
DR+CD38+ T-cells 0.12671403 0.078 0.07980798  

HIV- %CD8+ CD25+ 0.03735285 0.938 0.93989399  

HIV- %CD8+ CD57+ 0.97523529 0.578 0.58035804  

HIV- sj/β-TREC 0.11089219 0.937 0.93829383  

HIV- sj/β-TREC ratio 0.4479971 0.156 0.16281628  

HIV- IL6 (pg/ml) 0.13566428 1 1  

HIV- Hs-CRP (mg/L) 0.03118241 1 1  

HIV- Dimers-D (ng/ml) 1 0.578 0.5719572  

HIV- ADMA (uM/L) 0.03284584 0.207 0.19331933  

HIV- BPI (ng/ml) 1 0.022 0.01490149  

HIV- sCD14 (ng/ml) 1 0.156 0.14761476  

HIV- TP53 0.05411772 0.034 0.03020302  

HIV- CCR2 0.11284618 0.271 0.30383038  

HIV- APOBEC3G 0.03661191 0.352 0.36473647  

HIV- CCL2 0.13959823 0.034 0.03240324  
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HIV- BCL2 0.099222 0.022 0.01580158  

HIV- STAT1 0.11531544 0.034 0.03090309  

HIV- SCARB1 0.07914949 0.022 0.01680168  

HIV- CXCL10 0.02875013 0.672 0.67166717  

HIV- IFNA1 0.25331006 0.022 0.0160016  

HIV- PPARG 0.02791027 0.799 0.77867787  

HIV- PDCD1 0.10170813 0.034 0.03310331  

 AVERAGE 0.42245085 0.36866667 0.36874521  

 SD 0.41716589 0.32624655 0.32700899  

      

      

To detect differences in baseline SCFA abundance. 

SCFA Power K-W p-value 

One-Way Permutation 

Test p-value 

ISOB.A

CID 0.124 0.031 0.031   

BUT.A

CID 0.122 0.029 0.045   

ISOVA

L.ACID 0.121 0.108 0.076   

VALER

IC.ACI

D 0.115 0.185 0.54   

AVER

AGE 0.1205 0.08825 0.173   

SD 0.003872983 0.07424902 0.24538813   

      

      

To detect differences in baseline vs. post-prebiotic intervention in SCFA abundance. 

Group SCFA Power W-T p-value 

W-T Permutation 

Test p-value 

VU ISOB.ACID 0.18333219 0.57 0.57185719  

VU BUT.ACID 0.97371978 0.039 0.0410041  

VU ISOVAL.ACID 0.38722395 0.496 0.49894989  

VU VALERIC.ACID 0.51066867 0.027 0.02840284  
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IR ISOB.ACID 0.06385258 0.77 0.77317732  

IR BUT.ACID 0.53283198 0.492 0.48824882  

IR ISOVAL.ACID 0.17098553 0.77 0.77247725  

IR VALERIC.ACID 0.14629355 0.695 0.69716972  

INR ISOB.ACID 0.0708002 0.547 0.54455446  

INR BUT.ACID 0.03347488 0.547 0.55065507  

INR ISOVAL.ACID 0.09032126 0.461 0.46674667  

INR VALERIC.ACID 0.9839282 0.039 0.03940394  

HIV- ISOB.ACID 0.06435771 0.469 0.47784778  

HIV- BUT.ACID 0.46503332 0.375 0.36923692  

HIV- ISOVAL.ACID 0.03811596 0.688 0.68806881  

HIV- VALERIC.ACID 0.02735107 0.938 0.93509351  

 AVERAGE 0.29639318 0.4951875 0.49643089  

 SD 0.3194279 0.26918624 0.26907211  
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12.3. Chapter 3 supplementary information 

Supplementary Results 

S12.3.1. Functional metagenomic pipeline comparison 

At the time of the present thesis, there was no a consensus methodology for the study of the 

metagenomic functional characterization. The different bioinformatic strategies mainly varied 

between the use of unassembled reads vs contigs and the previous ORF prediction before the read 

mapping against the functional databases. Taking this into account, eight different pipelines were 

performed in order to compare the effects of the bioinformatic strategies over the functional 

annotations. The variation between them was the use of an assembly software (Ray-meta and Meta-

IDBA) vs the unassembled reads and the previous use of an ORF prediction software 

(MetaGeneMark) vs the direct read mapping against the database (coverage approximation). 

Additionally, in the comparison, we also included the in-silico metagenome predictions retrieved by 

PICRUST as well as a modified version of the Nielsen et al., 2014 [432] pipeline approximation 

(see in the Chapter 3 methods section “6.2.3. Metagenomic functional annotation strategies”). This 

last, proposed by the Metahit consortium, allowed the discovery of new microbial organisms by 

means of its ORF relative abundance, thus validating its accuracy in functional characterization. 

The summary of these approximations can be seen in Table 6.1. 

The results retrieved from the ADONIS test and the NMDS analysis (Figure S12.3.1) shows that all 

the eight functional annotations present significant differences among the gene composition 

between the four groups and between the HIV+ and HIV- conditions. This indicates that the effect 

of the sample segregation is given by the effect of the drastic change in the bacterial gene 

composition rather than biases given the bioinformatics analysis. The results obtained from the 

Mantel test (Table S12.3.1) showed that for almost all the methods exist correlations between their 

distance matrices, with the exception of the methods that were based on the coverage 

approximation. This difference was also highlighted when comparing with the Nielsen et al. method 

[432] from which all the coverage methods differ (Table S12.3.1). The coverage annotations are 

based on translating the query sequencing into an amino acid sequence (using rapsearch2) prior to 

the local alignment, and then the algorithm assigns as putative genes all the no-overlapping high-

quality hits. This step could be prone to assign long multi-domain proteins as different gene and 

generate false positive annotations. Taking these biases in mind we select the custom Nielsen et al., 
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2014 [432] pipeline, in addition, similar approximation have been widely used in metagenomics 

[354,432] and it contains the advantage of the increased coverage of the 454 reads. 
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Supplementary Supplemental Figures  

 

 

Figure S12.3.1 Comparison of the microbiota KO gene composition between the different bioinformatic strategies. NMDS 

analysis of the KO gene composition retrieved from the bioinformatic strategies. Ray_illumina_454_ORF (Nielsen et al.(ref) 
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modified pipeline), PICRUST (in-silico PICRUST gene prediction), idba_ORF (Meta-IDBA assembly and ORF prediction), 

idba_coverage (Meta-IDBA assembly and read mapping), Ray_ORF (Ray-Meta assembly and ORF prediction), Ray_coverage Ray-

Meta assembly and read mapping), Unassembled_ORF (no assembly and ORF prediction), Unassembled_coverage no assembly and 

read mapping). The VU (red), IR (green), INR (orange) and HIV- (blue) subjects are represented by the ellipses which represent 70% 

of the samples; the groups cluster configuration was validated using the ADONIS test (p-value < 0.01) by the four groups of the 

cohort and between HIV+ vs the HIV- subjects. INR, immunological non-responder; IR, immunological responder; VU, viremic 

untreated. 

 

 

 Figure S12.3.2 Diversity parameters of the metagenomic functional annotations. (a) Shannon diversity index and (b) beta 

diversity pairwise Hellinger distances from the groups calculated with the KO abundance matrix. VU (red), IR (green), INR (orange) 

and HIV- (blue) groups. The group differences were compared using the Kruskal-Wallis test while the group pairwise comparison 

was set by the Wilcoxon signed-rank test. INR, immunological non-responder; IR, immunological responder; VU, viremic untreated. 
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Figure S12.3.3 Metagenomic KEGG Orthology (KO) biomarkers. (a) The linear discriminative analysis (LDA) effect size 

LEfSe) analysis between the HIV+ (in red) and HIV- (in blue) subjects. (b) VU (red) and HIV- (blue), (c) IR (green) and HIV- (blue) 

and (d) INR (orange) and HIV- (blue). LDA scores (log 10) for the most discriminative KO from each of the cohort groups. The 

cladogram represents the biomarkers of the upper hierarchical classes within the KEGG database. INR, immunological non-

responder; IR, immunological responder; VU, viremic untreated. 

 

 

 

Figure S12.3.4 Species diversity from the metagenomic data set (a) NMDS analysis of the taxonomic species composition. The 

VU (red), IR (green), INR (orange) and HIV- (blue) subjects are represented by the ellipses which represent 70% of the samples; the 

groups cluster configuration was validated using the ADONIS test for the four groups of the cohort and for HIV+ vs the HIV- 

subjects (p-value=0.002 and p-value=0.003 respectively). (b) The linear discriminative analysis (LDA) effect size LEfSe analysis 

between the HIV+ (in red) and HIV- (in blue) subjects. LDA scores (log 10) for the most discriminative species in controls are 

represented on the positive scale (blue bars), whereas LDA-negative scores indicate enriched pathways in HIV+ subjects (red bars). 

(c) Alpha diversity estimator for the four groups of the cohort, the differences between the groups were assessed by the Kruskal-

Wallis test. (d) Beta diversity pairwise Bray-Curtis dissimilarity from the taxonomic composition of the groups. The group 

differences were compared using the Kruskal-Wallis test while the group pairwise comparisons were set by the Wilcoxon signed-

rank test. INR, immunological non-responder; IR, immunological responder; VU, viremic untreated. 



 

 

254 

 

 

Figure S12.3.5 Diversity comparisons between metagenomic and metatranscriptomic data. (a) Bray-Curtis pairwise differences 

and (b) Pielou's evenness index differences between the genus and KO gene composition from HIV+ (red) and HIV- (blue) subjects. 

The group pairwise comparison was set by the Wilcoxon signed-rank test. 

 

Figure S12.3.6 Metagenomic and metatranscriptomic genus relative abundance. Barplot representation of the most abundant 

genus (relative abundance mean > 0.5 and be present in at least 70% of the samples). 
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Figure S12.3.7 HIV+ species centrality. (a) Betweenness centrality which quantifies the number of times that a node act as a bridge 

along the shortest path between two other nodes. (b) eigenvector centrality which measures the influence of a node in a network by 

assigning a weighted score that takes into account its own degree centrality and the centrality of the nodes from which it is 

connected. The nodes represent species belonging to Firmicutes (cyan), Bacteroidetes (orange), Actinobacteria (pink) and 

Proteobacteria (green) phyla. Only the outlier’s species (quantile 95) were label within the boxplot, highlighting those that also were 

set as HIV+ LEfSe biomarkers (Prevotella copri, Myroides odoratimimus and Bacteroides fluxus). 
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Figure S12.3.8 Taxonomic biomarkers centrality correlation. Spearman correlation between the LDA scores (log 10) of the 

taxonomic LEfSe biomarkers and its corresponding centrality score, the betweenness and the eigenvector centralities: The regression 

line is represented in red. Correlations were set for the HIV+ and the HIV- biomarkers independently. Species belong to Firmicutes 

(cyan), Bacteroides (orange), Actinobacteria (pink) and Proteobacteria (green) phyla. 
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Figure S12.3.9 Metabolic network. Metabolic network retrieved from the pathways inferred by the ORF KEGG-annotations 

enzymes. Each enzyme of the network can be associated with several reactions, and each reaction can be involved with different 

enzymes. The nodes represent the KEGG orthologous groups (KO) meanwhile the direct edges indicate that the product metabolite 

of one of the enzymes y the substrate metabolite from the enzyme which the edge is pointing. In blue are represented all the KO 

LEfSe biomarkers related to the HIV- subjects, while in red all the KO LEfSe biomarkers related to the HIV condition. 
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Figure S12.3.10 Biomarker KO centrality. Betweenness degree and eigenvector centrality for the HIV- (blue), HIV+ (red) KO 

biomarkers and the rest of the enzymes into the network (gray). The differences between the groups were asses by the Kruskal-Wallis 

test while the group pairwise comparisons were set by the Wilcoxon signed-rank test. The centralities values were expressed in the 

log scale. 
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Figure S12.3.11 HIV+ Bayesian network. “Multiomic” Bayesian networks composed of the metagenomic (blue nodes), 

metatranscriptomic (green nodes), metabolomic (pink circle nodes) and the clinical variables (gold square nodes) from the HIV+ 

subjects. The data from the metagenomic and metatranscriptomic include the information of the species relative abundance (circles) 

and pathway relative abundance (squares). The labels of the nodes represent overrepresentation in the HIV- subjects (blue labels) or 

in HIV+ subjects (red label). Arrows indicate conditional dependencies between variables. The Spearman correlation coefficient is 

represented by the arrow's color, blue if it is significantly positive (PH adjusted p-value < 0.1), red if it has a significantly negative 

correlation (PH adjusted p-value < 0.1) or nonsignificant (gray). 
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Figure S12.3.12 Bayesian network statistics. (a) Degree centrality, (b) a number of nodes per MB and (c) number of clinical 

variables within each MB for each component of the BN. The metagenomic and metatranscriptomic species (Sp_DNA and Sp_RNA 

respectively), the metagenomic and metatranscriptomic pathways (ko_DNA and ko_RNA respectively), the metabolites (Metabol) 

and the clinical variables (Clinic). The differences between the groups were asses by the Kruskal-Wallis test while the group pairwise 

comparison was set by the Wilcoxon signed-rank test. The centralities values were expressed in the log scale. 
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Supplementary Tables 

Table S12.3.1 Mantel test pairwise comparison.  

Analysis method 1 Analysis method 2 Mantel test p-value BH p-value adjust 

Ray_Illumina_454_ORF Picrust 0.093 0.326 

Ray_Illumina_454_ORF idba_ORF 0.672 0.918 

Ray_Illumina_454_ORF idba_coverage 0.001 0.005 

Ray_Illumina_454_ORF ray_ORF 0.993 0.993 

Ray_Illumina_454_ORF ray_coverage 0.001 0.005 

Ray_Illumina_454_ORF Unassembled_ORF 0.746 0.918 

Ray_Illumina_454_ORF Unassembled_coverage 0.001 0.005 

Picrust idba_ORF 0.174 0.443 

Picrust idba_coverage 0.66 0.918 

Picrust ray_ORF 0.077 0.308 

Picrust ray_coverage 0.294 0.686 

Picrust Unassembled_ORF 0.507 0.918 

Picrust Unassembled_coverage 0.15 0.42 

idba_ORF idba_coverage 0.33 0.711 

idba_ORF ray_ORF 0.138 0.42 

idba_ORF ray_coverage 0.537 0.918 

idba_ORF Unassembled_ORF 0.501 0.918 

idba_ORF Unassembled_coverage 0.558 0.918 

idba_coverage ray_ORF 0.914 0.993 
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idba_coverage ray_coverage 0.001 0.005 

idba_coverage Unassembled_ORF 0.613 0.918 

idba_coverage Unassembled_coverage 0.001 0.005 

ray_ORF ray_coverage 0.942 0.993 

ray_ORF Unassembled_ORF 0.906 0.993 

ray_ORF Unassembled_coverage 0.98 0.993 

ray_coverage Unassembled_ORF 0.754 0.918 

ray_coverage Unassembled_coverage 0.001 0.005 

Unassembled_ORF Unassembled_coverage 0.738 0.918 
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Table S12.3.2 Network bootstrap p-value.  

 Mean 

Degree 

Mean 

Betweenness 

Mean 

Closeness 

Mean 

Eigenvector 

centrality 

%Pos %Neg Ratio Fragmentation Frag 

Modularity 

Modularity Number 

of clusters 

above 1 

Transitivity Diameter Mean-

short 

pathways 

K-Smirnov 

p-value 

Co-

ocuurenc

e network 

* * * * 0 0 0 * 0 0 0 0 0 0 * 

Enzimati

c network 
* * * * * * * * * * * * * * * 

*P-value below 0.001  

 

 



 

 

264 

 

Table S12.3.3 GLM between the taxonomic and functional biomarkers.  

Class 

Biomarker 

ko_pathway Species GLM 

Coefficient 

Spearman 

Correlation 

Spearman 

p-value 

BH 

adjusted 

p-value 

Control ABC_transporters_ko02010 Prevotella_dentalis -0.404610244 -0.573105613 5.92E-006 1.84E-

005 

Control ABC_transporters_ko02010 Prevotella_copri -0.001258591 -0.522622451 6.48E-005 0.000154

449 

Control ABC_transporters_ko02010 Alistipes_shahii 0.00448976 0.462626263 0.00049297

5 

0.000893

517 

Control ABC_transporters_ko02010 Blautia_obeum 0.015277173 0.411092053 0.00218239 0.003360

494 

Control ABC_transporters_ko02010 Coprococcus_sp__HPP004

8 

0.05631928 0.344602784 0.01071879

5 

0.014237

178 

Control ABC_transporters_ko02010 Faecalibacterium_prausnitz

ii 

0.004275731 0.275242996 0.04429931

8 

0.053159

181 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_fluxus 0.000776101 -0.5687503 7.22E-006 2.19E-

005 

Control MAPK_signaling_pathway_yeast_ko04011 Prevotella_melaninogenica 0.006653619 -0.509011715 8.48E-005 0.000195

418 

Control MAPK_signaling_pathway_yeast_ko04011 Myroides_odoratimimus -0.049419572 -0.496027079 0.00013658

9 

0.000295

235 

Control MAPK_signaling_pathway_yeast_ko04011 Prevotella_ruminicola -0.145535943 -0.478375204 0.00025345

7 

0.000481

983 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_sp__4_1_36 0.000590377 0.470259115 0.00033308

4 

0.000619

857 

Control MAPK_signaling_pathway_yeast_ko04011 Megasphaera_elsdenii 0.000130664 -0.39438499 0.00316807

3 

0.004731

714 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_stercoris 3.47E-005 0.383382096 0.00421539

4 

0.006112

322 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_sp__HPS0048 0.002223169 0.380784191 0.00450322

3 

0.006502

579 

Control MAPK_signaling_pathway_yeast_ko04011 Bilophila_wadsworthia 0.000875843 0.379509246 0.00465069

6 

0.006632

959 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_sp__14_A_ 0.002598421 0.361063083 0.00731130

8 

0.009977

785 

Control MAPK_signaling_pathway_yeast_ko04011 Alistipes_finegoldii 0.002268105 0.305139293 0.02485527

5 

0.031226

121 

Control MAPK_signaling_pathway_yeast_ko04011 Parabacteroides_sp__ASF5

19 

0.008180161 0.297841171 0.02871539

9 

0.035689

139 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_salyersiae 0.000879788 0.297116349 0.02912473

5 

0.035941

162 

Control MAPK_signaling_pathway_yeast_ko04011 Faecalibacterium_prausnitz

ii 

-0.000336933 -0.283974003 0.03743394

9 

0.045549

001 

Control MAPK_signaling_pathway_yeast_ko04011 Acidaminococcus_sp__D2

1 

-0.001417503 -0.276562331 0.04292592

1 

0.051689

344 

Control MAPK_signaling_pathway_yeast_ko04011 Coprococcus_sp__HPP004

8 

0.105402087 0.27196257 0.04665508

3 

0.055602

633 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_clarus -0.014087447 0.27060243 0.04780714

1 

0.056588

044 

Control MAPK_signaling_pathway_yeast_ko04011 Bacteroides_sp__3_1_23 0.002201815 0.268768614 0.04939704

4 

0.058253

754 

Control MAPK_signaling_pathway_yeast_ko04011 Parabacteroides_sp__HGS

0025 

-0.087663623 0.254725231 0.06305066

9 

0.073138

776 

Control MAPK_signaling_pathway_yeast_ko04011 Bifidobacterium_longum 0.001449896 0.229188759 0.09550445

3 

0.108259

119 

Control Two_component_system_ko02020 Prevotella_fusca -0.159876866 -0.590540216 2.60E-006 8.69E-

006 

Control Two_component_system_ko02020 Prevotella_copri -0.000754814 -0.580331618 6.47E-006 1.97E-

005 
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Control Two_component_system_ko02020 Prevotella_sp__oral_taxon

_299 

-0.309201649 -0.564406917 8.78E-006 2.63E-

005 

Control Two_component_system_ko02020 Bacteroides_fluxus -0.008426397 -0.491747665 0.00019222

4 

0.000391

193 

Control Two_component_system_ko02020 Coprobacillus_sp__8_1_38

FAA 

0.012008485 0.484237412 0.00020718

1 

0.000411

994 

Control Two_component_system_ko02020 Bacteroides_sp__14_A_ 0.002761163 0.464773169 0.00039911

9 

0.000727

19 

Control Two_component_system_ko02020 Bacteroides_caccae 0.001666558 0.451877263 0.00068465

5 

0.001185

373 

Control Two_component_system_ko02020 Bacteroides_pectinophilus 0.007637343 0.447226987 0.00078678 0.001342

153 

Control Two_component_system_ko02020 Alistipes_shahii 0.003205701 0.427101201 0.00140672

9 

0.002276

938 

Control Two_component_system_ko02020 Coprococcus_sp__HPP004

8 

0.400294857 0.391231574 0.00344169

3 

0.005096

634 

Control Two_component_system_ko02020 Blautia_obeum 0.023382653 0.362378502 0.00738826

5 

0.010043

423 

Control Two_component_system_ko02020 Bacteroides_plebeius 0.000375097 0.298036974 0.02899055

2 

0.035902

889 

Control Sulfur_relay_system_ko04122 Prevotella_copri -0.003366469 -0.631484658 6.21E-007 2.40E-

006 

Control Sulfur_relay_system_ko04122 Prevotella_dentalis -0.810255163 -0.589380727 2.75E-006 9.10E-

006 

Control Sulfur_relay_system_ko04122 Prevotella_sp__oral_taxon

_299 

-0.933634956 -0.520157721 5.54E-005 0.000133

984 

Control Sulfur_relay_system_ko04122 Parabacteroides_sp__HGS

0025 

4.648204165 0.466637111 0.00037545

8 

0.000691

32 

Control Sulfur_relay_system_ko04122 Alistipes_shahii 0.013719666 0.441738136 0.00092492

9 

0.001570

123 

Control Sulfur_relay_system_ko04122 Fermentimonas_caenicola -2.096320995 -0.431582773 0.00112028

9 

0.001838

965 

Control Sulfur_relay_system_ko04122 Blautia_obeum 0.020734736 0.412388031 0.00210771

9 

0.003259

939 

Control Sulfur_relay_system_ko04122 Coprococcus_sp__HPP004

8 

2.60112256 0.406723627 0.00227331

6 

0.003485

083 

Control Sulfur_relay_system_ko04122 Bacteroides_pectinophilus 0.009308186 0.356203545 0.00852178

9 

0.011539

232 

Control Sulfur_relay_system_ko04122 Faecalibacterium_prausnitz

ii 

0.010725168 0.289879931 0.03385726

4 

0.041487

07 

Control Sulfur_relay_system_ko04122 Ruminococcus_bicirculans 0.014567625 0.268595682 0.04954917 0.058253

754 

Control Amoebiasis_ko05146 Prevotella_denticola -0.016405769 -0.6371651 2.21E-007 9.29E-

007 

Control Amoebiasis_ko05146 Prevotella_sp__oral_taxon

_299 

-0.063714374 -0.63168952 3.02E-007 1.22E-

006 

Control Amoebiasis_ko05146 Prevotella_copri -1.12E-005 -0.550445405 0.00001616 4.46E-

005 

Control Amoebiasis_ko05146 Bacteroides_clarus 0.003226255 0.483381457 0.00021341

8 

0.000421

986 

Control Amoebiasis_ko05146 Myroides_odoratimimus -0.002572225 -0.481637783 0.00022665

8 

0.000440

653 

Control Amoebiasis_ko05146 Parabacteroides_sp__ASF5

19 

0.005395684 0.39558732 0.00306892

8 

0.004603

392 

Control Amoebiasis_ko05146 Streptococcus_pneumoniae -0.008861073 -0.367274672 0.00629608

9 

0.008764

156 

Control Amoebiasis_ko05146 Odoribacter_splanchnicus 0.000609267 0.366108363 0.00647673

2 

0.008979

692 

Control Amoebiasis_ko05146 Streptococcus_pseudopneu

moniae 

-0.103425005 -0.365472978 0.00657703

5 

0.009082

572 

Control Amoebiasis_ko05146 Bacteroides_sp__14_A_ 0.000365933 0.333725496 0.01365775 0.017935
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2 463 

Control Lysine_degradation_ko00310 Prevotella_copri -0.000894318 -0.799352011 0 0 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Prevotella_salivae -0.176130143 -0.755517439 0 0 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Prevotella_copri -0.002328149 -0.792872117 0 0 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Prevotella_fusca -0.312005607 -0.833620741 5.15E-015 4.27E-

014 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Prevotella_dentalis -0.466903929 -0.821129187 2.87E-014 2.17E-

013 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Bacteroides_clarus 0.078789921 0.610520297 0.00000167

4 

5.83E-

006 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Bacteroides_eggerthii 0.003424819 0.592605298 3.78E-006 1.22E-

005 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Bacteroides_caccae 0.003146063 0.559824662 1.53E-005 4.26E-

005 

Control Valine_leucine_and_isoleucine_degradation_ko00280 Dialister_succinatiphilus -0.009974321 -0.540689918 3.28E-005 8.50E-

005 

Control beta_Lactam_resistance_ko00312 Prevotella_salivae -0.783418532 -0.836859158 0 0 

Control beta_Lactam_resistance_ko00312 Prevotella_copri -0.005526572 -0.861406518 0 0 

Control beta_Lactam_resistance_ko00312 Prevotella_fusca -0.412349027 -0.862712521 5.08E-017 5.19E-

016 

Control beta_Lactam_resistance_ko00312 Prevotella_sp__oral_taxon

_299 

-3.206797393 -0.853710917 2.36E-016 2.34E-

015 

Control beta_Lactam_resistance_ko00312 Bacteroides_sp__4_1_36 0.005671355 0.655422146 1.91E-007 8.23E-

007 

Control beta_Lactam_resistance_ko00312 Dialister_succinatiphilus -0.192105116 -0.650543168 2.44E-007 1.00E-

006 

Control beta_Lactam_resistance_ko00312 Bacteroides_sp__14_A_ 0.017023445 0.552954642 0.00001451

2 

4.11E-

005 

Control beta_Lactam_resistance_ko00312 Bacteroides_eggerthii 0.00756203 0.532304174 4.52E-005 0.000112

246 

Control beta_Lactam_resistance_ko00312 Alistipes_finegoldii 0.014018659 0.517819707 7.72E-005 0.000181

589 

Control beta_Lactam_resistance_ko00312 Streptococcus_pneumoniae -0.589259145 -0.457006706 0.00051295

4 

0.000915

426 

Control beta_Lactam_resistance_ko00312 Bifidobacterium_sp__12_1

_47BFAA 

0.115633289 0.444550495 0.00075782

2 

0.001299

124 

Control beta_Lactam_resistance_ko00312 Odoribacter_splanchnicus 0.019532226 0.438841243 0.00100635

3 

0.001683

705 

Control beta_Lactam_resistance_ko00312 Bacteroides_sp__3_1_23 0.075550068 0.42915952 0.00132756

4 

0.002158

843 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Prevotella_copri -0.001662197 -0.758490566 0 0 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Prevotella_fusca -0.831174904 -0.772764709 7.62E-012 5.10E-

011 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Prevotella_dentalis -0.018170057 -0.727910222 4.48E-010 2.73E-

009 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Prevotella_salivae -0.060872961 -0.708709739 5.81E-009 3.17E-

008 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Bacteroides_clarus 0.015328671 0.601143511 2.57E-006 8.69E-

006 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Bacteroides_stercoris 0.005539381 0.588259958 4.58E-006 1.45E-

005 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Bacteroides_finegoldii 0.024988801 0.504631218 0.00012353

2 

0.000273

815 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Bacteroides_sp__3_1_23 0.00544084 0.35460263 0.00883936

5 

0.011922

864 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Bacteroides_plebeius 0.000470963 0.327844483 0.01589542

6 

0.020673

515 

Control Glyoxylate_and_dicarboxylate_metabolism_ko00630 Clostridiales_bacterium_V -0.386822062 -0.312064037 0.02199682 0.027937
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E202_14 8 578 

Control Lipoic_acid_metabolism_ko00785 Prevotella_copri -0.004775056 -0.870418724 1.25E-017 1.40E-

016 

Control Lipoic_acid_metabolism_ko00785 Prevotella_fusca -1.173112219 -0.853451486 2.46E-016 2.38E-

015 

Control Lipoic_acid_metabolism_ko00785 Prevotella_ruminicola -2.790519067 -0.835840226 3.74E-015 3.18E-

014 

Control Lipoic_acid_metabolism_ko00785 Prevotella_salivae -0.359873991 -0.802416665 2.98E-013 2.21E-

012 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_sp__D20 0.00071518 0.730602832 3.59E-010 2.23E-

009 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_sp__4_1_36 0.000336785 0.707541596 2.21E-009 1.26E-

008 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_eggerthii 0.013911565 0.687453544 9.37E-009 4.94E-

008 

Control Lipoic_acid_metabolism_ko00785 Dialister_succinatiphilus -0.124798646 -0.638739065 2.02E-007 8.59E-

007 

Control Lipoic_acid_metabolism_ko00785 Fermentimonas_caenicola -11.16497396 -0.609816071 9.84E-007 3.64E-

006 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_stercoris 0.019979627 0.602412853 1.44E-006 5.06E-

006 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_sp__14_A_ 0.04164849 0.587658942 0.00000298

5 

9.71E-

006 

Control Lipoic_acid_metabolism_ko00785 Streptococcus_pneumoniae -3.80967269 -0.534309555 3.16E-005 0.000082

754 

Control Lipoic_acid_metabolism_ko00785 Alistipes_finegoldii 0.072706101 0.523127942 0.00004938

2 

0.000121

021 

Control Lipoic_acid_metabolism_ko00785 Clostridiales_bacterium_V

E202_14 

-0.198114395 -0.472812518 0.00030587

4 

0.000575

374 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_plebeius 0.002252228 0.456764947 0.00051692

8 

0.000917

81 

Control Lipoic_acid_metabolism_ko00785 Streptococcus_pseudopneu

moniae 

-2.521267334 -0.435954757 0.00098365

1 

0.001653

674 

Control Lipoic_acid_metabolism_ko00785 Parabacteroides_sp__ASF5

19 

-0.041601876 0.41232438 0.00194728

1 

0.003052

494 

Control Lipoic_acid_metabolism_ko00785 Faecalibacterium_prausnitz

ii 

-0.002882178 -0.396843851 0.00296825

8 

0.004510

716 

Control Lipoic_acid_metabolism_ko00785 Bacteroides_pectinophilus -0.005368301 -0.390554423 0.00350310

1 

0.005143

794 

Control Lipoic_acid_metabolism_ko00785 Bibersteinia_trehalosi 10.43115112 -0.337387411 0.01259937

5 

0.016671

417 

Control Porphyrin_and_chlorophyll_metabolism_ko00860 Prevotella_salivae -0.292222324 -0.805831904 0 0 

Control Porphyrin_and_chlorophyll_metabolism_ko00860 Prevotella_copri -0.001858476 -0.853554412 0 0 

Control Porphyrin_and_chlorophyll_metabolism_ko00860 Bacteroides_sp__4_1_36 0.002331086 0.67890223 5.58E-008 2.66E-

007 

Control Limonene_and_pinene_degradation_ko00903 Prevotella_dentalis -0.522900256 -0.704223436 2.83E-009 1.59E-

008 

Control Limonene_and_pinene_degradation_ko00903 Prevotella_copri -0.000924568 -0.67608157 6.52E-008 3.07E-

007 

Control Limonene_and_pinene_degradation_ko00903 Bacteroides_fluxus -0.002261777 -0.608995617 1.80E-006 6.19E-

006 

Control Limonene_and_pinene_degradation_ko00903 Bacteroides_salyersiae 0.004305154 0.555250619 1.84E-005 5.05E-

005 

Control Limonene_and_pinene_degradation_ko00903 Bacteroides_eggerthii 0.002080767 0.516066324 8.23E-005 0.000190

909 

Control Limonene_and_pinene_degradation_ko00903 Bacteroides_sp__HPS0048 0.143203385 0.39028016 0.00375193 0.005463

061 

Control Aminobenzoate_degradation_ko00627 Prevotella_copri -0.000556968 -0.786163522 0 0 

Control Aminobenzoate_degradation_ko00627 Prevotella_dentalis -0.193123698 -0.824414773 1.85E-014 1.43E-
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013 

Control Aminobenzoate_degradation_ko00627 Prevotella_sp__oral_taxon

_299 

-0.212768645 -0.789251015 1.34E-012 9.52E-

012 

Control Aminobenzoate_degradation_ko00627 Bacteroides_sp__D20 0.002564025 0.717629121 2.54E-010 1.61E-

009 

Control Aminobenzoate_degradation_ko00627 Bacteroides_sp__4_1_36 0.001491365 0.659767486 1.54E-007 6.86E-

007 

Control Aminobenzoate_degradation_ko00627 Bacteroides_fluxus -0.000375147 -0.64436821 3.32E-007 1.31E-

006 

Control Aminobenzoate_degradation_ko00627 Bacteroides_sp__3_1_23 0.03676153 0.531999238 4.57E-005 0.000112

742 

Control Aminobenzoate_degradation_ko00627 Fermentimonas_caenicola -0.252350844 -0.521382612 5.29E-005 0.000128

649 

Control Aminobenzoate_degradation_ko00627 Bacteroides_stercoris 0.000594911 0.508976558 0.00010602

5 

0.000239

588 

Control Aminobenzoate_degradation_ko00627 Bacteroides_eggerthii 0.000368549 0.497160282 0.00015995

2 

0.000335

321 

Control Aminobenzoate_degradation_ko00627 Bacteroides_sp__14_A_ 0.005881099 0.478802906 0.00024978

7 

0.000481

084 

Control Aminobenzoate_degradation_ko00627 Bacteroides_sp__HPS0048 0.085682041 0.461558986 0.00050954

6 

0.000914

031 

Control Aminobenzoate_degradation_ko00627 Dialister_succinatiphilus 0.029362779 -0.458433391 0.00056102

7 

0.000986

048 

Control Aminobenzoate_degradation_ko00627 Bacteroides_salyersiae 0.001699204 0.398818372 0.00301575

4 

0.004547

118 

Control Aminobenzoate_degradation_ko00627 Bacteroides_plebeius 0.002784568 0.352086907 0.00935927

6 

0.012575

398 

Control Aminobenzoate_degradation_ko00627 Alistipes_finegoldii 0.001583667 0.335010482 0.01364516

4 

0.017935

463 

Control Aminobenzoate_degradation_ko00627 Faecalibacterium_prausnitz

ii 

-0.001057403 -0.327768249 0.01592098

3 

0.020673

515 

Control Aminobenzoate_degradation_ko00627 Odoribacter_splanchnicus -0.004823793 0.246426529 0.07261438

9 

0.083124

367 

Control Benzoate_degradation_ko00362 Prevotella_copri -0.001117329 -0.628435296 7.19E-007 2.75E-

006 

Control Benzoate_degradation_ko00362 Prevotella_dentalis -0.048555287 -0.610240381 9.63E-007 0.000003

603 

Control Benzoate_degradation_ko00362 Prevotella_melaninogenica -0.141158893 -0.578399552 4.63E-006 1.45E-

005 

Control Benzoate_degradation_ko00362 Bacteroides_fluxus -0.004750316 -0.563026491 1.34E-005 0.000038

279 

Control Benzoate_degradation_ko00362 Bilophila_wadsworthia 0.008478258 0.532735887 3.37E-005 8.62E-

005 

Control Benzoate_degradation_ko00362 Ruminococcus_bicirculans 0.006745017 0.419257305 0.00160179

4 

0.002580

668 

Control Benzoate_degradation_ko00362 Fermentimonas_caenicola -0.387595443 -0.418797971 0.00162286

3 

0.002602

563 

Control Benzoate_degradation_ko00362 Blautia_obeum 0.01696103 0.417724414 0.00182375

8 

0.002898

027 

Control Benzoate_degradation_ko00362 Bacteroides_plebeius 8.40E-005 0.415589861 0.00193294

6 

0.003043

734 

Control Benzoate_degradation_ko00362 Parabacteroides_sp__ASF5

19 

0.032656835 0.379904699 0.00460450

6 

0.006594

108 

Control Benzoate_degradation_ko00362 Bacteroides_stercoris -0.000450685 0.372441395 0.00582263

1 

0.008170

467 

Control Benzoate_degradation_ko00362 Bacteroides_sp__HPS0048 0.038100793 0.350181056 0.00977069

1 

0.013077

694 

Control Benzoate_degradation_ko00362 Bacteroides_pectinophilus 0.002478532 0.28362874 0.03803328

3 

0.046117

012 

Control Benzoate_degradation_ko00362 Bacteroides_sp__3_2_5 -0.003563527 -0.283400038 0.03819383

6 

0.046150

885 



 

 

269 

 

Control Benzoate_degradation_ko00362 Acidaminococcus_sp__D2

1 

-0.005591464 -0.250085763 0.06836910

6 

0.078522

933 

Control Benzoate_degradation_ko00362 Megasphaera_elsdenii 0.015360524 -0.232704403 0.09044369 0.103194

767 

Control Insulin_signaling_pathway_ko04910 Prevotella_copri -0.000811217 -0.607623404 1.91E-006 6.53E-

006 

Control Insulin_signaling_pathway_ko04910 Prevotella_ruminicola -0.253657875 -0.556040851 1.27E-005 0.000036

521 

Control Insulin_signaling_pathway_ko04910 Prevotella_dentalis -0.089897093 -0.536429299 2.90E-005 7.71E-

005 

Control Insulin_signaling_pathway_ko04910 Prevotella_salivae -0.008635522 -0.50806175 0.00010950

8 

0.000245

864 

Control Insulin_signaling_pathway_ko04910 Bacteroides_salyersiae 0.001833937 0.501353154 0.00013845

5 

0.000295

596 

Control Insulin_signaling_pathway_ko04910 Coprococcus_sp__HPP004

8 

1.098984152 0.48761809 0.00018413

5 

0.000379

165 

Control Insulin_signaling_pathway_ko04910 Parabacteroides_sp__HGS

0025 

1.558672848 0.486827217 0.00018930

6 

0.000387

521 

Control Insulin_signaling_pathway_ko04910 Fermentimonas_caenicola -0.636398493 -0.43127655 0.00113046

9 

0.001846

963 

Control Insulin_signaling_pathway_ko04910 Blautia_obeum 0.011370429 0.395159139 0.00331384

9 

0.004928

288 

Control Insulin_signaling_pathway_ko04910 Bifidobacterium_sp__12_1

_47BFAA 

0.032675009 0.390273759 0.00352883

6 

0.005159

81 

Control Insulin_signaling_pathway_ko04910 Bacteroides_plebeius 0.00065292 0.382199352 0.00459119

1 

0.006594

108 

Control Insulin_signaling_pathway_ko04910 Parabacteroides_sp__ASF5

19 

0.020298779 0.325224047 0.01641250

5 

0.021232

535 

Control Insulin_signaling_pathway_ko04910 Bacteroides_pectinophilus 0.005530938 0.308023633 0.02384627

7 

0.030067

045 

Control Insulin_signaling_pathway_ko04910 Alistipes_finegoldii -0.003297811 0.289117591 0.03434506

7 

0.041937

134 

HIV+ Protein_export_ko03060 Prevotella_salivae 0.630327914 0.708557271 5.93E-009 3.17E-

008 

HIV+ Protein_export_ko03060 Bacteroides_sp__D20 -0.000344256 -0.544730322 2.80E-005 0.000074

93 

HIV+ Protein_export_ko03060 Alistipes_finegoldii -0.002922092 -0.364665523 0.00700326

7 

0.009595

027 

HIV+ RNA_degradation_ko03018 Prevotella_salivae 0.489633859 0.748580141 0 0 

HIV+ RNA_degradation_ko03018 Prevotella_copri 0.000982003 0.737145035 0 0 

HIV+ RNA_degradation_ko03018 Bacteroides_pectinophilus 0.00491378 0.312826377 0.02166191 0.027612

985 

HIV+ RNA_degradation_ko03018 Bibersteinia_trehalosi -0.331645263 0.293629397 0.03116270

1 

0.038320

212 

HIV+ Epithelial_cell_signaling_in_Helicobacter_pylori_inf

ection_ko05120 

Fermentimonas_caenicola 1.023448054 0.448348472 0.00067385

7 

0.001178

404 

HIV+ Epithelial_cell_signaling_in_Helicobacter_pylori_inf

ection_ko05120 

Streptococcus_pseudopneu

moniae 

2.067914861 0.396214039 0.00301834

6 

0.004547

118 

HIV+ Epithelial_cell_signaling_in_Helicobacter_pylori_inf

ection_ko05120 

Odoribacter_splanchnicus -0.00151189 -0.254507338 0.06350798

9 

0.073424

518 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Prevotella_copri 0.000224926 0.686601868 3.56E-008 1.72E-

007 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Prevotella_salivae 0.057339171 0.662206975 1.36E-007 6.13E-

007 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Prevotella_ruminicola 2.115990035 0.640627435 1.81E-007 7.89E-

007 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Prevotella_melaninogenica 0.276605282 0.6355523 2.43E-007 1.00E-

006 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Acidaminococcus_intestini 0.012038269 0.560434534 1.49E-005 4.19E-

005 



 

 

270 

 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Dialister_succinatiphilus 0.098358216 0.554640747 1.89E-005 5.13E-

005 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Bilophila_wadsworthia -0.019762194 -0.539944814 0.00002511

4 

6.77E-

005 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Bacteroides_eggerthii -0.004636945 -0.50409758 0.00012585

6 

0.000277

201 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Bifidobacterium_longum -0.002182973 -0.490909091 0.00019772

7 

0.000400

051 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Bacteroides_finegoldii -0.000509064 -0.413607776 0.00203953

8 

0.003168

568 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Ruminococcus_bicirculans -0.022716714 -0.375314332 0.00516630

8 

0.007338

267 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Coprobacillus_sp__8_1_38

FAA 

-0.063941187 -0.304921283 0.02496391

5 

0.031249

793 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Blautia_obeum -0.005948943 -0.262511912 0.05541975

5 

0.064718

372 

HIV+ Vibrio_cholerae_pathogenic_cycle_ko05111 Bacteroides_sp__3_2_5 0.008743212 0.252144082 0.06607022

6 

0.076133

903 

HIV+ Alanine_aspartate_and_glutamate_metabolism_ko002

50 

Prevotella_salivae 0.597740174 0.806899181 0 0 

HIV+ Alanine_aspartate_and_glutamate_metabolism_ko002

50 

Prevotella_copri 0.006633203 0.890909091 0 0 

HIV+ Alanine_aspartate_and_glutamate_metabolism_ko002

50 

Prevotella_fusca 0.827176859 0.870195445 1.30E-017 1.41E-

016 

HIV+ Alanine_aspartate_and_glutamate_metabolism_ko002

50 

Prevotella_sp__oral_taxon

_299 

0.787709191 0.845978791 8.13E-016 7.45E-

015 

HIV+ Alanine_aspartate_and_glutamate_metabolism_ko002

50 

Prevotella_intermedia 0.882819982 0.779715516 3.73E-012 2.60E-

011 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Prevotella_salivae 0.122106449 0.752391843 0 0 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Prevotella_copri 0.002417975 0.828092243 0 0 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Prevotella_fusca 0.358790813 0.841638161 1.58E-015 1.41E-

014 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Prevotella_dentalis 0.155941444 0.836258167 3.52E-015 3.06E-

014 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Prevotella_ruminicola 2.445823921 0.827009201 1.30E-014 1.03E-

013 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Prevotella_intermedia 2.023986526 0.77558943 5.72E-012 3.90E-

011 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Dialister_succinatiphilus 0.029707247 0.61982085 1.08E-006 3.97E-

006 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Bacteroides_eggerthii -0.001618533 -0.566152087 1.18E-005 3.45E-

005 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Bacteroides_sp__HPS0048 -0.271486108 -0.565770917 1.20E-005 3.47E-

005 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Bacteroides_salyersiae -0.002680836 -0.538860301 3.52E-005 8.93E-

005 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Odoribacter_splanchnicus -0.021115026 -0.502496665 0.00013307

1 

0.000289

429 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Bifidobacterium_sp__12_1

_47BFAA 

-0.006566333 -0.485248511 0.00020002

7 

0.000400

054 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Bilophila_wadsworthia 0.005086793 -0.370744814 0.00578439

1 

0.008149

668 

HIV+ Phenylalanine_tyrosine_and_tryptophan_biosynthesis

_ko00400 

Ruminococcus_bicirculans -0.029883963 -0.229935053 0.09440045

5 

0.107357

38 

HIV+ Citrate_cycle_TCA_cycle__ko00020 Prevotella_salivae 0.642743553 0.756279779 0 0 

HIV+ Citrate_cycle_TCA_cycle__ko00020 Acidaminococcus_intestini 4.92E-005 0.686983038 3.48E-008 1.71E-

007 

HIV+ Fructose_and_mannose_metabolism_ko00051 Prevotella_denticola 0.536892355 0.482560962 0.00021955

8 

0.000431

673 
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HIV+ Fructose_and_mannose_metabolism_ko00051 Prevotella_dentalis 0.085864011 0.47820565 0.00025492

5 

0.000482

141 

HIV+ Fructose_and_mannose_metabolism_ko00051 Prevotella_copri 0.000296255 0.437926434 0.00103337

8 

0.001720

648 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Prevotella_salivae 0.836564665 0.770688012 0 0 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Prevotella_copri 0.003241563 0.765885268 0 0 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Prevotella_melaninogenica 0.066786524 0.793648178 8.21E-013 5.96E-

012 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Bacteroides_stercoris -0.009513908 -0.506155899 0.00011710

7 

0.000261

239 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Streptococcus_pneumoniae 2.91801112 0.495672105 0.00013834

3 

0.000295

596 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Clostridiales_bacterium_V

E202_14 

1.224250705 0.493119878 0.00018352

2 

0.000379

165 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Alistipes_finegoldii -0.006455168 -0.437392796 0.00104944

3 

0.001730

835 

HIV+ Carbon_fixation_in_photosynthetic_organisms_ko00

710 

Bibersteinia_trehalosi -1.310449328 0.270662686 0.04775561

6 

0.056588

044 

HIV+ Oxidative_phosphorylation_ko00190 Prevotella_copri 0.000435808 0.542443301 3.06E-005 8.07E-

005 

HIV+ Oxidative_phosphorylation_ko00190 Prevotella_dentalis 0.01313649 0.531386305 3.56E-005 8.97E-

005 

HIV+ Oxidative_phosphorylation_ko00190 Bacteroides_fluxus 0.00358923 0.483666857 0.00025160

1 

0.000481

084 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Prevotella_fusca 0.150236935 0.673539598 2.39E-008 1.22E-

007 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Prevotella_ruminicola 9.183981911 0.66860578 3.29E-008 0.000000

166 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Prevotella_copri 0.004909974 0.687059272 3.46E-008 1.71E-

007 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Prevotella_salivae 0.364890392 0.671964932 8.15E-008 3.73E-

007 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Prevotella_melaninogenica 0.851269653 0.641698989 1.71E-007 7.51E-

007 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_fluxus 0.005905104 0.624623594 0.00000086

3 

3.26E-

006 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Prevotella_oralis -1.385958208 0.606900116 1.14E-006 4.15E-

006 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Acidaminococcus_intestini 0.040889744 0.61661902 1.26E-006 4.52E-

006 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bifidobacterium_longum -0.043668026 -0.581551363 6.14E-006 1.89E-

005 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Riemerella_anatipestifer 0.158894854 0.533289653 3.30E-005 8.50E-

005 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_stercoris 0.022152402 -0.521250238 6.81E-005 0.000161

325 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bibersteinia_trehalosi 6.667541297 0.50484658 9.90E-005 0.000226

686 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Fermentimonas_caenicola 2.671034976 0.49719101 0.00013097

6 

0.000286

665 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Parabacteroides_sp__HGS

0025 

-1.983556429 -0.493045463 0.00015198

3 

0.000322

501 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_plebeius -0.006023894 -0.494034687 0.00017792

3 

0.000370

761 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Odoribacter_splanchnicus 0.006868554 -0.490680389 0.00019925

2 

0.000400

054 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Dialister_succinatiphilus 0.34678993 0.483666857 0.00025160

1 

0.000481

084 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_eggerthii 0.012927647 -0.475967219 0.00032332 0.000604
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2 926 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_sp__14_A_ -0.008273623 -0.465878773 0.00038492

6 

0.000705

023 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Coprobacillus_sp__8_1_38

FAA 

-0.044760255 -0.45458011 0.00055411

8 

0.000978

849 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_caccae 0.010611613 -0.450962455 0.00070374

1 

0.001212

386 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Parabacteroides_sp__ASF5

19 

-0.114727764 -0.437712139 0.00093308

7 

0.001576

283 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Alistipes_finegoldii 0.025365913 -0.420163903 0.00170576

7 

0.002722

968 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Blautia_obeum -0.032163756 -0.414751286 0.00197741

8 

0.003085

836 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_sp__HPS0048 -0.552418218 -0.36611397 0.00676863

5 

0.009310

218 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Coprococcus_sp__HPP004

8 

-2.033517547 -0.331400197 0.01436865

8 

0.018798

093 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_sp__3_2_5 0.156426259 0.303602058 0.02601956 0.032454

505 

HIV+ Lipopolysaccharide_biosynthesis_ko00540 Bacteroides_pectinophilus -0.015602444 -0.260377359 0.05748977

8 

0.066911

18 

HIV+ N_Glycan_biosynthesis_ko00510 Prevotella_copri 0.000175869 0.516142558 0.00008206

2 

0.000190

909 

HIV+ N_Glycan_biosynthesis_ko00510 Fermentimonas_caenicola 0.781727328 0.491985222 0.00015782

9 

0.000332

875 

HIV+ N_Glycan_biosynthesis_ko00510 Prevotella_dentalis 0.008432226 0.41325801 0.00189718

5 

0.003001

002 

HIV+ N_Glycan_biosynthesis_ko00510 Bacteroides_eggerthii -0.000986601 -0.399504479 0.00296259

7 

0.004510

716 

HIV+ N_Glycan_biosynthesis_ko00510 Parabacteroides_sp__HGS

0025 

-0.314962578 -0.373900806 0.00535100

4 

0.007569

713 

HIV+ N_Glycan_biosynthesis_ko00510 Bacteroides_stercoris -0.001063969 -0.314503526 0.02094032

7 

0.026791

3 

HIV+ N_Glycan_biosynthesis_ko00510 Coprococcus_sp__HPP004

8 

-0.072767395 -0.265921471 0.05195059 0.060871

398 

HIV+ N_Glycan_biosynthesis_ko00510 Faecalibacterium_prausnitz

ii 

-0.000823985 -0.227901658 0.09744031

6 

0.110094

903 

HIV+ Peptidoglycan_biosynthesis_ko00550 Bacteroides_sp__D20 -0.002507641 -0.728606823 0 0 

HIV+ Peptidoglycan_biosynthesis_ko00550 Prevotella_salivae 0.771067843 0.812388031 0 0 

HIV+ Peptidoglycan_biosynthesis_ko00550 Prevotella_copri 0.00519608 0.837164094 0 0 

HIV+ Peptidoglycan_biosynthesis_ko00550 Prevotella_dentalis 1.382983757 0.872323209 8.70E-018 1.01E-

016 

HIV+ Peptidoglycan_biosynthesis_ko00550 Prevotella_sp__oral_taxon

_299 

3.20351697 0.846514681 7.48E-016 7.04E-

015 

HIV+ Peptidoglycan_biosynthesis_ko00550 Faecalibacterium_prausnitz

ii 

0.016487105 0.371755289 0.00591925

1 

0.008272

687 

HIV+ Nicotinate_and_nicotinamide_metabolism_ko00760 Prevotella_copri 0.002565147 0.765199161 0 0 

HIV+ Nicotinate_and_nicotinamide_metabolism_ko00760 Prevotella_sp__oral_taxon

_299 

1.188732661 0.727317452 4.70E-010 2.82E-

009 

HIV+ Nicotinate_and_nicotinamide_metabolism_ko00760 Prevotella_denticola 0.81085705 0.725235907 5.56E-010 3.28E-

009 

HIV+ Nicotinate_and_nicotinamide_metabolism_ko00760 Prevotella_fusca 0.120275338 0.716642772 1.10E-009 6.38E-

009 

HIV+ Nicotinate_and_nicotinamide_metabolism_ko00760 Bacteroides_sp__D20 -0.000525527 -0.598170383 2.94E-006 9.66E-

006 

HIV+ Nicotinate_and_nicotinamide_metabolism_ko00760 Bacteroides_sp__HPS0048 -0.072662376 -0.462321327 0.00049765

9 

0.000897

333 

HIV+ One_carbon_pool_by_folate_ko00670 Prevotella_salivae 0.81149853 0.591614256 3.95E-006 0.000012

602 
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HIV+ One_carbon_pool_by_folate_ko00670 Bacteroides_sp__3_1_23 -0.033884814 -0.487173623 0.00022403

2 

0.000437

995 

HIV+ One_carbon_pool_by_folate_ko00670 Prevotella_oralis 0.785144755 0.468924719 0.00034816

2 

0.000644

47 

HIV+ One_carbon_pool_by_folate_ko00670 Bacteroides_caccae -0.001178167 -0.39310082 0.00349279

1 

0.005143

794 

HIV+ Metabolism|Metabolism_of_Other_Amino_Acids|D_

Alanine_metabolism_ko00473 

Prevotella_salivae 0.361960852 0.755441205 0 0 

HIV+ Metabolism|Metabolism_of_Other_Amino_Acids|D_

Alanine_metabolism_ko00473 

Prevotella_copri 0.012571451 0.839146179 0 0 

HIV+ Metabolism|Metabolism_of_Other_Amino_Acids|D_

Alanine_metabolism_ko00473 

Prevotella_dentalis 0.493603635 0.827394724 1.23E-014 9.99E-

014 

HIV+ Metabolism|Metabolism_of_Other_Amino_Acids|D_

Alanine_metabolism_ko00473 

Bacteroides_fluxus 0.047915676 0.673413379 7.54E-008 3.50E-

007 

HIV+ Metabolism|Metabolism_of_Other_Amino_Acids|D_

Alanine_metabolism_ko00473 

Parabacteroides_sp__ASF5

19 

-0.166124553 -0.433898983 0.00104591

5 

0.001730

835 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Bacteroides_sp__D20 -0.000990142 -0.760853821 0 0 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Prevotella_copri 0.004773795 0.897846388 0 0 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Prevotella_dentalis 1.547405825 0.90693648 3.63E-021 4.35E-

020 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Prevotella_sp__oral_taxon

_299 

0.895389824 0.863663158 4.29E-017 4.52E-

016 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Bacteroides_sp__4_1_36 -0.000347414 -0.708557271 5.93E-009 3.17E-

008 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Fermentimonas_caenicola 6.137082373 0.631086934 3.12E-007 1.25E-

006 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Bacteroides_clarus -0.04616053 -0.61623785 1.28E-006 4.55E-

006 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Bacteroides_sp__14_A_ -0.007914154 -0.560541375 0.00001042

7 

3.10E-

005 

HIV+ Terpenoid_backbone_biosynthesis_ko00900 Bacteroides_salyersiae -0.011945584 -0.509738898 0.00010319

9 

0.000234

728 

HIV+ Zeatin_biosynthesis_ko00908 Prevotella_copri 0.001080912 0.77442348 0 0 

HIV+ Zeatin_biosynthesis_ko00908 Prevotella_dentalis 2.314246958 0.739447979 1.70E-010 1.10E-

009 

HIV+ Zeatin_biosynthesis_ko00908 Fermentimonas_caenicola 0.744041474 0.559966686 1.07E-005 3.15E-

005 

HIV+ Zeatin_biosynthesis_ko00908 Parabacteroides_sp__HGS

0025 

-3.340567 -0.519453814 5.70E-005 0.000136

739 

HIV+ Zeatin_biosynthesis_ko00908 Bacteroides_sp__HPS0048 -0.033429809 -0.452029731 0.00068152 0.001185

373 

HIV+ Zeatin_biosynthesis_ko00908 Megasphaera_elsdenii -0.036514968 0.347131694 0.01046170

7 

0.013948

943 

HIV+ Zeatin_biosynthesis_ko00908 Acidaminococcus_sp__D2

1 

0.013281067 0.325404993 0.01673093

4 

0.021564

315 

HIV+ Zeatin_biosynthesis_ko00908 Coprobacillus_sp__8_1_38

FAA 

-0.174983397 -0.32215149 0.01751841 0.022495

966 

HIV+ Toluene_degradation_ko00623 Prevotella_copri 0.001917409 0.745683248 0 0 

HIV+ Toluene_degradation_ko00623 Prevotella_dentalis 0.820839323 0.752437507 5.37E-011 3.53E-

010 

HIV+ Toluene_degradation_ko00623 Prevotella_salivae 0.195595019 0.695826186 1.94E-008 1.01E-

007 

HIV+ Toluene_degradation_ko00623 Bacteroides_fluxus 0.000418738 0.644215742 3.34E-007 1.31E-

006 

HIV+ Toluene_degradation_ko00623 Bacteroides_sp__4_1_36 -0.001583292 -0.537869259 0.00003652

6 

9.14E-

005 

HIV+ Toluene_degradation_ko00623 Bacteroides_eggerthii 0.009439637 -0.308862207 0.02345195

6 

0.029677

384 

HIV+ Toluene_degradation_ko00623 Ruminococcus_bicirculans -0.014396793 -0.272576579 0.04614249 0.055180
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1 711 

HIV+ Toluene_degradation_ko00623 Blautia_obeum -0.010927638 -0.227215552 0.09847345

4 

0.110902

142 

 

 

 

Table S12.3.4 Biomarker species gene mapping 

Health statusa Speciesb ko pathwaysc KO in ko 

pathways
d 

KO 

presente 

Percentage 

%f 

KO listg 

Control Bacteroides_caccae ko00280 61 10 16.39 K00186 K00187 K00382 K00826 K01847 K01965 

K01966 K01968 K05606 K11381 

Control Bacteroides_clarus ko00280 61 10 16.39 K00186 K00187 K00382 K00826 K01847 K01965 

K01966 K01968 K05606 K11381 

Control Bacteroides_eggerthii ko00280 61 8 13.11 K00186 K00187 K00382 K00826 K01847 K01966 

K05606 K11381 

Control Alistipes_finegoldii ko00312 7 2 28.57 K02171 K02172 

Control Bacteroides_eggerthii ko00312 7 3 42.86 K02171 K02172 K17836 

Control Bacteroides_sp__14_A_ ko00312 7 3 42.86 K02171 K02172 K17836 

Control Bacteroides_sp__3_1_23 ko00312 7 3 42.86 K02171 K02172 K17836 

Control Bacteroides_sp__4_1_36 ko00312 7 3 42.86 K02171 K02172 K17836 

Control Odoribacter_splanchnicus ko00312 7 2 28.57 K02171 K02172 

Control Bacteroides_pectinophilus ko00362 87 4 4.6 K00680 K01615 K01726 K04072 

Control Bacteroides_plebeius ko00362 87 4 4.6 K00680 K01607 K01615 K01726 

Control Bacteroides_sp__HPS0048 ko00362 87 3 3.45 K00680 K01615 K01726 

Control Bacteroides_stercoris ko00362 87 4 4.6 K00680 K01607 K01615 K01726 

Control Bilophila_wadsworthia ko00362 87 5 5.75 K00074 K00626 K00680 K01607 K04021 

Control Blautia_obeum ko00362 87 4 4.6 K01607 K01615 K01726 K04072 

Control Parabacteroides_sp__ASF5

19 

ko00362 87 5 5.75 K00680 K01607 K01615 K01666 K01726 

Control Ruminococcus_bicirculans ko00362 87 4 4.6 K01607 K01615 K01666 K04072 

Control Alistipes_finegoldii ko00627 67 1 1.49 K09461 

Control Bacteroides_eggerthii ko00627 67 1 1.49 K09461 

Control Bacteroides_plebeius ko00627 67 1 1.49 K09461 

Control Bacteroides_salyersiae ko00627 67 1 1.49 K09461 

Control Bacteroides_sp__14_A_ ko00627 67 1 1.49 K09461 

Control Bacteroides_sp__3_1_23 ko00627 67 1 1.49 K09461 

Control Bacteroides_sp__4_1_36 ko00627 67 1 1.49 K09461 

Control Bacteroides_sp__D20 ko00627 67 1 1.49 K09461 

Control Bacteroides_stercoris ko00627 67 1 1.49 K09461 

Control Bacteroides_clarus ko00630 73 9 12.33 K00018 K00048 K00284 K00600 K00865 K01091 

K01433 K01625 K02437 

Control Bacteroides_finegoldii ko00630 73 8 10.96 K00018 K00048 K00284 K00600 K01091 K01433 

K01625 K02437 

Control Bacteroides_plebeius ko00630 73 9 12.33 K00018 K00048 K00284 K00600 K00865 K01091 

K01625 K02437 K03781 

Control Bacteroides_sp__3_1_23 ko00630 73 10 13.7 K00018 K00048 K00284 K00600 K00865 K01091 

K01433 K01625 K02437 K03781 

Control Bacteroides_stercoris ko00630 73 9 12.33 K00018 K00048 K00284 K00600 K00865 K01091 
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K01433 K01625 K02437 

Control Alistipes_finegoldii ko00785 4 2 50 K03644 K03801 

Control Bacteroides_eggerthii ko00785 4 3 75 K03644 K03800 K03801 

Control Bacteroides_plebeius ko00785 4 2 50 K03644 K03801 

Control Bacteroides_sp__14_A_ ko00785 4 3 75 K03644 K03800 K03801 

Control Bacteroides_sp__4_1_36 ko00785 4 2 50 K03644 K03801 

Control Bacteroides_sp__D20 ko00785 4 2 50 K03644 K03801 

Control Bacteroides_stercoris ko00785 4 2 50 K03644 K03801 

Control Parabacteroides_sp__ASF5

19 

ko00785 4 3 75 K03644 K03800 K03801 

Control Bacteroides_sp__4_1_36 ko00860 105 19 18.1 K00595 K00768 K01195 K01719 K01885 K02188 

K02190 K02217 K02224 K02226 K02227 K02231 

K02232 K02233 K02495 K03394 K04720 K05934 

K13541 

Control Alistipes_shahii ko02010 426 16 3.76 K02013 K02015 K02016 K05655 K06148 K06861 

K07091 K09808 K09810 K09811 K09812 K09815 

K09816 K09817 K11085 K11720 

Control Blautia_obeum ko02010 426 80 18.78 K01995 K01996 K01997 K01998 K01999 K02007 

K02008 K02010 K02013 K02015 K02016 K02017 

K02018 K02020 K02036 K02037 K02038 K02040 

K02045 K02046 K02048 K02062 K02071 K02072 

K02073 K03523 K05655 K05658 K05816 K06148 

K09690 K09691 K09692 K09812 K09815 K09816 

K09972 K10004 K10008 K10010 K10038 K10041 

K10111 K10112 K10117 K10118 K10119 K10188 

K10189 K10190 K10439 K10440 K10441 K10542 

K10543 K10545 K10546 K10547 K10548 K10559 

K10560 K10561 K10562 K10823 K11069 K11070 

K11071 K11072 K11085 K15583 K16785 K16786 

K16787 K16960 K16963 K17073 K17074 K17076 

K17215 K17318 

Control Coprococcus_sp__HPP004

8 

ko02010 426 66 15.49 K02006 K02007 K02010 K02017 K02018 K02020 

K02036 K02037 K02038 K02040 K02071 K02072 

K02073 K03523 K05655 K05685 K05816 K06148 

K09690 K09691 K09697 K09811 K09812 K09972 

K10004 K10008 K10010 K10038 K10041 K10111 

K10112 K10117 K10118 K10119 K10191 K10200 

K10201 K10202 K10439 K10441 K10542 K10548 

K10823 K11069 K11070 K11071 K11072 K11085 

K12371 K13892 K15580 K15581 K15582 K15583 

K15770 K15772 K16202 K16785 K16786 K16787 

K16960 K17076 K17215 K17318 K17319 K17320 

Control Faecalibacterium_prausnitzi

i 

ko02010 426 72 16.9 K01995 K01996 K01997 K01998 K01999 K02010 

K02013 K02015 K02016 K02017 K02018 K02020 

K02036 K02037 K02038 K02040 K02071 K02072 

K02073 K02424 K03523 K05685 K05816 K06148 

K09690 K09691 K09810 K09811 K09812 K09972 

K10004 K10008 K10009 K10010 K10038 K10041 

K10111 K10112 K10117 K10119 K10192 K10193 

K10194 K10200 K10201 K10202 K10441 K10540 

K10541 K10542 K10548 K10562 K10823 K11069 

K11070 K11071 K11072 K11085 K12371 K13892 

K15580 K15581 K15582 K15583 K16202 K16785 

K16786 K16787 K16960 K16963 K17076 K17215 

Control Alistipes_shahii ko02020 384 28 7.29 K00027 K00426 K01546 K01547 K01548 K01915 

K02313 K02584 K02667 K03092 K07636 K07646 

K07652 K07657 K07658 K07662 K07665 K07679 

K07712 K07713 K07714 K07715 K07783 K10941 

K10943 K11626 K13599 K13924 

Control Bacteroides_caccae ko02020 384 33 8.59 K00027 K00425 K00426 K01077 K01546 K01547 

K01548 K01915 K02313 K02488 K02584 K02667 

K03092 K07636 K07646 K07651 K07657 K07659 

K07662 K07664 K07665 K07679 K07684 K07712 

K07713 K07714 K07715 K07787 K07792 K10941 

K10943 K13599 K13924 

Control Bacteroides_pectinophilus ko02020 384 39 10.16 K00027 K00575 K01915 K02405 K02406 K02556 

K02660 K03406 K03407 K03408 K03412 K03413 

K03415 K03563 K03776 K07636 K07646 K07651 

K07652 K07657 K07658 K07662 K07664 K07665 

K07667 K07668 K07669 K07670 K07768 K07770 

K07774 K07775 K07776 K07813 K08372 K11329 

K11521 K11618 K11690 

Control Bacteroides_plebeius ko02020 384 27 7.03 K00027 K00425 K00426 K01077 K01915 K02313 

K02584 K02667 K03092 K04751 K07636 K07657 

K07659 K07662 K07665 K07668 K07684 K07712 

K07713 K07714 K07715 K07787 K07792 K10941 
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K10943 K11626 K13599 

Control Bacteroides_sp__14_A_ ko02020 384 33 8.59 K00027 K00425 K00426 K01077 K01546 K01547 

K01548 K01915 K02313 K02584 K02667 K03092 

K04751 K07636 K07646 K07657 K07659 K07662 

K07665 K07678 K07679 K07684 K07712 K07713 

K07714 K07715 K07783 K07787 K10941 K10943 

K11626 K13599 K13924 

Control Blautia_obeum ko02020 384 27 7.03 K00027 K01915 K02313 K03406 K04771 K07636 

K07652 K07657 K07658 K07662 K07664 K07665 

K07667 K07668 K07670 K07699 K07718 K07720 

K07768 K07770 K07774 K07775 K07776 K08372 

K11329 K11630 K11690 

Control Coprobacillus_sp__8_1_38

FAA 

ko02020 384 9 2.34 K00027 K01915 K07636 K07650 K07658 K07665 

K07699 K07770 K11630 

Control Coprococcus_sp__HPP004

8 

ko02020 384 31 8.07 K00027 K01546 K01547 K01548 K01915 K02313 

K07636 K07646 K07651 K07652 K07657 K07658 

K07659 K07662 K07664 K07665 K07667 K07668 

K07669 K07670 K07699 K07718 K07720 K07768 

K07770 K07774 K07775 K07776 K08372 K11329 

K11630 

Control Alistipes_finegoldii ko04011 41 1 2.44 K01759 

Control Bacteroides_clarus ko04011 41 1 2.44 K01759 

Control Bacteroides_salyersiae ko04011 41 1 2.44 K01759 

Control Bacteroides_sp__14_A_ ko04011 41 1 2.44 K01759 

Control Bacteroides_sp__3_1_23 ko04011 41 1 2.44 K01759 

Control Bacteroides_sp__4_1_36 ko04011 41 1 2.44 K01759 

Control Bacteroides_sp__HPS0048 ko04011 41 1 2.44 K01759 

Control Bacteroides_stercoris ko04011 41 1 2.44 K01759 

Control Coprococcus_sp__HPP004

8 

ko04011 41 1 2.44 K01759 

Control Parabacteroides_sp__ASF5

19 

ko04011 41 1 2.44 K01759 

Control Alistipes_shahii ko04122 21 2 9.52 K00566 K04085 

Control Bacteroides_pectinophilus ko04122 21 4 19.05 K00566 K03151 K04487 K11996 

Control Blautia_obeum ko04122 21 8 38.1 K00566 K03151 K03637 K03639 K03831 K04085 

K04487 K11996 

Control Coprococcus_sp__HPP004

8 

ko04122 21 7 33.33 K00566 K03151 K03637 K03639 K03831 K04085 

K04487 

Control Faecalibacterium_prausnitzi

i 

ko04122 21 6 28.57 K00566 K03151 K03637 K03639 K03831 K04487 

Control Parabacteroides_sp__HGS0

025 

ko04122 21 2 9.52 K00566 K04085 

Control Ruminococcus_bicirculans ko04122 21 4 19.05 K00566 K03151 K04487 K11996 

Control Alistipes_finegoldii ko04910 84 1 1.19 K00688 

Control Bacteroides_pectinophilus ko04910 84 2 2.38 K00688 K07192 

Control Bacteroides_plebeius ko04910 84 1 1.19 K00688 

Control Bacteroides_salyersiae ko04910 84 2 2.38 K00688 K07192 

Control Bifidobacterium_sp__12_1

_47BFAA 

ko04910 84 1 1.19 K00688 

Control Blautia_obeum ko04910 84 1 1.19 K00688 

Control Coprococcus_sp__HPP004

8 

ko04910 84 1 1.19 K00688 

Control Parabacteroides_sp__ASF5

19 

ko04910 84 3 3.57 K00688 K00844 K07192 

Control Parabacteroides_sp__HGS0

025 

ko04910 84 3 3.57 K00688 K00844 K07192 

Control Bacteroides_sp__14_A_ ko05146 78 1 1.28 K01476 

Control Parabacteroides_sp__ASF5 ko05146 78 1 1.28 K01476 
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19 

HIV+ Acidaminococcus_intestini ko00020 56 11 19.64 K00030 K00031 K00174 K00175 K00176 K00177 

K01610 K01679 K01681 K01958 K01960 

HIV+ Prevotella_salivae ko00020 56 8 14.29 K00024 K00174 K00175 K00176 K00177 K01610 

K01676 K01960 

HIV+ Prevotella_copri ko00051 81 19 23.46 K00011 K00100 K00754 K00847 K00848 K00850 

K00895 K00966 K00971 K01624 K01629 K01711 

K01803 K01805 K01808 K01813 K01840 K02377 

K04041 

HIV+ Prevotella_dentalis ko00051 81 20 24.69 K00100 K00754 K00847 K00848 K00850 K00895 

K00966 K00971 K01624 K01629 K01711 K01803 

K01805 K01808 K01809 K01813 K01840 K02377 

K04041 K05305 

HIV+ Prevotella_denticola ko00051 81 16 19.75 K00100 K00754 K00847 K00850 K00895 K00966 

K00971 K01218 K01624 K01711 K01803 K01808 

K01809 K01840 K02377 K04041 

HIV+ Bacteroides_fluxus ko00190 212 26 12.26 K00330 K00331 K00335 K00337 K00338 K00339 

K00340 K00341 K00342 K00343 K02108 K02109 

K02111 K02112 K02113 K02114 K02115 K02117 

K02118 K02120 K02121 K02123 K02124 K03885 

K13378 K15987 

HIV+ Prevotella_copri ko00190 212 20 9.43 K00330 K00331 K00337 K00338 K00339 K00340 

K00341 K00342 K00343 K02108 K02109 K02110 

K02111 K02112 K02113 K02114 K02115 K02120 

K03885 K13378 

HIV+ Prevotella_dentalis ko00190 212 21 9.91 K00330 K00331 K00337 K00338 K00339 K00340 

K00341 K00342 K00343 K02108 K02109 K02110 

K02111 K02112 K02113 K02114 K02115 K02120 

K03885 K13378 K15987 

HIV+ Prevotella_copri ko00250 60 21 35 K00259 K00262 K00264 K00265 K00266 K00278 

K00609 K00610 K00764 K00820 K01424 K01755 

K01756 K01914 K01939 K01940 K01953 K01955 

K01956 K11540 K11541 

HIV+ Prevotella_fusca ko00250 60 16 26.67 K00262 K00266 K00278 K00609 K00610 K00764 

K00820 K01424 K01744 K01755 K01756 K01914 

K01939 K01955 K01956 K11541 

HIV+ Prevotella_intermedia ko00250 60 16 26.67 K00262 K00266 K00278 K00609 K00610 K00764 

K00820 K01424 K01744 K01755 K01756 K01939 

K01953 K01955 K01956 K11541 

HIV+ Prevotella_salivae ko00250 60 16 26.67 K00259 K00262 K00266 K00609 K00610 K00764 

K00820 K01424 K01744 K01755 K01756 K01914 

K01939 K01955 K01956 K11541 

HIV+ Prevotella_sp__oral_taxon_

299 

ko00250 60 14 23.33 K00262 K00609 K00610 K00764 K00820 K01424 

K01744 K01755 K01756 K01914 K01939 K01955 

K01956 K11541 

HIV+ Dialister_succinatiphilus ko00400 70 21 30 K00014 K00766 K00800 K00812 K00817 K00832 

K00891 K01609 K01626 K01657 K01658 K01695 

K01696 K01713 K01735 K01736 K03856 K04517 

K06001 K13497 K14170 

HIV+ Prevotella_copri ko00400 70 19 27.14 K00014 K00210 K00766 K00800 K00812 K00817 

K00891 K01609 K01657 K01658 K01695 K01696 

K01735 K01736 K01817 K03786 K04516 K04518 

K06001 

HIV+ Prevotella_dentalis ko00400 70 20 28.57 K00014 K00210 K00766 K00800 K00812 K00817 

K00891 K01609 K01626 K01657 K01658 K01695 

K01696 K01735 K01736 K01817 K03786 K04516 

K04518 K06001 

HIV+ Prevotella_fusca ko00400 70 16 22.86 K00014 K00210 K00766 K00800 K00812 K00817 

K00891 K01657 K01658 K01735 K01736 K01817 

K03786 K04516 K04518 K06001 

HIV+ Prevotella_intermedia ko00400 70 12 17.14 K00014 K00210 K00800 K00812 K00891 K01609 

K01657 K01658 K01735 K01736 K03786 K04516 

HIV+ Prevotella_ruminicola ko00400 70 19 27.14 K00014 K00210 K00766 K00800 K00812 K00817 

K00891 K01609 K01657 K01658 K01695 K01696 

K01735 K01736 K01817 K03786 K04516 K04518 

K06001 

HIV+ Prevotella_salivae ko00400 70 14 20 K00014 K00210 K00766 K00800 K00812 K00891 

K01609 K01626 K01735 K01736 K03786 K04516 

K04518 K06001 

HIV+ Bacteroides_fluxus ko00473 5 1 20 K01775 
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HIV+ Prevotella_copri ko00473 5 1 20 K01775 

HIV+ Prevotella_dentalis ko00473 5 1 20 K01775 

HIV+ Prevotella_salivae ko00473 5 1 20 K01775 

HIV+ Fermentimonas_caenicola ko00510 44 1 2.27 K00721 

HIV+ Prevotella_copri ko00510 44 1 2.27 K00721 

HIV+ Prevotella_dentalis ko00510 44 1 2.27 K00721 

HIV+ Acidaminococcus_intestini ko00540 34 15 44.12 K00677 K00748 K00979 K01627 K02517 K02527 

K02535 K02536 K02843 K03270 K03271 K03272 

K03273 K03274 K16363 

HIV+ Bacteroides_fluxus ko00540 34 11 32.35 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K16363 

HIV+ Bacteroides_sp__3_2_5 ko00540 34 13 38.24 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K03271 K03273 

K16363 

HIV+ Bibersteinia_trehalosi ko00540 34 15 44.12 K00677 K00748 K00912 K00979 K01627 K02527 

K02535 K02536 K02560 K02843 K03270 K03271 

K03272 K03273 K03274 

HIV+ Dialister_succinatiphilus ko00540 34 12 35.29 K00677 K00748 K00912 K00979 K01627 K02527 

K02535 K02536 K03271 K03272 K07031 K16363 

HIV+ Fermentimonas_caenicola ko00540 34 10 29.41 K00677 K00748 K00912 K00979 K01627 K02527 

K02536 K03269 K03270 K16363 

HIV+ Prevotella_copri ko00540 34 14 41.18 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K03271 K03273 

K07031 K16363 

HIV+ Prevotella_fusca ko00540 34 11 32.35 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K16363 

HIV+ Prevotella_melaninogenica ko00540 34 11 32.35 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K16363 

HIV+ Prevotella_oralis ko00540 34 13 38.24 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K03271 K03273 

K16363 

HIV+ Prevotella_ruminicola ko00540 34 11 32.35 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K16363 

HIV+ Prevotella_salivae ko00540 34 11 32.35 K00677 K00748 K00912 K00979 K01627 K02517 

K02527 K02536 K03269 K03270 K16363 

HIV+ Riemerella_anatipestifer ko00540 34 6 17.65 K00677 K00748 K01627 K02517 K02536 K16363 

HIV+ Prevotella_copri ko00550 38 15 39.47 K00075 K00790 K01000 K01921 K01924 K01925 

K01928 K01929 K02563 K03587 K03814 K05366 

K05515 K06153 K07259 

HIV+ Prevotella_dentalis ko00550 38 15 39.47 K00075 K00790 K01000 K01921 K01924 K01925 

K01928 K01929 K02563 K03587 K03814 K05366 

K05515 K06153 K07259 

HIV+ Prevotella_salivae ko00550 38 15 39.47 K00075 K00790 K01000 K01921 K01924 K01925 

K01928 K01929 K02563 K03587 K03814 K05366 

K05515 K06153 K07259 

HIV+ Prevotella_sp__oral_taxon_

299 

ko00550 38 15 39.47 K00075 K00790 K01000 K01921 K01924 K01925 

K01928 K01929 K02563 K03587 K03814 K05366 

K05515 K06153 K07259 

HIV+ Bacteroides_fluxus ko00623 51 3 5.88 K00239 K00240 K00241 

HIV+ Prevotella_copri ko00623 51 3 5.88 K00239 K00240 K00241 

HIV+ Prevotella_dentalis ko00623 51 3 5.88 K00239 K00240 K00241 

HIV+ Prevotella_salivae ko00623 51 3 5.88 K00239 K00240 K00241 

HIV+ Prevotella_oralis ko00670 27 11 40.74 K00287 K00297 K00548 K00560 K00602 K00604 

K00605 K01491 K01934 K01938 K08289 

HIV+ Prevotella_salivae ko00670 27 10 37.04 K00287 K00297 K00548 K00560 K00602 K00604 

K01491 K01938 K03465 K08289 

HIV+ Bibersteinia_trehalosi ko00710 37 7 18.92 K00029 K00134 K00615 K00927 K01595 K01783 

K01807 

HIV+ Clostridiales_bacterium_V

E202_14 

ko00710 37 6 16.22 K00029 K00134 K00615 K00927 K01006 K01783 
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HIV+ Prevotella_copri ko00710 37 6 16.22 K00029 K00134 K00615 K00927 K01006 K01783 

HIV+ Prevotella_melaninogenica ko00710 37 6 16.22 K00029 K00134 K00615 K00927 K01006 K01783 

HIV+ Prevotella_salivae ko00710 37 6 16.22 K00029 K00134 K00615 K00927 K01006 K01783 

HIV+ Streptococcus_pneumoniae ko00710 37 7 18.92 K00134 K00150 K00615 K00927 K01595 K01783 

K01807 

HIV+ Prevotella_copri ko00760 44 9 20.45 K00767 K00858 K00969 K01081 K01950 K03426 

K03517 K03783 K03787 

HIV+ Prevotella_denticola ko00760 44 10 22.73 K00763 K00767 K00858 K00969 K01081 K01950 

K03426 K03517 K03783 K03787 

HIV+ Prevotella_fusca ko00760 44 10 22.73 K00763 K00767 K00858 K00969 K01081 K01950 

K03426 K03517 K03783 K03787 

HIV+ Prevotella_sp__oral_taxon_

299 

ko00760 44 9 20.45 K00763 K00767 K00858 K00969 K01081 K01950 

K03426 K03783 K03787 

HIV+ Fermentimonas_caenicola ko00900 50 10 20 K00099 K00806 K00919 K00991 K01662 K01770 

K02523 K03526 K03527 K13789 

HIV+ Prevotella_copri ko00900 50 11 22 K00099 K00806 K00919 K00991 K01662 K01770 

K02523 K03526 K03527 K12506 K13789 

HIV+ Prevotella_dentalis ko00900 50 11 22 K00099 K00806 K00919 K00991 K01662 K01770 

K02523 K03526 K03527 K12506 K13789 

HIV+ Prevotella_sp__oral_taxon_

299 

ko00900 50 11 22 K00099 K00806 K00919 K00991 K01662 K01770 

K02523 K03526 K03527 K12506 K13789 

HIV+ Acidaminococcus_sp__D21 ko00908 8 1 12.5 K00791 

HIV+ Fermentimonas_caenicola ko00908 8 1 12.5 K00791 

HIV+ Megasphaera_elsdenii ko00908 8 1 12.5 K00791 

HIV+ Prevotella_copri ko00908 8 1 12.5 K00791 

HIV+ Prevotella_dentalis ko00908 8 1 12.5 K00791 

HIV+ Bibersteinia_trehalosi ko03018 75 12 16 K00962 K01689 K03628 K03654 K03666 K03732 

K04043 K04077 K05592 K08300 K08311 K12573 

HIV+ Prevotella_copri ko03018 75 10 13.33 K00962 K00970 K03628 K03654 K04043 K04077 

K05592 K11927 K12573 K12574 

HIV+ Prevotella_salivae ko03018 75 10 13.33 K00962 K00970 K01689 K03628 K03654 K04043 

K04077 K05592 K11927 K12573 

HIV+ Prevotella_salivae ko03060 39 10 25.64 K03070 K03075 K03076 K03100 K03101 K03106 

K03110 K03210 K03217 K12257 

HIV+ Acidaminococcus_intestini ko05111 43 1 2.33 K07173 

HIV+ Prevotella_copri ko05111 43 1 2.33 K07173 

HIV+ Prevotella_melaninogenica ko05111 43 1 2.33 K07173 

HIV+ Fermentimonas_caenicola ko05120 90 1 1.11 K08303 

The genes from the biomarker pathways were mapped into the genome species 

aBiomarker condition. 

bBiomarker specie. 

cBiomarker pathways. 

dNumber of genes in pathways. 

eNumber of genes in pathways that maps into the biomarker specie. 

fList of genes in pathways that maps into the biomarker specie. 

 

 



 

 

280 

 

Table S12.3.5 Relative abundance of the species that contain the genes for the tryptophan catabolism via the 

kynurenine pathway. 

DNA mapping species VU 

(mean / sd) 

IR 

(mean / sd) 

INR 

(mean / sd) 

HIV-  

(mean / sd) 

K/T ratio 

Spearma

n cor-

index 

P-

value 

Adjuste

d p-

value * 

Xanthomonas arboricola 
pruni 

9.41e-05 / 
6.5e-05 

7.66e-05 / 
3.57e-05 

0.0001108 / 
8.45e-05 

7.61e-05 / 6.1e-
05 

0.280 0.041 0.222 

Trichodesmium erythraeum 
IMS101 

8.97e-05 / 
6.94e-05 

6.91e-05 / 
4.56e-05 

9.77e-05 / 
6.18e-05 

9.11e-05 / 
6.69e-05 

0.167 0.227 0.265 

Streptomyces scabiei 0.0001091 / 
9.94e-05 

8.52e-05 / 
4.64e-05 

0.000125 / 
8.8e-05 

0.0001094 / 
8.81e-05 

0.213 0.122 0.250 

Pseudomonas putida 0.0001933 / 
0.0001906 

0.0001985 / 
0.0001281 

0.0002391 / 
0.000237 

0.0001844 / 
0.0001553 

0.173 0.211 0.265 

Pseudomonas fluorescens 0.0001734 / 
0.0001575 

0.0001706 / 
0.0001096 

0.0001964 / 
0.0001917 

0.0001549 / 
0.0001238 

0.204 0.140 0.250 

Pseudomonas aeruginosa 0.0001707 / 
0.0001523 

0.0001658 / 
0.0001028 

0.0002052 / 
0.0001739 

0.0001493 / 
0.0001172 

0.199 0.149 0.250 

Nitrosococcus oceani 
ATCC19707 

0.0002297 / 
0.000164 

0.0002088 / 
0.0001064 

0.0002464 / 
0.0001768 

0.0002198 / 
0.000144 

0.194 0.161 0.250 

Nitrosococcus halophilus 
Nc4 

0.0001412 / 
0.0001042 

0.0001196 / 
6.85e-05 

0.0001532 / 
0.0001356 

0.0001245 / 
0.0001001 

0.271 0.048 0.222 

Neptuniibacter caesariensis 
MED92 

5.38e-05 / 
5.39e-05 

5.6e-05 / 
4.18e-05 

5.4e-05 / 
5.33e-05 

3.99e-05 / 
3.99e-05 

0.211 0.126 0.250 

Methylocystis sp ATCC 
49242 

0.0001391 / 
0.0001011 

8.43e-05 / 
4.64e-05 

0.0001506 / 
7.82e-05 

0.0001229 / 
8.09e-05 

0.171 0.216 0.265 

Gemmatimonas aurantiaca 8.17e-05 / 
6.32e-05 

5.42e-05 / 
3.16e-05 

8.89e-05 / 
4.56e-05 

7.15e-05 / 6e-
05 

0.213 0.121 0.250 

Erythrobacter sp SD 2 2.47e-05 / 
2.95e-05 

6e-06 / 
1.19e-05 

2.23e-05 / 
2.76e-05 

2.12e-05 / 
2.01e-05 

0.287 0.035 0.222 

Erythrobacter litoralis 0.0001235 / 
9.76e-05 

7.31e-05 / 
4.4e-05 

0.0001265 / 
6.67e-05 

0.0001322 / 
8.27e-05 

0.134 0.334 0.338 

Citromicrobium 
bathyomarinum 

0.0001136 / 
9.57e-05 

6.87e-05 / 
4.21e-05 

0.0001276 / 
6.37e-05 

0.0001259 / 
8.17e-05 

0.133 0.338 0.338 

 

RNA mapping species VU 

(mean / sd) 

IR 

(mean / sd) 

INR 

(mean / sd) 

HIV- 

(mean / sd) 

K/T 

ratio 

Spearma

n cor-

index 

P-value Adjuste

d 

p-value 

* 

Xanthomonas arboricola 
pruni 

9.5e-06 / 
1.75e-05 

7.4e-06 / 
1.36e-05 

1.7e-06 / 
4.1e-06 

1.32e-05 / 
1.69e-05 

-0.030 0.868 0.935 

Trichodesmium erythraeum 
IMS101 

0 / 0 0 / 0 0 / 0 2.1e-06 / 7.7e-
06 

0.000 1.000 1.000 

Streptomyces scabiei 1.2e-06 / 
3.6e-06 

2.1e-06 / 
3e-06 

0 / 0 6.1e-06 / 
1.53e-05 

-0.162 0.367 0.728 

Pseudomonas putida 5e-06 / 6e-
06 

1.08e-05 / 
1.55e-05 

1.4e-06 / 
3.4e-06 

9.6e-06 / 
1.93e-05 

-0.075 0.679 0.792 

Pseudomonas fluorescens 4.6e-06 / 
7.4e-06 

7.4e-06 / 
1.24e-05 

1.2e-06 / 
3e-06 

6.6e-06 / 
1.27e-05 

-0.155 0.389 0.728 
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Pseudomonas aeruginosa 3.8e-06 / 
5.7e-06 

9.3e-06 / 
1.38e-05 

3e-06 / 
4.7e-06 

6.5e-06 / 
1.06e-05 

-0.147 0.415 0.728 

Nitrosococcus oceani 
ATCC19707 

4.4e-06 / 
8.7e-06 

1.22e-05 / 
2.21e-05 

2.4e-06 / 
6e-06 

1e-05 / 2e-05 -0.119 0.509 0.728 

Nitrosococcus halophilus 
Nc4 

3.8e-06 / 
7.5e-06 

1.04e-05 / 
1.88e-05 

2.1e-06 / 
5.1e-06 

7.6e-06 / 
1.43e-05 

-0.118 0.512 0.728 

Neptuniibacter caesariensis 
MED92 

0 / 0 1.04e-05 / 
1.66e-05 

0 / 0 3e-06 / 8.2e-06 -0.219 0.220 0.728 

Methylocystis sp ATCC 
49242 

9.7e-06 / 
1.01e-05 

5.9e-06 / 
7.1e-06 

0 / 0 2.7e-06 / 5.4e-
06 

0.110 0.543 0.728 

Gemmatimonas aurantiaca 3.3e-06 / 
6.6e-06 

4.2e-06 / 
7e-06 

1.8e-06 / 
4.5e-06 

6.5e-06 / 1.1e-
05 

-0.172 0.339 0.728 

Erythrobacter sp SD 2 7.7e-06 / 
1.63e-05 

1.02e-05 / 
2.04e-05 

0 / 0 7.8e-06 / 
1.68e-05 

-0.161 0.372 0.728 

Erythrobacter litoralis 6.1e-06 / 
9.3e-06 

8.6e-06 / 
1.57e-05 

0 / 0 8.6e-06 / 
1.05e-05 

-0.151 0.400 0.728 

Citromicrobium 
bathyomarinum 

6e-06 / 
9.1e-06 

8.3e-06 / 
1.84e-05 

0 / 0 9.6e-06 / 
1.24e-05 

-0.102 0.572 0.728 

*P-value adjusted using the Benjamini and Hochberg method 
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Table S12.3.6 Network statistics. 

 Mean 

Degre

e 

Mean 

betweenness 

centrality 

Mean 

closeness 

centralit

y 

Mean 

Eigenvecto

r centrality 

%Positve 

connection 

%Negativ

e 

connection 

ratio Fragmentatio

n 

Modularity Transitivit

y 

Diamete

r 

Mean-

short-

pathway

s 

K-

Smirnov 

p-value 

Number 

node 

Co-

corrence 

Ecologica
l network 

3.88 262.38 0.001 0.106 0.431 0.569 0.758 0.134 0.428 0.155 10 4.079 0.603 176 

Functiona
l network 

17.15 10364.49 1.97E-07 0.018    0.433 0.780 0.369 26 6.600 0.702 3700 
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Table S12.3.7 Bayesian network quantile 95 nodes. The quantile 95 based on the three different statistics: the 

degree centrality, the number of direct connections with a clinical variable and the MB size. 

Node name Number of direct connections 

(degree centrality) 

DNA seq Terpenoid backbone biosynthesis ko00900 17 

BPI (ng/mL) 17 

DNA seq Valine leucine and isoleucine degradation ko00280 18 

RNA seq Butanoate metabolism ko00650 18 

%CD4+HLA−DR+CD38+ T−cells 18 

DNA seq Alanine aspartate and glutamate metabolism ko00250 19 

DNA seq Aminobenzoate degradation ko00627 19 

sj/β−TREC ratio 22 

CD4+ T−cell counts (cells/uL) 24 

DNA seq Nicotinate and nicotinamide metabolism ko00760 25 

 

Node name Number of direct connections with a 

clinical variable 

DNA seq Limonene and pinene degradation ko00903 7 

Metabolite Diradylglycerols [GL02]|Glycerolipids [GL]|LMGL02010346 7 

Metabolite Diradylglycerols [GL02]|Glycerolipids [GL]|582.5218@10.206741 7 

DNA seq Glyoxylate and dicarboxylate metabolism ko00630 9 

Metabolite Steroid conjugates [ST05]|Sterol Lipids [ST]|LMST05010043 9 

DNA seq Valine leucine and isoleucine degradation ko00280 10 

RNA seq ABC transporters ko02010 11 

DNA seq Nicotinate and nicotinamide metabolism ko00760 12 

RNA seq Butanoate metabolism ko00650 16 

 

Node name Markov blanket size in nodes 

DNA seq Aminobenzoate degradation ko00627 67 

Metabolite Diradylglycerols [GL02]|Glycerolipids [GL]|582.5218@10.206741 67 

Metabolite Steroid conjugates [ST05]|Sterol Lipids [ST]|LMST05010043 68 

RNA seq ABC transporters ko02010 69 

DNA seq Glyoxylate and dicarboxylate metabolism ko00630 74 

DNA seq D Alanine metabolism ko00473 75 
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12.4. Publications related to the thesis 
 

Altered metabolism of gut microbiota contributes to chronic immune 

activation in HIV-infected individuals 
 

Vázquez-Castellanos JF*, Serrano-Villar S*, Latorre A, Artacho A, Ferrús ML, Madrid N, Vallejo 

A, Sainz T, Martínez-Botas J, Ferrando-Martínez S, Vera M, Dronda F, Leal M, Del Romero J, 

Moreno S, Estrada V, Gosalbes MJ, Moya A. 

* These authors contributed equally to this work. 

 

Mucosal Immunol. 2015 Jul;8(4):760-72. doi: 10.1038/mi.2014.107. Epub 2014 Nov 19. 

 

Abstract 

Altered interplay between gut mucosa and microbiota during treated HIV infection may possibly 

contribute to increased bacterial translocation and chronic immune activation, both of which are 

predictors of morbidity and mortality. Although a dysbiotic gut microbiota has recently been 

reported in HIV+ individuals, the metagenome gene pool associated with HIV infection remains 

unknown. The aim of this study is to characterize the functional gene content of gut microbiota in 

HIV+ patients and to define the metabolic pathways of this bacterial community, which is 

potentially associated with immune dysfunction. We determined systemic markers of innate and 

adaptive immunity in a cohort of HIV-infected individuals on successful antiretroviral therapy 

without comorbidities and in healthy non-HIV-infected subjects. Metagenome sequencing revealed 

an altered functional profile, with enrichment of the genes involved in various pathogenic 

processes, lipopolysaccharide biosynthesis, bacterial translocation, and other inflammatory 

pathways. In contrast, we observed depletion of genes involved in amino acid metabolism and 

energy processes. Bayesian networks showed significant interactions between the bacterial 

community, their altered metabolic pathways, and systemic markers of immune dysfunction. This 

study reveals altered metabolic activity of microbiota and provides novel insight into the potential 

host-microbiota interactions driving the sustained inflammatory state in successfully treated HIV-

infected patients.  
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The effects of prebiotics on microbial dysbiosis, butyrate production 

and immunity in HIV-infected subjects 
 

Serrano-Villar S*, Vázquez-Castellanos JF*, Vallejo A, Latorre A, Sainz T, Ferrando-Martínez S, 

Rojo D, Martínez-Botas J, Del Romero J, Madrid N, Leal M, Mosele JI, Motilva MJ, Barbas C, 

Ferrer M, Moya A, Moreno S, Gosalbes MJ, Estrada V. 

* These authors contributed equally to this work. 

 

Mucosal Immunol. 2016 Dec 21. doi: 10.1038/mi.2016.122. [Epub ahead of print]. 

 

Abstract 

Altered interactions between the gut mucosa and bacteria during HIV infection seem to contribute 

to chronic immune dysfunction. A deeper understanding of how nutritional interventions could 

ameliorate gut dysbiosis is needed. Forty-four subjects, including 12 HIV+ viremic untreated (VU) 

patients, 23 antiretroviral therapy-treated (ART+) virally suppressed patients (15 immunological 

responders and 8 non-responders) and 9 HIV- controls (HIV-), were blindly randomized to receive 

either prebiotics (scGOS/lcFOS/glutamine) or placebo (34/10) over 6 weeks in this pilot study. We 

assessed fecal microbiota composition using deep 16S rRNA gene sequencing and several 

immunological and genetic markers involved in HIV immunopathogenesis. The short dietary 

supplementation attenuated HIV-associated dysbiosis, which was most apparent in VU individuals 

but less so in ART+ subjects, whose gut microbiota was found more resilient. This compositional 

shift was not observed in the placebo arm. Significantly, declines in indirect markers of bacterial 

translocation and T-cell activation, improvement of thymic output, and changes in butyrate 

production were observed. Increases in the abundance of Faecalibacterium and Lachnospira 

strongly correlated with moderate but significant increases of butyrate production and amelioration 

of the inflammatory biomarkers soluble CD14 and high-sensitivity C-reactive protein, especially 

among VU. Hence, the bacterial butyrate synthesis pathway holds promise as a viable target for 

interventions. 
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HIV infection results in metabolic alterations in the gut microbiota 

different from those induced by other diseases 
 

Serrano-Villar S, Rojo D, Martínez-Martínez M, Deusch S, Vázquez-Castellanos JF, Sainz T, 

Vera M, Moreno S, Estrada V, Gosalbes MJ, Latorre A, Margolles A, Seifert J, Barbas C, Moya A, 

Ferrer M. 

 

Sci Rep. 2016 May 18;6:26192. doi: 10.1038/srep26192. 

 

Abstract 

Imbalances in gut bacteria have been associated with multiple diseases. However, whether there are 

disease-specific changes in gut microbial metabolism remains unknown. Here, we demonstrate that 

human immunodeficiency virus (HIV) infection (n = 33) changes, at quantifiable levels, the 

metabolism of gut bacteria. These changes are different than those observed in patients with the 

auto-immune disease systemic lupus erythaematosus (n = 18), and Clostridium difficile-associated 

diarrhoea (n = 6). Using healthy controls as a baseline (n = 16), we demonstrate that a trend in the 

nature and directionality of the metabolic changes exists according to the type of the disease. The 

impact on the gut microbial activity, and thus the metabolite composition and metabolic flux of gut 

microbes, is therefore disease-dependent. Our data further provide experimental evidence that HIV 

infection drastically changed the microbial community, and the species responsible for the 

metabolism of 4 amino acids, in contrast to patients with the other two diseases and healthy 

controls. The identification in this present work of specific metabolic deficits in HIV-infected 

patients may define nutritional supplements to improve the health of these patients.  
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Gut Bacteria Metabolism Impacts Immune Recovery in HIV-infected 

Individuals 
 

Serrano-Villar S, Rojo D, Martínez-Martínez M, Deusch S, Vázquez-Castellanos JF, Bargiela R, 

Sainz T, Vera M, Moreno S, Estrada V, Gosalbes MJ, Latorre A, Seifert J, Barbas C, Moya A, 

Ferrer M. 

 

EBioMedicine. 2016 Jun;8:203-16. doi: 10.1016/j.ebiom.2016.04.033. Epub 2016 Apr 27. 

 

Abstract 

While changes in gut microbial populations have been described in human immuno-deficiency 

virus (HIV)-infected patients undergoing antiretroviral therapy (ART), the mechanisms underlying 

the contributions of gut bacteria and their molecular agents (metabolites and proteins) to immune 

recovery remain unexplored. To study this, we examined the active fraction of the gut microbiome, 

through examining protein synthesis and accumulation of metabolites inside gut bacteria and in the 

bloodstream, in 8 healthy controls and 29 HIV-infected individuals (6 being longitudinally studied). 

We found that HIV infection is associated to dramatic changes in the active set of gut bacteria 

simultaneously altering the metabolic outcomes. Effects were accentuated among immunological 

ART responders, regardless diet, subject characteristics, clinical variables other than immune 

recovery, the duration and type of ART and sexual preferences. The effect was found at quantitative 

levels of several molecular agents and active bacteria which were herein identified and whose 

abundance correlated with HIV immune pathogenesis markers. Although, we cannot rule out the 

possibility that some changes are partially a random consequence of the disease status, our data 

suggest that most likely reduced inflammation and immune recovery is a joint solution orchestrated 

by both the active fraction of the gut microbiota and the host. 

 

 

 



 

 

 

288 

 

12.5. Other publications performed during the thesis 

Active and Secretory IgA-Coated Bacterial Fractions Elucidate 

Dysbiosis in Clostridium difficile Infection. 
 

Džunková M, Moya A, Vázquez-Castellanos JF, Artacho A, Chen X, Kelly C, D'Auria G. 

 

mSphere. 2016 May 25;1(3). pii: e00101-16. doi: 10.1128/mSphere.00101-16. eCollection 2016 

May-Jun. 

 

Abstract 

The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-

spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in 

modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we 

separated bacteria with high cellular RNA content (the active bacteria) and their inactive 

counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The 

gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of 

intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions 

either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the 

taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated 

versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the 

proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was 

more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed 

that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-

negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. 

Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In 

conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate 

infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a 

consequence of decreased activity of the protective bacteria.  

IMPORTANCE  

C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with 

broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA 

sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin 

A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis 

promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, 

such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the 

bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic 

for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific 

bacterial fractions provides additional information about dysbiotic processes in the gut. The 

detected patterns have been confirmed with the whole patient cohort independently of the 

taxonomic differences detected in the nonfractionated microbiomes.
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Carriage of Enterobacteria Producing Extended-Spectrum β-

Lactamases and Composition of the Gut Microbiota in an Amerindian 

Community 
 

Gosalbes MJ, Vázquez-Castellanos JF, Angebault C, Woerther PL, Ruppé E, Ferrús ML, Latorre 

A, Andremont A, Moya A. 

 

Antimicrob Agents Chemother. 2015 Nov 9;60(1):507-14. doi: 10.1128/AAC.01528-15. 

 

Abstract 

Epidemiological and individual risk factors for colonization by enterobacteria producing extended-

spectrum beta-lactamases (E-ESBL) have been studied extensively, but whether such colonization 

is associated with significant changes in the composition of the rest of the microbiota is still 

unknown. To address this issue, we assessed in an isolated Amerindian Guianese community 

whether intestinal carriage of E-ESBL was associated with specificities in gut microbiota using 

metagenomic and metatranscriptomic approaches. While the richness of taxa of the active 

microbiota of carriers was similar to that of noncarriers, the taxa were less homogeneous. In 

addition, species of four genera, Desulfovibrio, Oscillospira, Parabacteroides, and Coprococcus, 

were significantly more abundant in the active microbiota of noncarriers than in the active 

microbiota of carriers, whereas such was the case only for species of Desulfovibrio and Oscillospira 

in the total microbiota. Differential genera in noncarrier microbiota could either be associated with 

resistance to colonization or be the consequence of the colonization by E-ESBL. 
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Fragmentation and Coverage Variation in Viral Metagenome 

Assemblies, and Their Effect in Diversity Calculations 
 

García-López R*, Vázquez-Castellanos JF*, Moya A. 

* These authors contributed equally to this work. 

 

Front Bioeng Biotechnol. 2015 Sep 17;3:141. doi: 10.3389/fbioe.2015.00141. ECollection 2015. 

 

Abstract 

Metagenomic libraries consist of DNA fragments from diverse species, with varying genome size 

and abundance. High-throughput sequencing platforms produce large volumes of reads from these 

libraries, which may be assembled into contigs, ideally resembling the original larger genomic 

sequences. The uneven species distribution, along with the stochasticity in sample processing and 

sequencing bias, impacts the success of accurate sequence assembly. Several assemblers enable the 

processing of viral metagenomic data de novo, generally using overlap layout consensus or de 

Bruijn graph approaches for contig assembly. The success of viral genomic reconstruction in these 

datasets is limited by the degree of fragmentation of each genome in the sample, which is dependent 

on the sequencing effort and the genome length. Depending on ecological, biological, or procedural 

biases, some fragments have a higher prevalence, or coverage, in the assembly. However, 

assemblers must face challenges, such as the formation of chimerical structures and intra-species 

variability. Diversity calculation relies on the classification of the sequences that comprise a 

metagenomic dataset. Whenever the corresponding genomic and taxonomic information is 

available, contigs matching the same species can be classified accordingly and the coverage of its 

genome can be calculated for that species. This may be used to compare populations by estimating 

abundance and assessing species distribution from this data. Nevertheless, the coverage does not 

take into account the degree of fragmentation, or else genome completeness, and is not necessarily 

representative of actual species distribution in the samples. Furthermore, undetermined sequences 

are abundant in viral metagenomic datasets, resulting in several independent contigs that cannot be 

assigned by homology or genomic information. These may only be classified as different 

operational taxonomic units (OTUs), sometimes remaining inadvisably unrelated. Thus, 

calculations using contigs as different OTUs ultimately overestimate diversity when compared to 

diversity calculated from species coverage. In order to compare the effect of coverage and 

fragmentation, we generated three sets of simulated Illumina paired-end reads with different 

sequencing depths. We compared different assemblies performed with RayMeta, CLC Assembly 

Cell, MEGAHIT, SPAdes, Meta-IDBA, SOAPdenovo, Velvet, Metavelvet, and MIRA with the best 

attainable assemblies for each dataset (formed by arranging data using known genome coordinates) 

by calculating different assembly statistics. A new fragmentation score was included to estimate the 

degree of genome fragmentation of each taxon and adjust the coverage accordingly. The abundance 

in the metagenome was compared by bootstrapping the assembly data and hierarchically clustering 

them with the best possible assembly. Additionally, richness and diversity indexes were calculated 

for all the resulting assemblies and were assessed under two distributions: contigs as independent 

OTUs and sequences classified by species. Finally, we search for the strongest correlations between 
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the diversity indexes and the different assembly statistics. Although fragmentation was dependent 

of genome coverage, it was not as heavily influenced by the assembler. The sequencing depth was 

the predominant attractor that influenced the success of the assemblies. The coverage increased 

notoriously in larger datasets, whereas fragmentation values remained lower and unsaturated. While 

still far from obtaining the ideal assemblies, the RayMeta, SPAdes, and the CLC assemblers 

managed to build the most accurate contigs with larger datasets while Meta-IDBA showed a good 

performance with the medium-sized dataset, even after the adjusted coverage was calculated. Their 

resulting assemblies showed the highest coverage scores and the lowest fragmentation values. 

Alpha diversity calculated from contigs as OTUs resulted in significantly higher values for all 

assemblies when compared with actual species distribution, showing an overestimation due to the 

increased predicted abundance. Conversely, using PHACCS resulted in lower values for all 

assemblers. Different association methods (random-forest, generalized linear models, and the 

Spearman correlation index) support the number of contigs, the coverage, and fragmentation as the 

assembly parameters that most affect the estimation of the alpha diversity. Coverage calculations 

may provide an insight into relative completeness of a genome but they overlook missing fragments 

or overly separated sequences in a genome. The assembly of a highly fragmented genomes with 

high coverage may still lead to the clustering of different OTUs that are actually different fragments 

of a genome. Thus, it proves useful to penalize coverage with a fragmentation score. Using contigs 

for calculating alpha diversity result in overestimation but it is usually the only approach available. 

Still, it is enough for sample comparison. The best approach may be determined by choosing the 

assembler that better fits the sequencing depth and adjusting the parameters for longer accurate 

contigs whenever possible whereas diversity may be calculated considering taxonomical and 

genomic information if available. 
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Effect of daily intake of pomegranate juice on fecal microbiota and 

feces metabolites from healthy volunteers 
 

Mosele JI, Gosalbes MJ, Macià A, Rubió L, Vázquez-Castellanos JF, Jiménez Hernández N, 

Moya A, Latorre A, Motilva MJ. 

 

Mol Nutr Food Res. 2015 Oct;59(10):1942-53. doi: 10.1002/mnfr.201500227. Epub 2015 Aug 26. 

 

Abstract 

SCOPE: 

The purpose of the study was to evaluate the effect, regarding the metabolic and microbial profile of 

feces, of diet supplementation of healthy adults with pomegranate juice (PJ). 

METHODS AND RESULTS: 

Twelve healthy adults were recruited to the study, which consisted of the intake of 200 mL/day of 

PJ during 4 weeks. Feces were collected before and after the supplementation with PJ. Metabolites 

(phenolic catabolites, short-chain fatty acids, and fecal steroids) and microbial profile were 

analyzed at baseline and at 4 weeks. Fecal phenolic metabolites, 3-phenylpropionic acid, catechol, 

hydroxytyrosol, and urolithin A, showed a significant increase in their concentration after 

supplementation with PJ. Among fecal steroids, parallel to the significant increase of cholesterol 

concentration, a significant decrease of coprostanol was observed. Although no significant changes 

in the microbiota profile were observed, different relationships between initial microbiota and the 

metabolites produced were found. Catechol showed positive and negative correlation with 

Oscillospora and Paraprevotella genera, respectively, and 3-phenylpropionic acid was positively 

correlated with Odoribacter genus. 

CONCLUSION: 

Inclusion of PJ in the diet did not significantly alter the gut microbiota composition in healthy 

adults, but the individual bacterial composition could contribute to the generation of potential 

health-promoting phenolic metabolites. 
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Molecular epidemiology studies on the immigrant population in Spain 
 

González-Candelas F, Alma Bracho M, Comas I, d'Auria G, D Unková M, García R, Gosalbes MJ, 

Isaac S, Latorre A, López-Labrador FX, Patiño Galindo JÁ, Palero F, Pérez-Brocal V, Pérez-Cobas 

AE, Sánchez-Busó L, Silva FJ, Vázquez-Castellanos JF, Moya A. 

 

Rev Esp Salud Publica. 2014 Nov-Dec;88(6):819-28. doi: 10.4321/S1135-57272014000600013. 

 

Abstract 

BACKGROUND: 

Molecular epidemiology is a new scientific discipline which allows to integrate information on the 

genetic variation of infectious pathogens with their diffusion in a population and its subgroups 

including, for instance, resistance mutations to antibiotics and antiretrovirals. We present the results 

of an analysis of scientific publications that analyze the health status of the immigrant population in 

Spain from a molecular epidemiology perspective. 

METHODS: 

We reviewed original articles published in 1998-2014 with the keywords "molecular 

epidemiology", "molecular typing", "sequencing", "immigrant", and "Spain". 

RESULTS: 

From a total of 267 articles identified initially, only 50 passed through the established filters. Most 

of them (36) analyzed infections by Mycobacterium tuberculosis (3) and HIV (3), followed at a 

large distance by Staphylococcus aureus and hepatitis B virus. The main goal of these works was 

the typing of the pathogen and to determine the frequency of resistance mutations. 

CONCLUSION: 

Is difficult to generalize the conclusions from the analyzed articles because most of them have a 

purely descriptive and quite restricted scope, considering the type and size of the samples studied. 

Several studies are focused on the most likely origin for the strains or variants of the pathogen but 

others also reveal transmissions from the local to the immigrant populations. 
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Study of the viral and microbial communities associated with Crohn's 

disease: a metagenomic approach 
 

Pérez-Brocal V, García-López R, Vázquez-Castellanos JF, Nos P, Beltrán B, Latorre A, Moya A. 

 

Clin Transl Gastroenterol. 2013 Jun 13;4:e36. doi: 10.1038/ctg.2013.9. 

 

Abstract 

OBJECTIVES: 

This study aimed to analyze and compare the diversity and structure of the viral and microbial 

communities in fecal samples from a control group of healthy volunteers and from patients affected 

by Crohn's disease (CD). 

METHODS: 

Healthy adult controls (n=8) and patients affected by ileocolic CD (n=11) were examined for the 

viral and microbial communities in their feces and, in one additional case, in the intestinal tissue. 

Using two different approaches, we compared the viral and microbial communities in several ways: 

by group (patients vs. controls), entity (viruses vs. bacteria), read assembly (unassembled vs. 

assembled reads), and methodology (our approach vs. an existing pipeline). Differences in the viral 

and microbial composition, and abundance between the two groups were analyzed to identify taxa 

that are under- or over-represented. 

RESULTS: 

A lower diversity but more variability between the CD samples in both virome and microbiome was 

found, with a clear distinction between groups based on the microbiome. Only ≈5% of the 

differential viral biomarkers are more represented in the CD group (Synechococcus phage S CBS1 

and Retroviridae family viruses), compared with 95% in the control group. Unrelated patterns of 

bacteria and bacteriophages were observed. 

CONCLUSIONS: 

Our use of an extensive database is critical to retrieve more viral hits than in previous approaches. 

Unrelated patterns of bacteria and bacteriophages may be due to uneven representation of certain 

viruses in databases, among other factors. Further characterization of Retroviridae viruses in the CD 

group could be of interest, given their links with immunodeficiency and the immune responses. To 

conclude, some methodological considerations underlying the analysis of the viral community 

composition and abundance are discussed. 
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Comparison of different assembly and annotation tools on analysis of 

simulated viral metagenomic communities in the gut 
 

Vázquez-Castellanos JF*, García-López R*, Pérez-Brocal V, Pignatelli M, Moya A. 

* These authors contributed equally to this work. 

 

BMC Genomics. 2014 Jan 18;15:37. doi: 10.1186/1471-2164-15-37. 

 

Abstract 

BACKGROUND: 

The main limitations in the analysis of viral metagenomes are perhaps the high genetic variability 

and the lack of information in extant databases. To address these issues, several bioinformatic tools 

have been specifically designed or adapted for metagenomics by improving read assembly and 

creating more sensitive methods for homology detection. This study compares the performance of 

different available assemblers and taxonomic annotation software using simulated viral-

metagenomic data. 

RESULTS: 

We simulated two 454 viral metagenomes using genomes from NCBI's RefSeq database based on 

the list of actual viruses found in previously published metagenomes. Three different assembly 

strategies, spanning six assemblers, were tested for performance: overlap-layout-consensus 

algorithms Newbler, Celera and Minimo; de Bruijn graphs algorithms Velvet and MetaVelvet; and 

read probabilistic model Genovo. The performance of the assemblies was measured by the length of 

resulting contigs (using N50), the percentage of reads assembled and the overall accuracy when 

comparing against corresponding reference genomes. Additionally, the number of chimeras per 

contig and the lowest common ancestor were estimated in order to assess the effect of assembling 

on taxonomic and functional annotation. The functional classification of the reads was evaluated by 

counting the reads that correctly matched the functional data previously reported for the original 

genomes and calculating the number of over-represented functional categories in chimeric contigs. 

The sensitivity and specificity of tBLASTx, PhymmBL and the k-mer frequencies were measured 

by accurate predictions when comparing simulated reads against the NCBI Virus genomes RefSeq 

database. 

CONCLUSIONS: 

Assembling improves functional annotation by increasing accurate assignations and decreasing 

ambiguous hits between viruses and bacteria. However, the success is limited by the chimeric 

contigs occurring at all taxonomic levels. The assembler and its parameters should be selected 

based on the focus of each study. Minimo's non-chimeric contigs and Genovo's long contigs 

excelled in taxonomy assignation and functional annotation, respectively.tBLASTx stood out as the 

best approach for taxonomic annotation for virus identification. PhymmBL proved useful in 

datasets in which no related sequences are present as it uses genomic features that may help identify 

distant taxa. The k-frequencies underperformed in all viral datasets. 
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ABBREVIATIONS 

ADMA Asymmetric Dimethylarginine. It is an endothelial dysfunction and cardiovascular disease marker 

AIDS Acquired immunodeficiency syndrome  

AMPs Antimicrobial peptides 

ART Antiretroviral therapy 

BCFA Branched-chain fatty acids 

BH Benjamini-Hochberg 

BIC Bayesian Information Criterion 

BN Bayesian networks 

BPI Bactericidal permeability-increasing protein. Marker for bacterial translocation 

CARD Comprehensive Antibiotic Resistance Database 

CCR5 CC-chemokine receptor 5 

CD Crohn’s disease 

CD14 Cluster of differentiation 14 

CD25+ CD4 or CD8 percentage of cells expressing markers of activation CD25+ 

CD38+ CD4 or CD8  percentage of cells expressing markers of activation CD38+ 

CD38+/HLA-DR+ CD4 or CD8  percentage of cells expressing markers of activation HLADR+ 

CD4 CD4+ T-cell counts (cells/uL) 

CD57+ CD4 or CD8  percentage of cells expressing markers of senescence CD57+ 

CD8 CD8+ T-cell counts (cells/uL) 

CDI Clostridium difficile infection 

CID Collision-induced dissociation  

CPD Conditional probability distribution 

CRP C-reactive protein   

CXCR4 CXC-chemokine receptor 4 

DCs Dendritic cells 

D-dimers Fibrin degradation product that serves as a thrombosis marker 

DGA Probabilistic directed acyclic graphical 

DNAseq Metagenomic data sequences 

FB Filamentous bacteria 

FMD Flow mediated dilation 
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FMT Fecal microbial transplantation 

FOS Fructo-oligosaccharides 

FOXP3 Forkhead box P3 

GALT Gut-associated lymphoid tissue 

GIT Gastrointestinal tract 

GLM Generalized Linear Models 

GOS Galacto-oligosaccharides 

H2S Hydrogen-sulphide 

HC Hill-climbing score-based learning algorithm 

HDAC Deacetylases 

HIV Human Immunodeficiency Virus 

HIV- HIV-uninfected 

HLADR+ CD4 or CD8  percentage of cells expressing markers of activation HLADR+ 

hs-CRP High-sensitivity C-reactive protein. Marker for systemic inflammation 

IBD Inflammatory bowel disease dysbiosis 

IDO1 Indoleamine 2,3-dioxygenase 1 

IEC Intestinal epithelial cells 

IFN-γ Interferon-gamma 

IgA Immunoglobulin A 

IL-12 Interleukin-12 

IL-17 Interleukin-17 

IL-22 Interleukin-22 

IL6 Interleukin-6 

INR Immunological ART non-responders 

IQR Interquartile range 

IR Immunological ART responders 

JPD Joint probability distribution 

KO KEGG orthologous 

lasso Least absolute shrinkage and selection operator 

LC-ESI-QTOF-MS Liquid chromatography–Electro Spray Ionization- Quadrupole Time of Flight- Mass Spectrometry 

LC-MS Liquid chromatography-mass spectrometry 

LDA Linear discriminative analysis 

LEfSe Linear discriminative analysis effect size 

LPS Lipopolysaccharide 

MAMPs Microbe-associated molecular patterns 

MB Markov blanket   

MID Multiplex Identifier 

MSM Men who have sex with men 

Nadir CD4+ T-cells counts  The lowest point to which the CD4 count has dropped 

NF-κ B Nuclear factor kappa-light-chain-enhancer of activated B cells 
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NK Natural killer cells 

NMDS Non-metric multidimensional scaling analysis 

nts Nucleotides 

ORF  Open reading frame 

OTUs Operational taxonomic units 

PAM Partitioning Around Medoids algorithm 

PCA Principal component analysis 

PCoA Principal coordinates analysis 

PCR Polymerase chain reaction 

PEP Phosphoenolpyruvate 

qPCR  Quantitative PCR 

RDP Ribosomal Database Project-II 

RNAseq Metatranscriptomic sequencing data 

sCD14 Soluble Cluster of differentiation 14.  Marker for bacterial translocation 

SCFA Short-chain fatty acids 

SIV Simian immunodeficiency virus 

sj/β-TREC  ratio 

The ratio of two different T-cell receptor excision circles (TRECs). The signal-joint TRECs (sj-TREC)  

and the β-TREC . It is a direct estimator of the thymic function 

sj-TREC Signal-joint T-cell receptor excision circles 

SSU 16S small subunit rRNA 

T3SS Type 3 secretion system 

Th cells T helper cells 

Th1 T helpers 1 cells  

Th17 T helper 17 cell 

Th2 T helpers 2 cells 

TLR2 Toll-like receptor 2 

TLR4 Toll-like receptor 4 

TMA Trimethylamine 

TMAO Trimethylamine N-oxide 

TNF Tumor necrosis factor 

Treg Regulatory T cells  

UC Ulcerative colitis 

VL Viral load 

VU Virus untreated 

β-TREC Product of the ß chain TCR rearrangement at the most immature thymocyte subset and the sj-TREC 

 


