Vniver§itatÿ́®València

Departamento de Física Atómica, Molecular y Nuclear

Doctorado en Física

VALIDACIÓN DEL REGISTRO DEFORMABLE DE IMÁGENES

EN RADIOTERAPIA ADAPTATIVA

TESIS DOCTORAL

Presentada por:

Rafael García Mollá

Directores:

Facundo Ballester Pallarès

José Pérez Calatayud

Valencia, mayo 2017

Vniver§itatÿ́®València

Departamento de Física Atómica, Molecular y Nuclear

Doctorado en Física

VALIDACIÓN DEL REGISTRO DEFORMABLE DE IMÁGENES EN

RADIOTERAPIA ADAPTATIVA

Tesis presentada por:

Rafael García Mollá

Dirigida por:

Facundo Ballester Pallarès

José Pérez Calatayud

Valencia, mayo 2017

INFORME DIRECTORES TESIS

Facundo Ballester Pallarès, Catedrático del Departamento de Física Atómica, Molecular y Nuclear de la Universitat de València, y

José Pérez Calatayud, Jefe de Unidad de Radiofísica en el Servicio de Oncología Radioterápica del Hospital Universitario y Politécnico La Fe,

CERTIFICAN:

Que la presente memoria, titulada "VALIDACIÓN DEL REGISTRO DEFORMABLE DE IMÁGENES EN RADIOTERAPIA ADAPTATIVA", corresponde al trabajo realizado bajo su dirección por Rafael García Mollá, para su presentación como Tesis Doctoral en el Programa de Doctorado en Física de la Universitat de València.

Y para que conste, firman el presente certificado en Valencia, a mayo de 2017.

Fdo.

AGRADECIMIENTOS

A mi padre, por creer en mí cuando ni yo mismo lo hacía. He tenido una vida de estudiante muy complicada y esta tesis no hubiera sido posible sin un padre que siempre me apoyó. Gracias por todo.

A mi mujer, la persona que siempre me apoya y se preocupa por mí. Saber que siempre has estado y estarás a mi lado, me ha dado la estabilidad que he necesitado para ser mejor profesional, padre y marido.

A mis hijos, Emma y Daniel, la vida tiene otro sentido desde que estáis en ella. Sois la alegría de cada día.

A mi madre y hermanos, porque sé que siempre estáis cuando realmente os necesito.

A Luis M., por apoyarme en mis momentos más difíciles.

Al Dr. José Calatayud y el Dr. Facundo Ballester, por asesorarme, ayudarme y guiarme en este proyecto. He aprendido mucho de vuestros consejos y revisiones.

A mis compañeros de Radiofísica del Hospital Provincial de Castellón. En especial a Salvador Calzada y Agustín Santos, por su apoyo en todo momento. Os considero, además de compañeros, amigos.

A los compañeros de Radioterapia del Hospital Provincial de Castellón. En especial al Dr. Carlos Ferrer, por apostar por mí y ayudarme a mejorar

profesionalmente, y al Dr. Rodrigo Muelas, sus ganas de trabajar y colaborar han facilitado la realización de esta tesis.

A la Fundación del Hospital Provincial de Castellón por su apoyo a la investigación.

A los compañeros de Radiofísica del Hospital Provincial Gregorio Marañón y de ERESA Valencia, ya que me formaron como especialista.

Por último, quiero agradecer a mis nuevos compañeros del Hospital Clínico de Valencia el recibimiento que me han dado.

ÍNDICE

INFORME DIRECTORES TESIS	iii
AGRADECIMIENTOS	v
ÍNDICE	viii
ÍNDICE TABLAS	xi
ÍNDICE FIGURAS	xiii
ACRÓNIMOS	xviii
RESUMEN	xxi
1. INTRODUCCIÓN	1
1.1 INTRODUCCIÓN A LA RADIOTERAPIA	
1.2 ETAPAS DEL PROCESO RADIOTERÁPICO	
1.2.1 Indicación terapéutica.	3
1.2.2 Sistemas de inmovilización y simulación.	4
1.2.3 Planificación. Dosimetría.	7
1.2.4 Verificación y puesta e inicio del tratamient	o9
1.3 EVOLUCIÓN DE LA RADIOTERAPIA	
1.4 CONTROL DE CALIDAD EN RADIOTERAPIA.	
1.5 VALIDACIÓN DE LOS ALGORITMOS DE REG IMAGEN.	ISTRO DEFORMABLE DE14
1.5.1 Introducción	15
1.5.2 Registro deformable de imágenes	15
1.5.3 Métodos de validación del DIR	20
2. JUSTIFICACIÓN, HIPÓTESIS Y OBJETIVOS	25
2.1 JUSTIFICACIÓN DEL ESTUDIO	
2.2 HIPÓTESIS	
2.3 OBJETIVOS	
3. MATERIALES Y MÉTODOS	29
3.1 ALGORITMO DE REGISTRO DEFORMABLE D	DE IMÁGENES 30
3.2 PACIENTES	
3.2.1 Cabeza y cuello	31

3.2.2 Próstata	32
3.3 FLUJO DE TRABAJO EN ART	34
3.3.1 Tabla CT-ED	_35
3.3.2 Registro rígido	38
3.3.3 Registro deformable de imágenes	38
3.3.4 Proyección de estructuras y dosis absorbida	39
3.3.5 Comparación dosis absorbida planificada y administrada acumula	ıda 40
3.3.6 Adaptación del plan de tratamiento	41
3.4 MÉTODOS DE VALIDACIÓN DEL DIR	42
3.4.1 Validación en los pacientes de cabeza y cuello	43
3.4.1.1 Validación en distancias	43
3.4.1.2 Validación con el método de consistencia inversa	45
3.4.1.3 Validación en dosis absorbida	47
3.4.2 Validación en los pacientes de próstata	49
3.4.2.1 Software de validación	51
3.5 MÉTODOS ESTADÍSTICOS	54
3.5.1 Pacientes de cabeza y cuello	54
3.5.2 Pacientes de próstata	61
4. RESULTADOS	63
4.1 TABLA CT-ED	64
4.2 VALIDACIÓN REGISTRO DEFORMABLE DE IMÁGENES	66
4.2.1 Validación en los pacientes de cabeza y cuello	66
4.2.1.1 Validación en distancias	66
4.2.1.2 Validación con el método de consistencia inversa	68
4.2.1.3 Validación en dosis absorbida	68
4.2.3 Validación en los pacientes de próstata	69
5. DISCUSIÓN	73
5.1 DISUCIÓN TABLA CT-ED	74
5.2 DISCUSIÓN DE LA VALIDACIÓN DEL REGISTRO DEFORMABL IMÁGENES	E DE 75
5.2.1 Discusión de la validación en los pacientes de cabeza y cuello	75
5.2.1.1 Discusión de la validación en distancias	75

LISTA DE PUBLICACIONES	96
BIBILIOGRAFÍA	89
6. CONCLUSIONES	85
5.2.2 Discusión de la validación en los pacientes de próstata	79
5.2.1.3 Discusión de la validación en dosis absorbida	77
5.2.1.2 Discusión de la validación con el método de consistencia in	nversa 76

ÍNDICE TABLAS

Tabla 3-1. CT-ED para el TC de planificación. Relaciona los números CT y la densidad
másica relativa al agua
Tabla 3-2. Tabla CT-ED de una imagen de CBCT para un paciente de cabeza y cuello.
Los valores del número CT son seleccionados automáticamente por el TPS a
partir del histograma. Hay que tener en cuenta que estos valores dependen de la
técnica, filtro y colimador utilizada al adquirir la imagen de CBCT y del espesor
del paciente
Tabla 3-3. Posición anatómica para los diez POIs colocados en los CBCT y pCT de
cada paciente
Tabla 4-1 . Distancia promedio y desviación estándar (factor de cobertura $k = 1$) de los
POIs proyectados desde el CBCT al pCT con los POIs del pCT. Los POI se
proyectaron utilizando el algoritmo híbrido RayStation TPS para los cinco
pacientes de cáncer de cabeza y cuello
Tabla 4-2. Distancias entre los pCTs promediados originales y los POIs doblemente y
cuádruplemente deformados para los cinco pacientes de cáncer de cabeza y cuello.
Tabla 4-3. Diferencias en valores de DVH, es decir, el valor de la dosis absorbida, entre
las estructuras pCT originales y las estructuras cuádruplemente deformadas
(método IC). ATM: articulación temporomandibular; CTV: volumen objetivo
clínico; PTV: volumen objetivo de planificación
Tabla 4-4 . La diferencia en los histogramas de volumen de dosis (Δ DVH), entre la
estructura original en el pCT y la estructura corregida en el CBCT y proyectada al
pCT, con ROIs de control para cada paciente. Los valore están ordenados de
negativo a positivo

ÍNDICE FIGURAS

- Figura 1-2. Fotografía del proceso de simulación con un TAC. El técnico de imagen adquiere una imagen tomográfica para que posteriormente el oncólogo radioterápico contorné las estructuras de interés y el radiofísico realicé la dosimetría, todo esto con ayuda de los técnicos de radioterapia y radiofísica....... 6

- Figura 1-9. Proyección del contorno recto de nueve CBCT al CT. Donde los CBCT son la imagen blanco y el TC es la imagen de referencia. Los contornos de los

- Figura 3-1. Corte axial de CBCT, donde en la parte posterior derecha del paciente se ha agregado la zona del paciente que se ha quedado fuera debido al limitado tamaño de campo.

- Figura 3-5. En la parte superior del diagrama (1) se muestra el método de validación en distancias: El oncólogo radioterápico seleccionó el mismo POI en el pCT (x₁) y en la tomografía computarizada de haz de cónico (CBCT; z₁) y luego tres observadores seleccionaron el mismo POI en el CBCT (z₂, z₃, z₄). Los puntos son proyectados al pCT por el segundo campo de deformación vectorial (DVF₁) y se promedian los cuatro puntos en el pCT (0'). Las distancias entre 0' y x₁ representan la precisión del algoritmo de registro de imagen deformable (DIR). La parte inferior del diagrama (2) muestra el método de consistencia inversa (IC): El

- Figura 3-10. Hoja de cálculo de uno de los cinco pacientes, donde se observa en la parte izquierda en color las coordenadas de los puntos de referencia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatro observadores en cada uno de los CBCTs y exportados al pCT. Estas coordenadas se promedian y después se resta el promedio de las coordenadas con las de referencia. Por último, se calcularían las distancias.......;Error! Marcador no definido.
- Figura 3-11. Hoja de cálculo del método de consistencia inversa. En la columna de la izquierda se muestran las coordenadas de referencia en el pCT. En la columna siguiente a la derecha se muestran las coordenadas de ese punto proyectado al CBCT por un DFV₁ y de vuelta con un DVF₂. En la columna de la del medio se muestra la resta de coordenadas y después la distancia. En la siguiente columna

- **Figura 3-12**. Hoja de cálculo para estimar la incertidumbre en dosis para los pacientes de cabeza y cuello con el método de IC. En la parte superior a la izquierda se muestran los datos de todas las ROIs, en cada casilla de cada órgano se muestra la del TC, que es nuestra ROI de referencia y las de abajo son las estructuras proyectas al CBCT y después proyectadas al CT, y de nuevo se repite este proceso. La tabla en la parte superior a la derecha se muestra la diferencia entre la estructura proveniente del CBCT y la de TC. En la parte inferior se muestra un cuadro con el promedio de cada CBCT.
- Figura 3-13. Hoja de cálculo para estimar la incertidumbre en dosis absorbida para los pacientes de próstata. En la parte superior se muestran los datos utilizando ROIs de control y sin utilizarlas. En verde se muestra el valor de referencia en el TC y seguidamente abajo se muestran las dosis absorbidas que reciben los órganos corregidos en el CBCT y proyectados al pCT. En la parte inferior se muestran las diferencias en % de volumen para los órganos de riesgo y en dosis absorbida (cGy) para la próstata.

- **Figura 4-5**. Diagrama de barras y bigotes con la diferencia en porcentaje de volumen del histograma dosis-volumen (ΔDVH) para V51 y V36.5 para recto y V57 para

ACRÓNIMOS

ART: Radioterapia Adaptativa.

CBCT: Tomografía Computarizada de Haz Cónico.

CT: Tomografía Computarizada.

CT-ED: Tomografía Computarizada-Densidad Electrónica.

CTV: Volumen Clínico de Tratamiento.

DIR: Registro Deformable De imágenes.

DMLC: Multilámina Dinámico.

DVF: Campo de Deformación Vectorial.

DVH: Histogramas Dosis-Volumen.

FOV: Campo de Visión.

IC: Consistencia Inversa.

ICRU: Comisión internacional de Unidades y Medidas de Radiación

IGRT: Radioterapia Guiada por Imagen.

IMRT: Radioterapia de Intensidad Modulada.

LINAC: Acelerador Lineal de Electrones.

MLC: Colimador Multilámina.

MU: Unidades de Monitor

pCT: CT de Planificación.

POIs: Puntos de Interés.

PTV: Volumen de Tratamiento Planificado

ROIs: Regiones de Interés.

SMLC: Multilámina Estático

TPS: Sistema de Planificación Computarizada.

VMAT: Arcoterapia Modulada Volumétrica.

RESUMEN

En los últimos años, una de las áreas de mayor interés en la radioterapia ha sido la radioterapia adaptativa (ART), siendo la forma más versátil y eficiente de realizarla utilizar el registro de imágenes deformable (DIR). Este se basa en crear un campo de deformación vectorial entre dos imágenes, que permite relacionar los vóxels de una imagen con la otra. Una de las grandes dificultades para implementar la ART en los centros hospitalarios es la dificultad para validar si el algoritmo de DIR relaciona correctamente las dos imágenes que queremos registrar deformablemente. En esta tesis se pretende validar el algoritmo hibrido del sistema de planificación computarizada (TPS) RayStation (v.4.0.1.4, RaySearch Laboratories AB, Stockholm, Sweden), para dos diferentes localizaciones (cabeza y cuello y próstata), donde, por sus diferentes características anatómicas, se abordan desde diferentes métodos.

Para los pacientes con cáncer de cabeza y cuello, para validar el algoritmo se utilizan (1) las distancias entre puntos de interés (POI) en la tomografía computarizada (TC) y (2) los POIs seleccionados en las mimas áreas y proyectados desde las imágenes de tomografía computarizada de haz cónico (CBCT). Para determinar, en términos de dosis absorbida, la incertidumbre del DIR, se utiliza la propiedad de consistencia inversa (IC). Un algoritmo DIR con IC se define como aquel que, cuando se realiza un registro deformable entre dos imágenes, independientemente de si se deforma una imagen o la otra, el resultado del campo de deformación es exactamente igual. Por ello, en primer lugar, se determinó la precisión del algoritmo híbrido del TPS mediante la colocación de POIs sobre características anatómicas en las imágenes del CT y CBCT de cinco pacientes con cáncer de cabeza y cuello. En segundo lugar, se desarrolló un método para estimar la implicación de estas distancias en la dosis absorbida de las estructuras de interés utilizando la propiedad IC del algoritmo de DIR. El método se realizaba proyectando las estructuras desde la imagen de CT a una imagen de CBCT, luego se proyectaron de vuelta al CT, y este proceso se repitió dos veces, por lo que en total se deformaron cuatro veces. Con este método se comparó la dosis absorbida recibida por las estructuras contorneadas en la TC por el médico, y las estructuras que fueron cuádruplemente deformadas por el algoritmo híbrido DIR.

Para los pacientes de cáncer de próstata, se validó de nuevo el algoritmo hibrido en términos de valores del histograma dosis-volumen (DVH) para la arco-terapia modulada volumétrica (VMAT). En este caso, se seleccionaron veinte pacientes con cáncer de próstata, cada uno con 15 sesiones hipofraccionadas de VMAT, utilizando un total de 20 TC y 180 CBCT. Se determinó la incertidumbre del DIR, con, o sin, la utilización ROIs para guiar el algoritmo, comparando el DVH de los ROI originales, con los ROIs corregidas y proyectadas desde de cada CBCT. Con la utilización de este método como base, también se desarrolló un software propio para determinar la incertidumbre en el proceso de radioterapia adaptativa (ART).

Para la estimación de la incertidumbre en distancias de los pacientes de cabeza y cuello, la precisión del algoritmo, estimada mediante el método de distancias entre puntos, fue $1,7 \pm 0,8$ mm (k = 1). La distancia promedio obtenida con el método de IC, en el cual se deforman cuatro veces los puntos, fue de $1,7 \pm 0,9$ mm. Es decir, la diferencia en distancias entre aplicar dos veces el método IC, y la diferencia en distancias entre los puntos (método para validar en distancias el TPS) no fue significativa. Esto nos permite obtener los resultados en termino de dosis absorbida mediante el método IC, y se muestran pocas variaciones en los DVH cuando se comparan las estructuras originales y cuádruplemente deformadas. En la localización de próstata, los resultados de las pruebas de Wilcoxon mostraron una diferencia significativa en todas las estructuras si se utilizan, o no, las ROIs de control. Los resultados para próstata fueron mejores para la media, la desviación estándar y el máximo y mínimo cuando se utilizan las ROIs de control.

Como conclusión, podemos señalar que este algoritmo es útil para la planificación de tratamientos de radiación adaptativa utilizando CBCT en pacientes con cáncer de cabeza y cuello, aunque la incertidumbre incluida por el algoritmo debe tenerse en cuenta al tomar una decisión clínica para adaptar el plan de tratamiento del paciente. Para los pacientes con cáncer de próstata, el algoritmo debe utilizarse con precaución cuando no se utilicen las ROIs de control. Por lo tanto, aconsejamos utilizar este u otro método de validación del DIR para cuantificar las incertidumbres en cada paciente en el que se va a aplicar ART.

SUMMARY

In recent years, one of the areas of greatest interest in radiotherapy has been adaptive radiotherapy (ART), being the most versatile and efficient way using deformable imaging registration (DIR). This is based on creating a deformation vector (DVF) field between two images, which allows to relate the voxels of one image with the other. One of the great difficulties to implement the ART in the hospital centers is the difficulty to validate if the algorithm of DIR correctly relates the two images. This thesis aims to validate the hybrid algorithm of the computerized planning system (TPS) RayStation (v.4.0.1.4, RaySearch Laboratories AB, Stockholm, Sweden), for two different locations (head and neck and prostate), where, for their different anatomical characteristics, are approached from different methods.

For patients with head and neck cancer, to validate the algorithm, we use (1) the distances between points of interest (POI) in computed tomography (CT) and (2) the POIs selected in the areas and projected from the Cone Beam Computed Tomography (CBCT) imaging. To determine, in terms of absorbed dose, the uncertainty of the DIR, the inverse consistency (IC) property is used. A DIR algorithm have a perfect IC metric if the DVF of the deformation image registration is the same independently which is image is deformed. Therefore, the accuracy of the TPS hybrid algorithm was determined by placing POIs on anatomical characteristics in CT and CBCT images of five patients with head and neck cancer. Second, a method was developed to estimate the implication of these distances in the absorbed dose of the structures of interest using the IC property of the DIR algorithm. The method was performed by projecting the structures from the CT image to a CBCT image, then projected back to the CT, and this process was repeated twice, so that in total they were deformed four times. With this method, we compared the absorbed dose received by the structures contoured on the CT by the physician, and the structures that were quadruplely deformed by the hybrid algorithm DIR.

For the prostate cancer patients, the hybrid algorithm was again validated in terms of dose-volume histogram (DVH) values for volumetric modulated arc-therapy (VMAT). In this case, twenty patients with prostate cancer, each with 15 hypofractionated VMAT

sessions, were selected a total of 20 TC and 180 CBCT. The uncertainty of the DIR was determined with, or without, the use of ROIs to guide the algorithm, by comparing the DVH of the original ROI with the ROIs corrected and projected from each CBCT. With the use of this method as base, also developed its own software to determine the uncertainty in the process of adaptive radiotherapy (ART).

For the estimation of the uncertainty at distances of head and neck patients, the accuracy of the algorithm, estimated using the point distances method, was 1.7 ± 0.8 mm (k = 1). The average distance obtained with the IC method, in which the points were deformed four times, was 1.7 ± 0.9 mm. That is, the difference in distances between applying the IC method twice, and the difference in distances between the points (method to validate at distances the TPS) was not significant. This allows us to obtain the results in terms of absorbed dose using the IC method, and there are few variations in the DVH when comparing the original and quadratically deformed structures. In prostate localization, Wilcoxon test results showed a significant difference in all structures whether, or not, control ROIs were used. The results for prostate were better for the mean, the standard deviation and the maximum and minimum when the control ROIs were used.

As a conclusion, we can point out that this algorithm is useful for the planning of adaptive radiation treatments using CBCT in patients with head and neck cancer, although the uncertainty included by the algorithm should be considered when making a clinical decision to adapt the treatment plan of the patient. For patients with prostate cancer, the algorithm should be used with caution when control ROIs are not used. Therefore, we recommend using this or another method of validation of the DIR to quantify the uncertainties in each patient in which ART is to be applied.

1. INTRODUCCIÓN

1.1 INTRODUCCIÓN A LA RADIOTERAPIA

El cáncer sigue siendo la mayor causa de muerte a nivel mundial, el número de casos es de unos 12,7 millones al año. En la última década, los tratamientos contra el cáncer y la compresión de sus mecanismos de funcionamiento han experimentado un progreso considerable, que, junto con los avances en la detección temprana y el desarrollo de las diversas modalidades de tratamiento, han permitido que muchos cánceres se hayan convertido en curables.

La radioterapia se ha convertido en una especialidad médica reconocida, especialmente en el área de la radioterapia oncología, siendo una disciplina, donde un equipo multidisciplinar de profesionales de la salud y de la ciencia trabajan juntos. La radioterapia es una de las modalidades para el tratamiento del cáncer, junto con la cirugía y la quimioterapia De estas tres, la radioterapia es una modalidad altamente rentable. Únicamente supone el 5% del coste total del tratamiento a pacientes con cáncer y, aproximadamente, el 50% de todos los pacientes con cáncer recibirá radioterapia durante el curso de su enfermedad. Los rápidos avances en esta área están siendo impulsados por los avances en técnicas de imagen, sistemas de planificación computarizada, equipos de tratamiento y la mejor comprensión de la radiobiología.

La radiación ionizante es un agente físico que se utiliza para destruir las células cancerosas, ya que deposita una dosis absorbida en las células de los tejidos que se irradian. Esta energía depositada puede matar células cancerosas o causar cambios genéticos que resultan en la muerte de estas células.

La radiación de alta energía daña el material genético (ácido desoxirribonucleico, ADN) de las células y, por lo tanto, bloquear su capacidad de dividir y proliferar. Aunque la radiación daña tanto a las células normales como a las células cancerosas, la meta de la radioterapia es maximizar la dosis absorbida en las células cancerosas, mientras se minimiza la exposición a las células normales.

Hay dos maneras de entregar la radiación a la zona tumoral. La primera es la radiación externa, donde se irradia con partículas de alta energía (fotones, protones, electrones o iones) la localización del tumor desde una fuente externa al paciente. Este es el abordaje más común en el contexto clínico. La otra es la braquiterapia, donde la radiación ionizante se administra desde el interior del cuerpo por fuentes radiactivas, selladas en catéteres o semillas, directamente al tumor. Esto se utiliza particularmente

en el tratamiento de las neoplasias ginecológicas y de próstata, así como en las situaciones en las que está indicado debido a que la dosis absorbida se deposita en zonas muy cercanas a las semillas.

1.2 ETAPAS DEL PROCESO RADIOTERÁPICO

Se trata de un procedimiento complejo que integra diferentes etapas:

- 1. Indicación terapéutica e intención del tratamiento.
- 2. Sistemas de inmovilización y simulación.
- 3. Planificación. Dosimetría.
- 4. Verificación y puesta e inicio del tratamiento

1.2.1 Indicación terapéutica.

Es el acto más más importante en la evolución de la enfermedad de un paciente oncológico. Si el planteamiento y la indicación terapéutica inicial es errónea, sus perspectivas de curación disminuyen considerablemente. El papel del oncólogo radioterápico es sentar la indicación y el momento de realizar el tratamiento radioterápico, así como su solapamiento con el resto de las modalidades terapéuticas oncológicas.

El manejo adecuado de la enfermedad tumoral es multidisciplinar, interviniendo en la mayoría de los tratamientos diferentes especialistas en comité de tumores, que es una plataforma de discusión y coordinación de las acciones encaminadas a controlar la patología tumoral. En ellos participan todo tipo de facultativos especialistas (radiólogos, anatomo-patólogos, cirujanos, nefrólogos, especialistas en Digestivo, neurólogos, etc.) entre los que están los especialistas en Oncología Radioterápica y Oncología Médica. En primer lugar, se elabora un protocolo de actuación ante las distintas patologías tumorales de obligada aplicación y a criterio del comité tumoral se someten todos los pacientes que padezcan esa patología tumoral. Todo esto va encaminado a que no se tomen decisiones terapéuticas unilaterales, donde un único especialista tome la decisión sobre el procedimiento a seguir por un paciente. El objetivo de la irradiación debe ser la erradicación completa del tumor con la menor toxicidad posible. En el caso de no poder producir la curación completa de la enfermedad, su finalidad es intentar mejorar la calidad de vida del paciente oncológico. La histología del tumor, el tamaño y sus posibilidades de diseminación son los que van a definir el tipo de irradiación y la dosis absorbida a administrar. Antes de planificar el tratamiento con radioterapia es necesario realizar una evaluación clínica del paciente. Su situación general y los tratamientos recibidos previamente, así como sus complicaciones, son factores importantes a la hora de establecer un plan de tratamiento.

1.2.2 Sistemas de inmovilización y simulación.

A pesar de que la duración de cada sesión de radioterapia es de pocos minutos, es fundamental que el paciente mantenga la misma posición durante la irradiación y que esta sea igual a la posición de la simulación. Para conseguirlo se utilizan colchones de vacío, máscaras de material termoplástico, moldes de escayola o realizados con material termoplástico. Con todo ello se asegura la correcta colocación y la reproducción exacta del tratamiento cada día. En la figura 1-1 se muestran diferentes inmovilizadores para diferentes partes del cuerpo.

Figura 1-1. Inmovilizadores utilizado en radioterapia externa. Su misión es que el paciente se encuentre en la posición más reproducible posible.

El paciente se posiciona en la mesa del tomógrafo computarizado (TAC), se le inmoviliza y se le realiza la imagen tomográfica. En la figura 1-2 se muestra cómo se realiza el proceso de simulación en el TAC. El paciente permanece en la mesa sin moverse y el técnico de radioterapia adquiere la imagen tomográfica con un TAC desde la sala de control. Para reproducir el posicionamiento en el equipo de tratamiento, se marcan unos tatuajes el día de la simulación y, a fin de tener un punto de referencia para realizar la dosimetría, se colocan unos perdigones de tungsteno, que son visibles en la imagen de tomografía computarizada (CT).

Figura 1-2. Proceso de simulación con un TAC. El técnico de radioterapia adquiere una imagen tomográfica para que, posteriormente, el facultativo especialista en oncología radioterápica contorné las estructuras de interés y el facultativo especialista en radiofísico realicé la dosimetría, todo esto con ayuda de los técnicos de radioterapia y radiofísica.

Una vez obtenida la imagen tomográfica, el médico, con ayuda del técnico de imagen, contornea todos los órganos de interés, ya sean estructuras de órganos de riesgo que queramos irradiar lo mínimo posible, o el volumen blanco que queramos tratar. En la figura 1-3 se muestra un corte axial de una imagen tomográfica donde se ha contorneado los volúmenes a tratar y los órganos de riesgo a evitar.

Figura 1-3. Corte axial de un paciente de cabeza y cuello, donde se han contorneado los órganos de interés y los volúmenes a tratar.

1.2.3 Planificación. Dosimetría.

A la hora de la realización de la dosimetría, el oncólogo radioterápico, prescribe la dosis absorbida por fracción y la dosis total del tratamiento en función de las características del tumor y el paciente. También indica unos valores límites de dosis absorbida para los órganos de riesgo, que no se deben superar. El dosimetrista, en función del tamaño del tumor, la profundidad, si existen heterogeneidades y de la dosis por fracción, selecciona una energía de tratamiento, en número de haces, la angulación de esos haces y su tipo de conformación. Este proceso se realiza utilizando potentes equipos informáticos que manejan todas las imágenes y datos del paciente. En la figura 1-4 se muestra la pantalla del sistema de planificación computarizada (TPS) de la casa comercial RaySearch.

Figura 1-4. Imagen del TPS de RayStation, donde se muestra un corte axial de la imagen tomográfica de simulación en la parte izquierda. En la parte derecha se muestra el histograma dosis volumen de las estructuras de interés y debajo una tabla con las dosis para determinados volúmenes

En la definición del volumen de tratamiento se siguen las indicaciones de la ICRU donde se distinguen varios volúmenes: (ICRU, 2010)

- GTV o volumen de tumor macroscópico, se determina por la palpación o técnicas de imagen, contiene el GTV primario y el ganglionar

- CTV o volumen de tumor clínico, contiene el GTV y la enfermedad subclínica

- PTV o volumen planificado de tratamiento, se crea a partir de los márgenes que deben añadirse al CTV para compensar los movimientos del paciente, tumor y órganos adyacentes, así como las incertidumbres del posicionamiento. El GTV y el CTV están incluidos dentro de él. La figura 1-5 muestra mediante un esquema la definición de estos volúmenes:

Figura 1-5. *Esquema de los volúmenes de tratamiento. Cada volumen debe incluir al anterior, y todo estos deben ser irradiados.* (ICRU, 2010)

Con la dosimetría se calcula la dosis absorbida que reciben el tumor y los órganos de riesgo. Cuando el radiofísico hospitalario decide que la dosimetría es correcta y el oncólogo radioterápico también la acepta, el tratamiento es remitido a la Unidad de tratamiento para comenzar el mismo.

En muchos servicios se dispone actualmente de una red informática interna que permite que el envío de los datos entre los planificadores y las Unidades se realice de forma automática.

1.2.4 Verificación y puesta e inicio del tratamiento

El primer día de tratamiento está presente el médico y, si fuera necesario, el radiofísico, responsables del tratamiento, para comprobar todos los procedimientos. Tanto ese día como de forma periódica, y como mínimo una vez por semana, se realizan verificaciones radiográficas, por imágenes portales de los haces o por una imagen tomográfica de haz cónico (CBCT).

Los días sucesivos de tratamiento son los técnicos de radioterapia los que se encargan de reproducir el tratamiento bajo las condiciones prefijadas, tomar imágenes de comprobación y estar alerta ante los cambios de las técnicas prefijados en la planificación.

1.3 EVOLUCIÓN DE LA RADIOTERAPIA

La radioterapia es un campo de la medicina donde la calidad de los tratamientos ha mejorado enormemente con la evolución tecnológica. En pocas décadas los tratamientos de radioterapia, tanto en externa como en braquiterapia, han pasado de tratar volúmenes muy sencillos a tratar geometrías muy complejas. Esta evolución ha sido posible gracias al desarrollo tecnológico, donde los equipos de tratamiento y los TPSs han permitido introducir nuevas técnicas de tratamiento (IMRT, VMAT, Protón-terapia, Alta tasa...). (Bortfeld, 2006; Bortfeld & Webb, 2009; Perez-Calatayud et al., 2012; Smith, 2006)

En radioterapia externa la gran mayoría de tratamientos a escala mundial se realizan con aceleradores lineales de electrones (LINACs). Los mayores avances, desde la sustitución de las máquinas de cobalto por LINACs, se han dado por la introducción de los colimadores multilámina (MLC), (LoSasso, Chui, & Ling, 1998) la radioterapia guiada por la imagen (IGRT), (Cho, Johnson, & Griffin, 1995) los tratamientos de fluencia modulada y, (Bortfeld, 2006) en los últimos años, la radioterapia adaptativa (ART). (Di Yan, 2010) La figura 1-6 muestra un acelerador lineal de electrones de última generación, donde se incluyen un colimador multilámina para poder conformar los campos de forma automática y así poder realizar tratamiento de fluencia modulada, y una fuente emisora de rayos-X con su detector de digital de panel plano justo en frente. Esto nos permite obtener una imagen tomográfica para poder comprobar que el paciente está correctamente colocado y, a su vez, esta imagen, es la base de la ART. Por último, existe también un panel plano enfrentando al cabezal del acelerador, que nos permite tomar imágenes planares de verificación del posicionamiento.

Figura 1-6. Reproducción de un acelerador lineal de electrones de última generación, donde se indican cada uno de los últimos avances que han permitido mejorar la calidad de los tratamientos radioterápicos.

Para la implementación de estas técnicas ha sido necesario un gran desarrollo de los LINAC y de los TPSs por parte de las compañías, que ha sido acompañado por la actualización y formación de los profesionales sanitarios.

El radiofísico hospitalario es responsable de la parte técnica de la puesta en marcha de los avances tecnológicos. Debe asegurar que la calidad y seguridad de los tratamientos sea la mejor posible. Dentro de estas funciones está la de validar todas las nuevas técnicas de tratamiento y de realizar los controles de calidad periódicos.

La mejora de la calidad de los tratamientos en radioterapia tiene como último fin que las dosis absorbidas de tratamiento prescritas por el oncólogo radioterápico se conformen lo máximo posible al volumen a tratar. Esto permite, por un lado, disminuir la dosis que reciben los órganos de riesgo y, por otro, que se pueda administrar una mayor dosis al volumen blanco.

La introducción de los LINACs permitió tratamientos con espectros energéticos más penetrantes que el del Co-60, por lo que la dosis absorbida que se depositaba desde la entrada del haz en el paciente hasta el volumen blanco era menor. La sustitución en los LINACs de la conformación de campos de *cerrobend* por el MLC, permitió utilizar mayor cantidad de campos (y segmentos). Esto es debido a que, por un lado, cada campo conformado por *cerrobend* tenía que ser fabricado manualmente en el taller y,

por otro lado, a que los técnicos de radioterapia tenían que entrar en el acelerador cada vez que se cambiaba de campo a colocar otro *cerrobend* para la siguiente conformación. Una mayor cantidad de campos y segmentos permitió una mayor conformación de las dosis absorbidas al volumen a tratar, incluso en geometrías muy complejas, donde el volumen blanco y el órgano de riesgo crean una concavidad. Este aumento de campos y segmentos fue el primer paso para la introducción de las técnicas de modulación de fluencia modulada, que, aunque suele denominarse radioterapia de intensidad modulada (IMRT), lo que varía es la fluencia de partículas que emite el cabezal de acelerador, no la intensidad el haz. Dentro de las técnicas de fluencia modulada (IMRT) nacieron comercialmente dos versiones, la SMLC o "Step and shoot", y la DMLC o "Sliding Windows". En la primera, para una angulación fija de brazo del equipo, el campo está formado por varias conformaciones de las láminas (segmentos) y el acelerador irradia para cada conformación determinada; a continuación, detiene la irradiación hasta que el MLC se coloca en la nueva conformación y vuelve a irradiar. De ahí el nombre de paso y disparo. En la segunda técnica, el acelerador irradia de forma continua mientras las láminas del MLC se mueven. Estas técnicas necesitaron un desarrollo de los algoritmos de optimización de los TPS, ya que, en el caso de la optimización inversa, el TPS nos ofrece una solución de conformación de segmentos y pesos de estos, a partir de los objetivos y restricciones introducidas por el usuario. Conviene señalar que en la optimización inversa los primeros algoritmos no eran muy eficientes en la cantidad de segmentos y de las unidades de monitor (MU), mientras que la optimización directa, donde la dosimetría optimizaba los segmentos en función de la geometría de los volúmenes, era más eficiente, se lograban menos segmentos con menos UM, lo que permite tratamientos más cortos y con menos radiación secundaria para el paciente.

La última técnica de tratamiento implantada en la mayoría de centros ha sido la arcoterapia modulada, VMAT. (Bortfeld & Webb, 2009) Esta técnica permite realizar los tratamientos en un tiempo menor, ya que el *gantry* no deja de girar alrededor del paciente mientras la tasa de irradiación, la velocidad de rotación del *gantry* y la velocidad de traslación de las láminas varían para modular la fluencia. Que el tiempo de tratamiento sea menor, disminuye posibles movimientos intra-fracción, evita que radiobiológicamente los tratamientos sean menos efectivos por el tiempo de tratamiento sea demasiado largo y permite tratar más pacientes en el centro hospitalario

En paralelo a las técnicas de fluencia modulada, donde se conseguía una gran conformación de la dosis absorbida al volumen blanco, se desarrolló la denominada IGRT en tres dimensiones, donde previo al tratamiento del paciente, ya posicionado en la mesa del acelerador, se le realiza un CBCT. Con esta imagen y la imagen CT de planificación se realiza un registro rígido, y como resultado obtenemos los desplazamientos necesarios en la mesa de tratamiento para que el paciente se trate en la posición que se realizó la planificación del tratamiento. De este modo se mejora la exactitud del tratamiento, evitando irradiar innecesariamente los órganos de riesgo y asegurando que se trata correctamente el volumen blanco.

El último avance en los tratamientos, que está aún en vías de implantación en los centros, es la denominada radioterapia adaptativa. (McVicar, Popescu, & Heath, 2016) Esta se basa en modificar, si es necesario, el plan de tratamiento en función de los cambios anatómicos del paciente. Hasta ahora los parámetros de irradiación del paciente no varían desde la primera hasta la última fracción, pero durante el transcurso de tratamiento (hasta 6 semanas) puede haber modificaciones del volumen tumoral, de algún órgano de riesgo o el paciente puede haber adelgazado o engordado. Con la ART estas modificaciones anatómicas se pueden tener en cuenta, adaptando el plan a las nuevas geometrías. (Di Yan, 2010)

1.4 CONTROL DE CALIDAD EN RADIOTERAPIA

Una de las funciones más importantes de un radiofísico hospitalario es implantar un programa de garantía de calidad donde se incluyan controles de calidad periódicos y así asegurar que los tratamientos, en un campo tan delicado como la oncología radioterápica, cumplen los criterios de seguridad y calidad exigibles. En el real decreto 1566/1998, por el que se establecen los criterios de calidad en radioterapia, se especifican unos controles de calidad mínimos y unos valores a cumplir en el campo de la radioterapia, aunque estos valores están en parte obsoletos, por los avances tecnológicos producidos. Las sociedades internacionales de física médica más importantes del mundo, American Association of Physicists in Medicine (AAPM) y la European Society Radiation Oncology (ESTRO), junto con la Sociedad Española de Física Médica (SEFM), recomiendan una serie de controles a seguir por los servicios de Radiofísica. debe validar todas las nuevas técnicas de tratamiento y equipos antes de utilizarlos en la clínica con pacientes, además de desarrollar los controles de calidad periódicos.(Nath et al., 1994)

La validación de los nuevos equipos y técnicas de tratamiento está siendo una de las tareas con mayor dificultad en estos últimos años. El gran desarrollo tecnológico permite crear tratamientos más complejos y esto suele llevar asociando un aumento de la dificultad de los métodos de validación y de los controles de calidad de estos tratamientos. Un claro ejemplo es la evolución de los métodos de conformación del haz de tratamientos. Cuando se conformaban los campos con moldes de cerrobend, para verificar que los tratamientos eran correctos, se comprobaban de forma diaria y mensual los diferentes parámetros del acelerador (dosis absorbida, rendimientos en profundidad, perfiles de dosis, geométricos del acelerador...). Cuando se introdujeron los MLC se tuvo que introducir, además de los controles previos, un control del posicionamiento de las láminas. (Huq, Das, Steinberg, & Galvin, 2002) Después se implementaron los tratamientos de IMRT; donde además había que controlar, entre otras cosas, la posición de las láminas de manera mucho más exacta y que el LINAC funcionara correctamente con pocas UM. (Low, Moran, Dempsey, Dong, & Oldham, 2011) Con la introducción de los tratamientos de arcoterapia modulada, VMAT, hay que añadir el control de la tasa de dosis, la velocidad del gantry y el movimiento de las láminas (además de la posición). (Bedford & Warrington, 2009) En este ejemplo se muestra como no solo han aumentado la cantidad de controles de calidad y validación de nuevas tecnologías, sino que estos controles son mucho más complejos. Este aumento de la complejidad de los controles es ampliable a los métodos de control de calidad de imagen en radioterapia, así como en la dosimetría física y en los TPS.

Especialmente compleja es la validación de una de las últimas técnicas introducidas por los TPS, la ART, en la que no existe un método único y fiable para comprobar que los algoritmos de registro deformable de imágenes (DIR) utilizados en ART funcionan correctamente.

1.5 VALIDACIÓN DE LOS ALGORITMOS DE REGISTRO DEFORMABLE DE IMAGEN.

1.5.1 Introducción

Los tratamientos de radioterapia convencional se basan en la realización de la planificación dosimétrica en un estudio de tomografía computarizada (CT). Este tratamiento planificado se administra al paciente, sin modificación, durante todas las sesiones. Como consecuencia de esto, las variaciones de los volúmenes a tratar, o del propio paciente, no se tienen en cuenta dosimétricamente. A fin de garantizar la irradiación del tumor durante todas las sesiones, el volumen clínico de tratamiento (CTV) se expande teniendo en cuenta las incertidumbres tanto de posicionamiento como de maquina expandiendo este CTV al llamado volumen de tratamiento planificado (PTV) según el ICRU 83. (ICRU, 2010)

Para asegurar que la colocación del paciente en el momento del tratamiento es correcta, la técnica más utilizada en la actualidad es la IGRT de haz cónico. Esta se basa en la adquisición, previa al tratamiento, de una imagen de CBCT. (Ghilezan et al., 2004) Esta imagen tomografía se registra rígidamente para compararla con la imagen utilizada para calcular la dosimetría. Como resultado del registro rígido, se obtienen unos desplazamientos, que se aplican sobre la mesa de tratamiento del paciente y así, asegurarnos de que vamos a tratar la zona deseada del paciente.

La IGRT es una técnica que nos ayuda a colocar al paciente previamente al tratamiento de manera muy precisa, pero no tiene en cuenta si los volúmenes a tratar han variado desde que se le realizó la imagen del TC de simulación, donde se realiza la dosimetría, hasta el último día del tratamiento. Mediante el uso del DIR y ART se pueden evaluar las modificaciones en los volúmenes a tratar y modificar nuestro tratamiento para que se cumplan los criterios de calidad de la dosimetría inicial.

Existen estudios donde se muestra clínicamente que existen variaciones dosimétricas debidas a los cambios anatómicos que no pueden ser corregidas únicamente con la IGRT y para los cuales se debería utilizar la ART. (Mayyas et al., 2014; Wen et al., 2012)

1.5.2 Registro deformable de imágenes

La ART se basa en la utilización de los algoritmos de DIR. Estos algoritmos relacionan dos imágenes mediante un campo de deformación vectorial (DVF), donde

cada vóxel de una imagen se relaciona con el vóxel de la otra imagen mediante un vector de deformación. A diferencia del registro rígido de imágenes, donde la rejilla de la imagen se mantiene constante y únicamente se producen rotaciones y translaciones, en el DIR la rejilla de vóxels se puede deformar. Pudiendo estos vóxels desplazarse, y cambiar de forma y tamaño.

En este estudio se va a trabajar con un tipo de algoritmo donde una de las imágenes se deforma para coincidir con la otra imagen. A la imagen a deformar la denominaremos blanco y a la imagen que no se deforma, la denominaremos referencia. Existen otro tipo de algoritmos donde las dos imágenes se deforman para crear una imagen intermedia, pero lo más común es que únicamente se deforme una de las dos imágenes. (C. Yan, Zhong, Murphy, Weiss, & Siebers, 2010)

En la Figura 1-7 se muestran los vectores de deformación que relacionan una imagen de CT, con otra imagen de CBCT, para un tratamiento de cáncer de cabeza y cuello. Se ha ampliado el tamaño de los vectores para que se puedan visualizar correctamente.

Figura 1-7. Imagen transversal rotada de los vectores de deformación de un paciente con cáncer de cabeza y cuello. La imagen de referencia es un TC y la imagen blanco un CBCT. A mayor tamaño del vector mayor es la deformación de una imagen para coincidir con la otra.

La Figura 1-8 muestra una forma alternativa de visualizar la deformación entre imágenes. En este caso se observa cuanto se ha tenido que deformar la rejilla de deformación para que la imagen blanco coincida con la imagen de referencia. La escala de colores de la rejilla tiene un rango muy pequeño, para sobresaltar las áreas que han sufrido una deformación. Las zonas rojas muestran deformaciones del orden de milímetros. En la parte inferior y superior de la imagen suele haber variaciones del campo de deformación mayores debido a que el tamaño de campo del CBCT es menor que el del TC. Esto causa que el algoritmo no encuentre las mismas áreas para relacionarlas, produciendo una deformación irreal. Esto no suele ser un inconveniente ya que en radioterapia se deja un margen suficiente a las zonas de interés para que se puedan calcular la dosis con el medio dispersor suficiente y las deformaciones son locales, por lo que no afectarían al resto de la imagen. También puede haber deformaciones en las partes óseas del paciente debido a un registro rígido que no ha sido perfecto, por no tener una colocación exactamente igual en las dos imágenes.

Figura 1-8. En la imagen se muestra el corte sagital del TC de referencia y la rejilla de deformación de un paciente de cáncer de cabeza y cuello. La imagen en gris de fondo es la imagen de TC de referencia y la malla de colores es la rejilla de deformación. La escala de colores identifica cuanto se ha tenido que deformar la imagen blanco, o lo que es lo mismo, el CBCT, para coincidir con la de referencia, el TC.

Mediante la relación que establece el DIR podemos exportar los contornos y dosis absorbida de una imagen a otra. Proyectar los contornos, o también denominadas regiones de interés (ROIs), de una imagen a otra permite a los técnicos de imagen y a los oncólogos radioterápicos, ahorrar una gran cantidad de tiempo. El responsable de contornear la imagen del paciente es el oncólogo radioterápico, pero en algunos centros existe la figura del técnico de imagen, que es un técnico especialista en radioterapia, que ayuda en la labor de contorneo al médico.

Cuando se proyectan las estructuras hay que revisar los contornos y sin no estuvieran correctamente definidos habría que modificarlos, pero no habría que contornear de nuevo todas las estructuras, que en el caso de los pacientes con cáncer de cabeza y cuellos pueden llegar a ser más de 30 ROIs, lo que agiliza enormemente la labor de contoneo. Las casas comerciales ofrecen la posibilidad de utilizar atlas de estructuras para contornear automáticamente estas estructuras en determinadas regiones anatómicas, algunos de estos atlas están basados en DIR. El objetivo de los atlas es ayudar a contornear los órganos de riesgo, e incluso los volúmenes a tratar. Algunos TPS tienen, para cada región del cuerpo humano, unas estructuras predefinidas, en el caso de la pelvis masculina, sería la próstata, vejiga, recto y cabezas femorales. Estas estructuras se pueden proyectar a el TC de planificación y se adapta específicamente al paciente para no tener que contornear estos órganos. En el proceso de adaptación desde la plantilla de órganos a nuestro TC particular, algunas casas comerciales utilizan el registro deformable de imágenes.

Al igual que se proyectan las estructuras utilizando los vectores de deformación, también podemos proyectar las dosis absorbidas. Esta es la base de la ART, ya que para tomar la decisión de adaptar un plan debemos conocer la dosis acumulada, que es la dosis proyectada desde diferentes imágenes hasta la imagen de referencia. El procedimiento para comprar la dosis acumulada en nuestro TC de referencia para poder compararla con la dosis planificada en nuestro mismo TC de referencia, a partir de imágenes de CBCT sería el siguiente:

Al igual que se proyectan las estructuras utilizando los vectores de deformación, también podemos proyectar las dosis absorbidas. Esta es la base de la ART, ya que para tomar la decisión de adaptar un plan debemos conocer la dosis acumulada, que es la dosis proyectada desde diferentes imágenes hasta la imagen de referencia. El procedimiento para comprar la dosis acumulada en nuestro TC de referencia para poder compararla con la dosis planificada en nuestro mismo TC de referencia, a partir de imágenes de CBCT sería el siguiente:

1.- Calcular la dosis absorbida en la imagen de CBCT del día de tratamiento.

2.- Realizar un DIR entre la imagen de CBCT (imagen blanco) nuestro CT (imagen de referencia).

3.- Proyectar la dosis calculada en cada CBCT a nuestro CT mediante el DVF, obtenido con el registro deformable.

4.- Comparar la dosis planificada con la acumulada, que es la suma de las dosis proyectadas desde CBCT.

El mayor problema para implementar clínicamente la ART, junto al aumento de la carga de trabajo para los servicios de Radioterapia y Radiofísica, es que no existe un método estándar para determinar la incertidumbre que introduce el DIR cuando relaciona las dos imágenes. O expresado de otra forma, cuando el algoritmo de DIR no relaciona correctamente las mismas zonas en las dos imágenes con el vector de deformación de campo, obtendremos como resultado una incorrecta proyección de contornos y de dosis absorbida de una imagen a otra.

La Figura 1-9 muestra cómo, una incorrecta relación entre las imágenes resulta en una proyección de estructuras donde la estructura proyectada no coincide con el órgano. Las nuevas estructuras del recto han sido proyectadas desde nueves CBCTs al CT. En los nueve CBCTs y en el CT está el recto correctamente contorneado, por lo que, si el DIR ha relacionado correctamente las imágenes, al proyectar el contorno de cada uno de los 9 CBCTs al CT, estos deberían coincidir exactamente. En la imagen se muestra que los rectos no coinciden, lo que indica que el algoritmo de DIR puede introducir grandes incertidumbres en el contorneo o la proyección de dosis absorbida.

Figura 1-9. Proyección del contorno del recto de nueve CBCT al CT, donde los CBCT son la imagen blanco y el TC es la imagen de referencia. Los contornos de los diferentes CBCTs no coinciden con el recto debido a una mala relación entre vóxels del DIR..

Si el algoritmo de DIR mapea incorrectamente los contornos, el médico o el técnico únicamente tiene que corregirlas para que no tenga influencia en la clínica, pero si se proyecta incorrectamente la dosis, no hay una metodología sencilla para discriminar si la diferencia en dosis absorbida se debe a un error del DIR o a que el paciente ha cambiado anatómicamente. Como consecuencia de esta dificultad, la proyección de la dosis absorbida es mucho más crítica, ya que una incorrecta proyección puede llevarnos a tomar la decisión de adaptar un plan que realmente es correcto, o puede llevarnos a la decisión de no adaptar un plan cuando habría que modificar. Por este motivo es esencial validar correctamente los algoritmos de registro deformable antes de utilizarlos en la práctica clínica, pues de lo contrario podríamos tratar de forma incorrecta al paciente.

1.5.3 Métodos de validación del DIR

Existen diferentes métodos para validar los algoritmos DIR:

(a) la utilización de marcas, puntos de referencia y/o contornos de las dos imágenes de adquisición TC o CBCT, (Brock, Sharpe, Dawson, Kim, & Jaffray, 2005;
Rafael García-Mollá et al., 2015; Hoffmann et al., 2014; Hou, Guerrero, Chen, &

D'Souza, 2011; A. Mencarelli et al., 2012; Angelo Mencarelli et al., 2014; Pukala et al., 2013, 2016; Robertson, Weiss, & Hugo, 2013; Sarrut, Boldea, Miguet, & Ginestet, 2006; Thor et al., 2014; Wang, Dong, Lii, et al., 2005; Wognum, Heethuis, Rosario, Hoogeman, & Bel, 2014),

(b) maniquís físicos y maniquís deformables y, (Kashani, Hub, Kessler, & Balter, 2007; Kirby, Chuang, Ueda, & Pouliot, 2012; Moteabbed et al., 2014; Yeo et al., 2013; Yeo, Taylor, Dunn, et al., 2012; Yeo, Taylor, Supple, et al., 2012)

(c) aplicaciones de software específicas (Hub, Thieke, Kessler, & Karger, 2012; Murphy, Salguero, Siebers, Staub, & Vaman, 2012; Nie, Chuang, Kirby, Braunstein, & Pouliot, 2013; Niu et al., 2012; Saleh-Sayah, Weiss, Salguero, & Siebers, 2011; Varadhan et al., 2013; Wang, Dong, O'Daniel, et al., 2005; Yang, Li, Low, Deasy, & Naqa, 2008; Zhong, Kim, & Chetty, 2010; Zhong & Siebers, 2009)

El método de utilización de puntos de referencia o contornos se basa en que, si dos imágenes están perfectamente relacionadas mediante los vectores de deformación del campo, al mapear un contorno, o un punto, de una imagen a otra, este debe coincidir perfectamente en la misma área de la otra imagen. La metodología para la utilización de puntos de interés (POIs) sería la siguiente: Colocamos un punto en la imagen A en una zona determinada, en la imagen B colocamos otro punto en la misma zona. Si proyecto el punto desde la imagen A hasta la imagen B, este punto debe coincidir en el espacio. Esto se cumple si la imagen A y la B están perfectamente relacionadas con los vectores de campo y se han colocado perfectamente los puntos. Con las distancias entre los dos puntos podemos determinar la incertidumbre del algoritmo de DIR. En la figura 1-10 se muestra un resumen esquemático el proceso de selección con un paciente de cabeza y cuello.

Figura 1-10. Proceso para determinar con puntos la incertidumbre de algoritmo de registro

deformable. El orden cronológico va de izquierda a derecha. En la imagen del TC de planificación (imagen de referencia, en la izquierda) se coloca un POI en un punto anatómicamente reconocible. Seguidamente se coloca en la misma área otro punto en nuestra imagen de CBCT (imagen blanco, en el medio). Después de realizar un DIR entre las dos imágenes se proyecta mediante el DVF, el punto desde el CBCT al CT. Con la distancia entre los dos POIs se puede determinar en distancias la incertidumbre del DIR.

En el caso de los contornos, la metodología sería similar, con la diferencia que aquí se contornearía la estructura en las dos imágenes. Al proyectar la estructura, estas deberían solapar. Como resultado podemos determinar la incertidumbre del DIR con índices de similitud y/o de solapamiento. También se pueden utilizar imágenes de paciente y animales, donde se les haya introducido marcadores, para al igual que en los POIs, determinar la incertidumbre del algoritmo mediante la distancia entre marcadores.

Los maniquís se pueden separar en dos grupos, los dosimétricos y los que están basados en marcas. Todos ellos son maniquís deformables, ya que lo que interesa es determinar la incertidumbre que introduce el algoritmo de DIR cuando relaciona el maniquí deformado y sin deformar. En los dosimétricos, como por ejemplo los de tipo gel, se irradia y se toma una imagen del TC del maniquí sin deformar y se determina la dosis absorbida, luego se realiza la misma operación, pero deformado. Con este método podemos conocer cuál es la dosis absorbida deformada real y la dosis deformada calculada por el algoritmo. En el caso de los maniquís con marcas, el proceso es similar, se hace una imagen de TC con el maniquí deformado y otra imagen sin deformar. Cómo el maniquí tiene unas marcas internas que podemos identificar, podemos determinar en distancias la incertidumbre del DIR.

Figura 1-11. *A la izquierda imagen de un maniquí de próstata para determinar en distancias la incertidumbre del algoritmo de DIR. A la derecha un maniquí físico, de gel que nos permite determinar la incertidumbre en dosis absorbida.* (Kirby et al., 2012; Yeo, Taylor, Dunn, et al., 2012)

Las aplicaciones específicas de software se basan en tratar una imagen de un maniquí, o de un paciente, e introducirle una deformación conocida. Así, podemos comparar la deformación que nos ofrece nuestro algoritmo con la deformación real conocida.

Todos los métodos tienen limitaciones específicas. Por ejemplo, el software específico no tiene en cuenta la adquisición de imágenes y debido a que realizan unas deformaciones artificiales, estas pueden no ser como las que se producen en los órganos. Respecto a los maniquís, la mayoría de hospitales no tienen acceso a ellos y, al igual que ocurre en el software, es muy complicado reproducir las deformaciones (y los tejidos) que se producen en los órganos humanos, en los maniquís físicos. El problema cuando se utilizan contornos o POIs es que la selección de puntos, o la creación de estructuras, tienen una incertidumbre. Además, se estudian unos pocos vóxels y es muy difícil valorar las zonas de poco contraste, ya que no es trivial contornear o colocar puntos en estas zonas, independientemente del tipo de imagen. (Yeo et al., 2013) Una de las limitaciones generales de estos métodos es que todos ellos, a excepción de los maniquís deformables dosimétricos, suelen ofrecer los resultados en términos de distancias o índices, mientras que la cantidad de mayor interés en la radioterapia es dosis absorbida.

2. JUSTIFICACIÓN, HIPÓTESIS Y OBJETIVOS

2.1 JUSTIFICACIÓN DEL ESTUDIO

Una de las mayores limitaciones en los tratamientos radioterapia en la actualidad es que no se tiene en cuenta las posibles variaciones de los órganos internos, del tumor o del peso del paciente. Esto es debido, a que el procedimiento más común en los tratamientos de radioterapia es utilizar única imagen inicial (TC de planificación) para realizar la dosimetría del paciente. El tratamiento planificado no varía a lo largo de los días que dura el tratamiento, por lo que, si el paciente ha variado su volumen, o bien, los órganos de riesgo se han modificado o el tumor ha variado su volumen, no se modifica el tratamiento para tener en cuenta estas variaciones. (D Yan, Vicini, Wong, & Martinez, 1997) Estas variaciones se tienen en cuenta de forma indirecta al delimitar los volúmenes a tratar mediante la expansión del CTV a PTV, y ampliando los órganos de riesgo críticos. Las expansiones nos aseguran que vamos a tratar el volumen blanco y que no vamos a sobrepasar la dosis del órgano de riesgo, aún con las incertidumbres propias del tratamiento (colocación del paciente, cálculo de la dosis...). La incertidumbre en la colocación ha disminuido enormemente desde la utilización de la IGRT de CBCT. (van Kranen, van Beek, Rasch, van Herk, & Sonke, 2009) Esta técnica permite realizar una imagen tomográfica al paciente en la mesa de tratamiento previo a la irradiación, seguidamente esta imagen se registra rígidamente con la imagen de planificación. Como resultado se obtienen los desplazamientos necesarios para que la posición del paciente reproduzca la posición en la que se realizó el TC de planificación y por tanto la dosimetría. Esta técnica que se desarrolló hace unos 15 años, ha sido una gran evolución respecto a la verificación del paciente con imagen en dos dimensiones. Sobre todo, para los tratamientos donde el volumen a tratar está muy próximo a un órgano de riesgo crítico.

El uso de IGRT en tres dimensiones, no elimina el problema de que hay ciertos órganos con alta deformación, como el recto, vejiga e intestinos, a los que no se les aplica expansión, que pueden recibir dosis significativamente diferentes en cada día de tratamiento. (Nuver, Hoogeman, Remeijer, van Herk, & Lebesque, 2007) También hay órgano, como las parótidas, que pueden recibir una dosis mayor con la pérdida de peso del paciente. (Hunter et al., 2013) La única forma de tener en cuenta estas variaciones es mediante la ART. Esta se basa en ir modificando el plan, cuando sea necesario, en

función de las variaciones del paciente y así asegurar que el tumor está siempre siendo tratado y que los órganos no reciben una dosis absorbida mayor de la prescrita.

El procedimiento más eficiente y preciso para realizar ART con acumulación de dosis absorbida es mediante la utilización de los algoritmos de DIR. Estos algoritmos permiten relacionar mediante un campo vectorial de deformación dos imágenes y así poder proyectar la dosis absorbida de una imagen a otra. Proyectar la dosis absorbida que ha recibido el paciente en la imagen de CBCT previa a tratamiento, nos permite conocer que dosis ha recibido realmente el paciente ese día. Sumando la dosis cada día podemos valorar cuanto ha variado respecto a nuestra dosimetría inicial, y así poder tomar la decisión de adaptar el plan.

La introducción de una nueva técnica, como los tratamientos de fluencia modulada, la IGRT de CBCT, o la radiocirugía, suele venir acompañada de un aumento de la carga de trabajo, en parte por la necesidad de la introducción de controles de calidad que nos aseguren que la técnica está siendo realizada correctamente. En la ART la mayor dificultad, además del aumento del trabajo para los servicios de Radioterapia y Radiofísica, es la gran dificultad que supone realizar un control de calidad a los algoritmos de DIR. (R. García-Mollá et al., 2015) A la hora de relacionar dos imágenes es complejo determinar si las imágenes están bien relacionadas. En el caso de utilizar los vectores de deformación para proyectar la dosis de una imagen a otra, si los vectores están relacionando dos áreas incorrectamente, estaremos observando que las dosis absorbidas incorrectas. Lo que podría llevar a tomar la decisión de adaptar un plan de tratamiento, que realmente está correcto. Es por esta razón que es de vital importancia realizar un control de calidad riguroso a nuestro algoritmo de registro deformable.

El TPS RayStation incluye un algoritmo de DIR para poder realizar ART, por lo que, para poder utilizar con seguridad clínicamente este algoritmo, deben realizarse los controles de calidad necesarios.

2.2 HIPÓTESIS

Para la validación y control de calidad de los algoritmos de DIR se han utilizado diferentes métodos: Puntos, contornos, maniquís físicos y virtuales, y softwares especializados. Siguiendo el método de puntos, se puede determinar, por primera vez, cual es la incertidumbre del algoritmo hibrido del TPS RayStation para pacientes de

cabeza y cuello. Además, utilizando la métrica de consistencia inversa, podemos estimar cual es en termino de dosis absorbida la incertidumbre del DIR.

En el caso de los pacientes de cáncer de próstata, también por primera vez, utilizando la diferencia en dosis absorbidas entre dos estructuras, la deformada y la de referencia, se puede estimar en dosis absorbida la incertidumbre del DIR.

Por último, creemos que podemos también estimar la incertidumbre que introduce el algoritmo en el caso de utilizar dosis acumulada proveniente de varias imágenes, mediante un software propio.

2.3 OBJETIVOS

Objetivo principal:

Determinar mediante métodos cuantitativos la incertidumbre que introduce el algoritmo de DIR al relacionar imágenes para pacientes de cáncer de cabeza y cuello y cáncer de próstata. Los resultados se obtendrán en distancias y en dosis absorbidas.

Objetivos secundarios:

1.- Comparar la incertidumbre que introduce el algoritmo de registro deformable cuando se utilizan ROIs de control para guiar al algoritmo o cuando estas no se utilizan.

2.- Desarrollar un método que permita, no solo determinar la incertidumbre del algoritmo, si no, también determinar la incertidumbre cuando se utilizan varias imágenes para acumular dosis absorbidas.

3.- Valorar como influye para cada órgano de riesgo la incertidumbre del DIR.

4.- Estimar cuanto influye en el cálculo de la dosis absorbida, la asignación automática de la tabla CT-ED que realiza el TPS.

3. MATERIALES Y MÉTODOS

3.1 ALGORITMO DE REGISTRO DEFORMABLE DE IMÁGENES

En el área de la radioterapia existen diversos tipos de softwares que permiten realizar el registro deformable de imágenes, cada uno de ellos tiene un algoritmo propio. El TPS RayStation tiene dos algoritmos de DIR diferentes.

El primero es el híbrido, basado en una fórmula matemática en la que el registro es un problema de optimización no lineal. De forma parecida a la optimización iterativa de tratamientos de fluencia modulada de optimización inversa, donde se pretende obtener la mejor solución a una función. En este algoritmo de DIR, existe una función objetivo, de la que Se quiere obtener la mejor solución posible mediante un proceso iterativo. Esta función objetivo se compone de cuatro términos: 1) mantener la similitud de la imagen; 2) mantener la rejilla de la imagen "suave" e invertible; 3) mantener una deformación anatómicamente razonable cuando las estructuras están presentes; y 4) un término de penalización cuando se utilizan estructuras para guiar al algoritmo (ROIs de control). (Weistrand & Svensson, 2014) El primer término controla la similitud entre las imágenes mediante un coeficiente de correlación, con el segundo término se busca obtener un DVF suave e invertible. Para evitar la generación de elementos invertidos, el algoritmo implementa una estrategia en la que reinicia el proceso y varía el segundo término de la función objetivo hasta que sea necesario. Después de la convergencia del algoritmo de optimización, se calcula el determinante de la matriz jacobiana, si se detectan valores negativos, este segundo término se aumenta y se vuelve a iniciar el proceso. Con un campo de deformación invertible se evitan que se produzcan nudos en las estructuras. El tercer término es el que se encarga de que las deformaciones sean razonables y así evitar que, aunque el DVF sea suave e invertible, no se deformen estructuras de una manera ilógica. El último término se utiliza para guiar al algoritmo. Para utilizar este término, las estructuras deben estar contorneadas en las dos imágenes que se quieren registrar deformablemente. El algoritmo obliga a que los vectores de deformación relacionen esas dos ROIs de control. Hay que señalar que, aunque la condición de que el campo vectorial sea invertible está asegurada con el algoritmo híbrido de RayStation (término 2 de la función objetivo), ello no significa que se cumpla la propiedad de consistencia inversa (IC).

El segundo algoritmo es el registro deformable biomecánico, que calcula el DVF resolviendo un problema de elasticidad lineal con el método de elementos finitos. Este

algoritmo no utiliza los números Hounsfield de la imagen. Este segundo algoritmo (biomecánico) necesita para funcionar que se contornen obligatoriamente las ROIs en las dos imágenes; Por este motivo, el estudio se va a centrar en el registro deformable hibrido, ya que en el uso clínico es más rápido y eficiente.

En el caso de los pacientes de cáncer de cabeza y cuello, donde las estructuras tienen una menor variación inter-fracción y existen una gran cantidad de estructuras de interés, se validará el algoritmo híbrido DIR sin ROIs de control, ya que nuestro objetivo es validar el uso de la radioterapia adaptativa utilizando CBCT de la manera más eficiente. Para la localización de próstata, debido a los cambios anatómicos que se producen en los órganos de interés, se estudiará el uso del registro hibrido con y sin ROIs de control.

3.2 PACIENTES

3.2.1 Cabeza y cuello

Para el estudio de cabeza y cuello se seleccionaron cinco pacientes. Dado que cada paciente tiene varias imágenes de CBCT, se consideró que cinco era un número más que suficiente para validar el mismo algoritmo en condiciones similares de trabajo. Estos pacientes se trataron con IMRT "step and shoot" con "boost" integrado, donde cada uno de los volúmenes a tratar con una dosis absorbida por fracción diferente, variando entre 1.8 Gy/sesión y 2.1 Gy/sesión y desde 54 Gy a 70 Gy de dosis absorbida total administrada. La unidad de tratamiento fue un acelerador lineal de electrones, Elekta Synergy[™] (Crawley, Reino Unido) con un sistema de obtención de imágenes de kV-CBCT denominado comercialmente XVI (versión 4.2.1). Para cada paciente se utilizaron una imagen de CT de planificación (pCT) y tres imágenes CBCT para validar el DIR. Las imágenes CBCT se tomaron de la primera, la mitad y la última semana de tratamiento para tener en cuenta la influencia de posibles cambios anatómicos en los pacientes sobre la exactitud del DIR. Las imágenes de pCT se adquirieron con un escáner Siemens SOMATOM Sensation 16 (Siemens AG, Erlangen, Alemania), con un grosor de corte de 3 mm y un tamaño de píxel de 1 mm, que son los valores utilizados

en pacientes clínicamente. Las imágenes de CBCT se adquirieron utilizando el citado XVI CBCT con un espesor de corte y tamaño de píxel de 1 mm.

3.2.2 Próstata

Para el estudio del cáncer de próstata se seleccionaron prospectivamente veinte pacientes, para cada uno se planificaron 15 sesiones de VMAT hipofraccionado, con dosis absorbida totales de 57.3 Gy a la próstata y 45 Gy a las vesículas seminales. El número de pacientes es superior al necesario para obtener datos significativos, pero dado que se realizó un estudio clínico de ART en el mismo centro, se utilizaron gran parte de estos pacientes para la validación del DIR. El posicionamiento de los pacientes de cáncer próstata también se realizó con el XVI, aunque el protocolo de adquisición de la imagen es diferente, ya que en el tubo de rayos X del CBCT se utiliza un kilovoltaje, filtros y colimadores diferentes. Se seleccionaron nueve CBCTs no consecutivos, tres por semana de tratamiento y un pCTs por paciente para validar el algoritmo de DIR. En total, en el estudio de próstata, se utilizaron 20 pCTs, 180 CBCTs y 540 estructuras. El espesor de corte del pCT fue 3 mm y un tamaño de píxel de 1 mm y para las imágenes de CBCT el espesor de corte y tamaño de píxel fue de 1 mm.

Los márgenes de CTV a PTV para la próstata y las vesículas seminales fueron 1 cm superior y 0.5 cm inferior, 0.5 cm posterior y 0.8 cm anterior y 0.8 cm derecha e izquierda según el protocolo del departamento para este tratamiento.

Algunas áreas de los pacientes se quedaban fuera del campo de visión (FOV) de CBCT, ya que el diámetro en el plano axial es de 41 cm. En estos casos (siete de los veinte pacientes), se realiza un registro rígido entre el pCT y el CBCT, y se copia la estructura del contorno externo del paciente (piel del paciente) del pCT al CBCT. Posteriormente, se realiza una intersección entre el contorno externo copiado y el contorno externo del paciente. Esta zona, fuera del FOV, se agrega como parte del paciente. Para ello, se selecciona esta área en el TPS como soporte y se sobrescribe la densidad como "agua". Puede que el contorno externo del CBCT y del pCT no coincidan exactamente (por ejemplo, por una pérdida de peso del paciente), por lo que la zona agregada al CBCT, para evitar la falta de dispersión, puede no ser exactamente igual a la zona que se queda fuera debido al FOV. Pero la variación entre el contorno externo del paciente en el pCT y en el CBCT siempre será mucho menor que si no

agregáramos el área del paciente que se queda fuera del tamaño de campo. Este método, que es muy sencillo, siempre ofrecerá un cálculo de la dosis absorbida más exacto que sin agregar la zona cortada del paciente por el tamaño del FOV. La Figura 3-1 muestra el resultado de aplicar este método en un paciente. A pesar de que la dosimetría en CBCT tiene algunas limitaciones, consideramos que es la manera más eficiente para implementar la ART, ya que con la misma imagen del día podemos observar las diferencias entre lo administrado y lo calculado y a su vez poder proponer una dosimetría nueva calculada en el CBCT.

Figura 3-1. Corte axial de CBCT, donde en la parte posterior derecha del paciente se ha agregado la zona del paciente que se ha quedado fuera debido al limitado campo de visión del CBCT.

Todos los pacientes siguieron el protocolo de IGRT del departamento para el llenado vesical y el vaciado del recto para ayudar a asegurar la reproducibilidad de las estructuras de interés. Para mantener la reproducibilidad del recto en la medida de lo posible, los pacientes deben seguir una dieta baja en residuos y usar laxantes. Para reproducir en el tratamiento en el acelerador las condiciones de llenado de la vejiga en la realización del pCT, el volumen de ingesta de agua después del vaciado de la vejiga y el período de tiempo entre la ingesta de agua y el tratamiento debe ser el mismo cada vez.

3.3 FLUJO DE TRABAJO EN ART

La Figura 3-2 muestra el diagrama del flujo de trabajado para visualizar la dosis absorbida acumulada en la imagen de referencia (pCT). La diferencia entre la dosis absorbida planificada y la dosis absorbida acumulada, visualizadas en la imagen de referencia (pCT) nos permite poder tomar la decisión de adaptar el plan.

La dosis absorbida acumulada en el pCT es la suma de las dosis absorbidas calculadas en cada uno de los CBCTs y trasladadas al pCT mediante el DVF. El cálculo de la dosis absorbida calculada en el pCT (dosis absorbida planificada) y los CBCTs (dosis absorbida administrada) se realiza mediante el algoritmo de cálculo *collapse cone*. Este, es uno de los algoritmos más comunes en radioterapia externa, ya que se obtiene una dosis absorbida calculada con una buena exactitud y con un tiempo de cálculo muy rápido.

Figura 3-2. *Flujo de trabajo para adaptar un plan de tratamiento en función de la diferencia entre la dosis absorbida planificada y acumulada en el pCT de referencia.*

Para calcular la dosis absorbida en los CBCTs, el primer paso es obtener la tabla que relaciona los números Hounsfield de la tomografía computarizada con la densidad electrónica. CT-ED, del tejido del paciente. Una vez tenemos la tabla de nuestro paciente, el TPS necesita el contorno externo de paciente, para conocer donde se tiene que calcular la dosis absorbida. En el módulo de contorneo el planificador es capaz de detectar automáticamente la piel de paciente y con un único paso se crea el contorno externo en todos los cortes. Este paso es necesario para todas las imágenes, tanto los pCT como los CBCTs.

Para poder trasladar la dosis absorbida de los CBCTs al pCT y, si fuera necesario, los contornos en sentido opuesto, necesitamos el DVF que relacione los vóxels de nuestras imágenes, para ello debemos realizar previamente un registro rígido.

En las siguientes secciones se irán detallando como se realizan estos procesos.

3.3.1 Tabla CT-ED

En equipos de tomografía computarizada estándar, con un haz tipo abanico, la tabla CT-ED se obtiene a partir de la toma de imágenes de un maniquí, que las casas comerciales tienen disponibles, con diferentes materiales cuyas densidades másicas y electrónicas vienen certificadas. De esta forma, podemos relacionar el número Hounsfield con la densidad del material. Introduciendo esta tabla en el TPS, estamos incorporando la información necesaria para que el algoritmo de cálculo, en nuestro caso *collapse cone*, sea capaz de calcular la dosis absorbida en nuestra imagen tomográfica. Es de gran importancia que la relación entre los números Hounsfield y las densidades sean correctas, ya que una tabla CT-ED incorrecta provocaría que la dosis absorbida calculada por nuestro algoritmo en el paciente fuera incorrecta.

En la Figura 3-1 y 3-2 se muestran los valores de los números Hounsfied (o números CT) para el CT y el CBCT, respectivamente.

		СТ
	N.º CT	Densidad másica relativa
Aire	-1000.8	0
Pulmón		
inhalación	-815.5	0.19
Pulmón		
exhalación	-483.9	0.49
Grasas	-61.6	0.95
Mama	-34.5	0.98
Agua	-9	1
Músculo	26.9	1.04
Hígado	46.6	1.05
Hueso trabecular	218.3	1.12
Hueso denso	815.7	1.46

Tabla 3-1. *CT-ED para el TC de planificación. Relaciona los números CT y la densidad másica relativa al agua.*

		CBCT
	N.º CT	Densidad másica relativa
Aire	<577	0.00121
Pulmón	578	0.26
Grasa	948	0.95
Tejido	1205	1.05
Cartílago-hueso	6240	1.6
Más denso	>6240	3

Tabla 3-2. Tabla CT-ED de una imagen de CBCT para un paciente de cabeza y cuello. Los valores del número CT son seleccionados automáticamente por el TPS a partir del histograma. Hay que tener en cuenta que estos valores dependen de la técnica, filtro y colimador utilizada al adquirir la imagen de CBCT y del espesor del paciente.

La relación entre número Hounsfield y densidad másica para los equipos de CBCT es más compleja que para los equipos de CT estándares, ya que en los CBCTs la geometría del haz es cónica. Esto tiene como consecuencia que la radiación dispersa modifica la relación entre la densidad másica y el valor del número Hounsfield y, por tanto, no se puede crear una única tabla CT-ED. Según el filtro, el colimador, la técnica e, incluso, el tamaño del paciente, la relación entre los valores será diferente. (Hatton, McCurdy, & Greer, 2009, Guan & Dong, 2009, Seet, Barghi, Yartsev, & Van Dyk, 2009) Para solucionar esta dificultad, los desarrolladores del TPS RayStation ofrecen la posibilidad de obtener una tabla CT-ED de manera automática para las imágenes de CBCT a partir de los números Hounsfield. La Figura 3-3 muestra la ventana del TPS

para crear esta tabla. Una de las limitaciones de este método es que únicamente permite diferenciar seis diferentes tejidos: aire/pulmón, pulmón/adiposo, adiposo/tejido, tejido/cartílago-hueso y cartílago-hueso/otros. El TPS detecta el valor del histograma de número Hounsfield que diferencia dos zonas y a partir de este valor asigna a cada una de las zonas una densidad.

Figura 3-3. Ventana de RayStation para crear la tabla CT-ED personalizada para cada paciente. Se muestra cómo se seleccionan automáticamente los tejidos.

Este método introduce cierta incertidumbre en el cálculo de la dosis absorbida en el CBCT, y, por tanto, en el proceso de la ART, debido a que se produce una selección automática de densidades y a que la discretización de las densidades es únicamente en cinco valores. Para determinar esta incertidumbre, se realiza el cálculo de la dosis absorbida en una imagen de CBCT y en una imagen CT a un maniquí antropomórfico.

Este maniquí reproduce los órganos humanos y sus densidades. Las dos imágenes se registran rígidamente y se crea la misma estructura en las dos imágenes, para después calcular la dosis absorbida de un plan sencillo de cuatro campos. Como la única diferencia entre las dos imágenes es la asignación de las densidades, comparando los histogramas dosis-volumen (DVH) de la estructura calculada en el CT y en el CBCT podemos determinar cuál es la incertidumbre que se introduce calculando la dosis absorbida en el CBCT.

3.3.2 Registro rígido

El registro rígido es crítico para poder obtener un registro deformable de imágenes correcto. Por este motivo, todos los registros rígidos se revisan por el oncólogo radioterápico. Tanto en los pacientes de cabeza y cuello como en los de próstata, se selecciona la opción de realizar un registro rígido automático centrándose en las estructuras de hueso. Así nos aseguramos de que la médula, en los pacientes de cabeza y cuello, y las cabezas femorales en los de próstata, coincide en ambas imágenes. Únicamente en un paciente fue necesario modificar el registro rígido automático y fue debido a las diferencias entre la posición de CT y del CBCT, que, aunque para la validación del registro deformable no tuvo gran importancia, sí que la tuvo para efecto clínico.

3.3.3 Registro deformable de imágenes

El DIR híbrido se crea utilizando un tamaño de rejilla de 2.5x2,5x2,5 mm (valor recomendado por el manual del fabricante) y el contorno externo como ROI de control. Así se fuerza al registro deformable a centrarse en el paciente. Es importante seleccionar como imagen de referencia la imagen donde queremos trasladar la dosis absorbida y como imagen blanco (la que se deforma), la imagen donde se calcula la dosis absorbida para ser trasladada a la de referencia. En nuestro caso, la imagen de referencia es el pCT y la imagen blanco el CBCT. De esta forma, podemos trasladar la dosis absorbida calculadas en cada CBCT al pCT para poder comparar la dosis absorbida planificada con la dosis absorbida administrada en los CBCTs.

Se crearon varios scripts en el lenguaje de programación Iron Python (Millman & Aivazis, 2011) para automatizar el registro de imagen rígido y deformable del pCT y los nueve CBCT. Mediante este sistema, se selecciona la imagen de referencia y los volúmenes blanco, y el script realiza un DIR entre las imágenes en ambos sentidos. En primer lugar, se deforman los CBCTs respecto al pCT y luego se deforma el pCT respecto cada uno de los CBCTs. Este proceso, que puede tardar bastantes minutos, al ser automático, lo que permite mejorar mucho la eficiencia del proceso. Se deforman tanto los pCT y los CBCTs porque, como veremos más adelante, se utiliza la propiedad de IC para validar en dosis los pacientes de cabeza y cuello.

3.3.4 Proyección de estructuras y dosis absorbida

Una vez completado el DIR para cada par de imágenes, si este fuera perfecto, cada vóxel de cada área anatómica del CBCT estaría relacionado con el vóxel de la misma área anatómica del pCT mediante el DVF. Estos vectores permiten que las ROI y los POIs puedan ser proyectados desde el pCT al CBCT, o del CBCT al pCT (sentido opuesto). Hay que tener en cuenta que, normalmente, las estructuras están contorneadas en el pCT, por lo que para no tener que volver a recontornear las estructuras en cada CBCT, lo que se hace es trasladar los contornos del pCT a cada uno de los CBCT. Aunque el registro no sea perfecto y haya que revisar y modificar estructuras en cada CBCT, este proceso sigue siendo mucho más rápido que tener que contornear todas las ROIs en el CBCT.

Para determinar la dosis absorbida administrada acumulada en el pCT, las dosis absorbidas calculadas en cada uno de los CBCT se trasladan al pCT mediante el mismo DVF que proyectan las estructuras. Esto significa que las dosis absorbidas se trasladan con el mismo vector de deformación de campo, pero en sentido opuesto. La matriz de cálculo de dosis absorbida no tiene por qué coincidir con la de deformación. En nuestro caso la rejilla de cálculo es de 3 mm.

Como primer resultado, podemos visualizar en cada uno de los CBCTs la dosis absorbida administrada en esa fracción con los contornos trasladados del pCT y compararla con la dosis absorbida planificada en el pCT. Hay que recordar que la dosis absorbida calculada en los CBCTs no es una dosis absorbida trasladada con el registro deformable, sino que es una dosis absorbida calculada con el algoritmo de cálculo. Esta comparación nos ofrece mucha información, ya que podemos averiguar si se ha producido algún cambio anatómico que haya modificado la dosis absorbida inicialmente planificada. En esta primera fase podemos evaluar si estos cambios han causado que nuestros volúmenes a tratar estén subdosificados y si algún órgano de riesgo pueda estar sobredosificado. Aunque esta información es de gran interés, lo realmente importante es que podemos visualizar dos planes de tratamiento en el pCT: la dosis absorbida planificada y la dosis absorbida acumulada administrada. Esta última es la suma en cada uno de los vóxels del pCT de la dosis absorbida trasladada de cada uno de los CBCT mediante su correspondiente DVF. Comparando estos dos planes de tratamiento en el pCT se puede tomar la decisión de adaptar la dosis absorbida inicialmente planificada.

Cuando las ROIs son trasladadas desde el pCT a cada CBCT, estas no siempre coinciden con los órganos de interés. Para asegurarnos que los HDV que se visualizan en el CBCT son correctos, estas ROIs tienen que revisarse y, si fuera necesario, han de corregirse por el médico. Una vez la estructura original en el pCT y la trasladada al CBCT están correctamente contorneadas podemos realizar un segundo registro deformable donde utilizamos estas estructuras corregidas como ROIs de control. Estas sirven para guiar al algoritmo a relacionar las dos imágenes. Con este segundo DVF podemos trasladar la dosis absorbida de los CBCTs al pCT de manera más fiable ya que estamos ayudando a nuestro algoritmo a relacionar las mimas áreas en las dos imágenes. Para evitar la variabilidad del contorneo entre médicos, fue un único especialista el que contorneó todas los ROIs. Para intentar determinar cómo influye el uso de ROIs de control en la incertidumbre del DIR, también se estimó la incertidumbre del DIR hibrido de RayStation cuando se utilizan estas estructuras de control.

Por lo tanto, se pueden utilizar dos métodos diferentes para acumular la dosis absorbida en el pCT de cada CBCT: el DIR híbrido con o sin control de ROIs y se estimará la incertidumbre para los dos métodos.

3.3.5 Comparación dosis absorbida planificada y administrada acumulada

Una vez están realizados los registros deformables entre la imagen del pCT y los CBCTs, en el módulo de "*dose tracking*" podemos visualizar y comparar todas las opciones de dosis absorbida planificada y administrada. Como no siempre tenemos los CBCTs de todas las sesiones, el módulo nos permite asignar el CBCTs que queramos a

las sesiones que no tienen imagen. El criterio utilizado ha sido introducir en estos días, la imagen de tomográfica del día más cercano. Este módulo nos ofrece diferentes opciones para comparar la dosis absorbida planificada y administrada:

- Dosis absorbida planificada en el pCT frente a dosis absorbida administrada en el CBCT: Después de trasladar los contornos del pCT al CBCT y ser corregidos por el médico se puede visualizar la dosis absorbida calculada con collapse cone en el pCT y en el CBCT. En este caso no se traslada la dosis absorbida con el registro deformable, únicamente se comprar la dosis absorbida calculada en el pCT y la calculada en cualquiera de los CBCTs.
- Dosis absorbida planificada en el pCT frente a dosis absorbida administrada en el pCT: En este caso se traslada la dosis absorbida calculada en el CBCT al pCT mediante el DVF. Con esta opción, en principio, no es necesario trasladar las estructuras del pCT al CBCT, ya que únicamente trasladamos la dosis absorbida, pero si queremos realizar el registro con ROIs de control, necesitamos trasladar las ROIs y que posteriormente el médico las corrija. Sería con este segundo registro deformable con ROIs de control con el que se trasladaría la dosis absorbida al pCT.
- Por último, el TPS nos ofrece la posibilidad de comparar la dosis absorbida planificada y acumulada en el pCT para varias fracciones o todas. Así podemos visualizar cómo evoluciona la diferencia entre la dosis absorbida administrada acumulada y la planificada. Cuando visualizamos la dosis absorbida acumulada para varias fracciones podemos visualizar cual sería la dosis absorbida total del tratamiento si se dieran todas las fracciones con esa dosis absorbida acumulada. Así podemos ver si nuestros órganos de riesgo cumplen las restricciones y poder tomar la decisión de adaptar el plan.

3.3.6 Adaptación del plan de tratamiento

Con la información de la dosis absorbida planificada en comparación a la administrada se puede tomar la decisión de adaptar el plan de tratamiento. Si el CTV o

algún órgano de riesgo no cumplen nuestros criterios del plan de tratamiento, este se puede modificar con un nuevo tratamiento de fluencia modulada para que de nuevo vuelvan a cumplirse. A la hora de adaptar el plan podemos introducir a partir de qué sesión se quiere empezar el plan adaptado y cuantas sesiones faltan por administrar. De esta forma, el TPS realiza una planificación inversa donde optimiza la dosis absorbida que reciben los vóxels teniendo en cuenta que, ya ha recibido varias sesiones y, que las que restan deben modificarse para que el nuevo plan cumpla nuestras restricciones y objetivos.

Existen, fundamentalmente, dos estrategias para adaptar un plan de tratamiento, "on-line" y "off-line", en el primero se adapta en plan de tratamiento mientras el paciente está posicionado en la equipo, en el segundo el plan se adapta entre sesiones. (McVicar et al., 2016) El flujo de trabajo de RayStation está enfocado a la adaptación "off-line". La adaptación on-line tiene una serie de dificultades para el flujo de trabajo normal de nuestro hospital: la primera es que el tiempo para realizar el DIR puede llegar a varios minutos; mientras, se supone que el paciente está inmóvil en la mesa de tratamiento; además, para valorar correctamente los valores de DVH y realizar un registro con una menor incertidumbre, las ROIs exportadas del pCT al CBCT deben ser corregidas, por lo que el tiempo total es excesivo. Por otro lado, las recomendaciones internacionales es que los tratamientos de fluencia modulada se deben seguir verificando en el equipo con un maniquí, aunque esta recomendación es discutible debido a la gran cantidad de tratamientos que ya se han verificado, hoy en día se siguen verificando todos los tratamientos antes de tratar al paciente en equipo. Con la estrategia "on-line" esta verificación es inviable, por lo menos antes de que el paciente se trate la primera sesión. Por todas estas razones nuestro objetivo es implantar clínicamente la estrategia off-line. Donde tenemos la posibilidad de verificar el plan de tratamiento de fluencia modulada y no tenemos al paciente en equipo durante un tiempo inasumible según nuestro flujo de trabajo.

3.4 MÉTODOS DE VALIDACIÓN DEL DIR

Los algoritmos de DIR de RayStation no tienen un índice de calidad del registro y, por lo tanto, el usuario debe evaluar si la relación establecida por el DVF entre las dos imágenes es correcta. En función de la localización, cabeza y cuello o próstata, se han utilizado diferentes métodos. Esto es debido a que las estructuras de interés en cabeza y cuello sufren una menor deformación entre fracciones de tratamiento y en el caso de los pacientes a de cáncer de próstata puede haber grandes diferencias, tanto en la vejiga como en el recto.

3.4.1 Validación en los pacientes de cabeza y cuello

3.4.1.1 Validación en distancias

Para estimar la exactitud en distancias del registro deformable, un oncólogo radioterápico seleccionó diez zonas anatómicamente reconocibles en la imagen de pCT, mediante un POI, en los cinco pacientes con cáncer de cabeza y cuello (Figura 3-4): Posteriormente los seleccionó nuevamente en las mismas áreas en los tres CBCTs. La mitad de los POI se seleccionaron en zonas blandas y la otra mitad en zonas rígidas. La Tabla 3-3 muestra las áreas donde se colocaron los POIs. Para reducir la variación potencial en la selección de la posición de POI y para evaluar la variabilidad del observador, tres observadores diferentes (especialistas en Radiofísica hospitalaria) seleccionaron los mismos puntos en cada una de las imágenes CBCT y pCT, utilizando copias impresas de imágenes de pCT como referencia. La precisión del algoritmo híbrido DIR se cuantificó utilizando la distancia entre los POIs trasladados del CBCT al pCT y los POIs del pCT. Si la relación entre los vóxels de las dos imágenes, y el colocado de los puntos por los observadores, son perfectos, al trasladar un punto del CBCT al pCT, este debe situarse justo en el mismo vóxel, de ahí que la distancia entre POIs nos determina la precisión del algoritmo en distancia. Hay que señalar que el POI en el CT, se considera el punto de referencia, este punto es único ya que nos indica donde debemos colocar el resto de puntos, en cambio los POIs en el CBCT tienen una incertidumbre asociada a la colocación, por lo que colocando el POI por varios observadores y promediándolos, disminuiremos la incertidumbre en la colocación del observador.

Figura 3-4. Los puntos de interés (POIs) están representados por esferas amarillas en la imagen de tomografía computarizada (pCT) para la zona de cabeza y cuello. La tabla 2-1 muestra la posición anatómica de los POIs.

Para determinar la variabilidad del observador en la colocación de los puntos, se realizó el mismo proceso explicado en el párrafo anterior con la diferencia que en vez de los observadores colocaron los puntos en los CBCTs y luego trasladar el punto promedio al pCT, en este caso se colocaron todos los puntos en el pCT, así se evita la incertidumbre del DIR y únicamente se cuantifica la incertidumbre de la colocación de los puntos. En este caso se utilizó la distancia entre los POI del oncólogo radioterápico y el POI promedio de los puntos de los observadores colocados todos en el pCT.

El procedimiento consistió en proyectar los POIs al pCT utilizando el DVF₁ y allí promediar los cuatro puntos por ubicación (creados por los tres observadores y oncólogos de radioterápicos en pCT y en cada uno de los CBCT) para reducir la variación de la colocación entre observadores. La diferencia en las distancias entre cada POI trasladado desde el CBCT y su POI de referencia correspondiente, determinó la precisión en distancia del DIR. Para extraer el nombre y las coordenadas de los puntos se creó un script que exportaba toda la información del TPS a un archivo de texto. El TPS exporta las coordenadas de los POIs con una resolución de 0.1 mm. En total, seiscientos POIs fueron colocados en las imágenes CBCT para validar el algoritmo DIR, y doscientos fueron colocados en las imágenes pCT de los cinco pacientes para evaluar la variabilidad del observador.

POI	Áreas anatómicas
1	Tabique nasal
2	Articulación temporomandibular derecha
3	Cordón vocal derecho
4	Apófisis odontoides
5	Glándula submandibular derecha
6	Úvula
7	Epiglotis
8	Hueso hioides
9	Músculo esternocleidomastoideo derecho
10	Células de aire mastoides de la derecha

Tabla 3-3. Posición anatómica para los diez POIs colocados en los CBCT y pCT de cada paciente.

Para descartar los posibles valores atípicos en los datos del observador (el POI seleccionado por el observador), los resultados sospechosos se descartan cuando la desviación estándar de este valor es al menos cuatro veces la desviación estándar media de los otros resultados. Cuatro veces la desviación estándar media es un valor arbitrario que se utiliza comúnmente para detectar valores atípicos y es muy poco probable que excluya cualquier información válida.

3.4.1.2 Validación con el método de consistencia inversa

La consistencia inversa se define como, dadas dos imágenes A y B, la propiedad del algoritmo de DIR por la que el campo de deformación de una imagen A a otra B es exactamente igual que de la imagen B a A. En nuestro caso significaría que independientemente de si la imagen de referencia es A y deformamos B, o, por el contrario, B es nuestra imagen de referencia y deformamos A, los DVF son iguales, pero en sentido opuesto. Por lo tanto, un algoritmo que cumpla la propiedad de IC nos permitiría trasladar la dosis absorbida, ROIs y/o POIs entre exactamente las mismas

zonas anatómicas de las dos imágenes, independientemente de cual fuera la imagen de referencia y cual la imagen deformada.

El propósito de la utilización de la consistencia inversa (método IC) es determinar en término de dosis absorbida la exactitud de nuestro algoritmo. Como el algoritmo híbrido no tiene un IC perfecto, las estructuras originales y deformadas (trasladadas desde el pCT al CBCT seguido por la traslación desde CBCT de vuelta al pCT) no coinciden en la imagen pCT y por lo tanto se observa una diferencia en el DVH del algoritmo. De esta manera, podemos aprovechar la falta de IC para determinar la exactitud del algoritmo híbrido en términos de dosis absorbida, además de en distancias. Para validar este método, debemos asegurarnos de que las distancias obtenidas por el método IC coinciden con las obtenidas en la sección anterior, ya que suponemos que estas distancias representan la precisión del algoritmo.

El proceso utilizado para determinar la exactitud del método IC en distancias es el siguiente: los POI pCT se trasladan desde el pCT al CBCT mediante el DVF₂ y luego de vuelta desde el CBCT al pCT mediante el DVF₁. Para obtener distancias comparables entre el método IC y la exactitud del algoritmo el proceso se realizó dos veces, lo que significa que los POIs se deforman cuatro veces. Los POIs se proyectan desde el pCT al CBCT, luego de vuelta desde CBCT al pCT, y el proceso se repite de nuevo (del pCT al CBCT, y del CBCT al pCT). En DVF₁, el CBCT se selecciona como imagen de referencia y el pCT se deforma. Restando las coordenadas del punto de referencia en el pCT y ese mismo punto deformado cuatro veces con el método IC, obtenemos dos veces en distancias la falta de consistencia de la IC. Si estas distancias coinciden con las de falta de exactitud del algoritmo de DIR, podemos aplicar este método a las ROIs y así determinar en valores de DVH lo la incertidumbre del algoritmo de registro deformable.

La Figura 3-5 muestra un diagrama que explica estos dos procesos.

1. Método de validación en distancias

Figura 3-5. En la parte superior del diagrama (1) se muestra el método de validación en distancias: El oncólogo radioterápico seleccionó el mismo POI en el pCT (x_1) y en la tomografía computarizada de haz de cónico (CBCT; z_1) y luego tres observadores seleccionaron el mismo POI en el CBCT (z_2 , z_3 , z_4). Los puntos son proyectados al pCT por el segundo campo de deformación vectorial (DVF₁) y se promedian los cuatro puntos en el pCT (0'). Las distancias entre 0' y x_1 representan la precisión del algoritmo de registro de imagen deformable (DIR). La parte inferior del diagrama (2) muestra el método de consistencia inversa (IC): El punto seleccionado por el médico se proyecta de pCT a CBCT por DVF₂ y después de CBCT a pCT por DFV1. Las distancias entre x_1' y x_1' 'proporcionan el resultado de la métrica IC del algoritmo DIR

3.4.1.3 Validación en dosis absorbida

Aunque es importante determinar en distancias la precisión del DIR, la cantidad más importante en la radioterapia es la dosis absorbida. La incertidumbre en distancias

del DIR tiene diferente efecto sobre la dosis absorbida dependiendo de la zona de tratamiento. En zonas con un gran gradiente de dosis absorbida una pequeña distancia implica una gran diferencia en dosis absorbida, mientras que en una zona homogénea una diferencia en distancia implica una diferencia en dosis absorbida casi nula. Además, para poder tomar la decisión de adaptar un plan necesitamos como referencia unos valores de la incertidumbre del algoritmo en dosis absorbida, más que en distancias.

El procedimiento utilizado para evaluar la exactitud en valores de DVH del algoritmo híbrido DIR se basa en la métrica IC: las estructuras contorneadas en el pCT son trasladadas al CBCT mediante el DVF₂ y luego estas estructuras se proyectan desde el CBCT al pCT mediante DVF₁. Al igual que con los POIs (ver sección 3.4.1.2.), este proceso se realiza dos veces, por lo que, en total, las estructuras se deforman cuatro veces. Este método de deformación cuádruple elimina la influencia del cálculo de dosis absorbida de CBCT en la determinación en valores de dosis absorbida de la precisión de DIR. (Seet et al., 2009) Esto se debe a que las estructuras originales y las que se han deformado cuatro veces están situadas en el pCT, por lo que la dosis absorbidas que comparamos están calculadas en el propio pCT. Si comparáramos las dosis absorbidas entre dos estructuras, una calculada en el pCT y la otra en el CBCT, estaríamos introduciendo una incertidumbre en el cálculo de la dosis absorbida y por tanto en el resultado. Se debe tener en cuenta el tamaño del FOV de CBCT al comparar las estructuras originales y las deformadas cuatro veces, ya que estas estructuras pueden quedarse fuera de FOV, en este caso no fueron incluidas en el estudio.

Como resultado final obtendremos las estructuras originales en el pCT, que no dan el valor de referencia con el cual comparar y las estructuras deformadas cuatro veces para CBCT, también el pCT. Así con la diferencia entre la estructura original y la estructura deformada cuatro veces con el método IC, podemos determinar la incertidumbre en dosis absorbida del algoritmo hibrido de DIR.

Para mostrar los resultados se estudió la variación en volumen, dosis absorbida que recibe el 98% del volumen (D98), dosis absorbida que recibe el 95% del volumen (D95), dosis absorbida media que recibe el volumen, dosis absorbida que recibe el 50% del volumen (D50) y dosis absorbida que recibe el 2% del volumen (D2). Con este rango de valores del DVH se pretende observar las diferencias tanto el valores de dosis altos (D2%), como en valores medios (media y D50%) y bajos (D98 y D95%).

3.4.2 Validación en los pacientes de próstata

En esta localización se estimó la incertidumbre del algoritmo DIR con y sin control de ROIs. El método que utilizamos para validar los algoritmos DIR se basa en la suposición de que un algoritmo funcionando correctamente enlaza perfectamente los vóxels de las mismas áreas de dos imágenes.

En la sección 3.3.3, se detalla como en el caso de la utilización clínica del DIR son ROIs de control, con el primer registro deformable se trasladan las estructuras de interés de la imagen de referencia (pCT) a la imagen blanco (CBCT) y la dosis absorbida en sentido apuesto, del CBCT al pCT. Si las ROIs trasladadas al CBCT no coinciden con el órgano de interés, estas son corregidas por el médico para valorar correctamente la dosis absorbida administrada en el CBCT. Si el médico ha tenido que corregir estas estructuras ya es indicativo de que el registro no ha sido del todo perfecto. Para valorar en términos de dosis absorbida la incertidumbre del algoritmo, estas ROIs corregidas fueron trasladadas de nuevo, a través del misma DVF, en sentido opuesto, desde la CBCT a la pCT. Las diferencias entre el original y el corregido y mapeado de nuevo en el pCT nos muestran la incertidumbre del DIR en términos de dosis absorbida en ausencia de ROIs de control.

Hay que diferenciar entre la aplicación clínica del DIR y la validación del algoritmo de registro deformable. En la aplicación clínica del registro deformable para poder adaptar un plan, se trasladan las dosis absorbidas desde la imagen blanco, en este caso el CBCT, a la imagen de referencia, el pCT. Así se puede valorar en el pCT la dosis absorbida planificada y la administrada. En cambio, en el proceso de validación nunca se trasladan las dosis absorbidas, son únicamente los contornos los que se utilizan para determinar la incertidumbre del DIR.

El algoritmo híbrido de RayStation utiliza las dosis absorbidas calculadas en el CBCT para calcular la dosis absorbida acumulada, por lo que, si usamos el mismo DVF para exportar las estructuras que fueron corregidas en el CBCT, el error de dosis absorbida de estas estructuras nos indicará el error del algoritmo. Es importante señalar que este no es el error de consistencia inversa porque no usamos un DVF₁ para mapear los ROI de pCT y otro DVF₂ para asignar estos ROI de vuelta del CBCT a pCT. Utilizamos sólo un campo de deformación, que correlaciona clínicamente los ROI del pCT al CBCT (dirección opuesta) y la dosis absorbida del CBCT al pCT.

Para estimar la incertidumbre del algoritmo con control de ROIs, se debe realizar un nuevo DIR después de corregir las estructuras trasladadas desde el pCT al CBCT y utilizamos estas ROI en el nuevo DIR, donde las ROIs de control ayudan a guiar al algoritmo. Como resultado final de los dos procedimientos (DIR con y sin control de ROI), hemos obtenido nueve estructuras nuevas de cada órgano en el pCT (vejiga, próstata y recto) procedentes de los nueve CBCTs, así como una imagen de cada uno del recto, vejiga y próstata contorneados en el pCT original que sirvió como ROI de referencia. La diferencia en el DVH (Δ DVH) entre las estructuras originales y las asignadas de nuevo de cada uno de los CBCTs se debe al error de algoritmo DIR. La Figura 3-6 muestra el flujo de trabajo que implementamos este método de validación del DIR.

Figura 3-6. El flujo de trabajo del estudio utilizado para validar el algoritmo DIR con y sin controlar el ROI.

Para el estudio, los valores seleccionados para determinar la diferencia entre la estructura original y la mapeada fueron los criterios clínicos para la aceptación del plan hipofraccionado:

A) Para el recto: como máximo 20% del volumen que recibe 51 Gy (V51 <20%) y como máximo 50% del volumen que recibe 36.5 Gy (V36.5 <50%).

B) Para la vejiga: como máximo 35% del volumen que recibe 57 Gy (V57 <35%).

C) Para la próstata: al menos el 98% de la dosis absorbida cubiertas por el 98% de la dosis absorbida prescrita (D98% ≥ 98%).

3.4.2.1 Software de validación

En el proceso off-line ART, la decisión de adaptar un plan se toma teniendo en cuenta la dosis absorbida administrada en varias sesiones (dosis absorbida acumulada), no sólo las administradas en una única sesión CBCT. Por lo tanto, no solo es interesante estimar la incertidumbre del algoritmo de DIR entre dos imágenes, sino que es necesario determinar el impacto de esta incertidumbre sobre la dosis absorbida acumulada de varias imágenes. Por este motivo, con el apoyo de la Fundación del Hospital Provincial de Castellón desarrollamos un software propio de cálculo de errores de radioterapia adaptativa (ARTe.cs) para estimar la influencia del error DIR (entre dos imágenes) en el proceso ART (acumulación de dosis absorbida de varias imágenes).

Este software utiliza los vóxels de las ROIs que se han trasladados de los CBCTs al pCT para calcular un único DVH. Esto significa que podemos comparar el DVH de la estructura de referencia, la que el médico contornea en el pCT, con el DVH de las estructuras que se hayan proyectado desde diferentes CBCT. El DVH de la estructura original es nuestro histograma de referencia, así que cualquier diferencia que haya sobre este nos indicará que el algoritmo de DIR no ha funcionado correctamente. El concepto del programa es sencillo. Cuando corregimos y proyectamos las estructuras del CBCT al pCT, podemos estimar la incertidumbre del registro deformable comparado el DVH de nuestra estructura proyectada y la de referencia, así que para poder estimar el error que introduce el algoritmo cuando utilizamos varias imágenes, el software calcula un único histograma, pero utilizando los vóxels de varias estructuras como si fueran una única estructura. De esta forma introducimos en un único DVH los errores introducidos por el algoritmo y podemos comprarlo con nuestro DVH de nuestra imagen de referencia.

Una de las características del programa es que podemos valorar la incertidumbre del algoritmo en cualquier fase del tratamiento del paciente. Si por ejemplo llevamos 5 sesiones (3 CBCTs), podemos elegir comparar el DVH de la estructura de referencia, con las tres estructuras proyectadas desde el CBCT. Así podemos, antes de tomar la decisión clínica de adaptar el plan, conocer la incertidumbre que ha introducido el algoritmo en nuestras al relacionar las diferentes imágenes del CBCT. El Este software es de libre utilización. En la Figura 3-7 se muestra la imagen de presentación y la versión.

Figura 3-7. Imagen de presentación y versión del software.

Para ejecutar el software, programado en Python, únicamente se necesita los archivos del plan, dosis absorbida y estructuras en formato dicom. En la Figura 3-8 y 3-

9 se muestran dos DVH con la ventana final, donde se compara el DVH de la estructura original y la de la estructura virtual formada por todas los vóxels de todas las estructuras trasladadas del CBCT.

Figura 3-8. Esta imagen es el resultado obtenido con el software comparando la dosis absorbida planificada y la dosis absorbida administrada en los nueve CBCTs para la estructura recto, sin la utilización de las ROIs de control. La línea verde es la del CBCT y la roja la del pCT. Si el registro deformable fuera perfecto las dos líneas deberían solapar, pero como se observa en la figura, la diferencia entre los dos histogramas es significativa por lo que hay que tener en cuenta la incertidumbre que introduce el algoritmo al acumular la dosis en el recto.

Figura 3-9. Esta imagen muestra la curva roja de referencia (pCT) y la curva del DVH de las nueve estructuras de recto proyectadas al pCT desde el CBCT. Si el algoritmo relaciona perfectamente las dos imágenes las curvas deben solapar. En este caso, como se han utilizado ROIs de control para guiar al algoritmo, la coincidencia entre las dos curvas es muy buena. Esto indica que el algoritmo está introduciendo una incertidumbre mínima. Por lo que podemos asegurar que cualquier diferencia entre lo administrado y lo planificado en este paciente es debido a cambios anatómicos.

3.5 MÉTODOS ESTADÍSTICOS

3.5.1 Pacientes de cabeza y cuello

Para la validación en distancias de los pacientes de cáncer de cabeza y cuello, cada observador y el médico colocó los puntos en 3 CBCTs por paciente. Estos puntos proyectaron al TC de planificación, donde estaban los puntos de referencia. A estas coordenadas se les aplicó el criterio de 4 desviaciones estándar para eliminar los puntos que se habían colocado incorrectamente. Además de promediar las coordenadas por punto, también se promediaron las de cada imagen. Esto se pudo realizar ya que, aunque cada CBCT tiene unas coordenadas diferentes, al pasar los puntos a pCT, el sistema de coordenadas es el mismo. Posteriormente se restaron las coordenadas entre el promedio coordenadas y las coordenadas de referencia y se calculó la distancia para cada punto con la siguiente fórmula:

$$D = \sqrt{(\Delta X)^2 + (\Delta Y)^2 + (\Delta Z)^2}$$

Esto se realizó para cada paciente. La Figura 3-10 muestra la hoja de tratamiento de datos de uno de los pacientes. Con la distancia a cada punto se calculó por un lado la distancia promedio para todos los puntos y su desviación estándar con factor de cobertura k=1. Para mostrar el cálculo del valor y su desviación estándar asociada, en todo el estudio se utiliza este factor de cobertura.

$ \begin{array}{ $	IOS X Y Z 23 1 0.1 -1 23 23 1 0.2 -10 -1 23 23 3 106 -16.5 203 35 21 23 6 -3.12 -10.5 203 36 21 23 36 7 0.05 -14.5 22 23 36 37 36 36 37 36 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 37	3 × 0 21 2 4 4 23 24 3 × 0 0 25 4 4 1 0 0 25 5 5 5 5 5 5 5 5 15 1 </th <th>Y -7.08 -8.11 -10.046 -11.26 -11.26 -11.25 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -14.26 -10.06 -11.00 -11.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -</th> <th>z 23.45 21.94 23.29</th> <th>x -0.19</th> <th>y -7.08</th> <th>Z 2</th> <th>X -0.25</th> <th>γ</th> <th>z</th> <th>×</th> <th>N</th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Distancia</th>	Y -7.08 -8.11 -10.046 -11.26 -11.26 -11.25 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -13.35 -14.26 -10.06 -11.00 -11.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -10.06 -	z 23.45 21.94 23.29	x -0.19	y -7.08	Z 2	X -0.25	γ	z	×	N	,						Distancia
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	1 0.21 -7 2335 3 -106 -155 2336 4 -125 -135 2336 6 -125 -106 -155 2336 7 -106 -155 2336 203 6 -12 -145 2244 2365 7 -0.00 -14 2365 2144 2365 10 -518 -14 -155 2144 2143 2143 10 -518 -13 -144 2365 2144 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145 2145	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-7.08 -15.46 -16.46 -10.09 -110.09 -112.56 -13.83 -13.83 -13.83 -13.83 -15.63 -7.04 -7.04	23.45 21.94 23.20	-0.19	-7.08	00 00	-0.25	000		-			×	N	×	Y	z	
$ \begin{array}{ $	2 495 495 45 2182 4 023 -105 -155 2336 5 312 -105 224 6 312 -145 224 9 414 -7 236 9 414 -7 236 10 -518 -7 224 11 -2 224 12 -2 224 12 -2 224 13 -2 236 13 -2 236 1 -2 236 2 -2 24 2 -2 2 -2 24 2 -2 -2 24 2 -2 -2 24 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	0 0	-15 41 -15 46 -10 09 -10 09 -10 26 -13 83 -13 83 -13 83 -13 83 -13 83 -15 46 -13 83 -15 46 -13 83 -15 46 -13 83 -15 46 -17 46 -1	21.94			23.68	N.FU	-0.98	23.65	0.21	-6.79	24.45	-0.11	-6.98 2.	3.81	0.10 0	0.02 0.2	
9 9	3 1.06 1.55 2336 6 3.12 1.05 2034 6 3.12 1.45 22.44 7 0.06 1.4 22.36 8 3.12 1.45 22.36 9 4.06 1.4 22.36 9 4.06 1.4 22.36 9 4.14 15.5 21.43 10 5.18 7.14 21.43 10 5.18 7.14 21.43 10 5.18 7 19.16 10 5.18 7 21.43 10 5.18 7 21.43 10 5.14 -7 7 10 5.14 -7 23.53 10 5.4 -7 23.33 10 5.4 -7 23.33 10 5.2 -1.45 23.33 10 5.2 -1.45 23.33	0 0	-15.46 -10.09 -14.26 -10.05 -13.83 -13.83 -13.83 -13.63 -13.63 -13.63 -15.63 -17.04 -7.04 -7.04	22 20	4.99	-8.02	21.76	-5.04	-8.02	21.79	ç	-8.02	21.83	4.99	-8.04 2	1.83	0.04 0	0.04 0.0	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	4 0.23 -10 22.03 7 -0.02 -14 22.03 7 -0.02 -14 22.04 8 -0.03 -14 22.04 9 -14 -15 21.43 10 -14 -15 21.44 10 -14 -15 21.44 10 -5.18 -7 19.16 10 -5.18 -7 19.16 10 -5.18 -7 23.35 2 -4.02 -7 23.35 2 -106 -15 -7 23.35 2 -106 -15 23.35 23.35 2 -106 -15 23.35 23.35 2 -102 -14 -7 23.35 2 -14 -14 20.33 20.43	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-10.09 -11.26 -11.26 -13.83 -13.95 -13.95 -13.95 -13.95 -13.95 -13.95 -15.63 -7.04 -7.04 -7.04	27.07	-0.95	-15.45	23.46	-0.01	-15.61	21.71	-1.18	-15.45	23.48	-0.78	-15.49 2.	2.99	0.29 0	0.01 0.3	2
0 0	5 3.12 -14.5 22.44 7 0.05 -10 22.95 9 -0.05 -14 23.96 9 -0.05 -14 23.66 9 -4.14 -15.14 21.47 10 -5.16 -14 21.47 10 -5.16 -17 21.47 10 -5.16 -7 21.47 11 -7 21.47 19.16 12 -7 1 23.53 13 -0.21 -7 23.33 10 -10.6 -15.5 23.33 2 -10.6 -15.5 23.33 2 -10.2 -14.5 23.33	0 0	-14.26 -13.95 -13.95 -13.95 -13.95 -13.95 -7.04 -7.04 Médico Y	20.91	0.27	-10.09	20.89	0.23	-10.09	20.88	0.26	-10.09	20.99	0.25	-10.09 21	0.92	0.02	0.0 0.0	-
$ \begin{array}{ $	6 002 10 22 /9 8 002 14 23 /9 9 414 7 19 16 5 18 7 14 2 31 /4 10 5 18 7 19 16 7 REFRENCIA 1 0 23 10 2 31 /6 2 1 0 2 31 /6 2 2 1 /6 2 1 0 2 31 /6 2 2 1	6 0 000 6 1 0 00 7 1 0 00 8 0 8	-10.05 -13.83 -13.83 -15.63 -7.04 -7.04 Médico Y	22.48	-2.82	-14.46	22.44	-3.12	-14.47	22.42	-3.05	-14.46	22.47	-3.01	-14.41 2.	2.45	0.11 0	0.0 0.0	-
$ \begin{array}{ $	6 -000 -14 2386 9 -010 -14 239 9 -114 -155 2147 10 -514 -7 203 10 -514 -7 203 10 -514 -7 203 1 -021 -7 203 1 -021 -7 233 1 -021 -7 233 2 -106 -15 233 2 -106 -15 233 1 -105 -14 203 2 -105 -15 233 1 -102 -14 204	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-13.83 -13.95 -15.63 -7.04 Médico Y	22.95	0.05	-9.95	22.85	0.04	-10.05	22.97	0.02	-10.05	22.92	0.01	-10.03 2.	2.92	0.01	0.1 0.1	
0 0	9 4.09 9 4.01 4.155 21434 9 5.18 - 7 1916 - 5.18 - 7 2145 - 1016 - 5.18 - 7 2145 - 106 - 15 2134 - 106 - 15 2136 - 107 - 145 - 2146 - 145 - 215 - 2146 - 145 - 215 -	6 4 4.00 5 15 5 15 7 10 7 10 7 10 1	-13.95 -15.63 -7.04 -7.04 Médico Y	23.62	-0.13	-13.83	23.83	-0.13	-14.14	23.87	-0.19	-14.04	23.96	-0.10	-13.96 2	3.82	0.05	0.1	0
$ \begin{array}{ c c c c c c c c c c c c c$	10 518 10 2147 10 518 7 1916 T 02 2147 10 218 7 1916 10 218 218 10 22 2136 10 22 2147 22 40 22 23 40 22 24 50 20 20 50 20 20 50 20 20 50 20 20 50 20	5 15 15 15 15 15 15 15 15 15 15 15 15 15	-15.03 -7.04 Médico Y	25.19	-0.14	-13.64	24.94	-0.11	-14.05	25.26	-0.22	-14.05	25.12	-0.13	-13.92 2	6.13 1	0.04	0.08 0.1	
$ \begin{array}{ $	10	2	-r.u4 Médico Y	21.49	-3.75	-15.62	19.12	4.23	-15.63	21.39	4.14	-15.53	21.29	4.12	-15.60	1.42	0.02	0.0 01.0	
$\frac{1}{2} \frac{1}{2} \frac{1}$	TC REFERENCIA TC REFERENCIA 2 2 4 25 2 4 95 2 1 05 2 1 023 1 0 233 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	× -0.17 -0.05 -0.06 -0.06 -0.06	Médico y	19.00	Q1.6-	-1.04	19.13	01.C-	-0.34	13.22	-5.33	-0.04	19.31	07.C-	1.0-1	9, 10	0.02	1.04 0.0	
Normalize Carron Carro Carr	S X TC REFERENCIA T. CREFERENCIA 1021 -7 2353 106 -155 2336 106 -155 2336 106 -155 2336 106 -155 2336 1023 -110 2091		Médico Y															Promedio	0.7
$\frac{1}{2} \frac{1}{1} \frac{1}$	IC TC REFERENCIA 1 V 23.65 1 0.21 7 23.65 2 4.021 7 23.65 2 1.06 -15 23.36 3 -106 -15 23.33 3 -106 -16 20.31 5 -107 -10 20.31 6 -31.2 -10 23.33	× -0.17 -0.17 -0.17 -0.11 -0.11 -0.11 -0.02	Médico Y					_		_			_			_		Desvi	0.1
$ \begin{array}{ $	TC REFERENCIA T TC REFERENCIA T 021 1 020	× -0.17 -0.17 -0.17 -0.17 -0.11 -0.11 -0.02	Médico y						CBC	r 2									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NS X Y Z 1 -0.21 -7 2355 2 -4.95 -8 2165 3 -1.06 -155 2336 3 -106 -155 2336 4 0.23 -106 2034 5 -137 -145 2034	x -0.17 6 -1.01 6 -1.01 1 - 0.11 9 0.06 6 -0.02	y 7 00		qo	servador 1		Obs	servador 2		Obse	rvador 3	╞	Pron	tedio		Resta Coord	denadas	Distancia
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -0.21 -7 23.53 2 -4.95 -8 21.82 3 -4.06 -7 23.53 3 -106 -15.5 23.33 4 0.23 -10 20.33 5 -3.12 -14.5 22.44	2 -0.17 6 -1.01 1 -0.11 1 -0.11 2 -3.21 6 -0.06 6 -0.02	2 05	z	×	Y	z	×	y	z	×	X	z	×	Z	×	y	z	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4.95 8 2182 3 1.06 -15.5 23.36 4 0.23 -10.6 20.31 5 3.12 -14.5 22.44	2 4.91 6 -1.01 7 0.11 9 0.06 6 0.00	QD. 1-	23.39	-0.2	-7.05	23.57	-0.15	-6.87	23.98	-0.16	-7.05	23.7	-0.17	-7.01 2.	3.66	0.04 0	0.00 0.1	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 -1.06 -15.5 23.36 4 0.23 -10 20.91 5 -3.12 -14.5 22.44	5 -1.01 1 0.11 9 0.06 6 -0.02	-8.2	22.06	-5.02	-8.11	21.85	4.9	-8.22	21.8	4.93	-8.12	21.79	4.94	-8.16 2	1.88	0.01	0.0 0.0	2
$\frac{1}{2} \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 0.23 -10 20.91 5 -3.12 -14.5 22.44	1 0.11 4 -3.21 9 0.06 6 -0.02	-15.64	23.35	-1.1	-15.54	23.71	-1.04	-15.64	23.45	-1.13	-15.54	23.5	-1.07	-15.59 2.	3.50	0.01 0	1.09 0.1	-
$\frac{1}{2} \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.12 -14.5 22.44	9	-9.94	20.94	0.11	-9.84	20.82	0.17	-10.04	20.97	0.18	-10.14	21.01	0.14	-9.99 21	0.94	0.09	0.01 0.0	
$\frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}$		-0.02 -0.02	-14.32	22.46	-3.15	-14.32	22.38	-2.88	-14.43	22.42	-3.27	-14.22	22.45	-3.13	-14.32 2	2.43	0.01	0.0	
$\frac{1}{244} \frac{1}{55} \frac{1}{244} \frac{1}{55} \frac{1}{244} \frac{1}{55} \frac{1}{254} \frac{1}{254} \frac{1}{554} \frac{1}{55$	7 -0.05 -10 -22.73 7 -0.05 -14 -23.66	20.04	-13.64	23.01	-0.23	-13 98	22.04	50 U-	-10.20	23.89	0.00	-10.02	23.85	0.0	-13 97 2.	2 20	500	0.0	0 4
9 413 155 214 616 715 715 916 715 715 916 715 916 715 916 715 916 715 916 715 916 715 916 715 916 715 916 715 916 715 916 715 916	8 -0.09 -14 24.94	4 -0.01	-14 01	25.09	-0.13	-14.01	25 11	60 0-	-14 21	25.17	-0.18	-14 01	25.04	-0.10	-14 06 2	5 10	0.01	0.06 0.1	
$\frac{1}{2} \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 -4.14 -15.5 21.47	7 -4.07	-15.48	21.5	-3.95	-15.28	21.6	4.11	-15.48	21.54	4.12	-15.38	21.3	4.06	-15.41 2	1.49	0.08	0.10 0.0	
$\frac{1}{2} = \frac{1}{2} + \frac{1}$	10 -5.18 -7 19.16	6 -5.23	-7.12	19.1	-5.17	-7.12	19.06	-5.06	-7.01	19.25	-5.19	-7.22	19.18	-5.16	-7.12 1	9.15	0.02 0	0.12 0.0	1
Click Calc Constrator Calc Constrator Calc Constrator C																		Promedio	0.1
Clock Motion Clock Constraint Clock Motion																_		Desvi	0.0
N TCRETERIOL Medica Observator Description Rest Contended Rest Contended Description Rest Contended Description Description Rest Contended Description Description Rest Contended Description Description Description Rest Contended Description Descrip Descrip <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CBC</td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									CBC	13									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TC REFERENCIA		Médico		Op	servador 1		Obi	servador 2		Obse	rvador 3		Pron	nedio		Resta Coord	denadas	Distancia
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S x y z	×	>	z	×	>	z	×	Y	z	×	X	N	×	Z	×	y	z	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -0.21 -7 23.53	3 -0.21	L-	23.56	-0.18	-7.03	24	0.03	-6.86	21.95	-0.17	-6.87	24.25	-0.13	-6.94 2.	3.44	0.08	0.0 0.0	0
4 0.25 1.0 0.24 0.25 0.00 0.24 0.25 0.00 0.24 0.25 0.00 0.24 0.25 0.00 0.24 0.25 0.00 0.05 <t< td=""><td>2 -4.95 -8 21.82</td><td>4.82</td><td>-8.13</td><td>21.86</td><td>4.94</td><td>-8.03</td><td>21.9</td><td>4.96</td><td>- 6.13</td><td>21.88</td><td>4.92</td><td>-0.13</td><td>21.86</td><td>4.91</td><td>-8.11 2</td><td>1.88</td><td>0.04</td><td>0.0 0.0</td><td></td></t<>	2 -4.95 -8 21.82	4.82	-8.13	21.86	4.94	-8.03	21.9	4.96	- 6.13	21.88	4.92	-0.13	21.86	4.91	-8.11 2	1.88	0.04	0.0 0.0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00.02 0.01- 00.11- 00 k	-1.04	10.01	23.20	-1.00	04.01	20.02	0.70	F0.01-	20.40	-1.04	64.01-	20.00	-1.04	2 00.01-	2.42	20.0	0.0 00.0	0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 U.23 U- 2U.91 4 2U.91 2 2U.91 2 2U.91 2 2U.91 2 2U.91 2 2U.91 2 20 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C7.0	10.01-	16.02	3.05	11.11	CU.12	0.23	10.01-	20.34	0.20	10.01-	20.12	27.0	-10.04	00.1	20.02		
7 0.0 $\frac{14}{14}$ 25.0 0.0 13.0 25.1 0.0 14.1 25.0 0.0	44.27 C.41- 21.C- C 40 270	-2.30	10.41-	24.43	0.0	14.41	22.40	-2.24	0.02	64.72	14.0	0.02	07.77	11.0-	0 00	242	60.0	0.0 0.0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 -0.05 -10 -22.13 7 -0.05 -14 -23.66	0.04	-3.00	22.30	-0.08	13 99	77 22	10.02	1 11	23.8	-0.07	01 11	10 22	0.0	-14 07 2:00	16.2	0.01	1.0 2.0	
$\frac{1}{10} \frac{414}{518} \frac{16}{714} \frac{214}{328} \frac{324}{722} \frac{1539}{728} \frac{21}{702} \frac{410}{510} \frac{1529}{728} \frac{2129}{701} \frac{410}{518} \frac{1539}{728} \frac{2147}{921} \frac{410}{518} \frac{1539}{728} \frac{2147}{921} \frac{410}{518} \frac{1539}{722} \frac{2147}{921} \frac{410}{00} \frac{10}{01} \frac{010}{01} \frac{011}{01}$	8 -0.09 -14 24.94	4 -0.03	-14.1	24.96	-0.06	-14	24.89	0	-14	24.84	-0.11	-14.1	24.93	-0.05	-14.05 24	4.91	0.04	0.05 0.0	
$\frac{10 \times 18 - 7}{7} \frac{3}{10} \frac{5}{10} \frac{5}{10} \frac{7}{10} \frac{9}{10} \frac{5}{10} \frac{5}{10} \frac{7}{10} \frac{9}{10} \frac{1}{10} \frac$	9 -4.14 -15.5 21.47	7 -3.94	-15.39	21	4.01	-15.29	21.52	4.12	-15.49	21.48	4.12	-15.39	21.47	4.05	-15.39 2	1.37	60.0	0.1	
ra 3-10. Hoja de cálculo de uno de los cinco pacientes, donde se observa en la parte izquierda en color las coordenadas de los puntos d encia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatr	10 -5.18 -7 19.16	6 -5.22	-7.02	19.14	-5.09	-7.13	19.1	-5.05	-7.01	19.39	-5.23	-6.91	19.27	-5.15	-7.02	9.23	0.03	0.0 0.0	
ra 3-10. Hoja de cálculo de uno de los cinco pacientes, donde se observa en la parte izquierda en color las coordenadas de los puntos d encia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatr																		Promedio	ò
ra 3-10. Hoja de cálculo de uno de los cinco pacientes, donde se observa en la parte izquierda en color las coordenadas de los puntos d encia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatr																		Decvi	0
ra 3-10. Hoja de cálculo de uno de los cinco pacientes, donde se observa en la parte izquierda en color las coordenadas de los puntos d encia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatr																		14630	
encia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatr	ira 3-10. Hoja de cálc	sulo de	· uno de	los ci	nco pu	aciente	s, don	de se	observ	a en li	1 parte	? izquiv	erda e	n colo.	r las co	orden	adas a	le los pu	ntos de
rencia colocados por el médico en el pCT. Las siguientes columnas son las coordenadas de los POIs colocados por el médico y los cuatr	ه				•						•	•						•	
	encia colocados por e	el médi	ico en e	l pCT.	Las s	iguien	tes coi	lumna	l nos s	as coo	rdena	das de	los P	OIs co	locado	s por e	el médi	ico y los	cuatre

Validación registro deformable

coordenadas con las de referencia. Por último, se calcularían las distancias.

56

Como parte de los resultados se presentó la incertidumbre diferenciando zonas blandas y rígidas, por área y, por otro lado, la incertidumbre total del algoritmo, con el promedio de todo. Para el resultado final, se promediaron todas las distancias de todos los pacientes y puntos. Las desviaciones estándar se calcularon para lista de distancias de puntos.

Para el método de consistencia inversa se utilizó el mismo método, con la diferencia de que aquí no hay observadores ya que las distancias se calculan entre el punto de referencia en el pCT y ese punto proyectado al CBCT y proyectado de vuelta al pCT. En la Figura 3-11 se muestran los cálculos para el método de consistencia inversa.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Resta coordenads Distancias IC REF DEFORMADO 2 VECES Resta coordenads Distancias Distancias <thdistancias< th=""> Distancias Distancia</thdistancias<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $
Desvi 0.043 Desvi 0.043 Desvi 0.070 CBCT 3 CBCT 3 CBCT 3 CBCT 3 Distancias Distan
CBCT 3 CBCT 3 Resta condenadas Distancias Distancias <th< th=""></th<>
Resta coordenadas Distancias TC REF DEFORMADO 2 VECES Resta coordenadas Distancias 23.5 0.05 0.01 0.03 0.11 4.58 2.33.6 0.09 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
23.55 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 <t< th=""></t<>
2182 0.0 0.0 0.06 5.04 7.92 2.18 0.09 0.06 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0
27.36 0.01 0.02 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.01 <t< td=""></t<>
Zi 20 000 000 000 000 001 000 011 000 011 000 011 </td
Zie U01 U00 U01 U11
Z247 0.00 0.04 0.03 0.05 -3.12 -14.58 Z2.51 0.00 0.08 0.07 0.01 0.01 0.07 0.01
Z2 82 0.02 0.10 0.03 0.11 -0.03 -10.19 22 85 0.06 0.19 0.01 0.06 0.11 -10.19 22 85 0.05 0.19 0.10 0.11 0.15 22 85 0.05 0.16 0.11 0.11 0.15 22 85 0.05 0.10 0.11 0.11 0.13 0.05 0.14 0.13 0.05 0.14 0.13 0.05 0.14 0.13 0.01 0.11 0.11 0.13 0.04 0.14 0.13 0.01 0.14 0.13 0.03 0.14 0.14 0.13 0.03 0.14 0.14 0.13 0.03 0.14 0.14 0.13 0.01 0.14 0.14 0.13 0.03 0.14 0.14 0.13 0.03 0.14 0.14 0.14 0.13 0.01 0.14 0.14 0.14 0.03 0.14 0.14 0.03 0.14 0.14 0.03 0.04 0.01 0.01 0.01 0.01
23361 0.03 0.05 0.06 0.08 0 -13.9 23.56 0.05 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.01 <th< td=""></th<>
24.92 001 0.06 0.02 0.06 -0.06 -1.13 2.4.13 2.4.91 0.03 0.13 0.03 0.14 21.47 0.00 0.07 4.15 -15.63 2.1.47 0.01 0.02 0.04 0.02 0.040 0.040 0.040 1 Desvi 0.024 0.024 0.024 0.024 0.040 0.040
21.47 0.00 0.07 0.00 0.07 0.00 0.07 0.01 0.13 0.00 0.13 0.00 0.13 0.01 0.13 0.00 0.01 </td
1914 0.03 0.02 0.04 5.25 5.56 19.13 0.01 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 <t< td=""></t<>
13.14 U/0 U/0 </td
Promedio 0.058 Promedio 0.123 Desvi 0.024 0.040 Desvi 0.040
Desvi 0.024 0.040

Figura 3-11. Hoja de cálculo del método de consistencia inversa. En la columna de la izqui	uierda se muestran las
coordenadas de referencia en el pCT. En la columna siguiente a la derecha se muestran las coor	ordenadas de ese punto
proyectado al CBCT por un DFV_1 y de vuelta con un DVF_2 . En la columna de la del medio s	se muestra la resta de
coordenadas y después la distancia. En la siguiente columna están las coordenadas de esos mismos p	puntos, pero realizando
de nuevo la operación de proyectar el POI al CBCT y luego proyectad de vuelta al pCT. La distanc	cia de la columna de la
derecha es la que se utilizó para validar el método de consistencia inversa.	

Para mostrar las distancias por órgano se decidió utilizar un diagrama de cajas con la idea de mostrar no solo los valores medios y su desviación, sino también los puntos máximos, que a la hora de estudiar la incertidumbre del algoritmo de DIR tiene una gran importancia.

Para estimar la incertidumbre en dosis absorbida se utilizó un método de procesado de datos similar a con los puntos en el método de IC. Los órganos se deformaron 4 veces y se calculó la diferencia entre el la dosis absorbida y el volumen del nuevo volumen respecto al de referencia. Luego se calculó la diferencia promedio y su desviación estándar para cada órgano. En dosis absorbidas no tiene sentido hablar de diferencia de dosis total ya que cada órgano tiene unas propiedades dosimétricas totalmente diferentes. En la Figura 3-12 se muestra los cálculos realizados para un paciente.

		Vol	D98	D95	Average	D50	D2	Dif Vol	Dif D98	Dif D95	Dif Average	Dif D50	Dif D2
Imagen	ROI	CC			cGy			CC			cGy		
ODOT 4	Atm Dcha	2.69	329	449	963	955	1541	0.0		00	22		400
CBCT 1		2.39	321	420	930	901	1433	0.3	0	29	33	54	108
CBCT 2	-	2.00	324	432	954	939	1540	0.13	12	10	9	10	
TC	Brain Stem	23.09	118	131	981	751	3533	0.1	12	15	20	05	
CBCT 1	Dian otom	27.78	81	88	815	408	3555	4.69	37	43	166	343	22
CBCT 2		23.31	120	132	984	753	3518	0.22	2	1	3	2	1
CBCT 3		21.01	123	136	1023	778	3582	2.08	5	5	42	27	49
TC	CTV	26.2	5748	5831	6173	6205	6492				an Na taona ao amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr		
CBCT 1	CTV	24.87	5760	5839	6167	6206	6494	1.33	12	8	6	1	
CBCT 2	CTV	25.29	5763	5840	6174	6205	6489	0.91	15	9	1	0	
CBCT 3	CTV	24.14	5824	5874	6188	6216	6494	2.06	76	43	15	11	
TC	Laringe	15.95	1739	1867	3631	3267	5996				74		
CBCT 1		16.76	1/14	1863	3561	3202	5965	0.81	25	4	/0	65	3
CBCT 3		19.29	1/39	1000	3604	3256	5994	3.34	49	33	27	11	4
TC	Lengua	12.88	3572	3700	4790	4940	5587	0.5	45	55	21		
CBCT 1	Longua	12.6	3605	3711	4791	4931	5582	0.28	33	11	1	9	
CBCT 2		13.25	3509	3651	4766	4926	5584	0.37	63	49	24	14	
CBCT 3		13.73	3611	3731	4839	5001	5605	0.85	39	31	49	61	18
TC	Lob temo D	87.17	48	51	182	111	603						
CBCT 1		87.42	49	52	177	109	601	0.25	1	1	5	2	2
CBCT 2		79.55	56	60	198	126	618	7.62	8	9	16	15	1
CBCI 3	Lab tana I	79.56	51	55	196	123	607	7.61	3	4	14	12	
CPCT 1	LOD Lemo I	70.2	0.0	31	503	252	4007	4.43	1	1	10	7	21
CBCT 2		67.1	83	92	586	243	4007	7 33	0	1	23	0	153
CBCT 3		70.89	91	100	620	267	4159	3.54	8	9	57	15	190
TC	Mandibula	18.9	1452	1566	3505	3413	5843						
CBCT 1	10 0 0 0 0 V	17.85	1451	1564	3480	3391	5827	1.05	1	2	25	22	16
CBCT 2		17.75	1456	1576	3443	3218	5821	1.15	4	10	62	195	22
CBCT 3		17.74	1453	1565	3497	3396	5850	1.16	1	1	8	17	
IC ODOT 4	Medula	18.11	26	30	2339	3246	4265	1.01	C.	C	C 2	00	
CBCT 1		16.9	32	36	22/6	3155	4249	1.2	6	5	63	90	10
CBCT 3		17 47	39	43	2319	3208	4243	0.64	13	13	20	38	21
TC	oido izdo	0.97	2593	2794	4026	4121	4984	0.0	15	10	20	50	-
CBCT 1		0.95	2662	2952	4081	4145	4991	0.02	69	158	55	24	
CBCT 2		0.93	2582	2790	3945	4103	4774	0.04	11	4	81	18	21
CBCT 3		0.87	2593	2772	3987	4113	4883	0.1	0	22	39	8	10
TC	Ojo drcho	5.78	68	71	110	104	184						
CBCT 1		5.52	68	71	110	104	183	0.26	0	0	0	0	
CBCT 2		5.79	68	71	110	104	103	0.0	0	0	2	2	
TC	Oio izado	7.89	97	99	235	186	703	0.00	0	0	2	2	
CBCT 1	010 12 400	7.34	97	99	238	187	711	0.55	0	0	3	1	8
CBCT 2		7.86	97	99	235	187	693	0.03	0	0	0	1	10
CBCT 3		8.44	97	99	242	189	694	0.55	0	0	7	3	9
TC	PTV 60	242.02	5599	5710	6078	6094	6480						
CBCT 1		239.9	5606	5714	6079	6094	6481	2.12	7	4	1	0	
CBCT 2		243.14	5553	5689	6068	6091	6481	1.12	46	21	10	3	
TC	Detroferin	240.74	5013	5/23	6000	6094	6401	1.20	14	13	2	U	
CBCT 1	Retrolatin	2.35	5735	5820	6265	6328	6546	0.1/	6	6	1	2	
CBCT 2		2 29	5745	5831	6279	6345	6546	0.14	6	8	14	15	
CBCT 3		2.25	5749	5851	6279	6345	6546	0.14	10	28	14	15	
				1	Dif Vol	Dif D98	Dif D95	Dif Average	Dif D50	Dif D2			
					CC			cGy					
			ATM D	cha	0.18	8.33	21.	67 22.67	45.00	39.33			
			Brain S	Stem	2.33	14.67	16.	33 70.33	124.00	28.67			
			Larin	de	1.55	24.67	12	67 41.33	29.00	11.67			
			Leng	ua	0.50	45.00	30	33 24 67	28.00	8 67			
			L oh ter	nn D	5 16	4.00	4	67 11.67	9.67	7.00			
			Lob to	mnl	5.00	3.00	4.	67 30.00	7 33	126.67			
			Mandi	hula	1 10	2.00	J. 4	33 31.67	78.00	15.00			
			Madu	ula	1.12	2.00	4.	00 64.00	07.67	21.67			
			medi	na	1.14	13.00	13.	22 50.22	31.01	21.07			
			UIdo I	200	0.05	20.6/	61.	33 58.33	10.07	106.00			
			Ujo dr	cno	0.37	0.00	0.	00 0.6/	0.67	1.67			
			Ojo iz	zdo	0.38	U_00	0.	00 3.33	1.67	9.00			
			Retrofa	ringe	0.13	7.33	14.	9.67	10.67	1.00			
			CT	/	1.43	34.33	20.	7.33	4.00	2.33			
			PTV	60	1.51	22.33	12.	67 4.33	1.00	1.00			

Figura 3-12. Hoja de cálculo para estimar la incertidumbre en dosis para los pacientes de cabeza y cuello con el método de IC. En la parte superior a la izquierda se muestran los datos de todas las ROIs, en cada casilla de cada órgano se muestra la del TC, que es nuestra ROI de referencia y las de abajo son las estructuras proyectas al CBCT y después proyectadas al CT, y de nuevo se repite este proceso. La tabla en la parte superior a la derecha se muestra la diferencia entre la estructura proveniente del CBCT y la de TC. En la parte inferior se muestra un cuadro con el promedio de cada CBCT.

3.5.2 Pacientes de próstata

En los pacientes de cáncer de próstata se decidió mostrar en gráficas de cajas las diferencias en dosis para las estructuras recto, vejiga y próstata, con el fin de resumir toda la información destacable en una única figura, sin necesidad de tablas. En la Figura 3-13 se muestra el procesado de los datos de un paciente. En los dos primeros grupos de arriba, se muestran los datos obtenidos del TPS, arriba con control de ROIs y abajo sin control de ROIs. En la parte inferior se muestran las diferencia entre las estructuras proyectadas desde el CBCT y la estructura de referencia, al igual que en la parte superior, el cuadran de arriba son las estructuras proyectadas con control de ROIs.

			Rec	to	Vejiga	Prostata
Paciente		Nº Fracc	V51<20	V36.5<50	V57<35	D98
Re de la companya de		TC REFERENCIA	20	59.7	24.64	5749.9
	Con ROIs de control	1	20	59.5	23.2	5708.7
		2	18.4	55.5	23.9	5756.5
		3	19	55.2	24.2	5759
		4	21	59.7	24.2	5762
		5	18.8	59.3	7.6	5769.9
		6	19.7	59	23.9	5781.2
		7	19.2	58.9	24.1	5785.1
		8	23	62.1	23.2	5781.1
		9	19.6	59.3	24.2	5770.6
1 Dates orginales		Acumulado	19.9	58.7	20.9	5764.6
I Datos orginales		TC REFERENCIA	20	59.7	24.64	5749.9
	Sin ROIs de control	1	36.6	69.9	3.8	5834.9
		2	4.6	40.1	24.3	5405
		3	12.4	46.7	23.8	5525.8
		4	12.8	52.7	24	5522.8
		5	32.2	64.7	5.5	5629
		6	8.5	43.5	20.5	5568.5
		7	16.7	60	19.8	5609.4
		8	34.5	73.6	28.4	5775.4
		9	18.3	55.3	20.5	5712
		Acumulado	21.5	57.8	17.13	5566.6
			Diferenc	ia Recto	Diferencia Vejiga	Diferencia Prostata
		Nº Fracc	Diferenc V51<20	ia Recto V36.5<50	Diferencia Vejiga V57<35	Diferencia Prostata D98
		Nº Fracc 2 TC REFERENCIA	Diferenc V51<20 0	ia Recto V36.5<50 0	Diferencia Vejiga V57<35 0	Diferencia Prostata D98 0
	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 1	Diferenc V51<20 0 0	ia Recto V36.5<50 0 -0.2	Diferencia Vejiga V57<35 0 -1.44	Diferencia Prostata D98 0 -41.2
	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 1 2	Diferenc V51<20 0 0 -1.6	ia Recto V36.5<50 0 -0.2 -4.2	Diferencia Vejiga V57<35 0 -1.44 -0.74	Diferencia Prostata D98 0 -41.2 6.6
	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 1 2 3	Diferenc V51<20 0 0 -1.6 -1	ia Recto V36.5<50 0 -0.2 -4.2 -4.5	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44	Diferencia Prostata D98 0 -41.2 6.6 9.1
	Con ROIs de control	N [®] Fracc 2 TC REFERENCIA 1 2 3 4	Diferenc V51<20 0 -1.6 -1 1 1	ia Recto V36.5<50 -0.2 -4.2 -4.5 0	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44	Diferencia Prostata D98 0 -41.2 6.6 9.1 12.1
	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 1 2 3 4 5	Diferenc V51<20 0 -1.6 -1 1 -1.2	ia Recto V36.5<50 -0.2 -4.2 -4.5 0 0 -0.4	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04	Diferencia Prostata D98 0 -41.2 6.6 9.1 12.1. 12.1 20
	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 1 2 3 4 5 6	Diference V51<20 0 -1.6 -1.1 1 -1.2 -0.3	ia Recto V36.5<50 -0.2 -4.2 -4.5 0 -0.4 -0.4 -0.4	Diferencia Vejiga V57<35 0 1.44 -0.74 -0.44 -0.44 -17.04 -0.74	Diferencia Prostata D98 0 -41.2 6.6 9.1 12.1 20 31.3 31.3
	Con ROIs de control	№ Fracc 2 TC REFERENCIA 2 3 3 4 5 6 7	Diference V51<20 0 0 0 -1.6 1 -1 1 -1 1 -1.2 -0.3 -0.8 0 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0	ia Recto V36.5<50 0 -0.2 -4.2 -4.5 0 -0.4 -0.7 -0.7 -0.7	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04 -0.74 -0.74	Diferencia Prostata D98 0 -41.2 6.6. 9.1 12.1 20 31.3 35.2 35.2
	Con ROIs de control	№ Fracc 2 TC REFERENCIA 1 2 3 4 4 5 6 7 7 8	Diference V51<20 0 0 -1.6 -1 1 -1.2 -0.3 0.8 3 3	ia Recto V36.5<50 0 -0.2 -4.2 -4.5 0 -0.4 -0.4 -0.7 -0.8 2.4	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04 -0.74 -0.54 -1.44	Diferencia Prostata D98 0 -411.2 12.1 12.1 12.1 12.1 12.3 31.3 35.2 31.2 31.2
	Con ROIs de control	№ Fracc 2 TC REFERENCIA 2 3 4 5 6 7 8 9 9	Diference V51<20 0 -1.6 -1.1 1 -1.2 -0.3 -0.8 3 -0.8 -0.4 -0	ia Recto V36.5<50 0 -0.2 -4.2 -4.5 0 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.74 -0.44 -1.704 -0.74 -0.54 -1.44 -0.44	Diferencia Prostata D98 0 -411.2 20 31.3 3.5.2 31.2 20.7 20.7
2 Diferencia	Con ROIs de control	№ Fracc 2 TC REFERENCIA 1 2 3 4 5 6 7 7 8 9 5 5 0 8 9 5 0 0	Diference V51<20 0 -0 -1.6 -1.1 -1.2 -0.3 -0.8 -0.4 -0.4	ia Recto V36.5<50 -0.2 -4.2 -4.5 0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.5 -	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -0.74 -1.704 -0.74 -0.54 -1.44 -0.54 -3.74	Diferencia Prostata D98 0
2 Diferencia	Con ROIs de control	N [®] Fracc 2 TC REFERENCIA 1 2 3 4 5 6 7 8 9 5 5 5 6 7 8 9 5 5 5 6 7 8 9 5 5 5 6 7 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5	Diference V51<20 0 0 -1.6 -1.6 -1.2 -0.3 -0.8 -0.4 -0.4 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ia Recto V36.5<50 0 -0.2 -4.2 -4.5 -0.4 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.4 -0	Diferencia Vejiga ↓57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04 -0.74 -0.54 -1.44 -0.54 -1.44 -0.37 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.5 -0.44 -0.74 -0.74 -0.74 -0.74 -0.44 -0.74 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.74 -0.44 -0.74 -0.44 -0.74 -0.74 -0.44 -0.774 -0.75	Diferencia Prostata D98 0 -41.2 6.6 9.1 12.1. 12.1. 12.1. 12.2.
2 Diferencia	Con ROIs de control	№ Fracc 2 TC REFERENCIA 1 2 3 4 5 6 7 8 9 Suma TC REFERENCIA 1	Diference V51<20	ia Recto V36.5<0 0 0 -0.2 -4.2 -4.5 0 0 -0.4 -0.4 -0.7 -0.8 2.44 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04 -0.54 -1.44 -0.54 -1.44 -0.54 -1.44 -0.44 -3.74 0 0 -2.0.84	Diferencia Prostata D98 0 -4112 0 0 1211 1211 1211 1221 1222 1232 1332 1232 133 13 1 13 1
2 Diferencia	Con ROIs de control	№ Fracc 2 TC REFERENCIA 1 2 3 4 5 6 7 8 9 Suma TC REFERENCIA 1 2 2 3 4 5 6 7 8 9 5 1 1 2 3 4 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 7 8 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Diference V51<20	ia Recto V36.5<50 0 -0.2 -4.2 -4.2 -4.5 0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.4 -0.5 -0.4 -0.	Diferencia Vejiga V57<35 0 0 -1.44 -0.74 -0.44 -0.44 -1.704 -0.54 -1.704 -0.54 -1.44 -0.54 -0.54 -0.54 0 -0.2084 0 -0.2084 -0.2084 -0.31	Diferencia Prostata D98 0 -411.2 0 0 12.1 12.1 12.1 0 0 31.3 35.2 31.2 20.7 14.7 0 85 -344.9 -344.9 -344.9
2 Diferencia	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 1 2 3 4 5 6 7 8 9 9 Suma TC REFERENCIA 1 2 3 3 4 5 6 7 8 9 9 5 5 6 7 8 9 9 5 5 5 6 7 8 9 5 5 5 6 7 8 9 5 5 5 6 7 7 8 9 5 5 5 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 7 7 8 9 5 5 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 7 8 9 5 5 7 8 9 5 5 5 7 7 8 9 5 5 5 7 7 8 7 7 8 7 7 8 7 7 8 7 8 9 5 5 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Diference V51<20	ia Recto V36.5<50 0 -0.2 -4.2 -4.2 -4.5 0 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.7 -0.8 -0.2 -0.4 -0.4 -0.7 -0.8 -0.4 -0.4 -0.7 -0.8 -0.4	Diferencia Vejiga V57<35 0 -1.144 -0.74 -0.74 -0.44 -0.74 -0.74 -0.74 -0.74 -1.704 -0.74 -0.54 -1.44 -0.54 -0.54 -0.44 -0.53 -0.54 -0.55 -0.55 -0.54 -0.55 -0.55 -0.55 -0.55 -0.55	Diferencia Prostata D98 0 -411.2 6.6 9.1 12.1 200 31.3 35.2 31.2 20.7 14.7 0 85 -344.9 -224.1 -224.1
2 Diferencia	Con ROIs de control	№ Fracc 2 TC REFERENCIA 2 TC REFERENCIA 4 5 6 7 8 9 5 5 5 5 5 1 2 3 4 4 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 9 5 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Diference V51<20	ia Recto V36.5<0 0 0 -0.2 4.2 -4.2 -4.5 0 0 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4 -1 10.2 10.2 119.6 -13 -7	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04 -0.54 -17.04 -0.54 -1.44 -0.54 -20.84 -0.44 -20.84 -0.34 -0.34 -0.84 -0.84 -0.84 -0.64	Diferencia Prostata D98 0 -411.2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 Diferencia	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 2 3 4 4 5 6 7 8 9 9 5 Suma TC REFERENCIA 1 2 3 4 5 5 4 5 5 4 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 7 8 9 9 5 5 6 6 7 7 8 9 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 9 5 5 6 6 7 7 8 9 9 5 5 6 7 7 8 8 7 7 8 8 9 9 5 5 7 7 8 8 8 9 9 5 5 8 7 8 8 8 9 9 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	Diference V51<20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ia Recto V36.5<0 0 0 -0.2 4.2 4.5 0 0 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -0.44 -17.04 -0.54 -1.44 -0.44 -0.54 -0.54 -0.44 -0.44 -0.44 -0.34 -0.84 -0.84 -0.64 -0.64 -15.14	Diferencia Prostata D98 0 -411.2 -6.6 9.1 12.1 12.1 12.1 12.1 20 31.3 31.3 35.2 31.2 20.7 14.7 0 855 -344.9 -224.1 -227.1 -120.9 -120.9
2 Diferencia	Con ROIs de control	№ Fracc 2 TC REFERENCIA 2 3 4 5 6 7 8 9 9 5 uma TC REFERENCIA 1 2 3 3 4 5 6 7 8 9 9 5 1 1 2 3 4 5 6 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 6 7 8 9 5 5 6 6 7 7 8 5 5 6 6 7 7 8 5 5 6 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 7 7 8 5 5 7 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	Diferent V51<20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ia Recto V36.5<50 -0.2 -4.2 -4.2 -4.5 0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.5 -0.4 -0.5	Diferencia Vejiga V57<35 0 0 0 0 0 0 0 0 0 0 0 0 0	Diferencia Prostata D98 0 -411.2 6.6 9.1 12.1 200 31.3 35.2 31.2 20.7 14.7 0 85 -344.9 -224.1 -227.1 -120.9 -181.4
2 Diferencia	Con ROIs de control	N [®] Fracc 2 TC REFERENCIA 2 TC REFERENCIA 4 5 6 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 7 8 9 5 5 6 7 8 9 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 5 6 7 7 8 5 7 7 8 5 7 8 5 7 8 7 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Diference V51<20 0 0 0 -1.6 -1.6 -1.2 -0.3 -0.8 -0.4 -0.1 0 0 16.6 -1.5.4 -7.6 -7.2 12.2 -1.15 -3.3 -3.8 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4	ia Recto V36.5<0 0 0 -0.2 -4.2 -4.2 -4.5 0 0 -0.4 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4 -1 10.2 -19.6 -13.3 -7 5 -16.2 0,3	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -17.04 -0.54 -1.44 -0.54 -1.44 -0.54 -20.84 -0.34 -0.34 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.44 -0.44 -0.44 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.44 -0.74 -0.55 -0.44 -0.74 -0.55 -0.44 -0.74 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.54 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.55 -0.44 -0.54 -0.54 -0.55 -0.55 -0.54 -0.555 -0.5	Diferencia Prostata D98 0 -41.2 6.6 9.1 12.1. 200 31.3 35.2 20.7 14.7 0 85 -344.9 -224.1 -227.1 -120.9 -344.9 -244.1 -227.1 -120.9 -344.9 -244.1 -227.1 -120.9 -344.9 -345.
2 Diferencia	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 2 TC REFERENCIA 4 5 6 7 8 9 5 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 7 8 9 5 5 6 6 7 8 9 5 5 6 6 7 8 9 5 5 6 6 7 8 9 5 5 6 6 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 9 5 5 6 6 7 7 8 8 9 5 5 6 6 7 7 8 8 9 5 5 6 6 7 7 8 8 9 5 5 6 6 7 7 8 8 9 5 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Diference V51<20	ia Recto V36.5<0 0 0 -0.2 4.2 -4.2 -4.5 0 0 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4 -0.4 -1 0 0 10.2 -19.6 -13 -7 5 -16.2 0.3 13.9	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -0.44 -0.74 -0.54 -1.144 -0.44 -0.54 -1.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -1.9.44 -0.84 -0.84 -0.84 -1.9.14 -0.84 -0.84 -1.9.14 -0.84	Diferencia Prostata D98 0 -411.2 -412.2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 Diferencia	Con ROIs de control	Nº Fracc 2 TC REFERENCIA 2 3 4 5 6 7 8 9 9 5 5 5 7 8 9 9 5 5 6 7 8 9 9 5 5 6 7 8 9 9 5 5 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 8 9 9 5 5 6 6 7 8 9 9 5 5 6 6 7 8 8 9 9 5 5 6 6 7 8 8 9 9 5 5 6 6 7 8 8 9 9 5 5 6 7 8 8 9 9 5 5 6 6 7 8 8 9 9 5 5 8 8 9 9 5 5 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	Diference V51<20	ia Recto V36.5<0 0 0 -0.2 4.2 -4.5 0 0 -0.4 -0.4 -0.4 -0.7 -0.8 2.4 -0.4 -0.4 -0.4 -0.4 -1 0 0 -1.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Diferencia Vejiga V57<35 0 -1.44 -0.74 -0.44 -0.44 -0.44 -0.74 -0.54 -1.70 -1.44 -0.44 -0.54 -0.54 -0.54 -0.44 -0.44 -0.44 -0.44 -0.44 -0.54 -0.44 -0.54 -1.64 -0.54	Diferencia Prostata D98 0 (-411.2 (-412.2 (-412.1 201 201 31.3 31.2 31.2 (-211 31.2 (-211 31.2 (-211) -344.9 (-224.1 (-227.1 (-227.1 (-227.1) (-120.9) (-181.4 (-140.5 (-25.5 (-37.9)

Figura 3-13. Hoja de cálculo para estimar la incertidumbre en dosis absorbida para los pacientes de próstata. En la parte superior se muestran los datos utilizando ROIs de control y sin utilizarlas. En verde se muestra el valor de referencia en el TC y seguidamente abajo se muestran las dosis absorbidas que reciben los órganos corregidos en el CBCT y proyectados al pCT. En la parte inferior se muestran las diferencias en % de volumen para los órganos de riesgo y en dosis absorbida (cGy) para la próstata.

Como uno de los objetivos del trabajo era comparar la incertidumbre que introduce el algoritmo de DIR cuando se utilizan o no ROIs de control, se estudió si había alguna relación estadística significativa. Al comprobar que la función no cumplía la propiedad de normalidad, se utilizó el test de Wilcoxon signed-rank que es una prueba no paramétrica para comparar el rango medio de dos muestras relacionadas y determinar si existen diferencias entre ellas. Se utiliza como alternativa a la prueba t de Student cuando no se puede suponer la normalidad de dichas muestras. Esta parte de la estadística se llevó acabo con el software comercial SPSS.

4. RESULTADOS

4.1 TABLA CT-ED

El primer paso para poder realizar la adaptación de un plan en función de la dosis absorbida administrada es calcular las dosis absorbidas en las imágenes tomográficas previas al tratamiento, en nuestro caso las imágenes de CBCT. Por este motivo, el TPS RayStation incluye una herramienta de detección automática de tejidos para las imágenes de CBCT. Para comprobar el correcto funcionamiento de esta herramienta, se realiza una imagen de CT y otra de CBCT a un maniquí antropomórfico, se realiza un registro rígido de estas dos imágenes y, con la misma estructura en las dos imágenes, se les aplica el mismo plan de tratamiento. La Figura 4-1 muestra el resultado del registro rígido.

Figura 4-1. Resultado del registro rígido entre la imagen de CBCT y de CT del maniquí antropomórfico.

Como era de prever, tal y como se observa en la Figura 4-1 el registro rígido entre las dos imágenes es perfecto ya que en la visión de fusión de las dos imágenes el solapamiento es total y no se puede diferenciar una de la otra. De esta forma, eliminamos una fuente de incertidumbre, ya que, en el siguiente paso, al aplicar el mismo plan a las dos imágenes, el isocentro de tratamiento se colocará en función del registro rígido, por lo que, si las imágenes están perfectamente registradas, no habrá influencia en el cálculo de la dosis absorbida debido a que el isocentro no esté en el lugar correcto.

En la Figura 4-2 se muestran las isodosis del tratamiento para las dos imágenes. El tratamiento es de cuatro campos en caja con uno de ellos una cuña física.

Figura 4-2. En la parte superior se muestran las isodosis absorbidas de tratamiento para la imagen de CT, y en la parte inferior se muestran las mismas isodosis para el mismo plan de tratamiento para la imagen de CBCT.

Tal y como se observa en las imágenes de la Figura 4-2, las diferencias en las isodosis porcentuales son muy pequeñas, menores de un 1%, lo que nos indica que la asignación automática de densidades realizada por el módulo de RayStation funciona correctamente para la localización del cabeza y cuello.

La Figura 4-3 muestra las diferencias en el DVH de la estructura para la imagen en el pCT y el CBCT. Las diferencias entre las dos imágenes son inapreciables, por lo que, aun teniendo la limitación de los 5 niveles de densidades y la auto selección de densidades, las diferencias entre el cálculo en el pCT y el CBCT son mínimas, menos de un 1%.

Figura 4-3. *DVH del mismo plan y volumen de tratamiento calculado en la imagen de CBCT y CT de nuestro maniquí antropomórfico. Las dos líneas del histograma están superpuestas lo que nos indica que no hay diferencias entre las dosis absorbidas calculadas en las diferentes imágenes*

4.2 VALIDACIÓN REGISTRO DEFORMABLE DE IMÁGENES

4.2.1 Validación en los pacientes de cabeza y cuello

4.2.1.1 Validación en distancias

La Tabla 4-1 muestra la distancia media y la desviación estándar (SD), con factor de cobertura k = 1, entre los POI proyectados desde el CBCT al pCT y los POIs en el pCT para los cinco pacientes de cáncer de cabeza y cuello. La distancia media entre los POIs en zonas blandas y rígidas es de 2,0 \pm 0,1 mm y 1,4 \pm 0,5 mm, respectivamente. La distancia media, incluyendo las zonas blandas y rígidas, fue de 1,7 \pm 0,8 mm. Sólo diez POI tenían una distancia media de más de 3 mm y, utilizando el criterio 4 SD para descartar los valores atípicos, se descartaron 17 (2,8%) de los 600 POI colocados. La distancia media de la variabilidad del observador fue 0,06 \pm 0,04 mm. La Figura 4-4 muestra la precisión de DIR para cada área.

Paciente	Distancia entre POIs (mm)
1	$1,\!6 \pm 0,\!8$
2	$1,8 \pm 0,9$
3	$1,5 \pm 0,7$
4	$1,7 \pm 0,7$
5	$1,8 \pm 0,6$
Promedio	$1,7 \pm 0,7$

Tabla 4-1. Distancia promedio y desviación estándar (factor de cobertura k = 1) de los POIs proyectados desde el CBCT al pCT con los POIs del pCT. Los POI se proyectaron utilizando el algoritmo híbrido RayStation TPS para los cinco pacientes de cáncer de cabeza y cuello.

Figura 4-4. Gráfico de caja y bigotes que muestra la precisión de cada área, donde se han colocado los POI. Los puntos representan el máximo, el cuartil superior, la media, el cuartil inferior y la distancia mínima.

4.2.1.2 Validación con el método de consistencia inversa

La Tabla 4-2 muestra las distancias de los POI pCT originales promediados, y los POI doblemente y cuádruplemente deformados. Las distancias obtenidas con el método IC para los POI doblemente deformados (0,9 mm) están próximas a la mitad de la distancia de validación (1,7 mm). Esto indica que el error producido por la falta de IC de este algoritmo es menor que la incertidumbre del algoritmo DIR. Como la diferencia en las distancias era casi la mitad de las distancias de validación, decidimos repetir el método IC (cuádruplemente deformado) para asegurar que las distancias eran similares. La distancia obtenida con el método IC, POIs cuádruplemente deformados, fue de 1,7 \pm 0,9 mm, comparable con la distancia de validación DIR de 1,7 \pm 0,8 mm del apartado anterior.

		Distancia
	POIs	POIs
	doblemente deformados	cuádruplemente deformados
Paciente	(mm)	(mm)
1	$0,7\pm0,3$	$1,4 \pm 0,5$
2	$0,7\pm0,4$	$1,5\pm0,7$
3	$0,8\pm0,4$	$1,4 \pm 0,6$
4	$0,9\pm0,5$	$1,8 \pm 1,0$
5	$1,3 \pm 0,7$	2,5 ± 1,4
Promedio	$0,9 \pm 0,4$	$1,7\pm0,9$

Tabla 4-2. Distancias entre los pCTs promediados originales y los POIs doblemente y cuádruplemente deformados para los cinco pacientes de cáncer de cabeza y cuello.

4.2.1.3 Validación en dosis absorbida

La Tabla 4-3 muestra diferencias en las DVHs entre las estructuras pCT originales y las estructuras cuádruplemente deformadas. Hubo más variación DVH en la articulación temporomandibular (TMJ) que, en otras estructuras, debido a su pequeño tamaño, lo que significa que cualquier pequeño error DIR afectó en gran medida el valor de la dosis absorbida TMJ. Además, la parótida, el tronco encefálico y el cerebro son zonas de bajo contraste, lo que reduce la precisión del DIR producido por el TPS en estas áreas. Estas estructuras además tienen un alto gradiente de dosis absorbida, lo que significa que pequeñas diferencias en las distancias resultan en grandes diferencias en dosis absorbidas administradas (más de 1 Gy). En el caso de la médula espinal, las pequeñas diferencias de volumen tienen un gran impacto en la dosis media. Cuando las diferencias de valor promedio de dosis son altas (mayores que 1 Gy), la desviación estándar también es importante, lo que indica que existe una gran variación entre las diferencias de las diferentes estructuras promediadas.

			Diferen	ncias		
	Volumen	D98	D95	Dosis media	D50	Dif D2
	(cm^3)			(cGy)		
ATM	$0,18 \pm 0,05$	$50\ \pm 30$	$50\ \pm 40$	$99\ \pm 70$	$130\ \pm 10$	$100\ \pm 70$
Tronco						
cerebral	11 ± 8	$40\ \pm 20$	$50\ \pm 20$	$100\ \pm 100$	$50\ \pm 60$	$90\ \pm 50$
Cerebro	$40\ \pm 50$	$0,2 \pm 0.2$	$0,1 \pm 0.2$	$20\ \pm 20$	$20\ \pm 30$	$200 \ \pm 100$
Laringe	$1,1\pm0.5$	$80\ \pm90$	$80\ \pm 80$	$50\ \pm 10$	$60\ \pm 40$	$100 \ \pm 100$
Mandíbula	12 ± 1	$70\ \pm 70$	$60\ \pm 50$	$40\ \pm 30$	$50\ \pm 30$	$34\ \pm 03$
Médula	2 ± 1	$70\ \pm90$	$60\ \pm 60$	$110\ \pm 80$	$200\ \pm 300$	$52\ \pm 70$
Nervios						
ópticos	$0,24 \pm 0,01$	$30\ \pm 10$	$30\ \pm 10$	36 ± 2	$30\ \pm 3$	$60\ \pm 30$
Ojos	7 ± 10	$20\ \pm 20$	$30\ \pm 20$	$20\ \pm 20$	$30\ \pm 20$	$45\ \pm 30$
Parótida	$1,4 \pm 0,6$	$60\ \pm 50$	$50\ \pm 30$	$80\ \pm 40$	$70\ \pm 40$	$100\ \pm 200$
PTV	$10\ \pm 9$	$60\ \pm 60$	$40\ \pm 30$	$40\ \pm 40$	$20\ \pm 40$	$30\ \pm 60$
CTV	6 ± 6	$30\ \pm 40$	$30\ \pm 40$	$40\ \pm 80$	$20\ \pm 30$	$40\ \pm 70$

Tabla 4-3. Diferencias en valores de DVH, es decir, el valor de la dosis absorbida, entre las estructuras pCT originales y las estructuras cuádruplemente deformadas (método IC). ATM: articulación temporomandibular; CTV: volumen objetivo clínico; PTV: volumen objetivo de planificación.

4.2.3 Validación en los pacientes de próstata

La Figura 4-5 y 4-6 muestran las diferencias en DVH entre las estructuras originales y proyectadas para el DIR para los 20 pacientes, con y sin utilizar el ROI control para el recto (V51 y V36.5), la vejiga (V57) y la próstata (D98). Resalta la gran diferencia visual entre los dos métodos. Estos errores son el promedio de la diferencia

DVH de cada CBCT. La Tabla 4-5 muestra la media, la desviación estándar y el error máximo y mínimo para las estructuras en cada CBCT, con y sin ROIs de control. Debido a que la muestra no reunía las condiciones para la normalidad, se utilizó el test Wilcoxon signed-rank para estudiar si las diferencias entre los dos métodos son significativas. Esta prueba mostró una diferencia significativa entre todas las estructuras, cuando se usaron los ROI: p = 0,000 para el recto V51, p = 0,001 para el recto V36.5, p = 0,005 para la vejiga V57 y p = 0,000 para la próstata D98.

Figura 4-5. Diagrama de barras y bigotes con la diferencia en porcentaje de volumen del histograma dosis-volumen (ΔDVH) para V51 y V36.5 para recto y V57 para vejigas. Estos valores son la diferencia entre la estructura original y la estructura corregida en el CBCT y proyectada al pCT, con, y sin, ROIs de control.

En la tabla 4-4 se muestra los resultados de cada paciente con ROIs de control

	Recto)	Recto		Vejig	ga	Prósta	ta
	V51<2	20	V36.5<5	50	V57<	35	D98	
Paciente			(%)				(cGy)
1	-3 ±	1	-4 ±	2.0	-11 ±	3	-10.0 \pm	12
2	-1.3 ±	0.2	-1.8 ±	0.2	-6.1 ±	0.5	-2.6 ±	0.2
3	-0.98 \pm	0.05	-1.2 ±	0.2	-3 ±	1	-1.8 ±	0.2
4	-0.8 \pm	0.1	-0.8 ±	0.1	-1.8 ±	0.2	-0.9 \pm	0.4
5	-0.7 \pm	0.1	-0.6 ±	0.1	-1.4 ±	0.1	-0.4 \pm	0.1
6	-0.56 \pm	0.05	-0.4 \pm	0.04	-1.2 ±	0.1	-0.22 \pm	0.04
7	-0.49 \pm	0.03	-0.4 \pm	0	-0.96 \pm	0.05	-0.12 ±	0.04
8	-0.40 \pm	0.00	-0.3 ±	0.04	-0.84 \pm	0.05	-0.04 \pm	0.05
9	-0.35 \pm	0.04	-0.2 ±	0	-0.74 \pm	0.05	$0.00 \ \pm$	0.01
10	-0.28 \pm	0.03	-0.13 ±	0.04	-0.6 ±	0.1	0.1 \pm	0
11	-0.20 \pm	0.00	0.0 \pm	0	-0.4 \pm	0.0	$0.19\ \pm$	0.01
12	-0.13 \pm	0.04	0.1 \pm	0.1	-0.3 \pm	0.0	$0.30 \ \pm$	0.03
13	-0.08 \pm	0.04	0.4 \pm	0.1	-0.3 \pm	0.0	$0.5~\pm$	0.1
14	$0 \pm$	0	0.6 \pm	0.0	-0.2 ±	0.1	$0.9\ \pm$	0.2
15	$0.10\ \pm$	0.00	0.7 \pm	0.1	0.0 \pm	0.1	1.8 \pm	0.3
16	$0.18\ \pm$	0.04	$0.9~\pm$	0.1	$0~\pm$	0	3.1 \pm	0.8
17	0.4 \pm	0.1	1.1 ±	0.1	$0.08\ \pm$	0.04	$5.1 \pm$	0.5
18	0.7 \pm	0.1	1.4 \pm	0.1	$0.18 \ \pm$	0.04	$9~\pm$	2
19	$1.2 \pm$	0.2	2.0 \pm	0.4	0.3 \pm	0.1	$15 \pm$	1
20	$2 \pm$	1	4 ±	1	0.9 \pm	0.5	$25 \pm$	6

Tabla 4-4. La diferencia en los histogramas de volumen de dosis (ΔDVH), entre la estructura original en el pCT y la estructura corregida en el CBCT y proyectada al pCT, con ROIs de control para cada paciente. Los valore están ordenados de negativo a positivo.

Figura 4-6. Diagrama de cajas y bigotes de la dosis absorbida del DVH (Δ DVH) para el V98%, entre la próstata original y la estructura de la próstata corregida en el CBCT y proyectada al pCT para DIR, con y sin control de ROIs.

		Cor	n ROIs			Cor	n ROIs			Si	n ROIs	
		ΔDVH	acumulad	lo	ΔΙ	OVH par	a cada C	BCT	Δ	DVH pa	ira cada (CBCT
	Recto	Recto	Vejiga	Próstata	Recto	Recto	Vejiga	Próstata	Recto	Recto	Vejiga	Próstata
	V51	V36,5	V57	D98	V51	V36,5	V57	D98	V51	V36,5	V57	D98
		(%)		(cGy)		(%)		(cGy)		(%)		(cGy)
Media	0,08	0,04	-1,9	2,5	-0,2	0,1	-1,3	2,5	-2,6	-3	-0,6	-33
σ	0,83	0,87	2,5	7,7	1,1	1,7	2,7	7,7	8,5	11	8,2	95
Min	-1,98	-1,8	-9,3	-41,2	-4,9	-9,43	-17	-41,2	-15,4	-31,3	-20,8	-773
Max	1,5	1,3	0,1	35,2	5,96	7	4,89	35,2	50,9	38,1	48,6	85

Tabla 4-5. La diferencia en los histogramas de volumen de dosis (ΔDVH), entre la estructura original en el pCT y la estructura corregida en el CBCT y proyectada al pCT, con y sin ROIs de control. Los errores en dosis absorbidas acumuladas se determinan comparando la estructura original en el pCT con la estructura calculada con nuestro software.

5. DISCUSIÓN

5.1 DISCUSIÓN TABLA CT-ED

En diferentes trabajos se ha estudiado la relación entre las HU y la ED en los CBCTs. (Hatton et al., 2009, Guan & Dong, 2009, Seet et al., 2009) En estos trabajos se estudia la variación de esta relación en función de diferentes parámetros como el tamaño de FOV y del maniquí, y cuál es el impacto de esta variación en la dosis calculada. Las diferencias en dosis para un plan de tratamiento están entorno al 3% según estos estudios. En nuestro caso estas diferencias son menores, esto es debido a que la metodología no ha sido la misma. La diferencia es debida a que en estos trabajos se creó una curva de calibración a partir de los maniquís que se utilizan comercialmente para calibrar las curvas de ED y HU en los CT convencionales, pero como en los propios trabajos se indica, esta curva varía en función de los parámetros de la adquisición del CBCT y de tamaño del paciente. Por este motivo los desarrolladores de RaySearch ofrecen la posibilidad de obtener una curva de calibración automática para cada paciente. Esta es la razón por el que en nuestro estudio muestra diferencias inferiores a las del resto de estudios. Con la metodología desarrollada en este trabajo, para cada imagen tenemos una tabla independiente, por lo que, si se ha cambiado el FOV o el paciente es mucho más grueso que en las condiciones de calibración, la nueva tabla seguirá funcionando correctamente. En cambio, si tenemos una única tabla de HU y ED, cuando las condiciones de dispersión sean muy diferentes de las de calibración, la relación HU y ED ya no será la misma, y, por tanto, el cálculo de la dosis absorbida tampoco lo será.

El método de tabla automática en función de los valores del histograma de números Hounsfield, ofrecido por el TPS, tiene, principalmente, dos inconvenientes, el primero es que la detección de tejidos se realiza automáticamente, por lo que se puede estar cometiendo un error a la hora de asignar una densidad a un número Hounsfield, y el otro es que únicamente hay cinco diferentes tejidos, cuando, en realidad, el cuerpo humano tiene muchas más variaciones de tejidos, y las tablas de calibración realizadas para CT convencional tiene, mínimo, más del doble de niveles de densidades. Esto último implica que se está disminuyendo la exactitud del cálculo, pero también puede ser tener una parte positiva ya que enmascara los artefactos propios de los CBCTs.

El método propuesto, se basa en realizar una imagen de CBCT y otra de CT a un maniquí antropomórfico, y copiar un contorno de una imagen a la otra, para después

calcular la dosis. Lo positivo de este método tan sencillo es que no se añade incertidumbre al proceso de determinar diferencias en el cálculo al calcular la dosis absorbida en el CT o el CBCT. Ya que el registro entre dos imágenes exactamente iguales es perfecto y que al copiar una estructura entre dos imágenes perfectamente registradas estamos seguros de que coinciden en la misma área del maniquí. Por contra, un maniquí antropomórfico, no tiene tantas densidades como un paciente. Al ser un caso más sencillo se puede estar infravalorando el valor de la incertidumbre de la utilización de la tabla HU-ED propuesta por RaySearch. Teniendo en cuenta esto, hay que destacar, que tal y como se observa en la sección de resultados de validación del DIR, es el error del registro deformable de imágenes el que nos puede limitar el uso de esta herramienta para la radioterapia adaptativa, no tanto la incertidumbre de la tabla CT-ED, ya que en términos absolutos la incertidumbre que puede cometer el algoritmo de DIR es mucho mayor que el cometido porque la tabla CT-ED sea del todo correcta.

5.2 DISCUSIÓN DE LA VALIDACIÓN DEL REGISTRO DEFORMABLE DE IMÁGENES

5.2.1 Discusión de la validación en los pacientes de cabeza y cuello

5.2.1.1 Discusión de la validación en distancias

La distancia media entre los puntos promediados y proyectados desde el CT al CBCT fue de 1,7 \pm 0,8 mm, lo que es equivalente, o menor, a la precisión de otros algoritmos.(Bender & Tomé, 2009, Huger et al., 2014) La mayor distancia entre los puntos de tejido blando respecto al duro puede ser debido a que el algoritmo de DIR se basa en los números Hounsfield para deformar la imagen blanco, y en estas áreas los gradientes de valores de los números Hounsfield son menores que en las áreas de tejido duro. También podría deberse a que los observadores pueden seleccionar peor los puntos en áreas de poco contraste, pero la variabilidad es muy inferior (0,06 \pm 0,04 mm) a los valores de distancia media, por lo que no parece ser un factor importante a la hora determinar en distancias la incertidumbre del DIR. Un valor muy importante a la hora validar en distancias estos algoritmos, es conocer cuántos puntos se han proyectado

lejos de su punto de referencia, ya que estos casos nos podrían conducir a proyectar valores de dosis absorbida a zonas muy lejanas de la correcta. En este caso se ha tomado el valor umbral de 3 mm y únicamente 10 puntos de 600 se han proyectado a distancias mayores de 3 mm.

Respecto a las diferencias entre las distancias de los diferentes pacientes hay que señalar que a pesar de ser pacientes totalmente diferentes y con imágenes de CBCT de diferentes semanas de tratamiento los resultados son similares. Esto nos indica que los resultados obtenidos parecen ser extrapolables al resto de pacientes de cabeza y cuello, dado que la variabilidad en los órganos de la zona de cabeza y cuello no soy grandes comparados con los de la zona de la pelvis.

Por último, el criterio de 4 *SD* es el de eliminar puntos de los observadores que se han colocado excesivamente lejos del punto de referencia, así evitamos que una incorrecta colocación del punto del observador influya en el resultado de la validación de nuestro algoritmo. Con este criterio se eliminaron 17 puntos por desviarse más de 4 desviaciones estándar del resto de puntos de los observadores. Este criterio no elimina los puntos proyectados incorrectamente por el algoritmo, únicamente elimina los puntos que se han colocado lejos del punto de referencia en comparación al resto de observadores.

Se analizaron las desviaciones de los observadores al colocar los puntos, primero comparando la desviación respecto al médico especialista y luego entre los observadores. No se observó ninguna diferencia estadísticamente significativa entre ellos.

5.2.1.2 Discusión de la validación con el método de consistencia inversa

En la Tabla 4-2 se muestran las distancias promediadas entre los POIs de referencia en el pCT, y esos mismos POIs doblemente y cuádruplemente deformados. Al evaluar en distancias la falta de consistencia inversa del algoritmo se observó que su valor era la mitad de nuestro valor de la incertidumbre del algoritmo en distancias. Esto nos indicó que, si repetíamos el proceso, el resultado sería similar al de la incertidumbre del DIR. Así que se decidió repetir el proceso de IC y los resultaros fueron casi idénticos entre las distancias debidas a la falta de consistencia inversa y la incertidumbre del algoritmo de DIR en distancias. Estos resultados únicamente se

pueden aplicar a nuestro algoritmo, pues tanto la IC como la incertidumbre del DIR es propio de cada algoritmo. En el trabajo de Bender & Tomé se evalúa la consistencia inversa y el error del registro deformable con un sencillo maniquí deformable para dos algoritmos diferentes. (Bender & Tomé, 2009) Sus resultados son comparables a los obtenidos en el presente trabajo, ya que ellos también obtienen como resultado que la incertidumbre del algoritmo es superior a la falta de consistencia inversa, aunque en este estudio únicamente se muestran los resultados en distancias. Existen publicaciones donde se presentan algoritmos donde se reduce enormemente la falta de IC (Yang et al., 2008, Yan, Zhong, Murphy, Weiss, & Siebers, 2010) Hasta donde conocemos, este tipo de algoritmos no están disponibles comercialmente.

5.2.1.3 Discusión de la validación en dosis absorbida

Aunque el DIR se basa en la relación entre vóxels y esta se puede evaluar, como ya hemos mostrado, con métricas geométricas (distancias, índices de solapamiento...), el parámetro más importante, y en el único en el que nos basamos a la hora de tomar la decisión de adaptar un plan, es la dosis absorbida y su representación en DVH. Este es el motivo por el que consideramos esencial estimar la incertidumbre del DIR en valores de dosis absorbida. Si por ejemplo validamos un algoritmo con la métrica del índice de solapamiento y obtenemos como resultado que ese valor es de 0,92, esto no nos aporta gran información a la hora de decidir si adaptar un plan basado en registro deformable. Esto nos ha llevado a enfocar nuestros métodos de validación a obtener los resultados en valores de dosis.

Cómo se ha demostrado en la sección 4.2.1, el doble del valor, en distancia, de la falta de consistencia inversa es igual a la incertidumbre del algoritmo de registro deformable hibrido. Por lo que podemos aprovechar esta relación para calcular en dosis absorbida la incertidumbre del algoritmo. El método utilizado es el mismo que con la falta de IC con puntos. Como resultado se comparan los DVH de la estructura original y esa misma estructura deformada cuatro veces podemos determinar la incertidumbre del registro deformable en dosis absorbida. Este razonamiento introduce cierta incertidumbre, ya que puede que en alguna estructura de un paciente el doble de la falta de IC no sea exactamente igual a la incertidumbre del DIR, pues no hay una relación perfecta entre la falta de consistencia inversa y la incertidumbre del algoritmo, pero al

hablar de valores medios esta relación se cumple casi a la perfección. La ventaja de este sistema es que permite determinar en dosis absorbida la incertidumbre del registro deformable sin necesidad de maniquís, ni softwares.

A la hora de mostrar los datos como diferencias en valores del DVH se pueden mostrar los resultados en valores relativos o valores absolutos. El problema de los valores relativo, en porcentaje de dosis, es que los órganos de riesgo que estaban alejados de volumen de tratamiento y, por tanto, recibían dosis bajas de tratamiento, mostraban diferencias en dosis absorbidas muy altas en porcentaje, ya que una diferencia de 1 Gy podía dar diferencias en relativo de un 10%. Por este motivo se decidió mostrar los resultados en diferencias en absoluto.

A la hora de valorar en dosis absorbida un algoritmo de DIR, tenemos que tener en cuenta la gran variabilidad que existe en dosis a una misma distancia en función de la zona en la que nos encontremos. El estudio de Saleh-Sayah *et al.* nos presenta una herramienta para estimar el requerimiento de precisión de los DVF, en este trabajo se muestra claramente como la incertidumbre del algoritmo en distancias tiene un impacto dosimétrico muy distinto en función de la zona. (Saleh-Sayah et al., 2011) Los órganos de riesgo colindantes con nuestro volumen a tratar son las zonas con mayor gradiente de dosis, ya que pasamos de las dosis de tratamiento a las dosis más bajas posibles. Debido a este efecto se observan diferencias más grandes que en las zonas de tratamiento en los órganos de riesgos que están más alejados. El cerebro, el tronco cerebral y la parótida son claros ejemplos del este efecto.

Por otro lado, tenemos el efecto del volumen en el cálculo de los histogramas dosis volumen. En los histogramas, normalmente, se muestra la dosis absorbida en valores absolutos y el volumen en porcentaje. Por lo que, si una estructura sufre una variación de volumen, el histograma variará debido a que los vóxels pertenecientes a ese volumen no recibirán la misma dosis absorbida y por otro, el volumen ya no es el mismo, y al estar normalizado el DVH a este volumen, la curva sufrirá una variación. Al estar en porcentaje este segundo efecto será más importante para estructuras pequeñas, como la ATM y los nervios ópticos. En la primera se combina el efecto de estar en una zona de gradiente con la posible variación de volumen. Otra conclusión que se observa de las diferencias en dosis absorbida, y que ya se mostraba en los valores de distancias de la incertidumbre del DIR, es que el algoritmo funciona peor en condiciones de bajo contraste. El algoritmo sin control de ROIs se basa en los valores de números Hounsfield para relacionar las dos imágenes, por lo tanto, es lógico pensar que en estas zonas obtenga peores resultados. Una las limitaciones a la hora de evaluar un algoritmo de DIR con diferentes métodos es valorar como funciona en estas zonas de bajo contraste. Ya sea utilizando ROIs, POIs o maniquís, es difícil definir para el usuario en zonas de bajo contraste las áreas que servirán de referencia para determinar la incertidumbre del registro deformable. Con este método de consistencia inversa se pueden evaluar estas zonas de bajo contraste ya que la referencia es fija y lo único que se realiza es deformar estos contornos. Las parótidas son un claro ejemplo de estructuras con poco contraste y además suelen estar en una zona de gran gradiente de dosis, de ahí sus diferencias en dosis.

Cuando las diferencias de valor promedio de dosis son altas (mayores que 1Gy), la desviación estándar también es importante, lo que indica que existe una gran variación entre las diferencias. Sin embargo, aun teniendo en cuenta estas variaciones, existe muy poca diferencia en los DVH en comparación con los valores de dosis absolutas, lo que indica que el algoritmo DIR funciona razonablemente bien. Esto indica, por primera vez en pacientes con cáncer de la región de la cabeza y el cuello, que el algoritmo híbrido de DIR es útil para planificar tratamientos de radiación adaptativa usando CBCT, aunque los oncólogos radioterápicos y los radiofísicos hospitalarios deben ser cuidadosos al adaptar los planes clínicos teniendo cuidadosamente en cuenta las diferencias en DVH.

5.2.2 Discusión de la validación en los pacientes de próstata

En el método de validación utilizado para los pacientes de próstata únicamente proyecta las ROIs, no la dosis. Esto se debe a que si se mapea la dosis absorbida no podríamos aislar el error que introduce el algoritmo ya que también habría partes de estas diferencias en el DVH que se podrían deber a un cambio anatómico del paciente. Al proyectar únicamente la estructura corregida en el CBCT al pCT, si el DVF relacionada perfectamente las mismas zonas de las dos imágenes, los contornos de la estructura de referencia en el pCT y la proyectada desde el CBCT al pCT deben coincidir exactamente, por lo que la dosis absorbida de las dos estructuras será la misma. Utilizando este principio se puede estimar en valores de dosis absorbida cual es el error del algoritmo.

En las Figuras 4-5 y 4-6 se muestran en valores de dosis absorbida las diferencias entre la estructura original en el pCT y la estructura corregida en el CBCT y proyectada al pCT. Las grandes diferencias entre utilizar, o no, ROIs de control para guiar al algoritmo son debidas, principalmente a que el recto y vejiga sufren importantes deformaciones respecto al pCT, y a que tanto el recto, vejiga y próstata son órganos con bajo contraste. Esta falta de contraste es en parte debida a que se han utilizado imágenes del CBCT, donde el contraste es inferior que en un pCT. Para un algoritmo de DIR es muy complejo relacionar dos áreas de bajo contraste cuando entre ellas ha habido una gran variación. Por este motivo si ayudamos al algoritmo con la utilización de ROIs de control el resultado, lógicamente, mejora. En el trabajo de O. Weistrand and S. Svensson, (Weistrand & Svensson, 2014) se muestran mediante métricas de similitud entre imágenes unos resultados que coinciden en la mejora del registro deformable de RayStation si se utilizan ROIs de control, pero en nuestro caso se aportan valores de dosis, que creemos son necesarios para tomar la decisión de un plan teniendo en cuenta el error del DIR. Para otros algoritmos también se ha demostrado que la utilización de contornos mejora los resultados de la relación entre imágenes. (Gu et al., 2013)

Cuando se utilizan ROIs de control, la relación entre los contornos de las dos imágenes es un término obligatorio para el algoritmo, por lo que parecería lógico pensar que la estructura proyectada al pCT desde el CBCT debería coincidir con la original del pCT, pero en los resultados se muestra cómo, aunque las diferencias sean mucho menores que sin utilizar ROIs de control, también existen diferencias dosimétricas. De las estructuras obtenidas con control de ROIs, seis estructuras de recto y cinco de vejigas, mostraron una diferencia de más de tres desviaciones estándar; Este alto error del algoritmo de DIR fue causado por la presencia de grandes diferencias en las estructuras anatómicas en el pCT y el CBCT. La Figura 5-1 muestra un ejemplo de estas diferencias entre estructuras, la imagen muestra la fusión realizada de registro rígido del pCT y del CBCT, otro caso se produce cuando la vejiga en el CBCT está sensiblemente más llena, o más vacía, que en el pCT. En la imagen se observa claramente que la pared rectal, definida con el contorno verde, ha sufrido una gran variación entre el pCT y esa sesión de radioterapia. En estos casos los DVF con ROIs de control producen una deformación local exagerada para poder relacionar dos contornos tan diferentes, y como consecuencia se produce un error importante de relación entre imágenes. Estas diferencias entre contornos son debidas a que no se ha seguido perfectamente el protocolo del IGRT, cuya misión es intentar conseguir que las condiciones de llenado para cada sesión de tratamiento de radioterapia sean lo más similares posibles a las de pCT. Estos pacientes son de especial interés para aplicar el DIR y decidir si adaptar el plan, ya que se pueden producir grandes diferencias en la dosis absorbida en el recto, vejiga y/o la próstata, pero justamente son estos pacientes en los que el algoritmo produce un error en el DVF que lo hace poco seguro a la hora de utilizarlo clínicamente. Por lo tanto, creemos que estas imágenes, con alto error de algoritmo, debe ser excluido de las dosis acumuladas en el proceso de ART. En estos casos, debe utilizarse la fracción de tiempo más cercana para acumular las dosis, pero debemos ser conscientes de que estamos ignorando que ese tratamiento no se ha administrado en las mejores condiciones.

Figura 5-1. Corte axial de la fusión realizada con registro rígido donde se observan los contornos del pCT en línea continua y del CBCT en línea discontinua. La línea morada es el contorno de la próstata y la verde el recto. Se observa en la imagen como el recto ha sufrido una gran deformación entre el pCT y el CBCT.

En el caso de la estructura próstata, cuando se utilizan ROIs de control, el error medio del D98 es menor que 20 cGy. La próstata y las vesículas seminales no sufren cambios volumétricos tan grandes como lo hacen el recto y la vejiga, por lo que el error del DIR cuando hay grandes cambios de volumen, causando una deformación desproporcionada para estas regiones, no afecta a la estructura próstata. Además, se observa que la exagerada deformación que se produce para relacionar dos áreas totalmente diferentes, cuando se utilizan ROIs de control, al ser local no afecta a las estructuras cercanas, como la próstata. También debemos tener en cuenta que no hay grandes gradientes de dosis en el área de PTV, y menos en el CTV, donde hay un margen geométrico, y por lo tanto un alto error de DIR puede no influir significativamente en estos valores de DVH.

La Tabla 4-4 muestra el error del algoritmo cuando se usan varias imágenes para acumular la dosis en el pCT; La única diferencia significativa entre el error en las fracciones y la de las dosis acumuladas, cuando se utilizan ROIs de control es en el D98, pero estas diferencias fueron inferiores a 20 cGy. Para calcular las diferencias en dosis promedio se utilizaron 180 CBCT, por lo que la estadística es importante, en cambio para la dosis acumulada, se realizó una por paciente, 20 en total, por lo que al tener una muestra menor los resultados pueden no ser tan precisos. La tendencia en los valores de diferencias en dosis nos indica que al calcular la dosis acumulada el error es menor que el de cada CBCT, pero al realizar el estudio estadístico el test Wilcoxon signed-rank, no apareció ninguna diferencia significativa, aunque esto puede ser debido a la poca muestra de la dosis acumulada. Las diferencias en dosis de las estructuras proyectadas desde el CBCT al pCT muestran un valor promedio cercano a cero y unas desviaciones simétricas a los dos lados del cero, esto nos muestra que los errores del DVF son aleatorios, lo que apoyaría la suposición de que las dosis acumuladas deberían tener un error menor que el de cada CBCT por separado. (Nassef et al., 2016)

Una de las limitaciones del estudio en la determinación del error del algoritmo DIR es la incertidumbre del contorneo de las estructuras por parte del médico; Para reducir esta limitación en nuestro estudio un único médico contornó todas las imágenes. No se intentó aislar la incertidumbre del contorneo porque esta incertidumbre también influye en el uso clínico del ART. En el trabajo de Veiga *et al.* se utilizó la propagación de la estructura para evaluar DIR y destacó la importancia del tipo de delineación (deformado frente a corregido manualmente) en el plan de evaluación; Aquí hemos utilizado esta misma diferencia para determinar el error del algoritmo DIR en términos de DVH valores. (Veiga et al., 2014)
Otra limitación del trabajo es que el error en valores de dosis absorbida depende de la forma de la distribución de la dosis. Una imagen de dosis uniforme no tendrá un error de DIR, aunque esté relacionado zonas incorrectamente, pero en estos casos el error del algoritmo no afectará la decisión de ART de adaptar un plan, ni a la administración correcta del tratamiento al paciente, por lo que esta limitación es una característica intrínseca de la radioterapia, en función de donde se administre la dosis absorbida tiene, o no, una gran importancia para el resultado del tratamiento del paciente.

La última limitación del estudio es que la dosis absorbida recibida en términos del DHV depende de tamaño de la ROIs, como ya se ha señalado en la validación en dosis de pacientes de cabeza y cuello. Debido a este efecto, al proyectar la estructura del CBCT al pCT, esta puede verse afectada por una deformación exagerada y tener un volumen mayor, o menor, que el de la estructura de referencia, por lo que los histogramas de estas estructuras presentarían unas diferencias en dosis mayor, o menor, de la que el algoritmo produciría al proyectar la dosis del CBCT al pCT. Esta limitación únicamente es significativa cuando las estructuras varían mucho su volumen, y esto únicamente ocurre cuando se realizan grandes deformaciones, que ocurren cuando utilizamos las ROIs de control entre dos estructuras que han cambiado mucho de volumen. Como hemos visto anteriormente, esto ocurre en unas 10 estructuras del 180 estudiadas.

Como ventajas, este método permite visualizar en diferencias en dosis absorbidas el error del algoritmo introducido al utilizar el DIR, tanto para visualizar las dosis del CBCT en el pCT, como para adaptar el plan. A partir de los resultados obtenidos, es preferible utilizar los registros deformables de próstata utilizando ROIs de control, lo que implica tener que corregir en todos los CBCT los contornos. Pero tenemos la ventaja que esta tarea no hay que realizarla específicamente para validar en dosis el algoritmo, ya que este trabajo es necesario para realizar los registros deformables si utilizamos ROIs de control, que como hemos demostrado que el algoritmo introduce menos incertidumbre.

6. CONCLUSIONES

La primera conclusión del estudio es que la incertidumbre que introduce el método propuesto por el TPS para determinar la tabla CT-ED automática para los CBCTs es despreciable comparándola con la incertidumbre que puede implicar la incorrecta relación de dos áreas mediante el DVF del DIR.

Respecto a la validación del algoritmo híbrido para los pacientes de cabeza y cuello, sin la utilización de ROIs de control, los valores obtenidos al determinar en distancias la incertidumbre del DIR $(1,7 \pm 0,8 \text{ mm})$ son similares, o menores, que otros algoritmos. De los resultados en distancias también se concluye que el algoritmo funciona mejor en zonas de alto contraste que de bajo contraste.

Aunque la evaluación del algoritmo en distancias, o en métricas geométricas, nos muestran una información muy útil, creemos que, dado que en radioterapia la magnitud de mayor interés es la dosis absorbida, debemos validar el algoritmo en términos de esta.

Para los pacientes de cabeza y cuello, hemos utilizado la falta de consistencia inversa para estimar en valores de DVH la incertidumbre del algoritmo de DIR sin necesidad de softwares especializados, ni maniquís. Los resultados muestran una dependencia de la incertidumbre en DVH con el tamaño, la distancia al volumen a tratar y el contraste. Por primera vez se muestran resultados en términos de dosis para este algoritmo y se concluye que el algoritmo híbrido de DIR funciona correctamente para utilizarlo en tratamientos de ART usando CBCT en cabeza y cuello, aunque los oncólogos radioterápicos deben ser cuidadosos en la utilización del algoritmo, ya que deben tener en cuenta la posible incertidumbre que puede introducir en los DVH.

En la localización de próstata el primer resultado es la importancia de utilizar ROIs de control ya que las deformaciones de la vejiga y el recto, junto con ser una localización con bajo contraste, tienen como consecuencia que para el algoritmo sea muy complejo relacionar correctamente las mismas áreas sin la ayuda de las ROIs de control. Incluso con la utilización de estas, también existen diferencias dosimétricas. Especialmente delicadas son las zonas con deformaciones exageradas producidas por la utilización como ROI de control en estructuras que han sufrido una gran variación. Esto puede causar errores significativos en la dosis absorbida en el recto y/o vejiga. Aunque, hay que tener en cuenta que esto ocurre en pocas estructuras y es debido a que no se ha seguido a la perfección el protocolo de llenado de IGRT. La próstata, debido a su margen desde el PTV y al ser una zona homogénea, muestra una incertidumbre del algoritmo muy pequeña, menor de 20cGy. Por lo que podemos concluir que las diferencias que observemos clínicamente a la hora de adaptar un plan son debidas a cambios anatómicos y no a una incorrecta relación del DVF en este órgano.

Por último, se muestran los valores de la incertidumbre del algoritmo con la dosis acumulada, calculada mediante el software, cuando utilizamos varios CBCTs. La tendencia indica una disminución de la incertidumbre al utilizar varias imágenes, pero no es estadísticamente significativo, posiblemente debido a la falta de muestra.

Aún con sus limitaciones, los métodos mostrados son aplicables en cualquier centro con RayStation y permiten valorar para cada paciente y estructura la incertidumbre introducida por el DIR. De esta forma podemos realizar la ART con mayor seguridad.

BIBILIOGRAFÍA

- Bedford, J. L., & Warrington, A. P. (2009). Commissioning of Volumetric Modulated Arc Therapy (VMAT). International Journal of Radiation Oncology Biology Physics, 73(2), 537–545. https://doi.org/10.1016/j.ijrobp.2008.08.055
- Bender, E. T., & Tomé, W. A. (2009). The utilization of consistency metrics for error analysis in deformable image registration. *Physics in Medicine and Biology*, 54(18), 5561–5577. https://doi.org/10.1088/0031-9155/54/18/014
- Bortfeld, T. (2006). IMRT: a review and preview. *Physics in Medicine and Biology*, 51(13), R363–R379. https://doi.org/10.1088/0031-9155/51/13/R21
- Bortfeld, T., & Webb, S. (2009). Single-Arc IMRT? *Physics in Medicine and Biology*, 54(1), N9-20. https://doi.org/10.1088/0031-9155/54/1/N02
- Brock, K. K., Sharpe, M. B., Dawson, L. A., Kim, S. M., & Jaffray, D. A. (2005). Accuracy of finite element model-based multi-organ deformable image registration. *Medical Physics*, 32(6), 1647–1659. https://doi.org/10.1118/1.1915012
- Cho, P. S., Johnson, R. H., & Griffin, T. W. (1995). Cone-beam CT for radiotherapy applications. *Physics in Medicine and Biology*, 40(11), 1863. https://doi.org/10.1088/0031-9155/40/11/007
- García-Mollá, R., Marco-Blancas, N. D., Bonaque, J., Vidueira, L., López-Tarjuelo, J.,
 & Perez-Calatayud, J. (2015). Validation of a deformable image registration produced by a commercial treatment planning system in head and neck. *Physica Medica*, 31(3). https://doi.org/10.1016/j.ejmp.2015.01.007
- García-Mollá, R., Marco-Blancas, N. de, Bonaque, J., Vidueira, L., López-Tarjuelo, J.,
 & Perez-Calatayud, J. (2015). Validation of a deformable image registration produced by a commercial treatment planning system in head and neck. *Physica Medica*, 31(3), 219–223. https://doi.org/10.1016/j.ejmp.2015.01.007
- Ghilezan, M., Yan, D., Liang, J., Jaffray, D., Wong, J., & Martinez, A. (2004). Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. *International Journal of Radiation Oncology Biology Physics*, 60(5), 1602–1610. https://doi.org/10.1016/j.ijrobp.2004.07.709

- Gu, X., Dong, B., Wang, J., Yordy, J., Mell, L., Jia, X., & Jiang, S. B. (2013). A contour-guided deformable image registration algorithm for adaptive radiotherapy. *Physics in Medicine and Biology*, 58(6), 1889–1901. https://doi.org/10.1088/0031-9155/58/6/1889
- Guan, H., & Dong, H. (2009). Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. *Physics in Medicine and Biology*, 54(20), 6239– 6250. https://doi.org/10.1088/0031-9155/54/20/013
- Hatton, J., McCurdy, B., & Greer, P. B. (2009). Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. *Physics in Medicine and Biology*, 54(15), N329–N346. https://doi.org/10.1088/0031-9155/54/15/N01
- Hoffmann, C., Krause, S., Stoiber, E. M., Mohr, A., Rieken, S., Schramm, O., ... Giske,
 K. (2014). Accuracy quantification of a deformable image registration tool applied
 in a clinical setting. *Journal of Applied Clinical Medical Physics / American College of Medical Physics*, 15(1), 4564.
 https://doi.org/10.1120/JACMP.V15I1.4564
- Hou, J., Guerrero, M., Chen, W., & D'Souza, W. D. (2011). Deformable planning CT to cone-beam CT image registration in head-and-neck cancer. *Medical Physics*, 38(4), 2088. https://doi.org/10.1118/1.3554647
- Hub, M., Thieke, C., Kessler, M. L., & Karger, C. P. (2012). A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration. *Medical Physics*, 39(4), 2186–92. https://doi.org/10.1118/1.3697524
- Huger, S., Graff, P., Harter, V., Marchesi, V., Royer, P., Diaz, J. C., ... Noel, A. (2014).
 Evaluation of the Block Matching deformable registration algorithm in the field of head-and-neck adaptive radiotherapy. *Physica Medica*, 30(3), 301–308.
 https://doi.org/10.1016/j.ejmp.2013.09.001
- Hunter, K. U., Fernandes, L. L., Vineberg, K. A., McShan, D., Antonuk, A. E., Cornwall, C., ... Eisbruch, A. (2013). Parotid glands dose-effect relationships based on their actually delivered doses: Implications for adaptive replanning in radiation therapy of head-and-neck cancer. *International Journal of Radiation Oncology Biology Physics*, 87(4), 676–682. https://doi.org/10.1016/j.ijrobp.2013.07.040
- Huq, M. S., Das, I. J., Steinberg, T., & Galvin, J. M. (2002). A dosimetric comparison

of various multileaf collimators. *Physics in Medicine and Biology*, 47(12), N159–N170. https://doi.org/10.1088/0031-9155/47/12/401

- ICRU. (2010). Prescribing, Recording and Reporting Photon-Beam Intensity Modulated Radiation Therapy (IMRT) (ICRU Report 83). Journal of the ICRU (Vol. 10). https://doi.org/10.1093/jicru/ndq025
- Kashani, R., Hub, M., Kessler, M. L., & Balter, J. M. (2007). Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms. *Medical Physics*, 34(7), 2785. https://doi.org/10.1118/1.2739812
- Kirby, N., Chuang, C., Ueda, U., & Pouliot, J. (2012). The need for application-based adaptation of deformable image registration. *Medical Physics*, 40(1), 11702. https://doi.org/10.1118/1.4769114
- LoSasso, T., Chui, C. S., & Ling, C. C. (1998). Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. *Medical Physics*, 25(10), 1919–1927. https://doi.org/10.1118/1.598381
- Low, D. a, Moran, J. M., Dempsey, J. F., Dong, L., & Oldham, M. (2011). Dosimetry tools and techniques for IMRT. *Medical Physics*, 38(3), 1313–1338. https://doi.org/10.1118/1.3514120
- Mayyas, E., Kim, J., Kumar, S., Liu, C., Wen, N., Movsas, B., ... Chetty, I. J. (2014). A novel approach for evaluation of prostate deformation and associated dosimetric implications in IGRT of the prostate. *Medical Physics*, 41(9), 91709. https://doi.org/10.1118/1.4893196
- McVicar, N., Popescu, I. A., & Heath, E. (2016). Techniques for adaptive prostate radiotherapy. *Physica Medica*, *32*(3), 492–498. https://doi.org/10.1016/j.ejmp.2016.03.010
- Mencarelli, A., van Beek, S., van Kranen, S., Rasch, C., van Herk, M., & Sonke, J.-J. (2012). Validation of deformable registration in head and neck cancer using analysis of variance. *Medical Physics*, 39(11), 6879–6884. https://doi.org/10.1118/1.4760990
- Mencarelli, A., Van Kranen, S. R., Hamming-Vrieze, O., Van Beek, S., Nico Rasch, C. R., Van Herk, M., & Sonke, J. J. (2014). Deformable image registration for adaptive radiation therapy of head and neck cancer: Accuracy and precision in the presence of tumor changes. *International Journal of Radiation Oncology Biology*

Physics, 90(3), 680-687. https://doi.org/10.1016/j.ijrobp.2014.06.045

- Millman, K. J., & Aivazis, M. (2011). Python for scientists and engineers. *Computing in Science and Engineering*. https://doi.org/10.1109/MCSE.2011.36
- Moteabbed, M., Sharp, G. C., Wang, Y., Trofimov, A., Efstathiou, J. A., & Lu, H.-M. (2014). Validation of a deformable image registration technique for cone beam CT-based dose verification. *Medical Physics*, 42(1), 196–205. https://doi.org/10.1118/1.4903292
- Murphy, M. J., Salguero, F. J., Siebers, J. V., Staub, D., & Vaman, C. (2012). A method to estimate the effect of deformable image registration uncertainties on daily dose mapping. *Medical Physics*, 39(2), 573–580. https://doi.org/10.1118/1.3673772
- Nassef, M., Simon, A., Cazoulat, G., Duménil, A., Blay, C., Lafond, C., ... De Crevoisier, R. (2016). Quantification of dose uncertainties in cumulated dose estimation compared to planned dose in prostate IMRT. *Radiotherapy and Oncology*, *119*(1), 129–136. https://doi.org/10.1016/j.radonc.2016.03.007
- Nath, R., Biggs, P. J., Bova, F. J., Ling, C. C., Purdy, J. a, van de Geijn, J., & Weinhous, M. S. (1994). AAPM code of practice for radiotherapy accelerators: report of AAPM Radiation Therapy Task Group No. 45. Medical physics (Vol. 21). https://doi.org/10.1118/1.597398
- Nie, K., Chuang, C., Kirby, N., Braunstein, S., & Pouliot, J. (2013). Site-specific deformable imaging registration algorithm selection using patient-based simulated deformations. *Medical Physics*, 40(4), 41911. https://doi.org/10.1118/1.4793723
- Niu, C. J., Foltz, W. D., Velec, M., Moseley, J. L., Al-Mayah, A., & Brock, K. K. (2012). A novel technique to enable experimental validation of deformable dose accumulation. *Medical Physics*, 39(2), 765–776. https://doi.org/10.1118/1.3676185
- Nuver, T. T., Hoogeman, M. S., Remeijer, P., van Herk, M., & Lebesque, J. V. (2007). An Adaptive Off-Line Procedure for Radiotherapy of Prostate Cancer. *International Journal of Radiation Oncology Biology Physics*, 67(5), 1559–1567. https://doi.org/10.1016/j.ijrobp.2006.12.010
- Perez-Calatayud, J., Ballester, F., Das, R. K., DeWerd, L. a., Ibbott, G. S., Meigooni, A. S., ... Williamson, J. F. (2012). Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO. *Medical Physics*, 39(5), 2904–2929. https://doi.org/10.1118/1.3703892

- Pukala, J., Johnson, P. B., Shah, A. P., Langen, K. M., Bova, F. J., Staton, R. J., ... Meeks, S. L. (2016). Benchmarking of five commercial deformable image registration algorithms for head and neck patients. *Journal of Applied Clinical Medical Physics*, 17(3), 5735. https://doi.org/10.1120/JACMP.V17I3.5735
- Pukala, J., Meeks, S. L., Staton, R. J., Bova, F. J., Mañon, R. R., & Langen, K. M. (2013). A virtual phantom library for the quantification of deformable image registration uncertainties in patients with cancers of the head and neck. *Medical Physics*, 40(11), 111703. https://doi.org/10.1118/1.4823467
- Robertson, S., Weiss, E., & Hugo, G. D. (2013). Deformable mesh registration for the validation of automatic target localization algorithms. *Medical Physics*, 40(7), 71721. https://doi.org/10.1118/1.4811105
- Saleh-Sayah, N. K., Weiss, E., Salguero, F. J., & Siebers, J. V. (2011). A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field. *Medical Physics*, 38(5), 2318–23. https://doi.org/10.1118/1.3572228
- Sarrut, D., Boldea, V., Miguet, S., & Ginestet, C. (2006). Simulation of fourdimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. *Medical Physics*, 33(3), 605–617. https://doi.org/10.1118/1.2161409
- Seet, K. Y. T., Barghi, A., Yartsev, S., & Van Dyk, J. (2009). The effects of field-ofview and patient size on CT numbers from cone-beam computed tomography. *Physics in Medicine and Biology*, 54(20), 6251–6262. https://doi.org/10.1088/0031-9155/54/20/014
- Smith, A. R. (2006). Proton therapy. *Physics in Medicine and Biology*, 51(13), R491-504. https://doi.org/10.1088/0031-9155/51/13/R26
- Thor, M., Andersen, E. S., Petersen, J. B. B., Sørensen, T. S., Noe, K. Ø., Tanderup, K., ... Muren, L. P. (2014). Evaluation of an application for intensity-based deformable image registration and dose accumulation in radiotherapy. *Acta Oncologica*, 53(10), 1329–1336. https://doi.org/10.3109/0284186X.2014.928742
- van Kranen, S., van Beek, S., Rasch, C., van Herk, M., & Sonke, J. J. (2009). Setup Uncertainties of Anatomical Sub-Regions in Head-and-Neck Cancer Patients After Offline CBCT Guidance. *International Journal of Radiation Oncology Biology Physics*, 73(5), 1566–1573. https://doi.org/10.1016/j.ijrobp.2008.11.035

Varadhan, R., Karangelis, G., Krishnan, K., Hui, S., Krishan, K., Hui, S., ... Hui, S.

(2013). A framework for deformable image registration validation and clinical applications. *Journal of Applied Clinical Medical Physics*, 14(1), 4066. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/23318394%0Ahttp://www.pubmedcentral.ni h.gov/articlerender.fcgi?artid=PMC3732001%0Ahttp://www.jacmp.org/index.php/ jacmp/rt/printerFriendly/4066/2803

- Veiga, C., McClelland, J., Moinuddin, S., Lourenço, A., Ricketts, K., Annkah, J., ...
 Royle, G. (2014). Toward adaptive radiotherapy for head and neck patients:
 Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations. *Medical Physics*, 41(3), 31703. https://doi.org/10.1118/1.4864240
- Wang, H., Dong, L., Lii, M. F., Lee, A. L., De Crevoisier, R., Mohan, R., ... Cheung, R. (2005). Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy. *International Journal of Radiation Oncology Biology Physics*, 61(3), 725–735. https://doi.org/10.1016/j.ijrobp.2004.07.677
- Wang, H., Dong, L., O'Daniel, J., Mohan, R., Garden, A. S., Ang, K. K., ... Cheung, R. (2005). Validation of an accelerated "demons" algorithm for deformable image registration in radiation therapy. *Physics in Medicine and Biology*, 50(12), 2887– 2905. https://doi.org/10.1088/0031-9155/50/12/011
- Weistrand, O., & Svensson, S. (2014). The ANACONDA algorithm for deformable image registration in radiotherapy. *Medical Physics*, 42(1), 40–53. https://doi.org/10.1118/1.4894702
- Wen, N., Glide-Hurst, C., Nurushev, T., Xing, L., Kim, J., Zhong, H., ... Chetty, I. J. (2012). Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment. *Physics in Medicine and Biology*, 57(17), 5361–5379. https://doi.org/10.1088/0031-9155/57/17/5361
- Wognum, S., Heethuis, S. E., Rosario, T., Hoogeman, M. S., & Bel, A. (2014). Validation of deformable image registration algorithms on CT images of *ex vivo* porcine bladders with fiducial markers. *Medical Physics*, 41(7), 71916. https://doi.org/10.1118/1.4883839
- Yan, C., Zhong, H., Murphy, M., Weiss, E., & Siebers, J. V. (2010). A pseudoinverse deformation vector field generator and its applications. *Medical Physics*, 37(3),

1117-1128. https://doi.org/10.1118/1.3301594

- Yan, D. (2010). Adaptive Radiotherapy: Merging Principle Into Clinical Practice. Seminars in Radiation Oncology, 20(2), 79–83. https://doi.org/10.1016/j.semradonc.2009.11.001
- Yan, D., Vicini, F., Wong, J., & Martinez, a. (1997). Adaptive radiation therapy. *Phys Med Biol*, 42(1), 123–132. https://doi.org/10.1155/2011/690595
- Yang, D., Li, H., Low, D. A., Deasy, J. O., & Naqa, I. El. (2008). A fast inverse consistent deformable image registration method based on symmetric optical flow computation. *Physics in Medicine and Biology*, 53(21), 6143–6165. https://doi.org/10.1088/0031-9155/53/21/017
- Yeo, U. J., Supple, J. R., Taylor, M. L., Smith, R., Kron, T., & Franich, R. D. (2013). Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation. *Medical Physics*, 40(10), 101701. https://doi.org/10.1118/1.4819945
- Yeo, U. J., Taylor, M. L., Dunn, L., Kron, T., Smith, R. L., & Franich, R. D. (2012). A novel methodology for 3D deformable dosimetry. *Medical Physics*, 39(4), 2203– 2213. https://doi.org/10.1118/1.3694107
- Yeo, U. J., Taylor, M. L., Supple, J. R., Smith, R. L., Dunn, L., Kron, T., & Franich, R.
 D. (2012). Is it sensible to "deform" dose? 3D experimental validation of dosewarping. *Medical Physics*, 39(8), 5065–5072. https://doi.org/10.1118/1.4736534
- Zhong, H., Kim, J., & Chetty, I. J. (2010). Analysis of deformable image registration accuracy using computational modeling. *Medical Physics*, 37(3), 970–979. https://doi.org/10.1118/1.3302141
- Zhong, H., & Siebers, J. V. (2009). Monte Carlo dose mapping on deforming anatomy.
 Physics in Medicine and Biology, 54(19), 5815–5830.
 https://doi.org/10.1088/0031-9155/54/19/010

LISTA DE PUBLICACIONES

Artículos publicados:

- Juan López-Tarjuelo, Juan David Quirós-Higueras, Naika Luquero-Llopis, Rafael García-Mollá, Jordi Juan-Senabre, Noelia de Marco-Blancas, Carlos Ferrer-Albiach, Agustín Santos-Serra. (2016). What can statistical process control show us about ionization chamber stability? Radiation Measurements, 86, 1–7. https://doi.org/10.1016/j.radmeas.2015.12.041.
- Juan López-Tarjuelo, Naika Luquero-Llopis, Rafael García-Mollá, Juan David Quirós-Higueras, Ana Bouché-Babiloni, Xavier Jordi Juan-Senabre, Noelia de Marco-Blancas, Carlos Ferrer-Albiach, Agustín Santos-Serra. (2015). Statistical process control for electron beam monitoring. Physica Medica, 31(5), 493–500. https://doi.org/10.1016/j.ejmp.2015.05.006
- García-Mollá, R., Marco-Blancas, N. de, Bonaque, J., Vidueira, L., López-Tarjuelo, J., & Pérez-Calatayud, J. (2015). Validation of a deformable image registration produced by a commercial treatment planning system in head and neck. Physica Medica, 31(3), 219–223. https://doi.org/10.1016/j.ejmp.2015.01.007
- Lopez-Tarjuelo, J., Garcia-Molla, R., Juan-Senabre, X. J., Quiros-Higueras, J. D., Santos-Serra, a, de Marco-Blancas, N., & Calzada-Feliu, S. (2013). Acceptance and Commissioning of a Treatment Planning System Based on Monte Carlo Calculations. Technology in Cancer Research & Treatment. https://doi.org/10.7785/tert.2012.500361
- García-Mollá, R., Linares, R., & Ayala, R. (2011). Study of DQE dependence with beam quality on GE essential mammography flat panel. Journal of Applied Clinical Medical Physics / American College of Medical Physics, 12(1), 3176.

- Ayala Lázaro, R., Linares Doblado, R, García Mollá, R. MIQuaELa, programa para el cálculo de la DQE en radiografía/mamografía DIGITAL". Rev Fis Med 2009;10(2):123-126.
- Calama Santiago, J. A., Penedo Cobos, J. M., Molina López, M. Y., González Ruiz, C., García Mollá, R., & Sierra Díaz, F. (2008). Estudio dosimétrico de la embolización endovascular de varicocele en pacientes pediátricos. *Actas Urológicas Españolas*, 833–842. Retrieved from http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0210-48062008000800011&lang=pt

Trabajos presentados en congresos

- 8. **García-Mollá, R.** Registro Deformable. Ponente Simposio radioterapia adaptativa. Congreso de Física Médica Girona, junio, 2017.
- Muelas, R. García, R. Vidueira, R. Bonaque, J. Conde, A. Ferrer, C. Adaptive radiotherapy in prostate cancer: when and why? Póster presentado en ESTRO 36, abril 2017, Viena, Austria.
- García-Mollá, R. Ponente Simposio AAPM-SEFM. Congreso de Física Médica Valencia, junio, 2017.
- Guasp Tortajada, M. García-Mollá, R. Vidueira-Martínez, L. De Marco-Blanca, N. Bonaque-Alandí, J. AlbertAntequera, M. Santos-Serra, A. López-Tarjuelo, J. *A retrospective study of image guided adaptive radiation therapy in prostate cáncer*. Póster presentado en ESTRO 33, abril 2015, , Barcelona, España.
- 12. García Mollá R., Gómez Martín C., Vidueira L., Juan-Senabre X., J. Bonaque., García Gómez R. *Validation of a deformable registration image of a commercial*

planning system. Póster presentado en 3RD ESTRO FORUM, abril 2015, Barcelona, España.

- R. García-Mollá, J.D. Quirós-Higueras, J. Perez-Calatayud, N. Marco-Blancas, J. Bonaque, J. Lopez-Tarjuelo, X.J. Juan-Senabre, A. Santos-Serra, S. Calzada-Feliu. Assessment of EUD as a treatment plan quality parameter. Póster presentado en 2nd ESTRO Forum, Abril 2013, Geneva, Switzerland Radiotherapy & Oncology 106, Suppl 2, 459.
- García Mollá, R., Linares Doblado, R., Ayala Lázaro, R. A study of DQE dependence with beam quality, GE Senographe Essential detector for mammography. Poster presentado en el World Congress on Medical Physics and Biomedical Engineering, Septiembre 2009, Munich, Alemania ISSN 1680-0737