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1.- REPRODUCTIVE SYSTEMS. SEX V.S. ASEX 

The majority of eukaryotic species have adopted two main reproductive 

strategies: sexual reproduction and asexuality. Sexual reproduction, 

which predominates in most living organisms (Bell, 1982; De Meeûs et 

al., 2007; Schurko et al., 2009), is a process involving the fusion 

(fertilization) of two specialized reproductive cells called gametes, one 

from a male source and one from a female source. Both male and female 

gametes are produced by a special cell division process known as 

meiosis, which halves the number of chromosomes in each resulting sex 

cell. Fertilization may occur between gametes produced by a single 

hermaphrodite individual (selfing) or, in most cases, between gametes 

formed by different female and male individuals. So, in a sexual life 

cycle different stages alternate: diploid cellular life, meiosis, haploid 

cellular life, and fertilization. Meiosis and fertilization occur regularly in 

life cycles (Normarck et al., 2003).  

Asexuality is a less widespread strategy but it encompasses a 

variety of reproductive mechanisms (Schön et al., 2009). The term 

asexual reproduction sensu strictu implies the abolishment of sexes. In 

this case, it is considered synonymous to clonal reproduction or 

agametic reproduction. It occurs when an individual produces new 

individuals that are genetically identical to the parent at all loci in the 

genome, except at those sites that have experienced somatic mutations. 

This is, for example, the case of the fragmentation in colonial organism as 

reef-building corals and sponges and the case of the fission in unisexual 

organisms as echinoderms, turbellarian flatworms, and some polychaete 

and oligochaete annelid worms. Another case of clonal reproduction is 
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represented by budding, which concerns the production of new 

individuals from small parts of the parent without the division of the 

parent individual. It is common in cnidarian (jellyfishes, hydras, corals 

and sea anemones), phoronids (horseshoe worms), entoprocts (goblet 

worms), urochordates (sea squirts) and trematodes (flukes) (De Meeûs et 

al., 2007). But in animal biology, we refer to asexual organisms as all 

those that have all dropped out of the regular meiotic (sexual) cycle 

(Schön et al., 2009). So, asexual reproduction regroups other types of 

reproduction that are not all cases of clonal reproduction and in which 

gametes cell are involved. This is the case of parthenogenesis, 

gynogenesis and hybridogenesis (Simon et al., 2003; De Meeûs et al., 

2007).  

 

1.1.- Parthenogenesis, hybridogenesis, gynogenesis 

Parthenogenesis refers to the development of eggs without fertilization. 

An unfertilized female gamete develops into a new organism (typically 

female, thelytokous parthenogenesis) without the need of male gamete. 

Modes of parthenogenetic reproduction fall into two main categories: 

apomixis or automixis, based on the presence or absence of meiosis. It 

will be explained it in more details later (Simon et al., 2003; Schlupp, 

2005). 

Instead, gynogenesis (also called pseudogamy) is a form of reproduction 

in which fertilized eggs are replaced by diploid cells from the mother. 

Offspring are produced from diploid oocytes that do not undergo 

meiosis and male haploid sperm of a related bisexual species is needed 

only to trigger embryo development (Simon et al., 2003; Schlupp, 2005).  
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In hybridogenesis, fertilization takes place and the offspring shows 

characters of both parents. It is a hemiclonal mode of reproduction 

because half genome (paternal) is transmitted sexually and the other half 

(maternal genome) is transmitted clonally. Sperm and egg fuse and 

paternal genes are expressed in the offspring but only the maternal 

genome is inherited. Hybrid condition is restored at each generation by 

mating with males of the parental species whose genome has been 

discarded from the egg (Simon et al., 2003; Schlupp, 2005).  

 

1.2.- The paradox of sex  

Despite sex being the predominant mode of reproduction among 

eukaryotes, it has been described as a paradox because it faces 

substantial and immediate costs compared to asexual alternatives 

(Maynard Smith, 1971, 1978; Williams, 1975). First of all, diploid 

anisogamous species with an even sex ratio pay the cost of males. Sexual 

females have a reduced reproductive potential because half of their eggs 

develop into male offspring. Two sexes are needed to restore the 

parental diploid state. So sexual females have to produce males, find or 

attract males and mate with them, what entails additional time and 

energy resources and all the risks associated with mating. Secondly, 

sexuality has a less efficient mode of transmitting genes to the offspring 

(cost of meiosis). Indeed, each individual transmits only 50% of its genes 

to the next generation. Finally, the re-assortment of parental genotypes 

to each generation may break-up favourable gene combinations of 

alleles at many loci, a process known as recombination load (Case and 

Taper, 1986). 
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In contrast, in asexual populations every individual in the population 

produces offspring and the whole genome is passed on to its progeny. 

Asexual females can potentially produce twice as many daughters as 

sexual females, so that the ratio of asexual to sexual females should 

initially double each generation. Thus, asexual populations are expected 

to have major demographic advantages. Everything else equal, they will 

grow much faster than any competing sexual species and they might be 

able to invade and displace them over the short term (Engelstädter, 

2008). In addition, in an asexual population the lack of genetic 

recombination increases the possibility for amplification of coadapted 

genes, what can be an immediate advantage in some environments 

(Butlin, 2002).  

 

1.3.- Advantages of sex 

Given the costs of sex and the reproductive advantages of asexual 

reproduction, we would expect that many more unisexual taxa should 

exist. On the contrary, only one out of every 1000 eukaryotic taxa is 

unisexual (Vrijenhoek, 1998; Simon et al., 2003). How is it possible that 

asexual clones do not invade and displace sexual populations? Why is 

sex so common? The widespread occurrence of sex has been the focus of 

many studies but it is still one of unsolved enigmas in evolutionary 

biology and it is termed the “queen of problems” (Bell, 1982).  

Many theories have been proposed to understand the advantages of 

sexual reproduction, which should counterbalance its costs. These 

theories can be broadly classified into ecological (or environmental) and 

mutation-based models. 
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On one hand, ecological theories affirm that recombination produces a 

more genetically diverse offspring compared with offspring from 

asexual females. This genetic diversity makes sexual populations less 

vulnerable to changing environments, parasites or diseases. In fact, sex 

may accelerate adaptation to a changing environment by creating new 

gene combinations (Bell, 1982) and may provide an advantage in 

antagonistic coevolutionary interactions (Hamilton et al., 1990; Lively et 

al, 1990; Ladle, 1992; Morran et al., 2011). On the other hand, mutational 

theories assert that sex and meiotic crossovers allow individuals to 

eliminate deleterious mutations more efficiently. Asexual lineages 

would accumulate in their genome deleterious mutations that cannot be 

purged without genetic recombination (Muller, 1964; Kondrashov, 1988; 

Lynch et al., 1993; Arkhipova and Meselson, 2004).  However, there is no 

a single explanation which can account for the predominance of sex. The 

different mechanisms may act simultaneously and interact 

synergistically in many ways in different species (West et al., 1999; 

Gouyon, 1999; Normarck et al., 2003). 

 

1.4.- Are asexual lineages evolutionary dead ends? 

The mode of reproduction of a species determines its genetic diversity 

and, in turn, its ecological and evolutionary success (Normarck et al., 

2003; Simon et al., 2003; De Meeûs et al, 2007). In a sexual interbreeding 

population new combinations of genes are constantly formed and 

destroyed. Offspring from sexual parents are generally more genetically 

diverse compared with offspring from asexual females. The genealogical 

relationship defining the genetic structure of sexual populations is 
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usually represented by vast and complex networks (Normark et al., 

2003; Simon et al., 2003). On the contrary, in a strictly asexual lineage, 

where mutation is supposed to be the only source of genetic diversity, 

clonal diversity in the population is reduced every generation.  The 

phylogenetic reconstruction of asexual populations is generally 

represented by strictly branching tree, where most asexuals occupy tip 

positions (Normark et al., 2003; Simon et al., 2003).  In fact, a brief 

evolutionary life span is expected for asexual organisms which are 

generally regarded as evolutionary dead ends and supposed to go 

extinct within a short time (104 - 105 generations) (Lynch and Gabriel, 

1990).  

The first direct challenge of the assumption that asexual lineages are 

evolutionary dead-ends came from molecular studies which have 

identified a variety of “ancient asexual” lineages. There are asexual 

organisms which have persisted for millions of years without sex which 

are considered “evolutionary scandals” (Judson and Normark, 1996).  

Examples are bdelloid rotifers (80 Myr) or darwinulid ostracods (100 

Myr) (Mark Welch and Melson, 2000; Martens et al., 2003; Butlin et al., 

1998).  

 

1.5.- Genotypic diversity in parthenogens 

The mode and frequency of origin of asexual clones in natural 

populations plays a key role in determining the balance between cost 

and benefits of asexuality (Butlin et al., 1998, 1999). Different studies 

have shown that the genetic diversity of asexual populations may have 

levels comparable to those of sexual populations if they are produced at 
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high rate or through various mechanisms (Schwander et al., 2011; 

Delmotte et al., 2001, 2002, 2003). In these cases, asexual populations will 

emerge repeatedly generating a pool of diverse, polyphyletic asexual 

lineages. This will therefore influence their ecological adaptability and 

the outcome competitiveness with their sexual relatives in the short term 

and it will also determine their long term evolutionary potential (Bell, 

1982; Simon et al. 2003).  

High genotypic diversity among parthenogenetic lineages is often 

associated to multiple lineages origin, but it may be also related to 

different reproductive strategies.  Many ancient asexual lineages of 

vertebrates engage in some form of gene exchange with closely related 

sexual taxa, so to incorporate a “bit of sex” and compensate the 

disadvantages caused by the lack of recombination or accumulation of 

deleterious mutations (Lampert and Schartl, 2010). For example, the 

asexual fish Poecilia formosa (Amazon Molly) reproduces by gynogenesis. 

Typically the sperm DNA is degraded and the offspring are clones of 

their mothers. But, sometimes, genomic fragments of 

(microchromosomes) or the paternal genome are included in the oocyte. 

That implies an occasional addition of fresh genetic material that slows 

down the degeneration process of Muller’s ratchet and gives rise to new 

clones (Stöck et al., 2010). Also the unisexual salamander of the genus 

Ambystoma has adopted the reproductive strategy of kleptogenesis in 

which part of or even the whole of the maternal genome is frequently 

exchanged for paternal genetic material from sympatric sexual species. 

That has made possible the existence of nearly 30 genomic biotypes with 

ploidy ranging from diploid to pentaployd (kleptogenesis and 
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polyploidization) (Bogart et al., 2007; Bi and Bogart, 2010).  

In addition, asexual and sexual reproduction may be not exclusive 

alternatives. Around 15000 animal species have evolved independently 

a mixed strategy called cyclical parthenogenesis. Sexual and 

parthenogenetic generations may alternate throughout the life cycle as 

in cladocerans and rotifers or exist simultaneously as in hymenopterans 

(Bell, 1982; De Meester et al., 2004). Cyclical parthenogenesis seems to 

combine the advantages of sexuality (such as the generation of 

genetically diverse offspring and a process of genome purging) with the 

high demographic potential of asexuality (Simon et al., 2002). Daphnia, 

for example, reproduce by amictic parthenogenesis, forming clonal 

lineages as long as environmental conditions remain favourable. This 

can be continued for several generations, resulting in an exponential 

growth of clonal lineages. When unfavourable conditions arise (e.g., 

food shortage, overcrowding, presence of predators), the population 

turns to sexual reproduction. Males are produced parthenogenetically, 

and females produce sexual eggs that need to be fertilized, which are 

long-lived dormant eggs able to hatch once environmental conditions 

become favourable again. The genetic structure of cyclically 

parthenogenetic Daphnia populations is so determined by the 

consequences of combining sexual and asexual reproduction. 

Populations are expected to be characterized by a high clonal diversity 

at the start of the growing season (in populations that re-establish from 

the dormant egg bank, clonal diversity at the beginning of the growing 

season equals the number of hatchlings), but during parthenogenetic 

reproduction, chance extinctions of clones and selection are expected to 
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erode clonal diversity within the population (Ortells et al., 2006).  

Finally, there are intermediate strategies including obligate 

parthenogenesis that retain the capacity for male production (Blackman, 

1972; Martens, 1998; Pongratz et al., 1998; Plantard et al., 1998). Fertile 

matings of these males and females from sexual lineages may generate 

repeatedly new asexual clones. The gene exchange will result in the 

introgression of genes of asexuality into sexual population, but it will 

also increase the genetic diversity of asexuals, producing new asexual 

genotypes purged from deleterious mutations. That is named 

contagious parthenogenesis (Simon et al., 2003; Schön et al., 2009)(for 

details see later). 

Thus, studying the origin and evolution of asexual lineages, and 

understanding how genetic diversity is generated and preserved in such 

lineages is very important when assessing costs and benefits of asexual 

reproduction vs. sexual reproduction.   

 

 

2.- PARTHENOGENESIS AND ITS ORIGIN 

Different asexual modes of reproduction are found among animals 

(Schön et al., 2009). Thelytokous parthenogenesis consists in the 

development of unfertilized eggs that give rise to all female offspring.  

Parthenogenetic reproduction fall into two main categories: apomixis or 

automixis, based on the presence or absence of meiosis (Simon et al., 

2003). In apomictic parthenogenesis, meiosis is totally lacking: the 

divisions in the oocyte are mitotic. There is no recombination of alleles 

and the offspring are true clones of the mother. In automictic 
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parthenogenesis, meiosis is preserved but fusion occurs between two 

nuclei originating from the same individual. Gene recombination can 

occur. Various cytological mechanisms are known to restore the ploidy 

level, which represent different modifications of meiosis. Each 

mechanism has a different impact on the genetic diversity of the 

population since they may either maintain or eliminate genetic variation 

across generations, with very different evolutionary consequences 

(Pearcy et al., 2006; Noughé et al., 2015b).  

The two simplest cytological mechanisms leading to automictic 

parthenogenesis are central fusion and terminal fusion, in which two 

products of the same meiosis, one oocyte and one haploid polar body, 

fuse to restore diploidy. In automictic parthenogenesis with terminal 

fusion, the oocyte fuses with the second polar body. So, it consists in the 

fusion between two haploid meiotic products that separated at meiosis 

II.  Considering a given heterozygous locus in the parent, the offspring 

will become entirely homozygous, but heterozygosity might be 

maintained further away on the chromosome if recombination 

exchanged chromatids between homologous chromosomes during 

meiosis I. Each heterozygous locus has a probability ranging from 1/3 

(far from centromere) to 1 (close to centromere) of becoming 

homozygous. In automictic parthenogenesis with central fusion, the 

oocyte fuses with a haploid product of the first polar body. It means that 

the fusion occurs between two haploid meiotic products separated at 

meiosis I. In this situation, the offspring is genetically similar to the 

mother (it will always remain heterozygous), except when there is 

recombination. Each heterozygous locus has a probability ranging from 
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0 (close to centromere) to 1/3 (far from centromere) of becoming 

homozygous.  

Thus, automixis through central fusion combined with very low 

recombination rates leaves a genetic signature very similar to that of 

apomixis (with maintenance of high heterozygosity levels). In contrast, 

terminal fusions and central fusions combined with very high 

recombination rates leave a genetic signature very similar to self-

fertilization (loss of heterozygosity) (Pearcy et al., 2006; Noughé et al., 

2015b).  

There are other cytological mechanisms leading to automictic 

parthenogenesis, which are characterized by modified meiotic steps. 

Among these, automictic parthenogenesis with ‘random fusion’ occurs 

when all four chromatids segregate independently and each 

heterozygous locus has a probability of 1/3 of becoming homozygous, 

independent of its position on the chromosome; instead, automictic 

parthenogenesis with ‘gamete duplication’ involves the duplication of 

the chromosomes after meiosis and the offspring will be homozygous 

for all loci (Pearcy et al., 2006; Noughé et al., 2015b).  

 

Parthenogenesis in animals has evolved through different 

mechanisms: 1) spontaneous origin, 2) hybrid origin, and 3) infectious 

origin. Depending on the mechanisms involved in the loss of sex, 

parthenogenetic lineages may acquire different genotypic profiles 

compared to bisexual ancestors, which determines their initial genetic 

variability and therefore their evolutionary success and persistence 

(Simon et al., 2003).  



General Introduction 

16 

 

2.1.- Spontaneous origin 

Spontaneous transition to asexuality may occur when mutations involve 

the genes that suppress meiosis or the genes underlying the production 

of sexual forms (Simon et al., 2003). Such mutations could directly result 

in obligate asexual population, or they could be initially maintained as 

genetic variation for facultative parthenogenesis in a sexual population. 

In any case, it will result in the production of an all-female lineage 

reproductively isolated from its sexual ancestors (Schwander and 

Crespi, 2009). 

Apomictic parthenogens could evolve directly from rare sexual females 

that produce their eggs mitotically or, secondarily, by a stepwise 

transition via automictic parthenogenesis. In the last case there will be 

an intermediate cytological process involving recombination 

suppression and an increase of the relative proportion of oocytes 

produced by central fusion (Schwander and Crespi, 2009).  

Spontaneous origin is expected to occur in environments in which 

finding a mate is difficult or impossible, such as in marginal habitats 

with such low densities that stochastic fluctuations in the sex ratio may 

eliminate males by chance (Kramer and Templeton 2001). Spontaneous 

origin of diploid parthenogenetic lineages has been documented in 

different groups of invertebrates, as ostracods belonging to the genus 

Eucypris (Schön et al., 2000) or molluscs of the genus Campeloma 

(Johnson and Bragg, 1999) and Potamopyrgus (Neiman and Lively 2004). 

In the stick insect of the genus Timema, Schwander and Crespi (2009) 

have found that four of the five Timema parthenogens (T. douglasi, T. 

monikensis, T. tahoe, and T. genevievae) evolved through a spontaneous 
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loss of sex from four different sexual ancestors (respectively T. poppensis, 

T. cristinae, T. bartmani, and T. tahoe). 

 

2.2.- Hybrid origin 

Parthenogenetic lineages can result from hybridization between two co-

occurring sexual species.  Hybridization events occur when genetically 

differentiated populations come into contact after a previous allopatric 

condition. If reproductive isolation breaks down, a new hybrid 

population may arise, which acquires a novel genotype combining 

alleles from their parents, being transmitted to the next generation 

(Bullini, 1994).  The frequency at which hybrid species are formed varies 

among groups and with the degree of similarity between parental 

species (Morgan-Richards and Trewick, 2005).  

Hybridization is frequently associated to a switch from sexual to asexual 

reproduction (parthenogenesis, gynogenesis or hybridogenesis). In this 

regard, there are two theories that try to explain this linkage. On one 

hand, hybridization can disrupt normal gametogenesis and thus favour 

asexual reproduction (hybrid theory); on the other hand, asexual 

reproduction might already exist, as spontaneous or facultative 

reproductive strategy, in the sexual parental species and then be 

inherited by hybrids (spontaneous theory) (Bullini, 1994; Kearny et al., 

2009). 

Occasionally, individuals of a hybrid taxa can backcross with a sexual 

relative to generate asexual lineages of increased ploidy. Secondary 

hybridization events with repeated origin of asexual forms might thus 

generate complex patterns of relationships between the parthenogenetic 
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lineages (reticulate evolution pattern) (Bullini, 1994; Morgan-Richards 

and Trewick, 2005).  

In a hybridization event, cytological processes disrupting meiosis as the 

pairing of divergent homologues might be difficult to accomplish. This 

can explain why some interspecific hybrids are sterile, or why they show 

lower offspring viability compared to parental species (Schwenk et al. 

2001). But, at the other extreme, parthenogenetic lineages can benefit 

from heterosis (hybrid vigour) and generate offspring with higher 

viability and fecundity rates (Lynch, 1984).  

In general, hybrid taxa are morphologically well differentiated from 

their parental species, showing intermediate phenotypes compared with 

parental species (Schwenk et al. 2001; Hobæk et al., 2004).  

Hybrid lineages enjoy the advantages of sexual reproduction 

(recombination and increased genetic variability) and those of asexual 

reproduction (high rates of demographic growth, capacity of 

colonization), what might explain their evolutionary success (Bullini, 

1994). 

Hybridization appears to be the main route by which unisexual 

vertebrates arise. It is well documented in amphibians, fishes and 

reptiles (Neaves and Baumann, 2011). For example, hybridization 

combined with parthenogenesis has given rise to almost all unisexual 

lizards. Molecular data have shown that diploid parthenogenetic 

Aspidoscelis species arose from hybridization events between sexual 

progenitors (A. inornata and A. exsanguis); further secondary 

hybridization between these hybrid females and males of sympatric 

sexual species produces triploid unisexuals which, in turn, may produce 
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tetraploid hybrids (Lutes et al., 2011).  

Most vertebrates of hybrid origin are gynogenetic or hybridogenetic, 

and still require insemination from bisexual relatives. It is the case of the 

gynogenetic Amazon molly, Poecilia formosa which arose by 

hybridization between Poecilia mexicana as maternal and Poecilia latipinna 

as paternal ancestors (Avise et al., 1991; Lampert and Schartl, 2008) or 

the hemiclonal frog Rana esculenta arisen from sexuals Rana ridibunda and 

Rana lessone (Avise et al., 1992). 

In invertebrates, hybridization is common in crustaceans, insects and 

molluscs. Several interspecific hybrids have been found within the 

cladoceran genus Daphnia, which are capable of parthenogenetic 

reproduction (Hobæk et al., 2004). 

In North America, among stick insects of the genus Timema, one 

parthenogenetic lineage T. shepardi likely derives from a hybrid between 

T. poppensis females and T. californicum males, which are the two sexual 

species with the same number of chromosomes (the other four have a 

spontaneous origin, see above) (Schwander and Crespi, 2009). In 

Europe, repeated interspecific hybridization of the sexual stick insect of 

the genus Bacillus has resulted in lineages that reproduce asexually (Scali 

et al., 2003) 

Parthenogenetic triploids of the genus Campeloma (freshwater snail) also 

have a hybrid origin arisen through fertilization of diploid parthenogens 

by haploid sperm of sexual related species (Johnson and Bragg, 1999). 

 

2.3.- Infectious origin 

The loss of sex may occur through infection by vertically inherited 
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microorganisms able to alter the reproduction of their host to favour 

their persistence in populations. These microorganisms can be classified 

into three groups: 1) Wolbachia pipientis group, 2) the Cytophaga-

Flexibacter-Bacteroides (CFB) group of bacteria, 3) Xiphinematobacter 

species (Koivisto and Braig, 2003). The best known example is Wolbachia, 

an intracellular alpha-proteobacteria. There are different ways by which 

Wolbachia can manipulate host reproductive processes, for example, by 

converting genetic males in functional females (feminizing), by killing 

males, by inducing parthenogenesis, or causing male sterility (Maniatsi 

et al., 2010).Parthenogenesis-inducing Wolbachia is known in several 

hymenopteran parasitoids, where the presence of Wolbachia causes 

diploidization of the unfertilized haploid eggs, which develop as 

females and not as haploid males (Plantard et al., 1998). A case of male 

killing has been reported in the genus Ostrinia (European corn worm) 

where Wolbachia kills genetic males ZZ during the larval stage, while 

genetic females WZ do not survive in absence of the bacterium 

(Sugimoto and Ishikawa, 2012). 

 

2.4.- Contagious parthenogenesis 

A secondary origin for the generation of new parthenogenetic lineages is 

contagious parthenogenesis (Simon et al., 2003; Schön et al., 2009). This 

mechanism involves a pre-existing parthenogenetic lineage able to 

produce functional males, which has arisen by any of the mechanisms 

described above. When the reproductive isolation between such males 

and their sexual relatives is incomplete, they may mate with coexisting 

sexual females producing fertile parthenogenetic hybrid offspring. The 
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new parthenogenetic lineages will combine genetic diversity from the 

maternal sexual species and from their paternal parthenogenetic 

ancestor, including the genetic fragments linked to the parthenogenesis 

(Simon et al., 2003; Tucker et al., 2013). 

Many asexual lineages retain the ability to produce functional 

males as in aphids (Blackman, 1972; Rispe et al., 1999; Simon et al., 1999; 

Delmotte et al., 2001), ostracods (Butlin et al., 1998; Martens, 1998), 

freshwater flatworms (Pongratz et al. 1998) and wasps (Plantard et al. 

1998), what indicates that the loss of sexual reproduction may not start 

with the complete loss of males, or that the mechanisms suppressing 

sexual reproduction fails occasionally. 

In such systems, rare males may represent a vector for genetic exchange 

between asexual and sexual lineages when both coexist (Lynch, 1984; 

Rispe et al., 1999; Simon et al., 1999; Delmotte et al., 2001; Engelstädter et 

al., 2011). This occasional gene flow between sexual and asexual 

lineages, resulting in a regular emergence of asexual lineages, may be 

sufficient to significantly reduce the costs of the asexuality, contributing 

to the ecological success and to the evolutionary potential of such 

asexual lineages. Indeed, male-transmitted asexuality may create a 

genetically diverse assemblage of asexual lineages. Newly produced 

asexuals may continuously replace the oldest lineages suffering from the 

accumulation of deleterious mutations, allowing the persistence of the 

asexual populations in both short and long time. 

This mechanism has been deeply studied in the water flea Daphnia pulex 

(Innes and Hebert, 1988; Paland et al., 2005). In the North American D. 

pulex parthenogenetic lineages, at least two distinct unrecombined 
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haplotypes on chromosome VIII and IX are implied in the sex-limited 

meiosis suppression (Lynch et al., 2008; Eads et al., 2012; Tucker et al., 

2013). These haplotypes, leading to obligate parthenogenesis in D. pulex, 

stem from a single recent event of hybridization with its sister taxon D. 

pulicaria (Xu et al., 2013; Tucker et al., 2013). Multiple new 

parthenogenetic lineages have arisen since this event, as males produced 

by asexual lineages spread these parthenogenesis-inducing haplotypes 

by mating with sexual females. 

The mechanism of contagious parthenogenesis has been also studied in 

the bee Apis mellifera capensis and in the parasitoid wasp Lisyphlebus 

fabarum (Schneider et al., 2002; Sandrock and Vorburger, 2011; Delmotte 

et al., 2013) in which the meiosis suppressor genes are recessive and not 

dominant as in D. pulex. 

The retention of functional males in parthenogenetic lineages may 

involve a fitness cost compared to the asexual populations producing 

only females. For example, a recent study suggests that a 5-10% decrease 

in daughter production due to male production may influence the 

outcome of competition amongst asexual lineages (Neiman et al., 2012). 

On the other side, occasional sexual reproduction in predominantly 

asexual organisms reaps the benefits of sexual reproduction without 

paying its cost. Low levels of sex are sufficient to increase genotypic 

diversity and the fitness of a population (D’Souza and Michiels, 2010). 

 

2.5.- Geographic parthenogenesis. Marginal habitats 

Geographic parthenogenesis is the geographically distinct distribution 

of closely related sexual and asexual organisms (Vandel, 1928).  
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Many studies reveal that asexual populations are more frequently 

distributed in environments classified as marginal: extreme or disturbed 

areas, xeric habitats, islands or island–like habitats, high altitude and 

latitude biotypes (Vandel, 1928). 

Different hypotheses have been postulated to explain this pattern, and 

they are not mutually exclusive. At first, asexuals are considered better 

colonizers than sexual species, since a single dispersing female or egg 

can establish a new population, whereas sexual individuals would have 

more difficulties to find mates in marginal biotopes where the 

demographic density is low (Peck et al., 1998). Moreover, the biotic 

pressure of parasites, competitors and predators is lower in extreme 

environments, so asexual populations would be better able to compete 

against sexual species (Glesener and Tilman, 1978; Jaenike, 1978; 

Hamilton, 1980). In marginal habitats populations are subdivided in 

metapopulations, which suffer of frequent events of extinction and 

recolonization. Due to repeated genetic bottlenecks, sexual populations 

can suffer increased homozygosity and inbreeding depression (Haag 

and Ebert, 2004). Finally, many asexual populations have hybrid origin 

and enjoy the heterosis enabling them to invade extreme environments 

(Kearney, 2005). 

 

2.6.- Parthenogenesis and geographic distribution 

Many parthenogenetic species are geographically and ecologically more 

widely distributed than their sexual relatives. Two major hypotheses 

describe how asexuals will use niches in relation to their sexual 

ancestors: the General Purpose Genotype (GPG) and the Frozen Niche 
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(FNV) hypotheses. 

FNV affirms that asexual populations arising from sexual species will 

“freeze” the ecological niche of the latter: it means that asexuals will 

generally inherit the same range of tolerance to different environmental 

conditions (e.g. temperature, salinity, oxygen, etc.) of their sexual 

relatives. However, since a large number of different clones may arise 

from sexual ancestors, the total ecological tolerance of a set of clones 

might still cover a wide range of environmental conditions (Vrijenhoek, 

1978, 1979). 

Different way, the GPG considers that asexuals may occupy a broader 

range of environments because they are generalist clones. The selection 

in a temporally varying environment promotes the evolution of 

generalist clones, characterized by wide ecological tolerance ranges and 

low fitness variance in a wide range of ecological conditions (Lynch, 

1984; Van Doninck et al., 2002). 

 

 

3.- MODEL ORGANISM:  Artemia GENUS 

Artemia is a genus of anostracan crustaceans widely known as brine 

shrimps.  It was first described by Schlosser in 1755 on material collected 

from the solar saltworks near Lymington, England, which do not 

currently exist (Kuenen and Baas–Becking, 1938, in Sorgeloos, 1980a). 

Later, in 1758 Linneaus classified it as Cancer salinus and only in 1818 

Leach renamed it as Artemia salina, term with which is usually known in 

the scientific literature.  
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Phylum Artropoda (Siebold y Stannius, 1848) 

Subphylum Crustacea (Pennant, 1777) 

Class Branchiopoda (Latreille, 1817) 

Order Anostraca (Sars, 1867) 

Family Artemiidae (Grochowski, 1896) 

Genus Artemia Leach, 1819 

 

Artemia salina has been for a long time the only species belonging to the 

genus. The earliest genetic studies on chromosomes led to recognize first 

two different reproductive modes, parthenogenesis and bisexuality 

(Artom, 1906, 1911), and then to distinguish into several sexual sibling 

species and a number of parthenogenetic forms, so that the systematic of 

the genus has been reviewed during all the second half of the previous 

century (Halfer Cervini et al., 1968; Clark and Bowen, 1976; Bowen et al., 

1980; Abreu-Grobois and Beardmore, 1982; Barigozzi, 1972, 1974, 1980). 

Nowadays the denomination Artemia salina is maintained only for the 

original material upon which the first description was made and for the 

European sexual brine shrimp (Mura 1990) and multidisciplinary 

approaches have been used to characterize Artemia populations (Gajardo 

et al,. 2002, Mura et al., 2006; Maniatsi et al., 2011). 

Artemia has been used as a model organism in many studies concerning 

physiology, ecotoxicology, genetics, phylogeography (Saez et al., 2000; 

Barahona and Sanchez-Fortún, 1999; Papeschi et al., 2008; Baxevanis et 

al., 2006; Muñoz et al., 2008) so much that it is considered a sort of 

“aquatic Drosophila”(Abreu-Grobois and Beardmore 1982; Gajardo and 

Beardmore 2001). That is due to the convenience with which Artemia 
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cysts may be stored, the ease with which an active population may be 

generated in the laboratory within a few days and the handiness with 

which the environmental parameters may be quantified to design an 

experiment. 

In addition, Artemia is widely known for its beneficial effect in salt 

production as a filtrating and purifying organism in the brine, and for its 

extensive use in aquaculture as live food for fish and crustacean larvae 

(Lavens and Sorgeloos, 2000; Dhont and Sorgeloos, 2002; Dhont and Van 

Stappen, 2003; Kolkovski et al., 2004). 

 

3.1.- Morphology  

The crustacean class Branchiopoda is a morphologically diverse group 

of ecologically important freshwater organisms including the orders 

Anostraca, Notostraca, Concostraca and Cladocera. Branchiopod fossil 

record extends back to the upper Cambrian (Walosseck, 1993). 

Artemia is a typical anostracan branchiopod with a segmented, 

elongated body, in which it is easy to distinguish a head, a thorax and an 

abdomen (Figure 1). 

All the body is covered with a thin flexible exoskeleton of chitin, which 

sheds periodically to allow the growth of the animal. The total length is 

about 8 ‒ 10 mm for adult males and 10 ‒ 12 mm for adult females, 

depending on the species. Within the same species, size may also vary 

depending on the environmental parameters as temperature, salinity 

and pH (Amat, 1985; Ben Naceur et al., 2012).  

The head is composed of six fused segments and bears a median eye and 

a pair of large, pedunculated compound eyes, first antennae, second 
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antennae, mandibles, first and second maxillae. The thorax is constituted 

by eleven segments, each provided whit a pair of appendices 

(thoracopods) with respiratory, locomotory, and filter feeding functions. 

The abdomen extends behind the thorax and is composed of eight 

annular segments. It lacks appendices (phyllopods) and ends with a 

telson or furca. The first two abdominal segments correspond to the 

genital segments and they bear the gonopods (Amat, 1985).  

 

 

                       

 

  

 

Figure 1. External morphological Artemia features 
 ( female and male) 

Photo credit: “own work” 
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As is typical in anostracans, Artemia displays external sexual 

dimorphism. The males show the second antennae enlarged and 

modified into hooked claspers used during mating to hold the female, 

and a pair of retractile penises on the genital segments, which include 

two separate reproductive systems, each consisting of testis, seminal 

vesicle and vas deferens. In the females, the second antennae are small 

and simple and act as sensorial appendages, and the reproductive 

system consists of two tubular ovaries, two pouch-like oviducts and a 

median uterus, which lies within a single ovisac situated just behind the 

11th pair of thoracopods. Attached to the uterus are four clusters of shell 

glands (Amat, 1985; Criel and MacRae, 2002). 

 

3.2.- Ecology and life cycle 

Artemia is the most common invertebrate in hypersaline ecosystems such 

as inland salt lakes, coastal lagoons, ponds and solar saltworks 

(Triantaphyllidis et al., 1998). These aquatic biotopes have a markedly 

variable chemistry and seasonality, and they are commonly 

characterized by their high productivity and low species diversity (Lenz 

and Browne, 1991). 

Salinity is certainly the predominant abiotic factor determining the 

presence or absence of Artemia since it conditions primarily the presence 

of potential predators, against which brine shrimp do not have any 

anatomical nor behavioural defence mechanisms. The other variables as 

temperature, light intensity, primary food production, may have an 

influence on the dynamic of the Artemia population, or may cause only a 

temporary absence of brine shrimp (Persoone and Sorgeloos, 1980; Van 



  General Introduction 

 

29 

 

Stappen, 2009).  

The species of the genus Artemia display an exemplary series of 

biochemical and physiological adaptations to face the strong seasonal 

fluctuations of environmental parameters (mainly salinity and 

temperature) of these biotopes (Clegg and Trotman, 2002). First of all, 

brine shrimps are considered extremely osmotolerant organisms (Van 

Stappen, 2002). They live in environments with salinities ranging from 

45 g/L to up to 370g/L and different anionic compositions (chloride, 

sulphate or carbonate waters) (Bowen et al., 1985, 1988; Triantaphyllidis 

et al., 1995; Abatzopoulos et al., 2003; Van Stappen, 2002). This is due to 

its efficient osmoregulatory capacity that consists of an active excretion 

of salt by phyllopods. Actually, the animal is able to exist and reproduce 

at normal sea water salinities but, because often predators will also be 

present, brine shrimp is generally found in nature only in waters of high 

salinity (> 70 g/L) (Bowen et al., 1978; Clegg and Trotman, 2002). 

Artemia is also a eurythermal crustacean. It inhabits waters with 

different temperature regime, which are exposed to diverse climatic 

conditions from humid to arid climate types, and situated at different 

altitudes from sea level up to 4500 m (Persoone and Sorgeloos, 1980; 

Bowen et al., 1985, 1988; Vanhaecke et al., 1987; Campos et al., 1996; 

Gajardo et al., 1999; Van Stappen et al., 2003, 2008). The effect of 

temperature on the distribution of brine shrimp has been the subject of 

many studies, showing interspecific range of tolerance (Vanhaecke et al., 

1984; Lenz, 1987; Browne et al., 1988; Vanhaecke and Sorgeloos, 1989; 

Abatzopoulos et al., 2003). Generally Artemia populations survive at 

temperatures ranging from 5°C to 35°C, with the species Artemia 
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franciscana also occurring at even higher temperature (Clegg et al., 2000; 

Kappas et al., 2004).  

Saline waters are often characterized by low concentration of dissolved 

oxygen (< 2 ml O2/L, hypoxic condition). At this regard, brine shrimp is 

able to regulate the concentration of respiratory pigment to increase the 

oxygen-carrying capacity of the blood; moreover, Artemia can synthesize 

different types of hemoglobin, specifically HbIII type which has a higher 

oxygen affinity (Bowen et al., 1978; Clegg and Trotman, 2002). 

An additional adaptive strategy of Artemia to the variability and 

unpredictability of these habitats is a flexible life cycle. Artemia can 

reproduce both by ovoviviparity (producing free swimming nauplii) 

and by oviparity (producing diapausing cysts) and switch these modes 

of reproduction depending on the environmental conditions (Criel and 

MacRae, 2002; Clegg and Trotman, 2002). Under adverse conditions, 

they produce resistant, diapausing cysts (encysted embryos enveloped 

in a shell or chorion) which float and strand along the banks of the 

saltpans or lakes, where they dehydrate.  When the environment 

becomes appropriate again, these cysts resume embryonic development, 

do hatch and a living population starts anew (Lavens and Sorgeloos, 

1987). 

If, on one side, these resistant eggs allow the continuity and the 

persistence of the population, on the other side, they are also very 

important for the dispersal of populations. As Artemia is incapable of 

active dispersion, waterfowl, wind and human activities are the most 

important dispersion vectors to spread the cysts to other water bodies 

(Gajardo et al., 2002; Figuerola et al., 2002, 2005; Sanchez et al., 2007).  
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Reproduction in Artemia is one of the most fascinating aspects of their 

biology. The genus includes both gonochoric sexual species, with 

separate males and females, and numerous parthenogenetic (asexual) 

lineages (Gajardo et al., 2002). The two modes of reproduction, sexual 

reproduction and thelytokous parthenogenesis, are alternative and 

exclusive modes. 

As mentioned above, Artemia species and strains can reproduce both by 

ovoviviparity and oviparity and females can switch in-between two 

reproduction cycles from one mode of reproduction to the other. Mature 

eggs (fertilized or not) normally develop into free-swimming nauplii 

which are released by the mother. In adverse conditions, the embryos 

only develop up to the gastrula stage, then they get surrounded by a 

thick shell (secreted by the brown shell glands located in the uterus) and 

enter a state of metabolic standstill or dormancy (diapause) to be 

released by the female as cysts (or “resting eggs” or “diapausing eggs”). 

Diapausing cysts can withstand a wide variety of extraordinary 

environmental stresses, including long-term anoxia, temperature 

extremes, desiccation, g-irradiation (Persoone and Sorgeloos, 1980). 

They usually float in the high salinity brines and are blown ashore, 

where they accumulate and dry. Dormancy is terminated by a 

dehydration-rehydration cycle. The rehydrated cysts exist in a quiescent 

state termed anhydrobiosis (Browne and Bowen, 1991) and they can 

resume their further embryonic development when hydrated in optimal 

hatching conditions. 

In the first larval stage, nauplii do not feed as their digestive system is 

not functional yet; they thrive completely on their yolk reserves. After 
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about 8 h, the animal is able to filter out small food particles (1 to 50 µm) 

by the second antennae, being ingested into the functional digestive 

tract. They take two weeks to reach to adult stage, surviving then several 

months depending on the species and on the environmental conditions 

(Amat, 1985).  

 

3.3.- Biodiversity and biogeography 

Artemia has a cosmopolitan distribution, since it is distributed over all 

continents, except Antarctica. Although it has been recorded in nearly 

600 locations, the distribution of the genus has yet to be considered 

provisional, since it reflects exploration activities carried out so far, with 

all their limitations (natural, socio-political and linguistic barriers) 

(Vanhaecke et al., 1987; Triantaphyllidis et al., 1998; Van Stappen, 2002; 

Muñoz and Pacios, 2010)( Figure 2).  

The Artemia genus includes both gonochoric sexual species with 

separate males and females, and a large number of obligate 

parthenogenetic lineages (Gajardo et al., 2002; Baxevanis et al., 2006). 

Currently seven sexual species have been documented in the scientific 

literature, with six of them described. Some of them have a vast area of 

distribution, whereas others are known from a single site. In the Old 

World, A. salina (Linnaeus 1758) occurs in the Mediterranean region and 

South Africa (Amat et al., 1995 a,b; Kaiser et al., 2006); A. sinica (Cai 

1989) is broadly distributed in China and Inner Mongolia; A. urmiana 

(Günther 1890) is endemic to lake Urmia and surrounding area (Iran) 

and Crimean salt lakes (Abatzopoulos et al., 2009); A. tibetiana 

(Abatzopoulos et al., 2002a; Van Stappen et al., 2007) is only found in the 
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Tibetan plateau. Different studies (Pilla, 1992; Pilla and Beardmore, 1994; 

Litvinenko and Boyko, 2008) have confirmed the separate species status 

of a not yet described Artemia sp. from a single cyst sample (ARC code 

1039) originated from an unknown location in Kazakhstan. In the New 

World, A. franciscana (Kellogg 1906) has a wide natural distribution area 

including North, Central and South America, whereas A. persimilis 

(Piccinelli and Prosdocimi, 1968) is only found in the extreme south of 

the continent (Southern Argentina and Chile)(Kappas et al., 2009).  

Parthenogenetic populations occur only in the Old World over a vast 

geographic area, from the Canary Islands in the west to China in the east 

(Gajardo et al., 2002; McMaster et al., 2007). In Australia, 

parthenogenetic populations of Artemia have been introduced and they 

may coexist with endemic brine shrimps of the genus Parartemia 

(McMaster et al., 2007). 

Currently the biodiversity of the genus Artemia is dramatically affected 

by two main causes, the loss of habitats and the introduction of invasive 

species (Amat et al., 2007).  

In that regard, A. franciscana, which is the species commonly used in 

aquaculture activities, has become an extremely competitive species 

outside its native range. Introduced populations of A. franciscana have 

been recorded in numerous locations, including Europe, Africa, 

Southeast Asia, Australia where they have often displaced the 

autochthonous species (Amat et al., 2005, 2007; Green et al., 2005; Mura 

et al., 2006; Van Stappen et al. 2007;  McMaster et al., 2007).  
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All sexual Artemia species are diploid and they have a chromosome 

number of 2n=42, with the exception of A.persimilis which has an 

additional chromosome for aneuploidy, 2n=44 (Abatzopoulos et al., 

2002b). Parthenogenetic strains are characterized by different ploidy 

levels (diploid, triploid, tetraploid and pentaploid) (Barigozzi, 1974; 

Abatzopoulos et al., 2002b). The parthenogenetic diploid lineages are 

automictic while the polyploidy lineages are apomictic parthenogens 

(Barigozzi, 1974; Abreu-Grobois, 1987). All parthenogenetic strains are 

often grouped under the binomen Artemia parthenogenetica (Artom, 

1931). Since mixed ploidy levels often occur in natural parthenogenetic 

populations, we have chosen to refer to parthenogens as populations, 

strains or clones, as suggested by Abatzopoulos et al. (2002b). 

Artemia inter- and intra-specific biodiversity has been studied by 

morphology studies, morphometry, cytogenetics, and over recent years 

through a variety of molecular markers and techniques (Amat, 1980; 

Barigozzi et al., 1984, 1987; Gajardo et al., 2002; Kappas et al., 2004; Mura 

and Brecciaroli, 2004; Mura and Nagorskaya, 2005; Baxevanis et al., 2005, 

2006; Qiu et al., 2006; Hou et al., 2006; Muñoz et al. 2008, 2010, 2013; 

Maniatsi et al., 2011).  

Evolutionary relationships between Artemia species have been 

investigated using nuclear and mitochondrial DNA molecular markers 

in several studies (Baxevanis et al., 2005, 2006; Qiu et al., 2006; Hou et al., 

2006; Muñoz et al., 2008, 2010, 2013; Maniatsi et al., 2011). They agree 

that A. persimilis first diverged from the common ancestor of all Artemia 

species between 80-90 MYA at the time of the separation of Africa from 

South America while Asian species, A. urmiana, A. sinica, A. tibetiana, 
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and Artemia sp. Kazakhstan diverge more recently (less than 8 MYA). 

These Asian species may have been involved in the origin of 

parthenogenetic strains (Baxevanis et al., 2006; Hou et al., 2006; Kappas 

et al., 2009; Muñoz et al., 2010; Maniatsi et al., 2011).  

Molecular data also suggest that the origin of parthenogenesis in Artemia 

is polyphyletic (Baxevanis et al., 2006; Muñoz et al., 2010; Maniatsi et al., 

2011) but the phylogenetics of asexual lineages have not yet been fully 

resolved. Mitochondrial and nuclear phylogenies indicated that diploid 

and triploid parthenogenetic Artemia strains are closely related to A. 

urmiana, Artemia sp. Kazakhstan and A. tibetiana, ruling out A. sinica. In 

contrast, at least some tetraploid clones would have a separate maternal 

origin as they are closely related to A. sinica (Baxevanis et al., 2006; 

Muñoz et al., 2010; Maniatsi et al., 2011). 

 

3.4.- Rare males in Artemia 

Parthenogenetic diploid Artemia populations reproduce through 

automictic parthenogenesis and retain the ability to produce males 

regularly in low proportions, typically less than 1% in both laboratory 

and field studies. These are usually known as rare males (Stefani, 1964; 

Bowen et al., 1978; MacDonald and Browne, 1987; Amat et al., 1991; Cai, 

1993; Mura and Nagorskaya, 2005). The mechanisms behind the 

production of these rare males in parthenogenetic diploid Artemia have 

received some attention and they are thought to be linked to the 

cytological mechanisms underlying automictic parthenogenesis 

(Noughé et al., 2015b).  

Automictic parthenogenesis involves the reshuffling of allelic variants 
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within an individual in a modified meiotic process (Abreu-Grobois, 

1987) but the cytogenetic mechanisms to restore the diploid condition 

and, then, those involving the production of rare males in Artemia have 

been uncertain until very recently.  

As in birds, Artemia females are heterogametic (ZW) while males are 

homogametic (WW) (Bowen, 1963, 1965; De Vos et al., 2013). On the 

basis of cytological observations, Stefani (1964) initially proposed that 

Artemia rare males arise as the result of fusion of two haploid Z cell in 

rare event of terminal fusion while females arise from central fusion 

event. A pilot study based on allozyme electrophoresis suggested that 

all the offspring of a female, including rare males, were genetically 

identical to their mother (Abreu-Grobois and Beardmore, 2001). This 

would mean that if a female is heterozygote at different loci, this 

maternal heterozygosity is largely maintained across generations. Since 

the mechanism proposed by Stefani (1964) would have involved 

homozygosity at all autosomal loci, not only at the sex locus, they 

suggested that rare males may be produced from a rare recombination 

event between the homologous sex chromosomes which induce the 

segregation of sex loci between first meiotic division products. 

Recent work by Noughé et al. (2015b) confirmed the hypothesis of 

Abreu-Grobois and Beardmore (2001) by studying the patterns of 

population-wide heterozygosity for 12 microsatellite loci in two natural 

populations and in strains maintained over 36 generations in the 

laboratory. Both strains and populations retained heterozygosity. 

Therefore, automixis with central fusion in combination with low rates 

of recombination is the reproductive mode of Artemia and the occasional 
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recombination between sex chromosomes in the heterogametic female 

seems to be the explanation for the origin of rare males. If the sex-

determination locus is close to the centromere, it remains heterozygous 

most of the time, leading to female offspring. When a rare recombination 

event occurs, it leads to segregation at the sex locus and the production 

of ZZ males.  

 

Artemia rare males have normal and functional reproductive organs and 

display normal sexual behaviour (MacDonald and Browne, 1987). They 

are capable to produce sperm, which is slightly larger than those of 

sexual males (6.6 μm vs. 4.1 μm), and clasp females (Stefani, 1964; 

MacDonald and Browne, 1987). The sexual functionality of rare males is 

less known. Although, rare males have not been shown to fertilize 

females from their own diploid parthenogenetic lineages (Stefani, 1964; 

MacDonald and Browne, 1987) or sexual females from A. franciscana, A. 

persimilis or A. salina (MacDonald and Browne, 1987; but see Bowen et 

al., 1978), they can fertilize sexual females of the closely related species 

A. urmiana (Bowen et al., 1978) and A. sinica (Cai, 1993) producing viable 

offspring, although the data are very limited. In their study, Bowen et al. 

(1978) documented a transfer of genes from three rare males from 

Yamaguchi (Japan) parthenogenetic population to an A. urmiana female 

by polymorphism of three genetic markers (one haemoglobin and two 

esterase isozymes) but they also obtained viable offspring when mating 

A. franciscana females with these rare males. 

Although rare males were previously described as meiotic mistakes 

(MacDonald and Browne, 1987), their production may instead provide a 
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fitness advantage to the parental females and/or have an evolutionary 

importance. Fertile matings between rare males and females from close 

sexual species may be important for the persistence of Artemia asexual 

lineages if rare males are capable to transmit asexuality genes to the 

offspring, converting a proportion of hybrid offspring to obligate 

asexuality (contagious parthenogenesis). The coexistence of Artemia 

parthenogenetic lineages with their close sexual relatives makes possible 

such gene exchange. This mechanism would provide an opportunity for 

the recurrent emergence of new parthenogenetic lineages, ensuring the 

longer persistence of asexuality.   

For example, recent molecular analysis of polyploidy parthenogenetic 

Artemia strains (Maniatsi et al., 2011) hypothesized that parthenogenetic 

rare males would be involved into the origin of triploid asexual strains 

by fertilizing an unreduced ovum.  

 

 

4.- MOLECULAR MARKERS TO UNDERSTAND THE 

EVOLUTION OF PARTHENOGENESIS 

Contemporary knowledge of the origin and evolution of most asexual 

clones and the reconstruction of phylogenetic relationships between 

sexual and asexual taxa is largely based on the use of molecular markers 

(Simon et al., 2003).  

Phylogenetic inferences are used to address several aspects of the 

evolution of parthenogenesis. First of all, they allow inferring the 

number of independent events leading to asexuality and distinguishing 

if parthenogenetic lineages have a monophyletic or polyphyletic origin 
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(for example identifying the number of maternal lineages in the 

parthenogenetic strains and their monophyly or not). Second, they are 

useful to estimate the age of parthenogenetic lineages. Finally, in 

conjunction with patterns of marker distribution in putative ancestral 

sexual lineages, they can be used to investigate the possible mechanisms 

responsible for the loss of sex (Simon et al., 2003). 

Evolutionary relationships among organisms can be inferred by 

constructing a phylogenetic tree. A tree is a graphical representation of 

evolutionary history of a group of organisms which consists of nodes 

and branches. Branches are connected by adjacent nodes and each node 

represents a single taxonomic unit characterized by species, populations 

or individuals (Graur and Li, 2000). In the context of evolution of 

parthenogenetic lineages, phylogenetic trees are generally rooted with 

the closest sexual outgroup to reconstruct the history of the loss of sex 

and assuming (1) that sexual reproduction is the ancestral state and (2) 

that the loss of sex is irreversible (Simon et al., 2003; but see Domes et al., 

2007). In this regard, Domes et al. (2007) suggested that Crotoniidae 

mites reevolved sex within the ancient clade of parthenogenetic 

Camisiidae, possibly as adaptation to certain environmental conditions 

under which sexual reproductive mode prevails. That is an exceptional 

case of breaking Dollo’s law (Gould, 1970), implying that 

parthenogenesis is not necessarily an evolutionary dead end.  

Genetic markers such as microsatellites and mitochondrial and nuclear 

DNA sequences can be also used to determine the genotypic identity of 

populations or individuals and to carry out parentage analysis. For 

example, microsatellite markers with high level of polymorphism are 
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powerful tools for assessing genetic relatedness between individuals or 

closely related taxa (Guichoux et al., 2011; Kalia et al., 2011). By 

genotyping a few loci, they provide information that allows ruling out 

parentage even of hybrid individuals (Delmotte et al., 2001; Lutes et al., 

2011). 

 

4.1.- Mitochondrial and nuclear DNA sequences.  

Both Mitochondrial and nuclear DNA molecular markers are used in 

molecular ecology and evolutionary analyses but their different features 

make them more appropriate for different uses. 

The mitochondrial DNA is a small circular molecule ~17 kb in length 

that encode the major enzymes for oxidative metabolism and ATP 

production. The mitochondrial  genome in animals typically contains 37 

genes (13 protein- coding, two ribosomal, and 22 transfer RNA genes) 

and one major non-coding region, the displacement loop (D-loop) which  

is responsible for replication and transcription of the molecule. 

Mitochondrial genome is inherited cytoplasmically and maternally. 

Numerous studies have shown that the molecule evolves rapidly, 

providing substantial amount of variability within and among closely 

related species (Crease et al., 1989). Therefore, sections of mtDNA such 

as cytochrome oxidase gene (COI), 12S and 16S ribosomal DNA are 

widely used for DNA barcoding and phylogeography studies (Lunt et 

al., 1996; Hebert et al., 2003).  

In the genus Artemia, the complete mitochondrial genome was 

sequenced first in A. franciscana (Valverde, 1994) and recently in A. 

urmiana and A. tibetiana (Zhang, 2013). In A. franciscana, mtDNA has 
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15,822 base pairs (bp) in total length and includes two ribosomal RNAs 

(12S and 16S), 22 tRNAs, three subunits of cytochrome c oxidase (CO I, 

II and III), two subunits of the H+ATP synthase (ATPase 6 and ATPase 

8), the cytochrome b (Cyt b), and seven subunits of the NADH 

dehydrogenase (ND 1 to 6 and 4L) (Valverde, 1994). 

In Artemia, COI sequences have been used for example to explore the 

patterns of genetic diversity, phylogenetic relationships and to examine 

the phylogeography of both parthenogenetic strains and sexual species 

(Hou et al., 2006; Muñoz et al., 2008, 2010, 2013; Maniatsi et al., 2011). 

 

The nuclear DNA is contained within the nucleus of eukaryotic cell and 

encodes for the majority of the genome of these organisms. The structure 

of nuclear DNA is linear in each chromosome and adheres to Mendelian 

inheritance, with information coming from two parents, one male and 

one female.  

Phylogenomic analysis of 62 nuclear protein-coding sequences has 

revealed all the complex arthropod relationships (Regier et al., 2010). In 

Artemia, mitochondrial and nuclear sequences were used together to 

assess patterns of congruence and, then, resolve the phylogenetic 

relationship among sexual species (Baxevanis et al., 2006; Hou et al., 

2006; Kappas et al., 2009). 

 

In strictly unisexual lineages the whole genome is inherited as a single 

linkage group, therefore phylogenies based on maternally inherited (e.g. 

mtDNA) and nuclear markers should correspond perfectly. Indeed, 

since recombination does not occur, nuclear and mitochondrial genomes 
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are inherited as one unit. In contrast, if unisexual lineages result from 

hybridization with interspecific sexual relatives, or if rare sex occurs 

within unisexual lineages, incongruence between nuclear and 

mitochondrial phylogenies should be found, which will provide 

information on the paternal and maternal origin of the hybrid (Simon et 

al., 2003). 

If genotypic diversity in the nuclear and mitochondrial genomes has 

arisen after the monophyletic loss of sex, parallel divergence in the two 

genomes is expected. Furthermore, mitochondrial genomes within the 

obligate parthenogens should form a monophyletic group. In contrast, if 

asexuality has arisen polyphyletically, there may be a divergence in the 

mitochondrial and nuclear genomes. Diversity in each genome will 

reflect the random capture of genotypic diversity from sexual ancestors 

(Crease et al., 1989). 

 

4.2.- Microsatellites.  

Microsatellites (highly variable short tandem repeat) markers are short 

and tandemly repeatable sequences of 1–6 nucleotides found at high 

frequency in the nuclear genomes of most taxa (Selkoe and Toonen, 

2006). As such, they are also known as simple sequence repeats (SSR), 

variable number tandem repeats (VNTR) and short tandem repeats 

(STR). A microsatellite locus typically varies in length between 5 and 40 

repeats; the DNA surrounding a microsatellite locus is termed the 

flanking region. Because the sequences of flanking regions are generally 

conserved (i.e. identical) across individuals of the same species and 

sometimes of different species, a particular microsatellite locus can often 



General Introduction 

44 

 

be identified by its flanking sequences (Selkoe and Toonen, 2006; Hodel 

et al., 2016).  

Microsatellites occur at thousands of locations within an organism's 

genome; additionally, they have a higher mutation rate than other areas 

of DNA leading to high genetic diversity in the form of alleles with 

different number of repeats. Microsatellite markers are normally very 

species-specific and, therefore, they must be independently developed 

for each organism. These markers have been applied to understand 

molecular taxonomy, hybridization, sex determination, inter and 

intraspecific differentiation and phylogenetic reconstruction in a wide 

range of organisms (Selkoe and Toonen, 2006; Hodel et al., 2016). 

In Artemia, 10 polymorphic microsatellite markers are available for A. 

franciscana (Muñoz et al., 2008) and 14 for diploid parthenogenetic 

Artemia (Muñoz et al., 2008; Noughé et al., 2015a). They have been useful 

to investigate parentage of hybrid individuals and to characterize 

parthenogenetic populations (Maniatsi et al., 2011). 

 

 

5.- PRINCIPAL OBJECTIVES AND STRUCTURE OF THIS 

THESIS 

This thesis explores the origin and evolution of Artemia reproductive 

and genetic diversity, with a special focus on using molecular markers 

to understand the mechanisms behind the generation of new 

parthenogenetic lineages, including hybridization and contagious 

parthenogenesis and the potential role of rare males. Few experimental 

systems allow a direct comparison of the genetic and evolutionary 
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consequences of sex versus asexual reproduction. They are organisms 

showing the coexistence of different reproductive modes. As shown 

above, Artemia includes gonochoric sexual species with separate males 

and females, and lineages of obligate parthenogenetic populations of 

different ploidy levels, which often co-occur (Abatzopoulos et al., 

2002b). Diploid parthenogenetic lineages produce occasional fully 

functional rare males (Stefani, 1964; Bowen et al., 1978; MacDonald and 

Browne, 1987; Amat et al., 1991; Cai, 1993; Mura and Nagorskaya, 2005), 

which might be involved in the origin of new parthenogenetic lineages 

(Simon et al., 2003; Innes and Hebert, 1988; Lynch et al., 2008; 

Engelstädter et al., 2011; Eads et al., 2012). In addition, in Artemia 

interspecific hybridization, which is known to occur (Bowen et al., 1978; 

MacDonald and Browne, 1987; Cai 1993; Kappas et al., 2009), could also 

result in the generation of new parthenogenetic lineages. Such 

characteristics make the brine shrimp an exceptional model system to 

investigate evolutionary transitions between reproductive systems and 

to understand the mechanisms generating genetic diversity of asexual 

lineages in the genus.  

Below I give a brief overview of the main objectives to achieve in 

this study, followed by the summarized description of their attainments, 

according to chapters that correspond to already published papers. The 

methodology used to establish laboratory populations of Artemia, to set 

up the cross-mating experiments, to analyze offspring quality and to 

perform phylogenetic and paternity analyses are described in detail in 

each chapter.  

These chapters maintain the uniformity requirements of the journals in 
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which they were published, but they were edited to facilitate their 

reading and their adaptation to the format of this thesis. 

 

CHAPTER 1 explores how and where asexuality evolved in the 

Artemia genus. Previous analyses suggest that diploid parthenogenetic 

lineages of Artemia originated in an unknown region of Central Asia. 

Consequently, we examine the genetic diversity of diploid asexual 

lineages focusing our attention to this specific geographic region. We 

sequence and analyze mitochondrial and nuclear genes from an 

extensive set of populations of diploid parthenogenetic Artemia and 

sexual species from Central and East Asia to shed light on their 

evolutionary origin and the geographic origin of the parental taxa. We 

use phylogenetic analysis to understand how many times the loss of sex 

occurred in Artemia and to find potential discordances between 

mitochondrial and nuclear markers to infer the possible genetic 

mechanisms involved in the transition from sexual reproduction to 

asexuality.  

 

CHAPTER 2 investigates the occurrence and possible 

reproductive role of Artemia rare males. It is an extensive study whose 

specific aims are: (i) to describe the frequency of males in numerous 

populations of diploid parthenogenetic Artemia from a wide range of 

geographical locations and to test whether there was a geographic 

pattern of their distribution; (ii) to describe rare males morphologically 

in the context of the variation in closely related sexual Asian Artemia 

species; (iii) to assess the reproductive role of rare males performing 
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cross-mating experiments with females of sexual Asian related species 

(Artemia urmiana, Artemia sinica, Artemia tibetiana, Artemia sp. 

Kazakhstan); (iv) characterize the viability of F1 hybrid offspring and (v) 

to confirm genetically both the identity and functionality of rare males 

using DNA barcoding and microsatellite loci in the parents and in the 

offspring involved in the cross-mating experiments.  

 

CHAPTER 3 investigates whether Artemia has the potential of 

generating parthenogenetic strains through contagious parthenogenesis. 

For this purpose, (i) we assess the survival and sex ratio of the hybrid 

ovoviviparous offspring obtained from the previous crosses (chapter 2) 

between rare males and Asian sexual species females, (ii) we carry out 

cross-mating experiments between these F1 hybrid individuals to assess 

their fertility, (iii) we estimate the viability and the reproductive mode of 

the resulting F2 offspring; (iv) finally we demonstrate genetically that 

parthenogenetic F2 individuals are indeed the descendants of the 

original crosses showing that new parthenogenetic lineages can indeed 

result from rare males fertilizing sexual females.  
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Abstract 

There is wide interest in understanding how genetic diversity is 

generated and maintained in parthenogenetic lineages, as it will help 

clarify the debate of the evolution and maintenance of sexual 

reproduction. There are three mechanisms that can be responsible for 

the generation of genetic diversity of parthenogenetic lineages: 

contagious parthenogenesis, repeated hybridization and microorganism 

infections (e.g. Wolbachia). Brine shrimps of the genus Artemia 

(Crustacea, Branchiopoda, Anostraca) are a good model system to 

investigate evolutionary transitions between reproductive systems as 

they include sexual species and lineages of obligate parthenogenetic 

populations of different ploidy level, which often co-occur. Diploid 

parthenogenetic lineages produce occasional fully functional rare males, 

interspecific hybridization is known to occur, but the mechanisms of 

origin of asexual lineages are not completely understood. Here we 

sequenced and analysed fragments of one mitochondrial and two 

nuclear genes from an extensive set of populations of diploid 

parthenogenetic Artemia and sexual species from Central and East Asia 

to investigate the evolutionary origin of diploid parthenogenetic 

Artemia, and geographic origin of the parental taxa. Our results indicate 

that there are at least two, possibly three independent and recent 

maternal origins of parthenogenetic lineages, related to A. urmiana and 

Artemia sp. from Kazakhstan, but that the nuclear genes are very closely 

related in all the sexual species and parthenogenetic lineages except for 

A. sinica, who presumable took no part on the origin of diploid 

parthenogenetic strains. Our data cannot rule out either hybridization 
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between any of the very closely related Asiatic sexual species or rare 

events of contagious parthenogenesis via rare males as the contributing 

mechanisms to the generation of genetic diversity in diploid 

parthenogenetic Artemia lineages. 
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Introduction 

There is wide interest in understanding how genetic diversity is 

generated and maintained in parthenogenetic lineages, as it will help 

clarify the debate of the evolution and maintenance of sexual 

reproduction. Many asexual species are genetically diverse and this 

genetic diversity can to some extent ameliorate the lack of meiotic 

recombination [1,2]. Several different genetic mechanisms underlie 

transitions from sexual reproduction to asexuality, and these 

mechanisms influence in turn the genetic diversity of parthenogenetic 

lineages and their success and persistence [3,4]. However, some 

mechanisms of origin of parthenogenetic lineages can be recurrent, 

resulting in many, repeated non-independent but polyphyletic origins. 

One mechanism for the polyphyletic origin of parthenogenetic 

lineages diversity is contagious parthenogenesis [3], in which 

parthenogenetically produced functional rare males mate with sexual 

females and transmit parthenogenesis to their offspring. Some 

parthenogenetic lineages produce functional rare males or invest in male 

function [3,5,6]. In the presence of sexual females of related lineages or 

species, rare males could produce fertile hybrid offspring which would 

inherit the parthenogenesis-inducing alleles. This mechanism has been 

best studied in the water flea Daphnia pulex [4,7–9], but is also known to 

occur in the aphid Myzus persicae [10] and in the parasitoid wasp 

Lisyphlebus fabarum [11]. The genetic consequence of the spread of 

asexuality via contagious mechanism is the recurrent origin of new 

parthenogenetic clones, which will capture some genetic diversity of the 
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maternal sexual species but also maintain some common genomic 

background from their parthenogenetic ancestor.  

A second mechanism is the recurrent generation of multiple 

parthenogenetic lineages through recent hybridization between related 

sexual species [3]. Parthenogenesis can result from hybridization 

between two co-occurring sexual species in vertebrates [12–14] and in 

invertebrates [3,15,16]. The repeated origin of hybrid asexuals might 

generate complex patterns of relationships between the parthenogenetic 

lineages [17]. 

A third mechanism of polyphyletic origin is through infection by 

vertically inherited microorganisms, such as Wolbachia [3]. 

Microorganisms associated with parthenogenesis can alter the 

reproduction of their host to favour their persistence in populations, for 

example by feminizing or killing males or inducing parthenogenesis 

[2,18]. 

If parthenogenetic lineages arise repeatedly trough these 

mechanisms or a combination of them, their genetic diversity may be 

comparable to those of sexual populations [1,19,20]. Such repeated 

transitions between sexual and asexual lineages can generate many 

related but highly diverse asexual lineages which can potentially lead to 

confounding estimates of genetic diversity of parthenogenetic lineages, 

and conclusions of ancient asexuality [16].  

 Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, 

Anostraca) are a good model system to investigate evolutionary 

transitions between reproductive systems as they include sexual species 

and lineages of obligate parthenogenetic populations of different ploidy 
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level [21]. Parthenogenetic populations are found only in the Old World, 

where they co-occur with various sexual species, including A. salina 

(Linnaeus 1758) in the Mediterranean region and South Africa [22], A. 

urmiana (Günther 1899) in and around lake Urmia (Iran) and Crimean 

salt lakes [23], A. sinica in Central and Northern China [24], A. tibetiana in 

the Tibetan plateau [25,26], and likely with a yet undescribed sexual 

species in Kazakhstan [27,28]. Artemia species differ in genetic, 

morphometric, morphological, life history traits [23, 28], and show 

reproductive isolation, although this is weaker between Asiatic species 

[25]. 

 Parthenogenetic diploid Artemia populations are automictic and 

most populations produce fully functional males in low proportions 

(from 1 to 17 per thousand individuals)[29]. These so called rare males 

can produce fertile offspring when mating with females of sexual Asiatic 

species [29]. Assessments of the mitochondrial genetic diversity of 

Mediterranean parthenogenetic Artemia populations suggested that 

there were at least two maternal origins of diploid parthenogenesis from 

a group of closely related Central Asiatic sexual species [30]: one of the 

mitochondrial lineages – largely responsible for the recent expansion of 

diploid parthenogenetic Artemia in the Mediterranean – is closely related 

to those of a sexual undescribed species from Kazakhstan, and the other, 

rarer lineage, which is closely related to haplotypes of Iranian A. 

urmiana. The occurrence of two diploid parthenogenetic lineages, and 

the origin of triploid strains from the common parthenogenetic lineage 

was also supported by a study of microsatellite and mtDNA sequence 

diversity of parthenogenetic populations [31]. Nuclear gene sequence 
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variation such as ITS1 [32], also indicated that there were multiple 

origins of parthenogenesis amongst the sexual species from Asia 

including A. urmiana, A. tibetiana and A. sinica, but as the ploidy of the 

samples was not identified, conclusions could not be drawn regarding 

the origin of diploid parthenogenetic Artemia. However, A. salina and 

the two American species, are only distantly related to parthenogenetic 

lineages [32].  

  Although diploid parthenogenetic Artemia can be identified by 

their morphology, a genetic marker to characterise would be very 

useful. In this respect, a study by Manaffar et al. [33] revealed that the 

digestion of the fragment of exon-7 of Na+/K+ ATPase by Tru1I 

restriction enzyme showed a polymorphism that allowed discriminating 

between sexual species and parthenogenetic populations. The sexuals 

resulted to be homozygote whereas the parthenogens were heterozygote 

in this position.  

 Little is known about the mechanisms of origin of parthenogenetic 

lineages from the ancestral sexual condition, although the possibility of 

an infectious origin of parthenogenetic Artemia lineages through 

Wolbachia parasites has been ruled out [34]. Given the functionality of 

rare males when crossed with Asiatic sexual females, Maccari et al. [29] 

suggested that they may have an evolutionary role through genetic 

exchange between parthenogenetic lineages and Asiatic related sexual 

species. Another possibility would be a hybrid origin between two 

related sexual species which could give rise to parthenogenetic lineages, 

especially given the evidence for interspecific hybridization in Artemia in 

natural populations [35] and in the laboratory [25]. The limited analysis 



Artemia origin and genetic diversity  

 

 

 

59 

of Asiatic diploid parthenogenetic populations, where the coexistence 

with closely related sexual species is more likely, has also hampered our 

understanding of the origin of parthenogenetic lineages.  

 Here we obtained and analysed sequences from one mitochondrial 

and two nuclear genes (including the putatively diagnostic marker 

Na+/K+ ATPase) from an extensive set of populations of diploid 

parthenogenetic Artemia and sexual species with emphasis on Central 

and East Asia in order to gain insights into the evolutionary origin of 

diploid parthenogenetic Artemia, its mode of origin and geographic 

origin of the parental taxa.  

 

Materials and methods 

Samples 

Cyst samples from 15 Eurasian populations of diploid parthenogenetic 

Artemia (from here onwards, we will use ‘parthenogenetic Artemia’ or 

‘parthenogens’ to refer to diploid parthenogenetic Artemia for simplicity) 

were obtained from the cyst bank collection of the Instituto de 

Acuicultura de Torre de la Sal (IATS-CSIC) (Figure 1). Laboratory 

populations were reared from these cyst samples. We assessed the 

reproductive mode of each population using a sex ratio criterion [29] 

and whenever the original cyst samples contained an additional sexual 

species (see Table 1), we obtained pure laboratory parthenogenetic 

populations using morphometric methods (for culture conditions and 

other details see [29]). Cyst samples from Asiatic sexual species were 

also obtained from the same cyst bank collection, including A. urmiana 

from Urmia lake and from Koyashskoe lake, A. tibetiana from four lakes 
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of the Tibetan plateau (Lagkor Co, Gaize, Hayan, Jingyu), an 

undescribed sexual Artemia population from Kazakhstan (originally 

Artemia Reference Center code - ARC 1039, unknown locality) and A. 

sinica from Yuncheng (China) (Figure 1).  
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DNA isolation, polymerase chain reaction, and sequencing 

Total DNA was extracted from cysts using a modified HotSHOT 

protocol [36]. We amplified fragments of one mitochondrial (cytochrome 

c oxidase subunit I, COI) and two nuclear genes (internal transcribed 

spacer 1, ITS1, and Na+/K+ ATPase).  

 The COI fragment was amplified using the primers HCO2198 and 

LCOI490 [37]. PCR was carried out in a total volume of 50 µl containing 

5 µl of template DNA, 0.2 mM of each nucleotide, 0.2 µM of each primer, 

0.05 U of Taq polymerase (Bioline) and 10×Bioline buffer (producing a 

MgCl2 final concentration of 2 mM). The cycling profile consisted of one 

cycle of 3 min at 95°C, followed by 40 cycles of 15 s at 95°C, 20 s at 50°C, 

and 30 s at 72°C, with a final step of 5 min at 72°C.  

 PCR of the ITS1 region was performed using primers PTF and PTR 

[38] in a total volume of 30 µl consisting of 3 µl of template DNA, 0.2 

mM of each nucleotide, 0.2 µM of each primer, 0.03 U of Taq polymerase 

(Bioline) and 10×Bioline buffer (producing a MgCl2 final concentration of 

1.5 mM) using the following conditions: a cycle of 3 min at 95 °C, 

followed by 35 cycles of 60 s at 95°C, 50 s at 59°C, and 90 s at 72°C, and a 

final step of 7 min at 72°C. 

 A fragment of 280-bp, representing exon-7 of Na+/K+ ATPase, was 

amplified using the primers designed by [33]. PCR was performed in a 

total volume of 20 µl, containing 3µl of template DNA, 0.2 mM of each 

nucleotide, 0.2 µM of each primer, 0.02 U of Taq polymerase (Bioline) 

and 10×Bioline buffer (producing a MgCl2 final concentration of 2 mM) 

using the following program: 94°C for 2 min, 32 cycles at 94°C for 25 s 



Chapter I 

64 

 

followed by 56°C for 25 s and 72°C for 1 min, and a final extension at 

72°for 3 min.  

 All amplifications were performed on a Verity 96 well thermal 

cycler (Applied Biosystems). PCR products were purified and sequenced 

by Macrogen Europe Inc. (Amsterdam, The Netherlands). The 

electrophoregrams were checked by eye using CodonCode Aligner v. 3.5 

(CodonCode Corporation, Dedham, MA). COI and ITS1 sequences 

generated were deposited in GenBank (for Accession Numbers see 

Tables 2 and 3) and all alignments are available in Dryad 

(http://doi.org/10.5061/dryad.kd0k4). 

 

Sequence alignment and phylogenetic analyses 

The COI fragment was sequenced in 258 individuals, 165 of which were 

diploid parthenogens (see Table 2). For the nuclear markers we 

sequenced a subset of these individuals, 44 for the ITS1 region (two for 

each population sampled) and 63 for the Na+/K+ ATPase fragment 

(Table 3).  

 To the COI marker alignment we also added 55 published available 

sequences from GenBank (parthenogenetic rare males and females 

KC193638-KC193677, parthenogenetic haplotypes DQ426824-DQ426826, 

haplotypes from parthenogenetic populations and from Artemia sp. 

Kazakhstan GU591380-GU591389 and A.tibetiana EF615588-89). 

Sequences were aligned using ClustalW in MEGA5 [39] using the 

default settings and checked by eye. The number of polymorphic and 

parsimony informative sites was computed with MEGA5.  
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Patterns of nucleotide diversity, synonymous and non-synonymous 

substitutions, population haplotype and nucleotide diversity were 

computed using DnaSP5 [40]. 

 Before phylogenetic reconstruction, sequences were collapsed into 

haplotypes using FaBox v.1.40 [41]. For both COI and ITS1 markers, 

phylogenetic analysis was implemented using Maximum Likelihood 

(ML) approaches in MEGA5 and Bayesian approaches in MrBayes v 

3.2.2  [42] on the Cipres Science Gateway portal [43]. We estimated the 

best-scoring ML tree using the model selected by the inbuilt model 

generator in MEGA5. The robustness of the branches was assessed with 

1000 bootstrap pseudo-replicates. For Bayesian analysis we used the 

default parameters on the Cipres gateway. In two simultaneous runs, 

four Markov chains (one cold and three heated) were started from a 

random tree and run for 1,000,000 generations with sampling frequency 

every 100 generations. The first 2500 trees were discarded as burn-in.  

 In addition, we constructed a statistical parsimony haplotype 

network for COI using TCS v. 1.21 [44] to visualize the genealogical 

relationships between the mitochondrial haplotypes. For this analysis 

we used all the COI sequences generated here, two A. tibetiana 

sequences from GenBank (EF615587-8), the sequences from Maccari et 

al. [29] and Muñoz et al. [30]. For sequences from the latter paper, 

including Mediterranean populations of diploid parthenogenetic 

Artemia, we reconstructed the sequence of each individual from the 

paper haplotype information. 
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Results 

Cytochrome oxidase subunit I  

The sequence alignment was trimmed to 614 bp long, with all the 313 

sequences of the same length. No insertions, deletions or stop codons 

were present. The COI alignment consisted of 143 variable sites and 133 

parsimony informative sites with a total of 144 synonymous and 10 

nonsynonymous substitutions.  

 The sequences generated here collapsed into 45 haplotypes (see 

Table 2). No haplotype was shared between parthenogens and sexuals, 

despite both parthenogens and sexuals coexisting in three of the 

sampled populations. Diploid parthenogenetic populations had a total 

of 15 haplotypes, 11 of them newly found in this study. APD02, the most 

common and widespread haplotype, was found in 99 individuals from 

13 out of the 15 diploid parthenogenetic populations sampled. The next 

most common haplotype, APD05 was found in four populations (URM, 

EGY, ALB and LAG), APD10 in two populations (OYB and AIB), as 

APD11 (ARA and GAH). Haplotypes APD15, APD16 were found in 

both populations from the Altai (MAL and BOL). The remaining nine 

haplotypes were found in single populations. 

 The sexual populations sequenced here had 30 COI haplotypes. We 

found four exclusive haplotypes in the undescribed sexual species from 

Kazahkstan, 12 in A. urmiana from Urmia Lake, and two in A. urmiana 

from Koyashskoe Lake, with no shared haplotypes between these A. 

urmiana populations. The populations of A. tibetiana had 11 haplotypes. 

The population of A. sinica was characterized by two haplotypes. The 

highest haplotype diversity (Hd) was found in A. urmiana from lake 
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Urmia (0.88) and in the parthenogenetic population from Aral Sea (0.87) 

(Table 2). Populations from Koyashskoe Lake, Bagdad saltern, Korangi 

Creek saltern and Gahai Lake amongst the parthenogens and A. tibetiana 

from Gaize Lake among the sexuals were characterized by a single 

haplotype. 

  The nucleotide diversity values (π-values) ranged from 0.0000 to 

0.0145 (Table 2). The highest value was found in two parthenogenetic 

populations from Lagkor Co and Aibi Lake, but the sexual populations 

from Urmia Lake, Kazakhstan and Hayan Lake and the parthenogenetic 

population from Atanosovko Lake also showed high π-values compared 

with the rest of the populations. 

 The ML tree (Figure 2) was obtained using the Tamura-3 parameter 

(T92) plus gamma model, the one selected by the inbuilt model 

generator in MEGA5. The tree showed that all diploid parthenogenetic 

Artemia haplotypes, plus the haplotypes of A. urmiana populations, 

Artemia sp. Kazakhstan and the haplotypes of A. tibetiana from Lagkor 

Co and Gaize Lake formed a highly supported monophyletic lineage. A 

group of diploid parthenogenetic Artemia haplotypes formed a 

polyphyletic, not well supported assemblage amongst haplotypes from 

both A. urmiana populations (lineage group A). A second group of 

haplotypes, including the most common APD02 haplotype, formed a 

monophyletic, but not highly supported lineage, closely related to 

Artemia sp. Kazahkstan and to the lineage of A. tibetiana (which we 

called lineage group B). The haplotype from Kujalnik (rmKUJ1), 

obtained in two rare males [29] formed a well supported sister branch to 

those containing all other parthenogenetic.  
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Figure 2. Maximum 
Likelihood (ML) 
phylogenetic tree of 
diploid parthenogenetic 
Artemia and Asiatic 
sexual species based on 
COI haplotypes.  
Sequence evolution is 
based on the T92 + G 
model. One thousand 
pseudoreplications of 
bootstrapping were used. 
For haplotypes from 
GenBank, the code for 
each haplotype shown 
corresponds to the code 
for the first individual in 
the alignment with that 
haplotype (see text, Table 
2 and Figure 4 for the 
individuals included in 
each haplotype). Sexual 
species are shown in 
bold. Rare males are 
noted by rm followed by 
the population code as 
reported en GenBank. 
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The mtDNA lineages of the other two A. tibetiana populations (Hayan 

and Jingyu Lake) and A. sinica were only distantly related to those of 

diploid parthenogenetic Artemia. The Bayesian consensus tree (Figure 3) 

showed a similar topology, although it resolves the relationships of two 

A. tibetiana lineages. A. tibetiana from GenBank (EF615587) forms a 

highly supported branch with all diploid parthenogens, A. urmiana, 

Artemia sp. Kazakhstan and the haplotypes of A. tibetiana from Lagkor 

Co and Gaize Lake. Lineage group A, with the exception of rmMATA1, 

together with all A. urmiana haplotypes forms a well supported lineage. 

Lineage group B forms a well supported monophyletic lineage and its 

relationship with Artemia sp. Kazakhstan and the haplotypes of A. 

tibetiana from Lagkor Co and Gaize Lake was also highly supported. 

Further differences with the ML analysis are represented by the position 

of AURM010, which in the Bayesian analysis falls at the base of the rest 

of A. urmiana haplotypes and Lineage group A, and by the position of 

rmMATA1 which forms a polytomy more basal in the tree, instead of 

belonging to lineage group A. 

 The statistical parsimony network shows the relationship between 

the mitochondrial haplotypes of parthenogenetic and related sexual 

species more clearly (Figure 4). There were four unlinked networks. The 

two haplotypes from A. sinica formed a network, the two A. tibetiana 

populations from Hayan and Jinyu Lake resulted in a second haplotype 

network, and the two A. tibetiana sequences from GenBank (EF615587-

88) formed a third network. The remaining haplotypes including all 

diploid parthenogenetic samples, A. urmiana, Artemia sp. from 

Kazakhstan and the A. tibetiana populations of Lagkor Co and  
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Figure 3. Bayesian inference of 
phylogenetic relationships of 
diploid parthenogenetic Artemia 
and Asiatic sexual species based 
on COI haplotypes. Support values 
higher than 0.90 are shown. For 
haplotypes from GenBank, the code 
for each haplotype shown 
corresponds to the code for the first 
individual in the alignment with 
that haplotype (see text, Table 2 and 
Figure 4 for the individuals 
included in each haplotype). Sexual 
species are shown in bold. Rare 
males are noted by rm followed by 
the population code as reported en 
GenBank.  
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Figure 4. Statistical Parsimony networks showing the nested relationships of 

diploid parthenogenetic Artemia haplotypes and Asiatic sexual species.  
For further details see full caption on the next page. 
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Gaize Lake were joined in a single network. Haplotypes of diploid 

parthenogenetic Artemia formed three distinct mitochondrial lineage 

groups as in the phylogenetic reconstructions. Lineage group A, with 

eight haplotypes, is nested within the diversity of A. urmiana haplotypes 

and most closely related to haplotypes from Koyashkoe Lake 

population. This is a relatively rare parthenogenetic lineage, but found 

at very geographically widespread populations (Atanosovsko Lake, 

Oybuskoye Lake, Lagkor Co Lake, la Mata Lagoon and Aibi Lake 

parthenogenetic populations). Lineage group B is more common and 

widespread, and is formed by the common haplotype APD02 and a 

number of closely related ones forming a star-like network. Lineage 

group B is closely related to haplotypes from A. tibetiana from Lagkor Co 

and Gaize Lake (AT01, AT08, AT09 and AT10) and Artemia sp. from 

Kazakhstan (KAZSEX01-07), which are also closely related between 

them. There is no geographic association of the two lineages with a well-

defined region because both diploid parthenogenetic haplotype lineage 

groups coexist in Atanosovsko Lake (ATA), Aibi Lake (AIB) and Lagkor 

Co Lake (LAG) populations. Some haplotypes found exclusively in rare 

males from diploid parthenogenetic populations of diverse origins 

(rmPAK from Korangi Creek in Pakistan; rmXIAO from Xiaotan in 

Figure 4. Statistical Parsimony networks showing the nested relationships of 
diploid parthenogenetic Artemia haplotypes and Asiatic sexual species. Black circles 
represent diploid parthenogenetic Artemia haplotypes and coloured circles represent 
Asiatic sexual species. Circle diameter is proportional to the relative haplotype 
frequency. Connecting lines indicate single substitutions and small black circles 
represent putative missing haplotypes. The haplotypes codes correspond to those 
listed in Table 2 or those from GenBank. Rare males are noted by rm followed by the 
population code as reported in  GenBank. 
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China; rmMATA from La Mata in Spain) appeared in the center of the 

network, and were more closely related to haplotypes of sexual 

populations. The haplotype from rare males of Kujalnik (rmKUJ from 

Kujalnik in Ukraine) formed a separate branch to the rest, and would be 

a third group of parthenogenetic lineages. 

 

ITS-1 

The ITS1 sequences, excluding gaps in the alignment, ranged from 991 

(A. tibetiana, Artemia sp. from Kazakhstan, A. urmiana from Koyashskoe 

lake and all the parthenogens) to 1000 bp (A. sinica), including the 

sequences of A. urmiana from Urmia lake which have a variable length 

(994-999 bp). The final ITS1 alignment was 1002 bp long, with 34 

variable sites and 28 parsimony informative sites and collapsed into 14 

haplotypes. Evidence of heterozygosity was found in 5 parthenogenetic 

populations and allele identification in these was straightforward   

(Table 3).  

 Prior to the phylogenetic analysis, we collapsed identical haplotypes 

for each population. Both phylogenetic reconstructions (Maximum 

Likelihood and Bayesian analysis) had a virtually identical topology and 

branch support (Figure 5). The ML tree was obtained using the 

Hasegawa-Kishino-Yano model, the one selected by the inbuilt model 

generator in MEGA5. It showed A. sinica as the most divergent species. 

The remaining samples were very closely related. The parthenogenetic 

samples had a total of nine very closely related haplotypes, one of them 

found in nine populations, was shared with both Artemia sp. from 

Kazakhstan and one of the haplotypes from the Iranian A. urmiana,  
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Figure 5. Phylogenetic relationships of diploid parthenogenetic Artemia and 
Asiatic sexual species based on ITS-1 sequences. The topology inferred by 
Maximum Likelihood (ML) method using HKY model is shown. Bayesian (BA) 
phylogenetic reconstruction showed a very similar topology. The ML bootstrap 
values higher than 50 are shown below the branch, and the Bayesian support 
values over 90% are shown above the branch. Haplotypes found in each 
population are shown, with population codes corresponding to those listed in 
Table 3. Sequences corresponding to heterozygous individuals are noted with the 
polymorphic site in parenthesis. 
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although this latter haplotype contained an indel. The populations of A. 

urmiana from Koyashskoe Lake and A. tibetiana present different 

haplotypes, although still closely related to the parthenogenetic ones.  

 

Na+/K+ ATPase 

The Na+/K+ ATPase alignment was 160 bp long and consisted of 

sequences of 63 individuals. The alignment did not contain indels and 

had nine polymorphic sites (Table 3). Evidence of heterozygosity was 

found in all parthenogenetic populations and in only the sexual 

population from Kazakhstan. The populations from Moimishanskoe 

Lake (Altai), Gahai Lake (China) and Urmia Lake (Iran) share the same 

alleles at all polymorphic sites with the sexual population from 

Kazakhstan (see Table 3). 

 

Discussion 

In order to shed light on the origin and evolution of parthenogenesis in 

Artemia, we explored the genetic variability of nuclear and 

mitochondrial DNA of diploid parthenogenetic strains and sexual 

species, with an emphasis on Asia, the region considered to be the most 

likely centre of origin of asexual lineages [29–31]. Our analyses 

confirmed the existence of at least two and possibly three maternal 

clades of diversity, two of them most related to two different sexual 

Artemia species, A. urmiana and Artemia sp. Kazakhstan in agreement 

with Muñoz et al. [30], but also revealed a possibly new lineage of 

parthenogenetic lineages represented by KUJ [29]. Overall, nuclear 

genes indicate that diploid parthenogenetic Artemia is very closely 
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related to A. urmiana, Artemia sp. Kazakhstan and A. tibetiana, with the 

exclusion of A. sinica. Both nuclear and mitochondrial data for A. sinica 

are very divergent to those of diploid parthenogens, suggesting that this 

species did not contribute to the genetic diversity of diploid 

parthenogenetic Artemia. Our survey substantially expands our 

knowledge of its genetic diversity in Eurasia. 

 Our geographically wider number of Artemia populations sampled, 

inclusion of rare males and samples of a recently found population of A. 

urmiana not sequenced before revealed that the lineages in Muñoz et al 

[45] are not highly supported phylogenetically, as we found further 

intermediate haplotypes and also identified the key role of the new A. 

urmiana population from Koyashskoe Lake. Furthermore, we found that 

the less common mitochondrial group (A) is closely related to 

haplotypes newly sequenced here from A. urmiana from Koyashskoe 

Lake, but occupies a non-monophyletic position in the network between 

both A. urmiana populations, which appears incompatible with a 

mutational origin, and points to a possible event of contagious 

parthenogenesis. In contrast, the most common lineage (B), is 

monophyletic and closely related both to the haplotypes of Artemia sp. 

from Kazakhstan, and to those of two A. tibetiana populations from 

Lagkor Co and Gaize lakes, which represent a new lineage of A. tibetiana 

(see below). Our analysis also revealed a possibly further lineage, so far 

only found in rare males from Kujalnik population, indicating that they 

might be present in some populations at low frequencies, maybe 

resulting from the emergence of new parthenogenetic lineages [29]. 
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 In agreement with previous work [30,38], our results support that 

the Asiatic sexual species A. urmiana, A. tibetiana and the undescribed 

species from Kazakhstan, are closely related such that they might be 

considered a species complex, despite clear morphological differences 

[29,46]. This is further supported by experimental crosses showing that, 

under laboratory conditions there is a proportion of fertile interspecific 

crosses between these sexual species, indicating weak post mating 

isolating barriers to gene flow [25]. 

 A. tibetiana contains several divergent, polyphyletic mtDNA 

lineages, but, in contrast, its nuclear diversity is very homogeneous 

(monomorphic ITS1 and ATP) and shows little or no differentiation to A. 

urmiana and Artemia sp. Kazakhstan. A possibility to explain this pattern 

is that introgression from other species, in particular from females of 

Artemia sp. Kazakhstan, has resulted on capture of mitochondrial 

lineages. The genetic diversity of this species needs to be explored 

further and its taxonomic status might have to be re-evaluated. Given 

that we have a limited number of samples from A. tibetiana, and the 

richness of hypersaline habitats in Tibet is high [47,48], it is likely that 

the level of diversity within A. tibetiana might still be underestimated. 

The mitochondrial lineages of A. tibetiana are diverse and the genetic 

diversity of the rest of the Asiatic species appears to be a subset of it, 

therefore, A. tibetiana might have a key role in the origin of the species 

complex and the origin of parthenogenetic lineages.  

 Although mitochondrial markers have allowed us to identify the 

minimum number of maternal origins of each diploid Artemia 

parthenogenetic lineage, nuclear markers should provide information on 
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both parental species and therefore, shed some light on their modes of 

origin. For example, diploid parthenogenetic lineages resulting from 

hybridization between conspecific or interspecific sexuals are expected to 

have a characteristic signature of high heterozygosity, with diploid 

asexual lineages containing alleles typical of both parental species [49]. If 

asexuality arises by contagious parthenogenesis through rare males, we 

could expect a different maternal origin and possibly distinctive genomic 

component of parthenogenetic lineages. However, repeated gene flow 

through contagious parthenogenesis should result in a regular emergence 

of asexual strains and the genetic differentiation between asexuals and 

sexuals relatives should be low. Our nuclear analysis shows that ITS-1 

from parthenogens is closely related to Artemia sp. from Kazakhstan, A. 

tibetiana and A. urmiana. Some parthenogens and Artemia sp. from 

Kazakhstan share the same haplotype, whereas A. sinica is very 

divergent. Baxevanis et al. [32] found four parthenogenetic Artemia 

lineages, three of which clustering with A. urmiana and A. tibetiana and 

another one more closely related to A. sinica. The closely related nature of 

the sexual species from Asia and the lack of divergence between the 

investigated nuclear genes, however, make it difficult to assess the 

mechanism or mechanisms of origin of parthenogenesis. However, our 

mitochondrial phylogenies do not provide clear evidence of rampant 

contagious parthenogenesis, as it would result in repeated occurrences of 

new asexual strains and higher mitochondrial diversity. Moreover, 

parthenogenetic populations coexisting with the known populations of A. 

urmiana do not have a local origin, as they do not share any haplotypes 

with the local sexual population. On the contrary, only three mtDNA 



Artemia origin and genetic diversity  

 

 

 

81 

lineages are found, one of them a minor lineage identified in rare males. 

That might indicate either that some occasional contagious 

parthenogenesis does occur or that these are low frequency 

parthenogenetic lineages with a higher propensity to produce rare males, 

and have persisted in populations at low frequency. These events would 

increase the diversity of parthenogenetic strains but playing little role on 

the geographical expansion and success of parthenogenetic lineages. 

 The three mtDNA lineages in diploid parthenogenetic Artemia are 

not differentiated in their nuclear DNA. Although this pattern could 

result both from repeated hybridization between two similar lineages or 

from a contagious event between one lineage group and another, the 

possible existence of contagious parthenogenesis is also supported by 

microsatellite data. The set of microsatellite loci developed for diploid 

parthenogenetic Artemia [45] did not amplify consistently in all the 

sexual species from Asia [29,31], suggesting that parthenogenetic strains 

have enough nuclear distinctiveness, and this may be more consistent 

with contagious parthenogenesis than with a hybrid origin, although it 

is possible that different mechanisms underlie the origin of each lineage 

group. 

As we used Manaffar et al.’s [33] primers to amplify and sequence a 

fragment presumably containing a diagnostic SNP between 

parthenogenetic and sexual strains, we were able to test their finding on 

a wider array of samples. Our results indicate that, although most 

samples from a wide range of parthenogenetic populations do meet this 

criterion (position 140 in our alignment, see Table 3), we identified some 

parthenogenetic populations that were homozygous for this position 
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(GAH and MOI) and do not confirm the universality of the 

polymorphism at this site to distinguish parthenogenetic and sexual 

populations.  

 Our data cannot rule out either hybridization between any of the 

very closely related Asiatic sexual species, or rare events of contagious 

parthenogenesis via rare males as the contributing mechanisms to the 

generation of genetic diversity in diploid parthenogenetic Artemia 

lineages. Although our work has provided information on the origin of 

diploid parthenogenetic Artemia, much is still unknown, and the close 

relationship of sexual species has hampered this, therefore, more 

research possibly using genomic approaches is needed to disentangle 

the evolutionary origin of diploid parthenogenetic Artemia. 
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Abstract 

Functional males that are produced occasionally in some asexual taxa - 

called ‘rare males’- raise considerable evolutionary interest, as they 

might be involved in the origin of new parthenogenetic lineages. 

Diploid parthenogenetic Artemia produce rare males, which may retain 

the ability to mate with females of related sexual lineages. Here we (i) 

describe the frequency of male progeny in populations of diploid 

parthenogenetic Artemia, (ii) characterise rare males morphologically, 

(iii) assess their reproductive role, using cross-mating experiments with 

sexual females of related species from Central Asia and characterize the 

F1 hybrid offspring viability, and (iv) confirm genetically both the 

identity and functionality of rare males using DNA barcoding and 

microsatellite loci. Our result suggests that these males may have an 

evolutionary role through genetic exchange with related sexual species 

and that diploid parthenogenetic Artemia is a good model system to 

investigate the evolutionary transitions between sexual species and 

parthenogenetic strains.  
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Introduction 

Parthenogenetic reproduction occurs in one out of 10,000 animal species 

(Lynch et al., 2008). Populations in these species are made of females 

that reproduce through apomixis (strict asexuality where there is no 

meiotic division) or automixis, where some of the products of a single 

meiosis fuse in diverse ways to restore diploidy (Bell, 1982). However, 

the presence of occasional males in all-female populations is not an 

uncommon phenomenon (Schön et al., 2009). Some of these species are 

cyclical parthenogens, where sexual and parthenogenetic phases are 

regulated environmentally and males and sexual females are part of the 

life cycle (Bell, 1982; De Meester et al., 2004). Other species are 

androdioecious, where self-fertilising hermaphrodites coexist with a 

small proportion of males, such as the branchiopods Eulimnadia, 

Limnadia and Triops and the nematode Caenorhabditis elegans (Weeks, 

2006; Weeks et al., 2008; Zierold et al., 2009; Anderson et al., 2010). 

Lineages of sperm-dependent apomictic flatworm Schmidtea polychroa 

have also been shown to present occasional male function (D’Souza & 

Michiels, 2010). Female biased populations can also be due to infection 

with Wolbachia or other feminising bacteria, rather than being genetically 

determined (Plantard et al., 1998; Stouthamer et al., 1999). Research, 

however, has confirmed the occurrence of rare males in various obligate 

parthenogens (Blackman, 1972; Butlin et al., 1998; Martens, 1998; Rispe 

et al., 1999; Simon et al., 1999; Delmotte et al., 2001; Snyder et al., 2006; 

Engelstädter et al., 2011). These observations of rare males raise 

important questions; such as their role in the origin and persistence of 

asexual lineages, the mechanisms involved in replenishing the diversity 
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of such lineages, the avoidance of mutation accumulation, and the 

occurrence of contagious parthenogenesis (Lynch, 1984; Butlin et al., 

1998). In addition, functional rare males may challenge assumptions of 

evolution of sex theory; such as the complete reproductive isolation 

between sexual and parthenogenetic lineages (Lynch, 1984), or the 

absence of a ‘cost of males’ in parthenogenetic lineages (Neiman et al., 

2012). Despite the importance of this topic, little research has been 

devoted to characterize their population frequency or to understand 

their mechanisms of origin. Most rare males found in parthenogenetic 

species appear to exhibit abnormal spermatogenesis and sterility, 

although some are functional (Lynch, 1984). Rare males, purportedly, 

cannot fertilize conspecific females as these females are parthenogenetic 

and, given the low frequency of males in these populations, they are 

often seen as “atavisms” of little consequence with their potential 

evolutionary impact deemed unimportant (Schön et al., 2009). However, 

if parthenogenetic lineages retain the ability to produce occasional males 

on a regular basis, and reproductive isolation between them and their 

sexual relatives is incomplete, such males may represent a vector for 

genetic exchange between parthenogenetic and sexual lineages when 

both coexist (Lynch, 1984; Simon et al., 1999; Rispe et al., 1999; Delmotte 

et al., 2001; Engelstädter et al., 2011). Indeed, males produced by 

parthenogenetic females, when mating with sexual females of related 

species, may transmit the genes conferring parthenogenesis to their 

offspring (Innes & Hebert, 1988; Lynch et al., 2008; Engelstädter et al., 

2011; Eads et al., 2012), a mechanism termed “contagious 

parthenogenesis” (Simon et al., 2003). This mechanism could (i) increase 
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the fitness of parthenogenetic lineages producing rare males, (ii) boost 

the genetic diversity of such asexual lineages and (iii) potentially 

contribute to the ecological success and the evolutionary potential of 

such asexual lineages. 

 Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, 

Anostraca) include gonochoric sexual species with separate males and 

females, and lineages of obligate parthenogenetic populations of 

different ploidy levels (Abatzopoulos et al., 2002). Parthenogenetic 

populations occur only in the Old Word, from the Canary Islands in the 

west to China in the east, and they have been introduced in Australia 

(Gajardo et al., 2002; McMaster et al., 2007). These parthenogenetic 

lineages co-occur with diverse sexual species across their range, 

including A. salina (Linnaeus 1758) in the Mediterranean region and 

South Africa (Amat et al., 1995), A. urmiana (Günther 1899) in and 

around lake Urmia (Iran) and Crimean salt lakes (Abatzopoulos et al., 

2009), A. sinica (Cai 1989) in Central and Northern China, A. tibetiana 

(Abatzopoulos et al., 2002; Van Stappen et al., 2007) in the Tibetan 

plateau, and a yet undescribed sexual species in Kazakhstan (Pilla & 

Beardmore, 1994; Litvinenko & Boyko, 2008). In Australia, introduced 

populations of diploid parthenogenetic Artemia may coexist with 

endemic brine shrimps of the genus Parartemia (McMaster et al., 2007). 

Parthenogenetic lineages are closely related genetically to Central Asian 

sexual species (in particular A. urmiana, A. sinica and the undescribed 

Artemia sp. from Kazakhstan) and they have originated independently 

several times (Baxevanis et al., 2006; Muñoz et al., 2010; Maniatsi et al., 

2011). 
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Parthenogenetic diploid Artemia populations, which reproduce through 

automictic parthenogenesis (Abreu-Grobois, 1987), produce males in 

low numbers, and these are usually referred to as rare males (Stefani, 

1964; Bowen et al., 1978; MacDonald & Browne, 1987; Amat et al., 1991; 

Cai, 1993; Mura & Nagorskaya, 2005). Rare males are produced by a yet 

unknown cytogenetic mechanism, possibly involving crossing over 

between sex chromosomes (Stefani, 1964; Abreu-Grobois & Beardmore, 

2001). These males have normal and functional reproductive organs and 

display normal sexual behaviour (MacDonald & Browne, 1987), their 

sperm being slightly larger than those of sexual males (Stefani, 1964). 

Rare males haven not been shown to fertilize females from their own 

diploid parthenogenetic lineages (Stefani, 1964; MacDonald & Browne, 

1987) or sexual females from A. franciscana, A. persimilis, or A. salina 

(MacDonald & Browne, 1987; but see Bowen et al., 1978). In contrast, 

rare males can fertilize sexual females of the closely related species A. 

urmiana (Bowen et al., 1978) and A. sinica (Cai, 1993), thus potentially 

enabling gene flow among these lineages. The coexistence of 

parthenogenetic lineages with their close sexual relatives therefore may 

provide an opportunity for rare males to mate with sexual females and 

have an evolutionary impact.  

 The aims of this study were (i) to describe the frequency of male 

progeny in populations of diploid parthenogenetic Artemia, (ii) to 

characterize rare males morphologically in the context of the variation in 

closely related sexual Central Asian Artemia species, (iii) to assess the 

reproductive role of rare males in cross-mating experiments with sexual 

females of Central Asian sexual populations and estimate the viability of 
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F1 hybrid offspring and (iv) to confirm genetically both the identity and 

functionality of rare males. The evolutionary role and functionality of 

rare males are discussed on the basis of the results obtained. 

 

Materials and methods 

Samples 

Brine shrimp cyst samples were used to establish laboratory populations 

of diploid parthenogenetic Artemia (see Table 1). Samples covering most 

of the known geographic distribution of diploid parthenogenetic Artemia 

were obtained from the collection of the cyst bank kept in the Instituto 

de Acuicultura de Torre de la Sal (IATS-CSIC). Most cultured 

populations of diploid parthenogenetic individuals were obtained from 

cyst samples of pure parthenogenetic natural populations. In some 

cases, original cyst samples contained an additional species (see Table 1). 

Whenever cyst samples containing other Artemia species were obtained, 

as indicated by the presence of abundant males, diploid parthenogenetic 

females were carefully isolated from the cultures according to the 

morphological traits described in Amat (1980). Parthenogenetic females 

were then allowed to reproduce, and their naupliar or encysted 

offspring used to obtain pure cultured laboratory parthenogenetic 

populations. 
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Culture conditions 

Hatching was induced by incubating cyst samples under standard 

conditions, in 35 gL-1 sea water, at 28ºC, with continuous fluorescent 

lighting and gentle aeration (Vanhaecke & Sorgeloos, 1980). The 

resulting nauplii were mass-cultured in different volumes according to 

cyst availability and hatching efficiency. Mass cultures were usually 

kept in 60 L containers at 80 gL-1 brine salinity, at 20–24 ºC, and fed 

Dunaliella sp. and Tetraselmis sp. (1:1) microalgae mixture every other 

day.  

 

Sex ratio estimates and geographical patterns 

Rare male frequencies were estimated for 54 laboratory populations of 

diploid parthenogenetic Artemia from a wide range of geographic 

locations (Table 1). Individuals were reared until maturity in mass 

cultures as detailed above and the sex ratio for each population (males 

per 1,000 sexed individuals) were calculated as soon as most females 

showed signs of reproductive maturity (first ovulation or first offspring 

filling the ovisac), to minimize any possible effects of selective mortality. 

For sexing, animals were placed in Petri dishes with seawater and 

anaesthetized with a few drops of freshwater saturated with chloroform, 

and males carefully searched for with a binocular microscope.  

 To test whether there was a geographic pattern of distribution of 

the frequency of rare males, we carried out a spatial correlation of rare 

male frequencies using Moran’s Index (Griffith, 1987). Given a set of 

locations and an associated variable, in this case rare male frequency, 

Moran’s Index estimates if the pattern is dispersed, random or clustered. 
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For this purpose, we added the coordinates of each sampling site, 

confirmed in Google Earth, into spatial data using the ArcGIS package v. 

10.0 (ESRI, Inc Redlands, CA, USA). In addition, to identify areas where 

the presence of rare males is highest, we looked for hotspots using the 

Gi* statistical test of Getis-Ord (Getis & Ord, 2010).  

 

DNA barcoding 

A 709-bp fragment of mitochondrial cytochrome c oxidase subunit I 

(COI) gene region was amplified and sequenced in 28 rare males from 14 

diploid parthenogenetic Artemia populations across its distribution 

range. This same fragment was also sequenced in 12 females from 9 

populations (Table 2) to confirm that these derived from 

parthenogenetic strains, instead of resulting from culture contamination 

by a sexual female. Total DNA was extracted from part of the antenna of 

ethanol-preserved adult males and from the first phyllopod for females, 

using the HotSHOT protocol optimized for zooplanktonic invertebrate 

organisms and their diapausing eggs (Montero-Pau et al., 2008). We 

used the COI primers HCO2198 and LCOI490 (Folmer et al., 1994). PCR 

was carried out in a total of 50 µl containing 5 µl of template DNA, 0.2 

mM of each nucleotide, 0.2 µM of each primer, 0.05 U of Taq polymerase 

(Bioline) and 10×Bioline buffer (with a MgCl2 final concentration of 2 

mM). The cycling profile consisted of one cycle of 3 min at 95°C, 

followed by 40 cycles of 15 s at 95°C, 20 s at 50°C, and 30 s at 72°C, with 

a final step of 5 min at 72°C. PCR products were purified and sequenced 

in both directions by Macrogen Inc. (Macrogen Europe, Amsterdam, the 
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Netherlands, www.macrogen.com) using an ABI PRISM 3700 DNA 

analyser. 

The electropherograms were checked by eye using CodonCode Aligner 

v. 3.5 (CodonCode Corporation, Dedham, MA). Sequences obtained here 

were aligned with published sequences from the same COI fragment 

from diploid parthenogenetic Artemia populations (DQ426824-

DQ426826, GU591380-GU591384) and Central Asian sexual species A. 

urmiana (DQ119651), A.sinica (DQ119650), A. tibetiana (EF615588), and 

Artemia sp. from Kazakhstan, (DQ119653, GU591385-GU591389) from 

GenBank, using Clustal in MEGA5 (Tamura et al., 2011). We used A. 

franciscana (DQ119645) and A. sinica (DQ119650) as outgroups. 

Phylogenetic reconstructions were carried out using MEGA5. The 

Neighbor-Joining (NJ) tree was reconstructed using evolutionary 

distances computed with the Maximum Composite Likelihood Method. 

The Maximum Likelihood (ML) tree was obtained using a GTR plus 

gamma model. The robustness of the branches was assessed with 1000 

bootstrap pseudo-replicates. All sequences generated here were 

deposited in GenBank (Accession Numbers: KC193638-KC193677). 
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Morphometry 

Reproductively mature males were characterized according to specific 

morphological traits following standard procedures (Hontoria & Amat, 

1992) for a total of 11 parthenogenetic populations where 30 rare males 

were available (see Table 1). For this procedure males were 

anaesthetized as described above and measured under a dissecting 

microscope. The following 12 morphometric characters were measured: 

total length, abdominal length, abdominal width, head width, distance 

between the compound eyes, eye diameter, length of the first antenna, 

furca length, number of setae on the left branch of the furca, number of 

setae on the right branch of the furca, ratio of abdominal length to total 

length (×100) and width of the genital segment. Morphometric data of 

males from the Asian sexual species were taken from the database of the 

Instituto de Acuicultura de Torre de la Sal (Amat et al., 1994) including 

two A. urmiana (Urmia and Koyashskoe), one Artemia sp. Kazakhstan, 

three A. sinica (Tanggu, Yuncheng and Tonkhil) (Abatzopoulos et al., 

2009) and four A. tibetiana (Lagkor Co, Hayan, Gaize, Jingyu) (Van 

Stappen et al., 2003). The full data matrix was subjected to multivariate 

discriminant analysis (Hontoria & Amat, 1992) using SPSS v. 15.0. The 

morphological variables mentioned above were used to establish 

relationships among the populations (Anderson, 1984) setting the 

geographical origin of the cyst samples as the separation criterion. 

 

Mating experiments 

Mating experiments between rare males and females of Asian sexual 

populations were set up to obtain successful fertilization as evidenced 



Artemia rare males 

105 

 

by production of live viable or encysted offspring. The diploid 

parthenogenetic population from Bagdad (Iraq) was chosen as a source 

of males due to its high incidence of rare males and good cyst 

availability. Females used were chosen from sexual Asian populations, 

A. urmiana from Koyashskoe lake (Ukraine), A. sinica from Yuncheng 

lake (China), A. tibetiana from Lagkor Co lake (Tibet) and Artemia sp. 

from Kazakhstan (Artemia Reference Center code – ARC1039, unknown 

locality). Females used were either virgin (paired when still sexually 

immature) or kept isolated during the two weeks prior to the 

experiments to ensure that they had not been inseminated. Sperm 

storage does not occur in Artemia and each copulation fertilizes the eggs 

present in the brood pouch (Bowen, 1962; M. Maccari & F. Amat, 

unpublished results). Isolated size-matched male-female single pairs 

were kept in small beakers (60 ml) under the culture conditions 

described above. Quantitative and qualitative reproductive outputs of 

each pair were monitored every other day during culture medium 

renewal. The total number of fertilized and unfertilized eggs produced 

per female in each mating experiment was recorded. Offspring quality 

was also characterized by using the number of live and dead nauplii, as 

well as the number of abortive embryos (pale yellow-orange colour 

eggs) in ovoviviparous offspring. The number of normally shelled 

dormant cysts (pale grainy surface floating in 200 g L-1 brine), as 

opposed to abortive, abnormally shelled embryos (bright brown colour 

cyst not floating in 200 g L-1 brine) in oviparous offspring was also 

monitored. Mating experiments between sexual males and their 
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conspecific females following the same procedure as above were used as 

controls. 

 We tested whether the means of the proportion of fertilized and 

unfertilized eggs and the means of the proportion of offspring quality 

variables per female were the same in the crosses involving rare males 

and in the corresponding controls. If the data were normal and 

homoscedastic, we used t-tests, otherwise Mann-Whitney tests were 

conducted. Statistical analyses were performed with SPSS v. 15.0. 

 

Microsatellite analysis of hybrid F1 offspring 

To obtain evidence of rare males’ functionality regarding their ability to 

transmit genetic material to their offspring we screened three 

microsatellite loci in the rare males, in the sexual females used in the 

crosses and in their F1 offspring. DNA extractions were obtained as 

described above. Each microsatellite locus (Apdq02TAIL, Apdq03TAIL 

and Apd05TAIL) (Muñoz et al., 2009) was amplified separately in PCRs 

performed in a total volume of 20 μL containing 2 μL of template DNA, 

10 μL of 2x QIAGEN® (Qiagen, Hilden, Germany) PCR Master Mix 

(including 3mM MgCl2, dNTP Mix and HotStarTaq® Polymerase; 

Qiagen), 2 μL of 10x Primer Mix (2μM each primer), and 2 μL of Q 

solution (QIAGEN). The 5’ end of each reverse primer was labelled with 

a fluorescent dye (Apdq02TAIL, Apd05TAIL with Cy5 and 

Apdq03TAIL with Cy5.5, MWG Biotech, Eurofins MWG Operon, 

Ebersberg, Germany). The following PCR programme was used: 95°C 

for 15 min, 35 cycles of 94°C for 30 s, 53ºC for 90 s, 72ºC for 90 s, 

followed by 60ºC for 10 min. Diluted PCR products (1:20) were 
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combined with a 400 bp size standard and separated on a Beckman-

Coulter CEQTM 8000 analysis system. Alleles were scored using the CEQ 

Fragment Analysis software (Beckman CoulterTM, Fullerton, CA, USA) 

and checked manually. 

 

Results 

Rare male frequency and geographic patterns 

In total, 415 666 diploid parthenogenetic Artemia specimens were sexed 

in this experiment (see Table 1 for male ratio and population details). 

The number of specimens sexed for each diploid parthenogenetic 

population varied depending on its cyst availability, cyst hatching 

efficiency and nauplii survival rate to maturity and ranged from 348 

individuals for Salin de Giraud (France) to 41 568 individuals for 

Bagdad (Iraq). The presence of rare males was verified in 50 of the 54 

populations sampled. Janubio and El Rio (Lanzarote) and Tenefé (Gran 

Canaria) in the Canary Islands and Hortales (Cádiz) in Spain were the 

only populations where the presence of rare males could not be 

confirmed. 

 The spatial autocorrelation analysis was not significant (Moran’s 

Index, 0.10; z-score, 0.50; p-value: 0.61) indicating that the distribution of 

the male ratio does not appear to be significantly different than random. 

Despite that, we found the highest ratios - reaching or surpassing 1% of 

rare males - in the Central Asian populations: Bagdad saltern (Iraq), 

Urmia Lake (Iran), Bjurliu Lake (Kazakhstan) and Aibi and Gahai Lakes 

(Inner China) and the lower ratios in the western, eastern and southern 

populations (Iberian Peninsula, China, India and Africa). This was 
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confirmed by the Gi* test, which indicated that there are three 

statistically significant male ratio hotspots, Urmia Lake, Bagdad Saltern 

and Bjurliu Lake (Figure 1), where a hot spot is a population with a high 

male ratio surrounded by other populations with high male ratio.  

 

DNA barcoding  

Cytochrome c oxidase subunit I sequences from 28 rare males from 14 

populations (two individuals for each one) and 12 parthenogenetic 

females from nine populations were obtained (Table 2). After trimming, 

collapsing identical haplotypes for each population, and adding 

sequences from GenBank, the alignment had a length of 617 bp and 

comprised 47 sequences including outgroups. No insertions, deletions or 

stop codons were present. There was a total of 161 variable sites, 63 of 

them parsimony informative. 
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Rare male sequences collapsed into eight haplotypes. NJ and ML 

phylogenetic reconstructions had a virtually identical topology and 

branch support. The most widespread haplotype in rare males, found in 

15 rare males from eight populations, was identical to APD02, the most 

common haplotype in Mediterranean diploid parthenogenetic Artemia, 

and was closely related to haplotypes in sexual Artemia sp. from 

Kazakhstan (Muñoz et al., 2010) (Figure 2). The remaining seven 

haplotypes were found in single diploid parthenogenetic populations. 

Four of these haplotypes (rmMAR1-2, rmAIBI1-2, rmXIAO1-2 and 

rmPAK1-2) were closely related to APD02 and differed from it by 1, 2, 5 

and 5 substitutions, respectively. Two haplotypes (rmATA1 and 

rmMATA1-2) were identical or closely related to haplotypes previously 

found in the diploid parthenogenetic population of Atanosovsko 

(APD07), which are closely related to the A. urmiana haplotype. The last 

haplotype, rmKUJ1-2, was very divergent, forming a sister branch to the 

remaining parthenogenetic sequences and differing in 10 and 8 

substitutions from the APD02 haplotype and from the A. urmiana 

reference sequence respectively. 

 Rare male mtDNA haplotypes in 6 out of the 14 populations 

were identical to those found in parthenogenetic females from the same 

population (see Table 2 for details). In Margherita di Savoia and Aibi 

Lake, the rare male haplotype differed in 1 or 2 bp respectively from 

haplotypes parthenogenetic females from the same population, whereas 

in Korangi Creek and La Mata, rare male haplotypes differed from the 

common haplotypes in females from these populations by 5 bp. 
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Figure 2. Phylogenetic relationships of diploid parthenogenetic Artemia rare male 
mtDNA haplotypes (which are noted by rm followed by the population code), 
diploid parthenogenetic female haplotypes (in bold) and Central Asian species 
based on COI sequences. The neighbour joining (NJ) topology is shown with NJ 
bootstrap values above the branches and maximum likelihood values under the 
branches. 
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Although female haplotypes from Rocio and Notteri were not available, 

rare males displayed the common APD02 haplotype. Sequences from 

females of Xiaotan were not available and the haplotypes obtained in the 

rare males from this population had never been reported before, 

although they differed in 5 bp from APD02. The rare males from 

Kujalnik differed from the two available sequences from the same 

population in 11 bp and this haplotype has not been reported before. 

 

Rare male morphometry 

The morphometric multivariate analysis produced twelve discriminant 

functions. When they were included in the model, all except the last 

function significantly (p0.05) accounted for the variance with the first 

five discriminant functions accounting for 88.9% of the variation. The 

ratio of abdominal length to total length, and the length of the furca 

were highly correlated with the first discriminant function, and the 

length of the first antenna and the total length made the highest 

contributions to the second function. Data of the mean values of the 

morphological traits measured for each population are available upon 

request. 

 Discriminant analysis separated morphometrically the males 

belonging to sexual species A. urmiana and A. tibetiana from the rest 

(Figure 3). The morphometry of the parthenogenetic males was very 

variable, and their population centroids were located within the limits of 

the sexual populations. 
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However, most rare males were morphologically closer to the males 

from A. sinica and Artemia sp. from Kazakhstan. No obvious association 

between the haplotype group that the parthenogenetic rare male 

mtDNA belonged to and their morphological resemblance to either A. 

urmiana, or Artemia sp. from Kazakhstan was found. For example, rare 

males from Atanosovsko or La Mata have haplotypes very similar to 

those of A. urmiana from Koyashskoe, but they do not appear 

morphologically closer to males of this sexual species. 

 

Mating experiments 

A total of 30 mating pairs were set up for each combination of sexual 

species with rare males, and between females of each sexual species with 

their conspecific males (controls). As some individuals died before 

mating, the final number of experimental pairs was between 8 and 25 

per mating experiment (Table 3). Rare males were observed clasping 

and copulating with the sexual females of all species tested during the 

mating trials. Mating trials resulted in a total of 220 fertile hybrid broods 

and in 558 conspecific broods (controls). The proportion of fertilized 

eggs was always high (over 70%) and it was slightly higher in two out of 

the four hybrid crosses (rare male x A. urmiana and rare male x A. 

tibetiana) than its corresponding controls, but in any case, there were no 

statistically significant differences between rare male crosses and 

controls (Table 3). 
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Crosses involving rare males resulted in viable ovoviviparous 

and oviparous hybrid offspring (Figure 4). Remarkably, all interspecific 

crosses between Central Asian sexual females and rare males had a 

similar or higher F1 offspring quality than controls (intraspecific sexual 

crosses). There were no statistically significant differences between rare 

male crosses and controls for most of the features analysed in both in 

ovoviviparous and oviparous quality traits. The only significant 

differences occurred in the proportion of dead nauplii obtained in 

ovoviviparous offspring from the crosses between rare males and A. 

urmiana or A. sinica females, which were higher in the controls (Figure 4 

and Table S1). 

 

 

 

 

Cross Pairs  Broods  Fertilized eggs (%) p value 

rare male x A. urmiana 18 58 77.99 
1.000 

A. urmiana 13 72 76.93 

rare male x Kazakhstan sp. 15 61 90.39 
0.472 

Kazakhstan sp. 25 179 96.37 

rare male x A. sinica 25 102 89.54 
0.436 

A. sinica 25 246 90.99 

rare male x A. tibetiana 18 40 94.03 
0.102 

A. tibetiana 8 17 90.72 

 1 

Table 3. Egg fertilization in cross mating experiments involving diploid 
parthenogenetic Artemia rare males and females of Central Asian sexual species 
and in conspecific matings used as controls (Mann-Whitney U-test since 
Normality tests failed in all cases). 
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Figure 4. Offspring quality in cross-breeding experiments. For further details 
see full caption on the next page. 
 
 



Artemia rare males 

117 

 

 

 

 

 

 

 

 

Microsatellite analysis 

Microsatellite scoring showed that diploid parthenogenetic Artemia rare 

males underwent meiotic reduction and successfully fertilized sexual 

Central Asian Artemia females, transferring their alleles to the F1 

progeny, and producing diploid hybrid offspring as a result (Table 4). 

Most males were heterozygotes for all loci (with the exception of male 

Iraq8 for locus Apd05). In those cases where the male was heterozygous, 

only one of the alleles was transmitted to each offspring, indicating that 

rare males produced haploid sperm through meiosis. No evidence for 

triploid offspring was found. In all the crosses performed, we found 

evidence of null alleles in the mother for one or more of the analysed 

loci. In these cases, the allele or alleles present in the father were found 

in the F1 offspring, demonstrating that the father had transmitted the 

amplifiable copy to the offspring. 

 In the two crosses between a rare male and a female from A. 

urmiana, the mother amplified a single allele at Apd03 and Apd05, and 

for Apd02, the mother was heterozygous in the first cross and only 

amplified a single allele in the second, whereas the father was 

heterozygous at all three loci. 

Figure 4 Offspring quality in cross-breeding experiments in ovoviviparous (a) 
and oviparous broods (b) between Artemia urmiana (URM), Artemia sinica (SIN), 
Artemia tibetiana (TIB), Kazakhstan sp. (KAZ) and diploid parthenogenetic 
Artemia rare males (PD) (hybrid crosses) and in conspecific crosses (controls). 
Error bars are standard deviations. Asterisks (P ≤ 0.05) indicate significant 
differences for each quality trait between hybrid and control offspring (t-test 
when normality and equal variance tests were not significant, otherwise Mann–
Whitney test was employed). 
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Cross Individual code Apd02 Apd03 Apd05 

rare male x A. urmiana F0 (F-Koy 15) 233-281 207-Ø 170-Ø 

 F0 (M-Iraq 15) 254-233 216-231 115-185 

 F1-15-1 233-254 207-216 185-Ø 

 F1-15-2 233-233 207-231 115-170 

 F1-15-3 233-254 231-Ø 185-Ø 

 F1-15-4 233-281 216-Ø 115-170 

 F1-15-5 233-281 207-231 115-Ø 

  F1-15-6 233-281 207-216 170-185 

rare male x A. urmiana F0 (F-Koy 16) 248-Ø  208-Ø 90-90 

 F0 (M-Iraq 16) 233-251 216-230 117-189 

 F1-16-1 248-251 208-216 90-189 

 F1-16-2 248-251 208-230 90-189 

 F1-16-3 233-Ø 216-Ø 90-189 

 F1-16-4 233-Ø 216-Ø 90-189 

 F1-16-5 248-251 230-Ø 90-189 

  F1-16-6 248-251 n.a 90-117 

rare male x Artemia sp. 

Kazakhstan F0 (F-Kaz 8) 233-233 213-245 Ø-Ø. 

 F0 (M-Iraq 8) 233-242 208-231 115-Ø 

 F1-8-1 233-233 208-213 115-Ø 

 F1-8-2 233-233 208-245 115-Ø 

 F1-8-3 233-242 231-245 115-Ø 

 F1-8-4 233-233 208-213 115-Ø 

 F1-8-5 233-242 208-245 Ø-Ø 

  F1-8-6 233-233 231-245 115-Ø 

Rare male x A. sinica F0 (F-sin 7) Ø-Ø Ø-Ø Ø-Ø 

 F0 (M-Iraq 7) 233-254 216-231 115-180 

 F1-7-1 233-Ø 216-Ø 115-Ø 

 F1-7-2 254-Ø 231-Ø 180-Ø 

 F1-7-3 254-Ø 216-Ø 115-Ø 

 F1-7-4 254-Ø 231-Ø 115-Ø 

  F1-7-5 254-Ø 231-Ø 180-Ø 

 1 

Table 4. Microsatellite paternity analysis for crosses between diploid 
parthenogenetic Artemia rare males and Central Asian sexual females. Results of 
screening females, males and F1 offspring for three microsatellite loci (allele sizes 
in base pairs are shown). Alleles present in the rare male father and not in the 
mother are shown in bold in the father and in the F1 offspring. The presence of 
presumably null alleles (no amplification could be obtained, or evidence of no 
amplification of maternal alleles in the offspring) is noted by Ø. Rare males 
belonged to the Iraq population. One individual F1-16-6, amplified weakly, and 
no amplification could be obtained for locus Apd03 (n.a.).  
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All F1 hybrid offspring of both crosses amplified one paternal allele, 

whereas they either amplified one maternal allele or showed evidence of 

a null allele inherited from her.  

In the cross between a rare male and a female from Artemia sp. from 

Kazakhstan, the mother was heterozygous at Apd03 and  homozygous 

at Apd02 and failed to amplify, probably due to null alleles at loci 

Apd05. The male was heterozygous at Apd02 and Apd03, and 

homozygous at Apd05. All alleles present at the three loci in the father 

were detected in the five hybrid offspring screened. 

 In the crosses between rare males and A. sinica females, none of the 

three microsatellite loci tested amplified successfully in A. sinica. Despite 

this, in all hybrids, progeny produced one of the paternal alleles 

amplified. The lack of amplification of these three microsatellite loci in 

A. sinica was confirmed by checking additional individuals from this 

species. Microsatellite scoring in crosses between rare males and A. 

tibetiana females was problematic in both parents and the resulting 

hybrid offspring, and therefore, paternity analysis was not carried out.  

 

 

Discussion 

The presence of fertile males in otherwise parthenogenetic lineages 

raises questions about their potential role in genetic exchange with 

sexual species and in generating new parthenogenetic lineages. Here we 

have described the presence, frequency, functionality and reproductive 

potential of parthenogenetically produced rare males in the genus 

Artemia.  
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Our results indicate that most diploid parthenogenetic Artemia 

populations produce males sporadically with a frequency up to 17 per 

1000 individuals. Statistical analysis showed three statistically 

significant male ratio hotspots, Urmia Lake, Bagdad saltern and Bjurliu 

Lake. Populations showing a higher ability to produce rare males are 

therefore found in a geographical region around 40ºN between the 

Mediterranean-Caspian basin and the salt lakes region in Kazakhstan, a 

region where the coexistence with closely related sexual species is more 

likely. Phylogenetic and phylogeographical analyses suggest that 

diploid parthenogenetic lineages may be evolutionarily recent 

(Holocene), having arisen in a region of Central Asia around Iran and 

Kazakhstan and subsequently expanded towards the Mediterranean and 

other regions (Muñoz et al., 2010). Our results indicate that male 

production is a general feature in diploid parthenogenetic Artemia with 

the possible exception of the most western populations.  

Similarly to the pattern found in the obligate parthenogenetic Daphnia 

pulex (Innes & Hebert, 1988) where some clones have the ability to 

produce males, whereas others have lost it, there is also 

intrapopulational variation in the tendency to generate rare males in 

diploid parthenogenetic Artemia, which differs between clonal lineages 

from 0.12% to 0.60% in a population in Salin de Giraud (France) 

(MacDonald & Browne, 1987), which could explain our results. 

However, the role of genetic vs. environmental effects in the ability of 

diploid parthenogenetic Artemia to produce rare males should be the 

focus of further studies. 
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 DNA barcoding confirmed the identity of the rare males 

produced by diploid parthenogenetic Artemia populations. The 

haplotypes of most of the rare males analysed were identical to those of 

diploid parthenogenetic Artemia females. COI haplotypes of rare males 

form two main mtDNA clades, the more widespread one is closely 

related to the sexually reproducing Artemia sp. from Kazakhstan that is 

awaiting formal description, and the second one is found only in four 

diploid parthenogenetic populations, and is more closely related to A. 

urmiana. These results agree with previous studies of phylogenetic 

relationships of diploid parthenogenetic populations, indicating close 

phylogenetic relationships between diploid parthenogenetic Artemia and 

both A. urmiana and Artemia sp. from Kazakhstan (Baxevanis et al., 2006; 

Muñoz et al., 2010; Maniatsi et al., 2011). The haplotypes of some rare 

males, although related to haplotypes in rare males of other 

parthenogenetic populations, differed from the common haplotypes in 

females sequenced from their own population. The intrapopulation 

variability in the propensity to generate males reported in Artemia 

(MacDonald & Browne, 1987) mentioned above may explain this 

discrepancy between the haplotypes of rare males and the common 

haplotypes in the females of their populations, as this would be 

expected if, by chance, rarer lineages in the population (bearing rarer 

mtDNA haplotypes) had a higher propensity to produce males. In 

addition, as we had no available sequences from Xiaotan population 

females to compare to their divergent rare male haplotypes, further 

analyses are needed to understand the genetic diversity held by 

parthenogenetic Artemia populations, as these haplotypes had never 
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been reported before. Overall however, it is clear that in most 

populations rare males have the same haplotype as the parthenogenetic 

females from their populations, and these haplotypes were identical, or 

closely related, to haplotypes previously found in diploid 

parthenogenetic lineages. 

 Discriminant analysis proved to be a useful tool to separate 

Artemia rare males into different morphological clusters. Rare males 

differed morphologically from both A. urmiana and A. tibetiana males, 

while they were more similar to males from Kazakhstan Artemia sp. and 

from A. sinica. In a previous analysis (Triantaphyllidis et al., 1997), the 

morphology in Artemia was studied through a discriminant analysis, but 

the sexual and the parthenogenetic populations were analysed 

separately and parthenogenetic males were not included in the analysis. 

In that work, the sexual population from Kazakhstan appears 

morphologically close to A. sinica, but it is considered a different species 

(Triantaphyllidis et al., 1997). Possibly, rare males show higher 

morphological variability than the males from the Asian sexual species, 

because similar results are obtained when parthenogenetic females were 

compared with the sexual females (Mura et al., 2006; Amat et al., 2007). 

This could be explained by the heterogeneous geographic origin of 

parthenogenetic lineages (from Portugal to the Chinese coast) and the 

inability for them to interbreed. 

 The results of cross mating experiments were used to evaluate 

the fertility and the reproductive potential of rare males. There are 

different kinds of isolating mechanisms which determine the degree of 

divergence among populations: i) inability of the two populations to live 
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in the same medium (habitat isolation); ii) failure of the male to clasp the 

female (ethological isolation); iii) failure to produce a viable F1 

(mechanical isolation, gametic or zygote mortality, or hybrid inviability); 

and iv) hybrid sterility (absence of an F2 or production of a deficient F2) 

(Mayr, 1963). Our findings show that rare males from obligate 

parthenogenetic diploid A. parthenogenetica populations (i) often coexist 

in the same habitat as sexual Asian species and (ii) show normal pairing 

behaviour with central Asia sexual females, excluding the first two 

isolating mechanisms described above. We also showed that (iii) rare 

males are fully functional and capable of fertilizing eggs from females of 

sexual Asian species, and hybrid crosses resulted in similar or higher 

offspring viability than the controls, in both ovoviviparous and 

oviparous broods. We (iv) obtained live nauplii from ovoviviparous F1 

hybrid broods, which, upon culture, were morphologically normal and 

produced viable hybrid sexual populations (unpublished results).  

 The paternity analysis using microsatellite markers further 

shows that rare males from a parthenogenetic population undergo 

normal meiosis, produce viable haploid sperm and contribute to the 

genetic material of the hybrid offspring when mated with females from 

three out of four sexual Asian Artemia species (A. urmiana, Artemia sp. 

from Kazakhstan and A. sinica). Given that this set of microsatellite loci 

were developed initially for diploid parthenogenetic Artemia (Muñoz et 

al., 2008, 2009), it is not surprising that we found evidence of null alleles 

in some mothers for some loci, whereas the fathers (rare males of the 

diploid parthenogenetic lineage) amplified well and show a high degree 

of heterozygosis. Despite the fact that this set of microsatellites failed to 
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amplify in A. sinica females, the cross gave informative results because 

the F1 offspring obtained when mating rare males with A. sinica 

inherited one paternal allele. 

 In an early pioneering work, Bowen et al. (1978) obtained four 

rare males – which they called exceptional males - from three diploid 

parthenogenetic Artemia populations. They documented a transfer of 

genes from a Yamaguchi (Japan) parthenogenetic population rare male 

to an A. urmiana female by polymorphism of three genetic markers (one 

haemoglobin and two esterase isozymes). They also obtained viable 

offspring mating a rare male from a Madras (India) parthenogenetic 

population with an A. franciscana female and documented transfer of 

genes from this male to the hybrid offspring. However, and in 

agreement to previous results (MacDonald & Browne, 1987), we have 

been unable to obtain viable offspring when mating A. franciscana 

females with rare males (unpublished results). Our study has 

considerably extended these early experiments, as we have produced 

more than 250 hybrid broods between rare males and Central Asian 

sexual females.  

 Artemia is one of the few known examples of parthenogenetic 

animal species that produce functional males. These rare males can 

successfully mate with congeneric sexual females, transmitting their 

genes to their diploid highly viable F1 offspring. Such ability makes the 

brine shrimp an exceptional model system to study the evolutionary 

process and to investigate the potential of these rare asexual males in 

generating new parthenogenetic lineages. In the absence of available 

coexisting sexual relatives, parthenogenetic lineages producing rare 
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males or investing in male function incur a fitness cost compared with 

parthenogenetic lineages not producing such males (D’Souza & 

Michiels, 2010; Neiman et al., 2012). Although the costs of producing 

rare males might be regarded as very low, the highly competitive 

conditions in Artemia populations, where rapid reproduction and 

resource limitation can be important, makes it possible that this ability 

has persisted due to compensating direct or indirect benefits to the 

parthenogenetic lineage. An indirect benefit can be obtained if male 

production is linked to an advantageous trait, for example if males were 

the product of sex chromosome recombination during automixis, and 

parthenogenetic strains producing more males were benefiting from 

increased recombination rates generating more diverse offspring or 

purging deleterious alleles. As our results suggest, in the presence of 

potential partners such as sexual females of related species, rare male 

production could also obtain direct benefits as such rare males can 

produce fertile hybrid offspring as a result of mating with sexual 

females. In addition, these Artemia diploid parthenogenetic males might 

be able to transmit the parthenogenesis trait to their offspring (Lynch, 

1984; Eads et al., 2012), a topic that will be the subject of a future study. 

Alternatively, rare male production might persist in populations due to 

genetic drift, as genetic bottlenecks are likely to occur during 

colonization and migration between habitats, is likely to be constrained 

by habitat monopolisation (De Meester et al., 2002; Muñoz et al., 2008, 

2009). More research is needed into the cytological mechanisms behind 

rare male production, to understand the genetic basis of the variation in 

male production rates among and within populations and potential 
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interactions between genetic and environmental effects into rare male 

production. 

 The occurrence and potential reproductive role of 

parthenogenetic Artemia rare males led MacDonald & Browne (1987) 

and Browne & Bowen (1991) to suggest that cross fertilizations of sexual 

females by parthenogenetic males could provide a source of gene flow 

between the different genotypes. Further, Abreu-Grobois & Beardmore 

(1982) suggested that fertilization by rare males might result in the 

generation of polyploid parthenogenetic Artemia lineages. Recent 

mitochondrial DNA and microsatellite analysis of polyploid 

parthenogenetic Artemia strains (Maniatsi et al., 2011) suggests that 

triploid strains might have originated by fertilization of an unreduced 

ovum by a parthenogenetic rare male. Further research is needed to 

fully understand the evolutionary role of rare males into the origin of 

polyploid parthenogenetic Artemia. 

 Our work demonstrates the functionality of rare males and, 

given that co-occurrence between these rare males and sexual species is 

common in Central Asia, suggests an evolutionary role for males of 

parthenogenetic origin through hybridization and genetic exchange 

between parthenogenetic and sexual Artemia lineages through 

hybridization via rare males.  
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Abstract  
 
Contagious parthenogenesis—a process involving rare functional males 

produced by a parthenogenetic lineage which mate with coexisting 

sexual females resulting in fertile parthenogenetic offspring—is one of 

the most striking mechanisms responsible for the generation of new 

parthenogenetic lineages. Populations of the parthenogenetic diploid 

brine shrimp Artemia produce fully functional males in low proportions. 

The evolutionary role of these so-called Artemia rare males is, however, 

unknown. Here we investigate whether new parthenogenetic clones 

could be obtained in the laboratory by mating these rare males with 

sexual females. We assessed the survival and sex ratio of the hybrid 

ovoviviparous offspring from previous crosses between rare males and 

females from all Asiatic sexual species, carried out cross-mating 

experiments between F1 hybrid individuals to assess their fertility, and 

estimated the viability and the reproductive mode of the resulting F2 

offspring. Molecular analysis confirmed the parentage of hybrid 

parthenogenetic F2. Our study documents the first laboratory synthesis 

of new parthenogenetic lineages in Artemia and supports a model for the 

contagious spread of parthenogenesis. Our results suggest recessive 

inheritance but further experiments are required to confirm the 

likelihood of the contagious parthenogenesis model. 
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Introduction 

Parthenogenesis in animals has evolved through different molecular 

mechanisms that influence the initial genetic variability of 

parthenogenetic strains and therefore have important implications on 

their evolutionary success and persistence (Simon et al., 2003). One of the 

most striking mechanisms responsible for the generation of new 

parthenogenetic lineages is contagious parthenogenesis (Simon et al., 

2003; Schön, Martens & van Dijk, 2009). This involves a parthenogenetic 

lineage able to produce functional males, which mate with coexisting 

sexual females producing fertile parthenogenetic hybrid offspring. 

These new parthenogenetic lineages will combine genetic diversity of 

the maternal sexual species and their paternal parthenogenetic ancestor, 

including the genetic fragments linked to the parthenogenesis (Simon et 

al., 2003; Tucker et al., 2013). 

This mechanism has been documented in aphids and parasitoid wasps 

(Schneider et al., 2002; Sandrock & Vorburger, 2011; Delmotte et al., 2013), 

and most extensively in the Daphnia pulex species complex (Innes & 

Hebert, 1988; Paland, Colbourne & Lynch, 2005). In North American D. 

pulex parthenogenetic lineages, at least two distinct unrecombined 

haplotypes on chromosome VIII and IX are implied in the sex-limited 

meiosis suppression (Lynch et al., 2008; Eads et al., 2012; Tucker et al., 

2013). These haplotypes leading to obligate parthenogenesis in D. pulex 

stem from a single recent event of hybridization with its sister taxon D. 

pulicaria (Xu et al., 2013; Tucker et al., 2013). Multiple new 

parthenogenetic lineages have arisen since this event as males produced 
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by asexual lineages spread these parthenogenesis-inducing haplotypes 

by mating with sexual females. 

Artemia, an anostracan branchiopod commonly known as brine 

shrimp, is a typical inhabitant of hypersaline inland lakes and coastal 

lagoons and salterns. This genus includes sexual species and lineages of 

obligate parthenogenetic populations of diverse ploidy levels 

(Abatzopoulos, 2002), which makes it a good model system to investigate 

evolutionary transitions between reproductive systems. Parthenogenetic 

populations are restricted to the Old World where they co-occur with 

several sexual species in sympatry in various areas (Abatzopoulos, 2002; 

Agh et al., 2007; Abatzopoulos et al., 2009; Maccari et al., 2013). All strains of 

Artemia can reproduce either ovoviviparously, with the release of free-

swimming nauplii broods when they complete their development in the 

ovisac (therefore, without a dormant phase), or oviparously with the 

production of broods of diapausing cysts (Browne, 1980; Abatzopoulos, 

2002). 

In Artemia, both sexual and asexual females are heterogametic 

(ZW) (Stefani, 1963; Bowen, 1963; Bowen, 1965; De Vos et al., 2013). Diploid 

parthenogenetic lineages reproduce through automictic 

parthenogenesis, although the cytological details are controversial 

(Cuellar, 1987). It appears that diploidy restoration results in female 

offspring genetically identical to the mother barring mutation or 

recombination (Abreu-Grobois, 1987; Stefani, 1960). Parthenogenetic 

diploid Artemia populations produce fully functional males in low 

proportions (Stefani, 1964; Bowen et al., 1978; MacDonald & Browne, 1987; 

Maccari et al., 2013). Abreu-Grobois & Beardmore (2001) showed that rare 
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males remain heterozygous at the same allozyme loci as their mothers, 

suggesting that rare males are produced as a result of rare ZW 

recombination events. These ‘rare males’ can generate viable offspring 

when crossed with females of sexual Asiatic species (Bowen et al., 1978; 

Cai, 1993; Maccari et al., 2013), to which they are closely related 

genetically (Muñoz et al., 2010; Maniatsi et al., 2011; Maccari, Amat & 

Gómez, 2013), but they are reproductively isolated with other more 

distantly related species (MacDonald & Browne, 1987). However, the 

evolutionary role of rare males in the generation of Artemia 

parthenogenetic lineages is unknown (Maccari et al., 2013). The 

occurrence of contagious parthenogenesis has been suggested in light of 

the polyphyletic nature of maternal diploid parthenogenetic lineages 

(Maccari, Amat & Gómez, 2013), but we do not know if rare males are able 

to transmit parthenogenesis to their offspring, a requisite for contagious 

parthenogenesis. In an early study, Bowen et al. (1978) crossed two 

parthenogenetic rare males, one from Yamaguchi (Japan) and the other 

one from Madras (India), with one sexual female of A. urmiana and one 

A. franciscana respectively, and concluded that parthenogenetic 

reproduction could not be transmitted through males because they 

failed to obtain parthenogenetic offspring either in hybrid F1, F2 or F2 

backcross. 

Laboratory generation and establishment of unisexual lineages 

can be a useful tool to complement phylogenetic approaches to identify 

the mechanism involved in the transition from sexual to parthenogenetic 

reproduction. However, most laboratory hybrids often exhibit low 

fertility and survival, or show deformation and abnormalities 
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(Vrijenhoek, 1989; Mantovani et al., 1996). In vertebrates, the first 

successful laboratory generation of a unisexual hybrid involved the 

origin of the hybridogenetic fish Poeciliopsis monacha-lucida through 

crosses of P. monacha females with P. lucida males (Schultz, 1973). 

Laboratory hybrids of hemiclonal European water frog R. esculenta (Rana 

ridibunda x Rana lessonae) show faster larval growth, earlier 

metamorphosis, and higher resistance to hypoxic conditions than their 

parental species and the equivalent hybrids in nature (Hotz et al., 1999). 

More recently, Lutes et al. (2011) generated self-sustaining tetraploid 

lineages of parthenogenetic lizards by pairing males of diploid sexual 

species Aspidoscelis inornata with females of the triploid parthenogenetic 

species Aspidocelis exsanguis. In invertebrates, the first laboratory 

generation of clonal hybrids in D. pulex was obtained by crossing males 

from obligately parthenogenetic clones with cyclically parthenogenetic 

females (Innes & Hebert, 1988). In addition, new lineages of thelytokous 

parthenogenetic lineages have been obtained in the wasp Lysiphlebus 

fabarum and in a South African honeybee, Apis mellifera capensis (Lattorff, 

Moritz & Fuchs, 2005; Sandrock & Vorburger, 2011). 

Here we assess the reproductive role of rare males and investigate 

whether new parthenogenetic clones could be produced in the 

laboratory as support for the contagious origin of parthenogenetic 

lineages in Artemia. For this purpose, (1) we assess the survival and sex 

ratio of the hybrid ovoviviparous offspring obtained from the previous 

crosses from Maccari et al. (2013) between rare males and four Asiatic 

sexual species, (2) we carry out cross-mating experiments between these 

F1 hybrid individuals to assess their fertility, (3) we estimate the 
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viability and the reproductive mode of the resulting F2 offspring; (4) 

finally we demonstrate genetically that parthenogenetic F2 are indeed 

the descendants of the original crosses. This study shows that Artemia 

has the potential of generating parthenogenetic strains through 

contagious parthenogenesis.  

 

Materials and methods 

Populations and mating experiments  

In a previous study, we set up mating experiments between rare males 

from the diploid parthenogenetic Artemia population from Bagdad (Iraq, 

hereafter PD) and sexual females from Asiatic Artemia species to assess 

the fertility and the reproductive potential of rare males (Maccari et al., 

2013). The females used were from the sexual Asiatic populations, A. 

urmiana from Koyashskoe Lake (Ukraine, URM), A. sinica from 

Yuncheng Lake (China, SIN), A. tibetiana from Lagkor Co Lake (Tibet, 

TIB) and Artemia sp. from Kazakhstan (Artemia Reference Center code – 

ARC1039, unknown locality, KAZ). These interspecific crosses resulted 

in viable ovoviviparous and oviparous F1 offspring with similar or 

higher viability than controls (intraspecific sexual crosses) (Maccari et al., 

2013). 

 

Survival rate, sex ratio and reproductive performance of hybrid 

generations  

For this study, live nauplii obtained from each ovoviviparous F1 hybrid 

brood were reared separately in jars containing brine at 80 gL−1 salinity, 

kept at 20–24 ◦C under mild aeration at a 12D:12L photoperiod and fed a 
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mixture of Dunaliella sp and Tetraselmis sp. (1:1) microalgae every other 

day. When animals showed signs of reproductive maturity they were 

counted and sexed to estimate survival rates (the proportion of F2 

offpring per pair attaining adulthood) and sex ratio (the proportion of 

males in the F2 offspring per pair). For this procedure the animals were 

placed in Petri dishes with seawater and anaesthetized with a few drops 

of freshwater saturated with chloroform and examined carefully under a 

binocular microscope. We tested for deviations from a 50% sex ratio per 

cross and per pair using a Chi-square goodness of fit test (Pearson’s 

statistic) (Wilson & Hardy, 2002). Statistical analyses were performed 

with SPSS v. 15.0 (SPSS Inc., Chicago, USA). 

Reproductive performance of the F1 hybrid individuals was 

evaluated in F1×F1 cross fertility tests. For this purpose, 24 randomly 

size-matched hybrid F1 male–female pairs from each cross were 

transferred into separate small glass beakers (60 ml) under the culture 

conditions described above. Lifetime quantitative and qualitative 

reproductive outputs of each pair were monitored every other day 

during culture medium renewal events. For each paired F1 female we 

counted the number of unfertilized and fertilized broods, distinguishing 

the latter in oviparous and ovoviviparous broods. Eggs from unfertilised 

broods were identified as they are all smaller and white. In 

ovoviviparous offspring we also recorded the number of live and dead 

nauplii, and the number of abortive embryos (pale yellow-orange eggs). 

When oviparous offspring was produced, we counted the number of 

normally shelled diapausing cysts (pale grainy surface floating in 200 
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gl−1 brine), as opposed to abortive, abnormally shelled embryos (bright 

brown colour cysts sinking in 200 gl−1 brine) (Maccari et al., 2013). 

Emerged F2 hybrid nauplii were reared until maturity as 

described above. They were counted and sexed to estimate their survival 

rate and sex ratio in the F2 generation. Then, males and females were 

individually isolated in containers until their deaths to check if females 

could reproduce in isolation, as would be expected in parthenogenetic 

individuals. It is possible that some parthenogenetic females could be 

sterile; in this case, our procedure will underestimate the frequency of 

parthenogenesis. The proportion of parthenogenetic female offspring 

produced in each cross was tested against the expectations of 25% if 

governed by a recessive allele in a single gene using a Chi-square 

goodness of fit test. In addition, to test whether the different crosses 

produced the same percentage of parthenogenetic female offspring we 

used a Chi-square homogeneity test. 

 

Paternity analysis of parthenogenetic F2 individuals  

(a) Microsatellite analysis  

The F2 hybrid generation resulting from crosses between rare males and 

sexual females from A. urmiana and Artemia sp. from Kazakhstan 

included parthenogenetic individuals. In order to rule out 

contamination and confirm that they were F2 individuals resulting from 

the original crosses, we screened three microsatellite loci, previously 

screened in the parental individuals in another study (Maccari et al., 

2013), in the parthenogenetic F2 animals obtained. Each microsatellite 

locus (Apdq02TAIL, Apdq03TAIL and Apd05TAIL) (Muñoz et al., 2008) 
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was amplified separately in PCRs performed as described in Maccari et 

al. (2013). Alleles were scored using the CEQ Fragment Analysis 

software (Beckman CoulterTM) and checked manually. If F2 individuals 

had a paternal allele in any of the loci this would confirm that they were 

descendants of the diploid parthenogenetic rare males. 

(b)Maternal lineage 

The F2 resulting from the rare male x sexual female cross and F1 × F1 

cross should carry the maternal DNA of the sexual strain. To establish 

the maternal lineage of the parthenogenetic F2 offspring, a 709-bp 

fragment of mitochondrial cytochrome c oxidase subunit I (COI) gene 

region was amplified in the parental (F0) individuals, in the F1 offspring 

and in the parthenogenetic F2 individuals. Total DNA was extracted and 

PCR was carried out as described previously (Maccari et al., 2013). PCR 

amplifications were sent to MACROGEN for sequencing, and the 

resulting electrophoregrams were checked by eye using CodonCode 

Aligner v. 3.5 (CodonCode Corporation, Dedham, MA).  

 

Results 

Survival rate and sex ratio of F1 hybrid offspring  

A total of 102 ovoviviparous hybrid F1 broods produced by the crosses 

between each combination of sexual species with rare males (Maccari et 

al., 2013) were reared to maturity. The live nauplii obtained in each 

brood were morphologically normal. Survival rates to adulthood were 

over 50% in all F1 hybrid offspring (Fig. 1), and were highest in the F1 

PD×SIN (80%), and lowest in F1 PD×URM and F1 PD×TIB (ca. 56%)(for 

the codes of the hybrid crosses see Fig. 1). The overall mean sex ratio of 
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F1 offspring across pairs ranged from 49% males in F1 PD×KAZ cross to 

53% males in F1 PD×TIB cross and did not significantly differ from 50% 

in any cross (Fig. 1). 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

Figure 1 Survival rate and sex ratio (overall percentage of males) in the F1 
hybrid offspring from Artemia rare males and Asiatic sexual females. F1 
hybrids are from parental crosses between Artemia urmiana (URM), A. sinica 
(SIN), A. tibetiana (TIB), Artemia sp. from Kazakhstan (KAZ) and diploid 
parthenogenetic Artemia rare males (PD). Error bars are standard deviations. 
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Reproductive performance of F1 hybrid offspring  

Prior to setting up the crosses, all females were isolated from males for 

two weeks to ensure that they could not reproduce in isolation (i.e., they 

were sexual females). No F1 females were able to reproduce when 

isolated from males. Then, a total of 24 mating pairs (F1 hybrid 

female×F1 hybrid male) were set up for each F1 produced in each 

combination of sexual species with rare males. As some individuals died 

before mating, the final number of experimental pairs ranged from 10 to 

22 per cross, which produced a total of 173 fertile and 92 infertile F2 

hybrid broods (Table 1). Ovoviviparous and oviparous F2 offspring 

viability is shown in Fig. 2. The percentage of abortive embryos was 

high in all crosses (between 70% and 90%), while the proportion of live 

nauplii in all hybrid ovoviviparous broods was low (from 5% to 25%). In 

oviparous broods, the proportion of properly shelled cysts ranged from 

25% in F2 PD×TIB to 61% in F2 PD×URM.  

 

 

 

 

 

 

 

Cross Pairs  
Total  

broods 
Fertilized  

broods 
Ovoviviparous  

broods  
Oviparous  

broods 

      

F1 PD x KAZ 18 80 42 37 5 

F1 PD x URM 16 48 26 22 4 

F1 PD x TIB 10 33 18 4 14 

F1 PD x SIN 22 104 87 40 47 

      

 

Table 1 Number of total, fertilized, ovoviviparous and oviparous broods 

in F1 Artemia hybrid offspring. F1 hybrids are from parental crosses 
between Artemia urmiana (URM), Artemia sinica (SIN), Artemia tibetiana (TIB), 
Artemia sp. from Kazakhstan (KAZ) and diploid parthenogenetic Artemia 
rare males (PD). 
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Survival rate and sex ratio of F2 hybrid offspring  

A total of 103 F2 ovoviviparous broods were recorded (Table 1), of 

which 35 broods from 27 pairs, characterized by the greatest number of 

nauplii, were followed to assess the survival rate and the sex ratio of the 

F2 offspring. F2 nauplii were morphologically normal but they had low 

survival rates when compared to F1 nauplii (Fig. 3). No F2 hybrid 

offspring produced by the crosses between rare male and A. tibetiana 

survived to maturity. The F2 PD×KAZ had the highest survival rate, 

about 37%, followed by the F2 PD×SIN (34%) and F2 PD×URM (24%). 

Figure 2 Reproductive traits (offspring quantity and quality) in F2 hybrids 

between Artemia rare males and Asiatic sexual females. The viability of 
ovoviviparous and oviparous broods is shown. Error bars are standard 
deviations. 
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The overall mean sex ratio across pairs was significantly female-biased 

in F2 PD×KAZ and F2 PD×URM crosses (12% and 22% of males 

respectively; χ2 = 111.25 and χ2 = 16.49, 1 df, p < 0.05), but was non-

significantly different from 50% in the F2 PD × SIN (43% of males; χ2 = 

0, 1 df, p < 0.05) (Fig. 3). Furthermore, we observed differences in the sex 

ratio of the F2 offspring among different pairs from the same cross, in 

particular for F2 PD × KAZ and F2 PD × URM crosses (see Table 2). In 

the cross F2 PD × KAZ, which higher sample sizes, one pair produced 

Figure 3 Survival rate and sex ratio (overall percentage of males) in the F2 

hybrid offspring from Artemia rare males and Asiatic sexual females. F2 
hybrids are from crosses between F1 hybrid individuals which are obtained in 
the crosses between Artemia urmiana (URM), A. sinica (SIN), A. tibetiana (TIB), 
Artemia sp. from Kazakhstan (KAZ) and diploid parthenogenetic Artemia rare 
males (PD). Error bars are standard deviations. Asterisks (P ≤ 0.05) indicate 
significant differences from 50% sex ratio (Chi-square goodness of fit test was 
employed). 
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offspring with an even sex ratio (pair 3) while the remaining five pairs 

had were female biased offspring (see Table 2).  

 

Generation of hybrid parthenogenetic individuals  

Some females isolated from males of all F2 hybrid offspring analysed 

(when males were present) reproduced parthenogenetically in two of 

the three crosses. Specifically, 12 out of 41 isolated females (29.27%) 

were parthenogenetic in F2 PD × KAZ (four out of the five offspring 

analysed, Table 2), and two out of 36 (5.56%) isolated females in F2 

PD×URM (two of five offspring analysed, Table 2). 

The percentages of parthenogenetic female offspring in the F2 crosses 

were significantly different from each other (χ2 = 7.24, 1 df, p < 0.05), 

and only that one in F2 PD × KAZ did not differ significantly from the 

expectations of 25% (χ2 = 0.4, 1 df, p > 0.05) under expectations of a 

recessive allele in a single locus determining parthenogenesis. In all but 

one case, parthenogenetic females were produced in offspring with 

significantly female-biased sex ratios (Table 2). None of the 21 F2 

PD×SIN offspring included females that could reproduce 

parthenogenetically.  
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Table 2 Sex ratio and parthenogenetic females found in F2 PD × KAZ, F2 PD × URM 

and F2 PD× SIN Artemia offspring. Asterisks (P ≤ 0.05) indicate significant differences 
from 50% sex ratio (number of males/total individuals) (Chi-square goodness of fit test 
was employed). All females obtained were isolated until their deaths to determine their 
mode of reproduction. 

  

 

 

 

 

 

 Pair Females   Males Total Sex ratio 

(%) 

Parthenogenetic 

females / analysed 

females 

Parthenogenetic 

females 

(%) 

 

F2 PD x KAZ 1 10 0 10 0.00** 3/10 

 

30 

 2 10 2 12 16.67* 1/10 10 

 3 7 8 15 53.33 0/7 0 

 4 20 0 20 0.00** 6/10 60 

 5 68 2 70 2.86** 2/4 50 

 6 31 1 32 3.13** - - 

Total  146 13 159  12/41 29.27 

        

F2 PD x URM 1 16 3 19 15.79** 0/16 0 

 2 2 4 6 66.67 0/2 0 

 3 2 0 2 0.00 0/2 0 

 4 3 1 4 25.00 1/3 33.33 

 5 2 1 3 33.33 - - 

 6 2 0 2 0.00 - - 

 7 13 2 15 13.37** 1/13 7.69 

Total  40 11 51  2/36 5.56 

        

F2 PD x SIN 1 15 13 28 46.43 0/15 0 

 2 13 24 37 64.86 0/13 0 

 3 6 3 9 33.33 0/6 0 

 4 1 3 4 75.00 0/1 0 

 5 14 12 26 46.15 0/14 0 

 6 10 10 20 50.00 0/10 0 

 7 20 18 38 47.37 0/20 0 

 8 23 24 47 51.06 0/23 0 

 9 30 41 71 57.75 0/30 0 

 10 5 8 13 61.54 0/5 0 

 11 16 0 16 0.00** 0/16 0 

 12 7 0 7 0.00** 0/7 0 

 13 4 1 5 20.00 0/4 0 

 14 14 21 35 60.00 0/14 0 

Total  178 178 356  0 0 
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Paternity analysis  

In order to examine the parentage of newly generated hybrid 

parthenogenetic individuals we integrated the information from the 

mitochondrial COI and from microsatellites markers (Table 3). Six of the 

10 analysed females from pair 4 of the cross F2 PD×KAZ were 

parthenogenetic and produced F3 clones. As expected, all of them 

shared their mtDNA haplotype with their sexual grandmother, and 

amplified one paternal allele in the two informative microsatellite loci, 

confirming that they were the offspring of the rare male used in the 

crosses. The F3 generation was overall composed by females and by two 

rare males with the same genotype as their F2 mothers. 

 The F2 offspring of two pairs from the crosses PD×URM (pairs 4 

and 7), composed of three and 13 females respectively, included a 

parthenogenetic female that produced F3 parthenogenetic clones. In 

both cases, the F2 parthenogenetic female shared its COI haplotype with 

its sexual grandmother. In one cross, one paternal allele was detected in 

the F2 hybrid female at each of the three microsatellite loci; in the other 

cross, the parthenogenetic female inherited one paternal allele at the two 

informative loci. Most individuals of the F3 generation, composed of 

females and one rare male in both crosses, have the same genotype as 

their F2 mothers, with a few exceptions that lacked one of the maternal 

alleles, suggesting some level of recombination consistent with 

automixis parthenogenesis.  
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 Sample code Apd02 Apd03 Apd05 COI 

Rare male x  

Artemia sp. Kazakhstan F0 (F-Kaz 8) 233-233 213-245 Ø-Ø KAZSEX03 

 F0 (M-Iraq 8) 233-242 208-231 115-Ø APD02 

      

 F2-8-2-2 233-233 231-245 Ø-Ø KAZSEX03 

 F2-8-2-3 233-242 231-245 Ø-Ø KAZSEX03 

 F2-8-2-4 233-242 231-245 Ø-Ø KAZSEX03 

 F2-8-2-5 233-242 231-245 Ø-Ø KAZSEX03 

 F2-8-2-6 242-242 231-245 Ø-Ø KAZSEX03 

 F2-8-2-8 233-242 231-245 Ø-Ø KAZSEX03 

      

 F3-8-2-2-3 233-233 231-245 Ø-Ø KAZSEX03 

 F3-8-2-2-5 233-233 231-245 Ø-Ø KAZSEX03 

 F3-8-2-2-10 233-233 231-245 Ø-Ø KAZSEX03 

 F3-8-2-2-12m 233-233 231-245 Ø-Ø KAZSEX03 

      

 F3-8-2-6-3 242-242 231-245 Ø-Ø KAZSEX03 

 F3-8-2-6-4 242-242 231-245 Ø-Ø KAZSEX03 

 F3-8-2-6-5 242-242 231-245 Ø-Ø KAZSEX03 

 F3-8-2-6-7m 242-242 231-245 Ø-Ø KAZSEX03 

      

 F3-8-2-8-1 233-242 231-245 Ø-Ø KAZSEX03 

 F3-8-2-8-2 233-242 231-245 Ø-Ø KAZSEX03 

 F3-8-2-8-3 233-242 231-245 Ø-Ø KAZSEX03 

 F3-8-2-8-4 233-242 231-245 Ø-Ø KAZSEX03 

      

Rare male x A. urmiana F0 (F-Koy 15) 233-281 207-Ø 170-Ø AUKOY02 

 F0 (M-Iraq 15) 254-233 216-231 115-185 APD02 

      

 F2-15-8-A 254-254 207-216 185 AUKOY02 

      

 F3-15-8-A-1 254-254 216 185 AUKOY02 

 F3-15-8-A-4 254-254 207-216 185 AUKOY02 

 F3-15-8-A-5 254-254 207-216 185 AUKOY02 

 F3-15-8-A-6 254-254 207-216 185 AUKOY02 

 F3-15-8-A-7m 254-254 207 185 AUKOY02 

 

Table 3 Mitochondrial cytochrome c oxidase subunit I (COI) and microsatellite 
loci analyses for parental individuals (F0) and for parthenogenetic F2 and F3 
offspring obtained from the hybrid Artemia crosses. Genotypes for three 
microsatellite loci (allele sizes in base pairs) are shown. Diagnostic alleles, that is, 
alleles present in the rare male grandfather and not in the grandmother are shown 
in bold in the grandfather and in the F2 and F3 offspring. ‘O’ indicates the presence 
of null alleles; ‘m’ indicates a rare male. COI haplotypes as named in GenBank are 
shown. KAZSEX03: GU591387; APD02: DQ426825; AUKOY02: KF707698; 
AUKOY01: KF707699. 
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Discussion 

This study reports for the first time the laboratory generation of 

parthenogenetic Artemia lineages through hybridization via rare males, 

i.e., through contagious parthenogenesis (Simon et al., 2003), shedding 

light on the possible evolutionary role of parthenogenetically produced 

males and the genetic basis of parthenogenesis in this genus. 

Contagious parthenogenesis may have important evolutionary 

consequences as it results in the repeated generation of new asexual 

genotypes, increasing the genetic diversity in parthenogens. This may 

counteract the loss of asexual genotypes resulting from the accumulation 

of deleterious mutations (Muller’s ratchet) or gene conversion (Tucker et 

al., 2013) and could contribute to the evolutionary success of 

parthenogenesis (Simon et al., 2003). 

The occurrence of contagious parthenogenesis relies on regular 

or occasional hybridization with absence of complete reproductive 

isolation between parthenogenetically produced males and closely 

related sexual females (Simon et al., 2003). In a previous study, we 

 Sample code Apd02 Apd03 Apd05 COI 

Rare male x A. urmiana F0 (F-Koy 16) 248-Ø 208-Ø 90-90 AUKOY01 

 F0 (M-Iraq 16) 233-251 216-230 117-189 APD02 

      

 F2-16-7-4 248-251 Ø-Ø 90-117 AUKOY01 

      

 F3-16-7-4-1 248-251 Ø-Ø 90-117 AUKOY01 

 F3-16-7-4-2 248-251 Ø-Ø 90-90 AUKOY01 

 F3-16-7-4-3 248-251 Ø-Ø 90-117 AUKOY01 

 F3-16-7-4-5 248-251 Ø-Ø 90-117 AUKOY01 

 F3-16-7-4-7m 248-251 Ø-Ø 90-117 AUKOY01 

 

Table 3 Continued 
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showed the absence of prezygotic isolation between rare males and 

Asiatic sexual Artemia species since these males often coexist in the same 

environment of a sexual species (Abatzopoulos et al., 2006; Agh et al., 2007; 

Agh et al., 2009; Shadrin, Anufriieva & Galagovets, 2012; Van Stappen et al., 

2007; Van Stappen, 2008; Zheng & Sun, 2013), show normal pairing 

behaviour and are fully functional and capable of fertilizing eggs from 

females of sexual Asiatic Artemia species producing viable hybrid 

offspring (Maccari et al., 2013). Under laboratory conditions, each 

combination of sexual species with rare males produced 

morphologically normal, viable sexual hybrid F1. Their survival rate to 

adulthood was over 50% for all the hybrid populations, a high value if 

compared to survival of F1 of intraspecific crosses of the different 

Artemia species (Browne & Wanigasekera, 2000). 

We found that females constitute approximately 50% of each F1 

hybrid population, an even sex ratio that usually characterizes Artemia 

sexual populations, and this was confirmed by their inability to 

reproduce without males. These results ruled out a dominant gene as 

the genetic basis of parthenogenesis. Although all laboratory F1 lines 

were found to combine ovoviviparous and oviparous reproduction, we 

observed a strong reduction in the reproductive output in all crosses 

when compared with the reproductive performance of the parental 

crosses (Maccari et al., 2013). Ovoviviparous broods were mostly made 

up by abortive embryos (more than 80%) in all the crosses and live 

nauplii represented only 25% of the offspring in the cross F2 PD × SIN, 

and less than 10% in all the other crosses (F2 PD × KAZ, F2 PD × URM 

and F2 PD × TIB). Oviparity, the production of dormant encysted 
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embryos that are resistant to extreme environmental conditions, was 

represented by a variable quantity of properly shelled embryos, only 

25% in the F2 PD × TIB increasing up to 61% in F2 PD × URM. Similarly, 

a decline in nauplii F2 production occurs in the interspecific crosses 

between A. tibetiana and A. sinica (Van Stappen et al., 2003). 

In contrast to the high survival rates of F1 hybrids, hybrid 

breakdown was evident in the F2 generation. Nauplii from the F2 

generations had low survival rates and were completely inviable in the 

F2 PD × TIB generation. The lower fertility level of F1 laboratory 

populations and the reduced viability of F2 hybrid individuals suggest 

partial genetic incompatibility between parthenogenetic males and 

sexual females. However, the production of some viable offspring both 

in F1 and F2 in all hybrid crosses is not so surprising given the recent 

evolutionary origin of diploid parthenogenetic lineages (Holocene) 

(Muñoz et al., 2010; Maccari, Amat & Gómez, 2013). 

In two of the three F2 generations (F2 PD × KAZ and F2 PD × 

URM) we identified 14 hybrid females that upon reaching maturity were 

capable of parthenogenetic reproduction. Surprisingly, these 

parthenogenetic females were produced by pairs yielding strongly 

female biased F2 offspring. Genetic analysis confirmed the parentage of 

the parthenogenetic lineages found as the F2 individuals inherited the 

COI haplotype from the sexual grandmother but included some paternal 

alleles at nuclear markers, showing that they were the offspring of the 

rare male used in the crosses. Our results contrast with previous 

observations suggesting that rare males in the genus Artemia are not 

capable to transmit parthenogenesis-inducing alleles (Bowen et al., 1978). 



Contagious parthenogenesis in Artemia 

 

157 

 

The production of parthenogenetic individuals only in the 

second generation, suggests that the parthenogenesis-inducing alleles 

are recessive in Artemia. A single-locus recessive inheritance of obligate 

parthenogenesis also occurs in Apis mellifera capensis and in Lysiphlebus 

fabarum (Sandrock & Vorburger, 2011; Lattorff, Moritz & Fuchs, 2005; 

Lattorff et al., 2007). This is in contrast with D. pulex, where the sex-

limited meiosis suppression genes are dominant and the asexual clones 

arise in the first generation (Innes & Hebert, 1988). If a single recessive 

locus was responsible for parthenogenesis and there was no differential 

viability in Artemia, a 25% of parthenogenetic females would be 

expected in the F2 generation. The proportion of isolated females that 

reproduced parthenogenetically differed between the crosses. In the 

cross F2 PD × KAZ, the overall proportion of parthenogenetic F2 

females was 29.27%, not significantly different from 25%, whereas in the 

cross F2 PD × URM this was much lower (5.56%) and significantly 

different from the expectations for a single recessive locus. These results 

suggest either differences in the mechanism underlying parthenogenesis 

between populations, or increased incompatibilities between PD and 

URM resulting in viability differences linked to the putative locus 

associated to parthenogenesis. The latter is supported by the lower 

viability of F2 PD × URM nauplii. The finding of parthenogenetic 

females only in sex-biased broods suggests that the inheritance of 

parthenogenesis has a more complex genetic basis, however. Given that 

females are heterogametic (WZ) (Bowen, 1963; Bowen, 1965; Stefani, 1963) 

and that F1 females are sexual, we can rule out complete sex-linkage (Z-

linkage) of the parthenogenesis determining gene, otherwise 
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parthenogenesis should be apparent in the F1, given that all F1 females 

are WZ with their Z chromosome presumably inherited from their 

asexual father. Sex-biased sex ratios are not uncommon in hybrid 

offspring and can be due to the evolution of sex-ratio distorters and 

counter evolution of suppressor genes in different lineages (Hurst & 

Pomiankowski, 1991). Our data suggests an interaction between a sex 

ratio distorter (possibly sex-linked) and a parthenogenetically 

determining factor. Alternatively, the same gene determining 

parthenogenesis could act as a sex ratio distorter in heterozygous F1 

females, increasing the likelihood of transmission of the W chromosome. 

Our results do not support differential male mortality, as there was no 

correlation between brood survival and sex ratio (data not shown). 

These interpretations must be taken with caution given the limitations of 

our experimental design and data, as we analysed F2 broods where 

there was a larger number of nauplii, the survival of the F2 was low, and 

we cannot rule out some effect of differential sterility. These factors 

might have biased our conclusions regarding the genetic basis of 

parthenogenesis. Therefore, to fully understand the genetic basis of 

parthenogenesis in Artemia additional crosses and a large set of marker 

loci will be necessary.  

The ability of sexual females of A. urmiana and Artemia sp. from 

Kazakhstan to generate parthenogenetic clones when crossed with rare 

males is not surprising, as the two main mitochondrial haplogroups of 

diploid parthenogenetic Artemia lineages are related to these species 

(Muñoz et al., 2010; Maniatsi et al., 2011; Maccari, Amat & Gómez, 2013). 

However, the more distantly related A. sinica (Baxevanis, Kappas & 
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Abatzopoulos, 2006; Hou et al., 2006) did not produce any parthenogenetic 

offspring, despite high survival rate in the F2, suggesting that the 

specific genomic background affect the expression of the gene inducing 

parthenogenesis. Although repeated gene flow between sexual females 

and asexual males through contagious parthenogenesis would be 

expected to result in a regular emergence of asexual strains with diverse 

maternal origins, the fact that just two, possibly three, maternal origins 

of parthenogenetic lineages have been identified (Muñoz et al., 2010; 

Maniatsi et al., 2011; Maccari, Amat & Gómez, 2013) indicate that the 

incidence of contagious parthenogenesis, if this is the mechanism of 

origin, must be extremely low in natural environments. Indeed, the rare 

males must be present in the population at the same time as the sexual 

females of the related species, and given that both parthenogenetic and 

sexual species often have different ecological requirements, they may 

overlap just during part of each season (Amat et al., 1991; Ghomari et al., 

2011). In addition, the percentage of rare male production by diploid 

parthenogenetic females is very low, about 1–16 in 1000 (Maccari et al., 

2013). Then, as the parthenogenesis occurs in the second generation (i.e., 

is based on a recessive trait), a F1 × F1 mating must occur for 

parthenogenesis to appear in the offspring. Finally, F2 survival is very 

reduced, overall making the origin of a parthenogenetic lineage an 

unlikely event in the wild. 

Our study is the first to generate new parthenogenetic lineages in 

Artemia by mating rare males from parthenogenetic genotypes with 

sexual females, providing evidence that contagious parthenogenesis can 

potentially occur in the genus Artemia. This conclusion does not rule out 
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that other mechanisms (spontaneous origin or hybridisation) might have 

been also responsible for the origin of parthenogenetic lineages. 

Demonstration of contagious parthenogenesis as the mechanism 

underlying parthenogenesis in Artemia in the wild will necessitate the 

use of genomic tools. Further studies on hybrid fitness would be 

necessary to estimate the strength of reproductive isolation and to 

compare the reproductive performance of laboratory-produced 

parthenogenetic clones with the parental parthenogenetic strains. The 

origin of independently reproducing parthenogenetic clones in the 

laboratory raises the question of the survival of these clones when 

competing with sympatric sexual species. 

Given that many parthenogenetic organisms produce males 

occasionally (van der Kooi & Schwander, 2014) and such males are still 

able to maintain their functionality, the occurrence of contagious 

parthenogenesis could be more widespread than currently 

acknowledged. 
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Table S1. Survival rate and sex ratio in the F1 hybrid Artemia offspring.  
F1 hybrids are from parental crosses between Artemia urmiana (URM), A. sinica (SIN), A. 
tibetiana (TIB), Artemia sp. from Kazakhstan (KAZ) and diploid parthenogenetic Artemia 
rare males (PD). Live, dead and abortive individuals and number of males and females 
of individuals reaching maturity are given. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

F1 PD x KAZ        

Female code 
Live 
nauplii 

Dead  
nauplii Abortive Total  females  males total 

         

A 175 0 3 178  47 42 89 

         

B 133 20 184 337  51 48 99 

 0 25 176 201     

         

C 204 0 8 212  53 61 114 

 203 0 71 274  44 48 92 

         

D 122 4 1 127  32 29 61 

         

E 206 0 2 208  87 89 176 

 

F1 PD x TIB         

Female code 
Live  
nauplii 

Dead  
nauplii Abortive Total  females  males total 

         

A 89 1 4 94  25 27 52 

         

B 60 3 42 105  15 18 33 

 



Chapter III 

168 

 

Table S1. Continued. 

 

 

F1 PD x URM        

Female code 
Live  
nauplii 

Dead  
nauplii Abortive Total  females  males total 

         

A 47 0 0 47  7 18 25 

         

B 90 0 3 93  31 38 69 

         

C 28 0 20 48  8 11 19 

 87 0 27 114  22 34 56 

         

D 28 0 5 33  8 4 12 

         

E 143 0 0 143  47 41 88 

 115 0 11 126  15 19 34 

         

F 116 0 10 126  22 56 78 

         

G 63 3 7 73  21 25 46 

 81 0 3 84  29 45 74 

 127 0 21 148  51 47 98 

 118 2 8 128  14 32 46 

         

H 40 0 3 43  13 7 20 

 36 0 5 41  4 2 6 

 121 0 17 138  17 24 41 

 106 56 0 162  32 31 63 

         

I 27 0 0 27  3 7 10 

 15 0 14 29  3 2 5 

         

L 31 3 51 85  11 3 14 

 8 0 67 75  2 1 3 

 78 0 30 108  18 20 38 

         

M 150 2 17 169  52 56 108 

         

N 115 0 23 138  33 26 59 

 46 0 127 173  20 17 37 

         

O 262 0 12 274  63 48 111 

 67 35 0 102  15 5 20 
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   Table S1. Continued. 

 

    
 

F1 PD x SIN         

Female code 
Live  
nauplii 

Dead  
nauplii Abortive Total  females  males total 

         

A 76 0 2 78  33 31 64 

 28 4 29 61  10 10 20 

         

B 102 0 0 102  43 39 82 

         

C 41 32 1 74  17 16 33 

 92 0 18 110  38 36 74 

         

D 4 0 166 170  1 1 2 

 205 31 58 294  84 80 164 

 225 0 68 293  93 87 180 

         

E 94 0 6 100  38 36 74 

 129 0 79 208  50 50 100 

 183 47 23 253  78 76 154 

         

F 65 0 0 65  28 25 53 

 125 2 8 135  52 47 99 

         

G 126 1 0 127  49 46 95 

         

H 138 0 44 182  55 51 106 

         

I 285 0 0 285  116 112 228 

         

L 212 0 2 214  81 78 159 

         

M 74 0 16 90  30 28 58 

 165 1 9 175  77 70 147 

 178 0 34 212  76 97 173 

         

N 57 0 5 62  24 22 46 

 181 0 7 188  72 67 139 

 243 0 4 247  97 90 187 

 276 0 25 301  121 116 237 

         

O 65 0 6 71  26 25 51 

 142 0 0 142  62 59 121 
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Table S1. Continued. 

 

 
 

F1 PD x SIN         

Female code 
Live  
nauplii 

Dead  
nauplii Abortive Total  females  males total 

         

P 0 8 70 78     

 150 0 6 156  58 59 117 

 185 0 1 186  31 44 75 

 187 0 16 203  32 40 72 

         

Q 30 0 121 151  16 13 29 

 183 3 15 201  75 71 146 

 212 0 57 269  26 27 53 

 234 0 54 288  80 99 179 

 232 4 25 261  93 93 186 

         

R 38 2 23 63  16 16 32 

 9 0 77 86  1 2 3 

         

S 24 0 11 35  12 10 22 

 138 0 5 143  54 64 118 

 173 0 5 178  69 66 135 

 39 0 91 130  15 15 30 

 182 0 31 213  88 79 167 

         

T 163 0 6 169  59 42 101 

 193 2 12 207  99 84 183 

 175 0 27 202  65 67 132 

         

U 73 0 2 75  32 37 69 

 158 0 7 165  77 74 151 

 254 1 17 272  103 103 206 

         

V 61 2 9 72  31 26 57 

 133 0 14 147  64 63 127 

         

X 69 0 18 87  34 34 68 

         

Y 80 0 1 81  41 34 75 

 132 0 28 160  51 49 100 

 241 0 18 259  99 104 203 

 243 0 18 261  101 97 198 

 327 2 21 350  132 140 272 
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RESULTS AND GENERAL DISCUSSION  
 
In this thesis we addressed the question of how genetic diversity is 

generated and maintained in diploid Artemia parthenogenetic lineages.  

We focused our attention on two mechanisms which may occur in the 

genus: i) the generation of parthenogenetic populations through 

hybridization between two related sexual species (Artemia urmiana, 

Artemia sinica, Artemia tibetiana, Artemia sp. Kazakhstan); ii) contagious 

parthenogenesis in which parthenogenetically produced functional 

males mate with sexual females and transmit parthenogenesis to their 

offspring.  

In order to gain insight into the evolutionary origin of diploid 

parthenogenetic Artemia, we tried two different but complementary 

approaches. On one hand, we used nuclear and mitochondrial markers 

to explore the phylogenetic relationship between diploid asexual 

populations and Asian sexual relatives, to understand how many times 

parthenogenesis has arisen and to infer the possible genetic mechanisms 

involved in the evolution of diploid parthenogenetic lineages (Chapter 

1); on the other hand, we established laboratory cross-mating 

experiments between rare males and females of sexual Asian related 

species to investigate the reproductive role of rare males and to 

understand if they have the potential of generating parthenogenetic 

strains (Chapters 2 and 3).  

The results obtained were discussed in detail in each chapter. In this 

section we will summarize them in a general discussion. 
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The genus Artemia has featured in the literature extensively and 

different studies have been investigating the phylogenetic relationships 

among sexual species and those between parthenogenetic lineages and 

sexual relatives (Abatzopoulos et al. 2002a; Gajardo et al., 2002; 

Baxevanis et al., 2005, 2006; Qiu et al., 2006; Hou et al., 2006; Muñoz et 

al., 2008, 2010, 2013; Maniatsi et al., 2011). In a previous study based on 

allozymically calibrated molecular clock, Abreu–Grobois (1987) 

evaluated the degree of interspecific divergences of the genus. He 

indicated that the first evolutionary event of the genus was the 

separation of New and Old World sexual species. This was followed by 

the separation of A. franciscana and A. persimilis in the New World and 

the divergence of A. salina and A. urmiana lines in the Old World. He 

speculated that the parthenogenetic lineage branched from the Old 

World sexual ancestor appearing in the Mediterranean Basin between 3 

and 6 MYA, event that may have coincided with a dramatic increase in 

salinity and subdivision of habitats in this region during the Messinian 

salinity crisis (Krijgsman et al, 1999). Later, a study based on mtDNA 

sequences divergence (Perez et al., 1994) claimed a substantially more 

ancient origin of parthenogenetic Artemia (30-40 MYA).  

More recently, Baxevanis et al. (2006) challenged this evolutionary 

hypothesis by analysing ITS1 nuclear sequences and 16S mtDNA. They 

inferred that, although the South American species A. persimilis diverged 

from the common ancestor of all Artemia species between 80-90 MYA, at 

the time of separation of Africa from South America, A. franciscana 

formed a sister clade to all Asian Artemia and found at least four 

independent origins of parthenogenetic forms, all related to Asian 
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species (A. urmiana, A.sinica, A. tibetiana).  The ploidy of asexual samples 

was not identified and they could not discriminate between different 

hypotheses on the evolution of parthenogenesis.  

Muñoz et al. (2010) explored the mitochondrial genetic diversity of 

Mediterranean parthenogenetic diploid Artemia including in the analysis 

all the Asian Artemia sexual species, also Artemia sp. from Kazakhstan, 

which was not previously investigated. Their results indicated two 

maternal origins for diploid parthenogenetic Artemia, one closely related 

to the Kazakhstan native population and the other to one population of 

Artemia urmiana. They strongly suggested that the origin of 

parthenogenesis in Artemia was much more recent, possibly even during 

the Holocene, and that it occurred in Central Asia.  

Successively, in a study based on a combination of microsatellites and 

mtDNA sequences, Maniatsi et al. (2011) found that diploid, triploid and 

tetraploid strains had different evolutionary origins. They indicated that 

diploid and triploid clones are maternally related to A. urmiana, whereas 

the tetraploid one has an independent origin related to A. sinica. In 

addition, they suggested that the triploid taxa might be derived from a 

diploid parthenogenetic ancestor through fertilization of an unreduced 

asexual ovum or through fertilization by rare males of an unreduced 

sexual ovum.  However the Kazakhstan native population was not 

included in this study. Moreover pooled cyst samples were used for 

flow cytometry analyses, potentially confounding cyst endopolyploidy 

with population level ploidy variation.  

In this study, phylogenetic analyses were designed to better understand 

the origin and evolution of diploid asexual lineages in the Artemia 
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genus. More specifically, we assessed the robustness of previous 

phylogenies using an extensive collection of strains and, sequencing 

nuclear and mitochondrial markers, we tried to investigate if new 

asexual clones originated spontaneously from sexual species and, in this 

case, which sexual species were involved, if they originated through 

contagious asexuality or through hybridization between sexual species. 

For this purpose, we explored the genetic variability of nuclear and 

mitochondrial DNA of diploid parthenogenetic populations from 

different geographic locations of Central and East Asia, the region 

considered to be the most likely centre of asexual diploid origin. We also 

sequenced different populations of all Asian sexual species, including a 

new population of A. urmiana from Crimea (Koyashskoe Lake) and four 

different populations of A. tibetiana. Finally, for the first time, we 

included in the phylogenetic analysis sequences from rare males.  

This survey substantially expands our knowledge of diploid genetic 

diversity in Eurasia and allows inferring the possible mechanisms 

generating genetic diversity of asexual lineages in the genus. The 

mitochondrial tree (COI sequences) was well supported 

phylogenetically and revealed three maternal clades of diversity in 

diploid parthenogenetic Artemia. The most common lineage is 

monophyletic and closely related not only to the haplotypes of the 

Kazakhstan population but also to haplotypes of two A. tibetiana 

populations. The less common lineage forms a polyphyletic clade, 

closely related to haplotypes of the newly sequenced population of A. 

urmiana from Koyashskoe Lake (Crimea). We also found a third minor 

lineage, which is present only in rare males from the Kujalnic (Ukraine) 
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population. These three maternal clades are not differentiated in their 

nuclear DNA (ITS sequences) since our results show that diploid 

parthenogens cluster very closely to all the three Asian species, Artemia 

sp. from Kazakhstan, A. tibetiana and A. urmiana. That may be explained 

by repeated hybridization between sexual similar lineage groups or by 

contagious events between one lineage group and another.  

Parthenogenetic populations do not display very high mitochondrial 

diversity, what we would expect for repeated events of contagious 

origin. Moreover, parthenogenetic populations coexisting with the 

sexual A. urmiana do not have a local origin. For this reason, we did not 

find a strong evidence of rampant contagious parthenogenesis. 

However, the polyphyletic origin of the second asexual clade and the 

existence of a third rare clade only in rare males, may point to events of 

occasional contagious parthenogenesis which may occur in some 

populations at low frequencies, and have a high chance of not being 

successful from an evolutionary viewpoint. 

Our study also reveals a new lineage of A. tibetiana, not identified before. 

Despite its exceptional mitochondrial genetic diversity, Artemia tibetiana 

is instead very homogeneous in nuclear genes. Possible explanations 

may be the introgression of genes from females of the Kazakhstan 

population and a hybrid origin of this species. Nuclear genes show that 

three species, A. urmiana, Artemia sp. Kazakhstan and A. tibetiana are 

very closely related so that they might be considered a species complex. 

In this regard, further investigation on the genetic diversity of Artemia 

tibetiana would be necessary to know if this species might be involved in 

the origin of the species complex and in the origin of parthenogenesis.  
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Finally, in accordance with previous studies (Muñoz et al., 2010; 

Maniatsi et al., 2011), both phylogenetic trees based on ITS and COI 

sequences, indicated that A. sinica do not contribute to the genetic 

diversity of diploid parthenogenetic Artemia.  

 

Many researches have confirmed the occurrence of rare males in various 

obligate parthenogenetic animal species (Stefani, 1964; Blackman, 1972; 

Bowen et al., 1978; Plantard et al., 1998; Pongratz et al., 1998; Butlin et al., 

1998; Martens, 1998; Rispe et al., 1999; Simon et al., 1999; Delmotte et al., 

2001) but little is known about their population frequencies or their 

mechanism of origin.  

Rare males are often functional and can mate with sexual females of 

related species but they cannot fertilize conspecific females as these 

females are parthenogenetic. So, why do parthenogenetic females still 

produce some males? Are these rare males a form of evolutionary 

atavism or do they have an evolutionary role? 

It has been demonstrated that matings between parthenogenetically 

produced males and females from sexual lineages may generate both 

sexual and parthenogenetic lineages (Lynch, 1984; Innes and Hebert, 

1988; Rispe et al., 1999; Simon et al., 1999; Delmotte et al., 2001; Paland et 

al., 2005; Engelstädter et al., 2011). In these cases, the occurrence of 

contagious parthenogenesis could be an efficient process to slow down 

the accumulation of deleterious mutations and to generate a substantial 

amount of genetic diversity in asexual lineages, potentially contributing 

to their persistence. 
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We still did not know whether contagious asexuality is possible in 

Artemia. In fact, very limited information has been available to 

understand the reproductive and evolutionary role of Artemia rare males 

(Bowen et al., 1978; MacDonald and Browne, 1987).  

In order to evaluate the fertility and the reproductive potential of rare 

males in Artemia, we first investigated their occurrence in different 

diploid parthenogenetic Artemia populations of all over Eurasia 

(Chapter 2). In our extensive study, their presence was confirmed in 50 

of 54 sampled populations, with a total number of 415 666 individuals 

sexed, indicating that male production is a general feature in diploid 

parthenogenetic Artemia, with the possible exception of the Westernmost 

populations. The populations with a higher ability to produce rare males 

were found indeed between the Mediterranean–Caspian Basins region 

and the salt lakes region in Kazakhstan, the region indicated as the most 

probable centre of origin of parthenogenesis. 

DNA barcoding confirmed that males found were rare males rather than 

sexual strains in low frequencies. Rare male mtDNA haplotypes were 

either identical to those found in the parthenogenetic females from the 

same populations or they were closely related to them. These findings 

allow us to hypothesize that some rare lineages in these populations 

might have a higher propensity to produce rare males. This is in 

agreement to a study by MacDonald and Browne (1987), which found 

intra-population variability in the propensity to generate of rare males in 

Artemia.  

Rare males were also described morphologically in the context of the 

variability of closely related sexual Artemia species. They showed higher 
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morphological variability than males from Asian sexual species. That 

may be due to heterogeneous geographical origin of parthenogenetic 

lineages and the inability for them to interbreed. In addition, there was 

not an association between haplotype group and their morphological 

resemblance to either A. urmiana or Artemia sp. Kazakhstan. It means 

that, for example, a rare male with a haplotype closely related to A. 

urmiana did not appear morphologically similar to A. urmiana males. 

To assess the reproductive role of rare males, we performed cross-

mating experiments with females of sexual Asian related species 

(Artemia urmiana, Artemia sinica, Artemia tibetiana, Artemia sp. 

Kazakhstan) (Chapter 2). We found that rare males were fully functional 

and capable to fertilizing eggs from all Asian sexual females. Indeed, we 

produced more than 250 hybrid broods that resulted in viable 

ovoviviparous and oviparous F1 offspring with similar or higher quality 

than controls (intraspecific crosses).  

A panel of three microsatellite markers was screened in rare males, in 

the sexual females mated to them and in their F1 offspring, to find 

evidence that rare males contributed to the genetic material of the 

progeny. As these microsatellite markers were originally developed for 

diploid parthenogenetic strains, they amplified well in the rare male 

fathers but we found evidence of null alleles in the mothers for one or 

more of the analyzed loci. Despite this, they were very useful to 

demonstrate that Artemia rare males underwent meiotic reduction 

(producing haploid sperm) and were able to transmit their alleles to 

their offspring.  
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Next, we investigated whether Artemia had the potential of generating 

parthenogenetic strains through contagious parthenogenesis (Chapter 

3). A requisite for this mechanism is the ability of rare males to transmit 

asexuality to their offspring. To test this hypothesis, live nauplii 

obtained from each ovoviviparous brood, achieved from crosses 

between rare males and Asian sexual species females, were reared in the 

laboratory to adulthood, then counted and sexed to estimate survival 

rates and sex ratio. 

We found that the survival of hybrid F1 offspring was very high, and 

their sex-ratio was close to 1:1, an even sex ratio that usually 

characterizes Artemia sexual populations. Indeed, F1 females were 

unable to reproduce asexually when isolated. Then, we carried out 

cross-mating experiments between these F1 hybrid individuals (F1 

hybrid females x F1 hybrid males) to assess their fertility, to estimate the 

viability of the resulting F2 offspring and to investigate their 

reproductive mode. Although all laboratory F1 hybrid lines were found 

to combine ovoviviparous and oviparous reproduction, a strong fitness 

decline of their reproductive performance was apparent. Overall, nauplii 

from F2 generations had low survival rates, and were completely 

unviable in the F2 generation obtained from rare males and A. tibetiana 

matings.  In two of the F2 generations obtained, those from the crosses 

between rare males and Artemia sp. Kazakhstan and A. urmiana, we 

identified morphologically females that were able to reproduce 

parthenogenetically. Genetic analysis based on a combination of 

microsatellites and mtDNA sequences confirmed that the new 

parthenogenetic individuals were effectively generated from the 
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crossing with rare males. They showed to have inherited COI mtDNA 

haplotype from the sexual grandmother and alleles at nuclear markers 

from the asexual grandfather. 

Our study documents the first laboratory generation of new 

parthenogenetic lineages in Artemia and supports a model for the 

contagious spread of parthenogenesis.  

We found many surprising results in these experiments. The production 

of parthenogenetic individuals only in the second generation suggests a 

recessive inheritance of obligate parthenogenesis in Artemia. That also 

ruled out complete sex linkage (Z linkage) of the asexuality inducing 

alleles because the F1 females, which are the heterogametic sex, are not 

parthenogenetic. Moreover, the proportions of parthenogenetic females 

isolated in the F2 generations from the two crosses were very different. 

It was not significantly different from 25% in the rare males x Artemia sp. 

Kazakhstan cross F2 progeny, but much lower in the rare males x A. 

urmiana cross F2 progeny. This means that asexuality is not determined 

by a single recessive locus but it is likely that more genes are involved. 

In addition, we isolated new parthenogenetic females only in sex-biased 

broods.  That induces to consider that there is an interaction between sex 

ratio distorters and a parthenogenetically determining locus or loci. 

Our study is the first one to generate new parthenogenetic lineages in 

Artemia by mating rare males with some Old World sexual species 

females, providing evidence that contagious parthenogenesis may occur 

in the genus Artemia, particularly in populations inhabiting conspicuous 

biotopes in this Old World. 
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FUTURE DIRECTIONS  

This study contributes to draft the evolutionary relationships of diploid 

parthenogens and their closest Asian sexual relatives in the genus 

Artemia. It confirms that asexuality has arisen many times, and reveals 

that different mechanisms, such as rare events of hybridization between 

sexual species, or by means of contagious asexuality through clonal rare 

males, may occur to generate and increase the genetic diversity of 

diploid parthenogenetic Artemia lineages. Our work also demonstrates 

the functionality of rare male in Artemia and their possible evolutionary 

role. The cross mating experiments designed have demonstrated that 

rare males are functional, that successfully mate with females of sexual 

relatives, that produce reduced gametes and that are capable to transmit 

parthenogenetic genes to their offspring. This is good evidence that 

contagious parthenogenesis may occur in Artemia. 

From these findings, our study opens the door to many other possible 

investigations. First of all, laboratory crosses between sexual Asian 

species remain to be investigated in order to verify if parthenogenetic 

populations may be originated by the hybridization of those. In the 

future, a full use of genomic tools might help to resolve Artemia 

phylogenetic relationships, to better understand the details of the origin 

and genetic basis of asexuality and to demonstrate the actual evidence of 

contagious parthenogenesis and possible events of hybridization in the 

wild.  

Further research may be led to unravel the genetic basis of the variation 

in male production rates among and within populations and to 

understand why there is a geographic variation in rare male frequency. 



General Discussion and Conclusions 

194 
 

It would be also interesting to investigate the potential interactions 

between genetic and environmental factors that may be involved into 

rare male production. Indeed, as in many other cyclical parthenogenetic 

animal species, environmental triggers, such as stressful conditions, may 

be important for the switch from asexual to sexual reproduction.  

Moreover, the genes involved in the transitions to asexuality are still 

unknown in Artemia. Our results suggest that sex-limited meiosis 

suppression might have a complex genetic basis. Additional crosses and 

genomic resources loci could be useful to individuate how many and 

which genes are responsible for the loss of sex, and to fully understand 

the mechanisms by which these genes cause reproductive transitions.  

Future studies could focus on the discovery of ecological interactions 

between parthenogenetic and sexual relatives when they coexist. For 

example, parthenogens producing rare males might not take the full 

demographic advantage of avoiding the cost of males. Although it might 

be regarded as very low investment, when there are highly competitive 

conditions under resource limitation the cost of sex for parthenogens 

may be important.  

Finally, it would be very important to unveil ecological requirements of 

hybrid and parental taxa, which would allow estimating the strength of 

reproductive isolation comparing the biological fitness of both 

parthenogenetic and sexual populations. 
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CONCLUSIONS  

The main conclusions obtained from the body of research presented in 

this Thesis are as follows: 

 

1)  Mitochondrial and nuclear genetic diversity supporting 

phylogenetic reconstructions suggests that the three Asian 

species, Artemia sp. from Kazakhstan, Artemia tibetiana and 

Artemia urmiana are closely related and may be considered a 

species complex; on the other hand, the genetic diversity of 

Artemia tibetiana points to a hybrid origin of this species. All of 

them are involved in the origin of parthenogenesis.  

 

2) Phylogenetic analyses on genetic diversity in diploid 

parthenogenetic Artemia populations confirm the multiple origin 

of asexuality in the genus. Automictic parthenogenesis has arisen 

at least three times independently.  

 

3) Mitochondrial and nuclear genetic diversity of diploid 

parthenogenetic Artemia do not reveal the mechanisms 

underlying the origin of each group, but they suggest occasional 

events of contagious parthenogenesis. 

 

4) Nuclear and mitochondrial data sequences confirm that Artemia 

sinica did not contribute to the genetic diversity of diploid 

parthenogenetic Artemia populations.  
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5) Male production in small frequencies is a general feature of 

diploid parthenogenetic Artemia. There is a large population 

variation in male frequencies, but populations with a higher 

ability to produce rare males were found in the region indicated 

as the most probable centre of origin of parthenogenesis. 

 

6) Rare males are fully functional. They undergo meiotic reduction, 

producing haploid sperm and are capable to fertilize eggs from 

all Asian sexual Artemia females. Crosses between rare males and 

Asian sexual Artemia females produce viable sexual hybrid 

progeny in the first generation, what supports an incomplete 

reproductive isolation between parthenogenetic and all sexual 

Asian species.  

 

7) Rare males are capable to transmit asexuality to their offspring, 

converting a proportion of hybrid progeny to obligate asexuality. 

Crosses between rare males and A. urmiana and Artemia sp. 

Kazakhstan produce new parthenogenetic lineages in the second 

generation (F2).  

 

8) There is a recessive inheritance of obligate parthenogenesis in 

Artemia. There is not sex linkage (Z linkage) of asexuality 

inducing alleles, but sex limited meiosis suppressor is conferred 

by a recessive allele at possibly more than one locus. 
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9) The gene flow between sexual and parthenogenetic lineages 

allows asexuality genes to spread into the sexual species and, 

that way, parthenogens assimilate the diversity of sexual species 

into a diverse clone assemblage. This is important for the 

persistence of parthenogenetic populations by increasing their 

genetic diversity and slowing the accumulation of deleterious 

mutations in parthenogenetic strains. 

 

10)  Finally, we discuss the need to use genomic tools to further 

understand the genetic basis of parthenogenesis in Artemia. 
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RESUMEN 

Introducción  

El modo de reproducción de una especie determina su diversidad 

genética y, a su vez, su éxito ecológico y evolutivo (Normarck et al., 

2003; Simon et al., 2003; De Meeûs et al, 2007). En una población sexual, 

la recombinación meiótica permite que nuevas combinaciones de genes 

se formen y destruyan constantemente. De hecho, las poblaciones 

sexuales son generalmente más diversas genéticamente en comparación 

con las poblaciones asexuales. Por el contrario, en un linaje estrictamente 

asexual, donde se supone que la mutación (con la mayoría de mutantes 

deletéreos) sea la única fuente de diversidad genética, se espera que la 

diversidad clonal de la población se reduzca en cada generación. Por 

esto las especies asexuales suelen ser consideradas ramas evolutivas sin 

salida, lo que hace presuponer que tengan una breve vida evolutiva y se 

extingan a corto plazo (104 - 105 generaciones) (Lynch and Gabriel, 1990). 

A pesar de ello, diversos estudios han demostrado que la diversidad 

genética de las poblaciones asexuales puede ser comparable a la de las 

poblaciones sexuales, si se generan repetidamente o si se producen a 

través de mecanismos distintos (Schwander et al., 2011, Delmotte et al., 

2001, 2002, 2003). En estos casos las poblaciones asexuales producirán 

linajes asexuales polifiléticos muy diversos. 

Por ello es muy importante conocer el origen y la evolución de 

los linajes asexuales, y comprender cómo se genera y preserva la 

diversidad genética en dichos linajes. Esto nos permitirá conocer la 

adaptabilidad ecológica y la competitividad de las poblaciones asexuales 

frente a las especies sexuales emparentadas, y evaluar su potencial 
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evolutivo (Bell, 1982; Simon et al. 2003).  

 

Artemia (Crustacea, Anostraca) es un organismo cosmopolita que vive en 

ecosistemas hipersalinos litorales y continentales de todo el mundo, 

excepto en la Antártida (Triantaphyllidis et al., 1998; Van Stappen 2002). 

Su importancia procede tanto de su uso práctico en acuicultura como de 

su aplicación científica como especie modelo en una gran variedad de 

investigaciones genéticas y ecológicas. Otra cualidad de este organismo, 

que lo hace muy interesante desde un punto de vista evolutivo, se debe 

a la existencia de varias especies sexuales y distintos linajes 

partenogenéticos de diversa ploidía (diploides, triploides, tetraploides) 

dentro del género (Abatzopoulos 2002), que con frecuencia coexisten. 

Esto nos da una oportunidad única de estudiar su diversidad genética, 

el origen de los linajes partenogenéticos y sus interacciones evolutivas 

con especies sexuales.  

Las poblaciones partenogenéticas diploides de Artemia en 

particular, uno de sus linajes mas extendidos biogeográficamente, son 

muy interesantes por varios aspectos. Las cepas o estirpes asexuales 

poliploides se reproducen por apomixis, ello implica que las divisiones 

de los ovocitos serán mitóticas, y que los descendientes serán 

verdaderos clones de la madre. Por su parte, los linajes partenogenéticos 

diploides se reproducen por partenogénesis automíctica. La meiosis y la 

recombinación génica pueden ocurrir, y se han identificado distintos 

mecanismos citológicos que permiten restaurar la diploidía del ovocito. 

Cada uno de estos mecanismos tiene un impacto diferente en la 

diversidad genética de la población, ya que pueden mantener o eliminar 
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la variación genética de una generación a otra, con consecuencias 

evolutivas muy diferentes para las poblaciones partenogenéticas (Pearcy 

et al., 2006; Noughé et al., 2015b). 

Un aspecto potencialmente muy importante en las poblaciones 

partenogenéticas diploides de Artemia es que en estas, ocasionalmente, 

se encuentran machos raros, que son viables y fértiles. Aunque estos 

machos no tienen ninguna utilidad reproductiva para las hembras 

partenogenéticas (Stefani, 1960; MacDonald and Browne, 1987), podrían 

fecundar a las hembras de las poblaciones bisexuales asiáticas A. 

urmiana, A. tibetiana, A. sinica, originando una descendencia híbrida 

bisexual (Bowen et al. 1978), pero trasmitiéndole los genes causantes de 

la partenogénesis. Este fenómeno sería sumamente interesante, pues 

podría explicar el origen polifilético de la partenogénesis, a condición de 

que los cruces fértiles de los machos raros con las hembras sexuales 

produjeran nuevos clones partenogenéticos en la descendencia híbrida. 

Mecanismos similares se han descrito en otros organismos asexuales 

(Blackman, 1972; Sandrock and Vorburger, 2011; Xu et al., 2013). 

El origen de los linajes partenogenéticos diploides ha sido muy 

debatido. Estudios genéticos recientes han establecido que las especies 

sexuales evolutivamente mas próximas al linaje partenogenético 

diploide forman un grupo monofilético de especies de Asia Central, (A. 

urmiana, A. tibetiana, y una especie aun no descrita de Kazajistán) 

(Baxevanis et al 2006; Muñoz et al. 2010; Maniatzi et al. 2011). Un estudio 

sobre la diversidad genética mitocondrial del linaje partenogenético 

diploide ha apoyado la existencia de, por lo menos, dos orígenes 

maternos: uno de los dos linajes mitocondriales, el mas común, está muy 
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estrechamente emparentado con la especie no descrita de Kazajstán, y el 

otro, un linaje más raro, está mas relacionado con la especie sexual A. 

urmiana (Muñoz et al. 2010). La existencia de estos dos linajes 

partenogenéticos diploides, y el origen de las cepas triploides del linaje 

común partenogenético, han hallado su apoyo en un estudio sobre la 

diversidad nuclear y mitocondrial de las cepas partenogenéticas de 

Artemia (Maniatsi et al. 2011). El origen biogeográfico de las cepas 

partenogenéticas diploides habría ocurrido recientemente en algún 

punto de Asia Central, y desde allí este linaje se habría extendido 

rápidamente a toda su distribución actual en Europa, África, Asia y 

Australia (Muñoz et al., 2010). Sin embargo, se desconoce la diversidad 

genética de las formas sexuales y partenogenéticas asiáticas. 

Existe muy poca información sobre el modo de origen de la 

partenogénesis en Artemia. La posibilidad de un origen infeccioso 

producido por parásitos del genero Wolbachia ha sido recientemente 

descartada (Maniatsi et al. 2010). Otras posibilidades serian: 1) un origen 

híbrido, por el que la hibridación de dos especies sexuales emparentadas 

pudo dar origen a linajes partenogenéticos. Existen datos sobre 

hibridación entre especies de Artemia en la naturaleza y en el laboratorio 

(Abatzopoulos et al. 2002; Kappas et al. 2009); 2) un origen espontáneo, 

por el que una cepa partenogenética surgiría espontáneamente a partir 

de una sola de las especies sexuales 3) un origen contagioso, según el 

que podrían originarse nuevos linajes partenogenéticos cuando machos 

de origen partenogenético (machos raros) fecundaran hembras de 

especies sexuales emparentadas, trasmitiéndoles los genes causantes de 

la partenogénesis (Simon et al. 2003).  
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Esta tesis explora el origen y la evolución de la diversidad reproductiva 

y genética de Artemia, con especial énfasis en el uso de marcadores 

moleculares, y con la intención de comprender los mecanismos 

subyacentes en la generación de nuevos linajes partenogenéticos, 

especialmente los de hibridación y partenogénesis contagiosa, a partir 

del papel potencial ofrecido por los machos raros. 

Los estudios realizados se exponen en los tres capítulos que conforman 

la base de la presente Tesis, y que plantean los siguientes objetivos 

particulares. 

 

Objetivos 

Capítulo I: Analizar la diversidad genética de las poblaciones sexuales y 

partenogenéticas asiáticas del genero Artemia mediante el uso de 

marcadores nucleares y mitocondriales. De esta manera se pretende 

caracterizar en detalle las relaciones filogenéticas de las cepas 

partenogenéticas y sus potenciales ancestros sexuales, y obtener 

información sobre los posibles mecanismos de origen de estas estirpes 

partenogenéticas. 

Capítulo II: Investigar el papel evolutivo de los machos raros de Artemia. 

Para abordar este tema se ha procedido a: 1) cuantificar la presencia de 

machos raros en numerosas poblaciones de Artemia partenogenética 

diploide, identificando, si existe, un modelo de distribución geográfica 

de estas frecuencias, 2) describir morfológicamente estos machos raros 

en el contexto de la variabilidad morfológica presente en las especies 

sexuales asiáticas emparentadas, 3) evaluar el papel reproductivo de los 



Spanish Summary - Resumen 

206 
 

machos raros mediante experimentos de cruzamiento interespecífico 

entre estos y las hembras de las especies sexuales asiáticas relacionadas 

(Artemia urmiana, Artemia sinica, Artemia tibetiana, Artemia sp. Kazajistán), 

4) caracterizar la viabilidad de la descendencia híbrida F1, 5) confirmar 

genéticamente la identidad y la funcionalidad de los machos raros por 

medio de DNA barcoding y analisis de microsatélites. 

Capítulo III: Investigar si en Artemia existe la posibilidad de que se 

generen nuevas cepas partenogenéticas por origen contagioso. Para ello 

se ha procedido a: 1) evaluar la tasa de supervivencia y proporción de 

sexos en los descendientes híbridos (F1) obtenidos de los cruces entre 

machos raros y hembras sexuales asiáticas, 2) realizar experimentos de 

cruzamiento entre especímenes híbridos de la F1, 3) estimar la viabilidad 

y el modo reproductivo de los descendientes en la F2, 4) demostrar 

genéticamente que los individuos partenogenéticos obtenidos en la 

generación híbrida F2 descienden de los cruces originales entre machos 

raros y las hembras sexuales asiáticas. 

 

Material y métodos generales 

Muestras y cultivos 

Las poblaciones de Artemia objeto de nuestros estudios se han obtenido 

de la extensa colección de muestras de quistes mantenidas en el banco 

de quistes del IATS-CSIC. Los quistes se han procesado según el 

protocolo descrito por Vanhaecke & Sorgeloos (1980). A partir de los 

nauplios procedentes de la eclosión de estos quistes originales se han 

obtenido poblaciones adultas, mantenidas en cultivo bajo condiciones 
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estandarizadas (salinidad 80 gL-1, temperatura 20-24º C, fotoperíodo 

12:12 h).  

 

Machos raros, frecuencias y análisis morfométrico. 

Las poblaciones partenogenéticas diploides adultas se han utilizado 

tanto para cuantificar la presencia de machos raros en estas poblaciones 

de distinto origen geográfico como para aislar los machos raros 

necesarios para su análisis morfométrico. Los individuos necesarios para 

ambos estudios (identificación de los machos raros en las muestras y 

medición de sus caracteres morfológicos) se han anestesiado 

previamente en agua de mar, mediante la adición de unas gotas de agua 

destilada saturada de cloroformo. Se han identificado y medido 

utilizando una lupa binocular provista de ocular micrométrico.  

Tras cuantificar la frecuencia de aparición de los machos raros en cada 

población partenogenética diploide, se han tratado los datos mediante 

análisis estadísticos (Moran’s Index y Gi test of Getis Ord) con el fin de 

caracterizar la existencia de un patrón geográfico de distribución de 

estas frecuencias, y para identificar las zonas geográficas con mayor 

presencia de machos raros. 

El estudio morfométrico de los machos raros ha consistido en la 

medición de 12 parámetros: longitud total, longitud del abdomen, 

anchura del abdomen, anchura de la cabeza, distancia máxima entre 

ojos, diámetro máximo de los ojos, longitud de las antenas, longitud de 

la furca, número de sedas en cada rama de la furca, anchura del 

segmento genital y proporción de la longitud abdominal respecto a la 

longitud total del individuo. Los datos morfométricos medidos en los 
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machos raros y en los machos de las especies sexuales asiáticas 

(procedentes de la base de datos morfológicos mantenida en el IATS) se 

han tratando mediante un análisis discriminante multivariante 

(Hontoria y Amat., 1992) usando el programa estadístico SPSS 15.0.  

 

Experimentos de cruzamientos interespecíficos. 

Se han dispuesto experimentos de cruzamiento interespecífico entre los 

machos raros y hembras de las distintas especies sexuales para obtener 

generaciones híbridas (F1 y F2). La población partenogenética diploide 

de Bagdad (Irak) se ha elegido como recurso de machos raros, debido a 

la alta incidencia de estos en aquella población y a la mayor 

disponibilidad de quistes. Las hembras utilizadas se seleccionaron entre 

las poblaciones sexuales asiáticas, A. urmiana del lago Koyashskoe 

(Ucrania), A. sinica del lago Yuncheng (China), A. tibetiana del lago 

Lagkor Co (Tibet) y Artemia sp. de Kazajistan. Para los cruces se han 

elegido hembras vírgenes (emparejadas con machos raros cuando aún 

eran inmaduras sexualmente) o mantenidas aisladas durante las dos 

semanas previas a los experimentos.  

La eficacia biológica de las generaciones híbridas F1 y F2 se ha descrito 

contrastando el tipo de reproducción: ovoviviparismo / oviparismo. En 

la reproducción ovovivípara se ha determinado la calidad de la 

descendencia ovovivípara (presencia relativa de nauplios vivos, 

nauplios muertos y huevos no fecundados). La calidad de la 

descendencia ovípara se ha caracterizado por la presencia relativa de 

quistes bien corionados, portadores de embriones viables, frente a 
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quistes mal corionados, que encierran embriones abortivos o no 

desarrollados.  

Las puestas de nauplios vivos obtenidas en ambas descendencias 

híbridas F1 y F2 se han cultivado hasta el estado adulto para estimar las 

tasas de supervivencia y la proporción de sexos.  

Para comprobar y evaluar la aparición de nuevas cepas partenogenéticas 

por origen contagioso, las hembras de la generación híbrida F2 se han 

aislado, se han diferenciado morfológicamente, y se ha controlado su 

modo de reproducción. Todos los datos obtenidos se han tratado 

estadísticamente con tests específicos utilizando el programa SPSS 15.0. 

 

Caracterización genética  

La diversidad genética de las poblaciones sexuales y partenogenéticas 

asiáticas se ha analizado mediante el uso de marcadores mitocondriales 

(COI) y nucleares (ITS1 y Na+/K+ATPasa). Los marcadores 

mitocondriales se heredan citoplásmicamente y proporcionan 

información sobre la genealogía maternal. Los marcadores nucleares se 

heredan de ambos padres, y mediante ellos se pueden identificar 

incongruencias debidas, por ejemplo, a hibridación. Los marcadores 

genéticos de alta variabilidad (microsatélites) se han empleado para 

genotipar los machos raros, las hembras sexuales emparejadas y la 

descendencia de los cruces híbridos.  

 

El protocolo concreto del estudio genetico consiste en: 1) extracción y 

purificación de ADN total a partir de ejemplares adultos fijados en 

alcohol absoluto, o a partir de quistes, 2) selección de los cebadores para 
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las regiones de ADN que tienen que ser analizadas, 3) amplificación 

mediante PCR, 4) purificación del producto de la PCR, 5) secuenciación 

o genotipado en secuenciadores automáticos BEQMAN Coulter, 6) 

elaboración de los datos obtenidos mediante programas de análisis 

filogenéticos, y análisis estadísticos. Los datos obtenidos son analizados 

con el uso de diversos programas y recursos informáticos. Los 

principales programas de análisis genéticos y filogenéticos que se 

utilizaron son: CODONCODE para editar secuencias, MEGA, 

MRBAYES y FIGTREE para analizar secuencias y crear árboles 

filogenéticos, DNAsp para analizar la diversidad genética de las 

poblaciones, TCS para crear Networks.  

 

 

Resultados principales y discusión 

Análisis filogenéticos  

Este estudio investiga las relaciones filogenéticas existentes entre las 

cepas partenogenéticas diploides de Artemia y sus potenciales ancestros 

sexuales e intenta identificar los posibles mecanismos de origen de la 

partenogénesis en el género (origen espontáneo de la partenogénesis, 

origen híbrido y/o contagioso). Utilizando marcadores nucleares y 

mitocondriales se ha analizado la diversidad genética de numerosas 

poblaciones partenogenéticas diploides de Artemia nativas de diferentes 

localidades geográficas de Asia Central y Oriental, región considerada 

como el centro más probable de origen de la partenogénesis (Muñoz et 

al., 2010). También hemos secuenciado diferentes poblaciones de todas 

las especies sexuales asiáticas emparentadas con aquellas, incluyendo 
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una nueva población de A. urmiana hallada en Crimea (Lago 

Koyashskoe) y cuatro poblaciones diferentes de A. tibetiana. Por primera 

vez se han incluido secuencias de machos raros en el análisis 

filogenético. 

La diversidad mitocondrial de las cepas partenogenéticas diploides 

(secuencias de COI) muestra tres linajes distintos. El linaje más común es 

monofilético, y está estrechamente relacionado tanto con los haplotipos 

de la especie de Kazajistán como con los haplotipos de dos poblaciones 

de A. tibetiana. El linaje menos común forma un grupo polifilético, que 

està estrechamente emparentado con los haplotipos de la nueva 

población secuenciada de A. urmiana del lago Koyashskoe (Crimea). 

Además se ha encontrado un nuevo tercer linaje, presente sólo en los 

machos raros de la población de Kujalnic (Ucrania). Estos tres linajes no 

se diferencian en el ADN nuclear (secuencias ITS), con lo que estos 

resultados evidencian que todas las poblaciones partenogenéticas 

diploides están estrechamente emparentadas con las tres especies 

sexuales asiáticas, Artemia sp. Kazajistán, A. tibetiana y A. urmiana. Esto 

podría explicarse por eventos de hibridación producidos entre las 

especies sexuales o por eventos de partenogénesis contagiosa sucedidos 

entre un linaje y otro. Las poblaciones partenogenéticas diploides de 

Artemia no muestran una diversidad mitocondrial muy alta, lo que 

cabría esperar en una situación de repetidos orígenes producidos por 

partenogénesis contagiosa. Además, las poblaciones partenogenéticas 

simpátricas con la especie sexual A. urmiana no tienen un origen local. 

Sin embargo, el origen polifilético del segundo linaje asexual y la 

existencia del tercer linaje, identificado solo en machos raros, apuntan a 
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episodios ocasionales de partenogénesis contagiosa, que pueden ocurrir 

con frecuencias bajas en algunas poblaciones, y que podrían no tener 

una elevada probabilidad de éxito evolutivo. 

Nuestro estudio también revela un nuevo linaje de A. tibetiana, no 

identificado anteriormente. A pesar de su excepcional diversidad 

mitocondrial, Artemia tibetiana es, en cambio, muy homogénea en sus 

genes nucleares. Esto podría deberse a una introgresión de genes por 

parte de las hembras sexuales de Artemia sp. de Kazajistan y a un origen 

híbrido de la especie A. tibetiana.  

En general los genes nucleares muestran que las tres especies sexuales, 

A. urmiana, Artemia sp. Kazajistán y A. tibetiana están muy relacionadas 

entre si, hasta tal punto que pueden considerarse un complejo de 

especies. Finalmente, de acuerdo con estudios previos (Muñoz et al., 

2010; Maniatsi et al., 2011), nuestros resultados indican que la especie A. 

sinica no contribuye a la diversidad genética de las cepas 

partenogenéticas diploides de Artemia.  

 

Papel reproductivo de los machos raros de Artemia. 

Para poder investigar el papel reproductivo, y el potencial evolutivo de 

los machos raros de Artemia, en primer lugar se ha cuantificando su 

presencia en 54 poblaciones de Artemia partenogenética diploide a lo 

largo de toda su distribución geográfica (Eurasia). Se han examinado 

415.666 individuos, registrando la presencia de estos machos en 50 de las 

54 poblaciones analizadas. Nuestros resultados indican que la 

producción de machos raros es una característica general en Artemia 
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partenogenética diploide, con la excepción de las poblaciones más 

occidentales. Además, las poblaciones con mayor capacidad para 

producir machos raros se han encontrado entre la región de las cuencas 

del Mediterráneo-Caspio y la región de los lagos salados en Kazajistán, 

el área geográfica indicada como el centro de origen más probable de la 

partenogénesis en Artemia (Muñoz et al., 2010). El análisis del ADN 

mitocondrial de los machos raros encontrados también nos ha permitido 

confirmar su identidad genética. Los haplotipos de los machos raros son 

idénticos a los encontrados en las hembras partenogenéticas de las 

mismas poblaciones, o están estrechamente relacionados con ellos. Estos 

resultados nos permiten plantear la hipótesis de que algunos linajes 

mitocondriales raros en las poblaciones partenogenéticas diploides 

podrían tener una mayor propensión a producir machos raros. Esta 

hipótesis encuentra apoyo en un estudio de MacDonald y Browne 

(1987), que evidencia una variabilidad intra-poblacional en la 

propensión a generar machos raros en una misma población de Artemia 

partenogenética diploide. 

Los machos raros de Artemia también se han descrito morfológicamente 

en el contexto de la variabilidad morfológica de los machos de las 

especies sexuales asiáticas emparentadas. Los resultados muestran una 

mayor variabilidad morfológica comparada con la de los machos de las 

especies sexuales asiáticas. Esto puede explicarse de acuerdo con el 

origen geográfico heterogéneo de los linajes partenogenéticos, y con el 

hecho de que las cepas partenogenéticas no se cruzan entre ellas. 

Además, nuestros resultados no han detectado ninguna correlación 

entre los grupos de haplotipos y el parecido morfológico con los machos 
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de A. urmiana o los de Artemia sp. Kazajistán. Es decir que, por ejemplo, 

un macho raro con un haplotipo estrechamente relacionado con la 

especie sexual A. urmiana no se parece morfológicamente a los machos 

de A. urmiana. 

Para evaluar el papel reproductivo de los machos raros, se realizaron 

experimentos de cruzamiento interespecífico entre ellos y las hembras 

de las especies sexuales asiáticas relacionadas (Artemia urmiana, Artemia 

sinica, Artemia tibetiana, Artemia sp. Kazajistan). Nuestro estudio 

confirma que los machos raros son completamente funcionales y capaces 

de fertilizar los huevos de las hembras de todas las especies sexuales 

asiáticas. Se han obtenido más de 250 puestas de descendencias híbridas 

(F1), que presentan una viabilidad similar o superior a la de los controles 

(cruces intraespecíficos). La funcionalidad de los machos raros se ha 

confirmado también genéticamente mediante un panel de tres 

marcadores, que se han amplificado en los machos raros, en las hembras 

sexuales emparejadas y en su descendencia hibrida F1. Los resultados 

evidencian que los machos raros producen gametos haploides y que 

contribuyen al material genético de la progenie, transmitiendo sus alelos 

a los descendientes.  

 

Potencial evolutivo de los machos raros de Artemia. 

Nuestro estudio también se ha propuesto investigar si Artemia tiene el 

potencial de generar cepas partenogenéticas mediante el proceso de la 

partenogénesis contagiosa. Un requisito para desarrollar este 

mecanismo precisa de la capacidad de los machos raros de transmitir los 

genes de la asexualidad a su descendencia. Para probar esta hipótesis, 
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los nauplios vivos obtenidos de las puestas ovovivíparas híbridas F1 

(obtenidas a partir de cruzamientos entre machos raros y hembras 

sexuales asiáticas) se mantuvieron en cultivo en el laboratorio hasta la 

edad adulta, tras lo que se cuantificaron y sexaron para estimar las tasas 

de supervivencia y la proporción entre sexos. 

Los resultados muestran que la supervivencia de la descendencia 

híbrida F1 es muy alta, y que la proporción de sexos en cada puesta se 

acerca a 1: 1, proporción que usualmente caracteriza a las puestas de las 

poblaciones sexuales de Artemia. Las hembras de las F1 no pudieron 

reproducirse asexualmente cuando se aislaron de sus machos.  

Seguidamente se procedido a cruzar individuos híbridos F1 (hembras 

híbridas F1 x machos híbridos F1) para evaluar la fertilidad y la 

viabilidad de la descendencia F2 resultante. Se evidenció que todos los 

cruzamientos híbridos F1 producen puestas ovovivíparas y ovíparas, 

aunque la viabilidad de los híbridos F2 resultó, en todos casos, de menor 

calidad. Los nauplios vivos de la generación F2 de todos los 

cruzamientos híbridos (F1) presentan bajas tasas de supervivencia, y en 

la generación F2 obtenida de los cruzamientos entre machos raros y 

hembras de A. tibetiana resultan completamente inviables. 

Entre los especímenes adultos de las generaciones híbridas F2 obtenidas 

de los cruzamientos entre machos raros y hembras de Artemia sp. 

Kazajistan y hembras de A. urmiana se identificaron morfológicamente 

hembras que fueron capaces de reproducirse partenogenéticamente.  

El análisis genético, basado en una combinación de microsatélites y 

secuencias de ADN mitocondrial, ha confirmado que estas hembras 

partenogenéticas se generaron efectivamente a partir de los 
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cruzamientos iniciales con machos raros, y que no procedían de un error 

de contaminación de muestras de laboratorio. Las hembras 

partenogenéticas examinadas presentan los haplotipos de ADN 

mitocondrial (COI) de la hembra abuela sexual, y alelos en los 

marcadores nucleares (microsatélites) del abuelo macho 

partenogenético. 

Nuestro estudio documenta por primera vez la generación de nuevos 

linajes partenogenéticos de Artemia en laboratorio, y apoya la 

posibilidad de un origen contagioso de la partenogénesis en este género. 

Otros resultados han sido sorprendentes en estos experimentos. La 

producción exclusiva de hembras partenogenéticas en la segunda 

generación sugiere una herencia recesiva de la partenogénesis en 

Artemia. Lo que también descarta la hipótesis de que los alelos que 

inducen la partenogénesis estén asociados únicamente a los cromosomas 

sexuales. De hecho, en Artemia las hembras son el sexo heterogamético, 

pero en la generación hibrida F1 las hembras no son partenogenéticas.  

Además, en las descendencias híbridas F2, las proporciones de hembras 

partenogenéticas halladas en los distintos cruzamientos son muy 

diferentes. Los análisis estadísticos indican que la proporción de 

hembras partenogenéticas producidas en el cruzamiento entre machos 

raros y hembras de Artemia sp. Kazajistan no es significativamente 

diferente del 25%, mientras que en el cruzamiento entre machos raros y 

hembras de A. urmiana esta proporción resulta mucho menor. Esto 

significa que la partenogénesis en Artemia no puede ser determinada por 

un solo locus recesivo (lo que cabria esperar si las proporciones de las 

hembras partenogenéticas fueran siempre un 25% de las hembras totales 



Spanish Summary - Resumen 

 

217 
 

en las F2). Es probable que más genes estén involucrados en el proceso 

de transición de la reproducción sexual a la partenogenética. El hecho de 

hallar nuevas hembras partenogenéticas sólo en las puestas sexualmente 

sesgadas (en las que dominan las hembras), nos induce a considerar que 

existe una interacción entre distorsionadores de la segregación sexual, 

de la proporción entre sexos y de los factores que determinan la 

partenogénesis. 

Nuestro estudio es el primero en generar nuevos linajes 

partenogenéticos en Artemia mediante cruzamientos interespecíficos 

entre los machos raros de origen partenogenético y hembras de algunas 

de las especies sexuales emparentadas del Viejo Mundo, y aporta 

evidencia de que la partenogénesis contagiosa puede ocurrir en el 

género Artemia, particularmente en poblaciones que habitan biotopos 

hipersalinos conspicuos en el Viejo Mundo.  

 

Conclusiones  

Las principales conclusiones obtenidas del trabajo de investigación 

presentado en esta Tesis son las siguientes: 

1) El análisis filogenético de la diversidad genética mitocondrial y 

nuclear de las poblaciones partenogenéticas diploides y de las especies 

sexuales asiáticas emparentadas con ellas sugiere que Artemia sp. 

Kazajistan, Artemia tibetiana y Artemia urmiana están estrechamente 

relacionadas y pueden considerarse un complejo de especies. Todas ellas 

están involucradas en el origen de la partenogénesis en el género. 

2) La diversidad genética de Artemia tibetiana apunta a un origen híbrido 

de esta especie.  
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3) Los análisis filogenéticos de la diversidad genética en las poblaciones 

de Artemia partenogenética diploide confirman un origen múltiple de la 

partenogénesis en el género, en el que la partenogénesis automíctica ha 

surgido al menos tres veces de forma independiente. 

4) La diversidad genética mitocondrial y nuclear en las poblaciones de 

Artemia partenogenética diploide no revela los mecanismos subyacentes 

en el origen de cada grupo, si no que apuntan a eventos ocasionales de 

partenogénesis contagiosa. 

5) Las secuencias de datos nucleares y mitocondriales confirman que 

Artemia sinica no contribuye a la diversidad genética de las poblaciones 

de Artemia partenogenética diploide. 

6) La producción de machos raros es una característica general de las 

poblaciones de Artemia partenogenética diploide. Su frecuencia es baja, 

aunque las poblaciones con mayor predisposición a producir machos 

raros se encontraron en la región geográfica sugerida como el centro de 

origen más probable de la partenogénesis en el género. 

7) Los machos raros son completamente funcionales, producen 

espermatozoides haploides y son capaces de fertilizar los huevos de las 

hembras de todas las especies sexuales asiáticas de Artemia. Los 

cruzamientos entre machos raros y hembras de las especies sexuales 

asiáticas de Artemia producen una progenie sexual híbrida muy viable 

en la primera generación (F1), lo que apoya la existencia de un 

aislamiento reproductivo incompleto entre las poblaciones 

partenogenéticas y todas las especies sexuales asiáticas. 

8) Los machos raros son capaces de transmitir la asexualidad a sus 

descendientes, convirtiendo a una cierta proporción de su progenie 
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híbrida en individuos partenogenéticos. Los cruzamientos entre machos 

raros y hembras sexuales de A. urmiana y de Artemia sp Kazajistan 

producen nuevos linajes partenogenéticos en la segunda generación 

(F2). 

9) La partenogénesis en Artemia se rige por una herencia recesiva. Los 

factores que inducen la partenogénesis no están asociados a los 

cromosomas sexuales (ligamiento al cromosoma Z) sino que, 

posiblemente, están asociados a más loci recesivos. 

10) El flujo genético entre los linajes sexuales y partenogenéticos en 

Artemia permite que los genes responsables de la asexualidad se 

difundan en las especies sexuales, y que los nuevos linajes 

partenogenéticos asimilen gran parte de la diversidad procedente de 

una especie sexual produciendo nuevos clones. Este hecho es de capital 

importancia para la persistencia de las poblaciones partenogenéticas ya 

que, de este modo, se incrementa la diversidad genética de los linajes 

partenogenéticos, y se elimina la acumulación de mutaciones 

perjudiciales en las cepas partenogenéticas. 
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