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Abstract—Soil moisture retrieval algorithms based on passive
microwave remote sensing observations need to account for vege-
tation attenuation and emission, which is generally parameterized
as vegetation optical depth (VOD). This multisensor study tests a
new method to retrieve VOD from cross-polarized radar backscat-
tering coefficients. Three years of Aquarius/SAC-D data were used
to establish a relationship between the cross-polarized backscat-
tering coefficient σHV and VOD derived from a multitemporal
passive dual-channel algorithm (VODM T ). The dependence of the
correspondence is analyzed for different land use classes. There are
no systematic differences in the slope for woody versus nonwoody
vegetation, resulting in a strong correlation (80% explained-
variance) and a global linear relationship when all classes are
combined. The relationship is stable over the years of observations.
The comparison of the Aquarius-derived VODM T to Soil Moisture
and Ocean Salinity’s multi-angular VOD estimates shows similar
spatial patterns and temporal behavior, evident in high correla-
tions. However, VODM T has considerably higher mean values,
but lower dynamic range globally. Most of the differences can be
attributed to differences in instrument sampling. The main result
of this study, a relationship between backscatter and VOD, will
permit high-resolution mapping of VOD with synthetic aperture
radar measurements. These maps allow future studies of scaling
and heterogeneity effects of vegetation on soil moisture retrieval at
the coarser scales of land microwave radiometry. The study shows
that VOD based on passive measurements and predicted by active
measurements are comparable globally and that the breakdown
by land cover classification does not affect the relationship
appreciably.
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I. INTRODUCTION

BOTH active and passive microwave remote sensing of soil
moisture must account for the vegetation covering the soil

in the design and implementation of soil moisture retrieval al-
gorithms. Vegetation cover affects the passive microwave sig-
nal through attenuation of the signal emitted from the soil
and through emission of radiation directly from the vegetation
(which is itself attenuated as it travels through the vegetation
layer) [1]. In active microwave remote sensing, vegetation dis-
turbs the signal twice, on its way from the sensor to the ground
and when it is sent back from the soil to the sensor through
surface scattering by attenuation. Multiple interactions and veg-
etation volume scattering also affect the return signal [2]. The
influence of vegetation on the microwave signal has to be quan-
tified in any algorithm for soil moisture retrieval. The focus
of this study is the microwave vegetation optical depth (VOD)
that is a required parameter for soil moisture retrieval based on
passive microwave remote sensing. Since space-borne L-band
radiometry of the Earth’s surface is coarse resolution (limited
by the dimension of the antennas), the heterogeneity of the sur-
face vegetation cover introduces errors in retrieval algorithms.
In this study, we establish a relationship between VOD and radar
backscatter which can be used to map this important vegetation
property at higher resolutions associated with microwave radar
sensors.

The most common retrieval algorithms for passive microwave
sensors are based on the τ–ω model [3], where the vegetation is
quantified by the microwave optical depth of vegetation τ and
effective single scattering albedo ω. While the single scattering
albedo describes the scattering effects in a canopy, VOD or τ
describes the attenuation of the soil radiation through the canopy
layer and is an important parameter for the characterization of
the emission from canopy itself. Its value is strongly affected
by vegetation water content (VWC) [4] through the vegetation
dielectric constant; other influencing factors are the geometri-
cal structure of the vegetation and microwave polarization and
frequency [1]. VOD is known to be linearly proportional to
VWC, with an empirical constant of proportionality known as
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the b-parameter, which varies according to frequency, vegetation
geometry, and possibly polarization [5], [6].

Several studies have sought to determine microwave VOD
from optical vegetation indices such as leaf area index (LAI) [7]
or normalized difference vegetation index (NDVI) [8]. How-
ever, these vegetation indices from optical remote sensing are
limited by the lack of direct correspondence between optical and
microwave properties of the vegetation cover. In order to infer
VOD from VWC or directly from an optical index, for example
from LAI, empirical relationships are used. As a result of their
empirical nature, the reliability of microwave VOD derived us-
ing optical data is in question. Unlike VOD, optical estimates of
vegetation opacity become saturated in the presence of high veg-
etation density [9]. Furthermore, optical indices such as NDVI
are insensitive to the woody components of plants [10], while
VOD is also influenced by nongreen components such as woody
stems and branches [11]. Therefore, there may not actually be
a one-to-one relationship between the two variables. Moreover,
indices calculated from red and near-infrared bands can be con-
taminated by atmospheric effects such as aerosols, water vapor,
or clouds [12], in particular in tropical moist regions. In dry
regions, optical vegetation indices can also be affected by atmo-
spheric dust [13]. Optical data furthermore can only be collected
in the presence of solar illumination and during daytime.

Nevertheless, optical vegetation indices are used in the al-
gorithms of several currently available soil moisture products.
The soil moisture product of the Aquarius/SAC-D satellite [14]
is derived from radiometer measurements in a single channel
algorithm [15]. There, VOD is estimated from VWC, which is
inferred from MODIS NDVI. The current baseline algorithm
for passive soil moisture retrieval of the new instrument for soil
moisture monitoring, the soil moisture active passive (SMAP)
satellite [16], is also based on VOD from VWC established with
MODIS NDVI climatology [17].

In the soil moisture and ocean salinity (SMOS) [18]
level 2 processor for soil moisture, VOD is derived through
a two-parameter retrieval method using multi-angular and dual-
polarization observations. However, as initialization values for
the retrieval and where there are not enough angular mea-
surements, VOD is estimated based on LAI taken from ECO-
CLIMAP [19].

Several methods have been used to estimate VOD based
on microwave measurements that do not span multiple angles.
These methods mostly rely on the joint use of both H- and V-
polarized radiometer observations in order to retrieve both the
surface contribution and VOD simultaneously [20]. It is most
common to use a single snapshot of H- and V-polarized obser-
vations to estimate the VOD and soil moisture. In the past, the
microwave polarization difference index, a vegetation index of
radiometer brightness temperatures, has been used for the esti-
mation of microwave optical depth together with soil moisture in
the land parameter retrieval model (LPRM) [21]. This model is
used, for example, for the retrieval of soil moisture from passive
microwave sensors for the ESA CCI product [22]. Tian et al.
[23] found that VOD retrieved from LPRM shows an increased
sensitivity to information on the woody plant foliage and is also
found to be less affected by saturation effects compared to NDVI
in the green parts of a West African dryland area. However, since
the H- and V-polarized measurements are correlated, the pair of

brightness temperatures does not contain enough information to
allow retrieval of the two independent parameters soil moisture
and VOD in the algorithm forward model in a robust fashion
[24]. Alternatively, a time series of observations can be used,
coupled with the assumption that VOD dynamics are likely to
change more slowly than soil moisture [25].

In this study, we compare VOD derived through a multitem-
poral algorithm (VODMT ) and the multi-angular VOD from the
SMOS level 2 product (VODSMOS ) estimates as a preliminary
step. However, the goal is to relate VOD to active backscat-
ter measurements for the reasons stated above. All factors un-
derlying VOD, such as VWC and scattering, are characterized
through active microwave remote sensing. Unlike optical mea-
surements, active microwave remote sensing is not affected by
solar illumination, clouds, and weather conditions. Radar mea-
surements are sensitive to the same VWC and structural pa-
rameters as passive measurements. Active microwave remote
sensing can also achieve higher resolution mapping of global
land surfaces. Several prior studies investigated the relationship
of active microwave observations with biophysical parameters
such as LAI and VWC. These studies use backscattering coef-
ficients or indices based on them (e.g., [26]–[30]).

Rowlandson and Berg [31] analyzed the correlation of several
backscattering coefficients and backscattering ratios to VWC
and LAI over soybean, winter wheat, and spring wheat fields.
They found highest correlations of both, VWC and LAI, with
the HV backscattering coefficient (σHV ). Jiao et al. [32] found a
strong correlation between σHV and LAI, mainly for corn in L-
band and C-band, and a slightly lower correlation for soybeans.
Ferrazzoli et al. [33] found that σHV was correlated with the
VWC of wheat and corn at L-band. The backscattering coeffi-
cient σHV increases over vegetated areas, where the interaction
with stems, branches, and leaves leads to a significant depo-
larization of the radar signal [34]. Due to its large vegetation
volume scattering component, σHV can be used effectively in
isolating the water content and structural characteristics of the
vegetation canopy. However, although multisensor techniques
gain more and more importance, few studies have compared ac-
tive and passive microwave vegetation parameters at the global
scale using space-borne data. Guerriero et al. [35] compared
L-band backscattering coefficients and emissivity from theoret-
ical simulations and airborne and space-borne experiments in
the presence of different vegetation covers. Konings et al. [25]
compared VOD to HV-backscattering and to the radar vegeta-
tion index (RVI) using three years of global Aquarius observa-
tions and found more scatter in the relationship between VOD
and RVI than between VOD and the HV backscattering coeffi-
cient. This indicated the potential use of HV backscattering as
a predictor for VOD. Still, that study included only a limited
comparison between the variables.

In the present study, we further analyze the use of the cross-
polarized backscattering coefficient σHV to provide an indepen-
dent estimation as an alternative to optically derived VOD for
the improvement of current radiometric soil moisture retrievals.
We investigate the direct relationship of σHV and VOD on a
global scale by using three years of collocated L-band radiome-
ter and scatterometer measurements from the Aquarius/SAC-D
satellite [14]. The relationships and the relative magnitude of
the corresponding uncertainties are evaluated in terms of mean
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global patterns, regional biases, differences in dynamic range
(seasonality amplitude), and phase-differences in seasons.

II. DATA AND METHODS

A. Aquarius/SAC-D

Aquarius was a joint mission of NASA and the Argentine
Space Agency (Comisión Nacional de Actividades Espaciales,
CONAE) that was designed primarily to obtain measurements
for sea surface salinity retrievals. However, a land soil moisture
product is also available [15]. The satellite was in a polar orbit
with an altitude of 657 km and had a repeat orbit of seven days.
It carried two instruments, a radiometer measuring at 1.413 GHz
and a scatterometer at 1.26 GHz, both arranged in a pushbroom
configuration at three incidence angles: the inner beam at 28.7°,
the middle beam at 37.8°, and the outer beam at 45.6°. This
resulted in an overall swath width of 390 km with footprints
consisting of ellipses with principal axis dimensions of 76 ×
94, 84 × 120, and 96 × 156 km for the inner, middle, and outer
beam of the scatterometer, respectively, while the radiometer
half-power footprints were slightly smaller [14]. The satellite
delivered multiyear observations spanning June 2011 to June
2015.

This study uses three years of Aquarius level 2 backscattering
coefficients, version 2.0, from September 2011 to August 2014.
Delivered with the product is land surface temperature from the
National Centers for Environmental Prediction (NCEP) Global
Data Assimilation System, which is interpolated to the exact
time and location of the Aquarius observations.

The NCEP land surface temperature and backscattering co-
efficients in HV-polarization were gridded on a footprint scale
with a modified sampling approach. Only observations from the
middle beam (37.8°) are used, which is closest to the 40° an-
gle of SMAP, so that the results of this study can potentially
be adopted for that mission. The first seven days of data were
used to define a grid and all subsequent observations with cen-
ters less than 0.22° away from a grid point are assigned to this
grid point. In some cases this leads to the inclusion of some
observations in multiple grid cells (this accounts for less than
1% of the observations), while observations that are not within
this distance to a grid point are excluded from the study. More
detailed information on the gridding scheme can be found in
Konings et al. [25], McColl et al. [35], and Piles et al. [34].

B. VOD From Dual-Channel Multitemporal Algorithm

In this study, we relate the Aquarius backscattering coeffi-
cients to VOD derived from radiometer measurements. VODMT
is estimated from dual-polarized level 2 Aquarius brightness
temperatures, using the multitemporal algorithm of Konings
et al. [25] (MT-DCA). The same gridding scheme as for
backscattering coefficients was applied for the middle beam
brightness temperatures.

The algorithm makes use of the slow-time dynamics of vege-
tation. It is based on the assumption that relative to soil moisture,
VOD does not change significantly between several consecutive
overpasses. Therefore, N = 2 overpasses, with every overpass
consisting of observations in two polarizations p = H, V, are
combined within a moving window to simultaneously estimate

a single VOD and two soil dielectric constants k, one corre-
sponding to each overpass.

NCEP land surface temperature was used to normalize the
brightness temperatures (into emissivity). The retrieval algo-
rithm minimizes the difference between observed and modeled
polarized emissivity ep to determine the vector of unknown pa-
rameters X, containing VOD and N � k, corresponding to k for
N consecutive overpasses:

min
X =VOD ,k1 , ... kN

J (X) =
N∑

t = 1

∑

p = H,V

(
eobs
p − emodel

p (X)
)
.

(1)
Konings et al. [24] found that the optimal choice for N is the

minimum value such that 2 � N observations provide enough
information to determine N + 1 parameter. A higher number
of N would increase the number of measurements available for
the retrieval, but would also increase the probability of violating
the assumption that VOD is constant across the N overpasses.
For the retrieval of the VODMT from Aquarius observations,
Konings et al. [25] used N = 2, so that a total of four multipo-
larized observations are used. Konings et al. [25] give a detailed
analysis on the quality of VODMT .

C. SMOS Product

The SMOS level 2 product, version 551, is used for a com-
parison to multitemporal VODMT . Changes to the VODSMOS
product are currently (and continually) under investigation. The
version 620 has been in operations since May 2015 but the
whole SMOS period will only be available after the next repro-
cessing campaign. The SMOS product contains soil moisture
and VOD, which are retrieved by the level 2 processor from
the level 1 product brightness temperatures [19]. The SMOS
level 2 processor is based on an iterative minimization of the
weighted squared differences between observed and modeled
brightness temperatures, using the L-band microwave emission
of the biosphere (L-MEB) [37] as forward model.

Multi-angular and dual-polarized brightness temperatures are
simulated by L-MEB and a cost function is minimized between
simulated and measured brightness temperatures. The availabil-
ity of a high number of different angles provides additional
information to the inversion process and therefore allows for a
more accurate solution of the cost function. Soil moisture and
VOD can be retrieved in a two-parameter retrieval, if enough
brightness temperature observations at varying incidence angles
are available. Otherwise a one-parameter retrieval is attempted
and only soil moisture is retrieved, while VOD is fixed to its ini-
tialization value. This starting value of VOD is retrieved from
observations of the previous three days or calculated from the
ECOCLIMAP LAI and the parameters b′′ and b”, which mainly
depend on vegetation structure.

For this study, values with a data quality index >0.1 m3/m3

and a Chi2 showing the goodness of retrieval fit <0.5 and >2.5
were excluded from all analyses [38]. Both are delivered with
the product. The level 2 product is delivered on the ISEA grid,
which has a grid spacing of approximately 15 km. For proper
comparison to Aquarius VOD, circles with a radius of 0.5°were
defined around the Aquarius grid points, which approximately
correspond to the size of the Aquarius footprint. SMOS optical
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depth values within these circles were averaged. A weighted
average was used, where the weights were calculated according
to the inverse of their distances from the center grid point.

D. International Geosphere Biosphere Programme Land
Cover Dataset

For the evaluation of the σHV and VODMT relationship de-
pendence on vegetation type, the dominant land cover class
of each Aquarius footprint was determined through the 2005
MODIS MCD12Q1 International Geosphere-Biosphere Pro-
gramme (IGBP) product [39]. The product distinguishes among
17 land cover classes and has a spatial resolution of 500 m.
For this study, the IGBP data were resampled to the Aquar-
ius grid by determining the dominant land cover class for each
footprint [25], [34]. The segregation of the microwave data for
vegetation through IGBP data is carried out for the six main
land cover classes—forest, shrubland, woody savanna, savanna,
grassland, and agriculture—that cover most of the IGBP grid
points, for which VODMT retrievals exist. Thereby, all IGBP
forest categories, evergreen needleleaf and broadleaf, deciduous
needleleaf and broadleaf, and mixed forests, have been aggre-
gated into a single category. The same applies to open and closed
shrublands.

E. Transcom

The IGBP land cover classifications are used to broadly dis-
tinguish between vegetation types but the same classification
can appear distributed around the globe and in different cli-
mates. In order to examine the influence of vegetation types
with consistent seasonality, the global land regions need to be
segmented according to a classification with better contiguity.
Beside IGBP we also use the 11 terrestrial Transcom (Atmo-
spheric Tracer Transport Model Intercomparison Project) re-
gions [40]. These regions were mainly derived for the analysis
of terrestrial carbon exchange, which considers both vegetation
type and seasonality. The classification is based on a 1°× 1° land
cover map and is delimited by climate zones. The advantage of
this classification is that regions are spatially simple and enclose
vegetation of similar seasonal structure; therefore, seasonal ef-
fects of VOD retrieval can be analyzed. For the use in this study,
each Aquarius grid point was assigned to the Transcom region in
which it is located. The 11 Transcom regions are: North Amer-
ica Boreal, North America Temperate, South America Tropical,
South America Temperate, Northern Africa, Southern Africa,
Eurasian Boreal, Eurasian Temperate, Tropical Asia, Australia,
and Europe.

III. RESULTS AND DISCUSSION

In this study, we aim to establish a relationship between σHV
and VOD evident in global land L-band radiometry. We use
the three years of Aquarius colocated backscatter and bright-
ness temperature. A predictive model of the VOD based on the
backscatter (VODHV ) is developed for future applications with
high-resolution radar measurements. In this study, we test the
model with VODSMOS and multitemporal VODMT . The first
step is the development of the σHV−VOD relationship.

A. Global Relationship for σH V and VOD

The radiometer-based VOD and the cross-polarization
backscatter both depend on the VWC through the vegetation
dielectric constant. Importantly, they also depend on the veg-
etation structural characteristics. In examining the relationship
between σHV and VODMT , we segment the global data and
three years of retrievals based on major vegetation-type classi-
fications. The IGBP data are used as an indicator of differences
in vegetation structure. This is possible, as the main geometric
structure of vegetation is dependent on the type of vegetation.
For example, forests have a high vegetation layer and consist of
woody trunk, stems, and branches, as well as leaves. The height
of the vegetation layer for grassland and cropland areas is lower
and it mainly consists of leaves. The composition of the vegeta-
tion layer significantly affects the amount of volume scattering
[41] and the degree of depolarization of the microwave signal
[34]. However, the IGBP land cover product can only be used
as a very generalized classification of vegetation structure, as
there may be differences within one land cover class, for exam-
ple, due to differences between different plant species or due to
differences in the age of vegetation. This might in particular be
true for the land cover class of agriculture, which includes a high
number of species with very different vegetation structures, for
example, corn, wheat, or rice.

Fig. 1 shows the joint density of VOD and σHV for six main
land cover categories (same axes scales are used for compari-
son). VOD and σHV follow a similar correspondence regardless
of the vegetation type. The different vegetation types cover dif-
ferent ranges of VOD and σHV . There is no appreciable non-
linear correspondence evident in the relationship for different
vegetation types to assume anything more parameterized than a
linear form. The data pairs for different vegetation types span
different dynamic ranges but all on the same linear axis. For
forests (lower-right panel in Fig. 1), there is evidence of some
curvature at higher and denser vegetation cover. Since vegeta-
tion attenuation and scattering dominate the surface contribution
under such conditions and soil moisture retrievals are more un-
certain, the VOD predictions here are less useful. As a result the
more parsimonious linear model is retained.

The statistics of the linear correspondence between the data
pairs of σHV and VODMT are shown in Table I. The range of
slopes for the different types of vegetation is 7.37, the maximum
difference can be found for agriculture and shrubland. There-
fore, they are comparable in a way that allows the aggregation
of all vegetation types, leading to a maximum slope difference
of 4.5. Moreover, when aggregated together for all vegetation
types, about 80% of the variations in VOD are explained by
σHV . Statistics for single vegetation types have lower explained
variance since each covers a smaller dynamic range of data.
The combined data in the last row of Table I have the highest
dynamic range and allow a more robust linear model fit.

The same vegetation classification can be found in disparate
and even distant regions with different characteristics. For
example, the agriculture classification may correspond to many
different crop types at different stages of growth or even fal-
low. Finally, since segmentation of the data by vegetation type
reduces the dynamic range of variables, the linear regression
estimation is affected. To test the influence of temporal sta-
bility on the resulting relationships, we calculated the regres-
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Fig. 1. Joint histograms of σHV and VODM T for the major IGBP classes.

TABLE I
PARAMETERS (SLOPE AND INTERCEPT) AND COEFFICIENT OF DETERMINATION

OF REGRESSION LINE FOR SEPARATE AND OVERALL IGBP CLASSES

n n
IGBP class Grid

points
Observation

pairs
Slope Intercept R2

Agriculture 288 13 620 9.19 0.16 0.41
Grass 505 29 278 13.93 0.13 0.50
Savanna 277 42 546 9.45 0.16 0.30
Woody Savanna 413 34 828 9.66 0.17 0.42
Shrubland 878 54 401 16.56 0.11 0.68
Forest 985 72 156 14.99 0.09 0.62
Overall 3400 251 692 14.02 0.11 0.79

Number of grid points and space-time observation pairs used for the regression are also
shown.

sions separately for three month periods (September–November,
December–February, March–May, June–August). Results re-
veal only low deviations for the different periods in all land
cover classes (see Fig. 2).

The effect of vegetation structure on active and passive mea-
surements is different, and vegetation type (including differ-
ences between species, age, biodiversity, etc.) influences the
relationship [42]. However, the results in Table I show that land
cover classification based on optical measurements (IGBP) is

Fig. 2. Change of relationship of σHV and V̂ODM T for single years and
three month periods separated by the major IGBP classes.

not the ideal way of segregating this influence, as the effects
on the relative sensitivity to active versus passive microwave
scattering vary at least as much within one land cover class as
between them.

An advantage of using a global relationship independent of
land cover and season is the possibility to characterize the role
of vegetation in the active and passive microwave retrievals
over land without any auxiliary data, as auxiliary data will
always introduce its own error to VOD retrieval. In this study,
we opt for removal of any dependence on additional data (veg-
etation classification and season) and combine the global σHV
and VODMT measurements going forward so that there is only
one relationship between the data pairs.

A linear relationship between VODMT and σHV in linear
units is derived using all global grid points and all overpasses
available. The equation of the linear relationship shown in Fig. 3
is given by

VODHV = ̂VODMT = 14.02σHV − 0.11 (2)

with VODHV being the VOD retrieved from σHV (linear power
unit) and therefore corresponding to the estimator ̂VODMT of
the regression function. The coefficient of determination (R2) is
0.79 for all grid points and all IGBP land cover classes jointly.
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Fig. 3. Linear model of σHV and VODM T for the complete study period and
for individual years. Also shown is the joint histogram of σHV and VODM T
for all grid points.

The joint pdf function in the background of Fig. 3 shows that
the regression function captures the relationship of σHV and
VODMT , with the exception of the high value range.

Fig. 3 additionally shows the estimated linear relationships
for individual years of the study period. They are all consistent
with the linear relationship obtained for the full period indicat-
ing robustness of the relationship and temporal stability of the
correspondence.

The linear functional form is limited and a better fit may be
found through nonlinear functions. In this preliminary study,
we choose the linear function for the initial exploration of the
σHV and VODMT relationship as we found that polynomials
of a higher degree will not increase the R2 values of σHV and
VODMT . More complicated functions may be used, but the
shape and parameters of that function need justification. In the
future, numerical models of active and passive microwave in-
teractions with the canopy can be used to enlighten the form of
the nonlinear function. A physic-based modeling of the investi-
gated relationship might also lead to its more general and precise
understanding. In this data-driven study, the covariations in the
data are studied using linear and first-order statistical models.

B. VOD Derived From HV Backscattering
Coefficient—Comparison to the SMOS Product

VODHV is estimated from σHV using (2). It can now be com-
pared with VOD derived from SMOS multi-angular retrievals
(VODSMOS ) and Aquarius multitemporal retrievals (VODMT ).
The global mean patterns, biases in the mean patterns, dynamic
ranges, and temporal covariations are examined. Fig. 4(a)–
(c) shows the mean global pattern of VODHV , VODMT , and
VODSMOS . Although VODHV and VODMT are related, (2)
contains misfit errors and since we intend to arrive at a model
that is applicable with high-resolution radar data, the compar-
ison is within the scope of the analysis. Unfortunately, in situ
VOD retrievals for validation are not available at this scale for
independent validation.

Fig. 4. Mean distribution of (a) VODHV , (b) VODM T , and (c) VODSM OS .

The global maps of temporal-average VOD over the full study
period show similar overall distribution of high and low values
following the vegetation zones across the globe. VODSMOS
shows generally lower values than VODHV and VODMT as it
will be shown in bias and dynamic range maps (forthcoming
figure). The highest deviations amongst the three can be found
in the northern parts of Asia and America, in particular in the
North American and Eurasian boreal zones and in regions of
tropical rainforests, in the South American tropical zone as well
as in Africa. Here, VODSMOS clearly shows lower values than
the others.

Differences between VODSMOS and the two VODs derived
from Aquarius observations can be partially explained by mea-
surement differences of the different instruments. Although both
radiometers measure in the same frequency, differences in ra-
diometric sensitivity can lead to deviations in the measurements.
Further differences are introduced by differences in spatial res-
olution of the two satellites. As the Aquarius footprint is quite
large (approximately 100 km), VODSMOS had to be upscaled
for the comparison (see Section II-C). This procedure will in-
troduce errors in the product. Furthermore, SMOS retrievals are
only valid for the dominant land cover class of their respective
pixels, while Aquarius values account for the whole area around
the respective grid point. Discrepancies may, therefore, arise as
a specific part of a pixel is not considered in VODSMOS , while
it is included in the value of the Aquarius VOD. The use of
different retrieval algorithms will also lead to discrepancies in
the results.

The differences of VODMT and VODSMOS are more clearly
illustrated in Fig. 5. Biases [see Fig. 5(a)] are mostly positive,
indicating an underestimation of VODSMOS as compared to
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Fig. 5. Distribution of (a) mean bias of VODM T to VODSM OS , (b) dif-
ferences of dynamic range of VODM T and VODSM OS , and (c) correlation
coefficients of VODM T and VODSM OS .

VODMT . VODSMOS is lower than VODMT especially in
tropical and boreal zones, which are dominated by dense forests.
The highest bias values found in dense forests may be related to
the loss of angular brightness sensitivity under these conditions.
The angular separation of the polarized brightness temperature
is reduced where there is dense vegetation. This separation is
the basis for the estimation of VOD in the SMOS algorithm.
It is, therefore, expected that the multi-angular approach and
the multitemporal approach to VOD estimation diverge over
densely vegetated regions. Nevertheless, the multitemporal
approach to VOD estimation is also subject to possible errors
over densely vegetated regions. If the canopy dominates the
emission from the surface sufficiently, so that the observations
are insensitive to soil moisture variations, the successive over-
passes do not have any variability and do not add information to
the retrieval above that of a single snapshot. The emissivity be-
comes high and the errors in ancillary land surface temperature
information may also become amplified in the retrieval. Thus,
the values of VODSMOS and VODMT should be interpreted
with caution over densely vegetated regions. Nevertheless,
Konings et al. [25] found that the dielectric constant retrieved
simultaneously with VODMT exhibited a clear seasonal cycle
consistent with expected annual soil moisture dynamics over
the Amazon. This suggests VODMT is not severely hindered
by low soil moisture sensitivity over many densely vegetated
regions.

The differences of dynamic ranges for each grid point are
shown in Fig. 5(b). In general, the differences tend to be neg-

ative, indicating that the dynamic range of VODMT is smaller
than the dynamic range of VODSMOS . The highest differences
can again be observed for the dense forests in the boreal and
tropical zones. Overall, the differences are low, in particular for
sparsely vegetated areas, for example in Australia. While the dy-
namic range is a measure of temporal amplitude of time series,
correlation is a measure of phase correspondence. In Fig. 5(c),
the correlation coefficients (R) of VODMT and VODSMOS are
displayed for each grid point with more than ten samples during
the study period. Correlations of more than 75% of the grid
points are positive and suggest similar seasonality in the two
VOD estimates. More than 10% of the grid points even show a
correlation higher than R = 0.5. The exception is moist tropical
Amazon, where short-time scale variations dominate seasonal
changes.

C. VOD Derived From HV Backscattering Coefficient—Errors
of VODH V with Respect to VODM T

Even though VODHV is related to VODMT through (2),
misfits in this relationship need to be quantified for its future
applications to high-resolution radar data. The Aquarius multi-
year data allow the estimation of error statistics for predicting
VOD from radar measurements. The global mean patterns are
similar [see Fig. 4(a) and (b)] and because of (2) the bias across
all global values should be zero. However, it is important to
map bias at geographical locations across the globe to exam-
ine the dependence of the bias on landscape and vegetation
characteristics.

The differences between VODHV and VODMT are illus-
trated in Fig. 6(a), which shows the mean bias of VODHV with
respect to VODMT for the full study period. Fig. 6(b) and (c)
show the difference of dynamic ranges and temporal correlation,
respectively.

In many regions, and especially in areas with low vegetation,
the bias value is close to its global value of zero. This is the
case, for example, in the temperate zone of North America, in
Australia, and wide areas of temperate Asia. There are, how-
ever, some regional patterns indicating the role of landscape
and vegetation characteristics on the differences between VOD
and σHV . In highly forested regions such as the North Ameri-
can and Eurasian boreal zones and in the South American and
African tropical rainforests, bias with values around –0.2 shows
an underestimation of VODHV compared to VODMT . When
compared to the mean values over these regions (see Fig. 1),
this corresponds to 10–20% underestimation. This is consistent
with the curvature away from linear evident for the VOD−σHV
relationship in dense forests (Fig. 1 lower-right panel and Fig. 3
at the upper-right corner). This is caused by the effect of satu-
ration of σHV in the presence of dense biomass over a certain
threshold depending on frequency [42]. Furthermore, in these
regions where trees form mainly vertical cylinders, σHV may
be low due to double bounce effects, which cause less signal
depolarization compared to multiple scattering [33]. This effect
is lowered through crown attenuation at L-band, but still might
influence the results by underestimating VOD in forests. This
should be the subject of follow-on numerical simulation stud-
ies where combination of lossy-dielectric discs and cylinders is
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Fig. 6. Distribution of (a) mean bias of VODHV to VODM T , (b) differences
of dynamic range of VODHV and VODM T , and (c) correlation coefficients of
VODHV and VODM T .

used to estimate multiple scattering in idealized characterization
of vegetation canopies.

The temporal mean or mapped patterns may be very similar
based on the estimation in (2), yet if the seasonal amplitude of
σHV is too high or too low or shifted in time, the estimated
VODHV seasonal cycle may be affected. Fig. 6(b) shows the
difference in the dynamic range, an indicator of the seasonal am-
plitude, between VODMT and VODHV . Mostly, the differences
are small. Slightly negative differences, indicating a higher dy-
namic range of VODMT , can mainly be found in lightly vege-
tated areas, in particular in the nonforested parts of Northern and
Southern Africa and Australia. Positive differences, and there-
fore a higher dynamic range of VODHV , can be found for high
vegetation. In the North American and Eurasian boreal forests,
the differences even get largely positive. The dynamic range is
mostly a measure of the seasonal amplitude. The difference in
the phasing of the seasonality can be captured with the temporal
correlation coefficient.

Fig. 6(c) shows the correlation coefficients of time series for
each grid point with more than ten samples in the time series.
High values of R can be found across most of the globe, which is
indicative of phase consistency. Negative values, which indicate
an out-of-phase relationship, can be observed for tropical and
polar regions. VOD derived from passive microwave measure-
ments (radiometer) is a function of attenuation of the signal as it
crosses the vegetation canopy. It is mostly sensitive to the VWC
and the above-ground biomass of the vegetation canopy. Since
the wavelength of L-band λL is 21 cm, canopy elements with

dimensions � λL , such as leafs and small branches (depending
on species), are mostly transparent, and the main contributions
come from large branches and stems [2]. The cross-polarized
backscatter σHV , however, is affected by the interaction with
the woody biomass (tree trunks, branches, and stems) as well
as the leafy biomass. In regions where the plant phenology is
characterized by leaf-drop (senescence in boreal forests) or sea-
sonal water-loss (monsoonal tropical forests), the VOD and σHV
can be out-of-phase. This behavior is also observed in [25]. As
discussed in [44], differences in sensitivity to woody and leafy
biomass between VODMT and σHV may lead to the observed
anticorrelation, possibly due to dry season bud break and leaf
flushing, or the persistence of leaf litter into the dry season.
These differences between active and passive measurements
suggest they may provide distinct but complementary informa-
tion about tropical forest dynamics, and will be the specific
focus of upcoming studies.

The influence of vegetation and climate on the phase cor-
respondence and differences between VODMT and σHV (and
hence VODHV ) is also evident in the seasonal pattern of biases
when separately estimated for major vegetation and climate
classifications. The biases between VODHV and VODMT for
the main Transcom classes are contained in Table II. Table II
also includes the biases as a function of season (MAM, JJA,
SON, and DJF months groupings, as well as for the full study
period) for each Transcom class. The lowest study period bias
values with magnitudes between –0.02 and 0.02 are obtained
for Australia, where wide areas are lowly vegetated desert ar-
eas, for Europe, and for all temperate regions, namely the North
American, South American, and Eurasian. These areas have
in common, that they contain moderate vegetation cover with
a mixture of forests, low vegetation and agriculture. Regions
containing tropical rainforests such as Tropical Asia and North-
ern and Southern Africa show biases with magnitudes of 0.05–
0.06. An exception is the South American tropical region, which
shows a negative bias of –0.03. Highest (negative) study period
bias values with magnitude of –0.10 and –0.14 can be found
for the mainly forested regions of North American and Eurasian
boreal zones, confirming the underestimation of VODHV com-
pared to VODMT in the boreal regions.

Table II additionally shows the biases of VODHV and
VODMT for the three month periods to examine the seasonality
or phase differences. The overall global results do not differ
much from the biases of the full study period, with deviations
of 0.02 or less for the single three-month-periods. However,
these values are aggregated over different climate zones and
hemispheres, and therefore do not reflect a true seasonality.

The difference between the annual and single seasonal biases
is not higher than 0.05 for any of the regions and seasons. This
implicates that changes between negative and positive biases
only appear for Transcom regions with low annual biases. The
only exception is Europe with a deviation of 0.1 from the annual
bias in winter. Only few seasonal patterns of increasing and
decreasing biases can be found for comparable regions.

The North American and Eurasian boreal regions both show
relatively low negative biases for the spring period (MAM) com-
pared to their study period biases, and higher negative values
for the summer period (JJA). However, while in the Eurasian
region bias decreases again in fall (SON), it increases in the
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TABLE II
BIAS BETWEEN VODM T AND VODHV FOR THE FULL STUDY PERIOD AND THREE MONTH PERIODS FOR EACH TRANSCOM REGION

Transcom region n Grid points n Observation pairs Mar.–May Jun.–Aug. Sep.–Nov. Dec.–Feb. Study period

NA boreal 245 7746 –0.10 –0.14 –0.15 – –0.14
NA temperate 294 14 053 0.00 0.01 0.02 0.02 0.02
SA tropical 251 33 568 0.00 –0.04 –0.08 –0.04 –0.03
SA temperate 258 30 725 0.01 –0.01 –0.02 0.00 –0.01
Northern Africa 284 33 685 0.06 0.08 0.07 0.04 0.06
Southern Africa 277 35 804 0.06 0.02 0.04 0.10 0.05
Eurasian boreal 677 18 059 –0.05 –0.11 –0.06 – –0.10
Eurasian temperate 482 27 266 –0.04 –0.01 0.01 –0.02 –0.02
Tropcial Asia 116 13 454 0.03 0.08 0.03 0.03 0.06
Australia 219 28 259 0.01 0.03 –0.02 0.00 0.01
Europe 264 5994 0.05 0.02 0.01 –0.08 0.02
Overall 3367 248 613 0.00 –0.02 –0.01 –0.01 –0.02

Numbers of data points and space-time observation pairs of the full study period used in the estimation are also included.

North American boreal region. For the winter period (DJF),
too few observations are available for calculating a mean bias.
For both African regions, highest bias values can be found in
summer (JJA for Northern Africa and DJF for Southern Africa)
and lowest values can be found for the winter months. This
may be due to the higher VWC in summer, which may increase
VODMT but not σHV , and therefore leads to lower values of
VODHV . Another possibility is the seasonally different influ-
ence of structural components of the plants, for example, an
increase of leaves during summer season, on the active and
passive microwave signals. The two tropical regions in South
America and Asia show relatively high seasonal fluctuations,
but also no comparable patterns. Very low seasonal deviations
of 0.02 or less from the annual bias but no distinct seasonal pat-
terns can be found for all temperate regions. Table II shows
that the use of only one relationship without any temporal
discrimination leads to relatively low errors, with the excep-
tion of some seasons for specific Transcom regions.

IV. CONCLUSION

This study presents a data-driven examination of the rela-
tionship between L-band backscatter (σHV ) and VOD based
on attenuation of land L-band emission from three years of
Aquarius/SAC-D coincident active and passive microwave ob-
servations. A global relationship over all land cover classes and
the complete study period is robust and temporally stable. Us-
ing a land-cover specific regression between VODMT and σHV
reduces the strength of the regression relationship relative to a
global average, suggesting that land cover data cannot provide
useful information about variability in vegetation scattering that
is likely to influence the regression between VODMT and σHV .

The global relationship can be used for retrieving VOD from
σHV , with VODHV being an estimator of VODMT . The rela-
tionship contains several sources of uncertainty, for example,
the differences in the effects of the structural features of veg-
etation cover, and the relative magnitude of these uncertainties
was analyzed by comparing VODHV to VODMT . VODHV has
low bias with respect to VODMT in areas with low vegetation
density. In some high vegetation density regions, VODHV is
positively biased. However, the general spatial patterns between

the two are quite similar. The differences of dynamic ranges and
the correlation between VODHV and VODMT indicate high
correspondence of temporal amplitude and phase for most re-
gions. The main exception is over some tropical forests, where
VODHV and VODMT are out-of-phase. This is possibly due to
differences in sensitivity to leafy and woody biomass between
backscatter σHV and VOD, which is related to the attenuation
of the emitted surface brightness temperature as it crosses the
vegetation canopy.

In this study, we also show that the VODMT retrievals using
the Aquarius/SAC-D pushbroom (single look angle but multi-
temporal) are consistent with the SMOS VOD retrievals based
on the angular and polarization information available for the
SMOS instrument.

Except for soil surface temperature information, the retrieval
of VODMT from the microwave radiometer does not need any
ancillary data and corresponds to the status of the vegetation
cover coincident with the time when soil moisture is being
retrieved. However, as radars generally have a higher resolu-
tion than radiometers, linking the radiometer-based VODMT
to the cross-polarization backscatter σHV allows the estimation
of VODHV at higher resolution than the radiometer brightness
temperature. This allows the investigation of vegetation hetero-
geneity influence on radiometer-based soil moisture retrieval,
an effect that is considered to be one of the major sources of
error in soil moisture retrieval. In this study, we establish a data-
driven relationship between σHV and VODMT and demonstrate
that a linear relationship describes their joint distribution. We
show that the additional information of land cover type does
not increase the ability of the relationship to predict VODHV .
However, results show differences in accuracy according to
vegetation type. Further studies are needed to approach these
issues, for example, with the use of regional regression equa-
tions in areas with high errors.

Numerical models of microwave (active and passive) interac-
tions within the canopy need to be performed in order to inform
the form of models used to relate cross-polarized backscatter and
microwave attenuation. The numerical models characterize the
woody biomass (trunks, branches, and stems) as lossy dielec-
tric cylinders and leaves as disks. Combinations of cylinders
and disks can be used to examine if the observed differences
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in backscatter-derived VOD and radiometer-derived VOD are
due to the differences in the interactions of active and passive
microwaves with these vegetation components.
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