VNIVERSITAT
DGVALENCIA

POSITION BASED
CONSTRAINT ENFORCEMENT
IN GAME PHYSICS

[@,V—] Facultat de
Ciencies Matematiques

Student: Cristébal Rodero Gémez
Tutor: Ignacio Garcia-Fernandez

i

il

“At Pizar, we’re all about telling stories, but one story that hasn’t been told very
much is the huge degree to which math is used in the production of our films.”

Tony DeRose, Pixar Research Lead

“sCafé alguien?”

Ignacio Garcia

v

Abstract

Mechanical systems simulation for video games and other interactive applications
impose important restrictions as regards to stability, flexibility in the scenes and
computational complexity. In the last few years several resolution strategies for
mechanical systems with constraints have appeared. Some of the most popular ones in
the development of video games use only the positions of the particles and a projection
algorithm over the manifold defined by the constraints, avoiding manipulation of
the system’s first derivative (velocities). In this way, a great numerical stability is
obtained. The main drawback of these methods is its dependence in non-physical
parameters, so is hard to simulate a specific material. In this work we explain all the
aforementioned methods and focus in the simulation of elastic materials taking as
reference another model deeply studied that depends on real, physical parameters.
We propose an algorithm to fit the non-physical parameters of the position based
algorithm and test this procedure in a elastic cube. An extrapolation to other,
more complex objects should not be difficult. As a last contribution we relate these
algorithms with some classical numerical methods and point out which are the main
hypothesis assumed in the process. This part, although is not very robust since we
have not been able to reach a closed result, can be useful as a first step for future
works dealing with the convergence topic of this kind of methods.

vi

Acknowledgements

I would first like to thank my project tutor Ignacio Garcia Ferndandez of the ETSE at
Universitat de Valencia. His door office was always open (often literally) whenever I
ran into a trouble spot or had a question about a concept or writing. He consistently
steered me in the right direction whenever he thought I needed it. I am extremely
thankful and indebted to him for his patience, for sharing his expertise and for his
sincere and valuable guidance.

Secondly, I must acknowledge all the CoMMLab team, and specially the engineers
Pedro Zuneda, Carlos Monteagudo and Miguel Lozano for all the simulations done
and all the visual part that has come up with this work.

Obviously, I cannot forget about thanking Pau Real for his support over the year
and with this project, our mathematical debates and the healthy competitiveness for
learning more and more with each curiosity we bump into (we know nothing).

Finally, I would be very hurt if I forgot expressing my very profound gratitude to
my mother for providing me with unfailing support and continuous encouragement

throughout my years of study.

I also place on record, my sense of gratitude to one and all, who directly or
indirectly, have lend me their hand in this venture.

This accomplishment would not have been possible without of all you.

Thank you.

Cristobal

viii

Contents

Contents ix
[List of Figures| xi
Nomenclature| xiii
[1__Introductionl 1
2__Simulation methods for elastic materials| 5
2.1 Finite BElement Methodl o000 6
[2.1.1 A descriptive example|o o000 7

[2.1.2 Functional analysis of the FEM| 9

2.1.3 Elasticity in FEM|. 000000 14

214 Fmalremarkd 15

2.2 Mass-Spring Modell o o 16
[2.2.1 Matrix distance approach| L. 20

222 Fmalremarkso oo 22

[2.3 Strengths and weaknesses of the force based simulation methods in |

| VIdeo Games| 23
[3 Position Based Dynamics| 25
B.1 Notation and basic definitions of PBDI 25
B2 PBDsolverl 28
[3.3 Energy optimization viewpoint|. 31
[3.4 Chebyshev semi-iterative method applied to PBD| 32
[3.4.1 Chebyshev semi-interative method| 33

[3.5 Motivation of the tollowing work(. 36

1X

S CONTENTS

[4 Characterization and convergence of PBD)| 39
4.1 Elasticty in Position Based Dynamics| 40
4.2 Numerical experiments| 43
[4.3 Convergence properties of Position Based Dynamics| 50

b __Conclusion and future workl 55

[A° The variational principles of mechanics| 59
[A.1 The principal viewpoint of analytical mechanics| 59
[A.2 Auxiliary conditions. The Lagrange multipliers method| 60

IB_Code used| 63
[B.1 Fitting of the PBD stiffness matrix to the FEM stifiness matrixl . . . 63
(B.2 Fitting of the PBD stiffness matrix to the FEM stifiness matrix disre- |

| garding the volume constramnt| 67
[B.3 Polynomial fitting 68

(Bibliography| 69

Mndex 73

List of Figures

[2.1 Finite element mesh of the human heart ([31])| 7
[2.2 The process of finite element analysis| 9
[2.3 Schematical representation of a MSM of adeformed cube with nine |
| vertexes ([7))] 16
[2.4 A facial animation example using MSMs, probably one of the first |
| applications using MSMs ([30D)] 18
[2.5 Method to obtain a cubical MSM from linear elastic FEM. Figure |
| extracted from 6] 19
[2.6 Node numbering and spring distribution in the cube. Edge springs in |
| blue, tace diagonal springs in black and internal diagonal springs in red.| 19
[3.1 The convergence of Position Based Dynamics, using Jacobi iterations. |

This example shows that the acceleration effect of the Chebyshev

approach is more significant on triangular meshes as shown in (a) than

on tetrahedral meshes as shown in (b)|

values of Poisson’s ratio v. The values are shown for the problem with

all four constraint types (left) and forcing the volume preservation

constraint to 0 (right).| o o oo

i3

An enlargement of differences between the stifftness parameters taking

into account the volume conservation constraint and forcing it to 0. It

1s clear that, as the volume preservation constraint gains importance

(right down) all the other ones take lower values.|.

a3

Comparison between the previously obtained polynomials and the data

from the minimisation strategy. The polynomials are represented with

a line, while the fitted data are represented with crosses.|

X1

xii LIST OF FIGURES

4.4 'The relative error for the optimal parameter values for different values |
| of v. The errors tor the complete set of parameters and for the model |

4.5 “Gauss-Seidel” vs. “Jacobi”. If there is no feasible solution, the |
sequential algorithm will oscillate (between the two red points) while |
the simultaneous algorithm reaches a consensus. [5]]. o1

Nomenclature

Acronyms

CPU Central Processing Unit.
FEM Finite Elements Method.
FE Finite Element.

GPU Graphics Processing Unit.
MSM Mass-Spring Model.

PBD Position Based Dynamics.

Symbols

D The matrix which defines the relationship between strain and stress in the

Saint Venant-Kirchhoff model. See [Equation 2.6]

At Time step of the method.
z, ' Derivative of x w.r.t. time.
Ap The correction (an increment) of the position of the particle.

Jp The jacobian matrix evaluated in the position p. That is, the element (4, j) is
(0C;i/0p;)(p) where p; is the position of the particle j.

KFEM Gtiffness matrix of the FEM.

xiii

xiv LIST OF FIGURES

KPBD Stiffness matrix of PBD.
A A Lagrange multiplier.

V,C;(-) The gradient of he function C; with respect the n coordinates of p.

v Poisson’s ratio. See definition [6l
. 9C;
(9pj C; 9p. -

p(A) Spectral radius of the matrix A, the greatest modulus of the eigenvalues.

€ Strain, a measure of deformation.

o Stress, force per unit area.

\% A vector. In general, if a symbol is in bold style will represents a vector.
u; Nodal displacement of the vertex .

C;(-) : R — R A scalar constraint function.
E Young’s modulus. See definition [5

k Stiffness coefficient, characterize the rigidity of a spring between two nodes in
a MSM or how strictly is a constraint accomplished in PBD. In the latter case
is defined in [0, 1].

ke, kf, kq, k, Stiffness parameters of the edges, faces and diagonals distance constraint
and the volume preservation constraint of a cube, respectively.

m; Mass of the particle/node i.

w; The inverse of the mass of the particle 7. If we want an immovable particle, it
is enough setting this parameter to 0.

Chapter 1

Introduction

The huge growth of computers capacity to process and solve complex problems has
provided a new framework for mechanical simulation. Nowadays, ambitious new
applications are being developed based on the computational simulation of soft bodies
deformation. Medical simulation, for instance, is undergoing a great transformation
since modern computers enable real-time workloads both in interactive and haptic
environments. Additionally, this performance has been accompanied by an increase in
accuracy as simulation methods evolve toward more detailed representation of model
geometry and mechanical properties. In the particular case of computer graphics, it
is very common to use physically based models to describe the response of some body
to mechanical interactions.

The simulation of solid objects such as rigid bodies, soft bodies or cloth has been
an important and active research topic for more than 30 years (more in engineering).
The main goal of computer simulations in computational physics and chemistry is to
replace real-world experiments and thus, to be as accurate as possible. For instance,
in disciplines such as surgery to have efficient simulators is getting increasingly needed.
Once the different regions captured with the medical imaging devices are identified,
the 3D objects have to be translated into virtual mechanical objects so that the
computer can simulate their physical behaviour when the user interacts with them in
the virtual environment in a realistic way. In particular, it is important to represent
realistically how the different soft tissues deform under the virtual forces applied in
the interaction.

There are different techniques to create deformable models and each one of them
allows specific ways of simulation. Some models are based on geometric approaches
while others are physically based. For example, in surgical applications geometrical
approaches are hardly seen since they do not provide accurate results and do not

2 CHAPTER 1. INTRODUCTION

allow computing mechanical measures such as forces. Physically based approaches,
in turn, are widely adopted in mechanical simulation field as they are much more
versatile and accurate.

Physically based deformable models have two important characteristics: mechani-
cal behaviour and topologic configuration. As each region belongs to different types
of tissue it can show different behaviour and has to be characterised using different
parameters. The 3D bodies are tesselated adopting, usually, cubes or tetrahedra.
Mechanical parameters depend on the tissue type, deformation velocity and the
extent of the deformation. Now, taking into account user interactivity, the aim of the
simulation consists in studying the effects of these interactions over the deformable
body. That is, the simulation routine has to evaluate the mechanical effect of the
net forces applied on the body or specific parts of the body. To update the state
of the model it is necessary to evaluate the deformation making kinematic and dy-
namics analysis. As these approaches usually require using time integration methods,
the most common problems that accompany these procedures are mathematical
convergence and stability issues.

Among the aforementioned methods we have two in which we will focus our
attention in because they are some of the most used in literature and
because will serve as a reference and as a body of comparison: Finite Element Method
(FEM) and Mass-Spring Models (MSM). Although the first one is a method to solve
partial differential equations in general, when applied to elastic models it creates
force based simulation methods where deformations and forces are related. We will

see this later in [chapter 2]

More recently, these methods have been used in video games and digital animation,
but the requirements in these fields are quite different. Besides realism and accuracy,
a number of other criteria are also important in computer graphics applications.
These criteria are mainly generality, robustness, simplicity, performance and
numerical convergence. By generality we mean the ability to simulate a large
spectrum of behaviors, such as different types of geometries (solids, shells, rods...),
different material properties, or even art-directable extensions to classic physics
based simulation. Robustness refers to the capability to adequately handle difficult
configurations, including large deformations, degenerate geometries, and large time
steps. Robustness is especially important in real-time applications where there is
no second chance to re-run a simulation, such as in computer games or medical
training simulators. The simplicity of a solver is often important for its practical
relevance. Building on simple, easily understandable concepts and the resulting
lightweight codebases eases the maintenance of simulators and makes them adaptable

to specific application needs. Performance is a critical enabling criterion for real-time
applications. However, performance is no less important in offline simulations, where
the turnaround time for testing new scenes and simulation parameters should be
minimized. And last but not least we must demand numerical convergence, since
simulation is worthless if divergence occurs. Trying to fulfil these criteria a new
method has emerged from the video game world: Position Based Dynamics. We
explain it in detail in [chapter 3| from its basis to some convergence works. Although
it born in the video game and digital animation field its applications have spread
through more other fields such training medical simulators or physics simulator in
which interactivity is added.

All the above explained would be a sort of state of the art, i.e., all has been done
and studied. This part is presented in |chapter 2| and |chapter 3l However, Position
Based Dynamics is only physically inspired and it has parameter sets that do not
correspond to the standard parameters in elasticity. To the best of our knowledge
there is not any work done about this topic in Position Based Dynamics although
a methodology has been exposed by Lloyd et al. and San Vicente for Mass-Spring
Models in [20, 26], 27]. We explain this methodology in and apply it to the
aforementioned problem of Position Based Dynamics in |chapter 4, the part that would
be the nucleus of this document. Our main objective will be to fit a set of Position
Based Dynamics parameters which leads to an elastic behaviour consistent with given
physical parameters. As the reference for a proper elastic behaviour we will consider
an element simulated with the Finite Elements Method. We end obtaining some
polynomial functions which relates the Position Based Dynamics parameters with
the elasticity theory ones and conclude presenting some error plots in the comparison
of FEM with Position Based Dynamics.

In the last section of that chapter, [section 4.3], we formalise matricially the Position
Based Dynamics (since its formulation can be done in a more general way) in order
to try to analyse the convergence of this method by comparing it with some classical
numerical methods. We emphasise that this part is not as conclusive as the previous
work, but can serve as a first attempt to give Position Based Dynamics a rigorous
mathematical base, seen as a root-finding iterative method.

In we recapitulate all the results of this project, gathering all possible
future work that has come up along this work and remarking the original and own
contributions.

CHAPTER 1. INTRODUCTION

Chapter 2

Simulation methods for elastic
materials

As we said in the introduction this first part of the work is going to consist on an
overview of some of the most popular methods for simulating elastic materials. We
will start in this chapter with those based on forces, i.e., where a relationship is built
between deformations and forces. As we will see, even though the first method (the
Finite Element Method) is a very general one, suitable for a widely type of problems,
we will focus on its performance over deformable bodies. After that, in
we will present the main method of this project: Position Based Dynamics. In that
chapter, we will see from Position Based Dynamics basic definitions until the work
done in the convergence field and we will present some open problems.

The most intuitive approach in order to simulate a system might be if we base
on physics’ equations and theories. In particular, with the point of view of the
dynamics: the classical mechanics branch concerned with the study of forces and
their effect on motion. The main advantages of this kind of models is its accuracy,
that it is straight-forward translate from real equations to implementation and the
fact that they have been widely studied over this past decades. Beginning with the
Finite Element Method, we present an overview of the method explained with one
simple example and specify the underlying mathematics of this method; the second
part will be the Mass-Spring Method where, in expenses of accuracy a more easy
implementation and analysis in accomplished.

6 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

2.1 Finite Element Method

The Finite Element Method (FEM) can be presented as a numerical technique for
finding approximate solutions to boundary value problems for partial differential
equations, with very few demands of how this problem must be. FEM subdivides a
large problem into smaller, simpler, parts, called finite elements. The simple equations
that model these finite elements are then assembled into a larger system of equations
that models the entire problem. FEM then uses variational methods from the calculus
of variations to approximate a solution by minimizing an associated error function.

Regarding the history, as is often the case with original developments, it is rather
difficult to quote an exact date of invention, but [I] traced back the roots of the FEM
to three separate research groups: applied mathematicians [9], physicists [28] and
engineers [14], although the FEM obtained its real impetus from the development of
engineers.

Let’s see how this method works in more detail. In order to do this in a more
light way, we will use an elasticity example. As told in [0], in a discrete structure,
its deformation is defined by a finite number of parameters (deformation modes)
assembled in a vector. In the case of a continuous system we can’t characterise the
deformation with a finite vector, but with a vectorial function. This function is the
solution of the differential equation that defines the problem, but a manipulable
analytical expression of this can not be assured (maybe it has not even a closed form).
In order to solve this problem, the FEM uses the discretisation hypothesis, based on:

e The continuum is divided by imaginary lines or surfaces in adjacent disjointed
regions, simple geometrical figures, called finite elements (see [Figure 2.1)).

e Finite elements join each other in a finite number of points, called nodes.

e Nodes displacements are the basic variables of the problem, and determine
univocally the deformed structure configuration.

e The displacement of an arbitrary point is determined by the displacement of
those nodes belonging to the element in which the point is in. In order to do
this, for each element are defined the so-called shape functions. This shape
functions will have to guarantee the compatibility in boundary’s elements. Both,
shape functions and constitutive equations of the material, define the stress in
the element.

2.1. FINITE ELEMENT METHOD 7

Figure 2.1: Finite element mesh of the human heart ([31])

So, the nucleus of the FEM are these shape functions and the main problem is to
choose an adequate function.

2.1.1 A descriptive example

Now, in order to get a better understanding of how this method works we are going
to solve with it a generic unidimensional differential equation.

Example 1. We wish to find the unknown function y(x) : R — R on some domain

x € [z1,...,2,]. All we know is some differential equation
0%y(x)
or? o(x)

where ¢(z) : R — R is some known function. For this equation, we must demand
y € C?(Q), that is, be twice differentiable in some open set Q (where [z1,...,x,] is a
subset). Furthermore, we are given some boundary condition

y(1)
y(xn) = b

Now we will do this using the FEM. First we multiply by an arbitrary trial function
v(x) defined such that we always have v(z1) = v(z,) = 0 and then we integrate over

our domain . o (2)
/xl v(x) (o c(x)) dx =0

Next step would be to do the same to the boundary conditions and add all up into a
single equation, but in this case are a bit trivial since they are point based. So we
have

[o0 (B2)t [o288 [st~

1

8 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

Integration by parts of the first term give us

{v(x)aya(j)} _ / " 82(;) a@({)f)dx - / " ol)e(@)dz = 0

1 1

Cleaning up

/ 82(;) 5’?;5‘) i + / " o(@)e(w)ds = 0 (2.1)

1 1

This is the so-called weak form of the problem. So now y(z) only needs to be
continuously differentiable (instead of twice like in the beginning). Rather than
finding y we wish to find a good approximation y such that

J(x)
n P N/(EU) . :gl (l’)
glr) =Y Ni(x)gi = [Mi(2),...,No(@)] | | =Ny
=l Un ()

That is, we have broken up our continuous function into a set of n discrete values
(9s, z;) that we somehow combine using some weighting/interpolation scheme given
by the global shape function N;. The shape function is subject to

Niz) = {1 T =z

and
> Ni(z) =1
So we had [Equation 2.1] let us insert the approximation into our integrals

/w" Ov(x) ON(x)
- Jor Ox

ydr + /In v(x)e(x)de =0

1 1

This is the main trick of the FEM, and here we see why is a method of approximation.
So, depending on the strategy (there is not a standard one), we would choose now
the shape function, the trial function, the discretization, add the boundary condition
and would solve the problem by computing numerically the resulting integrals.

2.1. FINITE ELEMENT METHOD 9

Physical problem

Change of physical
problem “

Mathematical model
Governed by differential equations
Assumptions on
s Geometry Improve
* Kinematics mathematical]
+ Material law model

+ Loadin
* Boundary conditions
* Eic

Finite elemet solution
Chaice of

* Finite elements

¢ Mesh density

+ Solution ﬁa rameters

Finite Representation o
element * Loading Refina mesh,
solution * Boundary conditions solution parameters,

of * Etc etc.
mathematical
model l
Assessmant of accuracy of finite element
solution of mathematical model

— Retine

Interpretation of results analysis
Design improvements
Structural optimization

Figure 2.2: The process of finite element analysis

Although we have seen the method in a 1D-example it is no difficult to extrapolate
a general form. What is not so trivial are the function’s domains.

2.1.2 Functional analysis of the FEM

First of all we recall some definitions from several variables calculus. If there is not
additional comment, {2 will be an open set and derivatives will be understood in the
classical meaning:

Definition 1.
C™(Q) = {u(z)|u, ;... ,u™ are continuous on Q} 0<m<oo
Using the multi-index notation, we represent partial derivatives such as

dlely
02§t - Qo

Definition 2. LP({2) space is defined as

() = du(z) /Q lu(z)Pdz < oo

D%u(x) ol =1 +as+--+a,, a >0

10 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

Definition 3. The Sobolev space of general dimension is defined as
H™(Q) = {v(x)|D* € L*(Q), Va : |a] <m}
The inner product in H™(2) is

(w)aniey = (o) = [|30 (Do) (D0(a) o

laj<m
Therefore, H™(2) is a Hilbert space.
We need also
Theorem 1 (The Sobolev embedding theorem). If 2m > n then
H™ c Y, j=0,1,...
where n is the dimension of the elements in the Sobolev space.

The proof of this theorem, although not of extreme difficulty, needs a wide
background that would exceed the scope of this work. For the interested reader, the
proof can be found in [I0].

Now, if u(z) € C'(0,1), then for any function ¢ € C'(0,1) such that ¢(0) =
¢(1) = 0 we recall

/Olul(x)fﬁ(x) = ug|y — /01 u(z)¢ (z)de = — /01 w(@) (z)da

where ¢(z) is a test function in C*(Q) with ¢(0) = ¢(1) = 0. The first order weak
derivative of u(z) € L*(Q) = H°(Q) is defined to be a function v(x) satisfying

/Qv(a:)qzﬁ(:lr)d:v = —/Qu(m)gb'(x)d:v Vo(z) € CHQ) s.t. ¢(0) = ¢p(1) =0

If such function exists, then we write v(z) = «/(z). Similarly, the m-th order weak
derivative of u(x) € H°(Q) is defined as a function v(x) satisfying

1)@W@Mw=ewféw@¢mmMrvmwecwm

st. p(x) =d'(x)=...= ¢ V() =0 V&edQ

If such function exists, then we write v(z) = u(™ ()

2.1. FINITE ELEMENT METHOD 11

Now, returning to FEM we have the simple 1D model problem

—u" = f, 0<x<l, u(0) =u(l)=0

1 1
/ uv'dr = / fodz
0 0

Intuitively, because v is arbitrary we can take v = f or v = u to get

1 1 1 1
/ u'v'dx :/ u?dx or / fodz :/ f2dx
0 0 0 0

so u,u’, f,v and v’ should belong to L?(0,1), i.e., we have u,v € H*(0,1) so the
solution is in the Sobolev space H'(0,1). From Sobolev embedding theorem, we
also know that H' C CY, so the solution is continuous. But, what happens with the
discretization?

we know that the weak form is

Definition 4. If the Finite Element (FE) space is a subspace of the solution space,
then the FE space is called a conforming FE space, and the FE method is called
a conforming FE method.

For example, the piecewise linear function over a given triangulation is a conforming
FE space for the model problem. As [32] does, we will discuss only conforming FEM’s.
On including the boundary conditions, the solution space is defined as

H;(0,1) = {v e H'(0,1)[v(0) = v(1) =0}

When we look for a FE solution in a finite dimensional space V', it should be a
subspace of H}(0,1) for a conforming FE method. For example, given a mesh for the
1D model, we can define a finite dimensional space using piecewise continuous linear
function over the mesh

V ={v, v(0) =v(1) =0, v is continuous piecewise linear}

The FE solution would be chosen from the finite dimensional space V', a subspace
of H}(0,1). If the solution of the weak form is in HJ(0,1) but not in V, then an
error is introduced on replacing the solution space with the finite dimensional space.
Nevertheless, the FE solution is the best approximation in V' in some norm. For
seeing this, we need a little background.

12 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

We define, for two functions v and v
a(u,v) = / (pu'v" + quv) dx
z1

where p(x),q(z) € C([z1,x,]). This is, indeed a bilinear form, because it is linear for
both u and v from the following

alau + fw,v) = /wn (p (v + Bw') v + q (qu + fw)v) dx

x1

= a/ (pu'v' + quv) das+ﬁ/ (W' + quv) dz
1
= aa(u,v) + fa(w,v)
where o and [are scalars; and similarly,

a(u, av + fw) = aa(u,v) + fa(u, w)

Since a(u,v) is an inner product, under the conditions p(x) > puin > 0, g(z) > 0
(for some pp,;in) we can define the energy norm

/wn (p (u')* + qu2> aloc}é

1

ol = v/afu) = {

where the first term may be interpreted as the kinetic energy and the second term
as the potential energy. The conditions for p(x) and ¢(z) guarantee that the Sturm-
Liouville problem

—(p(@)u'()) +q(@)ulz) = flz) 21 <z <z,
u(zr) =u(z,) = 0

is well-posed, such that the weak form has a unique solution. The bilinear form often
simplifies the notation for the weak form, e.g., for the above Sturm-Liouville problem
the weak form becomes

a(u,v) = f(v)Vv € Hy(x1,7,)

Now we are ready for the error analysis for the FEM. Error analysis for FEM
usually includes two parts:

1. Error estimates for a given FE space.

2.1. FINITE ELEMENT METHOD 13

2. Convergence analysis, a limiting process that shows the FE solution to the true
solution of the weak form in some norm, as the mesh size h approaches zero.

We first recall some notation and setting up:

1. Given a weak form a(u,v) = L(v) and a space V' the problem is to find a u € V'
such that the weak form is satisfied for any v € V. Then u is called the solution
of the weak form.

2. A finite dimensional subspace of V denoted by V}, (i.e. Vj, C V) is adopted for
a conforming FEM and it does not have to depend on h, however.

3. The solution of the weak form in the subspace V}, is denoted by uy, i.e. we
require a(up, vy) = L(vp) Yoy, € Vi,

4. The global error is defined by e, = u(z) — up(x), and we seek a sharp upper
bound for ||e,|| using certain norms.

It was noted that error is introduced when the finite dimensional space replaces
the solution space, as the weak form is usually only satisfied in the sub-space V}, and
not in the solution space V' . However, we can prove that the solution satisfying the
weak form in the subspace V}, is the best approximation to the exact solution u in
the FE space in the energy norm.

Theorem 2. 1. wy is the projection of u onto V}, through the energy inner product
1.€.,
u—up, LVy or u—u,log;, 1=12,....M

a(u —up,vp) =0, €V, or alu—u,) =0, i=1,2....M

where {¢;} are the basis functions.

2. uy, 1s the best approximation in the energy norm, i.e.,

Hu - UhHa < “u - UhHaa Vo, € Vi,

Proof.
a(u,v) (f,v), Yo eV,
= a(u,vy) = (f,vp), Yoy € V}, since Vj, C V,
a(up,vp) = (f,vn), Yo, € Vj, since uy, is the solution in Vj,,
)

substracting = a(u — up,v,) = 0 or aley,vy) =0, Yo, €V},

14 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

Now we prove that uy, is the best approximation in V},

||u—vh||2 = a(u— vp,u — V)

(
= a(u—up + up — vp, u — up + up — Vy)
= a(u— up + wp,u —up + wy), on letting wy, = uy — v, € Vj
= a(u—up,u—up+wy) + alwy, u — up + wp)
a(u — up, u — up) + a(u — up, wp) + a(wp, w — up) + a(wpy, wy)
= Jju—up|* + 040+ |jwn|?, since, a(en,up) =0

> u =l

e Jlu— unlla < lu = vl =

2.1.3 Elasticity in FEM

As we said before, is in our interest to apply the FEM’s to the particular case of
dealing with elasticity. In order to do this, we need a little of physics knowledge.
More concretely, about elasticity theory.

Elasticity theory studies the relationship between forces applied on a body and
the reversible deformation of the body. Constitutive models are often expressed as a
relationship between strain €, as a measure of deformation, and stress o, which is
force per unit area. In linear elasticity, this relationship is of the form

o = De (2.4)

where D expresses the elastic properties of the material. This is known also as Saint
Venant-Kirchhoff model (seen for example in [15]).

The FEM methodology uses a discretisation of this model to turn it into a system
of linear equations. In absence of deformation, node ¢ has a position x;. If the system
is deformed, with a nodal deformation u; for node 7, then, the position of every node
will be X; = x; + u;. By means of the FEM, this relationship can be turn into a
relationship between nodal deformations and generalised nodal forces f;.

We consider the vector f, the applied force, and u, the deformation of the system
in static equilibrium . Then, according to [33] the FEM formulation defines a matrix
K'*M for which

f = K"Mu, (2.5)

The FEM stiflness matrix for an element has the form

KFEM — / B'DBdV
1%

2.1. FINITE ELEMENT METHOD 15

where V' is the volume of the element, matrix B includes partial derivatives of the
shape functions in the element and D is the matrix which defines the relationship
between strain and stress, given by

1—v v v 0 0 0

v 1—v v 0 0 0

v v 1—v 0 0 0
D=4 0 0 0 1-—2v 0 0 (2.6)

0 0 0 0 1—2v 0

| 0 0 0 0 0 1—2v]
where E

A= (2.7)

(1+v)(1-2v)

Definition 5. Young’s modulus (F), which is also known as the elastic modulus,
is a mechanical property of linear elastic solid materials. It defines the relationship
between stress (force per unit area) and strain (proportional deformation) in a
material.

Young’s modulus enables the calculation of the change in the dimension of a bar
made of an isotropic elastic material under tensile or compressive loads. For instance,
it predicts how much a material sample extends under tension or shortens under
compression. The Young’s modulus directly applies to cases of uniaxial stress, that is
tensile or compressive stress in one direction and no stress in the other directions.

Definition 6. Poisson’s ratio (v), also known as the coefficient of expansion on
the transverse axial, is the negative ratio of transverse to axial strain.

When a material is compressed in one direction, it usually tends to expand in the
other two directions perpendicular to the direction of compression. This phenomenon
is called the Poisson effect. Poisson’s ratio is a measure of this effect. The Poisson
ratio is the fraction (or percent) of expansion divided by the fraction (or percent) of
compression, for small values of these changes.

With this two parameters an elastic solid material is completely characterised.

2.1.4 Final remarks

With all this, as [20] remarks, the FEM is a mathematical tool that allows solving a
wide range of problem, from deformation studies to heat transfer. The simplest frame-
work corresponds to the linear elasticity assumption (we developed its formulation

16 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

in the introduction) which gives the advantage of applying well-known techniques
to accelerate the computation and work in real time. This assumption is the one
interesting for us, since we want to characterise another method (Position Based
Dynamics) for this situation. However, realistic surgical simulators, e.g., require
handling large displacement and deformations. Nonlinear FEM approaches are more
suitable but with the drawback that their formulation is more complex and the
techniques adopted to accelerate linear FEM are no longer valid when accurate results
are desired. Although a keen effort has been done to develop real-time applications
using nonlinear FEM, they still face the problem of handling topological changes in
real time because, in some cases, this makes avoiding the advantages of preprocessing
and evaluating new integrals.

2.2 Mass-Spring Model

Mass-Spring Models (MSMs) are physically based models with simple structure and
relatively small computational cost. Consequently, many operators like large deforma-
tions and topology modifications can be simulated easily. These characteristics make
them suitable for interactive-time applications and parallel computing. Therefore, is
very common to find them in many applications involving facial animation, artificial
animal animation, cloth simulation, biomechanical analysis and surgery simulation.
Again, we make a rough overview of the method but shorter, since its complexity in
an introductory level is much lower than with the FEM.

In this kind of models the object is modelled as a collection of point masses linked

by springs in a lattice structure (see |[Figure 2.3|).

Figure 2.3: Schematical representation of a MSM of adeformed cube with nine vertexes

([7)-

Following the idea of classical mechanics, MSMs represent a body by a single or

2.2. MASS-SPRING MODEL 17

multiple point masses that have no extension and hold the complete mass of the body.
The external forces applied to the body are concentrated in the point masses as well.

These models include a mesh of springs that interconnect those point masses
representing the elastic behaviour of the bodies. The spring mesh can have many
different configurations depending on the geometry of the object and the topology
selected to represent the elasticity properties. When the model interacts with the
environment new boundary conditions appear on the surface of the body. This new
conditions cause the cange of the length of the springs inducing forces that act over
each point mass of the MSM.

Typically, the elastic connection between the point masses is modelled using
Hookean or linear springs, that is, the force exerted by the spring that connects two
generic nodes i and j is proportional to the elongation of the springs, k(; ;) being
the corresponding stiffness coefficient and l?i, ;) its rest length. Thus, the resulting
connection force is:

0 P; —P;

fig) = ki) (IP; = psll = i) 10—y

The equilibrium shape of the deformable body is always reached when the sum of all
forces acting over each node are null. If only the final equilibrium state of the MSM is
required then, it is enough to define the stiffness values of the springs. However, if the
transition from rest state to the deformed state is also required then, it is necessary
to study the dynamic evolution of the body and usually a damping factor is added to
the model in order to improve the stability and performance of the system. This is
done because in each step of the simulation the system gains energy, so it has to be
dumped for a properly and realistic behaviour.

When some point mass is moved, the springs attached to it are strained and
forces are exerted on adjacent point masses. In the dynamic simulations these forces
induce acceleration to those point masses and change their possition accordingly. The
acceleration of a generic point mass ¢ with mass m; is governed by Newton’s Secod
Law:

m;X; — ¢;X; — Z f(i,j) — Z Ffzt

where c is the damping coefficient, f; ;) the force of the spring that connects particles
i and j and F$™ the external forces acting over the i-th particle. The term of the
damping effect can be different depending on authors because some of them consider
just the velocity of the particle while others the relative velocity with respect to the
neighbour particles.

18 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

As solving these systems might be extremely difficult, it is typical to use the
following numerical integration methods: explicit (e.g. forward Euler and Runge-
Kutta), implicit (backward Euler) and combined methods. Generally speaking the
explicit methods are simple but need small time steps for stability while the implicit
methods are more complex and stable.

Figure 2.4: A facial animation example using MSMs, probably one of the first
applications using MSMs ([30]).

Now, since in chapter 4] we are going to follow mostly the work of [20] we find
appropriate explain some details and conclusions of this work.

Four steps are necessary to derive the spring coefficients of a single cubical MSM
before the whole body is assembled:
1. The element stiffness matrix must be calculated analytically using the FEM.
2. The equations of the MSM have to be obtained.
3. These equations are linearised and the linear stiffness matrix is calculated.
4. The stiffness matrices of both MSM and FEM are compared.
Normally, a linearised MSM with the same stiffness matrix as the linear FEM of the

same geometry cannot be found, making it necessary to find the parameters that
minimize the difference between them.

2.2. MASS-SPRING MODEL 19

FEM MSM
ﬂk‘
E, v
F=K(U)U
I I linearization
Equating method
F:KHEMU F:K.\[.\‘MU

MSM

Figure 2.5: Method to obtain a cubical MSM from linear elastic FEM. Figure extracted

from [20]

In order to build an hexaedral element in MSM equivalent to one in FEM, we
follow the traditional convention. That is, the element is represented by an ordered
set of vertices from 1 to 8, where the point masses are placed. These vertices are
connected to each other by linear springs. Three types of springs are defined to
connect each of the vertices of the cube with the remaining seven vertices: edge
springs with k. stiffness (e.g. between vertices 1 and 2), face diagonal spring with k;
stiffness (e.g. between vertices 1 and 6) and internal diagonal springs with k, stiffness
(e.g. between vertices 1 and 7). The graphic representation of the different springs

and the node numbering are shown in [Figure 2.6

Figure 2.6: Node numbering and spring distribution in the cube. Edge springs in
blue, face diagonal springs in black and internal diagonal springs in red.

20 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

Now, the first step of the aforementioned algorithm has been explained in the
previous section. The second one has been developed some lines above, when Hooke’s
Law has been mentioned. Although the relation between the force and the elongation
is constant, the evaluation of this force leads to a nonlinear formulation. The reason is
that the computation of the length of the spring in the deformed state is a Euclidean
distance. Thus, the assembly of the 28 springs that compose the cube produces a
system of nonlinear equations. The process concerning the assembly of the equations
of the 28 springs that compose the single cube is straightforward and will not be
detailed. In any case, this linearisation (made with Taylor developments of the forces
around the rest state) allows computing approximately the equilibrium of a MSM
under the hypothesis of small deformations around the initial rest position with a
system of equations of the following form:

F = K'"*MU

F is the vector of 24 forces applied at the nodes (3 components for each node), U
is the vector of the displacements of the nodes and KM®™ is the symmetric 24x24
stiffness matrix obtained from the linearisation. This matrix has a structure of 8 x 8
blocks, each block being a 3 x 3 matrix. The blocks located in the diagonal of the
matrix correspond to the sum of the spring forces exerted at each node. The blocks
not contained in the diagonal, in turn, define the stiffness relation between only two
particular nodes.

2.2.1 Matrix distance approach

For the tuning of the stiffness parameters in order to get a realistic elastic behaviour
in a material two approaches can be followed:

Definition 7. Data driven approaches use a set of reference deformations, and
rely on different optimisation methods to find the parameters for the MSM. Typically
the function to optimise is some error measure of the deformation of a simulated
MSM, compared to the reference deformation samples.

Definition 8. Analytical approaches try to develop expressions that involve both
the Mass Spring parameters and the elastic parameters describing a deformable
material.

Van Gelder [12], following the former strategy, linearised the system of equations
of the MSM to find that, in general, its stiffness matrix cannot be directly equated
to a linear FEM stiffness matrix. More recently, Lloyd et al. [20] derived analytic

2.2. MASS-SPRING MODEL 21

expressions for triangular (for 2D) and tetrahedral (for 3D) Mass-Spring elements
and find that the closed solution can only be found on equilateral triangles. However,
as the stiffness parameters of the MSM are not enough to equate both matrices
they increased the number of degrees of freedom of the problem by considering
also as output variable the Poissons ratio. In the particular case of triangles and
rectangles, the Poissons ratios that make the submatrices of KF*M symmetric are %
and i respectively. In the case of rectangles they even had to increase the number of
variables by considering prestrained springs. In other words, they force KF¥*™ to have
the same form as the stiffness matrix of the linearised MSM by selecting a particular
value for Poissons ratio. However, including v in the set of design parameters limits
the usefulness of the method because it admits as input parameters any value of £ but
a unique v. Therefore, this method is able to find MSMs equivalent to only certain
linear elastic material models. In the case of regular tetrahedra, apart from the three
stiffness parameters and v, they included volume preserving forces. However, the
equating problem still did not yield an exact solution. Therefore, they proposed a
minimization approach to obtain the best possible approximations, and divided the
method into two steps: first the value of v that makes both stiffness matrices have
similar form is selected and then the minimization is performed. Calling C to the
difference between the linearised MSM and FEM stiffness matrices the optimization
strategy consists in minimizing the Frobenius norm of C:

C — KFEM _ KMSM

24 24
22 el

i=1 j=1

min ||C||r = min

The choice of the Frobenius norm for the minimisation problem can be understood
if we think about eigenvalues and eigenvectors. Taking as reference the stiffness
matrix of the FEM, the study of the eigenproblem provides the V and D square
matrices that satisfy the following equation:

K™V = VD

The columns of V are the eigenvectors (v,) of KF¥¥™ and D is a diagonal matrix
whose values correspond to the eigenvalues (),) of KFEM,

As both the stiffness matrices of the FEM and the linearised MSM are symmetric,
their eigenvectors are orthogonal. This means that the 24 eigenvectors of each matrix
form an orthogonal basis of the space of U. Analysing the transformations suffered
in those directions is equivalent to studying all the possible displacements vectors
since the rest of them are linear combinations of this basis.

22 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

Consequently, analysing the eigenproblem of the stiffness matrices is equivalent
to studying the effects of applying different deformations in the specific directions
that define the whole behaviour of the model. The error obtained in the MSM when
performing the linear transformation in the principal directions defined by K**M can
be computed as follows:

e, (ke kyr, kq) = KMSMy — KFEMy n=1,...,24

The strategy proposed (and followed by [26]) to optimize these transformations is
the minimization of ¢ using a least squares method, ¢ being:

¢ keakfakd ZHenHZ

Proposition 3. This new strategy based on the study of the eigenvectors of KFEM is
consistent with the minimization of the Frobenius norm of difference between KM

and KFEM

Proof. Indeed, taking into account that C is a real matrix and V is orthogonal
(VI =V~

¢ (ke k. ka) = Z HKMSMvn . KFEMVnH2 _ HKMSMV . KFEMV||2F

= loVIE = tr ([CV) [eV) = i ([CV]" [CV])
— tr (VT [CTCV]) = tr (CTCVVT) = tr (CTC) = |C|I>

2.2.2 Final remarks

Generally speaking, MSMs are easy to construct, physically based models. They
allow real-time simulations even when the model has to handle user interactions
that involve topology changes. Another well-known advantage is their ability to deal
with both large displacements and large deformations. Additionally, their discrete
formulation allows adopting easily parallel computing. However, MSMs have also
some drawbacks. These models are tuned through their spring parameters and it is
difficult to find methods to assign proper values for these constants (recently, [26]
achieved this comparing MSM with FEM, concluding that it is not a realistic method

2.3. STRENGTHS AND WEAKNESSES OF THE FORCE BASED SIMULATION METHODS IN VIDE

in most of situations). Furthermore, although it has been done in particular cases,
it is difficult to express certain constraints (like incompressibility and anisotropy)
in a natural way. Other problems are that they cannot capture effects including
volume conservation or prevention of volume inversion. Also, we have problem with
numerical instability, because in the cases we are far from the equilibrium position
the solution diverges.

2.3 Strengths and weaknesses of the force based
simulation methods in video games

Once these methods have been presented a natural question is if they are appropriate
in the context of this work. Thus, we have to specify the field where we are moving
on: real-time, with user interaction (most famous examples are simulators and video
games). On the one hand, the advantages of the FEM are its accuracy, since it is
based on real physics and the transliteration of most equations describing a problem
is immediate, but they have the inconvenient of being very expensive computationally
and hence not suitable for dynamic situations with unforeseeable behaviours. The
latter problem is solved with MSMs as they are really understandable and easily
implementable models. But they have not the advantage of the FEM: they are not so
accurate or based directly in physics, so some constraints or situation have no direct
transliteration on these models. Moreover, if a large deformation is done the model
becomes unstable and numerically diverges.

In order to overcome this problems some authors have proposed an easily imple-
mentable, unconditionally stable method: Position Based Dynamics. This method
was born in the fabless semiconductor company Ageia, now property of the American
technology company NVIDIA, and it has become a very popular technique in Com-
puter Graphics literature. We are going to explain this technique deeply in the next
chapter.

24 CHAPTER 2. SIMULATION METHODS FOR ELASTIC MATERIALS

Chapter 3

Position Based Dynamics

In all the explained cases in the previous pages, forces are computed due to their
velocities and the actual deformation of the given mesh (either mass-spring or a finite
element) but, if we want to control the positions in real-time (v.g. because user
moves a particle) is often more desirable to work directly with positions, avoiding
integration and other problems such as energy gain. This is what Position Based
Dynamics (PBD) consists on. Some advantages of using PBD are

e Removes the typical instability problems (in FEM sometimes also happens).

e The objects themselves can directly be manipulated during simulation (FEM
and MSM also achieve it).

e The formulation of the algorithm allows the handling of general constraints
(only FEM achieves it).

e The explicit position based solver is easy to understand and implement (only
MSM achieves it).

In this chapter we will explain what PBD consists on, from its original formulation
until an acceleration method for convergence going through some alternative points
of view of this method.

3.1 Notation and basic definitions of PBD

We are going to see the method and the algorithm developed by Miiller et al. in [23].
In order to simulate any situation, we will have a set of n particles or vertexes (we are
going to treat them indistinctly) and a set of m constraints. In each case, we have:

25

26 CHAPTER 3. POSITION BASED DYNAMICS

For each particle ¢
m; mass
pP;, X; | position
v; velocity

For each constraint j
n; cardinality
C; : R% - R scalar constraint function
{in, . vin, by ik € [1,... 0] set of indices
k; € 10,1] stiffness parameter
unilateral or bilateral type of the restriction

Clearly, positions and velocities are vectors with three components each one
(because we are in a three-dimensional space). With a cardinality n; we mean a
subset of the n variables that constraint j applies on. Constraint j with type unilateral
is satisfied if Cj(x;,,...,%;,.) > 0 and if it is type bilateral if Cj(x;,, ..., x;,) = 0.
The stiffness parameter k; defines the strength of the restriction (from 0 to 1). Based
on this data and a time step At, the dynamic object is simulated as exposed in
Algorithm

Line (2) initializes the state variables. We create the w; variable as the mass
inverse because thus we can make an unmovable object just setting w; = 0. It is the
same to say that we have an object with infinite mass, no matter how much force
you apply, it can’t be moved. But instead of treating with infinities is more desirable
numerically treating with zeros. We do not have problems with dividing by zero
because an object with no mass is not interesting for computer animation.

In line (6) we set the new velocity after a time step. It is a explicit forward Euler
integration step on the velocities but adding external forces, mainly gravity (but also
the user’s interactions). It can be used if we cannot convert some force to positional
constraint. Some authors like [I8] pointed out that PBD can be interpreted as a
heuristic variant of the variational implicit Euler method taking the inertial term out
of the solver and into the integration step of the simulation. The main difference
with respect to a simple explicit forward Euler integration step is the non-addition
of energy. With a explicit step, usually an amount of energy is added to the system
creating the sensation of a instability problem. This is avoided with the semi-implicit
step.

Line (8) is used to avoid energy gain problems. In real world, energy is reduced due
to heat dissipation or due to the contact with other objects but in this algorithm we

3.1. NOTATION AND BASIC DEFINITIONS OF PBD

27

Algorithm 1 Algorithm of Position Based Dynamics

1: for all vertices 7 do

e e e o T e T e T e T o o S

[\
—_

22:

)
T @

_ 0 _ 0 _
Xi =X, vV, =V, w,—l/m,
end for
: loop

for all vertices i do
v = v; + Atwf.(x;)
end for
dampVelocities(vy, ..., v,)
for all vertices ¢ do
p; = X; + Atv;
end for
for all vertices ¢ do
GenerateCollisionConstraints(p,)
end for
loop
projectConstraints(C1, . . ., Crtmeys P1s - - - s Pp)
end loop
for all vertices ¢ do
vi = (p; — x;)/ At
Xi = Pi
end for
velocityUpdate(vy, ..., v,)

23: end loop

28 CHAPTER 3. POSITION BASED DYNAMICS

have to simulate these effects by damping the velocities every time we calculate them.
It can be done roughly by a step like v,e, = 0.99 v,y (has been proved empirically
that it works quite fine).

Line (10) is again a simple semi-implicit forward Euler integration but, this time,
on the positions. It is not the final position, only a prediction without taking in
account the restrictions.

Non-permanent external constraints (mg.; constraints) such as collision ones are
generated in line (13). They change from time step to time step.

Line (16) is where the main solver of PBD happens, the constraint projection loop.
It establishes which constraints are not satisfied and corrects one by one the predicted
positions. The involved parameters are the number of iterations, solverlteration,
the predicted positions, and both types of constraints: fixed and collision constraints.
We will explain these solver deeply in a following section.

Because final positions can be different from predicted ones, velocities need to
be updated in line (19). Along with them, positions are updated according to the
state of the current system (line (20)). Finally, in line (22), the velocities of colliding
vertexes are modified according to friction and restitution coefficients.

In this moment we note that, because the integration step is performed by a
semi-implicit forward Euler integration, the solver is unconditionally stable.

3.2 PBD solver

The goal of the solver step (9)-(11) is to correct the predicted positions p; of the
particles such that they satisfy all constraints (if they are not contradictory). The
problem that needs to be solved comprises of a set of m + m.,; equations for the
3n unknown position components. If m + mey > 3n (m + meoy < 3n) the system
is over-determined (underdetermined). In addition, the equations are in general
non-linear. The function of a simple distance constraint C'(py, py) = ||p; — ;|| — d
yields a non-linear equation. What complicates things even further is the fact
that collisions produce inequalities rather than equalities. Solving a non-symmetric,
non-linear system with equalities and inequalities which can be over-determined or
underdetermined is a tough problem as seen in [g].

We are going to deal with equalities in all the coming work. In the case of
inequalities is enough to check if the inequality is accomplished and if it is, we avoid
the step. Thus, we can write the restrictions as

C](p):0 jzl,...,m

3.2. PBD SOLVER 29

where C(p) := C(py, ..., P,). For now and on we will avoid the cardinality, assuming
that the constraint are applied over all the n particles. If it is not the case we can see
it as like if we sum the particle multiplied by 0. The process starts with a first guess
of a solution. Each constraint function is then linearised in the neighborhood of the
current solution using Taylor series. For a concrete point p;:

C(p+ Ap) = C(p) + VL C(p) - Ap; + O (|| Ap;|*) =0

Here, Ap; is the correction of the position of the particle, so we set C(p + Ap) to
0 in order to accomplish the restriction. This yields a linear system for the global
correction vector Ap;

Vi Ci(p)-Ap, = =Cji(p) j=1,...,m

where V, C;(p) is the n x 1 dimensional vector containing the derivatives of the
function C; with respect the n coordinates of p; and evaluated in p. Both ng Ci(p)
and the right hand side scalars —C(p) are constant because they are evaluated at
the location p before the system is solved. When m = 3n (a square matrix) and only
equalities are present, the system can be solved by any lineal solver (only if the system
is compatible, of course). If we have the case where the problem is under-constrained
but with full rank we can use the pseudo-inverse to solve it. In other case is not that
easy and can be useful to use Position Based Dynamics.
We make the linearisation

T
Cj(p+Ap) = Cj(p) + (Vp,Ci(p)) - Ap; + O (||Ap,[|*) =0 (3.1)

and, in order to conserve momenta (we will see it later) we restrict to
Ap; = =AVy,C5(p) (3:2)

So, substituting equation (3.2)) into (3.1)) (without taking in account the term
O (||Ap;]|?)), solving for A and substituting it back into equation (3.2)) yields the final
formula for Ap,

Cj(ph e 7pn)
Zk ||vpkcj(pl) e 7pn>||2

In case we want to consider particles with distinct masses or non-unitary masses
we weight the corrections Ap, by the inverse mass w; = 1/m;, so the equation (3.3])
would be

Ap; = =Vp.Ci(Pys -, Py) j=1....M (3.3)

Cj(pla .. 7pn)
Zk; wkHVPkC](pla R 7pn)||2

Ap; = =Vp,wilj(Pys - - Pn) j=1....M

30 CHAPTER 3. POSITION BASED DYNAMICS

There are several ways of incorporating the stiffness parameter. The simplest
variant is to multiply the corrections Ap by k € [0,1]. However, for multiple iteration
loops of the solver, the effect of k is non-linear. The remaining error for a single
distance constraint after ng solver iterations is Ap(1—k)™. To get a linear relationship
we multiply the corrections not by k directly but by &' = 1 — (1 — k)¥/" . With
this transformation the error becomes Ap(1 — k')" = Ap(1 — k) and, thus, becomes
linearly dependent on k and independent of ng as desired. However, the resulting
material stiffness is still dependent on the time step of the simulation. Real time
environments typically use fixed time steps in which case this dependency is not
problematic.

Projecting a set of points according to a constraint means moving the points
such that they satisfy the constraint. The most important issue in connection with
moving points directly inside a simulation loop is the conservation of linear and
angular momentum. Let Ap, be the displacement of vertex ¢ by the projection.
Linear momentum is given by

where the last equality is given because in every step the time is constant. Now, we
want that the derivative of P = 0 but the derivative of the linear momentum, due
to Newton’s second law is the sum of all the forces. So, in order to conserve linear
momentum we want
S R=0
7

Here we remember the physical meaning of the Lagrange multipliers (see[Appendix Al).
We said that the \2¢ was the force of reaction due to the restriction C. So, if we

ot
align
Ap = A\V,C(p) (3.4)
with A a Lagrange multiplier, we will have all the reaction forces which all added (due
is a closed system) is 0. So, this way we solve the problem of the linear momentum.
We have the same issue with angular momentum, given by

ﬂ = ZI’Z‘ X 7’I”LZApz

where the r; are the distances of the p, to an arbitrary common rotation center.
Again we want to settle at 0 the derivative so, using the cross product properties we
have

dL d < . dP dP

— = — r><P>:—<r><P> rX —=vXxX(m-v)+rx —=rx —
71~ * (m-v) e a1

3.3. ENERGY OPTIMIZATION VIEWPOINT 31

And now, by the same arrangement we did in (3.4) we see that the angular
momentum is also conserved.

If a projection violates one of these conditions, it introduces so called ghost forces
which act like external forces dragging and rotating the object. However, only internal
constraints need to conserve the momenta. Collision or attachment constraints are
allowed to have global effect on the object.

3.3 Energy optimization viewpoint

Here we present another perspective on Position Based Dynamics by viewing it as
the solution to a constrained optimization problem, seen by Macklin et al. in [21].
Considering only equality constraints, the problem to be solved can be stated as

minimize %AXTMAX (3.5)
subject to Cj(x + Ax) =0, i=1,...,m (3.6)

The solution variable Ax is the change in position such that the constraints are
satisfied. Thus, the problem is formulated as finding the minimum change in the
particle trajectory that minimize the kinetic energy, without violating the constraints
(consistent with Gauss’ principle of least constraint). If the constraint functions were
linear, then would be a constrained quadratic minimization problem
with a closed form solution. In practice, the constraints are arbitrary non-linear,
non-convex functions, for which fast and globally optimal solvers do not exist. As we
have said previously, PBD proceeds linearising the constraints and solving a sequence
of local constrained quadratic minimizations:

1
minimize §AXTMAX

subject to JAx=Db

where J; jy = gi and b = [-Cy,...,—C,,]". Now, this problem can be transformed,
by theory of Lagrange multipliers, into
MAx = J'A
JAx = b

where we obtain the already known equations of
Ax = M 'J7)A
[IM7'JT]X = b

32 CHAPTER 3. POSITION BASED DYNAMICS

The last equation is a matrix equation for the linearised problem. In this way, the
solver is equivalent to a problem of energy minimization.

3.4 Chebyshev semi-iterative method applied to
PBD

In this section, in order to know what has been done in the convergence topic, we are
going to explain the methodology and the conclusions exposed in [29].

PBD has been widely used in many high-end physics engines, such as PhysX,
Havok Cloth, and Maya nCloth, thanks to its simplicity. When a vertex is involved
in multiple constraints, its position can be updated either sequentially, known as the
Gauss-Seidel way, or simultaneously through averaging, known as the Jacobi way,
due to the analogy with the homonymous methods for solving linear systems. To
implement PBD on GPU, the Jacobi way is often preferred so that the constraints
can be processed in parallel. As we said in other sections previously, PBD uses the
number of iterations to control how strictly the constraints are enforced and how stiff
an object behaves, so it is free of numerical instability. However, it is difficult to
formulate the relationship between the mechanical properties of an object and the
number of iterations. In fact, PBD convergence rate drops as the mesh resolution
increases.

A new constraint based simulation technique, known as projective dynamics
([19L B]), emerged recently. Different from PBD, projective dynamics tries to bridge
the gap between continuum mechanics and PBD. The key idea is to introduce energy
potentials with a specific structure. While projective dynamics can be considered
as a generalized version of PBD, its converged result is physically plausible and
controllable by stiffness variables. Previous research showed that doing this can
achieve visually acceptable results even within a few iterations. The catch is that a
direct solver cannot be easily accelerated by GPU. So the whole method becomes
less efficient, when more iterations are needed to reduce errors.

Since projective dynamics and PBD are similar to linear systems in many ways, a
natural question is: can we borrow ideas from the existing linear system solvers and
get these techniques accelerated? In order to try to answer this question, the method
chosen is the Chebyshev semi-iterative method.

3.4. CHEBYSHEV SEMI-ITERATIVE METHOD APPLIED TO PBD 33

3.4.1 Chebyshev semi-interative method

We remember from numerical methods for linear algebra that a linear system can be
formulated as: Ax = b, in which A € RY*" is a matrix, b € RY is a given vector,
and x € RY is the unknown vector that needs to be found. When A is large and
sparse, iterative methods are often favored over direct methods, to avoid matrices
from being filled by new nonzeros during the solving process. Based on the splitting
idea: A = B — C, standard iterative methods, such as Jacobi and Gauss-Seidel, have

the form:
x* D) =B (Cx® + b) (3.7)

If we split B™'b into B"'!Ax = x — B~!Cx, we can write
ekt — x*+) _x — B~IC (x(k) —x) = B 'Ce® (3.8)

in which e® is the error vector at the k-th iteration adn x the exact solution. Let
the eigenvalue decomposition of B~'C be VAV, where X is the eigenvalue matrix.
We can reformulate the error vector at the k-th iteration as:

e® = (B71C)" e = VAV 1e®

This means that these iterative methods converge linearly and their convergence
rates depend on the largest eigenvalue magnitude, known as the spectral radius:
p(B7IC). To ensure the convergence, we must have p (B~!C) < 1.

Given the results produced by the iterative formula in xO . x®)
we would like to obtain a better result from their linear combinations, which has the

following form:
k

y#) = Z vjxV)

=0
in which vj;;, are the blending coefficients to be determined. If the results are good
already x(© = ... = x*) = x, we must have y*) = x. So we require
k
> v =1 (3.9)
=0

The question is how to reduce the error of y*). Using [Equation 3.9 and [Equation 3.§|
we can formulate the error y*) — x into:

k
Z Vi (Xm —x) = Z Vik (B—lc)j e® = p, (B~'C) a0

k
j=0 7=0

34 CHAPTER 3. POSITION BASED DYNAMICS
in which .
pr(x) = Z Vg’
=0
is a polynomial function. So to reduce the error we must reduce

Ipk (B'C) [|2 = max |pr(As)]

in which)\; can be any eigenvalue of B~!C.

Proposition 4. If A is a symmetric matriz with positive diagonal entries and B~1C
18 created by Jacobi, the eigenvalues are real.

Proof. Let X and v be an eigenvaule and its eigenvector of B™*C. With this we have
B iCB ! (Biv) = BIAB S (Biv) = A (Biv)

So A is also the eigenvalue of B-:CB:. Since B is the diagonal matrix of A and its
diagonal elements are all positive (hypothesis), B~z must be real. So B"2CB~: is
real symmetric and A is real. O

With this, we can use the Chebyshev method to accelerate Jacobi iterations. If
we know all of the eigenvalues and if k is sufficiently large, we can construct the
polynomial function in a way that py();) = 0 for any \;. Unfortunately, it is difficult
to know the eigenvalues, when the linear system is large and varying. Instead, if we
know the spectral radius p such that —1 < —p <\, < ... < A <p <1 we can ask
pr(2) to be minimized for all z € [—p, p|:

pute) = argunin { o [ne(0)]} (310

The unique solution to [Equation 3.10| can be proved to be given by

_ Gila/p)
M= Gt

in which Cy(x) is the Chebyshev polynomial with the recurrence relation

Cri1(x) = 22Ck(x) — Cr_1(2)
Ci(x) x
C()($) = 1

3.4. CHEBYSHEV SEMI-ITERATIVE METHOD APPLIED TO PBD 35

To reduce the computational and memory cost, we can reorganise and using all the
identities before we get

y " = oy (B (Cy® + b) — y*=1)) 4y

where wy1 follows the recurrence

4
We+1 1— 2o on
2
w =
Wy = 1

This method has been extensively analysed and it has been pointed out that even
it looks similar to weighted Jacobi and successive overrelaxation (SOR), it converges
much faster. This is because the Chebyshev method changes the factor w in each
iteration and it uses y*~V) instead of y*).

The biggest advantage of the Chebyshev semi-iterative method is its simplicity.
Compared with Krylov subspace iterative methods, such as generalized minimum
residual and conjugate gradient, the Chebyshev method has a short recurrence form
and it does not use inner products, so it is ideal for parallel computing. Unfortunately,
it is known that the Chebyshev method does not converge as fast as Krylov subspace
methods do. Also, we have to know (or stimate numerically) the spectral radius p.

Now we are ready to perform this method on PBD. Let ¢ a vertex and Ap, . be
its position movement suggested by constraint C'. Wang calculates its actual position
update in each iteration by a relaxation coefficient « in [29]:

pi =pl” +ad Ap,. (3.11)
C

It has been preferred using since its momentum preserving and slightly
more robust against divergence. Given the same «, if no divergence occurs, using
the Chebyshev approach always results in faster convergence than not using the
Chebyshev approach. The problem is that the Chebyshev approach makes the
algorithm more vulnerable to divergence, so smaller « is needed for better stability.
When simulating triangular meshes, Wang found the difference in « is not significant:
a = 0.3 for not using the Chebyshev approach, and o = 0.25 for using the Chebyshev
approach. But when simulating tetrahedral meshes, o must be much smaller to avoid
divergence: a = 0.045 for not using the Chebyshev approach and o = 0.0025 for
using the Chebyshev approach. Overall, the simulation is still accelerated, but the
effect is less evident. For all this see figure

36 CHAPTER 3. POSITION BASED DYNAMICS

1.0¢ 1.0¢
£ §=
= &
7 @ |
=09} = 0.9
= = I
= PBD Z PBD
o PBD+Chebyshev e PBD+Chebyshev

0.8 L A : I 0.2 . . . I

0 200 400 0 200 400
Iterations Iterations
(a) Triangular mesh (b) Tetrahedral mesh

Figure 3.1: The convergence of Position Based Dynamics, using Jacobi iterations.
This example shows that the acceleration effect of the Chebyshev approach is more
significant on triangular meshes as shown in (a) than on tetrahedral meshes as shown
in (b).

3.5 Motivation of the following work

As we have seen, PBD gather some of the advantages of FEM and MSM up: removes
the typical instability problems, the objects themselves can directly be manipulated
during simulation, the formulation of the algorithm allows the handling of general
constraints and the explicit position based solver is easy to understand and implement.
In other words, PBD presents robustness, simplicity, generality and, in most of the
cases, a good performance. But as the reader has been able to realize, there are
some open problems in this area. The main problem we face here is the same one
that MSM had: since they are not directly physics based, its parameters have no
direct relationship with the elastic theory ones: Young’s modulus and Poisson’s ratio
(explained in [chapter 2). Moreover, since its original approach has been from the
engineering and video game field, in the best of our knowledge there is not a rigorous
analysis of the PBD seen as a numerical method for finding the solution of a system.
In order to try to respond these unanswered questions the next chapter is presented.
In the first section we characterize PBD for elastic materials tuning the parameters
such as the stiffness constraints. This part is an original contribution an has been
accepted in CEIG’16 [25]. In the second part we propose some possible first steps in
order to study the convergence properties, although this part is not as robust as the

3.5. MOTIVATION OF THE FOLLOWING WORK

previous ones.

37

38

CHAPTER 3. POSITION BASED DYNAMICS

Chapter 4

Characterization and convergence
of PBD

Computer animation and simulation of deformable materials in interactive applications
is commonly addressed using Mass-Spring meshes or shape matching techniques
(see [chapter 2)). More recently, the Position Based Dynamics (PBD) methodology is
gaining popularity thanks to its unconditional stability and currently it is a widely
used technique in video games (chapter 3). The main inconvenient is that the
behaviour of the simulated body and the solution of PBD depends on non-physical
parameters as the stiffness parameter of the constraint and the number of iterations.
This problem has been addressed for other simulation methods by tuning this non-
physical parameter sets in order to approximate the model as far as it is possible
to another model with known physical parameter sets (for example, with the Finite
Element Method).

Several works have faced the problem of parameter fitting for MSM ([26], e.g).
However, the mechanical properties of PBD models have not been studied systemati-
cally. A characterisation of the dynamics of the PBD elasticity model would determine
to what extent they are capable of reproduce actual elastic materials.

By adjusting k& (the stiffness parameter of the constraint), and the number of
projection iterations, this approach can be used to simulate elastic materials. Further
details on the methodology and different applications can be found in [23] [3].

Recently Bender et al. [2] have introduced a set of energy constraints for the
simulation of continuous materials, including elastic deformations, where physically
meaningful parameters are used. However, to the best of our knowledge no previous
work has been conducted in order to analyse the mechanical properties of PBD elastic

39

40 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

materials based on geometric constraints. This problem is analogous to parameter
fitting in modelling methodologies such as MSM, as we explained in [subsection 2.2.1}

In the following pages, we shall follow the approach by Van Gelder [12] and by
Lloyd et al. [20] to fit a linearisation of a PBD stiffness matrix. Our error function
is based on that of [20], measuring the difference between the PBD stiffness matrix
and a linear FEM stiffness matrix in Frobenius norm. The main difference is that we
compute the stiffness matrix numerically by finite differences. We provide a closed
formulation in order to, given the two physical parameters, obtain the corresponding
stiffness parameters in the case of a hexahedral element with distance and volume
preservation constraints. Furthermore, we see numerically “how bad” PBD works
compared with FEM and discuss the convergence topic giving the first steps for a
rigorous analysis of the Position Based Dynamics.

4.1 Elasticty in Position Based Dynamics

Now, let’s consider a portion of material, simulated with PBD. We build it by means
of n particles we define one or more constraints that describe the equilibrium state
of the cube. Notice that we do not explicit the constraint, so the following method
is valid for any kind of geometrical constraints. If we linearise the dynamics of
the system, we can find an equivalent to the stiffness matrix. We are seeking for a
matrix KPBP for which, when applying a force f = (f;,...,f,)” to the PBD particles,
the resulting deformations u accomplish

f = K"PPu (4.1)

with small u.

In practice, using the dependence of u as a function of f is not the most convenient
approach, since it leads to the inverse of KFPBP . Instead, we shall consider f as a
function of u. However, this poses a difficulty, since the output of the PBD projection
process is not a force or an acceleration, but a position change.

In order to overcome this we shall calculate the force that is equivalent to the PBD
projection, Ap. We mean a force that, when integrated numerically causes the same
change in position than a given Ap. Here we see that we depend on the integration
scheme we choose for solving the DE derived from the Newton’s second law of motion.
We have followed the bibliography for settle this (for example, see [I7]). When using
semi-implicit Euler scheme with a time step At, we deduce this force using Newton’s

second law:
m;

T AR

4.1. ELASTICTY IN POSITION BASED DYNAMICS 41

where At is the time step and m; is the mass of the particle.

This strategy presents an additional advantage. The dynamics of the PBD method
is known to be dependent on the size of the time step. By considering this equivalent
force we shall include this dependence in our computation of the PBD parameters, as
we shall see.

Thus, we consider Ap as a function that depends on the deformation u as defined
previously. If we linearise this function near u = 0, we have that, for small values of u

9Ap(0)

Ap(u) ~ 6—uu7 (4.3)

and, using [Equation 4.2 we can define the stiffness matrix for PBD as
KPBD — ﬂ@Ap(O)

= B 4.4
At2 Ou (44)
where
mi 0 0
M= 0
: .0
0O -~ 0 m,

is the mass matrix of the PBD system (a diagonal matrix). This matrix is fully
known previously even to the simulation.

In a procedure analogous to FEM matrix assembly, the PBD stiffness matrix can
be defined per constraint, and the stiffness matrix of the whole system is assembled by
adding all the constraint stiffness matrices. This computation can be done analytically
for some constraints, such as the distance constraint proposed in [23], while for others
it can be hard to find a closed expression for KFBP . In this cases we depend on the
numerical differentiation strategy followed, such as finite differences.

As we previously mentioned, in PBD there are two main suitable parameters
associated to the method; the number of projection iterations, which is a global
parameter, and a stiffness-like parameter 0 < k < 1, which can be different for every
constraint. In this work we shall consider a single iteration for our analysis, and
consider the stiffness matrix as a function of the different k;, 7 = 1,...,m, for a
system with m constraints.

Following the approach by Lloyd et al. [20], we will use an optimisation algorithm to
find the values of the k; which minimise the difference between K'BP and K"*™ | where
the PBD matrix is considered as a function of the stiffness KF8P = KB (k. ... k).

42 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

This optimisation has an additional difficulty; the FEM stiffness can have an
arbitrarily large norm, since F (Young’s modulus) is not upper bounded, and the
dividing term 1 — 2v (where v is the Poisson’s ratio) tends to infinity as v tends to
%. On the contrary, it has been seen in a number of papers (see for example the
survey done by [3]) that for a large quantity of constraints PBD converges. This
fact makes us think intuitively that the jacobian term in , OAp/du,
has to be bounded somehow. For now and on, although a bound for this term, or
a mathematical proof that PBD has contractive iterations, has not been done in
the literature we assume this for our analysis. We remark again that this analysis
will be for one iteration, so at least initially we are not able to determine how the
incorporation of the number of iterations to the following algorithm will change the
analysis. Although some parts are not dependent, if more iterations are simulated we
recommend to reanalyse the reasoning.

Taking this into account, from Equation (4.4) we see that the only term that is
not bound in our definition of K¥BP is the fraction 1/At?. This implies that, when a
particular elastic material is to be reproduced using PBD, the integration time step
should not be freely chosen. Taking this into account, we propose to set the value of

At as
M|
At =4 —— 4.
\/ TN (4.5)

since this value, when applied in (4.4)), will enable arbitrarily large norms for KFBP.
From this value or At, we use the following optimisation problem to fit the PBD

parameters:
} (4.6)

where 0 < k; < 1. Here, the norm used is the Frobenius norm, as proposed by [20].
For the optimisation we have used MatLab’s instruction fminsearch, a command
that uses the Nelder-Mead simplex algorithm as described by Lagarias et al. . (see
[16]).

The previous methodology to fit the parameters of the PBD system can be
summarised as follows:

M 0Ap

N (k1. k)

(k1. . k) = argrr]lcin{HKFEM -

1. Choose a Young’s modulus E and a Poisson’s ratio v.
2. Build a reference PBD system and an equivalent FEM element.

3. Build the FEM matrix, and set At.

4.2. NUMERICAL EXPERIMENTS 43

4. Fit the PBD parameters solving the optimisation problem ({4.6)).

The first step is absolutely dependent on the material that we want to simulate.
So, there is no possible discussion here. In the following section we will do some
tests for different values of Young’s modulus and Poisson’s ratios. The second step is
maybe beyond a mathematical reasoning. Obviously, the PBD system and the FEM
element have to correspond with the geometry chosen to be simulated, but there are
several ways (for example, refining the mesh of points). Our decision, and maybe one
of the most intuitive, is to choice the vertexes of the PBD system where the nodes of
the elements of the FEM system are. The third step is one of the most expensive
computationally speaking, since the construction and assembling of the FEM matrix
involve the calculus of integrals and after that we have to obtain the norm of this
matrix for the setting of the timestep At. The last step, considered the main idea
of this algorithm, can be done either analytical or numerically, depending on the
complexity of the resulting PBD matrix. For the optimisation we have used MatLab’s
instruction fminsearch and the Python’s instruction minimize, commands that use
the Nelder-Mead simplex algorithm as described by Lagarias et al. [16].

4.2 Numerical experiments

In order to validate our strategy we follow the methodology proposed by San Vicente
et al. [27] and use an hexahedral FEM element to fit a cubic PBD system formed
by eight masses. In the PBD system, we use distance constraints where [27] use
springs and, as in their work, the constraints can be classified in three types: edge
constraints, which link masses connected by an edge of the cube; face constraints,
which link particles through the diagonal of a face; and internal diagonal constraints,
which link vertexes which do not share any edge of the cube. All the constraints
of the same type will share a unique stiffness coefficient. This will produce what is
known as “isotropic” material, this is, it will have identical values of a property in all
directions. This definition is also used in geology and mineralogy. Glass and metals
are examples of isotropic materials.
The distance constraint proposed by [23] is given by

C(pi7pj) = |p; — pj” —d
where d is the equilibrium distance.
For this constraint, the projection (just substitute in the general predicted position
of a particle deduce from PBD) is given by
Wi W

Ap, = —Vipp — Wi
Pi = = AP = T

Pij
pyll = dij) o
(1Pl y)”p

il

(4.7)

11 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

where p;; = p; — p; and w; is the inverse of the mass m; of the particle 1.

With a single iteration step, the stiffness matrix for this constraint has the same
analytical form as the equivalent stiffness matrix for a Mass-Spring Model developed
by Lloyd et al. [20]. But in their work it is shown that the resulting matrix cannot be
equated to KFEM except for the case of an equilateral triangle of springs. Moreover,
although the internal diagonal constraints contribute to volume preservation, they are
also coupled with other deformation modes. For these reasons we add to the distance
constraints the volume preservation constraint proposed by [23]. This constraint is a
discretization as a consequence of Green’s and Gauss’ theorems (this reasoning can be
seen unrigorously in [24]). It is built as an equality involving the location of all eight
vertexes. It can be seen as trying to approximate the volume of the triangulation
formed by all the nodes to the rest volume:

Ntriangles

Clpy-Ps)=| Y (pt;XPtﬁ-ptg -V

i=1

where Vj is the volume of the undeformed cube. Here ¢!,) and t} are the three
indexes of the vertexes belonging to triangle 7. The sum computes the actual volume
of the closed mesh. This constraint function yields the gradients

Vo, C = Z (Pt; X ptg) + Z (ptg X pt{) + Z (pt{ X ptg)

jitd =i jith=i jith=i

The inclusion of this constraint has the drawback that it does not have a tractable
expression for its jacobian matrix (or gradient) with respect to displacement, necessary
to build the stiffness matrix defined in Equation (4.4). Instead, we shall compute the
matrix of the elastic PBD cube numerically using finite differences.

Since all the distance constraints of the same type share the same stiffness
coefficient, we have a PBD system with four parameters: the stiffness of edge
constraints, k.; the stiffness of face constraints, ks; the stiffness of internal diagonal
constraints, kg; and the stiffness of the volume preservation constraint, k,.

To show the proposed methodology and evaluate the results we have computed
the values of the PBD parameters for the range of non-negative values of the Poisson’s
ratio, v € [0, %[This case corresponds to the so called “non-auxetic” materials. If
v < 0 the material, called “auxetic”, expands in one direction as you pull in the
transversal direction. For more information about these materials see, for example,
[11]. Since the linear FEM stiffness matrix depends linearly on E, as it can be
deduced from equations and , the results are independent on its value. For
this reason in this section all the results are shown only for £ = 1.

4.2. NUMERICAL EXPERIMENTS 45

For each value of v, the relative error

. HKPBD _ KFEMH
' [N

has been computed (see . As we mentioned before, we are following
a strategy done for the MSM instead of for PBD. If we would be dealing only
with distance constraints an element simulated with PBD will behave exactly as
one modelled by MSM, since the formulation of the Hooke’s Law and the distance
constraint is the same. But, the main part that conserves volume in a MSM is the
set of internal springs, the diagonal springs. When we deform a cube, for example,
these springs are modified too, and it cannot behave properly in terms of volume
conservation. One of the differences between our PBD elastic cube and the MSM
that have been analysed in the context of parameter fitting is the introduction of
the volume constraint. Although we have diagonal constraints too, the volume
preservation one has not been studied since there is not known a direct transliteration
to a MSM. To determine the relevance of this constraint in the results we have
repeated the parameter adjustment forcing k, = 0. In Figure the values of the
fitted stiffness coefficients are presented.

(4.8)

PBD stiffness values

ke kK ks

0.8 ht 0.8F

PBD stiffness values with k, = 0

06 0.6
0.4 1 0.4

021 q 0.2F

Figure 4.1: Parameter values obtained for the PBD cubic element for different values
of Poisson’s ratio v. The values are shown for the problem with all four constraint
types (left) and forcing the volume preservation constraint to 0 (right).

The figure on the left shows the values for the fitting considering all four stiffness
constants, while the figure on the right shows the results when the volume constraint
is not considered, by forcing k, = 0 (see . From the results it is clear
that from v = 0.29 the stiffness k, gains relevance, approaching k, = 1 as v tends to
%. On the contrary, the value of k; reduces to approach zero in the same range. In

46 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

the fitting without volume constraint, we also observe this reduction in the value of
the constants, but it does not approach k; = 0. We can see this in more detail in
[Figure 4.2l We have plotted in four different windows the distinct stiffness parameters
taking into a account the volume preservation constraint and disregarding it.

Edge stiffness parameter Face stifftness parameter
0.2 0.2
—With k,
015} lvuk, =0 1 015}
0.1 1 0.1¢
0.05 T~ 005} |—With &,
wky =0
0 : : : : 0 : : : :
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
v v
Diagonal stiffness parameter Volume preservation stiffness parameter
0.2 - - : - 0.2 - - -
—With k,
0.15} 10157 ..k, =0
0.1r1 1 017
005 With &, 1005}
ko =0
0 0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
v v

Figure 4.2: An enlargement of differences between the stiffness parameters taking
into account the volume conservation constraint and forcing it to 0. It is clear that,
as the volume preservation constraint gains importance (right down) all the other
ones take lower values.

Looking at the form of the plots in [Figure 4.1 we have decided to make a polynomial
fitting (see [section B.3]). We adjust the data by two polynomials of second order

4.2. NUMERICAL EXPERIMENTS 47

(third order for k,) in each case, when v < 0.29 and when v > 0.29.

b (v) = 0.069812 + 0.0343v + 0.0511 0<rv<0.29
] —0.720402 + 0.46561 — 0.0084 0.29 < v < 0.5

) —0.030202 4+ 0.0614r + 0.1572 0 < v < 0.29
V =
! —2.38220% +1.29090 — 0.0044 0.29 < v < 0.5

ka(v) 0.0527v + 0.1147 0<r<0.29
V) =
I —0.579512 — 0.2818v + 0.2636 0.29 < v < 0.5
(1) 0 0<r<0.29
v \V) =
—50.627003 + 63.1461v? — 21.4563v + 2.1615 029 < v < 0.5

Figure shows the graph of the polynomial regression compared with the fitted
parameters. This part of our work has been accepted for presentation in CEIG’16

Comparison between the polynomials and the obtained data

1 T T T T T T T T T
—ko—k; ki—F,

L P

0.8 y

¥
¥
#
0.6 v |
#
A
X
0.4r A -
X
X
X
A
0.2 i
5055 R R KKK KK KKK KR KK AR AR KR KKK K s
FX o o
"
o %

b SV

[e e e e L
0 0.05 041 015 02 025 03 035 04 045
v

Figure 4.3: Comparison between the previously obtained polynomials and the data
from the minimisation strategy. The polynomials are represented with a line, while
the fitted data are represented with crosses.

(Congreso Espanol de Informdtica Grdfica) under the title “Characterisation of
Position Based Dynamics for Elastic Materials”. See Rodero et al. in [25].

In order to check the quality of the fitting we resort to the mean-squared error. We
remember that this quantification measures the average of the squares of the errors or

48 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

deviations, that is, the difference between the estimator and what is estimated. We
have calculated them with the instruction immse of Matlab. The results are shown in

[Table 4.11

k. ky k4 k,
<029 2146-107° | 89209-10"% | 1.1271-10"7 | 3.3103 - 106
v>0.29 | 1.1827-1077 [9.4752- 1077 | 2.6893 - 10~° | 1.2526 - 10~

Table 4.1: Mean-squared errors for the polynomial fitting of the stiffness parameters
of PBD.

We observe that the biggest error is in the case of the diagonal stiffness parameter
when v > 0.29. Even though, it is a quite small error (smaller than the short precision
of Matlab) so we can affirm that the choice of a polynomial fitting has been a good
one.

Furthermore, we have calculated also the coefficient of determination of this fitting
(R?). Tt has been done with the instruction corr (also with MatLab). The outputs
are shown in [Table 4.2

ke k ka ko
v <0.29 | 9.9990 - 10T | 9.9572- 101 | 9.9462 - 10 -
v>029 | 9.9701-10 1 | 9.9923- 10 1 | 9.8658 - 10~ 1 | 9.9982 - 10!

Table 4.2: Coefficients of determination (R?) for the polynomial fitting of the stiffness
parameters of PBD.

Consistently with the “worst” R? is in the case of the diagonal stiffness
parameter when v > 0.29. But, again, its a quite good value.

The observed behaviour of the stiffness coefficients indicates that the volume
constraint plays a relevant role to get a better model fitting. This analysis is confirmed
by the relative error value of the approximation, shown in Figure 4.4}

Relative error in both fitting problems is the same until the value v ~ 0.29.
Figure 4.4] shows that when the volume constraint is not used for the parameter set
that excludes the volume constraint raises from v about 0.29, and increases as the
Poisson’s ratio approaches its upper limit.

As a conclusion, we have presented a procedure to characterise the dynamics of
a PBD elastic cube, by means of the linearisation of the projection process. Our
approach is based on building a stiffness matrix and seeking for the parameters that

4.2. NUMERICAL EXPERIMENTS 49

Relative error
T T T T T T

T
—With &,
—k, =0

Frror

0 | 1 | | | 1 | | 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

v

Figure 4.4: The relative error for the optimal parameter values for different values of
v. The errors for the complete set of parameters and for the model without volume
constraint are shown.

make it as close as possible, in Frobenius norm, to the equivalent stiffness matrix for
linear FEM.

The analysis of the results throws several conclusions. First, the fitting by
Frobenius norm has limitations since the best results give relative error around 20%
during the fitting. However, the proposed procedure also shows that a systematic
parameter fitting can be performed. If a proper cost function is found, PBD based
elastic models can be adjusted to reproduce certain scenarios. It is noteworthy that
the best results are met for high values of Poisson’s ratio, indicating the decision to
use volume constraint has been successful.

We conjecture that a data driven approach, in which the parameters are fitted
using reference samples, instead of stiffness matrix, must substantially improve the
results of this work. We also expect that the introduction of the number of iterations
in the fitting process, which can provide stiffer behaviours with the same coefficients,
will also help improve the results of the methodology.

20 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

4.3 Convergence properties of Position Based Dy-
namics

As we have been able to see, PBD is not based on physical parameters. Many authors
assume the unconditional stability of this method but in the best of our knowledge,
it has not been proven in any place. Although this fact is quite astonishing in
Mathematics, it is very common in Computer Graphics to present results without a
convergence analysis. Although we have talked about convergence in the
work done by Wang et al. [29] in what this section is based only encompass numerical
experiments about convergence comparing several methods and their performance on
CPU and GPU. Based on this, we will try to address the convergence issue from a
more rigorous point of view.

In the previous sections we have dealt with one iteration of Position Based
Dynamics, that is, we have not analysed what happens when we see PBD as a
root-finding algorithm for a system of equations. In this topic, again, there is
not available bibliography, so we will try to study this problem with the knowledge
acquired in the degree.

First of all, we recall the linearisation done by the PBD algorithm. In this section
we will use the same notation of all this work, and the bold characters will denote a
vectorial element. Our objective is to find a point p = (py,...,p,,) for which, for all
given constraints C'(-)

Cij(p) =0 j=1,....,m

In order to achieve this, PBD made an iterative linearisation, searching for a
correction Ap such that, using Taylor series for a concrete point p;

Ci(p+ Ap) = Cj(p) + V},C(p) - Ap; + O (J|Ap,[?) =0 j=1,...,m

Without taking into account the term O (||Ap,;|?), and being A a Lagrange
multiplier for conserving momenta we have to accomplish the equations

Vi Ci(p)-Ap, = —Cj(p)
Ap, = —AV,.C;(p)

(2

All together gives the closed formula for the predicted position of PBD

C;(p
>k Ve, Ci(p)]?

where in all the previous recalling we have not took into account the masses of the
particles.

Ap; = —V,.Ci(p) j=1,....m (4.9)

4.3. CONVERGENCE PROPERTIES OF POSITION BASED DYNAMICS 51

If we pay attention to this formula, we can relate it to the Newton-Raphson
root-finding algorithm. As can be seen in [13], the Newton-Raphson method
consists on, given f : R — R follow the iterative process

k
L) _ g S @) (4.10)

f'(x®)

where the super-index indicates in which iteration we are.

Although they are not the same, there is a clear similarity between
and [Equation 4.10] so we can think of PBD as a sort of Newton-Raphson algorithm
for multiple variables with an arbitrary number of functions and variables.

In order to solve such a general set of equations (when a vertex is involved in mul-
tiple constraints) the predicted position can be updated either sequentially, known
as “Gauss-Seidel-type” iteration or simultaneously, through averaging, known as
“Jacobi-type” iteration. The part they borrow from the original Gauss-Seidel algorithm
is the idea of solving each constraint independently one after the other. In contrast
to simultaneous iteration, modification to point locations immediately get visible to
the process. Although the sequential algorithm is very easy to implement, the main
disadvantage is that the order in which the constraints are applied affects to the
stiffness of the object and even to the final result (see for example [5]). Some authors
like Miiller in [22] run the sequential solver two times while processing the constraints
in the opposite order in the second iteration to make the process symmetric. On the
other hand, the simultaneous solver often converges more rapidly, mostly in GPU
(see again [22]). Another pro of this way is that as it performs through averaging
it can deal with contradictory constraints as opposed to the sequential solver. We
represent this fact schematically in [Figure 4.5 extracted from [5].

4

Gauss-Seidel Jacobi

Figure 4.5: “Gauss-Seidel” vs. “Jacobi”. If there is no feasible solution, the sequential
algorithm will oscillate (between the two red points) while the simultaneous algorithm
reaches a consensus. [5].

52 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

But, even all of the aforementioned “empyrical evidences” there is not, in our
knowledge, a robust and purely theoretical proof of this assumed convergence. As
a first step, although we have not arrived to a closed solution of this problem, we
conjecture that a good approach might be to consider the root-finding problem
presented in PBD in a matricial way. With this we mean follow the linearisation done
some lines before but, this time, instead of constraint by constraint, with a vectorial
function containing all the constraints. We will denote this new function with bold
characters C(p) = (C1(p),--.,Cm(p))T. So, first of all, by Taylor’s developments,
we want to find a correction Ap such that

C(p+Ap) =C(p)+J,-Ap+ O (|Ap|?) =0

and, similarly to what has been done in the classic PBD

Ap = —JIX (4.11)

where J;, is the jacobian matrix evaluated in the point p. Notice that A is not an
scalar, but a vector of Lagrange multipliers. Substituting properly we have:

C(p) —JpJ A =0

Now here we notice the main trick of PBD: instead of using J,J g the system matrix,

they take the matrix formed by its diagonal, D = diag(JpJIT)). So, the correction
would be

Ap = —-J]D™'C(p) (4.12)

Remark 1. If we take into account the masses of the particles we remember that
the predicted position in classic PBD was

Ci(p
> Wil Vp, C(p)]?

where w; = 1/m; were the inverse of the masses.
So, in the matricial form, we need to weight [E.quation 4.11| by the inverse of the
diagonal matrix of masses M = diag(my, ..., my):

Api = —VpiwiC’j(p)] = 1, oo, Mm

Ap = -MJIN = C(p) - J,M I A=0

4.3. CONVERGENCE PROPERTIES OF POSITION BASED DYNAMICS 53

In this case we split the matrix M into two matrices v M := diag(y/my, ..., \/Ty)
and create a new weighted jacobian matrix J, = J,V M~ and a new set of restrictions

—_~—

C(p) = C(p)VM ™ so we will have:

o~ e~ —_~—

T
JpJp A= C(P)

Going back to the case with no masses (for simplicity) we notice that with this
arrangement, we have no issues of invertibility, since an entry of the diagonal of this
matrix is 0 if and only if a row of the jacobian matrix is a row of zeros, but this makes
no sense because this would mean that a constraint does not depend on any particle.

Writing the matricial PBD with the classical form that the iterative processes
have:

p*! = p® + Ap® = p® — JT, A = p® — gL D, Cp"Y) (4.13)

where the super-index indicates the iteration where we are. We remark, as can be
seen in [Equation 4.13|two important facts: Position Based Dynamics is, in essence,
a multi-step iterative algorithm, although in a first look we may have omitted this.
And the second one, and what makes this process hard to compare to the widely
studied iterative methods (such as Gauss-Seidel or Jacobi, for example) is that in
each step the vectorial constraint function is evaluated in the new point and as a
consequence the jacobian matrix and the D matrix has to be calculated again. Even
though, we can affirm that this process will be convergent if, and only if

_ _ k
Ap(k) = _Jg(kfl)Dp(lkfl)C(p(k 1)) —0

Here we observe that the construction of the points p® has been done in the way
that C(p**1)) — 0, so it would be enough to see that the matrix Jg(k,l)D;(lk,l) is
bounded as k — oc.

In order to simplify the notation we will denote

oC;

(9 Cl =
P; apj

o4 CHAPTER 4. CHARACTERIZATION AND CONVERGENCE OF PBD

Hence, matrix we want to consider is

At 0 e 0 T
8p<k)01 0 wCy -+ 0. wCpy IV e C1ll?
1 P P 1
0 wCy 0wCy -+ 0 wC : —1 :
RO S U Py IV) CaIP
P p : : . : . . .
0 wCi 0wCy -+ 0 wCy, A S
Pn Pn Pn 40 0 ||Vp(k)cm||2_
- ap(lk) Cl apgk)cg 8p(1k)Cm
IV (e C1ll? IV C2ll? o IV (k) Crm 12
0,101 0,1 Cs 0, Cm
IV (e C1ll? IV k) Call? o IV k) Cmll®
A 9 (1) C2 9 () Cm
IV (e C1ll? IV, k) Call? o IV k) Ol

(we have enlarged the last matrix for a better visualization). And here we hypotesise,
based on all the satisfactory results obtained in practical cases, that if not for majority
of the used constraints, at least for a huge family of constraints this last matrix is
bounded (most used constraints can be seen for example in [3]).

We conclude here, since we are not able for the moment with the present knowledge
obtain a better closed proof or solution to the convergence issue. Still, in this last
section we have done probably the first steps in the direction of a rigorous proof of
the validity (mathematically speaking) of Position Based Dynamics. An interesting
future line of work may be to contemplate the iterative PBD algorithm from the point
of view of other kind of iterative algorithms such as Gauss-Newton algorithm (see
[4]) and try to figure out the similarities and discrepancies between the two methods.
This path might lead to the main peculiarities of the PBD algorithm and allow to set
up a procedure for checking the stability or convergence of the method.

Chapter 5

Conclusion and future work

As it can be seen this work presents two clearly and distinct parts. In and
we have explained some of the most used simulation methods for elastic
materials emphasising the mathematical part such as the functional analysis of the
Finite Element Method or the matrix distance approach for the Mass-Spring Model
fitting. We have explained that, although this methods have some good properties,
they are not quite adequate for the video game environment. In this moment, we
have explained a relatively new (2007) method for these cases, and the algorithm
that would be essential in this work: Position-Based Dynamics. After an overview
of the algorithm and the justification of its success we focus on the nucleus part
of the algorithm, the solver. We have also explained a method for convergence
acceleration presenting a semi-iterative method, easy to understand and appropriate
for our problem.

The material presented until is a compilation, extraction and sum-
marizing of several scientific papers (mostly from the computer graphics area) and
books (some of them purely mathematical). With all this information understood
and embraced we have bumped into two main problems which solution could be in
our scope: the parameter fitting of PBD for elastic materials and the convergence
analysis.

The second part of the document, starting in comprises the core of
this work. As we have mentioned throughout that chapter, is an original
contribution of this work, that has been accepted for presentation in CEIG’16, the
XXVI Spanish Computer Graphics Conference, under the title “Characterisation of
Position Based Dynamics for Elastic Materials”. Hence, the main contributions of
this work have been:

55

26 CHAPTER 5. CONCLUSION AND FUTURE WORK

1. We have proposed a general procedure for the parameter fitting in order to
reproduce a proper elastic behaviour has been given. As in the reasoning of this
algorithm we have dealt with generic constraints it can be used with any kind
of geometric constraints, no matter how complex they are. Since the behaviour
or PBD is dependant on the time step, we have found a closed expression,
made as a justified suggestion, of the choice of the time step At and the cost
function of the optimisation strategy. We have obtained numerical results with
an hexahedral element that show that adding the volume constraint to the
simulator has been a good choice.

2. We have presented closed formulae that connect the non-physical parameters of
Position Based Dynamics with the elasticity theory parameters: Young’s modu-
lus and Poisson’s ratio. This fact allows to obtain with barely computational
cost how PBD has to be initialise in order to simulate no matter what material.

3. In the convergence field, we have written Position Based Dynamics as a whole,
this is, matricially. We have analysed the convergence hypothesis of PBD seeing
it as root-finding problem, comparing it with some more known methods such
as Newton-Raphson.

4. We have developed a preliminary analysis on what assumption has been done
for the convergence of PBD, based on a bound of a matrix of the iterative
process. This can serve as initial point to demonstrate that, indeed, Position
Based Dynamics is at least in most of the practical cases a convergent iterative
method.

Despite this contribution some questions have come up that can be an adequate
future work from all the previous investigation.

We have proposed one particular optimisation strategy but maybe there are other
more suitable cost functions based so much in the definition of the stiffness matrices
distance as the error but in the final position of the simulation, for example. Here, we
have noticed that beyond certain value (v = 0.29) the importance of the constraints
begun to change but we do not know the reason of this value, or if there a point of
inflexion in any simulated object.

For testing our procedure we have executed it in a single cube. This can be
repeated for cubes of different size, for tetrahedra (the other widely used element in
digital simulation) and even with a more complex topology objects. Moreover, this is
all based on non-auxetic elastic materials but there is not neither work done in the

57

field of auxetic materials (negative Poisson’s ratio) neither other type of materials
such as viscoelastic or hyper-elastic objects.

We have remarked several times that all the reasoning is for one iteration, we will
study how this outcomes change when more iterations are introduced. Possibly, with
the adding of a variable number of iterations the material could become more rigid
so a relaxation in the integration time step could be done.

In the numerical experiments we have tuned four parameters, gathering all the
same kind of distance constraints (edge, face, diagonal...) with one unique parameter
for each type. We will analyse the possibility of not making this assumption and taking
different parameters for each constraint. This could be a direct way of simulating
anisotropy materials, but we do not know with the analysis done how the results
could be.

We hypothesise also that a data-driven approach could result in a better behaviour
of PBD, since this wiil allow to define an error measure based on the deformations
during the simulation, instead of using a lineal spectral analysis.

Finally, in the convergence field has remained one important, and open question:
in the sequential algorithm (Gauss-Seidel way) we have pointed out that the stiffness
even the result of the PBD simulation depends on the order in which the constraints
are applied. We may explore which is the best strategy to avoid, or at least minimise
this dependence. Some authors affirm that in over-constrained situations, the process
can lead to oscillations if the order is not kept constant, but numerical proof of this is
not presented. What most of the authors do is go over all the constraints in a certain
order and, in the same iteration, go over them again but in reverse order in order
to do the system symmetric. But, the option of randomising the constraint order in
each iteration has not been studied. Neither does what would be the best strategy
from a probabilistic point of view of doing this or if is possible to relate the stiffness
parameters with the order in which the constraints are applied and optimise this.

58

CHAPTER 5. CONCLUSION AND FUTURE WORK

Appendix A

The variational principles of
mechanics

A.1 The principal viewpoint of analytical mechan-
ics

It frequently happens that certain kinematical conditions exist between the particles
of a moving system which can be started a priori. For example, the particles of a solid
body may move as if the body were “rigid”, which means that the distance between
any two points cannot change. Such kinematical conditions do not actually exist on
a priori grounds. They are maintained by strong forces. It is of great advantage,
however, that the analytical treatment (which considers the whole system, instead
of the vectorial treatment which treats particles individually) does not require the
knowledge of these forces, but can take the given kinematical conditions for granted.
We can develop the dynamical equations of a rigid body without knowing what forces
produce the rigidity of the body. Similarly we need not know in detail what forces act
between the particles of a fluid. It is enough to know the empirical fact that a fluid
opposes by very strong forces any change in its volume, while the forces which oppose
a change in shape of the fluid without changing the volume are slight. Hence, we
can discard the unknown inner forces of a fluid and replace them by the kinematical
conditions that during the motion of a fluid the volume of any portion must be
preserved.

59

60 APPENDIX A. THE VARIATIONAL PRINCIPLES OF MECHANICS

A.2 Auxiliary conditions. The Lagrange multipli-
ers method

The configuration space in which the point P can move may be restricted to less than
n dimensions by certain kinematical relations which exist between the coordinates.
Such kinematical conditions are called “auxiliary conditions” or “constraints” of the
given variation problem. Let’s see that we can reduce an optimization (variation)
problem with auxiliary conditions to a usual system of equations:

Let P = (uq,...,u,) a set of coordinates, the function we want to optimize F(-)
subject to a set of constraints f1(-) =0,..., f(-) =0 1<m<n.

Definition 9 (Virtual work). The work of a force acting on a particle as it moves
along a displacement will be different for different displacements. Among all the
possible displacements that a particle may follow, called virtual displacements,
one will minimize the action, and, therefore, is the one followed by the particle by the
principle of least action. The work of a force on a particle along a virtual displacement
is known as the virtual work.

Example 2. Let us consider for example a marble which is at rest at the lowest point
of a bowl. The actual displacement of the marble is zero. It is our desire, however, to
bring the marble to a neighbouring position in order to see how the potential energy
changes. A displacement of this nature is called a “virtual displacement”. The term
“virtual” indicates that the displacement was intentionally made in any kinematically
admissible manner. Such a virtual and infinitesimal change of position is called briefly
a variation of the position.

It was Lagrange’s ingenious idea to introduce a special symbol for the process of
variation, in order to emphasize its virtual character. This symbol is §. The analogy
to d brings to mind that both symbols refer to infinitesimal changes. However, d
refers to an actual, § to a virtual change. In a plenty of problems of variational physics
this distinction is of vital importance.

In accordance with this notation we write the infinitesimal virtual changes of a
set uq,...,u, of coordinates in the form

ouq, O, . .., 0Uy,

The corresponding change of the function F' becomes by the rules of elementary
calculus (a sort of the chain rule)
oF oF

oF
F=— — . Al
) Dur ouy + 9y dus + + ou. Oy, (A1)

A.2. AUXILIARY CONDITIONS. THE LAGRANGE MULTIPLIERS METHODG61

This expression is called the first variation of the function F'.

With this background let’s proof the Lagrange multipliers method:

Theorem 5. Given a set of coordinates P = (uy,...,uy,), a function F : R" — R
subject to a set of restriction f; : R* =R ¢=1,...,m < n s equivalent asking for
the stationary value of the function

F(P) = F(P)+ Mfi(P) + ...+ Anfm(P) (A.2)

Proof. Because the points in which the constraints are satisfied is a set of general
constraints, then, if we calculate the variation of the functions:

0fi 5 (9fz :
0f; = . ou, = =1,..., A.
fi= 8u1 up + Gun Uy = 0 1 m (A.3)
while the fact that the variation of F' has to vanish at a stationary value, gives
oF oF
0F = —9§ —ou, = A4
Buy L et By " 0 (A-4)

If the duy were independent of eacht other, (A.4)) would lead to the vanishing of
each aaTFk but due to 1) this is not true. Let us modify the expression (|A.4)) by
adding the left-hand sides of the equations (A.3)) after multiplying each one by some
undetermined A—factor. We thus get

- fl fm o
Z(ak Mgy oot An g) due =0

We wish to express the last m du; in terms of the independent dug. This can be
accomplished by the proper choice of the A—factors, so that

9, Al(?uk 4 A 8uk_0 k=n—m+1,...,n
This leaves
= A.
Z (e A u T Am auk) Suy, =0 (A.5)

Now since only those 5uk remain which can be chosen arbitrarly, the only way in
which (A.5)) is accomplished is that each factor vanish. In the final analysis we have
oF 0 f1

the equations
O fm
+ M= 4 A f

k=1,...
8uk 8uk auk ’ "

62 APPENDIX A. THE VARIATIONAL PRINCIPLES OF MECHANICS

which can be considered as obtained from the variational principle
OF +X0fi+ ...+ And0fn =0

considering all the u; as independent variables. Thus we can express it in the

form of (A.2)). O

This method yields n equations. In addition to those equations we have to satisfy
the m auxiliary conditions. This gives n + m equations for the n + m unknowns

Uty ooy Ups Ayevvy A

Remark 2 (Physical meaning of the Lagrange multipliers). Let us assume that we
have a mechanical system of n degrees of freedom, characterised by the generalized
coordinates ¢, ..., g, and that there is a kinematical condition given in the form

fla, - a,) =0 (A.6)

Then, being V' the potential energy (usually what we want to minimize in me-
chanical problems) the Lagrange multiplier method requires that

SV +Af =0

This equation, however can be expressed in the form 6V = 0 where V = V + \f. This
modified potential energy V is, however, physically very plausible. If we do not restrict
the variation of the configuration of the system by the condition but permit
arbitrary variations of the ¢;, then not only the impressed forces will act but also the
forces which maintain the given kinematical condition. Thus, the modification of the
potential energy on account of the Lagrangian A—method represents the potential
energy of the forces which are responsible for the maintenance of the given auxiliary
conditions in the “direction” of the variable we are deriving it. This is, the term we
add with the Lagrange multipliers can be interpreted as the force of reaction that
the constraint produces.

Appendix B
Code used

B.1 Fitting of the PBD stiffness matrix to the
FEM stiffness matrix

We do not attach the PBD and FEM code since it is well known (even can be found
in some forums) and this chapter would be too extensive.
The following code has been done with Python:

#!/usr/bin/python
—x— coding: utf-8 —x-—

nmmwn

Sample generation for the linearisation of a PBD cube with springs in
faces and volume constraint.

wnn

from sys import path
path.append ('FEM")

import numpy as np

import pbd

import elastic_prism as fem

from pbd.elastic.prism import build_prism
np.set_printoptions (precision=8, linewidth=175)

dens = 1.0

63

64 APPENDIX B. CODE USED

x=19171, 1,-1,-1, 1, 1,-1,-1]
y = [_11 1/ ll ll_ll 1/ ll_l]
z = [-1,-1,-1,-1, 1, 1, 1, 1]

pbds = pbd.PBDSystem()
pbds.build_cube (2, 2, 8xdens)

pbds.set_niters (1)

def get_delta(u):
P = np.array (pbds.particles.p)
pbds.particles.p = p + u

pbds.delta = np.zeros((24,1))
for ¢ in pbds.constraints:
dp = c.project_positions()
pbds.store_delta (dp)

pbds.particles.p = np.array(p)
return pbds.delta
def compute_jacobian (dx) :
J = np.zeros((24,24))
for i in range(24):
u = np.zeros((24,1))
uli] = dx
dp = get_delta (u)
J[i] = -1.0/dx*dp.transpose () [0]
return J

def jacobian_function (kl,k2,k3,k4):
for ¢ in pbds.ll_constr:

c.stiffness = kil

for ¢ in pbds.l2_constr:
c.stiffness = k2

for ¢ in pbds.l3_constr:

B.1. FITTING OF THE PBD STIFFNESS MATRIX TO THE FEM STIFFNESS MATRIX65

c.stiffness = k3
for ¢ in pbds.vol_constr:
c.stiffness = 0.5+k4
pbds.set_niters (1)

dx = le—-6
return compute_jacobian (dx)

def error_value (k) :
#[kl,k2] =k
[k1,k2,k3,k4d] = k
hz2 = np.linalg.norm(K) #E/ ((1l+nu)«*(1.0-2xnu))
Jac0 = jacobian_function (kl,k2,%k3,k4)
Jac=hz2+Jac0
errmat = Jac - K
err = np.linalg.norm(errmat)
print ('in err',E,nu,hz2,np.linalg.norm(Jac0),err, k)

return err

for i in range (8):
pbds.particles.set pos (i, (x[1],y[i],z[1]))

build.-prism(pbds, [0,1,2,3,4,5,6,7,81,1,1,1,1)

from scipy.optimize import minimize

for E in [1.0]:
for pseudonu in range (0, 50) :
nu=pseudonu/100.0
FEM

K = fem.build_k (nu, E)

print("fff\nAjuste para E="+str(E)+" vy nu:"+str(nu)+":\n")
bnds = ((0,1),(0,1),(0,1),(0,1))
res = minimize (error_value, [0.5,0.5,0.5,0.5],bounds=bnds)

print (res)

66

APPENDIX B.
rel_err = res.get('fun')/np.linalg.norm(K)
print ('err. '+str(res.get('fun')))
print ('norm(K) = '+str(np.linalg.norm(K)))
print ('rel err. '+str(rel_err))

dt_inv= np.sqgrt (np.linalg.norm(K))
np.sqgrt (E/ ((1+nu)*(1.0-2xnu)))
print ("'nsteps="+str (dt_inv))
print ("-———————- ")

[k1,k2,k3,kd]=res.get ('x")
Jac = (dt_invxx2)+*jacobian_function (kl,k2,k3,k4)
print (np.linalg.norm(Jac),np.linalg.norm(Jac-K))

save_file = True

if save_file:
file_ ks = open("data/fit_ks buenas.dat",'a')
file ks.write(str(E) + ' '

+ str(nu) + " '

+ str(kl) + " !

+ str(k2) + " !

+ str(k3) + " !

+ str(k4) + " !

+ str(dt_inv) + " '

+ str(rel_err) + '\n'")

file ks.close()

CODE USED

B.2. FITTING OF THE PBD STIFFNESS MATRIX TO THE FEM STIFFNESS MATRIX DISREGARIL

B.2 Fitting of the PBD stiffness matrix to the
FEM stiffness matrix disregarding the volume
constraint

The following code has been done with Matlab:

function [res] = param_adjust (pos,E,nu,filelD)
% INPUT:
% p: Positions (pl,...,pN)

o\

E: Young's modulus

o\°

nu: Poisson ratio

OUTPUT:
res: file with the results

o° o° oo

aux = mat_fem(pos, E, nu);
dt2=norm(aux, 'fro');
err = @(x) double (norm(dt2+mat_pbd (pos, (sin(x(1l))+1)/2,...

(sin(x(2))+1)/2, (sin(x(3))+1)/2) - aux, 'fro'));
[k,err_abs] = fminsearch(err, [1 1 11);
res = [E nu (sin(k(1:3))+1)/2 sqgrt(dt2) 0 err_abs/E] ;

fprintf (fileID, '\n %d %f %f %f %f %f %f %f %f \r\n',res) ;
end

68 APPENDIX B. CODE USED

B.3 Polynomial fitting

Once the data has been obtained with the code in [section B.1| we make a polynomial
regression. The input has been a matrix with all the parameters needed, and the
output the plots.

The following code has been done with Matlab

coefkll=polyfit (nu(l1:30),k1(1:30),2);
coefkl2=polyfit (nu(30:end),kl(30:end),2);

coefk2l=polyfit (nu(1:30),k2(1:30),2);
coefk22=polyfit (nu(30:end),k2(30:end),2);

coefk3l=polyfit (nu(l1:30),k3(1:30),1);
coefk32=polyfit (nu(30:end),k3(30:end),2);

coefkvol2=polyfit (nu(30:end),kvol (30:end), 3)

Bibliography

1]

2]

[10]

K. Bathe. Finite Element Procedures. Prentice Hall, Pearson Educatio, Inc.,
2006.

J. Bender, D. Koschier, P. Charrier, and D. Weber. Position-based simulation of
continuous materials. Computers and Graphics, 44:1-10, 2014.

J. Bender, M. Miiller, M. Otaduy, M. Teschner, and M. M. A survey on position-
based simulation methods in computer graphics. Computer Graphics forum,
33(6):228-251, May 2014.

A. Bjorck. Numerical methods for least squares problems. STAM, Philadelphia,
1996.

S. Bouaziz, S. Martin, T. Liu, L. Kavan, , and M. Pauly. Projective dynamics:
Fusing constraint projections for fast simulation. ACM Transactions on Graphics
(SIGGRAPH), 33(4):154:1-154:11, 2014.

J. Celigiieta. M¢étodo de los Elementos Finitos para el Andlisis Estructural.
UNICOPIA C.B., 2000.

T. Chyou. Dynamics of a cube-shaped mass-spring network from the
wolfram demonstrations project. |http://demonstrations.wolfram.com/
DynamicsOfACubeShapedMassSpringNetwork/.

S. Conte and C. De Boor. Elementary Numerical Analysis. McGraw-Hill Book
Company, 1980.

R. Courant. Variational methods for the solution of problems of equilibrium and
vibrations. Bulletin of the American Mathematical Society, 49:1-23, 1943.

F. Demengel and G. Demengel. Functional Spaces for the Theory of Elliptic
Partial Differential Fquations. Springer, 2012.

69

http://demonstrations.wolfram.com/DynamicsOfACubeShapedMassSpringNetwork/
http://demonstrations.wolfram.com/DynamicsOfACubeShapedMassSpringNetwork/

70

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

K. Evans, M. Nkansah, I. Hutchison, and S. Rogers. Molecular network design.
Nature, 124(353), 1991.

A. Gelder. Approximate simulation of elastic membranes by triangulated spring
meshes. Journal of Graphics Tools, 3(2):21-41, 1998.

M. Hazewinkel. Newton method. Encyclopedia of Mathematics, Springer, 2001.

E. Hinton and B. Irons. Least squares smoothing of experimental data using
finite elements. Strain, 4:24-27, July 1968.

R. Kikuuwe, H. Tabuchi, and M. Yamamoto. An edge-based computationally
efficient formulation of saint venant-kirchhoff tetrahedral finite elements. ACM
New York, NY, USA, 28(1), 2009. doi:10.1145/1477926.1477934.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence
properties of the nelder-mead simplex method in low dimensions. SIAM Journal
of Optimization, 9(1):112-147, 1998. doii10.1137/S1052623496303470.

E. Lengyel. Mathematics for 3D Game Programming and Computer Graphics.
Cengage Learning PTR, 3rd edition, 2011.

T. Liu, A. Bargteil, J. O’'Brien, and L. Kavan. Fast simulation of mass-spring
systems. ACM Transactions on Graphics (TOG), 32(6), 2013.

T. Liu, A. W. Bargteil, J. F. OBrien, and L. Kavan. Fast simulation of mass-spring
systems. ACM Transactions on Graphics (SIGGRAPH Asia), 32(6):214:1-214:7,
2013.

B. Lloyd, G. Szekely, and M. Harders. Identification of spring parameters for
deformable object simulation. IEEE Transactions on Visualization and Computer
Graphics, 13(5):1081-1094, 2007.

M. Macklin, M. Miiller, N. Chentanez, and T. Kim. Unified particle physics for
real-time applications. ACM Transactions on Graphics (TOG) - Proceedings of
ACM SIGGRAPH 2014, 33(4), July 2014.

M. Miiller. Hierarchical position based dynamics. In F. Faure and M. Teschner,
editors, Workshop in Virtual Reality Interactions and Physical Simulation “VRI-
PHYS” (2008). The Eurographics Association, 2008. doi:10.2312/PE/vriphys/
vriphys08/001-010.

10.1145/1477926.1477934
10.1137/S1052623496303470
10.2312/PE/vriphys/vriphys08/001-010
10.2312/PE/vriphys/vriphys08/001-010

BIBLIOGRAPHY 71

[23]

[24]

[25]

[20]

[27]

[33]

M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based dynam-
ics. In 3" Workshop in Virtual Reality Interactions and Physical Simulation
“VRIPHYS”, 2006.

K. Owen. Area and Volume Calculations. http://archive.gamedev.net/
archive/reference/articles/article2247.html, 2005. (Online; accessed 07-
July-2016).

C. Rodero, P. Real, P. Zuneda, C. Monteagudo-Manas, M. Lozano, and I. Garcia-
Fernandez. Characterisation of position based dynamics for elastic materials. In
XXVI Spanish Computer Graphics Conference “CEIG”, 2016.

G. San Vicente. Designing deformable models of soft tissue for virtual surgery
planning and simulation using the Mass-Spring Model. PhD thesis, School of
Engineering, University of Navarra, 2011.

G. San-Vicente, I. Aguinaga, and J. Celigueta. Cubical mass-spring model
design based on a tensile deformation test and nonlinear material model. IEEFE
Transactions on Visualization and Computer Graphics, 18(2):228-241, 2012.

J. Synge. The hypercircle in mathematical physics. Cambridge at the University
Press, 1957.

H. Wang. A chebyshev semi-iterative approach for accelerating projective and
position-based dynamics. ACM Transactions on Graphics (SIGGRAPH Asia),
34(6), 2015.

S. Wang and J. Yang. An improved finite element model for craniofacial surgery
simulation. International Journal of Computer Assisted Radiology and Surgery,
20009.

L. Zhang, A. Gerstenberger, X. Wang, and W. Liu. Immersed finite element
method. Computer Methods in Applied Mechanics and Engineering, 193(22):2051—
2067, 2004.

L. Zhilin, Q. Zhonghua, and T. Tao. Numerical Solutions of Partial Differential
Equations An Introduction to Finite Difference and Finite Element Methods. Hong
Kong Baptist University, 2012. http://www4.ncsu.edu/~zhilin/TEACHING/
MA587/.

O. Zienkiewicz. The finite element method. London : McGraw-Hill, 1977.

http://archive.gamedev.net/archive/reference/articles/article2247.html
http://archive.gamedev.net/archive/reference/articles/article2247.html
http://www4.ncsu.edu/~zhilin/TEACHING/MA587/
http://www4.ncsu.edu/~zhilin/TEACHING/MA587/

72

BIBLIOGRAPHY

Index

Algorithm Law
Gauss-Seidel, 51 Hooke’s/Hookean, 17
Jacobi, 51 Newton’s Second, 17

Position Based Dynamics, 26
Root-finding, 50
Newton-Raphson, 51
Approach
Analytical, 20

Method
Finite Element, 6
Stiffness matrix, 14
Position Based, 25

Data driven, 20 Model .
Mass-Spring, 16

Constraint Physically based, 2

Distance, 43 Momentum

Volume preservation, 44 Angular, 30
Damping, 17 Linear, 30
Dynamics Poisson’s ratio, 15

Position Based, 25

Stiffness matrix, 40 Relative error, 45

Matricial, 52

Projective , 32 Shape functions, 6

Sobolev space, 10
Elasticity, 40 spectral radius, 33
energy norm, 12 State

Finite clements, 6 Equilibrium/Rest, 17

Forward Euler Time step, 42
Explicit, 26
Semi-implicit, 26 Weak derivative, 10
Weak form, 8

Gauss-Seidel, 32

Jacobi, 32 Young’s modulus, 15

73

	Contents
	List of Figures
	Nomenclature
	Introduction
	Simulation methods for elastic materials
	Finite Element Method
	A descriptive example
	Functional analysis of the FEM
	Elasticity in FEM
	Final remarks

	Mass-Spring Model
	Matrix distance approach
	Final remarks

	Strengths and weaknesses of the force based simulation methods in video games

	Position Based Dynamics
	Notation and basic definitions of PBD
	PBD solver
	Energy optimization viewpoint
	Chebyshev semi-iterative method applied to PBD
	Chebyshev semi-interative method

	Motivation of the following work

	Characterization and convergence of PBD
	Elasticty in Position Based Dynamics
	Numerical experiments
	Convergence properties of Position Based Dynamics

	Conclusion and future work
	The variational principles of mechanics
	The principal viewpoint of analytical mechanics
	Auxiliary conditions. The Lagrange multipliers method

	Code used
	Fitting of the PBD stiffness matrix to the FEM stiffness matrix
	Fitting of the PBD stiffness matrix to the FEM stiffness matrix disregarding the volume constraint
	Polynomial fitting

	Bibliography
	Index

