
Analytical and Numerical Comparison
of Position Based Methods

versus Physics Based Formulation
of Mechanical Systems

Pablo Real Gómez

Tutor: Ignacio Garćıa Fernández

Facultat de Matemàtiques

Universitat de València

ii

Analytical and Numerical Comparison of
PositionBased Methods versus Physics Based

Formulation of Mechanical Systems

Abstract

Mechanical systems simulation for video games and other interactive applications
impose important restrictions as stability, flexibility in the scenes and computational
complexity. In the last few years several resolution strategies for mechanical systems
with constraints have appeared. Some of the most popular ones in the development
of video games use only the positions of the particles and a projection algorithm
over the manifold defined by the constraints, avoiding manipulation of the system’s
first derivative (velocities). In this way, a great numerical stability is obtained. The
main drawback of these methods is their dependence in non-physical parameters, so
is hard to simulate a specific material. In this work we compare the aforementioned
methods and apply them in the simulation of materials with different mechanical
properties, proposing algorithms to fit the non-physical parameters of the position
based algorithms on concrete, significant scenes, following previous work that
tried to approximate the overall behaviour instead of specific scenes. We test this
procedures with different basic elements used in the literature, such as cubes or
tetrahedra, also further detailing the behaviour of the different parameters used on
the simulations of these models on the approximation.

iii

iv

Acknowledgements

First and foremost, I’d like to thank Mariam for everything, as she has been my
whole support this crazy year. Thanks again for making me who I am and a better
person everyday.

I’d also like to thank all my teachers: the good ones and the bad ones, as each
of them has made me learn on its own way.

I cannot forget Cristóbal Rodero, for joining me on this crazy adventure, never
losing the will to work, once more satisfying our ever-expanding curiosity.

To the CoMMlab: thanks for another year of projects and for whatever has to
come.

And last, but not least, thanks to Ignacio for his guidance, his never-ending
patience with my never-ending questions, and his support.

As always,

Thanks to everybody who has made this journey possible.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Simulation methods for elastic materials 3
2.1 Finite Element Method . 4

2.1.1 A descriptive example 5
2.1.2 Elasticity in FEM . 6

2.2 Mass Spring Model . 7
2.3 Position Based Dynamics . 8

2.3.1 PBD Formulation . 8
2.3.2 Solver . 11
2.3.3 Momentum conservation 13

3 Characterization of Position Based Dynamics for elastic
materials 15
3.1 Previous work . 15
3.2 Methodology . 16

4 Results 21
4.1 GravityFloor . 22
4.2 GravityWall . 30
4.3 GravityCeiling . 37
4.4 Gravity . 44

5 Conclusions and future work 51

Bibliography 55

vii

viii

List of Figures

4.1 GravityFloor scene . 22
4.2 Optimal ks and error on the base case for the GravityFloor experiment 23
4.3 Error when dt changes in the GravityFloor experiment 24
4.4 Optimal ks when dt changes in the GravityFloor experiment 25
4.5 Error when N changes in the GravityFloor experiment 26
4.6 Optimal ks when N changes in the GravityFloor experiment 26
4.7 Error when nit changes in the GravityFloor experiment 27
4.8 Optimal ks when nit changes in the GravityFloor experiment 28
4.9 Error when E changes in the GravityFloor experiment 29
4.10 Optimal ks when E changes in the GravityFloor experiment 29
4.11 GravityWall scene . 30
4.12 Optimal ks and error on the base case for the GravityWall experiment 31
4.13 Error when dt changes in the GravityWall experiment 32
4.14 Optimal ks when dt changes in the GravityWall experiment 32
4.15 Error when N changes in the GravityWall experiment 33
4.16 Optimal ks when N changes in the GravityWall experiment 33
4.17 Error when nit changes in the GravityWall experiment 34
4.18 Optimal ks when nit changes in the GravityWall experiment 35
4.19 Error when E changes in the GravityWall experiment 35
4.20 Optimal ks when E changes in the GravityWall experiment 36
4.21 GravityCeiling scene . 37
4.22 Optimal ks and error on the base case for the GravityCeiling experiment 38
4.23 Error when dt changes in the GravityCeiling experiment 38
4.24 Optimal ks when dt changes in the GravityCeiling experiment . . . 39
4.25 Error when N changes in the GravityCeiling experiment 40
4.26 Optimal ks when N changes in the GravityCeiling experiment . . . 40
4.27 Error when nit changes in the GravityCeiling experiment 41
4.28 Optimal ks when nit changes in the GravityCeiling experiment . . . 41
4.29 Error when E changes in the GravityCeiling experiment 42
4.30 Optimal ks when E changes in the GravityCeiling experiment . . . 43
4.31 Optimal ks and error on the base case for the Gravity experiment . 44
4.32 Error when dt changes in the Gravity experiment 45

ix

4.33 Optimal ks when dt changes in the Gravity experiment 46
4.34 Error when N changes in the Gravity experiment 47
4.35 Optimal ks when N changes in the Gravity experiment 47
4.36 Error when nit changes in the Gravity experiment 48
4.37 Optimal ks when nit changes in the Gravity experiment 48
4.38 Error when E changes in the Gravity experiment 49
4.39 Optimal ks when E changes in the Gravity experiment 49

x

1 | Introduction

Simulation of solid objects, such as rigid bodies, soft bodies, or cloth, has been an
active research topic for more than 30 years, to replace real-world experiments as
accurately as possible. One of the fields on which efficient simulators are increasingly
needed is the surgeries, as medical simulations enable real-time workloads both in
interactive and haptic environments, with the obvious benefits of training surgeries
without the actual patient [7].

The simulation, in essence, is fairly simple: we capture the regions with medical
imaging devices, identify them, translate them into virtual mechanical objects so the
computer can simulate their physical behaviour in a realistic way. But the important
part of this simulations is the last one: we have to represent realistically how the
different soft tissues deform under the virtual forces applied in the interaction.

There are different techniques to create deformable models, with each one of
them having its own advantages and disadvantages. We will focus our attention
on some of them at chapter 2, as we will present some of the most used methods
in literature, which we will also use later as reference when comparing with other
methods. Furthermore, we present some criteria to evaluate this methods on their
use on computer graphics. Next, we present a relatively new method of simulation,
in which we will specially focus: Position Based Dynamics (PBD) [20]. We explain
it in detail at section 2.3. This method was developed and is greatly used on the
scope of videogames, as it has great stability (thus avoiding the players seeing
strange artifacts). However, it is not physically based, so it is not physically
accurate, although the great stability usually provides visually pleasing results.

As the PBD is not physically based, our objective on this work will be to
adapt PBD to other physically based reference models, to better approximate
physical models with the PBD. We will develop the methodology used on chapter 3,
comparing it to previous work in the area.

1

We will present the results obtained with our methodology on chapter 4, detailing
the behaviour of the stiffness parameters and the error when varying the different
physical parameters associated to the models.

At last, in chapter 5 we present a short survey of our own contributions, while
we also remark all possible future work following the conclusion of this work.

2

2 | Simulation methods for elas-
tic materials

An obvious way (and often used) to approach the simulation of a mechanical
system is to study the forces in the system, using Newton’s second law to obtain a
relationship between deformations and forces, as studied in the field of classical
dynamics.

The main advantage of this approach is the accuracy, as we translate the real
equations and behaviour of the model to our implementation, making it physically
based. Another advantage is that these translations have been widely studied over
the past decades.

Often found in the literature we can find the Finite Element Method and
Mass-Spring Model, which are two of the most used. We will detail these methods
on this chapter and use them as reference to compare later with the Position Based
Dynamics.

Furthermore, we need some criteria to evaluate these methods:

• Generality : we need to be able to simulate a large spectrum of behaviours,
such as different geometries or material properties.

• Robustness : we also need to handle difficult configurations such as degenerate
geometries, large deformations and large time steps.

• Numerical convergence: we need to have numerical convergence, as simulation
is worthless if there is divergence.

• Performance: we need to perform efficiently in order to not lose time testing.

• Simplicity : we need to have easily understandable concepts and light code to
ease maintenance and adapt to specific needs.

3

2.1 | Finite Element Method

The Finite Element Method (also written as FEM) is a numerical method used
to find approximate solutions to boundary value problems for partial differential
equations. Although it is used to solve PDEs in general, when applied to elastic
models it creates force based simulation methods where deformations and forces
are related, as we are going to use.

There is not a clear date of invention of the FEM: on [2], Bathe traced back
its roots to three research groups, which curiously are mathematicians [10], physi-
cists [25] and engineers [12].

We will use elasticity as an example to let us see how this method works in
detail. We have that, in a discrete structure, as told in [8], the deformation is
defined by a finite number of parameters (the deformation modes), which are
collected in a vector. If we take a continuous system, we cannot use a finite vector,
and we instead take a vectorial function, which is the solution to the differential
equation that defines the problem. However, a closed form is not always assured,
so the FEM uses the discretization hypothesis, based on:

• The continuum is divided in adjacent disjointed regions, called finite elements.

• Finite elements join each other in a finite number of points, called nodes.

• Node displacements are the basic variables of the problem, and determine
univocally the deformed structure configuration.

• The displacement of an arbitrary point is determined by the displacement of
those nodes belonging to the element in which the point is in.

Note that in order to determine the displacement of an arbitrary point from the
nodes of the element, we need to define a shape function, which has to guarantee
the compatibility in boundary elements.

It is both, the shape functions, and the constitutive equations of the material,
which define the stress in the element.

This division of a whole domain into simple parts has some advantages:

• We can obtain better representation accuracy when working with a complex
geometry.

4

• We can represent easily the whole solution.

• We can capture easily the local effects.

• We can include dissimilar material properties.

2.1.1 | A descriptive example

In order to understand how the method works we will use it to solve a generic
unidimensional differential equation.

Let us consider the following problem:{
u′′(x) = f(x) x ∈ (0, 1)

u(0) = u(1) = 0
(2.1)

In this problem, we suppose that f(x) is some known function. From here
we work to obtain the weak form of the problem. We consider the expression
u′′(x)− f(x) and we multiply this expression by an arbitrary function v(x). We
note that

(u′′(x)− f(x))v(x) = 0 ∀v(x) ⇐⇒ u is solution of (2.1)

We can integrate this expression on [0, 1]:∫ 1

0

(u′′(x)− f(x))v(x)dx =

∫ 1

0

u′′(x)v(x)dx−
∫ 1

0

f(x)v(x)dx = 0

Now, if we suppose that v(0) = v(1) = 0, we can apply integration by parts on the
first term:∫ 1

0

u′′(x)v(x)dx = [u′(x)v(x)]
1
0 −

∫ 1

0

u′(x)v′(x)dx = −
∫ 1

0

u′(x)v′(x)dx

From here, we have: ∫ 1

0

u′(x)v′(x)dx+

∫ 1

0

f(x)v(x)dx = 0

This is the weak form of the problem. Note that with this form, we only need u to
be differentiable, not twice differentiable like in (2.1). Now, rather than using u(x),
we consider a discretization ū(x):

ū(x) =
n∑

i=1

φi(x)ûi = (Φû)(x)

5

The functions φi are part of the shape function, which is subject to:

φi(x) =

{
1 x = xi

0 x = xj 6= xi

n∑
i=1

φi(x) = 1

Therefore, the problem is reduced to:∫ 1

0

(Φ′û)(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx

From here, we can choose the shape and trial functions so the above equation
is easier to solve, and could be even solved numerically. Note that the solution
of (2.1) could be easily obtained by means of antiderivatives (should they exist),
but this method can be generalized easily, and used even with a multidimensional
problem.

2.1.2 | Elasticity in FEM

As we said before, it is our interest to apply the FEM to the particular case of
elasticity.

The elasticity theory studies the relationship between the forces applied on
a body and the consequent deformation on it. Constitutive models are often
expressed as a relationship between the strain ε and the stress σ. When considering
linear elasticity, this relationship can be expressed as:

σ = Dε (2.2)

The matrix D expresses the elastic properties of the material. This is known as
the Saint-Venant-Kirchoff model [13].

The matrix D is given by:

D =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

 (2.3)

We have used two parameters that can uniquely determine an homogeneous isotropic
linear elastic material: E and ν.

6

Definition 2.1. The elastic modulus, or Young’s modulus, often denoted by E, is
a measure of the stiffness of a solid material. It defines the relationship between
stress and strain in a material.

Definition 2.2. Poisson’s ratio, often denoted by ν, is the signed ratio of trans-
verse strain to axial strain. That is, ν is the amount of transversal expansion
divided by the amount of axial compression, for small values of these changes.

The FEM uses a discretization of this model to turn it into a system of linear
equations. If we consider that the node i has a deformation ui, and a force fi is
being applied to it, according to [26] we have that the FEM formulation defines a
matrix K such that:

f = Ku (2.4)

The FEM stiffness matrix for an element has the form:

K =

∫
V

BTDBdV

In this case, we have that V is the volume of the element, matrix B includes the
partial derivatives of the shape functions in the element, and D is the matrix
defined on (2.3).

2.2 | Mass Spring Model

Mass-Spring Models (from now on, MSMs) are physically based models with simple
structure and small computational cost. These methods are suitable for interactive-
time and parallel computing, as it is easy to work with topology changes and/or
large deformations. It is very common to find these models, in applications like
cloth simulation and surgery simulation.

In these models the object is seen as a collection of point masses which replace
the whole body, and they are linked by springs, representing the elastic behaviour
of the bodies, which is modelled using linear springs. The spring mesh can have
many configurations, depending on the geometry of the object and the topology
selected to represent the elasticity properties.

When this model interacts with the environment, the length of the springs can
change, inducing forces that propagate over the spring mesh. The equilibrium
shape of the body is reached when the sum of each of these forces acting over each
node is null. It is usual to add a damping factor to the model in order to improve
stability of the system.

7

Generally speaking, MSMs are easy to construct, physically based models. They
allow real-time simulations even when the model has to handle user interactions
that involve topology changes. Another well-known advantage is their ability to
deal with both large displacements and large deformations. However, it is difficult
to find methods to tune the springs to achieve the desired behaviour. Furthermore,
[23] compared MSM with FEM, concluding that it is not a realistic method in
most situations performing a spectral analysis. Furthermore, it is difficult to
express certain constraints like incompressibility, anisotropy, volume conservation,
or prevention of volume inversion. Also, it has problems with numerical stability,
as the solution diverges when far from the equilibrium.

2.3 | Position Based Dynamics

In the previous methods, forces are computed from the velocities and the actual
deformation of the given mesh. However, if we want to control the positions in
real-time (in case the user moves a particle, or in other cases), the easiest way is
to work precisely with the positions. Note that this avoids integration and other
problems such as energy gain. This is the idea behind Position Based Dynamics,
also denoted by PBD.

Some advantages of using PBD are:

• No instability problems.

• Real-time handling of the scene.

• General constraints.

• The solver is easy to understand and implement.

We will see how the PBD works and detail the algorithm used.

The interested reader can read more on PBD on [6], on [4] or [5].

Furthermore, the PBD has been extended in order to be able to simulate more
complex scenes in a easier and more robust way, as in [17], in [19] or [1]

2.3.1 | PBD Formulation

We are going to see the method and the algorithm developed in [20]. We will consider
a set of n particles (or vertexes), each with the attributes described on Table 2.1.

8

Particle i
mi mass
pi, xi position
vi velocity

Table 2.1: Attributes of each particle

The attributes of the particles are straightforward: positions and velocities are
vectors with three components each, as we consider a three-dimensional space.

The relationship between these particles is described by a set of m constraints,
each with the attributes described on Table 2.2.

Constraint j
nj cardinality

Cj : R3nj → R scalar constraint function
{i1, . . . , ink

}, ik ∈ [1, . . . , n] set of indices
kj ∈ [0, 1] stiffness parameter

unilateral or bilateral type of the constraint

Table 2.2: Attributes of each constraint

The attributes of the constraints are not so straightforward. The cardinality nj

of a constraint is the number of variables that the constraint j is applied on. The
scalar constraint function Cj is a function, often with some physical meaning, that
measures some type of relationship between particles. The set of indices is simply
a subset of all the indices, indicating which particles appear on the constraint.
The stiffness parameter kj defines the strength of the constraint. We will say that
the constraint j is unilateral if it is satisfied when Cj ≥ 0, and is bilateral if it is
satisfied when Cj = 0.

We now take a moment to explain another term that we are going to use: the
inverse mass wi. This is simply wi = m−1i . We take this variable and will use it as
it makes simple to consider unmovable objects, just by setting wi = 0, that is, like
if we considered that the particle has infinite mass. This means that, no matter
how much force is applied on the particle, it will not move. However, instead of
using infinite mass particles, is desirable to use zero inverse mass particles. Note
also that we will not have divisions by zero (that is, infinite inverse mass), as an
object without mass has no interest on computer animation.

With all these attributes, and the time step ∆t, we can simulate the dynamic
object using Algorithm 1, which we now further discuss.

Line (2) simply initializes the state variables.

Line (6) sets the new velocity after a time step. Observe that it is a explicit

9

Algorithm 1 Algorithm of Position Based Dynamics

1: for all vertices i do
2: xi = x0i , vi = v0i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do
6: vi = vi + ∆twifext(xi)
7: end for
8: dampVelocities(v1, . . . , vn)
9: for all vertices i do
10: pi = xi + ∆tvi
11: end for
12: for all vertices i do
13: GenerateCollisionConstraints(pi)
14: end for
15: loop
16: projectConstraints(C1, . . . , Cm+mColl

, p1, . . . , pn)
17: end loop
18: for all vertices i do
19: vi = (pi − xi)/∆t
20: xi = pi
21: end for
22: velocityUpdate(v1, . . . , vn)
23: end loop

10

forward Euler integration step on the velocities, but adding external forces, mainly
gravity (but also the user’s interactions). It can be used if we cannot convert
some force to constraint. Some authors, like [14], pointed out that PBD can be
interpreted as a heuristic variant of the variational implicit Euler method taking
the inertial term out of the solver, and into the integration step of the simulation.

Line (8) is used to avoid energy gain problems. In real world, energy is reduced
due to heat dissipation or contact with other objects, but in this algorithm we
simulate these effects by damping the velocities every time we calculate them.

Line (10) is the same as (6). Note that this is not the final position, it is only a
prediction, without taking into account the constraints.

Line (13) generates non-permanent external constraints (mcoll constraints), such
as collision constraints. These constraints change from time step to time step.

Line (16) is the constraint projection loop. It establishes which constraints
are not satisfied and corrects one by one the predicted positions. The involved
parameters are the number of iterations, nit, the predicted positions, and both
types of constraints: fixed and collision constraints. We will explain these solver
deeply on subsection 2.3.2.

Line (19) updates the velocities, as the final positions can be different from the
predicted ones.

Line (20) updates the positions of the system with the predictions.

Line (22) modifies the velocity of the colliding particles, according to friction
and restitution coefficients.

2.3.2 | Solver

The goal of the solver step (9)-(11) is to correct the predicted positions pi of the
particles, such that they satisfy all constraints (supposing that the constraints are
not contradictory). The problem that needs to be solved comprises of a set of
m+mcoll equations for the 3n unknown position components. If m+mcoll > 3n
(m+mcoll < 3n) the system is overdetermined (underdetermined). In addition, the
equations are in general non-linear. The function of a simple distance constraint
(C(p1, p2) = ‖pi − pj‖ − d) yields a non-linear equation. The fact that makes
things even more complicated is the fact that collisions produce inequalities rather
than equalities. Solving a non-symmetric, non-linear system with equalities and
inequalities which can be either overdetermined or underdetermined is a tough
problem, as seen in [9].

We will use equalities on all further work. If there is any inequality, it is enough
to check if the inequality is satisfied. In this case, we simply don’t mind this

11

constraint. We will not use the cardinality: we will suppose that every constraint
is applied over all n particles, even if there is no dependence of the constraint on
the particle.

With that in mind, we can express the constraints as:

Cj(p) = 0 j = 1, . . . ,m

Note that we have written C(p1, . . . , pn) as C(p). Now we try to guess a first
solution, that is, the first iterate of the projection. Each constraint is linearized in
the neighbourhood of this solution using Taylor series:

C(p+ ∆p) = C(p) +∇T
pi
C(p) ·∆pi +O

(
‖∆pi‖2

)
= 0

Here, ∆pi is the correction of the position of the particle.

We would need C(p+ ∆p) = 0 in order to accomplish the constraint. Note that
this yields a linear system for the global correction vector ∆pi, which is:

∇T
pi
Cj(p) ·∆pi = −Cj(p) j = 1, . . . ,m

Note that ∇piCj(p) is the column vector containing the nderivatives of the
function Cj with respect the n coordinates of pi, and evaluated in p. Both ∇T

pi
Cj(p)

and the right hand side scalars −Cj(p) are constant because they are evaluated at
p before the system is solved. When m = 3n (that is, we have a square matrix)
and only equalities are present, the system can be solved by any lineal solver (if we
suppose that the system is compatible). If the problem is underdetermined but we
have full rank, we can use the pseudoinverse to solve it.

We consider the linearization:

Cj(p+ ∆p) = Cj(p) + (∇piCj(p))
T ·∆pi +O

(
‖∆pi‖2

)
= 0 (2.5)

To conserve momentum (we will explain this on subsection 2.3.3) we restrict to:

∆pi = −λ∇piCj(p) (2.6)

Substituting Equation 2.6 into Equation 2.5 (without taking in account the
term O (‖∆pi‖2)), then solving for λ and substituting it back into Equation 2.6
yields:

∆pi = −∇piCj(p1, . . . , pn)
Cj(p1, . . . , pn)∑

k ‖∇pkCj(p1, . . . , pn)‖2
j = 1, . . . ,M (2.7)

12

In case we want to consider particles with distinct masses or non-unitary masses
we weight the corrections ∆pi by the inverse mass wi = m−1i , so the Equation 2.7
turns into:

∆pi = −∇piwiCj(p1, . . . , pn)
Cj(p1, . . . , pn)∑

k wk‖∇pkCj(p1, . . . , pn)‖2
j = 1, . . . ,M

The easiest way of incorporating the stiffness parameter is to multiply the
corrections ∆p by k ∈ [0, 1]. However, k has a non-linear effect for multiple
iteration loops of the solver. The remaining error for a single distance constraint
after ns solver iterations is ∆p(1−k)ns . To get a linear relationship we multiply the
corrections not by k directly, but by k′ = 1− (1− k)1/ns . With this transformation
the error becomes ∆p(1− k′)ns = ∆p(1− k) and thus becomes linearly dependent
on k and independent of ns as desired. However, the resulting material stiffness is
still dependent on the time step of the simulation. Real time environments usually
use fixed time steps, in which case this dependency is not problematic.

It is a good moment to discuss stability of the PBD. The authors claim that the
solver is unconditionally stable, as the integration steps are performed by a semi-
implicit forward Euler integration. However, there has not been a thorough stability
analysis. Futhermore, the semi-implicit forward Euler is not unconditionally stable
in general. Note that the system solved on the projection of the constraints has
order one, as the velocities are modified later. However, we cannot conclude that
the PBD is unconditionally stable without further work.

2.3.3 | Momentum conservation

Projecting a set of points according to a constraint means moving the points in
a way such that they satisfy the constraint. The greatest issue when moving
points directly inside a simulation loop is the conservation of linear and angular
momentum. Let ∆pi be the displacement of vertex i by the projection. Classical
linear momentum is given by:

p =
n∑

i=1

mivi =
n∑

i=1

∆pi

In order to conserve momentum, we want the derivative of the linear momentum
being equal to zero. However, due to Newton’s second law, the derivative of the
linear momentum is precisely the sum of all forces. That is, if we want to conserve
momentum, we need:

13

n∑
i=1

Fi = 0

Note that λ∂C
∂t

is the force of reaction due to the constraint C. Consider now:

∆p = λ∇pC(p) (2.8)

On Equation 2.8 we have all the reaction forces. When we add all of the forces,
as the system is closed, we have that the sum is precisely zero, as we wanted. Then,
the linear momentum is conserved, as we wanted.

Now we see that angular momentum is also conserved. The angular momentum
is given by:

L =
n∑

i=1

ri ×mi∆pi

In this case, ri is the distance of all the particles to an arbitrary common
rotation center. Again we want to settle at 0 the derivative so, using the cross
product properties we have

dL

dt
=

d

dt
(r × p) =

d

dt
(r × p) + r × dp

dt
= v × (m · v) + r × dp

dt
= r × dp

dt

And now, by the same argument done on (2.8), the angular momentum is also
conserved.

14

3 | Characterization of Position
Based Dynamics for elastic ma-
terials

As we have seen in the previous chapters, PBD is only physically inspired, but
its parameter sets do not have a correspondence with the standard parameters in
elasticity, like Young’s modulus and Poisson’s ratio. We intend to determine to
which extent is PBD capable of reproducing elastic materials.

As PBD depends on this non-physical parameters, as the stiffness parameter of
the constraints, and the number of iterations, we will perform an analysis of an
elastic element simulated with PBD, trying to approximate the model to another
model with known physical parameter sets, as the FEM.

Several works have faced the problem of a parameter fitting for MSM, like [23]
or [18]. However, the mechanical properties of PBD models have not been studied
systematically yet. A characterization of the dynamics of the PBD elasticity model
would determine to what extent they are capable of reproducing elastic materials.

Note that we have talked about XPBD, which uses a set of energy constraints
where physically meaningful parameters are used. However, to the best of our
knowledge, almost no previous work has been conducted in order to analyze the
mechanical properties of PBD elastic materials based on geometric constraints.
This problem is analogous to parameter fitting in modelling methodologies such as
MSM.

3.1 | Previous work

Note that this problem is analogous to parameter fitting in modelling methodologies
like MSM. Although MSM is physically inspired, its stiffness constants of the sets
of springs have no relation with the physical parameters describing the systems.

15

Analytical approaches try to develop expressions that involve both the Mass-
Spring parameters and the elastic parameters describing a deformable material.
Van Gelder [11] linearized the system of equations of the MSM to find that, in
general, its stiffness matrix cannot be directly equated to a linear FEM stiffness
matrix. More recently, Lloyd et al. [15] derive analytic expressions for triangular
(for 2D) and tetrahedral (for 3D) Mass-Spring elements and find that a closed
form solution can only be found on equilateral triangles. Other authors develop
analytical expressions for the spring stiffness under certain particular deformations,
to fit the parameters that best reproduce such deformations [16, 3]. San Vicente et
al. [24] follow this approach and use the derived analytical expressions to fit the
parameters using data from uniaxial tensile deformations.

These approaches were the base for the methodology used on [22], which was to
compare the matrices defined by the linear elasticity (recall Equation 2.2), KFEM

and KPBD. The idea was that if matrices defined the behaviour of the models,
approximating PBD matrix to FEM matrix would also approximate PBD to FEM,
following the methodology of [23].

The methodology could be summarized as follows:

1. Choose a Young’s modulus E and a Poisson’s ratio ν.

2. Build a reference PBD system and an equivalent FEM element.

3. Build the FEM matrix, and set dt.

4. Fit the PBD parameters solving the optimization problem of reducing the
distance between the two matrices.

This previous work constitutes the foundation of the methodology we are going
to use on this work..

3.2 | Methodology

The objective is simple: we want to approximate the behaviour of the PBD to
some reference model with physically based parameters. We are going to further
detail how are we going to do this and what are we trying to accomplish.

Now we will detail the main ideas of our methodology:

• What are we going to use as reference model?

16

The model which we are going to use is FEM (discussed previously on sec-
tion 2.1), as it has physical significance due to obtaining solutions from the
physical equations that describe the model.

• How do we measure if the behaviour of the PBD approximates the reference
model?

Let us consider pPBD
i and pFEM

i the positions of the particle i in our model.
We let time pass until the rest state of the system is achieved, and we obtain
the new positions qPBD

i and qFEM
i . From p and q we can obtain the total

deformations of each system, namely uPBD
i and uFEM

i , which describe the
behaviour of the systems (recall that by Equation 2.4, the effect of a force
in the system is described by the deformation of the system). We take D as
the set of all indices that have non-zero deformation on FEM, that is, the set
of indices of the vertices that do actually move in the system described by
FEM. We also define the relative error ei between PBD and FEM on each
index of D as:

ei =
‖uPBD

i − uFEM
i ‖

‖uFEM
i ‖

Now, we take the following error e as a measure of the approximation of the
PBD towards FEM:

e =

∑
i∈D

e2i

|D|
Note that this is simply the mean square error between two sets of vectors
(the deformations of each model).

We have to take some things into consideration: first and foremost, we need
the positions when the rest state is achieved, which we will discuss in a
moment. Obtaining the deformations of each model is simple, as u = q − p.
We also use D to describe the actual vertices that have moved, in order to
remove the fixed vertices from the error, as they often appear in the scenes
simulated with both PBD and FEM. Note that although uFEM

i = 0 when
i /∈ D does not make sense when taking the point of view of a mathematician,
we are not adding neither removing error removing the i /∈ D on the sum, as
for fixed points, both uPBD

i and uFEM
i are null, and so is their difference.

• How do we obtain the results of PBD and the reference model?

To obtain the results of the simulation using PBD, we have used the code
provided by Jan Bender on its GitHub repository, found on https://github.

com/InteractiveComputerGraphics/PositionBasedDynamics. We use a
clone of the source code done on 2017-03-23.

17

https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

To obtain the results of the simulation using FEM, we have used the code
for SOFA (Simulation Open-Framework Architecture), developed mainly by
INRIA (Institut National de Recherche en Informatique et en Automatique),
which can be found on https://github.com/sofa-framework/sofa. We
use a clone of the source code done also on 2017-03-23.

We used these library and framework as they are open-source, so anybody
can reproduce the methodology and experiments on their own.

• What experimental setups do we use?

We use four experimental setups, three being simple scenes and one being a
compound scene, consisting on a combination of the three previous scenes.

On these experimental setups the only force that we will allow is gravity:
no other external forces will appear. Our objective is to characterize elastic
materials on simple conditions. We do this as the deformations obtained
under these conditions are the same that engineers use on their basic tests
for elastic materials.

All basic scenes will start with a main hexahedron, defined thoroughly in the
next item, which will be attached to some surface (namely the floor, a wall,
or the ceiling). This is the basic foundation of the scene.

– The first experimental setup is a simple scene called GravityFloor, at
which the cube is attached to the floor, that is, the y = 0 plane.

– The second experimental setup is a simple scene called GravityWall, at
which the cube is attached to a wall, that is, the z = 0 plane.

– The third experimental setup is a simple scene called GravityCeiling, at
which the cube is attached to the ceiling, that is, the y = 1 plane.

– The fourth experimental setup is a compound scene called Gravity. This
compound scene considers the same parameters for all three previous
scenes (GravityFloor, GravityWall, GravityCeiling).

The intentionality of these experimental setups, as we have stated previously,
is to characterize elastic materials on simple conditions, like the ones specified
on the three simple experimental setups. However, some questions arise from
this line of thinking: each of these scenes will have a set of best parameters in
order to approximate the reference model. However, do these best parameters
coincide (or at least, are somewhat similar) on the different scenes? This
introduces naturally the fourth experimental setup, which takes into account
the three previous experimental setups, in order to compare their behaviour
under the same set of parameters and see if they are somewhat similar.

18

https://github.com/sofa-framework/sofa

• What parameter sets do we use?

The parameters of the experimental setups are the following:

– dt: The size of the time step on the simulations.

– N : Number of sub-hexahedrons of the main hexahedron, that is, the
hexahedron is formed by N ×N ×N smaller, equal-shaped hexahedrons.

– nit: Number of iterations of the PBD solver on each time step.

– E: Young modulus

– ν: Poisson’s coefficient

– kd: Stiffness of the distance constraint

– kv: Stiffness of the volume constraint

Note that some of these parameters are only used in either PBD (nit, kd, kv)
or on FEM (E, ν), while the others (dt,N) are used on both methods.

The main hexahedron will have a total mass of 1, composed of N3 hexahedrons
of mass N−3 each. Due to constraints when using SOFA and PBD, each
subhexaedron is formed by five tetrahedrons, as using tetrahedrons is far
easier than using hexaedrons. The initial position of the main hexahedron
will be [0, 1]3.

For each experimental setup, we will use the same set of parameters. Fur-
thermore, although we will not state it explicitly in the parameter sets, we
will use ν = 0.00:0.01:0.49.

The parameter set is the following:

– dt = 0.01, N = 1, nit = 1, E = 103. We will consider this as the base
case, with standard parameters in the literature.

– dt = 0.01, 0.005, 0.002, 0.001, where N = 1, nit = 1, E = 103 as in the
base case. This is intended to see the effect of the decreasing time step
on the PBD behaviour.

– N = 1, 2, 3, 4, where dt = 0.01, nit = 1, E = 103 as in the base case.
This is intended to see the effect of subdividing on the PBD behaviour.

– nit = 1, 2, 4, 8, where dt = 0.01, N = 1, E = 103 as in the base case.
This is intended to see the effect of using more iterations per time step
on the PBD behaviour.

– E = 103, 104, 105, 106, where dt = 0.01, N = 1, nit = 1 as in the base
case. This is intended to see the effect of the Young modulus on the
PBD behaviour.

19

Note that in all of these cases, as we have said before, we will also see the
behaviour due to Poisson’s coefficient.

Also note that the base case is repeated many times at the parameter set:
this is intentional, in order to display some consistency when representing
the results and ease of reading.

• What methods do we use to adjust PBD to the reference model?

We perform a simple optimization. Note that for a certain subset of the
parameter set specified previously, the error is e = e(kd, kv). We pretend to
minimize the error in order to make PBD behave like the reference model.
That is, we solve the optimization problem:

min
(kd,kv)

e(kd, kv)

We use the Pattern Search optimization method, coupled with a preprocessing
sweep of some values for kd and kv (namely, kd, kv = 0.00:0.05:1.00) to
determine a suitable starting point. We perform a full search on the Pattern
Search before moving to the next point, and the multiplier for the tolerance
is the golden ratio, as it is a good compromise between the area swept by the
pattern search and the velocity of convergence.

Note that Pattern Search does not require the objective function (recall that
in our case it is indeed the error E) to be differentiable. We use Pattern
Search instead of other optimization methods (like Gradient Descent, or
similars) because, even as the error E is differentiable for low values of ν, the
jacobian (which can not be computed easily) gets bigger when ν approaches
0.5, and often the results for the optimization get worse than when using
differentiable function compatible methods.

Note that there are several differences between our methodology and the one
used on [22]. For example, the dt was not free: it depended on the FEM model used.
Also, the distance constraints were different, depending on the relative positions of
the particles, whereas we consider that distance constraints should always have the
same stiffness.

An important difference is the fact that this methodology tried to approximate
PBD to FEM on every possible behaviour for a concrete scene, while we only try to
approximate concrete behaviours on concrete scenes. However, it is expected that
this loss of generality will lead to better results and less error on the approximations.

Also note that although some improvements and expansions have been made
to the PBD (like XPBD [17]), we considered that classic PBD deserved a proper
analysis, as it is still being used on many fronts, like on [7].

20

4 | Results

Throughout all this chapter we will see figures describing the results of the experi-
ments, and we will explain the consequences derived form them. Mainly, for each
experiment (that is, when we variate a parameter) we will see two figures. The
first one shows the error of the fitting for the different parameters. The second one
shows the values of kd and kv respectively for the different parameters. Note that
when we variate a parameter, the others take their default value (the one used on
the base case), and then we will not specify it on the caption of the figure.

For all of the figures, the horizontal axis will be the value of ν, going from 0
to 0.49 with steps of size 0.01 (in Matlab notation, nu=0.00:0.01:0.49). The
vertical axis will be either the error or the possible range of the stiffness parameters
(the ks). When representing the stiffness parameters, the one on the top is always
kd, whereas the on at the bottom is kv.

The results of the present work have been presented in the form of a poster at
the IV Congreso de Jóvenes Investigadores on Valencia [21].

21

4.1 | GravityFloor

Recall that the GravityFloor experimental setup is a simple cube glued to the floor.
We can observe it on Figure 4.1.

0

1

0.2

0.4

0.8
1

z

0.6

0.6 0.8

Initial state

0.8

y

0.6

1

x

0.4

0.4
0.2

0.2
0 0

0

1

0.2

0.4

0.8
1

z

0.6

0.6 0.8

Rest state

0.8

y

0.6

1

x

0.4

0.4
0.2

0.2
0 0

Figure 4.1: Representation of the GravityFloor scene. On the left, the initial state
of the scene. On the right, the rest state of the scene.

Base case

We can see both the error and the optimal ks for the base case on Figure 4.2.

We can see that the error is actually small in this experiment, starting at 14%.
While ν ≤ 0.3, the error is under 20%, and it is only after ν > 0.3 that the error
rises significantly up to 75%.

Although we have not said so previously, this increase of error near ν = 0.5 is
to be expected, as FEM has a singularity at ν = 0.5, like we can deduce from the
expression of the stiffness matrix found on Equation 2.3. This can be applied to all
the experiments, so we will not mention it on the following experiments.

We will first observe the behaviour of the stiffness kd. As ν increases, the
stiffness of the distance constraints also increase. Recall that ν is the ratio of
transverse strain to axial strain, that is, the ratio at which the element expands on
a certain direction if it is compressed on a perpendicular direction. Therefore, a
larger ν in this scene means that the cube moves more towards the sides. In order

22

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Base case for GravityFloor experiment. The parameters used are
dt = 0.01, N = 1, nit = 1 and E = 103. We can see in red the optimal kd for each ν
and in blue the optimal kv. In black we can see the error.

to prevent the cube falling towards the sides, the kd also increases, as a greater
stiffness means less deviation between the particles.

The behaviour of the stiffness of the volume constraints appears somewhat
erratic. This is not strange, as there are significantly less volume constraints than
distance constraints, and volume constraints affect more vertices that the distance
constraints (which only take two vertices), so the overall correction is lesser.

Also, the stiffness of the volume constraints increase as ν does, like before. The
argument is the same as the one used with the distance constraint. However, we
observe a repentine decrease of kv when ν is near 0.45. This is due to the fact that
kv steadily increases as ν increases, but as ν approaches 0.45, kv is almost 1, which
is the upper limit for the stiffness. As kv cannot be greater, kd increases even more,
as if it took kv’s place, so kv decreases.

Overall, the result is good: we can approximate the behaviour of the reference
model with a relatively small error for a simple parameter set, except when ν
approaches 0.5, when we already know that the reference model does not behave
well.

23

Variation of dt

First we see the variation of the fitting when dt changes. Recall that dt is the time
step, and we are going to decrease it from dt = 0.01 to dt = 0.005, 0.002, 0.001.
Recall that the linear elasticity model supposes that the behaviour is linear, which
happens when we take small deformations and/or small forces. Then, reducing the
dt should give us also reduced error.

Also recall that the ks depend on the time step, as on each time step the
positions are projected in order to prevent constraints not being satisfied. As the
time steps become smaller, it is to expect that the constraints keep being satisfied
on some time steps after a successful correction. For this, we can expect that when
dt decreases, the ks always do.

We can see the results as dt changes on Figure 4.3 and Figure 4.4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

o
r

Figure 4.3: Behaviour of error on the GravityFloor experiment when dt changes. In
black we have the case dt = 0.01, while red represents dt = 0.005, green represents
dt = 0.002 and blue represents dt = 0.001.

In these cases the error does not change significatively. The error when using
dt = 0.005 instead of dt = 0.01, the error is reduced, but not greatly. However,
comparing with dt = 0.002, the error oscillates, presumably due to precision
problems. As ν increases, the movements of the vertices to the sides get bigger,
and the precision problems decrease. With dt = 0.001, the precision problems still
appear, but when ν is greater. This makes us think that the error for dt = 0.001
for lower ν is actually lower, but the precision errors hide this fact. However, even

24

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.4: Behaviour of the ks on the GravityFloor experiment when dt changes. In
black we have the case dt = 0.01, while red represents dt = 0.005, green represents
dt = 0.002 and blue represents dt = 0.001.

so, we can see that dt = 0.001 has a lower error in general. The only exception to
this case is when ν approaches 0.5, where the error grows as dt decreases.

The conclusion then is what we could expect: as dt decreases, the elasticity
model behaves more linearly, so we can approximate the behaviour better.

Taking into account the ks, we see that they decrease when compared to the
base case. However, we could also expect this behaviour, as we know that the PBD
stiffness decreases with the time step.

Variation of N

Next we are going to see the behaviour of the experiment when N increases. Recall
that N is the number of subdivisions of the base cube, so increasing N means that
the respective deformations will be actually smaller for each particle. Therefore,
we could expect a similar behaviour to the one observed when dt decreased.

Note that this is not to be expected when considering the ks: previously the same
element (be it the cube, or the tetrahedrons in which it is divided) experienced
a smaller deformation, whereas now we have a smaller element with the same
deformation. Then, we can expect the ks to grow in order to increase rigidity, to
prevent great deformations on the smaller elements.

We can see the results as N changes on Figure 4.5 and Figure 4.6.

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

1.2

E
rr

o
r

Figure 4.5: Behaviour of the error on the GravityFloor experiment when N changes.
In black we have the case N = 1, while red represents N = 2, green represents
N = 3 and blue represents N = 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.6: Behaviour of the ks on the GravityFloor experiment when N changes.
In black we have the case N = 1, while red represents N = 2, green represents
N = 3 and blue represents N = 4.

The behaviour in this case is similar to the previous case studied, where dt
changed. Taking N = 2 behaves better that N = 1, like we could expect. However,

26

more subdivisions like when using N = 3 (or even worst, N = 4) also provide
precision errors, so we would have to study in each scene whether subdividing
provides better results or actually worsens them due to precision errors.

If we observe the ks, we can see that they increase up to 1 as N gets bigger. As
we further subdivide the cube, the movements are actually smaller, and even more
near the floor. This is what makes the ks grow to 1, to make the cube more rigid.

Variation of nit

Now we observe the behaviour when nit increases. We do not expect the error to
be reduced, as a greater nit means better correction of the possible non-satisfied
constraints, but as we are trying to analyze, these constraints do not necessarily
have the appropiate physical behaviour.

We can see the results as nit changes on Figure 4.7 and Figure 4.8.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r

Figure 4.7: Behaviour of the error on the GravityFloor experiment when nit changes.
In black we have the case nit = 1, while red represents nit = 2, green represents
nit = 4 and blue represents nit = 8.

The first thing to take into account is the lack of a significative difference when
using different nit. This has a good meaning: the greater nit are often used to
further correct the behaviour of PBD. The fact that the error does not change
means that our initial approximation was good enough. However, this also means
that there is a point at which there is no meaning in increasing nit.

27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.8: Behaviour of the ks on the GravityFloor experiment when nit changes.
In black we have the case nit = 1, while red represents nit = 2, green represents
nit = 4 and blue represents nit = 8.

However, we can see that kv decreases when increasing nit. As we have mentioned
before, the volume constraints affect a greater number of vertices, and their effect
on the position projection is consequently lesser. Multiple iterations only further
their diminishing effect.

Variation of E

To end with GravityFloor, we see the behaviour as E increases. Recall by the
definition of E that it is a measure of stiffness, and as such, as E increases we
expect the ks to also grow. In this case, we can actually see that there will be a
point when the stiffness on FEM (E) will continue to rise, but on PBD (kd and kv)
it will reach the maximum limit of 1, so the error will increase greatly.

We can see the results as E changes on Figure 4.9 and Figure 4.10. Note that
in this case, the scale of the error is logarithmic. In this case the difference to the
original linear axis is not significative, but we present the results with logarithmic
scale as in other scenes it will be strictly necessary.

Increasing E also increases the error, as we predicted: a greater E means that
the same stress is equivalent to less strain. This is the similar to when N changed:
less deformation meant tolerance problems and greater stiffness, which is limited by
the PBD. This checks out, as the ks approach the max stiffness 1 as E increases.

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E
rr

o
r

Figure 4.9: Behaviour of the error on the GravityFloor experiment when E changes.
In black we have the case E = 103, while red represents E = 104, green represents
E = 105 and blue represents E = 106.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.10: Behaviour of the ks on the GravityFloor experiment when E changes.
In black we have the case E = 103, while red represents E = 104, green represents
E = 105 and blue represents E = 106.

29

4.2 | GravityWall

Recall that the GravityWall experimental setup is a simple cube, this time glued
to a wall, and falling due to gravity. We can observe it on Figure 4.11.

0

1

0.2

0.4

0.8
1

z

0.6

0.6 0.8

Initial state

0.8

y

0.6

1

x

0.4

0.4
0.2

0.2
0 0

0

1

0.2

0.4

0.8
1

z

0.6

0.6 0.8

Rest state

0.8

y

0.6

1

x

0.4

0.4
0.2

0.2
0 0

Figure 4.11: Representation of the GravityWall scene. On the left, the initial state
of the scene. On the right, the rest state of the scene.

Base case

We can see both the error and the optimal ks for the base case on Figure 4.12.

The first thing that catches our eye is that the error decreases as ν increases,
unlike in the GravityFloor scene. We also see that kv is almost constantly 1, so that
the cube doesn’t fall or cross the wall. However, kd also decreases as ν increases,
in order to make the cube more deformable.

Note that in this case the error stays under a 12.5%, and decreases almost to
the 10% when ν increases, so it seems that the GravityWall scene overall will give
a better approximation to the reference model than the GravityFloor scene.

A important note has to be done as the singularity on ν = 0.5 has seemingly
vanished on this scene. This is, however, only an impression, as the singularity is
still there and, although almost unseen, the error begins to grow when ν is greater
than ν = 0.47 approximately. However, the error does grow at a much smaller rate
than on the GravityFloor experiment.

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.12: Base case for GravityWall experiment. The parameters used are
dt = 0.01, N = 1, nit = 1 and E = 103. We can see in red the optimal kd for each ν
and in blue the optimal kv. In black we can see the error.

Variation of dt

We can see the results as dt changes on Figure 4.13 and Figure 4.14.

These are similar to the ones observed on the GravityFloor experiment, as the
error oscillates when the time step is smaller. Observe that kd also decreases when
the time step decreases, as does kv, due to the same effect that we talked about
before.

Note that on this case, the chaotic behavior due to precision errors increases
greatly when dt is smaller, although the overall error is almost at the same level,
only increasing to a 15% from the original initial 12.5%.

If we observe the ks, note that they decrease too as they did on GravityFloor.
However, kd has almost the same growth on each case, whereas kd absorbs the
chaotic behavior of the precision errors.

Variation of N

We can see the results as N changes on Figure 4.15 and Figure 4.16.

These are also similar to the results observed with this parameter set on the
GravityFloor experiment. The case N = 4 is even more pronunciated than its

31

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.05

0.1

0.15

E
rr

o
r

Figure 4.13: Behaviour of error on the GravityWall experiment when dt changes. In
black we have the case dt = 0.01, while red represents dt = 0.005, green represents
dt = 0.002 and blue represents dt = 0.001.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.14: Behaviour of the ks on the GravityWall experiment when dt changes.
In black we have the case dt = 0.01, while red represents dt = 0.005, green
represents dt = 0.002 and blue represents dt = 0.001.

counterpart on the GravityFloor experiment. Note that as N grows, the singularity
at ν = 0.5 is more and more visible. The chaotic behaviour of the precision errors
is also more visible at the N = 4 case.

32

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r

Figure 4.15: Behaviour of the error on the GravityWall experiment when N changes.
In black we have the case N = 1, while red represents N = 2, green represents
N = 3 and blue represents N = 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.16: Behaviour of the ks on the GravityWall experiment when N changes.
In black we have the case N = 1, while red represents N = 2, green represents
N = 3 and blue represents N = 4.

Note that the stiffness of the distance constraints kd is consistent with what we
observed on the GravityFloor scene, but the behaviour of the kd is significatively
different for N = 2. It seems that a smaller size of the elements benefits the

33

behaviour of the system under the relatively small deformations of the GravityWall
scene when compared to the GravityFloor.

Variation of nit

We can see the results as nit changes on Figure 4.17 and Figure 4.18.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

o
r

Figure 4.17: Behaviour of the error on the GravityWall experiment when nit changes.
In black we have the case nit = 1, while red represents nit = 2, green represents
nit = 4 and blue represents nit = 8.

This case actually differs from its GravityFloor equivalent. Here, the error
decreases as nit increases, as could be expected: in this case, it seems that the
constraints are somewhat consistent with the physical behaviour, so more iterations
on the positions projection means easily enforced constraints, which means more
physical behaviour.. This does not affect the kv, which we have already seen that
is the predominant in this scene. However, as we have mentioned before, a greater
nit is equivalent to less stiffness, which we see on the kd.

Variation of E

We can see the results as E changes on Figure 4.19 and Figure 4.20.

Here we see why previously we used the logaritmic scale for the error. Here we
see that the error increases significantly with E, unlike in the GravityFloor scene.

34

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.18: Behaviour of the ks on the GravityWall experiment when nit changes.
In black we have the case nit = 1, while red represents nit = 2, green represents
nit = 4 and blue represents nit = 8.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10
0

10
1

10
2

10
3

10
4

E
rr

o
r

Figure 4.19: Behaviour of the error on the GravityWall experiment when E changes.
In black we have the case E = 103, while red represents E = 104, green represents
E = 105 and blue represents E = 106.

This is due to the fact that a greater E actually means less deformation, and PBD
has a limit for rigidity (when the ks are 1, as we have said before). We actually see

35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.20: Behaviour of the ks on the GravityWall experiment when E changes.
In black we have the case E = 103, while red represents E = 104, green represents
E = 105 and blue represents E = 106.

this limit in Figure 4.20, as the ks increase to 1 when E > 103. Further increasing
E only makes the error greater, so we can see that soft materials will be easier to
simulate with PBD.

36

4.3 | GravityCeiling

The last simple scene is GravityCeiling. Recall that this scene is simply a cube
glued to the ceiling, under the effect of the gravity. We can see it on Figure 4.21.

0

1

0.2

0.4

0.8
1

z

0.6

0.6 0.8

Initial state

0.8

y

0.6

1

x

0.4

0.4
0.2

0.2
0 0

0

1

0.2

0.4

0.8
1

z

0.6

0.6 0.8

Rest state

0.8

y

0.6

1

x

0.4

0.4
0.2

0.2
0 0

Figure 4.21: Representation of the GravityCeiling scene. On the left, the initial
state of the scene. On the right, the rest state of the scene.

Base case

We can see both the error and the optimal ks for the base case on Figure 4.22.

We can see that in this case the error is greater than on the previous two
experiments. However, it is not significantly greater: only a 10% more at the start,
and around 30% more at the end. The behaviour of kd and kv is also similar to the
GravityFloor case, with kd being almost identical and just a little smaller. Looking
at kv we can see that it is also smaller, and grows less, only increasing significantly
near ν = 0.45 (when kv started to decrease on GravityFloor), and staying almost
constant until ν = 0.49.

Variation of dt

We can see the results as dt changes on Figure 4.23 and Figure 4.24.

The behaviour of the error as the time step decreases is similar to the GravityWall
scene, as the error decreases when the time step decreases, with a few oscillations

37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 4.22: Base case for GravityCeiling experiment. The parameters used are
dt = 0.01, N = 1, nit = 1 and E = 103. We can see in red the optimal kd for each ν
and in blue the optimal kv. In black we can see the error.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r

Figure 4.23: Behaviour of error on the GravityCeiling experiment when dt changes.
In black we have the case dt = 0.01, while red represents dt = 0.005, green
represents dt = 0.002 and blue represents dt = 0.001.

due to precision errors. Note that in this case the oscillations are smaller and
almost imperceptible until the end. The ks also decrease as the time step decrease,

38

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.24: Behaviour of the ks on the GravityCeiling experiment when dt changes.
In black we have the case dt = 0.01, while red represents dt = 0.005, green represents
dt = 0.002 and blue represents dt = 0.001.

especially the kv, as we could expect, due to constraints being satisfied on a greater
region for same values of k.

Variation of N

We can see the results as N changes on Figure 4.25 and Figure 4.26.

We can see that in this cases N = 3 behaves as expected, while N = 4 presents
precision errors, whereas in the other cases N = 2 was the last case that did not
show any precision errors.

The ks grow until the stiffness is at maximum level, as the cube movements are
smaller when we further subdivide the cube, making the cube more rigid. Note
that the ks are higher as N increases, so a higher N means that it is easier to hit
the limit stiffness, as we have seen before.

On Figure 4.26 we can observe clearly how the limit stiffness for kv also affects
the behaviour of kd, as when kv gets near 1 on each case, the kd starts growing.

Variation of nit

We can see the results as nit changes on Figure 4.27 and Figure 4.28.

39

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
rr

o
r

Figure 4.25: Behaviour of the error on the GravityCeiling experiment when N
changes. In black we have the case N = 1, while red represents N = 2, green
represents N = 3 and blue represents N = 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.26: Behaviour of the ks on the GravityCeiling experiment when N changes.
In black we have the case N = 1, while red represents N = 2, green represents
N = 3 and blue represents N = 4.

Like on the GravityWall scene, further iterations reduce the error, but not as
significantly on this scene. The cause of this behaviour is the same explained on

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r

Figure 4.27: Behaviour of the error on the GravityCeiling experiment when nit

changes. In black we have the case nit = 1, while red represents nit = 2, green
represents nit = 4 and blue represents nit = 8.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.28: Behaviour of the ks on the GravityCeiling experiment when nit changes.
In black we have the case nit = 1, while red represents nit = 2, green represents
nit = 4 and blue represents nit = 8.

the GravityWall experiment.

In fact, the values of ν near ν = 0.5 are the most benefited from a higher nit,

41

as the difference in the respective errors is more noticeable near the singularity.

Note that kv decreases with more iterations, but kd is almost constant, and the
difference is not significative, only differing at the singularity on ν = 0.5, like the
error. This is also similar to the behaviour on the GravityFloor experiment.

Variation of E

We can see the results as E changes on Figure 4.29 and Figure 4.30.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10
0

10
1

10
2

10
3

10
4

10
5

E
rr

o
r

Figure 4.29: Behaviour of the error on the GravityCeiling experiment when E
changes. In black we have the case E = 103, while red represents E = 104, green
represents E = 105 and blue represents E = 106.

The error increases greatly as we have also seen on GravityWall. The stiffness
kd increases greatly to prevent the cube falling, and the kv grows quickly when kd
approaches 1.

42

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.30: Behaviour of the ks on the GravityCeiling experiment when E changes.
In black we have the case E = 103, while red represents E = 104, green represents
E = 105 and blue represents E = 106.

43

4.4 | Gravity

Recall that Gravity is the previous three simple scenes, where we measure the
error on all of the scenes for the same parameters, and we take the norm of the
three-dimensional vector formed by the respective errors as the total error. This is
done in order to reduce the overall error on all three scenes at the same time, not
focusing on a concrete scene. Of course, the individual behaviour of each one of
the errors of a scene will be also reflected on the overall error.

To further reflect this, when we represent the error for the Gravity experiments,
we will draw the proportional part for each of the experiments, with a red fill to
represent the GravityFloor experiment, green for the GravityWall experiment, and
blue for the GravityCeiling. This fill is not to be confused with the particular cases
that will also be represented with red, green, and blue, but without a fill.

Base case

We can see both the error and the optimal ks for the base case on Figure 4.31.

Figure 4.31: Base case for Gravity experiment. The parameters used are dt =
0.01, N = 1, nit = 1 and E = 103. Above we can see the error. Below, we can see
in red the optimal kd and in blue the optimal kv.

Here we observe a behaviour that we had not expected: the GravityWall
experiment had the minor error overall, on almost all cases, especially when ν
approached the singularity ν = 0.5. However, in order to minimize the overall error,

44

it is best to increase the error on the GravityWall experiment when ν increases,
being it the one that contributes the most error. This is a big hint to see that the
Gravity results are highly dependant on the scenes chosen.

Note also that kv had erratic behaviour due to precision problems consistently
on all three scenes. This is further reflected when using the three scenes at the
same time, as we can see. The behaviour of kd is more consistent with the other
experiments.

Variation of dt

We can see the results as dt changes on Figure 4.32 and Figure 4.33.

Figure 4.32: Behaviour of error on the Gravity experiment when dt changes. Above,
in black we have the case dt = 0.01, while red represents dt = 0.005, green represents
dt = 0.002 and blue represents dt = 0.001. On the lower part, at the left we have
dt = 0.005, at the middle we have dt = 0.002, and at the right we have dt = 0.001

We can see that the overall error decreases when using smaller time steps, as we
have seen in GravityWall and GravityCeiling. We can observe that the behaviours
are more erratic, as the three previous problems were also erratic. However, the
precision problems are minimized (or at least, somewhat softened) when considering
the three scenarios at the same time.

We can see that the behaviour of the ks is also more erratic, as we can see on the
base case of kd, as it is not as quasi-constant as on the previous experiments. The
kv also has a less definite form than before, and is also more erratic. However, the
behaviour of the ks are similar to what we have observed on the previous scenes.

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.33: Behaviour of the ks on the Gravity experiment when dt changes. In
black we have the case dt = 0.01 (the base case), while red represents dt = 0.005,
green represents dt = 0.002 and blue represents dt = 0.001.

Variation of N

We can see the results as N changes on Figure 4.34 and Figure 4.35.

We can see the same behaviour observed on the previous experiments: a larger
N can actually be worse for the error. However, when taking all the scenes into
account this effect seems somewhat reduced, as the N = 4 case has actually lower
error until ν ≈ 0.37. That is, although increasing N is not the best solution for
each individual scene, it seems that the best overall error is indeed reduced when
increasing N . However, we also have to take into account the effect of the precision
error, which will grow with N .

If we observe the ks we also can see that N = 4 is probably the limit, as in this
case kd = kv = 1, the limit stiffness of PBD.

Variation of nit

We can see the results as nit changes on Figure 4.36 and Figure 4.37.

We can see that the error is almost the same, only reduced on the extreme cases
where ν approaches 0.5. The stiffness kd is also almost the same, with the only real
difference being in the less rigid kv when increasing the number of iterations, fact
that we have explained on the previous experiments.

46

Figure 4.34: Behaviour of the error on the Gravity experiment when N changes.
Above, in black we have the case N = 1, while red represents N = 2, green
represents N = 3 and blue represents N = 4. On the lower part, at the left we
have N = 2, at the middle we have N = 3, and at the right we have N = 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.35: Behaviour of the ks on the Gravity experiment when N changes. In
black we have the case N = 1, while red represents N = 2, green represents N = 3
and blue represents N = 4.

Variation of E

We can see the results as E changes on Figure 4.38 and Figure 4.39.

47

Figure 4.36: Behaviour of the error on the Gravity experiment when nit changes.
Above, in black we have the case nit = 1, while red represents nit = 2, green
represents nit = 4 and blue represents nit = 8. On the lower part, at the left we
have nit = 2, at the middle we have nit = 4, and at the right we have nit = 8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.37: Behaviour of the ks on the Gravity experiment when nit changes.
In black we have the case nit = 1, while red represents nit = 2, green represents
nit = 4 and blue represents nit = 8.

Here we can see that the red almost does not appear in the red figures: as we
had seen, the GravityFloor is the one less dependant on E. For lower ν, the error
is almost all from the GravityWall scene, whereas for greater ν, the error is almost

48

Figure 4.38: Behaviour of the error on the Gravity experiment when E changes.
Above, in black we have the case E = 103, while red represents E = 104, green
represents E = 105 and blue represents E = 106. On the lower part, at the left we
have E = 104, at the middle we have E = 105, and at the right we have E = 106

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.2

0.4

0.6

0.8

1

k
v

Figure 4.39: Behaviour of the ks on the Gravity experiment when E changes. In
black we have the case E = 103, while red represents E = 104, green represents
E = 105 and blue represents E = 106.

all from the GravityCeiling scene. On all cases, a bigger E means a more rigid
cube, so the ks grow to 1, as would be expected.

49

50

5 | Conclusions and future work

Our objective was to improve PBD by proportioning a set of parameters which
could better adapt the physical behaviour of some scenes, and try to adapt different
scenes at the same time.

We obtain the best approximations for small E and small ν. We have also
studied the improvement (or not) of the error when the main parameters used on
the simulations change. Therefore, we can conclude that the PBD can approximate
the behaviour of a physically based model, namely the FEM, with a relatively
small error. However, we have not been able to replicate the exact behaviour of
the FEM, so the PBD will not be physically accurate. We have only been able to
make it more visually pleasant and somewhat realistic. A curious effect observed is
that, although exaggerating the effects of the parameters does not work well for a
specific scene, it is beneficial when fitting overall, as we have found on the Gravity
experiments.

Also, we have seen that we cannot find a set of stiffness parameters for the
PBD constraints that approximates properly all types of behaviours, but we found
that we can emulate with a low error specific types of behaviour.

Possible lines of work are the following:

• Repeat the same work using a more advanced version of PBD, like XPBD.

• Open the possibility of using an unbounded k > 0 for the stiffness of the
PBD constraints, as often the cause for the lack of improvement of the error
is that the PBD has achieved its rigidity internal limit. However, we would
have to be careful, as this could result in overshooting the constraints.

• Using other models for elasticity, and not linear elasticity. Likely candidates
are neo-hookean models, among other hyperelastic models.

• Using other experiments with usual types of deformation, as shear, traction
and torsion. These are the usual experiments performed on elastic materials

51

by mechanical engineer on their analysis of the properties that characterize a
material..

• Using other (possibly irregular) shapes and meshes.

• Use a data-driven model instead of a physically based model, where instead
of using simulations (be it FEM, be it another model) as reference model,
we would take data from real material with known behaviours and try to
approximate the PBD.

52

Bibliography

[1] Barreiro, H., Garćıa-Fernández, I., Alduán, I., and Otaduy, M. A.
Conformation constraints for efficient viscoelastic fluid simulation, 2017.

[2] Bathe, K. Finite Element Procedures. Prentice Hall, Pearson Educatio, Inc.,
2006.

[3] Baudet, V., Beuve, M., Jaillet, F., Shariat, B., and Zara, F.
Integrating tensile parameters in mass-spring system for deformable object
simulation. In Int’l Conf. on Computer Graphics, Visalization and Computer
Vision (WSCG’09) (2009), pp. 145–152.

[4] Bender, J., Müller, M., and Macklin, M. Position-based simulation
methods in computer graphics. In Eurographics (Tutorials) (2015).

[5] Bender, J., Müller, M., and Macklin, M. A survey on position based
dynamics, 2017.

[6] Bender, J., Müller, M., Otaduy, M. A., Teschner, M., and Mack-
lin, M. A survey on position-based simulation methods in computer graphics.
In Computer graphics forum (2014), vol. 33, Wiley Online Library, pp. 228–251.

[7] Berndt, I., Torchelsen, R., and Maciel, A. Efficient surgical cutting
with position-based dynamics. IEEE Computer Graphics and Applications 38,
3 (2017), 24–31.

[8] Celigüeta, J. Método de los Elementos Finitos para el Análisis Estructural.
UNICOPIA C.B., 2000.

[9] Conte, S., and De Boor, C. Elementary Numerical Analysis. McGraw-Hill
Book Company, 1980.

[10] Courant, R. Variational methods for the solution of problems of equilibrium
and vibrations. Bulletin of the American Mathematical Society 49 (1943),
1–23.

53

[11] Gelder, A. V. Approximate simulation of elastic membranes by triangulated
spring meshes. Journal of Graphics Tools 3, 2 (1998), 21–41.

[12] Hinton, E., and Irons, B. Least squares smoothing of experimental data
using finite elements. Strain 4 (July 1968), 24–27.

[13] Kikuuwe, R., Tabuchi, H., and Yamamoto, M. An edge-based com-
putationally efficient formulation of saint venant-kirchhoff tetrahedral finite
elements. ACM New York, NY, USA 28, 1 (2009). doi:10.1145/1477926.
1477934.

[14] Liu, T., Bargteil, A., O’Brien, J., and Kavan, L. Fast simulation of
mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6 (2013).

[15] Lloyd, B., Szekely, G., and Harders, M. Identification of spring param-
eters for deformable object simulation. IEEE Transactions on Visualization
and Computer Graphics 13, 5 (2007), 1081–1094.

[16] Maciel, A., Boulic, R., and Thalmann, D. Deformable tissue parame-
terized by properties of real biological tissue. In Surgery Simulation and Soft
Tissue Modeling (2003), pp. 74–87.

[17] Macklin, M., Müller, M., and Chentanez, N. Xpbd: Position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games (2016), ACM, pp. 49–54.

[18] Monteagudo, C., Lozano, M., Garćıa-Fernández, I., and Martinez-
Gil, F. Phase Space Data-Driven Simulation of Elastic Materials. In Spanish
Computer Graphics Conference (CEIG) (2016), A. Garcia-Alonso and B. Masia,
Eds., The Eurographics Association.

[19] Müller, M., Chentanez, N., Macklin, M., and Jeschke, S. Long
range constraints for rigid body simulations. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2017), ACM,
p. 14.

[20] Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. Position
based dynamics. In 3rd Workshop in Virtual Reality Interactions and Physical
Simulation “VRIPHYS” (2006).

[21] Real, P., Rodero, C., and Garćıa-Fernández, I. Characterization
of the elastic behaviour of some pbd materials. In 4o Congreso de jóvenes
investigadores (2017).

54

10.1145/1477926.1477934
10.1145/1477926.1477934

[22] Rodero, C., Real, P., Zuñeda, P., Monteagudo-Mañas, C., Lozano,
M., and Garćıa-Fernández, I. Characterisation of position based dynam-
ics for elastic materials. In XXVI Spanish Computer Graphics Conference

“CEIG” (2016).

[23] San Vicente, G. Designing deformable models of soft tissue for virtual
surgery planning and simulation using the Mass-Spring Model. PhD thesis,
School of Engineering, University of Navarra, 2011.

[24] San-Vicente, G., Aguinaga, I., and Celigueta, J. Cubical mass-spring
model design based on a tensile deformation test and nonlinear material model.
IEEE Transactions on Visualization and Computer Graphics 18, 2 (2012),
228–241.

[25] Synge, J. The hypercircle in mathematical physics. Cambridge at the
University Press, 1957.

[26] Zienkiewicz, O. The finite element method. London: McGraw-Hill, 1977.

55

	Abstract
	Acknowledgements
	Introduction
	Simulation methods for elastic materials
	Finite Element Method
	A descriptive example
	Elasticity in FEM

	Mass Spring Model
	Position Based Dynamics
	PBD Formulation
	Solver
	Momentum conservation

	Characterization of Position Based Dynamics for elastic materials
	Previous work
	Methodology

	Results
	GravityFloor
	GravityWall
	GravityCeiling
	Gravity

	Conclusions and future work
	Bibliography

