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Introduction
Araujia sericifera Brot. (Asclepiadaceae), also called the bladder 
flower, is a native perennial, climbing laticiferous shrub from South 
America that was introduced to other countries as an exotic orna-
mental plant. Currently, it is naturalized in Europe, South Africa, 
North America, Australia, and New Zealand. In the Mediterranean 
coastline, it competes with different crops, such as citrus trees, for 
water and nutrients [1, 2]. A. sericifera was reported to possess 
emetic, analgesic, antihistaminic, and anti-inflammatory proper-

ties [3–5]. Its seeds were described to exert toxicity on the central 
nervous system [3]. Its fruits contain luteolin-7-glucoside, seroto-
nin [3], lupeol-3-cinnamate, and germanicol-3-acetate [4]. Never-
theless, despite the promising properties of A. sericifera, there is no 
systematic study of its chemical composition.

In a plant, different classes of secondary metabolites exert indi-
vidual biological functions. They accumulate in specific tissues play-
ing different roles in physiological processes or ecological interac-
tions [6]. Metabolic profiling of different plant organs (root, shoot, 
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Abstr act

Araujia sericifera is a native perennial, climbing laticiferous 
shrub from South America that is currently naturalized in many 
other countries. Previous data describe promising properties 
for A. sericifera, but no systematic study of its bioactive com-
pounds and possible medicinal applications has been conduct-
ed to date. In the present study, aerial parts of A. sericifera 
(leaves, stems, and fruits) were explored by combining GC-MS 
and NMR spectroscopy analysis for both nonpolar (hexane) and 
polar (methanol) extracts. The hexanic extracts contained high 
amounts of pentacyclic triterpenes including two new me-
tabolites, 3-tigloyl germanicol (18) and 3-tigloyl lupeol (19). 
The methanolic extracts revealed the presence of luteolin-
7-glucoside (24), trigonelline (22), and conduritol F (23) as the 
main constituents. A multivariate study of a meaningful num-
ber of extracts allowed us to determine the distribution of 
compounds inside the plant. A cytotoxic evaluation in vitro 
showed that both leaf and fruit hexanic extracts presented a 
moderate activity against human breast carcinoma cell lines 
(MDA-MB-453 and MCF-7) and human colon carcinoma cell 
line (HCT-116) by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] 
assay.

e93

mailto:ncabedo@uv.es


Palomino-Schätzlein M et al. Identification of Bioactive Compounds …  Planta Med Int Open 2017; 4: e93–e103

Original Papers Thieme

leaves, etc.) has been a tool to achieve better authentication and 
chemotaxonomic analyses of plants [7]. In line with this, the met-
abolic composition of the different organs of A. sericifera, with a 
broad tolerance for environmental conditions, has attracted our 
attention. Several methods exist to detect and quantify plant me-
tabolites, such as NMR spectroscopy- and MS-based techniques, 
the major analytical tools used for metabolite profile studies. Both 
analytical techniques are considered complementary to obtain op-
timal results, each with its own particular advantages [8]. The aim 
of this study was to analyze the composition and cytotoxic proper-
ties of both nonpolar (hexane) and polar (methanol) extracts of the 
three aerial parts of A. sericifera (leaves, fruits, and stems) using 
GC-MS and NMR spectroscopy methods in conjunction with mul-
tivariate statistical analyses in order to explore this poorly studied 
plant.

Results and Discussion
Polar and nonpolar metabolites were extracted by an automated 
Soxhlet extraction (Soxtec) of each aerial plant part with n-hexane 
and, subsequently, methanol to give the hexanic and methanolic 
extract, respectively. The leaves, stems, and fruits extracted with 
n-hexane gave extract yields (w/w), which were 5.6 % for both 
leaves and fruits, and 2.2 % for stems. The subsequent extraction 
with methanol gave higher extract yields for leaves and stems 
(21.0 % and 16.4 %, respectively) than for fruits (11.0 %). In the hex-
anic extracts, 20 different metabolites were identified by a combi-
nation of GC-MS (after trimethylsilyl derivatization) and 1D and 2D 
NMR spectroscopy. These nonpolar metabolites consisted of fatty 
esters (FEs), fatty acids [FAs: palmitic (1), linoleic acid (2), oleic acid 
(3), stearic acid (4)], squalene (5), n-alkanes (6-8), β-sitosterol (9), 
β-amyrin-3-acetate (12, oleanane type), and chiefly triterpen-3-ols 
and/or their esters, such as lupeol (lupane type) and germanicol 
esters (oleanane type), and compounds 10, 11, and 13-19. For an 
unequivocal characterization of the lupeol and germanicol esters, 
an aliquot of the fruit hexanic extract was subjected to silica gel 
column chromatography and semipreparative reversed-phase 
HPLC purification. Several pentacyclic triterpenes could be isolat-
ed, including to new compounds, 3-O-tigloyl germanicol (18, 
oleanane type) and 3-O-tigloyl lupeol (19, lupane type) (▶Fig. 1). 
The structure elucidation of 18 and 19 was carried out by GC-MS, 
1D and 2D NMR spectroscopy, and UPLC-Q-TOF analysis. The  
1H and 13C NMR spectra of compound 18 and 19 (▶Table 1 and 
Fig. 3S, 4S, and 5S, Supporting Information) exhibited the typi-
cal signals of an (E)-tigloyl group; e.g., for compound 19 at δH 
(ppm) 6.83 (q, J = 7.1 Hz, H-33), 1.83 (s, H3-35) and 1.78 (d, 
J = 7.1 Hz, H3-34) and δC (ppm) 167.9 (CO), 136.5 (CH-33), 129.3 
(C-32), 14.3 (CH3-34) and 12.1 (CH3-35). The HMBC spectrum of 
these compounds also showed a correlation from H-3 (δH 4.51 
ppm) to the carbonyl carbon (CO) of the tigloyl group at δC 167.9 
ppm. The GC-MS data also displayed a characteristic MS fragmen-
tation of oleanane and lupane skeletons for compounds 18 and 19, 
respectively. Intense fragment ions were observed at m/z 204, 189, 
and 177 for compound 18 (Δ18-oleanene with a methyl group at 
C-17). However, compound 19 with a C-20-29 double bond and a 
methyl group at C-17 presented a main peak at m/z 207 
([C14H23O] + , [A + B] +  rings) and at m/z 189 ([C14H21] + , [A + B] +  

rings-H2O). Fragmentation peaks at m/z 508, 493, and 408 corre-
sponded to the molecular ion peaks [M] + , [M-CH3] + , and [M-tiglic 
acid] + , respectively. The HRESIMS analysis for compounds 18 and 
19 displayed an ion peak at m/z 409.3832 or 409.3829 [(M-C5H7O-
H2O)  +  H] + , respectively, which suggests the molecular formula 
C30H48 (calcd. 409.3829) for both compounds corresponding to 
the loss of the tigloyl group and one water molecule.

Known triterpenes were also identified by making a direct com-
parison of their NMR spectroscopic and GC-MS data with those re-
ported in the literature, including germanicol (10) [9], lupeol (11) 
[10], β-amyrin-3-acetate (12) [11], germanicol-3-acetate (13) [12], 
lupeol-3-acetate (14) [9], lupeol-3-cinnamate (15) [13], germanicol-
3-propionate (16), and germanicol-3-butyrate (17) [14] (▶Fig. 1). 
Among them, lupeol-3-acetate (14), germanicol-3-propionate 
(16), and germinacol-3-butyrate (17) were identified in A. sericif-
era for the first time. A representative GC-MS chromatogram sec-
tion of the three plant aerial parts containing principally triterpen-
3-ols and/or their esters is drawn in ▶Fig. 2a. In ▶Fig. 2b, the 13C 
NMR spectra of the hexanic extracts of leaves, stems, and fruits are 
depicted. The acquisition of 13C spectra seemed an optimal choice 
for these nonpolar fractions since the 1H NMR spectra were highly 
overlapped due to the high amounts of alkanes and enough sam-
ple amount was available to obtain a good signal/noise ratio in the 
less sensitive 13C spectroscopy. It is worth mentioning that  
β-amyrin-3-acetate (12), present in very small amounts in leaves 
and stems, was only detected by the most sensitive technique 
GC-MS but not in the NMR spectra. In addition, only general signals 
of alkanes and FAs were assigned in the NMR spectra due to over-
lapping. On the other hand, NMR spectroscopy allowed for the 
quantification of several nonvolatile compounds such as long-chain 
FEs that could not be analyzed by GC-MS. Similarly, the quantifica-
tion of lupeol-3-cinnamate (15) was only feasible by NMR spectros-
copy since its peak overlapped with germanicol-3-propionate (16) 
in the GC-MS chromatogram (tR = 26.09 min). Relative percentages 
of metabolites from the hexanic extracts determined by GC-MS 
and 13C NMR in leaves, stems, and fruits are shown in Fig. 6S and 
7S, Supporting Information. Thus, we found that the combina-
tion of NMR and GC-MS is optimal for the detection of nonpolar 
metabolites in A. sericifera.

Concerning the polar fraction, 25 metabolites were identified 
in the methanolic extracts using GC-MS (after methoximation and 
trimethylsilyl derivatization) and NMR spectroscopy. In order to un-
ambiguously identify several polar metabolites, an aliquot of the 
fruit methanolic extract was subjected to a solid-phase extraction 
(SPE) C18 cartridge and was eluted firstly with 100 % H2O, followed 
by 100 % MeOH. The methanolic fraction (F-2) was further purified 
by reversed-phase HPLC to give viburnitol (21, SFmeth2-1) [15], trig-
onelline (22, SFmeth2-2) [16], and conduritol F (23, SFmeth2-3, also 
known as L-leuchanthemitol) [17] (▶Fig. 1). The GC-MS analysis 
of the whole extracts also detected viburnitol (21), malate (37), 
L-asparagine (31), sucrose (38), glucose (40), fructose, and myo-
inositol. A representative GC-MS chromatogram of the fruit meth-
anolic extract is shown in Fig. 8S, Supporting Information. NMR 
spectroscopy confirmed the presence of metabolites detected by 
MS and further allowed for the identification of luteolin-7-gluco-
side (24), serotonin (25), allantoin (26), choline (28), and malate 
(37). In fact, luteolin-7-glucoside (24) and serotonin (25) were pre-
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Germanicol and lupane derivatives from hexanic extracts

Metabolites from methanolic extracts
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▶Fig. 1	 Nonpolar secondary metabolites identified in hexanic extracts, germanicol type and lupeol type, and polar metabolites from methanolic 
extracts of A. sericifera.
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viously identified from the leaves and stems of A. sericifera [3], 
whereas virbutinol (21), trigonelline (22), conduritol F (23), and al-
lantoin (26) were found in this plant for the first time. Representa-
tive 1H NMR spectra of the leaf, stem, and fruit methanolic extracts 
are depicted in ▶Fig. 3, along with an assignment of the most sig-
nificant metabolites.

In order to gain insight about how the identified compounds 
were distributed in the different plant parts, they were quantified 
from leaves, stems, and fruits (Fig. 9S, Supporting Information), 
and an unsupervised multivariate analysis in the form of principal 
component analysis (PCA) was performed. The resulting score and 
loading plots from the PCA of the GC-MS and 13C NMR data from 
nonpolar extracts are represented in ▶Fig. 4. While the score plot 
(▶Fig. 4a and c) gives information about how the different sam-
ples cluster based on their metabolic composition, the loading plot 
(▶Fig. 4b and d) indicates which compounds are more present in 
each sample group. As we can see, a similar clustering was obtained 
by both analytical techniques. In both cases, large amounts of al-
kanes, saturated fatty acids/esters were associated with the stem 
extracts, while larger quantities of unsaturated fatty acids/esters, 
linoleic and linolenic acids and derivatives were found in the leaves. 
Cis-polyisoprene (20) and squalene (5) were identified only in the 
leaves, which also had greater amounts of β-sitosterol (9) and lu-
peol (11) than the other aerial parts. However, fruit extracts stood 
out for possessing germanicol (10) and large quantities of triter-
pene esters including germanicol-3-acetate (13), lupeol-3-acetate 
(14), lupeol-3-cinnamate (15), germanicol-3-propionate (16), 3-O-
tigloyl germanicol (18), and 3-O-tigloyl lupeol (19).

For the polar metabolites, we quantified the identified com-
pounds by 1H NMR in the same set of samples of the three plant 
aerial parts and also performed PCA to compare the metabolite 
contents. The resulting score and loading plots are represented in 
▶Fig. 5. We observed that the stem extracts stand out for their 
high content in sugars such as sucrose (38) and glucose (40). Larg-
er amounts of branched amino acids such as isoleucine (32), leu-
cine (33). and valine (36) proved to be characteristic of the leaf ex-
tracts. Flavonoid luteolin-7-glucoside (24) was also significantly 
increased in the leaves. The metabolic composition of fruits differed 
vastly from that of the stems and leaves, standing out for high con-
centrations of viburtinol (21), trigonelline (22), conduritol F (23), 
serotonin (25), choline (28), succinate (43), or fumarate (30).

Thus, our study lays bare that A. sericifera, a climbing weed that 
competes with crops, contains several bioactive compounds with 
beneficial applications. Accordingly, nonpolar extracts possess high 
levels of triterpen-3-ol and their esters, especially in leaves and 
fruits, respectively. Naturally occurring and synthetic pentacyclic 
triterpenes exhibit a variety of unique biological activities, includ-
ing antitumor, antiviral, antidiabetic, anti-inflammatory, antimi-
crobial, antiparasitic, cardio-, hepato- and gastro-protection, and 
analgesic and wound healing effects, among others. In fact, they 
are receiving ever-increasing interest as therapeutic agents in phar-
macological research [18]. Lupeol (11) has the ability to inhibit α-
amylases [19] and α-glucosidases [20] and possesses hypoglyce-
mic and antidiabetic properties. In addition, germanicol (10) and 
lupeol (11) display anti-inflammatory [21] and antidyslipidemic ef-
fects [19]. Among the polar secondary metabolites of A. sericifera, 
trigonelline (22), which is abundant in leaves, has shown hypogly-

▶Table 1	 1H and 13C NMR data for 18 and 19 in CDCl3 (δ in ppm, J in Hz).

18 19

Position δC  
(mult.)

δH  
(J in Hz)

δC  
(mult.)a

δH  
(J in Hz)

1a 37.3 (CH2) 1.50, m 38.4 (CH2) 1.69, m

1b 1.00, m

2a 23.4 (CH2) 1.65, m 23.7 (CH2) 1.47, m

2b 1.14, m 1.08, m

3 80.7 (CH) 4.52, d 
(6.4)

80.9 (CH) 4.51, dd 
(5.9)

4 37.7 (C)  −  38.1 (C)  − 

5 55.2 (CH) 0.8, m 55.4 (CH) 0.80, m

6a 17.9 (CH2) 1.60, m 18.2 (CH2) 1.5, m

6b 1.38, m 1.45, m

7a 34.4 (CH2) 1.55, m 34.2 (CH2) 1.4, m

7b 1.41, m

8 43.1 (C)  −  40.9 (C)  − 

9 51.0 (CH) 1.33, m 50.3 (CH) 1.35, m

10 37.2 (C)  −  37.1 (C)  − 

11a 20.9 (CH2) 1.55, m 21.0 (CH2) 1.5, m

11b 1.40, m

12a 26.0 (CH2) 1.64, m 25.1 (CH2) 1.60, m

12b 1.25, m

13 38.2 (CH) 2.26, d 
(11.0)

38.1 (CH) 1.66, s

14 40.5 (C)  −  43.0 (C)  − 

15a 27.2 (CH2) 1.72, m 27.4 (CH2) 1.46, m

15b 1.25, m 1.00, m

16 38.2 (CH2) 1.70, m 35.6 (CH2) 1.5, m

17 34.2 (C)  −  42.8 (C)  − 

18 167.5 (C)  −  48.3 (CH) 1.35, m

19 129.7 (CH) 4.86, s 48.0 (CH) 2.38, ddd 
(10.0)

20 32.2 (C) 151.0 (C)  − 

21a 33.3 (CH2) 1.60, m 29.8 (CH2) 1.92, m

21b 1.38, m 1.30, m

22a 37.3 (CH2) 1.49, m 40.0 (CH2) 1.45, m

22b 1.22, m

23 28.9 (CH3) 0.86, s 28.1 (CH2) 0.86, s

24 16.6 (CH3) 0.87, s 16.7 (CH3) 0.89, s

25 16.4 (CH3) 0.91, s 16.2 (CH3) 0.87, s

26 15.8 (CH3) 1.08, s 16.0 (CH3) 1.02, s

27 14.3 (CH3) 0.74, s 14.5 (CH3) 0.98, s

28 25.0 (CH3) 1.02, s 18.0 (CH3) 0.80, s

29a 28.8 (CH3) 0.97, s 109.3 (CH2) 4.69, d 
(5.8)

29b 4.57, s

30 31.2 (CH3) 0.94, s 19.3 (CH3) 1.69, s

31 167.7 (CO)  −  167.9 (CO)  − 

32 129.1 (C)  −  129.3 (C)  − 

33 136.1 (CH) 6.84, q 
(5.8)

136.5 (CH) 6.83, q 
(7.1)

34 14.1 (CH3) 1.79, d 
(5.8)

14.3 (CH3) 1.78, d 
(7.1)

35 11.9 (CH3) 1.83, s 12.1 (CH3) 1.83, s
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cemic, hypocholesterolemic, antitumoral, and antiseptic proper-
ties besides playing an essential role in the resistance process of 
plants against several pathogens [22]. Concerning the two natural 

cyclitols viburnitol (21) and conduritol F (23), compound 21 acts 
as a glycosidase inhibitor [23] and compound 23 has potential  
in the treatment of metastatic cancer and diabetes because of its 
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▶Fig. 2	 Identification of nonpolar metabolites from leaves, stems, and fruits of A. sericifera containing principally triterpen-3-ols and/or their esters. 
a A section of total ion GC-MS chromatograms of the TMS-derivatized hexanic extracts. b 13C NMR spectra of hexanic extracts at 600 MHz. Assign-
ments: 8, tritiacontane; 9, β-sitosterol; 10, germanicol; 11, lupeol; 12, β-amyrin-3-acetate; 13, germanicol-3-acetate; 14, lupeol-3-acetate; 15, 
lupeol-3-cinnamate; 16, germanicol-3-propionate; 17, germanicol-3-butyrate; 18, 3-O-tigloyl germanicol; 19, 3-O-tigloyl lupeol; 20, cis-polyiso-
prene.



Palomino-Schätzlein M et al. Identification of Bioactive Compounds …  Planta Med Int Open 2017; 4: e93–e103

Original Papers Thieme

e98

ability to inhibit type I α-glucosidase [24]. Luteolin-7-O-glucoside 
(24) has an important nutraceutical application value thanks to its 
numerous biological properties, including antioxidant activity [25].

In order to evaluate the cytotoxic activity of A. sericifera plant 
extracts and the pentacyclic triterpenes, MTS assays were 
performed on human breast carcinoma (MDA-MB-453 and MCF-
7) and human colon carcinoma (HCT-116) cell lines. As a result, the 
fruit hexanic extract of A. sericifera showed a significant cell growth 
reduction of HCT-116 and MCF-7 cells, while the effect produced 
by leaf extracts was more modest but with a higher impact against 
the aggressive cell line MDA-MB-453 (▶ Fig. 6a and b). These 
results are coherent with the fact that the most bioactive com-
pounds reported from nonpolar extracts occurred in these two 
plant organs. The cytotoxic activity for fruit hexanic extracts may 
be attributed to germanicol derivatives [26]. In leaves, high 
amounts of lupeol, a known inhibitor of proliferation [27], can 
induce cytotoxicity. In order to find out if 3-O-tigloyl lupeol (19) 
contributes to the cytotoxic activity of the nonpolar fruit and leaf 
extracts, it was semisynthesized by esterification between lupeol 
and tiglic acid. Nevertheless, compounds 15 and 19 did not show 
significant cell growth reduction at the tested concentrations, 
which was only obtained for lupeol (11) against the three cell lines 
(▶Fig. 6c). 3-O-Tigloyl germanicol (18) could not be assayed as not 
enough quantity was available. In the case of polar extracts of  
A. sericifera, a significant growth reduction was only detected in 
leaf extracts (▶Fig. 6d). This effect may be mainly due to the pres-
ence of luteolin-7-O-glucoside, which was previously described to 
inhibit proliferation of cancer cells [28].

In summary, our study of different aerial parts of A. sericifera by 
GC-MS and NMR spectroscopy allowed for the identification of in-

teresting compounds with potential pharmaceutical and/or indus-
trial uses. Several secondary metabolites have been identified in 
this plant for the first time, and two new triterpen-3-ol esters, 3-O-
tigloyl germanicol (18) and 3-O-tigloyl lupeol (19), were charac-
terized from the hexanic extracts. A systematic analysis of an array 
of plants showed that the major bioactive compounds were dis-
tributed in fruits and leaves. Accordingly, the new compound 3-O-
tigloyl lupeol (19) did not show any cytotoxicity against the cancer 
cell lines at the tested concentrations. Therefore, the moderate cy-
totoxicity exhibited for both fruit and leaf hexanic extracts against 
the breast cancer model MCF-7 and the human colon carcinoma 
HCT-116 may be attributed to lupeol (11).

Materials and Methods

Cell lines, chemicals, and biochemicals
MDA-MB-453, MCF-7 (human breast carcinomas), and HCT-116 
(human colon carcinoma) cell lines were provided by M. Orzáez 
(CIPF) [29], and grown at 37  °C in a humidified 5 % CO2, 95 % air in-
cubator. All the standard compounds and reagents (purities  ≥ 94 %) 
were purchased from Sigma-Aldrich with the exception of N,O-
bis(trimethylsilyl)-trifluoroacetamide (BSTFA) with 1 % trimethyl-
chlorosilane (TMCS) (purity  > 98 %), which was purchased from 
Acros. Hexane, dichloromethane, methanol, and pyridine were an-
alytical grade and purchased from Scharlab SL. Chloroform-d with 
0.05 % v/v trimethylsilane (TMS), methanol-d4, and trimethylsilyl-
2,2,3,3-tetradeuteropropionic acid (TSP; purities  > 99 %)were pur-
chased from Deutero GmbH.
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Plant material
Aerial parts of A. sericifera (leaves, stems, and fruits) were harvest-
ed in September 2014 from adult plants that grew in an open field 
located in Moncófar (Castellón, eastern Spain). The botanical char-
acterization of the plant was carried out by Prof. Herminio Boira 
from the Mediterranean Agroforesty Institute of the Polytechnic 
University of Valencia, and a voucher specimen was deposited at 
the VALA herbarium of the University Polytechnic of Valencia 
(Spain) with the registration number 6647.

Extraction and isolation
Oven-dried leaves, stems, and fruits were separated from each 
plant and, in addition, the fruits were cut and seeds removed. These 
aerial organs were finely powdered in a mechanical grinder and ex-
tracted by an automatic Soxhlet in a Foss Tecator SoxtecTM system 
with a 2043 extraction unit and a 2046 Soxtec Foss Control unit. 
Each sample (5 g) was firstly extracted with n-hexane (50 mL) for 
1 h 30 min of boiling time and 20 min of rising time, followed by 
MeOH (50 mL) under the same operating conditions [30]. The sol-
vents were evaporated under reduced pressure to obtain the hex-
anic and methanolic extracts.
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Dry leaf hexanic extracts (100 mg) were dissolved in MeOH 
(4 mL) and centrifuged at 3000 rpm for 8 min at 22  °C in order to 
partially remove the rubber content. The supernatant was separat-
ed and the pellet was dissolved in MeOH (4 mL) and then centri-
fuged again. This MeOH centrifugation procedure was performed 
three times for each sample [10]. The supernatants were combined 
and dried by nitrogen stream to give a residue of leaf hexanic ex-
tract (100 mg) that was subjected to flash column chromatography 

on silica gel 60 (40–63 μm) using a stepwise gradient soln. solution 
from 100 % hexane to 100 % ethyl acetate and yielding five frac-
tions. The major fraction F-2 (hexane/EtOAc, 9:1, 13 mg) was puri-
fied by a semipreparative reversed-phase HPLC instrument (Waters 
600E system) equipped with a solvent delivery pump unit (Waters 
600E) coupled to a photodiode array detector (Waters 2996 PDA) 
and an evaporative light scattering detector (Waters 2420 ELSD). 
The separation of metabolites was carried out using a Phenomen-
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ex Luna C18 (2) column (25.0 × 1 cm, 5 µm) and 100 % methanol as 
the mobile phase (flow of 3 mL/min) to afford SFhex2-1 (tR = 30 min), 
SFhex2-2 (tR = 35 min), SFhex2-3 (tR = 42 min), SFhex2-4 (tR = 45 min), 
SFhex2-5 (tR = 48 min), and SFhex2-6 (tR = 52 min). On the other hand, 
a residue of the fruit methanolic extract (85 mg) was subjected to 
the solid-phase extraction (SPE) C18 cartridge (2 g, 12 ml) model 
ExtraBond (Scharlab) with 100 % H2O followed by 100 % MeOH. 
Fraction F-2 (100 % MeOH) was purified by semipreparative re-
versed-phase HPLC using a Phenomenex Luna C18 (2) column 
(25.0 × 1 cm, 5 µm) and 100 % H2O as the mobile phase (flow of 
3 mL/min) to afford the SFmeth2-1 (tR = 6 min), SFmeth2-2 (tR = 9 min), 
and SFmeth2-3 (tR = 11 min). All purified fractions from both hexanic 
and methanolic extracts were dried, derivatized, and analyzed by 
GC-MS and NMR spectroscopy.

3-O-Tigloyl germanicol (18): white amorphous powder; m.p. 
244-249  °C; [α]D

25 + 27.2 (c 0.5, CHCl3); IR (film): 2940, 1710, 1634, 
1446 cm-1; 1H and 13C NMR, see ▶Table 1; HRESIMS m/z 409.3832 
[(M-C5H7O-H2O) + H] +  (calcd. for C30H48, 409.3829).

3-O-Tigloyl lupeol (19): white amorphous powder; m.p. 233–
237  °C; [α]D

25 + 42.5 (c 0.5, CHCl3); IR (film): 2987, 1710, 1654, 
1457 cm − 1; 1H and 13C NMR, see ▶Table 1; HRESIMS m/z 409.3829 
[(M-C5H7O-H2O) + H] +  (calcd. for C30H48, 409.3829).

Derivatization and GC-MS analysis
Samples of the hexanic extracts were derivatized according to Van 
Beek [31]. Trimethylsilyl derivatives of hexanic extract samples 
(5 mg) were prepared by the addition of 100 μL of dry CH2Cl2 and 
100 µl of BSTFA with 1 % TMCS. Next, the mixture was stirred over-
night at room temperature. Samples of the methanolic extracts 
were derivatized according to Herebian et al. [32]. Derivatives of 
the methanolic extracts were prepared by a two-step procedure 
involving a methoximation-trimethylsilylation process. For meth-
oximation, the extract samples (5 mg) were treated with methoxy-
amine hydrochloride soln. solution (20 mg mL-1 in pyridine) (100 µL) 
and stirred overnight at room temperature. Next, BSTFA with 1 % 
TMCS (100 µL) was added as a silylation reagent and stirred for 3 h 
at room temperature. Derivatized samples were directly analyzed 
by GC-MS on a PerkinElmer Clarus® 500 gas chromatograph-mass 
spectrometer, operating in the electron impact mode (EI) and 
equipped with a ZB-5 MS (30 m × 0.25 mm × 0.25 μm particle size) 
capillary column (Phenomex Inc). GC-MS parameters, peaks iden-
tification, and quantification procedure are described in more de-
tail in the Supporting Information.

UPLC-Q-TOF analysis
High-resolution mass (HRESIMS) spectra for the new compounds 
were obtained from a Triple TOFTM 5600 hybrid quadrupole time-
of-flight (TOF) LC-MS/MS system (AB SCIEX) and a Waters Acquity 
BEH C18 column (50 × 2.1 mm i.d., 1.7 μm). UPLC-Q-TOF parame-
ters are described in more detail in the Supporting Information.

General procedure for the preparation of 3-tigloyl 
lupeol (19)
The esterification procedure was carried out according to Liu et al. 
[33]. Lupeol (6.0 mg, 1 equiv) was added to a soln. solution of trans-
2-methyl-2-butenoic acid (1.4 mg, 1 equiv), DCC (5.8 mg, 2 equiv), 
and DMAP (3.4 mg, 2 equiv) in dry CH2Cl2 (2 ml), and the reaction 
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three different cell lines at two different concentrations.
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mixture was shaken for 24 h. Next, the solvent was removed under 
reduced pressure to give a white solid that was redissolved in 
CH2Cl2, washed with 5 % NaHCO3, dried over Na2SO4, and concen-
trated under reduced pressure to obtain a crude residue. The resi-
due was purified by semipreparative reverse-phase HPLC-PDA-ELSD 
using a Phenomenex Luna C18 (2) column (25.0 × 1 cm, 5 µm) and 
100 % methanol as the mobile phase with a flow rate of 3 mL min-1. 
3-O-Tigloyl lupeol (19) was obtained in a 63 % yield as white pow-
der.

NMR spectroscopy
NMR spectra were recorded at 25  °C on a Bruker AVII-600 using a 
5-mm TCI cryoprobe (13C spectra) and a Bruker AVIII-500 using a 
5-mm TBI probe (all the other experiments) and processed using 
Topspin 3.17 software (Bruker GmbH). Nonpolar extracts (20 mg) 
were dissolved in 500 µL of 99.8 % chloroform-d with 0.05 % v/v 
TMS. Polar extracts were dissolved in 500 µl of 50 % methanol-d4  
in buffer [90 mM KH2PO4, pH = 6, 1 mM trimethylsilyl-2,2,3,3-tet-
radeuteropropionic acid (TSP)]. Chemical shifts (δ) of 1H and 13C 
NMR are given in ppm. The acquisition parameters of NMR spectra 
and quantification procedure are described in more detail in the 
Supporting Information.

Principal component analysis
Variable sized bucketing was performed of the 1H and 13C NMR 
spectra, excluding the regions corresponding to CDCl3 (in nonpo-
lar samples) and to D2O and MeOD resonances (in polar samples). 
After normalization and univariate scaling, data were subjected to 
PCA, an unsupervised pattern recognition method [34], using the 
software Simca-P +  12.0. PCA score plots show clustering trends 
between samples, how metabolite concentrations are related, and 
if there are any strong outliers. The discriminant metabolites were 
identified from the corresponding loading plots.

MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- 
tetrazolium]assay with cancer model cell lines
The effect of organic leaf, fruit, and stem extracts and lupeol (pu-
rity  ≥ 94 %; Sigma), lupeol-cinnamate, and 3-O-tigloyl lupeol com-
pounds was evaluated by the standard procedure of the MTS 
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium] cell viability assay [35] in HCT-116, 
MFC-7, and MDA-MB-453 cells lines. A stock solution of extracts 
and compounds (2 mg/mL) in DMSO was prepared. This stock so-
lution was diluted in culture medium (DMEM for HCT-116 and MFC-
7, or DMEM/F12 for MDA-MB-453) to obtain of 32, 64, 96, and 
120 µg/µL solutions (DMSO, maximal concentration 0.1 %). A solu-
tion of medium containing only DMSO at 0.1 % was also prepared. 
Cells were harvested in their logarithmic phase and seeded at con-
centrations of 12500 (HCT-116), 5000 (MCF-7), and 10000 (MDA-
MB-116) cells per well in 96-well microtiter plates and incubated 
for 18 h in 50 µL of their respective media at 37  °C and 5 % CO2. Cells 
were then observed under a light microscope (20 × ) to check if they 
were attached to the plates. Fifty µL of medium were added with 
the absence (only DMSO at a final concentration of 0.05 %) or pres-
ence of compounds/extracts to yield final compound/extract con-
centrations of 16, 32, 48, and 60 μg/μL per well, and cells were in-

cubated for 72 h. MTS was freshly prepared at 5 mg/mL in PBS, and 
20 µL of a mixture of MTS solution and phenazine methosulfate 
(20:1) were added to each well and incubated at 37  °C for another 
3 h. Finally, the absorbance was measured with a spectrophotom-
eter (VICTOR2 1420 Multilabel HTS Counter) at 595 nm. Results 
are the mean of three independent experiments (n = 3).

Supporting information: Details on extraction and properties 
of the extracts are available as Supporting Information.
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