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a b s t r a c t 

In this paper, we propose an innovative approach for the production of the microimages ready to display onto an 

integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for 

picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact 

that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating 

an integral image after projecting computationally the information through a virtual pinhole array. We illustrate 

this procedure with some imaging experiments that provide microimages with enhanced quality. After projection 

of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing 

angle. 

© 2017 The Authors. Published by Elsevier Ltd. 
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. Introduction 

During the last century, the three-dimensional (3-D) imaging sys-

ems have been issued in order to record and display 3-D scenes. Among

hem, integral-imaging (InI) has been considered as one of the prospec-

ive technologies in order to reflect real 3-D scenes into a multi-visual

isplay system. This concept was proposed by G. Lippmann in 1908.

e presented the possibility of capturing the 3-D information and re-

onstructing the 3-D scene by using spherical diopter arrays [1–3] . De-

ending on its manipulation, InI is classified by two stages: pickup and

isplay. Nowadays, the pickup procedure is performed by placing a tiny

ens array in front of a two-dimensional (2-D) imaging sensor and pro-

ucing the collection of microimages. A noteworthy feature is that every

icroimage contains different perspective information. This is because

ll of the light rays reflected (or diffused) by an object are transmit-

ed by all the lenses, which distribute the light on different pixels of the

icroimages depending on the incidence angle. Hereafter, the whole ar-

ay of microimages is referred to as the integral image. Concerning the

isplay stage, when the integral image is projected onto an InI display

ystem, observers can see the 3-D floating color scene, which has full-

arallax and quasi-continuous perspective view [4–7] . Many researchers

nd companies have applied the InI technique in many different fields

8–18] . 

In the meantime, various depth-sensing techniques were launched

n order to record 3-D scenes [19–25] . Among all, one of highlighted

echniques is stereovision, which takes advantage of the disparity infor-

ation from two aligned cameras which has been the representative of
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he depth-image sensing for a long period [19–20] . Incidentally, in the

ast decades, the use of technologies related to infrared (IR) light sen-

ors has become spotlighted [21–25] . Especially the Kinect device from

icrosoft takes profit from IR lighting technology in the case of depth ac-

uisition. By this time, two different versions of the Kinect are released.

he main commercial specifications of Kinect v1 (Kv1) and v2 (Kv2)

re described in Table 1 . These devices allow to acquire RGB images, IR

mages and also depth information in real-time with a high frame rate.

s well known, both devices have many different features for obtaining

 dense depth map. Kv1 uses a structured IR light pattern emitter and

R camera to calculate the depth distance through the captured pattern

21–23] . In contrast, Kv2 utilizes time-of-flight (ToF) technology, which

xploits emitting IR beams with high frequency. Having the reflected IR

ight from most 3-D surfaces, the sensor evaluates the depth distance by

easuring the IR flash’s returning duration [24–25] . 

In a previous work, we proposed the use of RGB image and depth

nformation obtained by a single 3-D camera to generate an integral im-

ge and project it onto an InI display system [13–15] . However, this

nnovative approach still contains several issues that must be improved.

mong them, the main drawbacks are domination of the depth informa-

ion by the noise caused by the limitation of IR light sensing technique;

he low density of depth map, which is restricted by the sensor’s spec-

fication; and the depth-hole problem, which occurs because of the re-

ections and/or occlusions. Mono-perspective devices can see only the

rontal part of scenes, so that occluded area’s information is lost in the

cene. 
7 

 the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.optlaseng.2017.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2017.11.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:seokmin.hong@uv.es
https://doi.org/10.1016/j.optlaseng.2017.11.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Hong et al. Optics and Lasers in Engineering 103 (2018) 46–54 

Table 1 

Comparison between Kv1 and Kv2 specifications. 

List Kinect v1 Kinect v2 

Released (year) 2010 2014 

RGB camera (pixel) 640 × 480 (Max: 1280 × 960) 1920 × 1080 

Frames per second in RGB camera 30 (Max: 12) 30 (low-light condition: 15) 

IR camera (pixel) 640 × 480 512 × 424 

Frames per second in IR camera 30 30 

Depth acquisition method Structured IR light pattern Time of Flight 

Suitable depth range (mm) 800–4000 500–4500 

IR camera’s Horizontal FOV (°) 57 70 

IR camera’s Vertical FOV (°) 43 60 

Table 2 

Calibrated camera parameters to calculate the scale factor between target sensors. 

Sensor Coordinate (u: width, v: height) Resolution (# of pixels) Sensor size (mm) Pixels per mm Focal length (mm) 

Kinect v1 (RGB camera) u 640 3.58 178.771 3.099 

v 480 2.87 167.247 

Kinect v2 (IR camera) u 512 5.12 100 3.657 

v 424 4.24 100 

Fig. 1. Proposed stereo-hybrid 3-D camera system. 

Fig. 2. Captured depth maps from our experimental camera system: (a) from Kv1, (b) rescaled image; and (c) from Kv2. 
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In order to solve these limitations, we propose the use of stereo-

ybrid 3-D camera system. Fig. 1 shows our camera setting. In com-

arison to monocular system, stereo-vision system can generally extend

he field of view (FOV) against with. In order words, our approach can

xpand the visual space and obtain the occluded information taking ad-
47 
antage of binocular system. Thus, depth-hole area is filled in by com-

lementing each other. Another important advantage of the proposed

ethod is yielding denser point cloud. This procedure is described in

ection 2 . With this improved 3-D data, the microimages are generated

ith higher quality. The microimages generation process is described
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Fig. 3. 3-D point clouds in the virtual 3-D space: (a) before registration process; (b) after calculation result; in (c–e) we magnified some specific parts of the scene. In the figures, red 

color point is rescaled point clouds from Kv1, and green color point is from Kv2 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 4. Flow chart of the proposed color transferring strategy. The loop is applied voxel 

by voxel. 
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n Section 3 . Finally, in Sections 4 and 5 we provide our experimental

esults and conduct the conclusions respectively. 

. Stereo-Hybrid point clouds manipulation 

In order to implement the stereo system, it is convenient either the

se of two 3-D cameras of the same model, or the use of two different

-D cameras with complementary features. In our approach we have de-

ided to make use of Kinect technology. To the best of our knowledge,

igh frame rate synchronization of two Kv2 nor two Kv1 is never ad-

ressed so far. Hence at this stage of our research we have decided to

ackle the implementation of a stereo-hybrid technique by taking profit

f complementary features of Kv1 and Kv2. Note that even in the case

f 2-D cameras, it has been very unusual to compose hybrid camera sys-

ems [26–28] . This is an evident motivation why we want to use hybrid

-D cameras into our research, since its outcomes can be very useful for

 potential manipulation of various types of cameras in further research.

n the Section 2 . 1 , the correction of the different scale information be-

ween sensors will be explained. In sequence, the arrangement and reg-

stration of the individual 3-D point cloud information will be shown.

n Section 2 . 2 , the correction of the color dissimilarity of sensors will be

resented. 

.1. Hybrid point clouds registration 

In our previous paper [15] , we mentioned about the difference be-

ween Kv1 and Kv2. Above all, each Kinect devices has two camera sen-

ors (RGB and IR) by its own, and the four sensors have different FOV

nd image resolution. It means that all of them have their own scale

actors, which need to be corrected. In [26] , authors proposed how to

orrect the scale information in hybrid stereoscopic 2-D camera systems.

he algorithm manages the images captured by two different sensors,

he input image and the target image, and aims to obtain a rescaled in-

ut image. Eqs. (1 ) and (2) show how to derive scale factors: i u, v refers

o number of pixels in the input image, while j u, v is the number of pix-

ls in the corrected input image. Besides, f, f ′ are input and target focal
48 
engths (mm), whereas p u, v , 𝑝 
′
𝑢,𝑣 

are input and target pixels/mm. 
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Fig. 5. Processed result by using referenced color transfer algorithm (a) rescaled RGB image captured by Kv1 (b) the captured RGB image from Kv2 (c) color transferred result from (b) 

to (a). 

Fig. 6. Orthographic projection of registered 3-D point cloud: (a) before color transferring process (b) is after color transfer. Note that (b) shows more natural textured scene than (a).At 

the scene, the black pixels have no information because they are out of the depth-range capacity of IR sensing. 

49 



S. Hong et al. Optics and Lasers in Engineering 103 (2018) 46–54 

Fig. 7. Collection of microimages generated from modified 3-D point cloud. In this case, 

the reference plane is placed in 2450 mm distance from the origin of Kv2. 
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Fig. 8. Overview of experimental system. 
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Where we have defined parameter 

𝑢,𝑣 = 

𝑓 ′𝑝 
′
𝑢,𝑣 

𝑓 𝑝 𝑢,𝑣 
(2)

s the scale factor between target and input sensors. 

In our approach, input image is Kv1 ’s RGB image and target image

s Kv2 ’s IR image. There are several reasons why we decided to trans-

ose from Kv1 ’s RGB camera to Kv2 ’s IR camera. First, mapping from
ig. 9. Comparison result between displayed integral image: (1-a, b, c) Kv1, (2-a, b, c) Kv2, (

eft-bottom, (b) is right-bottom, and (c) is right-top from the InI monitor. All images are excerp

50 
R image to RGB image in Kv1 is feasible because of many solutions

re already released. Second, Kv2 depth information is denser and with

arger FOV than Kv1. Finally, the third reason is that in the Kv2, the

esolution in RGB camera is much bigger than that in IR camera. If we

ould map from IR image to RGB image, in Kv2, IR image needs, not

nly to up-scaling, but also interpolate the pixel gaps in rescaled image.
3-a, b, c) the proposed result. (a, b, c) shows different perspective position where (a) is 

ted from recorded video: media 2, 3, and 4. 
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Fig. 10. More detail comparison of displayed integral image. This figure shows the advantage of our approach. We filled in several depth-hole areas and derived to smoother texture at 

the scene. Above all, some occluded area is recovered precisely. 
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To calculate the scale factor, the well-treated data from [29] is fol-

owed, where both Kinect parameters were calibrated accurately (see

able 2 ). Then the scale factors are, 𝜆𝑢 = 0 . 660 , 𝜆𝑣 = 0 . 706 ; and rescaled

nput resolutions are j u ≅422.46, j v ≅338.68. Fig. 2 shows captured depth

ap from Kv1 and Kv2 ’s IR sensors and rescaled result. See the figures

or further details. 

From now on, rescaled image resolution of Kv1 ’s RGB and Kv2 ’s IR

amera are adapted to the same scale information. Afterward, the cap-

ured RGB and Depth information from each device can compose point

loud and dispose into a virtual 3-D space. However, both cloud data are

till mutually shifted and not arranged properly (See Fig. 3 (a)). In or-

er to make registration between two point cloud sets, Iterative-Closest-

oint (ICP) algorithm is utilized. ICP algorithm calculates the movement

etween two sets of point clouds in order to minimize their distance. ICP

s often used to reconstruct 2-D or 3-D data captured from different posi-

ions. The output of ICP algorithm is rigid (or rigid body) transformation

atrix, which includes translation and rotation [30–32] . Fig. 3 shows

he point cloud before and after registration result. The red and green

olors represent the point cloud obtained by Kv1 and Kv2 respectfully.

s it can be seen, the Kv1 ’s data are well-aligned into Kv2 and covered

n some occluded area. Especially, Fig. 3 (c–e) indicates more detail of

he registration result clearly. 
s  

i

51 
.2. Color transfer between color images 

Even when the two point clouds are registered properly, the RGB im-

ges of the Kv1 and Kv2 still have color dissimilarities. To overcome this

rawback, the color transfer method proposed by Reinhard et al. [33] is

ollowed, but it is adapted to 3-D images. Our approach is described

n the flowchart of Fig. 4 . In the second step, after loading the input

nd target point clouds, the black voxels having no color information

re discarded. Then, the voxels without depth information were filtered

ut. The reason for such discarding is that those meaningless voxels

ould transfer wrong color characteristics. As result of applying the al-

orithm to all the voxels, the Kv2 ’s RGB color values are transferred

nto the characteristics of the Kv1 ’s RGB image. Figs. 5 and 6 show the

olor-transfer result clearly. In Fig. 5 (a) we show the input RGB image

obtained with Kv1), in Fig. 5 (b) the target RGB image (Kv2) and finally

n Fig. 5 (c) the modified input image after the color transference. 

Fig. 6 shows orthographic projection of RGB information of regis-

ered 3-D point clouds. Fig. 6 (a) shows the point cloud before the color

ransfer, while Fig. 6 (b) shows the same point cloud after the transfer.

n Fig. 6 , the areas of the scene where significant improvement is ob-

ained due to the color transfer have been marked. In order to illustrate

nd demonstrate our proposal, the video Media 1 is composed with this

equence: point clouds of Kv1, Kv2, without registration result, and reg-

stration with color transfer result respectively. 
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. Microimages generation from point clouds 

In order to generate the microimages for their projection onto the

nI display system, our previous approach [14] is followed. Then in our

lgorithm we placed a virtual pinhole array (VPA) at a certain distance

rom the 3-D point cloud. Indeed, VPA’s location reflects the correla-

ion between real scene and displayed scene. In particular, this position

etermines the front and rear volumes at the displayed 3-D scene. Ac-

ordingly, we entitle this position as a reference plane. Then, the voxels

f each point cloud are projected through the VPA, so that the inte-

ral image is composed, as in [34] . In this back-projection scheme, each

icroimage records the angular information. In fact, the calculation of

he microimages needs to account for the parameters of the InI display

ystem; i.e. the number of microlenses, their pitch, gap, and number

f pixels behind any microlens. Fig. 7 shows calculated microimages,

hich are ready for projection through the InI display. 

. Experimental results of displayed three-dimensional image 

In our experiment, the InI monitor is composed of a Samsung SM-

700 (359 pixels/inch) tablet, and a MLA consisting of 181 ×113

enslets of focal length f = 3.3 mm and pitch p = 1.0 mm (Model 630 from

resnel Technology). Each microimage is composed of 15 ×15 pixels,

he gap between the microlenses and the display is fixed to g = 49.5 pix-

ls, and thus, the full size of the integral image is 2715 ×1695 pixels

14.13 pixels/mm). After mounting and aligning the MLA in front of

he tablet, the 3-D scene is displayed with full-parallax. 

To demonstrate the proposed approach, the setup is implemented as

hown in Fig. 8 . The InI monitor displays and integrates the microim-

ges towards the observer’s eyes. Originally, our target is binocular ob-

ervers, who can see the 3-D nature of displayed scene, that is, they can

erceive several parts of the displayed scene in front of the monitor and

ome others behind. Unfortunately, this full-parallax effect cannot be

irectly demonstrated in a manuscript or even in a monocular video.

n order to demonstrate this effect we proceeded as follows. First the

bserver is replaced by a monocular digital camera. Then a collection

f pictures is obtained after displacing horizontally and vertically the

amera along a region of 70 ×70 mm. With these pictures, a video is

omposed in which the InI monitor was observed from different perspec-

ives. Media 2 and 3 shows Kv1 and Kv2, and Media 4 shows the final

odified result. All of the recorded videos are composed of different hor-

zontal and vertical perspective views. The Figs. 9 and 10 show this ex-

erimental result more clearly. Modified point clouds are filled in some

epth-hole areas and as a result, it induces denser and smoother texture

f the scene. The most impressive feature is that some occluded areas are

ecovered by registration process. Especially, the human model’s head

nd blue basket behind of brown box are recovered properly. 

. Conclusion 

To the best of our knowledge, this is the first time to utilize a stereo-

ybrid 3-D camera system to capture the light field. Specifically, in or-

er to overcome the limitations of a mono perspective view, the usage

f stereo-hybrid system consisting of two Kinect devices is proposed.

ut we had to tackle the challenge of fusing two different 3-D point

louds with strong dissimilarities: different lateral and axial resolution,

ifferent spectral sensitivities of RGB sensors, and even different lumi-

ance of the 3-D scene when seen from different perspectives. To cope

ith these mismatches, some well-known algorithms fitting to our spe-

ific situation have been adapted. To demonstrate our approach, a 3-D

cene is captured with the stereo-Kinect device and the 3-D point clouds

re modified according to our strategy of correcting the dissimilarities.

inally, the improvements in the displayed images have been demon-

trated by calculating the microimages and projecting them onto an InI

onitor, which provides the observers with full-parallax 3-D images.
52 
ince we filled in several depth-hole areas at the integral image and de-

ived to smoother texture at the scene, the experiment confirms that the

uality of 3-D data is improved noticeably. Above all, some occluded

eld is recovered precisely and thus, this output proves the benefit of

ur manipulation. In a future work, we will apply this technique for dif-

erent and/or newer types of 3-D cameras: Light-field camera [8–11] ,

nd stereo-vision camera [19–20] . In addition, we will enhance the ac-

uracy of 3-D data registration and color equalization result. Finally, we

ould like to point out that a different experimental concept which is

anipulated by LeMaster et al. [35] , where they use an array of mid-

ave infrared cameras to obtain depth reconstructions for long distances

s also complementary as our experiment. 
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