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Highlights 

 Nanovesicles were small in size and monodispersed independently of the NA 

concentration.  

 No citotoxity effects were observed in 3T3 fibroblasts treated with ultradeformable 

liposomes. 
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 Ultradeformable liposomes have the ability to reduce skin inflammation. 
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Abstract 

Ultradeformable liposomes were formulated using naringin (NA), a flavanone glycoside, at 

different concentrations (3, 6 and 9 mg/mL). Nanovesicles were small size (~100 nm), regardless 

of the NA concentration used, and monodisperse (PI < 0.30). All formulations showed a high 

entrapment efficiency (~88%) and a highly negative zeta potential (around -30 mV). The selected 

formulations were highly biocompatible as confirmed by in vitro studies using 3T3 fibroblasts. 

In vitro assay showed that the amounts (%) of NA accumulated in the epidermis (~ 10%) could 

explain the anti-inflammatory properties of ultradeformable liposomes. In vivo studies confirmed 

the higher effectiveness of ultradeformable liposomes respect to betamethasone cream and NA 

dispersion in reducing skin inflammation in mice. Overall, it can conclude that NA 

ultradeformable liposomes can be considered as a promising formulation for the treatment of skin 

inflammatory diseases. 

ACCEPTED M
ANUSCRIP

T



3 
 

 

Keywords: naringin, ultradeformable liposomes, anti-inflammatory, transdermal penetration, 

fibroblasts, in vivo studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The incidence of skin inflammatory diseases (dermatitis, psoriasis, rash) has increased 

significantly in the last decades and bioflavonoids such as quercetin, curcumin and baicalin have 

been widely used for treatment of this injures [1,2,3,4]. Citrus fruits peels represent an important 

source of phenolic acids and flavonoids, mainly polymethoxyflavones (PMFs), flavanones and 

glycosylated flavanones [5,6]. Naringin (NA), a bioactive component of citrus species, is a 

glycosylated flavanone formed by naringenin (flavanone) and the disaccharide neohesperidose 

(Figure 1). This compound shows a wide variety of pharmacological effects such as antioxidant, 

blood lipid–lowering and anticarcinogenic activity. Moreover, several studies have highlighted 

its potential to suppress the production of proinflammatory cytokines and attenuate the 
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inflammatory response [7, 8, 9, 10, 11, 12] and it has been proposed in combination with 

corticoids to treat skin diseases such as dermatitis [13]. 

On the other hand, most of conventional therapies failed because of their low capacity to deliver 

therapeutic drug concentrations to the target tissue. Different approaches have been attempted to 

overcome this problem by providing “selective” delivery of drugs to the affected area, using 

various pharmaceutical carriers. In the last years, among the different types of particulate carriers, 

liposomes have received a great attention [14] and have been used as delivery systems of different 

bioactive agents. The list of actives incorporated in nanoliposomes is huge, ranging from 

pharmaceutical to cosmetics and nutraceuticals substances (opiods, curcumin, resveratrol, 

quercetin, silibinin, glycyrrhizic acid, vitamin C, and others) [15,16,17,18,19,20,21]. In general, 

these systems are able to enhance the performance of the incorporated bioactive agents by 

improving their solubility and bioavailability, their in vitro and in vivo stability, as well as 

preventing their unwanted interactions with other molecules [22, 23]. Another advantage of 

nanoliposomes is cell-specific targeting, which is a prerequisite to ensure the adequate drug 

concentrations required for optimum therapeutic effects in the target site while minimizing 

adverse effects on healthy cells and tissues. Among them, ultradeformable liposomes have been 

found to be promising for herbal extracts delivery [6,24]. Since, this type of phospholipid vehicles 

increases the accumulation on the skin as well as reduces adverse effects. Recent reports showed 

that ultradeformable nanosized liposomes may be postulated as a novel dermal delivery carrier 

due to their biocompatibility and high elasticity [25, 26], which is attributed to of the combination 

of phospholipids and surfactant (such as sodium cholate, deoxycholate, Span, Tween and 

dipotasium glycyrrhizinate). The surfactant acts as an ´edge activator´ that modify the 

organization of the lipid bilayers increasing its deformability [27]. 

The purpose of this study is to develop ultradeformable liposomes. To do this, the vesicles were 

formulated using different concentrations of naringin (NA) and characterized in terms of zeta 

potential, mean size, size distribution and vesicles encapsulation efficiency. In vitro transdermal 
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penetration was also quantified. Cytotoxicity test was carried out as well to evaluate the 

biocompatibility of the formulations on 3T3 mouse dermal fibroblast cells. In addition, NA 

ultradeformable liposomes ability to attenuate skin inflammation induced by phorbol 1, 2-

myristate 1, 3-acetate (TPA) in mice was studied.  

 

2. Materials and methods  

2.1. Materials 

Monosodium phosphate was purchased from Panreac quimica S.A. (Barcelona, Spain). Lipoid® 

S75, a mixture of soybean lecithin containing lysophosphatidylcholine (3% maximum), 

phosphatidylcholine (70%), phosphatidylethanolamine (10%), fatty acids (0.5% maximum), 

triglycerides (3% maximum), and tocopherol (0.1–0.2%) were a gift from Lipoid GmbH 

(Ludwigshafen, Germany). Polysorbate 80 was purchased from Scharlab S.L. (Barcelona, Spain). 

Glycerin and ethanol were purchased from Guinama S.L.U. (Valencia, Spain), N-octanol (special 

grade for measurement of partition coefficients) was purchased from VWR chemicals S.A. S 

(France), Disodium phosphate were purchased from Scharlab S.L. (Barcelona, Spain). 

Betamethasone was from IFC Acofarma S.A. (Santander, Spain). Phorbol 1,2-myristate 1,3-

acetate and naringin with a molecular formula (C27H32O14) and weight (580.54 g/mol) were 

purchased from Sigma-Aldrich. 

2.2. Analytical method 

A high-performance liquid chromatograph (HPLC) PerkinElmer® Series 200 equipped with an 

auto-injector and a photodiode array UV detector was used for NA quantification in experimental 

samples [28]. The column used was a Teknokroma® Brisa “LC2” C18, 5.0 μm (150 cm x 4.6 

mm). The mobile phase consisted of a mixture 50:50 (V/V) of methanol and ultrapure water 

adjusted at pH 4. The detection wavelength was 280 nm, the injection volume was 20 μL and the 
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flow rate was 1.0 mL/min. Linearity, limit of quantification (LOQ), detection (LOD), precision 

and accuracy of the analytic method were carried out. 

 

2.3. Physicochemical properties  

2.3.1. Crystalline structure 

NA structure was analyzed with the X-ray diffractometer KAPPA CCD. The system has a 

goniometer of four circles and a two-dimensional KAPPA CCD detector with beryllium window 

of 90 mm diameter maintained at - 60°C.   

2.3.2. Solubility  

The solubility of the flavonoid at 25°C was determined in different vehicles: water, pH 7.4 

buffered solution and polysorbate 80 (1%, w/w) in aqueous medium. Flavonoid was added to 

saturation in each system during 24 hours under constant agitation (500 rpm). Finally, an aliquot 

of each sample was filtered (0.22 µm) and quantified. 

2.3.3. Partition coefficient determination 

Octanol-water partition coefficient (Poct) value was obtained by equilibrating the NA aqueous 

solution with 1-octanol in a shaker bath at 25ºC overnight [29]. Distribution of NA between the 

aqueous and the organic phase was estimated by the differences between the NA concentration at 

the beginning and at the equilibrium step, according to the following equation (Eq.1): 

                                        𝑃𝑜𝑐𝑡=  
(𝐶𝑜−𝐶𝑒)/𝑉𝑜

𝐶𝑜/𝑉𝑎

     Eq.1 

where Co, is the initial NA aqueous solution concentration, Ce, the solution concentration at 

equilibrium, Vo, volume of the organic phase (50 mL) and Va, the volume of aqueous solution (50 

mL). 
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2.4. Ultradeformable liposomes  

A preformulation studies was carried out in order to select the best formulations able to load 

increasing amount of NA (from 1 to 24 mg/mL). According to stability data (average particle size 

<150 nm, polydispersity values < 0.5 and zeta potential value < -25 mV), one formulation was 

selected with different amount of NA: liposomes I (3 mg/mL), liposomes II (6 mg/mL) and 

liposomes III (9 mg/mL). NA (3 or 6 or 9 mg/mL), polysorbate 80 (2.5 mg/mL) and Lipoid® S75 

(120 mg/mL) were added in a glass vial. These mixtures were hydrated overnight at room 

temperature (25°C) with a buffer phosphate solution (pH 7.4). The obtained dispersions were 

sonicated for 4 min using an ultrasonic disintegrator (CY-500, Optic Ivymen system, Barcelona, 

Spain). Then liposome suspensions were extruded through a 0.20 µm membrane with an Avanti® 

Mini-Extruder (Avanti Polar Lipids, Alabaster, Alabama) to obtain homogeneous dispersions. 

NA dispersion (9 mg/mL) in phosphate buffer solution containing polysorbate 80 (1%, w/w) and 

empty liposomes (without NA) were prepared as control.  

 

2.5. Characterization of liposomes 

2.5.1. Transmission electron microscopy 

Ultradeformable liposomes morphology was examined through a negative staining technique 

using a JEM-1010 microscope (Jeol Europe, Croissy-sur-Seine, France), equipped with a digital 

camera MegaView III at an accelerating voltage of 80 Kv.  

2.5.2. Determination of entrapment efficiency (EE %) 

1 mL of each sample and dialyzed against buffer (100 mL) for 24 hours, at room temperature 

using a membrane Spectra/Por, (12–14 kDa MW cut-off; Spectrum Laboratories Inc., DG Breda, 

The Netherlands). Dialyzed and non-dialyzed ultradeformable liposomes were disrupted with 

methanol (1:100). The samples were assayed by HPLC as described in section 2.2. 
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EE (%) of liposomes I, II and III was calculated as follows (Eq.2): 

EE % = (
actual NA

initial NA
) X 100           (Eq.2) 

where actual NA is the amount of the active in ultradeformable liposomes after dialysis, and initial 

NA is the amount before dialysis. 

2.5.3. Determination of vesicle size, zeta potential and polydispersity index 

Average diameter and polydispersity index (PI) of the samples were performed in triplicate by 

means of Photon Correlation Spectroscopy using a Zetasizer Nano-S® (Malvern Instruments, 

Worcester-shire, United Kingdom) at 25ºC. Moreover, zeta potential was estimated by 

electrophoretic light scattering in a thermostated cell in a Zetasizer Nano-S®. The ultradeformable 

liposomes stability was evaluated over 30 days at ~ 4°C.  

2.6. Cell viability studies 

3T3 mouse fibroblasts (ATCC, Manassas, VA, USA) were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM, Sigma Aldrich, Spain), supplemented with penicillin (100 U/mL), 10% 

(V/V) fetal bovine serum, and streptomycin (100 mg/mL) (Sigma Aldrich, Spain) in 5% CO2 

incubator at 37 °C to maintain cell growth. 

3T3 cells (2x105 cells/well) were seeded in 96-well plates at passage 14-15. After one day of 

incubation, 3T3 cells were treated with NA dispersion (9 mg/mL) or empty or NA loaded 

liposomes I, II and III for 24 hours. In each well 25 µL of formulation were added and filled with 

225 µL of cultured medium. 

Cell viability was evaluated by MTT [3 (4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium 

bromide] colorimetric assay [30]. After 24 h experiment, 100 µL of MTT was added to each well, 

and then, after 3 h the formazan crystals formed were dissolved in DMSO (50 µL). The reaction 
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was measured at 570 nm with a spectrophotometer. All experiments were repeated three-fold 

(n=3).  

 

2.7. In vitro diffusion  

A diffusion study was performed using Franz diffusion cells (with an effective diffusion area of 

0.784 cm2) and new born pig skin from a local slaughterhouse. The receptor compartment (CR) 

was filled with buffer phosphate solution (pH 7.4), continuously stirred and thermostated at 32ºC. 

Epidermal membranes were obtained from heat separation through immersing in water (at 60ºC) 

for 75 s [31]. On the epidermis surface 800 µL of different formulations assayed were applied. At 

different time intervals up to 24 hours, receptor solutions were withdrawn and assayed for drug 

content by HPLC, (section 2.2). At the end of the experiment, 1 mL of phenol red solution (0.05%, 

w/w) was applied in the donor compartment for checking the integrity of the epidermis [32]. 

 

 

 

2.8. In vivo assay  

Female CD-1 mice (5–6 weeks old, 25–35 g) were obtained from Harlan laboratories (Barcelona, 

Spain) and acclimatized for one week before use. All studies were performed in accordance with 

European Union regulations for the handling and use of laboratory animals and the protocols were 

approved by the Institutional Animal Care and Use Committee of the University of Valencia (code 

2016/VSC/PEA/00112 type 2).  

One day before the experiment the back skin of mice (n=4 per group) was shaved. The first day, 

TPA dissolved in acetone (3 µg/20 µL) was applied to the shaved dorsal area to induce cutaneous 

inflammation and ulceration. Negative control mice only received acetone (20 µL). After 3 h, 200 
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µL of empty or NA loaded ultradeformable liposomes (I, II and III), NA dispersion or 

betamethasone cream (20 mg) were topically applied in the dorsal area. The procedure was 

repeated on the second and third day. The fourth day, mice were sacrificed by cervical dislocation.  

Two biomarkers: oedema formation and myeloperoxidase (MPO) activity were used to evaluate 

the effect of the formulations [33]. First, dorsal skin area was excised, weighed to assess oedema 

formation and stored at -80°C. Second, biopsies were dispersed in 750 µL of phosphate buffer 

(pH 5.4) and, with an Ultra-Turrax T25 homogenizer (IKA1 Werke GmbH & Co. KG, Staufen, 

Germany), were homogenized in a ice bath. The supernatant obtained after centrifugation was 

diluted with PBS 5.4 (1:10) in order to assay MPO activity. Briefly, in a 96-well plate, 10 µL of 

diluted sample, 20 µL of sodium phosphate buffer (pH 5.4), 200 µL of phosphate buffer (pH 7.4), 

40 µL of 0.052% hydrogen peroxide and 20 µL of 18 mM 3,30,5,50-tetramethylbenzidine 

dihydrochloride were added to each well. At the end of experiment, 50 µL of SO4H2 2N was 

added to stop the reaction. The absorbance was measured at 450 nm. The MPO activity was 

calculated from the linear portion of a standard curve. 

 

 

2.9. Histological examination  

Mice skin was excised, fixed and stored in formaldehyde (0.4%, V/V). Longitudinal sections (5 

mm) were marked with hematoxylin and eosin and observed using a light microscope (DMD 108 

Digital Micro-Imaging Device, Leica, Wetzlar, Germany).  

2.10. Statistical analysis of data  

Statistical differences were determined by one-way ANOVA test and Tukey’s test for multiple 

comparisons with a significance level of p < 0.05. All statistical analyses were performed using 
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IBM SPSS statistics 22 for Windows (Valencia, Spain). Data are shown as mean ± standard 

deviation. 

 

3. Results and discussions 

3.1. Analytical method 

The analytical method (HPLC) for NA quantification was firstly validated. Calibration curves 

covering the whole range of NA concentrations were prepared. Excellent plots correlating the peak 

areas and NA concentrations were obtained (r > 0.999), demonstrating good linearity. Precision was 

evaluated by calculating the relative error (RE, %) and accuracy by coefficient of variation (CV, %); 

both values were less than 9 %. The limits of detection (LOD) and quantification (LOQ) were 0.11 

µg/mL and 0.34 µg/mL, respectively. These data satisfy the standard validation.  

3.2. Physicochemical properties 

The flavanone glycoside (NA) was characterized with the RX technique. The spectrum shows 

that it is a flavonoid with crystalline structure. Molecules are spatially distributed in a regular and 

symmetrical form, so they require more energy for their separation. All this property may be 

responsible of their low solubility and bioavailability. Indeed, the solubility of NA in water and 

phosphate buffer at pH 7.4 is 2.69±0.01 mg/mL and 1.94 ± 0.01 mg/mL, respectively. As it was 

expected, NA is more soluble (14.4±0.4 mg/mL) in presence of polysorbate 80 (1%, w/w), 

probably because of the formation of micelles, which allows the solubilization of a greater amount 

of flavonoid. In addition, NA is a hydrophilic compound (log Poct= – 0.66 ± 0.03) with a molecular 

weight superior to 580 g/mol, which could lead to a low percutaneous absorption. 

3.3. Characterization of Ultradeformable liposomes  

In Figure 2 the formation of spherical nanometric vesicles can be observed. All ultradeformable 

liposomes (I, II and III) showed a monodisperse distribution (PI < 0.30) (Table 1). In all cases, 

the mean size was very similar (approximately 100 nm), and no statistical differences were 
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observed from batch to batch. The zeta potential was highly negative (-30 mV), for the different 

NA concentrations. Liposomes were able to incorporate NA in high amount (entrapment 

efficiency approximately 90%), no significant differences were detected among the groups (p > 

0.05), confirming that the flavonoid was effectively/efficiently incorporated into vesicle. 

Ultradeformable liposomes were stable during 30 days of storage, according to zeta potential and 

mean size values (Table 1). Such data ensure good stability of ultradeformable liposomes, due to 

the great electrostatic repulsion between the vesicles.  

3.4. Cell viability studies 

The biocompatibility of each formulation was evaluated in vitro on cells, which represents a good 

and reliable method to select formulations that will be used for further in vivo studies. 3T3 mouse 

dermal fibroblasts were incubated with different formulations: empty or NA ultradeformable 

liposomes (I, II and III). Cells viability after 24 hours of incubation with the formulation is 

approximately 100% and similar to that of the control group (p > 0.05). These results are in 

accordance with Cao et al [34], confirming the low toxicity of flavonoid and liposomes. 

3.5. In vitro diffusion   

Permeation study was performed for 24 h using ultradeformable liposomes (I, II and III). Figure 

3 shows the cumulative amounts (Q, %) of NA in the donor compartment (CD), epidermis (EP) 

and receptor compartment (CR) for all formulations tested at 24 hours. The cumulative amount 

of NA (%) in the CR was negligible (less than 0.5 %) regardless the formulation tested. The 

amounts (%) of NA accumulated in the EP (~ 10%) could explain the anti-inflammatory 

properties of ultradeformable liposomes detected during the in vivo assay. Finally, the amount of 

NA present in the CD (> 90 %), confirmed the low flavonoid bioavailability. The NA low 

permeability could be mainly attributed to its difficulty to permeate through the stratum corneum, 

which serves as a lipophilic barrier against the penetration of hydrophilic molecules (NA has log 
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P oct = - 0.66). In addition, the high molecular weight (~580 g/mol) of NA could have limited its 

transdermal delivery by the high resistance of skin towards diffusion [35, 36]. 

 

3.6. In vivo assay 

TPA application in mice has been used for the evaluation of anti-inflammatory activity of drugs. 

This compound induces a variety of histological and biochemical changes in the skin [37]. In this 

work, TPA was daily applied on mice dorsal skin for 3 days, inducing skin ulceration, loss of 

epidermis integrity with scale and crust formation. Besides, it stimulates the oedema formation, 

due to an increase in vascular permeability. Table 2 summarizes the results obtained. The phorbol 

ester (TPA) caused a 3-fold increase in skin weight, compared to healthy mice. The administration 

of liposomes I, II and III was more active than NA dispersion and betamethasone cream in 

reducing skin oedema (~20%). Statistical differences were observed between samples (p < 0.01), 

probably because the ultradeformable liposomes promoted the internalization of NA in epithelial 

cells, avoiding vascular congestion and oedema formation. The MPO activity was quantified as a 

marker of the inflammatory process, since it is proportional to the neutrophil concentration in the 

inflamed tissue. The efficacy of NA loaded ultradeformable liposomes was assayed and compared 

with betamethasone cream, as commercial reference, and NA dispersion. The ultradeformable 

liposomes displayed a superior ability to reduce MPO activity in the injured tissue respect to the 

betamethasone cream (Table 2). No significant differences were observed (p > 0.05) between the 

three vesicular formulations containing different amounts of NA, which indicates that, in our 

experimental conditions, ultradeformable liposomes can promote the NA beneficial activity 

independent of the concentration used. Liposomes (III) have a greater activity respect to NA 

dispersion (p < 0.01), despite having the same concentration of flavonoid, as shown in Table 2. 

Thus, this phospholipidic system could be considered as promising tools for treatment of skin 

inflammation. The macroscopic observations are in agreement with the MPO and oedema values. 
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The macroscopic images of mice clearly showed the positive effect of NA ultradeformable 

liposomes on injured skin (Figure 4). 

With regard to the histological study, morphological alterations of mice skin exposed to TPA 

were evaluated by hematoxylin and eosin staining, and compared with untreated skin (Figure 5). 

The skin treated with acetone only (control -) showed a regular structure and normal appearance 

of both epidermis and dermis, as well as the tissues directly underneath (i.e., subcutaneous cellular 

tissue, skeletal muscle and adipose tissue), with only some mononuclear and polymorphonuclear 

cells in the muscular region. Otherwise, mice skin treated with TPA displayed severe dermal and 

subcutaneous alteration, with a large number of leukocytes infiltrating, and showing pathological 

features of inflammatory damage, such as vascular congestion (control +). Similar results of 

injured skin were obtained using betamethasone cream, but the application of the NA 

ultradeformable liposomes reduced TPA-induced lesions, along with mild to moderate 

inflammatory infiltrates of mononuclear cells, eosinophils and neutrophils. Therefore, the results 

obtained in vivo seem to indicate a remarkable therapeutic potential of NA ultradeformable 

liposomes. 

4. Conclusions  

The loading of NA into ultradeformable liposomes represents an innovative approach to prevent 

and treat skin lesion and restore skin integrity. Results demonstrated that NA liposomes were 

highly biocompatible and more effective than betamethasone cream and NA dispersion as 

demonstrate in vivo model (TPA test). In conclusion NA ultradeformable liposomes can be 

considered as a promising formulation for the treatment of inflammatory diseases.  
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Figure 1. Chemical structure of Naringin (NA). 
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Figure 2. TEM (Transmission electron microscopy) images of ultradeformable liposomes. The arrows indicate the 

lamellae of vesicles.   

 

 

Figure 3. Transdermal permeation of NA (naringin) dispersion and loading liposomes I (3 mg/mL), II (6 mg/mL), III 

(9 mg/mL). Amount accumulated in CR (receptor compartment), CD (donor compartment) and EP (epidermis) after 
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24 h at 32°C. The results were expressed as the mean and standard deviation (error bars). No significate differences 

have been found among the groups (p > 0.05). 

 

 

 

Figure 4. Macroscopic appearance of mice skin lesions inducted with TPA (A) and treated with liposome III: 9 mg/mL 

(B). 

 

 

 

 

Figure 5. Representative histological sections of mouse skin: treated with TPA-inflamed skin (A) and treated with 

liposome III: 9 mg/mL (B).  
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Table 1. Average size, polydispersity index (PI), zeta potential and NA (naringin) entrapment efficiency of liposome I 

(3 mg/mL), liposome II (6 mg/mL) and liposome III (9 mg/mL). All values are mean ± standard deviations (n=3). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Oedema inhibition and MPO (myeloperoxidase test) activity in skin mice inflamed with TPA (control +). Skin 

mice inflamed were treated to 200 µL of NA dispersion, empty liposomes or loading liposomes I (3 mg/mL), II (6 

mg/mL), III (9 mg/mL) and betamethasone cream (20 mg). The results were expressed as the mean and standard 

deviation (error bars). * p < 0.01 liposomes (I, II and III) vs betamethasone cream and NA dispersion. ANOVA-Tukey. 

   p < 0.01 liposome III vs NA dispersion. ANOVA-Tukey.                       

 

 

Formulations                  Size (nm)                    PI          Potential Z (mV)      EE (%) 

 0 days                  30 days         0 days           30 days      0 days                     30 days   

Empty liposome   88.3 ± 1.7            100.1 ± 0.8  0.25                 0.16    -32.5 ± 0.4             -31.9 ± 1.7         --- 

Liposome I  90.2 ± 1.6             90.9 ± 2.3  0.23                 0.22  -33.9 ± 1.4             -30.1 ± 1.1   91.03 ± 0.04 

Liposome II  86 ± 1.0                84.1 ± 2.5  0.25                 0.20  -32.6 ± 1.1             -26.9 ± 0.8   88.70 ± 0.25 

Liposome III  86.3 ± 1.1             84.6 ±0.9  0.22                 0.22  -27.7 ± 1.1             -28.0 ± 1.5   92.72 ± 0.10 

Formulations   % Oedema inhibition  % MPO inhibition 

    

Control + 0.5 ± 1.15  0.5 ±1.01 

Cream 13.06 ± 2.81  12.70 ± 1.81 

NA dispersion                          27.48 ± 3.37  65.82 ± 2.94 

Empty liposome 23.67 ± 2.29   60.25 ± 3.05 

Liposome I      36.01* ± 3.03   74.61 ± 4.03 

Liposome II      37.29*± 3.19   78.72 ± 4.59 

Liposome III                                 43.18*± 3.36                                             86.75# ± 4.93 
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