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RESUMEN 

Los líquenes son un ejemplo clásico de asociación simbiótica mutualista autosuficiente, 

compuesta por, al menos, un hongo filamentoso (micobionte, heterótrofo) y cianobacterias 

y/o algas verdes unicelulares (fotobiontes, fotosintéticos). Se desarrollan gracias a la 

combinación adecuada de hongos y algas y/o cianobacterias, generando un nuevo organismo, 

el talo liquénico (holobionte). Estos simbiontes obligados presentan claros papeles funcionales. 

El hongo liquenizante produce el talo para el establecimiento de los fotobiontes que 

proporcionan el carbono fijado, mientras que el micobionte aporta agua, nutrientes minerales 

y protección frente a diferentes tipos de estrés abiótico. Dicha asociación mutualista les 

permite colonizar y crecer en ambientes diversos y extremos que no podrían habitar los 

simbiontes de forma independiente.  

Estudios posteriores sobre la composición de los talos liquénicos mediante técnicas 

dependientes del cultivo han revelado la presencia de bacterias no fotosintéticas en los 

mismos. Sin embargo, la gran diversidad de bacterias asociadas a los líquenes solo se ha 

empezado a dilucidar mediante el avance en las técnicas independientes del cultivo. Estos 

estudios han propuesto a las bacterias como simbiontes adicionales, obligados o facultativos, y 

a cada uno de los simbiontes liquénicos como organismos multifuncionales dentro del 

holobionte. Este nuevo conocimiento ha cambiado la visión clásica de la simbiosis liquénica, 

ampliando la definición de liquen para incluir a las comunidades bacterianas asociadas, 

compuestas por una gran diversidad de taxones. Estas comunidades bacterianas consideradas 

ahora como una parte integral de los talos liquénicos, interaccionarían entre ellas y con los 

fotobiontes y el micobionte, por lo que actualmente los líquenes son considerados como una 

simbiosis multiespecies. 

Mediante los estudios basados en técnicas dependientes del cultivo se han detectado también 

algunos de los papeles funcionales de estas bacterias liquénicas, como la fijación de nitrógeno 

y la solubilización de fosfatos, así como la liberación de aminoácidos y/o la producción de 

fitohormonas que podrían estar relacionados con el aporte de nutrientes en los talos 

liquénicos. Aun así, la información sobre la composición, diversidad y potencial metabólico de 

las bacterias asociadas a los líquenes es todavía muy escasa.  

En los últimos años, ha habido un interés creciente por las bacterias asociadas a los líquenes, 

pero debido dificultades en el aislamiento de estas bacterias por la falta de protocolos de 

análisis bacteriológicos adecuados, así como de medios de cultivo con condiciones nutritivas 

que reproduzcan las de los talos liquénicos, la mayoría de estudios se han llevado a cabo 

mediante técnicas independientes del cultivo. Dichas investigaciones han evidenciado la gran 

diversidad y abundancia de las bacterias que colonizan los talos liquénicos normalmente 

formando biopelículas multiespecies, con distintos papeles funcionales y potenciales 

metabólicos, muchos de ellos aun por explorar. 

La distribución mundial de los líquenes está bien documentada, pero el conocimiento sobre la 

influencia de factores geográficos en las comunidades bacterianas asociadas a los talos 

liquénicos es todavía muy escasa. No obstante, algunos estudios han demostrado que dichas 

comunidades varían entre diferentes especies liquénicas en diferentes regiones, existiendo 
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además una compleja relación entre los líquenes y sus bacterias asociadas. Del mismo modo, 

otros factores intrínsecos del talo liquénico (especie de liquen, edad, tipo de crecimiento, etc.) 

y factores ambientales (exposición solar y tipo de sustrato que colonizan, entre otros) son 

también determinantes y modulan a nivel taxonómico las bacterias asociadas a líquenes. 

Los líquenes han evolucionado en una gran diversidad que les ha permitido adaptarse a una 

gran variedad de ambientes, hipotetizándose que las comunidades bacterianas asociadas 

podrían participar en dicha adaptación. A su vez, estos organismos, a modo de 

microecosistemas, podrían estar involucrados en la diversificación de las bacterias que los 

habitan. Por ello, los talos liquénicos son considerados como reservorios de una gran 

diversidad bacteriana, que a su vez podría estar implicada en la tolerancia de los líquenes a 

diferentes condiciones ambientales. 

En el presente estudio, nos hemos centrado en la caracterización de las comunidades 

bacterianas asociadas al liquen Ramalina farinacea (L.) Ach. por presentar una amplia 

distribución en zonas de clima mediterráneo, incluyendo la península ibérica y las Islas 

Canarias. Se trata de un liquen fruticuloso que vive habitualmente como epífito sobre una gran 

variedad de sustratos y bajo distintas condiciones ambientales. Entre los sustratos que puede 

colonizar se incluyen arbustos, setos, troncos y ramas de árboles, tanto en zonas de bosques 

caducifolios como en otras expuestas al sol y al viento en árboles aislados, pero principalmente 

en bosques de encinas y pinos y, ocasionalmente, en rocas y muros. Este liquen presenta una 

amplia distribución en la mayoría de zonas templadas y boreales del hemisferio norte, en 

media y alta montaña, y en el centro y sur de Europa, así como en zonas áridas de clima 

mediterráneo. También se puede encontrar en zonas de menor estrés ambiental como 

ecosistemas húmedos, pero también en otras más restrictivas de alta montaña. Esta capacidad 

de R. farinacea de colonizar y sobrevivir en una gran variedad de ambientes sugiere una gran 

plasticidad ecofisiológica, a la que podrían contribuir sus comunidades bacterianas asociadas. 

No obstante, apenas existen estudios sobre las comunidades bacterianas asociadas a esta 

especie liquénica pese a que dicha información es crucial para dilucidar el papel de estos 

simbiontes y entender mejor las interacciones que conforman esta asociación, así como 

suponer una nueva fuente de microorganismos con propiedades y actividades de interés. 

En base a dichos antecedentes, el objetivo general de esta tesis doctoral ha sido estudiar las 

comunidades bacterianas asociadas al liquen R. farinacea con especial interés en su 

composición, diversidad y potencial biotecnológico. Este objetivo general se puede desglosar 

en los siguientes objetivos específicos: 

1. Aislar y caracterizar metabólica y fisiológicamente una colección de cepas bacterianas 

a partir de poblaciones de R. farinacea de distintas zonas geográficas españolas, tanto 

por su posible contribución a la simbiosis liquénica como -con especial interés- por su 

potencial biotecnológico, así como iniciar la identificación molecular de las cepas 

bacterianas de mayor interés biotecnológico. 

2. Estudiar la composición y diversidad de las comunidades bacterianas asociadas a las 

distintas poblaciones de R. farinacea estudiadas, mediante técnicas dependientes del 

cultivo, y determinar la influencia del origen geográfico o la localización en el talo 

liquénico (ecto- o endoliquénica). 

3. Analizar la composición y diversidad de las comunidades bacterianas asociadas a las 

mismas poblaciones de R. farinacea mediante técnicas independientes del cultivo, así 



3 
 

como investigar la influencia de la localización geográfica o en el talo (ectoliquénica o 

endoliquénia, o bien apical, media y basal), así como el efecto de un tratamiento de 

desinfección.  

Para la consecución de estos objetivos, se analizaron talos de poblaciones de R. farinacea 

recolectados en áreas de Pinus canariensis de dos zonas geográficas diferentes de la isla de 

Tenerife (Canarias), en La Guancha y La Esperanza, y en áreas de Quercus rotundifolia de dos 

localizaciones geográficas distintas de la península ibérica, El Toro (Castellón) y Lidón (Teruel), 

todas ellas con clima mediterráneo. 

Con respecto al primer objetivo de la Tesis Doctoral, para aislar las cepas bacterianas de las 

muestras de R. farinacea se siguió el protocolo de análisis bacteriológico desarrollado por 

Biosca et al. (2016), consistente tanto en el lavado de la superficie de los talos liquénicos 

(bacterias ectoliquénicas) como en la disrupción por machacado de estos mismos talos lavados 

(bacterias endoliquénicas) con tampón antioxidante, utilizando medios de cultivo mínimos 

enriquecidos con extractos liquénicos, sin (ABL) o con fuentes de carbono adicionales (glucosa 

y manitol) (ABLGM) y prolongando la incubación 15 días a 26ºC. Dada la escasa información 

sobre la abundancia de las comunidades bacterianas asociadas a los líquenes, y en particular 

en R. farinacea, se llevó a cabo un recuento de las bacterias cultivables heterótrofas a partir de 

los distintos talos liquénicos analizados. Los datos comparativos de los recuentos de las 

bacterias aerobias heterótrofas mesófilas obtenidos de los talos de las poblaciones de R. 

farinacea de La Guancha y El Toro fueron similares (alrededor de 105-106 UFC/g) tanto en las 

muestras ectoliquénicas como en las endoliquénicas, siendo inferiores en las poblaciones 

liquénicas de La Esperanza y Lidón (alrededor de 104-105 UFC/g). Los recuentos bacterianos 

fueron similares en los dos medios de cultivo enriquecidos con extractos liquénicos (ABL y 

ABLGM), aunque generalmente superiores en el medio oligotrófico ABL, sin fuentes de 

carbono adicionales. 

La caracterización metabólica y fisiológica de las cepas bacterianas de R. farinacea se inició con 

la detección de la producción de pigmentos en el medio KB. Un gran porcentaje de las 

bacterias recuperadas de los talos liquénicos mostraron producción de pigmentos, en su 

mayoría de carácter celular, siendo los más abundantes el amarillo (32,3%) y el rosa (18,98%), 

y en menor medida el naranja (10,41%) y el blanco (10,49%). Un 27,82% de las cepas no 

produjeron pigmentos en las condiciones ensayadas. 

A continuación, la caracterización de las cepas bacterianas se siguió mediante el uso del 

sistema miniaturizado API ZYM que permite detectar 19 actividades enzimáticas, siguiendo las 

instrucciones del fabricante, pero optimizando el tiempo de incubación a 48 h a 26ºC. En 

dichas condiciones, entre el 80% y el 100% de las cepas ensayadas presentaron actividades 

esterasa, esterasa lipasa, leucina arilamidasa, fosfatasa ácida y naftol-AS-BI-fosfhohidrolasa. El 

resto de actividades se detectaron en un porcentaje de cepas que varió del 10 al 50%, y un par 

de actividades no se detectaron en ninguna de las cepas bacterianas ensayadas.  

Después, se prosiguió estudiando el potencial hidrolítico de las cepas bacterianas mediante 

metodología convencional en el medio de cultivo KB suplementado con distintas 

macromoléculas (almidón, caseína, Tween 20 y Tween 80), o con el uso de otros medios, como 

el agar gelatina y el DNAsa. Además, se investigó la capacidad de dichas cepas de degradar 
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celulosa, pectina, quitina y xilano. También se determinó la capacidad de las cepas bacterianas 

de R. farinacea para fijar nitrógeno, solubilizar fosfatos y/o producir sideróforos, mediante el 

uso de medios de cultivo mínimo libres de nitrógeno, el medio Pikovskaya’s y el medio CAS 

agar, respectivamente. Todas las actividades se ensayaron en experimentos independientes 

partiendo de cultivos ajustados a la misma concentración, y las placas inoculadas se incubaron 

a 26ºC durante al menos 7 días realizando lecturas periódicas. Los resultados revelaron que las 

polisacarasas (amilasa, celulasa, pectinasa, xilanasa y quitinasa) se detectaron en porcentajes 

diferentes, 43,82%, 31,53%, 51,94%, 61,07% y 79,88% según su actividad, respectivamente. 

Respecto a la actividad lipasa, el porcentaje de cepas capaces de degradar Tween 20 (53,07%) 

fue mayor que en el caso de Tween 80 (23,46%). En relación a la actividad proteasa, tanto la 

gelatina como la caseína fueron utilizadas por un porcentaje similar de cepas, entre un 31,14% 

y un 30,46%, respectivamente. La cantidad de cepas capaces de degradar ADN fue del 32,38%. 

Con respecto a la capacidad de las cepas bacterianas de aportar nutrientes limitantes, los 

resultados revelaron que un gran porcentaje de ellas fueron capaces de fijar nitrógeno 

(92,24%) y producir sideróforos (84,14%), siendo menor el porcentaje de las solubilizadoras de 

fosfatos (48,77%).  

La detección de actividades relacionadas con la promoción del crecimiento del talo liquénico, 

se centró en estudiar la producción de fitohormonas, como la auxina ácido indol acético (AIA) 

que se determinó tras 24 h y 72 h y se cuantificó mediante una curva patrón de AIA. Muchas 

de las cepas ensayadas produjeron AIA en presencia del precursor triptófano, a 

concentraciones crecientes conforme aumentó el tiempo de incubación, oscilando entre 0 y 

100 µl/ml a las 72 h. A continuación, se determinó la capacidad de las cepas bacterianas para 

producir el enzima ACC desaminasa (involucrado en la biosíntesis del etileno). Para ello, se 

llevó a cabo la detección molecular del gen acdS que codifica para este enzima mediante el uso 

del par de cebadores degenerados ACC R y ACC F. Los resultados mostraron que dicho gen sólo 

se detectó en el 18,54% de las cepas ensayadas. 

La producción de biopelículas se determinó en placas de microtitulación de 96 pocillos a 26ºC 

durante 48 h y 72 h, ensayando cada una de las cepas bacterianas por sextuplicado. Tras el 

experimento, las cepas se clasificaron en no productoras, productoras débiles, moderadas y 

fuertes, en función de la media de los valores obtenidos de DO600 nm comparados con los del 

control negativo, consistente en medio de cultivo sin inocular. Tras 48 h de incubación, la 

mayor parte de las cepas produjeron biopelículas de intensidad fuerte (53,06%), siendo los 

porcentajes de aquellas que produjeron biopelículas de intensidad moderada y débil más bajos 

(26,90% y 16,33%, respectivamente). La proporción de cepas productoras de biopelículas de 

intensidad fuerte y moderada se incrementó con el tiempo de incubación (72 h). 

Dado que la movilidad es un factor que contribuye en la formación de biopelículas, se investigó 

la movilidad tipo swimming y swarming de las cepas bacterianas en medio semisólido con 0,3% 

y 0,7% de agar, respectivamente, tras 24 y 48 h de incubación en KB a 26ºC. En cuanto a la 

movilidad tipo swimming, los resultados mostraron como un gran número de cepas fueron 

capaces de llevar a cabo este tipo movilidad natatoria, siendo un 70,43% de ellas positivas. 

Respecto a la movilidad tipo swarming, sólo se observó en un 5,6% de las cepas estudiadas.  



5 
 

La adscripción taxonómica inicial de una selección de cepas bacterianas de R. farinacea se 

realizó mediante la amplificación del gen ARNr 16S por PCR (cebadores 616V y 699R) y 

posterior secuenciación de los amplificados purificados. El análisis de las secuencias obtenidas 

se llevó a cabo con el programa Chromas Lite 2.1.1 y la aplicación BLASTN del NCBI. Las cepas 

bacterianas estudiadas se adscribieron a géneros tales como Arthrobacter, Bacillus, 

Burkholderia, Curtobacterium, Erwinia, Kocuria, Leifsonia, Methylobacterium, Microbacterium, 

Micrococcus, Mycobacterium, Nocardioides, Pantoea, Pseudomonas, Sphingomonas, 

Staphylococcus, etc., muchos de ellos con miembros con una gran diversidad de actividades. 

Tras el alineamiento se realizó un estudio de la filogenia de la colección de cepas bacterianas 

identificadas presuntivamente, incluyendo una selección de secuencias de géneros bacterianos 

obtenidos mediante comparación por BLAST y la realización de un árbol filogenético. 

El segundo objetivo de la presente Tesis Doctoral fue estudiar la composición y diversidad de 

las bacterias heterótrofas cultivables asociadas a las poblaciones de R. farinacea estudiadas de 

la isla de Tenerife (La Guancha y La Esperanza) y la península ibérica (El Toro y Lidón). Para ello, 

se seleccionaron un total de 286 cepas bacterianas de R. farinacea, tanto ectoliquénicas como 

endoliquénicas, a partir de las diferentes placas de aislamiento entre las que presentaron 

diferente morfología colonial, aisladas de muestras de talos de las distintas localizaciones 

geográficas. Para la identificación molecular presuntiva de la selección de cepas bacterianas se 

siguió la metodología anteriormente mencionda. Después, el estudio de beta y alfa diversidad 

se realizó mediante un análisis de varianza permutacional (PERMANOVA) con la función 

“Adonis” del paquete VEGAN de R. Para cuantificar las diferencias en la composición de las 

comunidades bacterianas se utilizó una matriz de disimilitudes medias basada en Bray-Curtis, 

calculado mediante el paquete MCTOOLSR de R. La diferencia de diversidad bacteriana entre 

las diferentes muestras se determinó mediante el uso de los índices de diversidad de Riqueza, 

Shannon y Simpson. 

El análisis de beta diversidad reveló que la estructura de las comunidades bacterianas 

asociadas a R. farinacea está determinada, principalmente, por el factor geográfico, tanto 

atendiendo al origen insular o peninsular de las cepas (PERMANOVA, R2=0,29, p<0,01) como al 

origen geográfico cada una de las poblaciones liquénicas estudiadas (PERMANOVA, R2=0,65, 

p<0,01), siendo menor la influencia debida a la localización de estas bacterias en el talo 

liquénico, en la fracción ectoliquénica o endoliquénica (PERMANOVA, R2=0,17, p<0,05). Estos 

factores explicaron el 29%, 65% y el 17% de la composición de la diversidad de las 

comunidades bacterianas, respectivamente.  

Los índices de Riqueza y de diversidad de Shannon y Simpson mostraron resultados similares al 

comparar la diversidad de las bacterias asociadas a los talos liquénicos de la isla y la península. 

El índice Shannon mostró valores mayores en las cepas insulares, lo que indica que los taxones 

presentes en la isla están representados por un número parecido de individuos en 

comparación con los de la península. El índice Simpson reveló valores similares tanto en las 

cepas de la isla como en las de la península, indicando una representación equitativa de las 

diferentes especies bacterianas. Cuando el estudio de diversidad bacteriana se estratificó para 

cada una de poblaciones de R. farinacea de La Guancha, La Esperanza, El Toro y Lidón, se 

observaron ciertas diferencias entre una de ellas y el resto. El índice de Riqueza mostró valores 

similares entre las cuatro poblaciones liquénicas, aunque la población de Lidón fue la que 
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presentó el valor más alto, mostrando que el número de especies bacterianas en esta zona era 

más alto que en el resto. Lo mismo sucedió con los índices de diversidad Shannon y Simpson, 

indicando que las especies bacterianas tuvieron una representación más equitativa en Lidón 

que en el resto de localizaciones geográficas. 

Por otra parte, las cepas bacterianas aisladas de los talos de las diferentes poblaciones de R. 

farinacea se asociaron a 3 fila principales, siendo Proteobacteria el predominante, seguido de 

Actinobacteria y Firmicutes. La presencia de Proteobacteria fue mayor en la isla (65,98%) que 

en la península (47,01%), seguido de Actinobacteria, cuya presencia fue más abundante en la 

península (46,68%) que en la isla (23,65%). Firmicutes fue el grupo con menor representación 

en ambas zonas (10,6% en la isla, 6,32% en la península). En las muestras obtenidas de La 

Guancha y La Esperanza la mayoría de cepas bacterianas se adscribieron al filo Proteobacteria 

(75,67% y 54,54%, respectivamente), seguido de Actinobacteria y Firmicutes. La asignación 

taxonómica de las cepas bacterianas de El Toro mostró menor diferencia en la proporción de 

Actinobacteria y Proteobacteria comparado con las otras poblaciones (49,29% y 40,84%, 

respectivamente). La cantidad de bacterias asignadas a Firmicutes, fue igualmente escasa 

(9,86%). En el caso de Lidón, el grupo principal fue Actinobacteria (54,65%). 

La diversidad de las bacterias identificadas se asignó a un total de 37 géneros diferentes. De 

entre ellos, sólo dos resultaron ubicuos, Bacillus y Sphingomonas. Otros géneros frecuentes 

entre las cepas bacterianas identificadas fueron Burkholderia, Curtobacterium, Erwinia, Kocuria 

y Methylobacterium, y otros menos frecuentes, fueron Arthrobacter, Averyella, Rhodococcus, 

Massilia, Sanguibacter, Subtercola, etc. Además, cabe destacar, que algunas cepas no se 

pudieron asignar a ningún grupo taxonómico, indicando la presencia de nuevas especies. 

Cuando se estudió la diversidad bacteriana atendiendo a la localización externa o interna en 

los talos liquénicos, los resultados mostraron que los valores en los índices de Riqueza y 

diversidad Shannon y Simpson fueron mayores entre las cepas bacterianas endoliquénicas que 

entre las ectoliquénicas, indicando un mayor número de especies diferentes y más 

uniformemente representadas en el interior del talo que en su superficie. La identificación 

taxonómica inicial de las bacterias asociadas a las fracciones ectoliquénica y endoliquénica de 

R. farinacea reveló algunas diferencias remarcables. Aunque Proteobacteria fue, en general, el 

grupo predominante, seguido de Actinobacteria, el número de cepas de Proteobacteria 

aisladas fue mayor en la parte ectoliquénica (69,57%) que en la endoliquénica (43,42%), en la 

que el número de Actinobacteria fue ligeramente superior (48,23%). La presencia de este 

grupo en la parte ectoliquénica fue del 22,83%. Respecto a Firmicutes, estuvo igualmente 

representado en ambas fracciones liquénicas (8,34%). 

El tercer objetivo de esta Tesis Doctoral consistió en estudiar la composición y diversidad de las 

comunidades bacterianas asociadas a R. farinacea mediante técnicas independientes del 

cultivo, con especial interés en determinar la influencia del origen geográfico o liquénico 

(ectoliquénico o endoliquénico, o bien apical, medio o basal) así como el efecto de una 

desinfección inicial en dichas comunidades. Como paso previo a la extracción del ADN, se 

procesaron submuestras de talos de cada una de las poblaciones liquénicas de las cuatro 

localizaciones geográficas de forma global, incluyendo tanto las comunidades bacterianas 

ectoliquénicas como las endoliquénicas, así como muestras de talos individuales. Además, 
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también se analizaron las comunidades bacterianas asociadas a ambas fracciones liquénicas 

por separado. Asimismo, se analizaron submuestra de talos adicionales dividiéndolos en tres, 

zonas apical, media y basal, previamente a la extracción de ADN. Adicionalmente, algunas de 

las muestras se sometieron a un tratamiento de desinfección con etanol al 70%, incluyendo 

talos sin tratar como control. La extracción de ADN de los diferentes talos de R. farinacea se 

llevó a cabo con un kit comercial y la amplificación del gen 16S ARNr y secuenciación de las 

muestras se realizó con los cebadores 515F y 806R. Tras la edición y filtrado de las secuencias, 

se compararon con las depositadas en la base de datos Greengenes para eliminar aquellas con 

alto grado de divergencia. A cada uno de los OTU obtenidos se le asignó una clasificación 

taxonómica usando Greengenes. Finalmente, cada muestra se ajustó a 1929 secuencias 

totales. Los análisis estadísticos se llevaron a cabo con el programa R. Las secuencias obtenidas 

se agruparon en un total de 848 OTUs.  

El estudio de beta diversidad reveló que las comunidades bacterianas asociadas a R. farinacea 

se vieron determinadas principalmente por el factor geográfico (PERMANOVA, R2= 0,24526, 

p<0,001 para las muestras agrupadas según fueran de la isla o de la península, PERMANOVA, 

R2=0,47, p<0,001 o bien atendiendo al origen de cada una las poblaciones liquénicas, La 

Guancha, La Esperanza, El Toro y Lidón). Este factor geográfico tuvo una influencia en la 

composición de estas comunidades del 24,53% entre las insulares y las peninsulares, y del 

47,05% a nivel de cada localización geográfica individual. Otro factor que influyó, aunque en 

menor grado, fue la localización ectoliquénica o endoliquénica de las bacterias en el talo, que 

explicó el 3,03% de esta composición bacteriana (PERMANOVA, R2=0.038, p<0.01).   

El análisis de alfa diversidad de las muestras en cada localización geográfica se determinó 

mediante los índices de Riqueza y los de diversidad Shannon y Simpson. Cuando las muestras 

se agruparon en función del origen insular o peninsular, la mayor riqueza bacteriana se 

observó entre las poblaciones peninsulares, estando además más equitativamente 

representada que en el caso de las muestras insulares. Cuando se analizó la alfa diversidad 

atendiendo a las cuatro localizaciones geográficas, la que mostró un mayor índice de Riqueza 

fue El Toro, que presentó un mayor número de especies bacterianas. Los índices de diversidad 

Shannon y Simpson revelaron que la zona de El Toro también fue la que presentó mayor 

diversidad bacteriana, mientras que la población de R. farinacea de La Esperanza fue en la que 

se observó menor diversidad. 

Los principales OTUs registrados en las muestras se asignaron a los fila Proteobacteria, 

Acidobacteria y Planctomycetes. Los grupos Bacteroidetes, Planctomycetes y Proteobacteria 

fueron más abundantes en las localizaciones de la península, mientras que Acidobacteria, 

Cyanobacteria y Firmicutes tuvieron una mayor representación en las muestras procedentes 

de la Isla. La proporción de Proteobacteria fue muy similar en las cuatro localizaciones 

geográficas. De entre las Proteobacteria, Alphaproteobacteria fue la clase predominante en 

todas las poblaciones seguida por Acidobacteria. En esta última, su presencia fue ligeramente 

superior en las poblaciones insulares (42,21% en La Guancha y 33,03% en La Esperanza) que en 

las peninsulares (27,3% in El Toro and 30,45% in Lidón). La presencia de Planctomycetes fue 

mucho menor en todas las poblaciones (alrededor de un 1% y un 3% de las secuencias 

insulares y peninsulares, respectivamente). En el caso de Cyanobacteria y Firmicutes, su 

prevalencia fue menor comparada con los grupos previamente citados, pero con ciertas 
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diferencias. La abundancia de Cyanobacteria fue mayor en las muestras de Tenerife (alrededor 

del 1,5%) que en El Toro y Lidón (alrededor del 0,1-0,2%). Lo mismo ocurrió con el filo 

Firmicutes, cuya prevalencia fue mayor en La Guancha y La Esperanza (alrededor del 1%), que 

en El Toro y Lidón (alrededor del 0,4%). 

La identificación a nivel de género reveló que un gran número de cepas bacterianas asociadas 

a R. farinacea no se pudieron asignar a ninguna especie con secuencia depositada en la base 

de datos utilizada. Sin embargo, algunos géneros fueron relativamente abundantes entre 

dichas bacterias tales como Beijerinckia (2,48%), Edaphobacter (2,42%), Sphingomonas 

(1,94%), Burkholderia (1,45%), Terriglobus (1,01%), Pseudomonas (0,6%) o Hymenobacter 

(0,45%).  

En relación al análisis de alfa diversidad en función del origen ectoliquénico o endoliquénico de 

las cepas bacterianas, los resultados mostraron unos índices de Riqueza y diversidad Shannon 

y Simpson fueron mayores entre las cepas ectoliquénicas que la endoliquénicas, indicando la 

presencia de un mayor número de especies bacterianas y más uniformemente representadas 

en la superficie de R. farinacea que en su interior. El análisis de los principales taxones 

bacterianos asociados a estas fracciones ecto- y endoliquénicas, mostró resultados similares a 

los observados en los análisis anteriores. Las bacterias asignadas a Proteobacteria fueron las 

mayoritarias en ambas fracciones (59,42% ectolilquénicas y 53,22% endoliquénicas), seguidas 

de las asignadas a Acidobacteria (31,30% ectoliquénicas y 41,42% endoliquénicas) y 

Planctomycetes (2,09% ectoliquénicas y 2,52% endoliquénicas). La presencia de Cyanobacteria 

y Bacteroidetes presentó diferencias más notables, siendo más abundantes en la fracción 

ectoliquénica.  

El estudio de diversidad bacteriana en función de la localización en las zonas apical, media y 

basal del talo de R. farinacea, reveló valores similares en los índices de Riqueza y diversidad 

Shannon y Simpson, aunque la zona apical fue la que mostró valores más bajos, presentando 

por tanto un menor número de especies y menor diversidad. En relación con la diversidad 

bacteriana, a nivel de filo, los principales grupos fueron Proteobacteria, Acidobacteria y 

Bacteroidetes. Sin embargo, los resultados indicaron una distribución preferente de algunos 

grupos en algunas de estas partes, como en el caso de Cyanobacteria, mayoritario en la zona 

media del talo (2,19%), disminuyendo en las zonas apical (1,30%) y basal (0,09%). Lo mismo 

sucedió con el grupo Firmicutes, con una mayor presencia en la zona apical (2,09%), 

disminuyendo en las zonas media (1,17%) y basal (0,29%). Por el contrario, el grupo 

Planctomycetes fue más abundante en la zona basal (4,68%), disminuyendo en las zonas media 

(2,63%) y apical (0,56%). 

Cuando se estudió el efecto de un tratamiento de desinfección con etanol, los resultados 

obtenidos con la identificación taxonómica mostraron como los fila Proteobacteria, 

Acidobacteria, Plantctomyctes y Bacteroidetes continuaron siendo los dominantes, sin 

diferencias en la abundancia de estos grupos entre las muestras sometidas o no al tratamiento 

de desinfección. 
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CONCLUSIONES 

A continuación, se resumen las principales conclusiones de este estudio: 

 1. El aislamiento de bacterias asociadas a poblaciones del liquen R. farinacea mediante el 

análisis bacteriológico y los medios de cultivo enriquecidos con extractos liquénicos (ABL y 

ABLGM) utilizados en este estudio han evidenciado una gran abundancia de bacterias 

heterótrofas cultivables (entre 104 y 106 UFC/g), siendo los recuentos obtenidos generalmente 

mayores que en estudios previos con otras metodologías y medios de cultivo convencionales 

que no reproducen las condiciones nutritivas de los talos liquénicos.  

2. La abundancia de bacterias cultivables aisladas de los talos de R. farinacea ha resultado 

similar tanto en la fracción ectoliquénica como en la endoliquénica de los talos analizados. No 

obstante, los recuentos de bacterias cultivables han sido diferentes en función del origen 

geográfico de los talos, siendo mayor en los de las poblaciones de R. farinacea de La Guancha y 

El Toro que en los de La Esperanza y Lidón. Estos resultados podrían estar relacionados con las 

diferentes condiciones ambientales en cada ubicación.  

3. La caracterización de las cepas bacterianas aisladas de R. farinacea confirma la importancia 

de su presencia en los talos de este liquen, tanto por sus posibles papeles funcionales en el 

reciclado y/o aporte de nutrientes y/o la promoción del crecimiento a través de la producción 

de fitohormonas o mediante formación de biopelículas, necesarios para el funcionamiento de 

esta simbiosis liquénica, como por sus potenciales aplicaciones biotecnológicas, dado que: 

i) Un alto porcentaje de ellas produce pigmentos, siendo los más frecuentes el amarillo 

y el rosa, lo que podría relacionarse, en parte, con la tolerancia frente a diferentes 

condiciones de estrés ambiental, como la radiación UV o el estrés oxidativo. 

ii) Muchas de las cepas bacterianas son capaces de producir enzimas hidrolíticos, tales 

como amilasas, celulasas, pectinasas, quitinasas y xilanasas, así como lipasas, 

proteasas y DNAsas, que podrían contribuir al reciclaje de nutrientes en las partes 

senescentes de los talos de R. farinacea suministrando azúcares, ácidos grasos, 

aminoácidos y nucleótidos a las zonas en crecimiento, ayudando así al mantenimiento 

de los mismos. Esta versatilidad hidrolítica también resulta de interés por su posible 

aplicación en distintas industrias biotecnológicas. 

iii) Una gran mayoría de las cepas bacterianas son capaces de fijar nitrógeno y producir 

sideróforos, y muchas de ellas también de solubilizar fosfatos inorgánicos. Dichas 

actividades también podrían contribuir a cubrir ciertos requerimientos nutricionales 

limitantes y esenciales para el crecimiento del talo liquénico. Las cepas que las poseen 

podrían explotarse como biofertilizantes. 

iv) Un porcentaje elevado de las cepas bacterianas produce la auxina ácido 

indolacético, y en algunas de ellas también se detectó el enzima ACC desaminasa, 

implicado en la síntesis de etileno. Dichas hormonas, capaces de modular el 

crecimiento de las plantas, también podrían influir en los procesos morfogenéticos de 

los líquenes y sus simbiontes, siendo estas cepas productoras de fitohormonas de 

interés como potenciales fitoestimulantes.  
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v) Casi todas las cepas bacterianas ensayadas son capaces de producir biopelículas, 

muchas presentando movilidad tipo swimming y algunas de ellas también tipo 

swarming. La formación de biopelículas podría estar relacionada con la capacidad de 

colonización de los líquenes en ambientes con condiciones específicas y extremas, 

pudiendo aumentar la absorción de nutrientes y conferir protección frente a estrés 

ambiental. Dichas cepas podrían explotarse también en aplicaciones biotecnológicas.   

4. La identificación molecular de una selección de cepas bacterianas de R. farinacea de 

acuerdo con sus diferentes potenciales fisiológicos y metabólicos, ha permitido adscribirlas a 

diferentes taxones bacterianos, algunos todavía poco estudiados y/o potenciales nuevas 

especies. 

5. El estudio de la composición y diversidad de las comunidades bacterianas heterótrofas 

asociadas a R. farinacea mediante técnicas dependientes del cultivo representa una pequeña 

fracción de la gran variedad de bacterias asociadas a este liquen. No obstante, aporta nueva 

información sobre estas comunidades cultivables en poblaciones de R. farinacea de diferentes 

zonas insulares y peninsulares de clima mediterráneo, así como sobre la influencia en ellas de 

la localización geográfica y en talo liquénico, lo que podría estar relacionado con sus diferentes 

papeles funcionales en esta especie liquénica.  

6. Entre las bacterias aisladas de R. farinacea, los grupos predominantes son ciertos fila, como 

Acidobacteria, Planctomycetes y Proteobacteria y clases como Actinobacteria, 

Alphaproteobacteria, Bacilli, Betaproteobacteria y Gammaproteobacteria. Además, algunas de 

las cepas aisladas de este liquen podrían ser nuevas especies. 

7. El estudio de la composición y diversidad de las comunidades bacterianas asociadas a R. 

farinacea mediante técnicas independientes del cultivo ha revelado que dichas comunidades 

están determinadas principalmente por la geografía, pero también por la localización en el talo 

liquénico, puesto que se han obtenido diferencias en las secuencias de bacterias entre las 

distintas localizaciones geográficas, así como entre las fracciones ectoliquénicas y 

endoliquénicas, y entre las partes apical, media y basal del talo. 

8. Entre los taxones identificados en las comunidades bacterianas de R. farinacea, muchos de 

ellos pertenecen a grupos bacterianos con representantes conocidos por sus actividades 

enzimáticas y/o su papel potencial en el reciclaje y/o suministro de nutrientes en los talos 

liquénicos, y que podrían contribuir al mantenimiento de la simbiosis liquénica multiespecies. 

Muchas de estas especies bacterianas se han aislado, caracterizado e identificado en este 

estudio, siendo algunas de ellas potencialmente nuevas, como resultado de que los líquenes 

son ambientes de comunidades bacterianas todavía poco explorados. 

9. Los líquenes suponen una nueva fuente de numerosos, diversos y nuevos microorganismos, 

con diversos potenciales biotecnológicos, muchos de ellos todavía por descubrir. 
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INTRODUCTION 

1. LICHENS 

Lichens are symbiotic organisms, usually composed of a fungal partner, the mycobiont, and 

one or more photoautotrophic partners, the photobionts (Nash, 2008), resulting in a unique 

entity, the lichen thallus or holobiont (Grube et al., 2009). The holobiont has been defined as 

the host organism together with all of its symbiotic microbiota (Gilbert et al., 2010). The 

resulting structure is the phenotype of the lichen-forming fungi. The fungal partner is the 

responsible of the lichen species name, and these mycobionts barely can exist without the 

symbiotic partners (Honegger, 1998, 2012). The photobionts can be a green algae 

(chlorolichens) or a cyanobacterium (cyanolichens) or, in some cases, both and they have their 

own scientific name. Most free-living algae and cyanobacteria occur in aquatic or at least very 

moist terrestrial habitats, but as part of lichens they occur abundantly in habitats that are 

frequently dry as well. Nevertheless, this bipartite or tripartite definition of the lichen 

symbiosis implies, in most cases, more partners (Nash, 2008).  

The term symbiosis was coined by Heinrich Anton de Bary in 1879 (Bary, 1879), as the 

association of different species of organisms living together. This is the most accepted 

definition nowadays and it includes different types of symbiotic associations, namely 

mutualistic, when all the partners get a benefit, commensalistic, when some of the partners 

get a benefit but the others result unharmed, and parasitic, when some of them suffer some 

damage (Dimijian, 2000). 

The symbiotic relationship is sometimes difficult to determine since, in some cases, it could be 

mutualistic in some periods and parasitic in others. Moreover, sometimes, the symbiosis could 

be established as a facultative relationship, while in others is an obligate state (Hawksworth, 

1989). Furthermore, this association could be of a fix duration or could be permanent, when 

the partners are never separated (Paracer, 2000).  

Mutualistic symbiosis are extraordinary in their variety and ubiquity and in these cases, each 

one of the partners supplies with some benefit to the other members of the association, either 

with some nutritional or structural contribution. Lichen symbiosis is an example of self-

supporting mutualism that has evolved for at least 400 million years (Taylor et al., 1995). 

Lichens are stable and well-balanced relationships between the autotrophic members, 

photobionts, and the heterotrophic component, the mycobiont. This symbiosis is obligate for 

the fungus but the photobionts are able to persist outside the lichen thallus structure 

(Mukhtar et al., 1994; Nash, 2008; O’Brien et al., 2005; Sanders, 2005; Wirtz et al., 2003). The 

lichen symbiosis implies a physiological integration and a flow of nutrients among their 

members (Smith and Douglas, 1987). The photobionts supply with carbon nutrition to the 

fungus, being polyols in the case of green algal lichens and glucose in the case of cyanolichens 

(Nash, 2008; Smith and Douglas, 1987). This process of carbon transfer is due to the cell wall 

permeabilization to carbohydrate in the lichenized photobiont (Hill, 1976). Furthermore, the 

cyanobionts supply with nitrogen to the mycobiont, due to their ability for fixing nitrogen 

(Nash, 2008). The mycobiont obtains a great benefit from this relationship, but also provides 
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protection to the photobiont against different abiotic stresses to the photobiont (Nash, 2008). 

The interactions that maintain the equilibrium of the lichenization state confers to the 

mycobiont and photobiont(s) partner(s) the ability to persist in environments, and sometimes 

to tolerate extreme and stress conditions, such as high irradiations, UV light, extreme 

temperatures and dehydration, where they wouldn’t be able to grow individually (de Vera et 

al., 2008; Grube and Berg, 2009; Kranner and Lutzoni, 1999), suggesting a simultaneous 

evolution of the lichen partners (del Campo et al., 2013; Grube and Berg, 2009). 

As a consequence, lichen species are ubiquitously widespread and adapted to extreme 

ecological conditions, being present from high altitudes to the sea level, in Artic boreal and 

tropical habitats and close to volcanos (Gadd, 2007; Grube et al., 2012b; Nash, 2008; Stocker-

Wörgötter, 2008). Even some experiments were performed to assess if lichens could survive to 

space conditions. The European Space Agency launched two lichen species into space, 

Rhizocarpon geographicum and Xanthoria elegans, and exposed them to these conditions for 

16 days. Once on Earth conditions again, both lichen specimens recovered their full 

metabolism and activity within 24 h. That experience showed that lichens could survive to 

high-vacuum, extreme temperatures, huge levels of UV and cosmic radiation – which is lethal 

for bacteria and most other microorganisms (Sancho et al., 2007).  

During the last ten years new insights into the lichen composition have revealed the presence 

of non-photosynthetic bacterial communities in the lichen thallus which have been considered 

as active multifunctional partners in the holobiont (Grube et al., 2009). The presence of 

bacteria in lichens was reported many years ago (Cardinale et al., 2006; González et al., 2005; 

Henkel and Plotnikova, 1973; Iskina, 1938; Panosyan and Nikogosyan, 1966; Selbmann et al., 

2010), but the high diversity and number of bacteria associated with lichen thalli has begun to 

be revealed through advanced culture-independent techniques (Bates et al., 2011; Grube and 

Berg, 2009; Hodkinson and Lutzoni, 2009). Further, non-symbiotic fungi have been found 

associated with the members of the lichen thallus, making the understanding of the lichen 

symbiosis even more complex (Aschenbrenner et al., 2014; Cernava et al., 2016; Grube et al., 

2015; Grube and Berg, 2009; Muggia et al., 2013; Nash, 2008). Therefore, the classical 

paradigm of the complex symbiotic system based on a myco-centric view is changing to a 

wider concept. It might include a microbial community, composed of a large diversity of taxa, 

in addition to the main symbionts, with an effective interaction among them, being lichens 

now considered as multispecies symbiosis (Aschenbrenner et al., 2016; Grube et al., 2014). 

1.1 LICHEN BIOLOGY 

Lichens are long-lived organisms with a slow rating growth that appears in a wide diversity of 

forms, colours and morphologies. Despite the fact of being resistant to different abiotic 

stresses, they can be vulnerable to slight changes in environmental conditions that can disrupt 

the symbiotic association integrity (Erlacher et al., 2015). 

During the process of development and morphogenesis of the lichen thallus, mycobiont and 

photobionts suffer an intricate series of changes that affect their morphology, biochemistry 

and physiology, giving as a result, a completely new organism with new characteristics and 

properties (Chapman and Margulis, 1999; Honegger, 2008a). 
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When the lichen-forming fungi establishes the association with the photobionts, the symbiotic 

phenotype and features of the lichen are expressed. In the majority of cases, lichen algal 

photobionts are located extracellularly within the lichen thalli (Honegger, 2008a). In the case 

of cyanolichens, a symbiosis with free-living cyanobacteria is established with bacterial cells 

being found also on thallus surfaces (Honegger, 2008a). 

It is known that a big number of algal and cyanobacterial species are compatible with many 

lichen-forming fungal species. Usually, most of the genera of lichen-forming fungi establish an 

association with only one genus of photobionts (Rambold et al., 2011). The symbiotic 

phenotype is expressed only when the lichen-forming fungi meets the compatible photobiont, 

although when they are in an axenic culture, these lichen-forming fungi can grow and develop 

a kind of thallus independently of their photobiont (Ahmadjian, 1988). 

Growing rates in lichens are very slow. In the case of lichens from extreme climates, they have 

short periods in which they are full metabolically active and can grow (Kappen, 1993). Thus, 

very low cell turnover rate and minimal annual size increases could be determined, being the 

longest age estimates in the range of millennia. In contrast, there are some lichen species with 

a short life, and they finish their complete development within months or few years. Lichens 

growing in temperate or subtropic to tropic areas have a growth range of millimeters to a few 

centimeters per year, respectively (Honegger, 2008a). 

1.1.1 Lichen metabolites 

Lichens are interesting organisms because of their metabolites. Some of them are primary 

metabolites and others secondary metabolites. The most common primary metabolites are 

proteins, amino acids, polyols, carotenoids, polysaccharides, and vitamins. These metabolites 

are water-soluble and are bound in the cell walls and the protoplasts (Elix and Stocker-

Wörgötter, 2008; Fahselt, 1994). Both mycobiont and algal photobiont produce these 

compounds (Elix and Stocker-Wörgötter, 2008). Secondary metabolites are normally organic 

compounds produced by the fungus and deposited on the surface of the hyphae. They are 

water-insoluble and can only be extracted with organic solvents. In the case of carbon sources, 

lichens are furnished by the photosynthetic activity of the algal partners (Elix and Stocker-

Wörgötter, 2008). Different types of carbohydrates produced by the algal photobiont 

contribute to the carbon cycle in the lichen and supply to the fungus, being a polyol such as 

ribitiol, erythriol or sorbitol. When the lichens also contain cyanobacteria, the carbohydrate 

supplied is glucose (Elix and Stocker-Wörgötter, 2008). These carbohydrates are stored in the 

fungus as mannitol, another sugar alcohol (Brodo et al., 2001). 

Secondary metabolites have been used in the identification of lichens, for example, at genus 

level. In lichens growing on exposed surfaces or environments, light-absorbing compounds are 

located in the upper cortical area of vegetative and generative parts of the thallus. These 

pigments act as light-screens regulating the solar irradiation that reaches the lichen thallus 

zone where algal cells are located in order to protect them from an excess of ultraviolet 

irradiation (Rubio et al., 2002). 
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Regarding the polysaccharides, the best-known types of polymeric storage products in lichens 

are lichenan, isolichenan and galactomannan, each one of them having a variety of different 

chemical structure depending on the ancestor (Elix and Stocker-Wörgötter, 2008). Structural 

polysaccharides are also important in fungi biochemistry and have maintained features in their 

evolution, thus being considered taxonomically important at the highest levels of classification. 

Some examples are the presence of chitin, chitosan or cellulose in the fungal cell wall, 

characteristics that help to identify fungi at class level (Elix and Stocker-Wörgötter, 2008). 

1.1.2 Lichen inorganic nutrients 

In lichens, as in other organisms, the need to accumulate and process macro- and 

micronutrients is necessary and critical for their growth and development. Due to their 

physiological characteristics, lichens depend on atmospheric sources of nutrients (Nieboer et 

al., 1978) and they have developed mechanisms to concentrate nutrients (Nash, 2008). 

Atmospheric deposition to lichens could take place through precipitation, fog and dew, in the 

case of wet deposition, and sedimentation, impaction, and gas absorption, in the case of dry 

deposition (Knops et al., 1991).  

The source of nutrients in lichens may come from the atmosphere but also from the substrate. 

Many lichens grow on soils or rocks being, therefore, in contact with lithic sources of nutrients. 

Lichens may participate in wearing out rocks by mechanical and chemical processes (Syers and 

Iskandar, 1973). Since pH affects nutrients solubility, nutrient availability may be different 

between limestones and acidic substrates with the consequent differences in lichen 

communities growing in such substrates (Nash, 2008). Soil particles usually have a high 

concentration of several metals such as Al, Fe, Sc, Ti and other elements of lithic origin, and 

could be incorporated into intracellular lichen spaces. The solubilization of these particles 

suppose a source of nutrients, but sometimes the process is not fast and many of the particles 

are not available (Nash, 2008). 

Something similar occurs in epiphytic lichens growing on the surface of trees. Epiphytic lichens 

are influenced by changes in nutrient processing that occurs in the canopy and in the bark of 

trees. Some elements as potassium seep from foliage and may be uptaked by these lichens. In 

some trees, there are stemflows during precipitation, and this supposes an important source 

of nutrients (Nash, 2008). As it happens in rocks and soil, the availability of nutrients is 

different depending on the composition and the pH of the bark tree). There are different 

lichen communities on trees with acid barks, as conifers, compared to those with more neutral 

bark as Fraxinus, Tilia, etc. (Nash, 2008). 

Nutrient necessities in lichens are complex to establish due to difficulties in culturing them. 

Nevertheless, some of these nutritional requirements could be inferred partially due to the 

substrate specificity in which lichens grow and the nutrient composition of such substrates 

(Brodo, 1973). When some nutrient is added, the growth and some metabolic processes are 

stimulated. It is well studied, for example, the effect of nitrogen limitation on lichen growth.  

Nitrogen is one of the essential macronutrients and it participates in the synthesis of proteins 

and nucleic acids. It restricts growth and lichen productivity due to its limited accessibility. The 

principal source of nitrogen is the atmospheric one, as N2, but this is a chemically inert form 



17 
 

not readily usable by most of the organisms, with only some prokaryotes being able to fix the 

atmospheric nitrogen (Seefeldt et al., 2009). The inorganic forms of nitrogen that can be 

assimilated by many organisms are nitrate (NO3
-) and ammonia (NH3, or ammonium ions, 

NH4
+). Their availability is crucial for growth and survival of green-algal lichens. In these 

chlorolichens, the nitrogen concentrations should be related to the atmospheric presence of 

these ions (Hyvärinen and Crittenden, 1998). In the case of cyanolichens, cyanobacteria can 

take atmospheric N2 directly. Due to this ability, cyanolichens have higher levels of nitrogen 

than chlorolichens (Nash, 2008). 

Around 10% of lichen species have cyanobacteria as photobionts. The main species of 

cyanobacteria present in these lichens are Calothrix, Fischerella (=Stigonema), Gloeocapsa, 

Nostoc or Scytonema, all of them able to fix N2. In the case of tripartite lichens, when 

cyanobacteria are the secondary photobionts, they are located in specialized structures named 

cephalodia, where a functional and spatial separation of carbohydrate and nitrogen fixation 

occurs (Grube et al., 2012b, 2014; James and Henssen, 1976). 

The nitrogen-fixation process is energy-dependent, and only occurs in some species of bacteria 

and archaea. It is catalyzed by an enzyme complex called nitrogenase, a metalloprotein that 

involves a Fe-protein (dinitrogenase reductase) and a Fe-Mo protein (dinitrogenase) (Nordlund 

and Högbom, 2013). Fe-protein is a homodimerous and it is extremely sensitive to oxygen. Fe-

Mo protein has a structure of α2 β2 tetramer. Each one of the αβ units, harbour a set of 

cofactors, being the Fe-Mo cofactor the active site where molecular nitrogen is reduced 

(Nordlund and Högbom, 2013). Ferredoxin provides the electrons to the dinitrogenase 

reductase (Fe-protein), which transfers electrons to the dinitrogenase (Fe-Mo protein) which 

will transfer electrons and protons to N2, to form two NH3. Nitrogenase is an enzyme which 

could be easily inhibited by O2, therefore it is necessary a separation of nitrogen fixation from 

the photolysis of water during photosynthesis (Nordlund and Högbom, 2013; Seefeldt et al., 

2009). Some cyanobacteria, as Nostoc, solved the problem forming specialized cells named 

heterocysts, in which the phycocyanin accessory pigments and water-splitting magnesium 

center of photosystem PS II are lost (Tel-Or and Stewart, 1976). Thus, heterocysts maintains 

internal anaerobiosis or microaerobic conditions protecting nitrogenase from O2 inactivation 

(Tel-Or and Stewart, 1976). 

Phosphorus limitation also affects lichen productivity. Unlike nitrogen, phosphorus has no gas 

phase, and usually it is lost from ecosystems by sedimentation and secondary mineral 

formation. Some studies were conducted with nitrogen and phosphorus as fertilizers in lichens 

hypothesizing that the growth at the thallus apices creates a sink for these nutrients, and that 

remobilization of nitrogen and phosphorus in older thallus regions creates a source of these 

nutrients (Ellis et al., 2005; Hyvärinen and Crittenden, 2000).  

1.1.3 Lichen selectivity and specificity 

The association between the mycobiont and the photobiont/s is described by the terms 

selectivity and specificity (Yahr et al., 2006). Thus, the frequency rate of association between 

compatible lichenic partners defines the selectivity, while the specificity is the taxonomic range 

of partners that can participate in this association. The specificity is sometimes influenced by 
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the environmental conditions (DePriest, 2004; Rambold et al., 2011). Most of the lichens are 

developed under Ascomycetes lichen-forming fungi, approximately 99% of them, with only few 

lichenized Basidiomycetes (less than 1%) and Deuteromycetes (Honegger, 2012; Lutzoni et al., 

2004; Nash, 2008). Generally, lichens have a high specificity choosing the photobiont (Beck, 

2002; Rambold et al., 2011), but in the case of the mycobionts, this specificity is not as narrow 

as it is usually assumed (Nash, 2008). 

Regarding the population structure, usually a single primary photobiont is found in a single 

thallus, but in some cases the photobiont population is composed of multiple algal genotypes 

(Muggia et al., 2008; Nelsen and Gargas, 2008; Yahr et al., 2004), meaning a favorable and 

advantageous situation allowing the lichen to adapt and respond to environmental changes 

and, thus, to colonize different habitats (Piercey-Normore, 2006). 

1.1.4 Thallus internal organization 

Lichens do not possess a vascular system and lack waxy-impermeable barriers which allow a 

continuous exchange of substances with the surrounding environment (Sanders, 2001). Thus, 

they lack specialized mechanisms for controlling their water content, which is regulated, 

possibly, by the water potential of the environment they inhabit (Nash, 2008; Sanders, 2001). 

Lichen symbiosis classically is considered as an association between two functional partners, 

although it often involves more organisms, such as cyanobacteria (Grube et al., 2014). In fact, 

the number and type of photobionts associated with the lichenized fungi defines the lichens as 

bi- or tripartite (Lohtander et al., 2003; Magain et al., 2012; Magain and Sérusiaux, 2014; 

Miadlikowska and Lutzoni, 2004). Bipartite lichens are referred as chlorolichens when the 

photobiont population are green algae, and as cyanolichens when the photobionts are 

cyanobacteria (Henskens et al., 2012). In bipartite lichens where cyanobacteria are the primary 

photobionts, they provide fixed carbon and nitrogen to the lichen. In tripartite lichens 

cyanobacteria suppose part of the thallus as a photobiont member as well as the green algae 

(Grube et al., 2014). These bacteria have the main role fixing nitrogen (Grube et al., 2014).  

Therefore, the environment has a strong influence on the lichen thallus structure, being the 

abiotic environmental factors the ones that may shape/modulate its morphology and 

anatomy. Their construction has to ensure the positive net photosynthetic function for 

sufficient growth rates (Sanders, 2001). This assumes that photobionts are in the right 

distribution to receive the amount of light needed, that the diffusion of carbon dioxide to 

them happens readily and that the loss of water is adapted to the environment, being 

minimum under dry conditions and maximum in wet environments (Nash, 2008). Thus, 

environmental conditions at different geographic locations strongly influence the distribution 

and abundance of lichen species, which are also affected through time (de la Torre et al., 2010; 

Nelsen and Gargas, 2008; Werth, 2011). 

Lichens Mediterranean taxa are distributed along regions with Mediterranean climates, 

including Southern Europe, Northern Africa, Macaronesia and Southern California/Northern 

Baja California. They include taxa from arid and semi-arid areas (Galloway, 2008). 
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1.2 LICHEN GROWTH FORMS AND STRUCTURE 

1.2.1 Lichen thallus structure and morphology 

Internally, the thallus structure of the vegetative body is either homoiomerous (without 

stratification) or heteromerous (with stratification) (Aschenbrenner et al., 2016). A 

representative drawing of the structure of homoiomerous and heteromerous thalli is shown in 

figure 1a and 1b, respectively. 

Homoiomerous thallus 

This lichen structure is characterized by a homogenous (evenly) distribution of the mycobionts 

and photobionts in the thallus (Aschenbrenner et al., 2016). These types of lichens are 

gelatinous and absorb much more water in relation to their dry weight than non-gelatinous 

lichens do. Thus, the CO2 diffusion to the photobiont is committed or even blocked when the 

thallus is supersaturated, resulting in a limiting factor under these circumstances. Examples of 

this thallus structure are found in the genera Caloplaca, Pyrenopsis or Collema (Lange and 

Tenhunen, 1981; Nash, 2008).  

Heteromerous thallus (stratified lichens)  

The majority of lichens belong to the group of the internally stratified thallus. This stratification 

includes the following layers with different functions: 

-Upper cortex: the main functions are mechanical protection, the modification of energy 

budgets (Kershaw, 1985), antiherbivore defense (Reutimann and Scheidegger, 1987), and 

protection of the photobiont against excessive light (Jahns, 1988; Kappen, 1988). 

-Medullary layer: it occupies the internal thalline volume and is formed by long-celled, not 

tightly interwoven hyphae forming a layer with a very high internal airspace. The upper part of 

the medulla forms the photobiont layer. In fruticose lichens (see below), this layer is often 

formed as a supporting tissue and consists of conglutinated hyphae. The hyphal cell walls and 

the medullary layer are often encrusted with crystalline secondary products that make this 

medullary hypha hydrophobic. Water transport to the photobiont seems to be restricted to 

mycobiont cell walls. In periods with water-saturated conditions, the cells of the symbionts are 

turgid, and during dry periods the photobiont cells lose water and collapsed (Büdel and 

Scheidegger, 2008). 

-Lower cortex: it has a great ability for absorbing water directly, however, it may have a major 

role in retaining extrahalline, capillary water. It is well-developed in typical foliose lichens (see 

below) of the Parmeliaceae and other groups (Jahns, 1984).  
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a) b) 

Figure 1. Representative drawing of thallus anatomy. a) Homoiomerous thallus; b) Heteromerous 
thallus. Taken from: http://www.biologydiscussion.com and http://classes.midlandstech.edu, 
respectively. 

Morphology 

Lichen morphology is traditionally classified into three main groups: crustose (crust-like 

biofilm), foliose (leaf-like) and fruticose (branched tree-like, shrubby, pendulous) types. 

Examples of these main morphologies are shown in figure 2. The appearance of the lichen 

thallus is determined by the mycobiont. There are some special types as the gelatinous lichens 

that differ from the others due to the lack of aerial hyphae systems, the possession of 

hydrophobic cell wall surfaces and the lack of air-filled zones (Büdel and Scheidegger, 2008; 

Hawksworth et al., 1995; Honegger, 2012; Nash, 2008). 

 

Figure 2. Representative pictures of different types of lichen thalli. a, b) Crustose. c, d) Foliose. e, f) 
Fruticose. e, g) Gelatinous. Pictures a, b, c, d, e, f, author’s personal pictures. Picture g, taken from: 
http://bobklips.com/.  

http://www.biologydiscussion.com/
http://classes.midlandstech.edu/
http://bobklips.com/
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1.3 LICHEN SYMBIOSIS 

1.3.1 The mycobiont 

Fungi are heterotrophic organisms that have developed different strategies for acquiring 

organic carbon. Lichen-forming fungi are a taxonomically heterogeneous group of nutritional 

specialists that acquire fixed carbon from the small population of photobionts, the green algal 

and/or cyanobacterial cells (Honegger, 2008b). 

The fungal partner in the lichen symbiosis is the one that controls and maintains the 

photobiont cell population and ensures an optimal illumination and gas exchange to the algae 

and/or cyanobionts (Honegger, 1991, 1992, 2008b). 

Lichenization occurs typically in the classes fungal Lecanoromycetes and Arthoniomycetes and 

the order Verrucariales within the phylum Ascomycota, although in some occasions appears in 

others as Dothideomycetes (Gargas et al., 1995; Schoch et al., 2009). The members of the class 

Lecanoromycetes are the most lichenized fungi (Grube et al., 2014). 

1.3.2 The photobiont 

Photobionts are essential components in the lichen symbiosis, being responsible of light 

harvesting under an extreme range of ecological conditions, necessary for the establishment 

and formation of the lichen thallus (Beck, 2002). 

Approximately 85% of lichen-forming ascomycetes have been reported to be associated with 

green algal as photobionts, around 10% with cyanobacteria (as primary photobiont) and about 

3% with both of them (algae as the primary photobiont and cyanobacteria as de secondary 

one), for the establishment of the lichen symbiosis (Friedl and Büdel, 2008; Tschermak-Woess, 

1988). Related to the algae and cyanobacteria, around 120 genera are known to participate as 

photobionts in lichens, although not all of them have been identified at species level 

(Honegger, 2012; Piercey-Normore, 2006). 

Green algae 

Eukaryotic green algae, with a wide variety of morphologies, suppose the main photobionts 

partners in most lichen symbiosis. They are organized in coccoid, sarcinoid or filamentous 

forms without flagella (Friedl and Büdel, 2008). 

In the family of the lichenized fungi Lecanorales, the most frequent algal photobionts belong to 

the genus Trebouxia, while Trentepholia is more frequent in lichens of the orders Arthoniales 

(e.g. Roccella), Gyacetales (e.g. Coenogonium) and Sphaeriales, which gives an orange color to 

the lichen thallus (Friedl and Büdel, 2008). Other important phycobionts are the genera 

Chlorella and Chlorella-like algae, as well as Coccomixa, Elliptochloris, Diplosphaera and 

Nanochloris (Tschermak-Woess, 1988), although they are more frequent in some crustose 

lichens of the Lecanorales and Calicales. The green alga Coccomyxa is common in the fungal 
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families Baeomycetaceae and Peltigeraceae as well as in lichenized Basidiomycetes (Friedl and 

Büdel, 2008). 

The Trebouxiophyceae class comprises the majority of the unicellular green algal lichen 

photobionts (Friedl, 2006). Around 60% of the fungal species among the Lecanoromycetidae 

class is associated with members of the algal genera Trebouxia or Asterochloris (Honegger, 

2012). Morphologically, these algal genera have a central chloroplast with a central pyrenoid 

(Friedl and Büdel, 2008; Škaloud and Peksa, 2008, 2010; Tschermak-Woess, 1988), with 

cellulosic walls (Brunner and Honegger, 1985; Honegger, 1984) and are tolerant to desiccation. 

Cyanobacteria 

Cyanobacteria are prokaryotes with thylakoids distributed freely in the cytoplasm and a 

circular DNA not associated to histones and concentrated in the cytoplasm in areas called 

“nucleoid” (Nash, 2008). The orders Chroococcales, Nostocales, Pleurocapsales and 

Stigonematales comprise the most representative members of the cyanobacteria lichen 

photobionts (Friedl and Büdel, 2008; Tschermak-Woess, 1988), with the genera Nostoc, 

Gloeocapsa and Chroococcidiopsis being the most common (Friedl and Büdel, 2008). The 

association between the lichen-forming fungi and the cyanobacteria has an exclusive character 

in some taxa. In other cases, they could be associated with different lichen-forming fungi, as in 

the case of genotypes of Nostoc, which are the most common cyanobacterial lichen 

photobionts (Honegger, 2012). 

The contribution of the cyanobacteria, as Nostoc and other prokaryotic diazotrophic (able to 

fix nitrogen) lichen photobionts, is to provide photosynthates and fix nitrogen to the fungal 

partner (McDonald et al., 2012b). Furthermore, some of them possess heterocystes, increasing 

up to five times the frequency of these structures when cyanobacteria are lichenized 

compared with the free-living state (Feige and Jensen, 1992).  

In tripartite lichens, despite the fact of being cyanobacteria and algae physically separated, 

cyanobacteria can be present as a layer below the green-algae, or as colonies next to the 

thallus, a condition which is known as cyanotrophy. Both cephalodiate (with cephalodia) and 

cyanotrophic lichens are indicators of the re-distribution of metabolic functions in lichens with 

more than two partners (Grube et al., 2012a). 

1.3.3 The bacteria 

Additional partners in the multispecies lichen symbiosis 

Bacterial colonies on lichen thalli surfaces were observed by microscopy many years ago 

(Grube et al., 2012b). The first observations, probably, were made with the lichen parasite 

Chondromyces lichenicola (now classified as Melittangium lichenicola in Myxobacteriaceae) 

(Thaxter, 1892). Thereafter, Cengia-Sambo (Cengia-Sambo, 1925, 1931) also observed bacteria 

in lichens and coined the term “polysymbiosis” for the multipartite relationships. Subsequent 

studies reported other bacteria associated with lichens, some of them being able to degrade 
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cellulose (Navahradak, 1949). In 1956, Azotobacter was detected in lichens (Scott, 1956) and 

that revealed that part of the fixed-nitrogen in lichens might be provided by non-

photosynthetic bacteria. Other common bacterial genera reported were Clostridium (Iskina, 

1938), Beijerinckia (Panosyan and Nikogosyan, 1966), Bacillus and Pseudomonas (Henkel and 

Plotnikova, 1973). The presence of Actinobacteria in lichens was also described, and in 

cyanolichens a defensive role was suggested for them (Zook, 1983).  

Lichens are able to colonize oligotrophic habitats, such as nude rocks, speculating that their 

associated bacteria might supply some relevant nutrients as fixed nitrogen, growth factors, 

etc. (Honegger, 1997). Earlier studies about the role of bacteria in lichens relied on functions 

found in the culturable fraction of the lichen-associated bacterial community (Grube et al., 

2012a). Liba et al. (2006) found nitrogen-fixing bacteria in lichen species from Brazil. Further 

analysis of these bacteria showed that some of them were able to excrete amino acids and the 

hormone indole-3-acetic acid (IAA), while others solubilized phosphate or released ethylene 

(Liba et al., 2006). These data would support a relevant role of bacteria in the nutritional and 

hormonal amendment in lichens (Grube et al., 2012a). 

Using sequencing methods, some of the first detected activities in lichenic bacteria were the 

nitrogen fixation (Hodkinson, 2011; Hodkinson and Lutzoni, 2009) or the mobilization of fungal 

cell wall components such as water-soluble glucans (Hodkinson, 2011). Through comparative 

omic studies made with the lung lichen Lobaria pulmonaria, it was reported that the bacteria 

present in this lichen provide vitamin B12, nutrients, growth hormones to the algae and 

resistance to pathogens (Grube et al., 2015). In other lichens, as Peltigera membranaceae, the 

bacterial symbionts are known to participate in phosphate solubilization, which could be 

involved in algal growth promotion (Sigurbjörnsdóttir et al., 2015).  

In recent years, ectolichenic (associated to the external surface of the lichen thallus) and 

endolichenic (associated with the inner area of the lichen thallus) bacterial communities have 

been characterized by using different molecular tools (Bates et al., 2011; Cardinale et al., 2006, 

2008; Grube et al., 2009; Grube and Berg, 2009; Hodkinson, 2011; Hodkinson and Lutzoni, 

2009; Mushegian et al., 2011; Selbmann et al., 2010). Further studies using fluorescence in situ 

hybridization and confocal laser scanning microscopy (FISH-CLSM) and other molecular and 

novel microscopic techniques, reported that Alphaproteobacteria represented a dominant 

group in some studied lichen and they appeared, in many cases, forming biofilm-like colonies 

(Bates et al., 2011; Cardinale et al., 2006, 2008, 2012b; Grube et al., 2009; Grube and Berg, 

2009; Hodkinson et al., 2012; Hodkinson and Lutzoni, 2009; Mushegian et al., 2011; Selbmann 

et al., 2010). However, within culturable isolates, Alphaproteobacteria was not the most 

represented group, with other bacterial taxa being found in significant amounts (Grube et al., 

2012a). Rhizobiales appeared to be the predominant order in the lichen-associated bacteria, 

although members of Acidobacteriaceae, Acetobacteraceae and Brucellaceae were also 

present (Ramanan et al., 2016).  

As a result of these studies, the bacteria associated with lichens and their functional roles were 

recognized conferring a new insight to the lichen concept (Hodkinson et al., 2012; Hodkinson 

and Lutzoni, 2009). Lichens are known as one of the oldest type of symbiotic relationship, with 

their structure being influenced by the nature of their symbionts. Algae and bacteria share a 
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symbiotic relationship that affect their physiology and existence, affecting the lichen survival 

as well, and showing the ecological significance of these interactions (Hodkinson et al., 2012; 

Lutzoni et al., 2001; Ramanan et al., 2016).  

Many lichen species are distributed in a wide range of geographical locations, being found in 

all continents and both hemispheres. Whether the bacterial community composition 

associated with lichens follows or not the lichen geographical distribution, is the object of a 

new line in the lichen microbiome research (Hodkinson et al., 2012). 

Analyses of bacteria associated with lichens 

Culture-dependent techniques 

Culture media used for the isolation of lichen-associated bacteria have been chosen or 

designed, usually, depending on the environmental origin of the lichen thalli, attending at 

characteristics such as the substrate (soil, tree barks, etc.) but also focusing on the isolation of 

some bacterial groups interesting for their potential biotechnological properties (González et 

al., 2005), such as diazotrophic bacteria (Cardinale et al., 2006; Liba et al., 2006). In the last 

decade these studies have centered on the isolation of lichen-associated culturable bacteria 

with different aims: to focus on different bacterial targets, either individual isolates or specific 

species, or either with taxonomic or biotechnological purposes (Suzuki et al., 2016). A 

summary of such studies including the isolation culture media and the aim of these studies, is 

shown in tables 1 and 2. 
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Table 1. A list of studies in which different culture media were used for isolation of certain bacterial 
groups associated with lichens with different purposes. Adapted from Suzuki et al., (2016).  

 

Starting with the first studies about the diversity of lichen-associated bacteria, the isolated 

strains were assigned to the genera Azotobacter, Bacillus, Beijerinckia, Clostridium and 

Pseudomonas (Henkel and Plotnikova, 1973; Iskina, 1938; Panosyan and Nikogosyan, 1966). 

Thereafter (Table 1 and 2), a study focused on the isolation of Actinobacteria because of their 

biotechnological potential was conducted by González et al. (2005) using lichens collected in 

three different environments, in Alaska and in tropical areas. More than 300 lichenic bacterial 

strains were isolated, identified and assigned through DNA fingerprinting and fatty acid 

analyses to the families Geodermatophilaceae, Micromonosporaceae, Nocardiaceae, 

Pseudonocardiaceae, Streptomycetaceae, Streptosporangiaceae and Thermomonosporaceae 

(González et al., 2005). 

Cardinale et al. (2006) isolated ecto- and endolichenic bacteria from nine lichen species of 

Cladonia sp., Pseudevernia sp., Hypogymnia sp. and Rocella sp. collected in Austria and France. 

They only isolated 34 morphologically distinct bacterial colonies from the external and internal 

surfaces of all lichen thalli analyzed, with interest in diazotrophic bacteria. 
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Liba et al. (2006) focused on the isolation of bacteria associated with cyanolichens from Brazil, 

working with lichen species of Canoparmelia. and Parmotrema, obtaining several nitrogen-

fixing positive isolates belonging to different genera of Gammaproteobacteria. 

Selbmann et al. (2010) analyzed the bacterial communities associated with 16 epilithic Antartic 

lichens belonging to the species Acarospora, Buellia, Lecanora, Lecidea, Rhyzocarpon, 

Umbilicaria, Usnea. and Xanthoria. As a result, they got 30 bacterial isolates, being some of 

them psychrotolerants. A new species of Deinococcus–Thermus was reported and other strains 

represented new potential taxa.  

Pankratov (2012) isolated bacteria from lichens collected in bog and tundra areas in Northern 

Russia. The author found a high abundance of Alphaproteobacteria and Actinobacteria in all 

the lichen samples studied. Other groups like Gammaproteobacteria, Betaproteobacteria and 

Firmicutes were in low numbers or even absent. 

Lee et al. (2014) studied the culturable bacteria associated with Antarctic and Arctic lichens. 

The isolates recovered were assigned to the taxa Actinobacteria, Alphaproteobacteria, 

Bacteroidetes, Betaproteobacteria, Deinococcus–Thermus, Firmicutes and 

Gammaproteobacteria. They found Alphaproteobacteria as the predominant group, with most 

of the isolates being assigned to Aurantimonas, Burkholderia, Deinococcus, Frondihabitans, 

Hymenobacter, Methyloferula, Nakamurella, Paenibacillus, Pseudomonas, Psychrobacter, 

Rhodanobacter, Sphingomonas and Streptomyces.  

Lichen species of Calopalca, Hydropunctaria, Lecanora. and Verrucaria, were collected at a 

rocky promontory in Iceland by Sigurbjörnsdóttir et al. (2014). A total of 93 bacterial strains 

were isolated and identified as belonging to the groups Actinobacteria, Alphaproteobacteria, 

Bacilli, Cytophagia, Flavobacteria, Gammaproteobacteria and Sphingobacteria. 

Kim et al. (2014) studied a crustose lichen, Ochrolechia sp., isolating strains that belonged to 

the genera Burkholderia and Sphingomonas. 

Parrot et al. (2015) in an attempt to isolate potentially bioactive bacteria, used marine and 

littoral lichens as a novel source of Actinobacteria. At family level, the following taxa were 

identified: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Microbacteriaceae, 

Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae and 

Streptomycetaceae.  

More recently, Biosca et al. (2016) developed new lichen enriched media based on the use of 

novel lichen extracts to increase the recovery of lichen-associated culturable bacteria, initially 

using the lichen P. furfuracea. The authors designed different culture media mimicking the 

lichen nutritional conditions. They also evaluated different isolation procedures and the effects 

of different disinfection methods of thalli samples on the recovery of lichen-associated 

bacteria, concluding that disinfection not only is unnecessary after an extensive washing of 

thalli samples but also negatively affects culturability of endolichenic bacteria. Their 

methodology and the lichen enriched media enhanced the recovery of a higher number of 

bacterial isolates (Biosca et al., 2016). A scheme of the isolating bacteria protocol developed 

by these authors is shown in figure 3. 
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Figure 3. A representative scheme showing the isolation protocol of culturable bacteria associated with 
P. furfuracea. Fresh thalli samples were collected and washed to remove environmental powder. 
Samples were processed within an extended washing in Ringer solution supplemented with Tween 20 
(T20) for the recovery of ectolichenic bacteria. Washed thalli were crushed in AMB to isolate 
endolichenic bacteria. Ecto- and endolichenic culturable bacteria were estimated in triplicate on lichen 
enriched media with or without carbon source (ABLGM and ABL), KB and ABGM with natamycin. Spread 
inoculated plates were incubated at 25°C for 15 days under dark conditions. Taken from Biosca et al. 
(2016). 
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Table 2. Some of the relevant studies about lichen-associated bacteria and the taxa described. 
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There are some taxonomic groups which seem to be common among the isolated bacteria in 

different lichen species, such as Actinobacteria, Alphaproteobacteria, Firmicutes, and 

Gammaproteobacteria (Cardinale et al., 2008; Lee et al., 2014; Liba et al., 2006; Suzuki et al., 

2016), and others less commonly present as Bacteroidetes, Betaproteobacteria, Deinococcus-

Thermus, and Rhizobiales (Lee et al., 2014; Mushegian et al., 2011). These common bacterial 

lineages isolated support the idea about the existence of ubiquitous taxa across different 

lichen species (Lee et al., 2014). Many of these bacteria belong to well-known groups with 

metabolic activities that may provide a benefit to the lichen symbiosis (Grube et al., 2009). 

Furthermore, some groups have received special attention since they represent a source of 

novel molecules, such as Actinomycetes (González et al., 2005). Gammaproteobacteria 

represents a relevant group with non-photosynthetic nitrogen-fixing bacteria (Liba et al., 

2006). Focusing on cyanobacteria, Nostoc is the main genus found in lichens with cyanobionts 

(Cardinale et al., 2012a). Many of these studies have centered on the isolation of individual 

species for taxonomic purposes or full genomic sequencing.  

The most common retrieved bacterial families from lichens are Bacillaceae, Burkholderiaceae, 

Micromonosporaceae, Nocardioidaceae, Paenibacillaceae, Pseudomonadaceae, 

Pseudonocardiaceae and Streptomycetaceae (Suzuki et al., 2016), also important for the 

production of enzymes and bioactive molecules of biotechnological interest such as lipases and 

proteases and antagonistic molecules. Some genera considered ubiquitous are Acinetobacter, 

Bacillus, Burkholderia and Paenibacillus, others quite common are Leifsonia, Microbacterium, 

Micrococcus, Pseudomonas and Sphingomonas, whereas other less detected in the culturable 

fraction are Frondicola, Luteibacter and Methylobacterium (Grube et al., 2009). Interestingly, 

Burkholderia is present in the culturable fraction but hardly detected by in situ hybridization in 

many cases (Cardinale et al., 2006, 2008) or other culture-independent techniques. 

New bacterial species have been discovered through the study of culturable lichen-associated 

bacterial communities during the last years (An et al., 2008, 2009; Cardinale et al., 2011; Li et 

al., 2007; Selbmann et al., 2010), as it is summarized in table 3, revealing the high prevalence 

of bacteria in the lichen thallus. At least 14 novel culturable bacterial strains associated with 

lichens were thus identified and gave new opportunities to discover bioactive metabolites of 

interest (Parrot et al., 2016), showing that simple culture methods can be favorable for the 

isolation of undescribed taxa (Biosca et al., 2016; Lee et al., 2014). 
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Table 3. Some new bacterial strains isolated from different lichen species and the culture media 
employed. They are officially described and/or have a fully sequenced genome and/or produce 
molecules that have been identified. Adapted from Suzuki et al. (2016). 

 

The traditional culture methods used for lichen-associated bacteria imply some limitations that 

don’t allow the complete elucidation of the specific species associated with lichens, but 

advances in molecular and sequencing techniques supposed a huge progress, revealing the 

high diversity of the lichen bacterial communities (Lee et al., 2014; Molins et al., 2013). Some 

of the molecular approaches, although based on culture techniques, suggest that the diversity 

of bacteria associated with lichens might be much higher than previously thought (Cardinale et 

al., 2006; González et al., 2005; Lenova and Blum, 1983; Liba et al., 2006), with up to millions 

of bacterial cells being present per gram of thallus (Grube et al., 2009). In fact, studies as the 

one conducted by Biosca et al. (2016) got a great improvement in the number of bacteria 

recovered from lichens, increasing them up to the order of 104  CFU/g, a number much higher 

than those obtained by other authors.  

Identification of lichen bacterial isolates was based, in most of the studies, on sequence 

similarities and phylogenetic analyses of their 16S rRNA gene partial sequences using different 

universal primers for its amplification by the polymerase chain reaction (PCR). PCR products 

were purified and sequenced with the same primers used for amplification and the sequences 

were compared with those of the strains available in databases such as EzTaxon-e (Kim et al., 

2012) or National Center for Biotechnology Information (NCBI) to find closely related species 

and to choose reference sequences for the phylogenetic analyses (Cardinale et al., 2004; Lee et 
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al., 2014). Other techniques used for the identification were those based on DNA 

fingerprinting and fatty acid analysis (González et al., 2005). 

The identification of culturable bacterial strains is usually carried out through Sanger 

sequencing methodology (Figure 4), known as the chain termination method. It is based on the 

selective incorporation of chain-terminating dideoxynucleotides (ddNTPs) (Zhou and Li, 2015). 

The chain-terminating nucleotides lack a 3’-OH group needed for the formation of the 

phosphodiester bond between two nucleotides, which causes the stop of the DNA polymerase 

in the extension of the DNA. When a primer and template are incubated with DNA polymerase 

in combination with a mixture of ddTTP and dTTP (2’,3’-dideoxythymidine triphosphate) and 

with other deoxyribonucleoside triphosphates, being one of them labeled with 32P, the 

modified nucleotides (ddNTPs) terminated the DNA stranded elongation and the final resulting 

products is a mixture of fragments with the same 5’ and with ddT residues at 3’ ends (Sanger 

et al., 1977; Sanger and Coulson, 1976; Zhou and Li, 2015). 

The sample of DNA is split in four individual sequencing reactions in which the standard dNTPs 

(dATP, dGTP, dCTP and dTTP) are added, as well as the DNA polymerase, and only one of the 

four ddNTPs (ddATP, ddGTP, ddCTP or ddTTP). The DNA is extended in different rounds, and 

the fragments produced are denatured and separated according to different sizes by gel 

electrophoresis. The DNA bands can be visualized by UV light. Alternatively, the ddNTPs may 

be labelled by fluorescence and could be detected automatically in sequencing machines 

(Sanger et al., 1977; Sanger and Coulson, 1976; Zhou and Li, 2015).  

 

Figure 4. Scheme of Sanger sequencing methodology. Adapted from www.tes.com. 

Culture-independent techniques 

During the last decade, the study of lichen-associated bacteria has experienced an increasing 

development of culture-independent microscopic and/or molecular techniques, such as 

fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM), 

sequencing of microbial populations (Cardinale et al., 2006, 2008; Grube et al., 2009; Suzuki et 

al., 2016), and other approaches as fingerprinting of RNA gene, denaturing gradient gel 
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electrophoresis (DGGE), single-stranded conformation polymorphism (SSCP), and more 

recently sequencing technologies (Suzuki et al., 2016).  

Techniques as FISH and CLSM have permitted the visualization of the abundance and location 

of lichen bacterial communities (Cardinale et al., 2008), showing that they generally colonize 

hydrophilic lichen surfaces, appearing either as individual colonies and/or forming biofilms. 

Among these bacterial communities, Alphaproteobacteria is usually the predominant 

taxonomic group, being lower than the presence of other bacterial groups (Bates et al., 2011; 

Cardinale et al., 2012b; Grube et al., 2009; Schneider et al., 2011). Further, FISH has revealed 

the succession of active lichen bacterial communities as well as the effects of habitat variation 

(Cardinale et al., 2012b). Besides, CLSM has been used to complement diversity studies based 

on other techniques, like fingerprinting or sequencing methods, providing localized 

information on microbial diversity (Bent and Forney, 2008). 

Using FISH with bacterial group-specific probes (Grube et al., 2009) showed, in some lichen 

species (Cladonia arbuscula, Lecanora polytropa and Umbilicaria cylindrica), the prevalence of 

Alphaproteobacteria in a range between 45-75%, being other bacterial groups present in lower 

abundance. This research group determined, as well, the location within the thallus of the 

bacterial communities, showing that they appeared colonizing both the surface of the 

extracellular polysaccharides and immersed in the intercellular gelatinous matrix (Grube et al., 

2009). Using PCR-SSCP fingerprints, bacterial communities of the former lichen species were 

compared for both universal bacterial and group-specific fingerprints for Alphaproteobacteria, 

Burkholderia and Pseudomonas, obtaining differences in diversity results in the communities 

of both genera compared with the class (Grube et al., 2009).  

In fingerprinting techniques, where PCR products yield analyzable banding patterns (Portillo et 

al., 2011), different bacterial primers were able to be used, either universal or group specific, 

giving bands as a result that could be purified, characterized and sequenced. This methodology 

was able to reveal taxonomic diversity within lichen bacterial communities, being inexpensive, 

fast and allowing the comparison of banding patterns between samples. However, it didn’t 

result as resolute as sequencing techniques required for phylogenetic inference (Grube and 

Berg, 2009). To overcome these handicaps, the analyses of 16S rRNA libraries were commonly 

used to identify total bacterial communities in lichens (Aschenbrenner et al., 2014; Grube et 

al., 2012b, 2015; Sigurbjörnsdóttir et al., 2016). New generation sequencing (NGS), such as 454 

pyrosequencing or Illumina, have allowed a massive sequencing of samples. 

Sequencing-based on Illumina technology (Figure 5) have allowed a rapid and large-scale 

sequencing. In this case, templates used for sequencing are immobilized on a flow-cell surface 

where the DNA is available and easily accessible to enzymes. This type of solid-phase 

amplification produces up to 1.000 identical copies of each one of the template molecules, 

creating densities of around ten million single-molecule clusters per square centimeter 

(Illumina, 2010). This technology based on sequencing by synthesis employs four nucleotides 

labelled with fluorescence used to sequence the huge number of millions of clusters generated 

on the flow cell surface. Many sequencing cycles are performed and in each one of them, a 

labeled deoxynucleoside triphosphate (dNTP) is added to the nucleic acid chain. These 

nucleotides labels are a signal of termination for the polymerization. When a dNTP is 



33 
 

incorporated, a fluorescence is emitted, and this is a reflection of the base which is 

enzymatically split, allowing the incorporation of the next nucleotide (Illumina, 2010). All 

dNTPs (A, C, T, G) terminators bounded are present as individual molecules and the base calls 

are made from signal intensities measured in each cycle (Illumina, 2010).  

a) 

 

b) 

Figure 5. A representative scheme of Illumina sequencing technology. a) Sample preparation. Genomic 
DNA is fragmented and ligated to the adapters. Then, these fragments are attached to the surface of the 
flow-cell channels. Nucleotides and enzymes are added, and the amplification process starts. 
Afterwards, the double-stranded molecules are denaturated. b) Sequencing procedure. Several 
sequencing cycles are carried out. During the first cycle, four labelled reversible terminators, primers 
and DNA polymerase are added. A laser excites the sample, and the excitation emitted is captured as a 
fluorescence corresponding to the first base in each cluster. Then, new cycles of sequencing are initiated 
to determine the sequence of bases in a fragment. Taken from Illumina (2010). 
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Through these culture-independent techniques, differences were revealed in the abundance 

and diversity of lichen bacterial communities compared to the results achieved with culture-

dependent methods. The bacterial communities of most lichens studied were dominated by 

Proteobacteria, being Alphaproteobacteria the dominant class, followed by other common 

taxa such as Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. The phyla 

Actinobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia were also frequently present 

(Grube et al., 2015). These studies revealed, in some cases, the presence of interesting 

taxonomic groups, as the order Myxococcales which is in relative abundance and, sometimes, 

in higher presence than those of Actinobacteria. Members of this group of Myxococcales are 

attractive due to their large genomes and the production of interesting bioactive compounds 

(Dworkin 2001).  

The above-mentioned findings support the fact that using molecular techniques such as 

pyrosequencing and FISH analyses overcomes the limits imposed by traditional culture-based 

methods (Bates et al., 2011; Cardinale et al., 2008; Lee et al., 2014). 

Metagenomics, as a method to detect lichen-associated bacteria of biotechnological interest, 

has shown that, in some cases, novel interesting molecules and biosynthetic pathways could 

be discovered and used as a guide for developing strategies for the culture of microorganisms 

of interest (Kampa et al., 2013).  

The description of a community of organisms is usually completed with studies of their 

biodiversity. The biodiversity represents the variety and heterogeneity of organisms or traits at 

all levels of the hierarchy of life, from molecules to ecosystems (Morris et al., 2014). The 

diversity studies of the biological communities are carried out using indices of diversity that 

provide a quantitative estimation of the variability that composes the communities to compare 

biological entities (Heip et al., 1998). The different diversity indices try to describe the 

properties of the communities of organisms allowing the comparison between geographical 

areas, taxa and trophic levels (Morris et al., 2014). The species diversity indices commonly 

used are richness (S), Shannon’s diversity (H’), Simpson’s diversity (D1), Simpson’s dominance 

(D2) and Simpson’s evenness (E). Richness (S), is defined as the number of species or attributes 

present in a natural system and it is the simplest index metric used to represent diversity 

(Morris et al., 2014; Whittaker, 1972). Other indices combine measures of richness and 

abundance, as Shannon’s (H’) and Simpson’s (D1) diversity indices. Shannon’s diversity index 

(H’) defines the uncertainty of an unknown individual. That means that in a system with a high 

diversity uniformly distributed, an unknown individual could belong to any species. When the 

system has a very low diversity, being formed by one or few species, the prediction of the 

identity of the unknown individuals is easier, with less uncertainty in the system (Morris et al., 

2014; Shannon, 1948). In the Simpson’s original diversity index, D1 is the complement that 

expresses the idea that taking two samples randomly from a given community, they would 

belong to the same species. Then, the less diversity the community, the higher this probability 

(Heip et al., 1998; Morris et al., 2014). D2 is the inverse of Simpson’s original index, and it is 

used to convert Simpson's dominance index to a diversity statistic (Heip et al., 1998; Morris et 

al., 2014). Regarding Simpson’s evenness index, it expresses how uniformly distributed are the 

individuals in the community over the different species. Low values of evenness indicate that 
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one or few species dominate, while high values mean that a relatively equal number of 

individuals belonging to each species (Heip et al., 1998; Morris et al., 2014). 

As a summary of most studies of lichen bacterial communities based on culture-independent 

approaches, it could be established the general relationship between microbiomes, 

photobionts and mycobionts in the context of the holobiont, which indicates that most lichens 

harbor symbiotic Alphaproteobacteria as predominant class of the Proteobacteria, with other 

taxa such as Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria and the phyla 

Actinobacteria, Bacteroidetes, Firmicutes, and Verrucomicrobia being also frequently present. 

Deeper studies have revealed that at lower taxonomic levels there are some patterns that 

bring light to the importance of some groups, as Acetobacteriaceae (Rhodospirillales), 

Acidobacteria, and Actinobacteria in lichens growing on substrates such as acid rocks and soils 

as well as intertidal (the foreshore and seashore and sometimes referred to as the littoral 

zone) lichens (Aschenbrenner et al., 2014; Grube et al., 2015). Therefore, these studies have 

shown differences in abundance and diversity of lichen-associated bacterial communities 

when comparing culture-dependent and culture-independent techniques (Grube et al., 2015). 

A summary of some of these culture-independent studies using different techniques is shown 

in table 4. 
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Table 4. Summary of different studies through culture-independent approaches targeting the 
diversity of lichen-associated bacteria. Adapted from Suzuki et al. (2016). 
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Bacterial abundance and diversity across different parts of the lichen thallus 

Lichens are considered as self-contained ecosystems (Farrar, 1985), sheltering bacterial 

communities which are subjected to the influence of ecological processes operating on small 

scales and therefore they are not static communities (Mushegian et al., 2011). 

Bacterial communities are shaped across the lichen thallus since they are affected by different 

abiotic and biotic factors in the different thallus parts. The younger growing parts of lichens, as 

apices, are usually dominated by Alphaproteobacteria, and might act therefore as anabolic 

centers; the oldest senescing parts might be the catabolic areas in the lichen ecosystem. It is 

hypothesized that bacteria of the old parts convert this biomass into more simple molecules 

which could be used by the growing parts of lichens or released to the substrate 

(Aschenbrenner et al., 2016; Ellis et al., 2005). 

Mushegian et al. (2011) studied the bacterial community associated with different thallus parts 

(central, intermediate and edges) of 9 lichens of the genus Xanthoparmelia. In these lichens, 

the center of the thallus represents the oldest part and its growth is due to a combination of 

ancient and regenerating tissues. By contrast, the edges of the thallus are tissues of recent 

growth. The center of the thalli has been exposed to bacterial colonization for a longer period 

than those of the edge parts and also, to environmental factors. Furthermore, in the central 

parts, there is a huge number of reproductive structures, such as isidia, a column-shaped 

reproductive structure, not present in the edges parts. 

The bacterial communities of single lichen thallus of the different Xanthoparmelia species 

studied by Mushegian et al. (2011), were dominated by Proteobacteria and Acidobacteria. 

When bacterial diversity was studied across different thallus parts, it was found that 

Acidobacteria had a significantly higher abundance in the center than in the edges of the lichen 

thallus. In the case of Proteobacteria, the Alphaproteobacteria was the dominating group, 

being the main orders Rhizobiales, Rhodospirillales and Sphingomonadales. Other bacterial 

groups that appeared in large proportion were unclassified. 

When all lichens species were analyzed as a pool, the data obtained showed that the centers 

of the lichens harbour a higher number of bacterial species with well-established communities, 

whereas those present in the edges seemed to be less diverse and more variable. In addition, 

lichen centers suffered a bacterial dispersion during longer periods than edges. Furthermore, 

there was a similarity in richness and composition between the center and intermediate parts 

of the lichens, suggesting that the isidiated lichen center may have an important role 

determining the bacterial community composition compared with the non-isidiated lichen 

edges parts (Mushegian et al., 2011). 

Another study that tried to elucidate the bacterial communities associated with the different 

parts of the lichen thallus was the one conducted by Pankratov (2012). This author focused on 

lichens of Cladonia and Sphaerophorus genera collected from the bog of Lake Verkhnee near 

the White Sea Biological Station, a tundra region. In this case, the lichen thallus was divided 

into three parts: the upper living part of the thallus, the intermediate decaying part and the 

underlying peat. This study revealed that Alphaproteobacteria, Acidobacteria and 

Actinobacteria were the more abundant groups. Furthermore, the highest number of 
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Alphaproteobacteria was found in the living parts of the lichen thalli. In the samples from bog 

area, Actinobacteria was the dominant group in the peat and living thallus, being in lower 

number in the decaying zone. Betaproteobacteria appeared in low number in all analyzed 

lichens, being the highest number in the intermediate decaying part of tundra lichens, and the 

lowest in the Sphagnum bog samples. Members of Firmicutes and Gammaproteobacteria were 

minor in all lichen samples. Acidobacteria showed the highest number in the living zone of the 

Sphagnum bog lichens (Pankratov, 2012). 

Besides, the presence of lichen-associated bacteria on the surface of the lichen thallus or in 

intercellular spaces have been previously revealed (de los Ríos et al., 2005b), usually 

developing biofilm-like structures (Grube et al., 2009). The ectolichenic and endolichenic 

bacterial community fractions only have been studied in some lichen species, such as C. 

arbuscula, U. cylindrica or L. polytropa, being usually more specific in the endolichenic fraction 

than in the ectolichenic one. However, in many of these studies, the lichen surface was 

subjected to disinfection (Grube et al., 2009) which could bias the results. 

In some lichen species it was visible a continuous layer of bacterial colonies (Honegger, 2012). 

An example of the presence of ectolichenic bacteria is shown in figure 6. In R. farinacea 

transmission electron microscopy (TEM) allowed the visualization of cyanobacterial aggregates 

associated externally to the cortex (García-Breijo et al., 2010).  

 

Figure 6. Representative pictures of ectolichenic bacteria associated with lichens visualized with 
scanning electron microscopy (SEM) micrography. a) Bacterial biofilm on the upper cortex of lichen 
thallus. b) Bacteria within the tubular thallus of a reindeer lichen. Taken from Honegger (2012). 

In the lung lichen L. pulmonaria, Aschenbrenner et al. (2014) revealed that the bacterial 

colonization on symbiotic propagules shared the microbiome composition at class level with 

the rest of the thallus. With FISH-CLS these authors were able to determine the localization of 

these bacterial communities on the surface of these propagules, which are young structures 

produced on the upper surface of the lichen thallus, lacking bacterial taxa common on the 

lower surface of the thallus. The upper surface of thalli might be composed of bacterial taxa 

that tolerate desiccation and could come from rain, wind and some animals, whereas the 

lower surface, usually in the shadow, presents other ecological conditions for its colonization 

(Aschenbrenner et al., 2014).  
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In another study, Grube et al. (2015) showed that bacteria colonizing the lichen surface are 

well-adapted to abiotic stress, such as osmotic and oxidative stress, thus suggesting that 

bacterial communities on long-living lichen thallus surface are quite constant over seasons. 

Then, bacteria sensitive to oxidative stress and other extreme and selective conditions hardly 

survive. These non-adapted bacteria that will be degraded by oxidation, would suppose a 

source of additional nutrients, an important factor in lichens living in oligotrophic 

environments (Paungfoo-Lonhienne et al., 2010; White et al., 2012). Therefore, the authors 

hypothesized that periods of hydration may act as a selective condition for the enrichment and 

acquisition of stress-tolerant and more specific bacterial communities, which could be involved 

in enhancing the longevity and persistence of lichens under extreme ecological conditions 

(Grube et al., 2015). 

Bacterial diversity shaped by geography in lichens  

Lichens are interesting for their ubiquity and particular tolerance to different environmental 

conditions. Most of the lichen bacterial communities are correlated with differences in large-

scale geography (Hodkinson et al., 2012). 

The distribution of lichens around the world is well documented (Galloway, 2008), but the 

knowledge about the geographical patterns of their associated bacteria is scarce (Cardinale et 

al., 2012a). Some studies were conducted to elucidate the influence of geography in the 

structure of the bacterial communities associated with lichens. It was demonstrated that these 

communities vary between different types of lichens in different regions, and that exists a 

complex relationship between lichens and their associated bacteria (Hodkinson et al., 2012). 

These authors found that lichen-associated bacteria may be modulated by geographical 

differences in accordance with dispersal patterns. Also, that geography was not significant on a 

small spatial scale, in which the dispersion of lichens occurs quite frequently. By contrast, it 

was significant on a large spatial scale, in which the host dispersal could be a limiting factor 

(Hodkinson et al., 2012). Another study focused on the influence of geography as a factor 

modulating the taxonomical structure of the lichen-associated bacteria, was the one 

conducted by Cardinale et al. (2012a). These authors studied the lung lichen L. pulmonaria and 

selected Alphaproteobacteria and Burkholderia for a fingerprinting analysis of their 

geographically correlated structure. They assumed that the lichen offers a similar habitat 

independently of the growing region and the distance among these locations, since L. 

pulmonaria has strict requirements for growing and it offers stable environmental parameters 

to the associated bacteria. However, their results showed a high diversity, suggesting that site-

specific environmental factors were affecting the taxonomic structure of the studied bacterial 

taxa, concluding that the bacterial groups investigated were shaped by geography and habitat. 

In the case of Alphaproteobacteria, it was shown that this group was the dominant among the 

lichen-associated bacteria, as it was demonstrated in other studies, and that it was maintained 

across space, showing a good correlation with geography. Burkholderia genus was present in 

lower abundance and didn’t show this geographical correlation. These results suggested an 

ecological significance of different bacterial groups of the lichen microbiome and their 

implication in the lichen symbiosis (Cardinale et al., 2012a). 
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A different study with the lichen Cetraria aculeate, commonly growing at high latitudes, from 

various habitats in different countries (Antarctic, Iceland, Germany and Spain) also revealed 

that the dominant bacterial group was Alphaproteobacteria, and among them, the 

Acetobacteriaceae (Printzen et al., 2012). Further, alphaproteobacterial communities of lichen 

samples from high latitudes were impoverished and more related among them than those of 

extrapolar habitats, suggesting that their composition in this lichen species might be 

influenced by environmental parameters (Printzen et al., 2012).  

Another interesting study that addressed the influence of the environment on lichen-

associated bacteria was the one conducted by Aschenbrenner et al. (2017). They compared 

the microbiome and the intermicrobiome relationship of three organisms, the lung lichen L. 

pulmonaria, the co-occurring moss Pterygynandrum filiforme, and the bark of the maple tree, 

Acer pseudoplatanus, on which the two epiphytes grow. Their results showed an overlapping 

in the microbial communities at all taxonomic levels. They found a quantitative distribution of 

generalist microorganisms in all habitats, while the specialist ones were different in their 

taxonomic affiliation and abundances in each ecosystem (Aschenbrenner et al., 2017). The 

ecological facilitation may explain some of the shared bacterial taxa among the three 

organisms. This ecological concept refers to positive outcomes of encounters (Bruno et al., 

2003), as when one organism offers a more favourable local environment for another. The 

results of Aschenbrenner et al. (2017) suggested an ecological facilitation among the studied 

species  

The influence of geography as well as lichen intrinsic traits (species, thallus age, growing type) 

and environmental factors (sun exposure and substrate type) as determinant factors shaping 

the taxonomical structure of lichen-associated bacteria has been studied in several lichen 

species (Aschenbrenner et al., 2014; Cardinale et al., 2006, 2012b; Lee et al., 2014). For 

instance, sunlight exposure had a significant effect on lichenic bacterial communities, with a 

higher number of bacteria in lichens growing under shaded conditions than in the ones 

exposed to the sun. Aging appeared to have a significant influence on the bacterial community 

structure as well, with the old senescing parts of the lichen thallus harboring a higher number 

and more variable community of bacteria than the younger parts (Cardinale et al., 2012b). The 

older parts of the lichen harboured diverse bacterial taxa, whereas in the younger and vital 

parts, the spectrum of growing bacteria was more limited, and these bacteria were the most 

adapted ones, mostly Alphaproteobacteria. Betaproteobaceria were more abundant in the 

older parts of the thallus, with other predominant groups such as Actinobacteria and 

Gammaproteobacteria (Cardinale et al., 2012b). The substrate type is also an important factor 

that modulates the bacterial communities. In the case of lichens growing on rocks, they shelter 

fewer bacteria than those growing in other substrate types as soil or bark of tree. Other factors 

considered relevant, as thallus forms and growth types did not have a clear effect on the 

taxonomic structure of lichenic bacterial community (Cardinale et al., 2012b). 

In summary, this kind of studies exemplify the ecology of lichen-associated bacterial 

communities and give evidence of the influence of the environment in their composition. 

(Cardinale et al., 2012b). 
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Interestingly, it has been suggested that lichen-forming fungi are able to adapt to variable 

environmental conditions modifying their bacterial community. Nevertheless, there is still 

scarce information about how this variation of species in the bacterial communities associated 

with lichens is influenced by geographical ranges and other intrinsic factors (Cardinale et al., 

2012a, 2012b; Hodkinson et al., 2012; Printzen et al., 2012). 

Contribution of bacteria to lichen symbiosis 

Lichens have evolved into a wide diversity that allowed them the adaptation to a huge variety 

of environments, being hypothesized that bacterial communities might participate in the 

adaptation of lichens to different ecological conditions (Farrar, 1985). Lichens, as self-

contained ecosystem, may be involved in the promotion of bacterial diversification (Kirkelund 

et al., 2007). Therefore, they are considered as a nursery of bacterial diversity which might be 

implied in the lichen tolerance to adverse conditions as extreme climates, salt, radionuclides, 

etc. (Grube et al., 2009). 

The potential functional roles and metabolic activities of lichen-associated bacteria remains 

still practically unknown in most of lichen species. However, some important eco-physiological 

roles have been proposed based mainly on culture-independent approaches (Cardinale et al., 

2012b; Grube et al., 2009, 2015; Muggia et al., 2013; Navarro-Noya et al., 2014; Printzen et al., 

2012; Schneider et al., 2011; Sigurbjörnsdóttir et al., 2014, 2016): 

• Nutrient supply of nitrogen, phosphorus, sulphur and iron. 

• Production of bioactive metabolites conferring resistance against biotic stresses. 

• Resistance to abiotic factors. 

• Vitamins supply, like vitamin B12, giving support to photosynthesis. 

• Hormones supply for fungal and algal growth. 

• Detoxification of metabolites. 

• Degradation and nutrient recycling of senescent parts of the lichen thallus  

 

In the lichen symbiosis, the supply of essential nutrients could be covered by bacterial partners 

which possess extracellular enzymes that could contribute to the mobilization and recycling of 

nutrients compounds in the lichen thallus. In tripartite lichens cyanobacteria provide nitrogen, 

but non-photosynthetic bacteria might also fix and supply nitrogen. 

Functional and metagenomic studies revealed many of the lytic activities in which lichen-

associated bacteria are involved, as chitinolysis, proteolysis and glucanolysis (Grube et al., 

2009, 2015; Lee et al., 2014; Schneider et al., 2011; Sigurbjörnsdóttir et al., 2016). 

Phosphate solubilizing bacteria can release phosphorus making it available to plants (Chhabra 

et al., 2013; Zhao et al., 2014). Phosphate solubilization involves several enzymes as alkaline 

and acid phosphatases, phytases and some organic acids, as gluconic acid, which are necessary 

for acidification, an essential step for the solubilization of mineral phosphates (Rodríguez et al., 

2006; Sharma et al., 2013; Sigurbjörnsdóttir et al., 2016).  

Siderophores are organic compounds able to chelate ferric iron (Fe(III)) from the environment. 

Under iron-limited conditions, many Gram-negative and Gram-positive bacteria synthesize 
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these low molecular weight iron-chelating compounds (Krewulak and Vogel, 2008). 

Metagenomic analyses have shown the presence of Ton and Tol transport systems involved in 

the iron uptake in the microbiome of some lichens. Metaproteomic approaches revealed the 

presence of at least four different types of TonB receptors in Proteobacteria and Bacteroidetes 

phyla (Grube et al., 2015). 

Algal and fungal cells that form the holobiont contain polysaccharides and proteins, nutrient 

sources that lichenic bacteria might be able to degrade and exploit through different lytic 

activities, when the fungal and algal partners become metabolically inactive, thus recycling the 

older parts of the thallus (Grube et al., 2009; Sigurbjörnsdóttir et al., 2016). 

Phytohormones play an important role regulating plant growth and development. One of the 

most physiologically active phytohormones is the auxin indole acetic acid (IAA), which has 

been reported to be produced by several bacterial strains associated with some lichen species 

(Grube et al., 2009; Hayat et al., 2010; Liba et al., 2006). It has been proposed that IAA can 

influence morphogenetic processes in both mycobiont and photobiont partners (Grube and 

Berg, 2009). 

The presence of bacteria and their metabolites, even if minute, could be involved in ecological 

and biological roles in the lichen symbiosis (Parrot et al., 2016). The mechanisms that regulate 

the abundance and the diversity of lichen-associated bacteria are still unknown, but it is 

hypothesized that they also might protect lichens against invasion by pathogenic bacteria, 

being secondary metabolites with antibacterial activities involved in this function (Boustie and 

Grube, 2005; (Grube et al., 2009). A diagram summarizing the different potential contributions 

of symbiotic partners in the lichen symbiosis is shown in figure 7. 

 

Figure 7. Representative diagram showing the relationships among the different partners in lichen 
symbiosis, with their potential respective roles: photobionts, mycobionts and bacterial symbionts are 
summarized, as well as intrinsic and extrinsic factors affecting the lichen ecosystem. Adapted from 
Parrot et al. (2016). 
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1.3.4 Other microorganisms associated with lichens 

There is a diversity of eukaryotic organisms that may also be associated with lichen thallus. 

Lichens can host fungal species different from the mycobiont, such as lichenicolous fungi 

(highly specialized and successful group of organisms that develop on lichens) (Lawrey et al., 

2007; Lawrey and Diederich, 2003) and endolichenic fungi, which are endophytes, living in the 

lichen thalli without causing damage and without producing sporulating structures at the 

surface of the lichen host (Girlanda et al., 1997; Suryanarayanan et al., 2005; U ’Ren et al., 

2010). 

Tardigrades are one of the eukaryotes known to inhabit lichens (Bartels and Nelson, 2007). In 

2012, Bates et al. (2012) studied the eukaryote organisms associated with the surface of 

foliose lichens through pyrosequencing, using primers targeting the 18S rRNA gene. They 

found around 50 eukaryotic phylotypes belonging to nine phyla within the main clades of 

Eukarya: Alveolata (Ciliophora), Fungi (Ascomycota, Basidiomycota, Blastocladiomycota, 

Chytridiomycota), Metazoa (Rotifera, Tardigrada), Rhizaria (Cercozoa), and Viridiplantae 

(Chlorophyta).  

In 2016, Spribille et al. (2016) provided new insights about potential new members in the 

lichen symbiosis. They discovered ubiquitous yeasts embedded in the cortex, hypothesizing 

the idea that more than one fungus may participate in the construction of the lichen structure. 

As a result of these studies, the concept of lichens as symbiotic associations of only two or 

three partners have changed, being now considered as minute ecosystems where numerous 

symbiotic partners may interact, thus being considered as multispecies symbiosis 

(Aschenbrenner et al., 2016).  

1.4 LICHEN PROPERTIES AND BIOTECHNOLOGICAL APPLICATIONS 

Humans have exploited lichens for many purposes during hundreds of years, for human and 

animal nutrition, as dyers, in the perfume and alcohol production, in medicine and cosmetic 

purposes and as bioindicators, among others (Kosanić et al., 2012; Kumar et al., 2010; 

Srivastava et al., 2013).  

During XIX century lichens were recognized and increasingly used as bioindicators, since their 

vital functions are related to environmental effects, either from natural or human origin. Thus, 

these organisms have been used to detect the presence of some pollutants (Hawksworth et 

al., 2005), allowing an immediate measure of contamination levels in big areas (Hawksworth et 

al., 2005). Many contaminants have been detected and monitored, as sulphur dioxide, 

ammonia, fluorides, alkaline dust, radioactive metals and heavy metals, chlorinated 

hydrocarbons, as well as eutrophication and acid rain.  

Derivative products from lichens could be found among different food industry applications as 

well. Some of them, including cyanobacterial lichen species, as Nephroma arcticum, contain 

antifreeze proteins (AFPs) that could be applied to some food products, as ice creams 

(Oksanen, 2006). 
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Lichens are pigment-rich organisms (Elix and Stocker-Wörgötter, 2008; Friedl and Büdel, 2008; 

Kappen, 2000; Nybakken et al., 2004; Vráblíková et al., 2006). Natural pigments have 

important functions as screening of UVB for melanins and parietins and can be used also as 

dyes (Cohen and Towers, 1995; Nybakken et al., 2004; Oksanen, 2006; Vráblíková et al., 2006), 

as well as catalysts in wood pulp production and in the paper industry (Oksanen, 2006). 

Carotenoids are important natural pigments also found in cyanobacterial species (Lee and 

Schmidt-Dannert, 2002). 

Lichen secondary metabolites have diverse biological actions, as antibiotic, antimycotic, 

enzyme inhibitory, allergenic, antiviral, anti-inflammatory, analgesic antipyretic, 

antiproliferative and cytotoxic effects (Huneck, 1999; Manojlovic et al., 2010; Manojlović et al., 

2010; Molnár and Farkas, 2010; Shukla et al., 2010; Srivastava et al., 2013). Lichens chemistry 

have been studied for more than a hundred years and numerous compounds with 

biotechnological interest have been found (Elix and Stocker-Wörgötter, 2008). Of the total 

lichen secondary metabolites, relatively few of them have been analyzed deeply for their 

biological and therapeutic activities, mostly, due to difficulties in obtaining them in relatively 

enough quantities and purity (Kumar et al., 2010). Among these lichen products, are 

remarkable the usnic acid, acetone, methanol, light petroleum, phenolic compounds, 

anthraquinones, dibenzofurans, depsides, depsidones, depsones, gamma-lactones and pulvinic 

acid derivatives (Kumar et al., 2010; Srivastava et al., 2013).  

Lichens, as well-adapted structures to a wide variety of ecological niches, some of them with 

extreme conditions, have mechanisms for surviving. These are, in some cases, of chemical 

nature, such as UV screens, osmolytes, etc. with some potential applications in biotechnology. 

Other compounds, like the allelopathic, produced by the holobiont could have an important 

functional role in lichen existence and maintenance.  

 Biotechnological applications of lichen-associated bacteria 

The World Health Organization defines bioprospecting as the systematic search for and 

development of new sources of chemical compounds, genes, microorganisms, 

macroorganisms, and other valuable products from nature (Timmermans, 2001). 

Lichen-associated bacteria represent an important source of bioactive molecules (Cardinale et 

al., 2006, 2012b; Parrot et al., 2015). Some of them were reported to be potent antibiotics at 

very low concentrations (Davis et al., 2005). In the same way, lichens are a source for 

antagonistic bacteria which could be used for biological control to protect plants against biotic 

and abiotic stress (Cernava et al., 2015b). 

The isolation of culturable bacteria from lichens have shown particular groups commonly 

recovered such as Gammaproteobacteria, Firmicutes and Actinobacteria (Cardinale et al., 

2006; Grube et al., 2009; Selbmann et al., 2010), well known for their production of enzymes 

and bioactive compounds with biotechnological applications, such as secondary metabolites 

with antibacterial properties against human pathogens and cytotoxic properties (Parrot et al., 

2015; Schroeckh et al., 2009). In some studies, these activities were demonstrated 

experimentally (Grube et al., 2009; Lee et al., 2014), while in others they were concluded 
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through the detection of genes involved in the biosynthesis of secondary metabolites (Parrot 

et al., 2015). Cernava et al. (2015a) used the lichen L. pulmonaria for screening the 

antagonistic potential of lichen-associated bacterial communities, mainly dominated by 

Stenotrophomonas, Pseudomonas and Burkholderia, through multi-omics and high-resolution 

mass spectrometry techniques.  

Volatile organic compounds (VOCs) can affect the growth, antibiotic production, and gene 

expression of soil bacteria. They are compounds with high vapor pressure at room 

temperature, and they are produced by most of organisms acting as communication molecules 

(Effmert et al., 2012). In some cases, they are related to either the growing promotion or the 

growth reduction in Arabidopsis thaliana (Ryu et al., 2003) and could be involved in the growth 

suppression of soil-borne pathogenic fungi (Garbeva et al., 2014; Kai et al., 2007). 

A number of bacterial colonies retrieved from the lichens C. arbuscula, L. polytropa and U. 

cylindrica had the ability to grow in nitrogen-free medium, indicating their role as nitrogen-

fixing bacteria (Grube and Berg, 2009). Furthermore, many of them displayed different lytic 

activities and were able to solubilize phosphate or to produce growth-promoting hormones as 

IAA (Aschenbrenner et al., 2014; Sigurbjörnsdóttir et al., 2016).  

Some of these interesting bacteria and cyanobacteria isolates belonged to the genera Bacillus, 

Burkholderia, Nostoc, Paenibacillus, and Pseudomonas. Even the cyanobionts presented 

bioactive molecules with some potential biotechnological interest (Suzuki et al., 2016). Despite 

representing a minor percentage of the total of bacteria associated with lichens, they should 

be taken into account when their role in the lichen symbiosis is evaluated (Suzuki et al., 2016).  

2. THE LICHEN Ramalina farinacea 

2.1 BIOLOGY 

R. farinacea is an epiphytic fruticose lichen species (Figure 8) with pendant greenish thallus 

with an asexual reproduction (del Campo et al., 2010; Del Hoyo et al., 2011). This lichen lives 

preferably as an epiphyte and unusually as saxicolous (growth in a rock) (García-Breijo et al., 

2010). It has a wide distribution in Mediterranean areas, including the Iberian Peninsula, the 

Canary Islands and California. However, R. farinacea can also be found in boreal forests in the 

north part of Europe and in the middle and high mountains, in the central and southern 

Europe as well as in xeric Mediterranean areas. This lichen species can colonize different 

substrates on a diversity of shrubs, hedgerows and trunks and twigs within shaded deciduous 

woodlands to sunny wind-exposed isolated trees and barely on rocks and walls, but especially 

present in oak forests and also on pinus trees (del Campo et al., 2010; Del Hoyo et al., 2011). It 

can tolerate very extreme ecological conditions suffering desiccation during long periods in 

summer and rehydration by dew in the nights and/or periods of rain that take place during 

spring and autumn seasons. It could be also found in less stressful environments such as humid 

ecosystems but also in more restricted areas as in high mountains. This suggests an 

ecophysiological plasticity of R. farinacea to adapt and survive in a great variety of 

environments (del Campo et al., 2010; Del Hoyo et al., 2011). 
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It is speculated that R. farinacea was originated in the Macaronesian-Mediterranean region 

and continued colonizing gradually more temperate and boreal regions of the Northern 

hemisphere, being the Canary Islands, most probably, the Southernmost limit in the Atlantic 

region (del Campo et al., 2013). 

R. farinacea is a special case in which the mycobiont associates specifically with two genetically 

and morphologically different phycobionts, Trebouxia microalgae (T. jamesii (TR1) and 

Trebouxia sp. TR9) that coexist within the lichen thallus (Casano et al., 2015; del Campo et al., 

2013; Del Hoyo et al., 2011; García-Breijo et al., 2010). This lichen species exemplifies the type 

of lichen symbiosis that is maintained through the propagation of the mycobiont and the two 

phycobiont taxa. The presence, association and interaction of these two photobionts might 

allow the lichen to proliferate in different habitats and the distinct and complementary 

ecophysiological responses of each phycobionts might help to the preservation of this pattern 

of lichen symbiosis (Casano et al., 2011; García-Breijo et al., 2010). In fact, these two 

phycobionts show different physiological responses to some environmental conditions (Casano 

et al., 2011), as the oxidative stress (Del Hoyo et al., 2011). 

 

Figure 8. Picture of the fruticose lichen R. farinacea. Source: author’s personal pictures. 

2.2 STRUCTURE 

Morphologically, R. farinacea presents a heteromerous thallus. The biochemical composition 

of the cell walls of the Trebouxia microalgae revealed a low presence of cellulose (König and 

Peveling, 1984) and some uncommon polymers in green microalgae, such as β-galactofuranans 

(Cordeiro et al., 2005, 2007, 2008). In other lichen species, these galactofuranose-rich 

heteropolysaccharides have a structural function, as in R. gracilis and Cladina confusa 

(Cordeiro et al., 2007, 2008). 

2.3 SYMBIOTIC PARTNERS 

As above mentioned, a previous study performed on R. farinacea showed the co-occurrence of 

at least two different species of Trebouxia genera algae (TR1 and TR9) (Figure 9), in different 

lichen populations collected in Spain, thus suggesting a selective association of the lichen R. 
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farinacea with their symbionts (del Campo et al., 2010). TR1 could be T. jamesii in a 100% 

identity, while TR9 belongs to a closely related T. jamesii undescribed species (92% identity of 

nrITS sequences), being TR1 predominant in the populations in the Iberian Peninsula and 

California whereas TR9 is more abundant in those in the Canary Islands (Casano et al., 2011; 

del Campo et al., 2010, 2013).  

Regarding the genetic diversity of R. farinacea, it has been described a higher diversity in both 

mycobiont and phycobionts in the Canary Islands populations than in the ones from the 

Iberian Peninsula due to a differential specialization of the symbionts. This could be explained 

due to the opportunities for speciation have a broadly predictable relationship to the life cycle 

of oceanic islands, and in the Canary Islands there is an immaturity-speciation pulse model of 

island evolution (Whittaker et al., 2007). 

During the last years, the studies conducted through molecular approaches have shown the 

high diversity of lichen-associated bacterial communities, composed of millions of bacterial 

cells per gram of lichen thallus (Bates et al., 2011; Biosca et al., 2016; Cardinale et al., 2006, 

2008, 2012a; González et al., 2005; Grube et al., 2009; Grube and Berg, 2009; Hodkinson and 

Lutzoni, 2009; Liba et al., 2006). These bacteria associated form stable communities and are 

considered as a third partner of the lichen symbiosis (Grube et al., 2015). During the last 

decade, some studies have shown the presence of numerous bacterial aggregates associated 

to the hyphae of the cortex. These bacterial communities seem to be part of the complexity of 

lichen symbiosis (Aschenbrenner et al., 2016; Grube et al., 2009; Liba et al., 2006). They might 

be implied in the recycling of nutrients and mineral elements in the lichen thallus. 

 

Figure 9. Semifine sections of R. farinacea thalli. a) Location of the two photobionts, Tr1 and Tr9 in the 
photobionts layer (PL). A bacterial colony is visible in the external cortex. b) Transversal section of R. 
farinacea thallus whit the two photobionts, Tr1 and Tr9. c) Transversal section where it is possible to 
appreciate bacterial colonies associated with the external cortex. Taken and adapted from García-Breijo 
et al. (2010). 
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Besides, through TEM some aggregates of cyanobacteria were found associated externally to 

the cortex (García-Breijo et al., 2010). However, bacteria associated with R. farinacea have not 

been explored yet and their role in this lichen symbiosis is still unelucidated. 
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OBJECTIVES 

Based on the background exposed in the introduction and the so far scarce information on the 

diversity, functional roles and biotechnological potential of bacterial communities associated 

with lichens, and particularly on the lichen species R. farinacea, it is ncessecary to to advance 

in the knowledge of these communities stil little explored. Therefore, the main objective of 

this Doctoral Thesis has been the study of the bacterial communities associated with the lichen 

R. farinacea with special interest in their composition, diversity and biotechnological potential. 

This main research objective (of this Doctoral Thesis) can be divided in the following partial 

objectives: 

1. To isolate and characterize physiologically and metabolically a collection of bacterial 

strains from populations of R. farinacea from different geographical Spanish locations, 

either for their possible contribution to the lichenic symbiosis and -with special 

interest- for their biotechnological potential, as well as to initiate a molecular 

identification of the isolated strains of most biotechnological interest. 

2. To study the composition and diversity of the bacterial communities associated with 

the different populations of R. farinacea studied, through culture-dependent 

techniques, and to determine the influence of the geographical origin or the location 

in the lichen thallus (ecto- or endolichenic). 

3. To analyze the composition and diversity of the bacterial communities associated with 

the same populations of R. farinacea through culture-independent techniques, as well 

as to investigate the influence of geography, the location in the lichen thallus 

(ectolichenic or endolichenic, or apical, middle and basal) and the effect of a 

disinfection treatment.  
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MATERIAL AND METHODS 

3. R. farinacea LICHEN SAMPLES, SITE DESCRIPTION AND SAMPLING 
PROCEDURE 

Lichen thalli of R. farinacea from four non-polluted different locations (Figure 10) in Spain, two 

in Tenerife (Canary Islands) and two in the Iberian Peninsula were analyzed. Those from 

Tenerife were sampled from two Pinus canariensis Chr. Sm. Ex DC. forests at La Guancha 

(28º23’23’’N 16º37’47’’ W) and La Esperanza (28º26’23’’N 16º22’29’’W), respectively. Those 

from the Iberian Peninsula were collected from two Quercus rotundifolia Lam. forests at El 

Toro (Castellón) (39º57’39.8’’N 0º46’15.2’’W) and Lidón (Teruel) (40º43’38.1’’N 1º04’29.9’’W). 

Environmental data of each one of the four locations at the moment of the sampling are 

summarized in table 5. Ten lichen thalli appearing healthy were collected from tree bark from 

at least five randomly selected trees within an area of about 50 m2, at each location. Thalli 

samples were collected under aseptic conditions, separately transferred into sterile plastic 

Petri plates and transported and stored under refrigeration until processing within one day 

after sampling.  

 

Figure 10. Map of Spain indicating the geographical locations where the thalli samples of R. farinacea 

were collected. On the left, the island of Tenerife, with the two locations of La Guancha and La 

Esperanza. On the right, the two locations in the Iberian Peninsula, El Toro (Castellón) and Lidón 

(Teruel).  

Table 5. Environmental data of the locations where R. farinacea thalli samples were 
collected. 

Location Temperature Humidity Altitude (m) 

La Guancha 18ºC 70% 370 

La Esperanza 16.5ºC 80% 632 

El Toro 16ºC 65% 1011 

Lidón 11ºC 61% 1211 
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4. ANALYSES OF CULTURABLE BACTERIA ASSOCIATED WITH R. farinacea  

4.1 ISOLATION OF R. farinacea CULTURABLE BACTERIA 

Five lichen thalli from each location were used for the bacteriological analysis of bulk thalli 

samples, using part of the remaining thalli to prepare lichen enriched media (Biosca et al., 

2016). Isolation of bacteria associated with R. farinacea from bulk thalli samples was made 

following the method described by Biosca et al. (2016) on lichen enriched media (Figure 11). 

Briefly, bulk samples of 1 g of R. farinacea (0.2 g subsamples of five thalli from five different 

trees) were analyzed for the isolation of both ectolichenic and endolichenic bacteria after a 1 

min wash in sterile distilled water to remove the environmental powder. An extended washing 

(90 min) in sterile Ringer solution plus 0.05% of Tween 20 (T20) (RST) was performed at 200 

r.p.m. at room temperature to isolate ectolichenic bacteria. Thereafter, the washed thalli were 

crushed in sterile antioxidant maceration buffer (AMB) to isolate endolichenic bacteria. To 

estimate ecto- and endolichenic bacterial populations associated with R. farinacea, aliquots 

from thalli washings and crushed washed thalli suspensions were serially tenfold diluted in 10 

mM phosphate buffered saline (PBS) (pH 7.0) and plated (0.1 ml) in triplicate on AB minimal 

medium (Chilton et al., 1974) enriched with 0.5% fresh R. farinacea extracts (ABL) with or 

without 0.5% defined carbon sources, glucose and mannitol (ABLGM) supplemented with 21.6 

mg/L of the fungicide natamycin, according to Biosca et al. (2016). Plates were incubated for 

two weeks at 26ºC under dark conditions and bacterial counts (colony forming units per gram 

(CFU/g) of thalli) were determined periodically. Bacterial colonies showing different 

morphologies on each medium were purified and cryopreserved at -80ºC in 25% (v/v) glycerol, 

for subsequent characterization (see below). 
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Figure 11. A representative scheme showing the protocol for the isolation of culturable bacteria 
associated with R. farinacea. Fresh lichen thalli samples were collected and washed to remove the 
environmental powder. Afterwards, samples were processed by an extended washing in Ringer solution 
supplemented with Tween 20 (T20) to recover ectolichenic bacteria. Washed thalli were crushed in AMB 
buffer to isolate endolichenic bacteria. Ecto- and endolichenic culturable bacteria were estimated in 
triplicate on lichen enriched media supplemented or not with defined carbon sources (ABLGM and ABL, 
respectively) and the fungicide natamycin (N). Spread inoculated plates were incubated at 25°C during 
15 days under dark conditions. Adapted from Biosca et al. (2016). 
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4.2 CHARACTERIZATION OF FUNCTIONAL AND/OR 
BIOTECHNOLOGICAL ACTIVITIES OF R. farinacea CULTURABLE 
BACTERIA 

A collection of R. farinacea representative bacterial isolates of the four geographical locations 

sampled were screened for different functional and/or biotechnological activities using 

bacterial cultures incubated during 24-48 h at 26ºC on the general King’s B (KB) medium (King 

et al., 1954) unless otherwise indicated. Bacterial suspensions of each isolate were prepared in 

10 mM sterile PBS pH 7.0, adjusted to an optical density at 600nm (OD600 nm) of 0.1 (about 108 

CFU/ml). Then, they were washed twice with PBS (13.000 r.p.m., 2 min) to remove residual 

media, and pellets were re-suspended in PBS to use them for the inoculation of the different 

media (see below). Plates were spot inoculated with a multipoint inoculator (Denley 

Instruments Ltd, UK). Some reference bacterial strains from the Spanish Type Culture 

Collection (CECT), such as Aeromonas hydrophila CECT 5173, Azotobacter vinelandii CECT 204, 

Bacillus cereus CECT 495, Enterobacter cloacae CECT 194, Escherichia coli CECT 101, and 

Pseudomonas fluorescens CECT 378 were included as negative or positive controls for some of 

the activities tested. All tests were performed, at least, in duplicate. Plates were incubated 

during 7 days at 26°C after inoculation, performing periodic readings. For those activities 

requiring the addition of a reagent for the reading, it was carried out after 7 days of 

incubation.  

4.2.1 Initial characterization: pigments and enzymatic activities   

Pigments detection 

KB medium widely used for the detection of bacterial pigments (Lamichhane and Varvaro, 

2013) was used to investigate the pigment production of bacterial strains, either cellular or 

diffusible. 

General enzymatic activities  

As an initial approach for the detection of general enzymatic activities in R. farinacea 

associated bacteria, a collection of 40 selected bacterial isolates were analyzed using the API 

ZYM® multi-test system (BioMerieux, France). This system consists in the use of one gallery 

that allows the detection of 19 different enzymatic activities: alkaline phosphatase, esterase, 

esterase lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, 

chymotrypsine, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, ß-

galactosidase, ß-glucuronidase, α-glucosidase, ß-glucosidase, N-acetyl-ß-glucosaminidase, α-

mannosidase and α-fucosidase. Prior to the inoculation of the galleries, incubation chambers 

were sterilized under UV light during 20 min and filled with sterile water to provide a humid 

atmosphere. Bacterial suspensions, prepared as described above, were used for the 

inoculation of the API ZYM® galleries following the instructions of the manufacturer, except for 

the incubation period that was extended up to 48 hours at 26°C. This modification was done to 

allow the detection of potential enzymatic activities even in those strains with slow growth 
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rates. After incubation, the reading of the galleries was performed by applying the reagents 

and conditions specified in the kit.  

4.2.2  Hydrolytic activities  

Based on the results obtained with the API ZYM® system several hydrolytic activities were 

assayed with the collection of bacterial strains by conventional methodology. Some of the 

macromolecules were chosen for their use for the detection of general hydrolytic activities, 

whereas others were included due to they are part of the lichen thallus and may be important 

for nutrient recycling.  

Polysaccharase activities  

The potential of bacterial strains to hydrolyze different polysaccharides such as starch, 

cellulose, xylan, pectin, and chitin was determined. Initially, a general polysaccharase activity 

assay was made to detect amylase activity, inoculating bacterial strains in the culture medium 

Starch agar (KB medium supplemented with 0.2% (w/v) starch), according to Biosca and Amaro 

(1996). For this activity, a final time (7 days) reading was made, staining the plates with an 

iodine solution (0.3% (w/v) I2 and 0.7% (w/v) IK). The iodine present in the solution reacts with 

the polysaccharides included in the culture medium, giving a purple colour to the medium. 

Amylase activity was considered positive when not-stained halos appeared surrounding the 

bacterial growth zone, indicating the hydrolysis of this polysaccharide. 

Thereafter, other polysaccharides were included as substrates according to the composition of 

the lichen thallus, such as cellulose, chitin, pectin, and xylan. The ability to hydrolyze cellulose 

was studied using the Cellulose Agar medium (Gupta et al., 2012). This medium contains 0.2% 

(w/v) carboxymethylcellulose (CMC), an organic component derived from cellulose. According 

to the authors, adding Congo Red to the medium allows the visualization of the cellulase 

activity. In our case, cellulase activity was detected directly due to the appearance of clearance 

halos surrounding the bacterial growth area, without the need of adding any colourant. 

Regarding chitinase, pectinase and xylanase activities, the minimal medium described by 

Nagpure and Gupta (2013) was used. This medium was designed as broth for the detection of 

chitinase activity. A modification by adding agar was made in order to optimize the detection 

and reading time of this hydrolytic activity. Furthermore, pectin and xylan were also assayed as 

substrates in this medium after adjusting their concentrations to properly detect their 

hydrolysis. The final concentration assayed of each one of the substrates in the different media 

was 1% (w/v) colloidal chitin, 1% (w/v) pectin and 0.5% (w/v) xylan. The reading of these 

activities was made following the same methodology used for the amylase activity, by staining 

the plates (7 days post-inoculation) with the same iodine solution, instead of the Congo Red 

reagent suggested by the authors. 

Positive and negative controls used for the detection of these activities were the strains of B. 

cereus CECT 495 and E. coli CECT 101, respectively. 
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Lipase activities  

To evaluate the ability of the bacterial strains to hydrolyze lipids, KB medium supplemented 

with one of the two synthetic lipids, Tween 20 (lauric acid) or Tween 80 (oleic acid) at 1% 

(w/v), and amended with 0.015% (w/v) CaCl2 was used, as described in Biosca and Amaro 

(1996). 

Periodic readings were made during 7 days, considering as a positive activity the appearance of 

a halo of precipitate surrounding the growth area of the tested strains. This activity halo is 

produced as a result of the release of fatty acids, as a consequence of the lipase activity. These 

released fatty acids join to the calcium ions present in the culture medium and precipitate. 

As positive and negative controls, the strains of A. hydrophila CECT 5173 and E. coli CECT 101 

were used, respectively. 

Protease activities 

The detection of proteases was tested using two different proteins as substrate, casein, and 

gelatin. For detecting casein hydrolases, KB medium was supplemented with 10% (v/v) casein 

(skim milk) according to Biosca and Amaro (1996). The gelatinase detection was assayed on 

the medium described by Smith and Goodner (1958) supplemented with 1.2% (w/v) 

bacteriological gelatin (Pronadisa). Positive results were directly detected by the appearance 

of a clear halo around the bacterial growth area, carrying out periodic readings for 7 days. 

Positive and negative controls were the strains of B. cereus CECT 495 and E. coli CECT 101, 

respectively. 

DNAse activity 

To analyze the ability of the studied bacterial strains to hydrolyze DNA, the commercial DNAse 

Agar medium (Pronadisa) was employed. The reading was made 7 days post-inoculation by 

adding 1 M (v/v) hydrochloric acid. This acid produces the precipitation of the DNA present in 

the culture medium giving opacity to the areas where it is present. Bacterial strains able to 

degrade the DNA to nucleotides were detected by the presence of a clear halo around the 

bacterial growth zone. 

As positive and negative controls the strains of B. cereus CECT 495 and E. coli CECT 101 were 

used, respectively. 

4.2.3 Nutrient supplying activities  

The ability of bacterial strains to provide different nutrients such as nitrogen, phosphate, and 

iron to the lichen thallus was determined. 
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Nitrogen fixation 

The ability of bacterial strains to fix nitrogen was studied on different culture media designed 

for this purpose. One of them was the Norris medium (Atlas, 2004). Another one was the 

sugar-rich/N-free medium described by Cardinale et al.(2006) for lichenic bacteria. The last 

one was the AB minimal medium (Chilton et al., 1974) without the nitrogen source but 

supplemented with 0.5% (w/v) glucose (ABG-N) or 0.5% (w/v) glucose and mannitol (ABGM-N), 

according to Biosca et al. (2016). The ability to fix nitrogen was monitored for 7 days, being 

detected by the ability of the tested bacterial strains to grow on the nitrogen-free culture 

media. 

As positive and negative controls the strains of A. vinelandii CECT 204 and E. coli CECT 101 

were used, respectively. 

Phosphate solubilization  

The solubilization of phosphate by bacterial strains was screened on Pikovskaya's medium 

(PVK) (Pikovskaya, 1948; Sundara-Rao and Sinha, 1963), which contains 0.5% (w/v) calcium 

phosphate (Ca₃(PO₄)₂) which confers opacity to the medium. Periodic readings were made 

during 7 days and the ability of bacterial strains to solubilize phosphate was determined by the 

appearance of a clear halo around bacterial growth. 

Positive and negative controls used for the detection of this activity were the strains of P. 

fluorescens CECT 378 and B. cereus CECT 495, respectively. 

Siderophores production 

Siderophores were detected on CAS agar (Schwyn and Neilands, 1987), based on the utilization 

of chrome azurol S (CAS) and hexadecyltrimethylammonium bromide (HDTMA) as indicators. 

The complex CAS/HDTMA joins ferric ion (Fe3+) resulting in a blue colouration. Positive 

reactions, visualized by a colour change of the CAS reagent from blue to orange (Schwyn and 

Neilands, 1987), were detected by periodic readings for 7 days. To favour the growth of some 

strains unable to grow on the regular CAS agar due to the toxicity of HDTMA, this medium was 

modified as follows. Firstly, some assays were made with the modified culture medium 

suggested by Milagres et al. (1999), but adapted to the growth conditions of R. farinacea 

bacterial strains. In this case, half of the medium in the plate was regular CAS agar, and a half 

was KB agar (Figure 11). Secondly, a modification of the former medium was made by 

supplementing the CAS agar with an upper layer of KB medium, avoiding the direct contact of 

the bacterial strains with the CAS agar layer (Figure 11). 

Positive and negative controls used for the detection of these activities were the strains of P. 

fluorescens CECT 378 and B. cereus CECT 495, respectively. 
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Figure 12. Representative images of the optimized culture medium employed for the detection of 
siderophores in R. farinacea bacterial strains. On the left, the modified media proposed by Milagres et 
al. (1999), in which half of the media on the plate was CAS agar (green part) and a half was KB agar 
(yellow part). On the right, the modification performed in this study with the CAS agar (green) at the 
bottom and the KB agar (yellow) on the top. 

4.2.4 Growth promoting activities 

The potential ability of bacterial strains to stimulate the growth of the lichen thallus was 

initiated through direct or indirect detection of phytohormones such as auxins or ethylene. 

Auxins detection  

Semiquantitative detection of indole acetic acid (IAA) 

Production of IAA was determined by a colourimetric method described by Patten and Glick 

(2002) in a microtiter assay with some modifications. Briefly, overnight bacterial cultures were 

diluted and adjusted to an OD600 nm of 0.2 into KB broth supplemented with 0.1 % of 

tryptophan. The concentration of bacteria was adjusted after previous assays conducted to 

enable a better determination of the IAA production by those strains. From overnight cultures, 

100 µl aliquots were transferred to polystyrene 96-well microplates (Nunc™ MicroWell™, 

Thermo Scientific), using 4 wells per bacterial strain and plate. Inoculated plates were 

incubated at 26ºC for 24 h, 48 h and 72 h in a humid chamber. The incubation period was 

extended up to 72 h because of the slow-growing strains. Thereafter, 200 µl of the Salkowski 

reagent (FeCl3H2SO4) (Acuña et al., 2011) were added to each well. After 30 min at room 

temperature, OD530 nm was measured using a Fluostar Optima (BMG Labtech) plate reader. 

The bacterial strains P. fluorescens CECT 378 and E. coli CECT 101, and E. cloacae CECT 194 

were included as negative and positive controls, respectively. 

Quantification of IAA  

IAA was quantified in a selection of bacterial strains based on the results of the previous assay 

using the method of Patten and Glick (2002) with some modifications. For this purpose, 5 mL 

of bacterial cultures in KB broth with 0.1% tryptophan were incubated for 24 h and 72 h, 

centrifuged at 8000 r.p.m. for 15 min to obtain bacterial supernatants that were mixed with 

Salkowski reagent in a proportion of 1:2, respectively. After 30 min of incubation at room 

temperature, OD530 nm was measured. The quantification of IAA produced by each bacterial 

strain was carried out using a standard curve with known IAA concentrations. This standard 

curve was prepared using KB broth, employed for the growth of the bacterial isolates, and 

making dilutions of IAA from 25 µg/ml to 0 µg/ml. 
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ACC deaminase detection 

As a first approximation to determine the ability of selected bacterial strains to produce the 

enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase which is involved in the 

ethylene biosynthesis, a molecular detection of the acdS gene that codifies for ACC deaminase 

was carried out. The primers used are the degenerated pair ACC R and ACC F (Table 6).  

Table 6. Primers used for the molecular detection of the acdS gene. 

Primers Sequence Gene Reference 

ACC R 5’-TTDCCHKYRTANACBGGRTC-3’ 
acdS (Nikolic et al., 2011) 

ACC F 5’GGBGGVAAYAARMYVMGSAAGCTYGA-3’ 

 

DNA extraction of bacterial strains was made by cell lysis, through 10 min thermal shock at 

95ºC in an SBH130D block heater (Stuart), followed by a spinning at 13.000 r.p.m. for 10 min to 

obtain total DNA in the supernatant fraction. Supernatants were transferred to new sterile 

tubes and used as DNA samples. 

The acdS gene amplification by PCR was made, initially, in a reaction volume of 50 µl with the 

following mix: 1 µl of DNA sample, 33.75 μL of sterile MiliQ water, 5 μL of 10X buffer, 5 μL of 2 

mM dNTPs, 2.5 μL of each primer and 0.25 μL of DreamTaq DNA polymerase (Thermo 

Scientific). Amplification was performed in a 2720 Thermocycler (Applied Biosystems). 

Amplification conditions recommended by Nikolic et al. (2011) are described in table 7.  

Table 7. PCR conditions for the molecular detection of the ACC deaminase gene provided by Nikolic et 
al. (2011). 

Number of cycles Time per cycle Temperature Stage 

1 3 min 95ºC Initial denaturing 

30-35 

30 sec 95ºC Denaturing 

1 min 46ºC Annealing 

1 min 72ºC Extending 

1 5 min 72ºC Final extension 

 

The uses of this reaction mix and amplification conditions conducted to the appearance of 

unspecific bands apart from the one expected, a 750 bp fragment (see results section 7.4.2). 

Therefore, some modifications were assayed to optimize the PCR, such as: i) the variation of 

the annealing temperature; ii) the modification of the number of cycles; iii) the addition of 

DMSO, since it reduces the temperature of annealing of the primers, and iv) a combination of 

the annealing temperature and/or the modification of the number of cycles and/or the 

addition of DMSO. 

Aliquots of 10 µl of PCR products were separated in agarose gels (1% (w/v) by electrophoresis 

(35 min at 100 volts) in 1X Tris-acetate-EDTA (TAE) buffer, using 1 µl of loading buffer (Pilot Gel 

Loading Dye, 10X) and 10 µl of Mass Ruler DNA ladder mix (Thermo Scientific) as molecular 

weight pattern. This molecular ladder allows the determination of bands from 100 bp to 5000 
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bp. Gels were stained during 15 min with 0.1% ethidium bromide (Sigma) and visualized under 

UV light using a Gel Printer Plus (Tecnología para Diagnóstico e Investigación S.A.). 

4.2.5 Biofilm formation activities 

Biofilm production 

The production of biofilm was determined using a microtiter assay following the method of 

Chelvam et al. (2014) and Santander and Biosca, (2017) with some modifications. Briefly, 

overnight bacterial cultures were diluted and adjusted to an OD600 nm of 0.2 into 0.5 x KB 

broth. The modification of the concentrations of the bacterial cultures and the culture medium 

are justified after some initial assays, conducted to determine the best growing conditions to 

detect the biofilm production by the lichenic bacterial strains. From these bacterial cultures, 

aliquots of 160 µl were transferred to polystyrene 96-well microplates (Nunc™ MicroWell™, 

Thermo Scientific). In each assay, each one of the strains was inoculated in 6 wells per plate 

and incubated at 26ºC for 48 h and 72 h in a humid chamber. Thereafter, unbound cells and 

growth medium were removed by inversion of the plate for 5 min and biofilms heat-fixed at 

80ºC for 30 min. Afterwards, biofilms were stained with 1% (w/v) crystal violet (Brown et al., 

2013) and incubated at room temperature for 15 min. The staining solution was removed by 

inversion of the plates, followed by an extensive washing with distilled water and then, dried 

upside down. For biofilm quantification, a decouloring solution (80 % absolute ethanol, 20 % 

acetone) was added to the wells, incubated for 15 min and the OD600 nm determined using a 

Fluostar Optima (BMG Labtech) plate reader. Bacterial strains were classified as follows 

according to the mean OD600 nm values recorded and compared with the values of the 

negative control (ODc): OD ≤ ODc = no biofilm producer, ODc < OD ≤ (2 × ODc) = weak biofilm 

producer, (2 × ODc) < OD≤ (4 × ODc) = moderate biofilm producer and (4 × ODc) < OD = strong 

biofilm producer. Negative control wells contained uninoculated KB broth and remained 

negative. Some reference bacterial strains such as E. coli CECT 101, P. fluorescens CECT 378, 

and E. cloacae CECT 194 were included as positive controls. 

Swimming and swarming motility 

Since motility is important for biofilm formation (Houry et al., 2010) swimming and swarming 

motility of a selection of bacterial strains were also investigated. Motility was assessed on 

semisolid agar according to Santander et al. (2014) with some modifications with respect to 

the culture medium. Instead of Luria-Bertani (LB) agar, the medium used was as follows: 1% 

tryptone, 0.5% glucose and 0.3% or 0.7% agar for swimming or swarming motility assay, 

respectively. The procedure consisted in the inoculation of the different strains in both media 

by stinging, starting from a 24-48 h bacterial culture in KB medium at 26ºC. Incubation 

conditions were at 26ºC for 48 h. The diameter of motility halos was determined at 24 and 48 

h of incubation. 
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4.3 STATISTICAL ANALYSES 

All statistical analyses performed in the present study were conducted in GraphPad 

programme. The statistical test applied was Two-way ANOVA performing multiple 

comparisons with Tukey’s correction, unless otherwise indicated.  

4.4 MOLECULAR IDENTIFICATION  

Bacterial strains of R. farinaceae showing the highest number of activities or some 

characteristic of interest were selected for a presumptive identification by the partial 

amplification of the 16S rRNA gene by PCR and subsequent sequencing of the purified PCR 

products, as described below. 

5. DIVERSITY OF CULTURABLE BACTERIA ASSOCIATED WITH R. farinacea 
THROUGH CONVENTIONAL 16S rRNA GENE SEQUENCING 

A study of the diversity of culturable bacteria associated with R. farinacea was made by PCR 

partial amplification of the 16S rRNA gene followed by Sanger sequencing and a presumptive 

molecular identification of the bacterial isolates. This same methodology was applied for the 

identification of R. farinacea bacterial isolates selected in the previous section (4.4) by their 

physiological and/or biotechnological interest.  

5.1 DNA EXTRACTION  

R. farinacea bacterial isolates were prepared for PCR amplification using 24 h cultures on KB 

plates, taking 1 or 2 colonies from each one of the strains and resuspending them in 300 µl of 

sterile Mili Q water. These bacterial suspensions were denatured by heat-shock at 95°C during 

10 min in an SBH130D thermoblock (Stuart) to produce cell lysis. Afterwards, they were 

centrifuged at 13.000 r.p.m. for 10 min to obtain total DNA in the supernatant. 

5.2 DNA AMPLIFICATION BY PCR 

Supernatants were transferred to new sterile tubes and used for the partial 16S rRNA gene 

amplification which was performed by PCR using the pair of primers: 616V and 699R (Arahal et 

al., 2008) (Table 8) amplifying a 1000 bp region of the 16S rRNA gene. These primers bind the 

positions 8–25 and 1099–1113, respectively (Escherichia coli numbering). PCR amplification 

was carried out with these primers at a concentration of 5 mM, using 0.025 U/µl DreamTaq 

polymerase (Thermo Scientific) and 0.2 mM dNTPs in a final volume of 100 µl in a 2720 

thermocycler (Applied Biosystems).  

Table 8. Primers used for the amplification of the partial sequence of the 16S rRNA gene. 

Primers Sequence (5’-3’) Gene Reference 

616V 5'-AGAGTTTGATYMTGGCTCAG-3' 
16S rRNA Arahal et al., 2008 

699R 5'-GCGRGGGCTCGTTTT-3' 
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PCR conditions recommended by Arahal et al. (2008) are shown in table 9. The application of 

these conditions turned out with the appearance of unspecific bands. To reduce the number of 

these bands some modifications were introduced to optimize the amplification conditions. 

These modifications consisted in increasing the annealing temperature and reducing the 

number of cycles.  

Table 9. PCR conditions for the amplification of the partial sequence of the 16S rRNA gene described 
by Arahal et al. (2008). 

Number of cycles Time per cycle Temperature Stage 

1 10 min 94ºC Initial denaturing 

40 

1 min 94ºC Denaturing 

1 min 55ºC Annealing 

1 min 72ºC Extending 

1 10 min 72ºC Final extension 

 

The visualization of the PCR products was made following the protocol described in section 

4.2.4. 

5.3 PURIFICATION OF PCR PRODUCTS 

The amplified products were purified with the FavorPrep GEL purification/PCR Purification 

Mini Kit (Favorgen, FAGCK 001-1) following the manufacturer’s instructions. The quality, purity 

and concentration of the PCR products were determined with a NanoDrop2000c 

spectrophotometer (Thermo Scientific) from the Central Service for Experimental Research 

(SCSIE) of the Universitat de València. The concentration of all samples was adjusted to a 

minimum of 20 ng/µl. Samples were frozen at -20ºC until their use. 

5.4 SANGER SEQUENCING 

Sequencing of the purified PCR products was made with the forward strand as a template, 

unless difficulties in the sequencing process were found in which case both strands were 

sequenced. The sequencing of the samples was made by the method of Sanger mostly at 

StabVida (Lisboa) service.  

5.5 BIOINFORMATIC ANALYSIS 

The analysis of the quality and edition of the sequences obtained was made with the Chromas 

Lite 2.1.1 programme. Sequences were manually checked and cleaned. Those sequences with 

errors in the assignment of the nucleotide bases, excessive background noise and/or low 

resolution were rejected, proceeding again with their PCR amplification, purification and 

sequencing. The criteria followed in this study for the analyses of the quality of the sequences 

were the ones described by the Instituto de Conservación y Mejora de la Agrodiversidad 

Valenciana (COMAV).  
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Once edited, the sequences were aligned with the Molecular Evolutionary Genetics Analysis 

(MEGA) software v.6.0 (MEGA 6) (Tamura et al., 2013) using the Clustal W alignment 

application. Once sequences were aligned, as a consequence of the differences in their length, 

not-overlapping ends were deleted to equalize the length of these sequences.  

To select the best evolutionary model of nucleotide substitution, an application built in MEGA 

6 called Find best DNA model, was used. After selecting the most suitable evolutionary model 

of nucleotide substitution, a phylogenetic tree was made based on the Maximum Likelihood 

(ML) method using the the Kimura 2- (Kimura, 1980) or Tamura 3-parameter models of 

evolution (Tamura, 1992). In this ML method, an initial tree is built using a fast but suboptimal 

method such as Neighbour-Joining, and its branch lengths are adjusted to maximize the 

likelihood of the data set for that tree topology under the desired model of evolution. Then 

variants of the topology are created using the NNI (nearest neighbour Interchange) method to 

search for topologies that fit the data better. Maximum-Likelihood branch lengths are 

computed for these variant tree topologies and the greatest likelihood retained as the best 

choice so far. This search continues until no greater likelihoods are found. To construct the 

phylogenetic tree, the application Phylogeny of MEGA 6 was employed. The robustness and 

confidence levels of the tree branch nodes of the resulting tree were determined with the 

bootstraps test, with 1000 replicates (Hillis and Bull, 1993) with MEGA 6 software. 

5.6 TAXONOMIC IDENTIFICATION AND PHYLOGENETIC ANALYSIS 

The taxonomic identification of R. farinacea bacterial strains was made using the BLASTn 

(http://blast.ncbi.nlm.nih.gov) programme, with the database available at the National Center 

for Biotechnology Information (NCBI). According to the results obtained with this 

identification, the partial sequences of the 16S rRNA gene of the closest strains obtained from 

the Genebank were included for the construction of the phylogenetic tree.  

5.7 DETERMINATION OF BACTERIAL COMMUNITY COMPOSITION  

Differences in the community composition (beta diversity) were assessed using a 

permutational multivariate analyses of variance (PERMANOVA) with the ‘Adonis’ function in 

the VEGAN package in R (Version 3.2.2). Bray–Curtis dissimilarity matrices were used to 

quantify differences in bacterial community composition, as calculated using the R package 

MCTOOLSR (Version 0.3.2).  

5.8 DETERMINATION OF BACTERIAL DIVERSITY AND ABUNDANCE 

The diversity differences among distinct samples were determined by using Richness, Shannon 

and Simpson indexes, representing them in box plots. In the case of the Richness index, the 

data were previously normalized.  
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6. MOLECULAR ANALYSES OF BACTERIAL COMMUNITIES ASSOCIATED WITH 
R. farinacea THROUGH MULTIPLEX SEQUENCING OF 16S rRNA GENE  

6.1 R. farinacea THALLI SAMPLES  

For the molecular analyses of R. farinaceae bacterial communities, prior to DNA extraction, 

thalli subsamples from each geographical location were processed as a whole, including both 

ectolichenic and endolichenic bacterial communities, as well as analyzing the ectolichenic and 

endolichenic fractions separately as described by Biosca et al. (2016). Individual thallus or bulk 

thalli (0.2 g subsamples of five thalli from five different trees) samples of 1 g of R. farinacea 

were analyzed for the isolation of both ectolichenic and endolichenic bacteria as described in 

section 4.1. Washing thalli solutions for ectolichenic bacteria and washed and crushed thalli in 

AMB buffer for endolichenic ones were kept frozen for subsequent DNA extraction. In thalli 

samples processed as a whole, the same conditions and proportions above-mentioned for 

crushing the samples were used. Further, additional thalli subsamples were also analyzed after 

subdividing them into basal, middle and apical parts, prior to DNA extraction. 

In additional experiments, some samples were subjected to a disinfection treatment with 70% 

ethanol during 1 min under stirring conditions, followed by two washes with sterile distilled 

water during 5 min (Biosca et al., 2016), using untreated samples as control. The final number 

of samples used in this study was 60. 

The thalli samples that were used for DNA extractions and thereafter sequenced were the 

following: 

- Five individual thalli per each one of the four geographical locations from which ectolichenic 

and endolichenic bacterial fractions were obtained. 

- Thalli from each one of the four geographical locations were also subdivided in basal, middle 

and apical parts, and processed as a whole, without separating the ectolichenic and the 

endolichenic bacterial fractions. 

- Bulk samples from each one of the four geographical locations, with and without disinfection 

treatment, from which ectolichenic and endolichenic bacterial fractions were obtained. 

6.2 DNA EXTRACTION 

The DNA extraction of the different R. farinaceae thalli samples was performed using the 

PowerSoil DNA extraction kit (MoBio Laboratories Inc., Carlsbad, CA, USA) following the 

instructions of the manufacturer. We included some negative controls without lichen samples 

for the extraction plate to verify the lack of possible contaminations.  

6.3 DNA AMPLIFICATION BY PCR 

Aliquots of 1 µl of the DNA extraction of each sample were used for 16S rRNA gene PCR 

amplification and sequencing using the 515f/806r primer set (Caporaso et al., 2011), whose 

sequence is specified in table 10. This primer pair amplifies the region V4-V5 of the 16S rRNA 
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gene of Bacteria and Archaea (Caporaso et al., 2011, 2012), which correspond to the region 

533–786 in the E. coli strain 83972 sequence (GreenGenes accession no. prokM-

SA_id:470367). These primers include Illumina sequencing adapters and 12 bp barcode to 

allow multiplexed sequencing.  

Table 10. Primers used for the amplification of the partial sequence of the 16S rRNA gene and 
subsequent sequencing by Illumina technology. 

Primers Sequence (5’-3’) Target gene Reference 

515f 5'-GTGYCAGCMGCCGCGGTAA -3' 
16S rRNA (Caporaso et al., 2011) 

806r 5'- GGACTACNVGGGTWTCTAAT-3' 

 

PCR reactions contained 10.5 μL of sterile PCR water, 12.5 μL of Master Mix Promega 

(Promega), 1 μL of each of one of the forward and reverse primers (10 μM final concentration) 

and 1.0 μL of genomic DNA. Reactions were held with the conditions described in table 11 

(Caporaso et al., 2011). The expected band must have a size of about 200 bp. All samples were 

PCR tested, at least, by duplicate.  

Table 11. PCR conditions recommended by Caporaso et al. (2011) for the amplification of the partial 
sequence of the 16S rRNA gene and Illumina sequencing. 

Number of cycles Time per cycle Temperature Stage 

1 3 min 94ºC Initial denaturing 

35 

45 sec 94ºC Denaturing 

1 min 60ºC Annealing 

90 sec 72ºC Extending 

1 10 min 72ºC Final extension 

 

6.4 PYROSEQUENCING OF PCR PRODUCTS 

After PCR reactions, all the amplicons obtained were normalized in their concentrations. 

Thereafter, they were pooled in equimolar concentrations and sequenced on the Illumina 

MiSeq instrument. All sequencing runs were conducted at the University of Colorado 

BioFrontiers Institute Next-Gene Sequencing Core Facility. 

6.5 BIOINFORMATIC ANALYSES 

As the fragments were sequenced through the above-mentioned adapters, the program 

cutadapt was used to trim these adapters at sequences of 200 bp. Thereafter, the sequences 

were demultiplexed using a custom Python script (‘prep_fastq_for_uparse_paired.py’, at 

https://github.com/leffj/helper-code-for-uparse) (Edgar, 2013). Then, we merged the paired-

end reads using USEARCH (Version 7) (Edgar, 2010), checked the quality of the sequences 

(usearch8 -fastq_stats) and conduct a quality filtering at a “maxee” rate of 0.005 (maximum 

per sequence expected error frequency value). The sequences were dereplicated and the 

https://github.com/leffj/helper-code-for-uparse
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singleton sequences (phylotypes represented by only a single read) were removed. Filtered 

sequences were clustered to create a de novo database at 97% similarity threshold (sequences 

that share ≥97% sequence similarity). Then, the de novo database was filtered against an 

existing public database to remove highly divergent sequences. In this case, the database was 

Greengenes (McDonald et al., 2012a) with a confidence threshold of 0.75. 

6.6 BACTERIAL TAXONOMIC IDENTIFICATION 

The OTU table mapping of the raw/demultiplexed sequences was built to de novo database at 

a 97% similarity generating phylotype counts. A taxonomic classification was added to each 

OTU using the Ribosomal Database Project (RDP) classifier (Wang et al., 2007) with the 

Greengenes database (McDonald et al., 2012a) with a confidence threshold of 0.5. Finally, 

chloroplasts and mitochondria sequences were removed. All the samples of this study were 

rarefied at 1929 sequences per sample, to avoid overrepresentation of some of them (using 

the R package ‘MCTOOLSR’, at https://github.com/leffj/mctoolsr).  

6.7 DETERMINATION OF BACTERIAL COMMUNITY COMPOSITION, 
BACTERIAL DIVERSITY AND ABUNDANCE 

These analyses were made following the methodology and bioinformatic programmes 

explained and mentioned in the previous section for the study of the diversity of culturable 

bacteria. 

6.8 STATISTICAL ANALYSES  

All statistical analyses performed for molecular analyses of R. farinaceae bacterial 

communities, either using Sanger or Illumina sequencing, were conducted in R (R Development 

Core Team, 2013), unless otherwise indicated.  

For the determination of bacterial community composition, significant differences in the 

relative abundances of individual bacterial taxa across sample types were determined using 

Kruskal–Wallis tests and Bonferroni corrections. Univariate analyses and principal coordinate 

analysis were performed using R software (R Development Core Team, 2013). 

For the determination of bacterial diversity and abundance, a Student's t-test was used for 

pairwise comparisons among the sample types. 

 

https://github.com/leffj/mctoolsr
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RESULTS 

7. ANALYSES OF CULTURABLE BACTERIA ASSOCIATED WITH R. farinacea  

7.1 ISOLATION OF LICHEN-ASSOCIATED BACTERIA  

Culturable cell counts of ectolichenic and endolichenic heterotrophic bacteria recovered from 

R. farinacea populations from different Spanish geographical locations in the Canary island of 

Tenerife (La Guancha and La Esperanza) and the Iberian Peninsula (El Toro and Lidón) are 

represented in figure 13. Bacterial counts were recorded regularly until the 15th day when a 

stabilization of the number of bacterial colonies appearing on culture media was observed. 

Thus, an extended period of incubation increased the recovery of culturable bacteria from R. 

farinacea thalli. As shown in figure 13, in general, the number of colony forming units (CFU)/g 

was higher in the lichen enriched culture medium without added carbon sources (ABL) than in 

the ABL medium amended with glucose and mannitol (ABLGM), both for ectolichenic and 

endolichenic bacteria. One exception was the results corresponding to the ectolichenic 

bacteria recovered from R. farinacea thalli samples from La Esperanza which showed a higher 

number of colonies in ABLGM than in ABL isolation plates (Figure 13b).  
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Figure 13. Culturable cell counts (CFU/g) of ectolichenic (whased thalli; a,b,c,d) and endolichenic 
(crushed whashed thalli; e,f,g,h) heterotrophic bacteria from R. farinacea populations from different 
Spanish geographical locations in the Canary island of Tenerife (La Guancha (a, e) and La Esperanza (b, 
f)) and the Iberian Peninsula (El Toro (c, g) and Lidón (d, h)), during 15 days of incubation in lichen 
enriched ABL (●, without carbon source added) and ABLGM culture media (■, with glucose and 
mannitol) at 26ºC. Each symbol represents the average value of bacterial counts made by triplicate on 
each culture medium for the same bulk thalli sample (composed by five different lichen thalli) from each 
R. farinacea population. The standard deviation of the data is shown by vertical lines. Significant 
differences are indicated by asterisks (p<0.001 (***)). 

*** 
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The comparative data of bacterial counts of the four populations of R. farinacea from different 

geographical areas at final time of incubation (15 days) are shown in figure 14. Culturable 

heterotrophic bacterial numbers recorded from the lichen population from the area of La 

Guancha were very similar to those obtained from thalli sampled in the temperate area of El 

Toro, being around 105-106 CFU/g, both for ectolichenic and endolichenic bacteria. Regarding 

the bacterial counts recorded from R. farinacea populations from the zone of La Esperanza and 

the geographical location of Lidón, both with more extreme conditions, similar results were 

obtained, being about 104-105 CFU/g, and thus lower to the ones recorded in the other two 

locations. The highest number of culturable bacteria was obtained from the lichen thalli 

collected from El Toro, followed by the ones from the thalli sampled in La Guancha and, 

thereafter, by the other two sampling locations where bacterial counts were similar, but 

slightly lower in the ones recovered from the lichen population from La Esperanza. As 

mentioned above, in general, culturable bacterial counts were higher in ABL than in ABLGM 

plates, regardless the geographical or lichenic origin of the samples.  

When comparing between the culturable counts of ectolichenic and endolichenic 

heterotrophic bacteria from the R. farinacea populations from the four sampling locations in 

ABL and ABLGM plates at final incubation time, in general, not relevant differences were 

observed. However, some significant differences were found when comparing the results 

obtained for both media between some populations, which might depend on the bacteria 

associated with each lichen population. In this sense, in the R. farinacea population from La 

Guancha, significant differences were found when the counts of ectolichenic isolates were 

compared between ABL and ABLGM media (p<0.0001). 

In general, the recovery of R. farinacea ectolichenic and endolichenic bacteria was higher on 

ABL medium than on ABLGM medium. Besides, a higher number of bacterial isolates were 

obtained in the ectolichenic fraction than in the endolichenic one, but without significant 

differences. 
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a) b) 

Figure 14. Culturable cell counts (CFU/g) of ectolichenic (a) and endolichenic (b) heterotrophic bacteria 
isolated from R. farinacea populations from different Spanish geographical locations, in the Canary 
island of Tenerife (La Guancha and La Esperanza) and the Iberian Peninsula (El Toro and Lidón), after 15 
days of incubation at 26ºC. ABL (lichen enriched culture medium without carbon source added). ABLGM 
(lichen enriched culture medium supplemented with glucose and mannitol). Each bar represents the 
mean value of bacterial counts made by triplicate on each culture medium for the same bulk thalli 
sample (composed by five different thalli from the same R. farinacea population). The standard 
deviation of the data is indicated by vertical lines. Significant differences are marked with asterisks 
(p<0.01 (**), p<0.001 (***)). 1: significant differences found when compared the results of the counts 
from La Guancha in ABL medium for the ectolichenic and the endolichenic bacteria. 2: significant 
differences found when compared the results of the counts from La Guancha in ABLGM medium for the 
ectolichenic and the endolichenic bacteria. 

7.2 FUNCTIONAL AND BIOTECHNOLOGICAL CHARACTERIZATION OF 
CULTURABLE BACTERIA 

Once bacterial strains were purified and cryopreserved they were characterized as follows: 

7.2.1 Bacterial pigments  

Bacterial strains were grown on KB medium to determine their ability to produce pigments, 

either cellular or diffusible. In figure 15 are represented the percentages of the pigmented 

bacterial strains of R. farinacea studied, grouping them according to the geographical origin of 

the lichen populations analyzed and their ecto- or endolichelic location in the lichen thallus. 

Accordingly, a high percentage of the recovered bacteria were pigmented. When comparing 

the results obtained between the bacterial strains from R. farinacea populations from the 

Island and those from the Peninsula, the peninsular ones presented a higher percentage of 

pigmented strains (81.56%) than those from the Island (58.12%). The main colors among the 

pigmented bacteria from the Island were yellow (28.63%) and white (15.81%), while in those 

from the Peninsula were yellow (31.84%) and pink (28.77%). With regards to the lichen 

populations considering the four geographical locations (Figure 15), the one with the highest 

percentage of pigmented bacteria was El Toro, with a 94.02% (being a 97.22% of them 

ectolichenic, and 90.32% endolichenic), followed by La Esperanza with a 75.76% (89.65% of the 

ectolichenic and 64.75% of the endolichenic), Lidón with a 65.61% (82.43% of the ectolichenic 

and 50.60% of endolichenic) and La Guancha with a 51.19% (48.19% of ectolichenic and 

54.12% of endolichenic). In general, the percentage of pigmented bacterial strains was higher 

for the ectolichenic fraction than the endolichenic one. Nevertheless, these differences were 
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not significant when the number of pigmented bacteria was compared among the locations, as 

well as when considering their ecto- or endolichenic position in the lichen thallus. 

 
Figure 15. Percentages of pigmented bacterial strains of R. farinacea from the four different sampling 
geographical locations in Spain, two from the Canary Island of Tenerife (La Guancha and La Esperanza) 
and two from the Iberian Peninsula (El Toro and Lidón), and according to their ectolichenic or 
endolichenic location in the lichen thallus. Each bar represents the result of the percentage value of the 
pigmented strains made by duplicate in two independent experiments. 

In figure 16a are represented the percentages of pigmented bacterial strains of R. farinacea 

according to the colour of the pigments produced, grouping them by their geographical and 

lichenic origin for each lichen population studied. A representative picture of the variety of 

pigments produced by R. farinacea bacterial strains is shown in figure 16b. The most frequent 

pigment among the studied bacterial strains was yellow (32.3%), followed by pink (18.98%), 

orange (10.41%) and white (10.49%). A 27.82% of the tested bacteria appeared to be 

uncolored under the assayed conditions. Most of the pigments observed were cellular, with 

only a minority being yellow diffusible. In some cases, as in the case of the strains from thalli 

collected at La Esperanza, El Toro and Lidón, the percentage of yellowish strains was more 

abundant in the ectolichenic fraction (22.73%, 16.41% and 24.84%, respectively) than in the 

endolichenic one. The same could be observed with the orange-type pigments of the strains 

from the locations of El Toro and Lidón (17.41% and 4.46%, respectively). Pink pigments were, 

in general, more abundant in the endolichenic fraction than in the ectolichenic one, with 

percentages of pink colonies of 1.19% in La Guancha, 15.15% in La Esperanza and 30.48% in El 

Toro. Despite these differences, the statistical analyses of data revealed that they were not 

significant when compared the ectolichenic and endolichenic bacteria for each one of the 

pigments for each geographical location. 
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a) 

 b) 

Figure 16. Pigments produced by R. farinacea bacterial strains. Percentages of pigmented bacterial 
strains for each one of the four geographical locations in Spain, at the Canary Island of Tenerife (La 
Guancha and La Esperanza) and at the Iberian Peninsula (El Toro and Lidón), and according to their 
ectolichenic (plain bars) or endolichenic (striped bars) location in the lichen thallus (a). In each bar, each 
one of the colors represents the percentage of bacteria producing this pigment. The colors of the bars 
correspond to the color of the pigment: orange, yellow, pink, white and uncolored (grey). Each bar 
represents the result of the percentage values of the pigmented strains made by duplicate in two 
independent experiments. Representative pictures of the variety of pigments produced by R. farinacea 
bacterial strains (b). 

7.2.2 General enzymatic activities: API ZYM system 

A first approach to characterize a selection of R. farinacea bacterial strains isolated from lichen 

populations collected from the four different geographical areas, was made through the 

detection of general enzymatic activities with the miniaturized system APY ZYM® (Biomerieux). 

The incubation time of the galleries inoculated with the bacterial strains was established after 

performing initial assays with readings at different periods of time (24 h, 48 h and 72 h), fixing 

the final reading time at 48 h (data not shown). In general, R. farinacea bacterial strains 

displayed different and varied enzymatic profiles (Table 12, Figure 17), although some of the 

activities detected were common in a high percentage of them, such as esterase (80%), lipase 

esterase (85%), leucine arylamidase (80%), acid phosphatase (80%) and naphthol-AS-BI-

phosphohydrolase (100%) activities. The valine arylamidase activity was present in 55% of the 

tested bacteria. The rest of the activities were detected in a percentage ranging from 10% to 

50%. Two activities were not detected in any of the tested bacterial strains, the N-acetyl-β-

glucosaminidase and the α-fucosidase. Not significant differences were found when the results 

obtained were compared between ectolichenic and endolichenic bacterial strains (Figure 17). 

However, in some cases, the ectolichenic strains were more active than the endolichenic ones, 
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as it was observed in the case of the alkaline phosphatase, esterase lipase, valine arylamidase, 

cystine arylamidase, trypsine, β-galactosidase, α- and β-galactosidase and α-manosidase 

activities. In other cases, the endolichenic strains were more active than the ectolichenic ones, 

for the activities esterase, lipase, α-galactosidase and β-glucoronidase. The differences 

observed between bacterial strains from the ectolichenic and endolichenic fractions for each 

one of the activities tested were not significant. 
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Table 12. Enzymatic profiles detected in a selection of R. farinacea bacterial strains by using the API ZYM system. 

 
a: Bacterial strains from R. farinacea thalli samples from La Guancha (R1), La Esperanza (R2), El Toro (R3) and Lidón (R4). EL: ectolichenic bacteria, EN: 

endolichenic bacteria. b: -: negative activity +w: weak positive activity; +: positive activity; ++; intermediate positive activity; +++: strong positive activity.
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Figure 17. Percentages of bacterial strains of R. farinacea with general enzymatic activities detected 
with the miniaturized system API ZYM®. Blue bars: ectolichenic bacterial strains. Orange striped bars: 
endolichenic bacterial strains. Each bar represents the result of the percentage value of the tested 
strains made by duplicate in two independent experiments. A representative picture of an API ZYM® 
gallery is shown at the right of the graphic.  

7.2.3 Hydrolytic activities 

Polysaccharase activities 

In figure 18 are shown the results obtained for the polysaccharase activities tested (amylase, 

cellulase, xylanase, pectinase and chitinase) with the R. farinacea bacterial strains, grouping 

them according to their geographical location and ectolichenic or endolichenic origin. A 61.8% 

of the tested bacteria showed one or more of the polysaccharase activities assayed. Among 

them, a high proportion of bacteria showed chitinase activity, with a 79.88% of the strains, 

followed by xylanase (61.07%), pectinase (51.94%), amylase (43.82%) and cellulase (31.53%) 

activities. Regarding the geographical location of the lichen populations studied, it was 

observed that in the populations of the Peninsula there was a higher percentage of bacteria 

showing one or more of these hydrolytic activities (57.1%) than in those from the Island 

(47.7%). Peninsular strains were more active in cellulase and amylase activities than those of 

insular origin, while insular strains were more active in pectinase, chitinase and xylanase than 

those from the Peninsula. Taking into consideration the four geographical locations (Figure 

18), the highest percentage of bacterial strains with polysaccharase activities was detected in 

the lichen samples from El Toro, with a 59.31% of strains, followed by those from the 
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populations of La Esperanza (57.5%), Lidón (53.13%) and La Guancha (42.82%). When 

analyzing the results with some more detail, we found that the R. farinacea population from La 

Esperanza was the one with the highest proportion of bacterial strains producing amylase 

(47.92%), La Guancha where more strains produced cellulase (37.41%) and El Toro with more 

strains producing xylanase (71.6%). The highest number of bacterial strains producing 

pectinase and chitinase activities where isolated from R. farinacea populations from Lidón and 

El Toro (60.05% and 90.32%, respectively). Although in some locations and for some activities, 

the endolichenic bacteria seemed to be more active than the ectolichenic ones, as in the case 

of those from lichen thalli from El Toro for the cellulase activity. The differences observed 

among bacterial strains from different geographical and lichenic origins were not significant.  

 

 c) 

Figure 18. Percentages of ectolichenic (plain bars) (a) and endolichenic (striped bars) (b) bacterial strains 
of R. farinacea populations from each one of the four Spanish geographical locations studied, with 
different polysaccharases activities: amylase, cellulase, xylanase, pectinase and chitinase. Each bar 
represents the percentages of positive strains tested by duplicate in two independent experiments. 
Representative pictures of the detection of pectinase, amylase and xylanase activities (from left to right) 
with a selection of R. farinacea bacterial strains (c). 

Lipase activities 

A 39.7% of R. farinacea bacterial strains showed lipase activity when two different lipids were 

used, Tween 20 (T20) and Tween 80 (T80). There was a higher percentage of strains able to 

hydrolize T20 than T80 as substrate, with percentages that arise 53.07% and 23.46%, 

respectively. The R. farinacea populations sampled from the Peninsula showed a higher 

percentage of positive bacteria (40.71%) for lipase activities than those from the Island 

(37.07%). As shown in figure 19 the lichen population with the highest proportion of bacteria 

able to produce lipases was the one collected from El Toro, with a 41.62% of the strains, 

followed by those from La Guancha (39.39%), Lidón (39.06%) and La Esperanza (32.29%). The 

results corresponding to the T80 lipid showed that the highest number of positive strains with 

hydrolytic activity for this lipid was found among those from La Esperanza (30.69 %), while in 

the case of the T20 it was found among those isolated from Lidón (70.95 %). With regards to 
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the positive bacterial strains taking into consideration their lichenic origin, for T20 there was, 

in general, a higher percentage of positive ectolichenic strains than endolichenics. The highest 

differences were detected among bacterial strains from the lichen population of El Toro with a 

71.60% of ectolichenics. In the case of T80, both ectolichenic and endolichenic bacteria 

showed similar percentages of activity, although relevant differences were found in the lichen 

populations from La Esperanza (13.39% of ectolichenics, 44% of endolichenics) and Lidón 

(11.62% of ectolichenics and 3.77% of endolichenics). The statistical analyses of the results 

only revealed significant differences with the endolichenic bacteria from R. farinacea 

populations from La Esperanza and Lidón for T80 (p<0.05), with a higher proportion of strains 

with this hydroltic activity from La Esperanza than from Lidón. 

 

 c) 

Figure 19. Percentages of ectolichenic (plain bars) (a) and endolichenic (striped bars) (b) bacterial strains 
of R. farinacea populations from each one of the four Spanish geographical locations, with lipase 
activities using the synthetic lipids Tween 20 (T20) and Tween 80 (T80). Each bar represents the 
percentages of positive strains tested by duplicate in two independent experiments. Significant results 
are marked with an asterisk (p<0.05). A representative picture of the detection of lipase activity using 
T20 in a selection of R. farinacea bacterial strains (c).  

Protease activities 

Two different substrates were used to detect protease activity, casein and gelatine. From the 

tested strains, 29.93% had protease activity, with a 31.14% of them showing hydrolytic activity 

for the gelatine substrate, and 30.46% for casein. When contrasting the results according to 

the insular or peninsular location of R. farinacea populations, bacterial strains from the Island 

were more active than those from the Peninsula (32.31% and 28.62%, respectively), although 

with slight differences. In the Island more postive strains were found for caseinase activity, 

while in the Peninsula, gelatinase activity was the predominant one among the tested strains. 

When the results were analyzed considering the four geographical locations (Figure 20), the 

highest percentage of bacteria with gelatinase activity was found in the lichen population from 
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Lidón, with a 36.45% of the tested strains, while in the case of caseinase activity the most 

active bacteria were detected in the R farinacea population from La Esperanza, with a 37.5% of 

bacterial strains consdiering both ecto- and endolichenic. However, the percentage of positive 

bacteria for protease activity from the four locations showed very similar proportions. R. 

farinacea populations from La Guancha, Lidón and La Esperanza had a 32.83%, 32.28% and 

31.79% of positive bacterial strains, respectively, while El Toro was the location with less 

proportion of strains with protease activity, with a 26.58%. When comparing the general 

protease activity between the ectolichenic and the endolichenic bacterial strains, 32.73% and 

26.79% were positive, respectively. In fact, for both gelatine and caseine, a higher percentage 

of endolichenic bacteria (34.09% and 31.36%, respectively) than ectolichenic ones (28.57% and 

25%, respectively) showed protease activity. Significant differences were not observed when 

protease activities were compared between ectolichenic and endolichenic strains or among 

strains from different geographical locations.   

 

 c) 

Figure 20. Percentages of ectolichenic (plain bars) (a) and endolichenic (stripped bars) (b) bacterial 
strains of R. farinacea populations from each one of the four Spanish geographical locations showing 
protease activities using the proteins casein and gelatin. Each bar represents the percentages of the 
positive strains tested by duplicate in two independent experiments. Representative picture of the 
detection of protease activity (with casein as substrate) in a selection of R. farinacea bacterial strains (c). 

DNAse activities 

A total of 32.38% of the R. farinacea bacterial strains showed nuclease activity, being those 

from the lichen populations from the Peninsula more active than those from the Island 

(34.94% and 27.21%, respectively). When the results were analyzed according to the four 

populations of R. farinacea sampled (Figure 21), in those from Lidón was found the greatest 

proportion of active strains for this activity (46.87%). The bacterial strains from the thalli from 

the rest of geographical locations had less proportion of positives for the DNAse activity, with a 

27.08%, 27.27% and 28.32% for La Esperanza, La Guancha and El Toro, respectively (Figure 21). 

Besides, the number of endolichenic bacteria from lichen thalli from Lidón showing positive 
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results was higher than the ectolichenic ones, with percentages of 56.60% and 34.88%, 

respectively (Figure 21). Regarding the samples from the locations of La Guancha and El Toro, 

the ectolichenic bacterial isolates were more active (32.65% and 35.80%, respectively), than 

the endolichenic ones (22% and 28%, respectively). In La Esperanza, these differences were 

less notable, with a 28% of the positive bacteria being endolichenic and a 26.09% ectolichenics 

(Figure 21). No significant differences were obtained when comparing the activities according 

to the ectolichenic or endolichenic origin or the geographical origin of the strains.  

a)  b) 

Figure 21. Percentages of ectolichenic (plain bars) and endolichenic (striped bars) bacterial strains of R. 
farinacea populations from each one of the four Spanish geographical locations with DNAse activity. 
Each bar represents the percentages of positive strains tested by duplicate in two independent 
experiments (a). A representative picture of the detection of DNAse activity in a selection of R. farinacea 
bacterial strains (b).  

As a summary of the hydrolytic potential of the R. farinacea bacterial strains studied, 

regardless their geographical and lichenic origin, a total of 40.95% of them had one or more 

hydrolytic activities. A 61.8% of them were positive for polysaccharases activities, a 39.7% for 

lipase activities, a 32.38% for the DNAse activity and a 29.93% for protease activities. 

7.2.4 Nutrient supplying activities  

Nitrogen fixation  

The ability of R. farinacea bacterial strains to fix nitrogen was tested using different media 

designed for this purpose, as Norris medium, the one described by Cardinale et al. (2006) and 

two different minimal media, both with glucose and one of them also with mannitol, but 

without a nitrogen source (ABG-N and ABGM-N, respectively). A higher number of bacteria 

able to fix nitrogen were detected in the ABG-N and ABGM-N media than in the others (data 

not shown). Therefore, ABG-N and ABGM-N were the culure media employed in this assay. 

These two media were used according to initial results performed with a selection of strains, in 

which some differences were found in their ability to detect bacteria able to fix nitrogen. 

However, subsequent results revealed no significant differences between these two nitrogen 

free media since only in the case of the bacterial strains from El Toro, there were two of them 

able to grow in ABG-N media and not in ABGM-N. Thus, almost all tested bacterial strains had 

the ability to fix nitrogen in both media. In the case of the bacterial strains from lichen thalli 

from the Island, an 87.07% of them were able to fix nitrogen in both media, while in those 

from the Peninsula, this percentage was slightly higher, with a 97.4% of positive strains 
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(97.77% for ABG-N and 97.03% for ABGM-N). According to each geographical origin (Figure 

22), 100% of bacterial strains from lichen thalli from Lidón were able to fix nitrogen, followed 

by the strains from El Toro with a 95.95%, La Guancha with an 88.89% and La Esperanza with 

an 83.65%. The ability to fix nitrogen was also high and very similar between ectolichenic 

(94.90%) and endolichenic (92.73%) bacteria, regardless the geographical origin or the culture 

medium used. A 92.73% of endolichenic bacterial strains fixed nitrogen in both ABG-N and 

ABGM-N media, with small differences in the ectolichenic strains (95.41% in ABG-N and 

94.39% in ABGM-N). The differences found when comparing among all these results were not 

significant. 

a)  b) 

Figure 22. Percentages of ectolichenic (plain bars) and endolichenic (striped bars) bacterial strains of R. 
farinacea populations from each one of the four Spanish geographical locations with the ability of fix 
nitrogen on two minimal culture media (both with glucose and one of them with mannitol) without 
nitrogen (ABG-N and ABGM-N). Each bar represents the percentages of the strains tested by duplicate in 
two independent experiments (a). A representative picture of the activity of nitrogen fixation in a 
selection of R. farinacea bacterial strains (b).  

Phosphate solubilization 

The ability of the R. farinacea associated bacteria to solubilize phosphate was determined by 

adding Ca₃(PO₄)₂ to the Pikovskaya culture media. The results showed that around 50% of the 

tested bacterial strains were able to transform the Ca₃(PO₄)₂ in a soluble form. However, some 

differences were found between the results obtained with the strains from lichen thalli from 

the Island, with a higher number of positive strains being able to solubilize phosphates 

(62.59%), than in those from the Peninsula (34.94%). Furthermore, differences were also 

observed when the results were analyzed according to the lichen populations from the four 

geographical locations (Figure 23). Bacterial strains from thalli samples from La Guancha and 

Lidón showed very similar percentages for phosphate solubilizing bacteria, with a 75.74% and 

75.89%, respectively. This percentage decreased among the strains from thalli from La 

Esperanza up to a 35.57%, and even more for those from El Toro, with only a 9.91% of tested 

strains (Figure 23). The proportion of ectolichenic and endolichenic bacterial strains that were 

positive was very similar, with percentages of 49.53% and 49.02%, respectively. Interestingly, 

significant differences were found between the results of the endolichenic bacteria from lichen 

thalli from La Guancha and El Toro (p<0.05), with percentages of positive bacteria of 78% and 

8.70%, respectively, as well as between the endolichenic bacteria from Lidón and El Toro 

(p<0.05), with percentages of 77.36% and 8.70%, respectively. 
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a)  b) 

Figure 23. Percentages of ectolichenic (plain bars) and endolichenic (striped bars) bacterial strains of R. 
farinacea populations from each one of the four Spanish geographical locations with phosphatase 
activity. Each bar represents the combination of the resulting percentages of the strains tested by 
duplicate in two independent experiments. Significant results are marked with asterisks (p<0.05 (*), 
p<0.01 (**), p<0.001 (***)) (a). A representative picture of the detection of phospahte activity in a 
selection of R. farinacea bacterial strains (b).  

Siderophores production 

The original CAS agar medium widely used for the detection of bacteria able to produce 

siderophores to uptake iron, was modified to improve the growth of R. farinacea bacterial 

strains unable to grow on this medium (Figure 24a). To this end, a second culture medium was 

added to these CAS agar plates, KB since it was the one routinely used for the growth of 

lichenic bacteria. A first improvement was made dividing the plate in two halves, one 

containing the KB medium and the other one the CAS agar (Figure 24b). The inoculation of 

bacteria was made from the side of the KB medium to the side of the CAS agar. Thus, some of 

the bacteria were able to grow in the CAS agar, probably because they took some nutrients 

from the KB medium that helped them growing in the CAS agar. The second modification was 

the addition of a thin second layer of KB medium on the layer of CAS agar (Figure 24c). This 

modification avoids the bacteria to be in direct contact with the CAS agar, with the KB medium 

layer being thin enough to allow the bacteria to uptake iron from CAS agar at the bottom of 

the plates. This improvement allowed the growth of many lichenic bacteria that were unable 

to grow in direct contact with the original CAS agar. Therefore, a higher number of R. farinacea 

bacterial strains were able to show their ability to produce siderophores. The progress of the 

results to improve CAS agar is shown in figure 24. 

 

Figure 24. Representative pictures of the modifications of the CAS agar to improve the detection of 
siderophores with R. farinaceae bacterial strains. Circles represent inoculated bacterial strains unable to 
grow on regular CAS agar (a). A plate with KB agar in the left half, and CAS agar in the right half showing 
strains growing on this modified medium (b). A plate with CAS agar at the bottom and KB on the upper 
layer allowing the growth of all inoculated bacterial strains regardless their ability or not to produce 
siderophores (c). 
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The detection of siderophores in the R. farinacea bacterial strains was determined on the 

optimized CAS agar, with the results showing that a high percentage of them produced these 

iron-chelating compounds. From all the tested bacterial strains, 84.14% were positive for this 

activity, regardless their insular (86.39%) or peninsular (82.89%) origin. Considering the four 

geographical origins of the R. farinacea strains (Figure 25), the ones isolated from lichen thalli 

from Lidón were the most active with a 97.16% of them being able to produce siderophores. 

They were followed by the bacterial strains from La Guancha, with a 90.91%, La Esperanza with 

a 77.08% and El Toro with a 75.14%. Not differences were found regardless the endolichenic 

(84.09%) or ectolichenic (84.18%) origin of the bacterial strains (Figure 25). The small 

differences observed among the results obtained either with strains from different 

geographical locations and/or origin in the thallus were not significant.  

a)   b) 

Figure 25. Percentages of ectolichenic (plain bars) and endolichenic (striped bars) bacterial strains of R. 
farinacea populations from each one of the four Spanish geographical locations with the ability of 
produce siderophores according to their ectolichenic (plain color bars) or endolichenic (striped bars) 
location in the thallus (a). Each bar represents the percentage of the strains tested by duplicate in two 
independent experiments. A representative picture of the result of siderophore production in a 
collection of R. farinacea bacterial strains (b).  

Overall, the results of the nutrient supplying activities studies have shown that a high 

percentage of R. farinacea bacterial strains had the ability to fix nitrogen and produce 

siderophores, regardless their geographical or lichenic origin, with values ranging between 

70% and 100%. Related to the phosphate solubilizing activity, a higher percentage of positive 

strains for this activity was detected among those isolated from thalli samples from La 

Guancha and Lidón (around 70%) than those from El Toro (around 30%) and Lidón (10%). The 

bacterial strains isolated from lichen populations from La Guancha and Lidón, were in general, 

more active than the ones from the other two locations for the activities studied. 

7.2.5 PHYTOHORMES DETECTION 

Auxin production 

Many of the bacterial strains of R. farinacea tested in this study showed the ability to 

synthesize the auxin IAA in the presence of the precursor L-tryptophan, despite their 

production of IAA was variable (Figure 26 and 27). For the detection of auxins, a first approach 

was carried out through a non-quantitative method, although based on the differences of 

color intensity produced after the transformation of the L-tryptophan in IAA and the 
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measurement of the consequent color at A530 nm at, 24, 48 and 72 h, after the addition of 

Salkowskis’s reagent. As shown in figure 26a, the bacterial strains that showed the highest IAA 

values at the three reading times were those from lichen thalli from the location of La 

Guancha, followed by those from Lidón and El Toro. The strains from La Esperanza were the 

ones less active in the production of this hormone. In all cases, the results obtained showed 

that the ectolichenic bacterial strains from the four geographical locations produced more IAA 

than the endolichenic ones. As expected, the levels of this hormone were increasing within 

time, reaching maximum values at 72 h. 

   a) 

b) 

Figure 26. IAA phytohormone production by bacterial strains of R. farinacea populations from the four 
geographical locations in Spain. Average values of measures at A530 nm for the ectolichenic (plain bars) 
and endolichenic (striped bars) bacterial strains from each location, after 24 h, 48 h and 72 h of 
incubation at 26ºC. Each bar represents the average values for all strains from the same geographical 
location (each strain was tested by quadruplicate). The standard deviation of the data is indicated by the 
vertical lines. Significant results are marked with asterisks (p<0.05 (*); p<0.01 (**), p<0.001 (***) (a). 
Representative pictures showing the colored reaction by the production of IAA after adding the 
Salkowski’s reagent in microtiter plates at different incubation times (24 h, 48 h and 72 h). First row of 
wells was filled with KB broth without bacterial inoculum as negative control (-C, wells framed in red). 
Three bacterial strains were used as positive controls (P. fluorescens: CECT 378; E. cloacae: CECT 194; E. 
coli: CECT 101. Wells framed in yellow) (b). 

Afterwards, and according to the abovementioned results, the procedure continued with the 

quantification of the concentration of IAA produced by the bacterial strains based on the 

results of a standard curve of IAA. A selection of those strains positive for IAA from the 

previous test was made for this assay. In this case, the readings were performed at 24 h and 72 

h, since the differences between 48 h and 72 h were not significant, and some of the assayed 

bacteria showed a slow growth rate. Thus, an extended period of incubation helped to 

visualize the hormone production in those cases. In figure 27a are represented the mean 

values of IAA production for the tested bacterial strains of each one of the four populations of 
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R. farinacea at 24 h and 72 h. Auxin concentrations ranged from 0.0012 to 41.42 µg/ml at 24 h 

and 0.0027 to 100.62 µl/ml at 72 h. The most active producers of IAA were the bacterial strains 

isolated from R. farinacea populations from La Guancha and Lidón with averages values of 7.4 

and 5.25 µg/ml at 24 h, respectively, and 19.38 and 16.7 µg/ml at 72 h, respectively. The 

bacterial strains from La Esperanza and El Toro showed less hormone production than the 

ones from the other locations, with values of 1.91 and 0.78 µg/ml at 24 h respectively, and 

6.55 and 2.55 µg/ml at 72 h, respectively. Some significant differences were found as shown in 

figure 27a. 

In figure 27b are shown the percentages of bacterial strains according their IAA production at 

different concentrations at 24 h and 72 h. At 24 h, most of the assayed bacterial strains 

showed a low hormone production, in the range from 0 to 5 µg/ml. Taking into account the 

insular or peninsular origin of R. farinacea populations, a higher percentage of bacterial strains 

producing more than 5 µg/ml of hormone after 24 h was detected in the Island than in the 

Peninsula (37.31% and 16.92%, respectively). These percentages increased after 72 h (62.71% 

in the Island and 41.53% in the Peninsula). When considering each one of the four 

geographical locations (Figure 27b), between 90% and 100% of bacterial strains from lichen 

populations from La Esperanza and El Toro were in the range mentioned above. By contrast, in 

the case of strains from La Guancha and El Toro, there were different proportions of bacteria 

that produced this hormone at different concentrations. Around 80% of them produced IAA 

between 0 and 10 µg/ml, and around 20% of them showed a hormone production between 10 

and more than 15 µg/ml, in both cases. After 72 h of incubation, only in the case of the 

bacteria isolated from R. farinacea thalli from El Toro there wasn’t a remarkable increasing 

production of IAA. Related to the bacteria from lichen thalli from La Esperanza, around 50% 

increased their production from 5 µg/ml or more than 15 µg/ml. In the case of La Guancha, 

around 25% of the bacteria increased their production between 5 to 15 µg/ml, with more than 

50% producing more than 15 µg/ml. Regarding the bacteria isolated from Lidón, the two main 

groups of production were high (> 15 µg/ml) and low (from 0 to 5 µg/ml) hormone 

concentration.  
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a) 

b) 

Figure 27. Quantification of the IAA production by the bacterial strains isolated from R. farinacea 
populations from the four geographical locations in Spain. Each bar represents the average 
concentration value produced by the bacterial strains from each geographical location grouped by their 
ectolichenic (plain bars) and endolichenic (striped bars) origin. Significant results are marked with 
asterisks (p<0.05 (*); p<0.01 (**), p<0.001 (***)) (a). Percentages of bacterial strains able to produce 
IAA at different concentrations and times (24 h and 72 h), where each bar represents the percentages of 
ectolichenic and endolichenic bacterial strains from each geographical location (b).  

Detection of ACC deaminase gene 

The PCR detection of the acdS gene in the R. farinacea bacterial strains was made as previously 

described (Nikolic et al., 2011). However, by using the original conditions for the PCR reaction 

some unspecific bands were obtained. Therefore, this reaction and amplification conditions 

were modified in order to improve the detection of the acdS gene. In figure 28 are shown 

representative pictures of the improvement of the amplification conditions, visualized after 

the separation of PCR products by gel electrophoresis. 

The final reaction mix for a volume of 50 μL the PCR was: 1 µl DNA sample, 33.5 μL of sterile 

MiliQ water, 5 μL of 10X buffer, 5 μL 2 mM dNTPs, 2.5 μL of each primer, 0.25 μL of DMSO 

(dimethyl sulfoxide) (0.5%) and 0.25 μL of Taq polymerase (DreamTaq DNA polymerase, 

Thermo Scientific). DMSO was added as an additional optimization to reduce more the 

appearance of unspecific bands. Regarding the amplification conditions, the number of cycles 

and the temperature of annealing were modified, being the final conditions those shown in 

table 13. 
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Figure 28. Representative pictures showing the progressive improvement of the PCR detection of acdS 
gene by modifying the amplification conditions to reduce unspecific bands. From the left to the right it is 
shown the reduction of these bands and the visualization of the band of interest of 750 bp (yellow 
rectangle in MM and arrow in the bacterial strains tested). MM: molecular weight marker. +C: positive 
control (E. cloacae: CECT 194). -C, negative control.  

 

Table 13. Final PCR conditions for the molecular detection of the acdS gene. 

Number 

of cycles 

Time per cycle Temperature Stages 

1 3 minutes 95ºC Initial denaturing 

 

27 

30 seconds 95ºC Denaturing 

1 minute 50ºC Annealing 

1 minute 72ºC Extending 

1 5 minutes 72ºC Final extension 

 

The molecular detection of the acdS gene in the R. farinacea bacterial strains trough PCR 

showed that only an 18.54% of tested strains had the gene that codifies for the ACC 

deaminase, being a 17.85% of them from the Island and a 19.30% from the Peninsula. When 

the results were analyzed considering each one of the four geographical locations from where 

thalli samples were collected, we found that the bacterial strains from R. farinacea populations 

from La Guancha and Lidón presented the highest numbers of positive detections for  this 

gene (23.53% and 30.30%, respectively), while those from La Esperanza and El Toro showed 

the lowest ones (9.09% and 4.17%, respectively).  

When contrasting the PCR results between ectolichenic and endolichenic bacterial strains for 

each geographical location (Figure 29), some differences were found. In the lichen population 

from La Guancha, a 14.71% of the positive results were detected among the endolichenic 

strains and a 8.82% among the ectolichenic ones. By contrast, in the strains from La Esperanza 

a similar proportion of positives was observed (about 4.55%), regardless the lichenic origin. 

Interestingly, in the bacterial strains from El Toro, the acdS gene was detected only among the 

ectolichenic ones (4.17%), while in those from Lidón a higher percentage of positive results 

was recorded among those ectolichenic (21.24%) than endolicenic (6.06%). 
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Figure 29. Percentages of bacterial strains of R. farinacea positive for the detection of the acdS gene. 
Each bar represents the percentage of ectolichenic and endolichenic positive bacterial strains for each 
one of the four geographical locations from where R. farinacea thalli were sampled in Spain. 

7.2.6 Biofilm formation 

Biofilm production 

The ability to produce biofilms by the bacterial strains isolated from R. farinacea populations 

from different Spanish geographical locations was also evaluated at different times of 

incubation, taking also into consideration their origin in the lichen thallus. The results were 

finally recorded after 48 h and 72 h of incubation at 26ºC. In figure 30 are shown the average 

values at A600 nm, after the staining of bacterial biofilms with crystal violet for each one of the 

geographical locations and according to the ectolichenic or endolichenic origin of the strains. 

In all cases, the differences observed between readings at 48 h and 72 h were not remarkable, 

although mean values were higher at 72 h than at 48 h.  The groups of bacterial strains that 

produced more biofilms were the ones isolated from lichen thalli from La Guancha and Lidón, 

with average values higher than A600=0.50, either at 48 h and 72 h, regardless the origin in the 

thallus.  They were followed by the group of bacterial strains isolated from thalli populations 

from La Esperanza and El Toro, with mean values around A600=0.40 for both incubation times, 

regardless their lichenic origin. These tiny differences were not significant, but gave an idea 

about the intensity of the biofilms produce by these lichenic bacteria.  
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a)  

b) 

Figure 30. Biofilm production by bacterial strains of R. farinacea from lichen populations from four 
geographical locations in Spain. Each bar represents the average values at A600 nm of bacterial strains 
grouped by their geographical location and ectolichenic (plain bars) and endolichenic (striped bars) 
origin after 48 h and 72 h. Six replicates were made for each bacterial strain. The standard deviation of 
the data is indicated by the vertical lines (a). Representative pictures showing the production of biofilms 
after dying with crystal violet. The two small pictures in the upper part on the left and center were taken 
through a light microscope (40x). The pictures in the lower part on the left and the one on the right are 
representative images of the different intensities of biofilms produced. The wells with darker colours 
correspond to strong biofilms, and the ones with lighter colours to medium or weak biofilm production 
(b). 

With the aim to cluster the bacterial strains according to the amount of biofilm produced, they 

were classified in four categories: strong, moderate, weak or not biofilm producers. At 48 h, 

most of the bacterial strains produced moderate and strong biofilms, with a higher proportion 

in the case of those from lichen population from the Island than in those from the Peninsula 

(91.31% and 67.74%, respectively). These percentages increased after 72 h of incubation 

(97.1% in insular strains and 93.56% in those peninsular ones). When considering bacterial 

strains grouping them according to the geographical and lichen thallus origin (Figure 31), it was 

found that an 82.93% of the strains from the lichen populations of La Guancha produced 

strong biofilms at 48 h (89.47% ectolichenic and 77.27% endolichenic), while the rest of 

bacterial strains produced moderate biofilms (10.53% of ectolichenics and 22.73% of 

endolichenics). In the lichen population of La Esperanza, a 42.86% of the tested bacteria 

produced strong biofilms (46.67% ectolichenics and 38.46% endolichenics), a 35.71% 

moderate (33.33% ectolichenics and 38.46% endolichenics), with less proportion of weak 

biofilm producers (14.29%). Some of them were unable to produce this structure. In the case 



89 
 

of bacterial strains from El Toro, the main categories of biofilms produced were strong (40.74% 

with 53.85 % ectolichenic and 28.57%, endolichenic) and weak (37.04% of the bacteria, 46.15% 

ectolichenic and 28.6% endolichenic). Only a 14.81% produced moderate biofilms and a 7.40% 

were unable to form them. All the bacteria isolated from lichen thalli from Lidón produced 

biofilms after 48 h, a 45.71% formed strong biofilms (58.82% ectolichenics and 33.33% 

endolichenics), 40% moderate ones (23.53% ectolichenics and 55.56% endolichenics), and 14% 

weak biofilms (17.65% ectolichenics and 11.11% endolichenics). At 72 h there was an increase 

in the number of bacteria able to produce strong and moderate biofilms in all R. farinacea 

bacterial strains (Figure 31). Significant differences in the percentages of bacterial strains able 

to produce different categories of biofilms were observed between ecto- and endolichenic 

fractions, and in some cases at different times of incubation (Figure 31).  

 

Figure 31. Percentages of bacterial strains of R. farinacea populations from four geographical locations 
in Spain, producing biofilm at different intensities after 48 h (left) and 72 h (right) of incubation. Each 
bar represents the percentages of bacterial strains grouped by their ectolichenic (plain bars) or 
endolichenic (striped bars) origin for each geographical location. Six replicates were made for each 
bacterial strain. Significant results are marked with asterisks (p<0.05 (*); p<0.01 (**)). 

Swimming and swarming motility 

Swimming 

The results of swimming motility with R. farinacea bacterial strains showed that a high number 

of them (70.43%) presented this type of motility, being very similar between the strains from 

insular R. farinacea populations (71.43%) and those peninsular (69.49%). With regards to the 

results according to the the four geographical locations (Figure 32a), the highest number of 

bacterial strains positive for swimming motility were those from R. farinacea thalli from La 

Guancha (86.49%), followed by those from lichen thalli from Lidón (84.34%), El Toro (51.85%) 

and La Esperanza (42.11%). When comparing between ectolichenic and endolichenic bacterial 

strains from La Guancha, percentages of 94.44% and 78.95% were recorded, respectively 

(Figure 32a). The average of the distance travelled by these bacteria was 4.15 cm and 3.89 cm, 

respectively (Figure 32b). In the case of the bacterial strains from thalli from La Esperanza, 

there was an important difference between the ectolichenic (77.77%) and the endolichenic 

(10%) ones, with average distance reaching 3.01 cm and 1.65 cm, respectively (Figure 32b). For 

those bacterial strains isolated from lichen thalli from El Toro, there was a 60% of the 

ectolichenic bacteria with swimming motility, with an average distance of 0.44 cm, and a 
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41.67% of endolichenic bacteria, with an average of 0.39 cm (Figure 32 a and b). With regards 

to bacterial strains from thalli collected from Lidón, the percentages of motile bacteria were 

very similar for both ectolichenic (86.67%) and endolichenic (82.35%) strains, with average 

distance reached of 3.83 cm and 2.73 cm, respectively (Figure 32 a and b). All swimming 

motility data and the significant differences among them are represented in graphics in figure 

32 (a and b), as well as some representative pictures of the swimming motility (Figure 32c).  
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a) 

 b) 

 c) 

Figure 32. Swimming motility of bacterial strains isolated from R. farinacea populations from four 
geographical locations in Spain. Percentages of bacterial strains showing swimming motility at 24 h and 
48 h of incubation at 26ºC. Each bar represents the percentage of these strains according to their 
ectolichenic (plain bars) and endolichenic (striped bars) origin for each geographical location. Significant 
results are marked with asterisks (p<0.05 (*); p<0.01 (**)), p<0.001 (***)) (a). Average value of the 
distance travelled by the tested strains at 24 h and 48 h. Each bar represents the average distance for 
strains according to their ectolichenic (plain bars) and endolichenic (striped bars) origin for each 
geographical location. The standard deviation of the data is indicated by the vertical lines (b). 
Representative pictures of different strains showing swimming motility as well as one strain negative for 
this motility (last picture, strain on the right) (c). 
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Swarming  

Swarming motility was studied as well with R. farinacea strains. The percentages of bacteria 

able to move with swarming motility was low compared with those of swimming motility. Only 

a 5.6% of them were positive for swarming, with a 6.45% of the strains being from R. farinacea 

thalli from the Island and a 4.76% from the Peninsula. The results of swarming motility of R. 

farinacea according to each geographical location and their lichenic origin are shown in figure 

33a. The strains from thalli from La Esperanza and Lidón were the ones with higher percentage 

of positives with an 8.33% and 8.57%, respectively, followed by those from La Guancha with a 

5.26%. None of the tested bacterial strains from lichen thalli from from El Toro showed this 

motility. With regards to the lichenic origin of the strains for each geographical location, in the 

lichen population from La Guancha, the maximum diameter of movement reached 7.85 cm. In 

the endolichenic fraction, the maximum distance reached by swarming were 5.5 cm. In the 

location of La Esperanza a 7.69% of the ectolichenic strains were positive and a 9.09% of the 

endolichenics. In this case, the range of the diameter reached was between 0.55 cm and the 

invasion of the surface of the plate. Related the location of Lidón, there was a 5.88% of 

ectolichenic positive bacteria and 11.11% endolichenic. The maximuum distance reached the 

edge of the plate. Representative pictures of different shapes produced by swarming motility 

are shown in figure 33c. 
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a) 

b) 

 c) 

Figure 33. Swarming motility of bacterial strains isolated from R. farinacea populations from four 
geographical locations in Spain (a). Percentages of bacterial strains showing swarming motility at 24 h 
and 48 h. Each bar represents the percentage of these strains according to their ectolichenic (plain bars) 
and endolichenic (striped bars) origin for each geographical location. Average value of the distance 
travelled by the tested strains at 24 h and 48 h. Each bar represents the average distances for strains 
according to their ectolichenic (plain bars) and endolichenic (striped bars) origin for each geographical 
location. The standard deviation of the data is indicated by the vertical lines (b). Representative pictures 
of different strains showing swarming (c). 

When compared the global results obtained with the two motility assays (figure 34), there was 

a notable difference between both type of motilities, being swimming the most frequent one 

among the bacterial strains associated with R. farinacea populations from the four different 

Spanish geographical locations (Figure 34a). Bacterial strains from thalli samples from El Toro 

were the only ones without swarming motility. In all cases, the percentages of motile strains 

and the average of the distance travelled, was higher for the swimmers than for the swarmers 

(Figure 34 a and b). Despite these notable differences, they were not significant.  
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Figure 34. Percentages of bacterial strains of R. farinacea able to perform swimming (yellow) and/or 
swarming (green) motility from lichen populations from four geographical locations in Spain (a). Average 
distance travelled by the tested strains by swimming (yellow) or swarming (green) motility. Each bar 
represents the average distances for each location. The standard deviation of the data is indicated by 
vertical lines (b).  

7.3 MOLECULAR IDENTIFICATION 

A group of 65 R. farinacea bacterial strains from the four geographical Spanish locations 

among the most active was selected for their presumptive identification through partial 

amplification and sequencing of the 16S rRNA gene. Due to the appearance of unspecific bands 

by using the PCR conditions described by Arahal et al. (2008) using the primers 616V and 699R, 

the amplification conditions were modified. The final conditions used for this PCR were those 

shown in table 14.  

Table 14. Final PCR conditions for the amplification of the partial sequence of the 
16S rRNA gene. 

Number of  

cycles 

Time per 

cycle 

Temperature Stage 

1 5 minutes 94ºC Initial denaturing 

25 

30 seconds 94ºC Denaturing  

45 seconds 56ºC Annealing  

45 seconds 72ºC Extending  

1 10 minutes 72ºC Final extension 

 

Once obtained the sequences of the selected bacterial strains, and after their cleaning, 

analyses and BLAST contrasting, the results showed that these strains belonged to the phyla 

Actinobacteria (47.69% of the strains), Proteobacteria (40%) and Firmicutes (12.31%). 

The main genera to which these bacteria were assigned were Bacillus, Burkholderia, 

Curtobacterium, Erwinia, Frondihabitans, Kocuria, Leifsonia, Methylobacterium, Microbacteria, 

Pseudomonas, Sphingomonas and Streptomyces, among others.  

All the selected bacteria that were taxonomically identified had a wide variety of activities 

(Table 15). The most active genera were Burkholderia, Curtobacterium, Erwinia, Leifsonia, 

Nocardioides, Pseudomonas and Staphylococcus. In general, bacterial strains assigned to these 
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genera presented different hydrolytic activities as polysaccharases, lipases, proteases and 

nucleases, as well as activities related with the supply of limited nutrients (nitrogen, phosphate 

and/or iron), also producing auxins and biofilms. Other active strains but unable to solubilize 

phosphates were those assigned to the genera Arthrobacter, Bacillus, Kocuria, 

Methylobacterium, Microbacterium, Micrococcus, Mycobacterium, Pantoea, Sphingomkonas, 

Stenotrophomonas and Streptomyces. 
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Table 15. Presumptive taxonomical identification of R. farinacea bacterial strains according to their functional and biotechnological characterization. 
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Table 15. Continued. 

 
a: Bacterial strains from R. farinacea thalli samples from La Guancha (R1), La Esperanza (R2), El Toro (R3) and Lidón (R4). L: ectolichenic bacteria, M: endolichenic bacteria.  

b:-, negative activity; +, positive activity 
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After the alignment of the sequences, a phylogenetic study of the bacterial strains of R. farinacea was 

made. A selection of the nearest bacterial species, obtained through the comparison by BLAST, were 

included and represented in a phylogenetic tree following the method of Maximum Likelihood with the 

MEGA6 program. In figure 35 is represented this phylogenetic tree. 

 

 

 

 



99 
 

 R3M36
 R3M9
 R3M35
 R3M31
 R3M3
 R3M34
 R1M18
 R1M22
 ENA|AJ312209|AJ312209.1 Curtobacterium flaccumfaciens pv. flaccumfaciens LMG3645
 R4M23

 ENA|JX876867|JX876867.1 Frondihabitans sucicola GRS42
 R2M3

 R2M20
 ENA|AF116342|AF116342.1 Leifsonia poae
 R4L39
 R4M11
 R4M17
 R4M25

 AJ698725.1 Microbacterium oleivorans DSM 16091T
 R1L17
 R1L21

 AJ536198.1 Micrococcus luteus DSM 20030
 R2L10

 ENA|AY509239|AY509239.1 Arthrobacter rhombi S189
 R2M19

 ENA|X87756|X87756.1 M.roseus
 R3M22

 ENA|Y16263|Y16263.1 Kocuria palustris
 R2M10

 ENA|Y16264|Y16264.1 Kocuria rhizophila
 R2M14

 DQ026668.1 Streptomyces coeruleofuscus NRRL B-5417
 R4M3

 DQ442542.2 Streptomyces puniceus NRRL B-2895T
 R4L40

 R4L27
 DQ026635.1 Streptomyces flavovirens NRRL B-2685
 R3M1

 ENA|JQ977445|JQ977445.1 Nocardioides sp. Ms12
 R4M31

 X93184.1 Mycobacterium hodleri
 R3L30
 R3M16

 AB009944.1 Staphylococcus pasteuri
 R2M24

 ENA|AB681292|AB681292.1 Staphylococcus epidermidis NBRC 100911
 R3M6

 R3L22
 R3L25

 R3L21
 ENA|AJ276351|AJ276351.1 Bacillus subtilis DSM10

 AJ439078.1 Bacillus simplex DSM 1321T
 R2L22

 ENA|GU252112|GU252112.1 Bacillus megaterium ATCC 14581
 R1L2
 R4L30

 ENA|FJ157960|FJ157960.1 Methylobacterium sp. 1a.16
 R3L2

 R3L28
 ENA|AJ429239|AJ429239.1 Sphingomonas faenia MA-olki

 R3L17
 R1M14
 R4M33
 R1M13
 R1M1
 ENA|KM604989|KM604989.1 Burkholderia sordidicola E2BF6

 R4L12
 R4M5
 ENA|U96935|U96935.1 Burkholderia glathei

 KY753296.1 Caballeronia terrestris ZR-4
 R1L33
 gi|8980463|emb|AJ293463.1| Stenotrophomonas rhizophila e-p10

 R3M19
 ENA|JN175337|JN175337.1 Erwinia billingiae CIP 106121
 R1M25

 gi|76365346|gb|DQ158204.1| Averyella dalhousiensis 2362-79
 R1M12
 ENA|AJ233423|AJ233423.1 Pantoea agglomerans DSM 3493
 R4L34

 D84013.1 Pseudomonas fluorescens
 gi|1907093|emb|Z76653.1| Pseudomonas alcaligenes

 R1L32
 gi|28194120|gb|AF468452.1| Pseudomonas sp. Ps 9-14

 R4L7
 R1L20
 R1L23
 R1L19
 ENA|AY152673|AY152673.1 Pseudomonas rhizosphaerae
 R4L13
 R1L26
 R2L21
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Figure 35. Phylogenetic analyses based on the partial sequence of the 16S rRNA gene of culturable 
bacteria associated with the R. farinacea populations from the four geographical locations in Spain 
studied. The evolutionary history was inferred by using the Maximum Likelihood method based on the 
Tamura-Nei model. R1: bacterial strains from La Guanha. R2: bacterial strains from La Esperanza. R3: 
bacterial strains from El Toro. R4: bacterial strains from Lidón. L: ectolichenic bacteria. M: endolichenic 
bacteria. The percentage of replicate trees in which the associated taxa clustered together is shown next 
to the branches, with 1000 of bootstrap replications. The sequences of some reference type strains 
were included in the tree. 
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8. DIVERSITY AND COMPOSITION ANALYSES OF CULTURABLE BACTERIA 
ASSOCIATED WITH R. farinacea THROUGH CONVENTIONAL 16S rRNA 
GENE SEQUENCING 

The study of the diversity of culturable bacteria associated with populations of the lichen R. 

farinacea from four geographical locations in Spain, two from the Island of Tenerife (La 

Guancha and La Esperanza), and two from the Iberian Peninsula (El Toro and Lidón) was 

carried out with a total number of 286 bacterial strains. Figure 36 shows a representative Venn 

diagram illustrating the OTUs overlapping among the bacterial strains isolated from the 

samples of R. farinacea from the four Spanish locations at a threshold of 0.005. Some of these 

OTUs were ubiquitous for all the geographical locations analyzed, while others were only 

present in some of them. 

La Guancha

La EsperanzaEl Toro

Lidón

0

 
Figure 36. Venn diagram showing the OTUs shared among the culturable bacterial strains associated 
with R. farinacea populations from different geographical locations in the Canary island of Tenerife (La 
Guancha and La Esperanza) and the Iberian Peninsula (El Toro and Lidón). 

8.1 BETA DIVERSITY 

The analysis of the beta diversity (changes in species composition among different geographic 

areas (Anderson et al., 2011)) revealed that the structure of the culturable bacterial 

community associated with R. farinacea was mainly determined by the geographical factor, 

either by the two main areas, the Island and the Peninsula (PERMANOVA, R2=0.29, p<0.01) 

and by the four Spanish locations where R. farinacea thalli samples were collected 

(PERMANOVA, R2=0.65, p<0.01). The ectolichenic or endolichenic location of bacteria in the 

thallus had less influence than the geographical location (PERMANOVA, R2=0.17, p<0.05). 

These factors explained the 29%, 65%, and 17% of the composition of the diversity of the 

culturable bacterial communities, respectively, which were well differentiated among them, in 

the Island and the Peninsula as well as in the four geographical locations, as shown in figure 

37a and b. By contrast, bacterial communities in the ecto- and endolichenic fractions were less 

differentiated, as shown in figure 37c, with both overlapping communities in some areas.  
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Figure 37. Multidimensional scaling (MDS) plot of the Bray–Curtis based dissimilarity matrix of 
culturable bacterial strains associated with populations of the lichen R. farinacea from the two main 
sampling areas, the Canary Island (Tenerife) and Iberian Peninsula (a) and from the four different 
sampling geographical locations in Spain (La Guancha and La Esperanza in Tenerife, and El Toro and 
Lidón in the Peninsula) (b), as well as according to their ectolichenic or endolichenic position in the 
thallus (c). 

8.2 ALPHA DIVERSITY 

8.2.1 Influence of geographical location 

The study of the alpha diversity (diversity at local scale), showed that the values of the 

Richness, Shannon and Simpson diversity indices in the Island and the Peninsula were similar. 

Richness index values were similar, although with more bacterial species in the Island than in 

the Peninsula. By contrast, Shannon diversity index showed higher values in the Island than in 

the Peninsula, meaning that the insular bacterial species were represented by a more similar 

number of individuals. Furthermore, Simpson diversity index values were high and close to 1, 

although slightly higher in the Island than in the Peninsula, which indicated that a relatively 

similar number of individuals was assigned to each bacterial species. Differences among both 

indices and areas were not significant (p>0.05) (Figure 38). 
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a) b) 

c) 

Figure 38. Box plots showing the diversity indices of the culturable bacterial strains associated with R. 
farinacea populations from the two main sampling areas, the Island and the Peninsula. Richness (a), 
Shannon (b) and Simpson (c) diversity indices.   

The study of the alpha diversity of the culturable bacteria associated with the populations of R. 

farinacea from the four geographical locations where thalli were collected also showed 

differences among them (Figure 39). Richness index showed that the R. farinacea populations 

from the location of Lidón was the one with the highest diversity values, meaning that the 

number of different bacterial species found in this location was higher than the ones present 

in the other locations. Similar results were obtained with the Shannon index, meaning that the 

bacterial species from Lidón were numerous and quite evenly represented. The bacterial 

strains from the R. farinacea population from La Guancha showed higher Richness values than 

the ones from La Esperanza and El Toro. The latest was the location from where R. farinacea 

presented the lowest number of bacterial species and they were not as equally represented in 

the other three locations. Shannon diversity index revealed that R. farinacea thalli from the 

locations of La Esperanza and Lidón where the ones with most diverse bacteria, followed by 

those from the location of La Guancha, being the thalli from El Toro the ones with the lowest 

bacterial diversity, as shown by the values reached by this index, being around 2 (of a 

maximum of 5) in all cases, indicating that a relatively representative number of species were 

recovered from these lichen populations. Besides, Simpson index showed that all these 

bacterial species were composed of a quite equal number of individuals. Only in the cases of La 

Esperanza, the value of this index was slightly lower, meaning that some species were more 

represented than others. The differences observed among the indices and the four 

geographical locations were not significant (p > 0.05). 
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a) b) 

c) 

Figure 39. Box plots showing the diversity indices of the culturable bacterial strains associated with R. 
farinacea thalli from the four Spanish locations, two from the Canary Island of Tenerife (La Guancha and 
La Esperanza) and two located at the Iberian Peninsula (El Toro and Lidón). Richness (a), Shannon (b) 
and Simpson (c) diversity indices.   

All bacterial strains analyzed through the partial amplification of the 16S rRNA gene were 

presumptively assigned to 37 different taxa belonging to 3 main phyla, being Proteobacteria 

the predominant one, followed by Actinobacteria and Firmicutes.  

The results obtained when grouping the bacterial strains into two main groups attending at 

their insular or peninsular origin (Figure 40a), showed that at phylum level, Proteobacteria was 

the main group, with a higher presence in the Island (65.98%) than in the Peninsula (47.01%), 

followed by the Actinobacteria, more abundant in the Peninsula (46.68%) than in the Island 

(23.65%). Firmicutes was the group with less representation in both areas (10.6% in the Island, 

6.32% in the Peninsula) (Figure 40a). The representation of the classes belonging to 

Proteobacteria was different in the Island with respect to the Peninsula, where the main 

groups were Gammaproteobacteria (35.65%) and Alphaproteobacteria (30.57%), respectively. 

In the Island, the predominant orders were Enterobacteriales (21.73%), Micrococcales 

(20.03%), Pseudomonadales (13.11%), Burkholderiales (11.47%) and Sphingomonadales 

(10.99%), while in the Peninsula, the most abundant ones were Rhizobiales (26.53%), 

Micrococcales (25.95%), Propionibacteriales (10.09%), Enterobacteriales (6.87%), 

Streptomycetales (6.47%) and Burkholderiales (6.32%). With regard to the families (Figure 

40b), the Island was represented mostly by Microbacteriaceae (15.17%), Enterobacteriaceae 

(11.76%), Sphingomonadaceae (10.99%), Burkholderiaceae (10.54%) and Erwiniaceae (9.97%), 

while in the Peninsula by Methylobacteriaceae (26.53%), Microbacteriaceae (23.50%), 

Streptomycetaceae (6.48%), Erwiniaceae (5.74%), Bacillaceae (5.68%) and Burkholderiaceae 
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(5.30%). No significant differences were observed in the different bacterial taxa levels when 

bacterial strains from the Island were compared with those from the Peninsula. 
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Figure 40. Taxonomical identification at phylum (a) and family (b) level of the culturable bacterial strains 
associated with R. farinacea. The percentages of strains assigned to each phylum and family are 
represented attending the main sampling areas, the Island and the Peninsula.  

The results of the taxonomical identification at phylum level when bacterial strains were 

grouped according to each one of the four geographical origins are shown in figure 41. In the 

case of bacterial strains from R. farinacea populations from La Guancha, they were assigned 

mostly to the Proteobacteria (75.67%), followed by the Actinobacteria (12.16%), and the 

Firmicutes (9.46%). Regarding those of La Esperanza, again Proteobacteria was the main group 

among the identified bacteria, with the 54.54% of the strains.  Actinobacteria, with a 30.91%, 

had more abundance compared with the previous location and Firmicutes, in minor 

proportion, with a 7.27% of the strains. Unclassified bacteria were detected in strains from R. 

farinacea thalli from La Guancha and La Esperanza (2.70% and 7.27% of the strains, 

respectively).  In the case of the samples collected from the R. farinacea population of El Toro, 

the differences between the Actinobacteria and Proteobacteria were less notable (49.29% of 

Proteobacteria and 40.84% of Actinobacteria). The proportion of Firmicutes was similar to that 
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of the locations of the Island (9.86%). In the R. farinacea population from Lidón, the main 

group of bacteria were assigned to the Actinobacteria with a 54.65%, followed by 

Proteobacteria with a 43.02% of the strains. The phylum Firmicutes was underrepresented in 

Lidón with a 2.32% of the identified bacteria (Figure 41).   
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Figure 41. Taxonomical identification of the culturable bacterial strains associated with R. farinacea at 
phylum level. The percentages of strains assigned to each phylum are represented for each one of the 
four geographical locations in Spain. 

The classes to which the isolated bacteria were assigned were Actinobacteria (12.16%), 

Alphaproteobacteria (22.03%), Bacilli (9.46%), Betaproteobacteria (7.69%) and 

Gammaproteobacteria (25.52%). In the case of the bacterial strains isolated from thalli from La 

Guancha, the main group was Gammaproteobacteria (63.51%) and then Actinobacteria 

(12.16%), Betaproteobacteria (10.81%) and Bacilli (9.46%). In the lichen populations of La 

Esperanza and El Toro, bacteria were assigned mostly to the Alphaproteobacteria (32.73% and 

46.48%, respectively). Betaproteobacteria and Gammaproteobacteria numbers were very 

similar in La Esperanza (9.10% and 12.73%, respectively). In El Toro, Bacilli were represented in 

a 9.86% and the number of Gammaproteobacteria detected was the lowest among the four 

populations with a 2.82%. None Betaproteobacteria was identified among the isolated bacteria 

in this population. In the case of Lidón, the main group was Actinobacteria (54.64%), followed 

by Gammaproteobacteria (19.76%), Alphaproteobacteria (12.79%) and Betaproteobacteria 

(10.46%).  

The main orders within the bacteria isolated from R. farinacea were Micrococcales (22.73%), 

Enterobacteriales (16.08%), Rhizobiales (16.08%), Pseudomonadales (8.39%), Burkholderiales 

(7.7%) and, in minor proportions, Sphingomonadales, Propionibacteriales and Bacillales.  

The most representative bacterial families found in this study (Figure 42) were 

Microbacteriaceae (19.58%), Methylobacteriaceae (16.08%), Erwiniaceae (9.44%), 

Pseudomonadaceae (8.39%), Burkholderiaceae (7.34%), Enterobacteriaceae (6.64%), 

Sphingomonadaceae (5.24%) and, in less proportion, Bacillaceae, Nocardioidaceae and 

Streptomycetaceae, among others. These families were differently represented within the four 

lichen populations. The one from La Guancha was mainly represented by the families 

Erwiniaceae (21.62%), Pseudomonadaceae (21.62%) and Enterobacteriaceae (14.54%). In the 

case of La Esperanza, the main groups were Sphingomonadaceae (18.18%), Microbacteriaceae 
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(16.36%) and Methylobacteriaceae (14.54%). Regarding the main groups represented in El 

Toro, Methylobacteriaceae was the predominant one (40.85%), followed by Microbacteriaceae 

(15.50%) and Nocardioidaceae (12.67%). In Lidón, the main family groups were 

Microbacteriaceae (32.55%), Erwiniaceae (11.63%), Burkholderiaceae (10.47%), 

Methylobacteriaceae (10.47%) and Streptomycetaceae (10.47%), among others. 
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Figure 42. Taxonomical identification at family level of the culturable bacterial strains associated with R. 
farinacea. The percentages of strains assigned to each family are represented for each one of the four 
geographical locations in Spain. 

8.2.2 Influence of location in the lichen thallus 

In order to evaluate the potential effect on bacterial diversity of the location in the lichen 

thallus on bacterial diversity, a study of alpha diversity was performed grouping bacterial 

strains by their ectolichenic or endolichenic origin. The results showed that, although both 

ectolichenic and endolichenic fractions had very similar values of Richness and Shannon 

diversity indices, the composition of the endolichenic fraction had higher values of both 

indices than the ectolichenic one, revealing a slightly higher number of different species in the 

inner part of the lichen thallus and more evenly representation of them than those in the 

outer part (Figure 43). Similarly, Simpson diversity index showed in both cases high index 

values close to 1, indicating that a relatively equal number of individuals belonged to each one 

of the bacterial species retrieved (Figure 43). The differences among Richness and Shannon 

diversity indices and the two bacterial fractions were not significant (p>0.05). However, 

Simpson diversity index results gave significant differences between ectolichenic and 

endolichenic fractions (p<0.05). 
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a) b) 

c) 

Figure 43. Box plots showing the diversity indices of the culturable bacterial strains associated with R. 
farinacea attending at their location in the lichen thallus, ectolichenic or endolichenic. Richness (a), 
Shannon (b) and Simpson (c) diversity indices.   

Some differences were found within the ectolichenic and endolichenic bacterial strains 

identified.  At phylum level (Figure 44a), in general, Proteobacteria was the predominant 

group, followed by Actinobacteria and Firmicutes. Nevertheless, the number of Proteobacteria 

strains was higher in the ectolichenic fraction (69.57%) than in the endolichenic one (43.42%), 

while it was opposite for the Actinobacteria with higher percentages for the endolichenic 

bacteria (48.23%) than for the ectolichenic ones (22.83%). Firmicutes was equally represented 

in ectolichenic and endolichenic bacteria (8.34%). At class level, in the case of the ectolichenic 

bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant groups 

(32.15% and 31.76%, respectively), with fewer representation of Betaproteobacteria (5.66%). 

Related to the endolichenic bacteria, the percentages of these three classes were lower and 

very similar among them (17.28%, 15.03% and 11.11%, respectively).  

The most representative orders in the ectolichenic bacterial fraction were Rhizobiales 

(24.34%), Enterobacteriales (15.26%), Pseudomonadales (15.11%), Micrococcales (11.72%), 

Bacillales (8.35%) and Sphingomonadales (7.81%). While in the endolichenic one they were 

Micrococcales (34.26%), Enterobacteriales (13.34%), Burkholderiales (11.11%) and 

Propionibacteriales (8.75%). When bacterial strains were assigned at family level (Figure 44b), 

ectolichenic bacteria were represented mainly by Methylobacteriaceae (24.34%), 

Pseudomonadaceae (15.11%), Erwiniaceae (9.42%), Microbacteriaceae (9.07%), 

Sphingomonadaceae (7.81%) and Bacillaceae (7.74%), being the endolichenic ones 

represented by the families Microbacteriaceae (29.6%), Burkholderiaceae (10.16%), 
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Methylobacteriaceae (10.07%), Nocardioidaceae (8.75%) and Erwiniaceae (6.28%). The 

differences observed in the different bacterial taxonomic levels between the ectolichenic and 

the endolichenic fractions were not significant. 
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Figure 44. Taxonomical identification at phylum (a) and family (b) level of the culturable bacterial strains 
associated with R. farinacea. The percentages of strains assigned to each phylum and family are 
represented attending the location within the lichen thallus, ectolichenic or endolichenic.  

The diversity of the studied bacteria was composed of 37 different genera which are 

summarized in table 16 according to their presence or absence among the different 

geographical locations where R. farinacea populations were sampled and taking into 

consideration their location in the outer and inner part of the lichen thallus. Among these 

genera, only two of them seemed to be ubiquitous, since they were identified in the four R. 

farinacea populations studied, Bacillus and Sphingomonas. Further, different species were 

potentially assigned to these bacteria (considering a minimum of 98% of similarity in the 

partial sequence of the 16S rRNA gene), as B. frigotolerans, B. campisalis, B. megaterium, B. 

cereus, B. nealsonii and S. polyaromaticivorans, among others. Other bacterial taxa were 

present in three of the four populations, and included species of the genera Burkholderia and 

Erwinia (absent in El Toro), Curtobacterium (absent in La Esperanza), Kocuria and 

Methylobacterium (absent in La Guancha). Furthermore, some of them were exclusive of one 

lichen population. Related to this, in the R. farinacea population from La Guancha some unique 
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genera detected were Averyella, Enterobacter and Rhodococcus. In La Esperanza, Arthrobacter, 

Frondicola, Massilia, Micrococcus, Modestobacter and Paraburkholderia. With regard to El 

Toro, four genera were only detected there, Microlunatus, Roseomonas, Sanguibacter and 

Xanthomonas. In the lichen population of Lidón, those unique genera were Gibbsiella, 

Nocardioides and Subtercola. Some interesting differences in the distribution of these genera 

were found. It was due to the fact that some of them were present only in the two locations 

from the Island, while others were located only in those from the Peninsula. This is the case of 

the genera Arthrobacter, Averyella, Carnobacterium, Enterobacter, Frondicola, Frondihabitans, 

Klebsiella, Massilia, Micrococcus, Microlunatus, Modestobacter, Paraburkholderia and 

Rhodococcus, identified from lichen population from the Island. Furthermore, in the lichen 

populations of La Guancha and La Esperanza, there were some bacteria not assigned to any of 

the taxonomic groups present on the database of the GenBank in the NCBI when the BLAST 

was performed, that could be indicative of new species. In the case of the lichen populations 

from the Peninsula, the bacterial genera found were Blastococcus, Friedmaniella, Gibbsiella, 

Microlunatus, Mycobacterium, Nocardioides, Roseomonas, Sanguibacter, Streptomyces, 

Subtercola and Xanthomonas.  

Interestingly, when the ectolichenic and endolichenic bacterial fractions were compared some 

differences were detected related to presence or absence of some genera. In this sense, the 

genera found in the ectolichenic fraction of the lichen thallus were Averyella, Blastococcus, 

Gibbsiella, Micrococcus, Microlunatus, Rhodococcus and Stenotrophomonas, while in the 

endolichenic one, some bacterial strains were assigned to the genera Arthrobacter, Frondicola, 

Kocuria, Massilia, Nocardioides, Roseomonas, Sanguibacter, Subtercola and Xanthomonas. 

Other genera were present in both lichenic fractions, such as Bacillus, Burkholderia, 

Caballeronia, Carnobacterium, Curtobacterium, Erwinia, Frondihabitans, Klebsiella, Leifsonia, 

Methylobacterium, Microbacterium, Modestobacter, Mycobacterium, Pantoea, 

Paraburkholderia, Pseudomonas, Sphingomonas and Staphylococcus. 

The differences observed among the four populations of R. farinacea at the different bacterial 

taxonomic levels were not significant. 
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Table 16. Classification of bacterial strains isolated from populations of R. farinacea sampled in four 
Spanish geographical locations, according to the nearest taxa at genus level. The presence or absence of 
these genera in each geographical location and ectolichenic or endolichenic position in the thallus is also 
provided. 

 

a EctoL (ectolichenic); EndoL (endolichenic). b +, presence; -, absence. 
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A phylogenetic study of the bacterial strains isolated from each R. farinacea population from 

each one of the four geographical origins was performed, as well as a global analysis including 

all bacterial strains, regardless their geographical origin. The resulting phylogenetic trees are 

shown in figures 45, 46, 47 and 48 for bacterial strains isolated from each one of the four 

lichen populations, and in figure 49 for all bacterial strains, regardless their geographical or 

lichenic origin. Trees are divided in colours by families. Some of the closest species to which 

the bacterial strains were assigned were Bacillus megaterium, B. subtilis, Curtobacterium 

citreum, C. flaccumfaciens, Friedmaniella spumicola, Frondihabitas cladoniiphilus, F. sucicola, 

Klebsiella aerogenes, Leifsonia poae, Methylobacterium cerastii, M. phyllostachios, 

Microbacterium oxydans, M. pygmaeum, Modestobacter versicolor, Pantoea agglomerans, 

Pseudomonas fluorescens, Roseomonas aerilata and Subtercola boreus among others. 
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Figure 45. Phylogenetic tree based on the partial sequence of the 16S rRNA gene of culturable bacterial 
strains isolated from the R. farinacea population from La Guancha (Tenerife). The evolutionary history 
was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model. Each 
colour represents a different family. R1: bacterial strains from La Guancha. L: ectolichenic bacteria. M: 
endolichenic bacteria. The percentage of replicate trees in which the associated taxa clustered together 
is shown next to the branches, with 1000 of bootstrap replications. Some reference type strains were 
included in the phylogenetic tree. 
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Figure 46. Phylogenetic tree based on the partial sequence of the 16S rRNA gene of culturable bacterial 
strains isolated from the R. farinacea population from La Esperanza (Tenerife). The evolutionary history 
was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model. Each 
colour represents a different family. R2: bacterial strains from La Esperanza. L: ectolichenic bacteria. M: 
endolichenic bacteria. The percentage of replicate trees in which the associated taxa clustered together 
is shown next to the branches, with 1000 of bootstrap replications. Some reference type strains were 
included in the phylogenetic tree.  
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Figure 47. Phylogenetic tree based on the partial sequence of the 16S rRNA gene of culturable bacterial 
strains isolated from the R. farinacea population from El Toro (Peninsula). The evolutionary history was 
inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model. Each 
colour represents a different family. R3: bacterial strains El Toro. L: ectolichenic bacteria. M: 
endolichenic bacteria. The percentage of replicate trees in which the associated taxa clustered together 
is shown next to the branches, with 1000 of bootstrap replications. Some reference type strains were 
included in the phylogenetic tree.  
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Figure 48. Phylogenetic tree based on the partial sequence of the 16S rRNA gene of culturable bacterial 
strains isolated from the R. farinacea population from Lidón (Peninsula). The evolutionary history was 
inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model. Each 
colour represents a different family. R4: bacterial strains from Lidón. L: ectolichenic bacteria. M: 
endolichenic bacteria. The percentage of replicate trees in which the associated taxa clustered together 
is shown next to the branches, with 1000 of bootstrap replications. Some reference type strains were 
included in the phylogenetic tree.  
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Figure 49. Phylogenetic analyses based on the partial sequence of the 16S rRNA gene of culturable 
bacteria isolated bacteria associated with all four R. farinacea populations. The evolutionary history was 
inferred by using the Maximum Likelihood method based on the Kimura 2-parameter. Each colour 
represents a different family. R1: bacterials strains from La Guancha. R2: bacterial strains from La 
Esperanza. R3: bacterial strains from El Toro. R4: bacterial from Lidón. L: ectolichenic bacteria. M: 
endolichenic bacteria. The percentage of replicate trees in which the associated taxa clustered together 
is shown next to the branches, with 1000 of bootstrap replications. Some reference type strains were 
included in the phylogenetic tree. 
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9. DIVERSITY AND COMPOSITION ANALYSES OF BACTERIAL COMMUNITIES 
ASSOCIATED WITH R. farinacea THROUGH MULTIPLEX SEQUENCING OF 
16S rRNA GENE  

A total of 60 lichen thallus samples of R. farinacea from four geographical locations in Spain, 

two from the Canary island of Tenerife (La Guancha and La Esperanza) and two from the 

Iberian Peninsula (El Toro and Lidón) were analyzed and the 16S rRNA gene sequences 

obtained were clustered in a total of 848 OTUs. Although the primers set were designed for 

amplifying both bacterial and archaeal 16S rRNA genes, none archaeal sequences were 

detected. Figure 50 shows a representative Venn diagram illustrating the OTU overlapping 

among bacterial communities of the bulk thalli samples of R. farinacea from different Spanish 

geographical locations at a treshold of 0.005. Some of the OTUs were ubiquous for all the 

locations analyzed, while others were exclusively present in some of them. 

 
Figure 50. Venn diagram showing the OTUs shared among the bacterial communities associated with R. 
farinacea populations from different geographical locations in the Canary island of Tenerife (La Guancha 
and La Esperanza) and the Iberian Peninsula (El Toro and Lidón). 

9.1 BETA DIVERSITY 

The analyses of the changes in bacterial species composition among geographical areas (beta 

diversity) of the different R. farinacea samples composed of a bulk-thalli are shown in figure 

51. The multidimensional scaling plot (MDS) of the Bray-Curtis dissimilarity matrix revealed 

that the bacterial communities associated with the studied lichen species were mainly 

determined by the geographical location factor (PERMANOVA, R2= 0.24526, p<0.001 grouping 

them according to their insular or peninsular origin, and R2=0.47, p<0.001, according to each 

one of the four geographical locations (La Guancha, La Esperanza, El Toro and Lidón)). The 

bacterial communities of R. farinacea from populations of the two main geographical areas, 

the Island and the Peninsula, were well differentiated among them (Figure 51a), with and 

influence of the 24.53% of this geographical factor, and the same happened when the analyses 

were performed taking into consideration the four geographical areas (Figure 51b), having an 

influence of the 47.05% on the bacterial composition. Other factor that explained the diversity 

of the community composition, although with less weight than the geographical location, was 

the location ecto- or endolichenic in the lichen thallus (Figure 51c), a factor that explained the 

3.03% of this composition (PERMANOVA, R2=0.038, p<0.01). By contrast, the effect of the 

location in different parts of the thallus (apical, middle and basal) as well as the influence of 
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the disinfection treatment were negligible (p>0.05). There were not interactions among the 

variables studied that could affect R. farinacea associated bacteria (p>0.05). 

a) b) 

c) 

 

Figure 51. Multidimensional scaling (MDS) plot of the Bray–Curtis based dissimilarity matrix of bacterial 
communities associated with populations of the lichen R. farinacea from the two main sampling areas, 
the Canary Island (Tenerife) and the Iberian Peninsula (a) and from the four-different sampling 
geographical locations in Spain (La Guancha and La Esperanza in Tenerife, and El Toro and Lidón in the 
Iberian Peninsula) (b), as well as according to their ectolichenic or endolichenic position (c). 

9.2 ALPHA DIVERSITY 

9.2.1 Influence of geographical location 

The study of the intrinsic diversity at local scale through the alpha diversity of the bulk thalli 

samples of R. farinacea from each location in the Island and the Peninsula was determined by 

the Richness, Shannon and Simpson diversity indices. Thus, when the lichen samples were 

clustered into two groups attending to the insular or peninsular location, the highest Richness 

and Shannon diversity appeared in the Peninsula (Figure 52 a and b, respectively), revealing a 

higher number of bacterial species in peninsular thalli. Further, these species were more 

equally represented than those of the thalli collected in the Island. This diversity results were 

supported by Simpson index values, which in both cases were around 0.9, indicating a quite 

relatively equal number of individuals belonging to each one of the species in each lichen 

population (Figure 52c). Significant differences (p<0.01) were recorded between insular and 

peninsular bacterial communities, when the values of Richness, Shannon and Simpson were 

compared. 

 

 



120 
 

a) b) 

c) 

Figure 52. Box plots showing the diversity indices of the bacterial communities associated with R. 
farinacea populations from the two main sampling areas, the Island and the Peninsula. Richness (a), 
Shannon (b) and Simpson (c) diversity indices.   

 

Moreover, when the same diversity indices were applied to compare among bacterial 

communities of R. farinacea thalli populations from four different Spanish geographical 

locations, using bulk thalli samples, the results showed that the samples from El Toro, in the 

Iberian Peninsula, were the ones with the highest Richness (Figure 53a) and, therefore with a 

higher number of different bacterial species. With regards to the R. farinacea populations from 

La Esperanza, La Guancha and Lidón, they showed similar values of Richness among them, but 

lower than in the case of El Toro. Shannon diversity index (Figure 53b) indicated that the R. 

farinacea population from El Toro was the one with the highest bacterial diversity, followed by 

the ones from La Guancha and Lidón, being the lichen population from La Esperanza the one 

with the lowest bacterial diversity. Simpson index (Figure 53c) showed that each one of the 

bacterial species was represented by a very similar number of individuals, mostly in the case of 

La Guancha, El Toro and Lidón, with indices values around 0.9. In the case of the results 

obtained for the population from La Esperanza, the index value was lower (around 0.75), 

meaning that some of the species were more represented than others. Richness different 

results between R. farinacea from El Toro and the rest of lichen populations were significant 

with p-values lower than 0.01. With Shannon index results, there were also significant 

differences when comparing the values of El Toro with those of La Guancha (p<0.05), La 

Esperanza (p<0.001) and Lidón (p<0.01), as well as between La Guancha and La Esperanza 

(p<0.001) and between La Esperanza and Lidón (p<0.01). Simpson diversity analyses gave 

significant differences when comparing lichen samples from La Esperanza with those from El 

Toro (p<0.001), La Guancha (p<0.001) and Lidón (p<0.01). 
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a) b) 

c) 

Figure 53. Box plots showing the diversity indices of the bacterial communities associated with R. 
farinacea populations from the four Spanish locations, two located at the Iberian Peninsula (El Toro and 
Lidón), and two from the Canary Island of Tenerife (La Guancha and La Esperanza). Richness (a), 
Shannon (b) and Simpson (c) diversity indices.   

 

The main bacterial OTUs registered in the four lichen populations were the ones related to the 

phyla Proteobacteria, Acidobacteria and Planctomycetes (Figure 54). The groups of 

Bacteroidetes, Planctomycetes and Proteobacteria were more numerous in the areas of the 

Peninsula (p<0.001, p<0.001 and p<0.05, respectively), while the groups Acidobacteria, 

Cyanobacteria and Firmicutes (p<0.001, p<0.001 and p<0.01, respectively), were more 

abundant in the Island (Figure 54a). 

The proportion of Proteobacteria was similar in the four lichen populations analyzed (52.69% 

in La Guancha, 61.86% in La Esperanza, 60.73% in El Toro and 62.97% in Lidón), but with 

significant differences among them(p<0.05) (Figure 54b). In the case of Acidobacteria, their 

presence was slightly higher in the insular populations (42.21% in La Guancha and 33.03% in La 

Esperanza) than in the peninsular ones (27.3% in El Toro and 30.45% in Lidón), being these 

differences significant (p<0.001). The presence of Planctomycetes was much lower in all 

locations (around 1% in both insular populations, and an average of 3% in the peninsular ones, 

(p<0.001)). In the case of the phyla Cyanobacteria and Firmicutes, their prevalence was lower 

than in the case of the three previous phyla, but there were some significant differences 

among R. farinacea populations from the different locations (p<0.001 and p<0.05, 

respectively). Related to Cyanobacteria, their abundance was higher in the thalli samples from 

the Canary Island (La Guancha (1.55%) and La Esperanza (1.46%)) than in those from the 

Peninsula (El Toro (0.20%) and Lidón (0.14%)). The same happened with the phylum 

Firmicutes, which prevalence was higher in La Guancha and La Esperanza (1.01% and 1.31%, 
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respectively), than in El Toro (0.43%) and Lidón (0.35%) (Figure 54b). These differences were 

visible too when the thalli samples were grouped into two main groups, the Island and the 

Peninsula (Figure 54a).  
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Figure 54. Taxonomical identification of the sequences of bacteria associated with R. farinacea 
populations at phylum level. The percentages of bacterial sequences assigned to each phylum are 
represented for bulk thalli samples attending either to the main sampling areas, the Island and the 
Peninsula (a) or for each one of the four geographical locations in Spain (b).  

Among Proteobacteria, Alphaproteobacteria class was the predominant one in all R. farinacea 

populations (48.99% in La Guancha, 54.96% in La Esperanza, 58.64% in El Toro, and 61.38% in 

Lidón), with significant differences (p<0.05). Acidobacteria was the second predominant class, 

more abundant in the lichen populations from the Island (42.85% in La Guancha and 33.47% in 

La Esperanza) than in those from the Peninsula (27.02% in El Toro and 30.44% in Lidón) 

(p<0.001). Other important classes but less abundant were Betaproteobacteria (p>0.05), 

Planctomycetia (p<0.001), Gammaproteobacteria (p<0.001), Bacilli (p<0.05), Sphingobacteria 

(p<0.001) and Cytophagia (p<0.001). The main orders among the cited classes were: i) 

Acidobacteriales, more abundant in the lichen populations from Tenerife than in those from 

the Peninsula (42.06% in La Guancha, 33.49% in La Esperanza, 27.03% in El Toro and 30.45% in 

Lidón); ii) Rhodospirillales, with very similar proportions in the Island and Peninsula (25.48% in 

La Guancha, 47.65% in La Esperanza, 29.85% in El Toro and 37.45% in Lidón); iii) Rhizobiales, 
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more abundant in the R. farinacea populations from the Peninsula (around 18% in both 

locations) than in those from the Island (7.75% in La Guancha and 2.13% in La Esperanza). 

Other relevant orders but in lower proportions were Caulobacterales, Sphingomonadales, 

Gemmatales and Pseudomonadales. The presence of the abovementioned orders was 

significantly different among the four R. farinacea populations analyzed (p<0.001). 

Acetobacteraceae, Acidobacteriaceae, Methlylocystaceae and Caulobacteraceae were the 

dominating families in the bacterial communities associated with R. farinacea (Figure 55). The 

former was the predominant one in the lichen population from La Esperanza (47.62%), 

followed by the populations from Lidón (37.38%), El Toro (29.79%) and La Guancha (25.38%), 

being these differences significant (p<0.001). When the comparison was performed attending 

at the insular or peninsular origin of the lichen populations, the proportion was very similar in 

both of them (36.50% and 33.60%, respectively (p<0.001)). These differences were slightly 

higher in the Acidobacteriaceae family, with a 38.18% of members of this group being present 

in the lichen population from the Island (42.87% in La Guancha and 33.50% in La Esperanza) 

and a 28.74% in those from the Peninsula (27.04% in El Toro and 37.38% in Lidón), (p<0.001). 

Methylocystaceae was predominant in the lichen populations collected in the areas of the 

Peninsula with a 15.21%, but with a lower presence in those from the Island (2.81%) (p<0.001). 

Caulobacteraceae was the family with less presence in the samples studied, with an 8.95% of 

members in the Island and a 4.72% in the Peninsula (p<0.05).  

%
 o

f
st

ra
in

s
in

 e
ac

h
fa

m
ily

id
en

ti
fi

ed

 

Figure 55. Taxonomical identification of the sequences of bacteria associated with R. farinacea at family 
level. The percentages of bacterial sequences assigned to each family are represented for bulk thalli 
samples for each one of the four geographical locations in Spain.  

Another approximation in this study was to explore the taxonomical composition of bacteria 

associated to individual thallus from each one of the R. farinacea populations from the 

different locations. In general, the results showed the same main phyla in all the analyzed 

thalli: Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes and Planctomycetes (Figure 

56). Nevertheless, it was remarkable that some of these main phyla were present, mainly or 

exclusively, in the thalli samples collected in the Island or the Peninsula, as happened with the 

Cyanobacteria, mostly visible in three individual thalli of La Guancha and La Esperanza, 

Chlamidyae, found in one thallus of La Guancha, Actinobacteria and Gemmatimonadetes, in 

three thalli and one thallus from El Toro, respectively, or Armatimonadetes in a thallus from 
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Lidón. The differences among the taxonomical groups or their presence in each individual 

thallus were not significant.  

 

 

Figure 56. Taxonomical identification of the sequences of bacteria associated with R. farinacea at 
phylum level. The percentages of bacterial sequences assigned to each phylum are represented for 
individual thallus for each one of the four geographical locations in Spain.  

The prevalence of the main group of bacterial families mentioned above for bulk thalli samples 

(Figure 55) was more visible in detail when the results were compared for individual thallus 

(Figure 57). In general, these families were Acetobacteraceae, Acidobacteriaceae, 

Caulobacteraceae and Methylocystaceae. However, some differences were detected, as a 

higher presence of the family Pseudomonadaceae in one single thallus from La Guancha was 

observed when compared with the other thalli, or the high presence of Burkholderiaceae in 

one thallus of La Esperanza. Moreover, an increasing or decreasing presence of some of these 

groups was observed when changing from one geographical location to another, as happened 

with the Caulobacteraceae, Isosphaeraceae, Methylocystaceae or Sphingomonadaceae. 

Differences among the taxonomical groups or those related to their presence in each 

individual thallus were not significant.  
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Figure 57. Taxonomical identification of the sequences of bacteria associated with R. farinacea at family 
level. The percentages of bacterial sequences assigned to each family are represented for individual 
thallus of each one of the four geographical locations in Spain. 

Identification at genera level of bacterial sequences of the bulk thalli samples of R. farinacea 

brought back a big proportion of bacteria associated with lichens not closely related to the 

sequences present in the data base used (Greengenes, McDonald et al., 2012a), meaning that 

many of them could be new bacterial genera and/or species. In fact, more than the 80% of 

these bacterial sequences analyzed from each R. farinacea population were included in 

unclassified genera. However, some common genera were Beijerinckia (2.48%), Edaphobacter 

(2.42%), Sphingomonas (1.94%), Burkholderia (1.45%), Terriglobus (1.01%), Pseudomonas 

(0.6%) or Hymenobacter (0.45%). Some of the genera were identified in all populations, as 

Anoxybacillus, Bacillus, Beijerinckia, Burkholderia, Delftia, Edaphobacter, Pseudomonas, 

Sphingomonas, Terriglobus, etc. By contrast, other genera, were detected in only one of the 

four lichen populations, as Acidocella, Acinetobacter, Caldicellulosiruptor, Caloramator, 

Erythrobacter or Salinibacter in La Esperanza, or Actynomycetospora, Devosia, 

Methylobacterium or Segetibacter in El Toro, Tatlockia in Lidón, etc. Table 17 shows some of 

the bacterial genera identified and their proportion in each one of the R. farinacea populations 

from different geographical locations.  
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Table 17. Heatmap showing the relative abundance of some of the bacterial genera 
identified in the four populations of R. farinacea from La Guancha, La Esperanza, El 
Toro, and Lidón.  
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9.2.2 Influence of location in the lichen thallus 

At the ectolichenic or endolichenic fraction 

The analyses of the alpha diversity of the bacteria associated to the ectolichenic and 

endolichenic fractions of the R. farinacea thalli studied, revealed that, the ectolichenic fraction 

had higher values of Richness, Shannon and Simpson diversity indices (Figure 58 a and b) than 

the endolichenic one. These results indicating a higher number of different species and more 

equally represented in the bacteria associated with the thalli surface than those inside of it. 

Moreover, Simpson diversity index values reaffirm these results, indicating that the species 

identified in each one of the lichenic fractions are composed of relatively equal number of 

individuals, with values of the index being around 0.9 (Figure 58c). The differences observed in 

the different indices of diversity studied, were not significant. 

a) b) 

c) 

Figure 58. Box plots showing the diversity indices of the bacterial communities associated with R. 
farinacea populations attending at their location in the lichen thallus, ectolichenic or endolichenic. 
Richness (a), Shannon (b) and Simpson (c) diversity indices.   

The analyses of the main taxa of bacteria associated with the ectolichenic and endolichenic 

fractions of the R. farinacea thalli, showed similar results to those observed in the bacterial 

diversity analyses were the effect of geographical location was studied. Proteobacteria were 

the most abundant members in both fractions (59.42% in ectolichenic and 53.22% in 

endolichenic), followed by Acidobacteria (31.30% in ectolichenic and 41.42% in endolichenic) 

and Planctomycetes (2.09% in ectolichenic and 2.52% in endolichenics). Cyanobacteria and 

Bacteroidetes showed more notably differences when compared both sides of the thallus, 



 

128 
 

being more abundant in the ectolichenic side. Cyanobacteria were present in a 1.06% in the 

ectolichenic part and in a 0.16% in the endolichenic one. Bacteroidetes were present in a 

3.61% in the ectolichenic fraction and in a 0.88% in the endolichenic one. However, the 

differences observed were not significant. 

At order level, the main groups were Acidobacteriales (31.38% in ectolichenic and 41.25% in 

endolichenic fractions), Rhodospirillales (28.47% in ectolichenic and 32.75% in endolichenic 

sides), Rhizobiales (16.82% in ectolichenics and 11.52% in endolichenic parts) and 

Caulobacterales (7.69% in ectolichenics and 6.5% in endolichenic fractions). These percentages 

were very similar in both thalli sides, without significant differences between them. There 

were two groups present although in less proportion but with significant differences (p<0.05), 

Saprospirales (1.93% in ectolichenics and 0.25% in endolichenic fractions) and 

Sphingomonadales (3.74% in ectolichenics and 1.12% in endolichenic sides). 

Results at family level (Figure 59) showed as predominant taxa Acidobacteriaceae (31.39% in 

the ectolichenic and 41.25% in the endolichenic parts), Acetobacteriaceae (28.34% in the 

ectolichenic and 32.71% in the endolichenic fractions) and Methylocystaceae (13.77% in 

ectolichenic and 9.67% in endolichenic side). In general, the differences found in these families 

between the two lichenic fractions were not significant. However, the presence of the family 

Chitinophagaceae was significantly higher in the ectolichenic side (1.93%, p<0.05) than in the 

endolichenic one (0.25%). 
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Figure 59. Taxonomical identification of the sequences of bacteria associated with R. farinacea at family 
level. The percentages of bacterial sequences assigned to each family are represented at the ecto- or 
endolichenic fraction in the thallus.  

It is noteworthy that around 85% of the bacteria were unclassified at genera level. Besides, 

among the identified ones, there were some genera present only in the ectolichenic part, as 

Hymenobacter, Sphingobium and Staphylococcus, and others only in the endolichenic one, as 

Anoxybacillus. Other genera were common at both sides, as Bdellovibrio, Delftia, Geobacillus 

or Sediminibacterium, among others. In table 18 are shown some of the identified genera and 

their proportion at each fraction of the lichen thalli.  
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Table 18. Heatmap showing the relative abundance of some of the bacterial genera identified at the 
ectolichenic and endolichenic fractions of the R. farinacea thalli. 

 

At apical, middle or basal parts 

The study of diversity of bacteria associated with R. farinacea at the different thallus parts 

(apical, middle and basal) showed similar values in Richness (Figure 60a), Shannon (Figure 60b) 

and Simpson (Figure 60c) diversity indices, although the apical part was the one with the 

lowest values in the number of species and diversity. Simpson index results showed that in the 

apical part lower percentages of species dominated the bacterial diversity. The differences 

observed were not significant. 

 a) b) 

c) 

Figure 60. Box plots showing the diversity indices of the bacterial communities associated with R. 
farinacea populations attending at their location in the different parts of the lichen thallus, apical, 
middle and basal. Richness (a), Shannon (b) and Simpson (c) diversity indices.   
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Regarding the bacterial diversity along the different parts of the thallus (apical, middle and 

basal), at phylum level the main groups were Proteobacteria, Acidobacteria and Bacteroidetes, 

with very different proportions among the three studied thallus parts (around 55%, 35% and 

3%, respectively) (Figure 61). Furthermore, the results showed a preferential distribution of 

some bacterial groups in some of these thallus parts. The biggest differences at phylum level 

were observed in the case of Cyanobacteria, Firmicutes and Planctomycetes (Figure 61). 

Cyanobacteria were mainly present (2.19%) at the middle part of the thallus, decreasing in the 

apical part (1.30%) and even more in the basal part (0.09%). By contrast, Firmicutes had the 

highest percentage in the apical part (2.09%), also decreasing along the middle (1.17%) and 

basal parts (0.29%). Regarding Planctomycetes, they were mainly detectedat the basal part 

(4.68%), decreasing in the middle (2.63%) and apical parts (0.56%). Other groups present were 

Armatimonadetes, Verrucomicrobia or Actinobacteria (Figure 61).  

 
Figure 61. Taxonomical identification of the sequences of bacteria associated with R. farinacea at 
phylum level. The percentages of bacterial sequences assigned to each phylum are represented at the 
apical, middle and basal parts in the lichen thallus.  

 

At class level, the main groups were Alphaproteobacteria (around 50% in the apical, middle 

and basal part), Acidobacteria (around 30% in the three parts) and Betaproteobacteria (around 

1.5% along the thallus), and in less proportion Sphingobacteria and Bacilli.  

Some orders showed different proportion along the different parts of the lichen thallus, with a 

preference distribution in some of them, as it happened with Gemmatales, with the main 

percentage at the basal parts (4.41%), decreasing in the middle (2.40%) and apical parts 

(0.46%). With regards to the abundance of Bacillales, Actinomycetales and Myxococcales it was 

higher in the apical part, decreasing along the middle and basal parts. Something similar 

happened at family level in some groups. For instance, there were less abundance of members 

of the family Isosphaeraceae at the apical part than in the middle and basal parts (0.46%, 

2.39% and 4.41%, respectively). By contrast, in the case of the family Cystobacterineae its 

members decreased from the apical to the basal part (1.16%, 0.24% and 0.065%, respectively). 

The same happened with the family Bacillaceae whose abundance was bigger at the apical 

part (1.48%) than in the middle (0.64%) and basal (0.21%) part of the thallus. 

Despite the differences observed at different bacterial taxonomical levels along the different 

parts of the lichen thallus they were not significant. However, it is worth to mention that in 
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various taxa, they were significant. These results suggesting possible different roles along 

these thallus parts. 

9.2.3 Influence of disinfection treatment 

When the effect of a disinfection treatment (ethanol at 70% for 1 min) on the diversity of 

bacterial communities associated with R. farinacea was studied, the results obtained showed 

that the dominant phyla still were Proteobacteria, Acidobacteria, Plantctomyctes and 

Bacteroidetes, without significant differences between the disinfected and undisinfected 

samples. The same happened at class level, being the main groups Alphaproteobacteria, 

Acidobacteria, Betaproteobacteria, Planctomycetia and Gammaproteobacteria, regardless the 

disinfection treatment. However, some small differences were observed at family level (Figure 

62). For instance, with the Chitinophagaceae, which presence was twice in the disinfected 

samples than in the non-disinfected ones (1.09% and 0.55%, respectively). The opposite was 

observed in the case of the family Burkholderiaceae, with a higher abundance in the non-

disinfected samples than in the disinfected ones (1.61% and 0.39%, respectively). However, 

the main families in these disinfected and non-disinfected samples were Acetobacteraceae, 

Acidobacteriaceae, Methylocystaceae and Caulobacteraceae. The differences found in the 

taxonomical groups were not significant. 
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Figure 62. Taxonomical identification of the sequences of bacteria associated with R. farinacea at family 
level. The percentages of bacterial sequences assigned to each family with or without disinfection 
treatment (ethanol at 70% per 1 min) are represented. 

 

 

 

 

 



 

132 
 

 



 

133 
 

DISCUSSION 

Classically lichens have been defined as a self-supporting mutualistic symbiosis between a 

main fungal partner (mycobiont), that provides refuge for one or more photosynthetic 

partners, such as green algae and/or cyanobacteria (photobionts), forming a unique symbiotic 

structure or holobiont, the lichen thallus (Grube and Berg, 2009). The morphological, 

physiological and adaptive integration of the symbionts allow them to adopt new properties 

that represent evolutionary innovations, which permit them to colonize habitats with extreme 

environmental conditions that could not colonize independently (Cardinale et al., 2006; Grube 

et al., 2015). In fact, lichens are one of the oldest examples of symbiosis and of greater 

diversification, with more than 18,000 lichen species (Kirmizigül et al., 2003; Nash, 2008). 

These unique symbiotic associations can also harbour other microorganisms such as non-

photosynthetic bacterial partners that could be facultative symbionts (Aschenbrenner et al., 

2014; Grube et al., 2015; Hodkinson and Lutzoni, 2009; Selbmann et al., 2010).  

The first investigations on heterotrophic bacteria associated with lichens were initiated by 

culture dependent techniques, which allowed in some cases the isolation of bacteria able to fix 

nitrogen and to solubilize phosphates (Cardinale et al., 2006; González et al., 2005; Lenova and 

Blum, 1983; Liba et al., 2006). The contribution of these bacteria to the lichen symbiosis could 

be by providing nutrients to cover certain lichens requirements. Subsequent studies, mostly 

using culture independent approaches, have shown the great abundance and diversity of 

bacterial communities associated with lichens (Grube et al., 2009, 2015), revealing that lichens 

constitute an unexplored environment of bacterial communities. These studies have also 

begun to elucidate some of the functional roles that these bacteria could play, such as 

increasing the tolerance of lichens to different types of stress, as well as contributing to their 

longevity and persistence in extreme environmental conditions (Cernava et al., 2017; Grube et 

al., 2015; Grube and Berg, 2009; Parrot et al., 2016; Selbmann et al., 2010). In fact, lichen-

associated bacteria are now recognized as an integral part of the lichens, these being in turn 

considered as a multispecies symbiosis (Aschenbrenner et al., 2016; Cernava et al., 2016).  

However, the knowledge about the composition, diversity and metabolic and/or physiological 

potential of bacteria associated with lichens is still very scarce but essential to understand 

both the microbial interactions in the lichen thallus and their biotechnological potential. In the 

present study, we provide for the first time new knowledge on the abundance of culturable 

bacteria associated with the Mediterranean lichen R. farinacea and the metabolic and 

physiological potential of these bacteria, as well as on the composition and diversity of the 

bacterial communities associated with this lichen species, both by culture-dependent and 

independent techniques. 

Culturable bacterial populations associated with R. farinacea 

The number of studies conducted to isolate bacteria associated with lichens is not numerous, 

with the added inconvenient of the lack of a standarized methodology for the bacteriological 

analyses of lichen thalli. However, Biosca et al. (2016) developed recently a new methodology 

to improve the recovery of bacteria from both the external (ectolichenic) and the internal 
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(endolichenic) fractions of the lichen thallus, as well as novel culture media enriched with 

lichen extracts to mimic lichen nutritional conditions. This novel methodology together with 

the lichen enriched media proved to dramatically increase the number of both ectolichenic 

and endolichenic bacteria (104 to 106 CFU/g) recovered from lichen samples from different 

lichen species, particularly when compared to other methodologies and culture media 

previously used by other authors (Cardinale et al., 2006, 2008, Cernava et al., 2015a, 2015b; 

Grube et al., 2009; Liba et al., 2006; Parrot et al., 2015; Selbmann et al., 2010; 

Sigurbjörnsdóttir et al., 2014; Suzuki et al., 2016). 

In the present work, the culture media enriched with R. farinacea extracts and the 

methodology developed by the group of Biosca et al. (2016) was applied, which allowed 

providing new data on the abundance of the culturable ectolichenic and endolichenic bacteria 

associated with R. farinacea. Thus, the bacteriological analysis of lichen thalli from R. farinacea 

populations from different geographical locations in Spain, yield ecto- and endolichenic 

culturable bacterial counts that ranged from 104 to 106 CFU/g, after 15 days of incubation at 

26ºC, with culturable counts increasing along the time. It is worth to mention that the bacterial 

densities recovered from bulk thalli samples of the populations of R. farinacea from different 

geographical origins were variable. Related to this, a higher number of bacterial colonies were 

obtained from the lichen thalli collected from La Guancha and El Toro (around 106 CFU/g) than 

those from La Esperanza and Lidón (around 105 CFU/g). This result could be related to the 

different environmental conditions in different geographical locations, since in the locations of 

La Esperanza and Lidón these conditions were more extreme than in the other two locations. 

In this sense, temperatures were more extreme in Lidón, while environmental humidity was 

higher in La Esperanza than in the other locations. These results agree with previous ones 

suggesting a selective colonization of lichen thalli by bacteria according to environmental, 

geographical and climate conditions (Cardinale et al., 2012b; Selbmann et al., 2010). 

Furthermore, bacteria exhibit different sensitivity to desiccation and high humidity, being 

some of them affected negatively by water or high humidity, as it happens in Deinococcus 

radiodurans and the survival of this bacterium under starvation (Yang et al., 2009). The same 

was found in other studies with bacterial species as Bacillus subtilis, Escherichia coli, 

Salmonella pullorum, Serratia marcescens, Staphylococcus albus, S. pneumoniae, Streptococcus 

haemolyticus, S. derby, Proteus vulgaris and Pseudomonas aeruginosa (type 1), in which an 

increase in death rates at intermediate (approx. 50–70%) to high (approx. 70–90%) relative 

humidity environments was found (Tang, 2009). 

When the numbers of R. farinacea bacteria isolated from the surface (ectolichenic fraction) 

and the inner part (endolichenic fraction) of the thalli were compared, in general, similar 

abundances were recorded at final incubation time, regardless the geographical location. 

However, a slightly higher number of isolates were recovered from the lichen surface, 

although without significant differences. In other lichen species, it was found that culturable 

bacterial counts from internal thalli, were slightly higher than those from the thalli surface 

(Biosca et al., 2016; Cardinale et al., 2008). These differences were justified due to the 

differences in nutrient availability on thallus surface compared with the inner thallus tissue, as 

well as because the lower protection of the bacteria on lichen surfaces against abiotic stresses, 

such as UV radiation or lower water availability, as well as meteorological events (Biosca et al., 

2016; Cardinale et al., 2012b). However, other studies have reported the influence of 
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additional factors such as the lichen age, the type of inhabiting substrate, as highly affecting 

the number of microorganisms found in lichens (Cardinale et al., 2012b).  

Interestingly, additional differences were observed in bacterial culturable counts between the 

two lichen-enriched culture media employed, independently of the geographical origin of the 

R. farinacea population analyzed. In general, the highest bacterial numbers were obtained on 

nutrient-poor ABL medium, where bacterial colonies also developed faster than on ABLGM 

medium supplemented with glucose and mannitol. These results agree with the characteristic 

oligotrophic nature of lichens and with a previous study of our group (Biosca et al., 2016). 

However, in some cases, bacterial counts were very similar in both media, being higher on 

ABLGM medium only in one case. Based on the present results both media can be used to the 

recovery of lichen-associated bacteria, which also could increase the diversity of isolated 

bacteria, according to Biosca et al. (2016).   

The variability in the methodologies and culture media used as well as in the incubation 

periods and conditions reported for the isolation of lichen-associated bacteria make very 

difficult to compare the results obtained in this study with those reported in other 

investigations. However, the bacterial densities recovered from R. farinacea thalli samples 

were higher than those obtained in other lichen species where CFU/g values ranged from 102 

to 104 (Cardinale et al., 2006; Jian et al., 2017). Our better results could be due, at least in part, 

to the use of lichen enriched media with lichen extracts of the R. farinacea populations 

analyzed that may provide unique nutrients and/or growth factors, absent in synthetic growth 

media, as pointed out by Biosca et al. (2016). Another variable to take into consideration is 

that the target of isolation in the present study was the maximum variability among the 

heterotrophic mesophilic aerobic bacteria. Therefore, avoiding the biases due to the use of 

culture media specific for some bacterial groups, as the ones used for Actinobacteria, or to 

isolate bacteria able to fix nitrogen, solubilize phosphate or produce phytohormones 

(Cardinale et al., 2006, 2008, Cernava et al., 2015a, 2015b; Grube et al., 2009; Jian et al., 2017; 

Parrot et al., 2015; Sigurbjörnsdóttir et al., 2014). 

When comparing the bacterial culturable densities of the R. farinacea populations analyzed in 

this study (105 – 106 UFC/g) with those found by other authors using culture-independent 

methods, we found that in some cases the values were similar o higher than the ones obtained 

in this study by using culture-dependent methods. In this sense, Grube et al. (2009) showed a 

similar abundance of bacteria associated with the lichens Cladonia arbuscula, Lecanora 

polytropa and Umbilicaria cylindrica through a semi-automated quantification of CLSM images, 

as the ones obtained through culturable isolation in R. farinacea in this study, with values that 

ranged from 104 to 106 bacteria per cubic milliliter of lichen volume. Later on, Pankratov (2012) 

through DAPI staining and hybridization with group-specific probes for Alphaproteobacteria, 

Acidobacteria, Actinobacteria and Betaproteobacteria, found abundances of about 108 cells/g 

in the lichens studied. Thus, the methodology and culture media employed allowed the 

reduction of the differences between the culturable and non-culturable bacterial fractions 

associated with the R. farinacea populations studied. 

Overall, in this work, a high number of bacteria were isolated from both the ectolichenic and 

endolichenic fractions of R. farinacea thalli, also revealing the importance of lichens as new 

relevant sources of numerous and diverse microorganisms, potentially new species. These 
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results agree with those of other studies pointing out the importance and potential 

contribution of lichen-associated bacteria to the lichen symbiotic sustainability through diverse 

functional roles (Grube et al., 2015). However, some functional activities assigned to lichenic 

bacteria were proposed based on omic approaches, being the studies conducted with 

culturable bacteria still very scarce (Aschenbrenner et al., 2016; Parrot et al., 2015; 

Sigurbjörnsdóttir et al., 2016). On the other hand, the potential functional roles and/or 

biotechnological potential of bacterial communities associated with R. farinacea has not yet 

been explored. 

Characterization of bacteria associated with the lichen R. farinacea 

The present work supposes the first characterization of a collection of R. farinacea associated 

bacteria, isolated from the surface (ectolichenic) and the inner part (endolichenic) of lichen 

thalli of R. farinacea populations from two geographical locations in the island of Tenerife and 

other two in the Mediterranean slope in the Iberian Peninsula, the four locations with 

common characteristics of Mediterranean climate. The characterization was focused on the 

study of some functional roles of R. farinacea associated bacteria, because their pigments may 

be involved in the pigmentation of this lichen species and/or have some beneficial roles that 

could influence the lichen symbiosis; their hydrolytic potential since hydrolases can be a key 

factor in the nutrient recycling with the thallus; their potential ability to supply nitrogen, 

phosphate and iron which are limiting nutrients for the lichen growth; their potential 

production of phytohormones for lichen growth stimulation and their ability to produce 

biofilms with different functional roles as well. Furthermore, it was considered particularly 

interesting to explore the biotechnological potential of the R. farinacea associated bacteria in 

all these activities, still barely studied in other lichenic bacteria. 

Lichens are organisms with a great diversity of colours due to the presence of secondary 

metabolites produced by the mycobiont (Shukla et al., 2010). Some lichenic pigments have 

been used traditionally as dyes (Parrot et al., 2015), and more recently as food colourants, 

antioxidants, antimicrobial and anticancer agents, and as bioindicators (Rao et al., 2017). 

Lichen pigments may be a consequence of chemical reactions between biomass compounds 

and several cations, conducting to the production of different mineral complex and 

compounds (Gayathri et al., 2014). However, lichen-associated bacteria could also contribute 

to lichen pigmentation. In this study, a high percentage of R. farinacea bacterial strains 

produced pigments, ranging from 50% to almost 100%, according to the geographical origin of 

the lichen thalli samples, since a higher percentage of pigmented bacteria was found in El Toro 

(94.03%) and a lower one in La Esperanza (75.75%), Lidón (65.61%) and La Guancha (51.19%). 

The former could be related to the environmental conditions where the thalli were grown 

because in the population of El Toro bacteria were more exposed to sunlight due to the 

distribution of the trees in that area. In the other lichen populations, the environmental 

conditions might be different, as for example in the case of Lidón, where trees were more 

abundant and leafier and lichens were less exposed to solar radiation. The most frequent 

pigments were yellow and pink, which were mostly present among ectolichenic and 

endolichenic bacterial strains, respectively. This could be related to the role of bacterial 

pigments in the tolerance to environmental stress since yellow pigments in ectolichenic 

bacteria might be involved in their protection from sun exposure, among other abiotic stresses 
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to which they are more exposed than endolichenic ones. Related to this, it has been reported 

that under some conditions, as UV radiation, some bacterial strains can enhance their pigment 

production (El-Bialy and Abou El-Nour, 2015). The former could be related to the high 

percentage of pigmented bacteria found in R. farinacea in the environmental conditions of the 

different geographical locations where they were sampled. The potential functional roles of 

bacterial pigments in lichens might also be involved in the protection of the photobionts from 

the excess of irradiation, acting as sun-screen (de la Torre et al., 2010). In this sense, R. 

farinacea thalli were collected from the bark of trees suffering sun exposure during many 

hours per day for long periods of the year. With regards to the prevalence of pink pigments 

among endolichenic bacteria, they could have other antibiotic and/or anti-freezing activities, 

among others still to be explored. Different pigments have been used traditionally as 

colourants in the textile industry, and the use of bacterial pigments is eco-friendly compared 

with chemical ones (Chadni et al., 2017). Thus, R. farinacea bacterial pigments could be 

exploited as antimicrobial, antioxidants, anticancer agents, as well as food colourants.  

Recent studies based on metagenomic and culture techniques have demonstrated that 

bacterial communities may help to the lichen thallus maintenance, in part due to their 

glucanolytic, chitinolytic and proteolytic activities (Cernava et al., 2017; Grube et al., 2009, 

2015; Lee et al., 2014; Schneider et al., 2011; Sigurbjörnsdóttir et al., 2016). Thus, R. farinacea 

associated bacteria could contribute to the recycling of nutrients in the senescent parts of 

lichen thalli through the supply of nutrients such as sugars, fatty acids, amino acids, and 

nucleotides. For this reason, the characterization of R. farinacea bacterial strains continued 

with the study of their hydrolytic potential. It was initiated using a selection of bacterial strains 

and the API-ZYM system that allows the detection of general enzymatic activities such as 

aminopeptidases, esterases, phosphatases, glycosidases, and proteases. Most of the strains 

exhibited various and diverse enzymatic activities, such as esterase, lipase esterase, leucine 

arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, valine arylamidase, N-

acetyl-β-glucosaminidase and the α-fucosidase. Therefore, some of these activities and 

additional ones were then evaluated by conventional systems using a wide range of substrates, 

some of them related to the lichen composition, in order to detect different polysaccharases, 

lipases, proteases, and nucleases. In general, a high percentage of bacterial strains inhabiting 

R. farinacea thalli showed one or more hydrolyses.  

More than 60% of R. farinacea bacterial strains showed a remarkable polysaccharase activity, 

with several strains being able to degrade diverse heteropolysaccharides such as cellulose, 

chitin, pectin, starch, and xylan. Chitin is one of the major fungal cell wall components (García-

Fraile et al., 2015) and cellulose and xylan are components of the cell wall of R. farinacea 

photobionts (Casano et al., 2015; König and Peveling, 1984; Olafsdottir and Ingólfsdóttir, 

2001). The production of cellulases, chitinases, xylanases and other polysaccharases, could 

allow the degradation of these compounds in the older thallus parts, which could provide 

nutrients to the younger and growing parts of the thallus (Grube et al., 2015; Grube and Berg, 

2009; Sigurbjörnsdóttir et al., 2016). Besides, growth areas in foliose and fruticose lichens as R. 

farinacea, are surrounded by cellulose and hemicellulose compounds, tree bark and another 

type of vegetation as mosses. Moreover, pectin is a component of plant tissues and could be 

exploited by bacteria associated with the R. farinecae populations studied, living on the bark of 

pines or oaks. In these cases, cellulases, pectinases, and xylanases might play an important role 
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in the lichen symbiosis, especially when a saprophytic activity could benefit this symbiotic state 

(Beckett et al., 2013; Palmqvist et al., 2008). Some of these polysaccharases have been also 

detected in bacterial strains in other lichen species trough functional metagenomic or 

culturable studies (Cardinale et al., 2006; Grube et al., 2009, 2015; Sigurbjörnsdóttir et al., 

2014).  

On the other hand, this hydrolytic potential might have different biotechnological applications. 

Amylases are important enzymes in paper, textile, detergent, and pharmaceutical industries, 

(de Souza and Magalhães, 2010; Rajagopalan and Krishnan, 2008; Reddy et al., 2003), as well 

as in fine-chemical and analytical chemistry industries, clinical, food, drinks, brewing, and 

distilling industries (Gupta et al., 2004; Kandra, 2003; Kumar, 2015; Pandey et al., 2000). In the 

literature, different bacterial species have been found to produce amylases, but in the 

industry, the main genera used is Bacillus (de Souza and Magalhães, 2010). Cellulases are also 

of relevant biotechnological interest for the production of bioethanol, biofuel and other types 

of sustainable energy derivatives from biomass and agricultural wastes (Koeck et al., 2014; 

Kumar et al., 2008; Vallejos, 2013). Some bacterial strains isolated from lichens and associated 

mostly to the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria were found 

as able to degrade cellulose, paper, xylan, and lignin (Cernava et al., 2017; Pankratov, 2012; 

Sigurbjörnsdóttir et al., 2014, 2015). Some examples are strains from the genera Bacillus, 

Pseudomonas, and Microbacterium (Himmel et al., 2010; Větrovský et al., 2014; Yang et al., 

2014). Besides, xylanases are interesting as additives in livestock feed, as well as for the 

production of flours at industrial scale. Pectinases are also necessary for textile and food 

industry, as stabilizers and emulsifiers (Cerreti et al., 2016; Kumar et al., 2008), as well as in 

juice and wine production for improving organoleptic properties, increasing clarification, 

maceration and colour stabilizing during storage, or also for the conversion of pectin of waste 

materials to soluble sugars, ethanol and biogas (Kumar et al., 2008). Chitinases have also many 

applications in different fields, as in the waste management, treating chitinous derived 

products from the seafood industry, in the preparation of cell proteins and in the conversion of 

this chitinous waste in biofertilizers (Rathore et al., 2015; Sakai et al., 1998). As well as in the 

biocontrol of phytopathogenic fungi or as biopesticides against insects and pest, as an 

alternative to chemical control (Melchers and Stuiver, 2000). Finally, more recent uses are 

related to the chitinoligomers produced by chitinases as antitumor and antihypertensive 

agents (Rathore et al., 2015). Some bacterial genera with members with chitinolytic activity 

are Bacillus, Chromobacterium, Erwinia, Pseudomonas, Serratia, Streptomyces and Vibrio 

(Sigurbjörnsdóttir and Vilhelmsson, 2016; Stoykov et al., 2015). Among the bacterial strains 

isolated from R. farinacea in this study, many of them presented different hydrolytic 

polysaccharase activities, being assigned to the genera Arthrobacter, Bacillus, Burkholderia, 

Curtobacterium, Erwinia, Frondihabitans, Kocuria, Microbacterium, Micrococcus, 

Methylobacterium, Mycobacterium, Pantoea, Pseudomonas, Sphingomonas, 

Stenotrophomonas, Streptomyces, among others.  

Moreover, around 30% of the R. farinacea bacterial strains analyzed produced lipases, which 

could also contribute to lichen symbiosis through lipid recycling, as described in other lichen 

species (Lee et al., 2014). The percentage of strains showing lipase activities was higher using 

Tween 20 than Tween 80, probably because the latest is a lipid derived from oleic acid, more 

complex and difficult to degrade than the lauric acid of Tween 20. In other lichen species, 
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some of the bacterial genera showing lipase activities were Burkholderia, Deinococcus, 

Frondihabitans, Pseudomonas, Rhodanobacter, Sphingomonas and Subtercola (Lee et al., 

2014), some of them also detected in our study with lipase activities, as the ones assigned to 

the genera Burkholderia and Pseudomonas, or others as Arthrobacter, Averyella, Bacillus, 

Curtobacterium, Kocuria, Methylobacterium, Microbacterium, Staphylococcus, 

Stenotrophomonas, Streptomyces, etc. Lipases are very versatile and widely used enzymes in 

biotechnology as well, in a wide variety of food products, for instance, in cheese and cream 

production, in the acceleration of lipolysis and in fat and oil hydrolysis too (Navarro-González 

and Periago, 2012). 

Lichenic bacteria could also provide nutrients by releasing amino acids from the proteins 

present in lichen thallus, reducing the cost of synthesizing new amino acids (Liba et al., 2006). 

Around 30% of the R. farinacea bacterial strains produced proteases, with a 31.14% of them 

being able to use gelatine as a substrate, and a 30.46% casein. Proteases represent an 

important group of industrial enzymes, being around the 60% of the total enzyme market 

(Sawant and Nagendran, 2014). Main uses are as detergent, in leather tanning, in food and 

pharmaceutical industries (Gupta and Khare, 2007; Kalpana et al., 2008). In addition, microbial 

proteases are increasingly used in the treatment of various human disorders as cancer, 

inflammation, cardiovascular disorders, necrotic wounds, etc. (Chanalia et al., 2011; Jisha et 

al., 2013). Furthermore, proteases can be used as immune–stimulatory agents (Biziulevičius, 

2006) but also in several bioremediation processes (Sawant and Nagendran, 2014). 

Extracellular DNA is a ubiquitous biopolymer in aquatic and terrestrial ecosystems which 

represents an important and convenient component that can be enzymatically modulated and 

utilized by bacteria for multiple purposes, such as in biofilm formation, as nutrient source, 

antimicrobial and in horizontal gene transfer (Dang et al., 2016; Seper et al., 2011; Vorkapic et 

al., 2016). In the R. farinacea bacterial strains tested, around 32% of them showed nuclease 

activity, which could be of application, for example, in the treatment of viral infections (Chen 

et al., 2014; Matousek et al., 1995) and in some types of cancer (Alcázar et al., 1995). Also for 

some biomedical processes as in the disruption, addition, and edition of genes (Pan et al., 

2013). 

Thereafter, the study was focused on the evaluation of the ability of the R. farinacea bacterial 

strains to fix nitrogen, solubilize phosphate and/or produce siderophores. These activities were 

selected because they have been related to the nutrient supply, being some of these elements 

essential for thallus growth but very limited (Palmqvist et al., 2008). Some studies have shown 

that in the case of large foliose and fruticose lichens as R. farinacea, their growth may be 

limited by nitrogen (Kurina and Vitousek, 1999; Palmqvist and Dahlman, 2006). Related to this, 

Liba et al. (2006) suggested that lichens lacking cyanobacteria could take profit of non-

photosynthetic bacteria able to fix nitrogen. Grube and Berg (2009) shared this hypothesis, 

arguing that if non-photosynthetic bacteria were able to fix nitrogen and release nitrogenated 

compounds as amino acids, they could contribute to the nitrogen input of lichens. This might 

allow the lichen thallus to become independent of other external sources, where nitrogen 

availability could be limited, as in biogeochemical balanced forest systems (Makkonen et al., 

2007), where this activity is of vital importance. In this work, most of the studied bacteria were 

able to fix nitrogen, around 93%, regardless of their geographical or lichenic origin. 
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Furthermore, some of the tested bacteria presented a characteristic mucous appearance due 

to the production of exopolysaccharides, which is related to the protection of the nitrogenase 

system from oxidation by oxygen (Sabra et al., 2000; Shrimant, 2012). The ability to fix this 

element has a relevant influence on the ecology of lichens, promoting the colonization of 

niches with special ecological features, as those oligotrophic in nitrogen (Büdel and 

Scheidegger, 2008). Furthermore, bacteria able to fix nitrogen could be used as plant-growth 

promoting bacteria to improve the productivity of crops such as some cereals, as maize and 

wheat (Oldroyd and Dixon, 2014; Souza et al., 2014), as environmentally friendly biofertilizers 

compared with chemical ones routinely used with a high impact. 

On the other hand, around 50% of bacterial strains were able to solubilize inorganic 

phosphates. In nature, only few microorganisms are able to mobilize phosphate through its 

solubilization often by the production of organic acids (Ahemad and Kibret, 2014; Liba et al., 

2006). Phosphate supposes an essential nutrient, and phosphate solubilizing bacteria could 

contribute to meet the requirements of this element in the lichen thallus. In a study by 

Hyvärinen and Crittenden (2000) with the lichen C. portentosa, it was shown that phosphorus 

was recycled from the senescing parts of the thalli to the growing apices. These authors 

suggested that it might exist a kind of source-sink of this element within the thallus, being an 

adaptation of this lichen species to places with phosphorus availability limitation. Furthermore, 

several strains isolated from various lichen species have been reported as phosphate-

solubilizers (Grube et al., 2009, 2015; Liba et al., 2006; Sigurbjörnsdóttir et al., 2014), as in the 

lichen Peltigera membranaceae, where bacterial symbionts are known to participate in 

phosphate solubilization, which could be involved in algal growth promotion (Sigurbjörnsdóttir 

et al., 2015). Phosphatases could be used as biocatalyzers in the removal of toxic heavy metals 

(Chaudhuri et al., 2015) and play an important role in the bioremediation of industrial, 

municipal and nuclear wastewater (Chaudhuri et al., 2017). 

Another growth limiting factor in lichens is iron, which usually is present in nature as insoluble 

hydroxide or oxyhydroxides forms. Some bacteria can produce and secrete high-affinity iron 

chelators, known as siderophores, when growing under low iron conditions (Ahemad and 

Kibret, 2014), thus making iron available for microorganisms able to use these siderophores. 

Furthermore, these iron chelators could create a stable complex with other elements as heavy 

metals such as aluminum, cadmium, lead, and zinc, among others (Ahemad and Kibret, 2014) 

which could reduce the toxicity of these metals to lichens. In our study, around 84% of R. 

farinacea bacterial strains were able to produce siderophores. Although strains able to acquire 

iron have been detected in some lichen species through metagenomic approaches (Cernava et 

al., 2017; Grube et al., 2015), this is the first time that the production of siderophores has been 

described in lichen-associated bacteria through culturable methods. Siderophores could be 

applied in a wide variety of fields, as for example, they could be used in agriculture to enhance 

plant growth and the weathering of soil minerals and in strategies of biocontrol (de Serrano, 

2017). Also in bioremediation, as chelating agents in the mobilization of heavy metals and 

radionuclides, as well as in oil-contaminated environments due to the emulsifying effects of 

siderophores (de Serrano, 2017). Moreover, they have an important application in medicine 

for the treatment of iron overload which could become toxic by increasing oxidative stress 

(Ahmed and Holmström, 2014; Sampaio et al., 2014).  
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The use of combined metagenomic and metaproteomic approaches has allowed determine 

some potential functional roles of some bacterial orders associated to lichens. In this sense, 

Cernava et al., (2017) found genes related to nitrogen metabolism in the orders 

Chthoniobacterales and Rhodospirillales in the lichen L. pulmonaria. Functional genes related 

to the phosphate metabolism were also assigned to Proteobacteria, mainly to Myxococcales, 

while those involved in iron metabolism were detected in Sphingobacteriales and 

Sphingomonadales (Cernava et al., 2017).  

In general, most of the bacterial strains isolated from R. farinacea were able to fix and/or 

solubilize nutrients, regardless their geographical or lichenic origin. Thus, suggesting that they 

could favour and/or allow the growth of this lichen species under nutrient-limited conditions 

prevailing in the environment where they grow, as the bark of trees, by supplying these 

nutritional requirements.  

Based on the results of the different activities of R. farinacea bacterial strains studied related 

to the nutrient recycling and supply, a selection of the most active ones was made to continue 

with their characterization through the study of their potential ability to stimulate lichen 

growth by producing phytohormones and/or to form biofilms, two features barely studied of 

lichen-associated bacteria but very relevant for lichen symbiosis.  

Recent studies have reported that plant hormones could stimulate lichens growth (Erlacher et 

al., 2015; Grube et al., 2015; Sigurbjörnsdóttir et al., 2016). In this study, the production of the 

phytohormone auxin, indole acetic acid (IAA), was investigated among the R. farinacea 

bacterial strains. The results revealed that most of the bacterial strains tested were able to 

produce IAA in different concentrations, reaching values after 72 h from 0.0027 µg/ml to 

100.62 µg/ml. Since some of the tested strains showed a slow growth rate, the number of 

bacteria able to produce this auxin increased over time. Several microorganisms have been 

found to synthesize IAA, an auxin identical to that one found in plants, as in Pseudomonas 

(Costacurta and Vanderleyden, 1995), Pantoea (Beattie and Lindow, 1999), Acinetobacter 

(Huddedar et al., 2002), Stenotrophomonas maltophilia (Park et al., 2005), Serratia (Liba et al., 

2006), and members of the order Rhizobiales (Erlacher et al., 2015; Grube et al., 2015). In the 

lichen L. pulmonaria, Proteobacteria was the main group with members identified as potential 

producers of auxin (Cernava et al., 2017). In this study, IAA was detected in strains assigned to 

genera as Arthrobacter, Bacillus, Burkholderia, Curtobacterium, Erwinia, Kocuria, Leifsonia, 

Methylobacterium, Micrococcus, Nocardioides, Pseudomonas, Stenotrophomonas and 

Streptomyces, among others.  

Ethylene is an essential hormone for growth and plant development (Ahemad and Kibret, 

2014). Thus, an assay was conducted to detect the ACC deaminase enzyme that deaminates 

the ethylene precursor, 1-aminocyclopropane-1-carboxylate acid (ACC). There is a relation 

between the ACC deaminase and the auxin IAA. Bacteria producing these two hormones can 

promote plant growth increasing plant height, biomass and root length. Furthermore, they 

may exert a protective effect against some abiotic stresses, such as desiccation, salinity, metals 

and other pollutants (Esquivel-Cote et al., 2013; Glick, 2014; Shahzad et al., 2013). In our case, 

despite most of the tested bacterial strains produced auxins, the molecular detection of the 

ACC deaminase was not as expected, with only an 18.54% of the strains being positive, mostly 

ectolichenic. Interestingly, this is the first study reporting this activity in lichenic bacteria. 
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Besides, despite the gene codifying for the ACC deaminase enzyme was detected in a low 

percentage of the R. farinacea bacterial strains tested, this is not the only way bacteria can 

stimulate plant growth. Different activities act synergistically, as the uptake and nutrient 

mobilization and phytohormones production (Ahemad and Kibret, 2014; Glick, 2014). 

Therefore, these strains still could be interesting for plant growth promotion. Ethylene can be 

produced by some microorganisms and has influence in many plant processes as seed 

germination, in senescent organs and in plants responses to some stresses (Liba et al., 2006). 

Some bacteria able to produce ethylene are S. maltophilia, S. marcescens and some 

Pseudomonas species (Berner et al., 1999). In this study, some bacterial strains detected with 

the gene for the ACC deaminase were assigned to the genera Erwinia and Pseudomonas. 

Bacterial phytohormones can influence plant growth but the production of some of them as 

IAA (Grube et al., 2009; Liba et al., 2006), ethylene and others acting as signaling molecules 

could also influence the morphogenetic processes in lichens and their symbionts (Grube and 

Berg, 2009). The detection of R. farianacea bacterial strains able to produce phytohormones 

gives support to the potential relationship between these bacteria and the holobiont growth 

(Grube and Berg, 2009). Previously, some bacterial species belonging to the taxa Acinetobacter 

calcoaceticus, Pantoea sp., P. stutzeri, S. maltophilia and S. marcescens, associated with the 

lichens Canoparmelia caroliniana, C. crozalsiana, C. texana, Parmotrema sanctiangeli and P. 

tinctorum, were reported to produce IAA, and some of them producing ethylene as well (Liba 

et al., 2006), also in the lichen species C. arbuscula, L. polytropa and U. cylindrica, where a 21% 

of the bacterial strains isolated showed the ability to produce IAA (Grube et al., 2009). Besides, 

these strains could be used as biofertilizers to replace synthetic agrochemicals, which have a 

relevant negative environmental impact on soils, waters and different ecological systems. 

Therefore, the use of biofertilizers or a combination of both approaches could contribute 

reducing the impacts of agrochemical compounds (Bhardwaj et al., 2014; García-Fraile et al., 

2015; Shahzad et al., 2013). 

By the use of microscopic techniques, it has been observed that lichens are colonized by 

bacterial communities growing in aggregates and/or biofilms (Cardinale et al., 2008; Erlacher 

et al., 2015; Grube et al., 2009). However, the ability of lichen culturable bacteria to form 

biofilms has not been yet explored. Therefore, biofilm formation was determined with the R. 

farianacea bacterial strains. Almost a 100% of the tested strains were able to produce biofilms, 

most of them in a strong way (69.9% with a strong biofilm production, 24.6% moderate, 4.6% 

weak). These results are in accordance with the observation of bacterial aggregates in R. 

farinacea thalli collected in different points of the north of Spain (García-Breijo et al., 2010). 

This could be related to the ability of lichens to colonize environments with specific and 

extreme conditions, as well as to increase nutrients uptake (Grube et al., 2015; Grube and 

Berg, 2009; Koczan et al., 2009). In this sense, in the lichen Xanthoparmelia mexicana 

microscopic studies described that bacterial cells able to fix nitrogen appeared in aggregates 

forming biofilms, which increases the nitrogen supply with respect to single bacterial cells 

(Gayathri et al., 2014). 

In some lichens, bacterial biofilms are thought to be involved in their attachment to surfaces 

and, in some cases, these biofilms seem microhabitats with a high diversity of microorganisms 

interacting among them (de los Ríos et al., 2002). Biofilms may play different functional roles in 
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microbial communities, as protection against environmental stresses, restricting the diffusion 

of some molecules and compounds from the surrounding area into the biofilm (Donlan and 

Costerton, 2002; Koczan et al., 2011); allowing nutrient availability via water channels that 

provide nutrient and metabolites exchange and the removal of potentially toxic metabolites 

(Koczan et al., 2011). Furthermore, they provide an environment for syntrophic relationships 

and permits the horizontal gene transfer, very important for the evolution of microbial 

communities (Kokare et al., 2009). All of these functions might be important in the 

maintenance of the lichen bacteria association, as well as in the stabilization of the lichen 

thallus. Bacteria able to form biofilms in nature are embedded in an extracellular matrix of 

exopolymers, extracellular polymeric substances, consisting of polysaccharides, proteins, 

nucleic acids and lipids (Burmølle et al., 2014; Hori and Matsumoto, 2010). In this study, it was 

observed that several R. farinacea strains were able to produce exopolysaccharides (some 

levane-type, data not shown). The exopolysaccharides forming the biofilm have different 

applications and they could be exploited in some industrial sectors. For instance, in the 

pharmaceutical field, for tissue engineering or as new anticancer drugs or additives, in the 

food industry, as additives or prebiotics as well as in environmental protection as emulsifiers 

for oil pollution recovery or as chelators for toxic metals removal, etc. (Berlanga and Guerrero, 

2016; Di Donato et al., 2016). 

Biofilm formation is a process with distinct phases, including planktonic (free-swimming), 

attachment, mature biofilm and detachment (Berlanga and Guerrero, 2016; Sauer et al., 2002). 

Motility of bacterial cells is necessary for the first stages of biofilm formation, to reach surfaces 

suitable for the biofilm establishment but also to move and expand with the biofilm (Bak et al., 

2015a; Flemming and Wingender, 2010; Houry et al., 2010; Ryder et al., 2007). Thus, the 

motility of R. farinacea bacterial strains was also investigated. Some examples of motile 

bacteria in lichens are Chtoniobacterales, Myxococclaes, Rhodospirillales and 

Sphingobacteriales (Cernava et al., 2017), and some of the species are B. subtilis, E. coli, P. 

aeruginosa, Rhizobium etli and S. liquefaciens, among others (Kearns, 2010; Kearns and Losick, 

2003; Verstraeten et al., 2008). Many of the bacterial strains associated with R. farinacea 

biofilm producers were taxonomically assigned to members of the genera Arthrobacter, 

Averyella, Burkholderia, Erwinia, Frondihabitans, Methylobacteria, Pseudomonas, 

Sphingomonas and Staphylococcus, among others. The results showed that around 70% of the 

tested bacterial strains presented swimming motility, while the percentage of strains with 

swarming motility was not as high, but still some of them (5.6%) presented this type of 

motility. Swarming depends on the interaction of several parameters, such as agar 

concentration, incubation temperature, cell density, and nutrient-rich medium, being some of 

them critical for surface migration (Tambalo et al., 2010). Thus, it cannot rule out that by 

modifying the conditions we had detected more positive strains or that they express this 

motility in nature. In fact, swimming and swarming are two types of motility important for 

surface colonization in natural habitats, allowing bacteria to reach open surfaces in animal or 

plant tissues. Nonetheless, the production of biofilms was not limited to the strains with 

motility. In fact, other surface structures such as pilis or fimbria could also be involved in 

biofilm formation (Bak et al., 2015b; Koczan et al., 2011), but their role remains to be 

elucidated in lichenic bacteria. Interestingly, many of the bacteria isolated from the different 

populations of R. farincea produced exopolysaccharides, which are also involved in biofilm 
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formation (Balsanelli et al., 2014; Koczan et al., 2011; Limoli et al., 2015). The ability of these 

bacteria to produce biofilms could have several applications as in wastewater treatments 

(Miura et al., 2007), groundwater bioremediation (Castro and Tufenkji, 2007), and even in 

biomedicine (Tenke et al., 2006). It could be also of interest in some plant growth promoting 

bacteria, known as biofilmed biofertilizers (BFBFs), since plant-associated nitrogenase activity, 

rhizoremediation, plant and soil carbon sequestration, and plant growth-promoting activities 

are enhanced by these biofilms (Malusá et al., 2012; Seneviratne et al., 2009). 

The methodology used for the molecular identification of a selection of bacterial strains 

associated with R. farinacea was made according to their different physiologic and metabolic 

characteristics and because of their biotechnological interest. The identification gave a 

presumptive assignment of the selected bacterial strains and revealed that these were related 

to different bacterial taxa. Based on the similarity of the partial sequences of 16S rRNA gene 

through a BLASTnt, different genera and species were initially assigned, as for example B. 

megaterium, B. subtilis, Burkholderia sordidicola, Curtobacterium flaccumfaciens, Erwinia sp., 

Kocuria rhizhophila, Leifsonia poae, Nocardioides sp., Pantoea agglomerans, P. koreensis, P. 

rhizosphaerae, S. pasteuri, Stenotrophomonas sp., Streptomyces sp., etc., some of them could 

be new species. 

Overall, these results of the extensive characterization of culturable bacterial strains of R. 

farinacea from different geographical and lichenic origins carried out in this study, are an 

example of the complex and functionally diverse bacteria associated with lichens. These 

bacteria may play numerous and diverse functional roles, providing nutrients to the host or 

growth regulating factors, as well as protection by forming biofilms, thus showing the 

importance of these bacterial activities for the lichen symbiosis, as pointed out for bacteria 

from other lichen species but mainly by culture-independent methods.  

Finally, as shown by Grube et al. (2015), despite the culturable bacterial fraction represents a 

minor percentage of all bacteria associated with lichens, which makes necessary the use of 

omic techniques in combination with bioinformatics to carry out complete characterization of 

these bacterial communities, working with culturable bacteria have several advantages since it 

allows the study of microbial interactions within the lichen thallus, as well as the exploration of 

the diverse biotechnological potentials of these bacteria and the description of new bacterial 

taxa. Although undoubtedly a holistic approach combining dependent and independent 

culture techniques is the most accurate way to approach the analyses of these abundant and 

diverse lichenic bacterial communities with a wide spectrum of biotechnological applications, 

still to explore. 

Diversity and composition of culturable bacteria associated with R. farinacea 

In this study, the diversity and composition of culturable bacteria associated with the different 

populations of R. farinacea analyzed, as well as the potential influence of factors as geography 

and/or the location in the lichen thallus on the structure of these bacteria (beta diversity), was 

investigated. The results have revealed new data on the diversity and composition of bacteria 

associated with R. farinacea, as well as that the geography was the main factor determining 

the bacterial communities on the four lichen populations studied. In addition, the location 

ecto- or endolichenic in the lichen thallus also had an influence on the bacterial structure, 
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which could be related to their functional roles in the lichen symbiosis. In this sense, these 

results obtained in this work suggest that bacteria present in lichens are not an extension of 

the microbiota, but they are specifically associated with each lichen species and/or lichen 

population. The bacterial diversity found in the four populations of R. farinacea as well as in 

their inner or outer thallus fractions indicates that geographical and lichenic origin shape these 

bacterial communities. Biotic and abiotic factors may have an additional influence on them, as 

well as the functional roles that those bacteria may play under the conditions imposed by 

these factors. In other studies, in which the environment nearby lichens (soil, bark trees, etc.) 

was considered, it was found that the specific structure of lichenic bacterial communities was 

different to that one found around them (Aschenbrenner et al., 2017; Bates et al., 2011; 

Bjelland et al., 2011). 

As a first approach, the alpha diversity of culturable bacteria associated with R. farinacea 

populations from different geographical origins was analyzed. When this bacterial diversity 

was investigated by grouping lichen populations by their insular or peninsular origin, the 

highest diversity indices (although with small differences) were found in the Island, with a 

higher number of bacterial species and more evenly represented. At a small geographical 

scale, when bacterial diversity was studied taking into consideration the origin of the four 

populations of R. farinacea studied, the ones with the highest diversity indices were Lidón 

(from the Peninsula) and La Esperanza (from the Island), followed by those from La Guancha 

(from the Island). The R. farinacea population showing the lowest indices’ values was the one 

from El Toro (from the Peninsula). Despite the differences observed, the bacterial diversity 

values of the lichen populations from the Island (La Guancha and La Esperanza) were very 

similar. The opposite happened with the lichen populations from the Peninsula (El Toro and 

Lidón), where the differences in these same indices’ values were more notable.  

R. farinacea bacterial strains were assigned to different genera and species, all of them 

classified in one of the three phyla identified. The main phylum was Proteobacteria (76%), 

followed by Actinobacteria (12.2%) and Firmicutes (9.5%). The proportion of these phyla was 

maintained in the Island and the Peninsula, as well as when studied the diversity composition 

in lichens populations from La Guancha, La Esperanza, and El Toro. However, in the case of 

Lidón, Actinobacteria predominated over Proteobacteria. In other lichen species from the 

genera Caloplaca, Cetraria, Cladonia, Hyrdopunctaria, Lecanora, Lichinia, Ochrolechia, 

Psoroma, Roccella, Stereocaulon, Umbilicaria, Usnea, Verrucaria or Xanthoria, these three 

phyla were found as the main ones among culturable bacteria, being present also the phyla 

Deinococcus-Thermus and Bacteroidetes in some of them (Lee et al., 2014; Liba et al., 2006; 

Parrot et al., 2015; Selbmann et al., 2010; Sigurbjörnsdóttir et al., 2014), that were absent in 

our culturable fraction.  

Based on molecular studies performed in other lichen species, Alphaproteobacteria was 

expected to be the predominant class among the bacteria associated with lichens (Bates et al., 

2011; Bjelland et al., 2011; Cardinale et al., 2008; Schoch et al., 2009). In the culturable 

bacteria obtained from R. farinacea, the main class in the lichen populations from the Island 

was Gammaproteobacteria. However, when compared between the two insular populations, 

in the case of La Esperanza, the main class was Alphaproteobacteria. In the Peninsula, the main 

class was Alphaproteobacteria, although again, in one of the peninsular R. farinacea 
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populations the predominant class was Actinobacteria. Other classes identified, although in 

less proportion, were Bacilli and Betaproteobacteria. In other lichen species from other 

latitudes, different bacterial classes were obtained among the isolates, as Flavobacteria, 

Cytophagia or Sphingobacteria (Sigurbjörnsdóttir et al., 2014). Members of the 

Alphaproteobacteria are known to participate in symbiotic relationships in lichens (Bates et al., 

2011; Cardinale et al., 2008; Hodkinson and Lutzoni, 2009). Among these bacterial group, 

nitrogenases are known to be ubiquitous, suggesting their participation in the nitrogen fixation 

(Grube and Berg, 2009). In other cases, members of the Gammaproteobacteria were found in 

other lichen species as C. caroliniana, C. crozalsiana, C. texana, P. sanctiangeli and P. 

tinctorum, being able to fix nitrogen (Liba et al., 2006). 

The main bacterial orders identified in this study were Rhizobiales, Micrococcales, 

Enterobacteriales, Pseudomonadales, Propionibacteriales, Burkholderiales, Bacillales or 

Streptomycetales. Among these, Rhizobiales has been proposed as a group that contributes to 

the lichen symbiosis by providing nitrogen (Hodkinson and Lutzoni, 2009). It was the 

predominant order in the R. farinacea population from El Toro, and one of the main ones in 

the population from Lidón (both being peninsular). This order was found to be the most 

ubiquitous in other lichen species as U. esculenta, Parmelia omphalodes and L. retigera (Jian et 

al., 2017). Moreover, members of this group were reported to be particularly abundant in 

lichens, with potential symbiotic functions, as in nutrient cycling or by providing some 

secondary metabolites (Erlacher et al., 2015; Grube et al., 2015). Micrococcales was the main 

order in the R. farinacea populations from La Esperanzan and Lidón, while in La Guancha was 

Enterobacteriales. Another relevant order was Sphingomonadales, the second main group in 

La Esperanza. Members of this group are heterotrophic bacteria quite abundant and 

commonly present in nature, usually in soils and aquatic environments (Aschenbrenner et al., 

2017; Cavicchioli et al., 2003; Kersters et al., 2006; Notomista et al., 2011). These bacteria are 

characterized by their ability to grow in oligotrophic environments (Cavicchioli et al., 2003) as 

well as to degrade diverse carbon sources (Sigurbjörnsdóttir et al., 2014). Further, through 

metagenome studies, it has been suggested that members of this group may promote the 

growth of their hosts by the production of hormones, with other potential functions such as 

phosphate solubilization, ammonia assimilation and oxidative stress responses (Aschenbrenner 

et al., 2017). 

Bacterial families were dominated by Microbacteriaceae, Methylobacteriaceae, Erwiniaceae, 

Pseudomonadaceae, Burkholderiaceae, Enterobacteriaceae, Sphingomonadaceae and others 

as Bacillaceae, Nocardioidaceae or Streptomycetaceae. Some of these families are recognized 

to be of biotechnological interest due to their production of bioactive molecules (Suzuki et al., 

2016). In this study, the final proportion of some of these families in the culturable fraction 

ranged from 4% to 20%, while in other studies the families as Burkholderiacea might represent 

at a maximum 1% of the lichen bacterial communities, being others about 10 to 100 times less 

abundant (Suzuki et al., 2016). These differences could be due to the fact that in our study 

lichen enriched media was used for the isolation of bacteria from R. farinacea, while nutrient-

rich media has been reported to reduce the number of lichenic bacteria recovered (Biosca et 

al., 2016).    
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Some of the genera found among the bacterial strains recovered from the four populations of 

R. farinacea were Arthrobacter, Averyella, Bacillus, Burkholderia, Curtobacterium, 

Enterobacter, Erwinia, Frondicola, Kocuria, Micrococcus, Methylobacterium, Nocardiodes, 

Rhodococcus, Roseomonas, Sphingomonas, etc. Species of Arthrobacter have been found in 

other lichen species from the Antarctica, as U. antarctica (Cardinale et al., 2006). Others, as 

Burkholderia, with species such as B. sordidicola, seem to be common in the bacterial 

culturable fraction of other lichen species (Grube and Berg, 2009), although members of this 

genus appeared in the groups of bacteria associated with non-lichenized fungi as well (Bertaux 

et al., 2005; Bianciotto et al., 2000; Lim et al., 2003; Yara et al., 2006). However, Burkholderia 

was not found in Antarctic lichens, which had more abundance of psychrotolerant bacterial 

species (Selbmann et al., 2010). In the populations of R. farinacea studied, this genus was 

absent in the case of El Toro, where a predominance of species of Methylobacterium was 

found, which participate in nitrogen fixation and oxidative stress tolerance, carbon 

metabolism, etc. (Erlacher et al., 2015), some activities tested in this work.  

Overall, many of the bacterial genera found in the populations of R. farinacea studied were 

common to those found in other investigations based on culturable methods with other lichen 

species, as C. arbuscula, Collema auriforme, L. polytropa, Lichina confinis, L. pygmaea, Roccella 

fuciformis and U. cylindrica, with some bacterial genera known to produce bioactive 

compounds as Acinetobacter, Bacillus, Burkholderia, Curtobacter, Frondicola, Leifsonia, 

Luteibacter, Methylobacterium, Microbacterium, Micrococcus, Mycobacterium, Nocardioides, 

Paenibacillus, Pseudomonas, Sphingomonas and Streptomyces (Grube and Berg, 2009; Parrot 

et al., 2015). In the populations of R. farinacea studied, some of the bacterial genera appeared 

to be ubiquitous, as Bacillus and Sphingomonas, while others were present in three of the four 

populations, as Burkholderia, Erwinia, Curtobacterium, Kocuria or Methylobacterium. Others 

were found from only one of the lichen populations, as Arthrobacter, Averyella, Enterobacter, 

Frondicola, Massilia, Micrococcus, Microlunatus, Nocardiodides, Rhodococcus, Roseomonas, 

Sanghibacter, etc. This tendency was observed in other studies, were some genera were found 

to be common on other lichen species, as C. arbuscula, L. polytropa and U. cylindrica, as 

Acinetobacter, Bacillus, Burkholderia and Paenibacillus, while others were less abundant, as 

Frondicola, Luteibacter or Methylobacterium, or identified only once, as Pseudomonas and 

Leifsonia (Grube et al., 2009).  

The presence of diverse culturable bacteria in R. farinacea, together with few previous similar 

studies in other lichen species, have revealed lichens as a novel source of bacterial strains with 

different biotechnological potentials, as Bacillus, Pseudomonas, Burkholderia (Suzuki et al., 

2016), or Sphingomonas, which is known to be involved in different pathways of aromatic 

compounds metabolism, as well as to have genes related to nitrogen fixation and iron 

acquisition (Aschenbrenner et al., 2017), as also shown in this work. Among the 

Actinobacteria, different strains were recovered in this study, belonging to the genera 

Curtobacterium, Friedmaniella, Frondihabitans, Leifsonia, Microbacterium, Micrococcus, 

Nocardioides and Streptomyces, among others. In other lichen species, the most abundant 

genera were Micromonospora and Streptomyces (González et al., 2005), or Curtobacterium, 

Microbacterium, Micrococcus, Mycobacterium, Nocardioides and Streptomyces, all of them 

with strains known to produce bioactive compounds, including exopolysaccharides, 

anthracyclines or enediyne, among others (Parrot et al., 2015). Lichen colonization by 
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heterotrophic bacteria that produce enzymes able to degrade macromolecules may benefit 

lichens exposed to oligotrophic environmental conditions (Lee et al., 2014; Liba et al., 2006). 

Among bacterial strains isolated from R. farinacea, many of them were able to produce 

bioactive compounds and enzymes of biotechnological interest, such as lipases and proteases. 

However, in other studies, these hydrolytic activities were only detected through molecular 

techniques. In the present study, a wide variety of R. farinacea bacterial strains showed 

different hydrolytic activities and others related to the nutrient supply and growth promotion. 

Further, our data revealed that culturable bacteria isolated from R. farinacea populations from 

four different geographical locations in Spain presented differences in their composition, 

which might be influenced by the environmental conditions as climate, UV radiation, growth 

substrate (i.e. bark tree), near vegetation and others abiotic and biotic factors. Similar 

differences have been reported in other lichen species, as in Cetraria aculeata, in which 

differences were reported between the alphaproteobacterial communities of high latitudes 

(more depauperated and closely related to each other) than in those of extrapolar habitats 

(Printzen et al., 2012). This is in agreement with findings for the fungal and algal partners as 

well (Fernández-Mendoza et al., 2011). Moreover, in C. aculeata, the two polar bacterial 

communities were more similar to each other than to the two temperate ones (Printzen et al., 

2012). Something similar was reported by Cardinale et al. (2012a) with populations of the 

lichen L. pulmonaria collected from four different locations around Europe when their 

bacterial communities were studied through FISH-CLSM and PCR-SSCP. They found that the 

bacterial groups were differentially shaped by the geography and the habitat (Cardinale et al., 

2012a).  

Besides, Lee et al. (2014) proposed that lichen-forming fungi produce diverse secondary 

metabolites that provide a selective environment which determines the phylotypes of 

bacterial partners so as to promote survival in different environmental conditions. These 

results could agree with some hypotheses about that symbiotic lifestyle may increase the 

evolutionary potential of the symbiotic holobiont by the adaptation of the other symbionts to 

ecological variations and conditions, in which the lichen host transfers parts of its stress 

response to microbial partners and is able to better adapt to environmental changes by a 

habitat-adapted symbiont association (Gilbert et al., 2010; Rodriguez et al., 2008). In other 

symbiotic systems bacterial communities are known to vary in response to environmental 

factors as well, as it occurs in corals due to heat stress, or in insects due to variations in the 

diet (Feldhaar, 2011; Glasl et al., 2016; Littman et al., 2010). 

When the diversity of culturable bacteria associated with the ecto- and endolichenic fractions 

of R. farinacea was studied, the results showed that the main phyla were Proteobacteria, 

Actinobacteria, and Firmicutes. For the ectolichenic fraction, Proteobacteria was the 

predominant group (69.57%), but in the endolichenic one, both Proteobacteria and 

Actinobacteria showed similar abundances (43.21% and 48.23%, respectively). The main class 

in the ectolichenic fraction was Alphaproteobacteria while Actinobacteria was in the 

endolichenic one. The orders were mainly represented by Rhizobiales, Enterobacteriales, 

Pseudomonadales, Microcococcales, Bacillales, and Sphingomonadales in the ectolichenic 

fraction, while Micrococcales, Enterobacteriales, Burkholderiales and Propiobibacteriales were 

the most frequent in the endolichenic one. With regard to bacterial families, the R. farinacea 
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bacterial strains belonged to families such as Methylobacteriaceae, Pseudomonadaceae, 

Erwiniaceae, Burkholderiaceae, Sphingomonadaceae, Nocardioidaceae, Bacillaceae, etc. 

without significant differences between their presence in the ectolichenic and endolichenic 

fraction, although some differences were found in some cases, as for example, 

Burkholderiaceae and Micrococcaceae were more abundant in the endolichenic fraction, and 

Methylobacteriaceae were more predominant in the ectolichenic one. Although many genera 

were present both inside and outside of the lichen thallus, some others were differentially 

distributed, many of them belonging to Actinobacteria. De Los Ríos et al. (2005) using samples 

of the lichen Lecidea, found similar results, while in other studies, as one conducted with 

Antarctic lichens, no differences were found among the bacterial genotypes from either the 

surface or the inner part of the lichen thallus, finding distinct bacterial phenotypes only from 

different lichen thallus (Selbmann et al., 2010). In other cases, as with littoral lichens (Parrot et 

al., 2015), members of Pseudonocardiaceae were isolated only from the ectolichenic fraction. 

These authors proposed that bacterial communities associated with lichens might show a 

specific distribution in the lichen thallus. In a recent study conducted with L. pulmonaria, some 

differences were found among the upper and lower surface of the lichen thallus, suggesting 

that each surface might facilitate the colonization of distinct bacteria due to dissimilar 

microclimatic conditions in both sides (Aschenbrenner et al., 2017) which partially agree with 

our results with R. farinacea bacterial strains. 

In summary, despite the diversity study of R. farinacea culturable bacteria represents a small 

fraction of the wide variety of bacteria associated with this lichen species, the results obtained 

provided for the first time data on the diverse and abundant culturable bacteria recovered 

from this lichen by using culture media enriched with R. farinacea extracts. Moreover, the 

differences found among the culturable bacteria associated with R. farinacea populations from 

four different geographical locations might suggest that these bacteria are shaped by 

geography, despite members of Proteobacteria (Gammaproteobacteria and 

Alphaproteobacteria) and Actinobacteria were the most common phyla found among the 

bacterial isolates of R. farinacea. In addition, the differences observed in the bacterial taxa 

regarding their ecto- or endolichenic origin, also suggests different microclimatic conditions in 

different fractions of the R. farinacea thallus. Furthermore, some of the isolated bacterial 

strains associated with this lichen could be new species or genera.  

 

Diversity and composition of bacteria associated with R. faraincea through non-culturable 

techniques 

To complete the study of the diversity and composition of the bacterial communities 

associated with R. farinacea, thalli samples from the four different geographical locations in 

Spain were further analyzed through a non-culturable approach. Moreover, we also 

investigated if such diversity could be different between the ecto- and endolichenic fractions 

of the lichen thallus, or along the different parts of the thallus (apical, middle and basal), or 

even change by applying a disinfection treatment often used in this kind of studies. 

Firstly, a study of the beta diversity, which indicates the influence of geography and/or 

location factors, among others, on the bacterial structure in lichen thallus, was carried out. The 
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main factor that appeared to influence the bacterial composition was the geographical 

location, either by grouping R. farinacea thalli samples according to their insular or peninsular 

origin or considering their four different geographical locations. In fact, the bacterial 

composition of the populations of R. farinacea was significantly different among the four 

different Spanish geographical locations with a Mediterranean climate but with different 

conditions, as the bark trees where lichen thalli were growing, the percentage of relative 

humidity at the moment of sampling or the temperature. The second main factor that 

influenced the bacterial composition was the ecto- or endolichenic location of these bacteria 

in the lichen thallus. These results were similar to those obtained in the beta diversity study of 

the bacterial culturable fraction of R. farinacea performed in this work. Nonetheless, the 

composition of the bacterial communities was apparently not affected by their position along 

the different parts of the lichen thallus, either apical, middle or basal, neither by the 

disinfection treatment applied.  

The study of the alpha diversity, which indicates the intrinsic biodiversity in each one of the 

lichen populations, in bulk thalli samples, indicated that bacterial communities associated with 

R. farinacea populations from the Peninsula were more diverse than those from the Island, 

with a higher number of different species and more evenly represented. When this diversity 

was studied considering the four different populations of R. farinacea, it was found that the 

lichen population from El Toro was the one with the highest values in the diversity indices 

studied (Richness, Shannon and Simpson), followed by the populations from Lidón and La 

Guancha. The population from La Esperanza was the one with the lowest diversity. These 

results were different from those obtained in the bacterial culturable fraction isolated from R. 

farinacea, since thalli samples from both the Island and the Peninsula showed very similar 

diversity indices, only being slightly higher in the Island. When considering the four lichen 

populations analyzed from the different geographical locations in Spain, the one with the 

highest diversity indices was La Esperanza, while the one with the lowest indices values was El 

Toro. These results were opposite to the ones obtained using culturable techniques. An 

appreciation about these results should be made, since in the case of the study of the alpha 

diversity using culture independent techniques, Richness index showed values ranging 

between 4 and 5, and Shannon index between 2 and 4. The values obtained with the bacterial 

culturable fraction were ranged between 2 and 3, and 1.50 and 2.50, respectively. These 

differences mean that, as expected, the diversity results obtained using molecular approaches 

was higher than using culturable ones, as well as that these R. farinacea populations showed a 

high bacterial diversity. In this sense, the values of diversity for the bacterial culturable fraction 

were, in a rough way, around the half of those obtained by using culture-independent 

techniques, which suppose a good approximation of the diversity considering the difficulties in 

culturing bacteria.  

Despite the influence of the abovementioned factors on the bacterial composition of the 

populations of R. farinacea studied and the differences in the diversity indices, the lichen 

populations from the Island (La Guancha and La Esperanza) and the Peninsula (El Toro and 

Lidón) shared the main taxonomic groups, which were Proteobacteria, Acidobacteria and 

Planctomycetes, appearing in less abundance other taxa such as Bacteroidetes, Cyanobacteria, 

Firmicutes or Verrucomicrobia. When comparing with the results obtained with the bacterial 

culturable fraction among the four populations of R. farinacea, the main phyla were 
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Proteobacteria, Actinobacteria and Firmicutes. These results also confirm previous studies in 

other lichen species reporting that these organisms can harbour a wide variety of bacterial 

taxa (Bates et al., 2011; Cardinale et al., 2008; Grube et al., 2015; Suzuki et al., 2016). Besides, 

it has been reported that R. farinacea could have some ecophysiological plasticity thanks to 

some of the photobionts partners that could allow them to adapt to ecologically diverse 

environments. Furthermore, several studies have reported the combined influence of other 

symbionts, as bacteria, which may also contribute to lichen adaptive response to different 

environmental contexts by improving its survival under different biotic and abiotic stresses 

along the lichen adaptation (Aschenbrenner et al., 2014; Cernava et al., 2015a, 2017; del 

Campo et al., 2013; Eymann et al., 2017; Parrot et al., 2016; Schneider et al., 2011). These 

could be related to the differences observed in bacterial diversity among the populations of R. 

farinacea from geographical origins and the given conditions in those locations.  

Some of the minority bacterial phyla found associated with the R. farinacea populations under 

study, as Verrucomicrobia, were also reported in the lichen L. pulmonaria, that harboured 

bacterial members involved in: i) the degradation of various complex polysaccharides as 

cellulose and xylan (Grube et al., 2015; Herlemann et al., 2013); ii) the metabolism of aromatic 

compounds; iii) the production of vitamins; and iv) the defense against antibiotics and 

oxidative stress (Cernava et al., 2017).  

Interestingly, significant differences in all taxonomic levels were observed when comparing the 

bacterial communities from each one of the four populations of R. farinacea studied, being 

particularly remarkable the different abundance of Cyanobacteria and Firmicutes. Members of 

both taxa were more numerous in the lichen thalli collected in the island of Tenerife than in 

those from the Iberian Peninsula. Cyanobacterial photobionts, that in some cases are 

coexisting in tripartite lichens together with the green-algal photobionts, might share with 

algae the functions of fixing nitrogen and carbon (Grube et al., 2015; Hodkinson et al., 2012). 

The lower number of cyanobacterial members in lichen thalli samples from the Iberian 

Peninsula could be compensated by non-photosynthetic bacteria able to fix nitrogen, as 

reported in other lichen species (Bates et al., 2011; Liba et al., 2006). In fact, Grube et al. 

(2015) proposed that nitrogen fixing bacteria play a role in the delivery of nitrogen to the main 

symbiotic partners (mycobiont and photobiont), and that this may be particularly important in 

lichens without nitrogen-delivering cyanobacteria. One of the classes that harbors a wider 

diversity of bacteria able to fix nitrogen is Alphaproteobacteria, as previously found in other 

lichen species such as L. pulmonaria, P. sulcata, Rhizoplaca chrysoleuca, U. americana and U. 

phaea (Bates et al., 2011; Cardinale et al., 2012a; Erlacher et al., 2015; Eymann et al., 2017).  

Results through metaomic and sequencing techniques, which allowed the identification of the 

bacterial microbiota associated with lichens, suggested that Alphaproteobacteria dominated 

these microbial communities (Aschenbrenner et al., 2014; Eymann et al., 2017; Grube et al., 

2015; Hodkinson, 2011; Hodkinson et al., 2012; Schneider et al., 2011). This class was also 

found in this study as the most abundant one among Proteobacteria in R. farinacea. Other 

classes found in high proportion in the lichen populations studied were Acidobacteria (more 

abundant in the R. farinacea populations from the Island than in those from the Peninsula), 

Betaproteobacteria, Planctomycetia, Gammaproteobacteria, Bacilli, Sphingobacteria and 

Citophagia. By contrast, the main classes identified among the culturable bacteria isolated 
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from R. farinacea were Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacilli 

and Betaproteobacteria, being the main class in the Island, Gammaproteobacteria and in the 

Peninsula, Alphaproteobacteria. Other bacterial classes identified through culturable 

independent techniques in the populations of R. farinacea were Cytophagia and 

Sphingobacteria, found as well in other lichen species as Caloplaca marina, C. verruculifera and 

L. helicopis, through culturable methods (Sigurbjörnsdóttir et al., 2014). Cytophagales and 

Sphingobacteria are interesting due to their ability to degrade different macromolecules, as 

diverse polysaccharides as starch, cellulose, β-glucan and pectin (Reichenbach, 2006; 

Sigurbjörnsdóttir et al., 2014). 

The main orders found among the bacterial sequences obtained from R. farinacea thalli 

belonged to Acidobacteriales (more abundant in insular lichen populations), Rhodospirillales, 

Rhizobiales (more widely present in peninsular populations) and in less proportion 

Caulobacterales, Gemmatales, Myxococcales, Pseudomonadales, and Sphingomonadales. 

These orders were common in other lichen species as L. pulmonaria (Cernava et al., 2017) 

studied using metagenomic techniques. These authors reported that bacterial members 

associated to these orders such as Rhodospirillales and Sphingomonadales had genes related 

to important functional roles, as involved in potassium and nitrogen metabolism. Furthermore, 

genes related to iron metabolism seemed to be present in Sphingomonadales members. 

Rhodospirillales were found to be involved in the production of some antibiotics as phenazines 

which inhibits bacterial and fungal growth (Mavrodi et al., 2010), thus helping to the growth 

control of bacterial and fungal pathogens (Cernava et al., 2017). Genes of the metabolism of 

phosphate were assigned to members of Proteobacteria, as Myxococcales, and the synthesis 

of the hormone auxin was attributed mostly to proteobacterial members (Cernava et al., 

2017). In the same lichen L. pulmonaria, Rhizobiales were found as a group that harbors also 

interesting bacterial members well-known by their ability to fix nitrogen (Hodkinson and 

Lutzoni, 2009), as the ones belonging to Beijerinckiaceae, Bradyrhizobiaceae or Rhizobiaceae, 

or to utilize methanol, as Methylocystaceae, Methylobacteriaceae, or members of the active 

Actinobacteria as Nocardiaceae and Streptomycetaceae (Eymann et al., 2017). Some of these 

groups have been identified in this study as associated with the populations of R. farinacea 

studied as well, as the families Beijerinckiaceae, Methylobacteriaceae, Methylocystaceae, 

Nocardiaceae and Streptomycetaceae, either by the direct sequence of the bacterial isolates or 

by culture-independent techniques. 

Another aim of this study was to determine the composition of bacteria associated with R. 

farinacea in single thallus. The results obtained showed that the main bacterial groups were 

the same detected in bulk thalli samples, as mentioned above. An interesting appreciation that 

could be made is that some taxonomical groups were present exclusively in one single thallus 

of these R. farinacea populations, sometimes appearing in higher proportion than in the rest of 

the bacterial groups in this thallus. For example, the phyla Chlamydiae, present in one thallus 

from La Guancha, Gemmatimonadetes in one thallus from El Toro, or the family Clostridiaceae 

in three thalli from La Esperanza and one from El Toro, or Frankiaceae in one thallus from El 

Toro. All these taxonomical groups appeared as small minorities when samples were 

composed by bulk thalli, being these taxa masked by those present in a higher proportion. The 

presence of these bacterial taxa in some individual thallus might be related to some specific 
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functional roles in particular thallus due to their particular geographical location and the 

surrounding environmental conditions.  

The second main factor that influenced the composition of the bacterial communities 

associated with the lichen populations of R. farinacea was the external and internal location in 

the lichen thallus. The study of the alpha diversity of the bacteria associated to the ecto- and 

endolichenic fractions of this lichen species showed that the ectolichenic one presented higher 

values in the diversity indices studied (Rhichness, Shannon and Simpson) than the endolichenic 

one. These results were opposite to the ones obtained with the study of the alpha diversity in 

the culturable fraction, where the endolichenic fraction showed higher indices values. The 

diversity level of the culturable fraction was around the half of the one appeared using 

molecular techniques not based on culture methods. Regarding the taxonomical composition 

of the bacteria associated to the external and the internal fractions of R. farinacea thalli, the 

main phyla were again, in order of predominance, Proteobacteria, Acidobacteria and 

Planctomycetes, with the presence of Cyanobacteria and Firmicutes in a higher level in the 

ectolichenic fraction than in the endolichenic one. No significant differences were found, 

except at the order level with the Saprospirales (Bacteroidetes) and Sphingomonadales 

(Alphaproteobacteria). These results agree with previous studies with other lichen species, 

such as C. arbuscula, L. polytropa and U. cylindrica (Grube et al., 2009), where a similar 

abundance of bacteria in the outer and the inner fractions of the lichen thallus was reported. 

When compared with the culturable fraction the main orders found were Rhizobiales, 

Enterobacteriales, Micrococcales, Bacillales and Pseudomonadales, among others. 

Since it has been previously reported that bacterial communities could vary in some specific 

parts of the lichen thallus (Grube et al., 2009; Mushegian et al., 2011), we also tried to 

determine if this was also the case in R. farinacea. Taking into consideration the bacterial 

location along the lichen thallus, no relevant differences were observed in the alpha diversity 

among apical, middle and basal parts, with very similar values of Richness, Shannon and 

Simpson diversity indices. However, when the composition of the bacterial communities was 

analyzed, some differences were found among the apical, the middle or the basal parts of the 

thallus. These results agree with the fact that the bacterial communities within the lichen 

thallus are not static and instead are subjected to the effects of ecological processes operating 

on small scales, as it was reported in Xanthoparmelia lichens (Mushegian et al., 2011). This 

structure of the bacterial communities in lichens could be related to the role that these 

bacteria may have in the lichen symbiosis, being some of the taxa common and highly spread 

in different lichen species. In our study, a higher prevalence of Cyanobacteria and Firmicutes in 

the apical and middle part than in the basal one, and the Planctomycetes in the middle and 

basal parts than in the apical one was found, which suggests that these taxa could have a 

preferential site and/or functions associated to this location in the lichen thallus.  

Regarding the bacterial functional roles, our previous studies in this work have demonstrated 

that some R. farinacea culturable bacteria belonging to these taxa have enzymatic activities 

that could be related to nutrient recycling of senescent parts of the lichen thallus as well as 

with the supply of essential nutrients to the holobiont, which agree with studies with other 

lichen species (Davies et al., 2005; González et al., 2005; Grube and Berg, 2009). Moreover, it 

has been suggested that Alphaproteobacteria was the most common taxa in the growing parts 
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of lichens, but some differences could be found, with a higher diversity in older parts 

(Cardinale et al., 2008; Hodkinson et al., 2012; Liba et al., 2006). 

Besides, it should be mentioned that the diversity of bacteria associated with R. farinacea thalli 

was apparently not altered by the disinfection treatment applied, although it is known that in 

most cases, few seconds are enough to kill a wide diversity of bacterial species (Moorer, 2003). 

These results are not visible when the amplification of the bacterial DNA present in samples is 

made, as shown in other studies using omic techniques in which metagenome results also 

comprised a fraction of inactive or dead bacteria (Cernava et al., 2016). Nonetheless, the 

effects of disinfection treatments are tangible when they are applied in culturable bacteria 

studies, as shown by Biosca et al. (2016), that proved that these treatments reduced the 

diversity and number of bacteria recovered from lichens. This practice has been performed by 

many authors whose results were probably biased by those disinfection treatments (Cardinale 

et al., 2006; Grube et al., 2009; Selbmann et al., 2010; Sigurbjörnsdóttir et al., 2014).  

Finally, although the primers set used were designed for amplifying both bacterial and 

archaeal 16S rRNA genes (Caporaso et al., 2011), none archaeal sequences were detected in 

the analyzed samples, as reported in other studies using these same primers with other lichen 

species as C. arbuscula (Cardinale et al., 2008), P. sulcata, Rhizoplaca chrysoleuca, U. 

americana, and U. phaea (Bates et al., 2011). However, the presence of Archaea has been 

described in other lichens as L. pulmonaria, Ophioparma ventosa and Hydropunctaria maura 

(Bjelland et al., 2011; Eymann et al., 2017; Schneider et al., 2011), using other primers set or 

metaproteomic techniques. 

Overall, the results from this study provide new insights into the diversity of bacterial 

communities associated with R. farinacea populations from different Mediterranean-climate 

areas, showing that certain phyla, as Acidobacteria, Planctomycetes and Proteobacteria and 

classes as Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, and 

Gammaproteobacteria are the predominant groups in this lichen species, similarly to other 

lichen species (Cardinale et al., 2006; Grube et al., 2009; Selbmann et al., 2010). Furthermore, 

the bacterial community composition of R. farinacea is mainly determined by geography since 

some phyla were more abundant in the lichen populations from the Island than in those from 

the Peninsula. Other authors supported this fact, arguing that bacterial community trends are 

correlated with differences in large-scale geography, among other factors (Hodkinson et al., 

2012). Also by thalli location because some differences were also found in the bacterial 

communities between ectolichenic and endolichenic fractions and among apical, middle and 

basal part of the lichen thallus. These differences were observed both by culture dependent 

and culture independent methods. Finally, it is worth to mention that among all the identified 

taxa, many of them belonged to bacterial groups with culturable representative strains that 

are well known because of their enzymatic activities and/or their potential role in the nutrient 

supply and/or recycling of lichen senescent parts, which could contribute to R. farinacea 

multispecies symbiosis. Many of these bacteria were isolated, extensively characterized and 

identified in this work. 
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CONCLUSIONS 

Finally, the results obtained in this Doctoral Thesis provide new knowledge on the bacterial 

communities associated with R. farinacea. Below are summarized the main conclusions 

obtained in this study: 

1. The isolation of bacteria associated with the populations of R. farinacea through the 

bacteriological analyses and the lichen enriched culture media (ABL and ABLGM) used in 

this study has evidenced the high abundance of culturable heterotrophic bacteria 

(between 104 and106 CFU/g). The bacterial counts obtained were, generally, higher than 

those reported in other studies using other methods and convencional synthetic culture 

media.  

2. The abundance of culturable heterotrophic bacteria isolated from thalli of R. farinacea 

were similar both in the ectolichenic and the endolichenic fraction of the analyzed thalli. 

Nevertheless, culturable bacterial counts were different according to the different 

geographical origins, being higher in R. farinacea thalli from La Guancha and El Toro, than 

those from La Esperanza and Lidón. These results could be related to the different 

environmental conditions at each location.  

3. The characterization of the bacterial strains isolated from R. farinacea confirms the 

importance of their presence in this lichen, either for their possible functional roles in the 

recycling and/or supply of nutrients and/or growth promotion by phytohormones 

production or through the formation of biofilms, contributing to the functioning of this 

lichen symbiosis, and because of their biotechnological potential applications, due to:  

i) A high percentage of them produce pigments, being yellow and pink the most 

frequents ones, which could be related, partly, with the tolerance to different 

environmental conditions, as UV radiation or oxidative stress. 

Ii) Many of the bacterial strains are able to produce hydrolytic enzymes, as amylases, 

cellulases, pectinases, chitinases and xylanases, as well as lipases, proteases and 

DNAses, which could contribute to the recycling of nutrients in the senescent parts of 

R. farinacea thalli, supplying with sugars, fatty acids, amino acids and nucleotides to 

the growing areas, therefore helping to lichen maintenance. This hydrolytic versatility 

is interesting because of its potential applications in different biotechnological 

industries.  

iii) Most of the strains are able to fix nitrogen and produce siderophores, and many of 

them can solubilize inorganic phosphates as well. These activities could contribute to 

cover certain limiting and essential nutritional requirements for the growth of the 

lichen thalli. Strains with these abilities could be exploited as biofertilizers. 

iv) A high percentage of the bacterial strains produce the auxin indole acetic acid, and 

in some of them, it was detected the ACC deaminase enzyme as well. These hormones, 

which can modulate the growth in plants, could have an influence in the 

morphogenetic processes of lichens and their symbionts, being these strains producers 

of phytohormones of interest as potential phytostimulants.  

v) Almost all bacterial strains assayed can produce biofilms, and many of them have 

swimming motility and some of them swarming motility as well. Biofilm formation 

could be related to the colonizing ability of lichens in environments with specific and 
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extreme conditions, being able to increase nutrients uptake. These bacteria could be 

exploited biotechnologically too.   

4. Molecular identification of a selection of bacterial strains from R. farinacea according to 

their physiological and metabolic potentials allowed their assignment to different bacterial 

taxa, some of them barely studied and/or potentially new species.  

5. The study of the diversity and composition of the heterotrophic bacterial communities 

associated with R. farinacea through culture-dependent techniques represents a small 

fraction of the high variety of bacteria associated with this lichen. However, this study 

provides new information about these culturable bacteria in R. farinacea populations from 

different insular and peninsular locations with a Mediterranean climate, as well as about 

the influence of geographical location and location within the lichen thallus on these 

bacterial communities, which could be related to different functional roles in this lichen 

species. Furthermore, some of the bacterial strains isolated from this lichen could be new 

genera and/or species. 

6. Among bacterial isolates from R. farinacea, the predominant groups are certain phyla, as 

Acidobacteria, Proteobacteria and Planctomycetes and classes as Actinobacteria, 

Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria and Bacilli.  

7. The study of the diversity and composition of bacterial communities associated with R. 

farinacea through culture-independent techniques, has revealed that these communities 

are determined, mainly, by geography, but also by the location within the lichen thallus 

since some differences were found among the bacterial sequences from different 

geographical locations, and also between the ectolichenic and endolichenic fraction, and 

among the apical, middle and basal parts of the thallus. 

8. Among the identified taxa in the bacterial communities associated with R. farinacea, many 

of them belong to bacterial groups with well-known representatives because of their 

enzymatic activities and/or because of their potential role in the recycling and/or supply of 

nutrients in the lichen thalli, and that could contribute to the maintenance of the 

multispecies lichenic symbiosis. Many of these bacterial strains have been isolated, 

characterized and identified in this study, being some of them potentially new species, as a 

result that lichens are environments with bacterial communities still scarcely studied. 

9. Lichens suppose a new source of numerous, diverse and new microorganisms with 

different biotechnological potentials, many of them still to explore.  

The results obtained in this research work provide new knowledge about the bacterial 

communities associated with R. farinacea on their composition, diversity and potential 

functional roles in this lichen, as well as on their potential biotechnological interest. 

Furthermore, evidence is supplied on the different factors affecting the diversity of the 

bacteria associated with this lichen, bringing up the importance of factors as geography and 

the location of these bacteria in R. farinacea thalli, allowing a better understanding of the 

important roles of these bacteria in this multispecies symbiosis. 
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