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 
Abstract— Nanometric narrowband Long Period Gratings 

(LPG) are investigated for the implementation of improved fiber 
optic biosensors. The reduction of more than one order of 
magnitude in the linewidth of the LPG with respect standard 
LPG at 1500 nm, leads to the improvement of the resolution of 
the sensor. By selecting the proper fabrication parameters (high 
numerical aperture, relatively high order mode and large length), 
LPGs with a 3-dB bandwidth of 1.5 nm were fabricated. The 
sensitivity of the LPG as a refractometer was calculated, and 
experimentally characterized in detail. In particular, the LP0,17 
and LP0,18 resonances were investigated, in order to select the 
most suitable one for the bioexperiments. The surface of the LPG 
was functionalized and the detection of the hybridization of DNA 
is demonstrated. When the biosensor was immersed in a 2 µM 
solution of the complementary DNA strand, the resonances of the 
LPG shifted in wavelength. When measuring the response of the 
sensor in terms of variation of its transmittance as the resonance 
shifted in wavelength, the sensitivity was ~10%/µM for both 
resonances. The detection limit was estimated in 10 nM. 

 
Index Terms—Fiber optics, Fiber optics sensors, Fiber 

Gratings, Biosensors. 

I. INTRODUCTION 

HE development of photonic biosensors has been a rapid 
growth research field in the last years. In particular, the 

development of fiber-optic, label-free biosensors is of special 
interest: they can be designed to be specific and selective, they 
show compact size and are capable to be point-of-care devices 
[1-3]. Within the applications of fiber-optic biosensors, the 
detection of DNA hybridization is of much interest, due to 
their specific capability to detect particular DNA sequences 
that might be of interest for environmental, biological or 
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health applications, epidemic controls, diagnosis, drug 
research, etc. Several approaches have been reported up to 
date to measure the DNA-hybridization based on different 
photonic devices, as for example micro-fiber gratings [4], 
gold-coated microtapers [5], surface plasmon resonances 
based sensors [6], microwave photonic filters [7] or dual-peak 
Long Period Gratings (LPGs) [8]. Other sensors based on 
waveguides with strong evanescent fields show also high 
potential as, for example, reverse symmetry waveguides 
[9, 10]. 

LPGs are fiber devices whose optical properties rely on the 
resonant coupling between the fundamental mode and the 
proper cladding modes. The coupling is induced by a periodic 
modulation inscribed in the core refractive index, whose 
parameters set the optical response of the LPG. It will present 
a series of attenuation notches, corresponding to the coupling 
to different cladding modes. The bandwidth of the attenuation 
notches can be tailored within some limitations. Typical 
bandwidths are in the range from several to tens of 
nanometers. In a previous work, we demonstrate that LPGs 
with a reduced bandwidth down to the order of 1 nm can be 
fabricated [11]. In this way, the detection limit of a biosensor 
based on these narrowband LPGs is improved, since the 
difficulty of determining with accuracy the wavelength of 
resonance in a broad attenuation notch is overcome.  

LPGs show an intrinsic advantage as sensors, compared to 
other similar fiber photonic devices as FBGs: the cladding 
modes coupled by the LPG have a significant evanescent tail 
in the surrounding medium, thus the sensitivity to external 
changes is higher. Any modification in the external refractive 
index will modify the optical response of the LPG, in 
particular, the spectral position of the resonances. In general, 
the sensitivity will change for LPGs fabricated with different 
parameters, and it will also be different for each resonance of 
the same LPG, depending on the dispersion curve of the 
cladding modes involved in the coupling. Refractometers, 
solution concentration sensors and E. Coli biosensors have 
been demonstrated based on this sensing principle [12-15].  

In this work, we propose the use of a narrowband LPG to 
measure the DNA hybridization in an aqueous solution. LPGs 
are simple, robust photonic devices when compared with the 
other approaches we mentioned before, which are based on a 
few microns in diameter fibers [4-7]. The unusual narrow 
bandwidth of the LPGs we present here allows improving the 
detection limit of this biosensor when compared to dual-peak 
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accuracy with our measurement equipment (this is, 1% of the 
bandwidth of the resonance, roughly). Taking into account this 
criterion, the detection limit is estimated to be 40 nM for the 
LP0,18 resonance (63 nM for the LP0,17). This value is better 
than the one reported by Sun et al., 0.5 µM [4]. Here, the 
authors use a grating inscribed in microfibers of 3-10 µm in 
diameter, and claim a sensitivity of 310 nm/RIU. Their higher 
sensitivity is due to the larger evanescent fields in the sensing 
length, but such a low diameter of the microfibers introduces a 
drawback because of mechanical weakness and complexity in 
the setup when compared to other approaches that use 
conventional fibers. In order to compare our results with those 
reported by Chen et al. [8], we assume that their resolution is, 
as in our case, a 1% of the resonance bandwidth (3-dB = 35 
nm in their case). This leads to a detection limit value for their 
biosensor of 0.68 µM. Thus their proposal provides a better 
sensitivity at the expense of a higher detection limit. 

If the response of the biosensor is coded in variations of 
transmittance as previously explained, the 2 µM 
oligonucleotide solution leads to a variation of 5.3 dB or 24% 
(linear scale) of the transmittance for the LP0,17 resonance and 
3.2 dB or 22% (linear scale) for LP0,18, as it is shown in Fig. 5 
(note the different minimum transmission value of the 
resonances). Thus, the sensitivity of the biosensor in terms of 
variation of power is 12% and 11% per µM of DNA, 
respectively. We can compare our results with Leung et al., 
where they propose to use a tapered fiber optic (5-10 µm in 
diameter) coated with gold [5]. The sensitivity they claim is 
~ 11 %/µM of DNA, which is roughly the same as ours. 

Regarding the detection limit, we will assume again that 
our resolution is a thousandth part of the normalized 
transmittance at the point of maximum transmission slope. 
With this value in mind, the detection limit of our biosensor is 
10 nM. When compared with [5], their value is much better 
(~ 750 fM), because of the larger evanescent field in the 
external medium. Again, we have to point out that the low 
diameter of the sensing devices is a drawback when this setup 
is compared to those that use fibers of conventional diameters. 
Finally, Chen et al. [8] report a sensitivity of 2%/µM of 
oligonucleotide and, consequently, the estimated detection 
limit is 50 nM, this is, five times higher than ours. 

Table 1 summarizes the results about sensitivity and 
detection limit in terms of concentration of DNA-
complementary for our biosensor. 

 

In order to check the reproducibility of our results, we 
repeated the whole process with an additional narrowband 
LPG (3dB = 1.42 nm centered at 1519.4 nm for the LP0,18 
coupling). We measured a wavelength shift of 0.4 nm for a 
2 µM concentration of oligonucleotide-complementary. Both 

results are similar. It is also worth to note that there are 
techniques to dehybridate the oligonucleotides, by increasing 
the temperature above the melting point or by the method 
reported in [18], that would allow reusing this type of 
biosensor. 

IV. CONCLUSIONS 

LPGs with a narrow bandwidth of about 1 nm have 
demonstrated to be suitable for the implementation of 
DNA-hybridization biosensors. LPG’s resonances shift in 
wavelength as the DNA-complementary strand hybridizes to 
the DNA-probe attached to the surface of the fiber, since the 
evanescent wave of the cladding modes is in direct contact 
with the analyte. The development of narrow bandwidth LPGs 
is a novel approach to pursuit an improved detection limit 
while preserving good sensitivity. In this paper we studied 
both experimental and theoretically the sensing performance 
of the resonances correspondent to cladding modes LP0,17 and 
LP0,18, when the LPG works as a refractometer. The 
sensitivities of the resonances as a function of the 
complementary DNA concentration are 12%/M (LP0,17) and 
11%/M (LP0,18). Our results confirm the possibility of 
achieving good detection limits (10 nM for both resonances) 
comparable to previous results in the literature, while using a 
robust and simple fiber component. Further improvements can 
be foreseen by optimizing the choice of cladding mode and 
fiber parameters, and by improving the setup in order to keep 
the environment conditions stabilized. 
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