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RESUMEN 

El estudio de los procesos ecológicos implicados en el ensamblaje de 

las comunidades biológicas y su papel en las funciones de los ecosistemas es 

fundamental en la ecología de comunidades. El ensamblaje de comunidad, es 

decir, el conjunto de procesos mediante el cual las especies colonizan un lugar 

e interactúan entre sí y con su entorno para formar comunidades locales, 

determina su estructura y composición específica (HilleRisLambers et al., 2012). 

Los procesos ecológicos implicados en el ensamblaje de especies (por ejemplo, 

filtrado de hábitat o competencia) se pueden reconocer a través de la “huella” 

que dejan en las comunidades (Diamond, 1975; Webb et al., 2002; Mayfield y 

Levine, 2010). A su vez, dicha estructura de comunidad podría ser indicativa de 

los procesos del ecosistema que controlan los flujos de energía, nutrientes y 

materia orgánica (Balvanera et al., 2006; Cardinale, 2013; Graham et al., 2016). 

La comprensión de las fuerzas que controlan la diversidad biológica y, a su vez, 

el papel de la diversidad biológica en las funciones ecosistémicas es importante 

para pronosticar las consecuencias de las, cada vez más frecuentes, 

perturbaciones ecológicas. Esta tesis se centra en estas cuestiones 

fundamentales mediante el estudio de la estructura filogenética de las 

comunidades microbianas del suelo tras una perturbación por fuego. 

Objetivos 

El objetivo general de esta tesis doctoral consiste en analizar las bases 

ecológicas del ensamblaje de las comunidades microbianas y su relación con el 

funcionamiento ecosistémico, a través del análisis de la estructura filogenética 

de la comunidad y su resiliencia al fuego en ecosistemas mediterráneos. En 

concreto, los objetivos de esta tesis son los siguientes:  

1. Determinar los parámetros físicos y químicos que subyacen a la 

estructura filogenética de las comunidades bacterianas del suelo. 

2. Evaluar la estructura filogenética de las comunidades bacterianas del 

suelo como indicador del funcionamiento ecosistémico. 

3. Investigar el fuego como fuerza ecológica que moldea el ensamblaje de 

las comunidades bacterianas. 
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4. Analizar los cambios provocados por el fuego en las funciones 

ecosistémicas que están mediadas por microorganismos. 

5. Evaluar la resistencia o resiliencia al fuego de las comunidades 

ecológicas. 

Materiales y Métodos 

Diseño experimental y zonas de estudio 

En esta tesis doctoral se analizaron un total de 27 zonas de estudio en 

ecosistemas de tipo mediterráneo, que se localizan en la Comunidad Valenciana 

(España). Los lugares de estudio incluyeron zonas de clima mediterráneo 

semiárido a sub-húmedo, vegetación de matorral y bosque, suelos con distintos 

materiales de origen como calizas, yesos y depósitos coluviales y parámetros 

del suelo con un amplio rango de pH, salinidad y fertilidad. El desarrollo de 

esta tesis doctoral requirió el uso de tres diseños diferentes. 

En primer lugar, se realizó un muestreo observacional en el que se 

seleccionaron dos sitios con características contrastadas, tanto en las 

condiciones climáticas y de suelo como en la composición de plantas, con el 

objetivo de analizar los determinantes abióticos de la estructura filogenética de 

comunidades bacterianas y su relación con el funcionamiento ecosistémico 

(Capítulo I). En concreto, se muestrearon 10 parcelas de suelo de un matorral 

homogéneo (sitio 1) y 15 de parcelas de suelo situadas debajo de parches de 

vegetación, con sus correspondientes espacios adyacentes sin vegetación 

arbustiva (sitio 2). Para ello, en total se recolectaron un total de 40 muestras de 

suelo. 

A continuación, el matorral homogéneo se sometió a un incendio 

experimental. Se muestrearon 10 parcelas antes y a distintos tiempos tras el 

fuego, incluyendo 1 día, 1 semana, 1 mes, 4.5 meses, 9 meses y 12 meses, con 

el objetivo de analizar las dinámicas temporales post-fuego en el ensamblaje de 

las comunidades microbiana (Capítulo II), y su relación con el funcionamiento 

ecosistémico (Capítulo III). Para ello, se obtuvieron un total de 70 muestras de 

suelo superficial (7 tiempos de muestreo  10 parcelas). Las muestras 

recolectadas antes del incendio se usaron como control pre-fuego, con el 
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objetivo de reducir la heterogeneidad espacial que surge de muestrear áreas 

adyacentes. Además, incluimos en los modelos estadísticos la variación 

climática estacional (temperatura y precipitación), con el propósito de controlar 

dichos efectos en las dinámicas temporales de las comunidades microbianas.  

Finalmente, un diseño observacional basado en cronosecuencias de 

fuego se utilizó con el objetivo de analizar las dinámicas post-incendio y la 

resiliencia al fuego de múltiples dominios biológicos (Capítulo IV). Para ello, 

se seleccionaron un total de 25 zonas que se vieron afectadas por un único 

incendio no prescrito entre los años 1994 y 2014, las cuales se agruparon en 3 

cronosecuencias, de acuerdo a su localización geográfica y sus condiciones 

ambientales. Debido a la ausencia de muestras anteriores a los incendios, se 

utilizaron controles espaciales en lugar de temporales. En concreto, se utilizó 

un diseño pareado, en el que por cada sitio quemado se muestreó un sitio 

adyacente similar pero no afectado por el incendio. Se muestreó un total de 3 

transectos por cada parcela quemada y control, con el objetivo de tener en 

cuenta la variación dentro de cada tratamiento. En total, se obtuvieron 150 

muestras de suelo (25 sitios  2 tratamientos  3 transectos). 

Organismos objeto de estudio 

Las bacterias del suelo fueron el principal grupo biológico estudiado en 

los Capítulos I, II y III. Con el objetivo de ampliar el conocimiento sobre la 

resiliencia al fuego de las comunidades biológicas, se incorporaron otros 

organismos del suelo (hongos y arqueas) así como las comunidades de plantas 

en el capítulo IV. 

Análisis de las comunidades microbianas y su ambiente 

Las comunidades microbianas se estudiaron a distintos niveles, 

incluyendo su relación con el ambiente abiótico del suelo, sus efectos en las 

funciones ecosistémicas y el papel de las relaciones evolutivas entre linajes en 

múltiples dominios biológicos. 

Se analizaron diversos parámetros físicos y químicos del suelo, con el 

objetivo de averiguar su influencia en la estructura filogenética de las 
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comunidades microbianas. En concreto, se analizó el pH del suelo, la humedad 

gravimétrica, la conductividad eléctrica y el contenido en carbono orgánico 

total (TOC, acrónimo en inglés de Total Organic Carbon), carbono oxidable por 

pirofosfatos, nitrógeno total, amonio (NH4
+-N) y nitratos (NO3

--N), siguiendo 

procedimientos estandarizados (ver el capítulo IV para más detalles). 

Un conjunto de variables fisiológicas y bioquímicas del suelo fueron 

utilizadas como indicadores de funciones ecosistémicas mediadas por 

microorganismos. En concreto, se analizaron el carbono de la biomasa 

microbiana (MBC, Microbial Biomass Carbon), el coeficiente microbiano (la ratio 

MBC/TOC), la respiración basal y el cociente metabólico (qCO2), como 

indicadores de actividad microbiana general. La variable MBC se utilizó como 

una estima de la biomasa microbiana; el coeficiente MBC/TOC como una 

medida de la eficiencia de conversión de carbono orgánico en carbono 

microbiano; la respiración basal como indicativo de la actividad de los 

descomponedores del suelo, que mineralizan carbono orgánico en CO2; y el 

qCO2 como respiración microbiana por unidad de biomasa (Nannipieri et al., 

1990). Se utilizaron tres actividades enzimáticas, es decir, β-glucosidasa (GA), 

fosfatasa alcalina (PA) y ureasa (UA), como indicadores de funcionalidad 

ecosistémica relacionados con el ciclado de C, P y N, respectivamente. En 

concreto, la enzima β-glucosidasa cataliza la descomposición de los 

compuestos de celulosa, la fosfatasa alcalina la hidrólisis de enlaces éster-

fosfato liberando fósforo inorgánico y la ureasa la hidrólisis de la urea, que 

libera amoníaco y dióxido de carbono (Kandeler y Gerber, 1988; Tabatabai, 

1994). Información adicional sobre las variables fisiológicas y bioquímicas 

analizadas se puede encontrar en los Capítulos I y III. 

Diversidad microbiana 

La diversidad microbiana se analizó mediante la secuenciación de 

marcadores moleculares. A continuación, se llevó a cabo el análisis a nivel de 

comunidad, con la ayuda de las técnicas que se detallan a continuación. 

En primer lugar, se empleó metagenómica dirigida (targeted metagenomics)  

para la amplificación, por medio de PCR, de marcadores moleculares 
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específicos a partir de DNA extraído de muestras de suelo, con el fin de 

identificar y obtener las abundancias relativas de los distintos grupos 

microbianos del suelo. En el caso de bacterias, se utilizaron cebadores 

específicos que amplificaron una región del gen 16S rRNA, que codifica la 

subunidad pequeña del ribosoma de procariotas (Capítulos I-III). De manera 

similar, se utilizaron cebadores universales de procariotas para analizar de 

manera conjunta las comunidades de bacterias y arqueas (Capítulo IV). 

Finalmente, amplificamos la región del espaciador transcribible interno 

ribosómico nuclear (ITS) de organismos eucariotas para identificar y 

caracterizar las comunidades de hongos (Capítulo IV). 

Las filogenias de organismos procariotas se reconstruyeron a partir de 

secuencias del gen 16S rRNA, que constituye un marcador filogenético 

ampliamente utilizado. Con el propósito de tener en cuenta la incertidumbre 

en la filogenia que resulta del uso de secuencias cortas, se constriñó la topología 

de árbol a niveles filogenéticos profundos (es decir, a nivel de filo para la mayor 

parte de taxones y de clase para la mayoría de Proteobacterias), de acuerdo con 

filogenias publicadas, construidas a partir de secuencias completas del gen 16S 

rRNA. Además, se utilizaron entre 3 y 5 réplicas de árboles por estudio. Los 

árboles filogenéticos de procariotas en los capítulos I, II y IV representan la 

divergencia de unidades taxonómicas operativas (OTUs, Operational Taxonomic 

Units) expresadas como sustituciones nucleotídicas. Sin embargo, hallazgos 

recientes en la evolución temporal de los procariotas (Marín et al., 2017) nos 

han permitido avanzar hacia la datación de nuestras filogenias, transformando 

las tasas de sustitución nucleotídica en tiempo cronológico (millones de años) 

(Capítulo III). 

Las filogenias de hongos se reconstruyeron utilizando la información 

publicada sobre las relaciones evolutivas a nivel de género. Sobre este árbol, 

injertamos los OTUs en base a la información taxonómica obtenida mediante 

el análisis de la región ITS. Estimamos las longitudes de las ramas de los árboles 

a partir de varios nodos datados de acuerdo a la literatura. Se utilizaron un total 

de 5 árboles filogenéticos, seleccionados al azar a partir de múltiples árboles 

que se construyeron con el fin de tener en cuenta la incertidumbre en la 

topología y la cronología. 
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Métricas de diversidad taxonómica y filogenética 

Las comunidades microbianas se analizaron utilizando métricas 

taxonómicas y filogenéticas de diversidad α y β. En primer lugar, se utilizó el 

número OTUs por muestra como una medida de la diversidad taxonómica α 

(capítulos II y IV). Además, se utilizaron métricas de estructura de comunidad 

ponderadas por la filogenia, como el índice de parentesco neto (NRI, Net 

Relatedness Index), indicativo de la distancia filogenética media estandarizada por 

cada muestra. Esta métrica informa de las relaciones evolutivas de los linajes; 

es decir, si los linajes de una comunidad están más (agrupamiento filogenético) 

o menos (sobredispersión filogenética) relacionados evolutivamente de lo 

esperado por azar (Capítulo I). Por último, se usó -NRI como una medida de 

la diversidad filogenética α (capítulos II y IV). 

Las métricas de divergencia taxonómica y filogenética entre 

comunidades (β-diversidad) se usaron adicionalmente con el objetivo de 

analizar el papel de los microorganismos en el funcionamiento ecosistémico 

(Capítulo I) y la resiliencia al fuego de las especies (Capítulos II y IV). Además, 

se utilizaron los componentes reemplazamiento (turnover) y anidamiento 

(nestedness) de la diversidad β a través del tiempo tras el fuego para evaluar las 

tasas de reemplazo taxonómico de especies (Capítulo II). 

Las relaciones filogenéticas se incorporaron a los análisis de diversidad 

β, a través de i) la composición filogenética ponderada por la representatividad 

de los linajes (PCPS, capítulos I y III), y por medio de ii) distancias UNIFRAC, 

que permiten una mejor comprensión de la resiliencia ecológica ante una 

perturbación (Capítulo IV). 

El análisis de redes de coexistencia se usó para detectar los OTUs que 

coexistieron más (copresencia) o menos (exclusión mutua) de lo esperado por 

azar (Faust y Raes, 2012). Este análisis permitió la transformación de las 

correlaciones en las abundancias entre pares de taxones de la comunidad en 

enlaces de coexistencia o exclusión mutua. La incorporación de un marco 

filogenético a las redes de coexistencia permitió analizar los procesos que 
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estructuran las comunidades microbianas antes y después de un incendio 

(Capítulo II). 

Por último, se validó la capacidad de inferir procesos de ensamblaje a 

partir de patrones de coexistencia mediante simulaciones (Capítulo II, 

Apéndice A2). En concreto, se simularon filogenias, rasgos y abundancias de 

especies a partir de procesos conocidos de ensamblaje de comunidad, testando 

posteriormente la capacidad de la metodología para identificar correctamente 

el proceso de ensamblaje simulado. En el Apéndice A2 se puede encontrar una 

descripción detallada de los modelos de simulación (Capítulo II). 

Resultados y discusión 

En esta tesis doctoral se han estudiado los factores que determinan la 

estructura filogenética de las comunidades bacterianas del suelo y su resistencia 

al fuego, proporcionando información sobre los procesos implicados en el 

ensamblaje y su relación con el funcionamiento de los ecosistemas 

mediterráneos. En concreto, nuestros resultados muestran que conocer el papel 

que desempeñan ciertos linajes en la comunidad puede servir para comprender 

el ensamblaje de comunidades bacterianas y la productividad del ecosistema, lo 

que no resulta sencillo en los enfoques clásicos de la ecología de comunidades. 

Esto es posible, principalmente, gracias a la incorporación a los análisis de las 

relaciones evolutivas entre los linajes a nivel de comunidad.  

Las propiedades abióticas del suelo, particularmente aquéllas 

relacionadas con la fertilidad y los niveles de carbono orgánico, determinaron 

la diversidad filogenética y la estructura de comunidad de las bacterias del suelo 

en los ecosistemas estudiados. Este resultado coincide con evidencias previas 

tanto observacionales como experimentales a nivel mundial, que sugieren que 

el carbono orgánico es uno de los principales factores que determinan la 

estructura de las comunidades bacterianas del suelo (Fierer, 2017). En concreto, 

encontramos que el aumento de los niveles de carbono orgánico, a menudo 

limitante en los suelos, alteró la composición de las comunidades bacterianas 

reduciendo su diversidad filogenética (Pérez-Valera et al., 2015). Nuestros 

resultados son congruentes con observaciones globales que muestran que la 
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diversidad filogenética de las comunidades bacterianas del suelo tiende a ser 

menor de lo esperado por azar. Es decir, las bacterias del suelo tienden a 

coexistir con parientes cercanos, lo que se puede explicar por el predominio de 

filtros ambientales que operan a través de sus componentes bióticos y/o 

abióticos (Mayfield y Levine, 2010; Goberna et al., 2014a). Además, los datos 

obtenidos sugieren que el filtro biótico prevalece como consecuencia de la 

sobrerrepresentación de clados extremadamente competitivos, como 

Proteobacterias y Actinobacterias, los cuales muestran una elevada eficacia 

biológica (fitness) en condiciones de alta disponibilidad de carbono, excluyendo 

completamente a otros linajes (Goldfarb et al., 2011; HilleRisLambers et al., 

2012; Goberna et al., 2014a; Pérez-Valera et al., 2015). El hecho de que 

predominen las interacciones competitivas basadas en diferencias de fitness no 

excluye la posibilidad de que otros mecanismos actúen simultáneamente (por 

ejemplo, la competencia entre especies con nichos similares), incrementando la 

diversidad filogenética de la comunidad. Sin embargo, el efecto de las 

interacciones de competencia podría ser enmascarado si el filtro ambiental es 

el principal proceso de ensamblaje. En esta tesis, proponemos un nuevo marco 

para detectar los procesos de ensamblaje que operan simultáneamente 

mediante la combinación de herramientas de análisis filogenético y redes de 

coexistencia (Pérez-Valera et al., 2017). En primer lugar, validamos este marco 

mediante simulación de comunidades y posteriormente lo aplicamos a 

comunidades reales, en las que observamos que tanto los taxones bacterianos 

que coexisten como los que se excluyen mutuamente tienden a estar 

filogenéticamente más emparentados de lo esperado por azar. Estos resultados 

coinciden con las predicciones de uno de nuestros escenarios de simulación, 

concretamente aquél en el que tanto el filtrado ambiental como las 

interacciones competitivas basadas en similitudes de nicho actúan 

simultáneamente para ensamblar las comunidades bacterianas del suelo (Pérez-

Valera et al., 2017). 

El aumento detectado en la diversidad filogenética bacteriana en 

condiciones de baja concentración de carbono orgánico también se observó en 

zonas en los que el fuego disminuyó su disponibilidad (Pérez-Valera et al., 2015, 

Capítulo IV). Los cambios en la composición bacteriana tras un incendio 

podrían reflejarse en las métricas de diversidad filogenética si los rasgos que 
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permiten la supervivencia de las especies o la superioridad competitiva están 

conservados filogenéticamente (Pausas y Verdú, 2010). Éste podría ser el caso 

de los microorganismos que poseen rasgos que les confieren tolerancia al 

ambiente o altas capacidades competitivas (Goberna et al., 2014b; Martiny et al., 

2015; Goberna y Verdú, 2016). Tras los incendios estudiados, se observó un 

aumento generalizado en la diversidad filogenética de las comunidades de 

bacterias, lo que sugiere que los cambios en las comunidades bacterianas fueron 

filogenéticamente estructurados y, por lo tanto, reconocibles mediante el 

análisis de las relaciones evolutivas entre taxones que coexisten y que se 

excluyen mutuamente (Faust y Raes, 2012; Pérez-Valera et al., 2017). De hecho, 

aunque el fuego impuso filtros abióticos que favorecieron los linajes 

microbianos con rasgos de resistencia a la temperatura, también aumentó 

simultáneamente las interacciones competitivas por medio de la liberación de 

nutrientes y/o la reducción del fuerte filtro biótico que domina en comunidades 

bacterianas en todo el mundo (Goberna et al., 2014a; Pérez-Valera et al., 2017). 

El análisis por medio de redes de coexistencia mostró resultados similares, lo 

que sugiere que los cambios en la diversidad filogenética tras el fuego es 

producto de alteraciones en el balance entre los procesos de filtrado ambiental 

y exclusión competitiva por similitud de nicho (Pérez-Valera et al., 2017). Los 

escasos estudios que analizan el efecto del fuego sobre el ensamblaje de las 

comunidades microbianas revelan aumentos en la abundancia de los taxones 

resistentes a altas temperaturas (por ejemplo, organismos formadores de 

endosporas o con paredes celulares engrosadas) y de crecimiento rápido (por 

ejemplo, alto número de copias del operón rRNA), que se ven progresivamente 

desplazados competitivamente por otros organismos más eficientes en el 

consumo de carbono orgánico (Bárcenas-Moreno et al., 2011; Jurburg et al., 

2017). 

La incorporación de la identidad de los linajes a las métricas de 

estructura filogenética permitió conocer los factores abióticos que determinan 

la diversidad bacteriana, independientemente de la variabilidad ambiental de los 

ecosistemas objeto de estudio (Pérez-Valera et al., 2015; Capítulo III). A 

diferencia de los valores promedio de distancias filogenéticas en una 

comunidad (es decir, NRI), que puede generar valores similares con 

comunidades completamente diferentes, otras métricas como el índice PCPS, 
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fueron útiles en todos los sitios de estudio para identificar la representatividad 

de los linajes (Duarte et al., 2012). De hecho, nuestros resultados mostraron que 

el índice PCPS fue especialmente relevante para predecir las tasas de 

funcionalidad ecosistémica mediada por microorganismos, debido a su 

capacidad para capturar la “huella” que dejan los cambios ambientales en la 

composición de las comunidades microbianas y, a su vez, en su funcionalidad 

(Pérez-Valera et al., 2015). De hecho, el índice PCPS detectó el papel que ciertos 

linajes altamente productivos (como Proteobacteria y Actinobacteria) juegan en 

los procesos del ecosistema (Pérez-Valera et al., 2015). A pesar de que un 

aumento en la diversidad se relaciona con mayores tasas de productividad 

ecosistémica (Cardinale et al., 2012), nuestros resultados mostraron una 

tendencia opuesta, probablemente debido al predominio de linajes altamente 

competitivos (que reducen la diversidad filogenética) y productivos (que 

aumentan las tasas de procesos del ecosistema). Este resultado subraya que 

conocer la identidad de los linajes es importante para comprender la relación 

entre funcionamiento ecosistémico y biodiversidad (Pérez-Valera et al., 2015), 

especialmente tras una perturbación ecológica que altera las funciones 

principales del ecosistema. 

El fuego alteró las principales funciones ecosistémicas mediadas por los 

microorganismos del suelo, a través de cambios en la estructura filogenética de 

las comunidades bacterianas. De hecho, nuestros resultados mostraron que el 

fuego incrementó la abundancia de ciertos linajes microbianos que 

respondieron al pulso de nutrientes, aumentando inmediatamente las tasas de 

respiración microbiana, biomasa y ciclo de nutrientes. Contrariamente a los 

incendios forestales, que reducen la biomasa y la actividad de las comunidades 

microbianas (Hernández et al., 1997; Jiménez-Esquilín et al., 2008), fuegos 

prescritos o experimentales, que son fuegos de baja intensidad, pueden 

provocar leves cambios o incluso aumentar la productividad microbiana y 

ciclado de nutrientes (p. ej. Fontúrbel et al., 2012; Fultz et al., 2016). Sin 

embargo, a diferencia de la funcionalidad ecosistémica, que recobró a medio 

plazo las tasas de productividad previas al incendio, la estructura filogenética 

de la comunidad bacteriana no se recuperó, lo que sugiere que podría existir un 

cierto grado de redundancia funcional (Allison y Martiny, 2008). Son necesarios 

más estudios para validar esta interpretación, especialmente en un contexto de 
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perturbación ecológica en el que la resiliencia de las especies puede ser clave 

para garantizar la funcionalidad del ecosistema. Explicaciones alternativas 

incluyen la posibilidad de que los taxones que forman parte de la comunidad 

tras la perturbación sean funcionalmente diferentes a los taxones en la 

comunidad original, pero resulten en una tasa equivalente de productividad o 

actividad ecosistémica a nivel de comunidad (Allison y Martiny, 2008). Estudios 

futuros que analicen la funcionalidad de cada taxon microbiano son necesarios 

para mejorar las predicciones de las tasas de los procesos ecosistémicos.  

Por último, la estructura filogenética de las comunidades bacterianas en 

ecosistemas mediterráneos fue sensible pero resiliente al fuego en un período 

de dos a tres décadas. La recuperación de las comunidades bacterianas requirió 

el restablecimiento de las jerarquías competitivas que se establecen en las 

comunidades bacterianas; es decir, la recuperación del filtro biótico causado 

por linajes altamente competitivos (Goberna et al., 2014a; Pérez-Valera et al., 

2017). Nuestros resultados mostraron que dicho restablecimiento fue mediado 

principalmente por la comunidad de plantas, mediante el aporte de carbono 

orgánico al suelo en forma de hojarasca y exudados. Esto sugiere que dichos 

aportes orgánicos, que son los responsables de la diversidad y estructura 

filogenética de bacterias, constituyen un factor esencial que garantiza su 

recuperación tras un fuego. En conjunto, nuestras observaciones confirman la 

capacidad que tiene la información filogenética para predecir los cambios en la 

composición y funcionalidad microbianas, lo que es esencial ante las crecientes 

tasas de cambio global. 

Conclusiones 

1. Las propiedades abióticas del suelo, especialmente aquéllas asociadas 

con la fertilidad, determinan la diversidad filogenética y la estructura de 

comunidad de las bacterias del suelo. Dichas métricas de diversidad, a 

su vez, son capaces de predecir las funciones ecosistemas mediadas por 

la microbiota relacionadas con las tasas de productividad, 

descomposición y el ciclado de nutrientes, particularmente cuando se 

tiene en cuenta la identidad del linaje. El signo de la relación entre la 

diversidad filogenética bacteriana y las funciones del ecosistema 
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depende de la identidad taxonómica de los principales linajes que 

coexisten. 

2. El filtrado ambiental y la exclusión competitiva por similitud de nicho 

actúan simultáneamente para ensamblar las comunidades bacterianas 

del suelo. El fuego, a través de cambios en la riqueza y composición de 

especies, altera el equilibrio entre estas dos fuerzas de ensamblaje, lo 

que queda reflejado en los cambios en la estructura filogenética de la 

comunidad. 

3. Las alteraciones provocadas por el fuego en las funciones del 

ecosistema mediadas por microorganismos son el resultado de cambios 

en la estructura filogenética de las comunidades bacterianas. El análisis 

de la contribución de los linajes microbianos a la estructura filogenética 

de la comunidad permite predecir cómo las funciones de los 

ecosistemas responden a las perturbaciones ecológicas. 

4. La estructura filogenética de las comunidades biológicas de plantas y 

microorganismos del suelo (hongos, bacterias y arqueas) en ecosistemas 

mediterráneos es resistente o resiliente al fuego en un período de dos a 

tres décadas. La diversidad filogenética de plantas y microorganismos 

del suelo experimenta tendencias temporales opuestas durante el re-

ensamblaje de la comunidad. La recuperación microbiana posterior al 

incendio, que implica el restablecimiento de grupos microbianos 

altamente competitivos, está mediada por las comunidades de plantas a 

través de cambios en las propiedades del suelo.  
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1. GENERAL INTRODUCTION AND AIMS 

1.1. INTRODUCTION 

Which factors determine the assembly of ecological communities and 

how such ecological communities mediate ecosystem functions are central 

questions in Ecology. Community assembly, i.e. the set of processes by which 

species colonize a specific site and interact with each other and their 

environment to form local communities, determines their species composition 

and structure (HilleRisLambers et al., 2012). The different ecological processes 

modulating species assembly (e.g., habitat filtering, competition) leave 

recognizable patterns in the structure of communities (Diamond, 1975; Webb 

et al., 2002; Mayfield and Levine, 2010). In turn, the structure of ecological 

communities seems decisive in determining ecosystem processes that control 

the fluxes of energy, nutrients and organic matter (Balvanera et al., 2006; 

Cardinale, 2013; Graham et al., 2016). Understanding the forces that control 

biological diversity and ecosystem functions is, in addition, crucial to predict 

the consequences of ecological disturbance, which is especially relevant in view 

of the increasing levels of environmental change. This thesis focuses on these 

fundamental questions by studying soil microbial community structure after 

fire disturbance.  

1.1.1. Assembly of ecological communities 

Ecological forces determining which species, from the global species 

pool, eventually coexist in local communities is a classical issue that has taken 

renewed relevance over the last years (Adler et al., 2007). A long-lasting debate 

exists on the relative importance of neutral vs. niche-based processes as 

community assembly mechanisms. Neutralists defend that stochastic processes 

of birth, death, colonization, and extinction (and speciation) drive the assembly 

of communities (Hubbell, 2001). According to Hubbell’s neutral theory, species 

interactions do not play a major role in determining their abundance, and 

assumes that biological communities are random assemblages of ecologically 

equivalent species. On the contrary, niche-based theory proposes that 

differences in the species ecological niche are the primary determinants of their 
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coexistence and ultimately, of the community assemblage. Under these niche 

processes, the “competitive exclusion principle” postulates that no two species 

sharing the same limiting resource can stably coexist (Gause, 1934). If they did, 

one of them would locally conduct the other species to extinction. Before 

competition can take place, coexisting lineages have to overcome the filter 

imposed by the environmental conditions (e.g. climate, pH, light, etc.), since 

not all organisms can establish and persist under any environmental condition 

(HilleRisLambers et al., 2012). Under this view, a community would be 

composed of species whose niches were similar enough to survive but far 

enough not to compete with each other.  

Recent advances posed by the modern coexistence theory refine this 

view and establish that long-term coexistence depends on the balance between 

two sorts of forces: niche differences and fitness differences (Chesson, 2000). 

In particular, Chesson’s theory states that coexistence is maximized when niche 

differences are high and fitness differences low (or absent). Niche differences 

point to differences in species traits that cause species to limit more themselves 

than other species (intraspecific effects) (HilleRisLambers et al., 2012). Species 

coexistence can be explained by the absence of interspecific competition, as the 

ecological requirements (and hence their traits or limiting factors) among co-

occurring species do not overlap. Conversely, fitness differences arise when a 

species is a superior competitor and limits the occurrence of other species with 

similar traits (HilleRisLambers et al., 2012). Therefore, niche differences drive 

species coexistence whereas fitness differences drive competitive exclusion 

(Chesson, 2000).  

The ecological interactions occurring between coexisting lineages are a 

consequence of their functional traits. How different are these functional traits 

is usually a product of how phylogenetically distant are the coexisting lineages 

(Blomberg et al., 2003). This observation emanates from Darwin's ideas (1859), 

who first realized that taxonomically-related species tend to be more 

ecologically similar than non-related species. The consequence of such 

similitude is that closely-related species tend to compete more intensely 

between them than they do with distantly-related species (Violle et al., 2011; 

Tan et al., 2012). Introducing this evolutionary perspective has triggered a new 
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body of literature to explain how ecological communities are assembled (Webb 

et al., 2002; Cavender-Bares et al., 2009). Webb et al. (2002) proposed a 

framework in community ecology in which phylogenetic relationships are used 

to discern between two main assembly processes, that is, habitat filtering and 

competitive exclusion. They proposed several statistical metrics that “quantify 

the distribution of taxa in a sample relative to a pool community” from a 

phylogenetically-informed view, in order to test whether co-occurring lineages 

are more (or less) evolutionarily-related that expected by chance (Webb et al., 

2002). According to this view, if co-occurring species are more closely-related 

than expected by chance (i.e. phylogenetic clustering), habitat filtering is 

considered the main assembly mechanism. Close relatives survive the filter 

because they share traits that allow them to tolerate the abiotic conditions 

(Webb et al., 2002; Pausas and Verdú, 2010). Conversely, if co-occurring species 

are less closely-related than expected by chance (i.e. phylogenetic 

overdispersion), competition is considered the driving mechanism as it 

theoretically prevents the coexistence of close relatives with similar ecological 

requirements (Webb et al., 2002; Pausas and Verdú, 2010). It is to be noticed 

that these assumptions only hold when traits driving community assembly are 

phylogenetically conserved, i.e. when close relatives are more similar in their 

trait values (Webb et al., 2002; Pausas and Verdú, 2010). The possibility that 

different assembly processes produce similar phylogenetic patterns has recently 

motivated alternative explanations to those suggested by Webb et al. (2002). 

Importantly, it has been suggested that competitive interactions can also cluster 

the phylogenetic structure of ecological communities (Mayfield and Levine, 

2010; HilleRisLambers et al., 2012; Goberna et al., 2014; further details in 

Chapters I and II). This can be better understood when looked through the 

modern coexistence theory, as competitive exclusion might eliminate distantly 

related organisms when it is based on fitness (rather than niche) differences 

(See Figure 1 and text in Goberna et al. (2014) and Figure 3 in Mayfield and 

Levine (2010) for conceptual examples). Patterns of evolutionary relationship 

not only shape the assembly of ecological communities but also their functional 

capabilities, as closely related species tend to be more functionally similar than 

their distant counterparts (Cadotte et al., 2008).  
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1.1.2. Biodiversity and ecosystem functioning 

Understanding the relationship between biodiversity and ecosystem 

functioning is essential to predict changes in our ecosystems, particularly under 

the current context of diversity loss (Loreau and Hector, 2001; Cardinale et al., 

2012). Ecosystem functioning, understood as resource capture, biomass 

production, decomposition or nutrient cycling, is typically positively related to 

biological diversity, which is accounted for by variation in genes, species or 

functional traits (Cardinale et al., 2012). Two mechanisms have been proposed 

to interpret the positive relationship between biodiversity and ecosystem 

functions: i) “selection effects”, by which there is a higher probability of 

sampling productive species from a diverse pool, and ii) “complementarity 

effects”, by which diverse assemblages of species produce more than the sum 

of the individual species based on a more efficient usage of the global resource 

(Loreau and Hector, 2001). Studies finding either negative or no effect of 

diversity on ecosystem functioning emphasize that processes controlling 

ecosystem functioning are not straightforward (Hooper et al., 2005). The 

balance between fitness and niche differences not only influences species 

coexistence, as explained in the previous section, but also control the 

productivity and efficiency of ecological communities (Cardinale, 2013). Large 

niche differences allow an efficient capture of resources and biomass 

production, but their magnitude depends on the strength of fitness differences.  

Phylogenetic measures, rather than taxonomic metrics such as species 

richness, have shown better abilities in decoding the relationship between 

biodiversity and ecosystem functioning (Maherali and Klironomos, 2007; 

Cadotte et al., 2008). High ecosystem productivities can arise from elevated 

phylogenetic diversities, as species functional complementarity increases with 

the coexistence of distantly related organisms (Hooper et al., 2005; Cadotte et 

al., 2008). In contrast, it has been shown that low phylogenetic diversities can 

also correlate with high ecosystem productivity when competitive clades with 

high fitness become dominant in the community (Goberna et al., 2016; 

Chapters I and III). This reduces the phylogenetic diversity while increasing 

productivity, a mechanism that seems to be particularly relevant in soil 

microbial communities (Chapters I and III).  
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Most studies tackling the biodiversity-ecosystem functioning 

relationship have focused on plant communities, while soil microbial 

communities remain rather unexplored (Van der Heijden et al., 2008). However, 

microbial communities play an essential role as primary catalysts of nutrient 

cycles, transforming complex chemical forms of C, N, P or Fe into more labile 

compounds (Madigan et al., 2015). This ability, which arises from their 

extraordinary metabolic diversity (Prosser et al., 2007), is particularly relevant in 

terrestrial ecosystems. In addition, microbes intimately interact with plants, 

mediating their functional traits and providing them with novel nutritional and 

biosynthetic capabilities (Friesen et al., 2011). This has also consequences in 

ecosystem processes, as for example microbially mediated N-fixation increases 

plant N content, altering the energy or nutrient fluxes and decomposition 

(Friesen et al., 2011). In turn, during decomposition, heterotrophic 

microorganisms use organic compounds from plant, animal or microbes as C 

and energy source, incorporating some C in their biomass and releasing the rest 

in form of CO2 or metabolites (Gougoulias et al., 2014). Microorganisms 

decompose organic compounds by releasing extracellular enzymes, such as β-

glucosidases that catalyze the breakdown of carbohydrates into simpler β-

glucosides, phosphatases the hydrolysis of ester–phosphate bonds releasing 

inorganic P or ureases the conversion of urea into carbon dioxide and ammonia 

(Tabatabai, 1994). The rates at which microbes transform organic compounds 

are useful as indicators of microbially mediated ecosystem functioning 

(Sinsabaugh, 1994). Evidence suggests that nutrient cycles and ecosystem 

functioning are influenced by microbial community structure but also that, in 

turn, soil nutrients determine microbial structure (Graham et al., 2016; Chapters 

I, III and IV). Understanding the mechanisms controlling the microbial 

diversity and its consequences in biological productivity and global cycles is key 

to predict how environmental changes affect ecosystems.  

1.1.3. Fire as an ecological disturbance 

Fire is a frequent and pervasive disturbance that affects forest 

ecosystems worldwide through changes in both biological communities, as well 

as physical, chemical and mineralogical soil properties (Certini, 2005; Mataix-

Solera et al., 2009; Keeley et al., 2012). Fire increases the emission of greenhouse 
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gases and soil erosion, and modifies the abiotic and biotic components of 

ecosystems  (Certini, 2005). Fire constitutes a main ecological force in shaping 

the structure of plant communities (Ojeda et al., 2010). This is particularly 

relevant in Mediterranean ecosystems, in which plant communities have 

developed traits that ensure their persistence under recurrent fires (Keeley, 

1986). We know that fire alters plant community assembly and decreases plant 

biomass (Verdú and Pausas, 2007; Keeley et al., 2012), but evidence on 

microbial communities is scarce (Chapters II and IV).  

Microbial communities submitted to an ecological disturbance like fire 

can experience no change (resistance), return to their pre-disturbance 

composition (resilience) or be sensitive and remain altered in case they are 

neither resistant nor resilient to disturbance (Allison and Martiny, 2008). 

Evidence suggests that microbial communities are sensitive to ecological 

disturbance, and not immediately resilient (Allison and Martiny, 2008), which 

seems to be the case after fire (Ferrenberg et al., 2013; Xiang et al., 2014). 

However, we have a very poor knowledge on basic questions like microbial 

resistance or resilience to fire and post-fire dynamics in community assembly 

(Chapters II and IV) and ecosystem functioning (Chapter III). The essential 

role of microbes in forest ecosystems emphasizes the need of studies focusing 

on microbial communities, which is urgent given the increasing rates of forest 

fires in Mediterranean ecosystems caused by temperature increase and changes 

in land use (Pausas, 2004; Pausas and Fernández-Muñoz, 2012). 
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1.2. AIM AND OUTLINE OF THESIS 

The general aim of this thesis was to examine the ecological basis of 

soil microbial community assembly and its relationship with ecosystem 

functioning, by focusing on the phylogenetic structure of microbial 

communities and its resilience to fire in Mediterranean ecosystems. Specifically, 

we: 

1. Investigate the physical and chemical parameters determining the 

phylogenetic structure of soil bacterial communities (Chapter I) 

2. Evaluate the phylogenetic structure of soil bacterial communities as 

a predictor of ecosystem functioning (Chapter I) 

3. Investigate fire as an ecological force shaping soil bacterial 

community assembly (Chapter II) 

4. Analyse fire-induced changes in microbially mediated ecosystem 

functioning (Chapter III) 

5. Evaluate the resistance or resilience to fire of ecological 

communities (Chapter IV). 
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2. MATERIALS AND METHODS 

2.1. EXPERIMENTAL DESIGN AND STUDY SITES 

This doctoral thesis covers a total of 27 study sites in Mediterranean 

ecosystems in the Region of Valencia (East Spain). Climate ranges from semi-

arid to sub-humid Mediterranean. Plant communities include scrublands, 

shrublands and woodlands. Soils have been formed on a range of parent 

materials including limestones, gypsum and colluvial deposits. Soil conditions 

are also broad in terms of pH, salinity and soil fertility. We used three different 

experimental designs to address the main aims of this doctoral thesis (Figure 

1). 

 

Figure 1: Geographical location of the study sites.  
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First, we used an observational sampling design in which we selected 

two contrasting sites in terms of climate, soil properties and plant composition, 

in order to explore the abiotic determinants of bacterial phylogenetic 

community structure and its relationship with the ecosystem functioning 

(Chapter I). Briefly, we selected a homogeneous shrubland, in which we 

sampled ten soil plots (Site 1), and a patchy shrub steppe, where sampling was 

performed underneath 15 vegetation patches and their adjacent open spaces 

(Site 2). Thus, we collected a total of 40 surface soil samples. 

We then introduced fire disturbance by exposing a homogeneous 

shrubland (Site 1 in Chapter I) to an experimental burning (Figure 2). Sampling 

was performed in ten replicated plots before fire, and from 1 day to 1 year after 

fire, also including 1week, 1 month, 4.5 months and 9 months, with the aim of 

exploring the temporal dynamics in the post-fire microbial community 

assembly (Chapter II) and its relationship with ecosystem functioning (Chapter 

III). In this case, we collected a total of 70 surface soil samples (7 sampling 

times  10 plots). Samples collected before the fire were used as the unburned 

control, in order to reduce the spatial heterogeneity of sampling adjacent 

unburned areas. To control for seasonal effects in the temporal dynamics of 

the microbial communities, we took into account climatic conditions (i.e., air 

temperature and precipitation) in our statistical models. 

Finally, we explored post-fire dynamics and resilience across biological 

domains through replicated observational fire chronosequences (Chapter IV). 

We selected 25 sites, which had suffered a unique non-prescribed fire between 

1994 and 2014, distributed in three chronosequences defined based on the 

geographic location and environmental conditions. Since pre-fire samples were 

not available for these wildfires, we used spatial (rather than a temporal) 

controls. We specifically used a paired design, by sampling adjacent sites that 

were similar to each burned site but that had not been exposed to fire (Figure 

3). Within-treatment variability was accounted for by sampling three transects 

across each burned and control plot. Thus, wildfire chronosequences were 

characterized with a total of 150 surface soil samples (25 sites  2 plots  3 

transects). 
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Figure 2: Experimental fire in the homogeneous shrubland study site. 

2.2. ORGANISMS UNDER STUDY 

Soil bacteria were the main biological group studied in Chapters I, II 

and III. To broaden our perspective on the resilience of biological communities 

to fire, we have incorporated other belowground (i.e. fungi and archaea) and 

aboveground (i.e. plants) organisms in Chapter IV.  

2.3. STUDY OF SOIL MICROBIAL COMMUNITIES AND 
THEIR ENVIRONMENT 

Microbial communities were studied at different levels, including their 

abiotic environment, their consequences on ecosystem functions and the role 

of evolutionary relationships among lineages within and across domains.  
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Figure 3: Site recently exposed to a wildfire and its adjacent unburned site.  

2.3.1. Physical and chemical soil analyses 

Several soil physical and chemical parameters were analysed in order to 

examine their role in the microbial phylogenetic community structure. 

Specifically, we quantified soil pH, gravimetric humidity (GH), total organic C 

(TOC), pyrophosphate oxidizable C (PPi-OC), total nitrogen (TN), electrical 



MATERIALS AND METHODS                   29 

 

 

 

conductivity (EC), NH4
+-N and NO3

--N following standard procedures (see 

Chapters I and IV for further details). 

2.3.2. Physiological and biochemical analyses 

We measured several soil physiological and biochemical variables as 

indicators of microbially-mediated ecosystem functions. Particularly, we 

analysed general indicators of microbial activity such as microbial biomass 

carbon (MBC), the microbial coefficient (MBC/TOC), basal respiration and 

the metabolic quotient (qCO2). MBC was used as proxy of microbial biomass, 

MBC/TOC as a measure of the efficiency in converting organic C into 

microbial C, basal respiration as indicative of soil decomposer activity that 

mineralize organic C into CO2, and qCO2 as microbial respiration per unit of 

biomass indicative of microbial C that is transformed into CO2 (Nannipieri et 

al., 1990). Three enzymatic activities, i.e. β-glucosidase (GA), alkaline 

phosphatase (PA) and urease activities (UA) were used as indicators of 

ecosystem functions related to C, P and N cycling. In particular, β-glucosidase 

catalyses the breakdown of cellulose compounds, alkaline phosphatase the 

hydrolysis of ester–phosphate bonds and urease the hydrolysis of urea, 

respectively releasing simpler compounds as glucose, inorganic phosphorous 

or ammonia (Kandeler and Gerber, 1988; Tabatabai, 1994). Further details 

about these procedures can be found in Chapters I and III. 

2.3.3. Microbial diversity  

Microbial diversity has been analysed by sequencing molecular markers 

and further analyses at the community level with the help of the following 

techniques. 

2.3.3.1. Targeted metagenomics 

We used targeted metagenomics to PCR amplify specific molecular 

markers in soil DNA extracts, in order to identify and obtain the relative 

abundance of microbial groups in soil microbial communities. For bacteria, we 

used specific primers that amplified a region of the 16S rRNA gene, encoding 

the small subunit of the prokaryotic ribosome (Chapters I-III). When the whole 
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prokaryotic communities, i.e. bacteria and archaea, were the target we used 

universal primers for the 16S rRNA gene (Chapter IV). Finally, to identify and 

characterize fungal communities, we amplified the eukaryotic nuclear 

ribosomal internal transcribed spacer (ITS) region (Chapter IV).  

2.3.3.2. Phylogenetic reconstruction 

Prokaryotic phylogenies were reconstructed from partial 16S rRNA 

gene sequences, which is a widely used phylogenetic marker. To avoid the 

phylogenetic uncertainty that results from the usage of short sequences, we 

constrained the tree topology at deep levels (i.e. generally at the phylum level, 

and at the class level for most Proteobacteria) according to well-resolved 

phylogenies based on full 16S rRNA gene sequences. In addition, we worked 

with 3-5 replicated trees per study. Phylogenetic trees of prokaryotes in 

Chapters I, II and IV represent OTU divergence in terms of nucleotide 

substitution. However, given the recent findings in the evolutionary timescale 

of prokaryotes (Marin et al., 2017), we have moved towards dating our 

phylogenies, thus transforming nucleotide substitution into chronological time 

(million years) (Chapter III). 

Fungal phylogenies were based on published phylogenies at the genus 

level. We grafted each OTU into its corresponding genus according to their 

taxonomic information obtained from the eukaryotic ITS region (Chapter IV), 

which is the universal DNA barcode marker for fungi (Schoch et al., 2012). 

Tree branch lengths were estimated from several dated nodes obtained from 

the literature and subsequently used to calibrate the tree. We worked with 5 

phylogenetic trees, randomly selected from multiple trees that were constructed 

under a birth-death model in order to account for the topological and 

chronological uncertainty and resolve polytomies. 

2.3.3.3. Taxonomic and phylogenetic diversity metrics 

Microbial diversity was estimated through α and β taxonomic and 

phylogenetic metrics. First, we analysed the standardized number of OTUs per 

sample as a measure of taxonomic α diversity (Chapters II and IV). We 

incorporated phylogenetically-informed measures such as the Net Relatedness 
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Index (NRI), which corresponds to the standardized Mean Phylogenetic 

Distance and is indicative of coexisting lineages being more (i.e. phylogenetic 

clustering) or less (i.e. phylogenetic overdispersion) evolutionarily related than 

expected by chance (Chapter I). We used –NRI, as a measure of phylogenetic 

α diversity (Chapters II and IV).  

Measures of taxonomic and phylogenetic divergence between 

communities (β-diversity) have been also used, in order to explore the particular 

role of microbes controlling ecosystem functioning (Chapter I), and the species 

resilience after fire disturbance (Chapters II and IV). In particular, we evaluated 

the taxonomic species replacement after fire through the nestedness and 

turnover components of β-diversity through time (Chapter II). Phylogenetic 

relationships were incorporated into β-diversity analyses through i) a fuzzy-

weighted phylogenetic composition that account for the representativeness of 

lineages across sites (Chapters I and III), and ii) UNIFRAC distances that allow 

a better understanding of ecological resilience to disturbance (Chapter IV).  

2.3.3.4. Microbial networks 

Bacterial OTUs co-occurring more (co-presence) or less (mutual 

exclusion) frequently than expected by chance were detected through network 

analysis (Faust and Raes, 2012). By combining multiple measures of correlation 

and/or dissimilarity, these analyses translate taxon abundance data into links 

between co-occurring taxa. We phylogenetically informed our networks to 

detect the processes shaping microbial communities before and after the fire 

(Chapter II).  

We validated the ability to infer assembly processes from phylogenetic 

co-occurrence patterns through simulations (Chapter II, Appendix A2). Briefly, 

we simulated phylogenies, species traits and abundances from known processes 

of community assembly, testing later whether our methodology had identified 

correctly the simulated assembly process. A thorough description of the 

simulation model can be found in Appendix A2 (Chapter II).  



32                                 MATERIALS AND METHODS 

2.4. REFERENCES 

Faust K, Raes J. (2012). Microbial interactions: from networks to models. Nat Rev 
Microbiol 10: 538–550. 

Kandeler E, Gerber H. (1988). Short-term assay of soil urease activity using 
colorimetric determination of ammonium. Biol Fertil Soils 6: 68–72. 

Marin J, Battistuzzi FU, Brown AC, Hedges SB. (2017). The timetree of prokaryotes: 
new insights into their evolution and speciation. Mol Biol Evol 34: 437–446. 

Nannipieri P, Grego S, Ceccanti B. (1990). Ecological significance of the biological 
activity in soil. In: Bollag J, Stotzky G (eds). Marcel Dekker: New York, pp 
293–355. 

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. (2012). 
Nuclear ribosomal internal transcribed spacer (ITS) region as a universal 
DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109: 6241–6246. 

Tabatabai MA. (1994). Soil Enzymes. In: Weaver RW (ed). Microbiological and biochemical 
properties. Soil Science Society of America: Madison, pp 775–833. 

  



 

 
33 

 

CHAPTER I: Phylogenetic structure of soil 

bacterial communities predicts ecosystem 

functioning 

 

ABSTRACT 

Quantifying diversity with phylogeny-informed metrics helps understand the 

effects of diversity on ecosystem functioning (EF). The sign of these effects 

remains controversial because phylogenetic diversity and taxonomic identity 

may interactively influence EF. Positive relationships, traditionally attributed to 

complementarity effects, seem unimportant in natural soil bacterial 

communities. Negative relationships could be attributed to fitness differences 

leading to the overrepresentation of few productive clades, a mechanism 

recently invoked to assemble soil bacteria communities. We tested in two 

ecosystems contrasting in terms of environmental heterogeneity whether two 

metrics of phylogenetic community structure, a simpler measure of 

phylogenetic diversity (NRI) and a more complex metrics incorporating 

taxonomic identity (PCPS), correctly predict microbially-mediated EF. We 

show that the relationship between phylogenetic diversity and EF depends on 

the taxonomic identity of the main coexisting lineages. Phylogenetic diversity 

was negatively related to EF in soils where a marked fertility gradient exists and 

a single and productive clade (Proteobacteria) outcompetes other clades in the 

most fertile plots. However, phylogenetic diversity was unrelated to EF in soils 

where the fertility gradient is less marked and Proteobacteria coexist with other 

abundant lineages. Including the taxonomic identity of bacterial lineages in 

metrics of phylogenetic community structure allows predicting EF in both 

ecosystems.  
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3.1. INTRODUCTION 

The effect of biodiversity on ecosystem functioning has been widely 

studied, numerous evidences indicating a positive effect but some also 

reporting neutral or negative relationships (Zak et al., 2003; Hooper et al., 2005; 

Balvanera et al., 2006; Cardinale et al., 2012). Soil bacteria are primary actors in 

this relationship because of their exceptional diversity and key role on 

ecosystem functioning, through decomposing organic matter and controlling 

the planetary flows of energy and nutrients (Curtis et al., 2002; Wardle et al., 

2004; Van der Heijden et al., 2008). 

Species richness has been the measure of biodiversity traditionally used 

in studies relating biodiversity and ecosystem functioning (Cardinale et al., 

2012). However, this approach disregards the fact that functional similarities 

among species are usually determined by their common evolutionary history, 

and therefore phylogenetically related species tend to perform similar functions 

(Blomberg et al., 2003; Martiny et al., 2013, but see Revell et al., 2008 for other 

processes producing trait resemblance among close relatives). This is the reason 

why phylogenetically-informed measures of diversity tend to be more 

informative than traditional richness measures (Lozupone & Knight, 2007; 

Cadotte et al., 2008). Empirical evidence on the effect of phylogenetic diversity 

on ecosystem functioning is widespread across the tree of life (e.g., bacteria, 

Gravel et al., 2012; fungi, Maherali & Klironomos, 2007; plants, Cadotte et al., 

2008, Cadotte 2013, Navarro-Cano et al., 2014). Most of these studies have 

found a positive relationship between phylogenetic diversity and ecosystem 

functioning parameters, as expected when distantly related taxa perform 

complementary functions. However, neutral and negative relationships have 

also been described, particularly in bacteria, because phylogenetic diversity and 

taxonomic diversity may interactively influence ecosystem functioning (Severin 

et al., 2013; Venail & Vives, 2013). 

Phylogenetic diversity of bacterial communities in soils is low compared 

to those in other natural environments, contrasting with their extremely high 

species richness and diversity (Lozupone & Knight, 2007). This paradoxical 

situation could be explained by adding a phylogenetic context to the modern 
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coexistence theory (Chesson, 2000; Mayfield & Levine, 2010; HilleRisLambers 

et al., 2012; Godoy et al., 2014). The phylogenetic structure of soil bacterial 

communities is primarily driven by abiotic factors, such as acidity (Jones et al., 

2009) and availability of organic resources (Goberna et al., 2014a), that 

overrepresent certain clades. The composition of ecological communities is 

further determined by the balance between mechanisms shaping niche 

differences and fitness differences between lineages (Chesson, 2000). 

Coexistence is maximized under large niche differences (i.e. absence of niche 

overlap), a situation where species do not compete for resources. This increases 

both diversity and productivity since the functional complementarity of 

coexisting organisms allows a more complete usage of resources. 

Complementarity effects have been shown to underlie the positive relationship 

between bacterial diversity and productivity in simple experimental 

communities, but it seems to be relatively unimportant in natural communities 

due to the high functional redundancy of bacteria (Griffiths et al., 2001; Bell et 

al., 2005; Venail & Vives, 2013). In contrast, fitness differences between 

lineages tend to favor competitive exclusion because competitively superior 

lineages may consume too much of the resource on which other lineages 

depend (Chesson, 2000). Mayfield & Levine (2010) noticed that fitness 

differences may produce outcompetition of entire clades when competitive 

superiority is a phylogenetically conserved trait. The immediate consequence 

of competitive exclusion of entire clades is the reduction of phylogenetic 

diversity in ecological communities, as occurs in soil bacterial communities 

worldwide (Goberna et al., 2014a). 

Fitness differences may be produced by competitive asymmetries in 

which some lineages produce more per unit resource than others (Chesson, 

2000). This is the case of Proteobacteria and Actinobacteria, two bacterial lineages 

which are extremely competitive in terms of growth response when organic 

carbon substrates of varying recalcitrance are supplied to the soil, which is 

typically carbon-limited (Goldfarb et al., 2011). This competitive superiority is 

phylogenetically conserved and therefore competitive exclusion leads to the 

overrepresentation of a few, very productive, lineages resulting in phylogenetic 

clustering both in experimental and natural soil communities (Goldfarb et al., 

2011; Goberna et al., 2014b). Under this scenario, highly productive 
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communities dominated by competitive clades would feature low phylogenetic 

diversity levels, leading to an inverse relationship between phylodiversity and 

ecosystem functioning. 

Here, we selected two ecosystems contrasting in terms of 

environmental heterogeneity, which is a main determinant of bacterial diversity 

(Ramette & Tiedje, 2007). Differences between sites were particularly marked 

as regards the heterogeneity of resource availability, a factor that modifies the 

relationship between bacterial diversity and productivity (Jousset et al., 2011). 

In both ecosystems we test whether i) soil physical and chemical parameters 

determine the phylogenetic structure and ii) the phylogenetic structure of 

bacterial communities predicts ecosystem functioning, measured through soil 

microbial productivity, metabolic efficiency and nutrient cycling increases, via 

overrepresentation of a particular productive clade. 

3.2. MATERIALS AND METHODS 

3.2.1. Study site  

The study was carried out in two Mediterranean sites, differing in their 

climate, plant cover, lithology and soil type. We intentionally searched these 

contrasting ecosystems to test whether phylogenetic structure of soil bacterial 

communities predicts ecosystem function under two extremes of 

environmental heterogeneity. Site 1 is characterized by the presence of a dense 

shrubland (100% plant cover) dominated by Rosmarinus officinalis L. and located 

in Teresa de Cofrentes (Valencia, Spain). Soils are Haplic Leptosols (Calcaric, 

Humic) (FAO–ISRIC–IUSS, 2006) developed on limestones, mean annual 

rainfall is 446 mm and temperature 13.7 ºC. Topsoils (0-2 cm) were collected 

in ten 1 × 1 m plots located within a 150-m2 area as described in Goberna et al. 

(2012). Site 2 is covered by a patchy shrub steppe dominated by Ononis tridentata 

L. and located in Algepsar dels Burutaus (Serra de Crevillent, Alacant, SE 

Spain). Soils are Leptic Regosols (Gypsiric, Calcaric) (FAO–ISRIC–IUSS, 

2006) developed on gypsum, mean annual rainfall is 220 mm and temperature 

20 ºC. Topsoils (0-2 cm) were collected underneath 15 vegetation patches 

(defined as groups of plants growing underneath the canopy of an O. tridentata 

individual) and in the adjacent open spaces, all plots being located within a 1-
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ha area as described by Navarro-Cano et al. (2014). Sites 1 and 2, representing 

two extremes of environmental heterogeneity will be hereafter referred to as 

“non-patchy” and “patchy” ecosystems, respectively, based on the structure of 

their plant communities. 

Plant community structure determined a low variance in the soil 

physical and chemical properties in the non-patchy ecosystem, which 

contrasted with the high variability of the same variables in the patchy 

ecosystem (Table 1). Further details on the soil physical and chemical 

environment in both sites can be found in previous studies (Goberna et al., 

2012; Navarro-Cano et al., 2014). We characterized the soils of each plot with 

the scores of the first principal component (PC1-Soil) including the soil 

gravimetric humidity (GH), pH, electrical conductivity (EC), total organic C 

(TOC), pyrophosphate oxidizable C (PPi-OC), and total nitrogen (TN). PC1-

Soil was then used as an abiotic predictor of phylogenetic structure of soil 

bacterial communities as described below. Both sites also exhibited large 

differences in the variability of several biochemical properties that are 

commonly used as proxies of ecosystem functioning, with the non-patchy 

ecosystem showing lower coefficients of variation compared to the patchy 

ecosystem (Table 1). Specifically, we used parameters that are indicators of 

general microbial activity and specific enzymatic activities involved in main 

steps of the nutrient cycles (Nannipieri et al., 1990). In particular, general 

indicators of microbial activity included: 1) microbial biomass C (MBC) as a 

proxy of the microbial biomass; 2) ATP content, as an indicator of the total 

microbial activity; 3) basal respiration (BR), as an indicator of the activity of 

decomposers that mineralize organic C into CO2; 4) microbial coefficient 

(MBC/TOC), which reflects the conversion efficiency of organic C into 

microbial C; and 5) metabolic quotient (qCO2), which is the ratio between CO2-

C production and MBC and declines as the microbiota becomes efficient at 

conserving C. Specific indicators of microbial activity included 1) β-glucosidase 

(GA), 2) alkaline phosphatase (PA) and 3) urease activities (UA), which are 

hydrolytic enzymes that are respectively involved in C, P and N cycling. Further 

details on the soil biochemical properties in both sites can be found in previous 

studies (Goberna et al., 2012; Navarro-Cano et al., 2014). 
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3.2.2. Soil DNA extraction and pyrosequencing 

Soil DNA from the non-patchy ecosystem was extracted within 24 h 

after sampling from ca. 0.25 g soil with the PowerSoil DNA Isolation Kit (MO 

BIO Laboratories, Carlsbad, CA). Extracted DNA was checked for quality by 

electrophoresis in 1% agarose gels run in 0.5 × Tris–acetate–EDTA buffer. 

Amplifications of the 16S rRNA gene were carried out using the universal 

bacterial primers 8F (5’-AGAGTTTGATCCTGGCTCAG-3’; Turner et al., 

1999) and 534R (5’-ATTACCGCGGCTGCTGGC-3’; Muyzer et al., 1993). 

Each sample contained a synthetized forward primer, including a 454 

sequencing adaptor (5’-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3’) 

and a unique 8-nucleotide barcode in its 5’ end randomly selected                    

from those published by Hamady et al. (2008). The reverse                                

primer incorporated a 454 sequencing adaptor in its 5’ end (5’-

CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-3’).  

Table 1: Variability among sampling plots in physical, chemical and biochemical 
variables in the non-patchy and patchy ecosystems (data published by Goberna et al., 
2012 and Navarro-Cano et al., 2014). 

 Non-patchy ecosystem Patchy ecosystem 

Variable Mean SD CV Mean SD CV 

Gravimetric humidity (%) 23.34 5.27 22.57% 2.94 1.48 50.36% 

Total organic C (g kg-1) 43.9 5.2 11.95% 59.7 39.7 66.53% 

Pyrophosphate oxidizable carbon (g kg-1) 15.4 6.2 40.47% 1.87 1.57 83.65% 

pH 8.05 0.17 2.14% 7.18 0.16 2.26% 

Electrical conductivity (µS cm-1) 230 35.66 15.48% 2798 334 11.95% 

Total N (%) 0.39 0.13 32.32% 0.39 0.29 73.78% 

Microbial biomass C (mg C kg−1) 469 194 41.32% 1,411 1,307 92.68% 

MBC/TOC (%) 1.07 0.42 38.71% 1.89 1.11 58.95% 

Basal respiration (mg C-CO2 kg-1 d-1)    15.75 6.27 39.78% 76.26 71.88 94.25% 

qCO2 (μg C-CO2 mg −1 MBC h−1) 1.91 2.19 114.57% 2.18 1.08 49.47% 

ATP (ng g-1) 2186 493 22.53% 424 310 73.11% 

β-glucosidase activity (μmol PNP g-1 h-1) 2.93 0.81 27.51% 5.88 6.07 103.28% 

Phosphatase activity (μmol PNP g-1 h-1) 15.73 6.13 38.99% 16.11 14.78 91.73% 

Urease activity (mg N-NH4
+ g-1 h-1) 1.07 0.36 33.52% 2.05 1.49 72.59% 
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PCR reactions were performed in a Flexcycler (Analytik Jena, Jena, 

Germany) in 50 µl volumes. Each reaction contained a final concentration of 1 

X Platinum PCR SuperMix High Fidelity (Invitrogen, Carlsbad, USA), 0.3 µM 

of each primer and 0.4 mg mL-1 bovine serum albumin. A volume of 1.5 µl 

DNA was directly applied to the reaction mix. Thermal cycling consisted of 5 

min at 94 °C, 20 cycles including 45 s at 94 °C, 45 s at 54 °C and 90 s at 72 °C 

and terminated with 10 min at 72 °C. Purification of PCR products (100 µl) 

was carried out with the NucleoSpin Extract II Kit (Macherey-Nagel, Düren, 

Germany). Afterwards they were eluted in 50 µl DNAase free 1 × TE (Tris-

EDTA) buffer and checked for quality and size in 2 % agarose gels run in 1 × 

TAE buffer (80 V, 45 min). Non-template controls followed the same 

procedure. Purified tagged amplicons were quantified in duplicate using the 

Quant-iT PicoGreen dsDNA Kit (Invitrogen, Carlsbad, USA) and pooled in 

equimolar amounts. Pyrosequencing was performed by GATC Biotech 

(Konstanz, Germany) with the Roche 454 GS-FLX system using titanium 

chemistry. 

Similar procedures were used for DNA extraction, PCR amplification 

and pyrosequencing of soil samples in 30 plots from the patchy ecosystem. 

Details are given in Goberna et al. (2014b). 

3.2.3. Sequence analysis and phylogeny reconstruction 

For the non-patchy ecosystem, 10604 sequences were obtained. Short 

sequences (< 200 bp) were removed, along with those with ambiguous base 

calls or with homopolymers exceeding 6 bp. Primers and barcodes were 

trimmed. After denoising, chimeric sequences and singletons were excluded 

from the analysis. Operational taxonomic units (OTUs) were defined at an 

identity level of 97 % and taxonomically classified using BLASTn against a 

curated GreenGenes database (DeSantis et al., 2006). This initial sequence 

processing was performed by MR DNA (Shallowater, TX, USA). A final 2289 

OTUs were aligned with PyNAST (Caporaso et al., 2010a) by using QIIME 

(Caporaso et al., 2010b). Then, we constructed a community matrix showing 

the abundance of the total 2289 OTUs in each of the 10 plots. As proposed by 

Kembel et al. (2012), the relative abundance of each OTU was corrected by the 
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estimated number of 16S rRNA gene copies. Bacterial phylogeny was 

reconstructed using RAxML 7.3.0 (Stamatakis et al., 2006). We built five 

independent maximum-likelihood phylogenetic trees with the GTRGAMMA 

substitution model. Previously, hypervariable regions were removed using the 

Lane mask (Lane, 1991). To avoid high phylogenetic uncertainty resulting from 

the usage of short sequences, tree topology was constrained to match the         

basal relationships of the megatree built from the Silva database (Release        

108, Quast et al., 2013). All phylogenetic trees were selected among the            

best of 1000 iterations and rooted using Archaeoglobus profundus.               

Sequences were deposited in the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena/data/view/PRJEB6166). 

In the patchy ecosystem, we worked with 24162 sequences after 

removal of low-quality sequences and artifacts. After excluding singletons, 

these were collapsed into a final 3290 OTUs. Sequence processing and 

phylogeny reconstruction were similar to those described above and details are 

given in Goberna et al. (2014b). 

3.2.4. Phylogenetic community structure 

We described the phylogenetic structure of bacterial communities by 

using two phylogeny-weighted metrics. First, we calculated the abundance-

weighted net relatedness index (NRI), one of the most commonly used metrics 

in community phylogenetics, with the picante package for R (Kembel et al., 

2010). This computes NRI = -(MPDobs – MPDrand)/sd_MPDrand, where MPDobs 

is the average of all pairwise phylogenetic distances between the taxa in a local 

community, MPDrand is the average of MPD calculated in n randomly 

constructed communities after shuffling all taxa in the regional pool, and 

sd_MPDrand is the standard deviation of MPDrand (Webb et al., 2002). This allows 

examining whether co-occurring taxa are more (positive NRI) or less (negative 

NRI) closely related than expected by chance. Thus, positive NRI values are 

related to phylogenetic clustering while negative values indicate phylogenetic 

overdispersion.  

http://www.ebi.ac.uk/ena/data/view/PRJEB6166
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Second, we used the phylogenetic fuzzy-weighting method proposed 

by Pillar & Duarte (2010). Compared to NRI, which is blind to the taxonomic 

identity of coexisting lineages (i.e. similar NRI´s can be obtained for 

communities dominated by closely-related Actinobacteria or for communities 

dominated by closely-related Proteobacteria), the fuzzy-weighting method 

identifies the representativeness of different lineages across the sites (see 

Duarte et al. (2012) for a detailed explanation). Briefly, this method calculates a 

matrix (matrix P), that describes the species phylogenetic composition of each 

plot taking into account the phylogenetic neighborhood of each OTU. To 

obtain matrix P, we transformed the pairwise phylogenetic distance matrix on 

similarities between species. Then, we used similarities to weight the species 

composition matrix by a fuzzy set algorithm (Pillar & Duarte, 2010). In matrix 

P each OTU has a value per plot that increases as the phylogenetic distance 

between neighboring OTUs decreases. Matrix P was calculated using the 

SYNCSA package implemented in R (Debastiani & Pillar, 2012). Principal 

components analysis with Euclidean distance was run to reduce the 

dimensionality of the matrix P. The loadings of each OTU indicate the relative 

contribution of that OTU to differentiate plots along the first principal 

component axis (plot scores). Consequently, each plot score captures the whole 

variation of species abundances weighted by phylogenetic relatedness. To 

identify which phyla were responsible for the phylogenetic community 

structure, we ran a linear model with the plot scores along the first principal 

component axis (PCPS1 hereafter) as the dependent variable and the relative 

abundance of the most abundant phyla as independent variables.  

3.2.5. Statistical analyses 

To check whether spatial autocorrelation in the bacterial community 

composition across plots should be taken into account in subsequent analyses, 

we correlated OTU composition and geographic distance matrices through 

Mantel tests in the ADE4 package for R (Mantel, 1967; Dray & Dufour, 2007). 

We tested whether physical and chemical soil parameters determine the 

phylogenetic structure of bacterial communities by performing Bayesian 

generalized linear models (GLMs) with NRI and PCPS1 used individually as 

the dependent variables and the PC1-Soil as the independent variable. The NRI 
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values per plot were very similar across the five phylogenetic trees in both sites 

(r>0.77; p<0.005 for all the correlations). Similarly, PCPS1 values per plot were 

very similar for all the trees (r>0.98; p<0.005 for all the correlations). Although 

these correlations indicate that phylogenetic uncertainty was small, we 

accommodated such small uncertainty by running five GLMs for each site, each 

one using the phylogenetic information calculated from an independent tree 

and integrated over the posterior samples by drawing 1000 random samples 

across models. The models were run with the help of MCMC techniques as 

implemented in the MCMCglmm package for R (Hadfield, 2010). We used the 

default priors and ran 13.000 MCMC iterations with a burn-in period of 3.000 

iterations. Convergence of the chain was tested by means of an autocorrelation 

statistic. The statistical significance of the factors in the model was estimated 

by calculating the 95% credible interval of their posterior distribution.  

Bayesian GLMs were also used to test which metrics of phylogenetic 

community structure predicted the ecosystem functioning more accurately. We 

ran five GLMs per site, using each ecosystem functioning parameter 

individually as the dependent variable and both NRI and PCPS1 as 

independent variables in the same model. The relative abundance of the most 

abundant clades was also used as a predictive parameter of ecosystem 

functioning. Clade relative abundances were estimated as the sum of the relative 

abundances of all OTUs that belonged to that particular clade, which were 

corrected based on their estimated 16S rRNA gene copy numbers (see details 

above). All analyses were performed using the software R 3.1.1 (R Core Team, 

2014). 

3.3. RESULTS 

Soil bacterial communities had 602 ± 13 and 430 ± 24 OTUs per plot 

(mean ± SE) in the non-patchy and patchy ecosystems, respectively. 

Proteobacteria was the most dominant phylum in both ecosystems followed by 

Actinobacteria (Figure 1). There was not spatial autocorrelation across plots in 

the bacterial community composition (non-patchy ecosystem, r = -0.205, p = 

0.924; patchy ecosystem, r = -0.054, p = 0.691; Mantel tests) nor in the 

phylogenetic structure measured as NRI (non-patchy ecosystem, r = 0.04, p = 
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0.349; patchy ecosystem, r = -0.049, p = 0.74) or PCPS1 (non-patchy 

ecosystem, r = 0.29, p = 0.06; patchy ecosystem, r = -0.044, p = 0.78).  

 

Figure 1: Phylogenetic tree of major basal groups in the non-patchy and patchy 
ecosystems showing the average relative abundances of each phylum across the study 
plots. Error bars indicate the standard error of the mean. 
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The phylogenetic structure of the bacterial communities in both 

ecosystems was clustered, as indicated by net relatedness index (NRI) 

significantly higher than zero (NRI post-mean estimate [95 % credible interval] 

= 1.70 [0.68, 2.93] for the non-patchy and NRI = 2.49 [1.37, 3.56] for the 

patchy ecosystems). Phylogenetically clustered plots (i.e. high NRI values) were 

those with higher abundances of Proteobacteria and/or Actinobacteria (see positive 

estimates in the NRI models in Table 2). The contribution of both phyla was 

significantly positive but differed in their relative importance, with Proteobacteria 

and Actinobacteria equally contributing in the non-patchy ecosystem but 

Actinobacteria contribution becoming non-significant in the patchy ecosystem.  

Table 2: Linear model explaining the contribution (% variance) of the abundance of 
the dominant phyla (% of OTUs belonging to Proteobacteria and Actinobacteria) on the 
mean Net Relatedness Index (NRI) and on the mean plot scores along the first 
principal component axis of the phylogenetic community structure (PCPS1) across the 
five phylogenetic trees.  

  NRI   PCPS  

 
Estimate 

± SE 
t 

% 
variance 

Estimate 
± SE 

t 
% 

variance 

Non-patchy ecosystem      

Intercept -11.9 ± 3.02 -3.96**  136.7 ± 36.26 3.77**  

% Proteobacteria 0.22 ± 0.05 4.49** 33.4 0.61 ± 3.64 3.64** 52.5 

% Actinobacteria 0.21 ± 0.06 3.45* 41.9 -8.43 ± 0.741 -11.25*** 45.2 

Patchy ecosystem 

Intercept -3.54 ± 1.35 -2.61*  -197.4 ± 7.22 -27.37***  

% Proteobacteria 0.09 ± 0.02 3.28** 35.5 5.31 ± 0.14 35.64*** 97.2 

% Actinobacteria 0.07 ± 0.03 2.11* 9 -0.67 ± 018 -3.56** 0.9 

 *p<0.05; ** p<0.01;***p<0.001 

 

The metrics of the community structure that accounts for the variability 

in the taxonomic identity and the phylogenetic relatedness (PCPS1) explained 

50 and 71 % of the total variance of the phylogenetic structure in the non-

patchy and patchy ecosystems, respectively. The contribution of the most 

abundant phyla to PCPS1 differed between ecosystems, with similar 

contributions of Proteobacteria and Actinobacteria in the non-patchy ecosystem 

but with an overwhelming contribution of Proteobacteria in the patchy ecosystem 

(Table 2). Interestingly, the phylogenetic position of both phyla in distant clades 
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(see trees in Figure 1) was accounted for by PCPS1 and clearly segregated the 

plots with preponderance of Proteobacteria in the right extreme from those with 

preponderance of Actinobacteria in the left extreme (see positive estimates for 

Proteobacteria and negative for Actinobacteria in the PCPS1 linear models in Table 

2). 

The first axis of the PCA grouping soil physical and chemical variables 

(PC1-Soil) accounted for 68 and 84% of the variance in non-patchy and patchy 

ecosystems, respectively. The loading factors showed that PC1-Soil represented 

a fertility gradient of increasing oxidizable carbon and humidity contents in 

both ecosystems (non-patchy ecosystem: TN 0.27, EC 0.36, pH 0.40, TOC 

0.43, GH 0.47, PPi-OC 0.48; patchy ecosystem: pH -0.32, EC 0.40, GH 0.40, 

PPi-OC 0.43, TN 0.44, TOC 0.44). While the magnitude of such a gradient was 

slight in the non-patchy ecosystem (e.g. TOC ranged from 3.3 to 5 % across 

plots), it was extremely accentuated in the patchy ecosystem (e.g. TOC ranged 

from 1.8 to 12.5 % across plots; Table 1). This fertility gradient could not 

predict the NRI in the non-patchy ecosystem where both Actinobacteria and 

Proteobacteria had relevant contributions (NRI vs PC1-Soil = 0.15 [-0.19, 0.56]). 

However, once the identities of both phyla and the variability in phylogenetic 

relatedness across plots were accounted for, the fertility gradient significantly 

explained the phylogenetic structure of the community (PCPS1 vs PC1-Soil = 

11.66 [2.68, 23.19]).  In the patchy ecosystem where the taxonomic relevance 

of a single phylum (Proteobacteria) was disproportionate, the fertility gradient 

significantly explained both NRI (NRI vs PC1-Soil = 0.59 [0.36, 0.84]) and 

PCPS1 (PCPS1 vs PC1-Soil = 17.61 [23.36, 11.33]).  

NRI did not predict any of the ecosystem functioning variables related 

to soil microbial productivity, metabolic efficiency and biogeochemical cycling 

in the non-patchy ecosystem while PCPS1 significantly explained most of the 

general indicators of microbial activity. Specifically, PCPS1 was negatively 

associated to MBC and MBC/TOC and positively to BR and qCO2 (Figure 2 

upper panel, Model 1). Plots with high abundances of Actinobacteria were those 

with high microbial biomass (MBC) and high efficiency in converting organic 

C into microbial C (MBC/TOC) and conserving C (as indicated by the negative 

relationship with qCO2) (Figure 2 upper panel, Model 2). Plots with abundant 
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Proteobacteria were those with high activity of decomposers that mineralize 

organic C into CO2 (as indicated by BR) and phosphatase activity (PA) (Figure 

2 upper panel Model 2). In the patchy ecosystem, most of the ecosystem 

functioning parameters, including indicators of both general microbial activity 

and specific enzymatic processes, were predicted by both NRI and PCPS1 

(Figure 2 bottom panel, Model 1). All these relationships were positive and 

were also explained by the relative abundance of Proteobacteria (Figure 2 bottom 

panel, Model 2). 

 

 

Figure 2: Bayesian post-mean estimates and their expected 95% credible intervals for 
the effect of NRI and PCPS1 (Model 1) and the relative abundance of Proteobacteria 
and Actinobacteria (Model 2) on the eight soil microbial indicators from (A) non-patchy 
and (B) patchy ecosystems. All variables were log-transformed to improve normality. 
Effects with intervals not including zero are significant (black-colored intervals), 
whereas those including zero are not significant (gray-colored intervals). 
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3.4. DISCUSSION 

Our results show that the relationship between phylogenetic diversity 

and ecosystem functioning is dependent on the taxonomic identity of the main 

coexisting bacterial lineages.  We show that the soil environment structures a 

phylogenetically clustered community and discuss the mechanisms underlying 

the relationship between such phylogenetic community structure and 

ecosystem functioning. To understand this relationship, we invoke the need to 

include the species identity in phylogenetic diversity metrics to account for 

variation in phylogenetically-weighted abundances across communities. 

The soil abiotic variables determined a fertility gradient that explained 

the phylogenetic structure of soil bacterial communities in both ecosystems. 

This correlates well with previous observations showing that the amount of 

oxidizable substances is a good predictor of the phylogenetic community 

structure of soil bacteria worldwide (Goberna et al., 2014a). Our ability to 

explain the bacterial phylogenetic community structure through abiotic factors 

depended on the level of environmental heterogeneity. At high environmental 

heterogeneity (patchy ecosystem) the abiotic environment explained the 

community structure regardless the inclusion (PCPS1) or not (NRI) of lineage 

identity, while at low environmental heterogeneity (non-patchy ecosystem) only 

the most complex measure of community structure including lineage identity 

was predicted by the abiotic environment. Future studies in other ecosystems 

are needed to refine the relationship between environmental heterogeneity and 

the power of phylogenetic metrics to detect community structure in soil 

bacterial communities. Another important picture emerging from the present 

study is that environmentally mediated changes in the composition of bacterial 

communities left a phylogenetic signature in the community structure with 

profound implications in ecosystem functions. Detecting which lineage has 

been overrepresented under particular environmental parameters is key to 

understand the meaning of the phylogenetic clustering in the communities.  

Ecosystem functioning was also better predicted by the metrics 

accounting for the identity of the lineages. In our non-patchy ecosystem, both 

Actinobacteria and Proteobacteria were key components structuring productive 

bacterial communities (Goldfarb et al., 2011). As both phyla are distantly-
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related, their coexistence in more fertile plots was not translated into increased 

phylogenetic clustering as shown by the lack of correlation between the fertility 

gradient and NRI. Similarly, NRI could not predict any ecosystem function in 

this non-patchy ecosystem. However, the phylogenetic structure metrics 

accounting for the identity of both phyla predicted most of the general 

indicators of ecosystem functioning. On the other side, in the patchy ecosystem 

we found that communities phylogenetically clustered because of the 

overrepresentation of a particular clade (Proteobacteria) were the most 

productive. In this case, the coexistence of closely-related Proteobacteria in fertile 

plots was translated into increased phylogenetic clustering, and therefore NRI 

could also predict high ecosystem functioning at low phylogenetic diversities.  

Our results contrast with the common findings in ‘macro’organisms 

that indicate that phylogenetic diversity is positively related to ecosystem 

functioning (Cadotte et al., 2008; Flynn et al., 2011; Cadotte, 2013). They agree, 

however, with other lines of evidence showing variable responses of ecosystem 

functioning parameters to bacterial phylogenetic diversity. In simple 

experimental communities, positive and neutral responses of community 

productivity to increasing levels of phylogenetic diversity have been described 

(Gravel et al., 2012; Venail & Vives, 2013). In some instances, positive 

responses could be experimentally attributed to complementarity effects based 

on the overyielding of the mixtures compared to their constituent species 

(Venail & Vives, 2013), but this pattern is not consistent in the literature 

(Gravel et al., 2012). In more complex microcosms, bacterial productivity 

showed mostly negative, but also neutral and positive responses, to 

phylogenetic diversity (Severin et al., 2013). These authors suggest that negative 

responses are mediated by the overrepresentation of productive 

Betaproteobacteria with the ability to consume an aromatic carbon compound. 

Similarly, our results in natural soil communities indicate that fast growing, 

competitively superior clades in the presence of soil organic carbon 

outcompete other clades, thus reducing phylogenetic diversity but rising 

indicators of ecosystem functioning. These results are consistent with fitness 

differences as the predominant mechanism causing high productivity at low 

phylodiversity through competitive exclusion (Mayfield & Levine, 2010; Carroll 

et al., 2011; HilleRisLambers et al., 2012). 
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In short, microbially mediated ecosystem functions can be predicted by 

the phylogenetic structure of soil bacterial communities because this metrics 

contains information on both the outcome of the ecological processes 

determining species coexistence and the functionality of these coexisting 

lineages. We suggest that outcompetition of big clades by very competitive and 

productive lineages explains both the phylogenetic diversity patterns of 

bacterial communities and the relationship between diversity and ecosystem 

functioning. Capturing the ecological and evolutionary idiosyncrasies of the soil 

bacterial communities is crucial to understand the relationship between 

diversity and ecosystem functioning. The improvement in our prediction ability 

of the ecosystem functions performed by soil bacteria is of paramount 

importance given the relevance of these processes (i.e. biogeochemical cycling 

of nutrients, decomposition of organic matter, etc.) at the planetary level. 

3.5. ACKNOWLEDGEMENTS 

This work was supported by the Spanish Ministry of Science and 

Innovation (R+D Project CGL2011-29585-C02-01), the EU (FP7-PEOPLE-

2009-RG-248155) and the BBVA foundation (project Mintegra; I 

Convocatoria de ayudas de la fundación BBVA a proyectos de investigación). 

EPV acknowledges support by the FPI programme and MG by the Ramón y 

Cajal Programme (Spanish Ministry of Economy and Competitiveness). 

3.6. REFERENCES 

Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D & Schmid 
B (2006) Quantifying the evidence for biodiversity effects on ecosystem 
functioning and services. Ecol Lett 9: 1146–1156. 

Bell T, Newman JA, Silverman BW, Turner SL & Lilley AK (2005) The contribution of 
species richness and composition to bacterial services. Nature 436: 1157–1160. 

Blomberg SP, Garland T JR & Ives AR (2003) Testing for phylogenetic signal in 
comparative data: behavioral traits are more labile. Evol Int J Org Evol 57: 717–
745. 

Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages 
result in higher productivity. Proc Natl Acad Sci USA 110: 8996–9000. 

Cadotte MW, Cardinale BJ & Oakley TH (2008) Evolutionary history and the effect of 
biodiversity on plant productivity. Proc Natl Acad Sci USA 105: 17012–17017. 



50                                    CHAPTER I 

Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL & Knight R (2010) 
PyNAST: a flexible tool for aligning sequences to a template alignment. 
Bioinformatics 26: 266–267. 

Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-
throughput community sequencing data. Nat Methods 7: 335–336. 

Cardinale BJ, Duffy JE, Gonzalez A, et al. (2012) Biodiversity loss and its impact on 
humanity. Nature 486: 59–67. 

Carroll IT, Cardinale BJ & Nisbet RM (2011) Niche and fitness differences relate the 
maintenance of diversity to ecosystem function. Ecology 92: 1157–1165. 

Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 
31: 343–366. 

Curtis TP, Sloan WT & Scannell JW (2002) Estimating prokaryotic diversity and its 
limits. Proc Natl Acad Sci USA 99: 10494–10499. 

Debastiani VJ & Pillar VD (2012) SYNCSA – R tool for analysis of metacommunities 
based on functional traits and phylogeny of the community components. 
Bioinformatics 28: 2067–2068. 

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi 
D, Hu P & Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA 
gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 
5069–5072. 

Dray S & Dufour AB (2007) The ade4 package: implementing the duality diagram for 
ecologists. J Stat Softw 22: 1–20. 

Duarte LDS, Prieto PV MB & Pillar VD (2012) Assessing spatial and environmental 
drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography 35: 
952-960 

FAO–ISRIC–IUSS (2006) World reference base for soil resources. FAO, Rome. 
Flynn DFB, Mirotchnick N, Jain M, Palmer MI & Naeem S (2011) Functional and 

phylogenetic diversity as predictors of biodiversity–ecosystem-function 
relationships. Ecology 92: 1573–1581. 

Goberna M, García C, Insam H, Hernández MT & Verdú M (2012) Burning fire-prone 
mediterranean shrublands: Immediate changes in soil microbial community 
structure and ecosystem functions. Microb Ecol 64: 242–255. 

Goberna M, García C & Verdú M (2014a) A role for biotic filtering in driving 
phylogenetic clustering in soil bacterial communities. Glob Ecol Biogeogr 23: 
1346–1355. 

Goberna M, Navarro-Cano JA, Valiente-Banuet A, García C & Verdú M (2014b) 
Abiotic stress tolerance and competition-related traits underlie phylogenetic 
clustering in soil bacterial communities. Ecol Lett 17: 1191–1201. 

Godoy O, Kraft NJB & Levine JM (2014) Phylogenetic relatedness and the determinants 
of competitive outcomes. Ecol. Lett. 17: 836-844. 

Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, 
Wallenstein MD & Brodie EL (2011) Differential growth responses of soil 
bacterial taxa to carbon substrates of varying chemical recalcitrance. Terr 
Microbiol 2: 94. 



CHAPTER I                        51 

 

 

 

Gravel D, Bell T, Barbera C, Combe M, Pommier T & Mouquet N (2012) Phylogenetic 
constraints on ecosystem functioning. Nat Commun 3: 1117. 

Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, 
Sørensen SJ, Muller S & Bloem J (2001) An examination of the biodiversity–
ecosystem function relationship in arable soil microbial communities. Soil Biol 
Biochem 33: 1713–1722. 

Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed 
models: the MCMCglmm R package. J Stat Softw 33: 1–22. 

Hamady M, Walker JJ, Harris JK, Gold NJ & Knight R (2008) Error-correcting 
barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat 
Methods 5: 235–237. 

HilleRisLambers J, Adler PB, Harpole WS, Levine JM & Mayfield MM (2012) 
Rethinking community assembly through the lens of coexistence theory. Annu 
Rev Ecol Evol Syst 43: 227–248. 

Hooper DU, Chapin FS, Ewel JJ, et al. (2005) Effects of biodiversity on ecosystem 
functioning: A consensus of current knowledge. Ecol Monogr 75: 3–35. 

Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R & Fierer N (2009) A 
comprehensive survey of soil acidobacterial diversity using pyrosequencing and 
clone library analyses. ISME J 3: 442–453. 

Jousset A, Schmid B, Scheu S & Eisenhauer N (2011) Genotypic richness and 
dissimilarity opposingly affect ecosystem functioning. Ecol Lett 14: 537–545. 

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, 
Blomberg SP & Webb CO (2010) Picante: R tools for integrating phylogenies 
and ecology. Bioinformatics 26: 1463–1464. 

Kembel SW, Wu M, Eisen JA & Green JL (2012) Incorporating 16s gene copy number 
information improves estimates of microbial diversity and abundance. PLoS 
Comput Biol 8: e1002743. 

Lane DJ. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics 
(Stackebrandt E & Goodfellow M, eds), pp. 115–175. John Wiley & Sons, New 
York, USA. 

Lozupone CA & Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad 
Sci USA 104: 11436–11440. 

Maherali H & Klironomos JN (2007) Influence of phylogeny on fungal community 
assembly and ecosystem functioning. Science 316: 1746–1748. 

Mantel N (1967) The detection of disease clustering and a generalized regression 
approach. Cancer Res 27: 209–220. 

Martiny AC, Treseder K & Pusch G (2013) Phylogenetic conservatism of functional 
traits in microorganisms. ISME J 7: 830–838. 

Mayfield MM & Levine JM (2010) Opposing effects of competitive exclusion on the 
phylogenetic structure of communities: Phylogeny and coexistence. Ecol Lett 13: 
1085–1093. 

Muyzer G, de Waal EC & Uitterlinden AG (1993) Profiling of complex microbial 
populations by denaturing gradient gel electrophoresis analysis of polymerase 
chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 
695–700. 



52                                    CHAPTER I 

Nannipieri P, Grego S & Ceccanti B (1990) Ecological significance of the biological 
activity in soil. Soil biochemistry (Bollag J & Stotzky G, eds), pp. 293–355. Marcel 
Dekker, New York, USA. 

Navarro-Cano JA, Goberna M, Valiente-Banuet A, Montesinos-Navarro A, García C & 
Verdú M (2014) Plant phylodiversity enhances soil microbial productivity in 
facilitation-driven communities. Oecologia 174: 909–920. 

Pillar VD & Duarte LDS (2010) A framework for metacommunity analysis of 
phylogenetic structure. Ecol Lett 13: 587–596. 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J & Glockner FO 
(2013) The SILVA ribosomal RNA gene database project: improved data 
processing and web-based tools. Nucleic Acids Res 41: D590–D596. 

Ramette A & Tiedje JM (2007) Multiscale responses of microbial life to spatial distance 
and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 
104: 2761–2766. 

Revell LJ, Harmon LJ & Collar DC (2008) Phylogenetic signal, evolutionary process, 
and rate. Syst Biol 57: 591-601 

R Core Team (2014) R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. 

Severin I, Östman Ö & Lindström ES (2013) Variable effects of dispersal on 
productivity of bacterial communities due to changes in functional trait 
composition. PLoS ONE 8: e80825. 

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic 
analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. 

Turner S, Pryer KM, Miao VPW & Palmer JD (1999) Investigating deep phylogenetic 
relationships among cyanobacteria and plastids by small subunit rRNA 
sequence analysis. J Eukaryot Microbiol 46: 327–338. 

Van der Heijden MGA, Bardgett RD & van Straalen NM (2008) The unseen majority: 
soil microbes as drivers of plant diversity and productivity in terrestrial 
ecosystems. Ecol Lett 11: 296–310. 

Venail PA & Vives MJ (2013) Phylogenetic distance and species richness interactively 
affect the productivity of bacterial communities. Ecology 94: 2529–2536. 

Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Putten WH van der & Wall DH 
(2004) Ecological linkages between aboveground and belowground biota. Science 
304: 1629–1633. 

Webb CO, Ackerly DD, McPeek MA & Donoghue MJ (2002) Phylogenies and 
community ecology. Annu Rev Ecol Syst 33: 475–505. 

Zak DR, Holmes WE, White DC, Peacock AD & Tilman D (2003) Plant diversity, soil 
microbial communities, and ecosystem function: are there any links? Ecology 84: 
2042–2050. 



 

 

53 
 

CHAPTER II: Fire modifies the phylogenetic structure of soil 

bacterial co-occurrence networks 

 

SUMMARY 

Fire alters ecosystems by changing the composition and community structure 

of soil microbes. The phylogenetic structure of a community provides clues 

about its main assembling mechanisms. While environmental filtering tends to 

reduce the community phylogenetic diversity by selecting for functionally (and 

hence phylogenetically) similar species, processes like competitive exclusion by 

limiting similarity tend to increase it by preventing the coexistence of 

functionally (and phylogenetically) similar species. We used co-occurrence 

networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria 

that do not co-occur) links indicative of the ecological interactions structuring 

the community. We propose that inspecting the phylogenetic structure of co-

presence or exclusion links allows to detect the main processes simultaneously 

assembling the community. We monitored a soil bacterial community after an 

experimental fire and found that fire altered its composition, richness and 

phylogenetic diversity. Both co-presence and exclusion links were more 

phylogenetically related than expected by chance. We interpret such a 

phylogenetic clustering in co-presence links as a result of environmental 

filtering, while that in exclusion links reflects competitive exclusion by limiting 

similarity. This suggests that environmental filtering and limiting similarity 

operate simultaneously to assemble soil bacterial communities, widening the 

traditional view that only environmental filtering structures bacterial 

communities. 
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4.1. INTRODUCTION 

Fires are important disturbances that affect forest ecosystems through 

the combination of effects that are initially triggered by heat (Certini 2005; 

Bárcenas-Moreno and Bååth 2009). The consequences of fire on the soil 

environment are complex, including the removal of plant cover and changes in 

physical and chemical parameters (Certini 2005; Smith et al. 2008; Goberna et 

al. 2012; Xiang et al. 2014). Fire affects soil microbial communities both directly 

by high temperatures inducing mortality or cell damage (Daniel and Cowan 

2000) and indirectly through the combustion of organic matter, increase in 

available nutrients, destruction of the soil physical structure and shifts in soil 

pH, humidity, or electrical conductivity, among others (Certini 2005), although 

the magnitude of these effects depends on fire intensity (Bárcenas-Moreno and 

Bååth 2009). In turn, the composition and community structure of soil 

microbial communities is highly dependent on the environmental parameters 

that are altered by fire (Fierer and Jackson 2006; Smith et al. 2008; Goberna et 

al. 2012; Xiang et al. 2014). Some microbial groups can benefit from fire-altered 

conditions, while others are harmed. For example, fire increases the abundance 

of both endospore-forming Firmicutes in low to moderate fires following the 

peak temperature that triggers germination (Smith et al. 2008; Ferrenberg et al. 

2013) and clades like Betaproteobacteria in response to changed environmental 

conditions (Ferrenberg et al. 2013; Xiang et al. 2014). Conversely, other taxa 

such as Nitrobacter seem to be more heat-sensitive and thus less abundant after 

a fire (Janzen and Tobin-Janzen 2008). Fluctuations in community composition 

induced by fire concomitantly change the phylogenetic structure of the 

community (e.g., Xiang et al. 2014). This observation agrees with empirical and 

conceptual models of temporal changes in microbial community structure, 

which postulate that niche-based assembling processes like environmental 

filtering and competition increase its relative importance after a perturbation 

(Ferrenberg et al. 2013, Dini-Andreote et al. 2015). 

The way a community is phylogenetically structured provides clues 

about its main assembling mechanisms (Webb et al. 2002; HilleRisLambers et 

al. 2012). Environmental filtering decreases functional and phylogenetic 

diversity, both through the existence of: i) abiotic filters, which can be only 
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surpassed by species sharing certain traits (Webb et al. 2002), and ii) biotic 

filters, by which one (or a few) clade of strong competitors outcompete 

distantly-related lineages (Mayfield and Levine, 2010). In contrast, processes 

like competitive exclusion by limiting similarity increase the phylogenetic 

diversity of the communities by preventing the coexistence of species that are 

too functionally (and phylogenetically) similar (Pausas and Verdú 2010; 

Mayfield and Levine 2010). This community phylogenetics framework relies on 

two assumptions. First, traits are phylogenetically conserved, i.e. evolutionarily 

related species tend to be functionally similar, which has been recently 

demonstrated for microbes (Martiny et al. 2013, 2015; Goberna and Verdú 

2016). Second, community patterns unequivocally reflect ecological processes, 

which is not straightforward in the traditional framework (Mayfield and Levine 

2010; Narwani et al. 2015). Here, we try to overcome this limitation by i) 

incorporating to the traditional framework the ideas by Mayfield and Levine 

(2010), i.e. expanding the concept of environmental filtering to include biotic 

filters, and ii) suggesting a new approach that incorporates network analysis to 

detect the contribution of assembly processes operating simultaneously. 

Specifically, we propose to evaluate the phylogenetic community structure in 

co-occurrence microbial networks, which allow separately investigating the 

patterns of co-presence (microbes that co-occur) and exclusion (microbes that 

do not co-occur).  

The study of communities from a network-based approach has been 

dealt with for a long time, comprising numerous studies in food-webs, plant-

animal interactions or host-parasite systems (e.g. Solé and Montoya, 2001; 

Bascompte et al. 2003; Gómez et al. 2013). Ecological networks show complex 

relationships between nodes (species) connected by links (interactions), which 

inform about the composition and ecological interactions taking place in 

biological communities. Improvements of sequencing techniques in 

environmental samples have made also possible the inference of microbial co-

occurrence networks from sequence data (Faust and Raes 2012). Co-

occurrence networks may detect pairs of microbes that co-occur more (co-

presence links) or less often (exclusion links) than expected by chance. Co-

presence links may be reflecting shared niches while exclusion links suggest 

niche segregation (Barberán et al. 2012; Faust and Raes 2012). Applying the 
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community phylogenetics framework described above to co-presence and 

exclusion links, we can test whether environmental filtering alone (scenario A 

in Figure 1), competitive exclusion by limiting similarity alone (scenario B in 

Figure 1) or both mechanisms simultaneously (scenario C in Figure 1) are 

assembling the soil bacterial communities. Environmental filtering, by 

favouring the coexistence of functional (and phylogenetically) similar species, 

will reduce the phylogenetic diversity of co-presence links (dark grey boxes in 

scenarios A and C, Figures 1 and Appendix A2). Following the same rationale, 

environmental filtering, by excluding distantly related species, will increase 

phylogenetic diversity of exclusion links (light grey box in scenario A, Figures 

1 and Appendix A2). The other main assembling mechanism -competition by 

limiting similarity- will prevent the coexistence of closely related species, 

resulting thus in high phylogenetic diversity of co-presence links (the dark grey 

box in scenario B, Figures 1 and Appendix A2). For the same reason, non-

coexisting species under limiting similarity will be those that are functional (and 

phylogenetically) similar and therefore, exclusion links will have low 

phylogenetic diversity (light grey boxes in scenarios B and C, Figures 1 and 

Appendix A2). Simulations to validate this theoretical framework are provided 

in Appendix A2 (Figures A2.1 and A2.2). 

Here, we analyse the temporal changes of soil bacterial communities 

before and after (from one day to one year) an experimental fire by focusing 

on the phylogenetic structure of co-presence and exclusion links. Because fire 

may impose filters to some microbial lineages unable to survive high 

temperatures and, at the same time, favour other lineages that are able to take 

advantage of nutrient release, we hypothesise that both environmental filtering 

and competitive exclusion by limiting similarity are simultaneously assembling 

post-fire soil bacterial communities.  

 

 

 



CHAPTER II                   57 

 

 

 

 

 

Figure 1: Schematic representation of the phylogenetic structure of co-occurring 
species as a result of two assembly mechanisms operating simultaneously in the 
community. Species co-occurrence is represented as an incidence matrix (i.e. presence-
absence) of six species in five plots, where  is drawn when a species is present in a 
sample. The species whose abundance patterns are positively-correlated (e.g. species 1 
and 2 in scenario A) form co-presence links (shaded by a dark grey background) 
whereas those species whose abundance patterns are negatively-correlated (e.g. species 
3 and 6 in scenario A) form exclusion links (shaded by a light grey background). 
Species with uncorrelated-abundance patterns are not shaded. Assuming trait 
conservatism (Goberna and Verdú, 2016), three different scenarios are possible (A-C), 
depending on how members of the co-presence and exclusion links are 
phylogenetically related: A and C correspond to scenarios in which two 
phylogenetically close species (species 1 and 2) in a co-presence link co-occur as the 
result of an environmental filter, while B corresponds to a scenario in which 
competitive exclusion by limiting similarity causes the coexistence of phylogenetically 
distant species (species 1 and 5). Simultaneously, not co-occurring species in exclusion 
links would be phylogenetically related (species 3 and 4, scenarios B and C) as the 
result of competitive exclusion by limiting similarity whereas they would be distantly 
related (species 3 and 6, scenario A) as a consequence of environmental filtering. 
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4.2. RESULTS 

4.2.1. Fire effects on the soil bacterial community  

Fire altered most soil physical and chemical properties (Figure A1.1). 

Some variables showed a significant increase as soon as 1 day after fire, e.g. the 

inorganic forms of nitrogen (NO3
--N and NH4

+-N) and electrical conductivity 

(EC). Others exhibited a delayed response to fire, such as soil humidity, which 

started decreasing after 1 week. Total organic carbon (TOC) doubled its levels 

after 1 month with the associated decrease in pH and increase in the C:N ratio. 

Total nitrogen (TN) tended to increase in response to fire, but differences were 

not significant due to a high inter-plot variation (Figure A1.1). Generally, soil 

parameters differed the most from the pre-fire levels after 1 and 4.5 months 

(Figure A1.1). Pre-fire soil properties were recovered after 12 months except 

for soil humidity, TOC and the C:N ratio (Figure A1.1). PCoA showed that 

bacterial community structure differed the most from pre-fire conditions after 

1 and 4.5 months based on the separation of these plots along axis 1 (Figure 

A1.2A). TOC, NH4
+-N and EC were positively correlated with axis 1, while 

soil humidity and pH had a negative correlation with the same axis (Figure 

A1.2A, Table A1.1). A similar temporal trajectory in the community 

composition space was observed across plots (Figure A1.2B). 

Bacterial richness before fire was 602 ± 13 OTUs (mean ± SE) and 

significantly decreased 1 month after fire but recovered 1 year later (Figure 2). 

Fire reduction of bacterial richness was significant even when seasonal climatic 

variation was taken into account (Table 1). Fire also produced a high turnover 

of species (Table 2). Indeed, a substantial proportion of species at different 

time points after fire had not been present at the previous time point (Table 2). 

Fire also shifted the relative abundance of relevant taxonomic groups (Figure 

A1.3). Specifically, fire immediately (1 day after burning) increased the relative 

abundances of candidate division KSB1 and Bacilli while decreasing those of 

Alphaproteobacteria and candidate division NC10 (Figure A1.3). The relative 

abundance of Bacilli, whose initial increase was mainly due to that of the genus 

Bacillus, decreased along the year, while Alphaproteobacteria recovered its pre-fire 

levels after 9 months. Interestingly, Betaproteobacteria almost tripled its pre-fire 

values between 1 and 4.5 months since fire due to the increased abundance of 
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the genus Massilia (Figure A1.3). The analysis of bacterial community 

composition through OTU-based distance metrics revealed that soils 

harboured significantly different bacterial communities immediately after the 

fire (PERMANOVA: F6,61 = 2.1, P < 0.001, R2=0.17). Furthermore, pairwise 

comparisons showed that pre-fire composition had not been recovered at any 

time point after the fire (all P < 0.01, data not shown).  

 

Figure 2: Post-mean estimates and credible intervals (95%) of the OTU richness and 
phylogenetic diversity of the soil bacterial community regarding time since fire. 
Negative values of phylogenetic diversity indicate phylogenetic clustering. 

Changes in the composition of the bacterial community were translated 

into changes in the phylogenetic diversity of the bacterial community (Figure 

2). The high phylogenetic clustering showed by the pre-fire bacterial 

community was relaxed with time after fire, reaching values close to 

randomness at 1 and 4.5 months and fluctuating later (Figure 2). Fire effects 

on phylogenetic diversity were significant after controlling for climatic 

conditions (Table 1).  
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Table 1: Post-mean estimates and their expected credible intervals (95%) for the fire-
driven effect on the part of richness and phylogenetic structure (residues) that were 
not explained when climatic variables (temperature) were taken into account. 
Significant differences (P < 0.05, Bayesian GLM) with the pre-fire level are in bold. 

 Richness residuals Phylogenetic diversity (-NRI) residuals 

Pre-fire (Intercept) 14.95 [-3.46, 34.61] -0.68 [-1.19, -0.14] 

1d -16.18 [-43.73, 9.90] 0.43 [-0.30, 1.17] 

1w -13.83 [-39.76, 14.21] 0.67 [-0.05, 1.40] 

1m -44.57 [-75.02, -20.93] 0.78 [0.02, 1.48] 

4.5m -10.08 [-34.23, 22.08] 0.77 [1×10-3, 1.50] 

9m -37.91 [-63.37, -6.91] 1.05 [0.02, 1.82] 

12m 13.60 [-12.60, 40.57] 1.05 [0.28, 1.89] 

 

Table 2: β-diversity analysis and number of shared and not shared (lost and new) 
species between pairs of samples at different time points. Lost (new) species are those 
present (absent) in the first time point and absent (present) in the second time point. 
Average values (± SD) of 10 plots are provided. 

Time points β-diversity Species 

Initial Final Turnover Nestedness Total Shared 
Not shared 

(Lost) 
Not shared 

(New) 

Pre-fire 1d 0.62±0.03 0.02±0.02 0.64±0.02 213±32 396±28 349±39 

1d 1w 0.60±0.03 0.02±0.01 0.62±0.02 221±30 341±39 383±29 

1w 1m 0.62±0.03 0.02±0.01 0.64±0.02 211±19 397±39 344±38 

1m 4.5m 0.60±0.02 0.03±0.02 0.62±0.03 217±27 338±35 376±61 

4.5m 9m 0.60±0.02 0.04±0.02 0.64±0.03 192±25 400±73 296±35 

9m 12m 0.60±0.05 0.06±0.03 0.66±0.03 182±26 306±52 403±82 

4.2.2. Fire effects on the soil bacterial co-occurrence networks  

The main topological parameters describing our study networks, 

including the number of nodes and the number and ratio of co-presence and 

exclusion links, were similar before and after the fire (Table 3). Networks were 

dominated by co-presence links, which accounted for approximately 60% of 

the links (Tables 3 and A1.2, Figure A1.4).  
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OTUs belonging to the same link, either co-presence or exclusion, 

tended to be more evolutionarily related than expected by chance, as indicated 

by a phylogenetic diversity significantly lower than zero (Figure 3). A significant 

interaction between time since fire and interaction type occurred (F6,7636 = 2.5, 

P = 0.021, Figure 3) because the phylogenetic diversity of co-presence links 

was initially higher than that of exclusion links but the opposite trend occurred 

1 month later, and both link types had similar values after 4.5 months.  

Table 3: Overall characteristics of the microbial networks regarding the fire event. 

 

Co-presence 
nodes 

Exclusion 
nodes 

Co-presence 
links 

Exclusion 
links 

Co-presence links 
/ total links 

Pre-fire 566 474 606 456 0.57 

1d 543 439 727 499 0.59 

1w 584 450 630 438 0.59 

1m 545 426 617 402 0.61 

4.5m 592 423 637 431 0.60 

9m 479 385 677 436 0.61 

12m 563 427 656 438 0.60 

4.3. DISCUSSION 

Our results show that fire did not alter general network parameters 

describing the soil bacterial co-occurrence patterns but changed the richness, 

composition and consequently the phylogenetic diversity of the community. 

Delving into the phylogenetic signature left in the network by species that co-

occur and by those that do not co-occur helps us to discern the mechanisms 

assembling soil bacterial communities after fire. 

Fire changed the soil abiotic environment as has been previously 

described (Certini 2005). The combustion of organic matter provoked an 

immediate increase in the inorganic compounds of nitrogen and electrical 

conductivity whereas the complete depletion of the plant cover reduced the soil 

humidity. The massive input of burned debris into the soil, which doubled the 

TOC contents, cannot be attributed to plant recovery that was very slight one 

month after fire. Seasonality might have also altered the levels of several 



62            CHAPTER II 

parameters, such as TOC, humidity or pH, but the magnitude of seasonal 

effects is lower than that detected here as we previously described in nearby 

Mediterranean ecosystems (Goberna et al. 2007). Even if the use of an 

unburned control in an adjacent area could have helped us to partly account 

for the influence of seasonal effects during this study, it would have not been 

without the presence of other confounding factors such as the environmental 

heterogeneity (e.g. presence of a natural plant cover, differences in soil 

properties) or the spatial distance which are a remarkable source of variation in 

microbes (Ramette and Tiedje 2007). Instead, we have directly controlled for 

seasonal climatic variation in our statistical models to test fire effects on 

microbial community parameters. 

 

 

Figure 3: Post-mean estimates and credible intervals (95%) of the average 
phylogenetic diversity of co-presence and exclusion links regarding time since fire. 
Negative values indicate phylogenetic clustering of links. 
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Fire dramatically altered the specific composition of the soil bacterial 

community, showing particular shifts in some groups with a range of potential 

strategies that respond differentially to fire. In particular, it has been found that 

Firmicutes, which contains species able to form spores whose germination is 

triggered by high temperatures (Dworkin 2006), benefit from post-fire soil 

conditions in different environments (Yeager et al. 2005; Smith et al. 2008). In 

contrast, other groups (e.g. Alphaproteobacteria) decrease after fire (e.g. Smith et 

al. 2008; Xiang et al. 2014), suggesting that they could either be more sensitive 

to heating or harmed by the post-fire conditions. Temporal fluctuations in the 

community composition were not restricted to the immediate days following 

fire but continued to occur several weeks later. Notably, Betaproteobacteria 

experienced an important increase mainly caused by the rise of Massilia, a root-

colonizing copiotrophic genus which is related to both early stages of microbial 

succession and plant development (Ofek et al. 2012). 

Changes in the bacterial composition should be reflected in changes in 

the phylogenetic structure of the community if the traits allowing survival or 

competitive superiority are phylogenetically conserved (Pausas and Verdú 

2010). This seems to be the case of traits conferring either environmental 

tolerance or competitive abilities in soil bacterial communities (Goberna et al. 

2014a). Our results show that the community phylogenetic structure was always 

clustered, which could indicate the prevalence of environmental filtering in the 

community assembly (Webb et al. 2002; Mayfield and Levine 2010). However, 

fire reduced the richness while increasing the phylogenetic diversity at the 

community level as soon as 1 month after fire. These concomitant changes in 

richness and phylogenetic diversity could indicate that missing species after fire 

were phylogenetically related as a consequence of other mechanisms like 

competition by limiting similarity. Alternatively, it could also indicate that the 

communities are being stochastically re-assembled through other mechanism 

like dispersal. This could be the case if 1) the contribution of turnover with 

respect to nestedness were high and 2) the phylogenetic patterns in the 

community structure were erased, as our simulations confirm (Appendix A2, 

Figure A2.3). While we found a strong role of the species turnover after fire, 

this process did not erase the phylogenetically clustered pattern across 

communities, suggesting thus that dispersal was phylogenetically structured. 
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This raises the possibility that other mechanisms like competition by limiting 

similarity are also acting. 

Co-occurrence networks allow a deeper analysis of the ecological 

processes structuring microbial communities, identifying patterns that could be 

indicative of environmental filtering (e.g. Levy and Borenstein, 2013; Pascual-

García et al. 2014) but also other processes (e.g. competitive exclusion by 

limiting similarity) that would be indistinguishable at the community level if 

environmental filtering dominates (e.g. Horner-Devine and Silver, 2007; Steele 

et al. 2011; Faust and Raes, 2012). Positively and negatively correlated co-

occurrence patterns indicated by co-presence and exclusion links respectively 

could be interpreted in terms of either niche preferences or ecological 

interactions (Faust and Raes, 2012; Barberán et al. 2012; Pascual-García et al. 

2014). For instance, co-presence links could be the result of species sharing 

niche (i.e. species that exhibit abiotic or biotic abilities allowing its growth in 

similar environments) and/or interacting through cross-feeding, co-

aggregation or co-colonization whereas exclusion links could arise because 

species have different niche and/or are involved in interactions like 

amensalism, competition or predation (Faust and Raes 2012). By 

phylogenetically informing the co-presence and exclusion links we have tried 

to shed light on the relative contribution of two types of processes (niche 

preference vs. competitive ecological interactions) after fire. The phylogenetic 

analysis of our network links supports the hypothesis that both processes are 

acting because co-presence and exclusion links were phylogenetically clustered, 

which agrees with environmental filtering determining co-presence and 

competition by limiting similarity favouring exclusion (see Figure 1, scenario 

C). 

Closely-related species co-occurring more often than expected by 

chance is a common result that has been mainly attributed to environmental 

filtering in bacterial communities across a wide range of environments 

(Chaffron et al. 2010; Faust et al. 2012; Stegen et al. 2012; Levy and Borenstein 

2013; Pascual-García et al. 2014). Levy and Borenstein (2013) found that 

metabolic competition was positively correlated to microbial co-presence in the 

human microbiome, suggesting that despite closely-related species being more 
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likely to share nutritional profiles and therefore to compete more, they tended 

to co-occur frequently probably because they also share other traits allowing 

them to survive a strong environmental filter. In agreement with the 

predominant evidence of environmental filtering determining bacterial co-

occurrence, our co-presence links were populated with closely related species 

suggesting environmental filtering once more. This is not to say that ecological 

interactions like competition are not operating in bacterial communities (Levy 

and Borenstein 2013). In fact, our exclusion links also showed a 

phylogenetically clustered structure. We interpret this as the result of 

competitive exclusion by limiting similarity, where non-coexisting species 

belonging to an exclusion link were closely related species competing and 

excluding each other. In brief, both assembly processes occur at the same time 

and do not necessarily involve the same bacterial taxa. For example, 

immediately after fire, the co-presence links involving the most closely related 

taxa occurred between Bacilli species, suggesting that fire filtered the 

sporulation character. However, the exclusion links involving closely related 

taxa occurred between Alphaproteobacteria, indicating their role in competitive 

interactions (Goberna et al. 2014b). Other assembly processes (e.g. priority 

effects) could be relevant to the community after a disturbance (Nemergut et 

al. 2013). However, the fact that temporal trajectories in community 

composition after fire were similar across plots in addition to the phylogenetic 

patterns not being erased after the fire suggests that initial taxonomic 

composition, and therefore priority effects, were not determinant. 

Fire changed the relative importance of niche-based assembling 

mechanisms over time, as postulated by empirical and conceptual models of 

microbial community succession (Ferrenberg et al. 2013; Dini-Andreote et al. 

2015). This was suggested by the temporal variation in the phylogenetic 

diversity of both co-presence and exclusion links after fire indicating that this 

perturbation alters the contribution of environmental filtering and competition 

by limiting similarity. Ferrenberg et al. (2013) showed that soil bacterial 

community assembly in burned sites one month after fire was significantly 

more stochastic compared to the control, the reverse trend appearing several 

weeks later. We detected a very similar trend in our community, with 

phylogenetic diversity values approaching randomness one month after fire and 
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the low phylodiversity values indicative of environmental filtering (sensu 

Mayfield and Levine 2010) recovering later. By carefully inspecting the 

phylogenetic diversity of co-presence and exclusion links, we interpret this 

temporal fluctuation at the community level as the result of the balance 

between environmental filtering and competition by limiting similarity pushing 

towards low or high phylogenetic diversities. Species sharing a link might 

represent common life strategies to cope with the environmental conditions 

imposed by the great diversity of microhabitats contained in the soil (Raynaud 

and Nunan 2014; Koeppel and Wu 2014; Pascual-García et al. 2014). Examples 

of these strategies could include the ability to sporulate, the early colonization 

of the environment (e.g. by fast-growing copiotrophic organisms), or the use 

of the newly available forms of mineral nitrogen by denitrifiers, able to thrive 

in low-oxygen microniches that can be found in any aerobic soil. Those 

strategies, which involve traits related to either environmental tolerance (e.g. 

endospore formation) or competitive abilities (e.g. denitrification), are 

phylogenetically conserved with a varying strength (Goberna et al. 2014a). 

Ultimately, the phylogenetic signatures at the community level will be the result 

of both the evolutionary conservatism and the importance of these traits to 

survive post-fire conditions. Thus, combining phylogenetic and functional 

analyses will provide a better understanding of the post-fire community 

assembly mechanisms. 

In conclusion, we suggest that despite the weak changes showed in the 

general parameters of the co-occurrence networks, fire altered community 

assembly mechanisms by changing species richness and composition. By 

phylogenetically informing co-presence and exclusion links of co-occurrence 

networks, we detected that fire altered the relative importance of environmental 

filtering and competitive exclusion by limiting similarity. 

4.4. EXPERIMENTAL PROCEDURES 

4.4.1. Study site and experimental fire 

An experimental fire was ignited on 22 April 2009 in a 500 m2 area of a 

dense shrubland dominated by Rosmarinus officinalis L. in eastern Spain (Teresa 

de Cofrentes, Valencia). Fire completely burned the plant cover that started 
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slightly recovering 4 months later (Figure A1.5). Soils are Haplic Leptosols 

(Calcaric, Humic) (FAO–ISRIC–IUSS, 2006) developed on limestones. The 

mean annual rainfall in the study site is 446 mm and mean annual temperature 

13.7 ºC (Figure A1.5). Surface soil samples (0-2 cm) were taken from ca. 1×1 

m georeferenced plots (n=10), which were randomly located at 1 to 3 m apart 

from each other within a 150 m2 area. A total of 70 topsoil samples (i.e. 10 plots 

x 7 time points) were collected immediately before fire, and 1 day, 1 week, 1 

month, 4.5 months, 9 and 12 months after the fire. To reduce the spatial 

heterogeneity that results from sampling an adjacent unburned area, the pre-

fire samples were considered as the unburned control. Soils were transported 

to the laboratory on ice, immediately sieved (<2 mm) and stored at 4 ºC. Soil 

samples (approximately 300g) were analysed for their physical and chemical 

properties, including pH, gravimetric humidity, total organic carbon (TOC), 

electrical conductivity (EC), total nitrogen (TN), nitrate-N (NO3
--N) and 

ammonium-N (NH4
+-N) using standard procedures as described by Goberna 

et al. (2012). 

4.4.2. Soil DNA extraction and pyrosequencing 

Soil DNA was extracted within 24 h after sampling from ca. 0.25 g soil 

with the PowerSoil® DNA isolation kit (MO BIO Laboratories, Carlsbad, 

California), which directly extracts the DNA after the physical and chemical 

lysis of cells. After a quality check of DNA extracts, the bacterial 16S rRNA 

gene was amplified using primer 8F (5’-AGAGTTTGATCCTGGCTCAG-3’; 

Turner et al. 1999) and 534R (5’-ATTACCGCGGCTGCTGGC-3’; Muyzer et 

al. 1993), including each sample a 454 sequencing adaptor (5’-

CCATCTCATCCCTGCGTGTCTCCGACTCAG-3’) and a barcode in its 5’-

end randomly selected from those published by Hamady et al. (2008). 

Pyrosequencing was performed by GATC Biotech (Konstanz, Germany) with 

the 454 GS-FLX platform (Roche). Further details of PCR conditions and 

purification can be found in Pérez-Valera et al. (2015). 
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4.4.3. Sequence analysis and phylogeny reconstruction 

The initial sequence processing was performed by MR DNA 

(Shallowater, TX, USA) where short sequences (< 200 bp) were removed, 

primers and barcodes trimmed, and chimeric sequences excluded. After the 

initial processing, a total of 69143 sequences were obtained, with 1016.81 ± 

198 (Mean ± SD) sequences per sample (Table A1.3). Two samples (belonging 

to 1d and 9m time points) were discarded because they failed to amplify. 

Operational taxonomic units (OTUs) were defined at an identity level of 97% 

and, after removing singletons, 3464 OTUs were aligned with PyNAST 1.2.2 

in QIIME 1.8.0 (Caporaso et al. 2010a; Caporaso et al. 2010b). After manually 

checking the alignments and removing the hypervariable regions in QIIME, 

maximum likelihood phylogenetic trees were built with the GTRGAMMA 

substitution model using RAxML 7.3.0 (Stamatakis 2006). We constructed 

three independent trees to account for the uncertainty of the phylogenetic 

reconstruction. The topology of the basal relationships in the trees was 

constrained to match that of the megatree built from the Silva database (Release 

108, Quast et al. 2013). Then, we constructed an OTU x plot abundance matrix 

showing the abundance of the total 3464 OTUs in each of the 68 samples. In 

order to reduce the potential bias caused by the differential sequencing depth 

between samples, rarefied richness was calculated (at 1023 sequences per 

sample) through an individual-based multinomial model which uses ten 

randomized samplings without replacement to estimate richness as in Colwell 

et al. (2012). The relative abundance of each OTU was corrected by the 

estimated number of 16S rRNA gene copies (Kembel et al. 2012).                

Further details about the sequence analysis along with sequences from              

the pre-fire conditions are available in Pérez-Valera et al. (2015).                       

Post-fire sequences were deposited in the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena/data/view/PRJEB9090). 

4.4.4. Network analysis 

OTUs co-occurring more (co-presence) or less (exclusion) often than 

expected by chance were detected through co-occurrence network analysis. Co-

presence and exclusion interactions were identified using an ensemble-based 

http://www.ebi.ac.uk/ena/data/view/PRJEB9090
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network approach, which captures links from two measures of correlation 

(Pearson and Spearman) and dissimilarity (Bray Curtis and Kullback-Leibler) 

to cover a wide range of relationships (e.g. linear or non-linear), to deal with 

noise and outliers and thus, to reduce the impact of choosing a single measure 

(Faust and Raes 2012). Links detected by several correlation/dissimilarity 

measures in the same pair of OTUs were considered as a single link. The 

interaction sign was used to distinguish between co-presence and            

exclusion links. The analyses were run with the help of CoNet 1.0b6             

(Faust et al. 2012; Faust and Raes 2012) and the script available at 

http://psbweb05.psb.ugent.be/conet/cmdline.php. Seven networks, one per 

time point, were constructed from the OTU x plot relative abundance matrix. 

Before network construction, samples were filtered such that OTUs present in 

less than 1/3 of the samples, i.e. low-abundant OTUs which could cause 

artefactual associations (Faust and Raes, 2012), were removed. The sum of the 

filtered OTUs was kept to preserve taxon proportions. Next, samples were 

normalized by calculating the relative abundance of each OTU. Then, networks 

were computed with the 1000 initial top- and bottom-scoring links for each 

measure. Statistical significance was tested by obtaining the link- and measure-

specific p-value as the mean of the permutation distribution under the 

bootstrap distribution, using 1000 iterations for each distribution. In order to 

deal with the compositionality bias caused by the data normalization, that is, an 

increase in the absolute abundance of an organism implies a decrease in the 

relative abundance of all other, we re-normalized the data in each permutation 

(Faust et al. 2012). Thus, the null model captures the effect of data 

normalization (Faust et al. 2012). Dissimilarity measures (i.e. Bray Curtis and 

KullBack-Leibler) were not re-normalized because they are not affected by this 

bias (Lovell et al. 2010; Faust et al. 2012; Weiss et al. 2016,). Prior to 

computation, each row was divided by its sum for Bray Curtis calculations. 

Unstable links with scores not within the 95% confidence interval of the 

bootstrap distribution (e.g. outliers) or those with an opposite interaction sign 

were removed. P-values of different correlation/dissimilarity measures 

supporting the same link were merged using Brown's method and corrected for 

multiple testing using Benjamini-Hochberg's procedure (Brown 1975; 

Benjamini and Hochberg 1995). Finally, networks were filtered to keep only 

links with an adjusted merged p-value below 0.05. In order to reduce the 

http://psbweb05.psb.ugent.be/conet/cmdline.php
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number of spurious and artefactual relationships, only those links supported by 

at least two correlation and/or dissimilarity measures were kept. We run 

sensitivity analyses to different parameters involved in network construction. 

Specifically, we modified data normalization (yes/no), number of 

correlation/dissimilarity measures (1/2), initial top- and bottom-scoring links 

(1000/2000) and minimal species occurrence (2/6) and results were not altered 

(data not shown). 

4.4.5. Phylogenetic diversity 

Phylogenetic diversity (PD) of the whole bacterial community was 

calculated as the mean pairwise distances between OTUs standardized by the 

expectation of a null model. This is equivalent to -1 times the abundance-

weighted Net Relatedness Index (NRI): 

 PD = –NRI = (MPDobs – MPDrand)/sd_MPDrand 

 where MPDobs is the mean pairwise phylogenetic distances between the 

OTUs coexisting in a sampled plot, MPDrand is the average of MPD calculated 

in n randomly constructed communities after shuffling the distance matrix 

labels of all the OTUs in the community, and sd_MPDrand is the standard 

deviation of MPDrand (Webb et al. 2002). Phylogenetic diversity of the links was 

calculated as the phylogenetic distance of each species pair against the 

phylogenetic distance of two randomly selected species (999 iterations). This 

procedure allows examining whether OTUs belonging to co-presence or 

exclusion links are more (negative values) or less (positive values) closely related 

than expected by chance. Thus, negative values of phylogenetic diversity 

indicate phylogenetic clustering while positive values indicate phylogenetic 

overdispersion. Calculations were run with the picante package for R (Kembel 

et al. 2010). Significance was tested by an across-sample (link) analysis (Hardy 

2008). That is, we tested if the sets of communities (links) within a time point 

(link type) were significantly different from zero by calculating a Bayesian mean 

over sites with the help of the MCMMglmm package for R (Hadfield 2010). 

Phylogenetic (i.e. patristic) distances were computed using the cophenetic 

function for R.  
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4.4.6. β-diversity analyses 

Nestedness and turnover components of temporal β-diversity (i.e. 

through time) were computed in order to test whether species after fire were a 

subset of the previously present species or, conversely, the loss and gain of 

species were more relevant after fire. The β-diversity analysis was performed 

between pairs of samples of adjacent time points using incidence matrices and 

the beta.temp function (with the Sorensen dissimilarity index) of the betapart 

package for R (Baselga et al. 2013). We also calculated the number of shared 

and not shared (lost and new) species between such samples using the 

betapart.core function of betapart.  

4.4.7. Statistical analyses 

Changes in the OTU composition of the bacterial communities after 

the fire were tested by permutational multivariate analysis of variance 

(PERMANOVA) using Bray Curtis dissimilarity matrices. This analysis was 

carried out with the adonis function using pairwise orthogonal contrasts 

comparing the pre-fire OTU x plot abundance matrix with all the post-fire 

matrices in the vegan package for R (Oksanen et al. 2015). Principal coordinates 

analysis (PCoA) of the Bray Curtis dissimilarity matrix was used to analyse and 

visualize the spatial differences in the community structure among plots over 

time in R. Physical and chemical parameters were fitted onto the ordination 

with the envfit function in the vegan package for R, showing only the variables 

that were significantly (P < 0.05) correlated to either axis. 

Post-fire changes in OTU richness and phylogenetic diversity were 

calculated through a Bayesian generalized linear model using time since fire as 

a categorical independent factor. To account for temporal variation in diversity 

parameters due to seasonal climatic conditions (i.e. air temperature and 

precipitation, Figure A1.5), we used as the dependent variable of the model the 

residuals of a previous model including climatic conditions as independent 

factors. Both OTU richness and phylogenetic diversity were significantly 

correlated with air temperature (Richness post-mean estimate [95% credible 

interval]: -5.34 [-8.14, -2.89]; PD: 0.12 [0.06, 0.19]) but not with precipitation 
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(Richness post-mean estimate: -0.08 [-0.33, 0.19]; PD: 3×10-3 [-3×10-3, 1×10-

2]). Thus, temperature was the only climatic variable taken into account to 

obtain the statistical residuals. To accommodate the topological and 

chronological uncertainty of the trees in the phylogenetic diversity model, we 

ran three models with three independent trees and integrated over the posterior 

samples by drawing 1000 random samples across models.  

Post-fire changes in the phylogenetic diversity of co-presence and 

exclusion links were analysed following the same steps described above. In this 

case, the GLM had phylogenetic diversity as dependent variable and time since 

fire and link type (i.e. co-presence vs. exclusion links) as crossed independent 

factors. Neither temperature nor precipitation explained the phylogenetic 

diversity of co-presence links (temperature post-mean estimate [95% credible 

interval]: 5×10-3 [-5×10-3, 0.01]; precipitation: 5×10-4 [-6×10-4, 2×10-3]). The 

phylogenetic diversity of exclusion links was correlated with air temperature 

(post-mean estimate: 0.01 [1×10-3, 0.02]) but not with precipitation (post-mean 

estimate: 4×10-4 [-8×10-4, 0.01]). Therefore, in this case we used the residuals 

from the climatic model. 
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CHAPTER III: Fire modulates ecosystem functioning 

through the phylogenetic structure of soil bacterial 

communities 

 

ABSTRACT 

1. The ecosystem functions performed by soil microbial communities can 

be altered by ecological disturbances that deeply modify abiotic factors. 

Fire, a widespread disturbance in nature, is well known to alter soil 

abiotic properties but we still ignore how these shifts are translated into 

changes in the structure of soil microbial communities and their 

ecosystem functions. The phylogenetic structure of soil bacterial 

communities has been shown to be a good predictor of ecosystem 

functions, and therefore we used it as a measure linking the temporal 

variation of soil abiotic properties and ecosystem functions caused by 

an experimental fire in a Mediterranean shrubland.  

2. Fire immediately favoured one phylogenetic clade containing lineages 

that are able to thrive with high temperatures and to take advantage of 

the post-fire nutrient release. Later changes in the phylogenetic 

structure of the community were dominated by phyla from another 

basal clade that show competitive superiority coinciding with high 

levels of oxidizable carbon in soil. The phylogenetic structure of the 

bacterial community significantly explained not only microbial biomass, 

respiration and specific enzymatic activities related to C, N and P cycles 

but also the mean number of rRNA copies in the community, an 

integrative proxy of different ecosystem functions.  

3. While most of the ecosystem functions recovered one year after the 

fire, this was not the case for the structure of bacterial community, 

suggesting that functionally equivalent communities might be 

recovering the pre-disturbance levels of ecosystem functions. 
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5.1. INTRODUCTION 

Microbial communities are an essential component of ecosystems, 

involved in many processes that shape the energy and nutrient flows and 

determine their productivity (Van der Heijden et al. 2008; Bardgett & van der 

Putten 2014). Soil bacteria are an extraordinarily diverse group of organisms 

with enormous functional capabilities that are fundamental for ecosystem 

performance, including mineral weathering, primary production and organic 

matter decomposition (Van der Heijden et al. 2008; Schimel & Schaeffer 2012; 

Bardgett & van der Putten 2014). Soil abiotic factors are main drivers of 

microbially-mediated ecosystem processes (Graham et al. 2014; López-Poma & 

Bautista 2014; Graham et al. 2016), and these processes can be better predicted 

by incorporating measures of microbial community structure (Graham et al. 

2016). An increasing body of evidence suggests that including phylogenetic 

information to the measures of community structure improves the prediction 

of ecosystem functions (EF), since common evolutionary history defines 

shared functional abilities (Maherali & Klironomos 2007; Cadotte et al. 2008; 

Srivastava et al. 2012). This statement holds true for soil bacterial communities 

(Gravel et al. 2012; Venail and Vives 2013; Pérez-Valera et al. 2015), as 

prokaryotic traits that are relevant both to community assembly and EF are 

phylogenetically conserved (Martiny et al. 2015; Goberna & Verdú 2016; 

Morrissey et al. 2016).  

Wildfires alter the functioning of forest ecosystems through changes in 

their biotic and abiotic components (Certini, 2005; Hart et al. 2005; Mataix-

Solera et al. 2009; Keeley et al. 2012). Fire exposes soil microbial communities 

to extremely high temperatures and shifts their abiotic environment, thus 

altering their taxonomic and phylogenetic composition (Chapter IV). Fire tends 

to favour those lineages with heat-resistance capacities (e.g. spore-formers) 

and/or fast-growth strategies (Smith et al. 2008; Bárcenas-Moreno et al. 2011; 

Ferrenberg et al. 2013). Since microbial traits conferring capabilities to cope 

with fire exhibit a phylogenetic signal, i.e. closely related taxa tend to be more 

similar in their trait values (Goberna & Verdú 2016), changes in the community 

are phylogenetically structured (Pérez-Valera et al. 2017). That is to say, the 

probability of taxa to survive and thrive after fire are determined by their 
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evolutionary history. From an ecological perspective, fire also alters the 

competitive relationships among bacterial community members by shifting the 

availability of soil resources, mainly organic matter, nutrients and water (Pérez-

Valera et al. 2017). Such variations in the competitive interactions can shift the 

dominance of main lineages, ultimately conditioning the overall microbial 

productivity (Knelman & Nemergut 2014; Pérez-Valera et al. 2015). Indeed, 

fire-induced shifts in the communities of soil microbes change microbial 

biomass, total activity and the rates at which organic compounds are 

decomposed and hydrolysed (Hernández et al. 1997; Choromanska & DeLuca 

2002; Fontúrbel et al. 2012; Goberna et al. 2012).  

The phylogenetic composition of soil bacterial communities in 

Mediterranean ecosystems is resilient to fire (Chapter IV), but the effects of 

post-fire community assembly on ecosystem performance have not been 

explored. By assembling bacterial communities through immigration 

experiments, Tan et al. (2012) showed that the initial phylogenetic relatedness 

among lineages determines the final composition of assembled communities. 

In these experimental communities, phylogenetic diversity was systematically 

related to ecosystem functioning, but the assembly history determined EF 

depending on the identity of community members (Tan et al. 2012). For 

instance, the assembly history of Staphilococcus communities determined both 

bacterial productivity and decomposition, while that of Bacillus communities 

influenced only productivity. These enticing experiments suggest that surveying 

the relationship between microbial diversity and EF needs of phylogenetically-

informed metrics that take taxon identity into account. This is the case of the 

measures of phylogenetic community structure, such as that proposed by Pillar 

and Duarte (2010), which is able to identify the lineages linked to shifts in the 

phylogenetic structure of communities across environmental gradients (Duarte 

et al. 2016) and predict microbially-driven EF (Pérez-Valera et al. 2015). In 

addition, by showing the differential response of bacterial productivity and 

decomposition to community composition, the experiments by Tan et al. (2012) 

encourage using a battery of microbial indicators of ecosystem functioning. 

Community-level EF indicators that have been traditionally used include 

microbial biomass, activity, carbon use efficiency (i.e. organic carbon 

transformed into microbial biomass), as well as the rates of organic matter 
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decomposition and enzymatic hydrolysis of carbon, phosphorous and nitrogen 

organic compounds (Zak et al. 2003; Maestre et al. 2012; Goberna et al. 2012; 

Navarro-Cano et al. 2014). More recently, the rRNA operon copy number has 

been shown to bear several attributes that turn it into a good proxy of EF, since 

it correlates to microbial growth and sporulation efficiency and is negatively 

related to carbon use efficiency and protein yield (Lauro et al. 2009; Yano et al. 

2013; Nemergut et al. 2016; Roller et al. 2016). Therefore, it could be expected 

that the immediate burst of nutrients caused by fire (Certini 2005) leads to the 

dominance of bacteria adapted to high resource availability showing high rRNA 

operon copy numbers, but low carbon use efficiency and reduced rates of 

enzymatic activity.  

We speculated that the post-fire evolution of the phylogenetic 

composition of soil bacterial communities would drive the ecosystem functions 

related to microbial productivity, decomposition and nutrient cycling. To test 

this hypothesis, we analysed the phylogenetic structure of soil bacterial 

communities and measured microbial indicators of ecosystem functioning 

immediately before and during one year after an experimental fire in a 

Mediterranean ecosystem. We also tested i) which soil abiotic properties that 

are altered by fire drive the recovery of the phylogenetic structure of soil 

bacterial communities, and ii) whether the phylogenetically structured shifts in 

the soil bacterial communities determine the post-fire recovery of indicators of 

microbial biomass, growth rate, carbon use efficiency, organic matter 

decomposition, as well as carbon, phosphorous and nitrogen cycling.  

5.2. MATERIALS AND METHODS 

5.2.1. Experimental design and fire effects on soil abiotic factors 

This study was carried out in a Mediterranean ecosystem that was 

exposed to an experimental fire in April 2009. The vegetation, a dense 

shrubland dominated by Rosmarinus officinalis L., was completely burned out. 

Soils were Haplic Leptosols (FAO–ISRIC–IUSS 2006), mean annual rainfall 

446 mm and temperature 13.7ºC. Further details about the site, experimental 

fire and sampling can be found in Goberna et al. (2012). Briefly, surface soil 

samples (0-2 cm) from about 1 × 1 m were randomly selected (n=10), 1-3 m 
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apart from each other within a 150 m2 area. Seventy samples (10 plots x 7 time 

points) were collected (~300g) prior to fire and 1 day, 1 week, 1 month, 4.5 

months, 9 and 12 months after the fire. Pre-fire samples were considered as the 

unburned control to minimize the environmental and spatial heterogeneity that 

results from sampling an adjacent unburned area. The effect of the seasonal 

variation in the climatic conditions throughout the experiment were accounted 

for in the statistical analyses (see below). Samples were transported to the 

laboratory on ice, sieved (2 mm) and stored at 4ºC. Several physical and 

chemical variables were analysed using standard procedures (see Goberna et al. 

(2012) and Pérez-Valera et al. (2017) for further details). Briefly, fire triggered 

an immediate (1 day) pulse in inorganic forms of N (i.e. NO3
--N and NH4

+-N) 

and electrical conductivity (EC) (Figure B1). In addition, fire significantly 

increased total organic C (TOC) and decreased humidity and pH after 1 week 

to 1 month (Figure B1). Despite NO3
--N or NH4

+-N returned to pre-fire levels 

after several months, TOC, humidity, pH or EC did not recover during the 

study period (Figure B1).  

5.2.2. DNA extraction and sequencing 

A thorough description of DNA extraction, purification and 

pyrosequencing procedures is given in Pérez-Valera et al. (2017). Briefly, DNA 

from soil samples was extracted within the first 24 h after sampling from ca. 

0.25g of soil with the PowerSoil DNA isolation kit (MO BIO Laboratories, 

Carlsbad, California). After quality check of DNA fragments, 16S rRNA genes 

were PCR amplified using universal bacterial primers, and amplicons purified 

and sequenced using the Roche 454 GS-FLX platform. Raw DNA sequences 

were processed in order to remove low-quality, chimera and singleton 

sequences. A total of 3,474 operational taxonomic units (OTUs) were obtained 

after grouping sequences at the 97% sequence similarity level. We then 

calculated the relative abundance of OTUs as the ratio between absolute reads 

per OTU and the total number of sequences per sample. We estimated the 

number of 16S rRNA gene copies for each OTU using ancestral state 

reconstruction methods following Kembel et al. (2012), and used it to correct 

the relative abundance of each OTU. This correction was obviously not used 

to calculate community-weighted means of rRNA operon copy numbers (see 
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details below). We have previously described how fire altered the relative 

abundance of main phyla (Pérez-Valera et al. 2017). Briefly, Firmicutes increased 

immediately after fire, and recovered their pre-fire levels after 4.5 months 

(Table B1). On the contrary, Proteobacteria was initially reduced, due to the 

decline in Alphaproteobacteria, but surpassed its pre-fire values after 1 month 

caused by a peak of root-colonizing Betaproteobacteria (Table B1). A delayed 

response was detected in the relative abundance of Bacteroidetes and 

Actinobacteria, which respectively showed increased and reduced levels one 

month and one year after fire compared with pre-disturbance levels (Table B1).  

5.2.3. Phylogeny reconstruction and phylogenetic community structure 

Sequences representative of each OTU were PyNAST-aligned, 

manually checked, and the hypervariable regions removed (Pérez-Valera et al. 

2017). To avoid the uncertainty produced by reconstructing phylogenies from 

short DNA sequences, we i) constrained the topology of the basal nodes 

accordingly to the OTU taxonomy and the SILVA database (Release 108, 

(Quast et al. 2013)) and ii) constructed three phylogenetic trees using the 

maximum likelihood algorithm in RAxML 7.3 (Stamatakis 2006). All trees were 

calibrated so as branch lengths represent chronological time (in million years) 

by using the function chronos in APE 4.0 (Paradis et al. 2004) for R (R Core 

Team 2017). Such a function uses a penalized likelihood approach to estimate 

the divergence times through a “correlated” model, which allocates similar 

diversification rates to closely-related tips. Phylogenetic trees were calibrated 

by using six dated nodes at the phylum-level (Table B2) according to Marin et 

al. (2017).  

The phylogenetic structure of soil bacterial communities was estimated 

through the phylogenetic fuzzy-weighted method originally described by Pillar 

and Duarte (2010). This procedure calculates an OTU x plot matrix (matrix P) 

that describes the phylogenetic composition of the community by taking into 

account the abundance and the pairwise phylogenetic relatedness of each OTU 

with every other OTU in the community. The more diverse the phylogenetic 

neighbourhood of an OTU in a sample, the lower its value in matrix P. Second, 

the method reduces the dimensionality of matrix P through principal 
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coordinate analysis (PCoA) and extracts the loadings of each taxon to the 

principal coordinates of phylogenetic structure (PCPS). We calculated the 

contribution of each lineage to the first (PCPS1) and second (PCPS2) axes of 

the PCoA by averaging the OTU loadings per phylum. While PCPS1 accounts 

for differences at the basal nodes of the phylogeny, PCPS2 and all subsequent 

axes tend to catch shallower phylogenetic levels in the tree (Duarte et al. 2012, 

2016). Both matrix P and PCoA calculations were run with the PCPS package 

for R (Debastiani & Duarte 2014).  

5.2.4. Microbial indicators of ecosystem functioning 

We measured five soil biochemical or physiological variables as in 

Goberna et al. (2012). Microbial biomass C (MBC) was quantified by the 

fumigation-extraction procedure as a proxy of microbial biomass. Basal 

respiration (BR) was measured during a 28d aerobic incubation experiment as 

an indicator of the activity of decomposers in mineralizing organic C into CO2. 

Enzymatic assays (β-glucosidase, alkaline phosphatase and urease activities) 

were performed to respectively estimate the rates of C, P and N cycling. Two 

indices, the microbial carbon use efficiency (MBC/TOC ratio, microbial 

biomass C per unit organic C) and the metabolic quotient (qCO2, C respired 

per unit microbial biomass) were respectively calculated as indicators of C use 

efficiency and C conservation efficiency (Anderson & Domsch 1990; Wardle 

& Ghani 1995). Finally, we calculated a community-weighted mean of the 

rRNA operon copy numbers by taking the product of the estimated 16S rRNA 

gene copies per OTU and its relative abundance (see details above), and 

summing the values across all OTUs in a plot.  

5.2.5. Statistical analyses 

We evaluated the post-fire evolution of the soil bacterial phylogenetic 

community structure, by testing the effect of time since fire on the two principal 

coordinates of phylogenetic structure (PCPS) using Bayesian generalized linear 

models (GLMs). Since the sampling covered time points varying in the climatic 

conditions, we initially tested the effect of the air temperature and precipitation 

on PCPS1 and PCPS2 in two separate Bayesian GLMs (data on the climatic 

conditions are given in Pérez-Valera et al. (2017)). We then used the residuals 
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of the ‘climatic’ model as the dependent variable in a second Bayesian GLM in 

which time since fire was used as a continuous independent variable. In this 

second model, we tested independently the effect of time since fire (as a 

continuous variable) on the residuals of PCPS1 and PCPS2. We also used the 

square of time since fire in the model to test for quadratic relationships. In all 

Bayesian GLMs, we accounted for the uncertainty of phylogenetic 

reconstructions by running three GLMs, each one using a PCPS calculated 

from an independent tree, and integrated over the posterior samples by drawing 

1.000 random samples across models in the MCMCglmm package in R 

(Hadfield 2010). We used default priors, with 130.000 MCMC iterations, a 

burnin period of 30.000 iterations and a thinning of 100. 

We tested whether taxa, PCPS and EF microbial indicators in post-fire 

communities differed significantly from pre-fire values by fitting GLMs with 

taxa abundances, PCPS or EF indicators as dependent variables and time since 

fire as a categorical independent factor. In this case, we also took into account 

the seasonal variations in the climatic conditions as above.  

We then tested whether changes in soil abiotic properties determined 

the phylogenetic community structure of bacterial communities using PCPS1 

or PCPS2 as the dependent variable and the soil abiotic factors as independent 

variables. Finally, we evaluated the effect of the phylogenetic community 

structure (PCPS1 and PCPS2) on each EF microbial indicator. Time since fire 

was included as a random factor in all models and seasonal variation in climatic 

variables was accounted for as above.  

5.3. RESULTS 

We described the phylogenetic composition of the bacterial 

communities through matrix P, in which each OTU has a value per sample that 

describes its phylogenetic neighbourhood. We show average matrix P values 

for all phyla detected before and after an experimental fire together with the 

phylogenetic relationships among phyla (Figures 1A and 1B). Under pre-fire 

conditions, OTUs belonging to Actinobacteria, Proteobacteria and the phylogenetic 

clade containing Nitrospirae and Acidobacteria showed high matrix P values 
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indicating that they tend to coexist with abundant close relatives (Figure 1B). 

Conversely, Thermi and Cyanobacteria exhibited low matrix P values, suggesting 

that OTUs within these lineages share their neighbourhood with more distantly 

related bacteria. Fire altered matrix P values distinctly depending on the lineage 

(Figure 1B). The clade including Proteobacteria and Bacteroidetes had lower matrix 

P values 1 day after fire and progressively higher values towards the end of the 

study period, whereas the opposite tendency was detected for the clade 

containing Actinobacteria, Firmicutes, Thermi and Cyanobacteria.  

 

Figure 1: A) Phylogenetic relationships of main bacterial phyla, B) Matrix P values per 
phylum and sampling time. Bars indicate SE. 
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Variations in matrix P values with fire were translated into shifts in 

the two principal coordinates of phylogenetic structure (PCPS). According to 

the taxon loadings on PCPS1, this axis segregated two clades at the deepest 

phylogenetic level (Figure 2). One of these basal clades, including Actinobacteria, 

Firmicutes, Thermi and Cyanobacteria (Figure 1A), contributed to the negative pole 

of PCPS1 (Figure 2). The second clade, including Proteobacteria, Bacteroidetes, 

Planctomycetes and Deferribacteres (Figure 1A), had positive loadings on PCPS1 

(Figure 2). PCPS1, which explained 40% of the total variance, was linearly 

correlated with time since fire (post-mean estimate [95% credible interval] = 

4×10-4 [2×10-4, 6×10-4]) after accounting for climatic oscillations (Figure 3A). 

PCPS1 scores 1 day after fire were significantly lower than pre-fire scores, and 

reached significantly higher values 1 year later. PCPS2 (11% of total variance) 

was also significantly correlated with time since fire, once the climatic variations 

were considered, following a quadratic model (post-mean estimate of time = 

4×10-4 [-2×10-5, 9×10-4]; time^2= -1×10-6 [-2×10-6, -4×10-8]) (Figure 3B). 

PCPS2 scores were significantly higher than pre-fire scores 1 month after fire, 

and then recovered pre-fire levels (Figure 3B). Proteobacteria had the highest 

loadings on PCPS2 (Figure 2).  

Fire-induced shifts in the phylogenetic structure of soil bacterial 

communities were determined by changes in main soil abiotic properties 

(Figure 4). Specifically, the levels of NH4
+-N and pyrophosphate extractable C 

(i.e. a measure of the total amount of oxidizable C) were the main predictors 

of PCPS1, whereas EC significantly explained PCPS2 (Figure 4, Table 1). In 

turn, the phylogenetic community structure of soil bacteria determined 

microbial EF indicators. PCPS1 correlated negatively with the 16S rRNA copy 

number and positively with respiration and qCO2. PCPS2 significantly 

explained MBC, MBC/TOC ratio and enzymatic activities related to C, P and 

N cycling (Figure 4, Table 2).  
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Figure 2: Ordination biplot of the two first principal coordinates of phylogenetic 
structure (PCPS) of bacterial communities before and after an experimental fire. 
Taxon names indicate loading factors of bacterial phyla on PCPSs. Open circles 
represent average PCPS scores per time point. 
 

Table 1: Bayesian post-mean estimates and their expected 95% credible intervals for 
the effect of soil abiotic properties on the phylogenetic structure of bacterial 
communities. Significant values are shown in bold type. 

 PCPS1 PCPS2 

Total organic C 5.3×10-3 [-6.7×10-3, 1.7×10-2] 2.6×10-3 [-3.3×10-3, 9.2×10-3] 

Total N -1.3×10-2 [-3.1×10-1, 2.7×10-1] 1.2×10-1 [-4.8×10-2, 2.7×10-1] 

pH 4.8×10-2 [-1.5×10-1, 2.4×10-1] 4.6×10-2 [-7.3×10-2, 1.5×10-1] 

Gravimetric humidity -5.8×10-3 [-1.3×10-2, 2.0×10-3] 2.3×10-3 [-1.6×10-3, 6.2×10-3] 

NO3
--N -8.2×10-4 [-1.6×10-3, 1.2×10-5] -2.7×10-4 [-7.3×10-4, 2.0×10-4] 

NH4
+-N -9.0×10-3 [-1.6×10-2, -3.1×10-3] -1.7×10-3 [-5.0×10-3, 2.2×10-3] 

Pyrophosphate oxidizable C 1.1×10-5 [2.8×10-6, 2.1×10-5] -4.1×10-6 [-9.4×10-6, 2.7×10-7] 

Electrical conductivity -3.6×10-4 [-7.9×10-4, 1.3×10-4] 5.8×10-4 [2.9×10-4, 8.5×10-4] 
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Figure 3: Evolution of the phylogenetic structure of soil bacterial communities before 
and after an experimental fire considering A) PCPS1 and B) PCPS2. Experimental fire 
was performed at Time 0. Solid lines indicate linear (PCPS1) and quadratic (PCPS2) 
regressions as a function of time since fire. Bars indicate SE for n=10. Asterisks 
indicate significant differences between each time point and the pre-fire level after 
accounting for the seasonal variation of climatic conditions. 
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Fire produced both immediate and mid-term effects on microbial EF 

indicators once changes explained by climatic variations were accounted for 

(Figure 5). Fire initially (1 day to 1 week) increased the levels of microbial 

biomass C (MBC), MBC/TOC ratio, 16S rRNA copy numbers, basal 

respiration (BR), β-glucosidase and phosphatase activities, whereas it did not 

alter the metabolic quotient (qCO2) and decreased urease activity. Most of the 

initial peaks were reverted 1 month after fire, some variables such as 

MBC/TOC and phosphatase activity significantly decreasing even below pre-

fire levels. While fire-driven changes in MBC, 16S rRNA copy number and 

enzymatic activities recovered pre-fire values within the first year, the shifts in 

BR and MBC/TOC were long-lasting (Figure 5).  

 

Table 2: Bayesian post-mean estimates and their expected 95% credible intervals for 
the effect of bacterial phylogenetic structure (PCPS1 and PCPS2) on ecosystem 
function indicators. Significant values are given in bold type. 

 PCPS1 PCPS2 

Microbial biomass C 90 [-218, 433] 1039 [334, 1672] 

MBC/TOC ratio -0.1 [-0.8, 0.5] 1.3 [0.3, 2.4] 

16S rRNA copy number -1.0 [-1.8, -0.5] 1.2 [-0.1, 2.3] 

qCO2  3.0 [0.9, 5.4] -1.0 [-5.8, 3.2] 

Basal respiration 22.6 [4.0, 40.8] 36.1 [-0.4, 70.8] 

β-Glucosidase activity 1.1 [-0.9, 3.3] 8.2 [4.6, 12.1] 

Phosphatase activity 7.0 [-5.9, 19.9] 39.9 [16.8, 65.6] 

Urease activity 0.1 [-0.3, 0.7] -1.1 [-2.1, -0.1] 
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Figure 4: Fire-induced shifts on ecosystem functions are driven by changes in the soil 
abiotic environment that ultimately modifies the phylogenetic structure of soil 
bacterial communities. Positive and negative significant relationships are respectively 
shown in black and grey. Post-mean estimates and credible intervals (95%) are given 
in Tables 1 and 2.  
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Figure 5: Post-fire evolution of microbial parameters indicative of biomass, growth, 
organic matter decomposition, carbon use efficiency, and C, N and P cycling. Asterisks 
indicate significant differences between each time point and the pre-fire level after 
accounting for the seasonal variation of climatic conditions. 
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5.4. DISCUSSION 

Our results show that fire, by modifying soil abiotic properties, shifted 

the phylogenetic structure of bacterial communities and modified ecosystem 

functions related to microbial productivity, decomposition and nutrient cycling. 

Fire distinctly affected the two principal components (PCPS) that accounted 

for half of the variation in the phylogeny-weighted bacterial OTU composition. 

While PCPS1 scores increased in a linear fashion during post-fire evolution, 

those of PCPS2 followed a hump-shaped curve and recovered pre-fire levels. 

Scores of either PCPS responded to different soil abiotic parameters and 

eventually determined specific ecosystem functions. Although the bacterial 

phylogenetic community structure did not completely recover within the first 

year, most ecosystem functions returned to pre-disturbance levels. 

5.4.1. Fire and the phylogenetic structure of soil bacterial communities 

Fire instantly altered the phylogenetic structure of soil bacterial 

communities. As soon as one day after fire we detected significantly lower 

PCPS1 scores, a pattern that was driven by the response of organisms within 

the same basal clade in the bacterial phylogenetic tree. Many bacteria in these 

lineages are able to cope with high temperatures, either by producing resistance 

structures such as endospores (Firmicutes), spores (Actinobacteria) and akinetes 

(Cyanobacteria) or because of their thick cell walls (Thermi) (Dworkin 2006). The 

immediate response to fire of organisms belonging to this basal clade was most 

likely promoted by high temperatures, which stimulate spore germination 

(Dworkin 2006) and the ephemeral pulse in ammonium nitrogen, a direct 

product of combustion (Certini 2005). Indeed, we found that ammonium 

nitrogen correlated with PCPS1, suggesting that heat-resistant microbes 

thriving immediately after fire might have taken advantage of the burst in 

mineral nitrogen (Smith et al. 2008; Bárcenas-Moreno et al. 2011). Despite heat-

resistant bacterial lineages had different dominance in the community (ranging 

from <1% to 25% of the total community for Thermi and Actinobacteria, 

respectively) and their relative abundances shifted distinctly after fire (Pérez-

Valera et al. 2017), the response of their phylogenetic neighbourhood to fire 

was similar. That is, they tended to coexist with closer relatives immediately 
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after fire. This observation suggests that fire acts as an environmental filter that 

promotes the heat-resistance traits shared by these evolutionarily related 

organisms. The fact that such syndromes were captured by PCPS1, a metrics 

that accounts for differences at the most basal phylogenetic nodes, is consistent 

with those traits being deeply conserved in the phylogeny (Goberna & Verdú 

2016).  

The phylogenetic structure of the soil bacterial communities changed 

permanently during the study period. Our results suggest that such a shift was 

driven by organisms that belong to the second basal clade in the bacterial 

phylogeny, such as Proteobacteria and Bacteroidetes. These lineages include 

organisms that respond to the availability of organic carbon in soils (Fierer et 

al. 2007). In addition, Proteobacteria have been shown to exhibit a delayed 

response to abrupt environmental changes and competitively displace rapid 

responding (stress-tolerant) bacteria in laboratory experiments (Placella et al. 

2012; Jurburg et al. 2017). The dominance and shifts in relative abundance of 

Proteobacteria and Bacteroidetes in response to fire were not alike. However, their 

neighbourhood shifted similarly during post-fire recovery, as they all bore 

higher phylogenetic resemblance to neighbouring OTUs towards the end of 

the study period. This pattern underlay the significant increase in PCPS1 scores 

one year after fire and is therefore responsible for the fact that PCPS1 did not 

recover pre-fire levels. This trend was linked to the total levels of oxidizable 

carbon in soil, which we found to be positively correlated with PCPS1. This 

observation is in agreement with the fact that Proteobacteria respond to organic 

carbon producing changes in the community that are phylogenetically 

structured (Goldfarb et al. 2011; Goberna et al. 2014; Morrissey et al. 2016). 

Proteobacteria were also key determinants of the second component of 

phylogenetic structure (PCPS2), to which this taxon contributed with the 

highest loadings. The post-fire evolution of PCPS2 scores, peaking from 1 to 

4.5 months after fire and then returning to pre-disturbance values specifically 

resembles that of root-colonizing Betaproteobacteria (Pérez-Valera et al. 2017). 

The promotion of these organisms was likely supported by the temporary 

increase in the availability of inorganic ions in the soil solution, which is 

common after fire (Certini 2005), as PCPS2 scores were significantly explained 
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by the electrical conductivity. Shifts in the phylogenetic structure of soil 

bacterial communities were reflected in microbial EF indicators. 

5.4.2. Fire and microbial ecosystem functions 

Fire initially increased soil microbial biomass, C use efficiency and 

mineralization rates, as well as the cycling of organic C and P compounds. 

However, in the short term fire hampered the hydrolysis of organic N 

compounds, most likely due to product (ammonium N) inhibition of urease 

activity (Hoare & Laidler 1950). Contrarily to wildfires that significantly reduce 

microbial biomass and activity (Hernández et al. 1997; Jiménez-Esquilín et al. 

2008), prescribed or experimental fires, with their lower intensity, have been 

shown to induce light shifts (even increases) in microbial productivity and 

nutrient cycling activities (González-Pérez et al. 2004; Fontúrbel et al. 2012; 

Fultz et al. 2016; Muñoz-Rojas et al. 2016). 

We also detected an immediate increase in the community weighted 

mean rRNA copy numbers, indicating that fire favoured microbial lineages with 

an elevated number of copies of the 16S rRNA gene. Our results therefore 

support the observation that bacterial communities during the first stages of 

succession feature high rRNA operon copy numbers, as has been previously 

detected both in experimental and natural communities (Shrestha et al. 2007; 

Nemergut et al. 2016). Multiple rRNA operons have been suggested to be a 

discriminative genomic feature of the copiotrophic strategy (Lauro et al. 2009) 

and have been shown to determine cell growth and sporulation efficiency 

(Yano et al. 2013). Thus, in the first stages of succession, bearing an elevated 

16S rRNA copy number is thought to provide a selective advantage by 

increasing the ability to rapidly respond to nutrient inputs and/or to form 

spores (Nemergut et al. 2016). We could specifically attribute the increase in the 

rRNA to the initial rise of Firmicutes (Figure B2), basically within the class Bacilli 

(Pérez-Valera et al. 2017). This peak lasted for the first month after fire, when 

the community weighted mean rRNA copy number was still abnormally high, 

but C use efficiency, and the rates of C, P and N cycling had significantly 

dropped to (or below) pre-disturbance levels. These patterns fit well with the 

idea that organisms with high numbers of the rRNA operon can exhibit high 
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reproductive rates but low levels of C use efficiency and protein yield (Roller et 

al. 2016).  

Most microbial EF indicators returned to pre-fire levels during the 

study period, specifically those related to microbial biomass, rRNA operon 

copy number, and the rates of C, N and P cycling. Therefore, the recovery of 

most microbially-driven ecosystem functions was faster than that of the 

phylogenetic community structure. This opens the possibility that bacterial 

communities were not fully recovered, but replaced to a certain extent by 

another functionally equivalent community. Although functional redundancy 

has been suggested to operate in experimental bacterial communities (Bell et al. 

2005), this is currently difficult to test in natural communities based on our still 

low knowledge on the contribution of specific microbial groups to ecosystem 

processes (Allison & Martiny 2008). Alternatively, taxa in the post-fire scenario 

could be taxonomically and functionally different to those prior to disturbance, 

but result in the same process rates measured at the community level (Allison 

& Martiny 2008). In addition, we detected a certain degree of functional 

dissimilarity between pre- and post-fire communities, as not all microbial EF 

indicators recovered original levels throughout the study period. Microbial 

respiration and carbon use efficiency pointed to faster rates of organic carbon 

mineralization into carbon dioxide and a reduced conversion into microbial 

biomass one year after fire. Higher respiration rates correlate well with the 

delayed promotion of Betaproteobacteria and Bacteroidetes, whose relative 

abundance significantly explains C mineralization rates in soils (Fierer et al. 

2007). The observation that EF indicators had dissimilar post-fire trajectories 

depending on the relative abundance of particular phylogenetic lineages 

emphasize the importance of incorporating evolutionary information to 

understand how ecological disturbances may alter the relationship between 

biodiversity and ecosystem functioning. 
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CHAPTER IV: Phylogenetic diversity is resilient to fire across 

biological domains 

ABSTRACT 

Fire alters the structure and composition of above- and belowground 

communities with concurrent shifts in phylogenetic diversity. It is unknown 

whether phylogenetic diversity across biological domains is resilient to fire, 

what would preserve the evolutionary history represented in our ecosystems. 

While fire reduces plant phylogenetic diversity based on the recruitment of 

evolutionarily-related species with post-fire seed persistence, it increases that 

of soil microbes by limiting soil resources and changing the dominance of 

competing microbes. During community reassembly plant and soil microbes 

might experience opposing temporal trends in their phylogenetic diversity that 

are linked through changes in soil conditions. We tested this hypothesis by 

investigating post-fire evolution of plant and soil microbial (fungi, bacteria and 

archaea) communities across three 20-year chronosequences. Plant 

phylogenetic diversity increased with time since fire as pioneer seeders facilitate 

the establishment of distantly-related late-successional shrubs. The post-fire 

increase in plant phylogenetic diversity fostered plant productivity, eventually 

ameliorating soil organic C. These shifts in the soil conditions explained the 

post-fire reduction of fungal and bacterial phylogenetic diversity, suggesting 

that evolutionarily-related taxa with high relative fitness recover their 

competitive superiority during community reassembly. Our results suggest that 

phylogenetic diversity across biological domains is resilient to fire. 

6.1. INTRODUCTION 

Ecological disturbance can disassemble biological communities by 

changing their structure and composition, a topic of prime relevance in the face 

of the current unprecedented rates of environmental change (Keeley, 1986; 

Cairney and Bastias, 2007; Mikita-Barbato et al., 2015). Ecological communities 

can, however, experience no significant changes due to disturbance (resistance) 

or be capable of returning to their pre-disturbance structure and composition 

(resilience). The processes of community reassembly in resilient communities 
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can be better studied by using phylogenetic metrics of diversity, which inform 

on the evolutionary relationships among community members (Webb et al., 

2002). This is due to the fact that phylogenetically related organisms tend to 

respond similarly to disturbance (Verdú and Pausas, 2007; Amend et al., 2016), 

since functional resemblances among species can be predicted using their 

common ancestry (Blomberg et al., 2003; Goberna and Verdú, 2016). 

Furthermore, community resilience depends on the set of initial conditions, 

including the phylogenetic diversity of the species pool from which the 

community is reassembled (Tan et al., 2012).  

The phylogenetic diversity of plants and soil microbes is governed by 

sequentially operating assembly rules (Keddy, 1992; Goberna et al., 2014a). 

Abiotic filtering is a pervasive community structuring force across biological 

groups, and biological interactions further fine-tune the community structure 

(HilleRisLambers et al., 2012; Goberna et al., 2014b). Both assembly 

mechanisms determine the phylogenetic structure of plant and soil microbes, 

which in turn show intricate linkages. Plant phylogenetic diversity, which 

increases biomass production through species complementarity (Cadotte et al., 

2008; Cadotte, 2013), has been observed to either have a positive or a negative 

reflection on soil microbial phylogenetic diversity (Barberán et al., 2015; 

Goberna et al., 2016). These divergent patterns can be theoretically explained 

by two alternative mechanisms of community assembly (HilleRisLambers et al., 

2012; Goberna et al., 2016). First, diverse plant assemblages may supply a higher 

diversity of organic substances to the soil (Steinauer et al., 2016) leading to 

higher microbial phylogenetic diversity through niche differences. Second, 

diverse plant assemblages can supply more organic substances to the soil 

(Lange et al., 2015), thus increasing the competitive dominance of a few clades 

with high relative fitness that exclude entire lineages and lower microbial 

phylogenetic diversity. In addition to these top-down effects, evidence suggests 

that belowground diversity may affect plant diversity by changing herbivory, 

pathogenesis or soil nutrient availability, among others (Bardgett and van der 

Putten, 2014). The study of the phylogenetic diversity of biological 

communities has detected abiotic filters and biotic interactions also operate 

simultaneously to reassemble communities after an ecological disturbance 

(Verdú and Pausas, 2007; Pérez-Valera et al., 2017).  
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Fires are widespread disturbances worldwide that disrupt the 

composition and phylogenetic structure of biological communities (Verdú and 

Pausas, 2007; Xiang et al., 2014; Pérez-Valera et al., 2017). Different lineages 

have evolved a wealth of ecological strategies to cope with heat-induced 

mortality or cell damage resulting in contrasting disassembly processes. Plant 

species may persist in a population after fire by recruiting from a fire-resistant 

seed bank (i.e. seeders) or by the vegetative regrowth of adults (i.e. resprouters) 

(Keeley, 1986). High fire intensity, especially in arid ecosystems, acts as an 

abiotic filter favouring the seeder over the resprouter strategy (Pausas and 

Keeley, 2014). Because seeding is a phylogenetically conserved trait, the high 

abundance of seeders after fire often results in the overrepresentation of closely 

related species (Verdú and Pausas, 2007). Thus, the phylogenetic fingerprint of 

plant community disassembly produced by fire, although it depends on the pre-

fire proportion of seeders and resprouters, is generally the loss of phylogenetic 

diversity (Verdú et al., 2009).  

Soil microbes also have functional traits related to heat resistance. 

Archaea are the most tolerant to high temperatures given their characteristic 

cell wall and membrane lipid structure, based on ether bonds instead of the 

ester linkages found in most bacteria and eukaryotes (Stetter, 1999; Rothschild 

and Mancinelli, 2001). Bacterial living cells are generally not as heat-resistant, 

except for some groups of thermophiles, but many bacteria are able to produce 

resistant structures (e.g. spores, cysts, akinetes) that can withstand high 

temperatures, desiccation, radiation and other extreme abiotic conditions 

(Dworkin, 2006). Fungal cells are sensitive to heating (Rothschild and 

Mancinelli, 2001). However, fungi may produce thick-walled spores in 

hypogeous fruiting bodies or highly-compacted mycelia that provide them with 

fire resistance (Horton et al., 1998; Tedersoo et al., 2006). Since microbial 

functional traits are phylogenetically conserved (Martiny et al., 2013; Goberna 

and Verdú, 2016; Kia et al., 2017), it could be expected that, similar to plants, 

the overrepresentation of heat-resistant microbes would reduce soil microbial 

phylogenetic diversity after fire. However, existing evidence for bacteria and 

fungi points the opposite way, as fire increases the phylogenetic diversity of soil 

microbial communities (Rincón et al., 2014; Pérez-Valera et al., 2017). This 

increase in phylogenetic diversity could be attributed to a stronger competitive 
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exclusion between closely related species with similar niches and/or a reduced 

competitiveness of dominant taxa from entire clades with high relative fitness 

(Mayfield and Levine 2010; Goberna et al., 2014b; Rincón et al., 2014; Pérez-

Valera et al., 2017). Specifically, fire can increase competition by limiting the 

availability of soil moisture and organic substances (Neary et al., 1999; Certini, 

2005; Hart et al., 2005; Mataix-Solera et al., 2009).  

The high resilience of Mediterranean plant communities to fire has 

been attributed to the fact that fire alters species abundance rather than 

composition and therefore recovery only involves the return to pre-fire 

abundances (Lavorel, 1999). Post-fire recovery of soil bacterial and fungal 

communities, which are fire-sensitive and predominantly heterotrophic 

microbes, require the amelioration of soil conditions (Treseder et al., 2004; 

Cairney and Bastias, 2007; Xiang et al., 2014). Soil archaea, generally heat-

tolerant and including many chemolithotrophic organisms, seem to be more 

resilient to fire although scarce and contrasting results have been described 

(Goberna et al., 2012; Mikita-Barbato et al., 2015). Incorporating phylogenetic 

information to post-fire diversity trends would allow a better understanding of 

the assembly mechanisms driving the resilience of ecological communities 

across biological groups. We hypothesise that the phylogenetic diversity of 

plant communities in Mediterranean ecosystems will be resilient to fire, 

consequently triggering the reassembly of soil microbial communities through 

changes in soil conditions. Specifically, we test whether plant community 

reassembly enhances plant phylogenetic diversity up to pre-fire levels, fostering 

plant biomass (Cadotte et al., 2008; Cadotte, 2013) and in turn soil fertility 

(Goberna et al., 2016), thus ultimately decreasing the phylogenetic diversity of 

soil microbes (Goberna et al., 2014a). These opposing phylogenetic temporal 

trends during the post-fire recovery of plants and soil microbes would be 

coherent with the recovery of competitive microbial clades with high relative 

fitness. To test these hypotheses, we analysed the post-fire evolution of the 

phylogenetic diversity of plant, and soil fungal, bacterial and archaeal 

communities across three 20-year fire chronosequences. 
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6.2. MATERIALS AND METHODS  

6.2.1. Study area and experimental design 

This study was carried out in three fire chronosequences that were 

located in the North, Centre and South of Valencia (E Spain; Figure C1). Each 

chronosequence included 8 to 9 sites, making a total of 25 sites that had 

experienced a single wildfire event during the last 20 years (between 1994 and 

2014). In the study area, the fire regime has changed in the last 130 years, fire 

recurrence dropping from 397 to 49 years around the early 1970s (Pausas and 

Fernández-Muñoz, 2012). For the selection of the sites, we identified numerous 

burned areas using a database provided by the Valencian Government that 

included the dates and burned perimeter of all fires. According to this database 

only 1.7% of the total surface burned between 1994 and 2014 in the Valencian 

Community (ca. 5,300 out of 320,000 hectares) has experienced two or more 

fires. In order to reduce the environmental heterogeneity across sampling sites, 

we restricted the potential sites based on their similarities in lithology, slope 

orientation, and plant cover with the help of lithological maps (Gabaldón, 

1994), topographical maps (CNIG, 2014a) and orthophotographs (CNIG, 

2014b) using QuantumGIS 2.2 (QGIS Development Team, 2016). Sampling 

sites were finally established after an extensive field inspection. All sites had 

calcareous lithologies and we selected S-SW oriented slopes with <36° where 

typical Mediterranean scrublands develop (see details below). The main features 

of all sites are given in Table C1. 

To further control for the environmental variability, we established a 

paired experimental design, each site having a burned and an unburned plot. 

We considered as long unburned plots (hereafter referred to as “unburned 

plots”) those that had similar environmental conditions and land-use history 

than its paired burned plot, but had no historical fire register. Burned and 

unburned plots were located on average at (mean ± SE) 435 ± 49 meters away, 

ensuring the avoidance of fire edge effects. Plant and soil sampling was carried 

out in spring 2014 along three linear 25 m transects per plot, thus making a total 

of 150 transects (i.e., 25 sites × 2 plots × 3 transects). Transects were drawn in 

the direction of the slope and located ca. 10 meters apart.  
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6.2.2. Plant sampling and phylogeny reconstruction 

Plant cover of each species was estimated through the line-intercept 

sampling method in the three 25 m transects in each plot (Canfield 1941; Butler 

and McDonald 1983). In each transect, we measured the horizontal distance of 

the interception of each plant individual. Plant cover was estimated by adding 

the intercept distances per species and expressing it over the total transect 

distance (25m). Plant height was measured for each individual intercepting each 

transect, and its biomass estimated as plant height × horizontal interception. 

This quantifies the plant area that intercepts the transect, which we used as an 

estimate of the aboveground biomass supplying organic inputs to the soils that 

were sampled along the transect (details below). 

To reconstruct plant phylogeny, we grafted our study species                    

in the family-level angiosperm  tree derived from the                              

Angiosperm Phylogeny Group III (https://github.com/camwebb/tree-of-

trees/blob/master/megatrees/R20120829.new) by using the phylomatic 

package in Phylocom 4.2 (Webb et al., 2008) (Figure C2). The ages of 29 nodes 

in our tree were obtained from literature (Table C2) and subsequently used to 

calibrate the tree under a birth-death model with the BEAST 1.5.4 (Drummond 

and Rambaut, 2007) and the PolytomyResolver script (Kuhn et al., 2011). We 

also used this procedure to simultaneously resolve polytomies and generate 

many independent trees in such a way that topological and chronological 

uncertainty could be included in subsequent analyses. We generated 11,112 

phylogenetic trees, discarded the first 25%, and randomly selected five 

phylogenetic trees. Further details about this procedure can be found in Verdú 

and Pausas (2013). 

6.2.3. Soil sampling and sample analysis 

Surface soil samples (0-5 cm) from the 150 transects were collected with 

a hand shovel after removing the surface layer that included ashes (for burned 

plots), litter, mosses and stones. Along each transect, one composite sample 

was taken that consisted of 10 regularly distributed subsamples of ca. 100 g. 

Samples were transported into an isothermal icebox to the laboratory, sieved 

(<2mm) and kept at 5ºC. Soil moisture content (gravimetric humidity), pH and 

https://github.com/camwebb/tree-of-trees/blob/master/megatrees/R20120829.new
https://github.com/camwebb/tree-of-trees/blob/master/megatrees/R20120829.new
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electrical conductivity (EC) were analysed with standard procedures as in 

Goberna et al. (2012). Total C (TC) and N (TN) were determined by dry 

combustion at 500ºC using a TruSpec C/N analyzer (Leco Corp., MI, USA). 

Total organic C (TOC) was also quantified after a 55 °C acidic (HCl) treatment 

of the samples, and total inorganic C estimated as the difference between TC 

and TOC. Ammonium N (NH4
+-N) and nitrate N (NO3

--N) were quantified 

spectrophotometrically using the Nessler's reagent (0.09 M solution of K2HgI4 

in 2.5 M KOH) and after reducing it to NO2
--N. 

To assess the adequacy of our paired samples, we checked that the 

contents of total inorganic C did not significantly differ between pairs of 

burned and unburned transects (t71 = 0.77, P = 0.44). Total inorganic C, mainly 

corresponding to carbonates in our study soils, is not expected to be affected 

by fire unless temperature exceeds 1000ºC (Certini 2005). 

6.2.4. DNA extraction and sequence processing 

Soil DNA was extracted from ca. 0.25 g soil with the PowerSoil DNA 

Isolation Kit (MO BIO Laboratories, Carlsbad, CA). DNA quality was checked 

by electrophoresis in 1% agarose gels run in 0.5 × Tris–acetate–EDTA buffer. 

Amplifications of fungal ITS region were performed using the ITS1F (5’-

CTTGGTCATTTAGAGGAAGTAA-3’) and ITS4R (5’-

TCCTCCGCTTATTGATATGC-3’) primers (Gardes and Bruns, 1993; White 

et al., 1990). Amplifications of the bacterial and archaeal 16S rRNA gene were 

performed using the universal prokaryotic primers 515F (5’-

GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACVSGGGTATCTAAT-3’) (Caporaso et al., 2012). Each sample 

contained a unique 8-nucleotide barcode in its 5’ end. A single-step 30 cycle 

PCR was performed using HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, 

CA) under the following conditions: denaturation at 94ºC for 3 min, followed 

by 28 cycles of  denaturation at 94ºC for 30 s, annealing at 53ºC for 40 s, and 

elongation at 72ºC for 1 min, and a final elongation step at 72ºC for 5 min. 

PCR products from all samples were mixed in equal concentrations and 

purified using Agencourt Ampure beads (Agencourt Bioscience Corporation, 

MA, USA). Pyrosequencing was performed by MR DNA (Shallowater, TX, 
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USA) using Roche 454 FLX titanium instruments and reagents, and following 

manufacturer’s instructions. 

6.2.5. Sequence analysis and phylogeny reconstruction 

Fungal ITS amplifications produced 1,649,877 DNA sequences. 

Primers and barcodes were trimmed and short sequences (<150 bp) removed. 

Sequences with homopolymers exceeding 6 bp and those with ambiguous base 

calls were removed. The sequence processing workflow included denoising, 

chimera and singleton removal. Operational taxonomic units (OTUs), defined 

at an identity level of 97%, were taxonomically classified using BLAST and the 

UNITE database v.7 (Kõljalg et al., 2013). After this initial processing, 

1,080,311 sequences were grouped into 6,620 OTUs. The OTU × transect 

community matrix, initially constructed from absolute read counts, was 

standardized by dividing the abundance of each OTU between the total 

number of reads per transect. In order to reconstruct the fungal phylogeny, we 

first constructed a genus-level tree from the literature that included all possible 

fungal genera, families, orders, classes or phyla found in our study (Figure C3). 

Then, OTUs were grafted into this tree according to their taxonomic 

information. Tree branch lengths were estimated from 42 dated nodes obtained 

from the literature, as for plants (Table C3). In order to resolve the polytomies, 

580 trees were generated with BEAST after running the PolytomyResolver 

script. Five phylogenetic trees were randomly selected after removing the first 

143 trees (25% of burnin), which were used for subsequent analyses. Since 

fungal ITS region is highly variable within and between species (Nilsson et al., 

2008), we tested the robustness of our results after delimiting fungal OTUs at 

a cut-off of 99% sequence similarity. Post-fire recovery in richness, 

phylogenetic α and β diversity, as well as relative abundance of main phyla 

remained the same (data not shown).  

The 16S rRNA amplifications produced 2,547,644 sequences, which 

were processed as the ITS DNA sequences. After initial processing, 1,280,728 

sequences were grouped into 7,003 bacterial OTUs and 38,503 sequences into 

26 archaeal OTUs. OTUs were taxonomically classified using BLASTn and a 

curated database based on GreenGenes, RDPII and NCBI (DeSantis et al., 
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2006) and aligned with PyNAST (Caporaso et al., 2010a) in QIIME 1.9.1 

(Caporaso et al., 2010b). We constructed a separated OTU × transect 

abundance matrix for bacteria and archaea, and calculated relative abundance 

as above. We corrected the relative abundances based on the estimated number 

of 16S rRNA gene copies (Kembel et al., 2012). Bacterial and archaeal 

phylogenies were separately reconstructed using RAxML 8.2.4 (Stamatakis, 

2014) on the Cipres Portal (http://www.phylo.org), using the Maximum-

Likelihood algorithm with 1,000 bootstraps. A constrained topology at the 

phylum level, and at the class level for Proteobacteria, was used for all 

monophyletic clades in accordance with the SILVA database (Release 123, 

Quast et al., 2013). To account for the uncertainty of the phylogenetic 

reconstruction from short DNA sequences, five independent             

phylogenetic trees were constructed for bacteria and archaea.                            

DNA sequences were deposited in the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena/data/view/PRJEB13469). 

6.2.6. Diversity metrics and phylogenetic composition 

Plant richness was calculated as the sum of species per transect. Fungal, 

bacterial and archaeal richness was estimated by an individual-based 

multinomial model using QIIME, in order to reduce the bias due to the 

differential sequencing depth across samples. This model samples without 

replacement at a given sampling depth as in Colwell et al. (2012). 

Phylogenetic α diversity of plants, fungi, bacteria and archaea was 

calculated as the abundance-weighted standardized mean phylogenetic distance 

(stdMPD) with the picante package for R (Kembel et al., 2010): 

Phylogenetic α Diversity (PαD) = stdMPD = (MPDobs – MPDrand)/sd_MPDrand 

where MPDobs is the mean pairwise phylogenetic distance of species or OTUs 

per transect, MPDrand is the mean (n=999) of the community phylogenetic 

distance after randomly shuffling the distance matrix labels of all the species or 

OTUs, and sd_MPDrand is the standard deviation of MPDrand (Webb et al., 2002). 

Positive values of stdMPD indicate that the community is composed by 

http://www.ebi.ac.uk/ena/data/view/PRJEB13469
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organisms more distantly related than expected by chance, whereas negative 

values indicate the opposite situation. Plant cover and OTU relative abundance 

matrices were used to weight the stdMPD of above- and belowground 

communities, respectively.  

Fire-driven changes in the phylogenetic composition between each pair 

of burned and unburned transects (i.e., phylogenetic β diversity) were evaluated 

by using UniFrac distances (Lozupone and Knight, 2005). In order to have an 

estimate of the natural compositional similarity that occurs under unburned 

conditions, we also calculated phylogenetic β diversities for pairs of unburned 

transects within each site. Weighted UniFrac distances were calculated by using 

the GUniFrac package in R (Chen, 2012).  

6.2.7. Statistical analysis 

In order to test the effects of geographic distance on both soil abiotic 

properties and community composition, Mantel tests were run by using the 

ade4 package for R (Dray and Dufour, 2007). Correlations were only calculated 

between unburned transects to avoid the potential confounding effect in the 

burned plots caused by the time elapsed since fire at short sampling distances. 

We performed Mantel tests between soil or composition dissimilarity (Bray 

Curtis) matrices and geographic distance (Euclidean) matrices using 1,000 

randomizations. To correct for multiple testing, significance of Mantel tests 

was assessed using the Benjamini-Hochberg procedure implemented in the 

p.adjust function in R. Neither soil abiotic parameters nor plant, fungal, 

bacterial or archaeal community composition showed spatial autocorrelation 

(Table C4). 

We tested the existence of short-term fire effects by comparing soil 

properties, species richness and phylogenetic α and β diversities between plots 

that had burned 0-3 years ago and their unburned transects through paired t-

tests in R. To estimate the post-fire recovery of all variables, we used the 

difference (Δ) between the value of each variable in paired burned and 

unburned transects, or directly the value from phylogenetic β diversity, as the 

dependent variable and time since fire as the independent variable in a Bayesian 
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generalized linear model (GLM). The models were run with the help of the 

MCMCglmm package for R (Hadfield, 2010). We calculated the recovery times 

(average and 95% credible intervals) for all variables by interpolation or 

extrapolation through the equation of the fitted model.  

We explored the relationships between the post-fire recovery in plant 

phylogenetic diversity, plant biomass, the soil conditions and the soil microbial 

phylogenetic diversity. To do this, we performed a series of Bayesian GLMs, 

whose directionality was posed based on a priori knowledge as follows. First, 

to test whether the recovery of plant phylogenetic α diversity fosters plant 

biomass (Cadotte, 2013), we performed a GLM with ΔPlant PαD as 

independent and ΔPlant biomass as dependent variables including time since 

fire as a random factor in the model. Second, we analysed the effects of plant 

biomass on soil conditions and vice-versa, after reducing the variability of soil 

parameters through a principal component analysis (PCA) that included the 

differentials (Δ) of soil pH, TOC, TN, moisture, NO3
--N, NH4

+-N and EC 

between pairs of burned and unburned transects (Figure C4). We interpreted 

PC1 and PC2 respectively (52% and 21% of total variance) as gradients of 

recovery of soil organic matter and mineral N (Figure C4). We analysed the 

effects of plant biomass on the post-fire recovery of soil organic matter (PC1) 

since soil organic matter essentially comes from plant inputs (i.e. litter and 

exudates). In contrast, we analysed the effects of soil mineral N (PC2) on the 

post-fire recovery of plant biomass, since the forms of mineral N available to 

plants are generated either by the combustion or by the microbial 

mineralization of organic N. Finally, we analysed the effects of soil conditions 

on microbial phylogenetic α diversity and vice-versa. Since the vast majority of 

soil microbes are heterotrophic, and their contribution to the total pool of soil 

organic carbon is generally very low (<3% in nearby Mediterranean ecosystems, 

Goberna et al., 2012; Navarro-Cano et al., 2014), we evaluated whether the post-

fire recovery in soil organic matter (PC1) determines ΔFungal PαD, ΔBacterial 

PαD and ΔArchaeal PαD in three separate models. In contrast, since soil 

microbes are both consumers (e.g. heterotrophs) and producers of mineral N 

(e.g. nitrifying microbes), we tested the bidirectional relationship between the 

post-fire recovery of soil mineral N (PC2) and microbial phylogenetic diversity.  
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6.3. RESULTS 

6.3.1. Fire effects on plant communities  

Fire significantly decreased aboveground plant cover and biomass 

(Figure 1, Table 1). In particular, fire decreased the plant cover of main families 

under unburned conditions, which were dominated by Fagaceae (plant cover % 

± SE, 29 ± 3%), Poaceae (28 ± 3%) and Lamiaceae (18 ± 1%) (Figure C5). While 

the reductions in plant cover were large for Fagaceae (-21 ± 6%), Poaceae (-18 ± 

5%) and Pinaceae (-17 ± 3%), those for Lamiaceae (-10 ± 6%), Fabaceae (+1 ± 

3%) and Cistaceae (+2 ± 2%) were less pronounced or even increased after fire 

(Figure C5). Both plant cover and biomass significantly tended to recover with 

time after fire (plant Δcover post-mean estimate [95% credible interval] = 4×10-

3 [3×10-3, 6×10-3]; Δbiomass = 0.14 [0.06, 0.23]). Plant cover recovered after 17 

[11, 27] years while the recovery of the plant biomass was not reached during 

the time spanned in the study, but extrapolated to 22 [10, 69] years. 

 

Figure 1: Post-fire trends of A) plant cover and B) biomass after fire. Filled circles 
indicate burned transects and unfilled circles unburned transects. Shaded and hatched 
areas show the confidence intervals of linear regressions among burned and unburned 
plots, respectively. Asterisks indicate the existence of a significant post-fire temporal 
trend of the studied parameter measured as the paired difference (Δ) between burned 
and unburned transects (P < 0.05). See the Results section for statistical details. 

Fire did not significantly alter richness, but decreased the phylogenetic 

α diversity of plant communities (Figures 2A and 2B, Table 1). In addition, the 

plant phylogenetic β diversity between pairs of burned and unburned transects 

(shaded area, Figure 2C) was higher than that between unburned transects 
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(hatched area, Figure 2C, Table 1). That is, plant communities exposed to fire 

were more phylogenetically dissimilar to unburned plots than expected based 

on non-disturbed communities. Differences in plant richness, phylogenetic α 

and β diversities between burned and unburned plots were significantly reduced 

with time since fire, as significant temporal trends indicate (Δrichness = 0.02 

[2.8×10-3, 0.04]; ΔPαD = 8.2×10-3 [2.8×10-3, 1.4×10-2]; PβD = -6.9×10-4 [-

1.0×10-3,-3.0×10-4]; asterisks in Figure 2). Plant phylogenetic α and β diversities 

recovered to unburned levels after ca. 17 years (ΔPαD post-mean [95% credible 

interval] = 17 [5, 85]; PβD = 22 [11, 65]). 

6.3.2. Fire effects on soil conditions and microbial communities 

Fire decreased soil TOC, TN, moisture and the C/N ratio, while it 

increased pH and NO3
--N in the short term (Figure C6, Table 1). In the 20 

years spanning our study, these initial changes only reverted for NO3
--N and 

pH, whose unburned values recovered after approximately 12 [3, 53] and 18 [6, 

74] years, respectively. Fire-driven changes in soil TOC, TN and moisture 

decreased with time since fire but according to the extrapolations they would 

require ca. 26 years (TOC = 28 [9, 168]; TN = 24 [9, 105]; moisture = 24 [9, 

88]) to reach the unburned level. It should be noticed that some of the estimates 

of the maximum recovery times might be biologically unrealistic since the limits 

of the credible intervals expanded very rapidly after the time period for which 

we have observations.  

The effects of fire on the belowground communities were group-

dependent. Archaea, which belonged mainly to Crenarchaeota (99 ± 0.3%) under 

unburned conditions, were resistant to fire as shown by the similar values in 

burned and unburned plots for all diversity metrics during the whole study 

period (Figures 2 and C5; Table 1). However, fire initially decreased both fungal 

and bacterial richness (Figure 2A, Table 1). Richness recovered with time     

since fire (fungi = 0.56 [0.20, 0.93]; bacteria = 0.98 [0.50, 1.43]), and differences  
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between burned and unburned plots diminished after 14 [4, 60] and 13 [6, 36] 

years (Figure 2A). Fire provoked an initial increase in the phylogenetic α 

diversity of both fungi and bacteria, contrarily to plants (Figure 2B). Fungal 

phylogenetic α diversity significantly decreased with time since fire (-7.5×10-3 

[-1.5×10-2, -1.1×10-3]), reaching unburned levels after 15 [3, 174] years. Bacterial 

phylogenetic α diversity also tended to decrease but changes were not 

significant during the study period. Both fungal and bacterial communities 

exposed to recent fires showed higher phylogenetic β diversity than expected 

based on the variability of non-disturbed communities (Figure 2C, Table 1). 

The phylogenetic β diversity between burned and unburned plots decreased 

significantly with time since fire (fungi = -8.7×10-4 [-1.2×10-3, -6.0×10-4]; 

bacteria = -2.5×10-4 [-3.9×10-4, -1.3×10-4]). Both fungal and bacterial 

communities recovered their pre-fire phylogenetic β diversity composition after 

19 years (fungi = 19 [12, 34]; bacteria = 19 [9, 51]). Compositional changes 

within fungi resulted from increases in Ascomycota, which altered the balance 

between Ascomycota (% DNA sequences ± SE, 52 ± 2%) and Basidiomycota (47 

± 2%) after recent fires (Figure C5). Fire did not alter in the short-term the 

relative abundance of main bacterial phyla, i.e. Actinobacteria (27 ± 0.9%) 

followed by Proteobacteria (22 ± 0.4%), Planctomycetes (21 ± 0.5%) and 

Acidobacteria (9 ± 0.5%), although significant decreases in Actinobacteria and 

Proteobacteria, and increases in Acidobacteria were found after 5 years (Figure C5).  

Figure 2: Post-fire trajectories of A) richness, B) phylogenetic α diversity and C) 
phylogenetic β diversity of plants, soil fungi, bacteria and archaea (from left to right). 
Filled circles indicate burned transects and unfilled circles unburned transects. In A) 
and B), shaded and hatched areas show the confidence intervals of linear regressions 
among burned and unburned plots, respectively. In C), shaded areas indicate 
confidence intervals of the phylogenetic β diversity between each burned and 
unburned plot, and hatched areas between pairs of unburned transects. Asterisks 
indicate significant post-fire temporal trends of the paired difference (Δ) between 
burned and unburned transects (P < 0.05). See the Results section for statistical             
details. Silhouettes represent plant and soil fungal, bacterial                                                   
and archaeal communities. Original images (from http://www.phylopic.org and 
http://www.silhouettevectorstock.com) have been slightly modified and are licenced 
for use either under the Public Domain Mark 1.0 (fungi) or under                                            
a Creative Commons Attirbution-ShareAlike 3.0 Unported license (pine, MM Tobias; 
bacteria and archaea , M Crook). 

http://www.phylopic.org/
http://www.silhouettevectorstock.com/
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Table 1: Short-term (0-3 years) fire effects on plant and soil microbial communities 
and soil parameters. t-tests (df=14) comparing burned and unburned plots are shown. 
Significant differences (P<0.05) between burned and unburned plots are indicated in 
bold. 

  Variable 
Burned 

plots 
Unburned 

plots 
t14 P 

PLANTS 

Cover 0.31±0.06 1.21±0.10 -9.048 <0.001 

Biomass 2.87±0.85 37.4±5.23 -6.656 <0.001 

Species richness 10.4±1.40 11.1±0.60 -0.577 0.573 

Phylogenetic α diversity 0.30±0.20 1.70±0.10 -5.576 <0.001 

Phylogenetic β diversity 0.38±0.04 0.19±0.02 5.004 <0.001 

FUNGI 

OTU richness 454±14 536±23 -2.844 0.013 

Phylogenetic α diversity -0.50±0.32 -2.29±0.44 3.136 0.007 

Phylogenetic β diversity 0.43±0.03 0.29±0.02 3.532 0.003 

BACTERIA 

OTU richness 1492±48 1621±26 -3.442 0.004 

Phylogenetic α diversity -2.14±0.21 -3.06±0.25 2.389 0.032 

Phylogenetic β diversity 0.18±0.01 0.12±0.01 4.394 <0.001 

ARCHAEA 

OTU richness 11.8±0.5 10.9±0.4 1.370 0.192 

Phylogenetic α diversity -1.76±0.05 -1.68±0.05 -1.555 0.142 

Phylogenetic β diversity 0.08±0.01 0.07±0.01 1.542 0.145 

SOIL PARAMETERS 

TOC (g/100g) 7.1±0.4 13.8±1.8 -3.808 0.002 

TN (g/100g) 0.5±0.04 0.8±0.09 -3.928 0.002 

pH 8.0±0.02 7.6±0.08 4.731 <0.001 

Moisture (%) 5.5±0.5 10.2±1.0 -5.652 <0.001 

NO3
--N (mg/kg) 94±18 41±13 3.309 0.005 

NH4
+-N (mg/kg) 2.5±1.1 2.8±0.9 -0.132 0.897 

C/N ratio 13.7±0.5 16.6±0.6 -3.470 0.004 

EC (µS/cm) 247±18 235±20 0.673 0.512 

Plant cover is expressed as the fraction of the plot that is covered by one or more plant 

species. Note that the plant cover fraction can be greater than 1 if there are overlapping 

canopies. Biomass is expressed as the total sum of the biomass per plant species. 
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6.3.3. Linkages between above- and belowground communities 

To test our hypothesis we performed sequential Bayesian GLMs, whose 

main results are schematized in Figure 3. First, we confirmed that the post-fire 

increase of plant phylogenetic α diversity leads to the recovery of plant biomass 

(post-mean=9.2 [2.6, 14.8]). Further, the recovered plant biomass partly 

accounted for the amelioration of soil organic matter as reflected by its 

significant positive effect on the first axis (PC1) of a PCA performed on soil 

abiotic parameters (0.02 [0.007, 0.04]). In turn, changes in soil PC2, which we  

 

 

Figure 3: The recovery of plant phylogenetic diversity after fire significantly fosters 
plant biomass, which in turn ameliorates soil organic matter (PC1). The recovery of 
soil organic matter leads to a reduction of the fungal and bacterial phylogenetic α 
diversity. Plant biomass and fungal phylogenetic α diversity shift significantly 
associated with the recovery in soil mineral nitrogen. Black arrows indicate significant 
effects of Bayesian GLMs, with either positive (solid lines) or negative effects (dotted 
lines). Grey arrows indicate non-significant effects. Silhouettes represent plant and soil 
fungal, bacterial and archaeal communities as in Figure 2. 
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interpreted as a gradient of recovery of mineral N, significantly impacted plant 

biomass (-5.3 [-10.6, -0.3]) (Figures 3 and C4). Finally, we detected that post-

fire changes in the soil organic matter drove the recovery of soil fungal and 

bacterial phylogenetic α diversity, while that of archaeal phylogenetic α diversity 

was unrelated to the shifts in soil organic C or mineral N (PC1 = -0.06 [-0.03, 

0.06]; PC2 = 0.02 [-0.05, 0.08]). In particular, both fungal and bacterial 

phylogenetic α diversity significantly decreased to pre-fire levels with soil 

organic C (fungi=-0.3 [-0.6, -0.03]; bacteria=-0.4 [-0.5, -0.18]), while PC2 only 

contributed to explain the shifts in fungal PαD (fungi = 0.48 [0.02, 0.93]); 

bacteria = -0.01 [-0.33, 0.32]). Changes in microbial PαD did not significantly 

explain PC2 (fungi=0.19 [-0.02, 0.18]; bacteria=-0.08 [-0.23, 0.10]; 

archaea=0.08 [-0.34, 0.69]) (Figure 3). 

6.4. DISCUSSION 

Our results showed that phylogenetic diversity is either resistant or 

resilient to fire across biological domains. Fire had opposing effects on plant 

and soil microbial (fungal and bacterial) phylogenetic α diversity, while it did 

not alter archaeal diversity. By favouring evolutionarily related fire-prone 

species, fire reduced plant phylogenetic α diversity which was restored after two 

decades. These shifts triggered the recovery of soil conditions that, in turn, 

drove the community reassembly of soil microbes. Fungal and bacterial 

phylogenetic α diversity, which increases after fire as a result of an altered 

competitive hierarchy, returned to pre-disturbance conditions after two to 

three decades.  

Fire did not change the richness but altered the composition of plant 

communities, lowering their phylogenetic α diversity by favouring closely 

related plants. The resprouting of adult plants and the rapid emergence of 

seedlings from the seed bank after fire can explain the unaltered levels of plant 

richness, which can even increase due to the colonization by new species 

(Keeley et al., 2012). Similar species richness after fire can be obtained with 

different species composition and consequently, with different phylogenetic 

diversity, which tend to decrease in plant communities since fire favours the 

evolutionarily-conserved seeder phenotype that is present in a few families 



CHAPTER IV                           119 

 

(Verdú and Pausas, 2007). Here, we found a reduction in phylogenetic diversity 

to levels indistinguishable from the random expectation. In Mediterranean 

ecosystems, this pattern has been attributed to the combination of two 

counteracting strategies, i.e. those of seeders belonging to a few families and 

resprouters spread across several families, that respectively push towards low 

and high phylogenetic diversities finally generating a random phylogenetic 

pattern (Verdú et al., 2009). Our results are in line with this explanation as 

seeders were slightly affected (Lamiaceae) or even favoured (Cistaceae and 

Fabaceae) by fire, while resprouters (Fagaceae and Poaceae) were harmed but not 

excluded from the community. Plant phylogenetic diversity significantly 

increased with time after fire, reaching the unburned level after ca. 17 years. 

Such an increment has been attributed to the nurse effect of pioneer seeders 

that facilitate the recruitment of late-successional evolutionarily-distant species 

(Verdú et al., 2009). At later stages, facilitation can turn into competition, 

further increasing the phylogenetic diversity of plant communities (Castillo et 

al., 2010). In the long term, however, the prolonged absence of disturbance 

could favour the dominance of few highly competitive species declining the 

phylogenetic diversity of plant communities (Verdú et al., 2009). Experimental 

evidence shows that phylogenetically diverse plant assemblages produce higher 

biomass through species complementarity (Cadotte, 2013). Similarly, we found 

that the post-fire increase in plant phylogenetic α diversity significantly drives 

plant productivity in terms of biomass, and this has further reflection on soil 

processes.  

Main fire-induced changes in soil abiotic parameters included the 

reduction in organic substances and moisture, and a pulse in mineral nitrogen 

as has been widely reported in the literature (Certini, 2005). These parameters 

are major determinants of soil microbial composition and diversity in post-fire 

scenarios (Hart et al., 2005; Goberna et al., 2012; Liu et al., 2015; Mikita-Barbato 

et al., 2015; Pérez-Valera et al., 2017). Belowground microbial communities 

exposed to fire showed specific responses that were group-dependent. Soil 

archaea were non-responsive to fire in terms of richness, composition or 

phylogenetic diversity, suggesting that they are highly resistant both to heating 

and to the concomitant changes in soil parameters. In a previous study 

searching for immediate fire effects on soil microbiota in Mediterranean 
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ecosystems, we detected shifts in archaeal diversity one day after fire that 

recovered as soon as one week later (Goberna et al., 2012). However, studies in 

other ecosystems point to shifts in archaeal communities that persist for at least 

two years (Mikita-Barbato et al., 2015). Fungal and bacterial communities 

showed parallel responses to fire, in spite of their enormous physiological and 

ecological differences such as heat tolerance or response to changes in organic 

compounds that suggest that fungi could be more sensitive to fire than bacteria 

(Hart et al., 2005; Cairney and Bastias, 2007; Mataix-Solera et al., 2009). 

Specifically, fire decreased richness, altered the community composition, and 

increased the phylogenetic α diversity of both fungal and bacterial 

communities. This is consistent with multiple studies that report fire-driven 

reductions in soil microbial richness (Visser 1995; Smith et al., 2008; Kipfer et 

al., 2010; Ferrenberg et al., 2013; Rincón et al., 2014; Xiang et al., 2014, 2015; 

Pérez-Valera et al., 2017), although contrasting patterns have been also reported 

(Hamman et al., 2007; Rincón and Pueyo, 2010; Holden et al., 2013; Buscardo 

et al., 2014; Sun et al., 2015; Shen et al., 2016). In Mediterranean ecosystems, the 

increment in phylogenetic α diversity has also been observed both for fungal 

and bacterial communities. Rincón et al., (2014) detected this trend in soil 

ectomycorrhizal fungi in response to the overrepresentation of Ascomycetes after 

fire, which we also detected. This phylum contains species able to produce 

fruiting flushes, resistant spores and hydrolytic and phenol oxidizing enzymes 

that could help them utilize the newly released nutrients and colonize post-fire 

emerged plants (Cairney and Bastias, 2007; Rincón et al., 2014). In bacteria, we 

attributed the increase in phylogenetic α diversity after an experimental fire to 

a shift in the competitive hierarchies (Pérez-Valera et al., 2017). Similarly, the 

fire-induced reduction in organic resources here detected can diminish the 

competitiveness of dominant taxa from entire clades that have high relative 

fitness under carbon-enriched conditions (Goldfarb et al., 2011), leading to an 

increased phylogenetic α diversity. This is supported by the fire-induced 

reduction in the relative abundance of both Proteobacteria and Actinobacteria, 

lineages that possess high competitive abilities for organic carbon substrates 

(Goldfarb et al., 2011). In addition, the alleviation of such a biotic filter sets the 

conditions for a stronger competition between closely related taxa with similar 

niches, e.g. fast-growing bacteria that benefit from the pulse in mineral N, 
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which would further increase the phylogenetic diversity of the bacterial 

community (Mayfield and Levine, 2010).  

Fungal and bacterial phylogenetic diversities were resilient to fire, 

recovering after ca. two decades. The decreasing phylogenetic trends in α 

diversity of soil microbes contrast with the increasing phylogenetic α diversity 

trend of plant communities after disturbance. The main driver of the recovery 

of microbial phylogenetic α diversity was the restoration of soil organic matter 

supplied by an increasingly productive and phylogenetically diverse plant 

community. These results suggest that the evolutionarily-related microbial taxa 

that dominate under high soil fertility recover their competitive strength as 

communities reassemble. Therefore, we can speculate that, even under the 

current accelerated fire regimes (Pausas and Fernández-Muñoz, 2012), our 

studied communities had enough time to recover. Further studies are needed 

to corroborate these results in other ecosystems, since ours are restricted to 

Mediterranean ecosystems and specific environmental conditions. The 

resilience of plant and soil microbes to current fire regimes guarantees the 

conservation of the old evolutionary legacy represented by all the biological 

domains in the tree of life. However, the increasing rates of disturbance the 

Earth is now facing could dramatically reduce the resilience of these biological 

lineages by eroding the phylogenetic diversity from which the communities are 

reassembled (Tan et al., 2012).  
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7. GENERAL DISCUSSION 

The global aim of this thesis is to delve into the factors that determine 

the phylogenetic structure of soil bacterial communities and its resilience to 

fire, eventually providing insights into the processes that drive bacterial 

community assembly and its relationship with the functioning of Mediterranean 

ecosystems. Essentially, by incorporating the evolutionary relationships among 

bacteria our findings provide support to the role that particular lineages have 

on the bacterial community assembly and ecosystem productivity, which is not 

straightforward under the classical approaches of community ecology.  

Soil abiotic properties, especially those related to fertility such as the 

levels of organic carbon, determined the phylogenetic diversity and community 

structure of soil bacteria in the ecosystems under study. This agrees with both 

observational and experimental evidence suggesting organic C as one of the 

main drivers structuring bacterial communities worldwide (Fierer, 2017). In 

particular, we found that increasing levels of organic C, which is typically 

limiting in soils, altered the bacterial community composition and reduced its 

phylogenetic diversity (Pérez-Valera et al., 2015). This agrees with the 

widespread observation that the phylogenetic diversity of soil bacterial tends to 

be lower than expected by chance, i.e. soil bacteria tend to coexist with close 

relatives, a pattern that has been explained by the dominance of environmental 

filters operating via biotic and/or abiotic components (Mayfield and Levine, 

2010; Goberna et al., 2014a). Our data point to a dominant biotic filter that is 

due to the overrepresentation of extremely competitive clades, mainly 

Proteobacteria and Actinobacteria, which show high fitness under carbon enriched 

conditions and exclude entire lineages (Goldfarb et al., 2011; HilleRisLambers 

et al., 2012; Goberna et al., 2014a; Pérez-Valera et al., 2015). The dominance of 

competitive interactions based on fitness differences does not exclude the 

possibility that other mechanisms that would increase the phylogenetic 

diversity of the community (e.g. limiting similarity via competition between 

species with similar niches) could be operating simultaneously. However, the 

effect of such processes would be indistinguishable when analysed at the 

community level if environmental filtering prevails. We propose in this thesis a 
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new approach that combines phylogenetic tools with co-occurrence network 

analysis to detect the contribution of assembly processes that operate 

simultaneously (Pérez-Valera et al., 2017). After validating this framework with 

simulated communities, we applied it to real communities and found that both 

co-existing and mutually excluding bacterial taxa tend to be phylogenetically 

more closely related than expected by chance. This conforms with the 

simulated scenario in which environmental filtering and competitive 

interactions based on niche similarities concur to assemble soil bacterial 

communities (Pérez-Valera et al., 2017).  

Our results showing that bacterial phylogenetic diversity increases at 

low levels of organic resources also applied to burned sites in which the 

availability of organic C decreased after fire (Pérez-Valera et al., 2015; Chapter 

IV). Changes in the post-fire bacterial composition may be reflected in 

phylogenetic community measures if traits that allow species survival or 

competitive superiority are phylogenetically conserved (Pausas and Verdú, 

2010). This seems to be the case of microbial organisms bearing traits that 

confer environmental tolerance or competitive abilities (Goberna et al., 2014b; 

Martiny et al., 2015; Goberna and Verdú, 2016). We found that the post-fire 

increases in bacterial phylogenetic diversity were consistent across studied fires, 

suggesting that changes in bacterial communities were phylogenetically 

structured and hence, recognizable by exploring the evolutionary relationships 

between coexisting and non-coexisting taxa (Faust and Raes, 2012; Pérez-

Valera et al., 2017). Indeed, while fire imposed abiotic filters that favored 

microbial lineages bearing heat-resistance traits, it simultaneously increased 

competitive interactions via releasing a burst of nutrients and/or alleviated the 

strong biotic filter that operates in bacterial communities worldwide (Goberna 

et al., 2014a; Pérez-Valera et al., 2017). Interestingly, our network analyses 

pointed in the same direction, suggesting that fire increased the phylogenetic 

diversity as result of the altered balance between environmental filtering and 

competitive exclusion based on niche similarities (Pérez-Valera et al., 2017). 

Evidence on altered microbial assembly after fire is rather scarce, but suggests 

increases in taxa showing heat-resistance (e.g. endospores, thickened cell walls) 

and fast-growth strategies (e.g. high rRNA operon copy numbers) that are 
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progressively outcompeted by strong competitors for organic carbon 

(Bárcenas-Moreno et al., 2011; Jurburg et al., 2017).  

Metrics of phylogenetic structure that account for lineage identity 

allowed examining the abiotic drivers of bacterial diversity in ecosystems 

regardless of their environmental variability (Pérez-Valera et al., 2015; Chapter 

III). Compared to the average phylogenetic distances (i.e. NRI), which are blind 

to the taxonomic identity of coexisting lineages, fuzzy-weighting community 

metrics such as PCPS identify the representativeness of different lineages 

across sites (Duarte et al., 2012). We found that this is particularly relevant to 

predict microbially mediated ecosystem functions, as PCPS captures the 

signature that environmental changes leave in the composition of bacterial 

communities and consequently in their functionality (Pérez-Valera et al., 2015). 

Indeed, PCPS is able to capture the weight that highly productive lineages such 

as Proteobacteria and Actinobacteria have in the ecosystem processes (Pérez-Valera 

et al., 2015). Despite numerous pieces of evidence indicating positive effects of 

diversity on ecosystem functioning (Cardinale et al., 2012), we found the 

opposite trend, resulting from the dominance of lineages that are both 

competitive (and thus reduce phylogenetic diversity) and productive (and thus 

increase the rates of ecosystem processes). This emphasizes that focusing on 

lineage identity is necessary to understand the biodiversity-ecosystem 

functioning relationship (Pérez-Valera et al., 2015), especially after ecological 

disturbance that disrupts main ecosystem functions.  

Fire-induced alterations in ecosystem functions related to microbial 

metabolism were the result of shifts in the bacterial phylogenetic community 

structure. Indeed, fire favored the abundance of microbial lineages that 

responded to the nutrient pulse, immediately increasing the rates of microbial 

respiration, biomass and nutrient cycling. Contrarily to wildfires that reduce the 

biomass and activity of microbial communities (Hernández et al., 1997; 

Jiménez-Esquilín et al., 2008), low intensity fires, such as those that are 

experimental or prescribed, might lead to slightly shifts or increases in microbial 

productivity and nutrient cycling activities (e.g. Fontúrbel et al., 2012; Fultz et 

al., 2016). However, while those trends were mostly recovered at the mid-term, 

that was not the case for the bacterial phylogenetic community structure, 
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suggesting that it could be some degree of functional redundancy (Allison and 

Martiny, 2008). Further research is needed to validate this interpretation, 

especially in a context of ecological disturbance in which species resilience 

could be key to guarantee the ecosystem functionality and nutrient cycling. This 

even includes, but does not restrict to, the possibility that taxa in the altered 

community are also functionally different to those prior to disturbance, but 

process rates are the same at the community level (Allison and Martiny, 2008). 

Future studies that deepen in the traits that define the functionality of particular 

microbial taxa are necessary to improve predictions of ecosystem process rates. 

Finally, the phylogenetic structure of bacterial communities was 

sensitive but resilient to fire in a period of two to three decades in our 

Mediterranean ecosystems. In turn, the recovery of bacteria after fire involved 

the reestablishment of the competitive hierarchies that operate in bacterial 

communities, that is, the biotic filter caused by competitive lineages (Goberna 

et al., 2014a; Pérez-Valera et al., 2017). This process was mainly mediated by the 

plant communities through organic C inputs, likely in the form of litter and 

exudates. Therefore, those organic inputs constitute an essential factor that 

guarantees microbial resilience to fire, ultimately determining the bacterial 

phylogenetic structure and diversity. This is particularly important given the 

increasing rates of environmental change to which our ecosystems are exposed. 

Altogether, our findings highlight the capacity that the phylogenetic 

information has for predicting shifts in microbial composition and functioning, 

which is essential in the face of global change. 
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8. CONCLUSIONS 

1. Soil abiotic properties, most notably those associated with fertility, 

determine the phylogenetic diversity and community structure of soil 

bacteria. These diversity metrics, in turn, predict microbially-mediated 

ecosystem functions related to microbial productivity, decomposition 

and nutrient cycling, particularly when lineage identity is taken into 

account. The sign of the relationship between bacterial phylogenetic 

diversity and ecosystem functions depends on the taxonomic identity of 

the main coexisting lineages.  

 

2. Soil bacterial communities are simultaneously assembled through 

environmental filtering and competitive exclusion by limiting similarity. 

Fire alters the balance between these assembly forces through changes in 

species richness and composition, which are ultimately reflected in the 

phylogenetic structure of the community. 

 

3. Fire-induced alterations in microbially-mediated ecosystem functions are 

the result of shifts in the bacterial phylogenetic community structure. 

Exploring the contribution of microbial lineages to the phylogenetic 

structure allows predicting how ecosystem functions respond to 

ecological disturbance.  

 

4. The phylogenetic structure of both above (plants) and belowground 

(fungi, bacteria, archaea) biological communities is either resistant or 

resilient to fire in a period of two to three decades in Mediterranean 

ecosystems. Plants and soil microbes experience opposing temporal 

trends in phylogenetic diversity during community reassembly. The post-

fire microbial recovery involves the reestablishment of highly 

competitive clades, a process mediated by plant communities through 

changes in the soil environment. 
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APPENDIX A 

CHAPTER II: Fire modulates ecosystem functioning through the 

phylogenetic structure of soil bacterial communities 

Figure A1.1: Post-mean estimates and credible intervals (95%) of several soil physical 
and chemical properties regarding time since fire. Significant differences (P < 0.05, 
Bayesian GLM) with the pre-fire level are indicated with *. 
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Figure A1.2: PCoA based on Bray Curtis distances of the bacterial community 
showing differences in the OTU composition among samples and time since fire. Soil 
environmental parameters that were significantly correlated with changes in the 
community composition (Axis 1 and/or Axis 2) are shown in A). Individual 
trajectories of each plot over time after fire are linked by solid lines in B), where arrows 
indicate the final time point. Dashed lines indicate an indirect trajectory due to a 
missing intermediate sampling point. Abbreviations: TOC total organic C, EC 
electrical conductivity, NH4

+-N ammonium-N. 
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Figure A1.3: Relative abundance (post-mean and credible intervals [95%]) of the ten 
most abundant classes before and after the experimental fire. Significant differences 
(P < 0.05, Bayesian GLM) with the pre-fire level are indicated with *. 
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Figure A1.4: Co-occurrence networks supported by positively (A) and negatively (B) 

correlated abundance patterns at the OTU level for the pre-fire time point. Each node 

belongs to a phylum following the colour code shown in the phylogenetic tree in such 

a way that phylogenetically related OTUs share similar colours. 

 



APPENDIX A                141 

 

 

Figure A1.5: Monthly accumulated precipitation (expressed in mm), mean monthly 

temperature (in ºC) and plant cover (in %) over the study period (CEAM-UMH, 2009, 

2010). The arrows indicate the experimental fire and time since fire. 

 

 

  



142                      APPENDIX A 

Table A1.1: Soil variables and their correlations with the axis 1 of the PCoA. 

    

Variables t r P 

pH -7.639 -0.685  <0.001 

EC  7.073   0.656  <0.001 

TOC  4.607   0.493  <0.001 

TN -1.240  -0.151    0.220 

NH4
+-N  6.061   0.598  <0.001 

NO3
--N  0.235   0.029    0.815 

Humidity -9.790  -0.769  <0.001 

 

 

Table A1.2: Edge lists of the pre- and post-fire networks. 

This table can be found (as Table S2) at 

http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13609/full  

http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13609/full
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Table A1.3: Number of sequences and OTUs per sample and time since fire. 

  Plot Nº Sequences Nº OTUs 

Pre-fire 

F1 865 533 

F2 1086 595 

F3 900 582 

F4 978 616 

F5 1139 619 

F6 1081 604 

F7 966 541 

F8 1203 660 

F9 1088 654 

F10 973 613 

1d 

F12 988 590 

F13 700 448 

F14 861 542 

F15 1122 640 

F16 948 571 

F17 862 543 

F18 1067 587 

F19 1186 635 

F20 946 506 

1w 

F21 1256 646 

F22 1128 668 

F23 922 532 

F24 931 546 

F25 1108 623 

F26 900 551 

F27 1125 615 

F28 1163 634 

F29 1170 667 

F30 1073 602 

1m 

F31 1321 621 

F32 993 491 

F33 1391 554 

F34 1211 569 
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F35 1294 613 

F36 837 512 

F37 1044 569 

F38 938 539 

F39 938 519 

F40 1236 562 

4.5m 

F41 948 525 

F42 1144 575 

F43 1214 616 

F44 1461 609 

F45 1234 674 

F46 674 413 

F47 1200 580 

F48 1286 648 

F49 1277 687 

F50 1273 603 

9m 

F51 761 467 

F52 747 506 

F53 697 436 

F54 874 528 

F55 712 497 

F56 741 462 

F57 995 596 

F58 736 444 

F59 722 453 

12m 

F61 1037 623 

F62 1118 674 

F63 1066 646 

F64 966 624 

F65 1343 668 

F66 941 601 

F67 537 374 

F68 815 529 

F69 885 529 

F70 801 514 
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APPENDIX A2: Simulations to validate the conceptual scenarios of community 

assembly (Chapter II, Figure 1). 

The ability to infer assembly processes from phylogenetic co-occurrence 

patterns was validated by simulations. Specifically, we used a simulation model that 

structures communities from an assembly process (e.g. environmental filtering, 

limiting similarity or both), testing later if co-occurring and not co-occurring species 

showed the phylogenetic patterns expected in Figure 1. That is, if co-presence and 

exclusion links showed either clustered (i.e. they were more phylogenetically related 

than expected by chance) or overdispersed phylogenetic patterns (i.e. they were less 

phylogenetically related than expected by chance). 

The simulation protocol involves four main steps, which are explained below. 

A graphic example is provided in Figure A2.1. 

1. Creating the species pool 

We first simulated i) a pool of 300 species, ii) five traits, and iii) a phylogenetic 

tree in such a way that the phylogenetic signal of the traits ranged from 5 to 6 

(Blomberg’s K). A pool of 300 species was selected so as to produce enough edges in 

the downstream network analysis while keeping our ability to detect phylogenetic 

patterns at the community level (Kraft et al. 2007). We also worked with five highly 

conserved traits because such conditions produce strong phylogenetic patterns as 

suggested by Kraft et al. (2007). Random pure-birth phylogenetic trees were created 

with the pbtree function in the picante package for R (Kembel et al. 2010). Species traits 

were then assigned with the rTraitCont function by using the “OU” evolution model 

in phytools for R (Revell 2012). Phylogenetic signals were tested with the function 

phylosignal of picante. Those traits whose phylogenetic signal was not high enough were 

recalculated until values between 5 and 6 were obtained. 

2. Generating the ecological communities 

Second, we generated individual communities by removing species from the 

initial pool until the final community size (100 species) was reached, by using the 

“assembly_community.R” script provided by Kraft et al. (2010). This script removes 

species on the basis of the species trait value and the chosen assembly process. For 

example, if environmental filtering is selected, those species whose trait value is distant 

from the niche optimum (i.e. a point in trait space which refers to the more appropriate 

trait value in the community) will be progressively (i.e. one by one) removed. On the 

contrary, if competition is chosen, those species pairs whose trait value is closer to 

each other will be progressively selected, and one of them randomly removed. If the 
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community is the result of both processes acting simultaneously, some species will be 

first removed by environmental filtering, and the remaining species then subjected to 

competition until the final richness is reached. We set the final richness to 100 species 

in such a way that the community size (the initial pool / final richness ratio) was set to 

30%. This increases the probability of detecting phylogenetic patterns (Kraft et al. 

2007). The order in which assembly processes were applied was chosen to mimic 

natural communities, which are sequentially submitted to an environmental filter and 

then to the filter of biotic interactions (Keddy 1992). 

In order to adapt this simulation model to our conceptual framework, we 

complemented the script by Kraft et al. (2010) with further information in order to 1) 

generate multiple communities, and to 2) assign species abundances. First, the 

modification to generate multiple communities consisted on running the assembly 

script on the same species pool as many times as communities are required (in our 

case, 200 communities). When environmental filtering was selected, the niche 

optimum for each community was randomly selected from a normal distribution 

(mean = trait median, SD = 1/20 * trait range). Second, in order to generate species 

abundance data, we extracted from a log-normal distribution (mean=3, SD=1) as 

many random values as species were present in the final community. Then, these 

numbers were arranged by descending order for a posterior rank-based assignation. 

For example, for communities entirely assembled by environmental filtering, those 

surviving species whose trait was more similar to the niche optimum got a better 

position and thus the highest abundances. Conversely, those surviving species whose 

trait was less similar to the niche optimum got worse positions and thus the lowest 

abundances. We calculated a species deviation index as the sum of the differences of 

each species trait with the niche optimum. The lower the species deviation index, the 

higher the species abundance. For limiting similarity, the species ranking was 

established as follows. We first obtained a distance matrix of all possible species from 

their trait (or traits) values. Then, we calculated a species similarity index as the average 

value of the paired distances between each species and the rest. Because species 

competitive abilities depend on the degree of niche overlap, species abundance data 

were assigned based on the species similarity index. The lower the species similarity 

index, the higher the species abundance. For communities assembled by both 

environmental filtering and limiting similarity, we assigned the species abundance data 

on the basis of limiting similarity, which is the process that assembles the community 

once it has been subjected to an environmental filter. 

Finally, in order to increase the sensitivity of the networks, we constructed a 

total of 200 communities, filtering out those 190 communities whose similarity in 

terms of shared species (i.e. Jaccard index) with the first community was low (sensu 

Berry and Widder 2014). 



APPENDIX A                147 

 

3. Co-occurrence network construction 

Co-occurrence networks were constructed using the same parameters as for 

the construction of the pre- and post-fire networks (see description in the Methods 

section of the main text) with two changes: 1) we considered links when they were 

supported by at least one correlation/dissimilarity measure and 2) the initial top- and 

bottom-scoring links that was set to 100, in order to achieve an enough number of 

links and maintain high levels of correlation/dissimilarity between species, 

respectively. 

4. Phylogenetic analysis 

Co-presence and exclusion links were analyzed following the same protocol 

we used for pre- and post-fire bacterial communities (see description in the 

manuscript). The values provided in Figure A2.2 are Bayesian means of 10 

independent runs for each assembly process. 

Simulation results 

We found that co-occurrence links showed the phylogenetic patterns 

expected in Figure 1, depending on the assembly process (Figure A2.2). Specifically, 

we found that simulation-based co-presence and exclusion links under environmental 

filtering (scenario A, Figure 1) showed an opposite phylogenetic pattern, such that co-

occurring species were phylogenetically close whereas not co-occurring species were 

phylogenetically distant, as expected by our predictions (Figures 1 and A2.2). At the 

community level, we found a phylogenetically-clustered pattern (NRI post-mean 

estimate [95% credible interval] = -23.4 [-24.2, -22.7]). Our scenario B (Figure 1), 

which was entirely assembled by competitive exclusion by limiting similarity, partially 

agreed with our predictions (Figures 1 and A2.2). In particular, exclusion links were 

phylogenetically close, as theoretically expected (Figure 1), whereas co-presence links 

did not show any phylogenetic pattern (Figure A2.2). Two non-mutually exclusive 

explanations could underlie the lack of detection of a phylogenetic pattern in the co-

presence links. First, under this theoretical scenario in which competition is acting 

alone and species occurrence is determined by their degree of niche overlap, the 

number of indirect links (e.g., by higher-order correlations) increases. That is, two 

species could indirectly co-occur as a consequence of true interactions (i.e. exclusions) 

with a third species (Faust and Raes 2012, Berry and Widder 2014), and this process 

would erase any phylogenetic pattern in the co-presence links. Second, the power to 

detect limiting similarity by this standardized phylogenetic distance is low (Kraft et al. 

2007). At the community level, in scenario B we detected a phylogenetically-
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overdispersed pattern (NRI post-mean estimate [95% credible interval] = 0.85, [0.95, 

0.75]). Finally, we found that co-presence and exclusion links under both (at 50% each) 

environmental filtering and limiting similarity (scenario C, Figure 1) showed lower 

phylogenetic diversity than expected by chance, which is consistent with our pre- and 

post-fire results (Figures 1 and A2.2). Notably, we detected a phylogenetically-

clustered pattern at the community level (NRI post-mean estimate [95% credible 

interval] = -2.4 [-2.9, -2.1]), which would be interpreted as environmental filtering 

acting alone in the community under the traditional phylogenetic framework (Webb et 

al. 2002). 

Our simulation-based results, thus, suggest that the phylogenetic clustering 

found in both pre- and post-fire co-presence and exclusion links unequivocally reflects 

the action of both environmental filtering and competition acting simultaneously. We 

emphasize that the detected phylogenetic pattern at the community level does not 

necessarily reflect the processes that could actually be occurring. This requires a deeper 

phylogenetic co-occurrence analysis. 

Simulations to test the effect of a random re-assembly on phylogenetic 

structure of communities and networks 

We also used simulations to test the effect of a random re-assembly (i.e. 

through dispersal) on the phylogenetic structure of both communities and co-

occurrence links. To do that, we first assembled communities in which the 36% of the 

species composition was determined by an environmental filtering, being the rest 64% 

then randomly chosen from the original pool (accordingly to the species turnover 

occurring in our real communities). We maintained the previously used species pool 

and community sizes. We found that random re-assembly through dispersal erased any 

phylogenetic pattern at the community (NRI post-mean estimate = -1.02 [-2.45, 0.34]) 

and co-occurrence level (Figure A2.3). 

References 

Berry D, Widder S. (2014). Deciphering microbial interactions and detecting keystone 
species with co-occurrence networks. Front Microbiol 5: 1–14. 

Faust, K. and Raes, J. (2012) Microbial interactions: from networks to models. Nat Rev 
Microbiol 10: 538–550. 

Keddy, P.A. (1992) Assembly and response rules: two goals for predictive community 
ecology. J Veg Sci 3: 157–164. 

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. 
(2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 
26: 1463–1464. 



APPENDIX A                149 

 

Kraft NJB, Ackerly DD. (2010). Functional trait and phylogenetic tests of community 
assembly across spatial scales in an Amazonian forest. Ecol Monogr 80: 401–
422. 

Kraft NJB, Cornwell WK, Webb CO, Ackerly DD. (2007). Trait evolution, community 
assembly, and the phylogenetic structure of ecological communities. Am Nat 
170: 271–283. 

Revell LJ. (2012). phytools: an R package for phylogenetic comparative biology (and 
other things). Methods Ecol Evol 3: 217–223. 

  



150                      APPENDIX A 

Figure A2.1: Simulation example of microbial communities depending on the 

assembly process. 
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Figure A2.2: Phylogenetic diversity (mean and the 95% credible intervals) of co-

presence and exclusion links from simulated data in accordance with the conceptual 

framework proposed in Figure 1. Negative values indicate overdispersion whereas 

positives values indicate phylogenetic clustering. Represented values are a Bayesian 

mean of 10 independent runs. 
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Figure A2.3: Post-mean estimates and credible intervals (95%) of the average 

phylogenetic diversity of co-presence and exclusion links after simulating several steps 

(64%) of stochastic reassembly processes (i.e. dispersal). Represented values are a 

Bayesian mean of 10 independent runs. 
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APPENDIX B 

CHAPTER III: Fire modulates ecosystem functioning through the 

phylogenetic structure of soil bacterial communities 

Figure B1: Post-fire evolution of soil abiotic properties. Bars indicate SE for 
n=10. Asterisks indicate significant differences between each time point and 
the pre-fire level after accounting for the seasonal variation of climatic 
conditions. Grey horizontal lines indicate the pre-fire level.  
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Figure B2: Relative contribution per phyla to the 16S rRNA copy number 
before and after the experimental fire.  
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Table B1. Relative abundance (mean ± SE) of the most abundant phyla 
(classes for Proteobacteria) before and after the experimental fire. Significant 
differences between each time point and the pre-fire level after accounting for 
seasonal variation are indicated in bold. 

Taxon Pre-fire 1d 1w 1m 

Alphaproteobacteria 23.0 (1.1) 19.8 (0.9) 21.3 (1.3) 18.7 (1.0) 

Betaproteobacteria 4.8 (0.3) 4.0 (0.3) 5.4 (0.3) 12.8 (2.1) 

Gammaproteobacteria 2.7 (0.2) 2.0 (0.2) 2.5 (0.2) 1.8 (0.1) 

Deltaproteobacteria 4.9 (0.4) 4.8 (0.3) 5.0 ±0.3) 4.5 (0.3) 

Actinobacteria 25.6 (1.0) 28.1 (1.5) 24.9 (1.1) 24.9 (1.1) 

NC10 8.5 (0.6) 6.6 (0.4) 8.2 (0.6) 4.9 (0.2) 

Firmicutes 6.3 (0.3) 9.3 (0.6) 7.7 (0.6) 8.1 (0.7) 

SPAM 5.0 (0.2) 4.5 (0.6) 3.8 (0.4) 2.2 (0.1) 

Planctomycetes 4.1 (0.3) 4.0 (0.3) 4.8 (0.3) 5.2 (0.3) 

OP8 3.0 (0.4) 2.9 (0.3) 2.9 (0.2) 3.8 (0.3) 

Chloroflexi 2.0 (0.2) 1.8 (0.2) 1.7 (0.2) 1.8 (0.2) 

Bacteroidetes 1.6 (0.1) 1.9 (0.2) 2.1 (0.3) 1.9 (0.1) 

Acidobacteria 1.6 (0.1) 1.4 (0.2) 2.1 (0.1) 1.9 (0.1) 

BRC1 1.5 (0.1) 1.8 (0.2) 1.8 (0.2) 2 (0.2) 

Verrucomicrobia 1.4 (0.1) 2.3 (0.4) 1.5 (0.1) 1.7 (0.3) 

KSB1 1.2 (0.2) 2.1 (0.4) 1.6 (0.2) 1.8 (0.2) 

Others 2.6 (0.7) 2.6 (0.7) 2.4 (0.5) 2.2 (0.6) 
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Taxon 4.5m 9m 12m 

Alphaproteobacteria 19.1 (0.7) 25.0 (1.0) 23.5 (0.7) 

Betaproteobacteria 15.5 (2.1) 5.5 (0.8) 5.4 (0.5) 

Gammaproteobacteria 1.8 (0.2) 2.2 (0.2) 2.9 (0.3) 

Deltaproteobacteria 4.7 (0.4) 4.9 (0.4) 5.7 (0.5) 

Actinobacteria 22.8 (1.1) 23.9 (1.2) 19.6 (1.2) 

NC10 4.3 (0.2) 5.7 (0.6) 7.1 (0.5) 

Firmicutes 6.3 (0.2) 6.9 (0.5) 6.4 (0.3) 

SPAM 2.0 (0.2) 4.1 (0.5) 4.7 (0.3) 

Planctomycetes 6.0 (0.3) 3.9 (0.5) 4.4 (0.3) 

OP8 3.8 (0.3) 2.5 (0.3) 3.6 (0.2) 

Chloroflexi 1.9 (0.2) 2.1 (0.2) 1.7 (0.2) 

Bacteroidetes 2.0 (0.2) 2.9 (0.3) 3.0 (0.2) 

Acidobacteria 1.9 (0.1) 2.2 (0.3) 2.4 (0.2) 

BRC1 2.2 (0.2) 2.0 (0.2) 2.6 (0.3) 

Verrucomicrobia 1.6 (0.2) 1.5 (0.1) 1.8 (0.2) 

KSB1 2.0 (0.3) 1.9 (0.3) 2.4 (0.5) 

Others 2.0 (0.6) 2.5 (0.7) 2.6 (0.6) 

 

Table B2: Divergence times (million years) and confidence intervals used for 
calibrating the bacterial phylogenies.  

Group1 Group2 Estimated 
Confidence 

interval 

Archaea Bacteria 4187 4199-4163 

Firmicutes Actinobacteria 2908 3041-2755 

Cyanobacteria Chloroflexi 2761 2920-2592 

Betaproteobacteria Alphaproteobacteria 2504 2630-2371 

Bacteroidetes Chlorobi 2099 2261-1932 

Gammaproteobacteria Betaproteobacteria 1993 2099-1894 

 

 



 

 

157 

APPENDIX C 

CHAPTER IV: Phylogenetic diversity is resilient to fire across 

biological domains 

Figure C1: Location of the 25 sites in the study area. 
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Figure C2: Topology of the plant phylogenetic tree. Node numbers indicate dated 
nodes according to Table C2. 

This figure can be found at:  

https://nuvol.uv.es/owncloud/index.php/s/HfsnoCTXQNaneQ5 

Figure C3: Topology of the fungal phylogenetic tree. Node numbers indicate dated 
nodes according to Table C3. 

This figure can be found at: 
https://nuvol.uv.es/owncloud/index.php/s/QhncQBYS0QIVghJ 

 

  

https://nuvol.uv.es/owncloud/index.php/s/HfsnoCTXQNaneQ5
https://nuvol.uv.es/owncloud/index.php/s/QhncQBYS0QIVghJ
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Figure C4: PCA biplot of the difference in soil parameters between burned and 
unburned plots. Arrows indicate the factor loadings on each axis. We interpret that 
soil conditions recover after fire with increasing PC1 and decreasing PC2 values as 
follows.  

PC1 interpretation: TOC and TN decrease after fire and significantly increase with 
time since fire, while pH shows the opposite pattern (Figure C6). High values in ΔTOC 
and ΔTN, and low values in ΔpH associated with the positive pole of PC1 indicate 
similar levels in burned and unburned plots. We interpret this axis as the recovery of 
soil organic matter. 

PC2 interpretation: NO3
--N increases after fire and significantly decreases with time 

since fire, while moisture shows the opposite pattern (Figure C6). Low values in 
ΔNO3

--N, and high values in Δmoisture associated with the negative pole of PC2 
indicate similar levels in burned and unburned plots. We interpret this axis as the 
recovery of the levels of soil mineral nitrogen. 
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Figure C5: Fire effects on the relative abundance of the most abundant families 
(plants) or phyla (soil fungi, bacteria and archaea). Asterisks indicate significant 
differences between the abundances in burned and unburned plots (P < 0.05). Error 
bars indicate standard errors. 
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Figure C6: Temporal trends of soil chemical variables after fire. Filled circles indicate 
burned transects and unfilled circles unburned transects. Shaded and hatched areas 
show the confidence intervals of linear regressions among burned and unburned plots, 
respectively. Asterisks indicate significant post-fire temporal trends of the paired 
difference (Δ) between burned and unburned transects (P < 0.05). See the Results 
section for statistical details. 
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Table C1: Main features of burned and control sites. 

Transect Chronosequence Slope ° Treatment Fire date Altitude 
UTM 30-

N (X) 
UTM 30-N 

(Y) 

A94C1 North 10 Unburned  701 705066,16 4409062,40 

A94C2 North 14 Unburned  701 705075,50 4409071,56 

A94C3 North 20 Unburned  701 705085,21 4409081,30 

A94P1 North 26 Burned 7/4/1994 794 704975,49 4408308,66 

A94P2 North 20 Burned 7/4/1994 794 704980,37 4408315,65 

A94P3 North 24 Burned 7/4/1994 794 704985,16 4408322,62 

A96C1 North <5 Unburned  294 722508,33 4410756,59 

A96C2 North <5 Unburned  294 722497,55 4410754,17 

A96C3 North <5 Unburned  294 722487,97 4410753,98 

A96P1 North <5 Burned 07/07/1996 296 722593,84 4410895,91 

A96P2 North <5 Burned 07/07/1996 296 722596,39 4410885,85 

A96P3 North <5 Burned 07/07/1996 296 722602,27 4410875,84 

A00C1 North <5 Unburned  585 712474,39 4423491,29 

A00C2 North <5 Unburned  585 712475,96 4423500,95 

A00C3 North <5 Unburned  585 712477,88 4423510,19 

A00P1 North 10 Burned 21/08/2000 603 712344,38 4423021,86 

A00P2 North 10 Burned 21/08/2000 603 712351,24 4423026,98 

A00P3 North <5 Burned 21/08/2000 603 712357,90 4423031,46 

A01C1 North 32 Unburned  571 708902,03 4417484,09 

A01C2 North 26 Unburned  571 708904,01 4417475,41 

A01C3 North 29 Unburned  571 708906,10 4417465,76 

A01P1 North 21 Burned 23/04/2001 584 708947,11 4417410,21 

A01P2 North 22 Burned 23/04/2001 584 708947,93 4417398,07 

A01P3 North 19 Burned 23/04/2001 584 708947,69 4417386,94 

A05C1 North 22 Unburned  648 718507,48 4418836,25 

A05C2 North 18 Unburned  648 718503,37 4418845,76 

A05C3 North 19 Unburned  648 718499,33 4418854,86 

A05P1 North 10 Burned 24/01/2005 650 718698,71 4418386,45 

A05P2 North 13 Burned 24/01/2005 650 718698,63 4418375,29 

A05P3 North 14 Burned 24/01/2005 650 718699,15 4418363,76 

A07C1 North 27 Unburned  593 715273,81 4422963,83 

A07C2 North 17 Unburned  593 715288,00 4422963,15 

A07C3 North 27 Unburned  593 715299,55 4422962,67 

A07P1 North 27 Burned 07/03/2007 593 715892,45 4421806,40 

A07P2 North 23 Burned 07/03/2007 593 715897,59 4421797,05 
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A07P3 North 24 Burned 07/03/2007 593 715910,77 4421787,49 

A09C1 North 17 Unburned  394 716961,68 4410193,51 

A09C2 North 18 Unburned  394 716972,73 4410188,66 

A09C3 North 24 Unburned  394 716982,48 4410183,98 

A09P1 North 20 Burned 26/08/2009 338 717797,15 4409670,27 

A09P2 North 21 Burned 26/08/2009 338 717806,55 4409669,99 

A09P3 North 27 Burned 26/08/2009 338 717815,76 4409671,73 

A12C1 North 21 Unburned  837 705306,84 4409561,49 

A12C2 North 21 Unburned  837 705312,70 4409567,90 

A12C3 North 21 Unburned  837 705320,22 4409573,85 

A12P1 North 17 Burned 29/06/2012 842 705443,98 4409654,27 

A12P2 North 19 Burned 29/06/2012 842 705451,85 4409660,51 

A12P3 North 21 Burned 29/06/2012 842 705460,99 4409665,76 

A14C1 North 12 Unburned  455 717934,72 4407446,15 

A14C2 North 9 Unburned  455 717926,41 4407451,36 

A14C3 North 10 Unburned  455 717917,56 4407456,76 

A14P1 North 14 Burned 04/02/2014 474 718066,62 4407214,19 

A14P2 North 15 Burned 04/02/2014 474 718074,66 4407219,72 

A14P3 North 17 Burned 04/02/2014 474 718082,91 4407224,96 

B94C1 Center 12 Unburned  597 685212,01 4382407,61 

B94C2 Center 15 Unburned  597 685218,54 4382416,93 

B94C3 Center 36 Unburned  597 685224,37 4382424,92 

B94P1 Center 17 Burned 04/07/1994 514 683698,50 4383232,46 

B94P2 Center 17 Burned 04/07/1994 514 683704,68 4383241,32 

B94P3 Center 15 Burned 04/07/1994 514 683708,97 4383253,40 

B98C1 Center 7 Unburned  527 685180,16 4382365,22 

B98C2 Center 15 Unburned  527 685184,80 4382374,02 

B98C3 Center 8 Unburned  527 685192,16 4382382,53 

B98P1 Center 16 Burned 25/10/1998 524 684723,16 4382819,38 

B98P2 Center 17 Burned 25/10/1998 524 684721,81 4382828,70 

B98P3 Center 13 Burned 25/10/1998 524 684720,55 4382837,34 

B00C1 Center 23 Unburned  490 689432,45 4379789,97 

B00C2 Center 18 Unburned  490 689433,00 4379800,49 

B00C3 Center 22 Unburned  490 689433,76 4379810,04 

B00P1 Center 20 Burned 16/09/2000 491 689122,62 4379686,35 

B00P2 Center 15 Burned 16/09/2000 491 689113,73 4379683,96 

B00P3 Center 20 Burned 16/09/2000 491 689104,74 4379678,94 
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B03C1 Center 19 Unburned  773 685633,16 4371157,85 

B03C2 Center 10 Unburned  773 685645,99 4371146,48 

B03C3 Center 9 Unburned  773 685653,95 4371138,65 

B03P1 Center <5 Burned 28/08/2003 773 685756,33 4371211,95 

B03P2 Center <5 Burned 28/08/2003 773 685743,37 4371223,17 

B03P3 Center <5 Burned 28/08/2003 773 685732,34 4371233,47 

B06C1 Center 20 Unburned  210 698715,79 4386371,33 

B06C2 Center 18 Unburned  210 698706,82 4386370,62 

B06C3 Center 20 Unburned  210 698696,34 4386371,51 

B06P1 Center 24 Burned 12/03/2006 208 698641,52 4385931,49 

B06P2 Center 20 Burned 12/03/2006 208 698631,97 4385921,99 

B06P3 Center 20 Burned 12/03/2006 208 698622,90 4385913,60 

B09C1 Center 21 Unburned  182 698431,56 4386915,92 

B09C2 Center 17 Unburned  182 698421,45 4386919,55 

B09C3 Center 18 Unburned  182 698412,55 4386923,34 

B09P1 Center 21 Burned 25/04/2009 177 698428,94 4386840,61 

B09P2 Center 17 Burned 25/04/2009 177 698436,38 4386848,35 

B09P3 Center 17 Burned 25/04/2009 177 698442,10 4386855,37 

B12C1 Center 18 Unburned  404 684955,70 4384223,68 

B12C2 Center 18 Unburned  404 684962,43 4384231,45 

B12C3 Center 15 Unburned  404 684969,22 4384239,67 

B12P1 Center 7 Burned 22/09/2012 408 685320,25 4384485,20 

B12P2 Center 5 Burned 22/09/2012 408 685318,24 4384475,57 

B12P3 Center 10 Burned 22/09/2012 408 685311,67 4384465,57 

B13C1 Center 28 Unburned  200 698728,63 4386357,00 

B13C2 Center 31 Unburned  200 698730,71 4386366,34 

B13C3 Center 21 Unburned  200 698725,21 4386371,54 

B13P1 Center 25 Burned 12/08/2013 206 698504,93 4386423,32 

B13P2 Center 12 Burned 12/08/2013 206 698497,30 4386431,65 

B13P3 Center 15 Burned 12/08/2013 206 698491,47 4386439,97 

C95C1 South 25 Unburned  366 742619,75 4306203,17 

C95C2 South 24 Unburned  366 742611,47 4306199,78 

C95C3 South 23 Unburned  366 742597,98 4306198,96 

C95P1 South 30 Burned 01/07/1995 374 742635,81 4306251,64 

C95P2 South 27 Burned 01/07/1995 374 742630,91 4306255,94 

C95P3 South 25 Burned 01/07/1995 374 742623,04 4306259,18 

C98C1 South 17 Unburned  164 737936,89 4307071,14 
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C98C2 South 20 Unburned  164 737932,24 4307065,82 

C98C3 South 22 Unburned  164 737926,57 4307058,26 

C98P1 South 27 Burned 19/10/1998 148 738311,66 4307083,77 

C98P2 South 29 Burned 19/10/1998 148 738308,19 4307084,25 

C98P3 South 22 Burned 19/10/1998 148 738304,22 4307084,93 

C01C1 South <5 Unburned  555 741985,47 4303755,65 

C01C2 South <5 Unburned  555 741991,46 4303773,45 

C01C3 South <5 Unburned  555 742000,35 4303781,68 

C01P1 South 9 Burned 09/08/2001 594 742594,01 4303180,14 

C01P2 South 11 Burned 09/08/2001 594 742604,62 4303192,31 

C01P3 South 10 Burned 09/08/2001 594 742576,91 4303173,91 

C05C1 South 2 Unburned  189 715506,16 4312988,99 

C05C2 South 3 Unburned  189 715518,11 4312984,18 

C05C3 South 6 Unburned  189 715529,13 4312976,04 

C05P1 South <5 Burned 22/06/2005 189 715420,72 4312973,18 

C05P2 South <5 Burned 22/06/2005 189 715432,31 4312955,36 

C05P3 South <5 Burned 22/06/2005 189 715440,40 4312947,17 

C06C1 South <5 Unburned  577 741939,61 4303760,92 

C06C2 South <5 Unburned  577 741952,79 4303756,73 

C06C3 South 7 Unburned  577 741965,71 4303761,82 

C06P1 South 6 Burned 14/09/2006 598 742385,79 4303484,39 

C06P2 South 6 Burned 14/09/2006 598 742397,71 4303488,61 

C06P3 South 13 Burned 14/09/2006 598 742412,50 4303491,48 

C07C1 South <5 Unburned  567 740223,16 4304473,81 

C07C2 South <5 Unburned  567 740231,20 4304483,67 

C07C3 South <5 Unburned  567 740245,13 4304505,10 

C07P1 South 6 Burned 31/05/2007 571 740308,90 4304519,47 

C07P2 South 7 Burned 31/05/2007 571 740326,41 4304519,28 

C07P3 South 8 Burned 31/05/2007 571 740344,49 4304528,56 

C09C1 South 9 Unburned  624 741909,65 4299884,14 

C09C2 South 6 Unburned  624 741916,51 4299882,12 

C09C3 South 6 Unburned  624 741930,43 4299882,27 

C09P1 South <5 Burned 25/07/2009 648 741588,30 4299695,05 

C09P2 South <5 Burned 25/07/2009 648 741589,99 4299693,70 

C09P3 South <5 Burned 25/07/2009 648 741602,61 4299688,85 

C11C1 South 9 Unburned  230 732962,70 4310867,13 

C11C2 South 9 Unburned  230 732968,48 4310861,44 
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C11C3 South 8 Unburned  230 732981,27 4310866,96 

C11P1 South 7 Burned 10/04/2011 222 732990,83 4310905,60 

C11P2 South 11 Burned 10/04/2011 222 733001,75 4310904,85 

C11P3 South 6 Burned 10/04/2011 222 733011,15 4310904,22 
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Table C2: Nodes ages used for plant phylogenetic calibration.  

Node 
Number 

Age (Million 
years) 

1 400 

2 161 

3 48 

4 12 

5 56 

6 76 

7 81 

8 24 

9 14.8 

10 4.3 

11 2.3 

12 1.5 

13 6.2 

14 2 

15 26 

16 23 

17 8.6 

18 8.1 

19 2.19 

20 18.8 

21 6.4 

22 9.1 

23 47 

24 71 

25 56 

26 44 

27 33 

28 37 

29 43.66 
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Table C3: Node ages used for fungal phylogenetic calibration.  

Node 
Number 

Age 
(Million years) 

1 1300 

2 812 

3 648 

4 500 

5 425 

6 153 

7 347 

8 294 

9 203 

10 181 

11 149 

12 108 

13 121 

14 84 

15 115 

16 213 

17 273 

18 382 

19 542 

20 527 

21 458 

22 309 

23 260 

24 246 

25 244 

26 169 

27 184 

28 353 

29 315 

30 239 

31 143 

32 138 

33 244 

34 336 

35 189 
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36 362 

37 350 

38 230 

39 430 

40 413 

41 373 

42 770 
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Table C4: Results of the spatial autocorrelation tests (Mantel correlations) for both 
biotic (similarity in the specific composition) and abiotic properties. Adjusted P-values 
after correction for multiple testing following the Benjamini-Hochberg procedure are 
shown. 

Variables r P P-adjusted 

Plants  0.024 0.369 0.492 
Fungi  0.173 0.014 0.168 
Bacteria  0.016 0.336 0.492 
Archaea  0.007 0.359 0.492 
pH  0.210 0.036 0.216 
TOC  0.019 0.294 0.492 
TN   0.104 0.141 0.441 
Moisture  0.079 0.147 0.441 
NO3

--N -0.033 0.365 0.492 
NH4

+-N -0.038 0.533 0.533 
C/N ratio -0.016 0.514 0.533 
EC -0.024 0.532 0.533 
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