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Introduction

Industrial microbiomes

Since the beginning of industrialisation
in the 18th century mankind opened
step by step a window into industrial
microbiology. New emerging
industries created new microbial
niches and many of them were
characterized by chemical stress or high
temperature. Microorganisms able to
degrade industrial pollutants such as
biphenyl, organochlorine pesticides,
dioxins/furans [1], petroleum [2],
organohalide [3] and many more were
reported. Some bacteria have even
been reported to resist to several harsh
conditions at the same time. For
example, it has been described that
Acidocella aromatica is able to uptake the
irritant element Vanadium at low pH

levels down to 2 [4]. Such works indicate
the very high microbial adaptability,
which allows them to grow on hostile
places, like solar panels [5], coffee
machines [6] or even in places with high
radiation like Chernobyl [7].
The ability of microorganisms to grow
in extreme environments is especially
interesting for applied microbiologists,
as those places are promising sources
of industrially applicable enzymes and
microorganisms [8]. Examples of such
potential are a thermostable esterase
from the bacterium Thermus thermophiles
[9], a cold-active and solvent-tolerant
lipase from Stenotrophomonas maltophilia
[10] or a thermoalkalophilic esterase
from Geobacillius sp. [11].

FIGURE 1: The central role of anaerobic digestion for biorefinery: Anaerobic digestion is
a multifunctional technology that allows linking of multiple industrial fields (A). The key
for this multifunctionality is a highly diverse and robust microbiome and therefore, a better
understanding of anaerobic microbiomes is one of the main goals of this thesis (B).
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Another industrial habitat that, due
to the recent worldwide energy crisis,
has become a topic of high interest is
anaerobic sludge from water treatment
or codigestion. Anaerobic digestion
(AD) is a process that leads to methane
formation, which in turn can be burnt
to produce energy. AD processes
are very comprehensive and allow
manifold treatments, profitable usage of
uncountable waste sources and complex
crosslinking with different fields of
industry and biorefinery (Fig. 1A).
Furthermore, the underlying biocenosis
proves to be highly dynamic, robust and
is a promising source of new industrially
interesting microorganisms. However,
the dynamic and robust behaviour of
anaerobic digestion processes are not
fully understood yet. Therefore, one

of the main goals of this PhD thesis
was to shed light on the robustness and
dynamic behaviour of microbiomes from
anaerobic digestion processes (Fig. 1B).

Economic perspectives of
anaerobic digestion

The number of European biogas plants is
continuously increasing (Fig. 2) [12]. In
2014, the European Biogas Association
(EBA) counted 17,240 biogas plants in
Europe. Most of them (10,786) were
located in Germany. However, due
to recent changes in the German law
for renewable energies, the economic
situation of the biogas market is very
unstable.

FIGURE 2: “Number of biogas plants and total installed capacity in Europe 2010–2014”
[adapted from 12]

Biogas plants that were built before
2014 are protected by a provision, which
is made to safeguard existing standards
for 20 years. During this time, those
plants have important subventions,
which allow them to sell each kWh at

prices up to 0.2e.
Biogas plants that were built after 2014
are not protected by this provision.
Those plants have to sell their biogas
or their generated energy according to
the conditions listed in the last version
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of the renewable energy law, from
2017, where less profit is granted. In
order to stabilize the market situation
and to make new digester plants more
competitive, improved technology is
needed. One way to achieve this relies
on a better understanding of anaerobic
microbiomes.

Microbiomes from anaerobic
digestion

Anaerobic digestion (AD) occurs in
four phases: hydrolysis, acidogenesis,

acetogenesis and methanogenesis (Fig.
3). During hydrolysis, degradation
of proteins, lipids, carbohydrates and
cellulose takes place. Resulting fatty
acids, amino acids and sugars are
transformed during acidogenesis into
volatile fatty acids (VFA) and alcohols,
which are eventually degraded to
acetate, H2 and CO2, in a process called
acetogenesis. Finally, hydrogenotrophic
and acetotrophic methanogens use
acetate, H2 and CO2 for methane
formation [13, 14] (Figure 3).

FIGURE 3: The four phases of anaerobic digestion: (1) Biomass is hydrolysed and
transformed into smaller molecules (hydrolysis); (2) During acidogenesis, the hydrolysed
biomass becomes organic acids, alcohols, hydrogen and carbon dioxid; (3) acetogenesis takes
place, where mainly acetic acid, hydrogen and carbon dioxide are formed; (4) Finally, these
substances are used for methane formation (methanogenesis).

Research on AD processes has been
carried out for more then one century
already, since the works from Söhngen
(1906)[15] or Coolhas (1928)[16];
however, further work remains to be
done to fully understand anaerobic
microbiomes, as many involved
microorganisms and their specific
functions are still unknown. Researchers
are still struggling with many details like
for example syntrophic acetate oxidation
[17, 18] or the influence of certain VFAs
on microbial behaviour. To give here

an example: it has been recently shown
that compared to propionate, acetate
improves phosphorus accumulation
into aerobic granular sludge [19]. In
general, the microbial diversity in
anaerobic digestion is especially high at
mesophilic temperatures [20] and new
species are discovered regularly from
anaerobic sludges [21, 22, 23]. Based
on 16S-rRNA gene high-throughput
amplicon sequencing, high numbers of
unclassified species have been described
[24]. The lack of knowledge about
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many bacterial species from anaerobic
digesters complicates the analysis of
microbiomes at lower taxonomic levels.
Therefore, studies on bacteria from AD
processes are often restricted to the
analysis of higher taxonomic levels.
This is the case in studies from Goux
et al. [25] and Lebhuhn et al. [26],
where high abundances of Firmicutes
and Bacteroidetes were described. In
contrast, the archaeal community of AD
processes is much better characterized,
as sequences can usually be classified at
the genus or even species level [27].
The incomplete knowledge about
bacterial communities in AD processes
suggests that there is a great potential
for the future of biorefinery. In
a recent work, over 100 strains
of cellulose-degrading bacteria were
isolated from an agricultural biogas
plant [28]. In another work, a new
methanotrophic species belonging to
the genus Methylocaldum, which might
allow effective methanol production,
was isolated from digestate [29]. AD
sludge is also a promising source for
lipase- and protease-producing bacteria.
Recently, a novel cold-adapted family
VIII esterase was discovered in biogas
slurry [30]. Also recently, a new
strain of Bacillus subtilis (IND19), which
allows simultaneous production of
carboxy methylcellulose and protease,
was discovered in cow dung [31].
Taken together, these works indicate
that anaerobic sludge from different
AD-processes contains highly diverse
microbiomes with tremendous industrial
potential, which are worth to be
investigated. This is in concordance with
other works that already highlighted the
importance of anaerobic digestion for
biotechnological applications during the
90s [32, 33].

Robustness of anaerobic
microbiomes

The robust and dynamic behaviour
of AD processes was studied
during the 80s. For example, the
microbial capability to degrade organic
compounds in anaerobic digesters at
high salt concentrations was detected
in 1988. In that work, it was shown
that salt concentrations up to 3–4
M allow acidogenesis, but inhibit
methane-producing archaea [34]. AD
sludge from such harsh fermentation
conditions is an excellent source of
biotechnologically relevant strains. For
example, in 2013, a thermoactive and salt
tolerant α-amylase was isolated from a
thermophilic digester plant [35].
It has further been demonstrated that
microbiomes from AD processes are able
to resist high nitrogen concentrations.
Nitrogen is well known for its inhibitory
effect, and is abundant in several
substrates used in anaerobic digestion.
One example is manure from chicken
farming. Researchers have been
investigating this substrate and its
inhibitory effect on microbiomes for
several decades [36, 37]. To overcome
inhibitory effects caused by high
ammonia concentrations, researchers
described ammonia-stripping processes
[38], but also pointed out that repeated
batch-cultures might allow slow
adaption of the underlying sludge
biocenosis to high levels of ammonia
[39]. For methanisation under high
ammonia levels, synthrophic acetate
oxidising bacteria and hydrogenotrophic
archaea seem to play an important role
[40, 41, 22]. Besides the resistance to
high ammonia levels, SAOBs show high
resistance to other toxics too, which
allows anaerobic treatment of substances
like oxytetracycline. In contrast to
SAOBs, acetoclastic methanogens seem
to be negatively affected by high levels
of oxytetracycline [42]. Other toxicants,
which were successfully treated, based
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on anaerobic digestion, are for example
Coumarin [43], chloroform [44] and
dichloromethane [45]. In Summary,
microbiomes from anaerobic digestion
processes prove to be very robust,
which in turn allows implementation of
anaerobic digestion into concepts from
waste treatment and bioremediation.

The role of anaerobic
digestion in biorefinery

Methane, being the main product of
AD-processes, has already a promising
role in biorefinery. Besides its role
as energy source, it can be used to
grow methanotrophs, which are a
viable source of proteins that can be
used as food supplement. Moreover,
methanotrophs are a promising source
of several other products, since they
accumulate osmolytes (e.g. ectoine or
sucrose), phospholipids, biopolymers
and enzymes [46]. However, anaerobic
digestion is not only restricted to
methane production.
The liquid effluent of biogas plants,
due to its high content of nitrogen and
phosphorus, can be used as fertilizer
and allows effective production of algae
[47, 48]. Besides this, separated fibres
from anaerobic plant degradation can
be used for saccharification to produce
sugars and lignin, which eventually can
be used for production of propionic acid,
lactic acid, succinic acid, diols, butanol,
ethanol, carbon fibres and biopolymers.
Via thermochemical processes, lignin
can also be used for production of
heat, electricity, syngas and phenolic
compounds. And finally, solid fibres
can be transformed via pyrolysis and
hydrothermal processes into bio-oil or
biochar [48, 49].
Production of bio-products through
anaerobic digestion is especially
interesting, as it allows valorisation of
multiple waste sources, as for example

mixed microalgae [50], pulp and paper
sludge [51] or municipal waste [52].
Anaerobic fermentation of multiple
wastes also allows degradation of
multiple pollutants, as for example
phenols [53] or paraffin [54].

With the perspective of using
anaerobic digestion for a synergistic
interconnection of multiple biorefinery
processes, a fragmentation of
AD-processes in two process stages
becomes an interesting possibility. Since
the 80s, scientists have described the
possibility of separating hydrolysis and
acidogenesis from acetogenesis and
methanogenesis [55, 56, 57]. Low levels
of pH and high concentration of volatile
fatty acids (VFA) allow an inhibition of
methanogenesis [58]. In turn, inhibition
of methanogenesis leads to accumulation
of interesting VFAs, like for example
acetic-, lactic-, propionic- and butyric
acid. VFAs are interesting products
as they can be applied as platform
chemicals in multiple chemical reactions
[59], even though the extraction of those
acids is still very challenging [60]. And
finally, inhibition of methanogenesis
allows production of hydrogen too [61].
The manifold application possibilities
of separated acidification stages from
anaerobic digesters might help to
synergistically link different fields
of biorefinery. However, to reach
that aim, a deeper knowledge on
microbial diversity and the robustness
of anaerobic microbiomes appears
necessary. Therefore, the presented
PhD-thesis was designed to shed light
on the dynamic and robust behaviour of
microbiomes from anaerobic digestion.
In the frame of this thesis it was
further aimed to define key-microbiomes
of anaerobic digestion processes, to
highlight the importance of separated
acidification stages, and to find new
strains with potential application in the
industry (Fig. 3).
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FIGURE 4: Structure of the thesis: Looking forward to a future, where industrial biorefinery
is synergistically interconnected and uses anaerobic digestion (AD) as crosspoint. Based on
this idea, this thesis is focussed on the shown topics. Corresponding chapters are indicated
at the outer circle.
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Objectives

The present thesis focuses on
anaerobic digestion, more specifically
on the dynamic behaviour of the
underlying microbiomes and the role
of anaerobic digestion for biorefinery.
In the past decades, tremendous
progress has been made on the field
of anaerobic digestion. Innovative
methods, especially high-throughput
sequencing approaches, have allowed
the study of biotechnologically-relevant
biocenosis more deeply. However,
the exact behaviour of the involved
microbiomes under different conditions
is still an unresolved topic. In
order to shed light on the diversity,
biological activity and robustness of
microbial consortia responsible for
biotechnologically relevant processes,
the present PhD thesis has been designed
in order to address the following
objectives:

1.) Characterisation of biogas-
producing facilities in Germany, in
the widest study to date, aiming at
the identification of common cores of
microbial keyplayers linked to biogas
production.

2.) Performing the first holistic
characterization of two-stage digestion
with an acid accumulating pretreatment
step based on a multi-omics approach,
including both metagenomics and
proteomics.

3.) Exploring new applications of the
anaerobic pretreatment of biomass, such
as electricity production, pre-treatment
of substrates that are difficult to digest
and combined application of thermal
pretreatment and microbial driven
acidification.

4.) Identification of new microbial
strains with foreseeable roles in
anaerobic digestion and biorefinery.
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Chapter 1: Characterisation of
biogas-producing facilities in
Germany

Summary: Only a fraction of the
microbial species used for anaerobic
digestion in biogas production plants
are methanogenic archaea. We have
analyzed the taxonomic profiles of
eubacteria and archaea, a set of chemical
key parameters, and biogas production
in samples from nine production plants
in seven facilities in Thuringia, Germany,
including co-digesters, leach-bed, and
sewage sludge treatment plants. A
complex taxonomic composition was
found for both eubacteria and archaea,
both of which strongly correlated

with digester type. Plant-degrading
Firmicutes as well as Bacteroidetes
dominated eubacteria profiles in high
viscid co-digester sludge; whereas
Bacteroidetes and Spirochaetes were
the major phyla in leach-bed and
sewage sludge digesters. Methanoculleus
was the dominant archaea genus in
co-digesters, whereas Methanosarcina
and Methanosaeta were the most
abundant methanogens in leachate from
leach-bed and sewage sludge digesters,
respectively.

Publication 1
Abendroth C, Vilanova C, Günther
T, Luschnig O, Porcar M. Eubacteria
and archaea communities in seven
mesophilic anaerobic digester plants in
Germany, Biotechnol Biofuels. 2015;8:87.
doi: 10.1186/s13068-015-0271-6.
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Abstract

Background: Only a fraction of the
microbial species used for anaerobic
digestion in biogas production plants
are methanogenic archaea. We have
analyzed the taxonomic profiles of
eubacteria and archaea, a set of chemical
key parameters, and biogas production
in samples from nine production plants
in seven facilities in Thuringia, Germany,
including co-digesters, leach-bed,
and sewage sludge treatment plants.
Reactors were sampled twice, at a
1-week interval, and three biological
replicates were taken in each case.

Results: A complex taxonomic
composition was found for both
eubacteria and archaea, both of which
strongly correlated with digester type.
Plant-degrading Firmicutes as well
as Bacteroidetes dominated eubacteria
profiles in high biogas-producing
co-digesters; whereas Bacteroidetes and
Spirochaetes were the major phyla in
leach-bed and sewage sludge digesters.
Methanoculleus was the dominant
archaea genus in co-digesters, whereas
Methanosarcina and Methanosaeta were
the most abundant methanogens in
leachate from leach-bed and sewage
sludge digesters, respectively.

Conclusions: This is one of the
most comprehensive characterizations
of the microbial communities of
biogas-producing facilities. Bacterial
profiles exhibited very low variation
within replicates, including those of
semi-solid samples; and, in general,
low variation in time. However,
facility type correlated closely with
the bacterial profile: each of the three
reactor types exhibited a characteristic
eubacteria and archaea profile. Digesters
operated with solid feedstock, and
high biogas production correlated
with abundance of plant degraders
(Firmicutes) and biofilm-forming
methanogens (Methanoculleus spp.).
By contrast, low biogas-producing
sewage sludge treatment digesters
correlated with high titers of volatile
fatty acid-adapted Methanosaeta spp.

Background
Knowledge of the effects of greenhouse
gases on the climate dates back to the
1970s, with CO2 representing a key
greenhouse gas [1]. Today, there is
general assent on the urgent need to
reduce greenhouse gases in order to
mitigate climate change [2, 3]. One of the
main strategies to meet this goal requires
shifting from fossil to renewable energy
sources. In fact, it is expected that by
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2020, 20 % of total energy consumption
in Europe will be covered by renewable
energies [4].
Biomass is a very promising alternative
energy source, in particular as a source
of biogas. Indeed, almost 70 % of
all renewable energies in Europe came
from biomass management in 2010 [5],
with Germany being a leader in the
biomass-based bioeconomy. During
recent years, as supported by the EEG
(German law for renewable energies) [6],
the number of biogas plants and biogas
production has increased dramatically
in Germany. For example, in 2012,
7200 biogas plants in Germany provided
enough energy to power 5.3 million
households [7]. Despite this success,
the underlying microbial biocenoses
of biogas-producing facilities are not
yet fully understood, and the whole
methanogenesis process is often referred
to as a “black box” even in some
of the recent literature [7–9]. In the
last decades, substantial efforts have
been undertaken to shed light on
the microbial communities involved
in the anaerobic digestion process,
as deduced by 16S-rDNA sequencing
[10–13], mcrA gene-based analysis [14,
15], or metagenomic approaches [16, 17].
Different microbial profiles have been
reported for biogas production plants
fed with different types of biomass.
For example, the microbial diversity in
a completely stirred digester fed with
fodder beet silage as a monosubstrate
is reported to be particularly rich
in Clostridiales, Deltaproteobacteria,
Bacilli, and Bacteroidetes [18]. Other
studies describe the effect of biowaste
sludge maturation on the microbial
profile within a thermophilic digester,
which contained mainly Clostridia [19];
while the microbial communities in
lab-scale reactors fed with casein, starch,
and cream are particularly abundant
in Firmicutes and Bacteroidetes [20].
Given these reports, we could say
that microbial profiles of anaerobic
digesters are, to some extent, specific

for each biogas reactor/biomass type.
This raises the question whether a
common core of microbial key players
does exist for anaerobic digesters in
general. It is indeed possible to find
common microbial actors when higher
taxonomic levels are compared. For
instance, it is known how methanogenic
archaea (genus Methanosaeta) dominates
environments with low acetate, while
increasing amounts of inhibiting
substances (like volatile fatty acids or
hydrogen sulfide) foster Methanosarcina
spp. growth [21]. Under thermophilic
conditions, Methanosarcina spp. proves
more frequent than Methanosaeta
spp. Regarding eubacteria, the phyla
Firmicutes and Bacteroidetes play an
important role in anaerobic digestion
[13, 22] and within Firmicutes, the
class Clostridia is the most abundant
group [18, 23]. Regarding bacteria,
and similarly to methanogens stressed
above, eubacterial profiles of anaerobic
co-digesters and from the anaerobic
stage of sewage plants are typically
different [13].

In the present work, we have
performed a holistic analysis of seven
different digesters at two distinct
time points (2 · 9 reactors, sampled
within 1 week) from Thuringia,
Germany (Fig. 5; Table 1). The
digesters corresponded to three different
configurations: completely mixed and
continuously stirred single-stage tank
reactors for sewage sludge digestion
(SS); leach-bed digesters operating
discontinuously in batches (LB); and a
twostage system consisting of a vertical
plug flow reactor followed by an upright
continuously stirred tank digester
and a final digestate storage tank
(hereafter referred to as CD, standing
for co-digester). With the exception
of the digestate storage tank, which
was operated at room temperature
(RT), all facilities were operated at
mesophilic temperature. The analysis
included chemical characterization and
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biogas measurement of the samples
and the determination of the archaea
and eubacteria taxonomic profiles by
16S amplicons sequencing on three
replicates of each reactor/time. Our
results reveal that microbial profiles
were strongly dependent on reactor
type and moderately dependent on the
facility/particular reactor sampled. We

also found that profiles were stable in
time and exhibited a low degree of
variation within the three replicates
analyzed. Globally, the 54 subsamples
sequenced are the most comprehensive
microbial characterization of biogas
communities performed to date.

FIGURE 5: Sampling of anaerobic digesters in Thuringia (Germany). Seven different facilities
with a total of nine reactors were sampled in Schlossvippach, Weimar, Jena (two plants,
one of them with three reactors), Schmölln, Rudolstadt, and Saalfeld. Sampling was
repeated twice at a 1-week interval, and three replicates were processed (54 samples in
total). CD three-stage plant, SS sewage plants, LB leach-bed reactors, S1 plug flow reactor,
S2 continuous stirred tank reactor, S3 storage tank for digestion remnants.

Results and discussion

Chemical parameters
Eleven parameters were measured for
each of the reactor samples: COD
(chemical oxygen demand), TOC
(total organic carbon), total nitrogen
content (N), electrical conductivity,
TVFA (total volatile fatty acids), TS
(total solids), VS (volatile solids), pH,
biogas yield, and concentrations of
CH4 and CO2 (Additional file 1: Table
S1). Biogas yields were obtained from
lab-scale batch experiments, whereas
all the other parameters originated
from in situ measurements of digester
samples. Batch experiments were

performed without adding substrates
and obtained biogas yields depended
only on the organic fraction within
the sludge samples. After normalizing
the data, successive combinations of
three parameters (permutation) were
plotted in a Gnuplot multiplot (Fig.
6). The resulting data matrix included
biogas production but not methane
and CO2 concentration, in order to
avoid redundancies. This resulted
in three clearly defined clouds, each
corresponding to one of the different
digester facility types (Fig. 6a). SS
and CD values were plotted in two
opposed vertices of the plot, with LB
located in an intermediate position.
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TABLE 1: Overview of sampled digester types and input feeding based on descriptive data.
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The yield of biogas produced is shown
in Fig. 6b and the highest yields
are plotted as a relatively small cloud
(black dots) overlapping with the
extremes of the CD cloud. As a general
conclusion, parameter values were
higher (corresponding in general with
high nutrient contents) when biogas

production was highest. In a second
statistical approach, this observation
was verified by a principal component
analysis (Additional file 2: Figure S1),
where samples coming from the same
type or reactor clustered together and
notably differed from those from other
reactor types.

FIGURE 6: 3D plots of chemical parameters. COD, TOC, total nitrogen contents (N),
conductivity, TVFA, TS, VS, pH, and produced volume of biogas are plotted in a 3D
representation in which the permutation of all determined parameters define axis X, Y, and Z.
The underlying biogas facilities are highlighted correspondingly (a). Plotting the parameters
without the biogas yield and colorizing the dots according to their biogas production rate
gives the second plot (b).

Taxonomic composition of
eubacteria
Eubacteria from all samples were
identified by highthroughput sequencing
as described in “Material and methods”
section, and phylum-level results
are shown in Fig. 7. There was
little variation between replicates,
clearly indicating that differences in
taxonomic composition accounted for
the differences found between reactors
and time. Similarly, different sampling
times resulted in very small variations
in the taxonomic profile, being the
taxonomic composition of each sample
very constant after 1 week. Only in one
case (LB reactor in Saalfeld) a substantial
shift was detected in the amount of

Bacteroidetes and Spirochaetes after 1
week. The taxonomic composition of the
samples correlated closely with reactor
type. Indeed, three different profiles
were observed, each corresponding to a
particular facility type. CD samples were
dominated by the phylum Firmicutes,
with nearly 46–60 % of classified
sequences assigned to Firmicutes in the
first two stages and less than 20–32 %
in the third stage (remnant storage);
followed by Bacteroidetes, which proved
mainly in the third stage, when it
accounted for up to 73 % of the total
identified taxa.
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The three CD digesters contained
low amounts of Synergistetes, and
the remnant storage contained
moderated amounts of Actinobacteria,
Proteobacteria, Spirochaetes, and
Tenericutes (Fig. 7a).
The second facility type (LB) displayed a
totally different microbial composition
(Fig. 7b) with comparatively fewer
Firmicutes reads (between 3 and 19
% of total sequences). The microbial
LB communities were dominated by
Spirochaetes (30 and 72 % of the
total reads), along with Bacteroidetes

(11 and 47 %). The third phylum,
Thermothogae, reached low to moderate
frequencies in LB facilities in Schmölln
and Saalfeld (between 2 and 19 %),
and it was absent in the six replicates
of Schlossvippach. Minor counts of
Actinobacteria and Proteobacteria were
also detected. The third profile was
associated with the sewage sludge
digesters (Fig. 7c). Although the SS
facilities showed certain similarities
compared to the LB facilities, the overall
microbial composition differed from
both CD and LB reactors.

FIGURE 7: Bacterial profiles of the anaerobic digester plants analyzed. Taxonomic (phylum)
composition of eubacteria populations in the reactors as deduced by 16S amplicons isolated
and sequenced as described in “Material and methods” section. (a) Three-stage co-digester
(CD) plant in Jena, (b) leach-bed reactors, and (c) sewage plants. The grey scale (top right)
corresponds to biogas yield ranges as shown at the right.
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In common with the LB samples,
SS reactors contained high amounts
of Bacteroidetes and Spirochaetes
(Bacteroidetes between 13 and 51
%, Spirochaetes between 27 and 50
%). However, unlike the CD and LB
facilities, SS reactors were particularly
rich in Chloroflexi (9 and 39 %) and
Proteobacteria (4–9 %). Besides the
aforementioned taxa, small amounts
of Actinobacteria, Synergistetes, and
Thermotogae were also observed.
Minor variations or sub-profiles of the
three main biomass-associated profiles
were detected. For example, two of
the three Jena CD reactors were very
similar, while the third one displayed
higher eubacteria diversity. This might
be due to the fact that the last stage
(remnants) was kept at RT instead of
mesophile temperatures. Although
LB and SS samples corresponded
to two main profiles, one location
of each type (LB-Schlossvippach
and SS-Rudolstadt) exhibited a
characteristic presence/absence of one
particular taxon: the former typically
lacked Thermotogae, which was well
represented in the other two LB plants;
while SS Rudolstadt was particularly
rich in Chloroflexi (Fig. 7b, c). The
absence of Thermotogae in the LB reactor
from Schlossvippach may be due to
the fact that the solid phase is mainly
heated up by the leachate (without extra
heating in the solids storage–“garage”),
which can lead to irregularities in
temperature. In the Schlossvippach
sample, it took more than 1 week to
heat up a newly filled garage (Christoph
Bürger and Kevin Lindner personal
communication).
In general, taxonomic eubacteria profiles
strongly correlated with the biomass
type. The differences observed between
CD and SS reactors are in accordance
with previous studies [13] describing
an overall difference between sewage
sludge and co-fermentation regarding
the microbial profile. The high amount
of Bacteroidetes and Firmicutes in CD

reactors is also consistent with previous
reports [13, 18, 22, 24]. One reason
for the abundance of Firmicutes could
be the high content in TS derived
from plant material (Additional file
1: Table S1), which probably fosters
biofilm formation. Firmicutes have
been described as main degraders
of cellulolytic material [24] and are
abundant in biofilms of waterwater
supply systems [25, 26]. LB and
SS reactors, both containing liquid
substrates, had high titers of the
very mobile and efficient swimmer
Spirochaete, described as able to swim
in high viscous gel-like liquids, such
as those found in LB reactors [27]. It
has to be highlighted that the observed
microbial profiles for the LB samples
were only those from leachate, and
that the solid fraction of LB systems
might be rich in Firmicutes due to
the high percentage of solids. The
abundance of Chloroflexi in SS reactors
has previously been reported. In fact,
different Chloroflexi species have been
found in more than 60 sewage reactors
in different European countries based
on FISH experiments [28] and also in
other facilities around the world [29].
The prevalence of Proteobacteria and
Bacteroidetes is in accordance with the
work by Wang et al. [30] on the microbial
profile of domestic sewage outfalls.
The different taxonomic profiles we
found correlated to biogas yield. For
instance, the phylum Chloroflexi was
detected in sewage plants, where very
low biogas yields were measured.
Also, Proteobacteria were only found
in the plants with low biogas yields
(digestate storage of the three-stage
plant, Schlossvippach, and all sewage
samples), while Firmicutes were
particularly abundant in reactors with
high biogas yields (CD samples).
However, differences in biogas yield
might also be a consequence of the
concentration of TS, which is especially
high in CD reactors.
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FIGURE 8: Taxonomic (genus) composition of archaea in the anaerobic digester plants.
Taxonomic composition based on 16S archaea-specific amplicon sequences is shown. (a) The
three-stage plant (CD) in Jena, (b) leach-bed reactors, and (c) sewage plants. The grey scale
(top right) corresponds to biogas production values as in Fig. 7. Samples corresponding to
the storage tank of the digestion remnants reactor (CD-Jena S3) are not shown as they failed
to produce any amplicon with the selected oligonucleotides. Methanogenesis pathways are
shown in (d) three stage plant, (e) leach-bed reactors, and (f) sewage plants.
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In summary, our results are
strongly consistent with previous
reports demonstrating patchiness of the
digesters in terms of the distribution of
bacterial populations [31].This strongly
suggests ecological parameters (i.e.
liquid/solid substrate or biomass
type) are the key factors shaping
microbial communities; but also reveal
an important, albeit secondary, role
of the facility/reactor on this mainly
biomass-associated distribution of the
taxonomic profiles.

Taxonomic composition of
archaea
The taxonomic composition of the
sampled reactors in terms of archaea
contents is shown in Fig. 8. The
data correspond to all but one reactor
(three replicates and two time points),
corresponding to the third stage of
the Jena CD reactor, from which no
archaeal DNA could be amplified. CD
reactors were dominated by archaea
belonging to the genus Methanoculleus
(Fig. 8a), accounting for 59–76 %
of all the sequences. A significant
amount of Methanosarcina (9–24 %),
Methanobacterium (10–21 %), and
Methanobrevibacter (3–7 %) was detected,
as well as infrequent genera such as
Methanosphaera, Methanothermobacter,
and Methanosaeta. In contrast,
LB digesters were characterized by
substantially smaller amounts of
Methanoculleus (3–44 %); and by the
abundance of Methanosarcina (37–95 %).
One of the three LB-digesters showed a
very high amount of Methanobrevibacter
(31–35 %), whereas the other two
reactors had very low amounts (1–2 %).
Minor genera were Methanobacterium,
Methanosphaera, and Methanosaeta. In
the SS samples, Methanosaeta proved
the most prevalent genus with a total
number of reads between 42 and 88
% (Fig. 8c). While Methanosaeta was
detected in high amounts in all the SS
reactors, the frequency of other genera
differed among SS digesters. The biogas

plant in Rudolstadt was very rich in
Methanomethylovorans (40–55 %), while
the other two SS reactors showed a
relatively high amount of Methanoculleus
(1–10 %) and Methanospirillum (8–21 %).
As in the eubacteria profiles, three main
taxonomic combinations were found to
correlate with the three reactor types.
The CD samples showed a strikingly
similar profile independently on the
replicate, reactor, or time sampled. LB
and SS reactors did exhibit sub-profiles
with no variation within replicates
and dependent on the sampling time
(Schlossvippach and Saalfeld) or on the
location sampled (Rudolstadt). The
two LB facilities from Schlossvippach
and Saalfeld showed an increased
amount of Methanoculleus after 1 week,
while the amount of Methanosarcina
decreased during this period. It is
likely that genus Methanoculleus is more
abundant in the solid fraction of these
LB systems due to the high percentage
of solids. Rudolstadt samples had
the typical Methanosaeta abundance
of SS reactors but were characterized
by an exceptionally high frequency of
Methanomethylovorans. The presence
of Methanosarcina and Methanoculleus
correlated to high yields of biogas, while
low biogas yields correlated with higher
amounts of Methanosaeta.
Since methane production is solely
due to the archaeal community and
the different methanogenesis pathways
are well known and genus-linked, we
studied the expected methanogenesis
pathways in each facility type according
to the average taxonomic distribution
(Fig. 8d–f). Interestingly, each facility
type displayed a different combination
of methanogenesis pathways. The CD
reactors were very rich in archaea using
the hydrogenotrophic pathway (Fig.
8d); LB reactors were dominated by
Methanosarcina and thus with the ability
to use all known pathways for methane
production (Fig. 8e); and SS reactors
were characterized by containing high
rates of archaea using the acetoclastic
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pathway for methane production (Fig.
8f).

The archaea composition we describe
here for the different reactor types
is generally in accordance with that
reported in previous studies. The
prevalence of Methanoculleus in CD
reactors was also found in other works
with classical anaerobic digesters [22, 32,
33]. Although other studies describe
a prevalence of Methanosarcina in
this reactor type [34], our data is in
concordance with other works linking
Methanosarcina to LB reactors [35, 36].
The differences in TS levels between CD
and LB reactors might be the key factor
explaining their differences in microbial
composition. The TS content of LB
reactors was much lower (Additional
file 1: Table S1), so the surface available
for the growth of biofilm-forming
species, such as Methanoculleus [37],
was limited compared to CD reactors.
Indeed, previous reports have found
a prevalence of Methanoculleus in
the solid fraction of LB reactors [36,
38]. Additionally, a lower number
of TS may hamper the formation
of spatial syntrophic relationships
between acetate-oxidizing bacteria and
hydrogenotrophic methanogens such
as Methanoculleus. This might lead to
an increase in growth of acetoclastic
methanogens such as Methanosarcina,
able to directly metabolize acetate
(Fig. 8d–f ). These findings are in
concordance with previous reports on
the link between high content of TS
and a high frequency of hydrogen using
methanogens compared to acetoclastic
methanogens [39–42].
The finding that Methanosaeta is the
dominating genus in all SS digesters
is consistent with other screenings [21,
43, 44]. However, the abundance of
Methanomethylovorans in the SS digester
in Rudolstadt might be connected
to the presence of particularly high
amounts of oil and alcohols such as
methanol, since this particular digester

was supplemented with remnants from
biodiesel production, and the prevalence
of this organism has been reported in
sewage sludge reactors supplemented
with molasses alcohol wastewater [45].
The genus Methanospirillum was more
abundant in the SS reactors in Jena and
Weimar but not in Rudolstadt. This
genus proved, along with Methanolinea,
particularly abundant in a previous
SS characterization [46], suggesting
that Methanospirillum and Methanosaeta
are two competing genera within the
anaerobic digestion process of SS sludge.

Conclusions
The present work describes a holistic
characterization of, to the best of our
knowledge, the widest screening of
biogas production facilities performed
to date. We studied nine reactors, three
replicates, and two time points (1-week
interval) yielding 54 subsamples, the
taxonomic diversity of which was
determined for both archaea and
eubacteria contents. Despite the
heterogenous nature of some of the
samples (especially those from CD
reactors), our data reveal a very small
effect of inter-replicate variation. All our
results suggest a strong link between
reactor type and taxonomic profile (for
both archaea and bacteria), as well
as an additional, significant effect of
the location/particular reactor on the
microbial community. Additionally,
the three reactor types yielded separate
blocks when chemical parameters were
plotted in 3D and a principal component
analysis was performed. Taken together,
our results confirm the tight link between
digester type, chemical parameters,
and microbial biocenoses and also
support the existence of a very stable
microbial core adapted to each reactor
type. Furthermore, our study provides
a strong dataset for future diagnostic
strategies aiming to predict biogas
production of mesophile reactors on the
basis of their microbial composition.
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Materials and methods

Sampling
Seven anaerobic reactors accounting for
nine different reactors from Thuringia,
Germany, were sampled twice at a
1-week interval. These biogas plants
included codigesters, leach bed, and
sewage sludge treatment plants (Fig. 5).
Triplet samples from the first sampling
time point were labelled as 1A, 1B, and
1C; whereas triplet samples from the
second time point were labelled as 2A,
2B, and 2C.
An overview of the sampled digester
types and input feedings is shown in
Table 1. Additional file 1: Table S1 and
Additional file 3: Table S2 show specific
environmental chemical parameters
regarding biogas production, biogas
composition, and VFA spectrum. All
sampled digester types were operated
at mesophilic temperature (except the
sampled storage chamber for digestion
remnants, which was left at RT). For
the chemical analysis, a total volume
of 5 L was collected in buckets via
a sampling port at each plant. The
sampling procedure was similar for all
plants and stages (SS plants, LB systems,
and all the stages of the one-phase CD).
In the case of the LB facilities, only
leachate from the leach tank could be
collected. Small amounts of sample
were then transferred into Falcon tubes,
which were directly frozen on dry ice
to prevent further microbial growth or
DNA degradation, and immediately
sent on dry ice from Thuringia to
Valencia (Spain) for DNA isolation and
sequencing. The remaining sludge was
transferred to the laboratory of Bio
H2 Energy GmbH in Jena. From this
sludge, 1.5 L was used for gas production
analysis directly upon sampling. The
remaining 3.5 L of sludge was aliquoted
into smaller plastic boxes and stored at
20 ◦C for further analysis at Eurofins and
Bio H2 companies.

Determination of biogas
production
For each anaerobic sludge sample, 1.5
L was incubated in batch-experiments
for 1 week at 37 ◦C. Incubation bottles
(0.5 L) were filled with 0.5 L of sample
(three bottles per sample without
additional feeding), connected to a
liquid displacement device (eudiometer,
custom-built model calibrated by the
German Eichamt), and the whole setup
was flushed with nitrogen to ensure
an anaerobic atmosphere. Biogas yield
was measured as produced volume of
biogas per volume of sludge sample
[mL/L]. The concentration of CO2
and CH4 in the produced biogas
was determined with the “Binder
COMBIMASS GA-m” gas-measurement
device (Binder, Germany).

Measurement of chemical
parameters
Totals solids (TS), volatile solids (VS),
chemical oxygen demand (COD),
electrical conductivity, and total
organic carbon (TOC) were determined
according to German standard
measurement methods [47]. Total
nitrogen was determined as previously
described (VDLUFA-Methodenbuch
II, 3.5.2.7). The VFA spectrum was
determined with a gas chromatograph
(Shimadzu, Japan). The flame ionization
detector was equipped with a DB.1701
column (Machery-Nagel/Germany).

DNA extraction from reactor
samples
Three DNA samples were prepared from
each sludge sample. In order to reduce
the amount of inhibiting substances
(especially humic acids), biomass was
sedimented by centrifugation (5–10 min
at 20,000 g for SS and LB samples, and
15 min at 20,000 g for CD samples)
and washed several times with sterile
PBS buffer until a clear supernatant
was observed. DNA was isolated with
the “PowerSoil DNA isolation KIT”
(Mo Bio Laboratories, USA) following
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the manufacturer?s instructions. Long
centrifugations were performed (5–10
min at 20,000 g for SS and LB samples,
and 15 min at 20,000 g for CD samples)
to ensure an almost complete removal
of particles and cell fragments after the
mechanical bead treatment. Finally,
DNA quality was checked on a 0.8
% (w/v) agarose gel and quantified
with Nanodrop-1000 Spectrophotometer
(Thermo Scientific, Wilmington, DE,
USA).

PCR amplification
In order to survey bacterial diversity,
a 500-bp fragment of the V1-V3
hypervariable region of the 16S
ribosomal RNA gene was PCR-amplified
from all the samples with universal
primers 28F (5’-GAG TTT GAT CNT
GGC TCA G-3’) and 519R (5’-GTN
TTA CNG CGG CKG CTG-3’). In
the case of archaea, primers Arch349F
(5’-GYG CAS CAG KCG MGA AW-3’)
and Ar9r (5’- CCC GCC AAT TCC TTT
AAG TTTC-3’) were used to amplify
a 578-bp fragment of the 16S region
[48]. A short (10–12 nucleotides) barcode
sequence was included at the 5’ end of
the oligonucleotides used as forward
primers in order to assign sequences
to samples after high-throughput
sequencing. All the amplifications were
performed under the following thermal
cycling conditions: initial denaturing at
95 ◦C for 5 min, followed by 35 cycles of
denaturing at 95 ◦C for 30 s, annealing
at 54 ◦C (for both, bacteria and archaea)
for 30 s, and extension at 72 ◦C for 1 min,
finalized by a 10-min elongation at 72 ◦C.
The resulting amplicons were checked
on a 0.8 % (w/v) agarose gel and purified
by precipitation with 3 M potassium
acetate (pH = 5) and isopropanol.
Pure amplicons were quantified with
the Qubit 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA), and two equimolar
pools of bacteria and archaea amplicons,
respectively, were prepared from all the
samples.

Ion torrent sequencing
Two sequencing libraries were
constructed with 100 ng of the eubacteria
and archaea amplicon pool, respectively,
by the amplicon fusion method (Ion Plus
Fragment Library Kit, MAN0006846,
Life Technologies). Each library
was quantified with the Agilent2100
Bioanalyzer (Agilent Technologies Inc,
Palo Alto, CA, USA) prior to clonal
amplification. Emulsion PCRs were
carried out applying the Ion PGM
Template OT2 400 kit as described in
the user guide (MAN0007218, Revision
3.0 Life Technologies) provided by the
manufacturer. Finally, the libraries were
sequenced in an Ion 318 Chip v2 on
a Personal Genome Machine (PGM)
(IonTorrentTM, Life Technologies) at
Life Sequencing S.L. (Life Sequencing,
Valencia, Spain), using the Ion PGM
Sequencing 400 kit following the
manufacturer’s protocol (publication
number MAN0007242, revision 2.0, Life
Technologies). Sequence statistics are
shown in Additional file 4: Table S3.

Sequence analysis and taxonomic
classification
Raw sequences obtained from the
sequencing center were processed with
the MOTHUR software [49]. Short
(<100 bp) and low-quality (<q15) reads
were removed in a first step. The
degenerated forward primer sequence
was searched among the resulting
sequences, and reads were discarded
if either the primer (three mismatches
allowed) or the barcode sequence was
missing. Sequences were then split
into groups based on barcode matches,
and both primer and barcode sequences
were trimmed. Finally, each resulting
sequence was aligned to the ribosomal
16S reference Greengenes database
and taxonomy was assigned based on
nucleotide similarity with the k-mer
algorithm. Assignments based on a
similarity percentage lower than 70 %
were not considered for further analysis.
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Statistics
A principal component analysis (PCA)
was performed using the Statgraphics
software. Data from COD, TOC, total
nitrogen contents (N), conductivity,
TVFA, TS, VS, pH, and biogas
corresponding to all samples were
normalized, and two components
explaining almost 90 % of the total
variance were used for plotting.
Row-stacked histograms, representing
taxonomic profiles (Figs. 7 and 8),
were prepared using Gnuplot and
modified with Photoshop to insert grey
bars representing intervals of biogas
production. Pie charts (Fig. 8) were
plotted in Excel. In order to plot all
environmental chemical parameters in
one diagram (Fig. 6), the splot and
multiplot commands of Gnuplot were
combined to plot the permutation of
all normalized parameters (normalized
to values between 0 and 100). Each
combination with three chosen variables
was plotted and overlaid with the
other combinations using the Gnuplot
multiplot command. Since nine
parameters were measured (COD, TOC,
total nitrogen contents, conductivity,
TVFA, TS, VS, pH, and volume of
biogas), 84 resulting combinations were
overlaid in the plot (Fig. 6a).
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Chapter 2: Holistic characterization
of two-stage digestion

Summary: Presented results are the
first multi-omics characterisation of a
two-stage biogas production system.
To assess the underlying fermentation
process in more detail, a combination
of high-throughput sequencing and
proteomics on the acidification step of
plant material (grass) at both mesophilic
and thermophilic temperatures (37
and 55 ◦C, respectively) was applied.
High-strength liquor from acidified grass
biomass exhibited a low biodiversity,
which differed greatly depending on
temperature. It was dominated by
Bacteroidetes and Firmicutes at 37 ◦C,
and by Firmicutes and Proteobacteria
at 55 ◦C. At the methane stage,
Methanosaeta, Methanomicrobium and
Methanosarcina proved to be highly
sensitive to environmental changes as
their abundance in the seed sludges
dropped dramatically after transferring
the seed sludges from the respective
reactors into the experimental setup.

Further, an increase in Actinobacteria
coincided with reduced biogas
production at the end of the experiment.
Over 1700 proteins were quantified
from the first cycle of acidification
samples using label-free quantitative
proteome analysis and searching protein
databases. The most abundant proteins
included an almost complete set of
glycolytic enzymes indicating that
the microbial population is basically
engaged in the degradation and
catabolism of sugars. More differentially
expressed proteins were found under
mesophilic (120) than thermophilic (5)
conditions. Metaproteome analyses
only detected significant expression
differences in mesophilic samples,
whereas thermophilic samples showed
more stable protein composition with an
abundance of chaperones suggesting a
role in protein stability under thermal
stress.
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Abstract

Background: Separating acidification
and methanogenic steps in anaerobic
digestion processes can help to optimize
the process and contribute to producing
valuable sub-products such as methane,
hydrogen and organic acids. However,
the full potential of this technology
has not been fully explored yet. To
assess the underlying fermentation
process in more detail, a combination
of high-throughput sequencing and
proteomics on the acidification step of
plant material (grass) at both mesophilic
and thermophilic temperatures (37 and
55 ◦C, respectively) was applied for the
first time.

Results: High-strength liquor
from acidified grass biomass exhibited
a low biodiversity, which differed
greatly depending on temperature.
It was dominated by Bacteroidetes
and Firmicutes at 37 ◦C, and by
Firmicutes and Proteobacteria at 55 ◦C.
At the methane stage, Methanosaeta,

Methanomicrobium and Methanosarcina
proved to be highly sensitive to
environmental changes as their
abundance in the seed sludges dropped
dramatically after transferring the seed
sludges from the respective reactors
into the experimental setup. Further,
an increase in Actinobacteria coincided
with reduced biogas production at the
end of the experiment. Over 1700
proteins were quantified from the first
cycle of acidification samples using
label-free quantitative proteome analysis
and searching protein databases. The
most abundant proteins included an
almost complete set of glycolytic
enzymes indicating that the microbial
population is basically engaged in the
degradation and catabolism of sugars.
Differences in protein abundances
clearly separated samples into two
clusters corresponding to culture
temperature. More differentially
expressed proteins were found under
mesophilic (120) than thermophilic (5)
conditions.
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Conclusions: Our results are the
first multi-omics characterisation of a
two-stage biogas production system
with separated acidification and suggest
that screening approaches targeting
specific taxa such as Methanosaeta,
Methanomicrobium and Methanosarcina
could be useful diagnostic tools as
indicators of environmental changes
such as temperature or oxidative stress
or, as in the case of Actinobacteria,
they could be used as a proxy of the
gas production potential of anaerobic
digesters. Metaproteome analyses
only detected significant expression
differences in mesophilic samples,
whereas thermophilic samples showed
more stable protein composition with an
abundance of chaperones suggesting a
role in protein stability under thermal
stress.

Background
Anaerobic digestion is a promising
technology for biofuel production, and
has been the object of research for
over 100 years [1, 2]. The anaerobic
digestion process consists of four stages:
hydrolysis, acidogenesis, acetogenesis
and methanogenesis. During the first
three stages, hydrogen and acetate are
formed as intermediary products, which
are then converted into methane and
carbon dioxide during methanogenesis
[3]. Countless works have been
published characterizing those stages
or comparing different substrates for
co-digestion and reactor configurations.
Furthermore, substantial efforts have
been made in recent decades to shed
light on the underlying microbial
biocoenosis of anaerobic digestion
processes. The first determinations
of taxonomic profiles appeared in the
90 s [4, 5], when 16S-rDNA data from
anaerobic sludges were investigated.
More recently, high-throughput
approaches like 16S-rDNA sequencing
or metagenomics have been applied [2,
6-8], as well as proteome analyses [9, 10].

However, most of the aforementioned
work focused on reactor configurations,
where acidogenesis and methanogenesis
occur, combined in the same reactor
stage. It is well-known since the 80 s that
the process can be split into multistage
processes, in such a way that hydrolysis/
acidogenesis occurs separately from
acetogenesis/ methanogenesis [11,
12]. Although it may be difficult to
fully separate the underlying microbial
processes (for example nitrogen-rich
substrates seem to cause methanogenic
contaminations in the acid-producing
step [13]), improved biogas production
has been reported using a separated
setup. For example, in 1988 authors
described a rumen-derived microbial
community optimally fermenting
cellulose in a separated acidification step
[14]. Others report that some practices
such as shock loading (high loads
of substrate that cause accumulation
of volatile fatty acids, VFA) increase
hydrogen formation at pH < 6.5 [15].
As pH values between 4 and 6.5 are
common during acidification [16–18] and
methanogenesis is inhibited at either
low pH or high VFA concentration [19],
this renders hydrogen production in
the acidification stage as a valuable
sub-product in addition to the methane
[20]. Additionally, a high concentration
of acetic acid is known to improve
chemical hydrolysis [21]. Even though
hydrogen production in seed sludges
with diverse microbiomes is highly
unpredictable, a few previous reports
have explored the possible production
of hydrogen [22–24], by, for example,
immobilization of hydrogen-producing
bacteria [23, 24].
Separated acidification has been
proposed as the best technology to
produce organic acids like lactic, butyric
and acetic acid, even though it is still
complicated to extract organic acids
from the fermentation process [25].
The benefits of separated acidification
cannot be fully explored without a
deeper knowledge of the underlying
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microbial communities. Currently, such
knowledge is very fragmentary. For
example, it is known that fermentation
of 52.85 g/L of rice straw at 39.23
◦C and pH 10.0 leads to an increase
in the families Ruminococcaceae,
Bacteroidaceae, Porphyromonadaceae
and Lachnospiraceae [26]; or that
the acidification of alginate correlates
with high titres of Bacteroides- and
Clostridium-related microorganisms [27].
Proteomics has been used to study
standard, one-step digestion plants
without separated acidification [9, 10,
28], but there are no detailed proteomics
studies of a separated acidification
stage to date. In order to bridge
this gap and to finely characterize
one of the most important phases
of the biogas production process,
the dynamic behaviour of grass
acidification processes at mesophilic and
thermophilic temperatures (37 and 55
◦C, respectively) was monitored through
both proteomics and 16S-rDNA analysis.
The efficient use of lignocellulosic
biomass as a feedstock is an active
research area of high interest [30]. In the
present work grass was chosen because
of its potential as a renewable energy
source [29].

Results and discussion

16S-rDNA-based analysis on
high-strength liquor from grass
acidification
Mechanically ground mixed grass
(Graminidae) was acidified in three
subsequent batch reactions under
anaerobic conditions at mesophilic
and thermophilic temperatures (Fig.
9). pH was automatically adjusted
to 5.5 to prevent it dropping below
that value. Acidification occurred
in tap water as a result of microbial
activity. The second and third batch
received 5 % Inoculum from the previous
batch. Samples for VFA analysis were
taken daily and every two days for
16S-rDNA amplicon sequencing. The

mixed grass microbiome was analysed
prior to entering acidification reactors,
and it proved rich in Cyanobacteria-
and Proteobacteria-related taxa. Upon
transference into the reactors, the
taxonomic profile rapidly switched to
the one dominated by members of the
phylum Firmicutes. This happened
under both mesophilic and thermophilic
conditions (Fig. 9).
After just two days, hardly any
Proteobacteria and Cyanobacteria
remained. As often occurs with
16S-rDNA-based analyses of plant
material, cyanobacteria- related
sequences may correlate to plant
chloroplasts. On day four, most
of the Firmicutes were suppressed
by Bacteroidetes at mesophilic
temperatures, while the proportion
of Firmicutes remained high at 55
◦C. The acidification process was
repeated three times in a row and
Bacteroidetes were also the dominating
phylum at mesophilic temperatures. At
thermophile temperatures the dominant
phylum was Firmicutes, although at
two of the sampling points a strong but
transitory shift towards Proteobacteria
was observed (Fig. 9a). In the second
and third week an inoculum from the
previous stages was used; however, this
hardly influenced the taxonomic profile,
which was constantly dominated by
Bacteroidetes.
Upon termination of each acidification
cycle, the high-strength liquors
produced were transferred into bottles
filled with nitrogen and stored at room
temperature thereafter (Fig. 9b). The
microbial composition in the stored
liquor was analysed (Fig. 9, right)
and yielded no significant changes at
mesophilic temperature. However,
a strong shift in the stored liquor
originating from the thermophilic
reaction was observed after incubation
at room temperature (RT). After four
days at RT, numbers of Bacteroidetes
dramatically increased, yielding a stable
taxonomic profile very similar to the
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one of the mesophilic acidification
step. The microbial profile of the
thermophilic samples upon RT storage
was not accompanied by any changes

in the concentration of chemical oxygen
demand (COD) or VFA (Data not
shown).

FIGURE 9: 16S-rDNA-based taxonomic profiles from untreated grass substrate, samples
during acidification and stored hydrolysate, at 37 ◦C (upper panel) and 55 ◦C (lower panel)
(a). Hydrolysate was filled in anaerobic storage bottles and from there it was transferred
semicontinuously into various methane stages (b). For both, mesophilic and thermophilic
acidogenesis continuous stirred tank reactors (CSTR) were used. Those were equipped with
a pH sensor, which automatically regulated the inflow of NaOH for pH adjustment to 5.5
(c). Proteomic analysis was performed with samples from the first week of acidification
(Highlighted with a red letter P). Green circles in the timeline correspond to days of
taxonomic analysis (white circles were subjected to chemical analysis). The first column
(Substr.) shows the taxonomic composition of the untreated grass biomass.

The results are in concordance
with a previous work describing high
titres of Bacteroidetes and Firmicutes
during acidification of alginate
under mesophilic conditions [24].
A microbiome dominated by Bacteroidetes
and Firmicutes has also been reported
for one-stage processes at mesophilic
temperatures [9, 31, 32], but not for
sewage sludge [7, 8].
There are no previous reports on

the microbiome of acidification at
thermophilic temperatures; however,
a shift to Clostridia (Firmicutes) has
been described for one-stage digesters
[33, 34], similar to the increased titre
of Firmicutes described in the present
results.

Environmental parameters
Production of total volatile fatty
acids (TVFAs) was more effective
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at mesophilic temperatures than at
thermophilic ones (Fig. 10). With 200
mg TVFA per gram of input COD, the
mesophilic stage yielded twice as many
TVFAs as at thermophilic temperatures
(Fig. 10a). At 37 ◦C, the relative amount
of acetic acid and propionic acid were
much higher than at 55 ◦C (Fig. 10b).
By contrast, an accumulation of butyric
acid was observed at thermophilic
temperatures.
To the best of our knowledge, there
are no previous reports comparing
taxonomic profiles of mesophilic and
thermophilic biogas acidification stages.

There are reports, however, that
thermophilic processes in onestage
digesters result in higher degradation
efficiency compared to mesophilic ones
[34–37]. Previous works have reported
long incubation times for adaption
of the biocoenosis to thermophile
temperatures, ranging from several
months [35] to up to one year [37].
Therefore, successful adaption to high
temperatures and well-chosen seed
sludge might be crucial for a separated
acidification step.

FIGURE 10: Chemical parameters during acidification and methane production: total
amount of TVFA was monitored daily and samples obtained at the end of each acidification
cycle were subjected to the determination of VFA spectra (a). Produced methane is shown
as volume of methane per volume of sludge (b) and as volume of methane per mg of input
COD (c).

In concordance with the reduced
acid production in the thermophilic
acidification, two of the corresponding
methane stages (leach bed and
semicontinuous batch with sewage)
yielded more methane per gram of input
COD with thermophilic liquor than with
mesophilic. (Fig. 10c). However, in

the system containing seed sludge from
a co-digester (CD), the yield from the
thermophilic treated liquor was higher
than in the one receiving mesophilic
liquor. This might be related to the
higher total solids (TS) content, high
heterogeneity and high gasification
activity also causing very high gas yields
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in the negative control from the CD
sludge (Fig. 10b). In concordance
with a previous work [38], the liquefied
COD from the produced high-strength
liquor was efficiently transformed into
methane, indicating no inhibitory effects.

Usage of the high-strength
liquor produced High-strength liquor
was stored in bottles at RT upon
production, which were always flushed
with nitrogen after opening to keep
anoxic conditions. The liquor was
semicontinuously fed into various
methane stages (Figs. 9b, 10, 11).
The used seed sludge from the
co-digester was very rich in Firmicutes,
Synergistetes and Bacteroidetes, while
the seed sludge from the sewage plant
(SW) consisted mainly of Proteobacteria,
Bacteroidetes, Spirochaeta and
Chloroflexi (Matrix at day 7, Fig.
11). Both findings are in concordance
with our previous report on several
co-digester microbiomes [8]. The starting
samples for the leach-bed systems
(Matrix at day 7, Fig. 11) were taken 24 h
after refilling the leach bed with sewage
seed sludge. Compared to the original
sewage, there was a dramatic decrease
in Actinobacteria. This may be due to
the high sensitivity of Actinobacteria to
environmental changes, as sensitivity
to environmental changes has been
described for Actinobacteria in soil
[39]. The two leach-bed systems were
both rich in Chloroflexi, especially in
the leach-bed biofilm (Fig. 11, Leach
Bed). This is in concordance with
other works describing high abundance
of Chloroflexi in deep biofilm layers
on building walls [40] and in the
sediments of Winogradsky columns [41].
The input of the high-strength liquor,
rich in Firmicutes and Bacteroidetes,
did not result in an increase in those
phyla in the sewage sludge batches
or in the leach-bed systems (SW and
Leach samples from Day 11 to Day
27, Fig. 11). Samples from both

systems remained rich in Chloroflexi and
Spirochaeta, even though they received
a daily microbial input rich in Firmicutes
and Bacteroidetes. This highlights the
stability of the underlying biocoenosis
and suggests the potential of separated
acidification as an important step in
preventing the occurrence of major
microbial disturbances in the biocoenosis
of the respective sewage digesters. For
example, an additional thermophilic
acidification stage could be included
in co-digestion in sewage digesters in
order to improve the robustness of the
active microbiome. The positive effect of
codigesting organic matter with sewage
sludge (e.g. food waste or energy grass)
on the reactor performance has recently
been reported [42, 43]. Moreover,
the application of leachate in sewage
digestion has been proposed too [44].
Our results indicate that using liquefied
grass biomass (after separation from
solids) might be a promising method
for co-digestion with sewage. Large
amounts of unused grass biomass, could
still be valorised [29]. Although there
have been attempts to add grass biomass
into sewage sludge for co-digestion [45],
co-digestion of liquefied grass biomass
with sewage has not been demonstrated
until now.

During the experiment, the lowered
temperature in the storage bottle
of the high-strength liquor at room
temperature (Storage 3/Week 4,
Fig. 9) resulted in a dramatically
modified community composition of the
thermophilic liquor after two days at RT.
Thus, the transference of thermophilic
high-strength liquor into a mesophilic
sewage digester might destabilize the
microbial community in the liquor and
provide an advantage to the existing
biocoenosis from the sewage digester.
Using the high-strength liquor for
co-digestion prevented the entry of
solids into the water treatment circle.
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FIGURE 11: Bacterial community in the CH4-stages: Time-dependent taxonomic profiles at
the phylum level over 20 days for various CH4-stages digesting hydrolysate from mesophilic
and thermophilic acidification. All CH4-stages were performed at mesophilic temperatures.
Control reactions were not fed. Taxonomic profiles of the sludges prior to the experimental
setup were determined as controls, as well as the taxonomic profiles of the biofilms from the
leach-bed systems. CD co-digester, SW sewage, Leach Leachate.

In the last days of the experiment,
the sludge samples from the co-digester
exhibited low levels of Firmicutes
and Bacteroidetes, and high rates of
Actinobacteria. This coincided with a
reduction in the production of biogas
(Fig. 10). Interestingly, we have
previously reported a concurrence

between increasing amounts of
Actinobacteria and low methane
production [8]. Occurrence of
Actinobacteria in anaerobic digester
plants has been reported repeatedly
[46, 47]. Actinobacteria were described
in previous works as important key
players in the degradation of plant
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material in compost [48] with effective
enzymes that can allow large-scale
application for breakdown of cellulosic
plant material [49]. This is not
necessarily contradictory with our
results, since Actinobacteria survival
and its efficiency for degradation of
plant material could vary greatly at
different nutrient concentrations due
to their sensitivity to environmental
changes as mentioned before. Although
further work is needed to confirm
this link, it is tempting to propose
the identification and quantification of
microbial key players as a marker of
process efficiency. In the case of the
leach-bed system, the last part of the
experiment was characterized by higher
amounts of Bacteroidetes in the liquid
phase (Leach samples from Day 11 to
Day 27, Fig. 11). It has to be stressed that
the biofilm became denser during the
experiment and thus a biofilm filtering
effect could be responsible for the very
clear supernatant observed at the end of
the process, which might, in turn, have
affected the microbial composition of the
leachate.
Archaea were also detected through
16S-rDNA amplicon sequencing and
identification (Fig. 12). The genus
Methanoculleus was the most abundant
one in most of the samples. The
co-digester sludge contained small
amounts of Methanobacterium and
Methanosarcina, as previously reported
for the same plant [8] (Matrix at day 7,
Fig. 12). However, upon transferring
the sludge into the batch systems, a
rapid shift was observed, in terms
of an overwhelming abundance of
Methanoculleus (CD, SW and Leach-Bed
Samples at day 11, Fig. 12). This
might be related to stress factors
caused by the sludge transference
(e.g. changing reactor conditions
or short-time exposure to oxygen),
and it could be hypothesized that
Methanoculleus is more resistant to
these changes. This is consistent with
previous reports on the robustness of
Methanoculleus, which is particularly

resistant to inhibitors such as ammonia
[50], phenol [51] or paraffin [52].
After eight days of incubation under
constant conditions Methanosaeta and
Methanobacterium started to recover in
the batch reactions with the sewage
seed sludge (Fig. 12), although no
significant increases were observed
for the leach-bed system. However,
Methanosaeta proved frequent in the
biofilm from the leach bed, (Fig.
12, Leach Bed). The occurrence of
Methanosaeta in biofilms has been
reported previously [53, 54]. This
result highlights the need for a separate
analysis of leach-bed samples and
associated biofilms. In the co-digesters,
Methanosarcina were also recovered as of
day 23 (CD samples at day 23–27, Fig.
12).

Proteomic analysis on the
high-strength liquor produced
Proteins were extracted from the samples
d2, d4, d6 and d8 from the first
cycle of acidification. The proteome
at mesophilic and thermophilic
temperatures proved strikingly different
in the previous SDS-PAGE analysis
(Additional file 1: Figure S3). This
observation was approved by a
principal component aggrupation (PCA)
from mass spectroscopy raw data
(peptide) analysis, where samples not
only separated into two groups by
temperature (X-axis, Fig. 13b), but also
showed dynamic changes in time (Y-axis,
Fig. 13b).
At the first stages, plant proteins were
detected in the greatest amounts, as
expected from the mixed grass biomass
used in all assays. However, in line
with increasing incubation time, the ratio
between plants and bacteria shifted due
to massive microbial growth and/or
degradation of plant material at 37 ◦C
(Fig. 13a). However at 55 ◦C, there
was a constant plant:bacteria ratio in the
protein abundance, indicating a decrease
in the total microbial population.
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FIGURE 12: Archaeal community in the CH4-stages: Time-dependent community behaviour
at the genus level over 20 days for various CH4-stages digesting hydrolysate from mesophile
and thermophile acidification. All CH4-stage measurements were performed at mesophilic
temperatures. CD co-digester, SW?sewage, Leach Leachate.

An abundance of enzymes involved
in carbohydrate metabolism and
degradation in metaproteomes from
both series of samples were identified
using a protein database search for
Bacteria and Archaea domains, although
additionally diverse chaperones and
heatshock proteins (e.g. 10 and 60
kDa chaperonins, and GroEL) were
overrepresented in the thermophilic
samples (Additional file 2: Table
S4). Among the most abundant

proteins detected in all analysed
samples, there was an almost
complete set of glycolytic enzymes
(glucose-6-phosphate isomerase,
fructose-bisphosphate aldolase,
triosephosphate isomerase
, glyceraldehyde-3-phosphate
dehydrogenase, phosphoglycerate
kinase, enolase), as well as components
of sugar transport systems (like the
phosphotransferase system, PTS). These
results indicate that the microbial
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population is basically engaged in
the degradation and catabolism of
sugars in the fermentative phase
of short-chain acid production, an
observation that is coherent with

previous reports on the metaproteome
[28] and metametabolome [55] of this
kind of microbial communities.

FIGURE 13: Bacteria and Viridiplantae proteomic profile evolution in the first cycle of
acidification (a); PCA aggrupation of quantified peptides at mass spectroscopy analysis (b).

Label-free quantitative proteome
analysis was performed to determine
differentially expressed proteins
between mesophilic and thermophilic
temperatures (Additional file 3: Table
S5). A total of 1731 proteins were
quantified from samples d2, d4, d6
and d8 collected from the first cycle
of acidification: 556 proteins increased
and 176 decreased between mesophilic
and thermophilic conditions (37 vs.
55 ◦C). Samples were compared using
the Limma statistics software package.
Differences in protein abundances
clearly separated samples into two
clusters corresponding to culture
temperature, with the subset of proteins
showing an increased expression that
was richer at 37 than 55 ◦C (Fig. 14a). On
comparing protein abundances during
sampling time, 120 (out of 1731) proteins
showed differential expression at 37
◦C, whereas at 55 ◦C, the differentially
expressed proteins were only 5 (out
of 1731) (Fig. 14b). Remarkably,
most differences were observed when
comparing d2 and d4 samples, and d2

and d8 at mesophilic conditions, whereas
at thermophilic conditions a small set of
differential proteins was only detected
when comparing samples d2 and d8 (Fig.
14b). Among the differentially expressed
proteins at mesophilic conditions there
is a notable representation of ribosomal
proteins indicating a dynamic state
of these microbial communities. The
taxonomic profiles of metaproteome
samples were in agreement with the
presented metagenomic data.

Among the differentially expressed
proteins in d2 samples at 37 ◦C,
noteworthy was the presence of
several membrane transport systems
from Firmicutes species involved
in sugar uptake. These were the
PTS HPr-related protein and the
cellobiose-specific PTS IIB component,
and the PTS phosphocarrier protein
HP. There was also an increase
in haemolysin-type calcium-binding
protein, with a predicted hydrolytic
activity on O-glycosyl compounds and
a carbohydrate-binding domain (CBM)
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type 2 from an Alphaproteobacterium
in d2 samples. Previous studies
on mesophilic biogas-producing,
cellulolytic communities have indicated

the abundance of sugar transporters
and enzymes involved in polysaccharide
degradation [9, 28, 56].

FIGURE 14: Proteomic differences between 37 and 55 ◦C: HCT for differentially expressed
proteins between mesophilic and thermophilic conditions (a). Number of differentially
expressed proteins (p value < 0.05) over time at two different culture temperatures: 37 ◦C
(upper Venn diagram) and 55 ◦C (lower Venn diagram) (b).

Conclusions
Plant biomass (a mix of grass) was
acidified at mesophilic and thermophilic
temperatures. The taxonomic
communities in both cases proved very
different, and consisted of Bacteroidetes
and Firmicutes at ◦C and Firmicutes and
Proteobacteria at 55 ◦C. At the methane
stage, Methanosaeta, Methanomicrobium
and Methanosarcina proved highly
sensitive to environmental changes
whereas Methanoculleus proved to be
very robust with all the seed sludges.
At the end of the experiment, there
was an increase in Actinobacteria in
the semicontinuous batches containing
co-digester seed sludge, which coincided
with reduced biogas formation. Thus,
Actinobacteria determination could be
a useful prediction tool for biogas
production.
Metaproteome analyses only detected
significant expression differences in
mesophilic samples, and collectively
implied a dynamic microbial community

engaged in polysaccharide demolition
and sugar fermentation as remarkable
metabolic activities during the
acidification phase. Thermophilic
samples showed more stable protein
composition with an abundance of
chaperones suggesting a role in protein
stability under thermal stress.

Materials and methods

Reactor performance
Acidification of grass was carried out
in three sequential reactions, which
were operated in parallel at 37 and 55
◦C with a COD input concentration
of 30 gO2/L. Acidification occurred
in tap water as a result of microbial
activity. For the second and third
cycle of acidification 5 % inoculum was
applied from the previous reactions.
After separating the liquid phase from
the solids manually using a sieve, the
resulting high-strength liquor was stored
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under anaerobic conditions (nitrogen
atmosphere) until further fermentation
occurred in several methane stages
(Fig. 9). Acidification was carried
out in continuous stirred tank reactors
with a total working volume of 5 L
and equipped with a pH regulation
system (BL 7916, Hanna Instruments,
Germany) that stabilized the pH at 5.5
(Fig. 9). The high-strength liquor was
stored until usage in glass bottles at
RT. To ensure anaerobic atmosphere,
the bottles were nitrogen-purged and
a gasbag (TECOBAG, TESSERAUX
Spezialverpackungen GmbH, Germany)
was connected to verify that no further
gas production occurred. High-strength
liquor was digested in semicontinuous
batch reactions, as well as two leach-bed
systems. The setup of batch systems
was carried out according to VDI 4630
[57]. Feeding was applied not only at
the beginning of the experiment but
semicontinuously by adding daily 33
mL/L day to the batch bottles, which
corresponds to a solubilized COD of 0.51
gO2/L for the mesophilic stage and 0.39
gO2/L for the thermophilic stage.
The leach-bed systems consisted of
packed columns with 3 L working
volumes. They were filled with 2
L of seed sludge and 485 g of bed
packing (Hel-X-Füllkorper, Christian
Stöhr GmbH&Co.KG, Germany) and
were fed equally to the batch bottles
with 33 mL/L·d. Gas production
was quantified with a MilliGascounter
(Ritter Apparatebau GmbH, Germany)
and collected in a gasbag for further
analysis (TECOBAG, TESSERAUX
Spezialverpackungen GmbH, Germany).
In total, eight methane stages were
set in place. Two leach-bed systems,
three batch systems filled with low
TS seed sludge (sewage) and three
batch systems filled high TS seed
sludge (CSTR, co-digester) (Additional
file 4: Table S1 and Additional file
5: Table S2). The leach-bed systems
were filled with sewage sludge and
the leach bed contained a thick

biofilm from previous experiments also
performed with sewage. All methane
stages were set as duplets in order
to compare methanisation of liquor
from acidification, at 37 and 55 ◦C.
Control reactions without feeding were
performed (Fig. 9).

Sampling and environmental
chemical analysis
A mixture of grass species was collected
from a backyard in Jena (Germany)
and mechanically ground. Mechanical
treatment was performed using a
conventional juicer (Angel Juicer 8500
s, Angel Co.LTD., Corea). After the
mechanical treatment, grass juice and
squashed solids were remixed and stored
at –20 ◦C until use.
Sewage was collected from a water
treatment plant in Jena (Jena). Sludge
from a co-digester was collected from the
continuous stirred tank reactor near the
water treatment plant. Sludge samples
and substrates were characterized
by analysing TS and VS (Additional
file 4: Table S1) and during the
acid-producing step, the concentration
of VFA and COD was monitored daily
using conventional photometer-based
assays (Nanocolor CSB15000 and
Nanocolor organische Säuren 3000,
Macherey-Nagel, Germany) (Fig. 10).
At the end of each experiment, the
VFA spectrum was determined at
Eurofins Umwelt Ost GmbH, using
a gas chromatograph (Shimadzu,
Japan). A flame ionization detector
was equipped with a DB.1701 column
(Macherey-Nagel, Germany).
During methanisation of the high-
strength liquor produced, the volume
of biogas obtained was monitored daily,
using a “COMBIMASS GA-m” gas
measurement device (Binder, Germany),
to determine the ratio of CO2 and
CH4 (Fig. 10). Samples for DNA
analysis were taken every two days
for the acidification step and every
four days for the methane stages. One
milliliter of sample was mixed with 1
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mL of pure ethanol and kept at –20
◦C until required. Additional samples
from the acidification stages were taken
for proteomic approaches (20 mL per
sample). Samples for proteomic analysis
were stored at –70 ◦C until further
analysis.

DNA extraction and amplification
To reduce the amount of humic
acids and other inhibitors, samples
were intensively washed: they were
centrifuged at 20,000·g and resuspended
in PBS buffer repeatedly until a clear
supernatant was observed. DNA
Extraction was performed using the
PowerSoil DNA isolation KIT (Mo Bio
Laboratories, USA). After a quality
control on a 0.8 % (w/v) agarose gel and
quantification with the Nanodrop-1000
Spectrophotometer (Thermo Scientific,
Wilmington, DE, USA), variable regions
V1–V3 from the 16S-rDNA gene were
amplified. For amplification of bacterial
16S-rDNA sequences the universal
primers 28F (5’-GAG TTT GAT CNT
GGC TCA G-3’) and 519R (5’-GTN
TTA CNG CGG CKG CTG-3’) were
used (Additional file 6: Table S6 and
Additional file 7: Table S7). Archaea
target sequences were amplified using
the primers Arch349F (5’-GYG CAS
CAG KCG MGA AW-3’) and Ar9r
(5’- CCC GCC AAT TCC TTT AAG
TTTC-3’) (Additional file 8: Table S8).
Resulting amplicons had a length of 500
bp for bacteria and 578 bp for archaea
[58]. For amplification, after initial
denaturation at 95 ◦C for 5 min, 35 cycles
of amplification (95 ◦C for 30 s, 54 ◦C
for 30 s, and extension at 72 ◦C for 1
min) were carried out. The reaction was
completed with a 10-min elongation step
at 72 ◦C.

DNA-sequencing and analysis
All DNA-sampled were quantified using
the Qubit R© 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). For bacteria and
archaea, separate libraries were built.
Approximately 100 ng of each sample

was added applying the amplicon fusion
method (Ion Plus Fragment Library
Kit, MAN0006846, Life Technologies).
For quantification, the Agilent 2100
Bioanalyzer (Agilent Technologies Inc,
Palo Alto, CA, USA) was used. PCRs
were carried out applying the Ion
PGM Template OT2 400 kit as stated
by the manufacturer (MAN0007218,
Revision 3.0 Life Technologies). For
the final sequencing step, an Ion
318 Chip v2 on a Personal Genome
Machine (PGM) (IonTorrentTM, Life
Technologies) at Life Sequencing S.L.
(Life Sequencing, Valencia, Spain) was
used. Here the Ion PGM Sequencing
400 kit was applied, following the
manufacturer’s instructions (publication
number MAN0007242, revision 2.0, Life
Technologies).
After removing short (<100 bp) and
low-quality (<q15) reads, resulting
sequences were split and barcode
sequences were trimmed. Final
sequences were then analysed using
Mothur [59]. Based on the k-mer
algorithm, sequences were aligned to
the 16S reference from the Greengenes
database. In the case of eubacteria,
assignments were performed at the
phylum level. Assignments with a
similarity percentage lower than 70 %
were not considered for further analysis.
In case of archaea, amplicons were
analysed at the genus level and the
cut-off was set to 93 %.

Protein extraction, identification
and data analysis
Protein extraction was performed using
the NoviPure Soil Protein Extraction
Kit (MO BIOS Laboratories Inc). Total
protein extracts were precipitated with
TCA (Trichloroacetic Acid) to clean total
extracts, and pellets were dissolved
with 100 µL of 8 M Urea, 0.5 M
TEAB (Triethylammonium bicarbonate
buffer). The protein concentration in
the samples was determined using
Qubit R© 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). Then, 20 µg of
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each sample was digested as described
in the following protocol. Cysteine
residues were reduced by 2 mM DTT
(DL-Dithiothreitol) in 50 mM ABC
(Ammoniumbicarbonate) at 60 ◦C for 20
min. Sulphydryl groups were alkylated
with 5 mM IAM (iodoacetamide) in
50 mM ABC in the dark at room
temperature for 30 min. IAM excess
was neutralized with 10 mM DTT in 50
mM ABC, 30 min at room temperature.
Each sample was subjected to trypsin
digestion with 500 ng (100 ng/µL)
of sequencing grade-modified trypsin
(Promega) in 50 mM ABC at 37 ◦C
overnight. The reaction was stopped
with TFA (trifluoroacetic acid) at a final
concentration of 0.1 %. Final peptide
mixture was concentrated in a speed
vacuum and suspended in 65 µL of
2 % CAN, 0.1 %TFA. Finally, 1.5 µg
of each sample was used for protein
identification by LC_MS/MS analysis
and label-free differential expression
analysis. For that 5 µL of each sample
was loaded onto a trap column (NanoLC
Column, 3 µm C18-CL, 75 µm · 15
cm; Eksigent) and desalted with 0.1
% TFA at 3 µL/min during 10 min.
The peptides were then loaded onto
an analytical column (LC Column, 3
µ C18-CL, 75 µm · 12 cm, Nikkyo)
equilibrated in 5 % acetonitrile 0.1 %
FA (formic acid). Elution was carried
out with a linear gradient from 5a35 %
B in A for 120 min. (A: 0.1 % FA; B:
ACN, 0.1 % FA) at a flow rate of 300
nL/min. Peptides were analysed in a
mass spectrometer nanoESIqQTOF (5600
TripleTOF, ABSCIEX).
Eluted peptides were ionized applying
2.8 kV to the spray emitter. Analysis
was carried out in a data-dependent
mode. Survey MS1 scans were acquired
from 350–1250 m/z for 250 ms. The
quadrupole resolution was set to ‘UNIT‘
for MS2 experiments, which were
acquired 100–1500 m/z for 50 ms in
‘high sensitivity‘ mode. Following which
switch criteria were used: charge: 2+ to
5+; minimum intensity; 70 counts per

second (cps). Up to 25 ions were selected
for fragmentation after each survey scan.
Dynamic exclusion was set to 25 s.
ProteinPilot default parameters were
used to generate peak list directly
from 5600 TripleTof wiff files. The
Paragon algorithm of ProteinPilot v 4.5
was used to search Uniprot bacteria
and Archaea protein database with the
following parameters: trypsin specificity,
cys-alkylation and the search effort set
to through with FDR to multiple test
correction.
To avoid using the same spectral
evidence in more than one protein, the
identified proteins were grouped based
on MS/MS spectra by the ProteinPilot
Pro group algorithm. The Peak View
v1.1 (SCIEX) software was used to
generate peptide and protein areas from
ProteinPilot result files and to perform a
multivariant data analysis.
Differential expression analysis was
performed using the Limma package
(http://bioconductor.org/packages/
limma/), fitting a linear model using an
appropriate design matrix. A contrast
matrix was set to make comparisons
of interest, in our case 37 versus 55
◦C. For the contrast of interest the
package computed fold changes and
t-statistics. After fitting a linear model,
the standard errors were moderated
using an empirical Bayes method to
obtain moderated t-statistics. The
function top Table was used to present
a list of the proteins most likely to
be differentially expressed for a given
contrast. FDR was used to adjust the p
value for multiple testing.
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Chapter 3: Using robust
microorganisms for new industrial
approaches

Summary: To highlight the industrial
connectivity of biomass pretreatment
stages for anaerobic digesters, new
technological approaches were designed
and investigated. Firstly, a “Microbial
Thermoelectric Cell” was developed,
which allowed transformation of
microbial heat into electricity. Above
this, it was shown that anaerobic
acidification is a well suited method
for liquefaction of substrates with high

content of nitrogen or fibers, which in
turn might facilitate nitrogen-stripping
processes or digestion of substrates,
which are rich in lignocellulose. And
finally, it was found that separated
acidification stages show a high
resilience to heat-shocks, which allows
the combination biological degradation
processes with thermal treatments in
anaerobic acidification stages.
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Abstract
Microbial growth is an exothermic
process. Biotechnological industries
produce large amounts of heat, usually
considered an undesirable by-product.
In this work, we report the construction
and characterization of the first microbial
thermoelectric cell (MTC), in which the
metabolic heat produced by a thermally
insulated microbial culture is partially
converted into electricity through a
thermoelectric device optimized for low
∆ values. A temperature of 41◦C and
net electric voltage of around 250–600
mV was achieved with 1.7 L baker’s
yeast culture. This is the first time
microbial metabolic energy has been
converted into electricity with an ad
hoc thermoelectric device. These results
might contribute towards developing a
novel strategy to harvest excess heat in
the biotechnology industry, in processes
such as ethanol fermentation, auto
thermal aerobic digestion (ATAD) or
bioremediation, which could be coupled
with MTCs in a single unit to produce
electricity as a valuable by-product of
the primary biotechnological product.
Additionally, we propose that small
portable MTCs could be conceived and
inoculated with suitable thermophilic of
hyperthermophilic starter cultures and
used for powering small electric devices.

Introduction
Both developed and fast growing
developing countries exhibit steadily
growing energy demands. Taking into
account the limited nature of oil, coal and
gas reservoirs, this could obviously lead
to a shortage of standard (fossil) fuels in
the relatively near future. The lack of
sustainability of current fossil-centered
energy strategies, as well as the recent
extremely serious accident at Fukushima
Daiichi power facility [1] have increased
the concerns about the economic and
environmental consequences of relying
on these energy sources, leading to some
dramatic shifts in energy policies, like in
Germany [2]. It is widely accepted that
massive fossil fuel consumption, which
results in the production of nine billion
metric tons of atmospheric carbon per
year [3], is at least partially responsible
for current global warming. Therefore,
alternative non-fossil non-nuclear
technologies are seen as promising,
albeit not fully competitive. Among
these, biomass-based energy has been
suggested as one of the most promising
technologies for renewable energy
production [4, 5]. Biomass from crops;
urban, industrial or agricultural wastes;
green algae, cyanobacteria or other
microbial cultures, are renewable organic
resources that are suitable for energy
production in the form of biofuels
(mainly, but not limited to, bioethanol
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and biodiesel), and electricity.
Besides lignocellulosic combustion-based
power production, a biological system
allowing direct conversion of biomass
into electricity already exists: a broad
range of organic substances can be
oxidized by electrogenic bacteria, which
transfer electrons to an anode in a
simple device known as a Microbial
Fuel Cell (MFC). At the cathode, other
useful products can be generated,
including hydrogen, methane, and
hydrogen peroxide [6, 7, 8]. The
electric yield of MFCs has increased
dramatically in recent years, mainly by
increasing the ratio of the area of the
electrodes/volume in the reactor, with
best yields reaching up to 2–7 W/m2. A
moderate MFC unit, of about 1 L, can
produce enough electricity to power a
small propeller for more than one year
[9]. However, MFCs seem to work
better at small scales, as scaling-up faces
important challenges [9].
Many bacterial species have been
reported to display electroactive
properties, including members of
common genera such as Clostridium,
Pseudomonas, Geobacter or Shewanella. A
few eukaryotic microorganisms have
been assayed for power production
in MFCs. Baker’s yeast Saccharomyces
cerevisisae has proven able to transfer
electrons to an anode in two independent
studies [10, 11] with moderate efficiency.
In both reports, researchers found net
voltage values of about 0.33 V for 1 L
reactors.
To date MFCs are still the only direct
method to microbiologically convert
biomass into electricity. Nonetheless,
there is possibly another non-fuel
alternative. Since microbial growth
is an exothermic process, it produces
heat, which is a by-product that usually
goes unnoticed in lab-scale cultures but
which has a strong impact on the design
and performance of industrial-scale
microbial fermentations. Almost 90 %
of the heat produced in a microbial
fermentation is reported to be metabolic

heat; and almost all this heat is removed
through forced heat exchange [12].
The thermoelectric or Peltier-Seebeck
effect is the direct conversion of electric
voltage to temperature differences
(Peltier effect) and vice-versa (Seebeck
effect). Theoretically, an electric current
would be produced by coupling an
exothermic microbial culture with an
endothermic reaction –or, alternatively, a
heat sink– through a thermoelectric cell.
If the thermal energy from exothermic
microbial cultures could be turned into
electricity efficiently, power-producing
devices could be designed and coupled
to existing microbial reactors within
a range of applications (alcoholic
fermentations, bioremediation, waste
treatment, autotrophic thermal aerobic
digestion ATAD, etc.). Here, we
report the characterization of the
first Microbial Thermoelectric Cell, a
bioreactor specifically designed for
power production through a completely
different mechanism than that operating
in MFCs: the thermoelectric effect. Our
results might contribute to providing a
new scenario for the future development
of microbial-based cellular electricity
facilities, which might be useful for local
electric production and heat recycling in
a wide range of biological processes.

Materials and Methods

Construction of the MTC
In order to implement a thermoelectric-
based power generator, a reactor was
designed able to i) sustain microbial
growth; ii) remain thermally isolated on
most of its surface; and iii) efficiently
transfer heat through a relatively small
area to a thermoelectric device. One of
us (M. Porcar) had previously designed
an LCC (Liquid Culture Calorimeter)
for microbial growth, suitable for fine
recordings of internal temperature
changes through a thermocouple [13].
Based on the LCC, we conceived a
Microbial Thermoelectric Cell (MTC
hereon) to produce power from a
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microbial culture by the Peltier-Seebeck
effect. Figure 15 shows the structure
of the MTC. The core of the reactor
is a 1.9 L glass container from a
commercial vacuum flask. The flask was
placed inside an expanded polystyrene
(EPS) box and the gap filled with a
polyurethane foam spray (Silicex Fischer,
Fisher Ibérica, Tarragona, Spain). The
box was then inserted into a second EPS
isolation box. The upper part of the MTC
was drilled and a cupper bar (20 mm
in diameter) inserted through the hole.
The upper part of the cupper bar was
adapted in order to allow a TE-Power
Probe thermal harvester (MicroPelt,
Germany) to be screwed through a
1/40 Whitworth thread (DIN 2999, JIS
B0203, ISO 7/1). TE-Power Probe is
a prototype of an integrated proximity
thermoharvester designed to replace
primary batteries in wireless systems
operating in duty cycle mode. The
key element of the TE-Power Probe is
the MPG-D751 thermogenerator, which
produces electricity from a rather low
gradient of temperature. The TE-Power
Probe is originally designed to attach to
a heat source in the shape of piping that
carries a hot fluid, and heat is dissipated
through an aluminum heat sink, with the
resulting temperature gradient allowing
power production by the MPGD751
thermogenerator. In our experiments,
temperature changes in different parts
of the Probe were measured by PT-100
sensors. Since the TE-Power Probe is
specifically designed to operate using
natural convection to ambient air, we
mounted it horizontally, as suggested by
the manufacturer.
The two EPS isolation layers of the MTC
were shaped so the round bottom of
the vacuum flask would fit. The flask
bottom was placed conveniently close
(20 mm) to the bottom of the MTC in
order to allow stirring by a magnetic
stirrer. When recordings were to be
taken, the MTC was first filled with
1.8 L of medium; a small magnet was
added; the MTC was placed inside a

standard laboratory magnetic stirrer set
at low speed (600 rpm); the inoculum
was then added, and the cupper bar with
the screwed TE-Power Probe finally set
in place.

Yeast Strains, Media and Culture
Conditions
The following six diploid S. cerevisiae
strains, from the wine industry or genetic
modifications thereof, were used: EC118,
L2056, 3aS2D, T73, D170, and TTRX2.
All the strains were kindly provided
by Prof. Emilia Matallana (IATA,
Valencia, Spain). In order to assess
their exothermic abilities, independent
cultures were set in filter-sterilized
YPD (20 g/L peptone, 10 g/L yeast
extract, with 18% sugar), and the internal
temperature of the cultures (grown
overnight in non-isolated Erlenmeyer
flasks) was continuously measured.
Thermotolerance was assessed by
growing the strains at 30, 37 and 41 ◦C.
After an overnight incubation under low
stirring, the OD600 of the six overnight
cultures was measured. For standard
experiments after strain selection, the
filtersterilized 18% sucrose YPD was
inoculated with 1:50 of an overnight
yeast pre-culture grown at 30 ◦C, and
subjected to low stirring for 120 h.

Data Acquisition, Monitoring
and Recording
The MTC was connected to a PC in
order to record internal and external
temperatures and the output current
provided by the heat harvester TE-Power
Probe (Fig. S1). The internal temperature
of the MTC was measured by a thin
T-type thermocouple inserted into the
microbial culture and connected to a
PC through a data logger, as previously
described [13]. Another thermocouple
recording room temperature was also
set in place. The thermocouples
were connected to an acquisition card
inserted on the data logger, which was
connected via a GPIB cable to a PC
with an acquisition software that one
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of us (R. Rodríguez-Barreiro) conceived
specifically for this work (Fig. S1).
The TE-Power Probe output was also
connected to the PC, which yielded two
additional temperature recordings by
using two Pt-100 sensors (that of the cold
and hot sides of the thermogenerator
device) and the output voltage. The
connections between the thermocouples
and the data logger were performed on
an icewater mixture to take into account
the unwanted background electric
voltage, due to the junction of dissimilar
metals in the thermocouple-data logger
connection. Finally, a thermocouple
was inserted inside the box containing
the ice-water mixture in order to
verify that the temperature of the
datalogger-thermocouple connections
was kept at 0 ◦C.
Temperature records (and, when
TE-Power Probe was connected, electric
power) were taken every 6 minutes
throughout the experiment.

Identification Assay to Estimate
Broth Heat Capacity and Global
Thermal Resistance of MTC
In order to estimate the heat capacity of
the broth (m · Cp) and the global thermal
resistance (Rg), the MTC (without
TE-Power Probe) was set up under the
following conditions: first, an electrical
resistance was placed inside the MTC
to generate a controlled heat flow, as
consequence of the Joule effect induced
by an external voltage input through the
resistance. Second, the MTC was loaded
with room-temperature sterile broth
with 1 g/L nipagine supplementation
to avoid contamination by yeasts.
Broth was subjected to continuous
stirring and room temperature was kept
constant. Throughout the experiment,
broth and room temperatures and the
power generated in the resistance were
continuously measured. To ensure the

initial steady-state conditions (broth
temperature equal to room temperature),
the system was kept in the off mode for
approximately 20 h before applying the
input voltage.

Theory
The equation for the heat flow balance
corresponding to the MTC we describe
in this work can be stated as follows:

∑
Heat accumulated =

∑
Heat generated –∑

Heat lost (1)

Heat accumulated is a consequence
of the variation in broth temperature.
Since there is no forced cooling of
the system, heat flow losses are due
only to heat transfer from the culture
to the environment through both
the MTC surface and the TE-Power
Probe thermogenerator. For calibration
purposes, we first set the MTC to
generate a heat flow from an electric
resistance placed inside the vacuum flask
through the Joule effect. In standard
experiments, heat flow was obtained
from the metabolic heat as a consequence
of microbial growth.
Therefore, the heat flow balance equation
can be written for the MTC as follows
(a definition of all the symbols used
throughout the MTC modelling is
available in Table 2):

Q̇acc = PJ + Q̇p – Q̇env – Q̇Th (2)

Where Qacc is the heat flow
accumulated in the broth; PJ is the heat
flow due to the Joule effect; Qp is the heat
flow due to microbial metabolism; Qenv
is the heat flow loss through the MTC
surface to the environment; and QTh is
the heat flow loss through the cupper
bar connected to the TE-Power Probe.
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TABLE 2: Nomenclature used in MTC modelling.

Symbol Description (units)
α Seebeck coefficient (V/K)
I Electrical current (A)
m · Cp Whole system heat capacity (J/K)
mb · Cpb Broth heat capacity (J/K)
mv · Cpv Vacuum flask heat capacity (J/K)
mw · Cpw Insulation walls heat capacity (J/K)
PJ Electrical input power due to the Joule effect (W)
Pe Electrical power generated (W)
Qacc Accumulated heat flow (W)
QC Net heat flow released through the cold side of the thermogenerator

(W)
Qenv Heat flow released to the environment (W)
QH Net heat flow absorbed through the hot side of the thermogenerator

(W)
Qj Heat flow due to the Joule effect inside of the thermogenerator (W)
Qp Heat produced by microbial metabolism (W)
QsC Heat flow produced in the cold side of the thermogenerator due to the

Seebeck effect (W)
QsH Heat flow produced in the hot side of the thermogenerator due to the

Seebeck effect (W)
Qt Heat flow loss due to the natural thermal conduction established

between both sides of the thermogenerator (W)
QTh Heat flow absorbed from the broth through the cupper bar (W)
R Electrical resistance (V)
RCu Thermal resistance of the cupper bar (K/W)
Rg Global thermal resistance of the MTC (K/W)
Ri Internal electrical resistance of the thermogenerator (V)
RLoad Electrical resistance connected between the terminals of the

thermogenerator (V)
Rsk Thermal resistance of the heat sink (K/W)
Rth Thermal resistance of the thermogenerator (K/W)
Tb Broth temperature (K)
TC Temperature of the cold side of the thermogenerator (K)
Tenv Room temperature (K)
TH Temperature of the hot side of the thermogenerator (K)
∆Tth Difference of temperature between the hot and the cold sides of the

thermogenerator (K)
Tv Vacuum flask temperature (K)
Tw Insulation walls temperature (K)
Vext Input voltage (V)
Vo Voltage output in the terminals of the thermogenerator (V)
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FIGURE 15: Schematic drawing of the Microbial Thermoelectric Cell (Auto-CAD). All
dimensions are given in mm.

Accumulation Terms
Heat accumulation (Qacc) in a particular
body is determined by the variation in
its temperature (dTi/dt) and by its heat
capacity (mi · Cpi). In the MTC, heat can
be accumulated in the broth (subscript
“b”), the vacuum flask (“v”) and the
insulation walls (“w”), as follows:

Q̇acc = mb · Cpb · dTbdt + mv · Cpv · dT̄vdt + mw

· Cpw · dT̄wdt (3)

The MTC is a very simple system
with a single sensor to measure the
temperature of the broth. Therefore, the
equation can be simplified:

Q̇acc ≈ m · Cp · dTbdt (4)

Where m · Cp represents the whole
system heat capacity, deduced from the
variation in culture temperature. This
parameter can easily be determined
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under a simplified experimental
configuration using the model equations
described below.

Loss Terms (I): Heat Flow Loss to
the Environment
Energy losses through the MTC walls
can be due to the natural heat flow
(Qenv) from the warm internal broth
to the relatively cool environment.
Since insulation materials in the MTC
display lowemissivity values, radiation
losses can be neglected and Qenv can be
expressed as follows:

Q̇env = 1
Rg

· (Tb – Tenv) (5)

Where Rg represents the global
thermal resistance of the MTC and
Tb and Tenv are the temperatures
of the broth and the environment,
respectively. This thermal resistance can
be experimentally determined under the
same conditions described for m · Cp.

Loss Terms (II): Heat Flow Loss
Through the TE-Power Probe
The global heat flow through the
cupper bar (QTh) is the same than the
heat flow absorbed by the hot side of
the thermogenerator cell (QH) and is
composed of: (i) a spontaneous flow
due to the difference in temperature
between the hot and cold sides of the
thermogenerator cell, expressed as (TH
– TC)/Rth; (ii) an induced heat flow as a
consequence of the conversion of heat
to electric power through the Seebeck
effect. Then, the heat flow loss through
the thermogenerator can be stated as
follows [14]:

Q̇Th = Q̇H = (TH−TCRth
) + (α · TH · I – 1

2 · I2 ·
Ri) (6)

Where α · TH · I corresponds to
heat absorbed by the thermogenerator
due to the Seebeck effect, while the
term 1

2 · I2 · Ri corresponds to the
heat produced as a consequence of

the Joule effect, associated to the
circulation of the electric current
produced through the internal resistance
of the thermogenerator. TH and TC
represent the temperature of the hot and
cold sides of the cell, whereas Rth and
Ri correspond to its internal thermal
and electrical resistance, respectively.
a is the Seebeck coefficient of the
thermogenerator and I is the electrical
current obtained from the TE-Power
Probe.

Generation Terms (I): Heat Flow
Due to the Joule Effect
When an electrical resistance was placed
inside the vacuum flask, a heat flow
(PJ) was obtained as a consequence of
applying an external voltage according
to the Joule effect:

PJ = V 2
ext
R (7)

Where Vext is the input voltage and R
is the electrical resistance.

Generation Terms (II): Heat Flow
Due to Yeast Growth
When the electrical resistance was
replaced by a yeast culture, the heat
flow was generated as a consequence
of the exothermic properties of
yeast metabolism. This heat flow,
represented as Qp, was estimated for the
different experimental configurations as
described below. Taking all the equations
described above together, the general
energy balance (Eq. 2) can be written
as:

m · Cp · dTbdt = PJ + Q̇p – (Tb−Tenv)
Rg

– Q̇Th

(8)

Model Equations for the Estimation
of m · Cp and Rg In order to calculate
the global heat capacity and the global
thermal resistance of the MTC (m ·
Cp and Rg, respectively), a simplified
experimental set up was used. Briefly,
heat flow was induced in the sterile broth
by applying a constant input power
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through a resistance according to the
Joule effect. In this experiment, room
temperature was kept constant and the
TE-Power Probe was not mounted on
the MTC. Therefore, QTh and Qp terms
(corresponding to the TE-Power Probe
and the yeast, respectively) from Eq.
8 are null, so it can be written as the
following first-order ODE:

m · Cp · dTb(t)
dt = PJ – Tb(t)−Tenv

Rg
(9)

A first-order EDO is mathematically
characterized by its gain and
its time constant, which can be
estimated manually or with a
standard mathematical software from
experimental data. In Eq. 9, the gain (Rg)
and the time constant (m · Cp · Rg) were
estimated from the experimental values
of Tb and PJ.

Estimation of Heat Yield Due to
Yeast Metabolism and Calculation
of the Electrical Power Generated
Heat yield due to yeast metabolism
(Qp) was estimated from Eq. 8, where
the term PJ is null since no electrical
resistance was set up inside the flask:

Q̇p = m · Cp · dTb(t)
dt + Tb(t)−Tenv(t)

Rg
+ Q̇Th(t)

(10)

In the assays where the TE-Power
Probe was not included, the term QTh
(the broth heat lost through the cupper
bar) is null, so Qp was calculated from
the experimental data of Tb and Tenv
using the estimations of m·Cp and Rg
previously obtained.

When the TE-Power Probe was
included, the metabolic heat yield was
calculated from Eq. 10, along with the
model equations for TE-Power Probe
in order to estimate QTh (a detailed

description of these equations and a
schematic representation of associated
heat flows is available in Appendix
S2 and Fig. S2, respectively). These
model equations are dependent on
the electrical configuration used in the
thermogenerator during the assays.
When no load resistance was connected
to the terminals of the thermogenerator
(no electrical power was taken out),
the following equation for TE-Probe
was used (for a detailed version of this
open-circuit model, see Appendix S1):

Q̇Th(t) = ∆Tth(t)
RTh

(11)

∆Tth represents the difference of
temperature between the hot and
the cold side of the thermogenerator,
whereas Rth is the thermal resistance of
the thermogenerator. Voltage output (Vo)
of the terminals of the TE-Power Probe,
which under this configuration is equal
to the voltage generated in the Peltier
cell, can be expressed as:

Vo(t) = α · ∆TTh(t) (12)

Being α the Seebeck coefficient.

Otherwise, when a load resistance
was fitted to achieve the maximum
power from the thermogenerator, Eq.11
was replaced by Eq.13 (deduced in the
maximum-power model of Appendix
S2):

Q̇Th(t) = α2·∆Tth(t)
Ri

· (TH(t)
2 – ∆Tth(t)

8 +
Ri

α2·Rth
) (13)

Where Ri and Rth are the internal
electrical and thermal resistance,
respectively.
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FIGURE 16: Time course of broth and room temperatures during the identification assay
of broth heat capacity and global thermal resistance of the MTC. Recordings of room
temperature (blue), broth temperature (red) and input power (dashed line) were taken every
6 min.

Under this configuration, voltage
output (Vo) of the terminals of TE-Power
Probe can be expressed as:

Vo(t) = α·∆Tth(t)
2 (14)

and the maximal power generated
can be calculated as follows:

Pe(t) = V 2
o (t)
Ri

(15)

Results

Estimation of Broth Heat
Capacity and Global Thermal
Resistance of MTC
In order to characterize the thermal
evolution of the MTC prior to the
experiments with yeast cultures, an
identification assay for m · Cp and
Rg was set up. The time course of
broth and room temperature during
the experiment is shown in Figure 16.
From a steady-state, in which room and
broth temperature were the same (25.5
◦C), a constant input power of 1 W
was supplied, and the broth reached a

final temperature of 47.5 ◦C. The system
gain (meaning the temperature increase
divided by the input power) was 22
K/W, and the time constant (the time by
which 63 % of the temperature increase
is reached) was 43.5 h. According to
the model equations, the gain represents
the global thermal resistance of the
MTC, and the broth heat capacity can be
obtained by dividing the time constant
by the gain. Thus, our estimated values
for Rg and m · Cp are 22 K/W and 7118
J/K, respectively.
When the mathematical software was
used to estimate Rg and m · Cp from the
same experimental data, similar values
were obtained (Rg = 22 K/W and m · Cp
= 7100 J/K) with a confidence level of
98.7 %.

Strain Selection and MTC
Performance
All yeast strains exhibited similar
performance in terms of exothermic
potential and resistance to high
temperatures, with strain D170
displaying slightly higher thermo-
resistance (data not shown).
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FIGURE 17: Typical performance of the MTC without TE-Power Probe. Experimental values
of broth and room temperature (red and blue lines, respectively) are shown.

This strain was thus selected for
further studies. When yeast strain D170
was inoculated into a pre-warmed 18%
sucrose YPD medium and grown in the
MTC without the cupper bar and the
TE-Power Probe set in place, the internal
temperature dropped slowly (about 1
◦C), stabilized and finally started to rise
after 6 – 7 h. The temperature peaked
after approximately 24 h and reached
up to 41 ◦C. Figure 17 shows a typical
experiment in which the maximum
temperature is around twelve degrees
higher than the initial temperature of
the culture. After the peak, the yeast
culture temperatures started dropping
and reached the initial temperature
after about 70 – 90 h. Despite the
abrupt changes (22 ◦C – 27 ◦C) in
room temperature as a consequence of
switching the air conditioning on and off,
the change in the internal temperature
of the yeast culture was only mildly
affected.

Estimation of Heat Yield Due to
Yeast Growth
The heat yield due to yeast growth (Qp)
was estimated for each experimental set
up (Fig. 18). In all the experiments,
the estimated evolution of Qp peaked

before broth temperature reached its
maximum due to the high inertia of
the broth (m · Cp). In the assay
carried out without TE-Power Probe
(Fig. 18A), Qp reached its maximum
(1.96 W) after 20 h and remained above
0.2 W for 40 h. In an open-circuit
configuration, maximum Qp (almost 1.4
W) peaked after 10 h, reaching values
above 0.2 W over 50 h (Fig. 18B).
Maximum Qp was obtained earlier in
this case because a more concentrated
inoculum was used, indicating that, as
expected, there is a dependence between
initial yeast concentration and time
until Qp maximum. Finally, under a
load-resistance configuration, Qp peaked
(with a value of almost 1.5 W) after 20 h
(as in the experiment without TE-Power
Probe, in which the same initial yeast
concentration was used), producing
more than 0.2 W for 50 h (Fig. 18C).
Our data show that when the TE-Power
Probe was inserted, lower Qp values
were estimated from experimental data.
In accordance, total energy generated by
yeast metabolism, calculated as the area
below the curve of Qp, was higher in
the experiment carried out without the
TE-Power Probe (194,7 kJ) in comparison
with those configurations in which it
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was included (144,4 and 145,4 kJ for the
opencircuit and the load-resistance set
up, respectively). This might be due to
the effect of the cupper bar on effective
broth stirring, which might be lower and
therefore affect yeast growth.

Electricity Production with the
MTC
Under the MTC insulation conditions
assayed, the metabolic heat produced by
strain D170 was partially transformed
into electricity through the TE-Power
Probe thermal harvester. When the
TE-Power Probe was mounted in the
yeast-culturing MTC under open circuit
conditions, the internal temperature
of the culture increased up to about
35 ◦C and remained higher than 32
◦C for about 54 h (Fig. 19A). Under
these conditions, electric voltage yielded
around 250 mV (net value) for a two-day
period, with significant, lower room
temperature-associated peaks of about
350–600 net mV (Fig. 19A). The same
experiment was performed under load
resistance conditions (330 V, the same as
that for the MPG-D751 thermogenerator)
and produced an internal temperature
peak of about 32 ◦C, with the culture
being hotter than room temperature
(which was constant in this experiment)
for a period of 110 h (Fig. 19B). Under
these conditions, a maximum of 290
mV were obtained on the electrical load
resistance, corresponding to around 580
mV generated in the Peltier cell (Eq.
15). The maximum power obtained,
corresponding to the maximum DT
values, reached around 255 mW (net
value).

The energy conversion yield was
calculated for this latter experiment
as the total electrical power generated
(33.1 J) divided by the total heat energy
produced by the yeasts (147.44 kJ,
as calculated from the estimated heat
yield represented in Fig. 19C). The

resulting value, 0.022%, was low, as
expected from the poor efficiency of
heat-harvesting devices such as the
TE-Power Probe. Notwithstanding, it
allowed the production of significant
amounts of electrical power from
relatively moderate values of DT.

Discussion

The results presented here clearly
indicate that the exothermic nature
of microbial growth can be exploited
when transformed into significant
electric voltage. We have designed
and constructed the first Microbial
Thermoelectric Cell, which consists of
a simple, thermally insulated reactor,
with a small heat exchange surface
on which a thermoelectric prototype
thermal harvester, equipped with a
MPG-D751 thermogenerator device
(TE-Power Probe) is mounted. The
chosen thermogenerator is optimal for
relatively high efficiencies in electric
production at low ∆T values, such as
those existing between an insulated yeast
culture (41 ◦C, under our conditions) and
room temperatures.
With a medium size MTC (smaller
than two liters), we typically obtained
150–600 mV. These values are similar to
those obtained with yeast-based MFCs
for which net voltage values of about
0.33 V for 1 L reactors have been reported
[10, 11].
It is noteworthy that MFCs and MTCs
work on a totally different basis
–albeit theoretically compatible– as
MFCs produce electricity from direct
microbial-mediated electron transfer
from organic matter oxidation to an
anode; whereas the MTC partially
transforms metabolic thermal energy
into electricity by the Seebeck effect.
As it is also the case for MFCs, MTCs
could be combined with other microbial
processes.
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FIGURE 18: Time course of broth and room temperatures and heat yield due to yeast
growth for different MTC configurations: without TE-Power Probe (A), open-circuit (B) and
load-resistance (C). Experimental values of broth and room temperature (red and blue lines,
respectively) were recorded every 6 min. Heat yield (dashed line) was estimated for each
configuration.
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FIGURE 19: Electricity production by MTC under open-circuit (A) and load-resistance (B)
configurations. The experimental temperature values of broth (red), room (blue), and
thermogenerator hot and cold sides (red and blue dashed lines, respectively) are shown
along with the evolution of voltage and power output (black continuous and dashed lines,
respectively).
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Baker’s yeast S. cerevisiae was used
for our MTC due to its wellknown
exothermic growth under a range of
different conditions. Indeed, any other
microbial culture resulting in important
heat production, such as ethanolic
fermentation (beer, bread, wine,
biofuels), auto thermal aerobic digestion
(ATAD) or hydrocarbonpolluted soil
bioremediation and bioaugmentation,
could be coupled with MTCs into a
single unit, with electricity production
as a valuable sub-product of the
main biotechnological purpose. In
fact, metabolic heat is often seen in
industry as an undesirable subproduct
of large-scale microbial fermentations,
and cooling facilities are often needed
in order to maintain an optimum broth
temperature [12, 15]. The conversion,
albeit partial, of this heat into electricity
would both help to control internal
temperatures in biotechnological
processes and contribute to energy
savings by cogeneration. Interestingly,
our results suggest that heat production
through metabolic growth and heat
flow through a thermogenerator can be
tuned in such a way that no energy is
needed to heat the broth up for microbial
growth nor to cool it down in order to
avoid excessive temperatures, known to
abruptly stop the fermentation process.

It seems reasonable to predict that, in
addition to yeast, other cultures might
be suitable as heat producers in an
MTC. For example, naturally-occurring
thermophilic and hyperthermophilic
bacteria, such as Bacillus coagulans,
Bacillus licheniformis or many Geobacillus
spp. strains, many of which can be
isolated from extreme environments
such as deep oil wells and the
optimal growth of which is 50–60 ◦C.
Additionally, these bacteria are reported
as able to heat their own culture up to
50–55 ◦C [16]. The perfect candidate for
MTC should meet the following criteria:
(i) thermoresistant; (ii) strong exothermic
ability; (iii) rapid and easy growth; and

(iv) an ability to grow and degrade high
concentrations of carbon sources.
In the MTC we designed, the “cold
side” of the system was an aluminum
heatsink. In order to optimize electricity
yield by increasing ∆T, a biological
cooling system could theoretically
be implemented, rather than simple
convection-driven heat loss. In fact,
methanogenic archaea have been
reported to exhibit endothermic growth
[7]. Although it is uncertain whether
endothermia is a result of particular
growth or of heat loss due to gas
evaporation from the culture, the fact
is that these microorganisms could be
combined with those producing heat
through a thermoelectric element in
order to increase electricity production.
These archaea have optimal growth at
temperatures of around 37 ◦C, and this
implies that the whole system should
be finely tuned in order to regulate
heat transfer across the thermoelectric
element, allowing optimal microbial
growth while maintaining as high a ∆T
as possible.
The surface:volume ratio of microbial
fermentors is a critical factor affecting
heat loss to the environment and thus
internal temperature of the culture.
Although standard lab-scale microbial
cultures produce heat, most of it
is lost to environment due to high
surface to volume ratio, resulting in the
absence of any noticeable increase in
internal temperature. However, large,
production-scale bioreactors have been
characterized thermodynamically and
proved to work nearly adiabatically
due to much lower surface to volume
ratio compared to laboratory-scale
non-insulated bioreactors [12]. The
results presented here, together with
previous reports on medium-scale liquid
culture calorimeters [13], demonstrate
that relatively small liquid cultures
can also work almost adiabatically,
provided proper insulation is provided
and significant autothermal growth can
be achieved. This implies that small



64 Chapter 3: Using robust microorganisms for new industrial approaches

portable MTCs for electricity production
could be envisaged, since most of
the metabolic heat from microbial
growth can be stored inside the MTC.
These small thermoelectric cells could
theoretically be used to power small
electric devices. However, in order
for MTCs to display higher electric
yields, optimization of the thermoelectric
elements should take place. Indeed,
only 0.5–8% of the total heat flow
is usually transformed into electricity
through the thermoelectric plates.
Interestingly, only 12% of the maximum
theoretical efficiency is achieved in the
best thermoelectric devices today [17],
so there is still room for significant
improvement in the optimization of this
technology. There has been a dramatic
increase in research into high efficiency
thermoelectric devices in recent decades,
with reports of significant improvements
in ZT values, design optimization, and
development of alternative materials. As
proposed by [17], “TE solid-state heat
engines could well play a crucial role
in addressing some of the sustainability
issues we face today”.
Other heat harvesting methods, such
as absorption heat transformers or
organic Rankine cycle, have been
reported previously [18, 19]. However,
these systems are space-consuming
and involve mobile parts that require
continuous maintenance. In contrast
with these, solid-state thermoelectric
systems are small, require almost
no maintenance, and display high
adaptability to a range of industrial
designs [17].
In conclusion, this is the first report
of microbial metabolic energy being
converted into electricity with an ad
hoc thermoelectric device, i.e., the
Microbial Thermoelectric Cell. Our
results show that even small volumes
of broth are able to exhibit significant
autothermal performance and produce
electricity when properly insulated
and set in such a way that heat
exchange is minimized over the whole

surface, except the small area on which
a (prototype) thermal harvester is
mounted. Although the electric power
we obtained was rather low, this work
may contribute towards a novel strategy
to harvest excess heat produced by the
biotechnology industry, particularly if
ongoing research into thermoelectric
materials and design finally yields high
efficiency thermoelectric devices.

Acknowledgments

We are very grateful to Emilia
Matallana, for kindly supplying yeast
strains, Julián Heredero, for his fine
work manufacturing the copper bar, to
Ruslan Klymenko for assistance with
Figure 15 and to Fabiola Barraclough
for correction of the English text. The
technology described in this work
has been found by us to hold not
only for scientific publication, but also
for patenting (Application number
P201200977 at Spanish Office of Patents
and Trademarks, OEPM).

References

1. Dauer LT, Zanzonico P, Tuttle RM, Quinn
DM, Strauss HW. The Japanese tsunami and
resulting nuclear emergency at the
Fukushima Daiichi power facility: technical,
radiologic, and response perspectives. J
Nucl Med. 2011;52:1423–1432.

2. Gross M. Energy U-turn in Germany. Curr
Biol. 2011; 21:379–381.

3. Lehmann J. A handful of carbon. Nature.
2007;447:143–144.

4. Kim D, Chang IS. Electricity generation
from synthesis gas by microbial processes:
CO fermentation to microbial fuel cell
technology. Bioresour Technol.
2009;100:4527–4530.

5. Song C. Fuel processing for
low-temperature and high-temperature fuel
cells: Challenges, and opportunities for
sustainable development in the 21st century.
Catal Today. 2002;77:17–49.

6. Cheng S, Xing D, Call DF, Logan BE.
Direct biological conversion of electrons into



Publication 3 65

methane by electromethanogenesis. Environ
Sci Technol. 2009;43: 3953–3958.

7. Liu H, Grot S, Logan BE.
Electrochemically assisted microbial
production of hydrogen from acetate.
Environ Sci Technol. 2005;39:4317–4320.

8. Rozendal RA, Hamelers HVM, Euverink
GJW, Metz SJ, Buisman CJN. Principle and
perspectives of hydrogen production
through biocatalyzed electrolysis. Int J
Hydrogen Energy. 2006;31:1632–1640.

9. Logan BE. Scaling up microbial fuel cells
and other bioelectrochemical systems. Appl
Microbiol Biotechnol. 2010;85:1665–71.

10. Gunawardena A, Fernando S, To F.
Performance of a yeast-mediated biological
fuel cell. Int J Mol Sci. 2008;9:1893–1907.

11. Ducommon R, Favre MF, Carrard D,
Fischer F. Outward electron transfer by
Saccharomyces cerevisiae monitored with a
bi-cathodic microbial fuel cell-type activity
sensor. Yeast. 2010;27:139–148.

12. Türker M. Development of
biocalorimetry as a technique for process
monitoring and control in technical scale
fermentations. Thermochim Acta.
2004;419:73–81.

13. Delás J, Notari M, Fore?s J, Pechuan J,
Porcar M, et al. Yeast cultures with UCP1
uncoupling activity as a heating device. N
Biotechnol. 2009;26:300–306.

14. Lineykin S, Ben-Yaakov S. Modeling and
analysis of thermoelectric modules. IEEE
Trans Ind Appl. 2007;43:505–512.

15. von Stockar U, van der Wielen LAM.
Thermodynamics in biochemical
engineering. J Biotechnol. 1997;59:25–37.

16. Ungwuanyi JO, Harvey LM, McNeil B.
Diversity of thermophilic populations
during thermophilic aerobic digestion of
potato peel slurry. J Appl Microbiol.
2008;104:79–90.

17. Bell LE. Cooling, heating, generating
power, and recovering waste heat with
thermoelectric systems. Science.
2008;321:1457–1461.

18. Larjola J. Electricity from industrial
waste heat using high-speed organic
Rankine cycle (ORC). Int J Prod Econ.
1995;41:227–235.

19. Saidur R, Rezaei M, Muzammil WK,
Hassan MH, Paria S, et al. Technologies to
recover exhaust heat from internal
combustion engines. Renew Sust Energ Rev.
2012;16:5649–5659.



66 Chapter 3: Using robust microorganisms for new industrial approaches

Publication 4

Producing High-Strength Liquor from
Mesophilic Batch Acidification of Chicken

Manure
Christian Abendroth*1,2, Erik Wünsche1, Olaf Luschnig1,3, Christoph Bürger1 and

Thomas Günther4

1Bio H2 Energy GmbH, Jena, Germany
2 Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de

Valéncia, Valéncia, Spain
3BioEnergie Verbund e.V., Jena, Germany

4Eurofins Umwelt Ost GmbH, Jena, Germany

Abstract
This report describes the results from
anaerobic batch acidification of chicken
manure as a mono-substrate studied
under mesophilic conditions. The
manure was diluted with tap water
to prevent methane formation during
acidification and to improve mixing
conditions by reducing fluid viscosity;
no anaerobic digester sludge has been
added as an inoculum. Highest
acidification rates were measured at
concentrations of 10 gVS/L and 20
gVS/L; the pH value remained high
(pH 6.9–7.9) throughout the test duration
and unexpected fast methane formation
was observed in every single batch.
At substrate concentrations of 10
gVS/L there was a remarkable methane
formation representing a value of 82%
of the respective biochemical methane
potential of chicken manure. Increasing
substrate concentrations did not supress
methane formation but impaired acid
production. Consequently, the liquor
cannot be stored over longer periods
but should immediately be used in a
digestion process.

Introduction

During our research we investigated
the batch acidification of chicken manure

(CM) with the aim of producing a strong
liquor containing high concentrations
of volatile fatty acids (VFA) as a
substrate for anaerobic digesters. CM
is an interesting substrate for anaerobic
digestion. With chicken farming being
one of the most intensive operations in
agriculture [1], large amounts of CM
with a considerable biogas potential
are locally available. The manure is
known for its high nitrogen content
and the fermentation of CM has been
described as difficult [1]. Therefore,
Abouelenien et al. (2010) [2] suggested
ammonia removal to improve digestion
conditions. Nonetheless, the toxicity of
ammonia derived from CM, in reality,
prevents the use of CM for digestion.
Several recent publications, including
Niu et al. (2013) [3] and Fotidis et
al. (2014) [4], are dealing with this
problem. Other authors have described
in detail the digestion process of CM [5,
6, 7]. They reported that the anaerobic
digestion of CM is difficult at higher
loadings of total solids (TS) (higher
than 10% TS) and that an optimal
concentration range is between 4% and
10% influent TS feed concentration.
Webb and Hawkes (1985) [6] suggested
the optimisation based on a two-stage
process. Current works from Fu and
Holtzapple (2011) [8], Liu et al. (2012) [9],
Yan et al. (2014 [10]) or Jie et al. (2014)
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[11] give insight into the optimization
of acidification conditions in anaerobic
digestion (AD) and the advantage
of separately controlled acidification
processes.
Although our work includes research
into the two-stage process, the main
focus is on the acidification step
with CM as a mono-substrate. The
key objective of this research was to
produce high-strength liquor, rich in
VFA by maximising the solubilisation
of nutrients and production of VFA in
a separately operated batch acidification
step.

Material and methods

Substrate
CM was collected from a local poultry
farm near Jena/Thuringia (Germany).
The fresh CM, as described in Table 3,
was dried at 40 ◦C in an oven with
forced ventilation, ground in a ball
mill, sieved through a 1 mm screen
and thoroughly mixed to provide a
homogeneous substrate. The drying
procedure led to a 6.8% reduction of
total nitrogen as compared with the fresh
manure owing to ammonia losses. Table
3 shows substrate characteristics of the
CM.

The biochemical methane potential
(BMP) of CM was measured in batch
experiments at 37 ◦C and over 21 days
in accordance with the German standard
method of VDI 4630 (2006) [12]. The final
methane yield was 200 L CH4/kg VS
(corresponding to 56% methanisation of
initially added chemical oxygen demand
(COD)).

Batch experiments
Initial tests included short-term
acidification experiments, which have
been performed in 0.5 L SIMAX-bottles
(duration between 4 to 5 days). Substrate
concentrations were set up at 10, 20, 30,
40, 50, 60 and 100 gVS/L. Corresponding
amounts of CM were suspended in 0.5 L
of tap water stirred by a magnetic stirrer
and heated to 37 ◦C. The bottles were
then flushed with nitrogen to ensure
anaerobic conditions. Each bottle had
been connected to an eudiometer (liquid
displacement system) for measurement
of biogas formation.
Investigations into the long-term
conditions for acidification formed the
second part of our research. The
experimental procedure was similar
to the short-term batch acidification,
but with an extended incubation time
of 41 days. The CM was again
suspended in tap water with initial
substrate concentrations of 10, 20 and
40 gVS/L. The first acidification batches
were set up without the addition of
inoculation sludge, but this was changed
for later batches, where we added 100
ml of the suspension from the previous
batch (total volume 500 ml). Sampling
occurred every 3 or 4 days through the
bottle sampling port.

To ensure constant and accurate
sampling conditions, gas and liquid
samples were taken from two identical
sets of bottles, one set for gas sampling
and the other set for liquid sampling.
This approach of sampling was chosen
to avoid withdrawal of nutritions
that could affect gas production rates.
Biogas samples were taken from the
eudiometers with a gas tight syringe
and transferred into headspace vials
displacing the barrier solution (saturated
saline solution; pH 2).
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FIGURE 20: Characterisation of the acidogenesis: Acid-production (TVFA) per hour under
conditions of different concentrations of VS. TVFA are given as acetic acid equivalent (AC).

TABLE 3: Chemical characteristics of dried CM (mean ± standard deviation).

Parameter chicken manure Unit Dried
Total solids (TS) % (W/W) 95.6 ±3.2
Volatile solids (VS) % TS 69.4 ±0.9
Chemical oxygen demand (total COD) mg g-1 TS 893 ±45
Total organic carbon (TOC) % TS 36.3 ±4.7
Total nitrogen (TN) % TS 5.5 ±1.5
Ammona nitrogen (NH4-N) % TS 0.52 ±0.002
Total phosphorus % TS 1.48 ±0.4
pH (CaCl2-extract) – 6.8 ±0.11

Analytical methods
The wet samples were dried overnight
at 105 ◦C (TS). Volatile solids (VS)
content was estimated as the loss of
ignition by dry matter combustion at
525 ◦C. For all pH measurements, a
pHmeter (WTW, Germany) with a glass
electrode (Schott/Germany) was used.
The concentration of individual volatile
fatty acids (acetate, propionate, butyrate,
isobutyrate, valeriate, isovaleriate and
caproate) was determined by gas
chromatography with a Shimadzu
gas chromatograph/flame ionisation
detector and equipped with a DB-1701
column (Macherey-Nagel, Germany).

For determination of soluble COD,
the samples were passed through a
0.45-µm-pore-size membrane filter. The
COD of the filtrate was determined using
a COD-Spectroquant test kit (Merck,
Germany) and a digital photometer SQ
118 (Merck, Germany). Gas composition
(CH4, CO2) was analysed with a
Combimass GA-m (Bender, Germany)
multi-gas monitor.
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Results and discussion

Optimal CM concentration
during acidification
The amount of total volatile fatty
acids (TVFA) produced from dry CM
was optimised in a first acidification
step. Several initial substrate
concentrations were investigated (Figure
20). Optimal acid production occurred
at concentrations of between 10 gVS/L
and 20 gVS/L. The rate of acid
formation decreases substantially at
low concentrations. CM-concentrations
around 10 gVS/L show a four times
higher acidification rate than the

initial CM-concentration of 1 gVS/L (a
decrease from 2.8 mgTVFA/gVS h for
the 10 gVS/L to 0.75 mgTVFA/gVS h for
the 1 gVS/L). At higher concentrations
than 20 gVS/L, the acidification rate
decreases successively and drops to 1.28
mgTVFA/gVS h at a concentration of 100
gVS/L.
Although unexpected, we observed
already during the first days methane
formation. Therefore the methane
formation during batch acidification was
investigated in more detail in subsequent
experiments.

FIGURE 21: Long-term batch digestion of CM at an initial concentration of 10 g L-1 VS. (a)
Acid production, (b) total nitrogen and NH4-N, (c) solubilised COD and (d) pH value.

Characterisation of the produced
VFA-liquor
During long-term batch experiments,
the hydrolysis and acidification of CM
were investigated at a concentration of
10 gVS/L (equivalent to 12870 mg/L
of COD). CM was rapidly degraded

to VFA under anaerobic conditions.
Maximum TVFA concentration (4663
mg/L) was achieved at Day 4–5,
indicating an acidification efficiency of
46% of COD (Figure 21(a)). Acetic
acid was the predominant VFA species
(3400 mg/L) followed by comparably
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low concentrations of propionate and
butyrate (<500 mg/L). The maximum
TVFA concentration coincided with
the peak of soluble COD (4680 mg/L)
(Figure 21(c)). In total, 36.4% of the
initially added COD was solubilised.
Another parameter monitored was
the reduction of organic nitrogen to
ammonium (NH4-N) (Figure 21(b)). The
conversion took place within the first
3–5 days, with the final concentration
close to total-N concentration in the
feed. These data indicate a rapid and
nearly complete degradation of organic
nitrogen into soluble NH4-N. This opens
the possibility for a subsequent ammonia
removal from the digestate prior to full
methanisation.
In spite of intense VFA formation from
CM, the pH of the batches did not
drop below pH 6.9 (Figure 21(d)). The
stabilisation of pH in a neutral range
can give rise to methanogenic activity
counteracting the accumulation of VFA.

Hence, after 5 days TVFA and soluble
COD decreased slowly, reaching values
as low as a third of the respective
maximum value (Figure 21(a) and (c))
at Day 26. It has been concluded that
methane formation was the cause for
VFA reduction.

Methane formation during
acidification
Gas production during batch CM
acidification started at Day 2, followed
by a short lag-phase until Day 5,
indicating a diauxic growth curve
(Figure 22). At a concentration of
10 gVS/L the continued anaerobic
incubation of batches led to continuous
production of methane starting on Day 2
and accelerating on Day 6. On Day 41, a
cumulative methane production of 189 L
CH4/kg VS was measured. These values
approximate the BMP of 200 L CH4/kg
VS.

FIGURE 22: Analysis of the gas-production during batch-acidogenesis: (a) biogas formed per
kgVS; (b) methane formed per kgVS.

The results indicate that under
the chosen conditions of CM batch
acidification, a significant methane
production will occur. The early
appearance of methane during the
acidification process interferes with
VFA accumulation and is expected
to prevent a temporary storage of
the liquor rich in VFA at ambient
temperatures. Additional attempts to

stabilise TVFA-accumulation and to
supress methane formation failed. Using
tap water instead of anaerobic digester
sludge (ADS) for inoculation of batches
was not sufficient to inhibit methane
formation. Higher CM-concentrations
led to impaired acidification and a
delayed gas production, but did neither
prevent methane formation. This
is consistent with the observation of
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Bujoczek et al. (2000) [7], who described
40 days of lag phase for digestion
of undiluted CM. We concluded that
elevated buffer capacity (ammonium
and carbonate buffer systems) led to
pH stabilisation of the liquid phase
with values above pH 7, and these
conditions were sufficient to maintain
methanogenic activity in the VFA-liquor.

Conclusions
The results from our trials show optimal
substrate concentration for CM batch
acidification between 10 and 20 gVS/L
with an maximum acidification rate of
2.8 mgTVFA/gVS h (acidification yields
of 47%). The highest TVFA accumulation
in the liquid phase corresponds to 450
mgVFA/gVS. A rapid hydrolysis of
CM into soluble products is indicated
by peaks in soluble COD, TVFA and
the complete conversion of organic
nitrogen into ammonia-N at Day
5. However, after Day 5, soluble
COD and TVFA decrease significantly,
accompanied by increasing methane
formation, leading to consumption
of VFA by methanogens. After 41
days, most of the CM is consumed
for biogas formation. The approach
to produce VFA-liquor from CM in an
anaerobic batch process was successful
with respect to rapid hydrolysis and
acidification, and the use of an ADS-free
process. However, the system failed
in stabilising the accumulated VFA
in the liquid phase and preventing
methanogenic conditions. Therefore, the
liquor should immediately be used in a
digestion process.
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Abstract

We report here the impact of
heat-shock treatments (55 and 70
◦C) on the biogas production within
the acidification stage of a two-stage
reactor system for anaerobic digestion
and biomethanation of grass. The
microbiome proved both taxonomically
and functionally very robust, since heat
shocks caused minor community shifts
compared to the controls and biogas
yield was not decreased. The strongest
impact on the microbial profile was
observed with a combination of heat
shock and low pH. Since no transient
reduction of microbial diversity occured
after the shock, biogas keyplayers, but
also potential pathogens, survived the
treatment. All along the experiment, the
heat-resistant bacterial profile consisted
mainly of Firmicutes, Bacteroidetes
and Proteobacteria. Bacteroides and
Acholeplasma were reduced after heat
shocks. An increase was observed for
Aminobacterium. Our results prove
the stability to thermal stresses of the
microbial communities involved in
acidification, and the resilience in biogas
production irrespectively of the thermal
treatment.

Introduction

Anaerobic digestion is a highly
sophisticated process that consists of
four phases: hydrolysis, acidogenesis,
acetogenesis, and methanogenesis
[1]. In practice, all four stages are
usually combined in a single reaction
vessel, denominated as Completely
or Continuously Stirred Tank Reactor
(CSTR). However, several reports
demonstrated the advantages of
separating the degradation process into
two stages optimized each either for
acidification or methane-production [2,
3, 4, 5]. In the first stage, biopolymers
are degraded into monomers such
as different volatile short-chain fatty
acids (VFAs). In the second stage,
produced acids are converted into
methane and carbon dioxide. A
separated acidification stage is especially
interesting, as it allows the production of
valuable intermediates or by-products,
such as VFAs [6] and molecular
hydrogen [7]. In addition, having
the acidification stage as a separate
sub-system allows using substrates such
as silages with high content of solids and
high organic loading rates.
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Besides biological pre-treatments,
physical, chemical and physico-chemical
methods are also used. All of them
can make the biomass accessible to
microbial enzymes and, hence, yield
higher amounts of fermentable sugars
[8]. Thermal pre-treatments, which
require high amounts of energy, can
successfully increase the accessibility of
lignocellulose, but temperatures as high
as 200 – 300 ◦C have been reported to be
required [9]. However, recent studies
suggest that lower temperatures such
as 120 ◦C [10] or even 70 ◦C [11] can
already significantly improve biomass
degradability. In fact, a recent study
reports improved hydrogen production
from digesters with granular sludge after
a mild heat-shock treatment [12].
Stable reactor performance has been
reported even for hyperthermophilic
digestion conditions up to at least 65
◦C [13, 14]. At those temperatures,
microorganisms require very long
adaptation times [15]. Besides thermal
tolerance, anaerobic microbiomes tend
to be robust and adaptable to extreme
conditions, including high ammonia
levels [15, 16] or high salinity [17].
To reduce energetic demand and
costs, and to avoid long adaptation
times compared to long thermophilic
processes, we aimed at exploring a
new method for biogas production
based on the application of mild
thermal shocks throughout the process.
The question we raised was whether
acidifying microbiomes that are adjusted
to mesophilic conditions, might tolerate
short, hyperthermophilic heat shocks,
and which would be the effect on the
efficiency of the process. With the aim
of combining thermal and biological
pre-treatments, we constructed a
two-stage two-phase system, heated
the first stage cyclically up to 55
◦C and 70 ◦C and investigated
the impact of this treatment on
the microbial community dynamics
applying culture-dependent and
cultivation-independent approaches. As

substrate of choice, grass biomass was
chosen because of its high potential
as renewable energy source [18], and
because of its suitability for two-stage
digestion [19].

Materials and methods

Fermentation conditions
Digestion experiments were performed
in a two two-stage two-phase biogas
reactor systems designed ad hoc for
this work (Fig. 23). One two-stage
system was used to investigate the
impact of heat-shocks and a second
one was used as a control system. The
first stage of each system was used for
acidification, and the second stage was
used for subsequent methane formation.
Additionally, each of the methane stages
was filled with 1.58 Kg of bed packing
(Christian Stöhr, Germany).
At the beginning of the experiment,
each methane stage received 11.75
L of sewage seed sludge, and each
acidification stage received 8 L of
sewage sludge as inoculum. During
acidification, fresh untreated grass
biomass (Graminidae) consisting of
30.4% total solids (TS), 84.2% volatile
solids (VS) of TS and a chemical oxygen
demand (COD) of 260 mgO2/g was used
as solid phase. For every batch cycle,
96.2 g/L of grass VS were filled into a
cylindrical sieve, which was located in
the first stage for acidification to retain
the solid phase during the percolation
process. Leachate was percolated on the
fixed grass bed to produce high-strength
liquor, which was collected after every
batch cycle of acidification. To keep
the pH constantly at 6.0 or 6.8, a
pH-regulation system was used for each
acidification stage (BL 7916, Hanna
Instruments, Germany). Collected liquor
was stored under anoxic conditions
at 4 ◦C and fed semi-continuously
and manually into the methane stages.
Each methane stage received daily
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approximately 100 gCOD (8.5 gCOD/L).
Digestate from the methane stages was
stored under anoxic conditions at 4
◦C and was used as leachate for the
set-up of new acidification cycles (Fig.
24). Produced gas from all stages
was collected in gasbags (Tecobag,
Tesseraux, Germany) and analysed with

the Combimass Measurement device
(Binder, Germany). Two multistage
systems were performed in parallel and
at mesophilic temperature (37 ◦C). The
produced high strength liquor from the
acidification stage from the first system
was regularly exposed to heat shocks.

FIGURE 23: Experimental set-up: Reactor set-up consisting of a hydrolytic/acidogenic stage
(A) and a methanogenic stage (B). Feeding of the methanogenic stage with the liquid phase
from the hydrolytic/acidogenic stage and heat-treatment was performed manually on a
daily basis. Two reactor systems were built, further referred as heat-shock system and control
system.

Heat shocks and sampling
An overview about heat shock regimes
is given in Figure 24. Heat shocks
were applied manually transferring the

leachate into an incubator, where the
leachate was heated up to 55 ◦C. After
the core of the biomass reached that
temperature, the liquor was further



76 Chapter 3: Using robust microorganisms for new industrial approaches

incubated for 30 min and then refilled
into the two-phase acidification stage.
During the first 21 days, only one heat
shock with 55 ◦C was carried out per
week. From day 22 until day 42, the
heat-shock temperature was increased
to 70 ◦C, performed similarly, and
three heat shocks were applied for each
acidification cycle (Fig. 24 and 26).
Between experimental day 21 and 2,
there was a technical break in operation
for two weeks.

A second, identical multistage system
was used as control without heat shocks
(further referred as control system).
Samples for 16S-rRNA gene-amplicon
high-throughput analysis were taken
every second and seventh day of each
acidification cycle. Additionally, at day
36, directly after a 70 ◦C heat shock, a
sample for 16S-rRNA gene full length
sequencing was taken, as well as a
sample for microbial culturing at day 37.

FIGURE 24: Experimental timeline: Acidification occurred in six cycles of one week each.
Experimental week 3 and experimental week 4 were separated by a two-weeks interval.
Green circles indicate the collection of liquor and the subsequent feeding into the methane
stages. Collected digestates from the methane stages were used for setting up new
acidification cycles.

Chemical and microbial process
analysis
Analysis of chemical parameters was
performed as previously described
in Abendroth et al. (2017) [19].
Extraction of DNA, primer nucleotide
sequences for bacteria, 16S-rRNA
gene amplification, high-throughput
amplicon sequencing with IonTorrent
and sequence analysis was performed

as described by Abendroth et al. (2015)
[20]. At day 36 of the experiment, the
acidification stage from the heat-shock
system was analysed through full length
sequencing of the 16S-rRNA gene and
anaerobic culturing approaches. Cloning
and library construction was performed
as described by Rademacher et al. (2012)
[13].
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Isolation of microbial strains
To isolate different bacteria, cultivation
was performed under anoxic conditions
on Reinforced Clostridial Agar (Oxoid
Ltd.) and on modified DSMZ medium
no. 350 (Cellulomonas fermentans
medium). In contrast to the DSMZ
medium 350 (DSMZ 2007), the modified
medium contained (per liter) 2.0 g
yeast extract, 0.5 g cellobiose, 2.0 g
soluble starch, 1.0 g methyl cellulose
and 15.0 g agar; the pH of the medium
was 6.9. After autoclaving 10 mL/L
vitamin solution was added according
to DSMZ medium 141 (DSMZ 2017).
The reactor sample was diluted 101,
104 and 106 fold in anoxic Ringer’s
solution and aliquots of the dilutions
were streaked on pre-reduced agar
plates. After incubation at 37 ◦C in
an anaerobic chamber single colonies
were re-streaked until purification was
achieved. A loop full of colonies
of the isolates were suspended in 50
µL molecular biological grade water
and cells were lysed by consecutive
freezing and thawing. Amplification
and subsequent sequencing of the nearly
full-length 16S rRNA gene of the strains
was carried out using the primers 27F
and 1492R as described by Hahnke et al.
(2014) [21].

Results and discussion

Impact of heat-shocks on process
performance
After applying heat shocks on the
acidification stage, almost no differences
of chemical parameters were observed
between the heat-shock system and the
control system (Fig 25). Solubilisation
of chemical oxygen demand and
production of total volatile fatty acids
(TVFA) were monitored daily and
found to reach similar values in both
the heat-shock system and the control
system (Fig. 25A). Additionally, similar

volumes of methane from the produced
high-strength liquor were produced (Fig.
25B). During the first three weeks, when
55◦C heat shocks were applied, 29.1 ±
11.4 gCOD/L and 15.9 ± 5.6 gTVFA/L
were produced. The respective control
showed 35.6 ± 6.8 gCOD/L and 20.5
± 3.7 gTVFA/L. In the following three
weeks, where heat shocks were more
frequently applied and at a higher
temperature (70 ◦C), concentrations
of 26.9 ± 2.7 gCOD/L and 18.9 ±
0.8 gTVFA/L were measured. The
corresponding control samples yielded
28.4 ± 5.7 gCOD/L and 19.6 ± 0.2
gTVFA/L. Even though the degradation
efficiency was not detectably improved,
no process inhibition was found either.
At week 2 the heat-shock system and
the control system showed both a higher
COD compared to the other weeks. Very
likely this is due to heterogeneity of the
used substrate.
The high conversion of solubilized
COD indicates that methanation was
not inhibited in both methane stages
(heat shock system and control system)
(Fig. 25B). The produced amount of
methane per g of solubilized COD was in
both methane stages slightly above the
theoretical maximum of 350 ml/gCOD
due to small particles that remained
in the collected high strength liquor
from the acidification. In addition and
in comparison to the control system,
we observed in the heat-shock system
a reduced methane formation in the
acidification stage subjected to heat
shocks. Compared to the methane stage,
only low levels of methane were formed
in the acidification stage of both reactor
systems. In the acidification stage with
55 ◦C heat shocks, 67% less methane was
formed than in the un-heated control. In
the experiment with 70 ◦C, it was 40%
less methane compared to the control
(Fig. 25C).
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FIGURE 25: Chemical analysis: Produced total volatile fatty acids (TVFA) and solubilized
chemical oxygen demand (COD) are given for both the heat-shock system and the control
system (A). Produced methane as well as conversion efficiency of solubilized COD for
acidification and methane stages is summarized for different time intervals: day 1 to 21;
day 22 to 42 (B). The methane production from the acidification stage is shown in (C). Gas
volume is given as a mean value for the total gas formation per week (for each batch cycle).
Standard deviations were calculated with the mean value from experimental week 1 – 3 and
experimental week 4 – 6.

Therefore, the reduction of
methanogenic contaminations from the
seed sludge in the acidification stage
associated to heat treatments could
help to separate acidification from
methanation more efficiently in order to
prevent loss of methane.

Post heat-shock transient
microbial community
For each acidification cycle, samples for
16S-rRNA high throughput sequencing
were taken at the second and last day
(Fig. 24, 26). On the phylum level,

all sequences showed a profile mainly
consisting of Firmicutes, Bacteroidetes
and Proteobacteria (Fig. 26). This
is in concordance with our previous
studies on microbiomes from seven
anaerobic digester plants in Germany,
and acidification of grass biomass
[19, 18]. During experimental weeks
1 – 3 Proteobacteria were especially
enriched, whereas Bacteroidetes tended
to decrease in the control non-shocked
reactor. The high abundance of
Proteobacteria is in concordance with
a study published by Weerasekara et
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al. (2016)[22], where Proteobacteria
increased in frequency in wastewater
due to acidic conditions. In our
experiment, by changing the pH to 6.8
(experimental week 4 – 6), the amount of
Proteobacteria was dramatically reduced
and, in the heat shocked system the
phylum Bacteroidetes recovered. This
indicates a high microbial redundancy,
as the change of dominating microbial
groups showed no negative effects on the
degradability of the used grass biomass.
On genus level, Bacteroides, Prevotella,
Enterococcus, Clostridium and Pseudomonas
were abundant during experimental
weeks 1 – 3. Raising the pH to 6.8 at day
21 was associated with a dramatic shift
in the microbial composition, consisting
mainly of Bacteroides, Streptococcus,
Aminobacterium, Clostridium and
Tissierella (Fig. 26). The fact that
even three shocks per cycle at 70 ◦C
did not cause permanent shifts in
the microbial composition, but only
transient modifications indicates that the
mesophilic microbiomes from anaerobic
digesters exhibit high resilience against

heat shocks, while being more sensitive
to pH changes.
Interestingly, many sequences remained
unclassified on the genus level (Fig.
26). This is in accordance with other
studies on biogas facilities, e.g., based on
previous study on NGS [23], where also
many unclassified species were detected.

Heat shocks and pathogens
Microbial culturing as well as
culture-independent 16S-rDNA full-length
sequencing was used to assess
microbiota on species level (Fig.
24). Surprisingly, many opportunistic
pathogenic species listed with risk
level 2 in the TRBA (technical rules
for biological working materials from
the German committee for biological
working materials, 2004) were detected,
namely Bacteroides ovatus, Bacteroides
thetaiotaomicron, Bacteroides uniformis,
Citrobacter werkmanii, Enterococcus
gallinarum, Globicatella sulfidifaciens,
Streptococcus lutetiensis, Corynebacterium
freneyi, Escherichia hermannii, Lactococcus
garvieae, or Proteus mirabilis.

FIGURE 26: Microbiome composition of heat-shocked samples. Microbial composition is
given as a percentage of all analysed bacterial sequences. Sequences were classified on the
genus level. Values for samples from the experiment with 55 ◦C heat shocks are shown in
A; and C corresponds to the 70 ◦C heat shocks. Values for samples from the control system
without heat shocks are shown in B and D. All samples were analysed as duplicates.
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The application of sewage sludge as
seed sludge might explain the occurrence
of detected pathogens mentioned before,
as sewage is well known for its content
of pathogenic bacteria [24]. The fact that
corresponding genera were observed in
high abundance (Fig. 26) also implies
a high abundance of these pathogens.
In conclusion, abundant heat treatments
at 70 ◦C were not sufficient to supress
potential pathogenic genera.

Conclusions
The response of microbial populations
present in mesophilic acidification stages
to short heat cycles was investigated.
The studied microbiomes proved very
robust, since the same amount of
methane was produced in heat-shocked
samples compared to the control
ones. Heat-shocks caused only minor,
transient community shifts and the
strongest impact on the microbiome
was observed with a combination of
heat shock and low pH. Potential
pathogenic genera remained abundant;
and several pathogens were still found
after the heat treatment. Our results
can be the first step towards future
approaches combining microbial-driven
acidification and thermal treatments as a
new pre-treatment methodology.
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Chapter 4: New taxa with
foreseeable roles in biorefinery

Summary: Multiple bacterial strains
with foreseeable roles in biorefinery were
isolated and investigated. Two new
Firmicutes isolates (strain HV4-6-A5C
and strain HV4-5-B5C), were obtained
from the hydrolysis stage of a mesophilic
and anaerobic two-stage lab-scale
leach-bed system for biomethanation
of fresh grass. It is assumed that the

bacterial isolates contribute to plant
biomass degradation. Above this and
with the aim of isolating robust lipolytic
microbial strains, we have analyzed
the bacterial communities inhabiting
two domestic extreme environments: a
thermophilic sauna and a dishwasher
filter.
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Abstract
A new Firmicutes isolate, strain
HV4-6-A5C, was obtained from the
hydrolysis stage of a mesophilic and
anaerobic two-stage lab-scale leach-bed
system for biomethanation of fresh
grass. It is assumed that the bacterial
isolate contributes to plant biomass
degradation. Here, we report a draft
annotated genome sequence of this
organism.

Degrading bacteria, most of them
isolated from soil, play relevant roles
in the turnover of different types of
material, such as petrol [1], pollutants
[2], metal [3], and cellulose [4, 5]. In
the case of plant biomass degradation
in biogas reactors, such microorganisms
play an important role in making hardly
accessible polymeric carbon sources
available for other organisms for the
production of biogas.
In this study, we present the genome
sequence of a new Firmicutes isolate,
strain HV4-6-A5C, which has a putative
role in the microbial metabolic network
for plant biomass degradation. This
strain was isolated from a lab-scale
leach-bed biogas reactor system, which

operated at 37◦C with fresh grass as the
sole substrate. Isolation was performed
on Reinforced Rlostridial Agar (Oxoid
Ltd.) after the diluted hydrolysate
was reincubated with microcrystalline
cellulose as the sole carbon source.
We applied a massive genome
sequencing approach using the Illumina
NextSeq 500 platform. A Nextera
XT library with a mean insert size of
350 nucleotides (nt) was constructed
and sequenced with a combination
of 150-bp paired-end (PE) reads. A
total of 29.2 million PE sequences,
with a mean length of 149.85 nt, were
obtained. Sequences were filtered by
quality, and a total of 29.15 million PE
sequences with a Q value higher than
20 (mean Q = 33.17) were included
in the assembly. The sequences were
assembled with SPAdes version 3.10.1
[6], using default parameters and a k-mer
value that provided us with the lowest
number of contigs, the longest contig,
the largest N50 value, and the highest
percentage of clean sequences. With
a k-mer of 77, a total of 106 contigs
were obtained. The total size of the
genome was approximately 3.3 Mb, with
an estimated GC content of 33.43 %, a
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longest contig size of 276,895 bp, and an
N50 of 113,179 bp.
The assembled genome sequences were
annotated using the Prokka version 1.11
annotation pipeline [7], which involved
predicting tRNAs, rRNAs, mRNAs,
and signal peptides in the sequences
using Aragorn, RNAmmer, Prodigal,
and SignalP, respectively [8–11].
The genome contains 5,376 elements, of
which 5,311 are open reading frames
(ORFs; 2,723 canonical and 2,588
noncanonical) and 65 are encoded
structural RNAs (sRNAs)–i.e., 5 ORFs
for rRNAs and 60 ORFs for tRNAs.
Using BLAST we compared the contigs
with all genome sequences available in
the database. According to the PCOP
[12] and the AAI [13], the genome can
be classified as a species belonging to
the genus Clostridium. Based on the
average nucleotide sequence identity
(ANI) (14), the closest related species was
Sporanaerobacter acetigenes, showing an
identity of only 71.13 %, which indicates
that the novel strain represents a new
species within the phylum Firmicutes.

Accession number(s). The genome
described in the present article
corresponds to the strain HV4-6-A5C
deposited in the database for microbial
strains (DSMZ) with the deposit
number DSM 104144. The results of
the whole-genome project have been
deposited at DDBJ/EMBL/GenBank
under the accession no. FXVB02000001
to FXVB02000106 with the name
HV4-6-A5C1.
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Abstract
A new Ruminococcaceae isolate, strain
HV4-5-B5C, was isolated from a
mesophilic and anaerobic two-stage
laboratory-scale leach-bed system for
biomethanation of fresh grass. Genomic
as well as 16S rRNA gene sequence
analysis indicated that the new bacterial
strain is affiliated with the family
Ruminococcaceae but does not belong to
any of the currently described genera.
Here, we report a draft annotated
genome sequence of this organism.

Anaerobic digestion is a promising
technology to generate biofuels and
multiple products [1]. However,
lignocellulolytic biomass can only be
degraded incompletely and biomass
pretreatment is necessary to facilitate
the microbial degradation process
[2]. Besides biomass pretreatment,
it is further possible to improve
the degradation of plant biomass by
inoculating hydrolytic bacterial strains
[3]. In order to enrich a community of
hydrolytic bacteria, a mesophilic and
anaerobic two-stage laboratory-scale
leach-bed system for biomethanation
of fresh grass was set up, from which
bacterial strains were isolated.

In this context, we present the genome
of the new Ruminococcaceae bacterium
strain HV4-5-B5C, which has a putative
role in the microbial metabolic network
for plant biomass degradation, as it was
isolated from a reactor with fresh grass as
the sole substrate. The strain originates
from a leach-bed biogas reactor system,
which operated at 37◦C. Isolation was
performed under anoxic conditions
on Anaerobic agar acc. to Brewer
(Merck) after the diluted hydrolysate has
been re-incubated with microcrystalline
cellulose as sole carbon source.
We used a massive genome sequencing
approach as implemented in the Illumina
NextSeq 500 platform and a Nextera XT
library with a mean insert size of around
300 nt was constructed and sequenced
in a combination of 150 PE. Over 20
million (21,629,863) PE sequences with
a mean of 150,32 nt were obtained. After
quality filtering we obtained a total of
21.61 million PE sequences with a Q
value higher than 20 (mean Q = 32.71)
that were used in the assembly step.
Spades (4) version 3.10.1 was used for
the assembly with the parameters by
default using the k-mer that provided us
with the lowest number of contigs, the
longest contig, the largest N50 and the
highest percentage of clean sequences
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(k-mer =127). A total of 5019 contigs
where obtained from them, 76 contigs
had over 500 nt, these 76 contigs resulted
in a total genome size of around 3.01
Mb with an estimated GC content of
52.50 %, the longest contig was 581,597
nt and the N50 of the assembly is
360,256 nt. The assembled genome
sequences were annotated using the
Prokka annotation pipeline, version 1.11
(5), which involves predicting tRNA,
rRNA, and mRNA genes and signal
peptides in the sequences using Aragorn
(6), RNAmmer (7), Prodigal (8), and
SignalP (9), respectively.
The genome contains 2,945 elements,
where 2,878 are ORF (2,325 canonical
and 553 non-canonical) and 67 encoded
structural RNAs (sRNAs), i.e., 6 for
rRNA and 61 for tRNA.
Using BLAST we compared the contigs
with all genome sequences available
at the database. According to the
percentage of conserved proteins (POCP)
(10) and the average amino acid
identities (AAI) (11) the organism could
not be classified as species of a currently
described genus. Based on the POCP,
the closest related genus was Clostridium
showing 38.31 % identity. Based
on the average nucleotide sequence
identity (ANI) (12), the closest related
species was Clostridium sporosphaeroides,
showing an identity of only 68.83 % with
ANIBlast and Clostridium leptum with a
88.36 % with ANI-MUMmer Using the
EzBioCloud identification tool 16S rRNA
gene sequence comparisons revealed
Caproiciproducens galactitolivorans as the
closest affiliated species sharing 93.3 %
sequence identity with the type strain.
These results indicate that the novel
bacterial strain represents a new species
and possibly a new genus within the
family Ruminococcaceae.

Accession number(s). The microbial
strain has been deposited at the
German collection of microorganisms
and cell cultures (DSMZ) with
the deposit number DSM 104463.

The results of the whole genome
project have been deposited at
DDBJ/EMBL/GenBank under the
accession no. FXYJ02000001-FXYJ02000076.
The version described here is the first
draft version.
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Abstract
Lipases are key biocatalysts with
important biotechnological applications.
With the aim of isolating robust lipolytic
microbial strains, we have analyzed
the bacterial communities inhabiting
two domestic extreme environments: a
thermophilic sauna and a dishwasher
filter. Scanning electron microscopy
revealed biofilm-forming and scattered
microorganisms in the sauna and
dishwasher sample, respectively. A
culture-in-dependent approach based
on 16S rRNA analysis indicated a
high abundance of Proteobacteria
in the sauna sample; and, a large
amount of Proteobacteria, Firmicutes,
Cyanobacteria and Actinobacteria
in the dishwasher filter. With a
culture-dependent approach, we isolated
48 bacterial strains, screened their
lipolytic activities on media with
tributyrin as the main carbon source, and
finally selected five isolates for further
characterization. These strains, all of
them identified as members of the genus
Bacillus, displayed optimum lipolytic
peaks at pH 6.5 and with 1-2 % NaCl,
and the activity proved very robust at a
wide range of pH (up to 11.5) and added
NaCl concentrations (up to 4 %). The
thermal, pH and salt robustness of the
selected isolates is a valuable attribute
for these strains, which are promising
as highly tolerant bio-detergents. To
our knowledge, this is the first report
regarding the isolation from an indoor

environment of Bacillus strains with a
high potential for industry.

Introduction

In the past decade, research programs
on indoor environments have resulted in
an increasing data matrix of taxonomic
and ecological interest [1, 2]. Attention
has especially been paid to frequently
used domestic places that are, on many
occasions, overgrown with potential
pathogenic bacteria, like in the recently
described coffee-machine or refrigerator
bacteriomes [3, 4]. It is important to
stress that indoor environments mimic
natural, often extreme, environments.
For example, refrigerators are almost
as cold as tundra and thus rich
in cold-adapted bacteria, whereas
sun-exposed artificial flat surfaces, such
as solar panels, are home of a rich
desert-like biocenosis [5]. Therefore,
bioprospecting nearby indoor extreme
environments is a poorly explored but
yet promising screening strategy that
might yield bacterial strains with new or
improved biotechnological applications.
Indeed, and besides the obvious medical
implications, another reason to further
investigate indoor microbiomes is the
search of enzymes with high industrial
significance, especially as novel
biocatalysts [6]. A very well known
(natural) precedent is the discovery of
the extremophile bacterium Thermus
aquaticus [7], whose thermoresistant Taq
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polymerase allowed the revolutionary
development of Polymerase Chain
Reaction in the last decades of the 20th
century.
Within the current repertoire of available
enzymes, esterases are particularly
suitable for industrial processes,
since they are stable in organic
solvents and can freely reverse the
enzymatic reaction from hydrolysis
to synthesis [8]. Lipases have also
been highlighted as key biocatalysts
for biotechnological applications, such
as the production of new biopolymeric
materials and biodiesel, or the synthesis
of fine chemicals like therapeutics,
agrochemicals, cosmetics and flavors [9].
Their stereoselective properties make
them able to recognize enantiomers and
enantiotopic groups, while many other
enzymes for hydrolysis are just capable
of metabolizing one antipode of the
specific substrate [10].
Environments with extreme and/or
oscillating temperatures are of special
interest, due to the opportunity of
finding esterases that are active at wide
intervals of temperature and that can
thus be used under a range of industrial
conditions, such as those present in
dishwashers or washing machines. A
new and promising esterase has recently
been discovered in the thermophilic
bacterium Thermogutta terrifontis. This
enzyme retains up to 95 % of its activity
after incubation for 1h at 80 ◦C [11]. A
cold-active and solvent-tolerant lipase
from Stenotrophomonas maltophilia has
also been reported, with retention of 57
% of its activity at 5 ◦C and more than 50
% of its activity in pure organic solvents
[12]. More examples of extremophilic
enzymes with industrial potential
include thermoalkalophilic esterases
from Geobacillus sp., which have all
proven active at high temperature
(65 ◦C) and at pH of up to 10
[13]; or a cold-adapted esterase from
Pseudoalteromonas arctica, which still
retained 50 % of its activity at the
freezing point of water [14].

Upon discovery, extremophile enzymes
can often be further optimized to
improve their industrial use, as it was the
case for the thermal stability and activity
in the cold-adapted lipase B from Candida
antarctica through chemical linking of
amino groups of the lipase to oxidized
polysaccharides using reducing agents
[15].
Bioprospecting indoor extreme
environments could yield new lipolytic
microbial strains harbouring previously
uncharacterized esterases and other
enzymes. In the present work, we have
focused on the microbial communities
inhabiting two high-temperature,
domestic environments: a thermophilic
sauna and a dishwasher. We have
isolated 48 bacterial strains, many
of them lipase-producing bacteria.
Furthermore, we have characterized
five of them, displaying robust
lipase activities with promising
biotechnological applications.

Material and methods

Sampling
Environmental samples were taken
from a sauna and from a dishwasher.
The sauna, set at a temperature of
approximately 45 ◦C and with 100 %
relative humidity, is a publicly-owned
facility located in a communal
swimming pool in Valencia (Spain)
and therefore did not require specific
permission for the sampling. A
biofilm-like mass below the aluminium
bench of the sauna was collected in a
sterile 50 mL Falcon tube and was stored
at -20 ◦C until required. The dishwasher
sample was collected from the filter of a
domestic Siemens dishwasher (property
of one of the co-authors of this work,
MP), Model sm6p1s. The sample was
obtained by scratching the inner surface
of the filter with a sterile bladder and
the resulting biomass was kept at -20 ◦C
until required.
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Scanning electron microscopy
Biomass samples were fixed on a 0.2
µm membrane filter (Merck Millipore
Ltd, Tullagreen, Cork, Ireland) using
para-formaldehyde 2% - glutaraldehyde
2.5 %. A volume of 5 ml was pressed
two times through the filter. The
filter was washed with Milli-Q water
(Merck Millipore Ltd, Tullagreen, Cork,
Ireland) and then dehydrated in ethanol
(gradually increasing concen-tration).
Dehydrated samples were placed in
microporous cap-sules of 30 µm in pore
size (Ted Pella Inc.) and immersed in
absolute ethanol. Critical point drying
was performed in an Autosamdri 814
(Tousimis). Once dried, samples were
placed on SEM stubs by means of silver
conducting paint TAAB S269. Stubs were
examined under a scanning electron
microscope Hi-tachi S-4100.

16S-rDNA analyses with Ion
Torrent
DNA was retrieved from sauna
and dishwasher samples using the
PowerSoil DNA Isolation Kit (MO
BIO Laboratories, USA). DNA quality
was analyzed using a Nanodrop-1000
Spectro-photometer (Thermo Scientific,
Wilmington, DE, USA). A 500 bp
long fragment from the hypervariable
16S-rDNA regions V1–V3 was amplified
using the universal primers 28F (5’-GAG
TTT GAT CNT GGC TCA G-3’) and
519R (5’-GTN TTA CNG CGG CKG
CTG-3’). The quality of the resulting
amplicons was checked on a 0.8 %
(w/v) agarose gel. Amplicons were
precipitated with 3M potassium acetate
and isopropanol. Sequencing libraries
were constructed using 100 ng of
the DNA pool and performing the
amplicon fusion method (Ion Plus
Fragment Li-brary Kit, MAN0006846,
Life Technologies). Both libraries (Sauna
and Dishwasher) were quantified with
the Agilent2100 Bioanalyzer (Agilent
Technologies Inc, Palo Alto, CA, USA)
prior to clonal amplification. Emulsion
PCRs were carried out with the Ion

PGM Template OT2 400 kit as described
following the user guide provided
by the manufacturer (MAN0007218,
Revision 3.0 Life Technologies).
Libraries were sequenced in an Ion
318 Chip v2 on a Personal Genome
Machine (PGM) (Ion-TorrentTM, Life
Technologies) at Life Sequencing S.L.
(Life Se-quencing,Valencia, Spain), using
the Ion PGM Sequencing 400 kit and
following the manufacturer’s protocol
(publication number MAN0007242,
revision 2.0, Life Technologies). Short
reads (<100bp) and low quality
reads (<q15) were removed upon
sequencing at the sequencing center.
Resulting sequences were analyzed
by phylotyping with the MOTHUR
software [16]. Amplicons were aligned
to the 16S-reference from the Greengenes
database. Classification was performed
using the k-mer algorithm. Assignments
with a similarity percentage lower than
80 % were discarded.

Isolation of microbial strains
Lysogenic broth (LB) and Reasoner’s
2A (R2A) agar [17] media were used
for bacterial culturing. Samples were
suspended in PBS-buffer, vortexed,
spread on LB and R2A plates and
incubated at 37 ◦C and 55 ◦C for one
day. Thermophilic and thermo-resistant
strains were picked, grown in liquid
culture and stored in 20 % Glycerol at
-70 ◦C.

Lipolytic Activity and microbial
identification
Tributyrin-containing medium is
frequently used when screening
for lipase-producing microorganisms
[18,19], as the degradation of this
compound generates clear halos around
the lypolitic colonies in the otherwise
turbid medium. Samples (1 µL) from
the cryo-preserved strains were directly
spotted on minimal medium [20],
which contained tributyrin (10 mL/L)
as main carbon source. Incubations
were performed at 4 ◦C, 20 ◦C, 37
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◦C, 46 ◦C and 55 ◦C. After 5 days of
incubation, the diameter of the halos
around lipase-producing strains was
measured.

16S rRNA sequencing of selected
strains
Hypervariable 16S-rDNA regions V1–V3
of the selected strains were amplified
by colony PCR using 28F and 519R
primers and sequenced with the Sanger
method by the Sequencing Service
of the University of Valencia (Spain).
This allowed the identification of the
five selected isolates at a genus level.
In order to identify the isolates at
a species level, further Bacillus spp.
primers were used to amplify: the
TU elongation factor (tufGPF and
tufGPR) [21], a group-specific 16S
rRNA region (B-K1/F and B-K1/R1)
[22], an endoglucanase gene (ENIF and
EN1R) [23] and a glycolsyltransferase
(Ba-G206F and Ba-G1013R) [24]. The
resulting sequences were manually
edited using Pregap4 (Staden Package,
2002) to eliminate low-quality base calls.
The final sequence for each isolate was
compared to sequence databases using
the NCBI BLAST tool.

Lipolytic assays varying pH and
salt conditions
Lipase production of the five selected
strains was tested on solid minimal
medium supplemented with tributyrin
(10 mL/L), adjusted to a range of pH
(6.5, 8, 9.5 and 11.5), and with or without
additional 4 % NaCl. Two microliters
of each strain were spotted on each
combination of pH and salt media and
incubated at 4, 20, 37, 46 or 55 ◦C for 5
days. After incubation, the diameters of
the halos were measured.
In order to determine the optimal
conditions for the lipase production of
the five selected strains, two microliters
of each strain were spotted on additional
combinations of pH and salt (pH 6.5, 8,
9.5 and 11.5; NaCl 0, 1, 2, 3 and 4 %).
The plates were incubated for five days

at 37 ◦C. The assay was performed in
triplicate.

Results and Discussion

Scanning Electron Microscopy
The samples obtained from a wet sauna
and a dishwasher filter proved rich
in microorganisms, as deduced by
observation under SEM (Fig 27). In
the sauna sample, microorganisms were
mostly present in the form of a very
dense biofilm almost totally embedded
in a smooth matrix, very likely made of
EPS (Fig 27A); whereas the dishwasher
filter sample consisted mainly of food
debris with scattered microorganisms
(Fig 27B).

16S-rDNA analyses with Ion
Torrent
The taxonomic diversity of the two
samples was determined by high
throughput-sequencing, performed as
described in Materials and Methods,
and resulted in very different
taxonomic profiles of both samples
(Fig 27C and 27D). Proteobacteria were
overwhelmingly abundant in the sauna
sample, accounting for more than 90
% of the reads (Fig 27C). Of those,
alpha-, beta- and gamma-proteobacteria
were present at similar frequencies,
each accounting for more than 20 %
of the assigned sequences. Minor taxa
with frequencies of 1–5 % included
Bacteroidetes, Actinobacteria and
Acidobacteria. The dishwasher filter
was characterized by large amounts
of Proteobacteria, Firmicutes (Bacilli,
most of them), Cyanobacteria and
Actinobacteria; and very low amounts
of other taxa (Fig 27D).
These results are consistent with
previous reports on these two extreme
environments. Lee et al. [25]
characterized the bacterial community
contaminating the floor of a hot
and dry sauna, which proved rich
in Firmicutes, Gamma-proteobacteria
and Beta-proteobacteria. Another



94 Chapter 4: New taxa with foreseeable roles in biorefinery

report by Kim et al. [26] of a 64
◦C dry sauna revealed a population
with Firmicutes, Gamma-proteobacteria,
Beta-proteobacteria and Deinococci as
the most frequent taxa. As mentioned
above, our samples were rich Beta- and
Gammaproteobacteria, although we also
detected Alpha-proteobacteria, which
were absent in the works by Kim et al.
[25] and Lee et al. [26]. Reciprocally, we
did not detect Firmicutes or Deinococci
with our 16S rRNA analysis, while both
taxa were found by those two previous
reports. Concerning the dishwasher
samples, a previous report by Savage

et al. [27] characterized, among other
household surfaces, the bacteria present
in the dishwasher rinse reservoir.
According to that previous report,
bacterial population in the dishwasher
consists of Proteobacteria, Firmicutes,
Cyanobacteria and Actinobacteria,
which corresponds to the taxonomic
profile we found in the dishwasher
filter. Nevertheless, Euryarcheota and
Bacteroidetes that were found in the
rinse reservoir [27] were not detected in
the filter in the present work.

FIGURE 27: Scanning electron micrographs from the sauna (A) and the dishwasher (B)
samples; taxonomic diversity estimated by 16S amplicon sequencing of sauna (C) and
dishwasher (D). The sauna (C) sample was especially rich in Proteobacteria; whereas
the dishwasher filter (D) also contained high amounts of Firmicutes, Cyanobacteria and
Actinobacteria.
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Culturing strains and lypolitic
activity screening
Bacterial colonies randomly selected
among those with a strong growth on
LB and R2A plates were restreaked to
yield a collection of strains, and lipase
production was screened after growth
for five days in tributyrin-containing
media, as described in materials and
methods. Lipase production of all the
strains is shown in Fig 28A. Most of
the strains (72 and 79 % of the sauna
and dishwasher strains, respectively)
displayed some level of lipolytic activity.
In general, sauna strains were able
to produce lipases within a broader
range of temperature, including, in two
cases, values as high as 46 ◦C and as
low as 4 ◦C. At least in these cases,
though, lipases are not only produced,
but are fully functional at extreme
temperatures as deduced by this assay.
In contrast, strains from the dishwasher
displayed lipolytic activity within a
smaller range of temperatures, in most
cases only around 37 ◦C within the tested
range. Interestingly, lipolytic activity,
as deduced by haloes diameter, was
maximum at 46 ◦C in several sauna
strains, although no strains produced
detectable lipolysis at 55 ◦C.
On the basis of this first screening for
lypolitic activities, five strains were
selected for further assays. Those
included the strains with the broadest
temperature activity range: S22 and
S23, both active in all temperatures
tested except at 55 ◦C; and D3, D11
and D18, the three dishwasher samples
active at both 20 ◦C and 37 ◦C. In order
to assess the potential of these five
strains for biotechnological purposes
(in terms of lipase production under
extreme environmental conditions),
they were taxonomically identified and
subjected to a stress test under a range
of temperatures and pH conditions,
performed in minimum media with
and without 4 % added salt. Lipase
activity was tested under different
temperatures, NaCl and pH conditions,
and results are shown in Fig 28B. Again,

sauna samples exhibited a broad range
of thermal stability, with medium to
large halos at pH values mildly acid to
moderately alkaline (6.5–9.5) and even
in the presence of 4 % NaCl (pH 8 and
9.5). Interestingly, very alkaline (11.5)
conditions, combined with high salt
contents correlated with an increased
thermal range of lipase production and
activity for both S22 and S23, which
increased from 20 ◦C up to 46 ◦C. In
general, though, salt addition yielded
smaller haloes at any temperature
compared to standard media.
Regarding the strains we isolated from
the dishwasher filter, assays performed
with minimum media (without salt)
adjusted to a wide range of pH values
and incubated at different temperatures
revealed the alkaliphility of their
lipolytic abilities, both in terms of
thermal broad range at alkaline pH
values, and intensity of the activity
as deduced by haloes sizes (Fig 28B).
Addition of NaCl to the media resulted
in smaller haloes and, at least for pH
values of 8–9.5, in a narrower thermal
activity range. In the three dishwasher
strains, the combination of 4 % added
NaCl and high (11.5) pH resulted in an
altered thermal range of activity. At least
in one case (D11) addition of 4 % NaCl
partially restored the lack of activity
observed with no added salt and at a
pH of 11.5.
Sequencing of a 16S rRNA gene fragment
allowed identification of all five isolates
as Bacillus sp. Further sequencing of
the TU elongation factor (tufGP primers)
and the group-specific 16S rRNA region
(BK-1 primers) revealed D11 strain as
Bacillus megaterium (with 99 and 100
% identity, respectively); and S22/S23
strains as Bacillus pumilus (with 100 and
99 % identity in the case of tufGP and
BK-1 primers, respectively). D3 was
not completely identified, and remains
as Bacillus sp., possibly B. subtilis, B.
amyloliquefaciens, B. methylotrophicus or
B. velenznesis. D18 was identified as B.
cereus/B. thuringiensis.
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FIGURE 28: Heatmaps of lipolytic activity. (A) Isolates from the sauna
and from the dishwasher contained mainly strains with lipolytic
activity. Strains from the sauna exposed lipolytic activity within a
broader range of temperature. Sauna samples with the widest range
of temperature were S22 and S23. In the dishwasher most samples
showed lipolytic activity at 37 ◦C and only sample D3, D11 and
D18 had lipolytic activity at two tested temperatures. (B) Heatmap
of lipolytic activity of selected strains from sauna (S22, S23) and
dishwasher (D3, D11, D18) under different pH (6.5, 8, 9.5, 11.5) and
temperature conditions (4, 20, 37, 46 and 55 ◦C) in minimal medium

or minimal medium with 4 % NaCl.
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Robustness of the selected
isolates in varying pH and salt
conditions
In order to characterize the robustness
of lypolitic activity of the five selected
strains under alkaline and/or high
salinity conditions, the strains were
tested on combined pH and salt contents
conditions, at 37 ◦C. Lypolitic activity
results are shown in Fig 29.
In general, all strains displayed a very
robust lipase activity under different
salt and pH conditions when grown
at 37 ◦C, as deduced by the relatively
flat 3D profile (Fig 29), although halo
diameters generally decreased towards
extreme salt values (0 % and 4 % NaCl).
Specifically, D11 and D18 (Fig 29D and
29E, respectively) were the most robust
lipase producers, followed by S22 and
S23 (Fig 29A and 29B, respectively).
In contrast, D3 (Fig 29C) was the
least robust strain, with variations in
activity depending on pH conditions
and an even higher salt-dependent
variation: lipolytic activity ranged from
undetectable in very alkaline conditions
to very large (2.45 cm) haloes at pH 6.5
with 1 % NaCl.
Aside from the robustness observed,
the five selected strains displayed clear
optimum peaks at pH 6.5 with 2 % NaCl
for S22 and S23; and with 1 % NaCl
for D3, D11 and D18. D3 displayed the
highest lypolitic activity under optimum
conditions, with halo diameters of up to
2.45 cm, followed by S22 and S23, both
with diameters of up to 1.35 and 1.40
cm, respectively. Strains D11 and D18
displayed the lowest lipolytic activity,
with maximum halos of 0.76 and 1.17,
respectively.
Bacillus sp. have been previously
reported to produce thermostable lipases
[28, 29, 30, 31]. Regarding the Bacillus
species that we have isolated and
identified in the present work, they
are known to produce thermoresistant
lipases, some of them stable at very low
or very high pH values. For example,
thermostable lipases can be found in

B. megaterium (a monoacyl-glycerol
lipase and a carboxylesterase, Uniprot
accession number: A0A0H4RCB5 and
G2RXU5). Furthermore, a thermostable
extracellular lipase has been described
for this species, which is capable of
retaining 100 % of its activity at 50
◦C, and becomes stimulated in the
presence of acetone, DMSO, isopropanol
and several reducing agents [32]. On
the other hand, there are several
thermostable lipases known for the
B. cereus group (Uniprot accession
number: A0A0B5NXJ9; A0A090YL00;
A0A0A0WM49) and for the B. subtilis
group [33, 34]. Bacillus pumilus is
well-known for its thermostable lipases,
as many reports describe lipase fully or
partially functional at high temperatures
[35, 36, 37, 38, 39], including a lipase that
is able to resist temperatures up to 100 ◦C
[36]. Even lipases that are functional at
both high temperatures and high or low
pH values have been described [37, 38].
Finally, B. pumilus, has been identified
as the most efficient lypolitic enzymes
producer out of 65 strains analysed in
a previous report [39]. In fact, in our
experiments, isolates S22 and S23 were
among the three strains with the highest
lypolitic activity, and both of these were
identified as B. pumilus.
In summary, we have identified from
domestic environments several Bacillus
spp. which are strong producers of
robust lypolitic enzymes, and this is
in concordance with the literature on
strains of this genus isolated from
other environments. It has to be
highlighted that, in our assays, the
lipases corresponding to the isolated
strains showed high activity at wide
ranges of pH (6.5–11.5), temperature (4
◦C–46 ◦C) and salt (up to 4 % NaCl), and
that all measurements were performed
in-situ within their host organisms.
Therefore, not only the bacteria are
able to produce lipases under these
conditions, but also these lipases are
perfectly functional. Further tests of
the lipase extracts will shed light on the
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robustness of the lipolytic activity itself,
without the limitations caused by the

bacterial production.

FIGURE 29: Surface graphs of lypolitic activities of the five selected strains (S22, S23, D3, D11
and D18) under different pH (6.5, 8, 9.5 and 11.5) and NaCl (0, 1, 2, 3 and 4 %) conditions.
Diameter of the lipolysis haloes (cm) is represented in the Y axis, whereas salt and pH
conditions are represented in the X and Z axis, respectively. Halo sizes are in grey to dark
grey as indicated at the right side of each graph.
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Our results suggest that the isolated
strains may be used as robust chassis
for lipase production, and these lipases
may be used in the industry as robust
bio-detergents. As described in the
works mentioned above, especially B.
pumilus seems to be of interest, since it
shows a very strong lipolytic activity and
since it adapts, according to our data,
most efficiently to different conditions
of pH, salt and temperature. This is
especially interesting, since we found no
previous description of Bacillus lipases,
which work efficient in wide range of
pH, salt and temperature at the same
time. The present work shows for
the first time the potential of domestic
environments as a source of Bacillus
strains with potential biotechnological
applications.

Conclusions
The present work is the first screening
of extreme indoor environments
specifically aiming at the identification
of biotechnological relevant bacterial
strains able to produce robust enzymes,
in our case, robust lipases. Our
results reveal that such domestic
environments are promising sources for
the identification of robust enzymatic
activities, as we have managed to isolate
five strains with stable lipolytic activity
under a wide range of temperature, salt
and pH conditions. These metabolic
capabilities can be especially useful as
components of robust bio-detergents.
Furthermore, this work might be
the first step of a new view on the
human-associated indoor microbiome,
focused on ecological aspects and on
biotechnological applications.
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General Results and Discussion

Microbial markers to evaluate
anaerobic process performance

Methanogenic archaea are key players
in anaerobic methane production [1],
and they have been taxonomically well
characterized before [2]. However,
they represent only a fraction of
the microbial species that appear
in anaerobic digestion processes.
Usually, between 1–20 % of the
species involved are methanogenic
archaea and the remaining organisms
are mainly bacteria, especially from
the phyla Bacteroidetes, Firmicutes,
Proteobacteria, Chloroflexi and
Spirochaeta [3]. Dynamic relations

between those phyla are still obscure and
it remains unclear under which specific
conditions certain phyla are dominating
digestion processes. To gain a deeper
understanding of the dynamic microbial
behaviour in digester plants, one of the
most comprehensive characterizations
of microbial communities of mesophilic
biogas-producing facilities was
performed during this thesis.
Three kinds of industrial sludges with
very different chemical parameters were
compared based on 16S-rRNA amplicon
high-throughput sequencing, namely
sewage sludge, leachate and highly
viscous sludge from continuous stirred
tanks reactors (CSTRs).

FIGURE 30: Comparison of methanogenic microbiomes at mesophilic temperatures: Typical
microbial groups of sewage sludge, leachate from leach-bed processes and highly viscid
codigester sludge are shown for archaea (A) and bacteria (B). The shown scheme was
concluded from figure 7 and 8 (Publication 1).

As described in publication 1, each
of the three sludge types exhibited
a characteristic microbial profile.
A high amount of Methanosarcina,
Methanoculleus and Spirochaeta was
characteristic for leachate, sewage

was particularly rich in Methanosaeta,
Spirochaeta and Chloroflexi. In
comparison to sewage sludge and
leachate, the viscous CSTR-sludge
was especially rich in Firmicutes and
Methanoculleus. The observed three
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key-microbiomes are shown in figure 30.
In the future, the performed profiling
could help to develop effective screening
assays for different kinds of digesters.

Archaeal markers: The microbial
profiling of industrial digesters and
digestion experiments from publication
1 and 2 yielded much information about
microbial groups that might serve as
hypothetic markers of anaerobic process
performance (Fig. 31 and Fig. 32).
It was observed that Methanosarcina

and Methanoculleus are methanogenic
species that can especially be found
in co-fermenters with high loading
rates. Methanosarcina was particularly
enriched in the leachate from leach-bed
systems. By contrast, the high amount
of Methanoculleus in highly viscous
co-digester sludge might indicate that
Methanoculleus growths preferred in
biofilms, which is in concordance with
previous studies [4, 5].

FIGURE 31: Hypothetic methanogenic markers of anaerobic digestion conditions: The
abundance of methanogenic key groups might indicate several process conditions, such
as chemical contamination, environmental instability, starvation and high concentrations
of chemical oxygen demand (COD) or volatile fatty acids (VFAs). The shown scheme
was concluded comparing chemical parameters and 16S-rRNA gene amplicon profiles from
publication 1 and 2.

Unlike the co-digester sludge
from industrial biogas plants, sewage
sludge from water treatment plants
was particularly rich in the genus
Methanosaeta. Similar results were

described in a previous study [3]. This
indicates that the growth of Methanosaeta
is accelerated by low concentrations of
chemical oxygen demand (COD) and
volatile fatty acids (VFAs).
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Moreover, it was observed in publication
2 that Methanosaeta, Methanomicrobium
and Methanosarcina were highly sensitive
to environmental changes, unlike
Methanoculleus. Therefore, reduced
levels of the first three genera might
indicate microbial process instabilities
due to, for example, oxidative stress,
environmental changes or changes in
temperature. It was further observed
that the only sampled codigester that
received coferments from Biodiesel
production (Publication 1) contained
high levels of Methanomethylovorans,
which might therefore function as an
indicator of chemical contaminations,
which might in turn indicate process
instability in industrial digesters.
Therefore, using taxonomic profiling
to analyze different reactor conditions
might allow a more effective regulation
of anaerobic digestion processes and
to optimize many digester plants. For
example, the finding of Methanosarcina
in co-digester plants might indicate
starvation and the potential for a higher
loading rate. On the other hand, an
increased abundance of the species
Methanoculleus and/or Methanosarcina
might indicate a successful adaption
to a higher loading rate. A sudden
decrease of Methansarcina and/or
Methanomicrobium might indicate that
the change of environmental conditions
was too sharp and that the loading
rate should not be further increased.
Moreover, a sudden drop of the
abundance of Methanosarcina and/or
Methanomicrobium might indicate the
occurrence of a toxic compound, e.g. due
to the application of a new substrate or
a change of environmental conditions
(such as a lowered temperature caused
by seasonal changes). In summary,
the screening of dynamic changes
of Methanosarcina, Methanoculleus,
Methanosaeta, Methanomicrobium and
Methanomethylovorans might help to
optimize their growth conditions, which
in turn might maximize the organic load
limit.

Bacterial markers: Besides archaeal
taxa, bacterial key-groups were
compared (Publications 1, 2 and 5).
Leachate from codigesters contained
high amounts of Bacteroidetes,
Firmicutes and Spirochaetes. The
fact that Spirochaetes are present in
sewage sludge, but not in highly viscous
codigesters, indicates that they might
be a marker of low viscosity, which
improves the mobility of involved
microorganisms. In contrast to the
leachate and the highly viscid codigester
sludge, the sewage sludge was
especially rich in the phylum Chloroflexi.
Therefore, the presence of Chloroflexi
might be regarded as an indicator of
low concentrations of VFAs and COD.
Similar observations where made for
Actinobacteria. It was observed that the
amount of Actinobacteria increases in the
digestate from highly viscid co-digester
sludge (Publication 1, figure 7). In
a second experiment, in which viscid
codigester sludge was incubated for
several weeks with a reduced biomass
input compared to the original biogas
plant, an increase in Actinobacteria
was observed (Publication 2, figure 11).
Therefore, as discussed for Methanosaeta
before, the presence of Actinobacteria
and/or Chloroflexi might be a good
proxy for starvation, which in turn might
indicate the potential for higher laoding
rates.
It can be further hypothesized that
increasing amounts of Firmicutes and
Bacteroidetes (as well as the taxa
Methanoculleus and Methanosarcina that
were described in the previous section)
might indicate an overload in biomass
in water treatment plants. As shown
in figure 30, sewage plants are adapted
to acetoclastic methanogens. The
occurrence of hydrogenotrophic archaea,
or eubacterial groups, which are adapted
to high concentrations of COD and
VFAs, might indicate that the acetoclastic
methanogens are not able to process the
loading rate. Therefore, the loading rate
should be lowered.
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FIGURE 32: Hypothetic bacterial markers of anaerobic digestion conditions: The abundance
of bacterial key groups might indicate several process conditions, such as chemical
contamination, environmental instability, starvation and high concentration of COD or
VFAs. The shown scheme was concluded comparing chemical parameters and 16S-rRNA
gene amplicon profiles from publication 1 and 2.

Paving the crossroad of
bio-refinery

Besides new microbial surveillance
strategies, there are other ways to
optimize anaerobic digester plants.
As described in the introduction,
anaerobic digestion is linked to many
other industrial fields of biorefinery.
Therefore, anaerobic digestion might
also be understood as “crossroad of
biorefinery”. And for paving the
crossroad of biorefinery, acidifying
pretreatment stages could have a
key-role. Microbe-driven acidification as
a pre-treatment stage for biogas plants is
a promising technology, as it allows the
production of several organic acids [7],
hydrogen [8] and carbon dioxide (e.g. for
the growth of algae) [9]. Furthermore, it
facilitates energy production on demand,
as acidified (pre-degraded) biomass
can be retained in the acidification
stage and rapidly transformed into

methane when energy is needed. One
of the key aims of this thesis was to
highlight acidification stages as a future
crossroad for integrated biorefinery.
To this end, acidification experiments
were performed, providing insights into
the multi-functionality and connectivity
of multiple waste streams, and into
microbiome stability. Finally, new
microbial strains that can potentially
play a role in the optimization of
biorefinery processes were isolated
from acidification and other artificial
environments.

To highlight multi-functionality
of acidification stages, a microbial
thermoelectric cell (MTC) was developed
and patented (WO002014049181A1).
Although the results are merely
preliminary, the MTC could theoretically
be combined with a biological
pre-treatment step for anaerobic
digestion. The MTC allows
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for substrate degradation and for
the production of electricity from
exothermic microorganisms. During the
experiments with the MTC, yeast was
used as an exothermic microorganism,
which also allows the production of
ethanol.
Another new technological approach
tested during this thesis was the
combination of heat-shock treatments
and microbe-driven acidification.
Heat-shocks had very little influence
on the microbiomes tested, which
allowed the combined use of
heat-shock treatments and biological
acidification for reducing methanogenic
contaminations and improving substrate
degradation. We observed no improved
degradation efficiency after heat-shock
treatments compared to the control;
however, positive effects in terms of
biogas productivity were reported for
a mild thermal treatment of algae by
another research group [10]. Therefore,
further experiments should be carried
out, to investigate the full potential of
combining heat-shock and acidification
processes. Different substrates should
be compared to determine substrates
that show improved degradability due
to this new treatment. Moreover,
higher temperatures could be tested
to investigate to which temperatures
acidifying microbiomes show a high
thermoresistance. The application of
heat-shocks with other stressors, such
as for example ultrasound could be
investigated. This has previously been
reported on anaerobic digester sludge,
showing increased biogas production
rates up to 42 % [11].
Besides the presented technological
approaches, there are several other
scientific works that demonstrate the
possibility for technological upgrades
of biological pre-treatment stages.
For example, it has recently been
shown that the application of electrical
current can stimulate the hydrolytic
phase of anaerobic digestion [12]. In
another work, it was demonstrated

that magnetite nanoparticles improve
the anaerobic degradation of the
toxic compound p-chloronitrobenzenes
(p-ClNB), presumably by promoting
the intracellular electron transfer
by acting as electron conduits [13].
Searching for similar technologies as
the presented MTC, it was further
found that researchers have been able
to combine microbial fuel cells (MFCs)
with two-stage wastewater treatment
[14], which might increase the energy
efficiency during the treatment.
Altogether, the possibility for combining
anaerobic pre-treatment stages with
MTCs, MFCs, heat-shocks, electron
conduits and electrodes for microbial
stimulation demonstrates a high
potential for the technological
improvement of anaerobic digestion
systems.

To demonstrate the potential to
treat multiple waste streams within
the acidification stage, the anaerobic
treatment of grass biomass was analyzed
and is shown in publication 2 and
3. Additionally, the acidification of
chicken dung (CM) was investigated in
publication 4. Chicken dung and grass
biomass are challenging substrates, as
grass biomass has a high content of
lignocellulolytic fibres and CM results
in toxic concentrations of ammonia. But
yet, both substrates are economically
attractive, as they are available in large
quantities, as discussed in publication
two and four.
In seeking alternative treatment methods
to facilitate the digestion of grass
biomass, we applied (publication 5) a
pre-treatment of grass biomass in an
acidifying leach-bed process, producing
up to 250 mg of volatile fatty acids
per g of chemical oxygen demand. As
grass biomass contains large amounts of
fibres, it is difficult to successfully pump
and mix the resulting fibre-rich digester
sludge. Additionally, it is energetically
not attractive to circulate large amounts
of fibres in a digester plant, since
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they are partly not degradable (Olaf
Luschnig, Personal communication,
Bio H2 Umwelt GmbH, Germany).
Therefore, liquefying the grass biomass
before transferring it into the methane
stage can make the digestion process
more energy-efficient. A very interesting
approach was recently published by the
university of Kassel (Germany) [15].
A screw press was used to treat grass
biomass. Separated solids can be used
as solid fuels and liquids can be used
for subsequent anaerobic digestion. Like
this, even non degradable solids can be
used to produce energy, and fibres are
not disturbing the digestion process.
Besides our presented results with
grass biomass, we have shown that
with optimal input concentrations
(between 10 and 20 g of volatile
solids per litre) successful liquefaction
of chicken dung can be achieved
too. Producing high-strength liquor
from chicken manure might improve
conditions for the removal of nitrogen
and particles, especially sand. However,
at optimal CM-input concentrations, the
high ammonia stabilizes the pH at a
value (6.8 - 7.8), where methanation
becomes possible. As demonstrated in
publication 5, heat-shock experiments
with grass biomass yielded a reduction
in methanogenic contaminations.
Therefore, application of heat-shocks
on CM-acidification might be a
promising means of overcoming the
methanogenic contaminations in chicken
dung. Because of that, microbe-driven
acidification and application of
heat-shocks might, in combination,
allow successful liquefaction of chicken
dung with no or very little loss of COD
due to methanogenic contamination.

Another possibility to overcome
methanogenic contaminations might
be an increased CM-concentration.
Higher CM concentrations cause higher
concentrations of ammonia, which in
turn inhibits methanogenesis. However,
higher levels of ammonia affect
acidifying microorganisms negatively
too (Publication 4). Therefore, the
concentration of solubilised COD
and VFAs would decrease as well.
However, after collecting the produced
high-strength liquor, the amount of
nitrogen in the remaining solids is
strongly reduced. Remaining solids
with lowered nitrogen concentrations
could be returned and mixed with new
substrate fractions in subsequent batch
cycles in order to increase the efficiency
of COD solubilisation. The proposed
digestion strategy is illustrated in figure
33.

Robustness of methanogenic
and acidifying microbiomes

The manipulation of acidifying
microbiomes is an important challenge
for the production of high-value
metabolites. As described in the
introduction, it is known that many
economically attractive metabolites are
produced during acidification, such
as multiple organic acids, alcohols
or hydrogen. However, except for
bioaugmentation with selected microbial
species, no designs of complex and
anaerobic microbiomes producing a
certain spectrum of metabolites within
anaerobic digestion systems have been
reported to date.

The importance of engineered
microbiomes for industrial applications
has been acknowledged in previous
reports, as for example in the work
from Sheth et al. (2016), where the

authors proposed the development of a
toolbox allowing the in-situ engineering
of complex microbiomes [16]. Moreover,
the use of drugs, antibiotics, probiotics,
signal molecules, genetic engineering or
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FIGURE 33: Hypothetical industrial flowchart for anaerobic digestion of high concentrated
chicken manure: Very high concentrations of chicken manure (higher then 40 gVS/L) might
prevent methanogenesis but would also impair acidification. Therefore, it is suggested to
recirculate the solids after ammonia has been removed in the liquid phase (Interpretation
based on publication 4). Additionally, regular heat-shocks might be applied to supress
methanogenesis more efficiently (As described in publication 5).

controlling environmental conditions for
fine-tuning microbiomes has extensively
been discussed, especially from the
point of medical applications [17,
18]. Even though the previously
discussed methods allow to change
microbiome compositions, we are still
not able to design artificial microbiomes
from scratch that are as complex
as anaerobic microbiomes or soil
microbiomes. The complexity of
actively shaping acidifying microbiomes
was demonstrated by the heat-shock
experiments in publication 5. Even
with regular heat-shocks at 70◦C,
the underlying microbiome was only
minimally affected. On the other
hand, constant high temperatures of

55◦C caused a permanent microbial
shift towards Firmicutes (Publication
2). Interestingly, after changing the
thermophilic conditions to mesophilic
ones, the biocenosis quickly changed to a
Bacteroidetes rich profile that is typically
observed under mesophilic conditions.
Much further research remains to be
done in order to fully understand the
complexity of anaerobic interaction
within complex microbiomes and to
be able to engineer a microbiome in a
predictable way.

Bioprospecting: Even though the
engineering of complex anaerobic
microbiomes is a still far away scientific
goal, the inoculation of certain strains
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of interest might be already in reach.
Much prior research has explored
bioaugmentation approaches, and its
prospective application in the industry
(e.g. for improved degradation efficiency
[19, 20], recovery from toxicant exposure
[21], or reduction of odour [22]). To
broaden the variety of potential strains
that can be used for bioaugmentation
while also helping to understand the
complex underlying microbiomes of
anaerobic digesters, researchers are
searching for new strains with potential
biotechnological applications in relation
to anaerobic digestion and biorefienry
[23, 24, 25]. Searching for new
biotechnologically applicable strains,
we isolated multiple Bacillus strains
with high lipolytic activity (publication
8). Bioaugmentation experiments with
lipolytic bacteria would be especially
informative, as so far there is only
one publication that is focussed on
bioaugmentation with lipolytic bacteria
[20]. In this context, it has to be
highlighted that the before mentioned
Bacillus strains were isolated under
harsh conditions from a dishwasher
and a thermophilic Sauna (publication
8) and showed high thermoresistance.
Therefore, they might be applied under
harsh conditions in the industry, for
example as microbial bio-detergents.
These strains could also be used in
anaerobic digesters. Even though
those strains are not originating from
anaerobic digesters, it is worth trying
to perform bioaugmentation with strains
from other habitats. In fact, in a recently
published work, microorganisms from
compost were successfully inoculated
into an anaerobic digester, where they
improved cellulolytic activity [26.]
Up do date, many thermophilic or
thermoresistant lipases have been
isolated and characterized already.
However, the presented Bacillus strains

in this thesis are the first ones from an
indoor environment, which indicates
that also indoor environments should
be screened in the future for potential
industrially applicable strains.
Besides the mentioned lipolytic strains,
we isolated and sequenced two new
Firmicutes species with a potential role
in the degradation of plant biomass
(publication 6 and 7). The need
of new species, which are involved
in degradation of plant biomass has
been stressed in a recent work, where
more then 100 new cellulolytic strains
were isolated [27]. Coming back to
leach-bed acidification of grass biomass
(publication 5), where 25 % of the input
COD was liquefied, cellulolytic strains
might help to increase the percentage
of solubilized COD. In this context
the newly isolated strains might be
promising, as they were already isolated
from fermentation of grass biomass.
However, a field test, or a biochemical
characterization of the strains still
remains to be done.

Robustness of methanogenic
microbiomes: The key for economically
attractive bioaugmentation procedures is
a stable integration of a microorganism
of choice into microbiomes of anaerobic
digesters. As anaerobic digestion
systems contain highly dynamic
microbiomes with high microbial
redundancy [28, 29], this raises the
question of how effectively outsider
strains of interest can be integrated
in microbiomes of such complexity.
To analyze the manipulability of the
three key microbiomes described in
publication 1, acidic high-strength liquor
was produced from grass biomass
and fed in multiple methane stages,
containing sewage sludge and highly
viscous co-digester sludge (publication
2).
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FIGURE 34: Stability of microbiomes from methane-producing digesters against
bioaugmentation with inoculum from acidification stages (According to taxonomic profiles
from 16S-rRNA gene amplicon sequencing shown in figure 9, 11,12 publication 2):
High-strength liquor from the separated acidification stage causes no obvious changes in the
anaerobic digester microbiome. This indicates high microbial stability. Dominating phyla
with abundance higher then 5 % of classified sequences are shown.

The dynamic behaviour of the
microbiomes was analysed based on
16S-rRNA high-throughput amplicon

sequencing. All methane stages were
equally fed with high-strength liquor in
order to test whether the biocenosis from
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the high-strength liquor had any effect
on the composition of microbiomes from
methanogenic digesters.
Interestingly, the microbial composition
of each sludge type remained similar
to the original samples before feeding.
The inoculum from the acidification
stage contained mainly Bacteroidetes,
but no increase of this phylum was
observed in the used sewage sludge, or
in the highly viscous co-digester sludge
(Fig. 2). This means that both methane
producing microbiomes were very
robust against external contaminations.
This resistance against microbiota from
biological input-material is a useful
fact, as it reduces the chance that
methanogenic microbiomes can be
affected negatively by microbiota from
any substrate of choice. However, this
highlights potential difficulties with
bioaugmentation approaches. Therefore,
the successful manipulation of anaerobic
microbiomes in the near future will
require new inoculation strategies.
One way to overcome this robustness
might be to inoculate strains belonging
to a phylum, which is already dominant
under the given conditions. To give
here an example: As described in
publication 5, a low pH seems to give
a growth advantage to Proteobacteria.
Combining a low pH in the acidification
with the inoculation of promising strains
from the phylum Proteobacteria, might
improve the chance for a successful
bioaugmentation.

Robustness of acidifying
microbiomes: It is known that
in anaerobic methane stages the
biocenosis at mesophilic conditions
is different from that at thermophilic
conditions [30, 31, 32]. In fact,
several articles describe methanogenic
archaea, which are specialized on
thermophilic temperatures [33, 34, 35].
It has also been demonstrated that
Firmicutes grow particularly well under
thermophilic conditions, while under
mesophilic conditions Bacteroidetes can

be found in high numbers too [36].
However, the mentioned studies are
restricted to one-stage digestion; this
thesis, by contrast, sought to analyse
the differences between mesophilic
and thermophilic microbiomes from
separated acidification stages. To
this end, grass biomass was acidified
in parallel under mesophilic and
thermophilic conditions and compared
based on both, 16S-rRNA gene amplicon
sequencing and proteomics. As reported
for methane stages from co-fermenters,
the acidifying microbiome was
dominated by Firmicutes and
Bacteroidetes. Under thermophilic
conditions, high numbers of heat-shock
proteins were found, the proteome’s
behaviour was considerably less
dynamic than it was under mesophilic
conditions, and Cyanobacteria were
detected, which is likely explained by the
presence of chloroplasts from incomplete
degradation of plant biomass. However,
as described in other publications,
usually very long adaptation phases
are required for thermophilic one-stage
digesters [37, 38], from which one
can conclude that the acidifying
microbiomes need long adaption phases
too. Additionally, the application of
an inoculum from other thermophilic
digesters might facilitate the adaptation.
However, although acidifying
microbiomes struggled to adapt
to thermophilic conditions, in
subsequent experiments in which
repeated heat-shocks of 55◦C and
70◦C were applied, a high level of
thermoresistance was observed (Fig.
3). Only methanogenic archaea
were shown to be highly sensitive to
heat-shocks during these experiments.
Therefore, the application of heat-shocks
can be an effective method for
separating acidifying microbiomes from
methanogenic ones. As mentioned
before, acidification stages with high
concentrations of ammonia tend to
produce small amounts of methane
due to methanogenic contaminations.
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Therefore, the application of heat-shocks
could help to prevent COD losses due
to methanogenic contamination. In this
context, it is very interesting that a strong
community shift from Proteobacteria to
Bacteroidetes/Firmicutes was observed
when the pH was changed from 6.0 to 6.8
(publication 5). When using an inoculum

and applying long incubation periods,
a sudden pH-drop might destabilize
the evolved community tremendously.
Therefore, it is recommend to keep
the pH even during acidification well
balanced at a constant pH-value.

FIGURE 35: Microbial robustness of high-strength liquor against mild heat-shocks: Regular
heat-shocks of 55◦C or 70◦C had minimal effect on the microbial composition, except for
methanogenic archaea, which could be effectively supressed. Transient shifts were only
observed for few microbial groups, which are indicated in the shown scheme.
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Conclusions

Anaerobic digestion is attracting
particular attention because of its
potential to produce electrical energy,
heat, fertilizer and many industrially
relevant metabolites at the same time.
Due to this multifunctionality and the
wide variety of possible input substrates,
anaerobic digestion could be regarded
as a crossroad for biorefinery and
waste management. However, to pave
this crossroad, some work remains to
be done. Due to the complexity of
microbiomes from anaerobic digesters,
it is extremely difficult to manipulate
and design anaerobic microbiomes
performing specified functions, such as
butyric acid production or hydrogen
production. In order to shed light on
this important area of research, this
thesis has elucidated the robustness and
dynamic behaviour of anaerobic digester
plants and highlighted the importance
of separated acidification stages for
future developments in biorefinery. The
main findings and conclusions can be
summarized as follows:

• Three key- microbiomes can be
defined, which are specific for
sewage sludge, highly viscous
co-digester sludge and leachate
from leach-bed systems. All three
microbiomes are strongly related
to their underlying environmental
parameters (COD, TOC, total
nitrogen contents, conductivity,
TVFA, TS, VS, pH, and volume of
biogas).

• The methanogens Methanosarcina,
Methanoculleus, Methanomethylovorans,
Methanosaeta and Methanomicrobium
might be promising proxies for

digestion conditions in respect
to the content of COD/VFAs,
crucial environmental changes and
content of toxic substances.

• The dynamic behaviour of the
phyla Chloroflexi, Actinobacteria,
Firmicutes, Bacteroidetes,
Proteobacteria, Spirochaeta and
Cyanobacteria (Chlorplasts) might
be indicators in respect to the
content of COD/VFAs or crucial
environmental changes too.

• Acidification stages seem to
be dominated by Bacteroidetes,
Proteobacteria and Firmicutes and
Firmicutes are especially enriched
under thermophilic conditions.

• Separated acidification allows
treatment of multiple wastes,
which are difficult to digest in
one-stage digesters, as for example
grass biomass or chicken dung.

• We developed the first Microbial
Thermoelectric Cell (MTC), which
is compatible with anaerobic
digestion and suitable for use
in the pre-treatment stage. The
MTC allows for the simultaneous
production of ethanol and electric
energy. Remnants might be used in
a subsequent methane-producing
stage.

• In seeking further new pre-treatment
methods, we investigated the
possibility of combining thermal
pre-treatment with microbe-driven
acidification. Surprisingly, we
observed only minimal impacts
of heat-shocks in the microbial
composition. Therefore, it might be
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possible in the future to combine
heat-shocks with acidification
processes to improve biomass
pre-treatment.

• We identified a number of strains
with the potential to improve
biorefinery processes. We isolated
several Bacillus strains from a
sauna and a dishwasher, which are
notable for their lipolytic activity.

This also shows for the first
time that the indoor environment
might yield industrial applicable
microorganisms. In addition,
we isolated two new Firmicutes
strains from the acidification of
grass biomass, which indicates that
anaerobic environments have the
potential to yield new strains with
potential roles in the biorefinery
industry.
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Resumen en castellano

Resumen global de la
temática

Microbiomas industriales

Desde los inicios de la industrialización
en el siglo dieciocho, el ser humano ha
ido abriéndose paso a paso una ventana
a la microbiología industrial. Las
nuevas industrias emergentes han dado
lugar a nuevos nichos microbiológicos,
muchos de ellos caracterizados por
presentar altas temperaturas o estreses
químicos. Se han descubierto
microorganismos capaces de degradar
contaminantes industriales, incluyendo
bifenilo, organoclorina, pesticidas,
dioxinas/furanos [1], petróleo [2],
organohaluro [3], y muchos más. La
capacidad de los microorganismos para
crecer en ambientes extremos es de
especial interés para la microbiología
aplicada, ya que estos ambientes
son una fuente prometedora de
enzimas y microorganismos con
potenciales aplicaciones industriales [4].
Algunos ejemplos de estas aplicaciones
incluyen la obtención de una esterasa
termoestable a partir de la bacteria
Thermus themophiles [6], el aislamiento de
una lipasa activa a bajas temperaturas
y tolerante a distintos solventes a
partir de Stenotrophomonas maltophilia
[6] o la obtención de una esterasa
termoalcalofílica a partir de Geobacillus
sp. [7]. Otro hábitat extremo que, debido
a la reciente crisis energética mundial
ha adquirido un gran interés, es el lodo
anaeróbico procedente de tratamientos
de agua o de procesos de co-digestión
anaerobia. La digestión anaerobia (DA)
es un proceso que lleva a la formación de
metano, el cual puede ser quemado para

producir energía. Los procesos de DA
son muy completos y permiten realizar
tratamientos muy variados, aprovechar
innumerables fuentes de desecho y
generar solapamientos y sinergias
complejos con diferentes campos de la
industria y de la biorrefinería (Fig. 36A).
La digestión anaeróbica (DA) ocurre en
cuatro fases: hidrólisis, acidogénesis,
acetogénesis y metanogénesis. Durante
la hidrólisis se produce la degradación
de proteínas, lípidos, hidratos de
carbono y celulosa. Los ácidos grasos,
aminoácidos y azúcares resultantes
son transformados, durante la fase de
acidogénesis, en ácidos grasos volátiles
(AGV) y alcoholes, los cuales finalmente
son degradados a acetato, H2 y CO2
en un proceso llamado acetogénesis.
Por último, los microorganismos
metanógenos hidrogenotróficos y
acetotróficos utilizan el acetato, el H2 y
el CO2 para la formación de metano (Fig.
36C).
Se han llevado a cabo investigaciones
sobre procesos de DA durante más
de un centenar de años, desde los
trabajos iniciales de Söhngen (1906) [10]
o Coolhas (1928) [11]; sin embargo, es
necesario seguir investigando en este
tema para poder comprender mejor los
microbiomas anaerobios. En general, la
diversidad microbiana en los procesos de
DA es especialmente alta a temperaturas
mesofílicas [12] y, de hecho, se descubren
regularmente nuevas especies en lodos
anaeróbicos [13, 14, 15]. Se han descrito
una gran cantidad de especies no
identificadas a través de la secuenciación
de alto rendimiento del gen que codifica
para el ARN ribosómico (ARNr) 16S [16].
La falta de conocimientos sobre muchas
de las especies bacterianas presentes en
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los digestores anaeróbicos complica el
análisis de los microbiomas a niveles
taxonómicos más bajos. Por ello, los
estudios sobre las bacterias implicadas
en procesos de DA se restringen
frecuentemente al análisis a niveles
taxonómicos más altos, como es el caso
de los estudios realizados por Goux et al.
[17] y Lebhuhn et al. [18], en los cuales

se describió una gran abundancia de
Firmicutes y Bacteroidetes. En cambio,
las comunidades de arqueas implicadas
en procesos de DA parecen estar mejor
caracterizadas, ya que las secuencias
pueden ser clasificadas normalmente a
nivel de género o, incluso, de especie
[19].

FIGURE 36: El papel central de la digestión anaerobia en la biorrefinería. La digestión
anaerobia es una tecnología multifuncional que permite el entrecruzamiento de múltiples
campos de la industria (A). La clave de esta multifuncionalidad reside en la presencia de
microbiomas muy diversos y robustos y, por tanto, uno de los objetivos principales de la
presente tesis es obtener una mejor comprensión de los microbiomas anaeróbicos (B). La
digestión anaerobia se divide en cuatro fases (C): (1) La biomasa se hidroliza y se transforma
en moléculas más pequeñas (hidrólisis); (2) Durante la acidogénesis, la biomasa hidrolizada
se convierte en ácidos orgánicos, alcoholes, hidrógeno y dióxido de carbono; (3) Tiene
lugar la acetogénesis, fase en la cual se forman principalmente ácido acético, hidrógeno y
dióxido de carbono; (4) Finalmente, estas sustancias son usadas para la formación de metano
(metanogénesis).
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El conocimiento incompleto sobre las
comunidades bacterianas en procesos de
DA sugiere que existe un gran potencial
para el futuro de la biorrefinería. En
un trabajo reciente, se aislaron más de
100 cepas de bacterias degradadoras
de celulosa de una planta de biogás
[20]. En otro trabajo se aisló, a
partir de digestato, una nueva especie
metanotrófica perteneciente al género
Methylocaldum y con gran potencial en
la producción eficiente de metanol [21].
El lodo procedente de los procesos de
DA también es una fuente prometedora
de bacterias productoras de lipasas y
proteasas. Recientemente, se ha aislado
una nueva esterasa de la familia VII
adaptada al frío a partir de purines [22],
y una nueva cepa de Bacillus subitlis
(IND19) que permite la producción
simultánea de carboximetilcelulosa y
proteasa a partir de excrementos de vaca
[23].
En su conjunto, estos trabajos sugieren
que los lodos anaeróbicos procedentes
de diferentes procesos de DA pueden
contener microbiomas muy diversos
y con un gran potencial industrial
que merece la pena investigar. Esto
concuerda con otros trabajos previos
que han destacado la importancia de la
DA en las aplicaciones biotecnológicas
durante los años noventa [24, 25].

Allanando el camino de la
encrucijada de la biorrefinería
integrada

El metano, al ser uno de los principales
productos derivados de procesos de
DA, tiene un papel prometedor en la
biorrefinería. Además de su papel
como fuente de energía, también
puede ser usado para el crecimiento
de metanótrofos, que constituyen
una fuente viable de proteínas que
pueden ser usadas como suplementos
alimenticios. Además, los metanótrofos
son una fuente prometedora de otros
productos, ya que acumulan osmolitos

(por ejemplo ectoína o sacarosa),
fosfolípidos, biopolímeros y enzimas
[26]. Sin embargo, la DA no se restringe
sólo a la producción de metano.
Los efluentes líquidos resultantes de
las plantas de producción de biogás,
debido a su alto contenido en nitrógeno
y fósforo, pueden ser usados como
fertilizantes y facilitan la producción
eficiente de algas [27, 28]. Además,
las fibras obtenidas a partir de la
degradación anaerobia de plantas
pueden usarse para realizar procesos de
sacarificación, llevando a la producción
de azúcares y lignina, productos que a
su vez pueden usarse para la producción
de ácido propiónico, ácido succínico,
dioles, butanol, etanol, fibras de carbono
y biopolímeros. A través de procesos
termoquímicos, la lignina también puede
ser usada para la producción de calor,
electricidad, gas de síntesis y fenólicos.
Y, finalmente, las fibras sólidas pueden
transformarse en bioaceite o biocarbón a
través de procesos de pirólisis [28,29].
La producción de productos biológicos
a través de procesos de DA es
especialmente interesante ya que
permite la valorización de múltiples
fuentes de residuos, como por ejemplo
las microalgas mixtas [30], los lodos
procedentes de industrias de pulpa o
de papel [31] o los residuos municipales
[32]. La fermentación anaerobia de
residuos múltiples también conlleva
la degradación de múltiples agentes
contaminantes, como fenoles [33] o
parafina [34].
La fragmentación de los procesos de DA
en procesos de dos etapas se convierte
en una posibilidad interesante a la hora
de usar la digestión anaerobia para
generar una interconexión sinérgica
entre múltiples procesos de biorrefinería.
Desde los años ochenta, los científicos
han descrito la posibilidad de separar las
fases de hidrólisis y acidogénesis de las
fases de acetogénesis y metanogénesis
[35, 36, 37]. Los niveles bajos de pH y
las altas concentraciones de AGV llevan
a una inhibición de la metanogénesis
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[38]. A su vez, la inhibición de la
metanogénesis lleva a la acumulación de
AGVs interesantes, como por ejemplo
ácido acético, láctico, propiónico o
butírico. Los AGVs son productos
interesantes ya que pueden usarse como
químicos de plataforma en múltiples

reacciones químicas [39], aunque la
extracción de estos ácidos sigue siendo
un gran reto [40]. Y, finalmente, la
inhibición de la metanogénesis permite
además la producción de hidrógeno [41].

FIGURE 37: Estructura de la presente tesis doctoral: Es necesario obtener un conocimiento
más profundo sobre el comportamiento del microbioma en procesos de digestión anaerobia
para conseguir, en el futuro, una interconexión entre los distintos campos de la biorrefinería
industrial donde la digestión anaerobia sea el punto de unión. A partier de esta idea,
la presente tesis se centra en los temas representados en la imagen, y los capítulos
correspondientes se indican en la parte externa del círculo.



123

La gran variedad de posibles
aplicaciones resultantes de la separación
de fases en procesos de DA puede
favorecer la interconexión sinérgica
entre los diferentes campos de la
biorrefinería. Sin embargo, para llegar
a ese objetivo, es necesario adquirir unos
conocimientos más profundos sobre la
diversidad microbiana y la robustez
de los microbiomas anaerobios. Por
tanto, se ha diseñado la presente tesis
doctoral con el fin de arrojar luz sobre el
comportamiento dinámico y robustez de
los microbiomas propios de la digestión
anaerobia. En la figura 37 se muestra la
estructura global de la tesis.

Resultados principales

Marcadores microbianos para la
evaluación del rendimiento de los
procesos anaeróbicos:

Las arqueas metanógenas son los agentes
clave en la producción anaerobia de

metano [42], y se han caracterizado
taxonómicamente en estudios anteriores
[43]. Sin embargo, estos representan
tan solo una fracción de las especies
microbianas que aparecen en los
procesos de DA. Normalmente entre
1-20 % de las especies implicadas
son arqueas metanógenas, y el resto
de organismos son principalmente
bacterias, pertenecientes sobretodo a
los phyla Bacteroidetes, Firmicutes,
Proteobacteria, Chloroflexi y Spirochaeta
[44]. Las relaciones dinámicas entre
estos phyla y las condiciones específicas
bajo las cuales ciertos phyla dominan
el proceso de digestión siguen siendo
aún poco conocidas. En esta tesis se ha
realizado una de las caracterizaciones
más exhaustivas hasta la fecha de las
comunidades microbianas características
de plantas de producción mesofílica
de biogás con el fin de adquirir un
entendimiento más profundo sobre el
comportamiento microbiano dinámico
en las plantas de digestión.

FIGURE 38: Comparación de microbiomas metanógenos a temperaturas mesofílicas: Se
muestran los principales taxones microbianos - arqueas (A) y bacterias (B) - en lodos
residuales, en lixiviado procedente de procesos de lixiviación en lecho fijo y en lodos de
alta viscosidad procedentes de codigestores. El esquema mostrado se ha obtenido a partir
de las figuras 7 y 8 (publicación 1).

Se compararon, a través de
secuenciación de alto rendimiento del
ARNr 16S, tres tipos diferentes de lodos

industriales caracterizados por poseer
parámetros químicos muy distintos:
lodo residual, lixiviado y lodo de alta
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viscosidad procedente de reactores
continuos de tanque agitado (CSTRs).
Tal y como se describe en la publicación
1, cada tipo de lodo exhibió un perfil
microbiano característico. El lixiviado se
caracterizó por poseer altas cantidades
de Methanosarcina, Methanoculleus y
Spirochaeta, mientras que el lodo
residual presentaba gran cantidad de
Methanosaeta, Spirochaeta y Chloroflexi.
En comparación con el lodo residual y
el lixiviado, el lodo de alta viscosidad
de CSTR era rico en Firmicutes y
Methanoculleus. Los tres microbiomas
clave detectados se detallan en la figura
38. En el futuro, estos perfiles pueden
ayudar en el desarrollo de ensayos de
escrutinio eficaces para diferentes tipos
de digestores.

Arqueas marcadoras: La descripción
en las publicaciones 1 y 2 de los perfiles
microbianos de digestores industriales
y de varios experimentos de digestión
ha proporcionado mucha información
sobre grupos microbianos que puede
ser de utilidad a la hora de determinar
marcadores hipotéticos del rendimiento
de procesos anaeróbicos (Fig. 39 y
Fig. 40). En primer lugar, se observó
que Methanosarcina y Methanoculleus
son especies metanógenas encontradas
frecuentemente en fermentadores
con altas velocidades de carga.
Methanosarcina era particularmente
abundante en el lixiviado de los sistemas
de lecho fijo. En cambio, la gran cantidad
de Methanoculleus presente en el lodo de
alta viscosidad podría indicar que este
microorganismo crece preferentemente
en forma de biofilm, en concordancia con
estudios previos [45, 46].
A diferencia del lodo del codigestor
procedente de plantas industriales de
biogás, en el lodo residual procedente
de plantas de tratamiento de aguas era
particularmente abundante el género
Methanosaeta, tal y como se había descrito
en un estudio anterior [44]. Esto sugiere
que los valores bajos de DQO y de AGVs
aceleran el crecimiento de Methanosaeta.

Además, se observó que Methanosaeta,
Methanomicrobium y Methanosarcina eran
muy sensibles a los cambios ambientales,
a diferencia de Methanoculleus. Por
tanto, unos niveles reducidos de los tres
primeros géneros mencionados podría
indicar inestabilidades en el proceso
microbiano debido a, por ejemplo,
estrés oxidativo, cambios ambientales
o cambios en la temperatura. Se
observó además que sólo el codigestor
muestreado que había recibido
cofermentos procedentes de producción
de biodiesel (Publicación 1) contenía
altas cantidades de Methanometilovorans,
lo que podría indicar contaminación
química y, por tanto, podría ser usando
como una indicación de inestabilidades
del proceso de digestión en biodigestores
industriales.
Por tanto, el uso de la caracterización
taxonómica para analizar las distintas
condiciones de los reactores puede
ser de gran utilidad para optimizar
y regular de manera más eficaz los
procesos de DA. Por ejemplo, la
presencia de Methanosarcina en plantas
de codigestión podría indicar inanición
y la posibilidad de incrementar la tasa de
carga. Por otro lado, una alta abundancia
de Methanoculleus y/o Methanosarcina
podria indicar una adaptación exitosa
a un incremento en la tasa de carga. Una
disminución repentina de Methanosarcina
y/o Methanomicrobium podría indicar
cambios demasiado bruscos en las
condiciones ambientales y, por tanto,
la necesidad de detener el incremento
de la tasa de carga. Además, una
caída repentina en la cantidad de
Methanosarcina y/o Methanomicrobium
podría ser indicativo de la presencia
de un compuesto tóxico, por ejemplo
debido al uso de un nuevo sustrato
o a cambios en las condiciones
ambientales (tal como una bajada en
la temperatura causada por cambios
estacionales). En resumen, el estudio
de los cambios dinámicos en la cantidad
de Methanosarcina, Methanoculleus,
Methanosaeta, Methanomicrobium y
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Methanometilovorans puede ayudar en
la optimización de sus condiciones
de crecimiento que, a su vez, puede

servir para maximizar el límite de carga
orgánica.

FIGURE 39: Marcadores metanógenos hipotéticos de condiciones de digestión anaeróbica:
la abundancia de ciertos grupos metanógenos clave podría indicar diversas condiciones del
proceso, tales como contaminación química, inestabilidad ambiental, inanición alta demanda
química de oxígeno (DQO) o ácidos grasos volátiles (AGV). El esquema mostrado se ha
obtenido al comparar los parámetros químicos y los perfiles taxonómicos del ARNr 16S de
las publicaciones 1 y 2.

Marcadores bacterianos: Además de
los taxones pertenecientes a arqueas, se
compararon grupos bacterianos claves
(Publicaciones 1, 2 y 5). El lixiviado
procedente de codigestores presentaba
una alta cantidad de Bacteroidetes,
Firmicutes y Spirochaetas. El hecho de
que las Spirochaetas estén presentes en
lodos residuales pero no en lodos de alta
viscosidad indica que podrían usarse
como marcadores de baja viscosidad,
una parámetro que mejora la movilidad
de los microorganismos implicados en
el proceso. A diferencia del lixiviado y
del lodo de alta viscosidad, en el lodo
residual era particularmente abundante

el phylum Chloroflexi. Por tanto, la
presencia de Chloroflexi podría indicar
bajas concentraciones de AGVs y DQO.
Se realizaron observaciones similares en
el caso de Actinobacterias: había una
mayor cantidad de Actinobacteria en
el digestato de lodo de alta viscosidad
(Publicación 1, figura 7). En un segundo
experimento, el lodo de alta viscosidad
se incubó durante varias semanas con
una aportación de biomasa reducida en
comparación con la planta de biogás
original, y se observó un aumento
en la cantidad de Actinobacterias
(Publicación 2, figura 11). Por tanto,
tal y como se ha comentado en el caso
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previo de Methanosaeta, la presencia de
Actinobacteria y/o Chloroflexi podría
ser un buen indicador en casos de
inanición y esto, a su vez, podría ser
una advertencia de la necesidad de
incrementar la tasa de carga.
Se podría hipotetizar que un incremento
en las cantidades de Fimicutes
y Bacteroidetes (así como de los
taxones Methanoculleus y Methanosarcina
descritos en la sección anterior) podría
indicar una sobrecarga en las plantas

de tratamiento de aguas. Tal y como se
muestra en la figura 38, los metanógenos
acetoclásticos están adaptados a las
plantas depuradoras. La presencia
de arqueas hidrogenotróficas o de
grupos de eubacterias adaptadas a
altas concentraciones de AGVs y DQP
podría indicar que los metanógenos
acetoclásticos no son capaces de procesar
la tasa de carga y, por tanto, esta tasa
debería reducirse.

FIGURE 40: Marcadores hipotéticos de las condiciones de digestión anaerobia. La
abundancia de grupos bacterianos claves podría indicar ciertas condiciones del proceso, tales
como contaminación química, inestabilidad ambiental, inanición o altas concentraciones de
DQP o AGVs. El esquema mostrado se ha obtenido a partir de la comparación de los
parámetros químicos con los perfiles taxonómicos resultantes de la secuenciación del ARNr
16S descritos en las publicaciones 1 y 2.

Pavimentando la encrucijada de la
biorrefinería integrada

Aparte de las nuevas estrategias
microbianas de vigilancia hay otras
formas de optimizar las plantas de
DA. Tal y como se describe en la
introducción, la digestión anaerobia esta
asociada a muchos otros sectores de la
industria de la biorrefinería. Por tanto, la
digestión anaerobia podría entenderse

también como una “encrucijada de
los procesos biorrefinería”. Y para
allanar el camino de dicha encrucijada
de la biorrefinería podría tener un
papel muy importante la aplicación
de una etapa de pretratamiento
acidificante. La acidificación impulsada
por microorganismos como una etapa
previa al tratamiento en las plantas de
biogás es una tecnología prometedora
ya que permite la producción de varios
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ácidos orgánicos [47], hidrógeno [48] y
dióxido de carbono (por ejemplo para
el crecimiento de algas) [49]. Además,
facilita la producción de energía bajo
demanda, ya que la biomasa acidificada
(y pre-degradada) puede ser retenida en
la fase de acidificación y rápidamente
transformada a metano cuando haya
necesidad de producir energía. Uno
de los objetivos principales de esta
tesis es subrayar la importancia de las
fases de acidificación como punto de
encrucijada en la biorrefinería integrada.
Para ello, se han realizado experimentos
de acidificación que han permitido
conocer la multifuncionalidad y la
conectividad de múltiples flujos de
residuos, así como la estabilidad de los
microbiomas. Finalmente, se han aislado
a partir de fases de acidificación y de
otros ambientes artificiales nuevas cepas
microbianas que podrían desempeñar un
papel en la optimización de los procesos
de biorrefinería.

Para destacar la multifuncionalidad
de las fases de acidificación se ha
desarrollado y patentado
(WO002014049181A1) una célula
microbiana termoeléctrica (CMT).
Aunque estos resultados son preliminares,
la CMT podría ser combinada
teóricamente con una fase biológica
de pretratamiento en procesos de DA.
La CMT permite la degradación de
sustratos y la producción de electricidad
mediante el uso microorganismos
exotérmicos. En los experimentos con
la CMT se usaron levaduras como
microorganismos exotérmicos, llevando
a la producción de etanol.
Otra aproximación tecnológica puesta
a prueba durante la presenta tesis ha
sido la combinación de tratamientos
de choque térmico y de acidificación
generada por microorganismos. Los
microbiomas analizados apenas
mostraron cambios al ser tratados con
choques térmicos, lo que permitió el uso
de tratamientos combinados de choque
térmico y acidificación biológica con el

fin de intentar reducir contaminaciones
metanógenas y de mejorar la
degradación de sustratos. La eficiencia
de degradación no se vio mejorada tras
la aplicación de los tratamientos de
choque térmico en comparación con los
controles; sin embargo, se han descrito
previamente efectos positivos derivados
de tratamientos térmicos suaves en algas
[50]. Por tanto, se han de llevar a cabo
más experimentos con el fin de investigar
todas las posibles combinaciones de
tratamientos de choque térmico con
procesos de acidificación. Por ejemplo,
se deberían probar diferentes sustratos
para seleccionar aquellos con los
cuales este tratamiento resulte en
una mayor eficiencia de degradación.
Además, se deberían realizar pruebas
con temperaturas más elevadas para
describir con detalle las características
de termoresistencia de los microbiomas
acidificantes. El uso de choques térmicos
junto con otros factores estrés, como
por ejemplo ultrasonidos, también
debería estudiarse. Este último caso ha
sido descrito previamente en lodos de
digestores anaerobios, resultando en un
incremento en la tasa de producción de
biogás de hasta un 42 % [51].
Además de las aproximaciones
tecnológicas aquí descritas, hay
otros trabajos científicos que han
estudiado la posibilidad de insertar
mejoras tecnológicas en las fases de
pretratamientos biológicos. Por ejemplo,
se ha descrito recientemente que
la aplicación de corrientes eléctricas
puede llevar a la estimulación de
la fase hidrolítica de los procesos
de digestión anaerobia [52]. En
otro estudio se demostró que las
nanopartículas de magnetito pueden
mejorar la digestión anaerobia del
compuesto tóxico p-cloronitrobenzeno
(p-ClNB), supuestamente actuando
como conductos eléctricos y fomentando
la transferencia intracelular de electrones
[53]. En el caso de tecnologías similares
a la CMT, se han realizado trabajos
previos en los cuales se han combinado
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pilas de combustible microbianas con
tratamientos de aguas residuales de dos
fases, resultando en un incremento en
el rendimiento energético durante el
tratamiento [54].
En conjunto, la posibilidad de combinar
las fases de pretratamiento anaerobio con
CMTs, pilas de combustible microbianas,
choques térmicos, conductos eléctricos
y electrodos para la estimulación
microbiana demuestra el gran potencial
de las mejoras tecnológicas en los
sistemas de digestión anaerobia.

Para demostrar el potencial de
tratar múltiples cadenas de residuos
con una fase de acidificación, se
describe el tratamiento anaerobio de
biomasa herbácea en las publicaciones
2 y 3. Además, en la publicación
4 se ha investigado el proceso de
acidificación en estiércol de gallina
(EG). El EG y la biomasa herbácea
son sustratos complejos, ya que
la biomasa herbácea presenta altas
cantidades de fibras lignocelulolíticas
y el EG genera concentraciones tóxicas
de amoniaco. Aun así, ambos
sustratos son económicamente atractivos
debido a su disponibilidad en grandes
cantidades, tal y como se comenta en las
publicaciones 2 y 4.
Al buscar un método de tratamiento
alternativo para facilitar la digestión de
biomasa herbácea, se aplicó (publicación
5) un pretratamiento de biomasa
herbácea en un proceso de lixiviación
acidificante en lecho fijo, llevando a
la producción de hasta 250 mg de
AGVs por gramo de DQO. Debido a las
grandes cantidades de fibras presentes
en la biomasa herbácea, resulta difícil
bombear y mezclar correctamente el
lodo rico en fibras resultante. Además,
la circulación de grandes cantidades
de fibras en una planta de digestión
no resulta atractivo desde un punto de
vista económico ya que las fibras no son
totalmente degradables (Olaf Luschnig,
Comunicación personal, Bio H2 Umwelt
GmbH, Alemania). Por tanto, la

licuefacción de la biomasa herbácea
antes de su transferencia a la etapa de
formación de metano podría resultar
en una mayor eficiencia energética
del proceso de digestión. Un grupo
de investigadores de la Universidad
de Kassel (Alemania) ha publicado
recientemente una aproximación muy
interesante basada en el uso de una
prensa de tornillo para el tratamiento
de biomasa herbácea [55]. Los sólidos
separados pueden ser usados como
combustibles sólidos, y los líquidos
pueden ser usados para procesos de
digestión anaerobia. Así, hasta los
sólidos no degradables pueden ser
usados para la producción de energía y
las fibras no alteran el proceso digestivo.
Además de los resultados obtenidos con
biomasa herbácea, se ha demostrado
que es posible conseguir una
licuefacción exitosa de EG usando unas
concentraciones óptimas de entrada
de entre 10 y 20 gramos de sólidos
volátiles por litro. La producción de
hidrolizado a partir de EG puede mejorar
las condiciones para la eliminación de
nitrógeno y partículas, especialmente
arena. Sin embargo, a concentraciones
óptimas de EG, los valores elevados de
amoniaco estabilizan el pH a valores
de 6.8-7.8, a los cuales es posible la
metanización. Tal y como se describe
en la publicación 5, los experimentos de
choque térmico con biomasa herbácea
resultaron en una reducción en las
contaminaciones metanógenas. Por
tanto, la aplicación de choques térmicos
en los procesos de acidificación de
EG puede ser una forma prometedora
de acabar con las contaminaciones
metanógenas en EG, y la aplicación
combinada de acidificación microbiana
y de choques térmicos podría llevar a
una licuefacción exitosa de EG con bajos
niveles de pérdida de DQO debido a
contaminación metanógena.
Otra posibilidad a la hora de evitar
contaminaciones metanógenas puede ser
el uso de concentraciones elevadas de
EG, ya que esto lleva a la acumulación
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de elevadas concentraciones de
amoniaco que, a su vez, inhibe la
metanogónesis. Sin embargo, los niveles
altos de amoniaco también afectan
negativamente a los microorganismos
acidificantes (Publicación 4) y, con ello,
podrían bajar las concentraciones de
DQO soluble y VFAs. Sin embargo,
después de recoger el hidrolizado
producido, se observó una gran
reducción en la cantidad de nitrógeno

presente los sólidos restantes. Estos
sólidos restantes con concentraciones
bajas de nitrógeno se pueden devolver
y mezclar con nuevas fracciones de
sustrato en ciclos posteriores con el
fin de incrementar la eficiencia de
solubilización de DQO. La estrategia de
digestión propuesta se puede observar
en la figura 41.

FIGURE 41: Diagrama de flujo de un proceso hipotético de digestión anaerobia de
elevadas concentraciones de estiércol de gallina (EG): altas concentraciones de EG (mayores
que 40 gVS/L) podrían prevenir metanogénesis pero también impedirían el proceso de
acidificación. Por tanto, se sugiere usar una recirculación de los sólidos después de la
eliminación de amoniaco en la fase líquida (interpretación basada en la publicación 4).
Adicionalmente, se pueden aplicar choques térmicos de manera regular para inhibir la
metanogénesis de manera más eficiente (descrito en la publicación 5).
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Robustez de los microbiomas
metanógenos y acidificantes

La manipulación de microbiomas
acidificantes es un desafío importante
a la hora de producir metabolitos
de valor elevado. Tal y como se
describe en la introducción, se sabe
que durante la fase de acidificación
se producen muchos metabolitos
económicamente atractivos, tales como
múltiples ácidos orgánicos, alcoholes o
hidrógeno. Sin embargo, a excepción
de procesos de bioaumentación con
especies microbianas seleccionadas,
hasta la fecha no se ha descrito ningún
diseño de microbioma complejo y
anaerobio que produzca un espectro
concreto de metabolitos dentro del
proceso de digestión anaerobia.
La importancia del diseño de
microbiomas para aplicaciones
industriales se ha descrito en estudios
previos, como por ejemplo en el trabajo
de Sheth et al. (2016), en el cual los
autores proponen desarrollar una caja
de herramientas que permita el diseño
in situ de microbiomas complejos [56].
Además, el uso de fármacos, antibióticos,
probióticos, moléculas señal, ingeniería
genética o condiciones ambientales
controladas para la mejora de los
microbiomas se ha descrito de manera
extensiva, sobretodo desde el punto de
vista de las aplicaciones médicas [57,
58]. Aunque los métodos ya descritos
permiten alterar la composición de los
microbiomas, aún no somos capaces
de diseñar desde cero microbiomas
artificiales que sean tan complejos
como los microbiomas anaerobios o los
microbiomas de suelo. La complejidad
asociada a la alteración de microbiomas
anaeróbicos se ha demostrado con
los experimentos de choque térmico
descritos en la publicación 5: incluso
con choques térmicos regulares a 70◦C el
microbioma basal apenas se vio afectado.
En cambio, la aplicación de temperaturas
altas y contantes de 55◦C llevan a un
cambio permanente en el microbioma,

que pasa a ser rico en Firmicutes
(Publicación 2). Curiosamente, el
cambio de condiciones termofílicas a
mesofílicas generó rápidamente un
cambio en la comunidad bacteriana
hacia un perfil rico en Bacteroidetes,
que es típico de condiciones mesofílicas.
Es necesario seguir investigando con
el fin de entender la complejidad de
las interacciones entre los ambientes
anaerobios y sus microbiomas, y
para conseguir finalmente diseñar un
microbioma que se pueda comportar de
forma predecible.

Bioprospección: Aunque el diseño
de microbiomas anaerobios complejos
sigue siendo un objetivo lejano, en
la actualidad es posible realizar una
inoculación con ciertas cepas de interés.
Varias investigaciones previas han
explorado aproximaciones basadas en
la bioaumentación y han estudiado
su potencialidad en aplicaciones
industriales (por ejemplo para mejorar la
eficiencia de degradación [59, 60], para la
recuperación después de una exposición
tóxica [61], o para la reducción de olores
[62]). En la actualidad se están realizado
búsquedas de nuevas cepas con
potenciales aplicaciones biotecnológicas
en procesos de digestión anaerobia y
biorrefinería. Con esto se pretende
ampliar la variedad de cepas disponibles
para procesos de bioaumentación a la
vez que se amplia la comprensión de
los microbiomas complejos propios de
procesos de digestión anaerobia [63,
64, 65]. En la presente tesis se ha
realizado una búsqueda de nuevas cepas
con aplicación biotecnológica y se han
aislado varias cepas de Bacillus sp. con
actividad lipolítica (publicación 8). Sería
de gran interés realizar experimentos de
bioaumentación con bacterias lipolíticas
ya que, hasta la fecha, solo hay una
publicación centrada en el uso de este
tipo de bacterias para procesos de
bioaumentación [60]. En este contexto,
cabe destacar que las cepas de Bacillus
previamente mencionadas se han aislado
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de ambientes expuestos a condiciones
extremas (una sauna termofílica y
un lavaplatos) y demostraron ser
muy termoresistentes (publicación
8). Por tanto, podrían ser utilizados
en aplicaciones industriales bajo
condiciones extremas, por ejemplo
como biodetergentes microbianos o
en procesos de digestión anaerobia.
Aunque las cepas no proceden
originalmente de digestores anaeróbicos,
podría ser útil realizar pruebas
de bioaumentación con cepas de
distintos ambientes. De hecho, en
un trabajo reciente se inocularon con
éxito microorganismos procedente de
compost en un digestor anaeróbico, lo
que resultó en un incremento en la
actividad celulolítica [66].
Hasta la fecha se han aislado
y caracterizado muchas lipasas
termofílicas o termoresistentes. Sin
embargo, las cepas de Bacillus descritas
en la presente tesis son las primeras
aisladas a partir de un ambiente
de interior, lo que indica que estos
ambientes interiores también pueden
ser fuentes importantes de nuevas cepas
microbianas con potenciales aplicaciones
industriales.
Además de las cepas lipolíticas
mencionadas, en la presente tesis se
ha aislado y secuenciado dos nuevas
especies de Firmicutes con un posible
papel en la degradación de biomasa
vegetal (publicación 6 y 7). En un
trabajo reciente se destacó la necesidad
de encontrar nuevas especies implicadas
en la degradación de biomasa vegetal
y se aislaron más de 100 cepas nuevas
con actividad celulolítica [20]. Volviendo
a la acidificación de lixiviado en lecho
fijo de biomasa vegetal (publicación 5),
donde el 25 % de la entrada de DQO
estaba licuada, la inserción de cepas
celulolíticas podría ayudar a incrementar
el porcentaje de DQO solubilizado. En
este contexto, las nuevas cepas aisladas
podrían ser prometedora, ya que se
aislaron a partir de una fermentación
de biomasa vegetal. Sin embargo, para
poder usarlo en aplicaciones industriales

futuras sería necesario realizar pruebas
y caracterizaciones bioquímicas de las
cepas.

Robustez de microbiomas
metanógenos: la clave para realizar
procesos de bioaumentación
económicamente atractivos está en
una integración estable de un
microorganismo de interés en un
microbioma propio de un digestor
anaerobio. Debido a que los sistemas
de digestión anaerobia contienen
microbiomas muy dinámicos y con
una gran redundancia microbiana [67,
68], esto plantea la cuestión de cómo
de efectiva puede ser la integración
de cepas de interés en microbiomas
de tal complejidad. Para analizar la
manipulabilidad de los tres microbiomas
clave descritos en la publicación 1, se
produjo hidrolizado a partir de biomasa
herbácea y ésta se usó para alimentar
múltiples fases de metanogénesis
de digestores que contenían lodos
residuales y lodos de alta viscosidad
de codigestores (publicación 2). El
comportamiento dinámico de los
microbiomas se analizó a través de
secuenciación de alto rendimiento de
amplicones del gen ARNr 16S. Todas las
fases de metanogénesis se alimentaron
por igual con hidrolizado con el fin de
observar si la comunidad microbiana
del hidrolizado tenía algún efecto en la
composición del microbioma propio de
los digestores metanogénicos.
Resulta interesante que la composición
microbiana de cada tipo de lodo
permanecieron similar a la composición
de las muestras originales antes de la
alimentación con hidrolizado. El inoculo
de la fase de acidificación contenía
principalmente Bacteroidetes, pero no
se observó un incremento en este taxón
ni el lodo residual ni en el lodo de
alta viscosidad (Fig. 42). Esto sugiere
que ambos microbiomas productores
de metano son muy robustos frente a
contaminaciones externas.
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FIGURE 42: Estabilidad de los microbiomas de digestores productores de metano contra
procesos de bioaumentación usando inóculos de fases de acidificación (según los perfiles
taxonómicos del gen ARNr 16S mostrados en las figuras 9, 11 y 12; publicación 2). La
inoculación de hidrolizado procedente de la fase de acidificación separada no causa ningún
cambio visible en el microbioma del digestor anaeróbico, indicando una gran estabilidad
microbiana. Se muestran los phyla dominantes con una abundancia mayor del 5 % de las
secuencias clasificadas.
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La resistencia frente a la microbiota
del material biológico de entrada es una
información de gran utilidad, ya que
implica una reducción de la posibilidad
de que los microbiomas metanogénicos
puedan verse afectados negativamente
por la microbiota de cualquier sustrato
de interés. Sin embargo, esto
resalta las dificultades asociadas a las
aproximaciones de bioaumentación.
Por tanto, la manipulación exitosa de
microbiomas anaerobios en el futuro
cercano requerirá nuevas estrategias de
inoculación.
Un posible forma de superar esta
excesiva robustez podría ser a través de
la inoculación de cepas pertenecientes
a algún phylum que ya sea dominante
en ese ambiente concreto y en esas
condiciones determinadas. Por
ejemplo, en la publicación 5 se
describe que valores bajos de pH
aparentemente favorecen el crecimiento
de Proteobacteria. Se podría realizar
un proceso de bioaumentación, por
tanto, combinando un valor bajo de
pH en la fase de acidificación con la
inoculación de cepas prometedoras de
phylum Proteobacteria.

Robustez de microbiomas
acidificantes: Se conoce que, en la
fase de metanogénesis, el microbioma
en condiciones mesofílicas es diferente
a aquel presente en condiciones
termofílicas [69, 70, 71]. De hecho, hay
varios artículos en el que se describen
arqueas metanógenas especializadas
a temperaturas termofílicas [72, 73,
74]. También se ha demostrado que
los miembros del pylum Firmicutes
crecen particularmente bien en
condiciones termofílicas, mientras que
en condiciones mesofílicas también hay
una gran abundancia de Bacteroidetes
[75]. Sin embargo, los estudios
mencionados se restringen a procesos
digestivos de una sola fase; esta tesis, en
cambio, pretende analizar las diferencias
entre los microbiomas mesofílicos y
termofílicos de fases separadas de

acidificación. Para ello, se acidificó
biomasa herbácea paralelamente en
condiciones mesofílicas y termofílicas,
y se realizó una comparación mediante
secuenciación del ARNr 16S y
mediante análisis proteómico. Tal y
como se describió para las fases de
metanogénesis en cofermentadores,
el microbioma acidificante era
rico sobretodo en Firmicutes y
Bacteroidetes. Bajo condiciones
termofílicas se encontraron muchas
proteínas de choque térmico, el
comportamiento del proteoma era
menos dinámico en comparación con las
condiciones mesofílicas, y se detectaron
Cyanobacterias, que puede ser debido
a la presencia de cloroplastos a causa
de una degradación incompleta de
la biomasa vegetal. Sin embargo,
se ha descrito en otras publicaciones
que se necesitan fases de adaptación
largos en digestores termofílicos de
una fase [76, 77], sugiriendo que
los microbiomas acidificantes también
podrían necesitar largas fases de
adaptación. Adicionalmente, la
aplicación de un inóculo procedete de
otro digestor termofílico podría facilitar
la adaptación.
Sin embargo, aunque los microbiomas
acidificantes tuvieron dificultades a la
hora de adaptare a las condiciones
termofílicas, en experimentos posteriores
en los cuales se aplicaron choques
térmicos de 55 y 70 ◦C de manera
repetida se observaron niveles elevados
de termoresistencia (Fig. 43).
Tan solo las arqueas metanógenas
demostraron ser altamente sensibles
a los choques térmicos durante
estos experimentos. Por tanto, la
aplicación de choques térmicos puede
ser un método eficaz para separar
los microbiomas acidificantes de los
microbiomas metanógenos. Tal y
como se ha mencionado antes, las
fases de acidificación con elevadas
concentraciones de amoniaco tienden
a producir bajas cantidades de metano
por contaminaciones metanógenas. Por
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tanto, la aplicación de choques térmicos
puede ayudar a prevenir pérdidas
de DQO debido a contaminaciones
metanógenas. En este contexto,
es muy interesante destacar que se
observó un desplazamiento en la
comunidad bacteriana de Proteobacteria
a Bacteroidetes/Firmicutes al producir
un cambio en el pH de 6.0 a 6.8
(publicación 5). En caso de utilizar
un inóculo y de aplicar tiempos de
incubación largos, una caída repentina
en el pH puede desestabilizar la

comunidad. Por tanto se recomienda
mantener el pH a valores constantes,
incluso durante la fase de acidificación.
En conjunto, los resultados presentados
demuestran que los microbiomas
acidificantes son resistentes frente
a contaminaciones microbianas /
procesos de bioaumentación y frente
a la aplicación de choques térmicos
cortos, pero a la vez son sensibles a
cambios duraderos en los parámetros
ambientales.

FIGURE 43: Robustez microbiana de hidrolizado ante choques térmicos suaves: el
tratamiento con choques tórmicos regulares de 55 o 70 ◦C apenas afectó a la composición
microbiana a excepción de las arqueas metanogénicas, cuyo crecimiento fue inhibido con
éxito. Se observaron cambios transitorios en algunos grupos microbianos que se indican en
el esquema.
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Además, en la figura 26 (publicación
2) se puede observar que, incluso en
los reactores acidificantes sin choques
térmicos y con valores constantes
de pH, ocurren cambios en la
comunidad microbiana. Sin embargo,
es necesario seguir investigando para
poder manipular de manera exitosa
los microbiomas acidificantes con el
fin de mejorar la interconectividad
de la fase de acidificación con los
diferentes campos de la industria. En
el futuro, los mecanismos de interés en
este contexto podrían ser mecanismos
regulatorios para reducir la robustez
de los microbiomas implicados antes
de los procesos de bioaumentación,
y mecanismos de estabilización que
reduzcan los cambios microbianos
después del proceso de bioaumentación.
Además, se deberían desarrollar
métodos que confieran una ventaja en
términos de crecimiento a las cepas de
interés inoculados frente a los otros
microorganismos implicados. Una
posibilidad de alcanzar este objetivo
podría ser la co-inoculación de cepas
microbianas que estabilicen a la cepa de
interés inoculada.

Conclusiones

La digestión anaerobia está atrayendo
la atención debido a su potencial
para producir energía eléctrica, calor,
fertilizantes, y a la vez muchos otros
metabolitos con relevancia industrial.
Debido a esta multifuncionalidad
y a la gran variedad de posibles
sustratos de entrada, la digestión
anaerobia podría considerarse como
una encrucijada para los procesos de
biorrefinería y tratamiento de residuos.
Sin embargo, es necesario realizar
muchos más estudios para poder
pavimentar esta encrucijada. Debido
a la complejidad de los microbiomas
de los digestores anaerobios, es
extremadamente difícil manipular y

diseñar microbiomas anaerobios para
realizar funciones específicas, como
podría ser la producción de ácido
butírico o hidrógeno. Para contribuir
al conocimiento sobre esta área de
investigación tan importante, esta tesis
ha descrito la robustez y el dinamismo
de las plantas de digestión anaerobia y
ha remarcado la importancia de separar
las fases de acidificación para el futuro
desarrollo de la biorrefinería. Los
resultados y las conclusiones principales
se resumen a continuación:

• Se pueden definir tres microbiomas
clave que son específicos para
lodos residuales, lodos de alta
viscosidad de codigestores y
sistemas de lixiviado de lecho
fijo. Los tres microbiomas
están muy relacionados con sus
parámetros ambientales (DQO,
carbón orgánico total, contenido
total en nitrógeno, conductividad,
ácidos grasos volátiles totales,
sólidos totales, sólidos volátiles,
pH, y volumen de biogás).

• Los metanógenos Methanosarcina,
Methanoculleus, Methanometilovorans,
Methanosaeta y Methanomicrobium
pueden ser potenciales marcadores
para indicar las condiciones de
digestión en cuanto a contenido de
DQO/AGVs, cambios ambientales
y presencia de sustancias tóxicas.

• El comportamiento dinámico de
los phyla Cloroflexi, Actinobacteria,
Firmicutes, Bacteroidetes,
Proteobacteria, Spirochaeta y
Cianobacteria (Cloroplastos)
también podrían usarse como
indicadores de las condiciones de
digestión.

• Las fases de acidificación parecen
estar dominadas por Bacteroidetes,
Proteobacteria y Firmicutes,
siendo estos últimos especialmente
abundantes bajo condiciones
termofílicas.
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• La separación de la fase
de acidificación permite el
tratamiento de múltiples residuos
que son difíciles de digerir en
digestores de una fase, como es el
caso de la biomasa herbácea o del
estiércol de gallina.

• Se ha desarrollado la primera
Célula Microbiana Termoeléctrica
(CMT), que es compatible
con la digestión anaerobia y
adecuado para su uso en fases
de pretratamiento. La CMT
permite producir simultáneamente
etanol y energía eléctrica, y los
restos podrían usarse en una
fase posterior de producción de
metano.

• Para buscar nuevos métodos
de pretratamiento se ha
investigado la posibilidad de
combinar pretratamientos térmicos
con procesos de acidificación
microbiana. Sorprendentemente,
los choques térmicos demostraron
tener un mínimo impacto en
la composición microbiana.
Por tanto, en un futuro se
podrían combinar tratamientos
con choque térmico con procesos
de acidificación para mejorar el
pretratamiento de biomasa.

• Se han identificado una serie
de cepas con gran potencial
para mejorar los procesos de
biorrefinería. Se han aislado
varias cepas de Bacillus de
una sauna y de un lavaplatos,
y estas cepas se caracterizan
por tener una gran actividad
lipolítica, lo que sugiere que los
ambientes de interior también
pueden ser fuentes importantes de
microorganismos con aplicaciones
industriales. Además, se ha aislado
dos nuevas cepas a partir de la
acidificación de biomasa herbácea,
lo que indica que los ambientes
anaerobios tienen la potencialidad

de proporcionar nuevas cepas con
importantes papeles en la industria
de la biorrefinería.
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Abstract

Background: Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are
methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key
parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany,
including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week
interval, and three biological replicates were taken in each case.

Results: A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly
correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in
high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and
sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina
and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters,
respectively.

Conclusions: This is one of the most comprehensive characterizations of the microbial communities of
biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of
semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the
bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile.
Digesters operated with solid feedstock, and high biogas production correlated with abundance of plant
degraders (Firmicutes) and biofilm-forming methanogens (Methanoculleus spp.). By contrast, low biogas-producing
sewage sludge treatment digesters correlated with high titers of volatile fatty acid-adapted Methanosaeta spp.

Keywords: Biogas, Eubacteria, Archaea, Methanogens, Anaerobic digesters

Background

Knowledge of the effects of greenhouse gases on the cli-

mate dates back to the 1970s, with CO2 representing a

key greenhouse gas [1]. Today, there is general assent on

the urgent need to reduce greenhouse gases in order to

mitigate climate change [2, 3]. One of the main strat-

egies to meet this goal requires shifting from fossil to

renewable energy sources. In fact, it is expected that by

2020, 20 % of total energy consumption in Europe will

be covered by renewable energies [4].

Biomass is a very promising alternative energy source,

in particular as a source of biogas. Indeed, almost 70 %

of all renewable energies in Europe came from biomass

management in 2010 [5], with Germany being a leader

in the biomass-based bioeconomy. During recent years,

as supported by the EEG (German law for renewable

energies) [6], the number of biogas plants and biogas

production has increased dramatically in Germany. For

example, in 2012, 7200 biogas plants in Germany pro-

vided enough energy to power 5.3 million households

[7]. Despite this success, the underlying microbial bio-

cenoses of biogas-producing facilities are not yet fully

understood, and the whole methanogenesis process is

often referred to as a “black box” even in some of the

recent literature [7–9]. In the last decades, substantial
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efforts have been undertaken to shed light on the micro-

bial communities involved in the anaerobic digestion

process, as deduced by 16S-rDNA sequencing [10–13],

mcrA gene-based analysis [14, 15], or metagenomic ap-

proaches [16, 17].

Different microbial profiles have been reported for bio-

gas production plants fed with different types of biomass.

For example, the microbial diversity in a completely

stirred digester fed with fodder beet silage as a monosub-

strate is reported to be particularly rich in Clostridiales,

Deltaproteobacteria, Bacilli, and Bacteroidetes [18]. Other

studies describe the effect of biowaste sludge maturation

on the microbial profile within a thermophilic digester,

which contained mainly Clostridia [19]; while the micro-

bial communities in lab-scale reactors fed with casein,

starch, and cream are particularly abundant in Firmicutes

and Bacteroidetes [20]. Given these reports, we could say

that microbial profiles of anaerobic digesters are, to some

extent, specific for each biogas reactor/biomass type. This

raises the question whether a common core of microbial

key players does exist for anaerobic digesters in general. It

is indeed possible to find common microbial actors when

higher taxonomic levels are compared. For instance, it is

known how methanogenic archaea (genus Methanosaeta)

dominates environments with low acetate, while increas-

ing amounts of inhibiting substances (like volatile fatty

acids or hydrogen sulfide) foster Methanosarcina spp.

growth [21]. Under thermophilic conditions, Methanosar-

cina spp. proves more frequent than Methanosaeta spp.

Regarding eubacteria, the phyla Firmicutes and Bacteroi-

detes play an important role in anaerobic digestion [13,

22] and within Firmicutes, the class Clostridia is the most

abundant group [18, 23]. Regarding bacteria, and similarly

to methanogens stressed above, eubacterial profiles of an-

aerobic co-digesters and from the anaerobic stage of sew-

age plants are typically different [13].

In the present work, we have performed a holistic

analysis of seven different digesters at two distinct time

points (2 × 9 reactors, sampled within 1 week) from

Thuringia, Germany (Fig. 1; Table 1). The digesters cor-

responded to three different configurations: completely

mixed and continuously stirred single-stage tank reac-

tors for sewage sludge digestion (SS); leach-bed digesters

operating discontinuously in batches (LB); and a two-

stage system consisting of a vertical plug flow reactor

followed by an upright continuously stirred tank digester

and a final digestate storage tank (hereafter referred to

as CD, standing for co-digester). With the exception of

the digestate storage tank, which was operated at room

temperature (RT), all facilities were operated at meso-

philic temperature. The analysis included chemical

characterization and biogas measurement of the samples

and the determination of the archaea and eubacteria taxo-

nomic profiles by 16S amplicons sequencing on three

replicates of each reactor/time. Our results reveal that mi-

crobial profiles were strongly dependent on reactor type

and moderately dependent on the facility/particular reactor

sampled. We also found that profiles were stable in time

and exhibited a low degree of variation within the three

replicates analyzed. Globally, the 54 subsamples sequenced

are the most comprehensive microbial characterization of

biogas communities performed to date.

Results and discussion
Chemical parameters

Eleven parameters were measured for each of the reactor

samples: COD (chemical oxygen demand), TOC (total

organic carbon), total nitrogen content (N), electrical

conductivity, TVFA (total volatile fatty acids), TS (total

solids), VS (volatile solids), pH, biogas yield, and concen-

trations of CH4 and CO2 (Additional file 1: Table S1).

Biogas yields were obtained from lab-scale batch experi-

ments, whereas all the other parameters originated from

in situ measurements of digester samples. Batch experi-

ments were performed without adding substrates and

obtained biogas yields depended only on the organic

fraction within the sludge samples.

After normalizing the data, successive combinations of

three parameters (permutation) were plotted in a Gnuplot

multiplot (Fig. 2). The resulting data matrix included bio-

gas production but not methane and CO2 concentration,

in order to avoid redundancies. This resulted in three

clearly defined clouds, each corresponding to one of the

different digester facility types (Fig. 2a). SS and CD values

were plotted in two opposed vertices of the plot, with LB

located in an intermediate position. The yield of biogas

produced is shown in Fig. 2b and the highest yields are

plotted as a relatively small cloud (black dots) overlapping

with the extremes of the CD cloud. As a general conclu-

sion, parameter values were higher (corresponding in gen-

eral with high nutrient contents) when biogas production

was highest. In a second statistical approach, this observa-

tion was verified by a principal component analysis

(Additional file 2: Figure S1), where samples coming

from the same type or reactor clustered together and

notably differed from those from other reactor types.

Taxonomic composition of eubacteria

Eubacteria from all samples were identified by high-

throughput sequencing as described in “Material and

methods” section, and phylum-level results are shown in

Fig. 3. There was little variation between replicates,

clearly indicating that differences in taxonomic compos-

ition accounted for the differences found between reac-

tors and time. Similarly, different sampling times

resulted in very small variations in the taxonomic pro-

file, being the taxonomic composition of each sample

very constant after 1 week. Only in one case (LB reactor
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in Saalfeld) that a substantial shift was detected in the

amount of Bacteroidetes and Spirochaetes after 1 week.

The taxonomic composition of the samples correlated

closely with reactor type. Indeed, three different profiles

were observed, each corresponding to a particular facil-

ity type. CD samples were dominated by the phylum

Firmicutes, with nearly 46–60 % of classified sequences

assigned to Firmicutes in the first two stages and less

than 20–32 % in the third stage (remnant storage);

followed by Bacteroidetes, which proved mainly in the

third stage, when it accounted for up to 73 % of the total

identified taxa. The three CD digesters contained low

amounts of Synergistetes, and the remnant storage con-

tained moderated amounts of Actinobacteria, Proteobac-

teria, Spirochaetes, and Tenericutes (Fig. 3a).

The second facility type (LB) displayed a totally differ-

ent microbial composition (Fig. 3b) with comparatively

fewer Firmicutes reads (between 3 and 19 % of total se-

quences). The microbial LB communities were domi-

nated by Spirochaetes (30 and 72 % of the total reads),

along with Bacteroidetes (11 and 47 %). The third phylum,

Thermothogae, reached low to moderate frequencies in LB

facilities in Schmölln and Saalfeld (between 2 and 19 %),

and it was absent in the six replicates of Schlossvippach.

Minor counts of Actinobacteria and Proteobacteria were

also detected. The third profile was associated with the

sewage sludge digesters (Fig. 3c). Although the SS facilities

showed certain similarities compared to the LB facilities,

the overall microbial composition differed from both CD

and LB reactors. In common with the LB samples, SS re-

actors contained high amounts of Bacteroidetes and Spiro-

chaetes (Bacteroidetes between 13 and 51 %, Spirochaetes

between 27 and 50 %). However, unlike the CD and LB

facilities, SS reactors were particularly rich in Chloroflexi

(9 and 39 %) and Proteobacteria (4–9 %). Besides the

aforementioned taxa, small amounts of Actinobacteria,

Synergistetes, and Thermotogae were also observed.

Minor variations or sub-profiles of the three main

biomass-associated profiles were detected. For example,

two of the three Jena CD reactors were very similar,

while the third one displayed higher eubacteria diversity.

This might be due to the fact that the last stage (rem-

nants) was kept at RT instead of mesophile temperatures.

Although LB and SS samples corresponded to two main

profiles, one location of each type (LB-Schlossvippach and

SS-Rudolstadt) exhibited a characteristic presence/absence

of one particular taxon: the former typically lacked Ther-

motogae, which was well represented in the other two LB

plants; while SS Rudolstadt was particularly rich in Chlor-

oflexi (Fig. 3b, c). The absence of Thermotogae in the LB

reactor from Schlossvippach may be due to the fact that

the solid phase is mainly heated up by the leachate (with-

out extra heating in the solids storage—“garage”), which

can lead to irregularities in temperature. In the Schlossvip-

pach sample, it took more than 1 week to heat up a newly

filled garage (Christoph Bürger and Kevin Lindner per-

sonal communication).

In general, taxonomic eubacteria profiles strongly cor-

related with the biomass type. The differences observed

between CD and SS reactors are in accordance with

previous studies [13] describing an overall difference be-

tween sewage sludge and co-fermentation regarding the

microbial profile. The high amount of Bacteroidetes and

Firmicutes in CD reactors is also consistent with

Fig. 1 Sampling of anaerobic digesters in Thuringia (Germany). Seven different facilities with a total of nine reactors were sampled in Schlossvippach,
Weimar, Jena (two plants, one of them with three reactors), Schmölln, Rudolstadt, and Saalfeld. Sampling was repeated twice at a 1-week interval, and
three replicates were processed (54 samples in total). CD three-stage plant, SS sewage plants, LB leach-bed reactors, S1 plug flow reactor, S2 continuous
stirred tank reactor, S3 storage tank for digestion remnants
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Table 1 Overview of sampled digester types and input feeding based on descriptive data

Sample Digester type Input materials Plant configuration

LB-Schmölln Leach-bed batch digester Silage, straw, cow manure Batch process (11 batches)

Digester volume: 11 × 800 m3

Leachate tank: 1000 m3

Batch process duration: 26–29 days

Gas production: 0.7 m3/m3 × day

OLR: 1.3 kg × VS/m3 × day

CD-Jena Two-stage digester (vertical plug
flow reactor/stirred tank)

Silage, farm manure, Livestock
farming waste

Two-stage process

Stage 1 (plug flow): 790 m3

Stage 2 (CSTR): 2000 m3

Stage 3 (final storage tank): 3800 m3

HRT: 87 days

Gas production: 1.2 m3/m3 × day

OLR: 3.0 kg × VS/m3 × day

SS-Jena Completely mixed tank digester Mono-digestion of municipal
sewage sludge

Single stage process (2 digesters)

Digester volume: 2 × 2000 m3

HRT: 21 days

Gas production: 0.6 m3/m3 × day

OLR: 1.8 kg × VS/m3 × day

SS-Weimar Completely mixed tank digester Mono-digestion of municipal
sewage sludge

Single stage process

Digester volume: 3200 m3

HRT: 29 days

Gas production: 0.6 m3/m3 × day

OLR: 0.96 kg × VS/m3 × day

LB-Schlossvippach Leach-bed batch digester Cow manure, straw, feed residues Batch process (8 batches)

Leachate tank: 1000 m3

Digester volume: 8 × 330 m3

Batch process duration: 32–35 days

Gas production: 0.5 m3/m3 × day

OLR: 2.1 kg × VS/m3 × day

SS-Rudolstadt Completely mixed tank digester Co-digestion of municipal and
industrial sewage sludge with
seasonally available co-substrates
(biodiesel waste)

Single-stage process (2 digesters)

Digester volume: 2 × 2000 m3

HRT: 25 days

Gas production: 0.3 m3/m3 × day

OLR: 0.54 kg × VS/m3 × days

LB-Saalfeld Leach-bed batch digester Organic fraction of municipal
solid waste

Batch process (9 batches)

Digester volume: 9 × 826 m3

Leachate tank: 1060 m3

Batch process duration: 33 days

Gas production: 0.7 m3/m3 × day

OLR: 0.9 kg × VS/m3 × day

Gas production is given in cubic meter of produced gas per cubic meter of sludge per day

HRT hydraulic retention time, CSTR continuous stirred-tank reactor, OLR organic loading rate
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previous reports [13, 18, 22, 24]. One reason for the

abundance of Firmicutes could be the high content in

TS derived from plant material (Additional file 1:

Table S1), which probably fosters biofilm formation.

Firmicutes have been described as main degraders of

cellulolytic material [24] and are abundant in biofilms

of water supply systems [25, 26]. LB and SS reactors,

both containing liquid substrates, had high titers of

the very mobile and efficient swimmer Spirochaete,

described as able to swim in high viscous gel-like liq-

uids, such as those found in LB reactors [27]. It has

to be highlighted that the observed microbial profiles

for the LB samples were only those from leachate,

and that the solid fraction of LB systems might be

rich in Firmicutes due to the high percentage of

solids. The abundance of Chloroflexi in SS reactors has

previously been reported. In fact, different Chloroflexi spe-

cies have been found in more than 60 sewage reactors in

different European countries based on FISH experiments

[28] and also in other facilities around the world [29]. The

prevalence of Proteobacteria and Bacteroidetes is in ac-

cordance with the work by Wang et al. [30] on the micro-

bial profile of domestic sewage outfalls.

The different taxonomic profiles we found correlated

to biogas yield. For instance, the phylum Chloroflexi was

detected in sewage plants, where very low biogas yields

were measured. Also, Proteobacteria were only found in

the plants with low biogas yields (digestate storage of

the three-stage plant, Schlossvippach, and all sewage

samples), while Firmicutes were particularly abundant in

reactors with high biogas yields (CD samples). However,

differences in biogas yield might also be a consequence

of the concentration of TS, which is especially high in

CD reactors.

In summary, our results are strongly consistent with

previous reports demonstrating patchiness of the

Fig. 3 Bacterial profiles of the anaerobic digester plants analyzed. Taxonomic (phylum) composition of eubacteria populations in the reactors as
deduced by 16S amplicons isolated and sequenced as described in “Material and methods” section. a Three-stage co-digester (CD) plant in Jena,
(b) leach-bed reactors, and (c) sewage plants. The grey scale (top right) corresponds to biogas yield ranges as shown at the right

Fig. 2 3D plots of chemical parameters. COD, TOC, total nitrogen contents (N), conductivity, TVFA, TS, VS, pH, and produced volume of biogas are
plotted in a 3D representation in which the permutation of all determined parameters define axis X, Y, and Z. The underlying biogas facilities are
highlighted correspondingly (a). Plotting the parameters without the biogas yield and colorizing the dots according to their biogas production
rate gives the second plot (b)

Abendroth et al. Biotechnology for Biofuels  (2015) 8:87 Page 5 of 10



digesters in terms of the distribution of bacterial popula-

tions [31]. This strongly suggests ecological parameters

(i.e. liquid/solid substrate or biomass type) are the key

factors shaping microbial communities; but also reveal

an important, albeit secondary, role of the facility/re-

actor on this mainly biomass-associated distribution of

the taxonomic profiles.

Taxonomic composition of archaea

The taxonomic composition of the sampled reactors in

terms of archaea contents is shown in Fig. 4. The data

correspond to all but one reactor (three replicates and

two time points), corresponding to the third stage of the

Jena CD reactor, from which no archaeal DNA could be

amplified. CD reactors were dominated by archaea be-

longing to the genus Methanoculleus (Fig. 4a), account-

ing for 59–76 % of all the sequences. A significant

amount of Methanosarcina (9–24 %), Methanobacter-

ium (10–21 %), and Methanobrevibacter (3–7 %) was

detected, as well as infrequent genera such as Methano-

sphaera, Methanothermobacter, and Methanosaeta. In

contrast, LB digesters were characterized by substantially

smaller amounts of Methanoculleus (3–44 %); and by

the abundance of Methanosarcina (37–95 %). One of

the three LB-digesters showed a very high amount of

Methanobrevibacter (31–35 %), whereas the other two

reactors had very low amounts (1–2 %). Minor genera

were Methanobacterium, Methanosphaera, and Metha-

nosaeta. In the SS samples, Methanosaeta proved the

most prevalent genus with a total number of reads be-

tween 42 and 88 % (Fig. 4c). While Methanosaeta was

detected in high amounts in all the SS reactors, the fre-

quency of other genera differed among SS digesters. The

biogas plant in Rudolstadt was very rich in Methano-

methylovorans (40–55 %), while the other two SS reac-

tors showed a relatively high amount of Methanoculleus

(1–10 %) and Methanospirillum (8–21 %).

As in the eubacteria profiles, three main taxonomic

combinations were found to correlate with the three re-

actor types. The CD samples showed a strikingly similar

profile independently on the replicate, reactor, or time

sampled. LB and SS reactors did exhibit sub-profiles

with no variation within replicates and dependent on the

sampling time (Schlossvippach and Saalfeld) or on the

location sampled (Rudolstadt). The two LB facilities

from Schlossvippach and Saalfeld showed an increased

amount of Methanoculleus after 1 week, while the

amount of Methanosarcina decreased during this period.

Fig. 4 Taxonomic (genus) composition of archaea in the anaerobic digester plants. Taxonomic composition based on 16S archaea-specific amplicon
sequences is shown. a The three-stage plant (CD) in Jena, (b) leach-bed reactors, and (c) sewage plants. The grey scale (top right) corresponds to biogas
production values as in Fig. 2. Samples corresponding to the storage tank of the digestion remnants reactor (CD-Jena S3) are not shown as they failed
to produce any amplicon with the selected oligonucleotides. Methanogenesis pathways are shown in (d) three stage plant, (e) leach-bed reactors, and
(f) sewage plants
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It is likely that genus Methanoculleus is more abundant

in the solid fraction of these LB systems due to the high

percentage of solids. Rudolstadt samples had the typical

Methanosaeta abundance of SS reactors but were char-

acterized by an exceptionally high frequency of Metha-

nomethylovorans. The presence of Methanosarcina and

Methanoculleus correlated to high yields of biogas, while

low biogas yields correlated with higher amounts of

Methanosaeta.

Since methane production is solely due to the archaeal

community and the different methanogenesis pathways

are well known and genus-linked, we studied the expected

methanogenesis pathways in each facility type according

to the average taxonomic distribution (Fig. 4d–f ). Interest-

ingly, each facility type displayed a different combination

of methanogenesis pathways. The CD reactors were very

rich in archaea using the hydrogenotrophic pathway

(Fig. 4d); LB reactors were dominated by Methanosarcina

and thus with the ability to use all known pathways for

methane production (Fig. 4e); and SS reactors were char-

acterized by containing high rates of archaea using the

acetoclastic pathway for methane production (Fig. 4f).

The archaea composition we describe here for the dif-

ferent reactor types is generally in accordance with that

reported in previous studies. The prevalence of Metha-

noculleus in CD reactors was also found in other works

with classical anaerobic digesters [22, 32, 33]. Although

other studies describe a prevalence of Methanosarcina

in this reactor type [34], our data is in concordance with

other works linking Methanosarcina to LB reactors [35,

36]. The differences in TS levels between CD and LB re-

actors might be the key factor explaining their differ-

ences in microbial composition. The TS content of LB

reactors was much lower (Additional file 1: Table S1), so

the surface available for the growth of biofilm-forming

species, such as Methanoculleus [37], was limited com-

pared to CD reactors. Indeed, previous reports have

found a prevalence of Methanoculleus in the solid

fraction of LB reactors [36, 38]. Additionally, a lower

number of TS may hamper the formation of spatial

syntrophic relationships between acetate-oxidizing bac-

teria and hydrogenotrophic methanogens such as Metha-

noculleus. This might lead to an increase in growth of

acetoclastic methanogens such as Methanosarcina, able to

directly metabolize acetate (Fig. 4d–f ). These findings are

in concordance with previous reports on the link between

high content of TS and a high frequency of hydrogen-

using methanogens compared to acetoclastic methano-

gens [39–42].

The finding that Methanosaeta is the dominating

genus in all SS digesters is consistent with other screen-

ings [21, 43, 44]. However, the abundance of Methano-

methylovorans in the SS digester in Rudolstadt might be

connected to the presence of particularly high amounts

of oil and alcohols such as methanol, since this particular

digester was supplemented with remnants from biodiesel

production, and the prevalence of this organism has been

reported in sewage sludge reactors supplemented with

molasses alcohol wastewater [45].

The genus Methanospirillum was more abundant in

the SS reactors in Jena and Weimar but not in Rudol-

stadt. This genus proved, along with Methanolinea, par-

ticularly abundant in a previous SS characterization [46],

suggesting that Methanospirillum and Methanosaeta are

two competing genera within the anaerobic digestion

process of SS sludge.

Conclusions

The present work describes a holistic characterization

of, to the best of our knowledge, the widest screening of

biogas production facilities performed to date. We stud-

ied nine reactors, three replicates, and two time points

(1-week interval) yielding 54 subsamples, the taxonomic

diversity of which was determined for both archaea and

eubacteria contents. Despite the heterogenous nature of

some of the samples (especially those from CD reactors),

our data reveal a very small effect of inter-replicate vari-

ation. All our results suggest a strong link between re-

actor type and taxonomic profile (for both archaea and

bacteria), as well as an additional, significant effect of

the location/particular reactor on the microbial commu-

nity. Additionally, the three reactor types yielded separ-

ate blocks when chemical parameters were plotted in 3D

and a principal component analysis was performed.

Taken together, our results confirm the tight link be-

tween digester type, chemical parameters, and microbial

biocenoses and also support the existence of a very

stable microbial core adapted to each reactor type. Fur-

thermore, our study provides a strong dataset for future

diagnostic strategies aiming to predict biogas production

of mesophile reactors on the basis of their microbial

composition.

Materials and methods
Sampling

Seven anaerobic reactors accounting for nine different

reactors from Thuringia, Germany, were sampled twice

at a 1-week interval. These biogas plants included co-

digesters, leach bed, and sewage sludge treatment plants

(Fig. 1). Triplet samples from the first sampling time

point were labelled as 1A, 1B, and 1C; whereas triplet

samples from the second time point were labelled as 2A,

2B, and 2C.

An overview of the sampled digester types and input

feedings is shown in Table 1. Additional file 1: Table S1

and Additional file 3: Table S2 show specific environmen-

tal chemical parameters regarding biogas production, bio-

gas composition, and VFA spectrum. All sampled digester
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types were operated at mesophilic temperature (except

the sampled storage chamber for digestion remnants,

which was left at RT). For the chemical analysis, a total

volume of 5 L was collected in buckets via a sampling port

at each plant. The sampling procedure was similar for all

plants and stages (SS plants, LB systems, and all the stages

of the one-phase CD). In the case of the LB facilities, only

leachate from the leach tank could be collected. Small

amounts of sample were then transferred into Falcon

tubes, which were directly frozen on dry ice to prevent

further microbial growth or DNA degradation, and imme-

diately sent on dry ice from Thuringia to Valencia (Spain)

for DNA isolation and sequencing. The remaining sludge

was transferred to the laboratory of Bio H2 Energy GmbH

in Jena. From this sludge, 1.5 L was used for gas produc-

tion analysis directly upon sampling. The remaining 3.5 L

of sludge was aliquoted into smaller plastic boxes and

stored at −20 °C for further analysis at Eurofins and Bio

H2 companies.

Determination of biogas production

For each anaerobic sludge sample, 1.5 L was incubated

in batch-experiments for 1 week at 37 °C. Incubation

bottles (0.5 L) were filled with 0.5 L of sample (three

bottles per sample without additional feeding), con-

nected to a liquid displacement device (eudiometer,

custom-built model calibrated by the German Eichamt),

and the whole setup was flushed with nitrogen to ensure

an anaerobic atmosphere. Biogas yield was measured as

produced volume of biogas per volume of sludge sample

[mL/L]. The concentration of CO2 and CH4 in the

produced biogas was determined with the “Binder

COMBIMASS GA-m” gas-measurement device (Binder,

Germany).

Measurement of chemical parameters

Totals solids (TS), volatile solids (VS), chemical oxygen

demand (COD), electrical conductivity, and total organic

carbon (TOC) were determined according to German

standard measurement methods [47]. Total nitrogen was

determined as previously described (VDLUFA-Metho-

denbuch II, 3.5.2.7). The VFA spectrum was determined

with a gas chromatograph (Shimadzu, Japan). The flame

ionization detector was equipped with a DB.1701 col-

umn (Machery-Nagel/Germany).

DNA extraction from reactor samples

Three DNA samples were prepared from each sludge

sample. In order to reduce the amount of inhibiting sub-

stances (especially humic acids), biomass was sedimen-

ted by centrifugation (5–10 min at 20,000 g for SS and

LB samples, and 15 min at 20,000 g for CD samples)

and washed several times with sterile PBS buffer until a

clear supernatant was observed. DNA was isolated with

the “PowerSoil DNA isolation KIT” (Mo Bio Laboratories,

USA) following the manufacturer’s instructions. Long cen-

trifugations were performed (5–10 min at 20,000 g for SS

and LB samples, and 15 min at 20,000 g for CD samples)

to ensure an almost complete removal of particles and cell

fragments after the mechanical bead treatment.

Finally, DNA quality was checked on a 0.8 % (w/v)

agarose gel and quantified with Nanodrop-1000 Spectro-

photometer (Thermo Scientific, Wilmington, DE, USA).

PCR amplification

In order to survey bacterial diversity, a 500-bp fragment

of the V1-V3 hypervariable region of the 16S ribosomal

RNA gene was PCR-amplified from all the samples with

universal primers 28F (5′-GAG TTT GAT CNT GGC

TCA G-3′) and 519R (5′-GTN TTA CNG CGG CKG

CTG-3′). In the case of archaea, primers Arch349F

(5′-GYG CAS CAG KCG MGA AW-3′) and Ar9r (5′-

CCC GCC AAT TCC TTT AAG TTTC-3′) were used

to amplify a 578-bp fragment of the 16S region [48]. A

short (10–12 nucleotides) barcode sequence was in-

cluded at the 5′ end of the oligonucleotides used as

forward primers in order to assign sequences to sam-

ples after high-throughput sequencing. All the amplifi-

cations were performed under the following thermal

cycling conditions: initial denaturing at 95 °C for 5

min, followed by 35 cycles of denaturing at 95 °C for

30 s, annealing at 54 °C (for both, bacteria and archaea)

for 30 s, and extension at 72 °C for 1 min, finalized by

a 10-min elongation at 72 °C. The resulting amplicons

were checked on a 0.8 % (w/v) agarose gel and purified

by precipitation with 3 M potassium acetate (pH = 5)

and isopropanol. Pure amplicons were quantified with

the Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, CA,

USA), and two equimolar pools of bacteria and archaea

amplicons, respectively, were prepared from all the

samples.

Ion torrent sequencing

Two sequencing libraries were constructed with 100 ng

of the eubacteria and archaea amplicon pool, respect-

ively, by the amplicon fusion method (Ion Plus Fragment

Library Kit, MAN0006846, Life Technologies). Each

library was quantified with the Agilent2100 Bioanalyzer

(Agilent Technologies Inc, Palo Alto, CA, USA) prior to

clonal amplification. Emulsion PCRs were carried out

applying the Ion PGM Template OT2 400 kit as de-

scribed in the user guide (MAN0007218, Revision 3.0

Life Technologies) provided by the manufacturer. Finally,

the libraries were sequenced in an Ion 318 Chip v2 on a

Personal Genome Machine (PGM) (IonTorrentTM, Life

Technologies) at Life Sequencing S.L. (Life Sequencing,

Valencia, Spain), using the Ion PGM Sequencing 400

kit following the manufacturer’s protocol (publication
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number MAN0007242, revision 2.0, Life Technolo-

gies). Sequence statistics are shown in Additional file 4:

Table S3.

Sequence analysis and taxonomic classification

Raw sequences obtained from the sequencing center

were processed with the MOTHUR software [49]. Short

(<100 bp) and low-quality (<q15) reads were removed in

a first step. The degenerated forward primer sequence

was searched among the resulting sequences, and reads

were discarded if either the primer (three mismatches

allowed) or the barcode sequence was missing. Se-

quences were then split into groups based on barcode

matches, and both primer and barcode sequences were

trimmed. Finally, each resulting sequence was aligned

to the ribosomal 16S reference Greengenes database

and taxonomy was assigned based on nucleotide simi-

larity with the k-mer algorithm. Assignments based on

a similarity percentage lower than 70 % were not con-

sidered for further analysis.

Statistics

A principal component analysis (PCA) was performed

using the Statgraphics software. Data from COD, TOC,

total nitrogen contents (N), conductivity, TVFA, TS, VS,

pH, and biogas corresponding to all samples were nor-

malized, and two components explaining almost 90 % of

the total variance were used for plotting. Row-stacked

histograms, representing taxonomic profiles (Figs. 3 and

4), were prepared using Gnuplot and modified with

Photoshop to insert grey bars representing intervals of

biogas production. Pie charts (Fig. 4) were plotted in

Excel.

In order to plot all environmental chemical parame-

ters in one diagram (Fig. 2), the splot and multiplot

commands of Gnuplot were combined to plot the per-

mutation of all normalized parameters (normalized to

values between 0 and 100). Each combination with three

chosen variables was plotted and overlaid with the other

combinations using the Gnuplot multiplot command.

Since nine parameters were measured (COD, TOC, total

nitrogen contents, conductivity, TVFA, TS, VS, pH, and

volume of biogas), 84 resulting combinations were over-

laid in the plot (Fig. 2a).

Additional files

Additional file 1: Table S1. Chemical environmental parameters of
analyzed sludge samples and volume and composition of produced
biogas (w/o VFA, error ± 10 %).

Additional file 2: Figure S1. Principal component analysis (PCA)
performed on the chemical environmental parameters measured for all
samples. Data were normalized, and two components explaining nearly
90 % of the total variance were used for plotting.

Additional file 3: Table S2. Content of VFA in the sampled reactors
(error ± 10 %).

Additional file 4: Table S3. Sequencing statistics.
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From grass to gas: microbiome dynamics 
of grass biomass acidification under mesophilic 
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Abstract 

Background:  Separating acidification and methanogenic steps in anaerobic digestion processes can help to opti-
mize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. 
However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation 
process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of 
plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55 °C, respectively) was applied for 
the first time.

Results:  High-strength liquor from acidified grass biomass exhibited a low biodiversity, which differed greatly 
depending on temperature. It was dominated by Bacteroidetes and Firmicutes at 37 °C, and by Firmicutes and Proteo-
bacteria at 55 °C. At the methane stage, Methanosaeta, Methanomicrobium and Methanosarcina proved to be highly 
sensitive to environmental changes as their abundance in the seed sludges dropped dramatically after transferring 
the seed sludges from the respective reactors into the experimental setup. Further, an increase in Actinobacteria coin-
cided with reduced biogas production at the end of the experiment. Over 1700 proteins were quantified from the first 
cycle of acidification samples using label-free quantitative proteome analysis and searching protein databases. The 
most abundant proteins included an almost complete set of glycolytic enzymes indicating that the microbial popu-
lation is basically engaged in the degradation and catabolism of sugars. Differences in protein abundances clearly 
separated samples into two clusters corresponding to culture temperature. More differentially expressed proteins 
were found under mesophilic (120) than thermophilic (5) conditions.

Conclusion:  Our results are the first multi-omics characterisation of a two-stage biogas production system with 
separated acidification and suggest that screening approaches targeting specific taxa such as Methanosaeta, Metha-
nomicrobium and Methanosarcina could be useful diagnostic tools as indicators of environmental changes such as 
temperature or oxidative stress or, as in the case of Actinobacteria, they could be used as a proxy of the gas produc-
tion potential of anaerobic digesters. Metaproteome analyses only detected significant expression differences in 
mesophilic samples, whereas thermophilic samples showed more stable protein composition with an abundance of 
chaperones suggesting a role in protein stability under thermal stress.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Anaerobic digestion is a promising technology for biofuel 
production, and has been the object of research for over 

100 years [1, 2]. The anaerobic digestion process consists 
of four stages: hydrolysis, acidogenesis, acetogenesis and 
methanogenesis. During the first three stages, hydrogen 
and acetate are formed as intermediary products, which 
are then converted into methane and carbon dioxide 
during methanogenesis [3]. Countless works have been 
published characterizing those stages or comparing 
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different substrates for co-digestion and reactor con-
figurations. Furthermore, substantial efforts have been 
made in recent decades to shed light on the underlying 
microbial biocoenosis of anaerobic digestion processes. 
The first determinations of taxonomic profiles appeared 
in the 90  s [4, 5], when 16S-rDNA data from anaerobic 
sludges were investigated. More recently, high-through-
put approaches like 16S-rDNA sequencing or metagen-
omics have been applied [2, 6–8], as well as proteome 
analyses [9, 10]. However, most of the aforementioned 
work focused on reactor configurations, where acidogen-
esis and methanogenesis occur, combined in the same 
reactor stage. It is well-known since the 80  s that the 
process can be split into multistage processes, in such a 
way that hydrolysis/acidogenesis occurs separately from 
acetogenesis/methanogenesis [11, 12]. Although it may 
be difficult to fully separate the underlying microbial 
processes (for example nitrogen-rich substrates seem 
to cause methanogenic contaminations in the acid-pro-
ducing step [13]), improved biogas production has been 
reported using a separated setup. For example, in 1988 
authors described a rumen-derived microbial community 
optimally fermenting cellulose in a separated acidifica-
tion step [14]. Others report that some practices such as 
shock loading (high loads of substrate that cause accu-
mulation of volatile fatty acids, VFA) increase hydrogen 
formation at pH < 6.5 [15]. As pH values between 4 and 
6.5 are common during acidification [16–18] and metha-
nogenesis is inhibited at either low pH or high VFA con-
centration [19], this renders hydrogen production in the 
acidification stage as a valuable sub-product in addition 
to the methane [20]. Additionally, a high concentration 
of acetic acid is known to improve chemical hydrolysis 
[21]. Even though hydrogen production in seed sludges 
with diverse microbiomes is highly unpredictable, a few 
previous reports have explored the possible production 
of hydrogen [22–24], by, for example, immobilization of 
hydrogen-producing bacteria [23, 24].

Separated acidification has been proposed as the best 
technology to produce organic acids like lactic, butyric 
and acetic acid, even though it is still complicated to 
extract organic acids from the fermentation process [25].

The benefits of separated acidification cannot be fully 
explored without a deeper knowledge of the underly-
ing microbial communities. Currently, such knowledge 
is very fragmentary. For example, it is known that fer-
mentation of 52.85 g/L of rice straw at 39.23 °C and pH 
10.0 leads to an increase in the families Ruminococ-
caceae, Bacteroidaceae, Porphyromonadaceae and Lach-
nospiraceae [26]; or that the acidification of alginate 
correlates with high titres of Bacteroides- and Clostrid-
ium-related microorganisms [27]. Proteomics has 
been used to study standard, one-step digestion plants 

without separated acidification [9, 10, 28], but there 
are no detailed proteomics studies of a separated acidi-
fication stage to date. In order to bridge this gap and to 
finely characterize one of the most important phases of 
the biogas production process, the dynamic behaviour of 
grass acidification processes at mesophilic and thermo-
philic temperatures (37 and 55 °C, respectively) was mon-
itored through both proteomics and 16S-rDNA analysis. 
The efficient use of lignocellulosic biomass as a feedstock 
is an active research area of high interest [30]. In the pre-
sent work grass was chosen because of its potential as a 
renewable energy source [29].

Results and discussion
16S‑rDNA‑based analysis on high‑strength liquor 
from grass acidification
Mechanically ground mixed grass (Graminidae) was acidi-
fied in three subsequent batch reactions under anaerobic 
conditions at mesophilic and thermophilic temperatures 
(Fig.  1). pH was automatically adjusted to 5.5 to prevent 
it dropping below that value. Acidification occurred in 
tap water as a result of microbial activity. The second and 
third batch received 5% Inoculum from the previous batch. 
Samples for VFA analysis were taken daily and every two 
days for 16S-rDNA amplicon sequencing. The mixed grass 
microbiome was analysed prior to entering acidification 
reactors, and it proved rich in Cyanobacteria- and Proteo-
bacteria-related taxa. Upon transference into the reactors, 
the taxonomic profile rapidly switched to the one domi-
nated by members of the phylum Firmicutes. This happened 
under both mesophilic and thermophilic conditions (Fig. 1).

After just two days, hardly any Proteobacteria 
and Cyanobacteria remained. As often occurs with 
16S-rDNA-based analyses of plant material, cyanobacte-
ria-related sequences may correlate to plant chloroplasts. 
On day four, most of the Firmicutes were suppressed 
by Bacteroidetes at mesophilic temperatures, while the 
proportion of Firmicutes remained high at 55  °C. The 
acidification process was repeated three times in a row 
and Bacteroidetes were also the dominating phylum at 
mesophilic temperatures. At thermophile temperatures 
the dominant phylum was Firmicutes, although at two of 
the sampling points a strong but transitory shift towards 
Proteobacteria was observed (Fig. 1a). In the second and 
third week an inoculum from the previous stages was 
used; however, this hardly influenced the taxonomic pro-
file, which was constantly dominated by Bacteroidetes.

Upon termination of each acidification cycle, the high-
strength liquors produced were transferred into bot-
tles filled with nitrogen and stored at room temperature 
thereafter (Fig.  1b). The microbial composition in the 
stored liquor was analysed (Fig. 1, right) and yielded no 
significant changes at mesophilic temperature. However, 
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a strong shift in the stored liquor originating from the 
thermophilic reaction was observed after incubation at 
room temperature (RT). After four days at RT, numbers 
of Bacteroidetes dramatically increased, yielding a stable 
taxonomic profile very similar to the one of the meso-
philic acidification step. The microbial profile of the ther-
mophilic samples upon RT storage was not accompanied 
by any changes in the concentration of chemical oxygen 
demand (COD) or VFA (Data not shown).

The results are in concordance with a previous work 
describing high titres of Bacteroidetes and Firmicutes 
during acidification of alginate under mesophilic condi-
tions [24]. A microbiome dominated by Bacteroidetes 
and Firmicutes has also been reported for one-stage pro-
cesses at mesophilic temperatures [9, 31, 32], but not for 
sewage sludge [7, 8].

There are no previous reports on the microbiome of 
acidification at thermophilic temperatures; however, a 
shift to Clostridia (Firmicutes) has been described for 
one-stage digesters [33, 34], similar to the increased titre 
of Firmicutes described in the present results.

Environmental parameters
Production of total volatile fatty acids (TVFAs) was more 
effective at mesophilic temperatures than at thermophilic 
ones (Fig. 2). With 200 mg TVFA per gram of input COD, 
the mesophilic stage yielded twice as many TVFAs as at 
thermophilic temperatures (Fig.  2a). At 37  °C, the rela-
tive amount of acetic acid and propionic acid were much 
higher than at 55 °C (Fig. 2b). By contrast, an accumulation 
of butyric acid was observed at thermophilic temperatures.

To the best of our knowledge, there are no previous 
reports comparing taxonomic profiles of mesophilic 
and thermophilic biogas acidification stages. There are 
reports, however, that thermophilic processes in one-
stage digesters result in higher degradation efficiency 
compared to mesophilic ones [34–37]. Previous works 
have reported long incubation times for adaption of the 
biocoenosis to thermophile temperatures, ranging from 
several months [35] to up to one year [37]. Therefore, 
successful adaption to high temperatures and well-cho-
sen seed sludge might be crucial for a separated acidifica-
tion step.

Fig. 1  16S-rDNA-based taxonomic profiles from untreated grass substrate, samples during acidification and stored hydrolysate, at 37 °C (upper 
panel) and 55 °C (lower panel) (a). Hydrolysate was filled in anaerobic storage bottles and from there it was transferred semicontinuously into various 
methane stages (b). For both, mesophilic and thermophilic acidogenesis continuous stirred tank reactors (CSTR) were used. Those were equipped 
with a pH sensor, which automatically regulated the inflow of NaOH for pH adjustment to 5.5 (c). Proteomic analysis was performed with samples 
from the first week of acidification (Highlighted with a red letter P). Green circles in the timeline correspond to days of taxonomic analysis (white 
circles were subjected to chemical analysis). The first column (Substr.) shows the taxonomic composition of the untreated grass biomass
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In concordance with the reduced acid production in 
the thermophilic acidification, two of the correspond-
ing methane stages (leach bed and semicontinuous batch 
with sewage) yielded more methane per gram of input 
COD with thermophilic liquor than with mesophilic. 
(Fig. 2c). However, in the system containing seed sludge 
from a co-digester (CD), the yield from the thermophilic-
treated liquor was higher than in the one receiving mes-
ophilic liquor. This might be related to the higher total 
solids (TS) content, high heterogeneity and high gasifica-
tion activity also causing very high gas yields in the nega-
tive control from the CD sludge (Fig. 2b). In concordance 
with a previous work [38], the liquefied COD from the 
produced high-strength liquor was efficiently trans-
formed into methane, indicating no inhibitory effects.

Usage of the high‑strength liquor produced
High-strength liquor was stored in bottles at RT upon 
production, which were always flushed with nitrogen 
after opening to keep anoxic conditions. The liquor 
was semicontinuously fed into various methane stages 
(Figs. 1b, 2, 3).

The used seed sludge from the co-digester was very 
rich in Firmicutes, Synergistetes and Bacteroidetes, 
while the seed sludge from the sewage plant (SW) con-
sisted mainly of Proteobacteria, Bacteroidetes, Spiro-
chaeta and Chloroflexi (Matrix at day 7, Fig.  3). Both 
findings are in concordance with our previous report on 

several co-digester microbiomes [8]. The starting sam-
ples for the leach-bed systems (Matrix at day 7, Fig. 3) 
were taken 24  h after refilling the leach bed with sew-
age seed sludge. Compared to the original sewage, there 
was a dramatic decrease in Actinobacteria. This may be 
due to the high sensitivity of Actinobacteria to environ-
mental changes, as sensitivity to environmental changes 
has been described for Actinobacteria in soil [39]. The 
two leach-bed systems were both rich in Chloroflexi, 
especially in the leach-bed biofilm (Fig.  3, Leach Bed). 
This is in concordance with other works describing 
high abundance of Chloroflexi in deep biofilm layers on 
building walls [40] and in the sediments of Winograd-
sky columns [41]. The input of the high-strength liquor, 
rich in Firmicutes and Bacteroidetes, did not result in 
an increase in those phyla in the sewage sludge batches 
or in the leach-bed systems (SW and Leach samples 
from Day 11 to Day 27, Fig. 3). Samples from both sys-
tems remained rich in Chloroflexi and Spirochaeta, 
even though they received a daily microbial input rich 
in Firmicutes and Bacteroidetes. This highlights the 
stability of the underlying biocoenosis and suggests 
the potential of separated acidification as an important 
step in preventing the occurrence of major microbial 
disturbances in the biocoenosis of the respective sew-
age digesters. For example, an additional thermophilic 
acidification stage could be included in co-digestion 
in sewage digesters in order to improve the robustness 

Fig. 2  Chemical parameters during acidification and methane production: total amount of TVFA was monitored daily and samples obtained at 
the end of each acidification cycle were subjected to the determination of VFA spectra (a). Produced methane is shown as volume of methane per 
volume of sludge (b) and as volume of methane per mg of input COD (c)
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of the active microbiome. The positive effect of co-
digesting organic matter with sewage sludge (e.g. food 
waste or energy grass) on the reactor performance has 
recently been reported [42, 43]. Moreover, the appli-
cation of leachate in sewage digestion has been pro-
posed too [44]. Our results indicate that using liquefied 
grass biomass (after separation from solids) might be a 
promising method for co-digestion with sewage. Large 
amounts of unused grass biomass, could still be valor-
ised [29]. Although there have been attempts to add 
grass biomass into sewage sludge for co-digestion [45], 

co-digestion of liquefied grass biomass with sewage has 
not been demonstrated until now.

During the experiment, the lowered temperature in 
the storage bottle of the high-strength liquor at room 
temperature (Storage 3/Week 4, Fig.  1) resulted in a 
dramatically modified community composition of the 
thermophilic liquor after two days at RT. Thus, the trans-
ference of thermophilic high-strength liquor into a meso-
philic sewage digester might destabilize the microbial 
community in the liquor and provide an advantage to the 
existing biocoenosis from the sewage digester. Using the 

Fig. 3  Bacterial community in the CH4-stages: Time-dependent taxonomic profiles at the phylum level over 20 days for various CH4-stages digest-
ing hydrolysate from mesophilic and thermophilic acidification. All CH4-stages were performed at mesophilic temperatures. Control reactions were 
not fed. Taxonomic profiles of the sludges prior to the experimental setup were determined as controls, as well as the taxonomic profiles of the 
biofilms from the leach-bed systems. CD co-digester, SW sewage, Leach Leachate
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high-strength liquor for co-digestion prevented the entry 
of solids into the water treatment circle.

In the last days of the experiment, the sludge samples 
from the co-digester exhibited low levels of Firmicutes 
and Bacteroidetes, and high rates of Actinobacteria. This 
coincided with a reduction in the production of biogas 
(Fig. 2). Interestingly, we have previously reported a con-
currence between increasing amounts of Actinobacteria 
and low methane production [8]. Occurrence of Actino-
bacteria in anaerobic digester plants has been reported 
repeatedly [46, 47]. Actinobacteria were described in pre-
vious works as important key players in the degradation 
of plant material in compost [48] with effective enzymes 
that can allow large-scale application for breakdown of 
cellulosic plant material [49]. This is not necessarily con-
tradictory with our results, since Actinobacteria survival 
and its efficiency for degradation of plant material could 
vary greatly at different nutrient concentrations due to 
their sensitivity to environmental changes as mentioned 
before. Although further work is needed to confirm this 
link, it is tempting to propose the identification and 
quantification of microbial key players as a marker of 
process efficiency.

In the case of the leach-bed system, the last part of the 
experiment was characterized by higher amounts of Bac-
teroidetes in the liquid phase (Leach samples from Day 
11 to Day 27, Fig. 3). It has to be stressed that the biofilm 
became denser during the experiment and thus a bio-
film filtering effect could be responsible for the very clear 
supernatant observed at the end of the process, which 
might, in turn, have affected the microbial composition 
of the leachate.

Archaea were also detected through 16S-rDNA ampli-
con sequencing and identification (Fig.  4). The genus 
Methanoculleus was the most abundant one in most 
of the samples. The co-digester sludge contained small 
amounts of Methanobacterium and Methanosarcina, 
as previously reported for the same plant [8] (Matrix at 
day 7, Fig. 4). However, upon transferring the sludge into 
the batch systems, a rapid shift was observed, in terms 
of an overwhelming abundance of Methanoculleus (CD, 
SW and Leach-Bed Samples at day 11, Fig. 4). This might 
be related to stress factors caused by the sludge trans-
ference (e.g. changing reactor conditions or short-time 
exposure to oxygen), and it could be hypothesized that 
Methanoculleus is more resistant to these changes. This 
is consistent with previous reports on the robustness of 
Methanoculleus, which is particularly resistant to inhibi-
tors such as ammonia [50], phenol [51] or paraffin [52].

After eight days of incubation under constant con-
ditions Methanosaeta and Methanobacterium started 
to recover in the batch reactions with the sewage seed 
sludge (Fig.  4), although no significant increases were 

observed for the leach-bed system. However, Methanos-
aeta proved frequent in the biofilm from the leach bed, 
(Fig.  4, Leach Bed). The occurrence of Methanosaeta in 
biofilms has been reported previously [53, 54]. This result 
highlights the need for a separate analysis of leach-bed 
samples and associated biofilms. In the co-digesters, 
Methanosarcina were also recovered as of day 23 (CD 
samples at day 23–27, Fig. 4).

Proteomic analysis on the high‑strength liquor produced
Proteins were extracted from the samples d2, d4, d6 and 
d8 from the first cycle of acidification. The proteome at 
mesophilic and thermophilic temperatures proved strik-
ingly different in the previous SDS-PAGE analysis (Addi-
tional file  1: Figure S3). This observation was approved 
by a principal component aggrupation (PCA) from mass 
spectroscopy raw data (peptide) analysis, where sam-
ples not only separated into two groups by temperature 
(X-axis, Fig.  5b), but also showed dynamic changes in 
time (Y-axis, Fig. 5b).

At the first stages, plant proteins were detected in the 
greatest amounts, as expected from the mixed grass bio-
mass used in all assays. However, in line with increasing 
incubation time, the ratio between plants and bacteria 
shifted due to massive microbial growth and/or degrada-
tion of plant material at 37 °C (Fig. 5a). However at 55 °C, 
there was a constant plant:bacteria ratio in the protein 
abundance, indicating a decrease in the total microbial 
population.

An abundance of enzymes involved in carbohydrate 
metabolism and degradation in metaproteomes from 
both series of samples were identified using a protein 
database search for Bacteria and Archaea domains, 
although additionally diverse chaperones and heat-
shock proteins (e.g. 10 and 60  kDa chaperonins, and 
GroEL) were overrepresented in the thermophilic sam-
ples (Additional file 2: Table S4). Among the most abun-
dant proteins detected in all analysed samples, there was 
an almost complete set of glycolytic enzymes (glucose-
6-phosphate isomerase, fructose-bisphosphate aldolase, 
triosephosphate isomerase, glyceraldehyde-3-phosphate 
dehydrogenase, phosphoglycerate kinase, enolase), as 
well as components of sugar transport systems (like the 
phosphotransferase system, PTS). These results indicate 
that the microbial population is basically engaged in the 
degradation and catabolism of sugars in the fermentative 
phase of short-chain acid production, an observation that 
is coherent with previous reports on the metaproteome 
[28] and metametabolome [55] of this kind of microbial 
communities.

Label-free quantitative proteome analysis was per-
formed to determine differentially expressed proteins 
between mesophilic and thermophilic temperatures 
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Fig. 4  Archaeal community in the CH4-stages: Time-dependent community behaviour at the genus level over 20 days for various CH4-stages 
digesting hydrolysate from mesophile and thermophile acidification. All CH4-stage measurements were performed at mesophilic temperatures. CD 
co-digester, SW—sewage, Leach Leachate

Fig. 5  Bacteria and Viridiplantae proteomic profile evolution in the first cycle of acidification (a); PCA aggrupation of quantified peptides at mass 
spectroscopy analysis (b)
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(Additional file 3: Table S5). A total of 1731 proteins were 
quantified from samples d2, d4, d6 and d8 collected from 
the first cycle of acidification: 556 proteins increased and 
176 decreased between mesophilic and thermophilic 
conditions (37 vs. 55  °C). Samples were compared using 
the Limma statistics software package. Differences in 
protein abundances clearly separated samples into two 
clusters corresponding to culture temperature, with the 
subset of proteins showing an increased expression that 
was richer at 37 than 55 °C (Fig. 6a). On comparing pro-
tein abundances during sampling time, 120 (out of 1731) 
proteins showed differential expression at 37  °C, whereas 
at 55 °C, the differentially expressed proteins were only 5 
(out of 1731) (Fig. 6b). Remarkably, most differences were 
observed when comparing d2 and d4 samples, and d2 and 
d8 at mesophilic conditions, whereas at thermophilic con-
ditions a small set of differential proteins was only detected 
when comparing samples d2 and d8 (Fig. 6b). Among the 
differentially expressed proteins at mesophilic conditions 
there is a notable representation of ribosomal proteins 
indicating a dynamic state of these microbial communities. 
The taxonomic profiles of metaproteome samples were in 
agreement with the presented metagenomic data.

Among the differentially expressed proteins in d2 
samples at 37 °C, noteworthy was the presence of sev-
eral membrane transport systems from Firmicutes 
species involved in sugar uptake. These were the PTS 
HPr-related protein and the cellobiose-specific PTS 
IIB component, and the PTS phosphocarrier protein 
HP. There was also an increase in haemolysin-type 
calcium-binding protein, with a predicted hydrolytic 

activity on O-glycosyl compounds and a carbohy-
drate-binding domain (CBM) type 2 from an Alpha-
proteobacterium in d2 samples. Previous studies on 
mesophilic biogas-producing, cellulolytic communities 
have indicated the abundance of sugar transporters 
and enzymes involved in polysaccharide degradation 
[9, 28, 56].

Conclusions
Plant biomass (a mix of grass) was acidified at meso-
philic and thermophilic temperatures. The taxonomic 
communities in both cases proved very different, and 
consisted of Bacteroidetes and Firmicutes at 37  °C and 
Firmicutes and Proteobacteria at 55  °C. At the methane 
stage, Methanosaeta, Methanomicrobium and Methano-
sarcina proved highly sensitive to environmental changes 
whereas Methanoculleus proved to be very robust with 
all the seed sludges. At the end of the experiment, there 
was an increase in Actinobacteria in the semicontinuous 
batches containing co-digester seed sludge, which coin-
cided with reduced biogas formation. Thus, Actinobac-
teria determination could be a useful prediction tool for 
biogas production.

Metaproteome analyses only detected significant 
expression differences in mesophilic samples, and collec-
tively implied a dynamic microbial community engaged 
in polysaccharide demolition and sugar fermentation as 
remarkable metabolic activities during the acidification 
phase. Thermophilic samples showed more stable protein 
composition with an abundance of chaperones suggest-
ing a role in protein stability under thermal stress.

Fig. 6  Proteomic differences between 37 and 55 °C: HCT for differentially expressed proteins between mesophilic and thermophilic conditions (a). 
Number of differentially expressed proteins (p value < 0.05) over time at two different culture temperatures: 37 °C (upper Venn diagram) and 55 °C 
(lower Venn diagram) (b)
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Methods
Reactor performance
Acidification of grass was carried out in three sequential 
reactions, which were operated in parallel at 37 and 55 °C 
with a COD input concentration of 30 gO2/L. Acidifica-
tion occurred in tap water as a result of microbial activity. 
For the second and third cycle of acidification 5% inocu-
lum was applied from the previous reactions. After sepa-
rating the liquid phase from the solids manually using a 
sieve, the resulting high-strength liquor was stored under 
anaerobic conditions (nitrogen atmosphere) until further 
fermentation occurred in several methane stages (Fig. 1). 
Acidification was carried out in continuous stirred tank 
reactors with a total working volume of 5 L and equipped 
with a pH regulation system (BL 7916, Hanna Instru-
ments, Germany) that stabilized the pH at 5.5 (Fig. 1).

The high-strength liquor was stored until usage in glass 
bottles at RT. To ensure anaerobic atmosphere, the bot-
tles were nitrogen-purged and a gasbag (TECOBAG, 
TESSERAUX Spezialverpackungen GmbH, Germany) was 
connected to verify that no further gas production occurred.

High-strength liquor was digested in semicontinuous 
batch reactions, as well as two leach-bed systems. The 
setup of batch systems was carried out according to VDI 
4630 [57]. Feeding was applied not only at the beginning 
of the experiment but semicontinuously by adding daily 
33 mL/L day to the batch bottles, which corresponds to a 
solubilized COD of 0.51 gO2 for the mesophilic stage and 
0.39 gO2/L for the thermophilic stage.

The leach-bed systems consisted of packed columns 
with 3  L working volumes. They were filled with 2  L of 
seed sludge and 485 g of bed packing (Hel-X-Füllkörper, 
Christian Stöhr GmbH&Co.KG, Germany) and were fed 
equally to the batch bottles with 33 mL/L*day. Gas pro-
duction was quantified with a MilliGascounter (Ritter 
Apparatebau GmbH, Germany) and collected in a gasbag 
for further analysis (TECOBAG, TESSERAUX Spezial-
verpackungen GmbH, Germany).

In total, eight methane stages were set in place. Two 
leach-bed systems, three batch systems filled with low TS 
seed sludge (sewage) and three batch systems filled high 
TS seed sludge (CSTR, co-digester) (Additional file  4: 
Table S1 and Additional file 5: Table S2). The leach-bed 
systems were filled with sewage sludge and the leach bed 
contained a thick biofilm from previous experiments also 
performed with sewage. All methane stages were set as 
duplets in order to compare methanisation of liquor from 
acidification, at 37 and 55 °C. Control reactions without 
feeding were performed (Fig. 1).

Sampling and environmental chemical analysis
A mixture of grass species was collected from a backyard 
in Jena (Germany) and mechanically ground. Mechanical 

treatment was performed using a conventional juicer 
(Angel Juicer 8500  s, Angel Co.LTD., Corea). After the 
mechanical treatment, grass juice and squashed solids 
were remixed and stored at −20 °C until use.

Sewage was collected from a water treatment plant in 
Jena (Jena). Sludge from a co-digester was collected from 
the continuous stirred tank reactor near the water treat-
ment plant. Sludge samples and substrates were charac-
terized by analysing TS and VS (Additional file 4: Table 
S1) and during the acid-producing step, the concentra-
tion of VFA and COD was monitored daily using conven-
tional photometer-based assays (Nanocolor CSB15000 
and Nanocolor organische Säuren 3000, Macherey-
Nagel, Germany) (Fig. 2). At the end of each experiment, 
the VFA spectrum was determined at Eurofins Umwelt 
Ost GmbH, using a gas chromatograph (Shimadzu, 
Japan). A flame ionization detector was equipped with a 
DB.1701 column (Macherey-Nagel, Germany).

During methanisation of the high-strength liquor pro-
duced, the volume of biogas obtained was monitored 
daily, using a “COMBIMASS GA-m” gas measurement 
device (Binder, Germany), to determine the ratio of CO2 
and CH4 (Fig.  2). Samples for DNA analysis were taken 
every two days for the acidification step and every four 
days for the methane stages. One milliliter of sample 
was mixed with 1 mL of pure ethanol and kept at −20 °C 
until required. Additional samples from the acidification 
stages were taken for proteomic approaches (20 mL per 
sample). Samples for proteomic analysis were stored at 
−70 °C until further analysis.

DNA extraction and amplification
To reduce the amount of humic acids and other inhibitors, 
samples were intensively washed: they were centrifuged at 
20,000×g and resuspended in PBS buffer repeatedly until a 
clear supernatant was observed. DNA Extraction was per-
formed using the PowerSoil DNA isolation KIT (Mo Bio 
Laboratories, USA). After a quality control on a 0.8% (w/v) 
agarose gel and quantification with the Nanodrop-1000 
Spectrophotometer (Thermo Scientific, Wilmington, DE, 
USA), variable regions V1–V3 from the 16S-rDNA gene 
were amplified. For amplification of bacterial 16S-rDNA 
sequences the universal primers 28F (5′-GAG TTT GAT 
CNT GGC TCA G-3′) and 519R (5′-GTN TTA CNG CGG 
CKG CTG-3′) were used (Additional file  6: Table S6 and 
Additional file 7: Table S7). Archaea target sequences were 
amplified using the primers Arch349F (5′-GYG CAS CAG 
KCG MGA AW-3′) and Ar9r (5′-CCC GCC AAT TCC 
TTT AAG TTTC-3′) (Additional file 8: Table S8). Resulting 
amplicons had a length of 500 bp for bacteria and 578 bp 
for archaea [58]. For amplification, after initial denatura-
tion at 95 °C for 5 min, 35 cycles of amplification (95 °C for 
30 s, 54 °C for 30 s, and extension at 72 °C for 1 min) were 
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carried out. The reaction was completed with a 10-min 
elongation step at 72 °C.

DNA‑sequencing and analysis
All DNA-sampled were quantified using the Qubit® 2.0 
Fluorometer (Invitrogen, Carlsbad, CA, USA). For bac-
teria and archaea, separate libraries were built. Approxi-
mately 100  ng of each sample was added applying the 
amplicon fusion method (Ion Plus Fragment Library Kit, 
MAN0006846, Life Technologies). For quantification, the 
Agilent 2100 Bioanalyzer (Agilent Technologies Inc, Palo 
Alto, CA, USA) was used. PCRs were carried out apply-
ing the Ion PGM Template OT2 400 kit as stated by the 
manufacturer (MAN0007218, Revision 3.0 Life Technol-
ogies). For the final sequencing step, an Ion 318 Chip v2 
on a Personal Genome Machine (PGM) (IonTorrentTM, 
Life Technologies) at Life Sequencing S.L. (Life Sequenc-
ing, Valencia, Spain) was used. Here the Ion PGM 
Sequencing 400 kit was applied, following the manufac-
turer’s instructions (publication number MAN0007242, 
revision 2.0, Life Technologies).

After removing short (<100  bp) and low-quality 
(<q15) reads, resulting sequences were split and barcode 
sequences were trimmed. Final sequences were then ana-
lysed using Mothur [59]. Based on the k-mer algorithm, 
sequences were aligned to the 16S reference from the 
Greengenes database. In the case of eubacteria, assign-
ments were performed at the phylum level. Assignments 
with a similarity percentage lower than 70% were not 
considered for further analysis. In case of archaea, ampli-
cons were analysed at the genus level and the cut-off was 
set to 93%.

Protein extraction, identification and data analysis
Protein extraction was performed using the NoviPure 
Soil Protein Extraction Kit (MO BIOS Laboratories 
Inc). Total protein extracts were precipitated with TCA 
(Trichloroacetic Acid) to clean total extracts, and pellets 
were dissolved with 100  µL of 8  M Urea, 0.5  M TEAB 
(Triethylammonium bicarbonate buffer). The protein 
concentration in the samples was determined using 
Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). 
Then, 20 µg of each sample was digested as described in 
the following protocol. Cysteine residues were reduced by 
2 mM DTT (DL-Dithiothreitol) in 50 mM ABC (Ammo-
nium bicarbonate) at 60 °C for 20 min. Sulphydryl groups 
were alkylated with 5  mM IAM (iodoacetamide) in 
50 mM ABC in the dark at room temperature for 30 min. 
IAM excess was neutralized with 10 mM DTT in 50 mM 
ABC, 30 min at room temperature. Each sample was sub-
jected to trypsin digestion with 500  ng (100  ng/µL) of 
sequencing grade-modified trypsin (Promega) in 50 mM 

ABC at 37  °C overnight. The reaction was stopped with 
TFA (trifluoroacetic acid) at a final concentration of 
0.1%. Final peptide mixture was concentrated in a speed 
vacuum and suspended in 65 µL of 2% CAN, 0.1%TFA. 
Finally, 1.5 µg of each sample was used for protein iden-
tification by LC_MS/MS analysis and label-free differ-
ential expression analysis. For that 5  µL of each sample 
was loaded onto a trap column (NanoLC Column, 3 µm 
C18-CL, 75  µm  ×  15  cm; Eksigent) and desalted with 
0.1% TFA at 3 µL/min during 10 min. The peptides were 
then loaded onto an analytical column (LC Column, 3 µ 
C18-CL, 75 µm × 12 cm, Nikkyo) equilibrated in 5% ace-
tonitrile 0.1% FA (formic acid). Elution was carried out 
with a linear gradient from 5a35% B in A for 120 min. (A: 
0.1% FA; B: ACN, 0.1% FA) at a flow rate of 300 nL/min. 
Peptides were analysed in a mass spectrometer nanoESI-
qQTOF (5600 TripleTOF, ABSCIEX).

Eluted peptides were ionized applying 2.8  kV to the 
spray emitter. Analysis was carried out in a data-depend-
ent mode. Survey MS1 scans were acquired from 350–
1250 m/z for 250 ms. The quadrupole resolution was set 
to ‘UNIT’ for MS2 experiments, which were acquired 
100–1500 m/z for 50 ms in ‘high sensitivity’ mode. Fol-
lowing which switch criteria were used: charge: 2+ to 
5+; minimum intensity; 70 counts per second (cps). Up 
to 25 ions were selected for fragmentation after each sur-
vey scan. Dynamic exclusion was set to 25 s.

ProteinPilot default parameters were used to generate 
peak list directly from 5600 TripleTof wiff files. The Par-
agon algorithm of ProteinPilot v 4.5 was used to search 
Uniprot bacteria and Archaea protein database with the 
following parameters: trypsin specificity, cys-alkylation 
and the search effort set to through with FDR to multiple 
test correction.

To avoid using the same spectral evidence in more than 
one protein, the identified proteins were grouped based 
on MS/MS spectra by the ProteinPilot Pro group algo-
rithm. The Peak View v1.1 (SCIEX) software was used 
to generate peptide and protein areas from ProteinPilot 
result files and to perform a multivariant data analysis.

Differential expression analysis was performed using 
the Limma package (http://bioconductor.org/packages/
limma/), fitting a linear model using an appropriate 
design matrix. A contrast matrix was set to make com-
parisons of interest, in our case 37 versus 55 °C. For the 
contrast of interest the package computed fold changes 
and t-statistics. After fitting a linear model, the standard 
errors were moderated using an empirical Bayes method 
to obtain moderated t-statistics. The function top Table 
was used to present a list of the proteins most likely to 
be differentially expressed for a given contrast. FDR was 
used to adjust the p value for multiple testing.
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Abstract

Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered
an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric
cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into
electricity through a thermoelectric device optimized for low DT values. A temperature of 41uC and net electric voltage of
around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been
converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel
strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal
aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a
valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be
conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small
electric devices.
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Introduction

Both developed and fast growing developing countries exhibit

steadily growing energy demands. Taking into account the limited

nature of oil, coal and gas reservoirs, this could obviously lead to a

shortage of standard (fossil) fuels in the relatively near future. The

lack of sustainability of current fossil-centered energy strategies, as

well as the recent extremely serious accident at Fukushima Daiichi

power facility [1] have increased the concerns about the economic

and environmental consequences of relying on these energy

sources, leading to some dramatic shifts in energy policies, like in

Germany [2]. It is widely accepted that massive fossil fuel

consumption, which results in the production of nine billion metric

tons of atmospheric carbon per year [3], is at least partially

responsible for current global warming. Therefore, alternative

non-fossil non-nuclear technologies are seen as promising, albeit

not fully competitive. Among these, biomass-based energy has

been suggested as one of the most promising technologies for

renewable energy production [4,5]. Biomass from crops; urban,

industrial or agricultural wastes; green algae, cyanobacteria or

other microbial cultures, are renewable organic resources that are

suitable for energy production in the form of biofuels (mainly, but

not limited to, bioethanol and biodiesel), and electricity.

Besides lignocellulosic combustion-based power production, a

biological system allowing direct conversion of biomass into

electricity already exists: a broad range of organic substances can

be oxidized by electrogenic bacteria, which transfer electrons to an

anode in a simple device known as a Microbial Fuel Cell (MFC).

At the cathode, other useful products can be generated, including

hydrogen, methane, and hydrogen peroxide [6,7,8]. The electric

yield of MFCs has increased dramatically in recent years, mainly

by increasing the ratio of the area of the electrodes/volume in the

reactor, with best yields reaching up to 2–7 W/m2. A moderate

MFC unit, of about 1 L, can produce enough electricity to power a

small propeller for more than one year [9]. However, MFCs seem

to work better at small scales, as scaling-up faces important

challenges [9].

Many bacterial species have been reported to display electro-

active properties, including members of common genera such as

Clostridium, Pseudomonas, Geobacter or Shewanella. A few eukaryotic

microorganisms have been assayed for power production in

MFCs. Baker’s yeast Saccharomyces cerevisisae has proven able to

transfer electrons to an anode in two independent studies [10,11]

with moderate efficiency. In both reports, researchers found net

voltage values of about 0.33 V for 1 L reactors.

To date MFCs are still the only direct method to microbiolog-

ically convert biomass into electricity. Nonetheless, there is

possibly another non-fuel alternative. Since microbial growth is

an exothermic process, it produces heat, which is a by-product that

usually goes unnoticed in lab-scale cultures but which has a strong

impact on the design and performance of industrial-scale

microbial fermentations. Almost 90% of the heat produced in a

microbial fermentation is reported to be metabolic heat; and

almost all this heat is removed through forced heat exchange [12].
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The thermoelectric or Peltier-Seebeck effect is the direct

conversion of electric voltage to temperature differences (Peltier

effect) and vice-versa (Seebeck effect). Theoretically, an electric

current would be produced by coupling an exothermic microbial

culture with an endothermic reaction –or, alternatively, a heat

sink– through a thermoelectric cell. If the thermal energy from

exothermic microbial cultures could be turned into electricity

efficiently, power-producing devices could be designed and

coupled to existing microbial reactors within a range of

applications (alcoholic fermentations, bioremediation, waste treat-

ment, autotrophic thermal aerobic digestion ATAD, etc.).

Here, we report the characterization of the first Microbial

Thermoelectric Cell, a bioreactor specifically designed for power

production through a completely different mechanism than that

operating in MFCs: the thermoelectric effect. Our results might

contribute to providing a new scenario for the future development

of microbial-based cellular electricity facilities, which might be

useful for local electric production and heat recycling in a wide

range of biological processes.

Materials and Methods

Construction of the MTC
In order to implement a thermoelectric-based power generator,

a reactor was designed able to i) sustain microbial growth; ii)

remain thermally isolated on most of its surface; and iii) efficiently

transfer heat through a relatively small area to a thermoelectric

device. One of us (M. Porcar) had previously designed an LCC

(Liquid Culture Calorimeter) for microbial growth, suitable for

fine recordings of internal temperature changes through a

thermocouple [13]. Based on the LCC, we conceived a Microbial

Thermoelectric Cell (MTC hereon) to produce power from a

microbial culture by the Peltier-Seebeck effect. Figure 1 shows the

structure of the MTC. The core of the reactor is a 1.9 L glass

container from a commercial vacuum flask. The flask was placed

inside an expanded polystyrene (EPS) box and the gap filled with a

polyurethane foam spray (Silicex Fischer, Fisher Ibérica, Tarra-

gona, Spain). The box was then inserted into a second EPS

isolation box. The upper part of the MTC was drilled and a

cupper bar (20 mm in diameter) inserted through the hole. The

upper part of the cupper bar was adapted in order to allow a TE-

Power Probe thermal harvester (MicroPelt, Germany) to be

screwed through a 1/40 Whitworth thread (DIN 2999, JIS B0203,

ISO 7/1). TE-Power Probe is a prototype of an integrated

proximity thermoharvester designed to replace primary batteries

in wireless systems operating in duty cycle mode. The key element

of the TE-Power Probe is the MPG-D751 thermogenerator, which

produces electricity from a rather low gradient of temperature.

The TE-Power Probe is originally designed to attach to a heat

source in the shape of piping that carries a hot fluid, and heat is

dissipated through an aluminum heat sink, with the resulting

temperature gradient allowing power production by the MPG-

D751 thermogenerator. In our experiments, temperature changes

in different parts of the Probe were measured by PT-100 sensors.

Since the TE-Power Probe is specifically designed to operate using

natural convection to ambient air, we mounted it horizontally, as

suggested by the manufacturer.

The two EPS isolation layers of the MTC were shaped so the

round bottom of the vacuum flask would fit. The flask bottom was

placed conveniently close (20 mm) to the bottom of the MTC in

order to allow stirring by a magnetic stirrer. When recordings were

to be taken, the MTC was first filled with 1.8 L of medium; a small

magnet was added; the MTC was placed inside a standard

laboratory magnetic stirrer set at low speed (600 rpm); the

inoculum was then added, and the cupper bar with the screwed

TE-Power Probe finally set in place. This configuration was

modified for characterization purposes in some experiments, as

described in sections 2.4 and 2.5.

Yeast Strains, Media and Culture Conditions
The following six diploid S. cerevisiae strains, from the wine

industry or genetic modifications thereof, were used: EC118,

L2056, 3aS2D, T73, D170, and TTRX2. All the strains were

kindly provided by Prof. Emilia Matallana (IATA, Valencia,

Spain). In order to assess their exothermic abilities, independent

cultures were set in filter-sterilized YPD (20 g/L peptone, 10 g/L

yeast extract, with 18% sugar), and the internal temperature of the

cultures (grown overnight in non-isolated Erlenmeyer flasks) was

continuously measured. Thermotolerance was assessed by growing

the strains at 30, 37 and 41uC. After an overnight incubation

under low stirring, the OD600 of the six overnight cultures was

measured.

For standard experiments after strain selection, the filter-

sterilized 18% sucrose YPD was inoculated with 1:50 of an

overnight yeast pre-culture grown at 30uC, and subjected to low

stirring for 120 h.

Data Acquisition, Monitoring and Recording
The MTC was connected to a PC in order to record internal

and external temperatures and the output current provided by the

heat harvester TE-Power Probe (Fig. S1).

The internal temperature of the MTC was measured by a thin

T-type thermocouple inserted into the microbial culture and

connected to a PC through a data logger, as previously described

[13]. Another thermocouple recording room temperature was also

set in place. The thermocouples were connected to an acquisition

card inserted on the data logger, which was connected via a GPIB

cable to a PC with an acquisition software that one of us (R.

Rodrı́guez-Barreiro) conceived specifically for this work (Fig. S1).

The TE-Power Probe output was also connected to the PC, which

yielded two additional temperature recordings by using two Pt-100

sensors (that of the cold and hot sides of the thermogenerator

device) and the output voltage. The connections between the

thermocouples and the data logger were performed on an ice-

water mixture to take into account the unwanted background

electric voltage, due to the junction of dissimilar metals in the

thermocouple-data logger connection. Finally, a thermocouple

was inserted inside the box containing the ice-water mixture in

order to verify that the temperature of the datalogger-thermocou-

ple connections was kept at 0uC.

Temperature records (and, when TE-Power Probe was

connected, electric power) were taken every 6 minutes throughout

the experiment.

Identification Assay to Estimate Broth Heat Capacity and
Global Thermal Resistance of MTC

In order to estimate the heat capacity of the broth (m?Cp) and the

global thermal resistance (Rg), the MTC (without TE-Power Probe)

was set up under the following conditions: first, an electrical

resistance was placed inside the MTC to generate a controlled

heat flow, as consequence of the Joule effect induced by an

external voltage input through the resistance. Second, the MTC

was loaded with room-temperature sterile broth with 1 g/L

nipagine supplementation to avoid contamination by yeasts. Broth

was subjected to continuous stirring and room temperature was

kept constant. Throughout the experiment, broth and room

temperatures and the power generated in the resistance were
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continuously measured. To ensure the initial steady-state condi-

tions (broth temperature equal to room temperature), the system

was kept in the off mode for approximately 20 h before applying

the input voltage.

Theory
The equation for the heat flow balance corresponding to the

MTC we describe in this work can be stated as follows:

X
Heat accumulated~

X
Heat generated{

X
Heat lost ð1Þ

Heat accumulated is a consequence of the variation in broth

temperature. Since there is no forced cooling of the system, heat

flow losses are due only to heat transfer from the culture to the

Figure 1. Schematic drawing of the Microbial Thermoelectric Cell (Auto-CAD). All dimensions are given in mm.
doi:10.1371/journal.pone.0056358.g001
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environment through both the MTC surface and the TE-Power

Probe thermogenerator. For calibration purposes, we first set the

MTC to generate a heat flow from an electric resistance placed

inside the vacuum flask through the Joule effect. In standard

experiments, heat flow was obtained from the metabolic heat as a

consequence of microbial growth.

Therefore, the heat flow balance equation can be written for the

MTC as follows (a definition of all the symbols used throughout

the MTC modelling is available in Table 1):

_QQacc ~ PJz _QQp{
_QQenv{

_QQTh ð2Þ

Where Qacc is the heat flow accumulated in the broth; PJ is the heat

flow due to the Joule effect; Qp is the heat flow due to microbial

metabolism; Qenv is the heat flow loss through the MTC surface to

the environment; and QTh is the heat flow loss through the cupper

bar connected to the TE-Power Probe.

Accumulation Terms
Heat accumulation (Qacc) in a particular body is determined by

the variation in its temperature (dTi/dt) and by its heat capacity

(mi?Cpi). In the MTC, heat can be accumulated in the broth

(subscript ‘‘b’’), the vacuum flask (‘‘v’’) and the insulation walls

(‘‘w’’), as follows:

_QQacc ~ mb
:Cpb

: dTb

dt
zmv

:Cpv
: d

�TTv

dt
zmw

:Cpw
: d

�TTw

dt
ð3Þ

The MTC is a very simple system with a single sensor to

measure the temperature of the broth. Therefore, the equation can

Table 1. Nomenclature used in MTC modelling.

Symbol Description (units)

a Seebeck coefficient (V/K)

I Electrical current (A)

m? Cp Whole system heat capacity (J/K)

mb?Cpb Broth heat capacity (J/K)

mv? Cpv Vacuum flask heat capacity (J/K)

mw? Cpw Insulation walls heat capacity (J/K)

PJ Electrical input power due to the Joule effect (W)

Pe Electrical power generated (W)

Qacc Accumulated heat flow (W)

QC Net heat flow released through the cold side of the thermogenerator (W)

Qenv Heat flow released to the environment (W)

QH Net heat flow absorbed through the hot side of the thermogenerator (W)

Qj Heat flow due to the Joule effect inside of the thermogenerator (W)

Qp Heat produced by microbial metabolism (W)

QsC Heat flow produced in the cold side of the thermogenerator due to the Seebeck effect (W)

QsH Heat flow produced in the hot side of the thermogenerator due to the Seebeck effect (W)

Qt Heat flow loss due to the natural thermal conduction established between both sides of the thermogenerator (W)

QTh Heat flow absorbed from the broth through the cupper bar (W)

R Electrical resistance (V)

RCu Thermal resistance of the cupper bar (K/W)

Rg Global thermal resistance of the MTC (K/W)

Ri Internal electrical resistance of the thermogenerator (V)

RLoad Electrical resistance connected between the terminals of the thermogenerator (V)

RSk Thermal resistance of the heat sink (K/W)

Rth Thermal resistance of the thermogenerator (K/W)

Tb Broth temperature (K)

TC Temperature of the cold side of the thermogenerator (K)

Tenv Room temperature (K)

TH Temperature of the hot side of the thermogenerator (K)

DTth Difference of temperature between the hot and the cold sides of the thermogenerator (K)

Tv Vacuum flask temperature (K)

Tw Insulation walls temperature (K)

Vext Input voltage (V)

Vo Voltage output in the terminals of the thermogenerator (V)

doi:10.1371/journal.pone.0056358.t001
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be simplified:

_QQacc &m:Cp
: dTb

dt
ð4Þ

Where m?Cp represents the whole system heat capacity, deduced

from the variation in culture temperature. This parameter can

easily be determined under a simplified experimental configura-

tion (described in 2.4) using the model equations described below

(section 3.2).

Loss Terms (I): Heat Flow Loss to the Environment
Energy losses through the MTC walls can be due to the natural

heat flow (Qenv) from the warm internal broth to the relatively cool

environment. Since insulation materials in the MTC display low

emissivity values, radiation losses can be neglected and Qenv can be

expressed as follows:

_QQenv ~
1

Rg

: Tb{Tenvð Þ ð5Þ

Where Rg represents the global thermal resistance of the MTC

and Tb and Tenv are the temperatures of the broth and the

environment, respectively. This thermal resistance can be exper-

imentally determined under the same conditions described for

m?Cp (see 2.4 and 3.2).

Loss Terms (II): Heat Flow Loss Through the TE-Power
Probe

The global heat flow through the cupper bar (QTh) is the same

than the heat flow absorbed by the hot side of the thermogenerator

cell (QH) and is composed of: (i) a spontaneous flow due to the

difference in temperature between the hot and cold sides of the

thermogenerator cell, expressed as (TH-TC)/Rth; (ii) an induced

heat flow as a consequence of the conversion of heat to electric

power through the Seebeck effect. Then, the heat flow loss

through the thermogenerator can be stated as follows [14]:

_QQTh ~ _QQH ~
TH{TC

Rth

� �
z a:TH

:I{
1

2
:I2:Ri

� �
ð6Þ

Where a?TH?I corresponds to heat absorbed by the thermo-

generator due to the Seebeck effect, while the term 1/2?I2?Ri

corresponds to the heat produced as a consequence of the Joule

effect, associated to the circulation of the electric current produced

through the internal resistance of the thermogenerator. TH and TC

represent the temperature of the hot and cold sides of the cell,

whereas Rth and Ri correspond to its internal thermal and electrical

resistance, respectively. a is the Seebeck coefficient of the

thermogenerator and I is the electrical current obtained from

the TE-Power Probe.

Generation Terms (I): Heat Flow Due to the Joule Effect
When an electrical resistance was placed inside the vacuum

flask, a heat flow (PJ) was obtained as a consequence of applying

an external voltage according to the Joule effect:

PJ ~
V2

ext

R
ð7Þ

Where Vext is the input voltage and R is the electrical resistance.

Generation Terms (II): Heat Flow Due to Yeast Growth
When the electrical resistance was replaced by a yeast culture,

the heat flow was generated as a consequence of the exothermic

properties of yeast metabolism. This heat flow, represented as Qp,

was estimated for the different experimental configurations as

described below (section 3.3).

Taking all the equations described above together, the general

energy balance (Eq. 2) can be written as:

m:Cp
: dTb

dt
~ PJz _QQp{

Tb{Tenvð Þ
Rg

{ _QQTh ð8Þ

Model Equations for the Estimation of m?Cp and Rg

In order to calculate the global heat capacity and the global

thermal resistance of the MTC (m?Cp and Rg, respectively), a

simplified experimental set up was used, as explained in section

2.4. Briefly, heat flow was induced in the sterile broth by applying

a constant input power through a resistance according to the Joule

effect. In this experiment, room temperature was kept constant

and the TE-Power Probe was not mounted on the MTC.

Therefore, QTh and Qp terms (corresponding to the TE-Power

Probe and the yeast, respectively) from Eq. 8 are null, so it can be

written as the following first-order EDO:

m:Cp
: dTb tð Þ

dt
~ PJ{

Tb tð Þ{Tenv

Rg

ð9Þ

A first-order EDO is mathematically characterized by its gain

and its time constant, which can be estimated manually or with a

standard mathematical software from experimental data. In Eq. 9,

the gain (Rg) and the time constant (m?Cp?Rg) were estimated from

the experimental values of Tb and PJ.

Estimation of Heat Yield Due to Yeast Metabolism and
Calculation of the Electrical Power Generated

Heat yield due to yeast metabolism (Qp) was estimated from Eq.

8, where the term PJ is null since no electrical resistance was set up

inside the flask:

_QQp tð Þ~ m:Cp
: dTb tð Þ

dt
z

Tb tð Þ{Tenv tð Þ
Rg

z _QQTh tð Þ ð10Þ

In the assays where the TE-Power Probe was not included, the

term QTh (the broth heat lost through the cupper bar) is null, so Qp

was calculated from the experimental data of Tb and Tenv using the

estimations of m?Cp and Rg previously obtained.

When the TE-Power Probe was included, the metabolic heat

yield was calculated from Eq. 10, along with the model equations

for TE-Power Probe in order to estimate QTh (a detailed

description of these equations and a schematic representation of

associated heat flows is available in Appendix S2 and Fig. S2,
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respectively). These model equations are dependent on the

electrical configuration used in the thermogenerator during the

assays. When no load resistance was connected to the terminals of

the thermogenerator (no electrical power was taken out), the

following equation for TE-Probe was used (for a detailed version of

this open-circuit model, see Appendix S1):

_QQTh tð Þ~ DTth tð Þ
RTh

ð11Þ

DTth represents the difference of temperature between the hot

and the cold side of the thermogenerator, whereas Rth is the

thermal resistance of the thermogenerator.

Voltage output (Vo) of the terminals of the TE-Power Probe,

which under this configuration is equal to the voltage generated in

the Peltier cell, can be expressed as:

Vo tð Þ~ a:DTth tð Þ ð12Þ

Being a the Seebeck coefficient.

Otherwise, when a load resistance was fitted to achieve the

maximum power from the thermogenerator, Eq.11 was replaced

by Eq.13 (deduced in the maximum-power model of Appendix

S2):

_QQTh tð Þ~ a2:DTth tð Þ
Ri

: TH tð Þ
2

{
DTth tð Þ

8
z

Ri

a2:Rth

� �
ð13Þ

Where Ri and Rth are the internal electrical and thermal

resistance, respectively.

Under this configuration, voltage output (Vo) of the terminals of

TE-Power Probe can be expressed as:

VO tð Þ~ a:DTth tð Þ
2

ð14Þ

and the maximal power generated can be calculated as follows:

Pe tð Þ~ V2
O tð Þ
Ri

ð15Þ

Results

Estimation of Broth Heat Capacity and Global Thermal
Resistance of MTC

In order to characterize the thermal evolution of the MTC prior

to the experiments with yeast cultures, an identification assay for

m?Cp and Rg was set up as described in 2.4. The time course of

broth and room temperature during the experiment is shown in

Figure 2. From a steady-state, in which room and broth

temperature were the same (25.5uC), a constant input power of

1 W was supplied, and the broth reached a final temperature of

47.5uC. The system gain (meaning the temperature increase

divided by the input power) was 22 K/W, and the time constant

(the time by which 63% of the temperature increase is reached)

was 43.5 h. According to the model equations (see 3.2), the gain

represents the global thermal resistance of the MTC, and the

broth heat capacity can be obtained by dividing the time constant

by the gain. Thus, our estimated values for Rg and m?Cp are 22 K/

W and 7118 J/K, respectively.

When the mathematical software was used to estimate Rg and

m?Cp from the same experimental data, similar values were

Figure 2. Time course of broth and room temperatures during the identification assay of broth heat capacity and global thermal
resistance of the MTC. The experiment was carried out under the conditions described in section 2.4. Recordings of room temperature (blue),
broth temperature (red) and input power (dashed line) were taken every 6 min.
doi:10.1371/journal.pone.0056358.g002
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obtained (Rg = 22 K/W and m?Cp = 7100 J/K) with a confidence

level of 98.7%.

Strain Selection and MTC Performance
All yeast strains exhibited similar performance in terms of

exothermic potential and resistance to high temperatures, with

strain D170 displaying slightly higher thermoresistance (data not

shown). This strain was thus selected for further studies. When

yeast strain D170 was inoculated into a pre-warmed 18% sucrose

YPD medium and grown in the MTC without the cupper bar and

the TE-Power Probe set in place, the internal temperature

dropped slowly (about 1uC), stabilized and finally started to rise

after 6–7 h. The temperature peaked after approximately 24 h

and reached up to 41uC. Figure 3 shows a typical experiment in

which the maximum temperature is around twelve degrees higher

than the initial temperature of the culture. After the peak, the yeast

culture temperatures started dropping and reached the initial

temperature after about 70–90 h. Despite the abrupt changes

(22uC–27uC) in room temperature as a consequence of switching

the air conditioning on and off, the change in the internal

temperature of the yeast culture was only mildly affected.

Estimation of Heat Yield Due to Yeast Growth
The heat yield due to yeast growth (Qp) was estimated as

described in section 3.3 for each experimental set up (Fig. 4). In all

the experiments, the estimated evolution of Qp peaked before broth

temperature reached its maximum due to the high inertia of the

broth (m?Cp). In the assay carried out without TE-Power Probe

(Fig. 4A), Qp reached its maximum (1.96 W) after 20 h and

remained above 0.2 W for 40 h. In an open-circuit configuration,

maximum Qp (almost 1.4 W) peaked after 10 h, reaching values

above 0.2 W over 50 h (Fig. 4B). Maximum Qp was obtained

earlier in this case because a more concentrated inoculum was

used, indicating that, as expected, there is a dependence between

initial yeast concentration and time until Qp maximum. Finally,

under a load-resistance configuration, Qp peaked (with a value of

almost 1.5 W) after 20 h (as in the experiment without TE-Power

Probe, in which the same initial yeast concentration was used),

producing more than 0.2 W for 50 h (Fig. 4C). Our data show that

when the TE-Power Probe was inserted, lower Qp values were

estimated from experimental data. In accordance, total energy

generated by yeast metabolism, calculated as the area below the

curve of Qp, was higher in the experiment carried out without the

TE-Power Probe (194,7 kJ) in comparison with those configura-

tions in which it was included (144,4 and 145,4 kJ for the open-

circuit and the load-resistance set up, respectively). This might be

due to the effect of the cupper bar on effective broth stirring,

which might be lower and therefore affect yeast growth.

Electricity Production with the MTC
Under the MTC insulation conditions assayed, the metabolic

heat produced by strain D170 was partially transformed into

electricity through the TE-Power Probe thermal harvester. When

the TE-Power Probe was mounted in the yeast-culturing MTC

under open circuit conditions, the internal temperature of the

culture increased up to about 35uC and remained higher than

32uC for about 54 h (Fig. 5A). Under these conditions, electric

voltage yielded around 250 mV (net value) for a two-day period,

with significant, lower room temperature-associated peaks of about

350–600 net mV (Fig. 5A). The same experiment was performed

under load resistance conditions (330 V, the same as that for the

MPG-D751 thermogenerator) and produced an internal temper-

ature peak of about 32uC, with the culture being hotter than room

temperature (which was constant in this experiment) for a period

of 110 h (Fig. 5B). Under these conditions, a maximum of 290 mV

were obtained on the electrical load resistance, corresponding to

around 580 mV generated in the Peltier cell (Eq. 15). The

maximum power obtained, corresponding to the maximum DT

values, reached around 255 mW (net value).

Figure 3. Typical performance of the MTC without TE-Power Probe. Experimental values of broth and room temperature (red and blue lines,
respectively) are shown.
doi:10.1371/journal.pone.0056358.g003
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The energy conversion yield was calculated for this latter

experiment as the total electrical power generated (33.1 J) divided

by the total heat energy produced by the yeasts (147.44 kJ, as

calculated from the estimated heat yield represented in Fig. 4C).

The resulting value, 0.022%, was low, as expected from the poor

efficiency of heat-harvesting devices such as the TE-Power Probe.

Notwithstanding, it allowed the production of significant amounts

of electrical power from relatively moderate values of DT.

Discussion

The results presented here clearly indicate that the exothermic

nature of microbial growth can be exploited when transformed

into significant electric voltage. We have designed and constructed

the first Microbial Thermoelectric Cell, which consists of a simple,

thermally insulated reactor, with a small heat exchange surface on

which a thermoelectric prototype thermal harvester, equipped

with a MPG-D751 thermogenerator device (TE-Power Probe) is

mounted. The chosen thermogenerator is optimum for relatively

high efficiencies in electric production at low DT values, such as

those existing between an insulated yeast culture (41uC, under our

conditions) and room temperatures. With a medium size MTC

(smaller than two liters), we typically obtained 150–600 mV.

These values are similar to those obtained with yeast-based MFCs

for which net voltage values of about 0.33 V for 1 L reactors have

been reported [10,11]. It is noteworthy that MFCs and MTCs

work on a totally different basis –albeit theoretically compatible–

as MFCs produce electricity from direct microbial-mediated

electron transfer from organic matter oxidation to an anode;

whereas the MTC partially transforms metabolic thermal energy

into electricity by the Seebeck effect. As it is also the case for

MFCs, MTCs could be combined with other microbial processes.

Baker’s yeast S. cerevisiae was used for our MTC due to its well-

known exothermic growth under a range of different conditions.

Indeed, any other microbial culture resulting in important heat

production, such as ethanolic fermentation (beer, bread, wine,

biofuels), auto thermal aerobic digestion (ATAD) or hydrocarbon-

polluted soil bioremediation and bioaugmentation, could be

coupled with MTCs into a single unit, with electricity production

Figure 4. Time course of broth and room temperatures and heat yield due to yeast growth for different MTC configurations:
without TE-Power Probe (A), open-circuit (B) and load-resistance (C). Experimental values of broth and room temperature (red and blue
lines, respectively) were recorded every 6 min. Heat yield (dashed line) was estimated for each configuration as described in section 3.3.
doi:10.1371/journal.pone.0056358.g004

Figure 5. Electricity production by MTC under open-circuit (A) and load-resistance (B) configurations. The experimental temperature
values of broth (red), room (blue), and thermogenerator hot and cold sides (red and blue dashed lines, respectively) are shown along with the
evolution of voltage and power output (black continuous and dashed lines, respectively).
doi:10.1371/journal.pone.0056358.g005
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as a valuable sub-product of the main biotechnological purpose. In

fact, metabolic heat is often seen in industry as an undesirable sub-

product of large-scale microbial fermentations, and cooling

facilities are often needed in order to maintain an optimum broth

temperature [12,15]. The conversion, albeit partial, of this heat

into electricity would both help to control internal temperatures in

biotechnological processes and contribute to energy savings by

cogeneration. Interestingly, our results suggest that heat produc-

tion through metabolic growth and heat flow through a

thermogenerator can be tuned in such a way that no energy is

needed to heat the broth up for microbial growth nor to cool it

down in order to avoid excessive temperatures, known to abruptly

stop the fermentation process.

It seems reasonable to predict that, in addition to yeast, other

cultures might be suitable as heat producers in an MTC. For

example, naturally-occurring thermophilic and hyperthermophilic

bacteria, such as Bacillus coagulans, Bacillus licheniformis or many

Geobacillus spp. strains, many of which can be isolated from extreme

environments such as deep oil wells and the optimal growth of

which is 50–60uC. Additionally, these bacteria are reported as able

to heat their own culture up to 50–55uC [16]. The perfect

candidate for MTC should meet the following criteria: (i)

thermoresistant; (ii) strong exothermic ability; (iii) rapid and easy

growth; and (iv) an ability to grow and degrade high concentra-

tions of carbon sources.

In the MTC we designed, the ‘‘cold side’’ of the system was an

aluminum heatsink. In order to optimize electricity yield by

increasing DT, a biological cooling system could theoretically be

implemented, rather than simple convection-driven heat loss. In

fact, methanogenic archaea have been reported to exhibit

endothermic growth [7]. Although it is uncertain whether

endothermia is a result of particular growth or of heat loss due

to gas evaporation from the culture, the fact is that these

microorganisms could be combined with those producing heat

through a thermoelectric element in order to increase electricity

production. These archaea have optimal growth at temperatures

of around 37uC, and this implies that the whole system should be

finely tuned in order to regulate heat transfer across the

thermoelectric element, allowing optimal microbial growth while

maintaining as high a DT as possible.

The surface:volume ratio of microbial fermentors is a critical

factor affecting heat loss to the environment and thus internal

temperature of the culture. Although standard lab-scale microbial

cultures produce heat, most of it is lost to environment due to high

surface to volume ratio, resulting in the absence of any noticeable

increase in internal temperature. However, large, production-scale

bioreactors have been characterized thermodynamically and

proved to work nearly adiabatically due to much lower surface

to volume ratio compared to laboratory-scale non-insulated

bioreactors [12]. The results presented here, together with

previous reports on medium-scale liquid culture calorimeters

[13], demonstrate that relatively small liquid cultures can also

work almost adiabatically, provided proper insulation is provided

and significant autothermal growth can be achieved. This implies

that small portable MTCs for electricity production could be

envisaged, since most of the metabolic heat from microbial growth

can be stored inside the MTC. These small thermoelectric cells

could theoretically be used to power small electric devices.

However, in order for MTCs to display higher electric yields,

optimization of the thermoelectric elements should take place.

Indeed, only 0.5–8% of the total heat flow is usually transformed

into electricity through the thermoelectric plates. Interestingly,

only 12% of the maximum theoretical efficiency is achieved in the

best thermoelectric devices today [17], so there is still room for

significant improvement in the optimization of this technology.

There has been a dramatic increase in research into high efficiency

thermoelectric devices in recent decades, with reports of significant

improvements in ZT values, design optimization, and develop-

ment of alternative materials. As proposed by [17], ‘‘TE solid-state

heat engines could well play a crucial role in addressing some of

the sustainability issues we face today’’.

Other heat harvesting methods, such as absorption heat

transformers or organic Rankine cycle, have been reported

previously [18,19]. However, these systems are space-consuming

and involve mobile parts that require continuous maintenance. In

contrast with these, solid-state thermoelectric systems are small,

require almost no maintenance, and display high adaptability to a

range of industrial designs [17].

In conclusion, this is the first report of microbial metabolic

energy being converted into electricity with an ad hoc thermoelec-

tric device, i.e., the Microbial Thermoelectric Cell. Our results

show that even small volumes of broth are able to exhibit

significant autothermal performance and produce electricity when

properly insulated and set in such a way that heat exchange is

minimized over the whole surface, except the small area on which

a (prototype) thermal harvester is mounted. Although the electric

power we obtained was rather low, this work may contribute

towards a novel strategy to harvest excess heat produced by the

biotechnology industry, particularly if ongoing research into

thermoelectric materials and design finally yields high efficiency

thermoelectric devices.

Supporting Information

Figure S1 Schematic drawing of MTC data-recording
system. Dashed lines represent thermocouple connections

measuring the temperature of the broth (Tb), the temperature of

the hot and cold sides of the thermogenerator (TH and TC,

respectively), and the room temperature (Tenv); whereas continuous

lines represent voltage measurements corresponding to the

thermogenerator (Vth) and the electrical resistance (Vr).

(TIF)

Figure S2 Schematic drawing of heat flows and resis-
tances within the thermogenerator cell. Symbols used are

in accordance with the nomenclature summarized in Table 1.

(TIF)

Appendix S1 Thermogenerator cell (MPG-D751) general
equations.

(DOCX)

Appendix S2 TE-Power Probe model description.

(DOCX)

Acknowledgments

We are very grateful to Emilia Matallana, for kindly supplying yeast strains,

Julián Heredero, for his fine work manufacturing the copper bar, to Ruslan

Klymenko for assistance with Figure 1 and to Fabiola Barraclough for

correction of the English text.

The technology described in this work has been found by us to hold not

only for scientific publication, but also for patenting (Application number

P201200977 at Spanish Office of Patents and Trademarks, OEPM).

Author Contributions

Conceived and designed the experiments: RRB CA CV MP. Performed

the experiments: RRB CA CV MP. Analyzed the data: RRB CA CV AM

MP. Contributed reagents/materials/analysis tools: AM. Wrote the paper:

RRB CV AM MP.

Towards a Microbial Thermoelectric Cell

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e56358



References

1. Dauer LT, Zanzonico P, Tuttle RM, Quinn DM, Strauss HW (2011) The

Japanese tsunami and resulting nuclear emergency at the Fukushima Daiichi
power facility: technical, radiologic, and response perspectives. J Nucl Med 52

(9): 1423–1432.
2. Gross M (2011) Energy U-turn in Germany. Curr Biol 21 (10): 379–381.

3. Lehmann J (2007) A handful of carbon. Nature 447: 143–144.

4. Kim D, Chang IS (2009) Electricity generation from synthesis gas by microbial
processes: CO fermentation to microbial fuel cell technology. Bioresour Technol

100: 4527–4530.
5. Song C (2002) Fuel processing for low-temperature and high-temperature fuel

cells: Challenges, and opportunities for sustainable development in the 21st

century. Catal Today 77 (1): 17–49.
6. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of

electrons into methane by electromethanogenesis. Environ Sci Technol 43 (10):
3953–3958.

7. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production
of hydrogen from acetate. Environ Sci Technol 39 (11): 4317–4320.

8. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006)

Principle and perspectives of hydrogen production through biocatalyzed
electrolysis. Int J Hydrogen Energy 31 (12): 1632–1640.

9. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical
systems. Appl Microbiol Biotechnol. 85(6): 1665–71.

10. Gunawardena A, Fernando S, To F (2008) Performance of a yeast-mediated

biological fuel cell. Int J Mol Sci 9(10): 1893–1907.

11. Ducommon R, Favre MF, Carrard D, Fischer F (2010) Outward electron

transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel

cell-type activity sensor. Yeast 27 (3): 139–148.

12. Türker M (2004) Development of biocalorimetry as a technique for process

monitoring and control in technical scale fermentations. Thermochim Acta 419

(1): 73–81.

13. Delás J, Notari M, Forés J, Pechuan J, Porcar M, et al. (2009) Yeast cultures with

UCP1 uncoupling activity as a heating device. N Biotechnol 26 (6): 300–306.

14. Lineykin S, Ben-Yaakov S (2007) Modeling and analysis of thermoelectric

modules. IEEE Trans Ind Appl 43 (2): 505–512.

15. von Stockar U, van der Wielen LAM (1997) Thermodynamics in biochemical

engineering. J Biotechnol 59 (1): 25–37.

16. Ungwuanyi JO, Harvey LM, McNeil B (2008) Diversity of thermophilic

populations during thermophilic aerobic digestion of potato peel slurry. J Appl

Microbiol. 104 (1): 79–90.

17. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat

with thermoelectric systems. Science 321 (5895): 1457–1461.

18. Larjola J (1995) Electricity from industrial waste heat using high-speed organic

Rankine cycle (ORC). Int J Prod Econ 41 (1): 227–235.

19. Saidur R, Rezaei M, Muzammil WK, Hassan MH, Paria S, et al. (2012)

Technologies to recover exhaust heat from internal combustion engines. Renew

Sust Energ Rev 16: 5649–5659.

Towards a Microbial Thermoelectric Cell

PLOS ONE | www.plosone.org 11 February 2013 | Volume 8 | Issue 2 | e56358



Waste Management & Research
﻿1–4
© The Author(s) 2015
Reprints and permissions:  
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0734242X14568536
wmr.sagepub.com

Introduction

During our research we investigated the batch acidification of 
chicken manure (CM) with the aim of producing a strong liquor 
containing high concentrations of volatile fatty acids (VFA) as a 
substrate for anaerobic digesters. CM is an interesting substrate 
for anaerobic digestion. With chicken farming being one of the 
most intensive operations in agriculture (Abouelenien et  al., 
2009), large amounts of CM with a considerable biogas potential 
are locally available. The manure is known for its high nitrogen 
content and the fermentation of CM has been described as diffi-
cult (Abouelenien et  al., 2009). Therefore, Abouelenien et  al. 
(2010) suggested ammonia removal to improve digestion condi-
tions. Nonetheless, the toxicity of ammonia derived from CM, in 
reality, prevents the use of CM for digestion. Several recent pub-
lications, including Niu et al. (2013) and Fotidis et al. (2014), are 
dealing with this problem. Other authors, Safley et  al. (1985), 
Webb and Hawkes (1985) and Bujoczek et  al. (2000), have 
described in detail the digestion process of CM. They reported 
that the anaerobic digestion of CM is difficult at higher loadings 
of total solids (TS) (higher than 10% TS) and that an optimal 
concentration range is between 4% and 10% influent TS feed 
concentration. Webb and Hawkes (1985) suggested the optimisa-
tion based on a two-stage process. Current works from Fu and 
Holtzapple (2011), Liu et al. (2012), Yan et al. (2014) or Jie et al. 
(2014) give insight into the optimisation of acidification condi-
tions in anaerobic digestion (AD) and the advantage of separately 
controlled acidification processes.

Although our work includes research into the two-stage pro-
cess, the main focus is on the acidification step with CM as a 
mono-substrate. The key objective of this research was to pro-
duce high-strength liquor, rich in VFA by maximising the solubi-
lisation of nutrients and production of VFA in a separately 
operated batch acidification step.

Material and methods
Substrate

CM was collected from a local poultry farm near Jena/Thuringia 
(Germany). The fresh CM, as described in Table 1, was dried at 
40 °C in an oven with forced ventilation, ground in a ball mill, 
sieved through a 1 mm screen and thoroughly mixed to provide a 
homogeneous substrate. The drying procedure led to a 6.8% reduc-
tion of total nitrogen as compared with the fresh manure owing to 
ammonia losses. Table 1 shows substrate characteristics of the CM.
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The biochemical methane potential (BMP) of CM was meas-
ured in batch experiments at 37 °C and over 21 days in accordance 
with the German standard method of VDI 4630 (2006). The final 
methane yield was 200 L CH4/kg VS (corresponding to 56% meth-
anisation of initially added chemical oxygen demand (COD)).

Batch experiments

Initial tests included short-term acidification experiments, which 
have been performed in 0.5 L SIMAX-bottles (duration between 
4 to 5 days). Substrate concentrations were set up at 10, 20, 30, 
40, 50, 60 and 100 gVS L-1. Corresponding amounts of CM were 
suspended in 0.5 L of tap water stirred by a magnetic stirrer and 
heated to 37 °C. The bottles were then flushed with nitrogen to 
ensure anaerobic conditions. Each bottle had been connected to 
an eudiometer (liquid displacement system) for measurement of 
biogas formation.

Investigations into the long-term conditions for acidification 
formed the second part of our research. The experimental proce-
dure was similar to the short-term batch acidification, but with an 
extended incubation time of 41 days. The CM was again sus-
pended in tap water with initial substrate concentrations of 10, 20 
and 40 gVS L-1. The first acidification batches were set up with-
out the addition of inoculation sludge, but this was changed for 
later batches, where we added 100 ml of the suspension from the 
previous batch (total volume 500 ml). Sampling occurred every 3 
or 4 days through the bottle sampling port.

To ensure constant and accurate sampling conditions, gas and 
liquid samples were taken from two identical sets of bottles, one 
set for gas sampling and the other set for liquid sampling. This 
approach of sampling was chosen to avoid withdrawal of nutri-
tions that could affect gas production rates. Biogas samples were 
taken from the eudiometers with a gas tight syringe and trans-
ferred into headspace vials displacing the barrier solution (satu-
rated saline solution; pH 2).

Analytical methods

The wet samples were dried overnight at 105 °C (TS). Volatile 
solids (VS) content was estimated as the loss of ignition by dry 

matter combustion at 525 °C. For all pH measurements, a pH-
meter (WTW, Germany) with a glass electrode (Schott/Germany) 
was used.

The concentration of individual volatile fatty acids (acetate, 
propionate, butyrate, isobutyrate, valeriate, isovaleriate and 
caproate) was determined by gas chromatography with a Shimadzu 
gas chromatograph/flame ionisation detector and equipped with a 
DB-1701 column (Macherey-Nagel, Germany). For determina-
tion of soluble COD, the samples were passed through a 
0.45-µm-pore-size membrane filter. The COD of the filtrate was 
determined using a COD-Spectroquant test kit (Merck, Germany) 
and a digital photometer SQ 118 (Merck, Germany). Gas compo-
sition (CH4, CO2) was analysed with a Combimass GA-m (Bender, 
Germany) multi-gas monitor.

Results and discussion
Optimal CM concentration during 
acidification

The amount of total volatile fatty acids (TVFA) produced from 
dry CM was optimised in a first acidification step. Several initial 
substrate concentrations were investigated (Figure 1). Optimal 
acid production occurred at concentrations of between 10 gVS L-1 
and 20 gVS L-1. The rate of acid formation decreases substantially 
at low concentrations. CM-concentrations around 10 gVS L-1 
show a four times higher acidification rate than the initial 
CM-concentration of 1 gVS L-1 (a decrease from 2.8 mgT-
VFA gVS-1*h for the 10 gVS L-1 to 0.75 mgTVFA gVS-1*h for the 
1 gVS L-1). At higher concentrations than 20 gVS L-1, the acidifi-
cation rate decreases successively and drops to 1.28 mgT-
VFA gVS-1*h at a concentration of 100 gVS L-1.

Although unexpected, we observed already during the first 
days methane formation. Therefore the methane formation dur-
ing batch acidification was investigated in more detail in subse-
quent experiments.

Table 1.  Chemical characteristics of dried CM (mean ± 
standard deviation).

Parameter chicken 
manure

Unit Dried

Total solids (TS) % (W/W) 95.6 ±3.2
Volatile solids (VS) % TS 69.4 ±0.9
Chemical oxygen demand 
(total COD)

mg g-1 TS 893 ±45

Total organic carbon (TOC) % TS 36.3 ±4.7
Total nitrogen (TN) % TS 5.5 ±1.5
Ammona nitrogen (NH4-N) % TS 0.52 ±0.002
Total phosphorus % TS 1.48 ±0.4
pH (CaCl2-extract) — 6.8 ±0.11

Figure 1.  Characterisation of the acidogenesis: Acid-production 
(TVFA) per hour under conditions of different concentrations of 
VS. TVFA are given as acetic acid equivalent (AC).
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Characterisation of the produced VFA-
liquor

During long-term batch experiments, the hydrolysis and acidi-
fication of CM were investigated at a concentration of 10 gVS L-

1 (equivalent to 12870 mg L-1 of COD). CM was rapidly 
degraded to VFA under anaerobic conditions. Maximum TVFA 
concentration (4663 mg L-1) was achieved at Day 4–5, indicat-
ing an acidification efficiency of 46% of COD (Figure 2(a)). 
Acetic acid was the predominant VFA species (3400 mg L-1) fol-
lowed by comparably low concentrations of propionate and 
butyrate (<500 mg L-1). The maximum TVFA concentration 
coincided with the peak of soluble COD (4680 mg L-1) (Figure 
2(c)). In total, 36.4% of the initially added COD was solubi-
lised. Another parameter monitored was the reduction of 
organic nitrogen to ammonium (NH4-N) (Figure 2(b)). The con-
version took place within the first 3–5 days, with the final con-
centration close to total-N concentration in the feed. These data 
indicate a rapid and nearly complete degradation of organic 
nitrogen into soluble NH4-N. This opens the possibility for a 
subsequent ammonia removal from the digestate prior to full 
methanisation.

In spite of intense VFA formation from CM, the pH of the 
batches did not drop below pH 6.9 (Figure 2(d)). The stabilisa-
tion of pH in a neutral range can give rise to methanogenic 

activity counteracting the accumulation of VFA. Hence, after 
5 days TVFA and soluble COD decreased slowly, reaching val-
ues as low as a third of the respective maximum value (Figure 
2(a) and (c)) at Day 26. It has been concluded that methane for-
mation was the cause for VFA reduction.

Methane formation during acidification

Gas production during batch CM acidification started at Day 2, 
followed by a short lag-phase until Day 5, indicating a diauxic 
growth curve (Figure 3). At a concentration of 10 gVS L-1 the 
continued anaerobic incubation of batches led to continuous pro-
duction of methane starting on Day 2 and accelerating on Day 6. 
On Day 41, a cumulative methane production of 189 L CH4/
kg VS was measured. These values approximate the BMP of 
200 L CH4/kg VS. The results indicate that under the chosen con-
ditions of CM batch acidification, a significant methane produc-
tion will occur. The early appearance of methane during the 
acidification process interferes with VFA accumulation and is 
expected to prevent a temporary storage of the liquor rich in 
VFA at ambient temperatures. Additional attempts to stabilise 
TVFA-accumulation and to supress methane formation failed. 
Using tap water instead of anaerobic digester sludge (ADS) for 
inoculation of batches was not sufficient to inhibit methane for-
mation. Higher CM-concentrations led to impaired acidification 

Figure 2.  Long-term batch digestion of CM at an initial concentration of 10 g L-1 VS. (a) Acid production, (b) total nitrogen and 
NH4-N, (c) solubilised COD and (d) pH value.
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and a delayed gas production, but did neither prevent methane 
formation. This is consistent with the observation of Bujoczek 
et al. (2000), who described 40 days of lag phase for digestion of 
undiluted CM. We concluded that elevated buffer capacity 
(ammonium and carbonate buffer systems) led to pH stabilisa-
tion of the liquid phase with values above pH 7, and these condi-
tions were sufficient to maintain methanogenic activity in the 
VFA-liquor.

Conclusions

The results from our trials show optimal substrate concentration 
for CM batch acidification between 10 and 20 gVS L-1 with an 
maximum acidification rate of 2.8 mgTVFA gVS-1*h (acidifica-
tion yields of 47%). The highest TVFA accumulation in the liquid 
phase corresponds to 450 mgVFA gVS-1. A rapid hydrolysis of 
CM into soluble products is indicated by peaks in soluble COD, 
TVFA and the complete conversion of organic nitrogen into 
ammonia-N at Day 5. However, after Day 5, soluble COD and 
TVFA decrease significantly, accompanied by increasing methane 
formation, leading to consumption of VFA by methanogens. After 
41 days, most of the CM is consumed for biogas formation. The 
approach to produce VFA-liquor from CM in an anaerobic batch 
process was successful with respect to rapid hydrolysis and acidi-
fication, and the use of an ADS-free process. However, the system 
failed in stabilising the accumulated VFA in the liquid phase and 
preventing methanogenic conditions. Therefore, the liquor should 
immediately be used in a digestion process.
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A B S T R A C T

We report here the impact of heat-shock treatments (55 and 70 °C) on the biogas production within the
acidification stage of a two-stage reactor system for anaerobic digestion and biomethanation of grass. The
microbiome proved both taxonomically and functionally very robust, since heat shocks caused minor com-
munity shifts compared to the controls, and biogas yield was not decreased. The strongest impact on the
microbial profile was observed with a combination of heat shock and low pH. Since no transient reduction of
microbial diversity occured after the shock, biogas keyplayers, but also potential pathogens, survived the
treatment. All along the experiment, the heat-resistant bacterial profile consisted mainly of Firmicutes,
Bacteroidetes and Proteobacteria. Bacteroides and Acholeplasma were reduced after heat shocks. An increase
was observed for Aminobacterium. Our results prove the stability to thermal stresses of the microbial com-
munities involved in acidification, and the resilience in biogas production irrespectively of the thermal
treatment.

1. Introduction

Anaerobic digestion is a highly sophisticated process that consists of
four phases: hydrolysis, acidogenesis, acetogenesis, and methanogen-
esis (Haarstrick et al., 2001). In practice, all four stages are usually
combined in a single reaction vessel, denominated as Completely or
Continuously Stirred Tank Reactor (CSTR). However, several reports
demonstrated the advantages of separating the degradation process into
two stages optimized each either for acidification or methane-produc-
tion (Baccay and Hashimoto, 1984; Dinopoulou et al., 1988; Gijzen
et al., 1988; Abendroth et al., 2015a). In the first stage, biopolymers are
degraded into monomers such as different volatile short-chain fatty
acids (VFAs). In the second stage, produced acids are converted into
methane and carbon dioxide. A separated acidification stage is espe-
cially interesting, as it allows the production of valuable intermediates
or by-products, such as VFAs (Koutinas et al., 2016) and molecular
hydrogen (Voolapalli and Stuckey, 2001). In addition, having the
acidification stage as a separate sub-system allows using substrates such
as silages with high content of solids and high organic loading rates.

Besides biological pre-treatments, physical, chemical and physico-
chemical methods are also used. All of them can make the biomass
accessible to microbial enzymes and, hence, yield higher amounts of
fermentable sugars (Mood et al., 2013). Thermal pre-treatments, which
require high amounts of energy, can successfully increase the accessi-
bility of lignocellulose, but temperatures as high as 200–300 °C have
been reported to be required (Yan et al., 2009). However, recent studies
suggest that lower temperatures such as 120 °C (Ennouria et al., 2016)
or even 70 °C (Gonzales-Fernandez et al., 2012) can already sig-
nificantly improve biomass degradability. In fact, a recent study reports
improved hydrogen production from digesters with granular sludge
after a mild heat-shock treatment (Alibardi et al., 2012).

Stable reactor performance has been reported even for hy-
perthermophilic digestion conditions up to at least 65 °C (Rademacher
et al., 2012; Algapani et al., 2016). At those temperatures, micro-
organisms require very long adaptation times (Moset et al., 2014).
Besides thermal tolerance, anaerobic microbiomes tend to be robust
and adaptable to extreme conditions, including high ammonia levels
(Abendroth et al., 2015a; Tian et al., 2017) or high salinity (Vrieze
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et al., 2016).
To reduce energetic demand and costs, and to avoid long adaptation

times compared to long thermophilic processes, we aimed at exploring
a new method for biogas production based on the application of mild
thermal shocks throughout the process. The question we raised was
whether acidifying microbiomes that are adjusted to mesophilic con-
ditions, might tolerate short, hyperthermophilic heat shocks, and which
would be the effect on the efficiency of the process. With the aim of
combining thermal and biological pre-treatments, we constructed a
two-stage two-phase system, heated the first stage cyclically up to 55 °C
and 70 °C and investigated the impact of this treatment on the microbial
community dynamics applying culture-dependent and cultivation-in-
dependent approaches. As substrate of choice, grass biomass was
chosen because of its high potential as renewable energy source
(Jungers et al., 2013), and because of its suitability for two-stage di-
gestion (Abendroth et al., 2017).

2. Material and methods

2.1. Fermentation conditions

Digestion experiments were performed in two two-stage two-phase
biogas reactor systems designed ad hoc for this work (Fig. 1). One two-

stage system was used to investigate the impact of heat-shocks and a
second one was used as a control system. The first stage of each system
was used for acidification, and the second stage was used for sub-
sequent methane formation. Additionally, each of the methane stages
was filled with 1.58 kg of bed packing (Christian Stöhr, Germany). At
the beginning of the experiment, each methane stage received 11.75 L
of sewage seed sludge, and each acidification stage received 8 L of
sewage sludge as inoculum. During acidification, fresh untreated grass
biomass (Graminidae) consisting of 30.4% total solids (TS), with 84.2%
volatile solids (VS) of TS and a chemical oxygen demand (COD) of
260mgO2/g was used as solid phase. For every batch cycle, 96.2 gL−1

of grass VS were filled into a cylindrical sieve, which was located in the
first stage for acidification to retain the solid phase during the perco-
lation process. Leachate was percolated on the fixed grass bed to pro-
duce high-strength liquor, which was collected after every batch cycle
of acidification. To keep the pH constantly at 6.0 or 6.8, a pH-regulation
system was used for each acidification stage (BL 7916, Hanna Instru-
ments, Germany). Collected liquor was stored under anoxic conditions
at 4 °C and fed semi-continuously and manually into the methane
stages. Each methane stage received daily approximately 100 gCOD
(8.5 gCOD L−1). Digestate from the methane stages was stored under
anoxic conditions at 4 °C and was used as leachate for the set-up of new
acidification cycles (Fig. 2). Produced gas from all stages was collected
in gasbags (Tecobag, Tesseraux, Germany) and analysed with the
Combimass Measurement device (Binder, Germany). Two multistage
systems were performed in parallel and at mesophilic temperature
(37 °C). The produced high strength liquor from the acidification stage
from the first system was regularly exposed to heat shocks.

2.2. Heat shocks and sampling

An overview about heat shock regimes is given in Fig. 2. Heat
shocks were applied manually transferring the leachate into an in-
cubator, where the leachate was heated up to 55 °C. After the core of
the biomass reached that temperature, the liquor was further incubated
for 30min and then refilled into the two-phase acidification stage.
During the first 21 days, only one heat shock with 55 °C was carried out
per week. From day 22 until day 42, the heat-shock temperature was
increased to 70 °C, performed similarly, and three heat shocks were
applied for each acidification cycle (Fig. 2). Between experimental day
21 and 2, there was a technical break in operation for two weeks.

A second, identical multistage system was used as control without
heat shocks (further referred as control system). Samples for 16S-rRNA
gene-amplicon high-throughput analysis were taken every second and
seventh day of each acidification cycle (Figs. 2 and 4). Additionally, at
day 36, directly after a 70 °C heat shock, a sample for 16S-rRNA gene
full length sequencing was taken, as well as a sample for microbial
culturing at day 37.

2.3. Chemical and microbial process analysis

Analysis of chemical parameters was performed as previously de-
scribed (Abendroth et al., 2015b). Extraction of DNA, primer nucleotide
sequences for bacteria, 16S-rRNA gene amplification, high-throughput
amplicon sequencing with IonTorrent, and sequence analysis was per-
formed as described by Abendroth et al. (2017). At day 36 of the ex-
periment, the acidification stage from the heat-shock system was ana-
lysed through full length sequencing of the 16S-rRNA gene and
anaerobic culturing approaches. Cloning and library construction was
performed as described by Rademacher et al. (2012).

Fig. 1. Experimental set-up: Reactor set-up consisting of a hydrolytic/acidogenic stage
(A) and a methanogenic stage (B). Feeding of the methanogenic stage with the liquid
phase from the hydrolytic/acidogenic stage and heat-treatment was performed manually
on a daily basis. Two reactor systems were built, further referred as heat-shock system
and control system.
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2.4. Isolation of microbial strains

To isolate different bacteria, cultivation was performed under anoxic
conditions on Reinforced Clostridial Agar (Oxoid Ltd.) and on modified
DSMZ medium No. 350 (Cellulomonas fermentansmedium). In contrast to
the DSMZ medium 350 (DSMZ 2007), the modified medium contained
(per liter) 2.0 g yeast extract, 0.5 g cellobiose, 2.0 g soluble starch, 1.0 g
methyl cellulose and 15.0 g agar; the pH of the medium was 6.9. After
autoclaving 10mL L–1 vitamin solution was added according to DSMZ
medium 141 (DSMZ 2017). The reactor sample was diluted 101, 104 and
106 fold in anoxic Ringer’s solution and aliquots of the dilutions were
streaked on pre-reduced agar plates. After incubation at 37 °C in an
anaerobic chamber single colonies were re-streaked until purification
was achieved. A loop full of colonies of the isolates were suspended in
50 µL molecular biological grade water and cells were lysed by con-
secutive freezing and thawing. Amplification and subsequent sequencing
of the nearly full-length 16S rRNA gene of the strains was carried out
using the primers 27F and 1492R as described by Hahnke et al. (2014).

3. Results and discussion

3.1. Impact of heat-shocks on process performance

After applying heat shocks on the acidification stage, almost no dif-
ferences of chemical parameters were observed between the heat-shock

system and the control system (Fig. 3). Solubilisation of chemical oxygen
demand and production of total volatile fatty acids (TVFA) were mon-
itored daily and found to reach similar values in both the heat-shock
system and the control system (Fig. 3A). Additionally, similar volumes of
methane from the produced high-strength liquor were produced (Fig. 3B).
During the first three weeks, when 55 °C heat shocks were applied,
29.1 ± 11.4 gCODL−1 and 15.9 ± 5.6 gTVFA L−1 were produced. The
respective control showed 35.6 ± 6.8 gCODL−1 and
20.5 ± 3.7 gTVFA L−1. In the following three weeks, where heat shocks
were more frequently applied and at a higher temperature (70 °C), con-
centrations of 26.9 ± 2.7 gCODL−1 and 18.9 ± 0.8 gTVFA L−1 were
measured. The corresponding control samples yielded
28.4 ± 5.7 gCODL−1 and 19.6 ± 0.2 gTVFA L−1. Even though the de-
gradation efficiency was not detectably improved, no process inhibition
was found either. At week 2 the heat-shock system and the control system
showed both a higher COD compared to the other weeks. Very likely this is
due to heterogeneity of the used substrate.

The high conversion of solubilized COD indicates that methanation
was not inhibited in both methane stages (heat shock system and
control system) (Fig. 3B). The produced amount of methane per g of
solubilized COD was in both methane stages slightly above the theo-
retical maximum of 350ml gCOD−1 due to small particles that re-
mained in the collected high strength liquor from the acidification.

In addition and in comparison to the control system, we observed in
the heat-shock system a reduced methane formation in the acidification

Fig. 2. Experimental timeline: Acidification occurred in six cycles of one week each. Experimental week 3 and experimental week 4 were separated by a two-weeks interval. Green circles
indicate the collection of liquor and the subsequent feeding into the methane stages. Collected digestates from the methane stages were used for setting up new acidification cycles. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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stage subjected to heat shocks. Compared to the methane stage, only
low levels of methane were formed in the acidification stage of both
reactor systems. In the acidification stage with 55 °C heat shocks, 67%
less methane was formed than in the un-heated control. In the experi-
ment with 70 °C, it was 40% less methane compared to the control
(Fig. 3C).

Therefore, the reduction of methanogenic contaminations from the
seed sludge in the acidification stage associated to heat treatments
could help to separate acidification from methanation more efficiently
in order to prevent loss of methane.

3.2. Post heat-shock transient microbial community

For each acidification cycle, samples for 16S-rRNA high throughput
sequencing were taken at the second and last day (Figs. 2 and 4). On the
phylum level, all sequences showed a profile mainly consisting of Fir-
micutes, Bacteroidetes and Proteobacteria (Fig. 4). This is in con-
cordance with our previous studies on microbiomes from seven

anaerobic digester plants in Germany, and acidification of grass bio-
mass (Abendroth et al., 2015a,b, 2017). During experimental weeks 1–3
Proteobacteria were especially enriched, whereas Bacteroidetes tended
to decrease in the control non-shocked reactor. The high abundance of
Proteobacteria is in concordance with a study published by
Weerasekara et al. (2016), where Proteobacteria increased in frequency
in wastewater due to acidic conditions. In our experiment, by changing
the pH to 6.8 (experimental week 4–6) the amount of Proteobacteria
was dramatically reduced and, in the heat shocked system the phylum
Bacteroidetes recovered. This indicates a high microbial redundancy, as
the change of dominating microbial groups showed no negative effects
on the degradability of the used grass biomass.

On genus level, Bacteroides, Prevotella, Enterococcus, Clostridium and
Pseudomonas were abundant during experimental weeks 1–3. Raising
the pH to 6.8 at day 21 was associated with a dramatic shift in the
microbial composition, consisting mainly of Bacteroides, Streptococcus,
Aminobacterium, Clostridium and Tissierella (Fig. 4). The fact that even
three shocks per cycle at 70 °C did not cause permanent shifts in the

Fig. 3. Chemical analysis: Produced total volatile fatty acids (TVFA) and solubilized chemical oxygen demand (COD) are given for both the heat-shock system and the control system (A).
Produced methane as well as conversion efficiency of solubilized COD for acidification and methane stages is summarized for different time intervals: d1–d21, day 1–21; d22–d42, day
22–42 (B). The methane production from the acidification stage is shown in (C). Gas volume is given as a mean value for the total gas formation per week (for each batch cycle). Standard
deviations were calculated with the mean value from experimental week 1–3 and experimental week 4–6.
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microbial composition, but only transient modifications indicates that
the mesophilic microbiomes from anaerobic digesters exhibit high re-
silience against heat shocks, while being more sensitive to pH changes.

Interestingly, many sequences remained unclassified on the genus
level (Fig. 4). This is in accordance with other studies on biogas facil-
ities, e.g., based on previous study on NGS (Maus et al., 2016), where
also many unclassified species were detected.

3.3. Heat shocks and pathogens

Microbial culturing as well as culture-independent 16S-rDNA full-
length sequencing was used to assess microbiota on species level
(Fig. 2). Surprisingly, many opportunistic pathogenic species listed with
risk level 2 in the TRBA (technical rules for biological working mate-
rials from the German committee for biological working materials,
2004) were detected, namely Bacteroides ovatus, Bacteroides thetaiotao-
micron, Bacteroides uniformis, Citrobacter werkmanii, Enterococcus galli-
narum, Globicatella sulfidifaciens, Streptococcus lutetiensis, Cor-
ynebacterium freneyi, Escherichia hermannii, Lactococcus garvieae, or
Proteus mirabilis. The application of sewage sludge as seed sludge might
explain the occurrence of detected pathogens mentioned before, as
sewage is well known for its content of pathogenic bacteria (Arthurson,
2008). The fact that corresponding genera were observed in high
abundance (Fig. 4) also implies a high abundance of these pathogens. In
conclusion, abundant heat treatments at 70 °C were not sufficient to
supress potential pathogenic genera.

4. Conclusions

The response of microbial populations present in mesophilic acid-
ification stages to short heat cycles was investigated. The studied mi-
crobiomes proved very robust, since the same amount of methane was
produced in heat-shocked samples compared to the control ones. Heat-
shocks caused only minor, transient community shifts and the strongest
impact on the microbiome was observed with a combination of heat
shock and low pH. Potential pathogenic genera remained abundant;
and several pathogens were still found after the heat treatment. Our
results can be the first step towards future approaches combining mi-
crobial-driven acidification and thermal treatments as a new pre-
treatment methodology.
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ABSTRACT A new Firmicutes isolate, strain HV4-6-A5C, was obtained from the hy-
drolysis stage of a mesophilic and anaerobic two-stage lab-scale leach-bed system
for biomethanation of fresh grass. It is assumed that the bacterial isolate contributes
to plant biomass degradation. Here, we report a draft annotated genome sequence
of this organism.

Degrading bacteria, most of them isolated from soil, play relevant roles in the
turnover of different types of material, such as petrol (1), pollutants (2), metal (3),

and cellulose (4, 5). In the case of plant biomass degradation in biogas reactors, such
microorganisms play an important role in making hardly accessible polymeric carbon
sources available for other organisms for the production of biogas.

In this study, we present the genome sequence of a new Firmicutes isolate, strain
HV4-6-A5C, which has a putative role in the microbial metabolic network for plant
biomass degradation. This strain was isolated from a lab-scale leach-bed biogas reactor
system, which was operated at 37°C with fresh grass as the sole substrate. Isolation was
performed on reinforced clostridial agar (Oxoid Ltd.) after the diluted hydrolysate was
reincubated with microcrystalline cellulose as the sole carbon source.

We applied a massive genome-sequencing approach using the Illumina NextSeq
500 platform. A Nextera XT library with a mean insert size of 350 nucleotides (nt) was
constructed and sequenced with a combination of 150-bp paired-end (PE) reads. A total
of 29.2 million PE sequences, with a mean length of 149.85 nt, were obtained.
Sequences were filtered by quality, and a total of 29.15 million PE sequences with a
Q value higher than 20 (mean Q, 33.17) were included in the assembly. The sequences
were assembled with SPAdes version 3.10.1 (6) using default parameters and a k-mer
value that provided us with the lowest number of contigs, the longest contig, the
largest N50 value, and the highest percentage of clean sequences. With a k-mer value
of 77, a total of 106 contigs were obtained. The total size of the genome was
approximately 3.3 Mb, with an estimated GC content of 33.43%, a longest contig size
of 276,895 bp, and an N50 value of 113,179 bp.

The assembled genome sequences were annotated using the Prokka version 1.11
annotation pipeline (7), which involved predicting tRNAs, rRNAs, mRNAs, and signal
peptides in the sequences using Aragorn, RNAmmer, Prodigal, and SignalP, respectively
(8–11).

The genome contains 5,376 elements, of which 5,311 are open reading frames
(ORFs) (2,723 canonical and 2,588 noncanonical) and 65 are encoded structural RNAs
(sRNAs)—i.e., 5 ORFs for rRNAs and 60 ORFs for tRNAs.
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Using BLAST, we compared the contigs with all genome sequences available in the
database. According to the PCOP (12) and the AAI (13), the genome can be classified
as a species belonging to the genus Clostridium. Based on the average nucleotide
sequence identity (ANI) (14), the closest related species is Sporanaerobacter acetigenes,
showing an identity of only 71.13%, which indicates that the novel strain represents a
new species within the phylum Firmicutes.

Accession number(s). The microbial strain reported here has been deposited at
DSMZ with the deposit number DSM 104144. The results of the whole-genome project
have been deposited at DDBJ/EMBL/GenBank under the accession no. FXVB02000001
to FXVB02000106. The version described here is the first draft version.
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Lipases are key biocatalysts with important biotechnological 

applications. With the aim of isolating robust lipolytic micro-

bial strains, we have analyzed the bacterial communities in-

habiting two domestic extreme environments: a thermophilic 

sauna and a dishwasher filter. Scanning electron microscopy 

revealed biofilm-forming and scattered microorganisms in 

the sauna and dishwasher sample, respectively. A culture-in-

dependent approach based on 16S rRNA analysis indicated a 

high abundance of Proteobacteria in the sauna sample; and, a 

large amount of Proteobacteria, Firmicutes, Cyanobacteria 

and Actinobacteria in the dishwasher filter. With a culture-

dependent approach, we isolated 48 bacterial strains, 

screened their lipolytic activities on media with tributyrin as 

the main carbon source, and finally selected five isolates for 

further characterization. These strains, all of them identified 

as members of the genus Bacillus, displayed optimum lipo-

lytic peaks at pH 6.5 and with 1-2% NaCl, and the activity 

proved very robust at a wide range of pH (up to 11.5) and 

added NaCl concentrations (up to 4%). The thermal, pH and 

salt robustness of the selected isolates is a valuable attribute 

for these strains, which are promising as highly tolerant bio-

detergents. To our knowledge, this is the first report regard-

ing the isolation from an indoor environment of Bacillus 

strains with a high potential for industry. 

 

Introduction 

In the past decade, research programs on indoor environments 

have resulted in an increasing data matrix of taxonomic and 

ecological interest [1, 2]. Attention has especially been paid to 

frequently used domestic places that are, on many occasions, 

overgrown with potential pathogenic bacteria, like in the re-

cently described coffee-machine or refrigerator bacteriomes [3, 

4]. It is important to stress that indoor environments mimic nat-

ural, often extreme, environments. For example, refrigerators 

are almost as cold as tundra and thus rich in cold-adapted bac-

teria, whereas sun-exposed artificial flat surfaces, such as solar 

panels, are home of a rich desert-like biocenosis [5]. Therefore, 

bioprospecting nearby indoor extreme environments is a 

poorly explored but yet promising screening strategy that 

might yield bacterial strains with new or improved biotechno-

logical applications. 

Indeed, and besides the obvious medical implications, 

another reason to further investigate indoor microbiomes is the 

search of enzymes with high industrial significance, especially 

as novel biocatalysts [6]. A very well known (natural) precedent 

is the discovery of the extremophile bacterium Thermus aquat-

icus [7], whose thermoresistant Taq polymerase allowed the 

revolutionary development of Polymerase Chain Reaction in 

the last decades of the 20th century.  

Within the current repertoire of available enzymes, es-

terases are particularly suitable for industrial processes, since 

they are stable in organic solvents and can freely reverse the en-

zymatic reaction from hydrolysis to synthesis [8]. Lipases have 

also been highlighted as key biocatalysts for biotechnological 

applications, such as the production of new biopolymeric ma-

terials and biodiesel, or the synthesis of fine chemicals like ther-

apeutics, agrochemicals, cosmetics and flavors [9]. Their stere-

oselective properties make them able to recognize enantiomers 

and enantiotopic groups, while many other enzymes for hy-

drolysis are just capable of metabolizing one antipode of the 

specific substrate [10].  

Environments with extreme and/or oscillating temper-

atures are of special interest, due to the opportunity of finding 

esterases that are active at wide intervals of temperature and 

that can thus be used under a range of industrial conditions, 

such as those present in dishwashers or washing machines. A 

new and promising esterase has recently been discovered in the 

thermophilic bacterium Thermogutta terrifontis. This enzyme re-

tains up to 95% of its activity after incubation for 1h at 80°C [11]. 

A cold-active and solvent-tolerant lipase from Stenotrophomonas 

maltophilia has also been reported, with retention of 57% of its 

activity at 5°C and more than 50% of its activity in pure organic 

solvents [12]. More examples of extremophilic enzymes with in-

dustrial potential include thermoalkalophilic esterases from Ge-

obacillus sp., which have all proven active at high temperature 

(65°C) and at pH of up to 10 [13]; or a cold-adapted esterase 

from Pseudoalteromonas arctica, which still retained 50% of its ac-

tivity at the freezing point of water [14]. 

 Upon discovery, extremophile enzymes can often be 

further optimized to improve their industrial use, as it was the 

case for the thermal stability and activity in the cold-adapted 

lipase B from Candida antarctica through chemical linking of 
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amino groups of the lipase to oxidized polysaccharides using 

reducing agents [15]. 

 Bioprospecting indoor extreme environments could 

yield new lipolytic microbial strains harbouring previously un-

characterized esterases and other enzymes. In the present work, 

we have focused on the microbial communities inhabiting two 

high-temperature, domestic environments: a thermophilic 

sauna and a dishwasher. We have isolated 48 bacterial strains, 

many of them lipase-producing bacteria. Furthermore, we have 

characterized five of them, displaying robust lipase activities 

with promising biotechnological applications. 

 

Material and Methods  

2.1. Sampling 

Environmental samples were taken from a sauna and from a 

dishwasher. The sauna, set at a temperature of approximately 

45°C and with 100% relative humidity, is a publicly-owned fa-

cility located in a communal swimming pool in Valencia (Spain) 

and therefore did not require specific permission for the sam-

pling. A biofilm-like mass below the aluminium bench of the 

sauna was collected in a sterile 50 mL Falcon tube and was 

stored at -20 °C until required. The dishwasher sample was col-

lected from the filter of a domestic Siemens dishwasher (prop-

erty of one of the co-authors of this work, MP), Model sm6p1s. 

The sample was obtained by scratching the inner surface of the 

filter with a sterile bladder and the resulting biomass was kept 

at -20 °C until required. 

 

2.2. Scanning electron microscopy 

Biomass samples were fixed on a 0.2 μm membrane filter 

(Merck Millipore Ltd, Tullagreen, Cork, Ireland) using para-

formaldehyde 2 % - glutaraldehyde 2.5 %. A volume of 5 ml was 

pressed two times through the filter. The filter was washed with 

Milli-Q water (Merck Millipore Ltd, Tullagreen, Cork, Ireland) 

and then dehydrated in ethanol (gradually increasing concen-

tration). Dehydrated samples were placed in microporous cap-

sules of 30 μm in pore size (Ted Pella Inc.) and immersed in 

absolute ethanol. Critical point drying was performed in an Au-

tosamdri 814 (Tousimis). Once dried, samples were placed on 

SEM stubs by means of silver conducting paint TAAB S269. 

Stubs were examined under a scanning electron microscope Hi-

tachi S-4100. 

 

2.3. 16S-rDNA analyses with Ion Torrent 

DNA was retrieved from sauna and dishwasher samples using 

the PowerSoil DNA Isolation Kit (MO BIO Laboratories, USA). 

DNA quality was analyzed using a Nanodrop-1000 Spectro-

photometer (Thermo Scientific, Wilmington, DE, USA). A 500 

bp long fragment from the hypervariable 16S-rDNA regions V1 

– V3 was amplified using the universal primers 28F (5′ -GAG 

TTT GAT CNT GGC TCA G-3′) and 519R (5′ -GTN TTA CNG 

CGG CKG CTG-3′). The quality of the resulting amplicons was 

checked on a 0,8% (w/v) agarose gel. Amplicons were precipi-

tated with 3M potassium acetate and isopropanol. Sequencing 

libraries were constructed using 100 ng of the DNA pool and 

performing the amplicon fusion method (Ion Plus Fragment Li-

brary Kit, MAN0006846, Life Technologies). Both libraries 

(Sauna and Dishwasher) were quantified with the Agilent2100 

Bioanalyzer (Agilent Technologies Inc, Palo Alto, CA, USA) 

prior to clonal amplification. Emulsion PCRs were carried out 

with the Ion PGM Template OT2 400 kit as described following 

the user guide provided by the manufacturer (MAN0007218, 

Revision 3.0 Life Technologies). Libraries were sequenced in an 

Ion 318 Chip v2 on a Personal Genome Machine (PGM) (Ion-

TorrentTM, Life Technologies) at Life Sequencing S.L. (Life Se-

quencing,Valencia, Spain), using the Ion PGM Sequencing 400 

kit and following the manufacturer’s protocol (publication 

number MAN0007242, revision 2.0, Life Technologies). Short 

reads (<100bp) and low quality reads (<q15) were removed 

upon sequencing at the sequencing center. Resulting sequences 

were analyzed by phylotyping with the MOTHUR software 

[16]. Amplicons were aligned to the 16S-reference from the 

Greengenes database. Classification was performed using the 

k-mer algorithm. Assignments with a similarity percentage 

lower than 80% were discarded.  

 

2.4. Isolation of microbial strains 

Lysogenic broth (LB) and Reasoner’s 2A (R2A) agar [17] media 

were used for bacterial culturing. Samples were suspended in 

PBS-buffer, vortexed, spread on LB and R2A plates and incu-

bated at 37 °C and 55 °C for one day. Thermophilic and thermo-

resistant strains were picked, grown in liquid culture and 

stored in 20 % Glycerol at -70 °C.  

 

2.5. Lipolytic Activity and microbial identification 

Tributyrin-containing medium is frequently used when screen-

ing for lipase-producing microorganisms [18,19], as the degra-

dation of this compound generates clear halos around the ly-

politic colonies in the otherwise turbid medium.  Samples (1 µL) 

from the cryo-preserved strains were directly spotted on mini-

mal medium [20], which contained tributyrin (10 mL/L) as main 

carbon source. Incubations were performed at 4 °C, 20 °C, 37 

°C, 46 °C and 55 °C. After 5 days of incubation, the diameter of 

the halos around lipase-producing strains was measured.  

 

2.6. 16S rRNA sequencing of selected strains 

Hypervariable 16S-rDNA regions V1 – V3 of the selected strains 

were amplified by colony PCR using 28F and 519R primers and 

sequenced with the Sanger method by the Sequencing Service 

of the University of Valencia (Spain). This allowed the identifi-

cation of the five selected isolates at a genus level. In order to 

identify the isolates at a species level, further Bacillus spp. pri-

mers were used to amplify: the TU elongation factor (tufGPF 

and tufGPR) [21], a group-specific 16S rRNA region (B-K1/F 

and B-K1/R1) [22], an endoglucanase gene (ENIF and EN1R) 

[23] and a glycolsyltransferase (Ba-G206F and Ba-G1013R) [24]. 

The resulting sequences were manually edited using Pregap4 

(Staden Package, 2002) to eliminate low-quality base calls. The 

final sequence for each isolate was compared to sequence data-

bases using the NCBI BLAST tool. 

 

2.7. Lipolytic assays varying pH and salt conditions 

Lipase production of the five selected strains was tested on 

solid minimal medium supplemented with tributyrin (10 

mL/L), adjusted to a range of pH (6.5, 8, 9.5 and 11.5), and with 

or without additional 4 % NaCl. Two microliters of each strain 

were spotted on each combination of pH and salt media and 

incubated at 4, 20, 37, 46 or 55 ºC for 5 days. After incubation, 

the diameters of the halos were measured.  

 

In order to determine the optimal conditions for the lipase pro-

duction of the five selected strains, two microliters of each strain 

were spotted on additional combinations of pH and salt (pH 

6.5, 8, 9.5 and 11.5; NaCl 0, 1, 2, 3 and 4 %).  The plates were 
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incubated for five days at 37 ºC. The assay was performed in 

triplicate. 

 

3. Results and Discussion 

 

3.1. Scanning Electron Microscopy 

The samples obtained from a wet sauna and a dishwasher filter 

proved rich in microorganisms, as deduced by observation un-

der SEM (Fig 1). In the sauna sample, microorganisms were 

mostly present in the form of a very dense biofilm almost totally 

embedded in a smooth matrix, very likely made of EPS  (Fig 

1A); whereas the dishwasher filter sample consisted mainly of 

food debris with scattered microorganisms (Fig 1B).  

 

3.2. 16S-rDNA analyses with Ion Torrent 

The taxonomic diversity of the two samples was determined by 

high throughput-sequencing, performed as described in Mate-

rials and Methods, and resulted in very different taxonomic 

profiles of both samples (Fig 1C and 1D). Proteobacteria were 

overwhelmingly abundant in the sauna sample, accounting for 

more than 90 % of the reads (Fig 1C). Of those, alpha-, beta- and 

gamma-proteobacteria were present at similar frequencies, 

each accounting for more than 20 % of the assigned sequences. 

Minor taxa with frequencies of 1-5% included Bacteroidetes, 

Actinobacteria and Acidobacteria. The dishwasher filter was 

characterized by large amounts of Proteobacteria, Firmicutes 

(Bacilli, most of them), Cyanobacteria and Actinobacteria; and 

very low amounts of other taxa (Fig 1D). 

 These results are consistent with previous reports on 

these two extreme environments. Lee et al. [25] characterized 

the bacterial community contaminating the floor of a hot and 

dry sauna, which proved rich in Firmicutes, Gamma-proteobac-

teria and Beta-proteobacteria. Another report by Kim et al. [26] 

of a 64ºC dry sauna revealed a population with Firmicutes, 

Gamma-proteobacteria, Beta-proteobacteria and Deinococci as 

the most frequent taxa. As mentioned above, our samples were 

rich Beta- and Gammaproteobacteria, although we also de-

tected Alpha-proteobacteria, which was absent in the works by 

Kim et al. [25] and Lee et al. [26]. Reciprocally, we did not detect 

Firmicutes or Deinococci with our 16S rRNA analysis, while 

both taxa were found by those two previous reports. Concern-

ing the dishwasher samples, a previous report by Savage et al. 

[27] characterized, among other household surfaces, the bacte-

ria present in the dishwasher rinse reservoir. According to that 

Fig 1. Scanning electron micrographs from the sauna (A) and the dishwasher (B) samples; taxonomic diversity esti-

mated by 16Sr amplicon sequencing of sauna (C) and dishwasher (D). The sauna (C) sample was especially rich in 

Proteobacteria; whereas the dishwasher filter (D) also contained high amounts of Firmicutes, Cyanobacteria and Ac-

tinobacteria. 
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previous report, bacterial population in the dishwasher consists 

of Proteobacteria, Firmicutes, Cyanobacteria and Actinobacte-

ria, which corresponds to the taxonomic profile we found in the 

dishwasher filter. Nevertheless, Euryarcheota and Bacteroide-

tes that were found in the rinse reservoir [27] were not detected 

in the filter in the present work.  

 

3.3. Culturing strains and lypolitic activity screening 

Bacterial colonies randomly selected among those with a strong 

growth on LB and R2A plates were re-streaked to yield a collec-

tion of strains, and lipase production was screened after growth 

for five days in tributyrin-containing media, as described in ma-

terials and methods. Lipase production of all the strains is 

shown in Fig 2A. Most of the strains (72 and 79 % of the sauna 

and dishwasher strains, respectively) displayeds some level of 

lipolytic activity. In general, sauna strains were able to produce 

lipases within a broader range of temperature, including, in two 

cases, values as high as 46 ºC and as low as 4 ºC. At least in these 

cases, though, lipases are not only produced, but are fully func-

tional at extreme temperatures as deduced by this assay. In con-

trast, strains from the dishwasher displayed lipolytic activity 

within a smaller range of temperatures, in most cases only 

around 37 ºC within the tested range. Interestingly, lipolytic ac-

tivity, as deduced by haloes diameter, was maximum at 46 ºC 

in several sauna strains, although no strains produced detecta-

ble lipolysis at 55 ºC. 

 On the basis of this first screening for lypolitic activi-

ties, five strains were selected for further assays. Those included 

the strains with the broadest temperature activity range: S22 

and S23, both active in all temperatures tested except at 55 ºC; 

and D3, D11 and D18, the three dishwasher samples active at 

both 20 ºC and 37 ºC. In order to assess the potential of these 

five strains for biotechnological purposes (in terms of lipase 

production under extreme environmental conditions), they 

were taxonomically identified and subjected to a stress test un-

der a range of temperatures and pH conditions, performed in 

minimum media with and without 4% added salt. Lipase activ-

ity were tested under different temperatures, NaCl and pH con-

ditions, and results are shown in Fig 2B. Again, sauna samples 

exhibited a broad range of thermal stability, with medium to 

large halos at pH values mildly acid to moderately alkaline (6.5-

9.5) and even in the presence of 4 % NaCl (pH 8 and 9.5). Inter-

estingly, very alkaline (11.5) conditions, combined with high 

salt contents correlated with an increased thermal range of li-

pase production and activity for both S22 and S23, which in-

creased from 20 ºC up to 46 ºC. In general, though, salt addition 

yielded smaller haloes at any temperature compared to stand-

ard media. 

 Regarding the strains we isolated from the dishwasher 

filter, assays performed with minimum media (without salt) ad-

justed to a wide range of pH values and incubated at different 

temperatures revealed the alkaliphility of their lipolytic abili-

ties, both in terms of thermal broad range at alkaline pH values, 

and intensity of the activity as deduced by haloes sizes (Fig 2B). 

Addition of NaCl to the media resulted in smaller haloes and, 

at least for pH values of 8-9.5, in a narrower thermal activity 

range. In the three dishwasher strains, the combination of 4 % 

added NaCl and high (11.5) pH resulted in an altered thermal 

range of activity. At least in one case (D11) addition of 4 % NaCl 

partially restored the lack of activity observed with no added 

salt and at a pH of 11.5. 

 Sequencing of a16S rRNA gene fragment allowed 

identification of all five isolates as Bacillus sp. Further sequenc-

ing of the TU elongation factor (tufGP primers) and the group-

specific 16S rRNA region (BK-1 primers) revealed D11 strain as 

Bacillus megaterium (with 99 and 100 % identity, respectively); 

and S22/S23 strains as Bacillus pumilus (with 100 and 99 % iden-

tity in the case of tufGP and BK-1 primers, respectively). D3 was 

not completely identified, and remains as Bacillus sp., possibly 

B. subtilis, B. amyloliquefaciens, B. methylotrophicus or B. velenzne-

sis. D18 was identified as B. cereus/B. thuringiensis.  

 

3.4. Robustness of the selected isolates in varying pH and salt condi-

tions 

In order to characterize the robustness of lypolitic activity of the 

five selected strains under alkaline and/or high salinity condi-

tions, the strains were tested on combined pH and salt contents 

conditions, at 37 ºC. Lypolitic activity results are shown in Fig 

3. 

Fig 2. Heatmaps of lipolytic activity. (A) Isolates from the 

sauna and from the dishwasher contained mainly strains with 

lipolytic activity. Strains from the sauna exposed lipolytic ac-

tivity within a broader range of temperature. Sauna samples 

with the widest range of temperature were S22 and S23. In the 

dishwasher most samples showed lipolytic activity at 37 °C 

and only sample D3, D11 and D18 had lipolytic activity at two 

tested temperatures. (B) Heatmap of lipolytic activity of se-

lected strains from sauna (S22, S23) and dishwasher (D3, D11, 

D18) under different pH (6.5, 8, 9.5, 11.5) and temperature 

conditions (4, 20, 37, 46 and 55ºC) in minimal medium or min-

imal medium with 4 % NaCl. 
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 In general, all strains displayed a very robust lipase ac-

tivity under different salt and pH conditions when grown at 37 

ºC, as deduced by the relatively flat 3D profile (Fig 3), although 

halo diameters generally decreased towards extreme salt values 

(0% and 4% NaCl). Specifically, D11 and D18 (Fig 3D and 3E, 

respectively) were the most robust lipase producers, followed 

by S22 and S23 (Fig 3A and 3B, respectively). In contrast, D3 

(Fig 3C) was the least robust strain, with variations in activity 

depending on pH conditions and an even higher salt-depend-

ent variation: lipolytic activity ranged from undetectable in 

very alkaline conditions to  very large (2.45 cm) haloes at pH 6.5 

with 1% NaCl. 

Aside from the robustness observed, the five selected 

strains displayed clear optimum peaks at pH 6.5 with 2% NaCl 

for S22 and S23; and with 1% NaCl for D3, D11 and D18. D3 

displayed the highest lypolitic activity under optimum condi-

tions, with halo diameters of up to 2.45 cm, followed by S22 and 

S23, both with diameters of up to 1.35 and 1.40 cm, respectively. 

Strains D11 and D18 displayed the lowest lipolytic activity, 

with maximum halos of 0.76 and 1.17, respectively. 

 Bacillus sp. have been previously reported to produce 

thermostable lipases [28, 29, 30, 31]. Regarding the Bacillus spe-

cies that we have isolated and identified in the present work, 

they are known to produce thermo-resistant lipases, some of 

them stable at very low or very high pH values. For example, 

thermostable lipases can be found in B. megaterium (a monoacyl-

glycerol lipase and a carboxylesterase, Uniprot accession num-

ber: A0A0H4RCB5 and G2RXU5). Furthermore, a thermostable 

extracellular lipase has been described for this species, which is 

capable of retaining 100 % of its activity at 50 °C, and becomes 

stimulated in the presence of acetone, DMSO, isopropanol and 

several reducing agents [32].  On the other hand, there are sev-

eral thermostable lipases known for the B. cereus group (Uni-

prot accession number: A0A0B5NXJ9; A0A090YL00; 

A0A0A0WM49) and for the B. subtilis group [33, 34]. Bacillus pu-

milus is well-known for its thermostable lipases, as many re-

ports describe lipase fully or partially functional at high tem-

peratures [35, 36, 37, 38, 39], including a lipase that is able to 

resist temperatures up to 100 °C [36]. Even lipases that are func-

tional at both high temperatures and high or low pH values 

have been described [37, 38].  Finally, B. pumilus, has been iden-

tified as the most efficient lypolitic enzymes producer out of 65 

strains analysed in a previous report [39]. In fact, in our experi-

ments, isolates S22 and S23 were among the three strains with 

the highest lypolitic activity, and both of these were identified 

as B. pumilus. 

 In summary, we have identified from domestic envi-

ronments several Bacillus spp. which are strong producers of 

robust lypolitic enzymes, and this is in concordance with the 

 

Fig 3. Surface graphs of lypolitic activities of the five selected strains (S22, S23, D3, D11 and D18) under different pH (6.5, 

8, 9.5 and 11.5) and NaCl (0, 1, 2, 3 and 4%) conditions. Diameter of the lipolysis haloes (cm) is represented in the Y axis, 

whereas salt and pH conditions are represented in the X and Z axis, respectively. Halo sizes are in grey to dark grey as indi-

cated at the bottom of each graph. 
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literature on strains of this genus isolated from other environ-

ments. It has to be highlighted that, in our assays, the lipases 

corresponding to the isolated strains showed high activity at 

wide ranges of pH (6.5 – 11.5), temperature (4°C -  46 °C) and 

salt (up to 4 % NaCl), and that all measurements were per-

formed in-situ within their host organisms. Therefore, not only 

the bacteria are able to produce lipases under these conditions, 

but also these lipases are perfectly functional. Further tests of 

the lipase extracts will shed light on the robustness of the lipo-

lytic activity itself, without the limitations caused by the bacte-

rial production.  

 Our results suggest that the isolated strains may be 

used as robust chassis for lipase production, and these lipases 

may be used in the industry as robust bio-detergents. As de-

scribed in the works mentioned above, especially B. pumilus 

seems to be of interest, since it shows a very strong lipolytic ac-

tivity and since it adapts, according to our data, most efficiently 

to different conditions of pH, salt and temperature. This is es-

pecially interesting, since we found no previous description of 

Bacillus lipases, which work efficient in wide range of pH, salt 

and temperature at the same time. The present work shows for 

the first time the potential of domestic environments as a source 

of Bacillus strains with potential biotechnological applications. 

 

4. Conclusions 

The present work is the first screening of extreme indoor envi-

ronments specifically aiming at the identification of biotechno-

logical relevant bacterial strains able to produce robust en-

zymes, in our case, robust lipases. Our results reveal that such 

domestic environments are promising sources for the identifi-

cation of robust enzymatic activities, as we have managed to 

isolate five strains with stable lipolytic activity under a wide 

range of temperature, salt and pH conditions. These metabolic 

capabilities can be especially useful as components of robust 

bio-detergents. Furthermore, this work might be the first step 

of a new view on the human-associated indoor microbiome, fo-

cused on ecological aspects and on biotechnological applica-

tions. 
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Figure S1 - Principal component analysis (PCA) performed on the chemical environmental
parameters measured for all samples. Data were normalized, and two components
explaining nearly 90 % of the total variance were used for plotting.



Table S2. Content of VFA in the sampled reactors (error ± 10%).  

 TVFA 
(mg/L) 

Acetic 
acid (mg/L) 

Propionic 
acid (mg/L) 

Isobutyric 
acid 

(mg/L) 

Isovaleric 
acid 

(mg/L) 
LB-Schmoelln-1 2.010.00 1.300.00 710.00 0.00 0.00 
LB-Schmoelln-2 747.00 690.00 57.00 0.00 0.00 
CD-JenaS1-1 3.500.00 930.00 1.900.00 310.00 360.00 
CD-JenaS1-2 2.670.00 870.00 1.500.00 0.00 300.00 
CD-JenaS2-1 780.00 560.00 57.00 53.00 110.00 
CD-JenaS2-2 880.00 710.00 60.00 0.00 110.00 
CD-JenaS3-1 79.00 0.00 0.00 0.00 0.00 
CD-JenaS3-2 490.00 490.00 0.00 0.00 0.00 
SS-Jena-1 0.00 0.00 0.00 0.00 0.00 
SS-Jena-2 0.00 0.00 0.00 0.00 0.00 
SS-Weim-1 0.00 0.00 0.00 0.00 0.00 
SS-Weim-2 0.00 0.00 0.00 0.00 0.00 
LB-Schlossv-1 300.00 0.00 0.00 0.00 0.00 
LB-Schlossv-2 0.00 0.00 0.00 0.00 0.00 
SS-Rudol-1 0.00 0.00 0.00 0.00 0.00 
SS-Rudol-2 0.00 0.00 0.00 0.00 0.00 
LB-Saalfeld-1 385.00 320.00 65.00 0.00 0.00 
LB-Saalfeld-2 1.170.00 990.00 180.00 0.00 0.00 
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Table S3. Sequencing statistics.  

 Number of 
Sequences 

Analyzed for 
Archaea (bp) 

Average Length 
(bp) 

Number of 
Sequences 

Analyzed for 
Bacteria (bp) 

Average-Length 
(bp) 

CD-Jena-S1-1A 9.511 552 25.526 527 
CD-Jena-S1-1B 124.529  19.867 531 
CD-Jena-S1-1C 8.088 501 28.422 532 
CD-Jena-S1-2A 7.926 510 18.945 528 
CD-Jena-S1-2B 10.375 501 32.839 531 
CD-Jena-S1-2C 6.394 507 11.600 531 
CD-Jena-S2-1A 15.546 541 6.243 539 
CD-Jena-S2-1B 17.978 541 8.116 535 
CD-Jena-S2-1C 8.907 508 8.173 532 
CD-Jena-S2-2A 4.805 546 5.163 529 
CD-Jena-S2-2B 2.045 482 12.872 529 
CD-Jena-S2-2C 3.441 429 22.541 526 
CD-Jena-S3-1A - - 36.139 526 
CD-Jena-S3-1B - - 27.249 528 
CD-Jena-S3-1C - - 8.324 518 
CD-Jena-S3-2A - - 22.862 514 
CD-Jena-S3-1B - - 8.381 514 
CD-Jena-S3-1C - - 17.793 509 
LB-Schmölln-1A 21.242 557 16.672 536 
LB-Schmölln-1B 19.990 558 7.762 533 
LB-Schmölln-1C 17.612 555 27.439 535 
LB-Schmölln-2A 17.584 523 15.029 531 
LB-Schmölln-2B 10.498 495 8.353 537 
LB-Schmölln-2C 102.404 516 16.529 528 
LB-Saalfeld-1A 26.082 561 23.180 527 
LB-Saalfeld-1B 25.638 531 14.301 524 
LB-Saalfeld-1C 24.703 539 42.882 520 
LB-Saalfeld-2A 14.798 511 13.249 518 
LB-Saalfeld-2B 11.503 484 12.262 514 
LB-Saalfeld-2C 12.981 506 9.960 517 
LB-Schlossv-1A 39.907 559 6.854 527 
LB-Schlossv-1B 26.575 553 9.935 520 
LB-Schlossv-1C 33.577 553 16.253 526 
LB-Schlossv-2A 34.187 490 6.924 520 
LB-Schlossv-2B 31.977 511 4.385 519 
LB-Schlossv-2C 20.777 540 7.217 518 
SS-Jena-1A 40.233 565 36.609 528 
SS-Jena-1B 36.122 570 11.314 533 
SS-Jena-1C 36.576 565 46.963 532 
SS-Jena-2A 34.107 556 12.209 532 
SS-Jena-2B 22.293 562 15.127 534 
SS-Jena-2C 24.756 558 29.519 535 
SS-Weim-1A 39.883 573 15.591 545 
SS-Weim-1B 36.285 571 31.944 532 
SS-Weim-1C 45.212 567 29.564 529 
SS-Weim-2A 24.457 551 17.480 529 
SS-Weim-2B 28.348 560 8.166 521 
SS-Weim-2C 16.001 560 15.722 526 
SS-Rudol-1A 35.503 573 11.792 534 
SS-Rudol-1B 29.760 562 14.161 520 
SS-Rudol-1C 25.978 571 28.028 531 
SS-Rudol-2A 46.357 561 12.047 526 
SS-Rudol-2B 44.304 560 33.660 524 
SS-Rudol-2C 16.501 553 16.562 530 
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Additional file 1: Figure S3. SDS-PAGE displaying the protein profiles.

Additional file 2: Table S4. Mascot results. Online available:
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Additional file 3: Table S5. Differentially expressed proteins.Online available:
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Additional file 4: Table S1. Description of the used seed sludge.

Additional file 5: Table S2. Overview of reaction stages and reactor performance.

Additional file 6: Table S6. Number of sequences and mean length for bacteria from
the acidification stages.

Additional file 7: Table S7. Number of reads and mean length of reads for bacteria
from the methane stages.

Additional file 8: Table S8. Number of reads and mean length of reads for archaea
from the methane stages.



Tab. S1: Description of the used seed sludge 

Stage of the 
experiment 

Type of seed 
sludge 

Origin of seed 
sludge 

Input at the 
original plant 

Plant configuration 

 
Digestion of 
high strength 
liquor in high-
TS sludge 
 

 
High-TS sludge 
from a plug 
flow digester 
(17% TS) 

 
Two-stage digester 
from Jena (vertical 
plug flow and 
CSTR) 
 

 
Farm manure, 
Livestock 
Farming waste, 
Silage 

 
HRT: 87 days  
Produced gas: 1.2 m3/m3 × day 
OLR: 3.0 kg × VS/m3 × day 
Stage 1 (plug flow): 790 m3 
Stage 2 (CSTR): 2000 m3 
Stage 3 (Digestate): 3800 m3 
 

 
Digestion of 
high strength 
liquor in low-
TS sludge 
 

 
Low-TS sludge 
from a sewage 
digester (4% 
TS) 

 
Digester from the 
sewage plant in 
Jena (CSTR) 

 
Municipal 
sewage sludge 

 
HRT: 21 days 
Produced gas: 0.6 m3/m3 × day 
OLR: 1.8 kg × VS/m3 × day 
Single stage process (2 reactors) 
Digester volume: 2 × 2000 m3 
 

 
Digestion of 
high strength 
liquor in a 
leach-bed 
system 
 

 
Low-TS sludge 
from a sewage 
digester (4% 
TS) 
 
Fully overgrown 
solids for a 
packed bed  
 

 
Digester from the 
sewage plant in 
Jena (CSTR) 

 
Municipal 
sewage sludge 

 
HRT: 21 days 
Produced gas: 0.6 m3/m3 × day 
OLR: 1.8 kg × VS/m3 × day 
Single stage process (2 reactors) 
Digester volume: 2 × 2000 m3 
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Tab. S2: Overview of reaction stages and reactor performance 
 Experiment 1 Experiment 2 
 
Acidification stages 

 
Temperature = 37°C; 

 pH 5.5 (NaOH-regulated); 
 CSTR (Batch); 

Incubation per cycle = 7day;  
 Volume = 5L; 

 Input = 30 gO2/L; 
No seed sludge; 

Duration: 3 × 7days; 
5% inoculum (from previous batch 

cycle) 

 
Temperature = 55°C; 

 pH 5.5 (NaOH-regulated); 
 CSTR (Batch); 

Incubation per cycle = 7day; 
 Volume = 5L; 

 Input = 30 gO2/L; 
No seed sludge; 

Duration: 3 × 7days; 
5% inoculum (from previous batch cycle) 

 
 
Methane stage 1 
 
 

 
Seed sludge: Industrial codigester 

(CSTR); 
 

Temperature = 37°C; 
Substrate = Mesophilic liquor; 

Input: 33 ml/day (0.51 gO2/L×day); 
Semi-continuous Batch;  

1L bottles (horizontal shaking) 
No pH regulation 

 

 
Seed sludge: Industrial codigester (CSTR); 

 
Temperature = 37°C; 

Substrate = Thermophilic liquor; 
Input: 33 ml/day (0.39 gO2/L×day); 

Semi-continuous Batch;  
1L bottles (horizontal shaking); 

No pH regulation 
 

 
Methane stage 2 
 

 
Seed sludge: Sewage sludge 

 
Temperature = 37°C; 

Substrate = Mesophilic liquor; 
Input: 33 ml/day (0.51 gO2/L×day); 

Semi-continuous Batch;  
1L bottles (horizontal shaking) 

No pH regulation 
 

 
Seed sludge: Sewage sludge 

 
Temperature = 37°C; 

Substrate = Mesophilic liquor; 
Input: 33 ml/day (0.37 gO2/L×day); 

Semi-continuous Batch;  
1L bottles (horizontal shaking) 

No pH regulation 
 

 
Methane stage 3 
 

 
Seed sludge: Sewage sludge 

 
Temperature = 37°C; 

Substrate = Mesophilic liquor; 
Input: 33 ml/day (0.51 gO2/L×day); 

Semi-continuous Batch;  
Volume = 3L 

Leach bed (Hel-X-Füllkörper); 
Continuous leach circulation; 

No pH regulation 
 

 
Seed sludge: Sewage sludge 

 
Temperature = 37°C; 

Substrate = Mesophilic liquor; 
Input: 33 ml/day (0.37 gO2/L×day); 

Semi-continuous Batch;  
Volume = 3L 

Leach bed (Hel-X-Füllkörper); 
Continuous leach circulation; 

No pH regulation 
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Figure S3 - SDS-page: Blue-Coomassie stained gel showing protein extraction from several
samples. Molecular weights are given to the left in kDa (10 µg per lane).



Tab. S6: Number of sequences and mean length for bacterial reads from the acidification stages 
Name of sample Reads Mean length 

Grass - Substrate 9,195 410 
Acidification W1-37-d2 1,871 305 
Acidification W1-55-d2 3,566 369 
Acidification W1-37-d4 8,565 350 
Acidification W1-55-d4 2,820 323 
Acidification W1-37-d6 35,180 368 
Acidification W1-37-d8 842 377 
Acidification W1-55-d8 2,124 298 
Acidification W2-37-d2 1,390 327 
Acidification W2-55-d2 3,901 327 
Acidification W2-37-d4 1,101 370 
Acidification W2-55-d4 788 453 
Acidification W2-37-d6 3,058 392 
Acidification W2-55-d6 1,265 395 
Acidification W2-37-d8 595 395 
Acidification W2-55-d8 1,824 377 
Acidification W3-37-d2 4,088 383 
Acidification W3-55-d2 5,309 376 
Acidification W3-37-d4 1,086 336 
Acidification W3-55-d4 4,476 339 
Acidification W3-37-d6 3,044 398 
Acidification W3-55-d6 1,917 447 
Acidification W3-37-d8 253,369 308 
Acidification W3-55-d8 1,018 427 
Acidification W3-RT37-d2 1,660 415 
Acidification W3-RT55-d2 1,439 376 
Acidification W3-RT37-d4 788 373 
Acidification W3-RT55-d4 24,697 446 
Acidification W3-RT37-d6 1,359 389 
Acidification W3-RT55-d6 1,772 388 
Acidification W3-RT37-d8 577 383 
Acidification W3-RT55-d8 1,043 413 
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Tab. S7: Number of reads and mean length of reads for bacteria from the methane stages 
Name of sample Reads Mean length 

C-Euco-d0  864 365 
37-Euco-d4 1,768 408 
55-Euco-d4 1,405 398 
C-Euco-d4 521 410 
37-Euco-d8 883 401 
55-Euco-d8 4,545 341 
C-Euco-d8 764 391 
37-Euco-d12 1,842 390 
55-Euco-d12 1,485 409 
C-Euco-d12 981 402 
37-Euco-d16 1,155 379 
55-Euco-d16 1,089 412 
C-Euco-d16 1,614 377 
37-Euco-d20 2,263 380 
55-Euco-d20 2,083 371 
C-Euco-d20 2,825 371 
C-SW-d0  602 421 
37-SW-d4 2,624 422 
55-SW-d4 2,910 431 
C-SW-d4 1,931 418 
37-SW-d8 1,636 424 
55-SW-d8 1,732 420 
C-SW-d8 577 420 
37-SW-d12 1,776 376 
55-SW-d12 33,005 373 
C-SW-d12 822 433 
37-SW-d16 444 405 
55-SW-d16 1,079 410 
C-SW-d16 64,878 354 
37-SW-d20 2,982 309 
55-SW-d20 23,503 326 
C-SW-d20 17,184 358 
Biofilm-Start-37 1,403 383 
Biofilm-Start-55 2,566 405 
Biofilm-End-37 710 400 
Biofilm-End-55 16,395 409 
Leach-37-d0  959 396 
Leach-55-d0  724 396 
Leach-37-d4 2,259 409 
Leach-55-d4 1,797 383 
Leach-37-d8 1,338 405 
Leach-55-d8 4,205 417 
Leach-37-d12 503 414 
Leach-55-d12 19,397 453 
Leach-37-d16 947 413 
Leach-55-d16 12,437 414 
Leach-37-d20 55,342 356 
Leach-55-d20 1,268 396 
L1A-55-d6 2,594 416 
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Tab. S8: Number of reads and mean length of reads for archaea from the methane stages 
Name of sample Reads Mean length 

C-Euco-d0 4,121 173 bp 
37-Euco-d4 16,665 396 bp 
55-Euco-d4 9,291 341 bp 
C-Euco-d4 8,886 260 bp 
37-Euco-d8 11,629 226 bp 
55-Euco-d8 4,106 315 bp 
C-Euco-d8 11,771 131 bp 
37-Euco-d12 11,322 302 bp 
55-Euco-d12 10,613 409 bp 
C-Euco-d12 10,138 380 bp 
37-Euco-d16 35,098 228 bp 
55-Euco-d16 15,843 383 bp 
C-Euco-d16 1,891 207 bp 
37-Euco-d20 27,677 301 bp 
55-Euco-d20 1,511 225 bp 
C-Euco-d20 15,812 227 bp 
C-SW-d0  20,431 255 bp 
37-SW-d4 51,179 218 bp 
55-SW-d4 19,73 395 bp 
C-SW-d4 17,777 300 bp 
37-SW-d8 26,646 418 bp 
55-SW-d8 21,654 274 bp 
C-SW-d8 14,833 319 bp 
37-SW-d12 27,206 418 bp 
55-SW-d12 15,998 368 bp 
C-SW-d12 25,793 377 bp 
37-SW-d16 11,178 294 bp 
55-SW-d16 53,94 159 bp 
C-SW-d16 40,778 200 bp 
37-SW-d20 39,236 291 bp 
55-SW-d20 58,3 331 bp 
C-SW-d20 27,957 422 bp 
Biofilm-Start-37 17,929 400 bp 
Biofilm-Start-55 10,851 444 bp 
Biofilm-End-37 9,000 456 bp 
Biofilm-End-55 30,565 292 bp 
Leach-37-d0  19,021 283 bp 
Leach-55-d0  17,221 283 bp 
Leach-37-d4 10,17 372 bp 
Leach-55-d4 10,688 275 bp 
Leach-37-d8 27,395 346 bp 
Leach-55-d8 40,587 271 bp 
Leach-37-d12 12,174 310 bp 
Leach-55-d12 23,277 237 bp 
Leach-37-d16 198 379 bp 
Leach-55-d16 16,404 374 bp 
Leach-37-d20 15,678 407 bp 
Leach-55-d20 20,677 318 bp 
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Appendix S1. Thermogenerator cell (MPG-D751) general equations	
  

According to the first law of thermodynamics, the equations for a thermogenerator cell (for a 

schematic representation, see Fig. S2) are defined as follows [14]: 

!QH t( ) = !QsH t( )−
!Qj t( )
2

+ !Qt t( ) =α ⋅TH t( ) ⋅ I t( )− 1
2
⋅ I 2 t( ) ⋅Ri +

TH t( )−TC t( )
Rth

#

$
%

&

'
(  (S1.1) 

!QC t( ) = !QsC t( )+
!Qj t( )
2

+ !Qt t( ) =α ⋅TC t( ) ⋅ I t( )+ 1
2
⋅ I 2 t( ) ⋅Ri +

TH t( )−TC t( )
Rth

#

$
%

&

'
(  (S1.2) 

Pe t( ) = !QH t( )− !QC t( ) =α ⋅ TH t( )−TC t( )( ) ⋅ I t( )−⋅I 2 t( ) ⋅Ri = I 2 t( ) ⋅RLoad  (S1.3) 

Where QH and QC are the net heat flows (absorbed and released, respectively) through the hot 

and cold sides of the thermogenerator; QsH and QsC are the heat flows produced in the hot and 

cold sides of the cell due to the Seebeck effect (being α the Seebeck coefficient, and TH and 

TC the temperature of the hot and cold sides of the thermogenerator). Qj is the heat flow 

generated due to the Joule effect when the current (I) goes through the internal resistance (Ri). 

This heat flow is equally distributed in both sides of the thermogenerator. Qt represents heat 

flow loss due to natural thermal conduction (being Rth the thermal resistance) occurring 

between both sides of the cell, which are at a different temperature. Pe represents the 

electrical power production on a load resistance (Rload). 

In order to obtain the maximum electrical power, the load resistance must be equal to the 

internal resistance of the thermogenerator. Thus, the electrical current of this circuit 

configuration is: 

I =
α ⋅ ΔTth t( )
2 ⋅Ri

 (S1.4) 

Where ΔTth represents the difference in temperature between the hot and the cold side of the 

thermogenerator.	
  

On the other hand, under an open-circuit configuration I is null, so there is no electrical power 

production, and both QH and QC are equal to Qt. 
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Appendix S2. TE-Power Probe model description	
  

The definition of I for maximal power acquisition, Eq. S1.4 in Appendix S1, was taken into 

account to define a simple thermal model, in which every thermal resistance of the TE-Power 

Probe is considered (Fig. S2). The equations modeling TE-Power Probe performance are: 

 

!QTh t( ) = !QH t( ) =
α 2 ⋅ ΔTth t( )

Ri
⋅
TH t( )
2

−
ΔTth t( )
8

+
Ri

α 2 ⋅Rth

$

%
&

'

(
)  (S2.1) 

!QC t( ) =
α 2 ⋅ ΔTth t( )

Ri
⋅
TC t( )
2

+
ΔTth t( )
8

+
Ri

α 2 ⋅Rth

#

$
%

&

'
(  (S2.2) 

VO t( ) =
α ⋅ ΔTth t( )

2
 (S2.3) 

Pe
max t( ) =

α ⋅ ΔTth t( )( )
2

4 ⋅Ri
 (S2.4) 

TH t( ) = Tb t( )− !QH t( ) ⋅RCu  (S2.5) 

TC t( ) = Tenv t( )+ !QC t( ) ⋅RSk  (S2.6) 

 

Where Vo is the output voltage and ΔTth represents the difference in temperature between the 

hot and the cold side of the thermogenerator; RCu is the thermal resistance of the cupper bar 

connecting the broth (at a temperature Tb) and the hot side of the cell (at a temperature TH); 

and RSk is the thermal resistance found between the cold side of the thermogenerator (TC) and 

the environment (considering room temperature Tenv).	
  

	
  	
  

Under an open-circuit configuration the model equations can be written as follows: 

 

!QTh t( ) = !QH t( ) = !QC t( ) =
TH t( )−TC t( )

Rth

"

#
$

%

&
'  (S2.7) 

VO t( ) =α ⋅ ΔTth t( )  (S2.8) 

TH t( ) = Tb t( )− !QH t( ) ⋅RCu  (S2.9) 

TC t( ) = Tenv t( )+ !QH t( ) ⋅RSk  (S2.10) 

Where there is no electrical power production.	
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Figure S1 - Schematic drawing of MTC data-recording system. Dashed lines represent
thermocouple connections measuring the temperature of the broth (Tb), the temperature
of the hot and cold sides of the thermogenerator (TH and TC , respectively), and the
room temperature (Tenv); whereas continuous lines represent voltage measurements
corresponding to the thermogenerator (Vth) and the electrical resistance (Vr).
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Figure S2 - Schematic drawing of heat flows and resistances within the thermogenerator cell.
Symbols used are in accordance with the nomenclature summarized in Table 2.
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Figure S1 - Microbiome composition of heat-shocked samples. Microbial composition is
given as a percentage of all analysed bacterial sequences. Sequences were classified on the
class level. Values for samples from the experiment with 55◦C heat shocks are shown in
A; and C corresponds to the 70◦C heat shocks. Values for samples from the control system
without heat shocks are shown in B and D. All samples were analysed as duplicates.



Tab. S2: Number of sequences and mean length for bacteria from the acidification stages 
Name of sample Reads Mean length 

55_W1_d2_1 14687 416.81 
55_W1_d2_2 12443 425.897 
55_W1_d7_1 8378 427.981 
55_W1_d7_2 11045 427.253 
55_W2_d2_1 16713 433.586 
55_W2_d2_2 41941 434.986 
55_W2_d7_1 20063 426.696 
55_W2_d7_2 4014 433.529 
55_W3_d2_1 7144 431.301 
55_W3_d2_2 17168 422.04 
55_W3_d7_1 23719 472.801 
55_W3_d7_2 12905 460.459 
C55_W1_d2_1 17875 423.359 
C55_W1_d2_2 5445 410.648 
C55_W1_d7_1 16871 452.825 
C55_W1_d7_2 1076 444.721 
C55_W2_d2_1 20715 437.42 
C55_W2_d2_2 4115 443.536 
C55_W2_d7_1 3526 436.289 
C55_W2_d7_2 50543 436.819 
C55_W3_d2_1 5106 460.342 
C55_W3_d2_2 4702 444.726 
C55_W3_d7_1 8931 430.297 
C55_W3_d7_2 30696 427.292 
70_W1_d2_1 34948 423.14 
70_W1_d2_2 16278 413.072 
70_W1_d7_1 13919 456.985 
70_W1_d7_2 9846 455.488 
70_W2_d2_1 3181 457.661 
70_W2_d2_2 10782 428.338 
70_W2_d7_1 6016 452.81 
70_W2_d7_2 4447 466.635 
70_W3_d2_1 20547 433.893 
70_W3_d2_2 3181 455.8 
70_W3_d7_1 12976 463.001 
70_W3_d7_2 5594 458.582 
C70_W1_d2_1 28840 411.848 
C70_W1_d2_2 16894 435.465 
C70_W1_d7_1 8547 467.907 
C70_W1_d7_2 73378 449.583 
C70_W2_d2_1 4321 464.129 
C70_W2_d2_2 5967 466.088 
C70_W2_d7_1 47190 422.634 
C70_W2_d7_2 13207 436.796 
C70_W3_d2_1 29617 466.096 
C70_W3_d2_2 4212 463.12 
C70_W3_d7_1 17109 471.47 
C70_W3_d7_2 12644 470.041 
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Tab. S3: Percentage of bacterial reads that can be classified on class and genus level. 

Name of sample 
Class  

percentage of bacterial reads [%] 
Genus 

percentage of bacterial reads [%] 
55_W1_d2_1 56 11 
55_W1_d2_2 53 14 
55_W1_d7_1 61 9 
55_W1_d7_2 59 9 
55_W2_d2_1 51 13 
55_W2_d2_2 49 14 
55_W2_d7_1 52 4 
55_W2_d7_2 55 4 
55_W3_d2_1 50 10 
55_W3_d2_2 52 14 
55_W3_d7_1 37 2 
55_W3_d7_2 37 2 
C55_W1_d2_1 58 10 
C55_W1_d2_2 56 10 
C55_W1_d7_1 65 14 
C55_W1_d7_2 65 12 
C55_W2_d2_1 45 18 
C55_W2_d2_2 46 18 
C55_W2_d7_1 47 11 
C55_W2_d7_2 54 10 
C55_W3_d2_1 39 8 
C55_W3_d2_2 39 9 
C55_W3_d7_1 61 9 
C55_W3_d7_2 64 9 
70_W1_d2_1 56 21 
70_W1_d2_2 50 25 
70_W1_d7_1 71 15 
70_W1_d7_2 72 13 
70_W2_d2_1 59 15 
70_W2_d2_2 62 16 
70_W2_d7_1 71 15 
70_W2_d7_2 72 11 
70_W3_d2_1 63 23 
70_W3_d2_2 60 24 
70_W3_d7_1 75 12 
70_W3_d7_2 75 11 
C70_W1_d2_1 62 18 
C70_W1_d2_2 62 17 
C70_W1_d7_1 75 11 
C70_W1_d7_2 78 9 
C70_W2_d2_1 69 10 
C70_W2_d2_2 70 11 
C70_W2_d7_1 79 8 
C70_W2_d7_2 78 9 
C70_W3_d2_1 76 12 
C70_W3_d2_2 78 11 
C70_W3_d7_1 77 12 
C70_W3_d7_2 76 12 
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