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3 Introduction 

1. Stem cells: units of development and regeneration  

Stem cells (SC) are unspecialized cells with the ability to self-renew and capable of differentiating 

into one or more specialized cell types and play a crucial role in organogenesis, homeostasis and tissue 

repair (Potten and Loeffler 1990). Self-renewal is the process by which stem cells divide symmetrically 

or asymmetrically to generate new stem cells with similar developmental potential to the cell of origin 

maintaining the undifferentiated state (Morrison and Kimble 2006, He et al., 2009). However, the 

differentiation process involves changes in the cell phenotype that are largely due to highly controlled 

modifications in gene expression finalizing with the acquisition of a concretely cell identity.  

According to their differentiation potential, stem cells are categorized either as totipotent, 

pluripotent and multipotent (Fig. 1). Totipotent cells are located in the zygote and are able to give rise 

to all the embryonic and extra-embryonic cell types. However, pluripotent cells are located in the inner 

cell mass (ICM) of the blastocyst and can generate the three germ layers (mesoderm, ectoderm and 

endoderm). These cells are also known as Embryonic Stem Cells (ESCs) (Chambers and Smith 2004). 

From here and along the embryonic development, pluripotent cells start a process of increasing 

commitment losing their pluripotency and generating all the variety of differentiated tissue-specific 

cell types including germ-line stem cells (GSCs) for reproduction and somatic stem cells (SSCs) for 

organogenesis. Although diversified, GSCs and SSCs retain the feature of self-renewal and both are 

progressively restricted in development giving rise to discrete populations of multipotent SCs (MSCs) 

that remain during the adult lifespan to ensure tissue renewal and a certain degree of tissue 

regeneration and repair (Weissman 2000, Fuchs et al., 2004). Stem cells can be also categorized based 

on their origin: physiological stem cells that are present at different stages of life such as ESCs and 

adult SCs (ASCs), engineered stem cells known as induced pluripotent stem cells (iPSCs) (Takahashi and 

Yamanaka 2006) (Fig. 1), and cancer stem cells (CSC), present in tumors, that also have some stem cells 

attributes (Alvarez et al., 2012).  

All these properties convert SCs in fundamental candidates for regenerative medicine and tissue 

repair. The regenerative potential of these cells and their progenitors can be exploited therapeutically 

by transplantation to replenish the stem cell pool, by endogenous manipulation to stimulate the repair 

activity of already presented cells or through in vitro modelling of disease (Wagers 2012).  
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Figure 1. Stem cells (SCs) and their differentiation potential during mouse development. Schematic representing 
types of stem cells according to their differentiation potential. The zygote and both two- and four-cells stages contain 
totipotent stem cells that give rise to the blastocyst in which pluripotent embryonic stem cells (ESCs) form the inner 
cell mass (ICM) that can be isolated and expanded in vitro. After the implantation, the egg cylinder is formed containing 
epiblast stem cells (EpiSCs) that can be also propagated in vitro. Both ESCs and EpiSCs are pluripotent stem cells that 
can generate cells from the three germ layers, mesoderm, ectoderm and endoderm. Pluripotent stem cells 
differentiate to generate foetal or adult multipotent SCs which are cells capable to generate lineage-specific cells. For 
example neural stem cells (NSCs) give rise to committed unipotent progenitors that form terminally differentiated cells 
in the brain. These more differentiated cells can be reprogrammed in vitro into induced pluripotent stem cells (iPSCs). 
Modified from Hirai et al 2011 and Wu and Zhang, 2017. 

 

1.1 Embryonic stem cells and derivation of pluripotent stem cells 

The first pluripotent cell lines to be established were embryonic carcinoma cell lines, derived 

from the undifferentiated compartment of murine germ cell tumours, also called teratocarcinome 

(Finch and Ephrussi 1967). These cells could be expanded continuously in culture and could also be 

differentiated into cells of all three embryonic germ layers (Kleinsmith and Pierce 1964). Several years 

after, in 1981, Evans and Martin firstly derived ESC from the inner cell mass in the mouse blastocyst 

showing their differentiation capability (Evans and Kaufman 1981). Although these pluripotent cells 

are relatively short-lived in the embryo in vivo, they can be propagated infinitely in culture in an 

undifferentiated state (Fig. 1) (Smith et al., 1988, Vila-Cejudo et al., 2017) an their pluripotency can be 

assessed by their capability to generate embryoid bodies (EBs) in vitro and teratomas in vivo (Hopfl et 

al., 2004, Prokhorova et al., 2009). Their full potency is revealed by blastocyst injection. This yields 

chimeric mice with extensive contribution from the injected ESC progeny to all tissues, including 

functional colonization of the germline (Nichols and Smith 2009).  

Epiblast stem cells or EpiSCs, are also pluripotent stem cells and are generated from post-

implantation embryonic epiblast stages (Fig. 1) (Brons et al., 2007, Tesar et al., 2007). The epiblast is 

derived from the inner cell mass and gives rise to the three primary germ layers (ectoderm, definitive 
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endoderm and mesoderm) and to the extraembryonic mesoderm. Importantly, in vitro derived EpiSCs, 

can generate teratocarcinomas but do not contribute effectively to blastocyst chimeras. Moreover, 

EpiSCs express Oct4 but have reduced or no expression of Rex1, Nanog and several other transcription 

factors expressed in ESCs. Compared with ESCs they show higher expression of factors present in the 

post-implantation epiblast, such as FGF5 and Brachyury (Brons et al., 2007, Tesar et al., 2007). For 

these reasons, they are often termed as “naïve” (for ESCs) and “primed” (for EpiSCs) pluripotent stem 

cells to highlight their early and late phases of development (Nichols and Smith 2009).  

Pluripotent stem cells need specific conditions to maintain their pluripotency in vitro, for 

instance cell-cell contacts and trophic factors that inhibit cell differentiation. The leukaemia inhibitory 

factor (LIF) was recognized as a critical factor for robust self-renewal and pluripotency of mESCs 

(mouse ESCs) (Smith et al., 1988, Williams et al., 1988, Hirai et al., 2011) and since then LIF-

supplemented culture medium became a global standard for the culture of ESC. LIF is a member of the 

unterleukine-6 (IL-6) cytokine family that is able to activate several pathways implicated in 

pluripotency identity (Hirai et al., 2011). However, LIF signalling is not enough for mESCs maintenance 

as it has been shown that in serum-free culture medium is not able to maintained ESCs pluripotent 

state and finally differentiate into neural precursors (Ying et al., 2003). Thus, in optimal conditions, 

both LIF and serum act antagonizing the differentiation and maintaining the self-renewal capacity of 

mESCs in culture. EpiSCs cultures do not survive efficiently as isolated single cells and do not respond 

to ESC culture conditions, but instead are dependent on FGF2 and activin. However, if cultured to high 

density on feeder cells in the presence of LIF and serum, such EpiSCs may spontaneously generate ESCs 

at low frequency (Hayashi and Surani 2009, Bernemann et al., 2011).  

Notably, mouse EpiSCs closely resemble human ESCs in several aspects including colony 

morphology and cytokine requirements as none of them are maintained in the pluripotent state by LIF 

(Pera and Tam 2010). These evidences suggest that hESCs are more closely related to a later stage of 

development.  

1.2 Induced pluripotent stem cells and cell reprogramming 

In the late 19th century, August Weismann postulated a genetic theory in which he described 

that because of inheritance is only mediated by germ cells, unnecessary genetic code must be deleted 

or inactivated in somatic cells that are committed to a specific state, and that this was an irreversible 

process (Weismann et al., 1893). Consequently, in the mid-20th century, Conrad Waddington 

developed a model that represented normal embryonic development in which a cell, reimagined as a 

ball, rolling downhill to its final differentiated state (Waddington 1957) where the destiny of lineage-

committed cells was permanent (Fig. 2a).  
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Although fate commitment cannot normally be reversible in vivo during development, several 

experiments showed the possibility of direct fate conversion. Firstly, John Gurdon from the University 

of Cambridge, established that fate commitment was reversible by the transference of somatic cell 

into enucleated oocytes in Xenopus giving rise to swimming tadpoles (Gurdon 1962). More recently, 

reprogramming of somatic cells, such as fibroblast, into pluripotent cells has become possible 

(Takahashi and Yamanaka 2006). Finally, transdifferentiating of one cell type directly to another, such 

as conversion of a fibroblast directly into a neuron, suggested that pluripotent o totipotent state may 

not even be necessary (Vierbuchen et al., 2010). Therefore, in recent years, the Waddington diagram 

has been repurposed to illustrate how cellular identity changes in the context of reprogramming (Fig. 

2b). 

Figure 2. Waddington diagram and its current reinterpretation. (a) Original Waddington model where a 
developmentally immature cell, represented as a ball at the top rolls downhills, and is diverged right or left to acquire 
a differentiated status. (b) Current reinterpretation of the Waddington diagram showing the reversible processes to 
differentiation, such as reprogramming or transdifferentiation. Adapted and modified from Waddington, 1957. 

 

In 2006, Takahashi and Yamanaka identified genes expressed in ESCs that would be sufficient to 

induce the formation of induced pluripotent stem cells (iPSCs). An initial list of 24 candidates was 

compiled from existing data and they were cloned into retroviral expression factors. iPSCs were then 

generated even though they showed aberrant expression of key pluripotency genes (Takahashi and 

Yamanaka 2006). Finally, the ectopic expression of basal reprogramming factors Oct4, Klf4, Sox2 and 

c-myc (“Yamanaka factors”) in human fibroblasts led to their reprogramming into iPSCs (Takahashi and 

Yamanaka 2006). The generation of these iPSCs came out as breakthrough as it gave a way of 

generating pluripotent stem cells from somatic cells without having any requirement of ESCs which 

have associated ethical concerns. Since then, researchers have reported generating iPSCs in vitro from 
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different somatic tissues both humans and mice (Yu et al., 2007, Aasen et al., 2008, Park et al., 2008a, 

Park et al., 2008b) and even in mice in vivo (Abad et al., 2013).  

Induced pluripotent stem cells are an incomparable model to study early development of 

mammals and a promising tool in future cell therapy for human diseases due to their capability for 

unlimited self-renewal and differentiation of adult cell types. However, the most commonly way to 

generate iPSCs involve the use of retrovirus or lentivirus as a vectors to introduce ectopic transcription 

factors that randomly integrate in the host genome (Takahashi and Yamanaka 2006, Sridharan et al., 

2009, Stadtfeld and Hochedlinger 2010). To achieve a reliable reprogramming, ectopic factors must to 

be silenced, but this process is often incomplete resulting in a partially reprogram cell lines that 

continue to depend on the exogenous factors and lack the expression of some endogenous genes 

(Takahashi and Yamanaka 2006, Sridharan et al., 2009, Stadtfeld and Hochedlinger 2010). 

Consequently, retroviruses possess some properties that make iPSCs improper for cell therapy. Firstly, 

the copy number of the exogenous retroviral DNA that is integrated into a genome may vary and 

retrovirus can introduce promoter elements and polyadenylation signals as well as they can also 

interpose coding sequences affecting transcription. On the other hand, the high probability that the 

ectopic gene expression will resume, makes impossible to apply these retrovirus-induced iPSCs.  

Another problem to take into account for the use of iPSCs is that the expression of Oct4, Sox2, 

Klf4 and c-myc is related to the development of multiple tumours (Ben-Porath et al., 2008). In 

particular, overexpression of Oct4 causes murine epithelial cell dysplasia (Hochedlinger et al., 2005), 

aberrant expression of Sox2 causes squamous-cell carcinomas (Boumahdi et al., 2014), some breast 

tumours are characterized by elevated expression of Klf4 (Lee et al., 2015), and the improper 

expression of c-myc is observed in a high percentage of human tumours (Kuttler and Mai 2006). 

Therefore, now strategies are being developed to avoid the above-mentioned problems such as the 

minimization of the number of genes required for reprogramming (Kim et al., 2009a), the search for 

inducible systems allowing the elimination of the exogenous DNA from the host cell genome after 

reprogramming (Abad et al., 2013) or the development of protocols to reprogram somatic cells using 

recombinant proteins (Feng et al., 2009). Although generation of iPSCs from somatic cells have a 

promising future, the safety issues related to gene reprogramming and the uncontrolled proliferation 

and/or differentiation in vivo must be solved. 

However, iPSCs are already a powerful tool to modelling diseases in vitro due to patient-specific 

iPSCs can be obtained and differentiated into different cell types with the same genetic background as 

the donor patient, providing the opportunity to study their pathogenesis (Sanchez-Danes et al., 2012, 

Lu and Zhao 2013, Calatayud et al., 2017). This use of iPSCs to model a disease also remains challenging, 
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owing to the difficulties involved in differentiated them into an organ and the complexity of 

pathogenesis. 

1.3 Adult stem cells: reservoir of multipotent cell precursors 

Adult stem cells (ASCs) are tissue-resident cells with the ability to divide, self-renew and 

generate functional differentiated cells that replace lost cells throughout the organism´s lifetime and 

represent the essential component for the maintenance of tissue homeostasis and repair in 

multicellular organism (Biteau et al., 2011) (Fig. 1). The presence of ASCs was first described in tissues 

with high proliferation rates, such as the hematopoietic system (Till and Mc 1961). Since then, stem 

cells have been found in almost all adult tissues including the nervous system (Li and Xie 2005). 

In homeostatic conditions, ASCs divide to produce new SCs and non-renewing, rapidly cycling 

cells or transit amplifying progenitors (TAP), cells that proliferate for a discrete number of cycles to 

eventually differentiate into functional cells specific of their particular tissue. However, ASC and 

progenitor cell populations show remarkable diversity in their proliferative behaviour reflecting the 

different regenerative requirements of individual tissues. Between them, we can find continuously 

cycling cells, such as intestinal or hematopoietic stem cells (HSC), or cells whose proliferative activity 

can be strongly induced by injury, including muscle satellite cells, and stem cells with alternative 

quiescent and proliferative periods, such as hair follicle SCs (Biteau et al., 2011).  

ASCs reside on specific well-organized neighbourhoods termed “niches”. This term was originally 

proposed by R. Schofield in 1978 to describe the physiologically limited microenvironment that 

supports stem cells, after the observation that, HSCs properties differed depending on the location 

they were isolated from: the spleen or the bone marrow (Schofield 1978). Stem cell niches have been 

identified and characterized in many tissues, including the germline, bone marrow, digestive, skeletal 

muscle, mammary gland and nervous system (Zhang et al., 2003, Barker et al., 2007, Kuang et al., 2007, 

Blanpain and Fuchs 2009, Goodell et al., 2015, Lim and Alvarez-Buylla 2016). Current studies have 

begun to elucidate the critical components of the niches including surrounding cells such as the 

vasculature, molecules and physical parameters such as stress, oxygen tension and temperature 

(Wagers 2012). Particularly, cell-cell interaction within the niche provides structural support, regulates 

adhesive interaction and produces signals that can control stem cell function. Signalling molecules such 

as Sonic hedgehog (shh), Wnt, bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs) 

and Notch (Tumbar et al., 2004, Ramirez-Castillejo et al., 2006, Soen et al., 2006), as well as adhesion 

molecules such as integrins or cadherins (Lapidot and Kollet 2002, Arai et al., 2004), can also play an 

important role in the self-renewal and differentiation regulation of ASCs (see (Wagers 2012) for a 

review). Moreover, the interaction with the extracellular matrix (ECM) produces mechanical signals 
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which allow stem cells to respond to external physical force and is also a reservoir of regulatory 

molecules (Gilbert et al., 2010). Therefore, the signals provided by these cellular and acellular 

components of the niche affect SC fate decisions, including choices between quiescence or 

proliferation, self-renewal or differentiation, migration or retention, and cell death or survival being 

essential for the tissue homeostasis regulation. 

2. Neural stem cells and adult neurogenesis 

Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) that have 

the ability to divide, self-renew and generate functional differentiated cells that replace lost cells 

throughout the adulthood. NSC are multipotent cells that give rise to astrocytes, oligodendrocytes and 

neurons upon differentiation (Lim and Alvarez-Buylla 2016). In the embryonic mammalian brain, radial 

glia cells (RGCs) are the primary precursors of new born neurons (Malatesta et al., 2000, Noctor et al., 

2001). These cells reside in the ventricular zone (VZ) but possess long processes penetrating the brain 

parenchyma and contacting to the pial surface of the brain. At the end of foetal development, the VZ 

is largely composed by glial cell bodies that remain proliferative with the ability to migrate and serve 

as progenitors of new neurons. After bird, the remaining RGCs in the VZ differentiate either into 

ependymal cells, that will line the lateral ventricles, or into glial cells, including adult NSCs that retain 

many of the RGCs features and populate the neurogenic niches (Tramontin et al., 2003, Xu et al., 2015). 

Thus, adult NSCs express astrocytic markers such as the glial fibrillary acidic protein (GFAP) or the 

astrocyte-specific glutamate transporter known as excitatory amino acid transporters (GLAST) 

(Doetsch 2003, Merkle et al., 2004). Moreover, NSCs are relatively quiescent (Morshead et al., 1994) 

and express the transcription factor Sox2 (SRY-related HMG box 2) and the neural progenitor marker 

Nestin (Suh et al., 2007).  

2.1 The subventricular zone (SVZ) and the olfactory bulb (OB) system 

In the adult mammal brain, two main regions continue to generate new neurons: the 

subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus (Gage et al., 1998, Kempermann 

et al., 2015, Lim and Alvarez-Buylla 2016) and the subventricular zone (SVZ) in the walls of the lateral 
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ventricles (Doetsch et al., 1997). The SVZ is the most active neurogenic niche and the largest germinal 

zone in the adult brain.  

Figure 3. Cellular composition and organization of the SVZ. (a) Coronal section of adult mouse brain showing the SVZ 
niche (upper panel right). Type B1 cell (blue) is the neural stem cell and presents three domains: domain I contain the 
apical process contacting the ventricle; domain II contains the cell body of most type B1 cell and are in contact with 
type C and A cells; domain III contacts with blood vessels (BV). Once activated, type B1 cell divides and produces type 
C cells (TAP; green). Type C cells give rise to type A migratory neuroblast (red). E represents ependymal cell forming a 
tight barrier between the SVZ and the ventricle lumen. Adapted from Lim and Buylla, 2016. (b) Three-dimensional 
model of the adult SVZ neurogenic niche illustrating B1 cells (blue), C cells (green), and A cells (red). B1 cells have a 
long basal process that terminates on blood vessels (orange) and an apical ending at the ventricle surface. Note the 
pinwheel organization (brown) composed of ependymal cell surrounding B1 apical surfaces. (c) Confocal image of the 
surface of the lateral wall of the ventricle stained for γ-tubulin (red) and β-catenin (green) showing the pinwheel 
structure of E cells. A B1 apical surface is indicated in the centre of the pinwheel (arrow) and E apical surface 
(arrowhead) on the periphery. Color-coded tracing of the pinwheels is also included. Scale bar in c: 5 µm. Adapted 
from Mirzadeh et al. 2008. 

 

Two types of stem cells coexist in the SVZ lining the ventricles. Type B1 cells that have light 

cytoplasm, relatively disperse chromatin and show null replication activity. Type B1 NSCs present a 

radial glia-like morphology, with an apical primary cilium in direct contact with the CSF and a basal 

process reaching the basal lamina and the vasculature structures (Tavazoie et al., 2008) (Fig. 3a,b). The 

walls of the lateral ventricles show a typical organization where the small apical process of type B1 
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cells are surrounded by a rosette of epithelial ependymal cells forming structures known as pinwheels 

(Mirzadeh et al., 2008) (Fig.3). Type B2 cells with darker cytoplasm and clamped chromatin are closer 

to blood vessels and replicate de DNA content incorporating traceable nucleoside analogues. (Doetsch 

et al., 1997). Once activated, the slowly dividing NSCs give rise to fast cycling cells called transit-

amplifying progenitors (TAP or type C cells). Mash1-positive type C cells generate chains of 

polysialylated-neural cell adhesion molecule (PSA-NCAM) and doublecortin (DCX) positive neuroblasts 

(type A cells) that migrate along the rostral migratory stream (RMS) (Fig. 4a,c). These neuroblasts reach 

the core of the OB, where they detach from the RMS and migrate radially into the granular and 

glomerular layers contributing to OB function and the neural plasticity of olfactory information 

processing (Zhao et al., 2008, Ming and Song 2011) (Fig. 4b,d). 

In addition of being a neurogenic region, the SVZ can serve as a source of oligodendrocytes 

although generated in much lower numbers than neuroblasts. Thereby, Olig2-positive transient 

amplifying cells give rise to oligodendroblast that migrate to the corpus callosum (CC) and striatum 

where they differentiate into myelinating and nonmyelinating oligodendrocytes (Menn et al., 2006). 

Figure 4. Overview of adult mouse olfactory bulb (OB) neurogenesis from the subventricular zone (SVZ). (a) Sagittal 
section through mouse head. Neuroblasts (type A cells) born in the SVZ of the lateral ventricle (blue) migrate through 
a network of paths (red) into the rostral migratory stream (RMS), which enters the OB. Cells then leave the RMS 
(arrows, dashed lines) and migrate radially into the OB. Boxed area is shown enlarged in b. (b) Neuronal layers of OB. 
Migratory cells depart the RMS and differentiate into granule cells (GC) or periglomerular cells (PGC), which reside in 
the granule cell layer (GCL) and glomerular layer (GL), respectively (type A cells and differentiated interneurons are 
red). (c) Chains of migratory type A cells. These chains are surrounded by glial cells (type B cells, blue) and are 
associated with clusters of transit-amplifying cells (type C cells, green). (d) Diversity of OB interneurons. Type A cells 
differentiate into either PGCs or GCs, which can be distinguished by morphology and markers. CC, Corpus callosum; 
CX, cortex; CB, cerebellum; OE, olfactory epithelium; MCL, mitral cell layer; ep, ependymal cell; TH, tyrosine 
hydroxylase. Adapted from Lim and Buylla, 2016.  
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The SVZ constitutes a complex microenvironment in which proliferation and self-renewal of 

NSCs are strongly regulated by multiple extracellular factors such as EGF, BMP or pigment epithelium 

derived factor (PEDF) (Ramirez-Castillejo et al., 2006, Faigle and Song 2013, Porlan et al., 2013) (Fig. 5). 

This extrinsic signalling is possible due to the special cytoarchitecture of the niche allowing NSCs to be 

in direct contact with the CSF produced by the choroid plexus in the ventricles, with the vasculature 

and with other cells from the niche like astrocytes or microglia (Silva-Vargas et al., 2013) (Fig. 5). For 

instance, CP-secreted interleukin-1β regulates the expression of vascular cell adhesion molecule 1 

(VCAM1) that promotes anchoring to the neural stem cell niche (Kokovay et al., 2012) as well as the 

insulin growth factor 2 (IGF2) and the neurotrophin 3 (NT3), also secreted by CP contributes to NSCs 

maintenance in SVZ (Delgado et al., 2014, Ferron et al., 2015).  

 

 

 

Figure 5. Extrinsic factors regulate SVZ 
adult neurogenesis. SVZ niche is exposed to 
several sources of extrinsic factors that 
regulate NSCs behaviour, including blood 
vessels and the lateral ventricle choroid 
plexus (LVCP). Moreover, NSCs contact with 
other cells as well as with the extracellular 
matrix (ECM). Adapted from Chaker et al. 
2016. 

 

 

 

 

The close association of SVZ stem cells with blood vessels suggest that they may receive 

important signals from the vasculature that have a relatively permissive blood-brain barrier (BBB) due 

to the lack of astrocyte endfeet (Tavazoie et al., 2008) (Fig. 5). In this way, NSCs can receive distant 

produced factors including hormones, metabolites and cytokines. 

Moreover, cell contact between adult NSCs and ependymal cells promote quiescence, 

highlighting the importance of anchorage for NSCs (Porlan et al., 2014). Additionally, NSCs receive 

external signals by cell-cell contacts with other niche cells, such as microglia or ependymal cells 

influencing stem cell activation and quiescence (Ribeiro Xavier et al., 2015). The interaction between 
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NSCs and their progeny is also important, so that NSCs receive signals that promote dormancy 

controlling stem cell depletion (Chaker et al., 2016) (Fig. 5). 

2.2 Identifying the NSC population in the adult SVZ 

So far, there is no single marker that unequivocally identifies each pool of NSCs. However, 

several different strategies have been used to successfully identify NSCs populations. In vivo, actively 

dividing SVZ stem cells are eliminated by antimitotic treatment. In contrast, slowly dividing cells survive 

treatment with antimitotic drugs and are able to regenerate the SVZ afterwards (Doetsch et al., 1999). 

More recently, it has been shown that a proportion of GFAP/GLAST-positive astrocytes that also 

expressed the ependymal growth factor receptor (EGFR) are sensitive to antimitotic drugs whereas 

EGFR- NSCs survive the treatments and retain the ability to restore the production of newborn neurons 

(Pastrana et al., 2009, Codega et al., 2014). Thus, it is well stablished the co-existence of both quiescent 

(qNSCs) and active (aNSCs) NSCs that participate in tissue homeostasis (Llorens-Bobadilla and Martin-

Villalba 2017) (Fig. 6). 

Using transgenic animals, lineage-tracing strategies, immunohistochemical assays and strategies 

based in fluorescent activated cell sorting (FACS) we know that both aNSCs and qNSCs express GFAP, 

GLAST, CD133 (Prominin 1), CD9, LeX, Bmi1, Plexin B2 and Hes5 whereas they do not express the 

terminally differentiated astrocyte marker S100β and the immature neuroblast adhesion molecule 

CD24 (Codega et al., 2014, Chaker et al., 2016). Interestingly, EGFR and Nestin expression are 

specifically expressed in aNSCs thus they are also used to differentiate both states (Codega et al., 2014, 

Chaker et al., 2016) (Fig. 6). 

Figure 6. Markers for the identification of the SVZ cells. The combination of several markers allows the identification 
of the different populations within the adult SVZ. Quiescent (qNSCs) and activated (aNSCs) neural stem cells share 
some expression markers, but qNSCs are Nestin negative while aNSCs express EGFR. TAPs and neuroblasts can be 
identified by the expression of Mash1 and DCX, respectively. Adapted from Codega et al. 2014. 
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Recently, the isolation and transcriptome analysis of NSCs in different activation states has 

allowed a better characterization of the qNSCs and aNSCs (Codega et al., 2014, Chaker et al., 2016). 

For example, aNSCs transcriptome revealed higher expression of genes related to cell cycle and DNA 

repair whereas qNSCs showed enrichment in genes of cell adhesion, transmembrane transporters and 

extracellular-matrix-response showing their interaction with the environment (Codega et al., 2014). In 

addition, taking advantage of the novel single-cell RNAseq analysis, it has been described a more 

detailed sequence of molecular changes that take place between qNSCs, aNSC, TAPs and neuroblasts 

also revealing the existence of different quiescent and activate states (Llorens-Bobadilla et al., 2015).   

2.3 NSCs in vitro and the neurosphere assay. 

Stem cells from diverse tissues are typically cultured in vitro under conditions that promote their 

selective expansion. These cultures are widely used, as theoretically both self-renewal and 

differentiation can be evaluated at the single-cell level. Given the absence of unique and decisive 

markers to identify the neural stem cell population in vivo, the analysis of NSCs has been widely based 

on the ex vivo behaviour of cells isolated from the neurogenic niches. The in vitro NSCs culture was 

initially described by Reynolds and Weiss who dissected striatal parenchyma including the 

periventricular area encompassing the SVZ from young adult mice, dissociated the tissue to single cells 

and plated them in non-adherent conditions in serum-free medium in the presence of epidermal 

growth factor (EGF). Under these culture conditions, a small population of cells began to divide forming 

floating spheres of proliferating cells, called primary “neurospheres” (Reynolds and Weiss 1992). In 

these neurospheres, the majority of cells expressed Nestin and new secondary neurospheres were 

obtained after the mechanical dissociation and culture again in the presence of EGF. Additionally, when 

plated on adherent substrate, they differentiated into both neurons and glial cells providing the firs 

evidence that multipotent stem cells were present in the adult mammalian brain (Reynolds and Weiss 

1992). Since these early experiments, the neurosphere assay has evolved into a powerful tool that 

enables the study of NSCs proliferation, self-renewal and differentiation potential under highly 

controlled environmental conditions (Ferron et al., 2007, Belenguer et al., 2016). 

Individual cells dissected from either the postnatal SVZ or SGZ can proliferate in medium 

containing EGF and basic fibroblast growth factor (FGF2) to produce these multipotent clonal 

aggregates. The frequency of long-lived NSCs dissociated from the SVZ/SGZ is often estimated as the 

number of cells capable of generating the primary neurospheres that include cells able to generate 

new aggregates upon clonal passage (self-renewal) and that can be expanded for limited periods of 

time. Additionally, neurospheres can be induced to differentiate in culture to generate the three major 
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cell types of the central nervous system (CNS), βIII-tubulin+ neurons, GFAP+ astrocytes and O4+ 

oligodendrocytes (Ferron et al., 2007, Belenguer et al., 2016).  

Despite the evident advantages of the neurospheres cultures, they have some limitations. The 

most important is the heterogeneous composition of neurospheres as NSCs coexist with their progeny 

(different types of more committed progenitors and even differentiated cells). Moreover, NSCs 

produce cell progeny in vitro and some of the highly proliferative committed progenitors appear also 

capable of forming neurospheres, but only for a few passages (Reynolds and Rietze 2005). 

Furthermore, the strong mitogenic stimulation of culture conditions promotes the selective expansion 

of aNSCs while qNSC rarely form neurospheres (Pastrana et al., 2011, Mich et al., 2014). Therefore, the 

neurosphere cultures in the current culture conditions better reflects the potential of aNSCs and TAPs. 

Recently, FACS has made possible the isolation of NSCs and their progeny from the adult SVZ using 

different combination of markers (Pastrana et al., 2009, Codega et al., 2014, Daynac et al., 2015, 

Llorens-Bobadilla et al., 2015) and have started to shed light on gene regulatory networks and cell 

identity in adult SVZ. Especially, the discrimination between aNSCs and qNSCs enable studies of their 

properties and dynamics in the adult brain (Daynac et al., 2015). Concretely, the identification of 

markers that allow the isolation of qNSCs will allow their sphere-forming capacity to be directly tested.  

Furthermore, experimental variability has been introduced into sphere-forming assay including, 

cell density and medium composition favouring differences and sometimes conflicting results between 

different groups because it is sometimes difficult to merge findings from different laboratories to gain 

a more complete understanding of a particular process (Jensen and Parmar 2006). Importantly, there 

are established some critical steps that are crucial in the performance of the neurosphere cultures 

(Pastrana et al., 2011). Cell density is one of the most important parameters because it has a critical 

impact on clonality (Ferron et al., 2007). Thus, it is important for the community to standardize the 

culture method so that different assays can be compared. Therefore, there is still controversy about 

the real functional relationship between neurosphere-forming cells and the stem cell population in 

vivo and the neurosphere assay cannot be used alone to define the in vivo stem cells. Nevertheless, 

this system represents a tractable model to investigate the contribution of signalling pathways, 

expression, and/or epigenetic mechanism to cell-fate specification with potential applicability to 

neural stem cells for restorative neurogenesis in disease or trauma. 

2.4 Reprogramming of NSCs into iPSCs. 

Reprogramming of somatic cells is a valuable tool to understand the mechanisms associated to 

pluripotency as well as the characteristics of the cell-of-origin, and further opens up the possibility of 

generating patient-specific pluripotent stem cells. NSCs are multipotent stem cells that endogenously 
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express Sox2, c-myc and Klf-4 which may function in maintaining the stemness and multipotency of 

NSCs (Kim et al., 2009b). Moreover, Sox2 was suggested to maintain cellular pluripotency by regulating 

Oct4 expression (Masui et al., 2007). In contrast, Oct4 is not expressed in NSCs being a key regulator 

of mouse embryogenesis (Pesce et al., 1998).   

Different combinations of reprogramming factors have been attempted to reprogram postnatal 

NSCs into iPSCs (Eminli et al., 2008, Kim et al., 2008). Specifically, three different combinations were 

also capable of generating iPSCs: Oct4, Klf4 and c-myc (OKM); Oct4, Klf4 and Sox2 (OKS); and Oct4, c-

myc and Sox2 (OMS), with similar efficiency and comparable expression profiles than ESCs. The ability 

of two-factor combination to induce iPSCs was also assessed. In this case, only two combinations were 

successful to reprogram NSCs into full pluripotent iPSCs: Oct4 and Klf4 (OK) and Oct4 and c-myc (OM). 

However, two-factor reprogramming showed less efficiency than the use of four-factors (0.11% and 

3.6%, respectively) (Kim et al., 2008). It has been reported that c-myc exhibit an oncogenic effect and 

increases telomerase activity, responsible of immortalization of NSCs (Miura et al., 2001), so that iPSCs 

generation without the c-myc retrovirus represents a significant finding (Kim et al., 2008). More 

recently, it has been described that iPSCs can be generated without the oncogenic factors c-myc and 

Klf4 being exogenous expression of Oct4 sufficient to generate iPSCs from postnatal NSCs, albeit with 

ten-fold lower efficiency than two factor approach (Kim et al., 2009b). This result demonstrates the 

crucial role of Oct4 in the process of reprogramming and supports the hypothesis that NSCs represent 

an intermediate state between differentiated and pluripotent cells.  

The induction of pluripotency is an extraordinary phenomenon that is currently poorly 

understood and inefficient (Hirai et al., 2011). Usually, reprogrammed cells do not gain some essential 

properties of induced pluripotency, such as Nanog expression, however it has been described that the 

use of defined culture conditions, combining the dual inhibition (2i) of mitogen-activated protein 

kinase signalling (MEK) and glycogen synthase kinase-3 (GSK-3) with LIF, promotes the rapidly 

upregulation of pluripotency-associated genes such as Nanog, Oct4 and Rex1 at a similar levels to ESCs 

as well as the silencing of retroviral transgenes (Silva et al., 2008, Ying et al., 2008). Therefore, 2i/LIF 

condition consolidates the reprogramming process where non-completely reprogrammed cells (pre-

iPSCs) undergo a transcriptional and epigenetic resetting that rapidly culminates in a full pluripotent 

status (Silva et al., 2008). 

3. Epigenetic regulation of adult neurogenic niches 

Epigenetic is defined as the study of heritable alterations in genome function that do not involve 

changes in the DNA sequence itself (Jaenisch and Bird 2003, Bird 2007). These epigenetic marks can 

modulate gene expression either by directly altering the chromatin structure or by creating binding 
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sites for chromatin and transcription regulatory subunits. It is becoming apparent that epigenetic 

modifications to developmental genes, are very important cell-intrinsic programs that can interact 

with transcription factors and environmental cues to co-ordinately activate and repress arrays of genes 

at specific steps during development (Hsieh and Gage 2004, Surani et al., 2007). 

Two general classes of epigenetic regulation can be defined: covalent modifications to DNA and 

post-translational covalent modifications to the histones (H) around which the DNA is bound, 

influencing whether DNA is accessible or not for gene transcription (Strahl and Allis 2000, Kouzarides 

2007). Moreover, the three-dimensional structure and arrangement of chromatin within the nucleus 

are both regulated and contribute to the establishment and maintenance of epigenetic states (Bird 

2007, Montalban-Loro et al., 2015). These different classes of epigenetic regulators are intimately 

related, resulting in multiple layers of control allowing cells to maintain their identity over time 

(Jaenisch and Bird 2003, Bird 2007, Montalban-Loro et al., 2015). Dysregulation of these mechanisms 

leads to new cellular phenotypes by causing altered gene expression without a change in genotype. In 

the neurogenic niches, epigenetics regulators and their associated transcription factors play an 

important role in the control and maintenance of NSCs stemness. 

3.1 DNA methylation and neurogenesis 

DNA methylation involves the addition of a methyl group to the fifth carbon in the cytosine 

pyrimidine ring. Traditionally, studies of DNA methylation have focused on regions that contain a high 

frequency of CG dinucleotides, known as “CpG islands” (Bird 1986) (Fig. 7a,b). Most mammalian CpG 

dinucleotides are methylated which often have regulatory functions and tend to be found in the 

promoter and first exon regions of genes where it promotes a closed chromatin structure and aids to 

the prevention of expression (Schilling and Rehli 2007). Thus, transcription depends in part on the CpG 

density of the promoter.  

There are two types of methylation reactions both mediated by DNA methyltransferases 

(DNMTs) (Fig. 7a,b). One is de novo methylation catalysed by DNMT3a and DNMT3b, important for 

normal embryogenesis and development and responsible for the establishment of new methylation 

patterns. The other type is maintenance methylation mediated by DNMT1 that effectively maintains 

CpG methylation upon DNA replication and provides the heritable “memory” of the methylation state 

of the parent cell (Montalban-Loro et al., 2015). A mutation in any of the three major Dnmt genes in 

mice leads to severe developmental abnormalities and embryonic, or early postnatal, lethality. Dnmt1 

is highly express in the embryonic and adult CNS in both proliferating neural progenitors and 

differentiated neurons where it maintains DNA methylation (Goto et al., 1994, Feng et al., 2010). In 

support of this, mice deficient for Dnmt1 specifically in neural progenitors at embryonic stages exhibit 
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deficits in neuronal function and die postnatally, suggesting a requirement for methylation in brain 

development (Fan et al., 2001). Genome-wide analysis of DNMT3A-binding sites, in embryonic neural 

progenitors cells (NPCs), have revealed its direct epigenetic regulation of many neurogenic genes 

whereas depletion of DNMT3B in the neuroepithelium promotes NPC differentiation instead of 

proliferation (Yao et al., 2016). 

Figure 7. Epigenetic regulation of gene expression. (a) Schematic of DNA methylation and histone modifications in 
neural stem cells (NSCs). DNA is compressed through interactions with histones and methyl groups (M) are added to 
cytosine-guanine (CpGs) dinucleotides in regulatory regions. Methylation reactions are mediated by DNA 
methyltransferases (DNMTs). Histone methylation reactions are catalyzed by histone methyltransferases (HMTs) and 
the reverse process is mediated by histone demethylases (HDMs). H3K9me3 and H3K27me3 inhibit transcription while 
H3K4me3 and H3K36me3 activate transcription. Histone acetylation is mediated by histone acetyltransferases (HATs) 
that leads to chromatin decondensation (accessible chromatin) and transcription activation. Histone deacetylases 
(HDACs) catalyze the reverse process inducing inactivation of transcription (inaccessible chromatin). (b) Schematic of 
DNA methylation at the cytosine-guanine dinucleotides in gene regulatory regions. DNMTs transfer methyl groups (M) 
to the fifth position of the pyrimidine ring. This is a reversible process mediated by the ten-eleven translocation (TET) 
family of enzymes TET1, TET2 and TET3 dioxygenases that catalyze the conversion of the modified genomic base 5-
methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) playing a key role in active DNA demethylation. (c) 
Schematic of the histone tail showing multiple sites for epigenetic modifications as acetylation (Ac) or methylation 
(Me). All these modifications provide a unique epigenetic signature that governs either active or closed chromatin 
structure. Adapted from Montalbán-Loro et el 2015. 

 

DNA methylation marks repress gene expression either by attracting DNA methyl-binding 

domain proteins (MBDs) such as methyl-CpG binding protein 2 (MeCP2) which recruit repressors and 
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chromatin remodelling molecules to generate an inactive chromatin environment or by directly 

inhibiting transcription factor binding (Bird 2002, Yao et al., 2016). MBD proteins have been implicated 

in neurogenesis. For example, MBD1 occupies and protects the methylation of the promoter for basic 

FGF2, which encodes a growth factor essential for neural development. Indeed, mice deficient in MBD1 

show decreased neurogenesis and hippocampus-related behaviours defects (Li et al., 2008). Mecp2-

knockout mice exhibit pronounced deficit in neural maturation, altered expression of presynaptic 

proteins and reduced dendritic spine density in the DG of the hippocampus (Smrt et al., 2007). 

Additionally, many transcription factors exhibit specific binding to methylated or unmethylated DNA 

motifs and some of them, such as recombining binding protein (RBPJ) and Fez family zinc finger protein 

2 (FEZF2), have been implicated in the regulation of neurogenesis (Faigle and Song 2013). 

3.2 DNA hydroxymethylation and TET enzymes 

DNA methylation marks are reversible through both passive replication-dependent 

demethylation and active demethylation which involve the recently characterized 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) intermediates 

(Wu and Zhang 2017), which are produced by the oxidation of 5-methylcytosine (5mC), a reaction 

catalyzed by the ten-eleven translocation (TET) family of enzymes (Tahiliani et al., 2009, Ito et al., 2011) 

(Fig. 7b). TET proteins are capable of converting 5mC to 5hmC in the presence of ATP and further 

transform 5hmC to 5fC and 5caC (He et al., 2011). Both derivatives can be successively excised by 

thymidine DNA glycosylase (TDG) and replaced by an unmodified cytosine through the base-excision 

repair (BER) pathway to complete the active DNA demethylation process (Wu and Zhang 2017) (Fig. 

8a). In mammals, three members of the TET family have been identified: TET1, TET2 and TET3 (Ito et 

al., 2010) (Fig. 7b).   

TET proteins are iron(II)/α-ketoglutarate (Fe(II)/α-KG)-dependent dioxygenases. The core 

catalytic domain at the carboxyl terminus is comprised of a double-stranded β-helix (DSBH) domain 

and a cysteine-rich domain (Pastor et al., 2013). However, the three TET proteins differ in terms of 

domain architecture and tissue specificity (Fig. 8b). Full-length TET1 (TET1FL) and TET3 (TET3FL) 

isoforms have a CXXC domain at their amino terminus that binds CpG dinucleotides. Interestingly, 

mouse TET1 isoform lacking the CXXC domain (TET1s) has a reduced global chromatin binding 

compared with TET1FL (Zhang et al., 2016). TET3 exists as three major isoforms, including two without 

the CXXC domain, TET3s and TET3o (Jin et al., 2016) (Fig. 8b). TET3o is specifically expressed in oocytes, 

whereas TET3s and TET3FL are upregulated during neuronal differentiation. Unlike TET1, TET3s and 

TET3o display stronger demethylation activity than TET3FL (Jin et al., 2016).  
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TET-mediated active DNA demethylation might be different depending on the biological context 

(Wu and Zhang 2017). 5hmC is relatively abundant in mouse ESCs, the early embryo and in adult brain 

(Ito et al., 2010, Iqbal et al., 2011). Immediately after fertilization mouse zygotes undergo a rapidly 

epigenetic reprogramming including DNA demethylation of both paternal and maternal genomes. 

Recent evidences indicate that on the paternal genome this occurs by TET3 mediated conversion of 

5mC to 5hmC, whereas the demethylation of the maternal genome mainly occurs through passive 

dilution (Gu et al., 2011). In addition, it has been proposed that TET enzymes in the blastocyst and ESC 

are involved in pluripotency by maintaining the hypomethylated state of key regulator regions (Ito et 

al., 2010, Koh et al., 2011). For individual tissues, the levels of 5hmC, 5fC and 5caC are not obviously 

correlated. For example, although 5hmC is more abundant in the mouse brain cortex than in ESCs, the 

levels of 5fC and 5caC are reverse suggesting that different steps of demethylation cycle are 

differentially regulated in different tissues (see (Wu and Zhang 2017) for a revision).  

Figure 8. TET-mediated DNA demethylation. (a) DNA methylation cycle. TET can convert 5mC to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Finally, thymine DNA 
glycosylase (TDG) coupled with base excision repair (BER) return to the unmodified state (active modification-active 
removal; AM-AR). Modified cytosines can also be modified by replication-dependent dilution (active modification-
passive dilution; AM-PD). (b) Structure of TET proteins. Cysteine-rich and double-stranded β-helix (DSBH) domains at 
the carboxyl terminus confer catalytic activity. Both full-length isoforms (TET1FL and TET3FL) have a CXXC DNA binding 
domain at the amino terminus. Adapted from Wu and Zhang, 2017. 
 

In the brain, DNA methylation is both spatially and temporally dynamic and has been proposed 

to play and integral role in the coordination of neural development (Munzel et al., 2010, Szulwach et 

al., 2011). For instance, neuronal commitment requires de-repression and re-activation of neuronal 

genes associated with increase DNA methylation (Sikorska et al., 2008). The suppression of 

astrogliogenesis during neuronal specification is also associated with changes in DNA methylation 



 

 
 

21 Introduction 

(Lunyak et al., 2002, Ballas et al., 2005). In the embryonic mouse brain, 5hmC levels increase during 

neuronal differentiation and this is not associated with substantial DNA demethylation. Indeed, 

functional perturbation of Tet2 and Tet3 leads to defects in neuronal differentiation suggesting that 

formation of 5hmC promotes brain development (Hahn et al., 2013). Moreover, neural progenitors 

can be induced efficiently from Tet3 knockout ESCs, but undergo apoptosis rapidly, and terminal 

differentiation of neurons is greatly reduced, suggesting that Tet3 is critical in neural progenitors cell 

maintenance and terminal differentiation of neurons (Li et al., 2015). DNA methylation also plays an 

important role in neurogenesis by regulating the proliferation and survival of neural progenitors as 

well as dendritic growth of newborn neurons in both embryonic and adult brains (Fan et al., 2001, 

Hutnick et al., 2009, Wu et al., 2010). It has been demonstrated that TET1 contributes to the regulation 

of neural progenitor cell proliferation as mice lacking Tet1 exhibit impaired hippocampal neurogenesis 

as a consequence of the hypermethylation and downregulation of genes involved in progenitor 

proliferation (Zhang et al., 2013b). However, the full role and importance of hydroxymethylation and 

TET oxidases in neurogenesis remains to be elucidated. 

Despite the well described catalytic activity of TET proteins, recently the preferential binding of 

TET proteins at 5mC-free promoter and their interaction capability with various proteins suggest their 

probably function independent of its catalytic activity (Wu and Zhang 2017). This is supported by the 

demonstration that catalytic dead TET mutants are able to rescue the phenotype of TET3 knockout (Xu 

et al., 2012, Kaas et al., 2013, Montagner et al., 2017). For example, TET3 catalytic dead mutants in 

Xenopus laevis, can partially rescue the developmental defects caused by TET3 knockdown (Xu et al., 

2012). Moreover, in mouse hippocampus, overexpression of TET1 or a catalytically inactive mutant 

resulted in the upregulation of several neuronal memory-associated genes (Kaas et al., 2013). In the 

majority of these scenarios, the catalytic-activity-dependent and –independent functions probably 

coordinate to reinforce the functional outcome. 

3.3 Histone modifications in the brain 

DNA is packaged into a highly ordered chromatin structure in eukaryotes by wrapping around 

an octamer a histone proteins (H) that include H2A-H2B dimers and H3-H4 tetramer to form the 

nucleosome (Luger and Richmond 1998, Olins and Olins 2003). The interaction between histones and 

DNA is mediated by an N-terminal tail of histone proteins available for post-translational modifications 

that control the chromatin structure (Luger and Richmond 1998, Montalban-Loro et al., 2015) (Fig. 

7a,c). These covalent modifications in the histone tails alter the interaction between adjacent 

nucleosomes and/or between histones and the DNA, changing the three-dimensional chromatin 

structure. Modification in the body of histones have also been shown to alter chromatin structure 
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influencing gene expression (Tropberger and Schneider 2013). Histone modifications are divided into 

repressive and active marks accordingly to how they correlate with levels of transcriptional activity 

and it is well stablished that histone methylation and acetylation, the main histone modifications, have 

fundamental roles in neurogenesis. 

Histone acetylation is catalyzed by histone acetyltransferases (HATs) being a reversible process. 

Histone acetylation of lysine residues of histones enhances the recruitment and activation of the 

transcriptional machinery and is generally associated with areas of active gene transcription (Tessarz 

and Kouzarides 2014). However, histone deacetylases (HDACs) remove acetyl groups promoting the 

condensation of chromatin (Marmorstein and Trievel 2009) (Fig. 7a). It is well established that histone 

acetylation have fundamental roles in neurogenesis. HDAC1 is expressed by GFAP-positive cells within 

the SVZ whereas HDAC2 is found in migrating neuroblast and in TAP cells. Deletion of HDAC2 in the 

SVZ results in a defective neurogenesis to the OB and neurospheres treated with HDAC inhibitors 

promotes neuronal differentiation suggesting a role for this enzyme in neuronal fate determination 

(Siebzehnrubl et al., 2007, Jawerka et al., 2010, Foti et al., 2013). Furthermore, oligodendrocyte fate 

commitment is accompanied by a decrease in histone deacetylation at transcriptional repressors of 

oligodendrocytic differentiation such as Sox2 (Lyssiotis et al., 2007).  

Histone methylation is the other main histone modification and is associated with both active 

and silent chromatin being catalysed by histone methyltransferases (HMTs) (Fig. 7a). Trimethylation 

of lysine (K) 27 and lysine 9 of histone H3 (H3K27me3 and H3K9me3) tend to associate with regions of 

inactive gene transcription, whereas H3K4, H3K36 and H3K79 methylations are associated with active 

transcription (Li et al., 2007). Histone demethylases (HDMs) also have a key role in regulating neural 

development. Enhances expression of Jumonji domain-containing protein 3 (JMJD3), which belongs to 

H3K27me3 demethylases promotes demethylation of several neuronal genes, including Dcx, which 

induces neuronal differentiation (Park et al., 2014). H3K9me3 is enriched in the adult murine SVZ and 

it has been recently shown that its repression in undifferentiated cells is engaged in the maintenance 

of cell type integrity in this neurogenic niche (Foret et al., 2014).  

Taken together, these results demonstrate that proper histone modifications dynamics need to 

be tightly regulated to ensure the precise control of gene expression during neurogenesis in the 

mammalian CNS although these modifications are not the focus of this thesis. 

3.4 Epigenetic changes during reprogramming  

Cell reprogramming involves changes in the transcriptome and chromatin state of the 

reprogrammed cells to that of a pluripotent stem cell (Montalban-Loro et al., 2015). Evidence is 
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emerging that epigenetic priming events early in the process may be critical for pluripotency induction 

later (Papp and Plath 2013) (Fig. 9).  

iPSCs have lower levels of methylation than somatic cells, suggesting that demethylation is an 

important chromatin feature to achieve pluripotency (Lee et al., 2014). During reprogramming, it is 

stipulated that reprogramming factors interfere with methylation by binding to specific promoters or 

enhancer regions leading to demethylation and activation of the pluripotency genes (Hochedlinger and 

Jaenisch 2015). Recent studies in NSCs have shown the importance of methylation level in the context 

of reprogramming. It is then probable that NSC chromatin is dynamically remodelled and that 

modification of DNA methylation are essential for reprogramming to a pluripotent state. DNA 

demethylation of pluripotency genes seems to be crucial for faithful reprogramming and both active 

and passive mechanism of demethylation have been implicated in iPSC reprogramming (Apostolou and 

Hochedlinger 2013). For instance, downregulation of DNMT1 in reprogramming facilitates the iPSCs 

generation consistent with the role of passive demethylation (Kohli and Zhang 2013).  

TET enzymes, responsible of active demethylation, have been described to have a role on the 

reprogramming process. TET2 induces hydroxymethylation of key pluripotent genes such as Nanog for 

a subsequent transcriptional activation (Doege et al., 2012). Interestingly, proteomic and genomic 

analyses revealed that TET1 and TET2 directly interact with NANOG and co-occupy many pluripotent 

targets activating genes such as Oct4 or Esrrb (Estrogen-related receptor beta). In support of such 

mechanism, TET2 depletion completely ablated reprogramming of fibroblast whereas TET1 

overexpression enhances pluripotency acquisition (Pastor et al., 2013). However, reprogramming is 

often incomplete and leaves epigenetic marks including DNA methylation, chromatin modifications 

and transcriptional regulation known as “epigenetic memory” (Kim et al., 2011, Tobin and Kim 2012). 

Thus, reprogrammed iPSCs often present the limitation of not being fully reprogrammed thus keeping 

epigenetic traces of the tissue of origin. Future generation of iPSCs without epigenetic memory is an 

important challenge in the field to ensure that differentiation decisions are not affected by events from 

the past (Lee et al., 2014). 
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Figure 9. Dynamics of key molecular events during reprogramming. Summary of the main transcriptional and 
epigenetic changes (coloured bars) occurring during reprogramming of fibroblast into iPSCs, and examples of candidate 
regulators described. Modified from Apostolou and Hochedlinger, 2013. 

 

3.5 Genomic imprinting and regulation of adult neurogenesis 

During mammalian development, the vast majority of genes are expressed or repressed from 

both alleles. However, there are a small number of genes, termed “imprinted genes” that are 

expressed monoallelically from either the maternally or the paternally inherited chromosomes (Fig. 

10a,b). Approximately 150 imprinted genes have been described in mammals (complete list in 

http://www.mousebook.org/mousebook-catalogs/imprinting-resource) and are generally organized in 

clusters, although examples of singleton imprinted genes do exist (da Rocha and Ferguson-Smith 2004, 

Ferguson-Smith 2011, Barlow and Bartolomei 2014) (Fig. 11). An imprinting cluster is usually under the 

control of a DNA element, called the imprinting control region (ICR) that consists of differentially DNA 

methylated regions (DMRs) on the two parental chromosomes (Fig. 10a,b). Thus, ICRs can be divided 

into those which are methylated on the paternally inherited copy and those with maternally inherited 

methylation. Importantly, deletion of an ICR results in loss of imprinting of multiple genes in the cluster 

(Ferguson-Smith 2011, Barlow and Bartolomei 2014) (Fig. 10b).  
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Figure 10. Imprinted genes are under control of the imprinting control region (ICR). (a) Mammalian somatic cells 
contain a maternally inherited chromosome (pink) and a paternally inherited chromosome (blue). Imprinted genes are 
located in clusters and can be expressed from the maternally inherited chromosome and repressed in the paternally 
inherited chromosome (Green box A), or expressed from the paternally inherited chromosomes and repressed from 
the maternally inherited chromosome (Red box B). Imprinting in the cluster is regulated by a DNA element, called 
imprinting control region (ICR) that has differentially methylated regions (DMRs) on the two parental chromosomes. 
(b) Mutations in the ICR can modify imprinting affecting several genes in the cluster resulting in a switch in the 
expression patterns with the paternally inherited chromosome acquiring an epigenotype typical on the maternal one 
or vice versa. Adapted from da Rocha and Ferguson-Smith, 2004. 

 

It is well stablished that parental specific marks are assigned in the germline (Edwards and 

Ferguson-Smith 2007). At this time, both genomes are in distinct compartments and the modifications 

can be performed according to the sex of the transmitting gametes. During embryogenesis, the 

primordial germ cells (PGCs), which give rise to the gametes, have the methylation patterns that are 

characteristic of somatic cells. However, in the genital ridges, the imprints are erased during gamete 

formation to allow re-establishment of new parental specific marks (Fig. 12). After demethylation and 

differentiation of the PGCs, methylation is established at the ICRs in an allele-specific manner 

depending on whether the developing gamete is in the male or female germline. This occurs by de 

novo methylation process catalysed by DNMT3a methyltransferase (Fig. 12). DNMT3L is a regulatory 

co-factor of DNMT3a and is also required (Lozano-Ureña et al., 2017). After fertilization, a rapid an 

extensive reprogramming of the parentally inherited genomes occurs, and most DNA methylation is 

lost (Smallwood and Kelsey 2012). However, the parental-specific imprints must be maintained during 

this period and a memory of parental origin is propagated into daughter cells during somatic cell 

divisions (Fig. 12). Critical factors such as the Kruppel-like zinc finger protein ZFP57, protect imprints 

during the post-fertilisation period (Takahashi et al., 2015). Somatic heritability is conferred by the 

DNMT1 that recognizes newly replicated hemi-methylated DNA and places methylation on the newly 

replicated strand (Goll and Bestor 2005). Moreover, it has been reported the implication of TET 

proteins in removal of DNA methylation imprints (Liu et al., 2015). 
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Maternal germline DMRs are found at gene promoters, whereas paternal germline DMRs are 

found in intergenic regions (Edwards and Ferguson-Smith 2007). There are also somatic or secondary 

DMRs that acquire their DMR status after fertilization. Mapping experiments and germline DMR 

deletion experiments in mice demonstrated that the primary ICRs are essential to establish monoallelic 

expression and that the secondary somatic DMRs play important roles in imprinting maintenance. 

(Sutcliffe et al., 1994, Thorvaldsen et al., 1998, Williamson et al., 2006). 

Figure 12. Establishment and maintenance of imprints during development. DNA methylation is erased in primordial 
germ cells (PGCs) in the genital ridge; however, imprints are maintained in somatic cells throughout the lifetime of the 
organism. Imprints are acquired in a sex-specific manner in the germline: maternally and paternally DNA methylated 
ICRs gain DNA methylation in oocytes and sperm, respectively for transmission to the next generation. Following 
fertilization, the parental-specific imprints are maintained in the developing organism despite genome-wide 
reprogramming elsewhere. ZFP57 protects imprints during the post-fertilization epigenetic reprogramming period. 
DNMT3a and DNMT3L catalyse de novo methylation process and DNMT1 participates in the maintenance of imprints 
in somatic tissues. 

 

Imprinted genes are expressed widely and highly during prenatal stages and predominantly 

downregulated after birth. They are involved in multiple developmental processes. After birth, 

imprinted genes modulate postnatal neurological and metabolic functions but their monoallelic 

expression makes these loci very vulnerable since mutation or loss of imprinting of the expressed allele 

can compromise expression and lead to severe developmental defects (Cleaton et al., 2014). The 

majority of imprinted genes are expressed in the placenta and brain (Coan et al., 2005, Wilkinson et 

al., 2007) and disruption of imprinting can result in a number of human congenital imprinting 

syndromes including Prader-Willi (PWS) and Angelman syndromes (AS), characterized by neurological 

and behavioural impairments and learning difficulties (Hirasawa and Feil 2010). Disruption of 
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imprinting can also predispose to tumour formation and loss of imprinting at several genes has been 

observed in human cancers making aberrations of imprinting a potentially valuable tool for both 

diagnosis and treatment (Jelinic and Shaw 2007).  

Recent evidences suggests that the genomic imprinting process can be selectively lost or 

“switched off” in particular cell types or at specific developmental time points to activate an allele that 

is usually repressed (Ferron et al., 2011, Ferron et al., 2015). These heritable changes have an impact 

on stem cell plasticity and are likely to be essential for normal development and tissue regeneration 

(Kar et al., 2014). For instance, in the SVZ, the paternally expressed gene Delta-like homologue 1 (Dlk1), 

an atypical Notch ligand, plays an important dual function in postnatal neurogenesis. Dlk1 that is 

canonically imprinted in the brain shows a selective absence of imprinting in these cell types. Biallelic 

expression of Dlk1 is required for the stem cell maintenance in the SVZ and final neurogenesis (Ferron 

et al., 2011). Insulin-like growth factor 2 (Igf2) canonically expressed from the paternally-inherited 

allele, is biallelically expressed in the choroid plexus and secreted to the CSF to regulate NSCs 

proliferation (Ferron et al., 2015). During cortical neurogenesis, radial-glia highly expressed the 

paternally expressed zinc finger protein Zac1. Elevated in vivo levels of ZAC1 promote cell cycle exit, 

disrupt neurogenesis and also induced the expression of other imprinted genes such as the maternally 

expressed cyclin-dependent kinase inhibitor Cdkn1c, known to promote NSCs cell cycle arrest and 

differentiation (Rraklli et al., 2016).  

Genomic Imprinting has also been lightly studied in the reprogramming process. An initial report 

showed that several imprinted genes (H19, Peg1, Peg3 and Snrpn) maintained their allele-specific DNA 

methylation after reprogramming of fibroblast (Wernig et al., 2007). Interestingly, maintenance of the 

state of imprinting is also evident in iPSCs generated from AS and PWS patient fibroblast (Chamberlain 

et al., 2010). Thus, it appears that imprints present in the somatic cell of origin are retained in iPSCs 

even though more analysis is needed to define how imprinting is regulated during the reprogramming 

process. Particularly, in NSCs, it has been described that Oct4 seems sufficient to repress genes 

responsible for NSCs molecular identity and to activate the pluripotency genes, suggesting that 

epigenetic of NSCs renders them easier to reprogram (Kim et al., 2009b). However, the particular 

epigenetic mechanisms involved in the regulation of NSCs and during their acquisition of a pluripotent 

state are poorly understood.  

This thesis leads to the understanding of some of the basic epigenetic regulators in adult NSCs 

under physiological conditions, and identifies new epigenetic mechanisms that are modulated during 

the reprogramming of NSCs into iPSCs. We show that the dioxygenase TET3 inhibits the acquisition of 

a pluripotent state in NSCs and describe a crucial role for TET3 exerting its function in the maintenance 
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of the neural stem cell (NSC) pool in the adult SVZ niche through a mechanism that is independent of 

its catalytic function. 
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The discovery of neural stem cells (NSCs) in the adult nervous system implies the potential for 

endogenous repair and exogenous cell-based therapeutics, therefore the determination of positive 

and negative regulators that work to provide and optimal number of NSCs and their specific cell types 

is crucial for their future use in cell therapy. The epigenetic changes involved in neural stem cells 

maintenance remains to be elucidated thus the main objective of this work is the identification of the 

epigenetic signature (including genomic imprinting) that might control NSCs function in physiological 

conditions.  

 

The specific objectives proposed in this Thesis are: 

 

1. Cell reprogramming of adult NSCs into a pluripotent state with a minimum number of exogenous 

factors. 

2. Identification of the epigenetic changes occurring in adult NSCs during the acquisition of a 

pluripotent state focusing on the regulation of genomic imprinting and DNA methylation. 

3. Study of the role of the DNA dioxygenase TET3 in the regulation of NSCs maintenance and 

neurogenesis in the adult SVZ niche. 
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1. Experimental animals 

1.1 Mice handling 

Mice used were housed under 12 hours light/darkness conditions, with a constant temperature 

between 20 and 22 ºC and with a free accessible diet of pellets and water (ad libitum). Experimental 

procedures were performed in accordance with Spanish RD 53/2013 guidelines following the protocols 

approved by the ethical committee and under the supervision of the responsible of Servicio de 

Producción Animal del Campus de Burjassot from the Universitat de València. Litters were weaned with 

21 days old.  

When performance of highly invasive techniques was inevitable, mice were deeply anesthetized 

by intraperitoneal (i.p.) injection of a mixture of medetomidine (0.5-1 mg per kilogram of body weight) 

and ketamine (50-75 mg per kilogram of body weight) diluted in saline solution (0.9% NaCl). 

1.2 Mice strains 

All experiments were done using 2-4 months-old adult mice. The following mouse strains were 

used along this thesis: 

- C57BL/6 (Mus musculus domesticus): wild-type strain used as a source of biological samples 

for the different in vivo and in vitro experiments. These mice were also used to generate heterozygous 

and hybrids animals.  

- CAST/EiJ (Mus musculus castaneus): wild-derived mice used to generate hybrids animals 

through reciprocal crosses with C57BL6 strain. 

- Tet3loxP/loxP: mice carrying LoxP sites flanking the Tet3 gene were kindly provided by Dr. Wolf 

Reik (Babraham Institute, Cambridge). To generate these mice C57BL/6 ES cells were targeted with a 

vector containing LoxP sites around exon 5 of the Tet3 gene (Santos et al., 2013). This region contains 

residues required for chelation of Fe(II) and is upstream of exons containing other key catalytic 

residues of Tet3 (Tahiliani et al., 2009). Thus, expression of Cre-recombinase results in the excision of 

this region and a frame-shift from exon 6 that affects all downstream exons until a premature stop 

codon in exon 7. Mice were maintained on a C57Bl6 background. 

- B6.Cg-Tg(Gfap-cre)73.12Mvs/J (GFAPcre): mice obtained from Jackson laboratory. GFAPcre 

mice were generated using a 15-kb promoter cassette containing the full sequence of the mouse Gfap 

gene (Garcia et al., 2004) directing expression of a Cre-recombinase. This cassette (clone 445) contains 

all introns, promoter regulatory elements, exons and 2 kb of 3´and 2.5 kb of 5´flanking DNA of the Gfap 
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gene. The Gfap expression is prevented by the removal of a small fragment of the first exon (Johnson 

et al., 1995). GFAPcre line was maintained in heterozygosis. When these transgenic mice are bred with 

mice containing a LoxP-flanked sequence, Cre-mediated recombination is expected to result in 

deletion of the floxed sequences in the Cre-recombinase expressing tissues of the offspring. Cre-

recombinase activity was observed in essentially all adult neural stem cells, thus this strain was used 

to generate Tet3 conditional mutant mice in the GFAP+ cells in the SVZ (see TET3-GFAPcre strain). 

Importantly, donating investigator (Michael V. Sofroniew, University of California) reports that this 

strain show Cre-recombinase expression in the male germline (Zhang et al., 2013a), and suggests 

breeding GFAPcre females with floxed males for Cre-Lox experiments.  

- TET3-GFAPcre: To generate the specific deletion of Tet3 in GFAP positive cells within the SVZ, 

heterozygous GFAPcre transgenic females were bred with Tet3loxP/loxP males. Mice were maintained on 

a C57Bl6 background. All experiments were performed in F3 offspring mice. 

- B6;129S-Gt(ROSA)26Sortm1Sor/J (Rosa26-LacZ): mice obtained from Jackson laboratory. 

Heterozygous mice for the Gtrosa26tm1Sor targeted mutation were crossed with GFAPcre transgenic 

mice to test the tissue/cellular expression pattern of the cre-recombinase. Cre-recombinase expression 

results in the removal of a LoxP-flanked DNA segment that prevents expression of a LacZ gene. 

Consequently, β-galactosidase was present in cells/tissues where cre-recombinase was expressed. The 

Rosa26-LacZ strain was particularly useful for this purpose as the Rosa26 promoter led to generalized 

expression of LacZ in the adult. 

- NU/J: mice obtained from Jackson Laboratory. Homozygous mice for the nude spontaneous 

mutation (Foxn1nu, formerly Hfh11nu) have abnormal hair growth and defective development of the 

thymus epithelium. Nude mice are also athymic, lack T cells and suffer from a lack of cell-mediated 

immunity. Homozygous immunosuppressed mice were used for the teratome formation assay (see 

page 52.  

1.3 Genotyping  

The genotype of the different strains was determined by the end-point Polymerase Chain 

Reaction (PCR) using genomic DNA extracted from a small ear or tail tissue fragment using the 

commercial Thermo ScientificTM PhireTMAnimal Tissue Direct PCR kit (Thermo Fisher, cat. no. F140WH), 

in accordance with the manufacture´s protocol. The presence of mutant or wild-type alleles was 

determined using 2 µl of gDNA to perform a PCR using GoTaq® G2 Flexi DNA Polymerase (Promega, 

cat. no. M7801). The specific conditions for each PCR are detailed in Table 1. The size of each PCR 

product was resolved through electrophoresis in 2-3 % agarose gel prepared in TAE buffer (40 mM Tris-
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HCl pH 7.6, 20 mM acetic acid and 1 mM EDTA) with 1x Real Safe (Real©, Cat. no. RBMSafe). A 

commercial loading dye was used (Thermo fisher, cat. no. F-350). Finally, gels were photographed with 

UV light in a Kodak transiluminator.  

Table 1. Genotyping primers and PCR conditions. 64TD58 indicates a touch-down, a PCR protocol where annealing 

temperature (Tª) starts at 64 degrees during 30 sec and reduces 0.5 degree each cycle during the first 11 cycles. After 

that, 24 cycles were performed at 58 degrees. DEL indicates delectioned allele. 

 

2. Study of the SVZ cytoarquitecture  

2.1 BrdU administration 

5-Bromo-2´-deoxyuridine (BrdU) is a structural thymidine nucleotide analogue which is 

incorporated into de DNA of cells in S phase of the cell cycle at the administration moment. Three 

weeks before killing, two-month-old mice were injected with BrdU (Sigma Cat. no. B5002) at 50 mg/kg 

of body weight. In the SVZ, fast-proliferating transit-amplifying progenitors and migrating neuroblasts 

dilute out the BrdU, which is only retained in slowly proliferating NSCs (label-retaining cells, LRCs) and 

OB newborn neurons that ceased to divide and terminally differentiated soon after the injection 

(Ferron et al., 2007). In order to analyse the largest number of labelled cells, BrdU was injected every 

2 hours for 12 consecutive hours (seven injections in total) and mice were sacrificed by transcardial 

perfusion 28 days later. BrdU was prepared freshly every time in saline buffer (0.9% NaCl). The solution 

was sonicated in an ultrasound water bath (Transsonic 310/H, Elma®) for a few minutes immediately 

Gene Primer sequence (5´-3´) Amplicon Allele T (ºC) Cycles 

Tet3 

Tet3-F  TACCTCTGCCTCTGGAGTGCTAA 
320 bp WT 

60 39 

Tet3-R2  GTCAGGAAAGTCACATGGTTGTTG 

Tet3-F  TACCTCTGCCTCTGGAGTGCTAA 
400 bp LoxP 

Tet3-R2  GTCAGGAAAGTCACATGGTTGTTG 

Tet3-F  TACCTCTGCCTCTGGAGTGCTAA 
237 bp DEL 

Tet3-R1  ATGGCTACTCACAACCCAGTGAC 

GFAPcre 

oIMR7338  CTAGGCCACAGAATTGAAAGATCT 
300 bp WT 

60 39 
oIMR7339  GTAGGTGGAAATTCTAGCATCATCC 

oIMR1084  GCGGTCTGGCAGTAAAAACTATC 
100 bp CRE 

oIMR1085  GTGAAACAGCATTGCTGTCACTT 

Rosa26-

LacZ 

OIMR39  ATCCTCTGCATGGTCAGGTC 
200 bp WT 

64TD58 11+24 
OIMR40  CGTGGCCTGATTCATTCC 

OIMR15  CAAATGTTGCTTGTCTGGTG 
300 bp LACZ 

OIMR16  GTCAGTCGAGTGCACAGTTT 
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before injection. We detected LRCs using a specific antibody against BrdU in histological slices (see 

Immunohistochemistry section).  

2.2 Histological techniques 

Mice usedfor in vivo experiments were deeply anaesthetized as indicated above. In order to 

maintain brain and tissue structures, mice were transcardially perfused first with 27.5 ml of saline 

buffer (0.9% NaCl) in order to remove blood cells, followed by 4% paraformaldehyde (PFA) in 0.1 M 

Phosphate Buffer Saline pH 7,4 (PBS) at a flow rate of 5.5 ml/min. After that, brains were extracted 

and post-fixed by immersion in 4% PFA during 1 hour and washed 1 additional hour with PBS. Finally, 

brains were serial coronal sectioned at 40 µm of thickness using a vibratome (Leica® VT1000S) and 

kept in PBS-0.05% sodium azide at 4º until the analysis.  

For SVZ whole-mounts, mice were sacrificed by cervical dislocation and the lateral ventricles 

were carefully dissected out. The resulting whole-mounts were fixed and permeabilized in 4% PFA with 

0.5% TritonTM X-100 (TX) in PBS for 8-12 hours. Next day, tissue was rinsed three times in 0.5% Tx-100 

PBS before the immunohistochemical analysis. 

2.3 Immunohistochemistry (IHC) 

Immunohistochemical techniques used in this thesis include immunofluorescence and 

peroxidase detection techniques. Primary antibodies used are in Table 1 Annex I. Specifically, for the 

detection of BrdU, 5hmC and 5mC, slices were initially treated with 2N HCl at 37ºC during 20 min to 

allow denaturation of DNA. After that, pH was neutralized washing the slices with 0.1M sodium borate 

(pH 8.5) for 10 min followed by some washes with PBS. When peroxidase was used as primary 

antibody, endogenous peroxidase was inhibited using a 3% hydrogen peroxide solution (Panreac) for 

30 min at RT. To prevent non-specific antibody binding, the tissue was incubated in blocking buffer 

(0.2% Tx-100, 1% glycine and 10% FBS in 0.1 M PBS) for 1 hour at a RT before using specific antibodies. 

Slices were then incubated overnight at 4ºC with primary antibody diluted in the same blocking buffer. 

The day after, slices were washed and incubated with secondary antibodies conjugated with different 

fluorophores (Table 2 Annex I) for 1 h at a room temperature in the dark. After several washes, nuclei 

were counterstained with 5 µg/ml of DAPI (4′,6-Diamidine-2′-phenylindole dihydrochloride; Sigma) for 

5 min and mounted with a specific mounting solution for fluorescent preparations (FluorSaveTM, 

Millipore, cat. no.345789).  

For peroxidase detection, samples were incubated with specific biotinylated secondary 

antibodies (Table 2 Annex I) followed by avidin-biotin-peroxidase complex (ABC) using the Vectastain® 

commercial Kit (Vector Laboratories, cat. no. PK4000). After several washes in PBS, slices were 
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incubated with 0.02% of DAB (3-3´diaminobencidine, Sigma, cat. No. D7304) and 0.01% H2O2 in 0.1M 

PBS until the signal appeared. For β-galactosidase staining, perfused brain slices were rinsed in Tissue 

Rinse solution A (2 mM MgCl2, 5 mM EGTA and 0.1 M PO4, pH 7.4) for 30 min at a room temperature 

and rinsed then with Tissue Rinse Solution B (2 mM MgCl2, 0.01% sodium deoxycholate (Sigma, cat. 

no. D6750), 0.02% Nonidet P-40 (Sigma, cat. no. 21-32775AJ) and 0.1 M PO4 pH 7.4) for 30 min. 

Sections were incubated in Tissue Stain Base Solution (0.1 M PO4 pH 7.4, 2 mM MgCl2, 0.01% sodium 

deoxycholate, 0.02% Nonidet P-40, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6 and 1 mg/ml X-Gal) at 37ºC 

overnight. Slices were washed several times with PBS, dehydrated with increasing concentration of 

alcohols, clarified with citrosol and mounted with Eukitt (Panreac®). 

Due to its thickness, SVZ whole-mounts were washed three times in PBS containing 2% Tx-100 

for 15 min each and blocked for 2 hours in blocking buffer with 2% of Tx-100. Primary antibody 

incubation was done during 48 hours at 4ºC prepared in the same blocking buffer. 

2.4 SVZ cell populations counting 

For the analysis of the different populations within the adult SVZ, 2-8 immunostained slices for 

each animal were visualized and photographed in an Olympus FluoView FV10i confocal laser scanning 

microscope (Olympus, Japan) equipped with 405, 458, 488 and 633 nm lasers. Images were processed 

using FV10-ASW 2.1 viewer software (Olympus, Japan). When more than one fluorophores were 

analysed in the same sample, they were excited separately to avoid interferences. Cell populations 

were manually counted in captured images and data was obtained as a percentage of positive cells 

relative to a specific population or to the total number of DAPI cells. Merged images were done with 

Adobe Photoshop CS5. BrdU-LRCs in the SVZ, OB and corpus callosum were manually counted in a 

fluorescent microscope (Nikon Eclipse Ni) in 10-12 slices applying the Cavalieri estimator (C=N x S x TH) 

which takes into account the number of counted cells per section (N), the total number of slices 

obtained (S) and section thickness.  

3. Adult Neural Stem Cells (NSCs) culture 

The isolation and culture of NSCs have been previously described by our laboratory (Ferron et 

al., 2007, Belenguer et al., 2016). The protocol is detailed below.  

3.1 SVZ dissection and tissue dissociation.  

Two-month old mice were sacrificed by cervical dislocation. The brains were removed and 

collected in a plate with cooled and sterile PBS (Biowest, cat. no. X0515). Brain dissections were made 

under a dissection microscope with a pair of scalpels. The cerebellum and olfactory bulbs were first 
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removed and both hemispheres separated for fine dissection. SVZ area was delimited removing the 

surrounding tissue and ventricle wall was finely cut, separating the SVZ from the rest of the brain tissue 

(Fig. 13). After that, both SVZs from each mice were diced together and enzymatically digested with a 

previously activated (20 min at 37ºC) solution of papain (12U/mouse; Worthington Biochemical 

Corporation, cat. no. LS003120) containing 0.2 mg/ml L-cysteine hydrochloride (Sigma, cat. no. C8277) 

and 0.2 mg/ml EDTA (Sigma, cat. no. E6511) in EBSS (Earle´s Balanced Salt Solution, GibcoTM, cat. no. 

24010-043). After 30 min of incubation at 37ºC, tissue was washed in control medium (Table 2) and 

carefully disaggregated using a fire polished glass pipette. Once the cellular suspension was obtained, 

cells were plated in complete medium (Table 3). Cells obtained from two SVZs were distributed in 8 

wells of a p48-well plate and incubated at 37ºC and 5% CO2 atmosphere. After 7 days of incubation, 

differentiated cells died and some isolated cells (NSCs and some progenitors) proliferate to form clonal 

aggregates called primary “neurospheres”.  

Figure 13. Schematic of the SVZ dissection protocol. Initially, olfactory bulbs (OB) and cerebellum (Cb) were removed 
(a-b) to obtain a 4-5 mm thick slice containing the lateral ventricles (LV). Then, both hemispheres were separated (c) 
for fine dissection. After that, to isolate the SVZ: cuts to separate the ventricular zone from the septum (Sp) (d,e) and 
cuts to exclude the striatum (str) were performed (f). Finally, the SVZ block was finely cut under the surface of the 
ventricle wall, separating the SVZ from the subjacent striatal parenchyma. Black dashed lines indicate cut zones. 

 

After neurospheres acquired the right size (150-200 m), the number of primary neurospheres 

was manually counted on an inverted microscope (Nikon eclipse TE2000-S). The total number of 

neurospheres was considered as an estimation of the number of forming neurospheres cells in the SVZ 

tissue. The cultures were then subcultured (passaged; see 3.2).  

3.2 Subculture and expansion of adult NSCs 

NSCs subculture is one of the most critical steps in the establishment of the NSCs cultures. Only 

few cells from a neurosphere are able to generate new spheres and this capacity depends on age, 

strain, etc. Once primary neurospheres were obtained from the tissue, they were expanded by 

dissociating and seeding individually under the same culture conditions.  
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To proceed, neurospheres were centrifuged in a 15 ml conical tube at 100-130 g during 5 min. 

Pelleted spheres were treated with 200 µl of Accutase® solution (Sigma, cat. no. A6964) for 10 min at 

RT. After this incubation, 800 µl of control medium were added and spheres were mechanically 

dissociated by pipetting 10-15 times using a p1000 micropipette. Dissociated cells were washed with 

control medium and centrifuged again at 200 g for 10 min. Single cells pellet was resuspended in 

complete medium and the cell concentration was estimated using the automatic ADAM cell counter 

system (NanoEnTek®).  

For culture expansion, a relative high density of viable cells (10.000 cells/cm2) were seeded in 

complete medium and incubated at 37ºC with a 5% CO2 humidified atmosphere. After 5-7 days, 

secondary neurospheres were big enough to be processed for a new passage. To determine the cellular 

growth rate of the cultures, the number of cells generated after each passage was quantified and 

accumulative growth curve was represented in a graph considering the number of cells generated after 

several passages.  

3.3 The neurosphere formation assay (NSA). 

Neural stem cells have the capability to proliferate and self-renew and these capacities can be 

evaluated in vitro. The NSA assay was utilized to accurately quantify bona fide stem cell frequency 

based on neurosphere numbers (Pastrana et al., 2011) (Fig. 14). After obtaining a single cell suspension 

solution, cells were plated at low density (5 cel/µl; 1000 cells per well of a p96-well plate in a total 

volume of 200 µl of complete medium). In order to minimize possible pipetting bias, an intermediate 

dilution of 50 cell/µl was prepared. Cells were incubated at 37ºC in a 5% CO2 humidified incubator. 

Five days after, the neurospheres formed were manually counted on an inverter microscope under 

phase contrast optics. 

 

Figure 14. The neurospheres assay (NSA). 
Schematic of the neurospheres assay. 
Primary neurospheres were dissociated and 

replated at low density (5 cells/l). Spheres 
were allowed to develop for 5 days and 
counted. 

 

 

For diameter assessment, at least 200 neurospheres were photographed with a camera coupled 

in an inverted microscope (Nikon DXM1200F) and their diameters were measured using the free 

ImageJ software (NHI). 
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3.4   Determination of the proliferation capacity in NSCs 

3.4.1 Determination of the BrdU incorporation rate 

To determine the BrdU incorporation rate in neurosphere cultures, single cells were attached to 

glass coverslips pre-treaded with Matrigel® (Corning®, cat. No. 354230; diluted 1:100 in control 

medium for 24h) and incubated at 37ºC for a variable period of time depending on the experiment. 

After that, cells were treated for 5 min with 2 µM BrdU diluted in the culture medium and cells were 

fixed for 20 min with 4% pre-warmed PFA in PBS. After several washes, BrdU incorporation was 

analysed by immunocytochemistry (see Immunocytochemistry section). 

3.4.2 Cell cycle analysis 

Single cells were grown in complete medium at 10.000 cell/cm2 and incubated at 37ºC in a 5% 

CO2 humidified incubator. Two days after, neurospheres were pelleted and treated with Accutase® 

during 10 min to obtain a single cells suspension that were stained with the BD CycletestTM Plus DNA 

Kit (BD FACs, cat. no. 340242) in accordance with the manufacture´s protocol. Finally, the percentages 

of cells in the different cell cycle phases were determined in a FACSVerse (BD) flow cytometer and 

analysed with FlowJo® software.  

3.5 Differentiation assay and reactivation of NSCs 

NSCs are multipotent cells that are able to differentiate into the three neural lineage cells: 

astrocytes, oligodendrocytes and neurons. Although NSCs have the ability to proliferate in the 

presence of EGF and FGF, once EGF is removed and an adherent matrix is provided, NSCs initiate the 

differentiation program. To induce bulk differentiation, secondary neurospheres were dissociated, 

washed with control medium to remove mitogens contamination, and 80.000 cell/cm2 were plated on 

Matrigel® coated coverslips (for ICC) or plates (for RNA extraction) with Differentiation medium I 

(control medium supplemented with 10 ng/ml of bFGF) to promote cell survival at the beginning of 

the differentiation. After 2 days in culture, medium was replaced by Differentiation medium II (control 

medium supplemented with 2% FBS) that allows maturation of astrocytes and neuronal 

differentiation. Differentiating cells were incubated five more days. Glass coverslips for 

immunocytochemistry, were coated with Matrigel® diluted 1:100 in control medium and incubated at 

37ºC in a 5% CO2 humidified incubator for 24h. Coverslips with differentiated cultures were next 

washed twice with sterile dH2O and processed for ICC (see immunocytochemistry section).  

 For reactivation experiments, 7-days differentiated cells (as indicated above) were detached 

by treating the cultures with Trypsin-EDTA (T/E) (Gibco, cat. no. 25200-056) for 10 mins. Cells were 
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mechanically dissociated to get a single cell suspension and were washed with PBS several times to 

remove FBS contamination. These cells were then resuspended in complete medium and re-plated at 

a low density (5 cell/µl) in a 96-well plates. Neurospheres were allowed to grow during 6-7 days and 

manually counted using an inverted microscope with phase contrast optic. The number of new 

neurospheres-forming cells was considered as an indication of the neural stem cell number in the 

cultures.   

3.6 Cryopreservation and cellular thawing of NSCs. 

Once neurospheres lines were established, they were expanded and cryopreserved for further 

use. Two-day neurospheres were centrifuged and softly resuspended in fresh complete medium 

supplemented with 10 % dimethyl sulfoxide (DMSO; Sigma, cat. no. D4540). Cells were transferred to 

labelled cryotubes and placed at -80ºC for at least 4 hours in a freezing container (CoolCellTM, BioCision) 

designed to permit a slow temperature drop (1ºC/min). For long-time storage, cell cryotubes were 

transferred to a liquid nitrogen tank (-196 ºC). 

To thaw cells, cryotubes were placed in a 37ºC water bath until complete thawing. Cell 

suspension was transferred to a 15 ml tube and centrifuged for 5 min at 100 g. Cells were resuspended 

and plated in complete medium. 

3.7 Culture media and solutions for NSCs  

Table 2. Control medium preparation. DMEM/F12 (Dulbecco´s Modified Eagle Medium / Ham´s F12 Nutrient Mixture). 

 
 

Table 3. Complete medium preparation. EGF: Epidermal growth factor); FGF: Fibroblast Growth Factor. 

 

Reagent Working concentration Stock conc. Provider Cat. no. 

DMEM/F12 (1:1) 1x 1x (4ºC) Gibco 11320-074 

D(+)-Glucose 0.6 % 30% (-20ºC) Panreac 141341 

NaHCO3 0.1 % 7.5% (4ºC) Biowest L0680-500 

HEPES 5 mM 1M (4ºC) Boiwest L0180-100 

L-Glutamine 2 mM 200mM (-20ºC) Gibco 25030-081 

Antibiotic/Antimycotic 1x 100x (-20ºC) Gibco 15240-062 

“Hormone mix” 1x 10x (-20ºC) Homemade (Table 4) 

Heparin sodium salt 0.7 U/ml 350 U/ml (4ºC) Sigma H3149 

Bovine Serum Albumin (BSA) 4 mg/ml Powder (4ºC) Sigma B4287 

Reagent Working concentration Stock conc. Provider Cat. no. 

Control medium Described in Table 2 

EGF 20 ng/ml 4 µg/ml (-20ºC) Gibco 530003-018 

bFGF 10 ng/ml 25 µg/ml (-20ºC) Sigma F0291 
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Table 4. Homemade “Hormone mix (HM)” preparation. It is prepared 10x concentrated and kept at -20ºC until use. 

 

4. Analysis of proliferating and differentiating NSCs by immunocytochemistry 

Four-day proliferating neurospheres were plated on Matrigel® coated coverslips and incubated 

for 20 min to allow cell attachment followed by a fixation step in 2% PFA at 37ºC for 15 min and washed 

3 times with PBS. After that, cells were kept in PBS-0.05% sodium azide at 4º until the analysis. For 

BrdU, 5hMe and 5mC detection, samples were initially treated with 2N HCl at 37ºC for 20 min to allow 

denaturation of DNA. PH was then neutralized with 0.1M sodium borate (pH 8.5) for 10 min followed 

by some washes with PBS. To prevent unspecific binding of antibodies, samples were incubated with 

blocking buffer (0.2% Tx-100, 10% FBS, 1% glycine in PBS) for 1 hour. Neurospheres were then 

incubated with primary antibodies (Table 1 Annex I) diluted in blocking buffer at 4ºC overnight. The 

day after, cells were washed in PBS and incubated with secondary antibodies (Table 2 Annex I) for 45 

min at room temperature.  

To analyse the NSCs during the differentiation process, coverslips with differentiated cultures 

(see section 3.5) were fixed at 2, 3 and 7 DIV. Samples were incubated for 1 hour in blocking buffer 

(0.2% Tx-100, 1% glycine and 10% FBS in 0.1 M PBS) with the exception of O4 detection (without Tx-

100). Cells were incubated with primary antibodies (Table 1 Annex I) prepared in the same blocking 

buffer, at 4ºC overnight. Next day, the samples were washed several times with PBS before the 

incubation with the secondary antibodies (Table 2 Annex I). For O4 detection, primary antibody was 

incubated in blocking buffer without TX-100. Samples were both incubated with biotinylated 

secondary antibody for 40 min followed by one hour of incubation with streptavidin coupled with a 

fluorophore. After secondary antibody, coverslips were washed in PBS and stained with 1 µg/ml of 

DAPI for 5 min before mounting on microscope slides with FluorsaveTM reagent. The percentage of 

positive cells both in proliferating or differentiating conditions was determined counting the number 

Reagent HM 10x concentration Stock conc. Provider Cat. no. 

DMEM/F12 (1:1) 1x 1x (4ºC) Gibco 11320-074 

D(+)-Glucose 0.6 % 30% (-20ºC) Panreac 141341 

NaHCO3 0.1 % 7.5% (4ºC) Biowest L0680-500 

HEPES 0.5 mM 1M (4ºC) Biowest L0180-100 

Apo-Transferrin 1 mg/ml Powder Sigma T2252 

Bovine Insuline 14.5 µM 145 µM in 0.01N HCL Sigma I6634 

Putrescine  0.1 mg/ml 1 mg/ml Sigma P7505 

Progesterone 0.2 µM 2 mM in 95% etOH Sigma P6149 

Sodium selenite 0.3 µM 3 mM Sigma S9133 
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of immuno-positive cells related to the total number of DAPI positive cells in at least 40 fields captured 

using an Olympus FluoView FV10i confocal laser scanning microscope (Olympus, Japan). 

5. Lentiviral shRNA gene silencing 

Transient introduction of exogenous DNA for expression of the shRNA molecules can be 

synthesized exogenously into lentiviral vectors permitting the generation of continuous cell lines in 

which RNA enforces stable and heritable gene silencing (Paddison et al., 2002). 

5.1 Lentivirus production in packing HEK293T cells 

Lentivirus containing shRNA plasmids were generated in HEK293T packing cells. 293T cells were 

transfected with a “plasmid solution” containing the three lentivirus packaging plasmids and the 

specific shRNA (shSCRAMBLE or shSNRPN) (Table 6). To proceed, 4-5 x 106 of the packing cells HEK293T 

cells were plated in a 56 cm2 culture plate. The day after, when 70-80% confluence was observed, the 

culture medium was changed to fresh HEK296T medium (Table 5) to improve transfection efficiency. 

For transfection, a “plasmid solution” containing 10-20 ng of the three lentivirus packaging plasmids 

and the specific shRNA (shSCRAMBLE or shSNRPN) (Table 6) was prepared in a total volume of 360 µl 

Opti-MEMTM (Gibco).  22 µl of Lipofectamine 2000 (Invitrogen) was also prepared in 360 µl Opti-

MEMTM. Both solutions were incubated for 5 min at RT and then incubated together for 20 min more. 

Mixture was added drop by drop to the HEK293T cells and cultures were incubated at 37ºC in a 5% CO2 

humidified incubator. After 14-16 hours, HEK293T culture media was changed by NSCs complete 

medium to obtain supernatants with lentiviral particles. As the plasmid vectors included the expression 

of a GFP (Green Fluorescent Protein) reporter, the presence of fluorescence was checked in a 

fluorescent inverted microscope as a control of the transfection process. 

5.2 NSCs transduction 

Approximately 30 hours after transfection, when the lentiviral production is maximum, 

supernatants with lentiviral particles were collected and filtered with a 0.45 µm nitrocellulose filter. At 

the same time, neurospheres to be transduced were dissociated using Accutase® and 1x106 cells  were 

acutely infected with the lentiviral supernatant supplemented with 4 µg/ml of Polybrene 

(cationic polymer used to increase the efficiency of infection; Sigma, cat. no. H9268). One hour after, 

4 ml of complete medium were added and cells were incubated for 4-6 hours. Finally, infected cells 

were washed and plated in a 25 cm2 culture flask. Cells were allowed to grow for experiments.  

 

 

https://en.wikipedia.org/wiki/Polymer


 

 

48 Material and Methods 

 

Table 5. HEK293T culture medium. *FBS inactivation was performed by incubation at 65ºC for 10 min. 

 

Table 6. Plasmids utilized in HEK293T transfection. 

 

6. CRISPR-Cas9-Mediated Gene Manipulation in NSCs 

Plasmids to perform CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) 

assay for Tet3 were kindly provided by Dr. Myriam Hemberger (Babraham Institute, Cambridge). To 

generate the specific CRISPR-Cas9 plasmid for gene mutation, Tet3-gRNA was synthesized, annealed, 

and ligated into the pSpCas9(BB)-2A-GFP (PX458) plasmid (Addgene #48138) using the BbsI restriction 

enzyme. The cloned gRNA sequence was: 5´-CACCGGAAAAGGCCACCAGGTCGT´-3. A PX458 empty 

plasmid was used as a control.  

NSCs were nucleofected with a NucleofectorTM (Amaxa) to introduce the exogenous DNA into 

the cells. To do so, 3-4 days-grown neurospheres were dissociated using Accutase® to obtain a single 

cell suspension of NSCs of known cell density. Cells (1.5-2x106) were centrifuged for 10 min at 100 g. 

After centrifugation, 5 µl of a mix containing 5 µg of the different plasmids were directly added to the 

cell pellet which was then resuspended in 95 µl of Nucleofection Solution from the Mouse Neural Stem 

Cell NucleofectorTM kit (Lonza, cat. no. VPG-1004) and placed in a NucleofectorTM cuvette (Amaxa). 

Cells were electroporated in a NucleofectorTM 2b device (Amaxa) using the A-31 specific program. 

Electroporated cells were gently collected, seeded in a T25 culture flask with pre-warmed complete 

medium and incubated at 37ºC in a 5% CO2 humidified incubator. After 48 hours, GFP expressing cells 

Reagent Working conc. Stock conc. Provider Cat. no. 

DMEM high glucose 1x 1x (4º) Biowest L0101 

FBS heat inactivated* 10 % Pure (-20ºC) Labclinics S181B-500 

L-glutamine 2 mM 200 mM (-20ºC) Gibco 25030-081 

Penicillin/Streptomycin  1x 100x (-20ºC) Biowest L0018-100 

Plasmid 
ng per 

transfection 
Codified 
molecule 

Use Reporter Provider Cat. no. 

pMDLg/pRRE 4.8 ng Gag, pol, RRE 
Lentiviral 
packaging 

None Addgene #12251 

pRSV.REV 2.5 ng Rev None Addgene #12253 

pMD2G 3.5 ng Env None Addgene #12259 

pLL3.7 shRNA 
scramble 

11.6 ng 
shRNA 

scramble Expression 
silencing 

GFP Addgene #11795 

pLKO shRNA 
SNRPN 

11.6 ng 
ShRNA 
SNRPN 

GFP Sigma TRCN0000109285 

https://www.addgene.org/48138/
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were isolated by flow cytometry (MoFlo® XDP, Beckman Coulter) and plated at a 10 cell/µl to expand 

Tet3 deficient cultures.  

7. Reprogramming of NSCs into Induced Pluripotent Stem Cells (iPSC) 

The reprogramming protocol used in this thesis was an adaptation from Kim J.B. et al. 2009 (Kim 

et al., 2009c) (Fig. 15). To generate iPSCs form adult NSCs with a minimal number of factors and given 

that NSCs express higher endogenous levels of Sox2 and c-Myc than ESCs, only exogenous Oct4 

together with Klf4 (2F) were used for reprogramming as previously described (Kim et al., 2008). 

7.1 Retrovirus production in  Platinum-E  (Plate-E)  packaging cells and NSCs transduction 

Retroviruses are an efficient tool for delivering heritable genes into the genome of dividing cells. 

The Plat-E cell line (Cell Biolabs, cat. no. RV-101)  is a potent retrovirus packaging cell line based on the 

HEK293T cell line that was generated using packaging constructs with an EF1α promoter to ensure 

longer stability and high-yield retroviral structure protein expression (Morita et al., 2000). 

To produce retroviruses, Plat-E cells were plated with Plat-E medium (Table 7) without 

antibiotics (Blasticidin and Puromycin) and incubated at 37ºC in a 5% CO2 atmosphere. After 24 hours 

(aprox 70% confluence), cell culture medium was changed with fresh medium and transfection with 

viral vectors was carried out (day 1). For that, a plasmid solution was prepared containing 1 ml of Opti-

MEMTM, 60 µl of 1mg/ml polyethylenimine (PEI, Polysciences, cat. no. 23966) and 20 µg of the 

retroviral vectors pMXs-Oct4 (#13366, Addgene), pMXs-Klf4 (#13370, Addgene) and pMXs-Cherry 

(pMX-2A-CH, designed and kindly provided by Dr. Jose Manuel Torres ). After 20 min of incubation, 

mixture was added drop by drop to the Plat-E cells (one plasmid per dish) for 24 hours (day 2). Plat-E 

culture medium was then replaced by NSCs complete medium. Transfection efficiency was checked by 

cherry expression in plat-E cells. The day after (day 3), each retrovirus-containing supernatant was 

collected and filter with a 0.45 µm nitrocellulose filter.  

 Neurospheres grown for two days were transduced with a mixture of virus-containing 

supernatant (SN) as follow (volume per plate): 3 ml of Oct4 SN, 3 ml of Klf4 SN, 1 ml of cherry SN and 

3 ml of fresh NSCs complete medium. A control of infection was made with a mixture containing 7 ml 

of cherry retrovirus containing medium and 3 ml of fresh complete medium. In order to enhance the 

efficiency of retroviral infection, retrovirus mixture was supplemented with 4 µg/ml of Polybrene 

(Sigma). NSCs were then incubated for 14-18 hours at 37ºC in a humidified incubator. Infected NSCs 

medium was then changed by fresh complete medium (day 4) and neurospheres were allowed to 

develop.  
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7.2 Reprogramming of NSCs by retroviral transduction 

To promote the reprogramming process, the mouse fibroblast cell line SNL (Cell Biolabs, cat. no. 

CBA-316) was used as feeder cells during the reprogramming process of infected NSCs. To avoid SNL 

feeder cells growing, they were mitotically inactivated by treatment with 4 µg/ml of Mitomycin C 

(Sigma, cat no M4887) for 2-4 hours. Plates were treated with 0.1% of gelatine (Sigma, cat. no. G1890) 

at 37ºC for at least 20 min and then mitomyzed SNLs were plated at high density (2.5x106 cell/plate) 

in gelatine-treated plates (day 7). 

Five days after transduction (day 8), neurospheres were dissociated with Accutase® and 1,5x105 

of infected NSCs were re-plated on SNL feeder cells with reprogramming medium (RM) containing 15% 

FBS and the cytokine Leukaemia Inhibitory Factor (LIF) (Table 8). RM medium was changed every other 

day until Stage-specific Embryonic Antigen-1 (SSEA-1; also known as CD15) positive colonies appeared 

(pre-iPSCs), checked by staining with StainAlive SSEA-1 Antibody (DyLight 488) (Stemgent®, cat. no. 09-

0067, 1:100 dilution) (Fig. 15). At this moment, reprogramming medium was replaced with 2i/LIF 

medium (Table 9) which is based on dual inhibition (2i) of mitogen-activated protein kinase (MAPK) 

signalling and glycogen synthase kinase-3 (GSK3) combined with LIF. This defined medium allows pre-

iPSCs to advance to ground state pluripotency with high efficiency (Silva et al., 2008). 2i/LIF medium 

was changed every other two day until well-defined iPSCs colonies appeared. For further expansion of 

iPSCs, individual colonies were isolated and plated on gelatine treated plates with 2i/LIF medium in 

order to establish and expand clonal lines of iPSCs.  

 

Figure 15. Schematic representing the NSCs reprogramming protocol. The protocol started with the plat-E 
transfection and NSCs passage. After changing the Plat-E medium to NSCs complete medium, NSCs were infected with 
retrovirus on day 3. Five days after the infection, NSCs were dissociated and plated on mitomyzed feeders with RM 
medium. Medium was changed every other day until pre-iPSCs appeared. At that moment, 2i/LIF medium was used to 
allow final iPSC development. When well-defined iPSCs colonies appeared, they were picked and re-plated for 
expansion. 
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7.3 iPSCs characterization 

7.3.1 Alkaline phosphatase (AP) staining 

Alkaline phosphatase detection method was used in reprogrammed cells to check the presence 

of iPSCs after one month in 2i/LIF medium on feeders. Cells were fixed with cold methanol for 2 min 

and washed three times with 0.1M Tris-HCl pH 8.5 buffer. Samples were incubated with the “staining 

solution” which contained 0.1 mg/ml Naftol phosphate (Sigma, cat. no. N4875), 0.5% 

Dimethylformamide (Sigma, cat. no. D4551) and 0.6 mg/ml Fast Red Salt (Sigma, cat. no. F2256) in 

0.1M Tris-HCl pH 8.5. When red precipitate appeared, cells were washed with 0.1M Tris-HCl and 

distilled water. Finally, the different plates were photographed using a dissection microscope.  

7.3.2 Embryoid bodies assay 

Embryoid bodies’ differentiation assay was performed using the “hanging drops” method. iPSCs 

were treated with Accumax® (Millipore, cat. No. SCR006) and the cell pellet was resuspended in EB 

differentiation medium (Table 10). Cells were counted and a dilution of 30.000 cell/ml was prepared. 

In a bacterial petri plate (less adherent) several rows of 20 µl drops of the cell suspension (about 5 ml) 

were plated using a multichannel pipet and the petri plate was incubated upside-down for 3 days at 

37ºC in a 5% CO2 humidified incubator to allow the EBs appearance. After this incubation time, the 

plate was inverted and 10 ml of EB medium were added. To avoid EBs attachment, a new culture plate 

was previously treated with 0.4% poly (2-HEMA) solution (Sigma, cat. no. P3932) prepared in 

Ethanol:Acetone (1:1). After washing poly (2-HEMA), EBs were re-plated with the same culture 

medium and incubated at 37ºC in a 5% CO2 humidified incubator for 4 more days. After that, EBs were 

transferred to a 15 ml conical tube, dropped to the bottom of the tube and culture medium removed. 

In this point, sample for RNA extraction was collected and the remaining EBs were plated on gelatine-

treated plates for 3 more days before analysing them by immunocytochemistry.   

7.3.3 Karyotype analysis in iPSCs 

To perform the karyotype analysis, cells needed to be 50% confluent. Cell division was inhibited 

using 0.6 µg/ml of KarioMAX® Colcemid (Gibco, cat. no. 15210-0.40) at 37ºC. After 2 hours, culture 

medium was removed and 0.85% sodium citrate, previously warmed at 37ºC, was added. A cell Scraper 

(Biofil®) was used to raise the cells. Cell suspension was transferred to a 15 ml conical tube and 

incubated at 37ºC for 15 mins. After that, 10 drops of codl Carnoy fixative (Methanol-Acetic acid, 3:1) 

were added to the suspension and softly mixed using a Pasteur pipette. Samples were washed several 

times with 5 ml of cold Carnoy solution and, after centrifugation (10 min 300 g), pellets were 

resuspended in 2 drops of Carnoy fixative. Cells extensions were made in microscope slides following 
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by fixation by heat. Samples were stained with Leishman´s stain (Sigma, cat. no. L6254) following the 

manufacture´s guidelines and the number of chromosomes were counted in an upright microscope 

(Nikon Eclipse Ni).  

7.3.4 Immunocytochemical characterization during reprogramming 

In order to assess the different cell populations at different stages of the reprogramming 

process, iPSCs and EBs were analysed by immunocytochemistry. Both of them were previously plated 

on coverslips coated with 0.1% gelatine (20 min at 37ºC). Two days after, cells were fixed with 4% PFA 

for 20 min and incubated in blocking buffer (0.2% Tx-100, 1% glycine and 10% FBS in 0.1 M PBS) for 1 

hour. Samples were then incubated with primary antibodies (Table 1 Annex I) prepared in blocking 

buffer, at 4ºC overnight. The day after, samples were carefully washed and incubation with secondary 

antibodies (Table 2 Annex I) was performed for 1 hour. After several washes, DAPI (1µg/ml) was used 

to counterstain nuclei and coverslips with cells were mounted in microscope slides using FluorSaveTM 

reagent.  

7.3.5 Teratoma formation assay 

To evaluate the capacity of iPSCs to generate teratomas, mouse iPSCs cultures were collected 

by treatment with AccumaxTM (Millipore, cat. No. SCR006). Matrigel supplementation improves the 

efficiency of tumour formation (Prokhorova et al., 2009) thus iPSCs were washed in PBS and 

resuspended in PBS supplemented with 30% Matrigel® (Corning®, cat. No. 354230). Cells were kept on 

ice and drawn into a 1-mL syringe immediately before injection. Approximately 1.5×106 cells/200 μL of 

solution were injected in the dorso-lateral area of the subcutaneous space on both sides of the mice 

back. Teratomas were allowed to develop for 15-20 days when the size of the teratomas was 

approximately 1.5-2 cm. Mice were sacrificed by cervical dislocation and teratomas were extracted for 

analysis. 

For teratoma analysis, samples were fixed in 4% PFA overnight at 4ºC with shaking. The day 

after, samples were embedded in paraffin: dehydration with increasing concentration of alcohols 

(70%, 96% and 100% ethanol) for 2 hours each, clarification with citrosol (Panreac, cat. no. 

253139.1612) for 3 hours and immersion in paraffin (Panreac, cat. no. 256993) at 60ºC overnight. 

Teratoma samples were serially sectioned into 7 µm sections using a microtome (Leica, cat. no. 

RM2125). Slices were treated with citrosol for 15 min and with decreasing concentration of alcohols 

(100%, 96% and 70% ethanol) for 5 min each. After a final incubation in distilled water, samples were 

stained with haematoxylin and eosin and cell types from the three embryonic layers were identified 

by optic microscopy. 
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7.4 Embryonic Stem cells (ESCs) culture 

The Embryonic Stem Cells (ESCs) line E14Tg2a (Hooper et al., 1987) was used as a pluripotency 

positive control in the different experiments. ESCs were cultured on gelatine-treated plates and when 

confluence was reached, approximately two days after plating, cells were treated with Trypsin/EDTA 

and re-plated following a dilution of 1:5 in ESC culture medium (Table 8). 

7.5 Culture media and solutions for reprogramming and iPSCs expansion 

Table 7. Plat-E cells and SNL cells culture medium. *Puromycin and blasticidin must to be removed in the transfection 
experiments and in SNL culture medium. 

 

Table 8. Reprogramming medium and ESC medium. *LIF was obtained from the supernatant of transfected COS7 cells 
with pCAGGs-LIF plasmid. LIF was tested in ESC before use.  

 
 

 

 

 

 

 

 

Reagent Working conc. Stock conc. Provider Cat. no. 

DMEM high glucose 1x 1x (4ºC) Biowest L0101 

FBS heat inactivated* 10 % Pure (-20ºC) Labclinics S181B-500 

L-glutamine 2 mM 200 mM (-20ºC) Gibco 25030-081 

Penicillin/Streptomycin  1x 100x (-20ºC) Biowest L0018-100 

Puromycin* 1 µg/ml 2 mg/ml (-20ºC) Sigma P8833-25MG 

Blasticidin* 10 µg/ml 
10 mg/ml (-

20ºC) 
Sigma   8014001976 

Reagent Working conc. Stock conc. Provider Cat. no. 

GMEM 1x 1x (4ºC) Sigma G5154 

FBS (ES tested) 15 % Pure (-20ºC) Capricorn FBS-12A 

L-glutamine 2 mM 200 mM (-20ºC) Gibco 25030-081 

Sodium Pyruvate 1mM 100 mM (-20ºC) Gibco 11360070 

Non Essential Amino Acids 1x 100x (-20ºC) Gibco 11140050 

Penicilin/Streptomicin 1x 100x (-20ºC) Biowest L0018-100 

Leukemia inhibitor factor (LIF) 1x 1000x (-20ºC) Homemade* 

Β-mercaptoethanol 0.1 mM 1 M (4ºC) Sigma M6250 
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Table 9. Preparation of 2i culture medium. The medium must to be prepared fresh each time. *LIF was obtained from 
the supernatant of transfected COS7 cells with pCAGGs-LIF plasmid. LIF was tested in ESC before used. 

 

 

Table 10. Preparation of EB culture medium.  

Reagent 
Working 

Conc. 
Stock conc. Provider Cat. no. 

N2B27 medium Described below 

Leukaemia inhibitory factor (LIF) 1x 1000x Homemade* 

iMEK 1 µM 10 mM  Millipore 444968 

iGSK3β 3 µM 10 mM Millipore 361571 

Preparation of N2B27 culture medium 

Neurobasal 0.5x 1x (4ºc) Gibco 21103049 

DMEM/F12 (1:1) 0.5x 1x (4ºC) Gibco 11320-074 

NaHCO3 0.1 % 7.5% (4ºC) Biowest L0680-500 

L-glutamine 2 mM 200 mM (-20ºC) Gibco 25030-081 

Sodium Pyruvate 1mM 100 mM (-20ºC) Gibco 11360070 

Non Essential Amino Acids 1x 100x (-20ºC) Gibco 11140050 

Penicillin/Streptomycin 1x 100x (-20ºC) Biowest L0018-100 

B27 0.5x 50x (-20ºC) Gibco 17504044 

Β-mercaptoethanol 0.1 mM 1 M (4ºC) Sigma M6250 

“Hormone mix N2” 1x 10x Homemade (below) 

Preparation of  Homemade 10x “hormone mix” N2 

DMEM/F12 (1:1) 1x 1x (4ºC) Gibco 11320-074 

D(+)-Glucose 6 % 30% (-20ºC) Panreac 141341 

NaHCO3 1 % 7.5% (4ºC) Biowest L0680-500 

HEPES 5 mM 1M (4ºC) Biowest L0180-100 

Apo-Transferrin 1 mg/ml Powder (-20ºC) Sigma T2252 

Bovine Insulin 50 µM 5 mg/ml Sigma I6634 

Putrescine  16 µg/ml 160 mg/ml Sigma P7505 

Progesterone 60 ng/ml 0.6 mg/ml Sigma P6149 

Sodium selenite 0.3 µM 3 mM Sigma S9133 

Bovine Serum Albumin (BSA) 50 µg/ml Powder (4ºC) Sigma B4287 

Reagent Working conc. Stock conc. Provider Cat. no. 

GMEM 1x X1 (4ºC) Biowest L0101 

FBS heat inactivated* 10 % Pure (-20ºC) Labclinics S181B-500 

L-glutamine 2 mM 200 mM (-20ºC) Gibco 25030-081 

Sodium Pyruvate 1mM 100 mM (-20ºC) Gibco 11360070 

Non Essential Amino Acids 1x 100x (-20ºC) Gibco 11140050 

Penicilin/Streptomicin  1x 100x (-20ºC) Biowest L0018-100 

Β-mercaptoethanol 0.1 mM 1 M (4ºC) Sigma M6250 
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8. Gene expression analysis 

8.1 RNA extraction, cDNA synthesis and real-time PCR 

RNA samples were obtained using the commercial RNeasy Mini Kit (Qiagen, cat. no. 74104) 

following the instructions provided by the manufacturer, including a DNase (Qiagen, cat. no. 79254) 

digestion step. RNAs were quantified using the Qubit® RNA HS Assay kit (Thermo Fisher, cat. no. 

Q32852) in a Qubit Fluorometer (Thermo Fisher) and kept at -80ºC until used. Briefly, 0.5-1 µg of RNA 

was retrotranscribed to cDNA using the RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo 

Fisher, cat. no. K1632) following the manufacture´s guidelines.  

Gene expression analysis was assessed by real-time PCR in a Step One Plus real-time PCR device 

(Applied Biosystem), using 4-10 ng of cDNA and specific TaqManTM probes (Applied Biosystems) (Table 

3 Annex I) or SYBR-green primers (Table 4 Annex I). For TaqManTM assays, the reactions were carried 

out with TaqManTM Fast Advanced Master Mix (Applied Biosystems, cat. no. 4444557) in 10 µl of final 

volume. For SYBR green amplification, SYBR® Premix Ex Taq™ (Takara, cat. no. RR420) was used 

according to the manufacturer instructions with a specific annealing temperature for each pair of 

primers. A standard curve, made up of dilutions of pooled cDNAs, was used for relative quantification. 

Expression levels of each gene were calculated relative to Gapdh which was used as a housekeeping 

endogenous control. 

8.2 RNA sequencing (RNAseq) 

Total RNA was obtained from, at least, 1x106 cells and RNA extraction was done as indicated 

above. RNAseq methodology was performed by the Servei Central de Suport a la Investigació 

Experimental (SCSIE, Universitat de València). Briefly, RNAseq was based on deep-sequencing 

technologies and consisted in the conversion of a population of heterogeneous RNA into a library of 

cDNA fragments with adaptors attached to one or both ends. Then, each molecule was sequenced in 

a high-throughput manner making use of SOLiD 5500XL sequencer to obtain short sequences. Reading 

obtained were incorporated to FastQC v0.11.5 software to quantify and to check their quality by Phred 

value, GC percentage, nucleotides content, readings size and ambiguous base content (N). The number 

of obtained readings was 4-9x107. 

Analysis of the RNAseq data was performed by EpiDisease S.L. Briefly, readings were aligned 

with the reference mouse genome, version GRCm38.p5 (Ensembl). Afterwards, the number of readings 

for each gene was quantified. Mapping and quantification were carried out using Subread package. 

Less represented genes were removed and genes specific dispersions were estimated. Finally, 

differential gene expression was analysed using a test based on maximum conditional authenticity with 
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adjusted quantile and the resulting genes were grouped according to their role in KEGG routes by 

Enrichment Browser package.  

9. Protein immunodetection by western-blot 

Neurospheres grown for 4 days were collected by centrifugation. Samples were lysed in cold 

RIPA buffer (150 mM NaCl, 0.5% sodium deoxycholate, 50 mM Tris-HCl pH 8.0, 1% Tx-100 and 1% SDS) 

supplemented with Complete® protease inhibitor cocktail (Roche, cat. no. 11836153001) and placed 

on ice for 30 min. Lysates were centrifuged at 12000 g for 15 min at 4ºC and supernatants were 

transferred to new Eppendorf tubes and kept at 80ºC until use. Concentration of each sample was 

previously determined using the Pierce® BCA Protein Assay Kit (Thermo Fisher, cat. no. 23227) 

following the manufacturer’s instructions and BSA as a standard curve. Absorbance at 560 nm was 

measured in a Victor® 3 Multilabel Plate reader (Perkin Elmer). 

30-50 µg per sample were mixed with sample buffer (20% Glycerol, 10% SDS, 10% β-

mercaptoethanol, 40 µg/ml Bromo phenol blue and 250 mM Tris-HCl pH 6.8) and boiled at 95ºC for 10 

min to denature proteins. Proteins were resolved by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) loading them in 6-10% poly-acrylamide gels with running buffer (25 mM 

Tris-base, 0.2 M glycine and 1% SDS). The Precision Plus Protein™ Dual Color Standards (Bio-Rad, cat. 

no. 161-0374) was used as a molecular weight marker. Proteins were transferred to polyvinylidene 

difluoride (PVDF) membranes using the Trans-Blot Turbo Transfer Pack (Bio-Rad, cat. no. 1704157) and 

the Trans-Blot Turbo transfer device (Bio-Rad). 

After electrophoresis, membranes were repeatedly washed in PBS-T buffer (0.1 M PBS pH 7.5, 

0.1% Tween®-20 (Sigma, cat. no.P9416)) and incubated 1 hour with shaking in blocking buffer (5% 

skimmed milk in PBS-T) to minimized unspecific binding. Primary antibodies (Table 1 Annex I) were 

prepared in the same blocking buffer and membranes were incubated overnight at 4ºC with shaking. 

The day after, membranes were carefully washed with PBS-T and incubated with HRP-labelled 

secondary antibodies (Table 2 Annex I) for 1 hour. After several washes proteins were revealed by a 

chemiluminiscence reaction with Lightning® Plus-ECL (Perkin Elmer, cat. no. NEL103001EA) and the 

signal was captured in an Alliance Mini HD9 (UVITEC) image capture system. 

10. DNA methylation analysis. 

DNA concentration was measured with a Qubit™ 3.0 Fluorometer or using the Quant-iT 

PicoGreen dsDNA Reagent (Invitrogen) according to the manufacturer's protocols. We performed the 

pyrosequencing experiments in Anne Ferguson-Smith´ laboratory at the University of Cambridge. 
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10.1 Enzyme-Linked ImmunoSorbent Assay (ELISA) for the quantitative determination of global 

DNA 5hmC and 5mC contents. 

ELISA was used to determine global levels of 5hmC and 5mC. 100 ng of DNA per sample was 

denatured at 98ºC during 10 min. DNA solutions were immobilized onto a 96-well plastic plate with 

Reacti-Bind DNA Coating Solution (Thermo Fisher, cat. no. 17250) and incubated overnight at room 

temperature. Solutions were removed and plates were washed several times with washing buffer (0.1 

M PBS-T containing 0.1% Tween®-20) and blocked with blocking buffer (5% skimmed milk in PBS-T) for 

1 hour. Primary antibodies for 5hmC and 5mC (Table 1 Annex I) were incubated for 2 hours at RT. After 

three washes, HRP-conjugated secondary antibodies (Table 2 Annex I) were incubated for 1 hour at 

room temperature. After the last three washes, 60 µl per well of 1-Step Ultra TMB-ELISA Substrate 

Solution (Thermo Fisher, cat. no. 34028) were added to develop chemiluminiscence signals until the 

desired colour appeared (at least 30 min). To stop the reaction, 60 µl of 2M Sulfuric acid were added 

to each well and the absorbance was then measured at 450 nm using the Victor® 3 Multilabel Plate 

reader (Perkin Elmer). The amounts of 5mC and 5hmC were obtained by comparison to a standard 

curve of commercial hydroxymethylated and methylated DNA standards (Diagenode, cat. no. 

C02040010) respectively. The percentage of 5hmC and 5mC was calculated by dividing the amount of 

hydroxymethylated and methylated DNA by that of total DNA, respectively.  

10.2 High-Throughput Sequencing of Immunoprecipitated Methylated DNA (MeDIP-seq) 

MeDIP-seq protocol was modified from Taiwo et. al. (Taiwo et al., 2012). DNAs from NSCs and 

iPSCs were extracted using DNeasy Blood and Tissue kit (Qiagen, cat. no. 69504) according to the kit 

guidelines. The steps prior to the immunoprecipitation were briefly, 3 µg of DNA were sonicated to 

obtain 150-200 bp fragments and the efficiency was checked by the Bioanalyzer (Agilent). DNA libraries 

were then prepared using NEBNext® reactives (New England Biolabs) by the Servei Central de Suport a 

la Investigació Experimental (SCSIE, Universitat de València).  

The MeDIP was performed in the lab and 1.5 µg of DNA were diluted in 80 µl of TE buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.5). DNA was denatured for 10 min at 99ºC and immediately cooled on 

ice for 10 min. After that, 20 µl of 10x IP buffer (100 mM Na-Phosphate pH 7.0, 0.5% TritonX-100) and 

100 µl of milk buffer (5% skimmed milk powder, 2M NaCl) were added. 2 µg of 5mC antibody 

(Diagenode, cat. no. C15200006) were put in the sample and incubated for 2 h at 4ºC with rotation. In 

parallel, 11 µl per sample of Dynabeads® M-280 sheep anti-mouse IgG (Thermo Fisher, cat. no. 11201D) 

were collected with a magnetic rack and pre-washed with 500 µl PBS-BSA (1 mg/ml BSA in 0.1 M PBS) 

for 2 hours at 4ºC with rotation. After both incubations, beads were collected with a magnet, 

resuspended in the original volume with 1x IP buffer (10 mM Na-Phosphate pH 7.0, 0.05% TritonX-100, 
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1 M NaCl) and added to the DNA samples. DNAs were then incubated overnight at 4ºC with rotation. 

The day after, beads were collected using the magnet and the supernatant (unbound fraction) was 

transferred to a new tube. Beads were washed three times with 500 µl of 1x IP buffer for 10 min with 

rotation. After final wash, bound and unbound fractions were treated with 35 µg of Proteinase K 

(Roche, cat. no. 03115879001) with 125 µl of digestion buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 

0.5% SDS) and incubated at 55ºC for 30 min on a shaking heating block. Finally, samples were purified 

using MiniElute PCR purification kit (Qiagen, cat. no. 50928004) eluting with 11 µl kit elution buffer.  

In order to calculate 5mC enrichment in the bound fraction, real-time PCRs for unmethylated 

and methylated regions were done from bound and unbound 0.5 µl aliquots. Primers used to evaluate 

MeDIP efficiency were for methylated regions, Meth-F: 5´-CATGGCCCACAAAGTAATAAAA-3´and Meth-

R: 5´-AACGACTTACAACGAGCTCAAA-3. Primers for unmethylated regions were, Unmeth-F: 5´-

GGCTAGAACTGACCAGACAGAC-3´ and Unmeth-R: 5´-ATCTGTAGCCAATCCTAGAGCA-3´.  

After real-time PCR analysis, calculations for both bound and unbound fractions were performed 

as described: 

- Adjusted Input Ct = Unbound Ct – log [2AEx dilution difference of bound vs. unbound 
DNA] 

- Recovery (%) = 2AE(Adjusted Input Ct − MeDIP Ct) × 100 
- Specificity = 1- (unmethylated recovery/methylated recovery) 

- Fold enrichment =  2AE (Ct input_meth – CtMeDIP_meth) 
             2AE (Ct input_unmeth – CtMeDIP_unmeth) 

  

Enrichment should be of at least 25x (Fig. 16b), specificity should be more than 95% and 

unmethylated recovery should be less than 1%. Alternatively, synthetic Arabidopsis methylated 

sequences (DNA methylation control package, Diagenode, cat. no. C02040012) were added to the 

samples after the adapter-ligation. The high-throughput sequencing of the samples were done by the 

Servei Central de Suport a la Investigació Experimental (SCSIE) using SOLiD 5500XL technology. 

Methylation data were analysed by Dr. Elizabeth Radford (University of Cambridge). 

10.3 Study of 5mC and 5hmC enrichment at the Snrpn-DMR region.  

DNA methylation levels were quantified using bisulfite conversion and pyrosequencing (Fig. 

16a). Treatment of DNA with Bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine 

residues unaffected. Therefore, bisulfite-treated DNAs retained only methylated cytosines allowing 

single-nucleotide resolution information about the methylation status of a segment of DNA. DNA from 

NSCs and brain tissue was bisulfite converted using EZ DNA Methylation-GoldTM kit (Zymo research, 

https://en.wikipedia.org/wiki/5-methylcytosine
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cat. no. 5005) in accordance with the manufacture´s protocol. Bisulfite-converted DNA was amplified 

for Snrpn-DMR region (chr7: 60,003,561-60,005,296; Mouse GRCm38/mm10). PCR was done with 

specific primer pair for bisulfite-converted DNA (F: 5´-TTGGTAGTTGTTTTTTGGTAGGAT-3´, R (Biot): 5´-

TCCACAAACCCAACTAACCTTC-3´). One of the primers was biotinylated for posterior purification. This 

PCR was carried out in a total volume of 20 µl, with 2U HotStar Taq polymerase (Qiagen, cat. 

no.203203), PCR Buffer 10x (Quiagen cat. no. 1018996), 0.2 mM dNTPs and 400 mM of primers. PCR 

conditions were: 96 ºC for 5 min, followed by 39 cycles of 94 ºC for 30 s, 60ºC for 30 s and 72 ºC for 1 

min. 

For pyrosequencing (PSQ) analysis, the biotin-labelled PCR primer was used to purify the final 

PCR product. To do that, PCR product was prior mixed with Streptavidin Sepharose® High Performance 

Beads (GE Healthcare, cat. No. 17-5113-01) and binding buffer (10 mM Tris-HCl pH 7.6, 2M NaCl, 0.1 

mM EDTA and 0.1% Tween®-20). Mixture was incubated on a shaker at least for 5 min. At the same 

time, 12 µl of pre-mixed sequencing solution containing sequencing primer (0.42 µM, 5´-

GTGTAGTTATTGTTTGGGA-3´) and annealing buffer (20 mM Tris-acetate pH 7.6, 2 mM magnesium 

acetate) were dispensed into the wells of a 96-well PSQ plate. Denaturing and purification of samples 

were performed by PyroMark® Q96 Vacuum Workstation (Qiagen) doing serial washes with 70% 

ethanol, 0.2 N NaOH and 10 mM Tris-acetate pH7.6. Samples were then added to the prepared PSQ 

plate. Pyrosequencing was done in the PiroMark® MD (Qiagen) system using PyroMark® Gold Q96 

Reagents (Qiagen, cat. No. 972804). 

To evaluate 5hmC content at the Snrpn-DMR, a 5-hmC immunoprecipitation (hMeDIP) was done 

using 5 µg of sonicated DNA at 150-200 bp. DNA was denatured at 98ºC for 10 min and immediately 

cooled on ice for 10 min. Milk buffer (5% skimmed milk powder, 2M NaCl) and 10x-IP buffer (100 mM 

Na-Phosphate pH 7.0, 0.5% TritonX-100) were added. DNAs were incubated with 0.5 µl of 5hmC 

primary antibody (Active Motif, cat. no. 39769) for 2 h. In parallel, specific DNAbeads® Protein G 

(Thermo Fisher, cat. No. 10003D) were washed with 0.1M PBS containing 1 mg/ml BSA for 2 h. Beads 

were then collected with a magnet, added to the DNAs and incubated overnight at 4ºC with rotation. 

The day after, beads were collected using a magnet and the supernatant was kept (Unbound fraction, 

UB). Beads were washed several times with 1x IP buffer (10 mM Na-Phosphate pH 7.0, 0.05% TritonX-

100, 1 M NaCl) and both fractions were treated with 35µg of Proteinase K (Roche) at 55ºC for 30 min. 

Finally, samples were purified using MiniElute PCR purification kit (Qiagen) following the 

manufacturer’s instructions.  
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 To evaluate the immunoprecipitation efficiency, DNAs were spiked with 0.3 ng of synthetic 

Arabidopsis sp. (Diagenode) hydroxymethylated DNA (Zymo, cat no. D5405) and non-

hydroxymethylated DNA (Diagenode, cat. no. C02040012). Efficiency was calculated using specific 

primers for synthetic DNAs as indicated above (Fig. 16b).  

Figure 16. DNA methylation analysis strategies. (a) Schematic of bisulfite conversion. DNA was treated with Sodium 
Bisulfite and non-modified cytosines were converted to uracil whereas 5mC/5hmC remained as cytosines. Final 
pyrosequencing was used to quantify the percentage of 5hmC/5mC. (b) Calculated fold enrichment after MeDIP (left 
panel) and hMeDIP (right panel). Controls for the enrichment of 5hmC in genomic DNA spiked with synthetic 
Arabidopsis thaliana DNA containing either 5mC or 5hmC (n=6). Enrichment was always over 25x. 

 

After immunoprecipitation of 5hmC, bound and unbound fractions were analysed by qPCR in 

order to quantify Snrpn-DMR enrichment. Snrpn-DMR region is located at chromosome 7, concretely 

between positions 60,003,561 and 60,005,296 (Mouse GRCm38/mm10). Specific primers were 

designed including 9 CpG (Table 4 Annex I). Real-time PCR was performed in a Step One Plus real-time 

PCR device (Applied Biosystem), using SYBR Green reactive. A standard curve made up of doubling 

dilutions of pooled aliquots from unbound fractions was run on each plate, and quantification was 

performed relative to the standard curve. Fold enrichment was calculated in the same way than for 

the MeDIP. 

11. Imprinting analysis by pyrosequencing 

All imprinting assays were based on PCR amplification of cDNA followed by direct sequencing to 

analyse parental-specific expression of the genes. CRISPR was used to knockdown Tet3 in NSCs derived 

from adult F1 mice hybrids offspring from C57BL6/J males and CAST/EiJ females (CxB NSCs), in which 

a single-nucleotide polymorphisms (SNP) in the Snrpn gene was identified between the two 

subspecies. The sequence of murine Snrpn gene was obtained from GenBank (accession number 

NM013670). The Snrpn polymorphism was located at nucleotide 1,270 of exon 10, is a ‘C’ in BL6 mice 
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and a ‘T’ in Cast mice. SNP flanked primers were designed for the studied gene and a PCR was done to 

amplify the region. The Snrpn imprinting assay used the following primers to amplify the SNP 

containing fragment: Snrpn-F, 5´-TAAATCTCAGCCCTTCTCTTCCC-3´ and Snrpn-R, 

5´-AATGCAGTAAGAGGGGTCAAAAA-3´. PCR was performed at 62ºC of annealing temperature and for 

35 cycles. DNA was finally sequenced in a pyrosequencer (PiroMark® MD, Qiagen) using a specific 

sequencing primer: 5´-CCCTTCTCTTCCCCTA-3´.  

12. Chromatin Immunoprecipitation (ChIP) 

ChIP was performed essentially as it was previously described (Strogantsev et al., 2015). Five 

100 cm dishes with wild-type NSCs isolated from the adult SVZ were cross-linked and chromatin 

isolated. Chromatin was sheared to an average size of 200-500 bp using a Bioruptor sonicator 

(Diagenode, UCD-200). After that, chromatin was pre-cleared with 10 µg non-immune rabbit IgG (Santa 

Cruz, cat. no. sc-2027) and 20 µl of protein G magnetic beads (Dynabeads®, cat. no. 10003D) for 3 h at 

4ºC with rotation. 10 µg of TET3 antibody (Table 1 Annex I) or rabbit IgG were added and incubated 

overnight at 4ºC on a rotation wheel. Chromatin was precipitated with 10 µl protein G beads for 3 h at 

4ºC. A bit aliquot of chromatin before the immunoprecipitation was used as input material. Beads were 

then washed followed by crosslink reversal and protein digestion. Finally, DNA was purified using 

MiniElute PCR purification kit (Qiagen) following the manufacturer´s instructions. 

To analyse the TET3 interaction with Snrpn promoter, ChIP enriched DNA was analysed by qPCR 

using SYBR-green primers (Table 4 Annex 1). Pull-downs using non-immune rabbit IgG were used to 

control for non-specific enrichments. The comparative Ct method was used to calculate fold 

enrichment levels normalizing to input DNA and non-specific IgG. 

13. Statistical analysis of the data 

All statistical tests were performed using the GraphPad Prism® 5 software (GraphPad software, 

USA). Significance of differences between experimental groups was assessed using the paired two-

tailed Student t-test or one-way ANOVA (ANalysis Of VAriance) followed by a Tukey post-hoc test. 

Relative values (normalized values and percentages) were transformed using arcsen (square root 

(value/100)) before statistical analysis. P-values (p) lower than 0.05 were considered significant in all 

cases. All data were expressed as mean ± standard error of the mean (s.e.m.) and the number of 

independent cultures or animals (n) was specified in each figure. * refers to p<0.05, ** to p<0.01 and 

*** to p<0.001. 
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Annex I 

 

Table 1. List of primary antibodies along the different applications. ICC: immunocytochemistry, IHC: 
immunohistochemistry, WB: western-blot and E: ELISA. 

 

 

 

 

 

 

Primary antibody Source Host Dilution Cat. no. Application 

5hmC Active Motif Rabbit 1:1000 36769 ICC/IHC/E 

5mC Diagenode Mouse 1:1000 C15200006 ICC/IHC/E 

BrdU Abcam Rat 1:500 Ab6326 ICC/IHC 

Caspase 3 Cell Signaling Rabbit 1:300 9661 ICC 

DCX Santa Cruz Goat 1:300 sc-139186 IHC 

GAPDH Millipore Mouse 1:5000 MAB374 WB 

GFAP Dako Rabbit 1:600 Z0334 ICC/IHC 

GFAP Millipore Chiken 1:600 AB5541 IHC 

Ki67 Abcam Rabbit 1:100 ab15580 ICC 

Nanog Reprocell Rabbit 1:100 RCAB002PF ICC 

Nanog Cell signaling Rabbit 1:100 8822 ICC 

Nestin Hybridoma Bank Mouse 1:4 rat-401 ICC 

O4 Hybridoma Bank Mouse 1:300 rip ICC 

OCT-4 Santa Cruz Rabbit 1:200 sc-5279 ICC 

PSA-NCAM AbCys S.A. Mouse 1:300 ABC0019 ICC 

S100β Dako Rabbit 1:300 Z0311 ICC/IHC 

Smoth Muscle 
Actin (SMA1) 

Abcam Mouse 1:100 ab18147 ICC 

Snrpn Abcam Rabbit 1:300 Ab224330 ICC 

Sox2 R&D Systems Goat 1:200 AF2018 ICC/IHC 

SSEA1 Santa Cruz Mouse 1:50 SC-21702 ICC 

TET3 Millipore Rabbit 1:100 ABE290 ICC/IHC/WB/ChIP 

TET3 Santa Cruz Rabbit 1:100 sc-139186 ICC/IHC 

α-phetoprotein R&D Rabbit 1:100 mab1368 ICC 

Β-catenin Cell Signalling Rabbit 1:300 9587 IHC 

βIII-tubuline Covance Mouse 1:300 PRB-435P ICC 

Γ-tubulin Santa Cruz Goat 1:300 sc-7396 IHC 
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Table 2. List of secondary antibodies along the different application. ICC: immunocytochemistry, IHC: 
immunohistochemistry, WB: western-blot and E: ELISA. 

 

Table 3. List of TaqMan probes used. *TaqMan probes designed by us. 

 
 
 

Secondary antibody Source Dilution Cat. no. Application 

Alexa Fluor® 488 Donkey Anti-
Chicken 

Jackson ImmunoResearch 1:600 703-545-155 IHC 

Alexa Fluor® 488 Donkey Anti-
Goat 

Jackson ImmunoResearch 1:600 705-547-003 ICC/IHC 

Alexa Fluor® 488 Donkey Anti-
Mouse 

Molecular Probes 1:600 A-21202 ICC 

Alexa Fluor® 488 Donkey Anti-
Rabbit 

Jackson ImmunoResearch 1:600 711-547-003 ICC/IHC 

Alexa Fluor® 647 Donkey Anti-
Chicken 

Jackson ImmunoResearch 1:600 703-605-155 IHC 

Alexa Fluor® 647 Donkey Anti-
Rabbit 

Jackson ImmunoResearch 1:600 711-607-003 IHC 

Cy3-Donkey Anti-Rabbit Jackson ImmunoResearch 1:800 711-165-152 ICC/IHC 

Cy3-Donkey Anti-Mouse Jackson ImmunoResearch 1:800 715-165-151 ICC/IHC 

Cy3-Donkey Anti-Rat Jackson ImmunoResearch 1:800 712-165-153 ICC/IHC 

Cy3-Donkey Anti-goat Jackson ImmunoResearch 1:600 705-166-147 IHC 

Goat Anti-Mouse IgG-HRP Dako 
1:5000 
1:2000 

P0447 
WB 

E 

Goat Anti-Rabbit IgG-HRP Santa Cruz 
1:5000 
1:2000 

SC-2004 
WB 

E 

Gene 
TaqMan code 

 (Applied Biosystems) 
Gene 

TaqMan code 
 (Applied Biosystems) 

Cdkn1c Mm01272135_g1 Nanog Mm02384862_g1 

Cer1 Mm00515474_m1 Nestin Mm00450205_m1 

Cntn3 Mm00500947_m1 Oct4 Mm00658129_gH 

CobI Mm01187905_m1 Olig2 Mm01210556_m1 

Dlk1 Mm00494477_m1 Peg3 Mm01337379_m1 

Dnmt1 Mm01151063_m1 Phlda2 Mm00493899_g1 

Dnmt3a Mm00432881_m1 RETRO Klf4* FAM-CCCCTTCACCATGGCTG-MGB 

Dnmt3b Mm01240113_m1 RETRO Oct4* FAM-CACCTTCCCCATGGCTG-MGB 

Foxa2 Mm01976556_s1 S100β Mm00485897_m1 

Gapdh Mm99999915_g1 Snrpn Mm04204818_m1 

Gfap Mm01253033_m1 Sox2 Mm03053810_s1 

H19 Mm01156721_g1 Tet1 Mm01169087_m1 

Igf2r Mm00439576_m1 Tet2 Mm00524395_m1 

Kdr1 Mm01222421-m1 Tet3 Mm00805756_m1 

Klf4 Mm00516104_m1 Tubb3 Mm00727586_s1 

Meg3 Mm03456293_m1 Zfp42 Mm01194089 

https://www.thermofisher.com/order/genome-database/details/ge/Mm00500947_m1?CID=&ICID=
https://www.thermofisher.com/order/genome-database/details/ge/Mm01187905_m1?CID=&ICID=
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Table 4. List of SYBR-green primers used in real-time PCR. 

 

 

Gene Primer sequence (5´-3´) Temperature (ºC) 

Cre-recombinase 
F: GCGGTCTGGCAGTAAAAACTATC 

60 
R: GTGAAACAGCATTGCTGTCACTT 

Gapdh 
F: GAACATCATCCCTGCATCCA 

60 
R: CCAGTGAGCTTCCCGTTCA 

Gnas 
F: AGAAGGACAAGCAGGTCTACCG 

60 
R: GTTAAACCCATTAACATGCAGGA 

Tet3 
F: AGACCCTTCTCAGGGGTCAC 

60 
R: GTGCAGTTGCTCGTCCTCAG 

Tet3FL 
F: TGGAAAACTGTGGGTCTTGTAC 

60 
R: GAGCATTTATTTCCACCTCCTTA 

Tet3s 
F: GCCGATGCAGTAGTGGAGG 

60 
R: CTGCCTTGAATCTCCATGGTAC 

Tet3o 
F: CACATGTTCCTCCCATGGTAC 

60 
R: CTGCCTTGAATCTCCATGGTAC 

Snrpn-DMR1-1 (R1) 
F: GGCAAAAATGTGCGCATGTG 

60 
R: GGAGTGATTTGCAACGCAAT 

Snrpn-DMR1-2 (R2) 
F: ACTCCTTGGGTGTGTTAGTG 

60 
R: CCTCTGGACTCCTGGAAGTC 

Snrpn (R3) 
F: TATGGCCGCCTACTTTTGTC 

60 
R: AAGTCAGTGCAGCAGGTCCT 

Clcn6 
F: CAACTCCTGAGGACCTGACA 

66 
R: GCTCAGACACAGCCTCCTCT 
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1. Epigenetic landscape of NSCs is significantly changed during their reprogramming into iPSCs. 

1.1 Induced Pluripotent Stem Cells generated from adult NSCs are similar to embryonic stem cells.  

1.1.1 NSCs from the adult SVZ convert into a pluripotent state only with transduction of Oct4 

and Klf4. 

Epigenetic reprogramming consists in the transition from one cell type to another, permitted by 

the loss of particular molecular characteristics of the cell of origin and the acquisition of a new 

molecular identity without changing the genomic sequence (Krishnakumar and Blelloch 2013). The 

identification of conditions that would allow specialized adult cells to be genetically reprogrammed to 

assume a stem cell-like state (Takahashi and Yamanaka 2006) has supposed a powerful new way to 

“de-differentiate” cells whose developmental fates had been previously assumed to be determined. In 

particular, epigenetic modifications can also occur during reprogramming of NSCs into pluripotent 

stem cells (Montalban-Loro et al., 2015) and a better understanding of this process will help to 

elucidate the mechanisms required for stem cell maintenance. 

Since the discovery by Takahashi and Yamanaka in 2006 that the introduction of four 

transcription factors (Oct4, Klf4, Sox2, and c-myc) could reprogram mouse embryonic stem cells and 

adult fibroblast into iPSCs, the field of reprogramming has considerably evolved and several studies 

have reported the use of sets of these transcription factors in various combinations to reprogram 

mouse and human somatic cells (Park et al., 2008b, Wernig et al., 2008, Hester et al., 2009). Previous 

studies also report that mice neurospheres cultures obtained from postnatal day 5 endogenously 

express Sox2, c-myc and Klf4 so that they can be reprogrammed with Oct4 and Klf4 factors or only with 

Oct4 at a similar efficiency to the reprogramming rate of murine fibroblast with the original four factors 

(Kim et al., 2008, Kim et al., 2009b).  

 
We first analysed by qPCR and immunocytochemistry the levels of expression of the four 

transcription factors classically used to induce pluripotency in somatic cells Sox2, Klf4, c-myc and Oct4 

(Takahashi and Yamanaka 2006). NSCs derived from the adult SVZ expressed significant levels of Sox2, 

Klf4, and c-myc while Oct4 was not expressed (Fig. 17). These data indicated that Oct4 alone or in 

combination with another transcription factor such as Klf4, could be suficient to induce pluripotency 

in adult NSCs. This could mean that NSCs might represent a more advanced stage in the 

reprogramming process.   
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Figure 17. Adult NSCs endogenously express Sox2, Klf4 and c-myc. (a) Gene expression levels of the reprogramming 
factors Oct4, Sox2, Klf4 and c-myc quantified by qPCR in adult NSCs. ESCs pluripotent cultures were used as a control 
of expression for the four transcription factors. Gapdh expression levels were used to normalize data. (b) 
Immunocytochemistry for SOX2 (red) and OCT4 (green) in NSCs and ESCs cultures. DAPI was used to counterstain 
nuclei. All error bars show s.e.m. of at least 6 cultures. Scale bars in b: 20 µm. 

 

Due to our particular interest in the study of specific epigenetic marks associated to adult neural 

stem cells multipotency and that adult NSCs are originally closer to the pluripotency state than somatic 

cells, we developed a protocol to reprogram adult NSCs from SVZ (Fig 18a). This protocol constitutes a 

simple and attractive system to study epigenetic signatures that define the pre-reprogramming 

(somatic self-renewing multipotent stem cells) vs. the post-reprogramming (induced pluripotent self-

renewing stem cells) states in the neural system. 

To address this point we used NSCs cultures obtained from the SVZ of 2 months-old wild-type 

C57Bl6 mice. Based on our previous gene expression studies, adult NSCs would require in principle just 

the exogenous expression of Oct4. Thus, we produced retrovirus for Oct4 and Klf4 by transfecting Plat-

E packing cells with retroviral plasmids. Retrovirus for Cherry was also generated to use as a reporter 

of the exogenous expression of reprogramming factors (Fig. 18a,b). After two days of retrovirus 

production by Plat-E packing cells, supernatants with the virus for Oct4 and Cherry were used to co-

transduce adult NSCs (1 Factor condition, 1F). A combination of retrovirus for Oct4 and Klf4 (2 Factors 

condition, 2F) together with Cherry was also used to transduced NSCs. Cherry expression was checked 

in transduced NSCs to confirm their infection (Fig. 18b). NSCs infected with both Oct4 and Klf4 

transcription factors were grown on a feeder layer of SNL cells with the cytokine leukaemia inhibitory 

factor (LIF) and started to form clone-like aggregates 30-40 days after infection (Fig. 18a,b), however 

no clones were formed just with Oct4 1F (data nor shown). These aggregates were large, with poorly 

defined edges and some of them expressed the pluripotency marker stage-specific embryonic 

antigen  1 (SSEA-1) (Fig. 18b). Importantly, retroviral vectors are transcriptionally silent in pluripotent 

stem cells (Hotta and Ellis 2008), thus we used this feature to determine the pluripotent state of the 
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clones generated together with the acquisition of pluripotency markers and silencing of neural genes 

(Fig. 18c). We observed that most of the clones formed were still positive for Cherry, indicating that 

despite expressing SSEA-1 they were only partially reprogrammed. For this reason we named these 

cells as pre-iPSCs.  

Figure 18. Pre-iPSCs have intermediate characteristics of NSCs and iPSC. (a) Schematic of the reprogramming protocol 
which started with plat-E transfection to generate viral particles used to infect NSCs 3 days after. Infected NSCs were 
seeded on feeders 5 days after infection. Cherry and SSEA-1 positive clone-likes aggregates appeared (pre-iPSCs) after 
30-40 days and the culture medium was changed to 2i/LIF medium. iPSCs appeared 50-60 days after infection. (b) 
Phase contrast and immunofluorescent images for Cherry in Plat-E, post-infected NSCs (NSCs-PI) and pre-iPSCs. Phase 
contrast images of pre-iPSCs (left panel) and immunofluorescent image for SSEA-1 (right panel) in pre-iPSCs cells are 
also shown. Phase contrast images of iPSCs established lines are shown (lower panels). (c) Schematic of the regulation 
of pluripotency and neural genes during the reprogramming process. Retroviral vectors were transcriptionally silent in 
iPSC. Scale bars in b: 100 µm. 

 

To acquire full reprogramming, and once achieved the pre-iPSCs state, we applied molecularly 

defined conditions for the derivation and propagation of authentic pluripotent cells (Silva et al., 2008). 

These conditions were designed to sustain cells in a pluripotent state by neutralizing inductive 
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differentiation stimuli combining dual inhibition (2i) of mitogen-activated protein kinase signalling 

(MEKi) and glycogen synthase kinase-3 (GSK3). LIF was also included to maximize clonogenic self-

renewal of pluripotent cells in a free-serum culture medium (Williams et al., 1988, Ying et al., 2008) 

(Fig. 18a). Again the retroviral vector silencing served as a beacon marking the fully reprogramming 

pluripotent state (Hotta and Ellis 2008). After 10-20 days in the new controlled conditions, we obtained 

ESC-like colonies that did not express cherry, suggesting that fully reprogramming was already acquired 

(Fig. 18a-c).  

1.1.2 Reprogrammed NSCs lose the expression of neural genes and gain the expression of 

pluripotency markers.  

As we expected, expression studies performed by qPCR corroborated that post-infected NSCs 

(NSCs PI) expressed high levels of both Oct4 and Klf4 retroviral transgenes and that although lower, 

they were still present in pre-iPSCs (Fig. 19b). Moreover, although expression levels of the neural 

markers Olig2 and Nestin were already downregulated (Fig. 19c), pre-iPSCs only showed a slightly 

increase of endogenous levels of Oct4 (Fig. 19d) whereas the expression of other pluripotency markers 

such as Zfp42 (Rex1) and Nanog was undetectable (Fig. 19d). Taken together, our results confirmed 

that pre-iPSCs were in an intermediate state in which critical attributes of true pluripotency, including 

stable expression of endogenous Oct4 and Nanog were not attained yet.  

Complete downregulation of retroviral transgenes, essential for full reprogramming, was 

corroborated in derived iPSCs compared to the infected NSCs (Fig. 19b). This was accompanied with 

the stable induction of the endogenous pluripotency-related genes Nanog, Zfp42 and Oct4 (Fig. 19d). 

Consistently with the acquisition of a pluripotent state, the expression of neural-specific genes such as 

Olig2 and Nestin, was absent in iPSCs (Fig. 19c). All these data were confirmed at protein level by 

immunocytochemistry (Fig. 19e). Expression of OCT4 and Cherry was detected in pre-iPSCs (Fig. 19e). 

Moreover, OCT4 and NANOG were expressed whereas no expression of OLIG2 was found (Fig. 19e) 

confirming the acquisition of a full pluripotent state.  
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Figure 19. MEK and GSK3 inhibitors (2i) promote reprogramming to full pluripotency in adult NSCs. (a) Schematic 
representing the protocol of selection of iPSCs clones. NSCs from three different mice were transduced with Oct4 and 
Klf4. Once iPSCs were generated, ten clones were picked, isolated and expanded for further characterization. (b) qPCR 
for Klf4 and Oct4 retroviral expression in NSCs, NSCs PI, pre-iPSCs and iPSCs. NSCs before the infection were used as a 
negative control. (c) qPCR for the neural genes Olig2 and Nestin in the same samples. ESCs were used as a control. (d) 
qPCR for the pluripotent-related genes Nanog, Zfp42 and Oct4 in NS Cs, pre-iPSCs and iPSCs. ESCs were used as a 
control. (e) Immunocytochemistry images for OCT4 in NSCs, pre-iPSCs and iPSCs (green), OLIG2 in NSCs and iPSCs 
(blue), SSEA-1 in pre-iPSCs, iPSCs and ESCs (green) and Nanog in iPSCs and ESC (red). Gapdh was used to normalize 
expression data. DAPI was used to counterstain nuclei. All error bars show s.e.m. of at least 6 samples. P-values are 
indicated. Scale bars in f: 20 µm. 
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1.1.3 Genomic stability was maintained throughout reprogramming of NSCs into iPSCs. 

Genetic variations, including aneuploidy or polyploidy, can be introduced into cells during iPSCs 

generation (Liang and Zhang 2013). Therefore, in order to evaluate the chromosomic dotation of each 

iPSCs line, we performed a karyotype analysis. As mentioned before, 10 colonies or clones were 

isolated and expanded from each biological replicate and three of them were selected based on their 

gene expression profile (high expression of pluripotency genes and low expression of neural and 

retroviral genes) to assess their genomic stability and pluripotency characteristics. The vast majority 

of the lines analysed (90%) showed a normal karyotype with around 40 chromosomes per metaphase 

(Fig. 20, purple bars) while a small proportion of iPSCs lines showed abnormalities in the number of 

chromosomes (10%) including tetraplody (4n) (Fig. 20, red bars). Those iPSCs lines that showed 

chromosomic abnormalities were discarded for further studies.  

 

Figure 20. Chromosome number is maintained in iPSCs lines. Number of chromosomes per metaphase in the iPSCs 
lines. The majority of clones showed normal chromosomic dotation was (purple bars) while one of the analysed clones 
(iPSCs-1-clone 3) showed chromosomic aberrations (red bars). Examples of phase contrast images for Leishman 
staining are also included. At least 50 metaphases were counted for each iPSCs line. 
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1.1.4 iPSCs generated from NSCs can be differentiated in vitro and in vivo into the three germ 

layers.  

Pluripotent stem cells have the potential to differentiate into any of the three germ layers, 

endoderm, mesoderm and ectoderm. This potentiality can be verified demonstrating the ability of the 

iPSCs to form 3D structures known as embryoid bodies (EBs) containing cells belonging to the three 

germ layers (Hopfl et al., 2004). The EB mimics the structure of the developing embryo, thereby 

providing a means of obtaining any cell lineage (Spelke et al., 2011). EBs can be generated by culturing 

pluripotent stem cells under conditions that are adverse to pluripotency and proliferation using the 

“hanging drops” method (Fig. 21a). This suspends iPSCs on the lid of a dish and EBs form through 

aggregation at the bottom of the drops (Fig. 21a) resulting in reproducibly produced homogeneous 

EBs.  

We performed the analysis by qPCR in EBs of specific markers for the differentiated cell types. 

We found significant expression for Kdr1 (mesoderm), Foxa2 (endoderm) and Cer1 (ectoderm) 

demonstrating the presence of cells from the three germ layers in the EBs generated from the iPSCs 

lines (Fig. 21b). Strikingly, these iPSCs have a higher differentiation ability to form ectoderm and 

endoderm compared to ESCs after differentiation (Fig. 21b) suggesting an influence of the somatic 

origin on the properties of resultant iPSCs, as previously reported (Polo et al., 2010). These results 

were also confirmed by immunocytochemistry using specific antibodies for SMA1, α-fetoprotein and 

III-tubulin (Fig. 21c). All these data verified the pluripotency capacity in vitro in iPSCs induced from 

NSCs. 

We next evaluated pluripotency capacity in vivo using the teratoma assay. Teratomas are a 

particular class of non-malignant tumours that originate from pluripotent cells after a process of 

expansion and disorganized differentiation and they develop in mice from transplanted embryonic 

stem cells (Przyborski 2005, Prokhorova et al., 2009). Thus, iPSCs were injected in the dorsolateral area 

into the subcutaneous space of immunocompromised Nude mice. After 10 days, teratomas were 

obvious to the naked eye but they were extracted when reached approximately 2 cm of diameter 

approximately 20 days after injection (Fig. 22a). Animals were then sacrificed and the teratomas were 

histologically analysed. As expected, the tumoral cytoarchitecture of the teratomas was disorganized 

and the presence of cells from the three germ layers was confirmed by haematoxylin-eosin staining 

(Fig. 22b). 
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Figure 21. iPSCs are able to differentiate into cells of the three germ layers. (a) Schematic representation of the 
embryoid bodies (EBs) assay using the “hanging drops” method. iPSCs were dissociated and the cell suspension was 
distributed in drops in a plate that was incubated upside-down for 3 days. Then, the plate was inverted, culture media 
was added and incipient EBs were incubated for 4 more days. Finally, EBs were seeded in pre-treated plates with 
gelatine to allow differentiation. After 3 days, samples were analysed by ICC. (b) qPCR for Kdr1 (mesoderm), Foxa2 
(endoderm) and Cer1 (ectoderm) in NSCs, iPSCs and EBs-iPSC. ESCs and EBs from ESC (EBs-ESC) were used as a control 
of pluripotency and differentiation respectively. Gapdh was used to normalize expression data. (c) 
Immunocytochemistry confocal images for SMA1 (mesoderm; green, upper panels), α-fetoprotein (Endoderm; red, 

middle panels) and III-tubulin (ectoderm; blue, lower panels) in EBs derived from iPSCs. Phase contrast images of the 
EBs are also included. DAPI was used to counterstain nuclei. Scale bar in c: 100 µm (high magnification images in c: 10 
µm). 
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Figure 22. iPSC derived from NSCs give rise to teratomas in vivo. (a) Image of a teratoma developed in the dorsolateral 
area of an immunocompromised Nude mouse 4 weeks after the injection. Detailed teratoma image after its extraction 
is also included. (b) Histological analysis of teratomas using haematoxylin-eosin dyes. Epithelial cells derived from 
ectoderm, muscle fibres derived from mesoderm and columnar epithelium from endoderm are shown and indicated 
with arrowheads. Scale bar in a: 1 cm; in b, 50 µm. 

 

1.2 Imprinted genes expression change during the generation of iPSCs from adult NSCs.  

The majority of imprinted genes are expressed in the brain and recent evidences suggest that 

genomic imprinting can be selectively lost in particular cell types or at specific developmental time 

points (Polo et al., 2010, Ferron et al., 2011, Kim et al., 2013, Ferron et al., 2015). These changes have 

an impact on stem cell plasticity thus regulation of genomic imprinting might be a normal mechanism 

of modulation gene dosage to control stem cell potential in the brain (Perez et al., 2016). Consequently, 

the knowledge of imprinting regulation during reprograming of NSCs into iPSCs may give us 

information about the imprinting regulation in NSCs as well as in iPSCs and may also be employed to 

dissect the mechanisms of erasure, reacquisition and maintenance of genomic imprinting in mammals.  

Therefore we decided to focus on the study of the regulation of gene expression during the 

reprogramming process by performing an RNAseq analysis in NSCs and derived iPSCs. The principal 

component analysis (PCA) based on RNAseq data showed a clearly segregation between iPSCs and 

NSCs populations (Fig. 23a). Concretely, iPSCs identified differential expression of a large number of 

genes compared to NSCs, with 6062 downregulated and 5301 upregulated genes (Fig. 23b,c). Notably, 

the majority of the most differentially expressed genes (FDR<2.5e-68) were upregulated genes in iPSC 

compared to NSCs (Fig. 23b). Consistent with previously shown data (Fig. 19c,d), RNAseq confirmed 

the downregulation of several neural genes such as Olig2, Nestin and Zic1 and the upregulation of 

essential genes involved in pluripotency such as Pou5f1 (Oct4), Zfp42 and Nanog (Fig. 23d) in iPSCs 

compared to NSCs cultures.  

Based on RNAseq data we performed a “Gene Set Enrichment Analysis” (GSEA) which is a 

computational method that determines whether a defined set of genes shows statistically significant 

differences between NSCs and derived iPSCs (Fig. 1  Annex II). Remarkably, the GSEA method identified 



 

 

76 Results 

39 sets of genes that showed downregulation in iPSCs and that were involved in important biological 

functions including focal adhesion, axon guidance and apoptosis (Fig. 1 Annex II). Moreover, 97 set of 

genes were upregulated including cancer and MAPK signalling pathways (Fig. 1 Annex II). 

We next focused on the analysis of the changes in the expression of imprinted genes in iPSCs. 

From 152 imprinted genes described, the RNAseq data identified 122 imprinted genes expressed in 

NSCs and iPSCs (Fig. 23e). From these 122 imprinted genes only 71 were analysed based on the number 

of reads per sample (1 million reads in at least two samples). The RNAseq data identified 47 imprinted 

genes from the 71 genes analysed (around 40% of all imprinted genes) that were differentially 

expressed (FDR<0.05) between iPSCs and NSCs (Fig. 23f,g). Among them, we obtained changes in both 

paternally and maternally expressed genes indistinctly (Fig. 23g). Taken together, our data indicated 

that the acquisition of a pluripotent state requires significant changes at transcriptome levels and that 

regulation of genomic imprinting is crucial in this process. 
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Figure 23. Expression of imprinted genes is importantly regulated during the reprogramming process. (a) Principal 
component analysis (PCA) from RNAseq of 3 NSCs and 2 iPSCs cultures where samples are represented based on their 
total expression levels. (b) Heatmap representing the 60 most differentially expressed genes between iPSCs and NSCs 
(FDR<2.5e-68). Genes with higher expression levels are shown in yellow, whereas genes with lower expression levels 
are shown in red. (c) Volcano plot for all genes differentially expressed by RNAseq. Number of downregulated (red) 
and upregulated (yellow) genes in iPSC compared to NSCs is indicated. (d) Fold change of three pluripotency genes 
(Pou5f1, Nanog and Zfp42) and three neural genes (Olig2, Nestin and Zic1) based on RNAseq data. (e) Heatmap of the 
expression of all analysed imprinted genes between iPSCs and NSCs. Non-expressed imprinted genes were discarded 
from subsequent analysis. (f) Volcano plot for differentially expressed imprinted genes in the RNAseq analysis. The 
number of downregulated (red) and upregulated (yellow) genes in iPSC compared to NSCs is indicated. (g) Fold change 
of expression levels of imprinted genes with differential expression based on RNAseq data. Upregulated genes are 
indicated in yellow whereas downregulated genes are in red. Maternally and paternally expression is also indicated. 
Venn diagram representing the number of both upregulated (yellow) and downregulated (red) imprinted is also shown. 
The intersection indicates the number of unchanged genes. 
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1.3 Acquisition of pluripotency in NSCs resets DNA methylation patterns. 

Previous studies have shown that changes in DNA methylation patterns are essential for 

successful cell reprogramming, exemplified by the necessity for loss methylation at the promoter of 

pluripotency genes (Takahashi and Yamanaka 2006, Lee et al., 2014, Hochedlinger and Jaenisch 2015). 

Moreover, DNA methylation is one of several epigenetic mechanisms that cells use to control gene 

expression. In order to determine the specific distribution of methylation among genome and 

specifically within imprinted clusters, we carried out a genome-wide analysis of DNA methylation in 

iPSCs and NSCs by MeDIPseq. This experimental approach uses a 5-methylcytosine antibody to enrich 

for DNA fragments containing this modification followed by high throughput sequencing. Sequencing 

was performed by the Servei Central de Suport a la Investigació Experimental (SCSIE) from Universitat 

de València and the data were analysed by Dr. Elizabeth Radford at the University of Cambridge. Based 

on changes in methylome from MeDIPseq data obtained, a principal component analysis showed a 

clear segregation between the NSCs of origin and the generated iPSCs (Fig. 24a). 

It has been described that iPSCs have lower levels of methylation than somatic cells, suggesting 

that demethylation is an important chromatin feature to achieve pluripotency (Lee et al., 2014). In 

agreement with this, the genome-wide analysis demonstrated that 9354 DMRs exhibited reduced 

methylation levels in iPSCs compared to NSCs, while 893 DMRs had elevated levels of methylation (Fig. 

24b). Based on the MeDIPseq data, we performed a “Gene Set Enrichment Analysis” (GSEA) (Fig. 24b). 

Remarkably, the GSEA method identified 21 sets of genes that showed hypomethylation and that were 

involved in important biological functions including cell adhesion, cytoskeleton, DNA binding, splice 

variant, alternative splicing, zinc finger proteins and transcriptional regulation (Fig. 24b). Only three 

sets of genes showed significant hypermethylation levels (Fig. 24b). This alteration of the methylome 

was consistent with a global DNA demethylation needed to acquire a pluripotent state also in NSCs.  
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Figure 24. Methylome is modified during reprogramming of NSCs into iPSCs. (a) Principal component analysis (PCA) 
from MeDIPseq of 3 iPSCs and 3 NSCs cultures represented based on their global methylation levels. (b) Gene Set 
Enrichment Analysis (GSEA) showing statistically significant differences between NSCs and derived iPSCs. Several sets 
of genes involved in different biological functions showed changes in methylation. Global quantification of the 
differentially methylated regions (DMRs) found after MeDIPseq in iPSCs compare to NSCs is also shown. (c) DNA 
methylation profile analysis of Nanog, Oct4 and Zfp42 (left panels) and Nestin, Zic1 and Olig2 (right panels) including 
the predicted promoter regions by MeDIPseq. A schematic representation of each gene from Genome Browser 
(http://genome.ucsc.edu) is included.  

 

To establish a link between altered DNA methylation pattern and transcriptional activity we 

determined if changes of expression in pluripotency and neural genes observed in iPSCs, correlated 

with a gain or loss of the methylation especially at the promoter regions (Fig. 24c). Notably, lower 

methylation correlated with up-regulation of gene expression (Fig. 24c). For example, genes such as 

Nanog, Oct4 and Zfp42 that were up-regulated in iPSCs (Fig. 19d and Fig. 23d) showed low levels of 

methylation in iPSCs compared to NSCs (Fig. 24c). Consistently, a gain of methylation was found at the 

promoters of downregulated genes such as Nestin, Zic1 and Olig2 (Fig. 24c). These data suggested that 

the acquisition of a pluripotent state implies a re-establishment of the methylation landscape in the 

genome to modulate the new gene expression profile. 

1.4 Methylation of DMRs at imprinting control regions is modified during reprogramming of NSCs 

into iPSCs.   

As it has been mentioned in the introduction, the majority of imprinted genes are grouped in 

clusters. An imprinting cluster is usually under the control of a DNA element, called the imprinting 

control region (ICR) that consists of differentially DNA methylated region (DMR) on the two parental 

chromosomes (Ferguson-Smith 2011). DNA methylation is the mainstay of establishing imprinting 

marks on either paternal or maternal alleles (Elhamamsy 2017). The identified DMRs fall into two 

categories: those that acquire their DMR status in the germline (germline DMR) and those that become 

differentially methylated after fertilization (somatic DMRs). Somatic DMRs are sometimes tissue-

specific and they depend on the presence of a germline DMR (Ferguson-Smith 2011). Deletion of these 

germline DMRs results in loss of genomic imprinting of multiple genes in the cluster (Sutcliffe et al., 

1994, Lin et al., 2003, Williamson et al., 2006) showing that they are crucial ICR that are essential for 

mono-allelic expression within an imprinted cluster. However, the dynamics of genomic imprinting 

during the reprograming process remains to be elucidated. 

 Due to the important effects of DNA methylation at DMRs of imprinted genes in the regulation 

of gene expression, we focused on the analysis of the methylation profile of different imprinted 

clusters. From 32 imprinted DMRs analysed, we observed that the methylation profile had been 

substantially modified in 22 of them (Fig. 25, Table 1 Annex II). Interestingly, the vast majority of DMRs 
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showed lower levels of methylation in iPSC compared to NSCs (Fig. 25a, Table 1 Annex II). Only one 

DMR was hypermethylated in iPSCs (Table 1 Annex II). Notably, 86% of the analysed maternal DMRs 

showed hypomethylation whereas 37% of the paternal DMRs were hypomethylated in iPSCs compared 

to NSCs (Fig. 25a, Table 1 Annex II). These results suggested that the alteration of DNA methylation 

pattern that occurred during the acquisition of a pluripotent state seem to be more frequent in 

maternally methylated DMRs and thus the control of the gene expression of imprinted genes at these 

cluster could be altered during this process.  

 We wanted next to define the relationship between the methylation profile within the 

imprinted clusters and the expression of imprinted genes in iPSCs. Usually, DNA methylation leads to 

silencing of gene expression and DNA demethylation leads to activation of gene expression. However, 

this is not always the case in imprinted genes. Paternally methylated DMRs such as the germline DMRs, 

IG-DMR (Chr 12) and Igf2-H19 DMR (Chr 7), did not show any change in their methylation status (Fig. 

25b) and accordingly very few genes within these clusters altered their expression levels after 

reprogramming (Fig. 25b; Table 1 Annex II). Interestingly, H19 was upregulated in iPSC correlating with 

loss of methylation at the H19 promoter somatic DMR (Fig. 25c). Moreover, the Rasgrf1 imprinted 

locus showed hypomethylation in iPSCs but this change did not correlate with changes of any of the 

genes within the cluster, as Mir184, A19, AK029869 or Rasgrf1 were normally expressed (Table 1 

Annex II).  

In contrast, we found that several maternally methylated DMRs, did lose methylation (Fig. 25d; 

Table 1 Annex II). Interestingly, at these loci, both somatic and germline DMRs were hypomethylated 

in iPSCs and we did not find any DMR regions which gain methylation (Table 1 Annex II). 

Hypomethylation at maternally methylated DMRs correlated with changes in the expression levels of 

several genes within the clusters. For example genes from the Kcnq1ct1, Snrpn or Nespas imprinted 

clusters were significantly altered (Fig. 25d; Table 1 Annex II) indicating that changes in DNA 

methylation patterns at imprinted loci during reprogramming result in changes in gene expression.  To 

confirm these data, validation by pyrosequencing of the methylation levels at these DMRs together 

with the confirmation by qPCR of the changes of imprinted genes in iPSCs compared to NSCs need to 

be done next. 
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Figure 25. Changes in the expression of imprinted genes correlate with hypomethylation at the maternally 
methylated DMRs. (a) Percentage of maternally (pink) and paternally (blue) methylated DMRs that show 
hypomethylation in iPSCs compared to NSCs (FDR<0.05). A table with number and changes of germline and somatic 
DMRs analysed is shown. (b) Schematic of the Dlk1-Dio3 and the Igf2-H19 imprinted clusters representing the germline 
and somatic paternally methylated DMRs (upper panels). Fold change of the expression of the genes within the 
clusters. Methylation profiles by MeDIP-seq at the DMRs show no changes (lower panels). H19 promoter somatic DMR 
showed hypomethylation. (c) Schematic of the two maternally methylated clusters Kcnq1ot1 and Snrpn. Expression of 
the genes within the clusters and methylation profiles of the DMRs are shown. Hypomethylation at the DMRs causes 
alteration of several genes within the clusters. Downregulated genes are indicated in red and upregulated are in yellow. 
Maternally (pink) and paternally (blue) expressed genes are indicated.  
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1.5 TET3 prevents reprogramming of NSCs into iPSCs in vitro 

We have described that DNA methylation is a heritable epigenetic modification that plays a 

central role in genomic imprinting. Moreover, in mammals, active erasure of 5mC from DNA is 

catalysed by Ten-Eleven Translocation (TET) family members (TET1, TET2 and TET3) that oxidase 5mC 

to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) (Wu and 

Zhang 2017). TET enzymes have been previously implicated in imprinting regulation. For example, TET1 

deficiency results in aberrant methylation patterns at imprinted loci in primordial germ cells (PGCs) 

and sperm cells and the progeny exhibit phenotypes associated with abnormal imprinting erasure 

(Yamaguchi et al., 2013). Nevertheless, it is still unclear how epigenetic machinery recognizes ICRs.   

Given the importance of DNA methylation on the regulation of genomic imprinting during 

reprogramming of adult NSCs, we next studied the expression levels of TET proteins during the 

reprogramming process as a potential candidate to remove methylation at the maternal methylated 

DMRs. qPCR data showed low levels of expression of Tet1 and Tet2 in NSCs and these were significantly 

increased in iPSCs (Fig. 26a). However Tet3, which is the most abundant member of the TET 

dioxygenase in the adult NSCs, was significantly downregulated during the reprogramming process 

(Fig. 26a) suggesting a relevant role in the multipotent state of NSCs. 

In order to clarify the role of TET3 in the maintenance of neural phenotype, we induced Tet3 

deficient NSCs into iPSCs using the 2F protocol described before (Fig. 18a). To obtain Tet3 deficient 

NSCs, we generated a murine genetic model by crossing male mice carrying loxP sites flanking the Tet3 

gene (Tet3loxP/loxP) (Santos et al., 2013) with female mice expressing the Cre-recombinase under the 

control of the mouse Gfap promoter (Gfap-Cre+/0) (This model is explained in the next chapter). In this 

assay, deficient Tet3 NSCs (Tet3-Gfapcre) were compared to control NSCs (Tet3-Gfapcontrol) (Fig. 26b). To 

evaluate the efficiency of the reprogramming process in the absence of Tet3, we determined the 

presence of pluripotent colonies by detecting the presence of alkaline phosphatase positive clones in 

the cultures. Interestingly, Tet3 deficient NSCs formed more pluripotent clones compared to controls 

(Fig. 26c,d), indicating that the downregulation of Tet3 expression was essential for a successful 

reprograming of adult NSCs into iPSCs. This also suggests that TET3 is not the enzyme that catalyses 

the demethylation process observed in maternally methylated DMRs during the reprogramming of 

NSCs into iPSC. Therefore, TET1 and TET2 need to be analysed in this context to determine their role 

in the demethylation of imprinted DMRs. 

However, based on these new results, we propose that TET3 might have an important role in 

the maintenance of the multipotent identity of adult NSC and we study in the next chapter the function 
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of this protein in the subventricular neurogenic niche focusing on the role of the enzyme in the 

maintenance of genomic imprinting in adult NSCs.  

Figure 26. Tet3 downregulation is essential for the acquisition of a pluripotent state. (a) Quantitative PCR for Tet1, 
Tet2 and Tet3 in NSCs and iPSCs. Tet1 and Tet2 were upregulated during reprogramming whereas Tet3, highly 
expressed in NSCs, was downregulated in iPSCs compared to NSCs. ESCs were used as a control of expression. Gapdh 
was used to normalize qPCR expression data. (b) Schematic of the reprogramming of TET3 deficient NSCs. Three 
independent cultures of each genotype were used to reprogram NSCs with 2F, Oct-4 and Klf4. When iPSCs clones were 
big enough, 10 clones of each culture were isolated for expansion. (c) Alkaline phosphatase (AP) staining after the 
reprogramming of Tet3 deficient NSCs (right panel) and control NSCs (left panel) showing a higher number of positive 
clones in Tet3-Gfapcre iPSCs. (b) Number of AP+ clones per area analysed in both genotypes. All error bars show s.e.m. 
of at least 4 cultures per condition. P-values are indicated (*p-value<0.05, **p-value<0.01 and ***p-value<0.001). 
Scale bar in c: 1cm 
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Annex II 

 

 

 

Figure 1 Annex II. Gene Set Enrichment Analysis (GSEA) showing the more significant changed metabolic pathways 
in iPSCs compare to NSCs. Coloured red bars represent the number of downregulated genes in pathways with more 
than 35 genes differentially expressed. Coloured yellow bars show the number of upregulated genes in pathways with 
more than 50 differentially expressed genes.  
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Table 1 Annex II. Changes in maternally and paternally methylated DMRs from MeDIPseq (iPSCs vs NSCs). Maternally 
and paternally methylated DMRs are indicated. The start and end nucleotide position based on the Genome Reference 
Consortium Mouse Build 38 (GRCm38/mm10) are also indicated. The methylation status of the DMRs and the number 
of differentially expressed genes within the cluster are shown. 

 

Imprinted locus DMR Chr. Start End Methylation 
Differentially 

expressed 
genes 

Maternally 

methylated 

Gnas 
Nespas-Gnas germline chr2 174294124 174297817 hypo 

1 (5) 

Gnas1A germline chr2 174327075 174329319 hypo 

Mcts2 Mcts2 germline chr2 152686755 152687275 hypo 1 (2) 

Nnat/Peg5 Nnat germline chr2 157559270 157561662 hypo 1 (2) 

Fkbp6 
Fkbp6 DMR1 germline chr5 135351732 135351863 unchanged 

1 (1) 
Fkbp6 DMR2 germline chr5 135349819 135350194 hypo 

Peg10 Peg10 germline chr6 4745857 4749483 hypo 6 (10) 

Mest/ 
Nap1l5 

Mest/Peg1 germline chr6 30734007 30739966 hypo 
1 (7) 

Nap1l5 germline chr6 58906696 58907062 hypo 

Peg3 Peg3 germline chr7 6727344 6732689 hypo 1 (7) 

Snrpn Snrpn germline chr7 60003561 60005296 hypo 7 (13) 

Inpp5f_v2 Inpp5f_v2 germline chr7 128688274 128688642 hypo 0 (2) 

Kcnq1ot1/ 
Lit1 

KvDMR germline chr7 143293662 143296905 hypo 
11 (19) 

Cdkn1c somatic chr7 143461406 143461537 hypo 

Cdh15 Cdh15 germline chr8 122865050 122865261 unchanged 0 (1) 

Plagl1/Zac1 Plagl1/Zac1 germline chr10 13090043 13091998 hypo 1 (1) 

Grb10/ 
Zrsr1 

Grb10 germline chr11 12025460 12027097 hypo 
4 (6) 

Zrsr1 germline chr11 22971765 22974028 hypo 

Peg13 Peg13 germline chr15 72809482 72810159 unchanged 0 (1) 

Igf2R 

Igf2r DMR2 germline chr17 12741303 12742867 unchanged 

1 (4) Igf2r DMR1 
promoter 

somatic chr17 12769907 12770094 hypo 

Impact Impact germline chr18 12971926 12974626 hypo 0 (1) 

Paternally 
methylated 

Gpr1-Zdbf2 
Gpr1 germline chr1 63200129 63200349 hypo 

1 (2) 
Zdbf2 germline chr1 63264669 63264855 unchanged 

Igf2-H19 

H19 ICR germline chr7 142580083 142582190 unchanged 

1 (4) 

H19 
promoter 

somatic chr7 142578136 142578879 hypo 

Igf2 DMR0 somatic chr7 142669087 142669626 unchanged 

Igf2 DMR1 somatic chr7 142665179 142665719 unchanged 

Igf2 DMR2 somatic chr7 142653809 142654708 hyper 

Rasgrf1 Rasgrf1 germline chr9 89876748 89883626 hypo 0 (4) 

Dlk1-Gtl2 

IG-DMR germline chr12 109528206 109528523 unchanged 

2 (11) Dlk1 DMR somatic chr12 109459858 109460079 unchanged 

Gtl2 DMR somatic chr12 109539232 109543185 unchanged 
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2. TET3 plays an important role in the regulation of NSC in the SVZ. 

2.1 TET3 is highly abundant in the adult neural stem cell pool 

TET dioxygenases are most abundant in the brain and can convert 5mC to 5hmC resulting in the 

removal of the methylated cytosine in somatic tissues, including the brain (Kriaucionis and Heintz 2009, 

Jin et al., 2010, Munzel et al., 2010, Szwagierczak et al., 2010, Szulwach et al., 2011). 

Since the discovery of TET proteins (Iyer et al., 2009), TET1 and TET2 has been extensively 

studied. It has been demonstrated that Tet1 and Tet2 are widely expressed during embryonic 

development and in ESC, whereas Tet3 is less widely expressed (Koh et al., 2011, Hahn et al., 2013). 

TET3 has been previously implicated in the maintenance of neural progenitors derived from ESCs and 

in their terminal differentiation into neurons (Li et al., 2015). Nonetheless, the specific role of TET3 in 

NSCs function and in adult neurogenesis has not been determined. Consistently, qPCR for TET 

expression patterns showed low mRNA levels of Tet1 and Tet2 and high levels of Tet3 in adult NSCs 

(Fig. 27a). Moreover, in the SVZ tissue, Tet3 was the most abundant member of the TET dioxygenases 

being also highly expressed in the NSCs pool in the early postnatal brain (Fig. 27a). Interestingly, Tet3 

expression was maintained postnatally in the stem cell pool and in more differentiated cells, whereas 

Tet1 and Tet2, highly expressed in the ESCs and early in NSCs development, were downregulated in 

the adult NSCs (Fig. 27a).  

It has been reported that the mammalian Tet3 possess three known isoforms generated by 

alternative splicing (Perera et al., 2015), one containing a CXXC DNA binding domain, refer as Tet3-full-

length (Tet3FL), one lacking a CXXC domain called Tet3-short (Tet3s) and Tet3o which is specific of 

oocytes and contains an additional N-terminal exon and also lacks the CXXC domain (Fig. 27b). It has 

been also described that Tet3FL isoform is the predominant TET3 protein in neurons, is localized 

precisely at transcription starting sites (TSSs) and shows less catalytic activity than Tet3s isoform due 

to the presence of the CXXC domain (Jin et al., 2016). However, Tet3s isoform pattern expression in 

the brain remained to be elucidated.  

To characterize the expression pattern of the Tet3 isoforms in the adult SVZ and in NSCs, we 

examined the transcripts of Tet3FL, Tet3s and Tet3o using qPCR with primer pairs spanning the 

isoform-specific exons at the 5´-end (Jin et al., 2016) (Fig. 27b). We observed that the most abundant 

isoform in the brain and in the SVZ was the Tet3s. Interestingly, despite being also the predominant 

isoform, in NSCs the expression of Tet3FL was higher than in brain or SVZ (Fig. 27c). In ESCs both 

isoforms were almost equally expressed (Fig. 27c). As expected, Tet3o was not expressed in the 

neurogenic niche or NSCs (data not shown). 
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Figure 27. TET3 is the most expressed member of the TET family in the SVZ neurogenic niche. (a) qPCR for Tet1, Tet2 
and Tet3 genes in different cell types and tissues. Tet1 is not expressed in adult NSCs and Tet2 downregulates 
postnatally. Tet3 is highly expressed in the SVZ and is maintained postnatally in the NSCs population. Dark blue bars 
represent proliferating NSCs and light blue bars show NSCs after 2, 3 and 7 days growing in differentiation conditions. 
Significant levels of Tet3 were also observed during the differentiation process. P: postnatal day. (b) Schematic of the 
three TET3 isoforms of mouse and human. N-terminal domains are different between the isoforms. The conserved 
CXXC domain is depicted in red. (c) Percentage of isoforms expression related to total Tet3 levels measured by qPCR 
in ESCs, Brain, SVZ and NSCs. The percentage of Tet3FL is increased in NSCs compare to brain and SVZ. Gapdh was used 
to normalize data. All error bars show s.e.m. of at least 6 cultures per genotype or tissue samples. 

 

To determine more specifically the cellular distribution of TET3 in the adult brain, 

immunostaining of TET3 in combination with the astrocytic marker GFAP, was performed in wild-type 

adult brains. TET3 protein distribution within the adult SVZ showed nuclear staining for the enzyme in 

the GFAP positive population located close to the lateral ventricles, whereas no expression of the 

protein was observed in more committed progenitors cells or DCX positive neuroblasts (Fig. 28a). TET3 

staining was also observed in mature neurons in the striatal parenchyma. Furthermore, neurospheres 

cultures isolated from the adult SVZ, showed the presence of TET3 in all SOX2 positive cells in 

proliferating conditions (Fig. 28b). Consistently with mRNA levels, TET3 protein was maintained during 

3 and 7 days of differentiation in vitro in Nestin positive progenitors and in mature GFAP positive 

astrocytes respectively (Fig. 28c). All these data suggest a relevant role for this dioxygenase in adult 

NSCs behaviour.  
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Figure 28. TET3 is highly expressed in adult NSCs in vivo and in vitro. (a) Immunohistochemistry confocal images for 
TET3 (red), GFAP (green) and doublecortin (DCX, blue) in the SVZ of adult wild-type mice. Dark arrowheads indicate 
GFAP+ astrocytes cells. Open arrowheads indicate mature neurons in the striatal parenchyma. Neuroblast are also 
indicated (arrows). V: lateral ventricle lumen. (b) Immunocytochemistry for TET3 (red) and SOX2 (green) in proliferating 
neurospheres isolated from the adult SVZ. (c) Immunocytochemistry for TET3 (red) and Nestin (green) or GFAP (green) 
in adult NSCs after 3 (upper panels) and 7 (lower panels) days of differentiation. DAPI was used to counterstain DNA. 
Scale bar in a and b: 20 µm (high magnification images, 7 µm); in c: 15 µm. 

 

2.2 TET3 promotes stemness maintenance in the adult SVZ 

2.2.1 Deletion of Tet3 by a Cre/LoxP system was confirmed in GFAP positive cells 

NSCs in the SVZ express astrocytic markers such as the glial fibrillary acidic protein (GFAP) 

(Doetsch 2003). Thus, in order to evaluate the regulatory function of TET3 in the adult SVZ neurogenic 

niche we generated a murine genetic model by crossing male mice carrying loxP sites flanking the Tet3 

gene (Tet3loxP/loxP) (Santos et al., 2013) with female mice expressing the Cre-recombinase under the 

control of the mouse Gfap promoter (Gfap-Cre+/0) (Garcia et al., 2004) (Fig. 29a). Significant expression 

of cre-recombinase in deficient brains and SVZ-derived NSCs was first confirmed by qPCR (Fig. 29b). 

The expression levels of Tet3 in the Tet3loxP/loxPGfapcre/0 (referred to as Tet3-Gfapcre) compared to 

Tet3loxP/loxPGfap0/0 (Tet3-Gfapcontrol) control mice was determined. Whereas it was not found a reduction 
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of Tet3 in Tet3-Gfapcre whole brain or SVZ tissue, probably because of cell heterogeneity, the 

elimination of Tet3 was confirmed selectively in NSCs (Fig. 29c). The levels of Tet3FL and Tet3s were 

measured by qPCR and the results showed no changes of the TET3 isoforms in brain. However, as 

expected, both Tet3FL and Tet3s mRNA levels were downregulated in Tet3-Gfapcre (Fig. 29d). 

Downregulation of TET3 protein was also confirmed by immunocytochemistry and western-blot in 

neurospheres isolated from deficient SVZ (Fig. 29e,f). However, no changes in the expression of the 

other two members of the TET dioxygenases family, Tet1 and Tet2 were observed (Fig. 29g), 

demonstrating the specific downregulation of the Tet3 gene in the GFAP positive NSCs population.  
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Figure 29. Tet3 is specifically down-regulated in GFAP+ cells in Tet3-Gfapcre mice. (a) Schematic representing the 
generation of the murine model. Mice expressing cre-recombinase under the mouse GFAP promoter (Gfap-cre+/0) were 
crossed with mice carrying LoxP sites flanking the exon 5 of the Tet3 gene (Tet3loxP/loxP) which encodes residues required 
for chelation of Fe(II) and is upstream of other catalytic residues. Expression of cre-recombinase results in excision of 
this region and a frame-shift from exon 6 affecting all downstream exons until a premature stop codon in exon 7. (b) 
qPCR for cre-recombinase in the brain and NSCs of Tet3-Gfapcontrol and Tet3-Gfapcre mice. (c) qPCR for Tet3 in adult 
brain, SVZ and NSCs in Tet3-Gfapcontrol and Tet3-Gfapcre mice. (d) qPCR for Tet3FL and Tet3s isoforms in Tet3-Gfapcontrol 
and Tet3-Gfapcre brains and NSCs. (e) Immunocytochemistry for TET3 (red) and Nestin (green) in Tet3-Gfapcre 
neurospheres. DAPI was used to counterstain DNA. (f) Western-blot for TET3 in Tet3-Gfapcontrol and Tet3-Gfapcre 
neurospheres cultures growing in proliferating conditions. (g) qPCR for Tet1 and Tet2 in Tet3-Gfapcontrol and Tet3-Gfapcre 
NSCs. Gapdh was used to normalize data. All error bars show s.e.m. of at least 6 cultures per genotype or tissue 
samples. Scale bar in d: 20 µm. P-values are indicated. **p-value<0.01 and ***p-value<0.001. 

 
 

To confirm that the floxed allele had effectively recombined in the GFAP population postnatally, 

GFAP-cre mice were crossed to ROSA26-LacZ reporter mice that carry β-galactosidase expression gene 

(LacZ) under the regulation of the ubiquitous Rosa26 promoter (resulting animals were referred to as 

Gfap-CRE/LacZ). Cre-recombinase expression results in the removal of a LoxP-flanked DNA segment 

that prevents expression of the LacZ gene and β-galactosidase activity which can be detected by 

histochemistry. X-gal was performed in the adult brain of Gfap-CRE/LacZ and of their control mice 

(without the cre-recombinase and referred to as Gfap-CN/LacZ) (Fig. 30a,b). X-gal showed positive 

staining in the SVZ, rms and olfactory bulbs of the adult Gfap-CRE/LacZ brains whereas no staining was 

observed in their controls (Fig. 30a). Moreover, X-gal staining was found to colocalize with GFAP+ cells 

(Fig. 30b), indicating a specific recombination in the GFAP positive stem cell population that is 

maintained in their progeny. 

To determine if deficiency of Tet3 in the Gfap population could cause any developmental defect, 

we determined body and brain weights in Tet3-Gfapcre mice compared to their controls at postnatal 

days 21 (P21) and 60 (P60). No changes were observed and around 50% of mice from each genotype 

was obtained from the breeding between Tet3loxP/loxP;Gfap-Cre0/0 males and Tet3loxP/loxP;Gfap-Cre+/0 

females in accordance with Mendelian law (Fig. 30c-e) indicating that conditional mutation of Tet3 in 

the GFAP population does not cause any general developmental alterations.  
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Figure 30. Cre-mediated recombination is specific of GFAP stem cells. (a) β-galactosidase staining (blue) in the SVZ, 
olfactory bulb (OB) and rostral migratory steam (rms) of Gfap-CRE/LacZ mice. Gfap-CN/LacZ mice with no cre-
recombinase were used as control for the staining. (b) β-galactosidase staining (blue) and immunohistochemistry for 
GFAP in the SVZ of Gfap-CRE/LacZ mice. (c) Body weights (in grams) in mice from the two genotypes at postnatal day 
21 (p21) and 60 (p60). (d) Brain weights (in milligrams) in P60 Tet3-Gfapcontrol and Tet3-Gfapcre mice. (e) Images of Tet3-
Gfapcontrol and Tet3-Gfapcre mice. Percentage of mice from each genotype in F3 offsprings is indicated. V: lateral 
ventricle. Scale bars in a (upper panel): 1000 µm; in a (lower panel and right panels): 500 µm; in b: 20 µm; in e: 2.5 cm. 
All error bars show s.e.m. of at least 6 samples per genotype. Number of samples used is indicated as coloured dots. 

 

2.2.2 Tet3 deficiency causes depletion of the adult SVZ neural stem cell pool in vivo 

SVZ niche populations including NSCs population, show morphological, molecular and functional 

heterogeneity (Morrens et al., 2012). The identification of NSCs in the adult SVZ has been a challenge 

since their discovery, given that there were not specific markers that allowed the unequivocally 

identification of the different populations in this niche (Codega et al., 2014, Chaker et al., 2016). The 

ability to label dividing cells has been very useful in verifying the existence of adult neurogenesis and 

in monitoring changes in neurogenesis in different conditions (Ferron et al., 2007, Codega et al., 2014). 

The use of thymidine analogous like bromodeoxyuridine (BrdU) and its immunocytochemical detection 

has permitted single or multiple labelling when was combined with different astroglial or stem cell 

markers and this strategy has been classically used in histological analysis to study NSCs and their 
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progeny (Ferron et al., 2007, Kuhn et al., 2016). When BrdU is given repeatedly and examined long 

after administration, remaining labelled cells are candidate stem cells due to their slowly division 

mode. Indeed, three to four weeks after the analogue administration, the rapidly dividing progenitors 

C cells and A neuroblasts dilute the nuclear label while it is only retained in slowly proliferating NSCs 

(LRC) and olfactory bulb newborn neurons that ceased to divide and terminally differentiate soon after 

the injection (Ferron et al., 2007). 

Therefore, to further investigate the role of TET3 in the adult SVZ-NSCs in vivo, two-month-old 

mice were injected with the nucleotide analogue BrdU three weeks before killing (Fig. 31a). TET3 

deficient mice showed a specific reduction in the proportion of BrdU-LRCs GFAP+ that, in addition, 

were less proliferative as measured by the cell-cycle antigen Ki67 (Fig. 31b), suggesting a role for TET3 

in regulating the activated NSCs within the SVZ. Notably, the overall rate of proliferation in Tet3-Gfap 

deficient SVZ was similar to their controls as the percentage of total Ki67+ cells in the intact SVZ of 

2-months-old mice was similar in both genotypes (Fig. 31c,d). Interestingly, the proportion of 

terminally differentiated GFAP positive cells was increased in the Tet3-Gfapcre SVZ as we found a higher 

proportion of GFAP+ cells that were also positive for the calcium-binding protein S100β in 2-months-

old Tet3-Gfapcre mice compared to control mice (Fig. 31e). This support the hypothesis that the loss of 

NSCs in Tet3-Gfapcre mice in vivo might be due to a premature differentiation of the stem cell 

population.  
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Figure 31. Removal of Tet3 in the SVZ GFAP+ population causes a depletion of the neural stem cell pool in vivo. (a) 
Schematic drawing of the BdrU injection protocol. (b) Number of BrdU-label retaining cells (BdrU-LRCs) that are GFAP+ 
and GFAP/Ki67+ in the SVZ of Tet3-Gfapcontrol and Tet3-Gfapcre mice. (c) Percentage of total Ki67+ cells in the SVZ of 
Tet3-Gfapcontrol and Tet3-Gfapcre mice. (d) Immunohistochemistry confocal images for GFAP (green) and Ki67 (red) in 
SVZ of mice from both genotypes. Open arrowheads indicate GFAP+ cells. Dark arrowheads indicate GFAP+ cells that 
are also Ki67+. DAPI was used to counterstain nuclei. (e) Percentage of GFAP+ and S100β/GFAP+ cells in the SVZ of 
Tet3-Gfapcontrol and Tet3-Gfapcre mice. All error bars show s.e.m. of at least 4 cultures per genotype or tissue samples. 
Number of samples used are indicated as coloured dots. **p-value<0.01 and ***p-value<0.001. Scale bars in d, 20 µm. 

 

Whole-mount or in toto staining within the SVZ provides a tridimensional vision of the 

ventricular surface allowing the study of the pinwheel organization specific to this region (Mirzadeh et 

al., 2008). Type B1 cells, located in the centre of the pinwheel, are displaced from the ventricular zone 

by multiciliated ependymal cells but extend a short apical ending to directly contact the ventricle 

(Mirzadeh et al., 2008, Lim and Alvarez-Buylla 2016). The pinwheel was identified by a triple staining 

for GFAP (Type B cell), β-catenin (cell membranes) and γ-tubulin (basal cilia). Consistently with previous 

data, a decrease in the number of type-B1 NSCs γ-tubulin positive apical cells in the pinwheels 

contacting the lateral ventricles was found at the same time of an increase in the terminally 

differentiated astrocytes in the Tet3-Gfapcre SVZ wall (Fig. 32a,b).  

Figure 32. Removal of Tet3 in the SVZ GFAP+ population causes a depletion of the Type B1-NSCs contacting with the 
ventricle lumen. (a) Immunohistochemistry images for GFAP (green), γ-tubulin (red) and β-catenin (blue) in whole-
mounts of the SVZ from Tet3-Gfapcre and Tet3-Gfapcontrol mice. Differentiated astrocytes are also indicated (arrows). (b) 
Total number of pinwheels and differentiated astrocytes found in the SVZ of Tet3-Gfapcontrol and Tet3-Gfapcre mice. All 
error bars show s.e.m. of at least 4 cultures per genotype or tissue samples. Number of mice used are indicated as 
coloured dots. *p-value<0.05, **p-value<0.01. Scale bars in a, 10 µm. 

 

In the adult neurogenesis process, stem cell-derived neuroblasts leave the SVZ and migrate 

rostrally towards the OB, where they ultimately differentiate into inhibitory interneurons (Bjornsson 

et al., 2015, Bond et al., 2015). As a consequence of the reduced number of NSCs in the Tet3 deficient 

SVZ, a decrease in the percentage of the DCX+ and PSA-NCAM+ population was found (Fig. 33a-c), 

resulting in a less densely populated rostral migratory stream in the Tet3-Gfapcre mice (Fig. 33c).  
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As we mentioned before, after BrdU administration, olfactory bulb newborn neurons that 

ceased to divide soon after the injection retain the analogue and can be used to determine the 

neurogenesis rate to the OB (Ferron et al., 2007). Using immunohistochemistry we quantified the 

number of BrdU positive cells in the olfactory bulb of Tet3-Gfapcre mice compared to their controls. 

Consistent with a reduced neuroblast population migrating through the rms, we observed a lower 

number of newborn neurons reaching the OB in Tet3 deficient mice, visualized by the postmitotic 

BrdU+ newly formed neurons in the glomerular (GL) and granular (GR) layers of the mutant OB (Fig. 

33d,e). We also analysed the number of BrdU+ cells reaching the corpus callosum (CC) and observed 

that in this case oligodendrogenesis was similar in both genotypes (Fig. 33f). These data together 

indicate that TET3 could be essential for the maintenance of the neural stem cell pool in the SVZ of 

adult mouse brain preventing the differentiation of B cells into non-neurogenic astrocytes in vivo. TET3 

could then participate in the formation of new neurons through the adult life.  

Figure 33. Absence of TET3 causes an impairment of adult neurogenesis. (a) Percentage of total DCX+ cells in the SVZ 
of Tet3-Gfapcontrol and Tet3-Gfapcre mice (b) Immunohistochemistry for DCX (red) in SVZ of mice from both genotypes. 
V: lateral ventricle. (c) Immunohistochemistry images for PSA-NCAM+ (red) chains of neuroblast in the rms of mice 
from both genotypes. (d) Quantification of the number of newborn neurons incorporating in the granular (GR) and 
glomerular (GL) layers in the olfactory bulbs (OB) of Tet3-Gfapcontrol and Tet3-Gfapcre mice. (e) Immunohistochemistry 
images for BrdU (red) in the granular layer in OB of Tet3-Gfapcontrol and Tet3-Gfapcre mice. Arrowheads indicate BrdU+ 
cells. (f) Quantification of the number of BrdU+ cells in the CC of mice from both genotypes. DAPI was used to 
counterstain nuclei. All error bars show s.e.m. of at least 4 cultures per genotype or tissue samples. Number of mice 
used are indicated as coloured dots. *p-value<0.05, **p-value<0.01. Scale bars in b and c: 40 µm. 

 



 

 

96 Results 

2.3 TET3 maintains stem cell properties in vitro 

Under appropriate conditions, dissociated cells obtained from the SVZ, proliferate forming 

clonal aggregates called “neurospheres” and this in vitro assay is considered the demonstration of the 

presence of stem cells in the SVZ (Reynolds and Rietze 2005, Ferron et al., 2007, Pastrana et al., 2011). 

In order to address the specific effects of TET3 dioxygenase on the NSC population, neurospheres 

formation and NSCs differentiation were evaluated in Tet3-Gfapcre and Tet3-Gfapcontrol cultures.  

2.3.1 TET3 is required for self-renewal and expansion of adult NSCs 

To investigate the self-renewal capacity of neural progenitors we next set out to study 

whether the same in vivo phenotype could be reproduced in vitro. Neurospheres from adult SVZ of 

Tet3-Gfapcre and Tet3-Gfapcontrol mice were first derived under controlled culture conditions in which 

neural progenitors undergo an orderly program of cell proliferation. As we previously showed, 

significant mRNA expression of cre-recombinase was found in Tet3 deficient neurospheres 

correlating with a downregulation of Tet3 expression (Fig. 29b,c). As a consequence, NSCs isolated 

from Tet3-Gfapcre adult SVZ yielded fewer primary neurospheres compared to those of Tet3 

controls (Fig. 34b,c). To better characterize the self-renewal capability of these cultures, primary 

neurospheres were individually dissociated into single cells and plated at a clonal density (2.5 

cell/µl) (Fig. 34a). Tet3 deficient secondary neurospheres also exhibit a significant reduction on the 

number of new clones formed at different passages (P6 and P9) (Fig. 34b,c).   

To determine whether this reduction in the self-renewal capacity in Tet3 deficient cultures 

could be due to a proliferation or survival defect, we determined the size of primary and secondary 

neurospheres at different passages and found no changes in Tet3 deficient neurosphere diameter 

in any condition (Fig. 34d). In line with this, a cell cycle analysis of Tet3-Gfapcontrol and Tet3-Gfapcre 

neurospheres cultures was performed by staining the cells with propidium iodide (PI). Notably, no 

changes in the proportion of the cell cycle phases were observed in mutant compared to wild-type 

cultures (Fig. 34e). Moreover, the reduction in the number of neurospheres could not be either 

ascribed to a decreased in cell survival as evidenced by the lack of changes in the proportion of 

apoptosis in the mutant cultures (relative to total cells: 2.6 ± 0.2% in control cultures and 2.3 ± 0.2% 

in Tet3-Gfapcre cultures). This was confirmed by immunostaining for Caspase 3+ cells in 

neurospheres cultures from the two genotypes (relative to DAPI+ cells: 3.8 ± 0.5 % in Tet3-Gfapcontrol 

and 4.2 ± 0.3 in Tet3-Gfapcre). As a result of the specific defect on self-renewal in Tet3-Gfapcre 

cultures, their bulk growth expansion rate after several passages was also impaired compared to 

the Tet3-Gfap control cells (Fig. 34f). 
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Figure 34. Tet3 deficiency in GFAP+ NSCs causes a decrease in their self-renewal capacity and expandability. (a) 
Schematic representing the primary and secondary forming neurospheres assay and the expansion protocol. 
Neurospheres are cultured in proliferation conditions with the mitogens EGF and FGF. (b) Number of primary 
neurospheres obtained from the SVZ of 2 and 12 months-old Tet3-Gfapcontrol and Tet3-Gfapcre mice (left panel). Number 
of secondary spheres formed after passages 6 and 9 for both genotypes (right panel). (c) Phase contrast images of 
primary and secondary spheres from Tet3-Gfapcontrol and Tet3-Gfapcre mice. (d) Diameter of primary and secondary 
neurospheres formed in Tet3-Gfapcontrol and Tet3-Gfapcre cultures. Dashed lines indicate the mean diametre. (e) Cell 
cycle analysis in neurospheres cultures from both genotypes after 3 days in vitro. Percentages of G0/G1, S and G2/M 
phases are indicated. (f) Growth curve showing the total number of cells formed after 7 passages in Tet3-Gfapcontrol and 
Tet3-Gfapcre neurospheres cultures. All error bars show s.e.m. of at least 4 cultures per genotype or tissue samples. 
Number of mice used are indicated as coloured dots. *p-value<0.05, **p-value<0.01. Scale bars in c, 300 µm.  
 

 Neurogenesis occurs throughout adult life in the SVZ of the lateral ventricles, however, during 

aging, NSCs and their progenitors exhibit reduced proliferation and neuron production (Apple et al., 

2017). To further evaluate if the phenotype showed above was maintained in aged TET3 deficient mice, 

NSCs cultures from the SVZ of 12-months-old Tet3-Gfapcontrol and Tet3-Gfapcre mice were established 

and the number of primary spheres determined (Fig. 34b). A reduction in the number of primary 

spheres in ageing TET3 deficient mice compared to the control was observed, demonstrating the 

essential role of Tet3 in the stemness maintenance also in the ageing brain. Finally, to discard a possible 

effect of the presence of the Cre-recombinase on the in vitro phenotype observed in Tet3-Gfapcre NSCs, 

we isolated neurospheres from the SVZ of Gfap-Cre mice used to generate the conditional mutant. As 

expected, expression of Cre-recombinase was confirmed in Gfap-cre cultures while no expression was 

detected in Gfap-control NSCs (Fig. 35a). In addition, the portion of cells capable of forming primary 

neurospheres was similar in both genotypes (Fig. 35b). Primary neurospheres were dissociated and 
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plated again for the neurosphere assay and no differences between genotypes were observed in the 

number of secondary spheres formed (Fig. 35b). In conclusion, these results suggest that the 

expression of cre-recombinase per se do not cause phenotypic effects on NSCs in vitro. 

Figure 35. Cre-recombinase expression do not 
produce NSCs alterations in vitro. (a) qPCR for 
Cre-recombinase  expression in brain and NSCs in 
Gfap-control and Gfap-cre mice. (b) Number of 
primary and secondary neurospheres obtained 
from the SVZ of Gfap-control and Gfap-cre mice. 
Gapdh was used to normalize data. All error bars 
show s.e.m. of at least 3 cultures per genotype or 
tissue samples. Number of samples used are 
indicated as coloured dots. 

 

 

2.3.2 TET3 prevents differentiation of non-neurogenic astrocytes 

Adult NSCs retain in vitro their capacity to give rise to the three cell lineages characteristics of 

the central nervous system: astrocytes, neurons and oligodendrocytes (Reynolds and Weiss 1992, 

Belenguer et al., 2016). Because our data suggested that Tet3 deficiency results in increased astrocytic 

fate in vivo, we next tested whether this enhanced astrocytic differentiation was also accompanied by 

a reduction in the multipotentiality of stem-like astrocytes in vitro. The differentiation of neurospheres 

cultures derived from 2 months-old wild-type and Tet3 deficient mice were induced for 7 days (Fig. 

36a). To do so, disaggregated neurospheres cells were plated on Matrigel and cultured first for 2 days 

in vitro (2DIV) in medium containing FGF2 (proliferative conditions) to allow the expansion of the 

neural progenitor cell population. Afterwards, FGF2 was removed and the medium was supplemented 

with 2% FBS (required for astroglial differentiation). Cells were then allowed to fully differentiate for 5 

more days (7DIV, full differentiation) into neurons, astrocytes and oligodendrocytes (Fig. 36a) as 

previously described (Gritti et al., 1999, Belenguer et al., 2016). We first observed by qPCR a decrease 

of the Nestin gene together with an increase of the S100β gene in 2 DIV Tet3-Gfapcre compared to wild-

type neurospheres cultures (Fig. 36b), whereas no changes in the neuronal βIII-tubulin gene (Tubb3) 

were found (Fig. 36b). Accordingly to the mRNA expression levels, immunocytochemistry in deficient 

Tet3, after two days of differentiation, revealed a reduced percentage of proliferating BrdU/Nestin+ 

cells (Fig. 36c,d). 
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Figure 36. TET3 depletion causes an impairment of NSCs differentiation induction. (a) Schematic representation of 
the differentiation protocol. To induce NSCs differentiation EGF is removed and cells plated in matrigel to attach the 
cells. Two days after (2DIV), FGF is removed and 2% FBS added to the growth medium. Five days after (7 DIV) cells are 
fixed for immunostaining. (b) qPCR for the undifferentiation marker Nestin (Nes), the terminally differentiated marker 
S100β and the neuronal marker βIII-tubulin (Tubb3) in Tet3-Gfapcontrol and Tet3-Gfapcre NSCs in proliferation conditions 
and after 2 DIV of differentiation. Gapdh was used to normalize data. (c) Immunocytochemistry images for Nestin 
(green) and BrdU (red) in NSCs isolated from Tet3-Gfapcre and Tet3-Gfapcontrol cultures after 2 DIV of differentiation. (d) 
Percentage of Tet3-Gfapcre and Tet3-Gfapcontrol cells that are positive for Nestin and incorporate the thymidine analogue 
BrdU two days growing in differentiation conditions. All error bars show s.e.m. of at least 4 cultures per genotype or 
tissue samples. Number of samples used are indicated as coloured dots. DAPI was used to counterstain DNA. Scale bar 
in c: 40 µm. P-values are indicated. *p-value<0.05. 

 

After 7 DIV of differentiation, Tet3-deficient cultures were immunostained for the simultaneous 

detection of the terminally differentiated astrocytic marker S100β, the neuronal marker βIII-tubulin 

and the oligodendrocyte marker O4 (Fig. 37a,b). Tet3-Gfapcre cultures contained a higher proportion 

of cells that were strongly positive for S100β than wild-type cells (Fig. 37b,c). Conversely, neuronal and 

oligodendroglial differentiation was normal in both genotypes, as no differences were found in the 

percentage of βIII-tubulin or O4 positive cells (Fig. 37b,c). S100β protein that is largely absent from 

neurogenic GFAP+ cells, correlates with loss of neurosphere forming potential (Raponi et al., 2007). 

Thus, terminal differentiation of normal NSCs to a non-multipotent mature astrocyte unavoidably leads 
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to a reduction of the stem cell pool in the cultures (Raponi et al., 2007). In order to test whether 

enhanced astrocytic differentiation in the absence of TET3 is consistently accompanied by a reduction 

in the capacity of NSCs to form neurospheres, 7-DIV differentiated NSC cultures were detached and 

replated again in the presence of mitogens and in the absence of adherent conditions (Fig. 37a,d). This 

led to the reactivation of a small portion of cells that still kept the capacity to form neurospheres in 

non-adherent conditions after 12 days in vitro (12 DIV) (Fig. 37a). Notably, the number of 

neurospheres-forming cells in Tet3-Gfapcre cultures was significantly reduced, indicating that the bias 

toward the astrocytic fate correlates with a reduction in the stem cell pool in the absence of TET3 (Fig. 

37d). This suggests that TET3 can directly promote the neurogenic potential of the multipotent stem 

cell-like astrocytes by preventing their premature differentiation. 
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Figure 37. TET3 prevents terminal differentiation of non-neurogenic astrocytes. (a) Schematic representation of the 
reactivation assay protocol. After the differentiation protocol, cultures were tripsinized and replated again in the 
presence of EGF and FGF. No matrigel was used to promote proliferation. (b) Immunocytochemistry images for S100β 
(red, upper panels), βIII-tubulin (red, middle panels) and O4 (red, lower panels) in Tet3-Gfapcontrol and Tet3-Gfapcre 
cultures after 7 DIV in differentiation conditions. (c) Percentage of cells that are positive for S100β, βIII-tubulin and O4 
in NSCs from both genotypes after 7 DIV of differentiation. (d) Number of neurospheres formed after detaching 
differentiated cells and replating again in proliferation conditions in Tet3-Gfapcontrol and Tet3-Gfapcre cultures (left 
panel). Representative images of neurospheres formed in both genotypes after replating in proliferation conditions 
(right panels). All error bars show s.e.m. of at least 4 cultures per genotype. Number of samples used are indicated as 
coloured dots. Scale bar in d: 40 µm. P-values are indicated. **p-value<0.01; ***p-value<0.001. 
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2.3.3 TET3 regulates gene expression changes in the imprinted gene Snrpn 

TET proteins have been found to play an important role in removal of DNA methylation at the 

imprinted regions during the resetting of genomic imprinting in the germline (Hackett et al., 2013, 

Piccolo et al., 2013, Yamaguchi et al., 2013). Moreover, 5hmC is shown to be enriched at enhancers 

and gene bodies of actively transcribing genes (Mellen et al., 2012, Sun et al., 2013) and a role for 

5hmC in transcriptional priming has been hypothesized having essential roles in regulating gene 

expression and maintaining cellular identity (Costa et al., 2013). However, in adult NSCs, it is not 

established whether TET proteins are also involved in demethylation of DNA at the imprinted regions 

or whether they also regulate gene transcription. Therefore, to directly examine the function of TET3 

and 5hmC on the regulation of genomic imprinting in neural progenitors an RNAseq expression analysis 

was performed in adult NSCs from control and Tet3-Gfapcre neurospheres cultures. Based on changes 

in gene expression from the RNAseq data, a principal component analysis showed a clear segregation 

between Tet3-Gfapcontrol and Tet3-Gfapcre groups (Fig. 38a). RNAseq confirmed a 70% downregulation 

of Tet3 mRNA levels in Tet3-Gfapcre compared to control cultures (LogFC in Tet3-Gfapcre neurospheres 

cultures: -1.0074 with a FDR=3.97x1017). At the basal level, Tet3-Gfapcre NSCs exhibited differential 

expression of a large number of genes compared with control NSCs, with a similar number of genes 

downregulated (97 genes, Table 1 Annex III) than upregulated (96 genes, Table 2 Annex III) (Fig. 38b,c) 

supporting the hypothesis that TET3 might regulate NSCs function.  
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Figure 38. TET3 plays an important role in the regulation of gene expression. (a)  Principal component analysis (PCA) 
of the transcriptome from RNAseq data showing segregation between Tet3-Gfapcontrol and Tet3-Gfapcre NSCs. (b) 
Volcano plot for all genes differentially expressed by RNAseq. Vertical grey lines indicate logFC thresholds (logFC -0.5 
and logFC 0.5). Horizontal grey lines represent FDR=0.05. Red dots represent upregulated genes while blue dots 
indicate downregulated genes (FDR<0.05). (c) Hierarchical clustering and heatmap of RNAseq data showing expression 
of the top 20% of more variable genes (FDR<1e-4) between Tet3-Gfapcontrol and Tet3-Gfapcre NSCs. (d) Metabolic 
pathways in which more than 5 genes showed significant changes based on RNAseq data. Coloured bars represent the 
number of downregulated (red) and upregulated genes (yellow) in each metabolic pathway.  

 

 The resulted significantly expressed genes between both genotypes were then grouped 

according to the metabolic pathways in which they were implicated using the Enrichment Browser 

package (Geistlinger et al., 2016). As a result, we obtained a total of 10 KEGG (Kyoto Encyclopedia at 

Genes and Genomes) metabolic pathways in which at least 5 genes were altered in Tet3-Gfapcre NSCS 

compared to controls. The altered pathways within TET3 deficient NSC included, among others, 

regulation of pluripotency of stem cells, cell adhesion pathways, calcium signalling or cancer (Fig. 38d), 

however in this thesis we focused on the function of TET3 on genomic imprinting. Thus we next 

analysed how imprinted genes were modified in Tet3-Gfapcre compared to control cultures. 

Importantly, based on RNAseq data, from around 150 known imprinted genes, only three of them 

showed a significant change in mRNA expression based on RNAseq data. Concretely, Cntn3 (contactin 

3) was downregulated in Tet3-Gfapcre NSCs (logFC= -1,137), whereas CobI (cordon-bleu WH2 repeat) 

and Snrpn (small nuclear ribonucleoprotein-associated polypeptide N) showed increased levels of 

expression in TET3 deficient neurospheres compared to wild-type (Fig. 39a). To validate these results, 

a qPCR analysis was performed and this confirmed only the upregulation of Snrpn in Tet3-Gfapcre NSCs 

(Fig. 39b). Notably, Cobl and Cntn3 were expressed at a very low levels in NSCs, indicating that they 
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could not have a relevant role on NSCs. We also analysed by qPCR other imprinted genes such as Gnas, 

p57, Peg3 or H19 and confirmed that they were not modified in Tet3 deficient neurospheres (Fig. 39c). 

Due to our interest in imprinting regulation, we next focused on the Snrpn gene regulation.   

Figure 39. Tet3 deficiency in NSCs causes an increase in the expression of the imprinted gene Snrpn. (a) Volcano plot 
for imprinted genes differentially expressed by RNAseq. Vertical grey lines indicate logFC thresholds (logFC -0.5 and 
logFC 0.5). Horizontal grey lines represent FDR=0.05. Red dots represent upregulated imprinted genes while blue dot 
indicates the downregulated imprinted gene (FDR<0.05). (b) Validation by qPCR for Snrpn, Cntn3 and CobI in Tet3-
Gfapcontrol and Tet3-Gfapcre cells. An increase in the expression of Snrpn was observed in Tet3-Gfapcre cells relative to 
their control counterparts. (c) qPCR for some representative imprinted genes organized by chromosomes confirming 
no expression changes. Gapdh was used to normalize data. All error bars show s.e.m. of at least 8 cultures per genotype 
or tissue samples. P-values are indicated. *p-value<0.05, **p-value<0.01. 
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2.3.4 Snrpn downregulation reverts the phenotype in TET3 deficient NSCs  

Analysis of Snrpn expression in NSCs revealed that the gene was significantly expressed both in 

proliferating and differentiating conditions with a pick of expression at the first steps of the induction 

of the differentiation into neural cell types (2 DIV) (Fig. 40a). Accordingly, although Snrpn was 

increased in Tet3-Gfapcre compared to Tet3-Gfapcontrol proliferating NSCs, the maximum difference of 

Snrpn mRNA levels in both genotypes were observed after 2 DIV of differentiation (Fig. 40a).  

Aiming to establish whether the augmented levels of Snrpn found in Tet3 deficient NSCs were 

functionally responsible for their loss of stemness and enhanced astrocytic differentiation, we 

performed a Snrpn expression silencing experiment using a short hairpin RNA (shRNA) in NSCs. A 

lentivirus (Lv)-mediated shRNA was used to silence Snrpn (shSNRPN) expression in Tet3-Gfapcre and in 

Tet3-Gfapcontrol neurospheres cultures. A shRNA scramble (shSCRAMBLE) was used as a control for 

infection. Downregulation of Snrpn was verified by qPCR in these cells (Fig. 40b,c) which resulted in 

the reversion of the self-renewal capacity of Tet3 deficient cells to wild-type levels (Fig. 40d,e). 

Moreover, to determine whether this rescue in the self-renewal and expansion capacities in Tet3-Gfap 

deficient cultures could be due to an additional effect of Snrpn on proliferation, the size of the 

neurospheres formed was determined in transduced cells and no changes in mean diameter were 

observed in any condition (Fig. 40f). As a result, the bulk growth expansion rate after several passages 

was also rescued in Tet3-Gfapcre neurospheres cultures infected with the shSNRPN (Fig. 40g), 

suggesting a functional role of Snrpn in the self-renewal capacity of adult NSCs. 
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Figure 40. Downregulation of Snrpn in Tet3-Gfapcre NSCs rescues the self-renewal defect. (a)qPCR of Snrpn in Tet3-
Gfapcontrol and Tet3-Gfapcre cultures in proliferation conditions (NSCs) and after 2 and 3 DIV of differentiation. Expression 
levels showed the largest differences at 2 DIV between Tet3-Gfapcre and their controls (grey bar). (b) qPCR for Snrpn in 
Tet3-Gfapcontrol and Tet3-Gfapcre NSCs that had been lentivirus infected with a shRNA for SNRPN (shSNRPN). A shRNA 
SCRAMBLE was used as a control of gene interference (shSCRAMBLE). A rescue in the upregulated expression of Snrpn 
was obtained in Tet3-Gfapcre cells. (c) Immunocytochemistry images for SNRPN (red) in Tet3-Gfapcontrol and Tet3-Gfapcre 
NSCs 7 days after the shRNA experiment. (d) Number of secondary spheres formed after shRNA experiment. A rescue 
in the neurosphere formation capacity in Tet3-Gfapcre was observed after the interference of Snrpn. (e) Phase contrast 
images of neurospheres obtained after shRNA for SNRPN in Tet3-Gfapcontrol and Tet3-Gfapcre NSCs. (f) Diameter of 
secondary spheres in shSCRAMBLE and shSNRPN conditions for both genotypes. Dashed lines represent the mean 
diameter for each condition. (g) Growth curve showing the total number of cells formed after 4 passages in Tet3-
Gfapcontrol and Tet3-Gfapcre neurospheres cultures that had been interfered with the shRNA. Gapdh was used to 
normalize qPCR data. All error bars show s.e.m. of at least 4 cultures per genotype and condition. Number of samples 
used are indicated as coloured dots. Scale bar in d: 150 µm. P-values are indicated. *p-value<0.05, **P-value<0.01. 
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 Lentiviral delivery of the shSNRPN in Tet3 deficient cells was also able to restore to wild-type 

levels the higher expression of S100β found in Tet3-Gfapcre neurospheres after 2 and 7 DIV of 

differentiation (Fig. 41a). Gfap expression, also highly expressed in Tet3-Gfapcre NSCs, was rescued to 

normal levels whereas no changes were observed in the neuronal gene Tubb3 after interference of 

Snrpn in Tet3-Gfapcre neurospheres (Fig. 41b). Consistently, the proportion of S100β positive cells in 

Tet3-Gfapcre differentiated NSCs was rescued to the wild-type levels after lentiviral downregulation of 

Snrpn while no changes were observed in the proportion of βII-tubulin+ cells (Fig. 41c,d). These data 

suggest that TET3 can promote the neurogenic potential of multipotent stem cell-like astrocytes by 

repression of Snrpn, antagonizing their premature terminal differentiation. Thus, loss of Tet3 in adult 

NSCs induces the upregulation of the Snrpn levels which causes the terminal differentiation and 

exhaustion of the stem cell pool. 

 
Figure 41. Snrpn interference rescues astrocytic premature differentiation in Tet3-Gfapcre NSCs. (a) qPCR for the 
astrocytic differentiation marker S100β in interfered NSCs after 2 and 7 DIV of differentiation. A rescue in the 
expression of the gene was observed in Tet3-Gfapcre after the shRNA for Snrpn. (b) qPCR for Gfap and Tubb3 in 
shSCRAMBLE and shSNRPN conditions. A rescue in the expression of the Gfap gene was also observed in Tet3-Gfapcre 
NSCs after Snrpn interference. (c) Immunocytochemistry images for S100β (red) and GFAP (green) in interfered NSCs 
of both genotypes after 7 DIV. DAPI was used to counterstain DNA. (d) Percentage of cells that are positive for S100β 
and βIII-tubulin in shRNA interfered Tet3-Gfapcontrol and Tet3-Gfapcre NSCs after 7 DIV of differentiation. Downregulation 
of Snrpn rescues the premature differentiation of Tet3-Gfapcre NSCs. Gapdh was used to normalize qPCR data. All error 
bars show s.e.m. of at least 3 cultures per genotype and condition. Number of samples used are indicated as coloured 
dots. Scale bar in c: 40 µm. P-values are indicated. *p-value<0.05, **p-value<0.01. 
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2.4 Genomic imprinting of Snrpn is maintained in TET3 deficient NSCs 

Snrpn is located in the Prader-Willi syndrome imprinting gene cluster and is canonically 

expressed from the paternally inherited chromosome (Bervini and Herzog 2013). It has been previously 

shown the expected paternal expression of Snrpn in SVZ tissue and NSCs (Ferron et al., 2011), however 

the acquisition of biallelic expression of the gene could explain the higher expression of Snrpn in 

Tet3-Gfapcre NSCs. To determine the imprinting status of Snrpn in Tet3-Gfapcre NSCs, CRISPR was used 

to knockdown TET3 in NSCs derived from adult F1 mice hybrids offspring from Mus musculus 

domesticus (C57BL6/J) males and Mus musculus castaneous (CAST/EiJ) females (CxB NSCs), in which a 

single-nucleotide polymorphism (SNP) was identified at the Snrpn gene between the two subspecies 

(Fig. 42a,b). CxB hybrids NSCs were nucleofected with a CRISPR plasmid for Tet3 containing a GFP 

reporter and GFP expressing NSCs were isolated by FACS (Fig. 42b). Tet3 downregulation in CRISPR 

samples was verified (Fig. 42c). Due to the difficulty to isolate individual NSC, the analysis was 

performed with a heterogeneous population of CRISPR resulting cells. In order to study the 

heterogeneity level of each sample, CRISPR sample DNAs were sequenced and analysed (Fig. 42d).  To 

precisely determine the spectrum and frequency of targeted mutations generated we used specific 

software called TIDE© (Tracking of Indels by Decomposition, Netherlands Cancer Institute) 

(https://tide.nki.nl/) (Brinkman et al., 2014) and we corroborated that at least 80% of the cells in each 

sample had nucleotide insertion or deletion altering the reading frame for the Tet3 gene (Fig. 42d,e). 
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Figure 42. CRISPR/Cas9 strategy was used to generate deficient Tet3 hybrids NSCs cultures. (a) Schematic of the 
generation of F1 hybrids mice. CAST females mice were crossed to C57BL6 male mice to generate CASTxBL6 (CxB) 
hybrids animals. (b) Schematic representing the CRISPR assay for Tet3 and cell sorting in adult F1 hybrids NSCs. 
Secondary spheres were used for CRISPR experiments. GFP expression of the plasmid (green) was used for FACS. (c) 
qPCR for Tet3 in CxB NSCs that had been assay for CRISPR. (d) Sequencing analysis of DNA fragments containing the 
Tet3-gRNA target site. The start of genome edition is indicated with an arrow. (e) Quantification by TIDE of the editing 
efficiency and simultaneously identification of the predominant types of insertions and deletions (indels) in the 
targeted pool of cells. Aberrant transcripts were produced. Gapdh was used to normalize data. All error bars show 
s.e.m. of at least 3 cultures per genotype and condition. P-values are indicated (*p-value<0.05). 

 

 As we mentioned before, we used CxB hybrids NSCs to identify SNPs between the two 

subspecies in some genes. Thus, direct sequencing of cDNA for the gene of interest in F1 CxB NSCs 

allowed us to analyse parental-specific expression of that gene. We first analysed the presence of the 

polymorphism in the Snrpn gene by sequencing cDNA of Cast and BL6 NSCs separately (Fig. 43a). This 

study confirmed the presence of a “T” in CAST and a “C” in C57BL6 NSCs at the gene (Fig. 43a). We 

next sequenced this SNP in CRISPR hybrids cells and found that they showed the expected paternally 

(C nucleotide) inherited imprinted expression of the gene (Fig. 43a). To quantify the percentage of 

expression of the maternal and paternal alleles for the Snrpn gene, we performed a pyrosequencing 

analysis on CRISPR samples (Fig. 43b). Consistently, we only observed expression from the Snrpn 

paternal allele and this was similar in CRISPR samples (Fig. 43b). To validate the data we also quantified 

the paternal and maternal allele expression of the Dlk1 gene, known to be biallelically expressed in 

NSCs (Ferron et al., 2011). All these data confirmed that TET3 does not modify Snrpn genomic 

imprinting in adult NSCs. Therefore the elevated levels of the gene observed in Tet3-Gfapcre 

neurospheres was not due to the acquisition of expression from the maternal allele, confirming its 

genomic imprinting in deficient NSCs.  

 

Figure 43. Genomic imprinting of Snrpn is maintained in 
Tet3 deficient NSCs. (a) Genomic DNA sequence showing 
diagnostic strain-specific polymorphism (C/T) for 
detection of Snrpn imprinting using Mus musculus 
domesticus (BL6) and Mus musculus castaneous (CAST) 
mice (upper panel). Sequence analysis of RT-PCR products 
in CRISPR NSCs derived from reciprocal F1 hybrids (lower 
panel). (b) Allele-specific quantification of the relative 
levels of Snrpn in adult hybrids NSCs that have been 
depleted for Tet3 using CRISPR. All error bars show s.e.m. 
of at least 3 cultures per genotype and condition. 
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2.5 TET3 dioxygenase is not implicated in the regulation of 5hmC levels in adult NSCs. 

As we mentioned in the introduction TET3 can convert 5mC to 5hmC resulting in the removal of 

the methylated cytosine in somatic tissues, including the brain (Kriaucionis and Heintz 2009, Jin et al., 

2010, Munzel et al., 2010, Szwagierczak et al., 2010, Szulwach et al., 2011). Thus, to investigate 

whether the effects of TET3 were mediated by modulating 5hmC levels, global distribution of 5hmC 

and 5mC in the adult brain, SVZ and NSCs was next determined by enzyme-linked immunosorbent 

assay (ELISA) (Fig. 44a). The levels of 5mC were found to be similar between tissues (Fig. 44a). Although 

lower than in whole brain, significant levels of 5hmC were found in neurospheres isolated from the 

SVZ of 2-months-old mice (Fig. 44a). In support to these data, immunocytochemistry for 5mC and 

5hmC in neurospheres showed significant amounts of the two molecules in proliferating cells (Fig. 

44b). Notably, the presence of the two molecules was exclusive (Fig. 44b, lower panels for detail).  

Figure 44. 5hmC and 5mC are abundant in SVZ-derived neurospheres. (a) Global quantification of the levels of 5mC 
and 5hmC determined by ELISA in ES, whole brain, SVZ and NSCs. (b) Immunocytochemistry for 5mC (green) and 5hmC 
(red) in neurospheres isolated and expanded in vitro from the adult SVZ. 5mC stainning is restricted to more condensed 
chromatin (arrowheads). 5hmC and 5mC are exclusive. DAPI was used to counterstain DNA. All error bars show s.e.m. 
of at least 5 samples. Scale bars in b, upper panels: 25 µm, lower panels: 7 µm. 

 

Analysis of the distribution of 5hmC and 5mC by immunostaining in the adult SVZ in vivo 

showed variable intensities in different cellular populations (Fig. 45b). In particular, the SVZ showed 

high levels of 5hmC and low levels of 5mC in the GFAP+/SOX2+ stem cell population (Fig. 45a,b). In 

contrast, no 5hmC was found in the more differentiated cells such as the DCX+ neuroblast population 

(Fig. 45b). Thus, the presence of 5hmC in the adult stem cell population along with its apparent 
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exclusion from differentiated cells, suggested that formation of 5hmC may also participate in the 

function and/or maintenance of the undifferentiated state during the neurogenesis process in the 

adult neurogenic niches. Surprisingly, immunohistochemistry for 5hmC in the GFAP+/SOX2+ 

population within the Tet3-Gfapcre SVZ revealed no significant changes in global 5hmC in Tet3 deficient 

stem cells in vivo (Fig. 45a). Consistently, upon Tet3 knockdown no changes in global 5mC or 5hmC, 

determined by ELISA, were observed in adult Tet3-Gfapcontrol and Tet3-Gfapcre neurospheres cultures 

(Fig. 45c). These data suggest that TET3 is not implicated in the regulation of 5hmC/5mC global levels 

due to either specific effects in restricted targets or a catalytic-independent role in NSCs.  
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Figure 45. 5hmC is abundant in the GFAP+ population within the adult SVZ. (a) Immunohystochemistry for 5hmC 
(green), GFAP (red) and SOX2 (blue) positive cells within the SVZ of Tet3-Gfapcontrol (upper panels) and Tet3-Gfapcre 
(lower panels) adult mice. 5hmC is present in type B GFAP/SOX2+ cells close to the lateral ventricle wall. (b) 
Immunohistochemistry for 5mC (green) in GFAP (red) and SOX2 (blue) positive cells within the SVZ of wild-type adult 
mice (upper panel). Immunohistochemistry for 5mC (green), 5hmC (blue) and DCX (red) in the SVZ of wild-type mice 
(lower panel). Neuroblasts chains stained for DCX showed high levels of 5mC but low levels of 5hmC. (c) Global 
percentage of 5mC and 5hmC in Tet3-Gfapcre and Tet3-Gfapcontrol NSCs and brain determined by ELISA. DAPI was used 
to counterstain DNA. All error bars show s.e.m. of at least 4 samples. Scale bars in a, b and c: 20 µm; inserts: 8 µm. 

 

2.6 TET3 contributes to transcriptional repression of Snrpn in neural progenitors independently of 

5hmC 

As it has been previously reported, differentially methylated regions (DMRs) are genomic 

regions with different DNA methylation status across different biological samples and are regarded as 

possible functional regions involved in gene transcriptional regulation. The Snrpn DMR is maternally 

methylated at the 5´end and includes the Snrpn promoter and the entire intron (Miyazaki et al., 2009). 

Therefore, to define whether TET3-dependent modulation of 5hmC and 5mC might contribute to 

transcriptional fine-tuning of the Snrpn gene, a bisulfite sequencing analysis of Snrpn DMR (chr7: 

60,003,561-60,005,296; Mouse GRCm38/mm10) (Fig. 46a) was performed in Tet3-Gfapcre and Tet3-

Gfapcontrol neurospheres cultures. Although bisulfite sequencing cannot distinguish between 5hmC and 

5mC, it does distinguish both modified and unmodified cytosines (Huang et al., 2010, Jin et al., 2010), 

however we did not see a substantial conversion of 5hmC/5mC into 5C in the region analysed (Fig. 

46b).  

To find more information regarding the function of the 5hmC on the regulation of Snrpn 

expression, a hydroxymethylation immunoprecipitation (hMeDIP) using an antibody against 5hmC was 

developed in Tet3-Gfapcontrol and Tet3-Gfapcre NSCs. Importantly, no differences were observed in the 

5hmC enrichment at the Snrpn DMR in TET3 deficient samples (Fig. 46c), suggesting that catalytic 

activity of TET3 was not required to modulate Snrpn expression and thus terminal astrocytic identity 

of adult NSCs.  

However, the remarkable increase of Snrpn gene levels in Tet3 deficient NSCs, prompted us to 

explore the possibility that TET3 might have non-catalytic functions on NSCs to regulate transcription 

of this gene. Therefore, in order to first test the direct binding of TET3 to the Snrpn promoter, we 

performed chromatin immunoprecipitation (ChIP) assays using antibodies to TET3 in wild-type adult 

NSCs. We then analysed the association of TET3 to the Snrpn promoter by qPCR with primer pairs 

directed to regions containing part of the promoter (Fig. 46d). This ChIP analysis revealed specific TET3 

binding enrichment to the promoter on a predicted region between positions -20 and +132 (Region 1, 

R1) and +271 and +434 (Region 2, R2). In contrast, we did not detect any specific amplification with 
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primers directed to a non-relevant distal region (-135 kb, Region 3, R3), which validated the specificity 

of the assay (Fig. 46d). Additionally, as a positive control we used a primer pair directed to the Clcn6 

promoter, previously described to bind to TET3 in mouse fetal neural progenitors (Jin et al., 2016) (Fig 

46d). This data demonstrated that TET3 binding to the Snrpn promoter to contribute to transcriptional 

repression of the gene in adult neural progenitor independently of its catalytic function. Further 

studies in hybrids NSCs are needed to determine if TET3 binds and regulates expression of the active 

paternal allele. 

Figure 46. TET3 binds to Snrpn promoter and regulates its expression independently of methylation. (a) Schematic 
diagram showing the Snrpn gene. Snrpn DMR promoter and primers used are shown. Primers positions are numbered 
relative to the TSS. (b) Percentage of methylation determined by bisulfite sequencing and pyrosequencing at several 
CpG sites within the Snrpn DMR in Tet3-Gfapcontrol and Tet3-Gfapcre NSCs and in whole brains. (c) Enrichment of 5hmC 
at the Snrpn DMR (R1 and R2) in NSCs and brains of both genotypes by hMeDIP. All error bars show s.e.m. of at least 
3 cultures per genotype and condition. (d) qPCR for the chromatin immunoprecipitation (ChIP) in wild-type NSCs. Two 
regions (R1 and R2) of the Snrpn promoter are shown. Clcn6 promoter was used as a control for TET3 binding. Values 
are shown as the fold increase over the IgG. All error bars show s.e.m. of at least 6 samples.  
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Annex III 

Table 1 Annex III: Downregulated genes in Tet3 deficient NSCs (RNAseq data; FDR<0.05).  

Gene FDR Log2FC Gene FDR Log2FC 

Zic1 4,4807E-19 -2,2947 Ppp4r4 0,0036 -1,1644 

Tet3 3,7751E-17 -1,0074 Chl1 0,0044 -2,0506 

Elavl4 2,1173E-13 -2,2085 Ralgds 0,0048 -0,4408 

Adora2b 3,2994E-11 -2,5047 Calcrl 0,0060 -0,6672 

Gsap 3,2738E-10 -1,6370 Gm5607 0,0066 -1,492 

Otx1 4,7820E-08 -2,5462 Man1c1 0,0068 -0,7335 

Tnr 8,4616E-08 -1,5656 Itga1 0,0069 -1,126 

Zic4 1,4557E-07 -2,3432 Pde3a 0,0075 -0,6533 

Tspan14 1,0281E-06 -0,898 Itga8 0,0078 -1,2694 

Qdpr 2,1805E-06 -0,8383 Ephb1 0,0078 -0,7687 

Gria4 1,2940E-05 -1,2266 Igsf11 0,0078 -1,0867 

Lrp4 2,0578E-05 -1,0992 Shisa9 0,0082 -2,0878 

Adamts5 2,5755E-05 -1,235 Igdcc4 0,0085 -0,4373 

Dmrta2 2,5755E-05 -3,6979 Thrsp 0,0094 -0,8841 

Myof 3,1139E-05 -2,0089 Shc4 0,0095 -0,5611 

Gpx7 4,9878E-05 -1,5921 Klf15 0,0121 -0,7217 

Gas7 5,8524E-05 -0,8626 Prokr1 0,0128 -1,1093 

Thy1 7,3953E-05 -2,3126 Pcdhgb4 0,0128 -2,0964 

Fkbp10 0,0001 -1,6098 Ptprd 0,0129 -0,5390 

Plcxd3 0,0001 -2,4104 Cxxc5 0,0154 -0,4770 

Clmp 0,0001 -2,1266 Vit 0,0155 -1,3971 

Cntn3 0,0002 -1,1372 Hunk 0,0155 -0,5664 

Ebf1 0,0002 -1,6998 Gm26737 0,0160 -1,1320 

Matn2 0,0002 -1,0555 Mpped2 0,0165 -0,6422 

Parvb 0,0002 -3,5083 Tmem144 0,0165 -2,3168 

Cacng5 0,0002 -1,8532 Syt1 0,0165 -1,1482 

Gm15564 0,0002 -0,5422 Olfml1 0,0174 -1,3264 

Jup 0,0002 -1,4526 Fabp5 0,0210 -0,5634 

Fzd9 0,0003 -1,8741 Kremen1 0,0226 -0,4893 

Mxra8 0,0003 -0,7777 Pgm5 0,0226 -1,424 

Cacna1g 0,0003 -1,0333 Gm6166 0,0226 -0,6570 

Chd3 0,0003 -1,5078 Zic3 0,0227 -1,2498 

Ephb3 0,0004 -0,6353 Wnt4 0,0247 -1,2774 

Scrg1 0,0007 -2,0705 Ntng1 0,0247 -1,1818 

Il17rd 0,0010 -0,8200 Kit 0,0252 -0,8913 

Syk 0,0013 -1,0076 Pllp 0,0258 -1,3368 

Ccdc136 0,0017 -0,8165 Lrrc8b 0,0287 -0,382 

Tubb4a 0,0017 -0,8645 Gsx1 0,0310 -0,6840 

Camkk2 0,0017 -0,7046 Nrk 0,0360 -1,9797 

Pcp4l1 0,0017 -2,1166 Slc12a2 0,0373 -0,4043 

Efhd2 0,0026 -0,983 Tns2 0,0405 -0,8458 

Gbx2 0,0027 -1,5649 Slmo1 0,0413 -0,9987 

Aebp1 0,0028 -0,5372 Foxg1 0,0420 -0,6795 

Slc9a3r1 0,0029 -0,5146 Abcc12 0,0430 -0,9997 

Gcnt4 0,0030 -1,2420 Stx3 0,0440 -0,6382 

Fam174b 0,0033 -0,5877 Tnfaip8 0,0460 -0,5118 

Syne1 0,0034 -1,2308 Rhbdf1 0,0477 -0,4513 

Eomes 0,0036 -1,4401 Slc2a6 0,0477 -0,6505 
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Table 2 Annex III: Upregulated genes in Tet3 deficient NSCs (RNAseq data; FDR<0.05) 

Gene FDR Log2FC Gene FDR Log2FC 

Pcdhb11 3,7751E-17 3,64952 Tnfrsf12a 0,0054 0,5042 

Gm8396 1,6826E-11 1,55544 Arhgap28 0,0075 0,5465 

Ppp2r2c 4,6304E-11 2,83939 Sfrp1 0,0078 0,7965 

Tmem181b-ps 6,6494E-11 1,54655 Smad3 0,0078 0,5579 

Mcam 6,6494E-11 1,70022 Dpp10 0,0078 1,6757 

Thbd 1,0266E-09 1,26392 Gdap1 0,0079 1,2149 

Dynlt1b 4,7820E-08 2,96314 Lpo 0,0081 0,7373 

Ebf3 9,8096E-08 0,68708 Hoxa5 0,0092 2,5819 

Fam78b 1,3172E-07 2,25242 Pcdhga12 0,0103 2,1580 

Golga7b 2,3435E-07 1,23766 Dynlt1-ps1 0,0119 0,4915 

Fbn2 1,5730E-06 1,54056 Lmo4 0,0144 0,4582 

Egr4 5,2162E-06 0,78686 Zcchc12 0,0151 0,8541 

Pde1b 1,2940E-05 1,69825 Elmo1 0,0153 0,5377 

Syt13 2,6491E-05 0,97873 Rundc3a 0,0155 0,5482 

Marc2 2,6491E-05 2,91989 Adamts19 0,0155 0,9732 

Rftn2 3,4200E-05 0,58517 Anxa2 0,0157 1,1406 

Pcdhgb2 4,5810E-05 0,65276 Aldoc 0,0160 0,5948 

Scn7a 4,5810E-05 1,61770 Abi2 0,0160 0,3806 

Gas6 8,9600E-05 2,13672 Ptprt 0,0160 0,6436 

Hoxa4 9,8318E-05 1,03198 Rab7b 0,0166 1,2769 

S100a16 0,0002 2,96224 Mfap3l 0,0179 0,5014 

Dpysl4 0,0002 0,64086 Ggct 0,0183 0,7491 

Brinp3 0,0002 0,85540 Nptx2 0,0197 0,7657 

Itpkb 0,0004 0,77067 Aldh1l2 0,0211 0,5185 

Atp2b2 0,0005 0,56131 Atp1a3 0,0225 0,5822 

Rab26 0,0006 1,83631 Nrap 0,0225 1,4813 

Plcl1 0,0006 1,17035 Stk39 0,0239 0,5507 

Nrn1 0,0007 0,80126 Adamts14 0,0246 0,5588 

Camk1g 0,0009 1,35944 Pmaip1 0,0257 0,6065 

Akt3 0,0010 0,75788 Rph3a 0,0261 1,5133 

Klf10 0,0011 0,53563 Mxra7 0,0280 1,2083 

Agbl2 0,0011 0,49684 Adcy2 0,0280 0,9383 

Ube2ql1 0,0014 1,70435 Vwa5b1 0,0284 1,5300 

Tnfsf18 0,0016 0,99157 Scml4 0,0284 0,8831 

Cobl 0,0016 1,65580 Hbegf 0,0285 0,5661 

Kcnk2 0,0021 1,7265 Lrrn2 0,0305 0,3921 

Snrpn 0,0022 0,9436 Cobll1 0,0310 0,3940 

Plekhb1 0,0027 0,6687 Pcdhac2 0,0323 1,1039 

Serpinb5 0,0031 0,5325 Pfkp 0,0349 0,6220 

Rasal2 0,0031 1,0740 Plxdc2 0,0360 0,6973 

Prkg2 0,0031 0,4782 Il1rap 0,0374 0,8139 

Rftn1 0,0032 0,7218 Cnpy1 0,0382 1,6097 

Anxa3 0,0033 1,4938 Ptprn 0,0397 1,0460 

Tchh 0,0038 0,8950 Sdc4 0,0405 0,6973 

Nr5a2 0,0045 1,3732 Lama1 0,0420 1,0597 

Pcdhb8 0,0047 1,1024 Slc41a2 0,0433 0,4984 

Asns 0,0047 1,5100 Pmm1 0,0476 0,4373 
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The major findings of the present thesis are that: (1) adult NSCs can be efficiently reprogramed 

into iPSCs using only Oct4 and Klf4, which causes the re-organization of their entire methylome 

consequently altering their transcriptome, including expression of imprinted genes; 2) the DNA 

dioxygenase TET3, present in adult NSCs, is downregulated during the reprogramming process to 

acquire a pluripotent state. TET3 has also an important role in the maintenance of a multipotent state 

in adult NSCs by preventing their premature differentiation into non-neurogenic astrocytes. 

Epigenetics events occurring in the NSC population, such as methylation and hydroxymethylation of 

DNA, are critical components to guarantee the success of these processes. 

The acquisition of a pluripotent state in adult NSCs using exclusively Oct4 and Klf4 transcription factors 

implies significant changes in the epigenetic profile  

Somatic cell reprogramming is a very useful tool to understand the mechanisms involved in the 

acquisition of a pluripotent state and gives information about the differentiation program attributed 

to the cell of origin. Since the discovery of the reprogramming process in 2006 by Takahashi and 

Yamanaka (Takahashi and Yamanaka 2006), researchers have reported the generation of iPSCs from 

different somatic tissues using the OSKM cocktail. However, only a few assays have reported a 

successful reprogramming with a reduced number of factors (Kim et al., 2008, Giorgetti et al., 2009, 

Kim et al., 2009b, Li et al., 2013). NSCs significantly express c-myc, Sox2 and Klf4 suggesting an 

intermediate state between differentiated and embryonic stem cells (Kim et al., 2008, Kim et al., 

2009b). The presence of these three factors suggests the possibility to reprogram NSCs using only Oct4 

as exogenous factor. Indeed, the generation of iPSCs using Oct4 was reported previously using 5-days-

old mice NSCs (Kim et al., 2008, Kim et al., 2009b), however, using only Oct4 to reprogram adult NSCs 

and we did not obtain any pluripotent colony probably due to the lower efficiency of the process in 

adult NSCs. Previous studies also reported that Sox2 used in combination with Oct4 did not give rise to 

iPSCs clones (Kim et al., 2008). In contrast, we demonstrate that true iPSCs can be obtained from NSCs 

derived from the adult SVZ using Oct4 and Klf4. These iPSCs were able to form cells from the three 

germ layers and formed teratomas in vivo demonstrating their pluripotency capacity in vitro. 

Analysis of previously described iPSCs revealed several retroviral integrations for all four factors 

(Wernig et al., 2007, Aoi et al., 2008). Thus, reprogramming of adult NSCs with only two factors has 

important implications as reducing the number of factors decreases the chance of retroviral insertional 

mutagenesis. Oct4 and Klf4 are sufficient to induce pluripotency in adult NSCs, which demonstrate 

their crucial role in the process of reprogramming and support the hypothesis that NSCs represent an 

intermediate state between differentiated and pluripotent cells. Moreover, c-myc has been related to 

tumorigenesis being this gene one of the most important oncogenes in mammals (Kuttler and Mai 
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2006). Thus, generation of iPSCs lacking c-myc obtained in this work, is also an important advantage 

for a safety potential clinical use of the iPSCs generated. Therefore, the induction of adult NSCs into 

iPSCs with a reduced number of factors is a powerful tool for the in vitro modelling of disease and 

mainly for the study of the particular properties of the NSCs of origin.  

Our study also demonstrates that there exist partially reprogrammed cells, called pre-iPSCs that 

exhibit ESC-like morphology but retain retroviral genes expression and incomplete upregulation of 

pluripotency-associated genes, such as Nanog. These cells can be promoted to full pluripotent state 

applying defined conditions using inhibitors for MEK and GSK and in the presence of LIF (2i/LIF), as 

previously described (Silva et al., 2008). In response to 2i/LIF, pre-iPSCs reach rapidly a full pluripotent 

status with phenotypic and functional characteristic of ESCs. Nanog expression is critical for blocking 

the differentiation of pluripotent cells, and more importantly, for establishing the pluripotent ground 

state during somatic cell reprogramming (Suzuki et al., 2006, Wang et al., 2006, Saunders et al., 2013). 

Thus Nanog occupies a central position in the transcriptional network in the regulation of pluripotency 

being essential for the formation of iPSCs. In contrast, it has been also shown that Nanog, although 

important mediator of reprogramming, it is not required for establishing pluripotency in murine 

fibroblasts (Carter et al., 2014). Our data demonstrate that Nanog expression is absent in pre-iPSCs 

and that 2i/LIF treatment results in the activation of its expression which, in contrast to fibroblasts, is 

necessary to a fully establishment of pluripotency in adult NSCs. Therefore, successful reprogramming 

to pluripotency with divergent transcription factors and from different cells of origin suggests that 

there may be many distinct routes to acquire a pluripotent state.  

 

So far, a variety of cell types have been reprogrammed into iPSCs including fibroblasts 

(Takahashi and Yamanaka 2006), neural progenitor cells (Kim et al., 2009c), hepatocytes and gastric 

epithelial cells (Aoi et al., 2008), B cells (Hanna et al., 2008), pancreatic β cells (Stadtfeld et al., 2008), 

melanocytes (Utikal et al., 2009) and keratinocytes (Aasen et al., 2008). Although these iPSCs exhibit a 

similarity with ESCs in their morphology, gene expression profile and pluripotency, new evidence 

showed substantial molecular and functional differences among iPSCs derived from distinctive cell 

types, including the tumorigenic potential or expression of different genes. This suggests an influence 

of the somatic origin on the properties of resultant iPSCs (Polo et al., 2010). For example, iPSCs derived 

from astrocytes possess more potential for neuronal differentiation compared to fibroblasts-iPSCs 

(Tian et al., 2011). Therefore, neural-derived iPSCs may retain a “memory” of the central nervous 

system, which confers additional potential (Nashun et al., 2015). Importantly, our results demonstrate 

that iPSCs obtained from adult NSCs are able to give rise to cells of the three germinal layers after 

differentiation demonstrating their pluripotency capability. Strikingly, these iPSCs have a higher 
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differentiation ability to form ectoderm compared to ESCs after differentiation (Fig. 21), but also 

expression of endodermal lineage determinants is induced, supporting the hypothesis of iPSCs having 

additional potential depending of the cell of origin. 

 Pluripotent stem cells maintain self-renewal and pluripotency because of a self-organizing 

network of transcription factors and intracellular pathways activated by extracellular signaling and 

epigenetic processes that maintain the chromatin in a plastic differentiation status. The determinants 

and the temporal order of epigenetic changes leading from a differentiated to a pluripotent cell during 

iPSC derivation are poorly understood. However, it is clear that to acquire pluripotency, cells must 

erase differentiation-specific epigenetic marks to achieve an ESC-like state implying important 

transcriptome changes (Hochedlinger and Jaenisch 2015). Genome-wide expression analysis using 

next generation sequencing in iPSCs and in the NSCs of origin, show that several markers are 

sequentially activated or repressed after the induction of reprogramming. Surprisingly, the majority of 

the most differentially expressed genes (FDR<2.5e-68) were upregulated genes in iPSC compare to 

NSCs. Moreover, a GSEA analysis identifies several sets of genes belonging to important biological 

pathways that are significantly upregulated (97 sets of genes) or downregulated (39 sets of genes) in 

iPSCs compared to NSCs confirming that the acquisition of a pluripotent state implies global 

transcriptome changes. More concretely and as expected, repression of the neural markers Nestin and 

Olig2, correlate with the activation of the pluripotency genes Oct4, Nanog and Rex1 in iPSCs (Fig. 23).  

 Several studies have shown that changes in DNA methylation patterns are essential for 

successful nuclear reprogramming, exemplified by the necessity for loss of promoter methylation in 

pluripotency genes (Takahashi and Yamanaka 2006). In fact, methylation of CpG dinucleotides plays 

an important role in regulating gene transcription (Lee et al., 2014) thus if loss of DNA methylation is 

not achieved, cells will be only partially reprogrammed (Mikkelsen et al., 2008). Moreover, it has been 

described that DNA methylation is depending on the choice of reprogramming factors used (Planello 

et al., 2014). We demonstrate that the remodelling of the epigenetic profile during the reprogramming 

of NSCs into iPSCs with two factors is critical for pluripotency induction, as important changes in the 

methylation landscape of NSCs need to happen to obtain true pluripotent cells. Global DNA 

methylation changes were observed using MeDIP sequencing in iPSCs and comparing to the NSCs of 

origin. Importantly, methylome analysis in iPSCs showed global loss of methylation in the vast majority 

of differentially methylated regions (DMRs) analysed, correlating with the global induction of gene 

expression in iPSCs observed by RNAseq. Our work highlights the important role of DNA demethylation 

in the acquirement of a pluripotency state. Nanog expression has been related to the inhibition of 

global DNA methylation (Theunissen et al., 2011) suggesting its role in methylome re-establishment. 

When we analyse in detail the methylation profile in pluripotency-associated genes, we observe 
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hypomethylation, especially at the promoter levels, whereas an increase of methylation is exhibited in 

neural-associated genes in accordance with their repression.  

Imprinted genes are a group of genes expressed monoalellicaly from either the maternally or 

the paternally inherited chromosomes. Approximately 150 imprinted genes have been described in 

mammals and are generally organized in clusters (Ferguson-Smith 2011). Studies of the generation of 

iPSCs from somatic cells in vitro represent a unique model system to study the role of these imprinted 

genes in the acquisition of a pluripotent state and can provide insights about the imprinting status in 

the cell of origin. In a genome-wide comparison of expression between identical mouse ESCs and iPSCs, 

no changes were observed in the vast majority of imprinted genes, demonstrating the similitude of 

both pluripotent cells (Stadtfeld et al., 2010). However, based on RNAseq data in iPSCs and NSCs, the 

analysis of expression of all known imprinted genes, show significant changes in around 50% of all 

imprinted genes analysed, suggesting a relevant importance of the imprinting regulation in NSCs 

behaviour and during the reprogramming process. 

It is well described that DNA methylation is essential for establishment and maintenance of 

imprinting (Bartolomei and Ferguson-Smith 2011). Indeed, germline DMR are essential to establish 

monoallelic expression and secondary somatic DMRs play important roles in imprinting maintenance 

(Ferguson-Smith, 2011; Lozano-Ureña et al., 2017). More than 16 imprinted clusters are associated 

with maternal-specific methylation. For these loci, DNA methylation is found at promoters of protein-

coding genes or non-coding RNA genes (Bartolomei and Ferguson-Smith 2011). In contrast, paternally 

methylated DMRs (there are only 4 described) are located in intergenic regions (Bartolomei and 

Ferguson-Smith 2011). Strikingly, our findings reveal that the majority of the DMRs at the imprinting 

clusters are hypomethylated. Indeed, more than 80% of the maternally methylated DMRs show 

hypomethylation. However, only 30% of paternally methylated DMRs are hypomethylated. These 

epigenetic changes at the maternally methylated DMRs correlate with changes in the expression levels 

of several genes within these clusters, whereas no significant changes were observed in the expression 

of genes at the paternally methylated clusters (Fig. 47). Consequently, our results suggest that, 

genomic imprinting might be finely regulated during development to acquire a specific somatic 

imprinting pattern in adult NSCs, essential for multipotency maintenance. However, changes in gene 

expression of imprinted genes do not answer if the imprinting status of these clusters is altered in 

iPSCs. Further experiments need to be done to determine the parental allele specific expression in the 

different clusters.  

The methylation profile can be established, regulated and erased by both DNMTs and TETs 

family members (Bartolomei and Ferguson-Smith 2011, Pastor et al., 2013). However, we demonstrate 
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in our study that iPSCs contain less levels of methylation compared to NSCs indicating that the 

demethylation process is especially relevant in the acquisition of pluripotency. Active 5mC erasure in 

mammals is catalysed by TET enzymes and our data show that Tet1 and Tet2, almost absent in NSCs, 

are highly upregulated in iPSC whereas Tet3, the most expressed member in NSCs, is profusely 

downregulated after reprogramming. Accordingly, reprogramming of Tet3 knockdown NSCs into iPSCs 

shows a higher efficiency than wild-type NSCs, supporting the idea that TET3 has to be downregulated 

for a successful reprogramming (Fig. 47). Therefore, the global demethylation process observed in 

iPSCs could be mediated by TET1 and/or TET2, supported by previous published data that show that 

both are highly expressed in iPSCs and ESCs and can interact with NANOG to co-occupy genomic loci 

of genes associated with maintenance of pluripotency (Theunissen et al., 2011, Costa et al., 2013). This 

also suggests that TET3 might be implicated in the maintenance of adult NSCs identity and its 

expression defines a more committed state. Consistently with our result, it has been demonstrated 

that Tet3 expression is undetectable in ESCs but increases rapidly during neuronal differentiation (Li et 

al., 2015) and some evidences also report the importance of TET3 in neural functions. Nevertheless, 

the role of TET3 in adult NSCs and in the neurogenesis process remains to be elucidated.  

TET3 oxidase is a key epigenetic regulator of neural stemness maintenance in the adult SVZ 

Previous studies have shown a role of TET3 in ESCs during the induction of neuronal 

differentiation (Hahn et al., 2013, Li et al., 2015). It has been also reported that TET3 regulates synaptic 

transmission and plasticity of neurons (Yu et al., 2015) and TET3 overexpression in mouse olfactory 

sensory neurons disrupts the axonal targeting of these cells (Colquitt et al., 2013). However the role of 

TET3 in adult tissues and more specifically in adult neurogenesis is still unknown. Our study is focused 

on determining the role of Tet3 in the neural stem cell population within the adult SVZ. We have shown 

that loss of Tet3 compromises the maintenance of the neural stem cells pool in this niche leading to 

reduced neurogenesis and affecting the differentiation capacity of neural progenitors both in vivo and 

in vitro. Although a role for another member of the TET dioxygenases, TET1 in regulating neural 

progenitor cell proliferation has been reported in the adult hippocampus (Zhang et al., 2013b), this 

work implicates for the first time TET3 in the maintenance of the stem cell pool in the adult SVZ and 

thus in the regulation of OB neurogenesis in vivo. Additionally, our work highlights a positive role of 

TET3 in the regulation of NSCs self-renewal by repressing the expression of the imprinting gene Snrpn 

independently of its catalytic function.  However, it is still not know if TET3 is also required to maintain 

stemness identity in the dentate gyrus of the hippocampus as it happens in the SVZ. 

The levels of expression of Tet3 in NSCs are significantly higher than the other members of the 

family Tet1 and Tet2 being abundantly maintained postnatally and during differentiation of NSCs. 
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Moreover, protein distribution of TET3 within the SVZ shows specific staining in GFAP positive cells 

indicating a relevant role for this dioxygenase in adult NSCs behaviour. Analysing more in detail TET3 

protein distribution in NSCs by immunohistochemistry shows nuclear distribution of the protein, 

although a light staining is also observed in the cytoplasm. In fact, it has been reported the particular 

presence of TET proteins, including TET3, in the mitochondria in the nervous system where they are 

thought to be regulating 5hmC levels (Dzitoyeva et al., 2012). It is well described that TET3 functions 

interacting with genomic DNA, cytoplasmic staining may be due to the presence of TET3 in the 

mitochondria in NSCs even though its role have not been addressed. Interestingly, when TET3 is absent 

in the GFAP+ population in vivo, by conditional deletion of the gene in this cells, a depletion of the 

adult NSCs pool is observed due to the terminal differentiation into non-neurogenic astrocytes. As a 

consequence of the continuous depletion of the neural stem cell pool in Tet3 deficient mice, the 

process of neurogenesis to the olfactory bulb is impaired. Notably, we find an increased proportion of 

cells that are positive for S100β in 2-months-old Tet3-Gfapcre SVZ which is largely absent from GFAP-

expressing neurogenic astrocytes (Raponi et al., 2007). The analysis of NSCs in vitro identifies stem 

cells based on their self-renewal and differentiation capacities, being a quantitative read out of the 

number of stem cells in vivo. Indeed, we obtain a reduced number of primary neurospheres from Tet3 

deficient SVZ compared to their controls, in accordance with a more differentiated state of NSCs in the 

absence of the enzyme.  

 Differentiation of both mutant and wild-type NSCs into the three cell lineages of the CNS, 

astrocytes, oligodendrocytes and neurons in vitro, supports a premature differentiation of NSCs into 

S100β+ non-neurogenic astrocytes. Moreover, previous data from our laboratory reported the 

capacity of a low proportion of cells, after 7 days of differentiation, to detach, reactivate and form new 

neurospheres in the presence of mitogens (unpublished data). Remarkably, after 7 days of 

differentiation, the significant reduction of primary neurospheres obtained from Tet3 deficient SVZ 

confirms the premature differentiation of NSCs in the niche. Thus, our findings demonstrate the role 

of TET3 in promoting stemness maintenance by preventing NSCs from a premature differentiation 

both in vivo and in vitro (Fig. 47).  

Previous published data also suggest that TET3 deficiency causes an active apoptosis of neural 

progenitors derived from ESCs, which results in a reduction of neuronal production (Li et al., 2015). In 

contrast to these data, our study shows that Tet3 deficiency does not modify the apoptosis or survival 

rates in adult NSCs, but we identify defects in the self-renewal capacity of primary and secondary Tet3 

deficient neurospheres in vitro. Interestingly, no changes in the proportion of the cell cycle phases are 

observed in the mutant cultures indicating that TET3 promotes self-renewal capacity without affecting 

the overall proliferation rate in adult NSCs.  
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Imprinted genes have been implicated in the maintenance and function of adult stem cells. For 

example, Peg3 expression is restricted to stem cell/progenitors populations in the brain, gut, muscle 

and skin (Besson et al., 2011). The maternally expressed H19 gene is also involved in the maintenance 

of adult haematopoietic stem cell (HCS) populations in the mouse (Venkatraman et al., 2013). 

Moreover, we have previously described that absence of Dlk1 imprinting in mouse NSCs is crucial for 

postnatal neurogenesis (Ferron et al., 2011). These findings highlight the importance of specific 

contexts in imprinted gene regulation and underline the significance of gene dosage for imprinted 

genes in NSCs. There are some reports implicating TET functions in removal of DNA methylation 

imprint at the imprinted regions in the germline (Nakamura et al., 2012, Dawlaty et al., 2013, Hackett 

et al., 2013, Piccolo et al., 2013, Yamaguchi et al., 2013), however, it is not well established the 

particular role of TET3 in the regulation of expression of imprinted genes.  

The RNAseq analysis comparing TET3 deficient NSCs with their controls demonstrate that TET3 

is implicated in the transcriptional regulation of many genes in NSCs. Almost 200 genes are 

differentially expressed in Tet3 deficient samples including some stem cells markers. Surprisingly, from 

around 150 imprinted genes tested in the RNAseq study of Tet3 deficient NSCs, we only find an 

upregulation of the expression of the Snrpn (Small nuclear ribonucleoprotein-associated protein N) 

gene compared to controls. Snrpn belongs to the Prader-Willi syndrome imprinting gene and is 

canonically expressed from the paternally inherited chromosome (Bervini and Herzog 2013). This 

complex syndrome is caused by loss of expression of paternally inherited genes located in the Snrpn 

locus (Bervini and Herzog 2013). Clinically, the syndrome is characterized by severe 

neurodevelopmental effects including hyperphagia and onset obesity, short stature due to growth 

hormone deficiency, intellectual disability and behavioural problems (Butler 2011) suggesting the 

importance of Snrpn imprinting in neural function. Snrpn encodes the RNA-associated SmN (survival 

motor neurons) protein implicated in pre-mRNA edition, contributing to tissue-specific alternative 

splicing (Li et al., 2016). It is well established that Snrpn is highly expressed in brain and its expression 

is increased markedly during postnatal brain development (Li et al., 2016). Moreover, lower levels of 

SmN have been implicated in spinal muscular atrophy, affecting predominantly spinal motor neurons 

probably due to neural trafficking defects (Prescott et al., 2014). All previous data together indicate 

the important role of Snrpn gene in neural regulation.  

Our data suggest that although TET3 is not involved in the global regulation of the genomic 

imprinting process in adult NSCs, does play a role in the regulation of very specific imprinted regions 

in adult NSCs. Concretely a relevant function of TET3 on the regulation of the imprinted gene Snrpn is 

confirmed using shRNA interference experiments for the gene in deficient NSCs. This experiments 

show a clear rescue of the terminally differentiated phenotype observed in Tet3-Gfapcre NSCs 
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demonstrating that loss of TET3 causes the upregulation of the Snrpn levels driving the NSCs 

population to the terminal differentiation and exhaustion of the stem cell pool in the SVZ. Importantly, 

the upregulation of Snrpn after TET3 removal is not due to alterations of the imprinted status of the 

gene as allele-specific expression for Snrpn in adult NSCs show the expected paternally expression of 

the gene. 

TET enzymes are able to convert 5mC into 5hmC, which constitutes about 40% of modified 

cytosine in the brain (Kriaucionis and Heintz 2009, Munzel et al., 2010, Szwagierczak et al., 2010, 

Szulwach et al., 2011). It has been previously involved the 5hmC modification in stemness 

maintenance, for example it has been shown the importance of this modification in self-renewal and 

pluripotency in ESCs (Koh et al., 2011) as well as in the hematopoietic stem cell maintenance (Ko et al., 

2010). Although 5hmC intermediate is especially relevant in the brain its role in NSCs has not been 

elucidated. Our data show significant amounts of the two molecules, 5mC and 5hmC, in proliferating 

cells where both marks are exclusive. 5mC is enriched in more condensed chromatin accordingly to its 

role in the prevention of expression (Schilling and Rehli 2007) and is present in the neuroblast 

population, whereas 5hmC mark is present in the most relaxed chromatin indicating, as previously 

described the role of 5mC oxidation in transcription elongation (Wu and Zhang 2017). In contrast, 

5hmC is found in GFAP-expressing cells within the SVZ and in mature neurons in the striatal 

parenchyma. Thus, the presence of 5hmC in the adult stem cell population along with its apparent 

exclusion from differentiated cells suggests that formation of 5hmC may also participate in the 

function and/or maintenance of the undifferentiated state during the neurogenesis process. On the 

other hand, we see that 5mC mark is especially abundant in more committed progenitors which might 

be related to the silencing of stemness-associated genes.  

However, quantification of the global levels of 5mC/5hmC in Tet3 deficient NSCs shows no 

differences between mutant and controls. Consistently, immunohistochemistry analysis of 5hmC in 

the SVZ of Tet3 deficient mice also reveals no significant changes in global 5hmC after Tet3 deletion in 

vivo. These data suggest that TET3 is not regulating global levels of 5hmC in adult NSCs. This finding is 

in accordance with previous published data in which TET3 was involved in the regulation of synaptic 

plasticity through the regulation of specific genes such as the modulation of surface GluR1 levels 

without affecting global levels of 5hmC (Yu et al., 2015). In addition, it has been reported that the 

upregulation of Tet3 during neural development together with the increase of 5hmC levels affects 

specific genes rather that the genome globally (Hahn et al., 2013). This indicates that TET3 can 

modulate particular genes depending on cell and genomic context. Other members of TET family have 

been also implicated in the regulation of 5hmC at particular genes without affecting global 5hmC levels 

such as TET1 deficiency in oocytes that does not affect the genome-wide demethylation in primordial 
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germ cells, but leads to defective DNA demethylation of a subset of meiotic genes (Yamaguchi et al., 

2013). 

TET proteins might play a partially redundant role in DNA methylation. Therefore one 

explanation for the results observed in Tet3 deficient NSCs, is that TET1 or TET2 could be compensating 

changes in global methylation after TET3 removal. However, TET1 which is absent in NSCs, is not a 

plausible candidate for it. TET2 although lower than TET3 is still present so it could be implicated on 

regulating the levels of 5hmC in NSCs. Our data indicate that Tet2 does not change after Tet3 removal. 

However, our expression data suggest that Tet2 is probably the enzyme implicated in the regulation of 

5hmC in NSCs, but additional studies are needed to address this point.  

As it has been previously mentioned, the catalytic effects of TET3 can be restricted to specific 

targets without affecting the 5hmC global levels (Hahn et al., 2013, Yu et al., 2015). Moreover, recently 

published data show an increase of 5hmC on the Snrpn transcribed allele suggesting that 5hmC is 

positively associated with transcription at these loci (Hernandez Mora et al., 2017). However our 

results from the hidroxyMeDIP assay of the Snrpn DMR in Tet3 deficient NSCs and their controls show 

no differences in 5hmC levels between both genotypes indicating that TET3 does not regulate Snrpn 

expression by controlling their gene-specific 5hmC levels. This implies that the phenotype observed in 

the absence of TET3 may result from catalytic-independent functions of TET3 protein. Some examples 

have been recently published demonstrating catalytic-activity-independent functions of TET family 

members (Wu and Zhang 2017). Concretely, TET3 has been implicated in the stabilization of thyroid 

hormones nuclear receptors promoting their binding of targets genes and transcriptional activation 

where TET3 catalytic domain is not implicated (Guan et al., 2017) and experiments in Xenopus laevis 

show that TET3 catalytic dead mutant can rescue the developmental defects caused by TET3 

knockdown (Xu et al., 2012). Indeed, our data demonstrate that TET3 binds to the Snrpn promoter to 

contribute to transcriptional repression of the gene in adult neural progenitor probably by a catalytic-

independent activity mechanism (Fig. 47). We cannot discard that catalytic-activity-dependent and –

independent functions might coordinate to reinforce the functional outcome. 

Finally, three TET3 isoforms have been described in mammals, TET3o, TET3s and TET3FL (Jin et 

al., 2016). TET3o lacks an N-terminal CXXC domain and participate in oxidation of the paternal 

pronuclear DNA in zygotes (Gu et al., 2011) being absent in NSCs. TET3FL is the full-length isoform 

containing an N-terminal CXXC domain whereas TET3s, the shortest isoforms, lacks this domain. Our 

data reveal that TET3s is the most expressed isoform in the brain and the SVZ, however, in NSCs the 

expression of TET3FL is significantly higher than in brain or SVZ, suggesting a relevant role of the 

longest isoform in NSCs. Interestingly, the CXXC domain in TET3FL has functional implications. It has 
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been described that, despite all isoforms present the catalytic domain and are functionally active, 

TET3FL has the lowest oxidative capacity (Jin et al., 2016). Moreover, in the same work, the authors 

observe that TET3FL CXXC domain bound more strongly to the oligonucleotide containing 5caC than 

normal cytosine and they propose that binding of the CXXC domain to 5caC restricts its genome-wide 

5mC oxidation capacity. They also suggest that binding of TET3FL near the TSS of unmethylated CpG 

islands have a housekeeping function to prevent methylation of critical CpG sites near the transcription 

start site by the cooperation between the DNA binding domain and the catalytic domain. In addition, 

their gene ontology analysis in NPCs suggest that TET3FL preferentially targets genes functioning in 

lysosome pathways, base excision repair and mRNA processing, including members of the Snrpn family 

such as Snrpa and Snrp40. These implication of TET3FL in the regulation of mRNA processing genes 

together with our data showing that this isoform is especially present in NSCs where TET3 

downregulation do not affect 5hmC global levels, suggest that TET3FL may play a principal role in 

regulating Snrpn expression in adult NSCs. However, further experiments are needed to elucidate the 

particular contribution of each isoform in the neurogenesis process. 

Figure 47. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action on the imprinted gene 
Snrpn. TET3 directly promotes neurogenic potential and self-renewal capacity of the multipotent stem cell-like 
astrocytes. It binds to the Snrpn promoter to contribute to transcriptional repression of the imprinted gene 
independently of its catalytic function. Loss of TET3 in the adult NSCs causes the upregulation of Snrpn levels which 
induces the cell to a premature differentiation state. Adult NSCs are successfully reprogrammed into iPSCs using only 
Oct4 and Klf4 factors. Tet3 downregulation is essential for the acquisition of a pluripotent state characterized by the 
expression of pluripotency genes and the downregulation of neural genes. Acquisition of pluripotency in NSCs implies 
a re-establishment of the methylation landscape in the genome to modulate the new gene expression profile.  
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1. Adult SVZ NSCs successfully reprogram into iPSCs with ESCs-like features using exclusively Oct4 

and Klf4 transcription factors, indicating that NSCs are in an epigenetic intermediate state 

between differentiated and pluripotent cells.  

2. NSCs-derived iPSCs have higher differentiation ability to form ectoderm than ESCs, suggesting 

that they may retain a memory of the central nervous system. Endodermal lineage determinants 

are also induced, thus iPSCs may have additional potential depending of the cell of origin. 

3. The acquisition of a pluripotent state in adult NSCs implies significant changes in the expression 

of imprinted genes. More than half of the paternally and maternally expressed genes present 

originally in NSCs, are altered in iPSCs, indicating that regulation of genomic imprinting is crucial 

in this process.  

4. Changes in the expression levels of imprinted genes correlate with modifications of the DNA 

methylation pattern at imprinted clusters. The majority of imprinted DMRs are substantially 

hypomethylated. Strikingly DNA methylation changes mainly occur in maternally methylated 

DMRs correlating with changes in the expression levels of several genes within these clusters.  

5. The TET3 hydroxylase is highly expressed in adult NSCs preventing their reprogramming into 

iPSCs. Therefore, TET3 is not the enzyme that catalyses the demethylation process observed in 

imprinting clusters. 

6. TET3, highly expressed in the GFAP population within the SVZ, promotes NSC maintenance by 

avoiding their premature differentiation into non-neurogenic astrocytes in vivo and in vitro. 

7. TET3 deficiency in GFAP+ NSCs results in the reduction of the number of newborn neurons 

reaching the olfactory bulb. 

8. Monoallelic upregulation of the imprinted gene Snrpn is responsible for the premature 

differentiation into terminally differentiated astrocytes in TET3 deficient NSCs. 

9. TET3 binds to Snrpn promoter to contribute to transcriptional repression of the imprinted gene 

in neural progenitors independently of its catalytic function. 
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INTRODUCCIÓN 

1. Células madre, unidades de desarrollo y regeneración. 

Las células madre (SC, del inglés Stem Cell) son células no especializadas con la habilidad de 

autorrenovarse (dar lugar a células idénticas) y capaces de diferenciarse (adquisición de una identidad 

celular concreta) en uno o más tipos celulares especializados. De acuerdo con su potencial de 

diferenciación, las células madre se pueden clasificar en totipotentes, aquellas encontradas en el 

cigoto y capaces de dar lugar a todos los tejidos embrionarios y extraembrionarios, las células 

pluripotentes, localizadas en la masa celular interna del blastocisto con capacidad de diferenciarse en 

células de las tres capas embrionarias, y las multipotentes, situadas en los tejidos embrionarios y 

adultos y con capacidad de dar lugar a tipos celulares de un determinado linaje. Además, en base a su 

origen, podemos encontrar: células madre fisiológicas, donde quedarían englobadas las anteriores, 

células pluripotentes generadas por ingeniería genética (iPSCs, del inglés Induced Pluripotent Stem 

Cells) o las células madre cancerosas (CSC, del inglés Cancer Stem Cell). 

Células madre embrionarias y pluripotencia 

Las células madre embrionarias de ratón (ESCs, del inglés Embryonic Stem Cells) se obtienen de 

la masa celular interna del blastocisto y pueden ser expandidas in vitro en presencia de LIF (del inglés, 

Leukaemia Inhibitor Factor), además de diferenciadas en cualquiera de las tres capas embrionarias, 

mesodermo, endodermo y ectodermo. Esta pluripotencia puede ser testada mediante su capacidad 

de generar cuerpos embrioides (EB, del inglés Embryoid body) in vitro y teratomas in vivo. Las células 

del epiblasto (EpiSC, del inglés Epiblast Stem Cells) son células pluripotentes generadas en el embrión 

tras la implantación, aunque su potencialidad está algo más restringida que el de las ESCs. 

Células pluripotentes inducidas y reprogramación 

En el año 2006, Takahasi y Yamanaka consiguieron, mediante la introducción de cuatro factores 

exógenos (Oct4, Klf4, Sox2 y c-myc), la conversión por primera vez de una célula madre diferenciada 

en una célula pluripotente inducida con características que mimetizaban a las ESCs, proceso conocido 

como reprogramación celular, el cual supuso un gran avance para la comunidad investigadora. Desde 

entonces, las iPSCs han sido obtenidas a partir de múltiples tejidos y son un modelo de estudio 

incomparable para el desarrollo temprano así como una prometedora herramienta en terapia celular. 

La forma más habitual de generar iPSCs requiere el uso de retrovirus como vectores para la 

introducción de los factores exógenos, que deben ser silenciados en las fases finales del proceso para 

conseguir una verdadera pluripotencia. Sin embargo, el uso de estos retrovirus, así como la relación 

de los factores exógenos con procesos cancerosos, hacen de estas células impropias para su uso en 
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terapia celular aunque se están desarrollando prometedoras tecnologías alternativas mediante el uso 

de proteínas recombinantes. 

Células madre adultas: reservorios de precursores multipotentes 

Las células madre adultas (ASC, del inglés Adult Stem Cells) tienen la capacidad de dividirse y 

generar células diferenciadas funcionales, fundamentales en la homeostasis y reparación tisular. Hasta 

la fecha, han sido identificadas y caracterizadas células madre en múltiples tejidos adultos, incluyendo 

el sistema nervioso. En condiciones de homeostasis, las ASCs tienen la capacidad de dar lugar a 

progenitores de rápida amplificación (TAP, del inglés Transit Amplifying Cells) para acabar 

diferenciándose en células funcionales específicas del tejido en particular. Estas ASC se encuentran en 

regiones concretas bien organizadas denominadas “microambientes o nichos” en los que los factores 

extrínsecos están finamente regulados para mantener a las células madre. De entre estos factores 

destacan los secretados por la vasculatura, los contactos célula-célula, las moléculas de señalización, 

etc. Las propiedades de las células madre adultas las convierten en candidatos plausibles en medicina 

regenerativa por lo que la comprensión de su regulación son requerimientos cruciales para su uso en 

terapia. En la actualidad, estas ASC están mejor posicionadas para su uso en terapia que las iPSC debido 

a que se encuentran de forma natural en el organismo y pueden ser moduladas in vitro. Además hay 

diversos tejidos accesibles para el uso de estas células como el cordón umbilical o la médula ósea.  

2. Células madre neurales y neurogénesis adulta 

La neurogénesis es el proceso de generar nuevas neuronas a partir de células madre neurales 

(NSC, del inglés Neural Stem Cells) que tienen la habilidad de dividirse, autorrenovarse y generar 

células diferenciadas durante toda la edad adulta. Las NSCs derivan de la glia radial embrionaria, 

reteniendo su carácter astrocitario y quedando localizadas en el adulto en dos regiones concretas, la 

zona subventricular (SVZ, del inglés Subventricular Zone) y la zona subgranular del giro dentado del 

hipocampo (SGZ, del inglés Subgranular Zone).  

La zona subventricular y la neurogénesis al bulbo olfatorio 

La SVZ es el nicho neurogénico más activo en ratones. En él residen las NSCs (células tipo B) que 

tienen la capacidad de autorrenovarse y diferenciarse en astrocitos, oligodendrocitos y neuronas. Estas 

células tipo B contactan con el ventrículo por un pequeño proceso apical rodeado de células 

ependimarias formando una típica organización en forma de roseta. Por su parte basal, estas células 

están en contacto con la vasculatura de la que reciben importantes señales. Una vez activadas, las 

células madre dan lugar a las células tipo C o TAPs que producen, a su vez, neuroblastos capaces de 

migrar hacia el bulbo olfatorio (OB, del inglés Olfactory Bulb) por la ruta de migración rostral (RMS, del 
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inglés Rostral Migratory Stream) donde finamente se integran y se diferencian en interneuronas. De 

forma importante en este proceso, el nicho neurogénico de la SVZ está finamente regulado por señales 

extrínsecas que garantizan el proceso durante toda la vida adulta. Debido a su arquitectura especial, 

las células reciben señales tanto del líquido cerebroespinal como de los vasos sanguíneos. Además, 

tanto los contactos célula-célula como las señales que reciben de su propia progenie promueven su 

quiescencia.  

 Las NSCs muestran características astrocitarias como son la expresión de GFAP o GLAST, aunque 

no se dispone de un marcar único que permita su distinción. Además, está bien establecida la 

coexistencia de dos estados diferentes, las NSCs quiescentes (qNSCs) y las NSCs activadas (aNSCs). 

Estas células, así como las distintas poblaciones de la SVZ pueden ser estudiadas mediante 

combinación de diferentes marcadores. 

Células madre in vitro: el ensayo de neurosferas 

Las células madre neurales pueden ser cultivadas in vitro en presencia de los mitógenos FGF (del 

inglés Fibroblast Growth Factor) y EGF (del inglés Epidermal Growth factor) y en condiciones no 

adherentes, donde su capacidad de autorrenovación puede ser estudiada. Para ello, tras la disección 

y disociación del tejido, las células son cultivadas, y una pequeña proporción es capaz de crecer 

formando agregados clonales conocidos como “neurosferas”. Además, en condiciones adherentes, 

estás células son capaces de diferenciarse dando lugar a células del tejido neural: astrocitos, 

oligodendrocitos y neuronas. A pesar de las evidentes ventajas, el uso de neurosferas tiene unas ciertas 

limitaciones. Primero, la heterogeneidad de la neuroesfera donde las NSCs conviven con su progenie 

incluyendo células diferenciadas. Además, los progenitores TAP también son capaces de formar 

esferas aunque de forma más limitada. Por otra parte, la estimulación mitogénica provoca que tenga 

lugar una selección de las aNSCs mientras que las qNSC no son capaces de formar esferas. 

Recientemente, los avances conseguidos en el aislamiento de las distintas poblaciones de la SVZ 

mediante FACS (del inglés Fluorescence Activated Cell Sorting) permiten el estudio detallado de las 

mismas incluyendo a las qNSCs. Sumado a todo esto, la variabilidad experimental introducida en los 

cultivos entre diferentes laboratorios hace difícil en ocasiones el comparar o reproducir entre 

experimentos. Por todo esto, a pesar de que el ensayo de neurosferas en una herramienta útil para 

evaluar la capacidad de autorrenovación y la diferenciación de estas células, la complementación con 

los ensayos in vivo es todavía indispensable. 

 

 



 

 

158 Resumen 

Reprogramación de NSCs 

Las NSCs expresan de manera endógena los factores de reprogramación Sox2, Klf4  y c-myc. 

Debido a esto, la reprogramación de estas células es posible utilizando únicamente dos (Klf4 y Oct4) o 

un factor (Oct4), aunque con mucha menos eficiencia, lo que indica que estas células se encuentran 

en un estado intermedio entre el diferenciado y el pluripotente. En muchas ocasiones, la pluripotencia 

no es adquirida completamente hasta que en el medio no son aplicadas condiciones controladas y 

particulares. Esas condiciones incluyen el uso de inhibidores de rutas de señalización implicadas en 

diferenciación (MEK y GSK) así como el LIF (2i/LIF) permitiendo la generación de células 

verdaderamente pluripotentes.  

3. Regulación epigenética de los nichos neurogénicos adultos 

La epigenética es definida como el estudio de los cambios del genoma heredables que no 

implican cambios en la secuencia del ADN. Estas modificaciones son capaces de modular la expresión 

génica y entre ellas destacan la metilación del ADN y las modificaciones de histonas. 

Metilación del ADN 

La metilación del ADN supone la adición de un grupo metilo a la citosina y suelen tener lugar en 

regiones del ADN ricas en dinucleótidos CpG conocidas como “islas CpG”, siendo las ADN 

metiltransferasas (DNMTs) las implicadas en el establecimiento de este patrón de metilación. Por regla 

general, la presencia de metilaciones está relacionada con una inhibición de la transcripción, siendo 

un proceso esencial en el desarrollo neural, además de que la unión de diversos factores implicados 

en neurogénesis está regulada por la presencia de esta modificación. Por ejemplo, se ha descrito que 

el ADN está hipometilado en los progenitores neurales y la metilación es adquirida progresivamente 

durante la diferenciación neuronal. 

La metilación es una marca reversible que puede ser eliminada de forma pasiva, por replicación 

del ADN, o de forma activa mediada por las enzimas TET (del inglés Ten-Eleven Translocation proteins) 

que son capaces de convertir la 5-metilcitosina (5mC) en 5-hidroximetilcitosina (5hmC), 5-

formilcitosina (5fC) y 5- carboxilcitosina (5caC). Estos derivados pueden ser posteriormente eliminados 

a través de la ruta de escisión de bases (BER, del inglés Base Excision Repair) o por dilución pasiva. Se 

han descrito tres miembros de la familia: TET1, TET2 y TET3, y su actividad puede ser diferente 

dependiendo del momento y contexto celular. Además, recientemente se han establecido diferentes 

funciones para estas proteínas independientes de su actividad catalítica. La 5hmC es especialmente 

relevante en el cerebro, habiendo sido asociada al proceso de diferenciación. Particularmente, la 

metilación del ADN parece jugar un papel fundamental en el proceso de neurogénesis, además de que 
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enzimas como TET1 han sido implicadas en la regulación de la proliferación de los progenitores 

neurales en el hipocampo.  

Modificaciones de histonas 

El ADN es empaquetado alrededor de octámeros de histonas formando los nucleosomas. Estas 

histonas dejan al descubierto su residuo N-terminal para ser susceptible de modificación, provocando 

cambios en la estructura tridimensional de la cromatina reprimiendo o activando la transcripción. 

Entre las modificaciones de histonas destacan la acetilación y la metilación. La acetilación, catalizada 

por la histona acetiltransferasa, potencia la unión de factores de transcripción a la cromatina. Por otra 

parte, la metilación de las histonas, catalizada por la histona metiltransferasa, está asociada tanto con 

represión como con activación. Ambas modificaciones juegan papeles importantes en el proceso de 

neurogénesis habiendo, por ejemplo, marcas como la tri-metilación de la histona H3 en su lisina 9 

(H3K9me3) están asociadas con el mantenimiento del estado indiferenciado. 

Impronta genómica y su papel en la neurogénesis adulta 

En los mamíferos, a pesar de que la mayoría de genes son bialélicamente expresados o 

reprimidos, hay un pequeño porcentaje de genes, denominados “genes imprintados” que son 

expresados monoalélicamente dependiendo de su origen parental. Estos genes están generalmente 

organizados en grupos y regulados por regiones diferencialmente metiladas (DMR, del inglés 

Differentially Methylated Region) entre los dos cromosomas parentales. Estos patrones de metilación 

son establecidos en la línea germinal y mantenidos en la edad adulta aunque este estado de impronta 

puede ser regulado de una manera tejido-específica. Los genes imprintados están implicados en una 

gran diversidad de procesos siendo las funciones neurológicas de las más importantes. 

4. Cambios epigenéticos durante el proceso de reprogramación 

El proceso de reprogramación celular implica cambios necesarios en el estado de la cromatina 

en las células reprogramadas. Se trata de un proceso ineficiente indicando que los factores de 

transcripción necesitan superar barreras epigenéticas que ha sido gradualmente impuestas durante la 

diferenciación. Los factores de reprogramación interaccionan con modificadores de histonas, así como 

enzimas implicadas en la regulación de la metilación de ADN, para que el proceso culmine en el estado 

pluripotente. Se ha descrito que las iPSCs tienen unos menores niveles de metilación que las células 

diferenciadas de origen, además de que la pérdida de metilación en los genes de pluripotencia es 

fundamental para su expresión. En concreto, la capacidad de reprogramar NSCs mediante el uso de 

Oct4 como único factor sugiere que el epigenoma de estas células es más fácil de reprogramar. Sin 
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embargo, los mecanismos epigenéticos concretos implicados en el proceso de reprogramación 

permanecen por ser dilucidados.  

OBJETIVOS 

El descubrimiento de las células madre neurales (NSCs) en el sistema nervioso central (CNS) 

implicó la existencia potencial de reparación endógena y el uso de terapias celulares en el cerebro 

adulto. Aunque estas aplicaciones potenciales se preveen como consecuencias a largo plazo, 

determinar los reguladores que trabajan coordinadamente para proveer de un número óptimo de 

NSCs y de sus subtipos celulares, es crucial para su futuro uso en terapia celular. Los cambios 

epigenéticos implicados en el mantenimiento de las células madre neurales adultas no han sido 

ampliamente dilucidados, por lo tanto el objetivo principal de este trabajo es la identificación de la 

firma epigenética (incluyendo la impronta genómica) que pueda controlar el comportamiento de estas 

células en condiciones fisiológicas.    

Los objetivos específicos de esta Tesis son: 

1. Reprogramación celular de NSCs adultas a un estado pluripotente con un número mínimo de 

factores exógenos. 

2. Identificación de los cambios epigenéticos que ocurren en NSCs adultas durante la adquisición 

del estado pluripotente incluyendo la regulación de la impronta genómica y la metilación del 

ADN.  

3. Estudio del papel de la dioxigenasa TET3 en la regulación del mantenimiento de las NSCs y la 

neurogénesis en la SVZ adulta.  

MATERIAL Y MÉTODOS 

1. Animales de experimentación 

Los animales utilizados durante esta tesis así como los procedimientos experimentales fueron 

aprobados por el comité de ética de la Universidad de Valencia. En el caso del uso de técnicas invasivas, 

los animales fueron anestesiados previamente. 

Cepas: todos los experimentos fueron realizados con ratones de 2-4 meses de edad. Las cepas 

utilizadas a lo largo de este trabajo han sido: C57BL6 (cepa salvaje), CAST/EiJ (cepa salvaje utilizada 

para la generación de animales híbridos), Tet3loxP/loxP (cepa utilizada para generar animales deficientes 

en TET3 en células GFAP positivas), GFAPcre (cepa transgénica en la que la cre-recombinasa se expresa 



 

 
 

161 Resumen 

bajo el promotor de la GFAP, utilizada para cruzar con los animales Tet3loxP/loxP), Tet3-GFAPcre (cepa 

resultante del cruce entre la Tet3loxP/loxP  y la GFAPcre en la que el gen Tet3 es específicamente eliminado 

en las células GFAP+) y la cepa NU/J (cepa inmunodeprimida utilizada para el ensayo de formación de 

teratomas).  

2. Estudio de la citoarquitectura de la SVZ 

Administración de BrdU: el análogo de timidina 2-Bromo-deoxiuridina (BrdU) es incorporado al 

ADN en la fase S del ciclo celular en el momento de su administración. Tres semanas después, los 

progenitores de rápida amplificación en la SVZ diluyen la marca mientras que las NSCs de lenta división 

(LRC, del inglés Label Retaining Cells) la retienen así como las nuevas neuronas generadas en el bulbo 

olfatorio que incorporan el nucleótido justo antes de diferenciarse e integrarse en el OB. Para ello, los 

animales fueron inyectados cada 2h durante 12 horas y sacrificados 3 semanas después para su análisis 

por inmunohistoquímica. 

Técnicas histológicas: Para la fijación del tejido, los animales fueron sacrificados por perfusión 

con paraformaldehido (PFA) al 4% en 0.1M PBS y los cerebros fueron seccionados utilizando un 

vibratomo (Leica® VT1000S). Para el estudio de las estructuras en forma de roseta de las paredes del 

ventrículo, el tejido fue diseccionado, tras dislocación cervical del ratón, y post-fijado en PFA durante 

una noche. 

Inmunohistoquímica: en este tesis se incluyen técnicas inmunofluorescentes y de detección de 

peroxidasa. Las muestras de tejido fueron lavadas con PBS para su posterior incubación con los 

anticuerpos primarios específicos para cada caso. Específicamente, para las incubaciones con los 

anticuerpos de BrdU, 5mC y 5hmC se llevó a cabo un paso previo de apertura de cromatina con HCl 

2N. Además, en el caso de la detección de la peroxidasa, la peroxidasa endógena fue previamente 

neutralizada con peróxido de hidrógeno al 3%. Tras la incubación con los anticuerpos primarios 

durante toda la noche y varios lavados con PBS, las muestras fueron incubadas con los anticuerpos 

secundarios específicos durante 1h, los núcleos fueron teñidos con DAPI y las muestras montadas 

sobre portaobjetos con FluorSaveTM (Millipore). Para la detección de la β-galactosidasa, la muestras 

fueron incubadas en solución de lavado A (2 mM MgCl2, 5 mM EGTA and 0.1 M PO4, pH 7.4) y solución 

de lavado B (2 mM MgCl2, 0.01% sodium deoxycholate (Sigma), 0.02% Nonidet P-40 (Sigma) y 0.1 M 

PO4 pH 7.4) antes de la incubación con la solución de marcaje (0.1 M PO4 pH 7.4, 2 mM MgCl2, 0.01% 

sodium deoxycholate, 0.02% Nonidet P-40, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6 and 1 mg/ml X-Gal).  

Contaje de las poblaciones celulares de la SVZ: Las muestras previamente teñidas fueron 

fotografiadas en un microscopio confocal (FluoView FV10i, Olympus). Las distintas poblaciones 
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celulares fueron contadas a mano y relativizadas al número total de DAPI. Para las LRC, las células 

fueron contadas en un microscopio fluorescente (Nikon Eclipse Ni) aplicando el principio de Cavalieri. 

3. Cultivo de células madre neurales adultas. 

Disección de la SVZ y disociación del tejido: animales de 2-4 meses de edad fueron sacrificados 

por dislocación cervical y la SVZ fue finamente diseccionada. La muestra de tejido fue incubada en una 

solución de papaína (Worthington Biochemical Corporation), disgregada, sembrada en medio 

completo (conteniendo FGF y EFG) e incubada a 37º y 5% de CO2 para permitir el desarrollo de 

neurosferas. El número de neurosferas primarias fue manualmente contado siendo considerado una 

estimación del número de células formadoras de esferas en la SVZ. 

Subcultivo y expansión: las neurosferas primarias fueron disgregadas con la ayuda de Acutasa® 

(Sigma), contadas en el contador automático Adam (NanoEnTek®) y sembradas a una determinada 

densidad (10.000 cells/cm2) en medio completo. Tras 5-7 días de incubación a 37º y 5% de CO2 las 

nuevas esferas estaban preparadas para un nuevo pase. El número de células obtenidas tras cada pase 

se utilizó para la representación de la curva de crecimiento. 

Ensayo de formación de neurosferas: la capacidad de autorrenovación puede ser evaluada in 

vitro. Para ello, tras la disociación de las esferas, las células fueron sembradas a baja densidad (5 cel/µl) 

y, tras 5 días de incubación, se contó el número de nuevas esferas obtenidas, que fueron también 

fotografiadas para la medición de su diámetro. 

Determinación de la capacidad de proliferación: células en cultivo fueron tratadas con 2µM de 

BrdU durante 5 min para su posterior análisis por inmunocitoquímica. Además, se llevó a cabo un 

ensayo de ciclo celular mediante citometría de flujo (FACSVerse, BD) utilizando un kit comercial (BD 

CycletestTM Plus DNA Kit) para el marcaje de las distintas fases. 

Ensayos de diferenciación y reactivación: para evaluar la capacidad de las células de dar lugar a 

neuronas, astrocitos y oligodendrocitos, estas fueron disgregadas y sembradas sobre sustrato 

adherente (Matrigel®, BD) con medio conteniendo FGF. Tras dos días, el FGF fue sustituido por FBS al 

2% incubando las células cinco días más para ser analizadas por inmunocitoquímica. Para los ensayos 

de reactivación, tras 7 días de diferenciación, las células fueron levantadas con tripsina/EDTA (Gibco) 

y sembradas en medio completo. El número de neurosferas obtenidas fue contabilizado. 

4. Silenciamiento mediante shRNA 

Para la regulación a la baja del gen Snrpn se utilizó un shRNA específico (Mission®, Sigma) que 

fue introducido mediante infección con lentivirus. Para la generación de las partículas víricas, células 
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HEK293T fueron transfectadas con lipofectamina (Invitrogen) con los plásmidos específicos, 

incluyendo el shRNA para Snrpn (shSNRPN) y un shRNA vacío (shSCRAMBLE) como control. 

Aproximadamente 30h tras la transfección de las 293T procedimos a la infección de las NSCs en cultivo. 

Las NSCs disociadas fueron incubadas con el sobrenadante viral suplementado con polibreno (Sigma) 

durante 4-6 horas. Posteriormente, se sembraron en medio apropiado para cada experimento y fueron 

adecuadamente analizadas. 

5. Edición genética de NSCs mediante CRISPR-Cas9 

El plásmido para el CRISPR utilizado fue cedido por el laboratorio de la Dra. Myriam Hemberger 

(Babraham Institute, Cambridge). La técnica CRISPR/Cas9 fue utilizada para regular a la baja la 

expresión de Tet3 en NSCs obtenidas de animales híbridos generados mediante el cruce de hembras 

CAST/EiJ con machos C57BL6 (CxB), cepas en las que se han identificado polimorfismos (SNPs) en el 

gen de Snrpn. Las NSCs fueron nucleofectadas (NucleofectorTM, Amaxa) para la introducción del ADN 

exógeno siguiendo las instrucciones del fabricante. Las células nucleofectas fueron incubadas 2 días 

para después ser separadas y aisladas por citometría de flujo (MoFlo® XDP, Beckman Coulter) en base 

a la expresión fluorescente del plásmido que contenía un reportero con la proteína fluorescente verde. 

6. Análisis inmunocitoquímico 

Para el análisis de proliferación, cultivos de neuroesferas fueron adheridas en cubreobjetos 

tratados con matrigel durante 20 min y posteriormente fijadas con 2% PFA antes de proceder al 

marcaje. Para el análisis de células en diferenciación, estas fueron fijadas a 2, 3 y 7 días. Tras varios 

lavados y bloqueo de las uniones inespecíficas, las muestras fueron incubadas con los anticuerpos 

primarios y secundarios específicos, tal y como se ha explicado anteriormente. Para la detección de la 

BrdU, un pre-tratamiento con HCl a 2N fue requerido. Finalmente las muestras fueron montadas para 

su posterior análisis.  

7. Criopreservación celular 

Las células utilizadas a lo largo de este trabajo fueron conservadas en 10% de Dimetilsulfóxido 

(DMSO) a -80ºC o en N2 líquido para almacenamientos más prolongados 

8. Reprogramación de NSCs 

Para la reprogramación celular únicamente se usaron Oct4 y Klf4 como factores exógenos, 

debido a la expresión endógena de c-myc y Sox2 de las NSCs, que fueron introducidos mediante el uso 

de retrovirus. Para su producción, células Plat-E empaquetadoras fueron transfectadas con los 

plásmidos específicos pMXs-Oct4, pMXs-Klf4 y Cherry. Al día siguiente el medio fue sustituido por 
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medio completo de NSCs para dos días después proceder a la infección de las esferas, siendo incubadas 

con la mezcla del sobrenadante viral durante una noche. Cinco días después, las esferas fueron 

disgregadas y sembradas sobre células SNL, previamente mitomizadas (Mitomycin C, Sigma) para 

evitar su crecimiento, en medio de reprogramación con LIF. Tras la aparición de las pre-iPSCs, el medio 

fue sustituido por medio 2i/LIF para permitir la completa reprogramación.     

La pluripotencia de las células fue testada de diversas maneras. Por una parte se utilizó el 

marcaje con fosfatasa alcalina, marcador específico de pluripotencia. También se llevó a cabo el ensayo 

de formación de cuerpos embrioides (EBs) mediante el protocolo de las gotas colgantes, con el que se 

obtuvieron organoides donde se pudieron identificar las tres capas embrionarias mediante 

inmunocitoquímica. Además, para descartar posibles alteraciones en el número de cromosomas, se 

analizó el cariotipo celular deteniendo a las células en metafase con colchicina (KarioMAX® Colcemid, 

Gibco) y tiñendo los cromosomas mediante tinción de Leishman (Sigma). Tanto las iPSC como los EBs 

fueron analizados por inmunocitoquímica tal y como se ha descrito anteriormente. Finalmente, para 

testar la capacidad pluripotente in vivo se llevó a cabo el ensayo de formación de teratomas en el que 

ratones inmunodeprimidos fueron inoculados subcutáneamente con una suspensión de iPSCs para 

comprobar su capacidad de dar lugar a este tipo de tumores. Estos fueron extraídos, fijados con PFA 

4%, embebidos en parafina y seccionados mediante micrótomo (Leica) para ser después teñidos con 

hematoxilina/eosina.  

9. Análisis de la expresión génica 

Extracción de ARN, síntesis de ADN complementario (ADNc) y PCR a tiempo real (qPCR): Las 

muestras de ARN fueron obtenidas con un kit (RNeasy Mini Kit, Qiagen) siguiendo las instrucciones del 

fabricante. Tras ello, se llevó a cabo la síntesis de ADNc (RevertAid H Minus First Strand cDNA Synthesis 

Kit, Thermo Fisher) y se procedió al análisis de la expresión mediante qPCR utilizando sondas 

específicas de tipo TaqManTM o cebadores, dependiendo del ensayo. El gen Gapdh fue utilizado como 

normalizador.  

ARNseq: El análisis transcriptómico fue llevado a cabo por el Servei Central de Suport a la 

Investigació Experimental de la Universidad de Valencia. El análisis de los datos fue realizado 

externamente por EpiDisease S.L. 

10. Inmunodetección de proteínas por western-blot 

Para la extracción de proteína, las células fueron lisadas con tampón RIPA e inhibidores de 

proteasas (Complete®, Roche) para seguidamente ser desnaturalizadas y resueltas en gel de 

poliacrilamida en condiciones desnaturalizantes (SDS-PAGE). Finalmente, estas proteínas fueron 
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transferidas a membranas usando el sistema automatizado Trans-Blot Turbo transfer device (Bio-Rad). 

Tras esto, se procedió a la inmunodetección de las mismas. Tras el bloqueo de las uniones inespecíficas, 

las membranas fueron incubadas con los anticuerpos primarios específicos, para después lavar e 

incubar con los anticuerpos secundarios marcados con peroxidasa. Para el revelado se utilizó 

Lightning® Plus-ECL (Perkin Elmer) y la señal fue procesada con el sistema Alliance Mini HD9 (UVITEC). 

11. Análisis de la metilación del DNA 

Determinación de los niveles globales de 5hmC y 5mC por ELISA: el ADN fue adherido al fondo 

del pocillo mediante una solución específica (Reacti-Bind DNA Coating Solution, Thermo Fisher). Tras 

esto, las uniones inespecíficas fueron bloqueadas antes de proceder a la incubación con los 

anticuerpos primarios 5mC/5hmC, continuando con la incubación con los anticuerpos secundarios 

conjugados con peroxidasa. Las muestras fueron incubadas con la solución de revelado (TMB-ELISA 

Substrate Solution, Thermo Fisher) para medir finalmente su absorbancia a 450nm.  

MeDIP-seq: en este experimento, las librerías y la secuenciación final fueron realizadas por el 

SCSIE. Para la inmunoprecipitación, el ADN fue incubado con el anticuerpo anti-5mC tras el bloqueo 

de uniones inespecíficas durante 2h. Tras esto, bolas magnéticas específicas (Dynabeads®) fueron 

añadidas e incubadas durante toda la noche. Seguidamente, mediante el uso de un imán, la fracción 

unida fue separada del sobrenadante. Finalmente, esta fracción unida fue tratada con proteinasa K y 

purificada. 

Estudio del enriquecimiento en 5mC y 5hmC en el DMR de Snrpn: para la cuantificación de los 

niveles de 5mC, el ADN fue convertido bisulfíticamente mediante un kit (EZ DNA Methylation-GoldTM 

kit, Zymo) y amplificado por PCR previamente a su secuenciación mediante pirosecuenciación 

utilizando el sistema PiroMark® (Qiagen). Para evaluar los niveles de 5hmC en la misma región, se 

procedió a inmunoprecipitar el ADN de la misma forma que anteriormente (MeDIP-seq) usando el 

anticuerpo específico anti-5hmC. Tras la purificación, el ADN fue amplificado por qPCR para calcular el 

enriquecimiento. La fracción no unida fue usada como control. 

12. Análisis de la impronta genómica 

Para el estudio del estado de imprinting en NSCs, se obtuvo cDNA de muestras de NSCs híbridas 

(CxB) en las que se han identificado SNPs específicos para cada cepa. El cDNA fue amplificado por PCR 

con cebadores específicos y secuenciado posteriormente mediante pirosecuenciación para calcular el 

porcentaje de expresión de cada alelo. 
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RESULTADOS 

1. El estado epigenético de las NSCs cambia significativamente durante la reprogramación 

Las NSCs adquieren el estado pluripotente similar a las ESC solo con el uso de Oct4 y Klf4 

Inicialmente, analizamos los niveles de expresión de los cuatro “factores de Yamanaka” (OSKM) 

observando que las NSCs expresaban significativamente Sox2, Klf4 y c-myc mientras que Oct4 estaba 

ausente. Por ello, desarrollamos un protocolo de reprogramación para inducir la pluripotencia de las 

iPSC utilizando únicamente dos factores, Oct4 y Klf4 (2F), o un factor, Oct4 (1F). 30-40 días después de 

la infección, en la condición 2F aparecieron agregados celulares de apariencia pluripotente mientras 

que no lo hicieron en la condición 1F. Estos agregados habían adquirido características pluripotentes 

aunque carecían de algunas importantes como la expresión de Nanog. Estas fueron denominadas pre-

iPSCs. Tras esto aplicamos condiciones de cultivo definidas incluyendo los inhibidores MEK y GSK3 

junto con LIF, observando la adquisición de un estado pluripotente completo (silenciamiento de los 

genes retrovirales, adquisición de genes de pluripotencia y silenciamiento de genes neurales) después 

de 10-20 días. Tras esto, las iPSCs obtenidas fueron exhaustivamente caracterizadas.  

El número de cromosomas es mantenido tras la reprogramación. 

Para comprobar que las líneas de iPSC obtenidas no portaban aberraciones cromosómicas 

llevamos a cabo el estudio de su cariotipo. Comprobamos que la mayoría de ellas mantenían un 

número normal en torno a 40 mientras que un pequeño porcentaje portaban duplicaciones 

cromosómicas de forma que fueron descartados del estudio. 

Las iPSCs generadas con 2F pueden ser diferenciadas in vitro e in vivo en las tres capas 

embrionarias. 

Con el propósito de testar la capacidad de diferenciación de estas células in vitro e in vivo se 

llevaron a cabo sendos experimentos de formación de cuerpos embrioides (EBs) y teratomas, 

respectivamente. En el primero de casos, tras la obtención de los EBs, fue comprobado por ICC y qPCR 

las presencia de las tres capas germinales mientras que, con el mismo resultado, los teratomas fueron 

analizados mediante tinción con hematoxilina/eosina. 

La expresión de los genes imprintados cambia durante la generación de iPSC de NSCs. 

La mayoría de los genes imprintados tienen una función relevante en el cerebro además de que 

la impronta puede ser selectivamente eliminada en determinados contextos celulares. Con el 

propósito de estudiar los cambios en expresión génica ocurridos durante el proceso de 
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reprogramación, con un enfoque especial en los genes imprintados, llevamos a cabo un ARNseq. El 

resultado mostró un gran número de genes diferencialmente expresados, con un total de 6062 con 

menor expresión y 5301 con un incremento de su expresión. En cuanto a los genes imprintados, de un 

total de 126 genes analizados, observamos cambios en 47 de ellos, indicado que la adquisición del 

estado pluripotente requiere cambios importantes en el transcriptoma y que la impronta genómica es 

crucial en este proceso. Para evaluar los cambios en el metiloma ocurridos durante el proceso de 

reprogramación y la posible firma epigenética característica de las NSCs, llevamos a cabo un ensayo 

de análisis de metilación mediante MeDIP-seq. Los resultados mostraron primero que los cambios de 

expresión ocurridos en los genes de pluripotencia y neurales descritos anteriormente estaban 

asociados con menor y mayores niveles de metilación respectivamente, sobre todo a nivel del 

promotor.  

La metilación de los DMR en las regiones de control de imprinting son modificados durante la 

reprogramación. 

Como ya se ha mencionado anteriormente, los genes imprintados se encuentran agrupados en 

clústeres, bajo el control de regiones de control de imprinting (ICR, del inglés Imprinting Control 

Region) que son DMRs que controlan la expresión de los genes imprintados del clúster. Encontramos 

dos tipos de DMR: los que establecen el patrón de metilación en la línea germinal (gDMR) o los que 

son diferencialmente metilados tras la fecundación (sDMR). Debido a los efectos de los DMR en la 

expresión de los genes imprintados, nos centramos en el estudio de la metilación de diferentes 

clústeres encontrando que, de 32 analizados, aparecían diferencias en 22 de ellos, y de los cuales el 

86% mostraba una reducción de los niveles de metilación siendo más frecuentes en los metilados 

maternos. Además, estos cambios en metilación estaban asociados, en muchos casos, con cambios en 

la expresión en múltiples genes del clúster, indicando su posible relación. 

TET3 previene la reprogramación de las NSCs en iPSCs. 

En mamíferos, la eliminación activa de 5mC es catalizada por las enzimas TET, habiendo sido 

también implicadas en imprinting. Tras la cuantificación de los niveles de estas enzimas en el proceso 

de reprogramación, observamos que la expresión de Tet1 y Tet2 aumentaba considerablemente en las 

iPSCs comparadas con las NSCs mientras que Tet3 era profundamente regulado a la baja. Para clarificar 

el posible papel de TET3 en el mantenimiento del fenotipo neural, generamos iPSCs a partir de NSCs 

deficientes en TET3 (el modelo animal es explicado en el capítulo siguiente) observando el aumento 

de la eficiencia de la reprogramación cuando TET3 estaba ausente, sugiriendo su posible papel en el 

mantenimiento de la identidad neural, que fue analizado posteriormente. 
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2. TET3 juega un papel importante en la regulación de las NSCs de la SVZ 

Las hidroxilasas de la familia TET son especialmente abundantes en el cerebro, pudiendo 

convertir 5mC en 5hmC y, desde su descubrimiento en 2009, han sido implicadas en una variedad de 

procesos biológicos, aunque su papel en las NSCs permanecía por dilucidar. Inicialmente, nuestros 

datos de qPCR mostraron bajos niveles de Tet1 y Tet2 y elevados para Tet3 en las NSCs adultas. 

Además, estos niveles de Tet3 eran mantenidos postnatalmente y en células en diferenciación. 

Comprobamos que de las tres isoformas descritas para TET3, la Tet3s era la mayoritaria aunque niveles 

sustanciales de la Tet3FL podían detectarse. Tras esto, determinamos la distribución celular de la 

enzima mediante IHC/ICC observando que era expresada específicamente en células GFAP+ in vivo y 

en SOX2+ in vitro, siendo mantenida en diferenciación. 

Tet3 promueve el estado de célula madre en la SVZ adulta 

Para estudiar de manera específica el papel de TET3 en la SVZ adulta, generamos un modelo de 

ratón condicional en el que el gen Tet3 estaba delecionado en las células GFAP+, mediante el cruce de 

la cepa Tet3loxP/loxP con la GFAPcre (los animales deficientes en TET3 son denominados como Tet3-

Gfapcre mientras que sus respectivos controles son Tet3-Gfapcontrol). Tras verificar la especificidad de la 

recombinación, así como la bajada de Tet3 en estas células, llevamos a cabo los experimentos in vivo 

e in vitro. 

 Experimentos in vivo: mediante la técnica de marcaje con BrdU, con la que podemos marcar 

células de lenta división, observamos que los animales deficientes en Tet3 poseían un menor número 

de células LCR-GFAP+, identificadas como NSCs, que incluso eran menos proliferativas. Además, 

observamos que en los mutantes el número de astrocitos no neurogénicos (S100β+) estaba también 

elevado, así como una reducción en el número de NSCs contactando con el ventrículo. Esta 

disminución del pool de NSCs estaba provocando también defectos en neurogénesis en el OB, 

postulando que TET3 podría estar implicada en evitar la diferenciación terminal de las NSCs. 

 Experimentos in vitro: mediante en ensayo de neurosferas evaluamos las capacidades de 

autorrenovación, proliferación y diferenciación in vitro. Como esperábamos, las NSCs aisladas de 

animales mutantes para Tet3 daban lugar a un menor número de esferas primarias y secundarias 

comparado con los controles, no viéndose alterados el diámetro ni el ciclo celular de las mismas, lo 

que indica que Tet3 podría estar implicada en el proceso de autorrenovación de las NSCs sin afectar a 

su proliferación. Tras esto, sometimos a las células a un protocolo de diferenciación observando el 

mismo fenotipo de diferenciación temprana a astrocitos no-neurogénicos que habíamos observado in 

vivo. Consecuentemente, tras el ensayo de reactivación, corroboramos que una menor proporción de 
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células formadoras de esferas era mantenida tras 7DIV en diferenciación. Para dilucidar si TET3 podía 

estar implicada en la regulación de la impronta genómica en las NSCs adultas, llevamos a cabo un 

RNAseq donde comprobamos que multitud de genes estaban siendo alterados tras la deficiencia en 

Tet3. Sin embargo, dentro de los genes imprintados, únicamente Snrpn mostraba un incremento 

significativo de su expresión en los mutantes. Para saber si Snrpn podía estar contribuyendo al fenotipo 

observado, hicimos un experimento de silenciamiento del gen mediante shRNA en las NSCs mutantes 

comprobando que tanto el fenotipo en autorrenovación como en diferenciación eran rescatados a 

niveles normales, antagonizando, por tanto, su diferenciación prematura. 

La impronta genómica de Snrpn se mantiene en NSCs deficientes en TET3 

Snrpn pertenece al grupo de genes causantes de la enfermedad de Prader-Willi, caracterizada 

por múltiples afecciones neurológicas. En nuestro caso, la perdida de impronta en el gen podría 

explicar el fenotipo de sobreexpresión. Para evaluarlo, llevamos a cabo un experimento de regulación 

a la baja de Tet3 mediante CRISPR en NSCs híbridas para poder estudiar la expresión específica de cada 

alelo. Tras cuantificar el porcentaje de expresión de cada alelo por pirosecuenciación, comprobamos 

que la impronta materna estaba mantenida en los mutantes. 

TET3 no está implicada en la regulación de los niveles globales de 5hmC en las NSCs adultas 

Como ya sabemos, las enzimas TET son capaces de convertir la 5mC en 5hmC. Para conocer si 

TET3 podía estar implicada en el mantenimiento de los niveles globales de 5hmC, llevamos a cabo su 

cuantificación por ELISA. Los resultados mostraron que, aunque menores que en cerebro y SVZ, los 

niveles de 5hmC eran significativos en NSCs. Los estudios mediante IHC, mostraron que ambas marcas 

tenían un patrón excluyente. Mientras las NSCs GFAP+/SOX2+ eran ricas en 5hmC, los neuroblastos 

mostraban un enriquecimiento en 5mC, asociado, probablemente a su fenotipo más restringido. Sin 

embargo, estos niveles globales de 5hmC y 5mC no se veían afectados en los mutantes, por lo que 

TET3 no parecía estar implicada en su regulación. 

TET3 contribuye a la represión transcripcional de Snrpn en los progenitores neurales 

independientemente a la 5hmC 

Tal y como se ha explicado anteriormente, las regiones DMRs están implicadas en la regulación 

del estado de la impronta genómica. Para conocer en detalle si TET3 podría estar alterando el estado 

de metilación de esta región, analizamos sus niveles de 5mC por conversión bisulfítica y posterior 

pirosecuenciación, mientras que cambios en los niveles de 5hmC fueron evaluados por hMeDIP y 

posterior qPCR. Los resultados mostraron que tanto los niveles de 5mC como los de 5hmC estaban 
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siendo mantenidos en las NSCs mutantes para Tet3, lo que sugiere que TET3 no está regulando los 

niveles de expresión de Snrpn a través de cambios en los niveles de 5mC/5hmC en la región DMR.  

Para explorar si TET3 podía estar ejerciendo funciones no catalíticas en las NSCs a nivel de Snrpn, 

llevamos a cabo una inmunoprecipitación de cromatina (ChIP) utilizando anticuerpos anti TET3 en NSCs 

salvajes. El análisis reveló el enriquecimiento específico de TET3 a la región promotora del gen Snrpn. 

Estos datos demuestran que TET3 se une al promotor de Snrpn para contribuir a la represión 

transcripcional del gen en los progenitores neurales independientemente de su función catalítica. 

CONCLUSIONES 

1. Las NSCS adultas se reprograman exitosamente en iPSCs usando exclusivamente Oct4 y Klf4 

como factores exogenos, lo que indica que las NSCs se encuentran en un estado epigenético 

intermedio entre el estado diferenciado y el pluripotente. 

2. Las iPSCs derivadas de las NSCs poseen una mayor capacidad de formar ectodermo que las 

ESC, sugiriendo que podrían estar reteniendo memoria del Sistema Nervioso Central. 

Marcadores del linaje endodérmico son también inducidos por lo que las iPSCs podrían tener 

un potencial adicional que dependería de su célula de origen. 

3. La adquisición de un estado pluripotente en las NSCs implica cambios significativos en la 

expresión de los genes imprintados, tanto maternos como paternos. Más de la mitad de los 

genes imprintados originariamente expresados en las NSCs muestran alteración en las iPSCs, 

indicando que la regulación de la impronta genómica es crucial en este proceso. 

4. Los cambios en los niveles de expresión de los genes imprintados correlacionan con 

modificaciones en el patrón de metilación del ADN en los clústeres imprintados. La mayoría de 

los DMRs de genes imprintados son importantemente hipometilados. Sorprendentemente, los 

cambios en la metilación del ADN principalmente ocurren en los DMR maternos 

relacionándose con cambios en los niveles de expresión de varios genes de estos clústeres. 

5. La dioxigenasa TET3 está altamente expresada en las NSCs adultas y previene su 

reprogramación a iPSCs. Por consiguiente, TET3 no es la enzima encargada del proceso de 

demetilación observado en los clústeres de genes imprintados. 

6. TET3 está altamente expresada en la población de células GFAP en la SVZ, promoviendo el 

mantenimiento de las NSCs y evitando su diferenciación prematura a astrocitos no 

neurogénicos. 
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7. La deficiencia de TET3 en las NSCs GFAP+ provoca una reducción del número de nuevas 

neuronas alcanzando el bulbo olfatorio. 

8. El incremento monoalélico de la expresión de Snrpn es responsable de la diferenciación 

prematura de las NSCs deficientes en TET3 a astrocitos terminalmente diferenciados. 

9. TET3 interacciona con el promotor de Snrpn reprimiendo la expresión de dicho gen imprintado 

de una forma independiente a su actividad catalítica. 
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