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RESUMEN EXTENSO

La humedad del suelo y SMOS

La humedad del suelo es un elemento clave que nos permite conocer los flujos de agua y
energia entre el suelo y la atmdsfera. Es ademas un parametro de interés en aplicaciones
hidroldgicas y agricultura (Brocca et al, 2010), meteorologia (de Rosnay et al., 2013),
agricultura y prediccién de riesgos naturales.

La humedad del suelo en superficie se define como la fraccién de agua contenida en un
volumen de suelo hiimedo, considerando una capa superficial de suelo de unos pocos
centimetros (WMO, https://www.wmo-sat.info/oscar/variables/view/149). Puede expresarse
de forma gravimétrica o de forma volumétrica. En este estudio se utiliza la relacion entre el
volumen de agua y el volumen de suelo que la contiene (m3m?).

Dependiendo de su composicidn, todo suelo absorbe una cierta cantidad de agua hasta llegar
a su punto de saturacién. Existe por tanto una relacién directa entre la humedad del suelo y
su capacidad de infiltracion, asi como los flujos de calor sensible y humedad de la atmdsfera,
variables con una gran influencia en los modelos atmosféricos. La humedad del suelo es
habitualmente una variable de iniciacién de los modelos numéricos de prediccion del tiempo
(NWP) que permite mejorar su fiabilidad.

Una aplicacion significativa de la humedad del suelo a escala global es la monitorizacién de
sequias y déficit hidrico en las plantas. El crecimiento y buen estado de la vegetacion se
relaciona con la cantidad de agua disponible en las raices de la planta (hasta 1-2 m de
profundidad), y esta a su vez, con la humedad superficial del suelo. La productividad de una
planta dependera por tanto de su nivel de estrés hidrico, humedad del suelo y el riesgo de
hielo.

La medida de la humedad del suelo desde satélite es posible gracias a la sensibilidad de la
temperatura de brillo emitida en banda L a la humedad presente en la capa mas superficial
del suelo (~ 0-3 cm) (Escorihuela et al., 2010; Njoku and Kong, 1977). Esta relacion se debe a
que la emisividad del suelo en microondas esta relacionada con su constante dieléctrica, y
esta a su vez con la humedad del suelo.

El satélite SMOS (Soil Moisture Ocean Salinity) forma parte de la primera misién cuyo
objetivo es la estimacion de la humedad del suelo (Kerr et al., 2012) y salinidad del agua en
la Tierra (Reul et al., 2014). Su lanzamiento se produjo en Noviembre de 2009 por parte de la
Agencia Espacial Europea (ESA) y fue seguido por el lanzamiento en Enero de 2015 de la
mision SMAP (Soil Moisture Active Passive) por parte de NASA (Administracion Nacional
de la Aerondutica y del Espacio) (Entekhabi et al., 2010), cuyo objetivo principal es la
estimacion de la humedad del suelo a escala global.

La misiéon SMOS fue un proyecto ideado por la ESA en colaboracién con el CDTI (Centro
para el Desarrollo Tecnoldgico Industrial) en Espafia, y el CNES (Centre National d’Etudes
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Spatiales) en Francia. El satélite SMOS posee un radiémetro interferométrico en banda L
(1400 - 1427 MHz) de doble polarizacién (Kerr et al.,, 2001) con una resolucién espacial de
aproximadamente 43 km. Este radiémetro proporciona medidas multi-angulares y en
polarizacién completa de temperatura de brillo de la Tierra con un periodo de revisita de 3
dias.

SMOS proporciona no solo medidas de humedad de suelo, sino también de espesor 6ptico
de la vegetacion. Este uiltimo parametro se relaciona con ciertas caracteristicas tales como el
contenido en agua de la vegetacion o la estructura de la misma (Grant et al., 2016).

El modelo L-MEB (L-band Emission of the Biosphere) es la base de los algoritmos de nivel 2
(L2) y 3 (L3) de SMOS (Kerr et al., 2012). En ambos algoritmos, los parametros del modelo de
transferencia radiativa (Mo et al., 1982) relativos a la rugosidad del suelo y la vegetacion, se
consideran invariables en el tiempo y su valor viene dado por el tipo de cobertura vegetal
siguiendo la clasificacion de ECOCLIMAP (Masson et al., 2003).

Los productos de SMOS se dividen en varios niveles (del 1 al 4). El nivel 1 es el producto
primario que corresponde a las medidas de temperatura de brillo realizadas por el
radiémetro. Los niveles 2 y 3 ofrecen ademas del producto de temperatura de brillo, la
humedad de suelo y espesor optico de la vegetacion, asi como todos los datos auxiliares
utilizados en el modelo. Los productos de nivel 2 y 3 estan geo-referenciados y usan,
respectivamente, la malla ISEA (Icosahedral Synder Equal Area), 4H9 (Talone et al., 2015) y
EASE (Equal-Area Scalable Earth) 2.0 (Armstrong et al., 1997).

El modelo L-MEB

El modelo L-MEB (Wigneron et al., 2007) es la base de los algoritmos L2 y L3 de SMOS, en
los cuales se estima la humedad del suelo y el espesor 6ptico de la vegetacion a partir de las
observaciones de satélite. L-MEB emplea datos multi-angulares de temperatura de brillo en
polarizacién horizontal (H) y vertical (V) y un modelo iterativo que consiste en la
minimizacién de una funcién de coste basada en la diferencia entre la temperatura de brillo
observada y la simulada, para todos los dngulos disponibles. Esta funcion tiene también en
cuenta la incertidumbre de los pardmetros elegidos para su estimacion (humedad del suelo
y espesor 0ptico de la vegetacion, en el caso de los algoritmos L2 y L3 de SMOS).

L-MEB modela la emision de la capa de suelo cubierta por vegetacion, teniendo en cuenta las
contribuciones del suelo, la vegetacion y la radiacion del cielo. El suelo se presenta como una
superficie rugosa cubierta de vegetacion. La temperatura de brillo simulada para un suelo
cubierto de vegetacion se expresa como suma de la emision directa de la vegetacion, la
emision del suelo atenuada por la capa vegetal y la emision de la vegetacion que es reflejada
por el suelo y atenuada por la vegetacion.

La relacion entre la humedad del suelo y la emisién del suelo vienen dadas por el modelo
dieléctrico de Mironov et al. (2012) y las ecuaciones de Fresnel, donde la humedad del suelo
y la constante dieléctrica del suelo estan relacionadas con la reflectividad de una superficie
plana. Los efectos de rugosidad del suelo se consideran mediante una aproximacién semi-
empirica, mientras que para la modelizaciéon de la vegetacion se considera el modelo de
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transferencia radiativa t-w (Mo et al., 1982), donde 7 es el espesor dptico de la vegetaciéon y
w el albedo de dispersion simple de la vegetacion.

Parametros de rugosidad del suelo y vegetacion en L-MEB

En banda L, la temperatura de brillo es muy sensible a la humedad del suelo, pero existen
otros factores que perturban la sefial y que deben tenerse en cuenta, tales como la
temperatura del suelo y la vegetacién (Wigneron et al., 2007), la textura, rugosidad del suelo
(Wigneron et al., 2008) y la cubierta vegetal (Grant et al., 2007).

El valor efectivo del albedo de dispersion simple wtiene en cuenta los efectos de absorcion y
dispersién debidos a la cubierta vegetal (Kurum, 2013). En los algoritmos L2 y L3 de SMOS,
el valor de wes 0.06 6 0.08 en bosques (Kerr et al., 2012) y cero en cubiertas vegetales de escasa
vegetacion. Este tiltimo valor esta basado en el andlisis de campanas de medidas en banda L
(Wigneron et al., 2007) sobre ciertas areas agricolas y por lo tanto no es aplicable a todas las
clases de vegetacion. El estudio de wa escala global es reducido y no existe un gran nimero
de referencias al respecto. En el algoritmo de nivel 2 de SMAP, los valores de wdependen del
tipo de cobertura vegetal, variando de 0 a 0.08 (O’Neill et al., 2012), mientras que el producto
de nivel 4 de SMAP proporciona, entre otros pardmetros, estimaciones de ® a escala global
(De Lannoy et al., 2014). Otro estudio que trata el parametro @ a escala global es Konings et
al. (2016), donde se muestra un mapa de valores de w, con valores entre 0.02 y 0.04 para
coberturas vegetales de escasa vegetacion y w=0.03 —0.06 en bosques. Por su parte, el estudio
de Van Der Schalie et al. (2016) establece w = 0.12 como el valor mas representativo a escala
global tras aplicar el algoritmo LPRM (Land Parameter Retrieval Model) sobre las
observaciones de SMOS y comparando el resultado de humedad del suelo con diferentes
modelos.

Otros parametros que caracterizan la vegetacion en el algoritmo L-MEB son ttv and ttu. Estos
parametros cuantifican la influencia del dngulo de incidencia @ en el espesor dptico de la
vegetacion. Un estudio detallado de estos parametros fue llevado a cabo por Schwank et al.
(2012) en la Valencia Anchor Station demostrando que existen variaciones importantes en los
valores de ttp (p = H, V) entre verano e invierno y también entre las polarizaciones vertical y
horizontal. Sin embargo, a escala global estos parametros son dificiles de estimar debido a la
complejidad de los efectos del tronco de la planta, tallos, hojas y ramas, cuya orientacion es
altamente aleatoria. El valor de tfr en los algoritmos L2 y L3 de SMOS es invariable e igual a
1, suponiendo que la vegetacion es isotropica. Un valor de ttp>1 o ttr <1 supone asumir una
distribucion anisotropica de la vegetacion y conlleva, respectivamente, un incremento o un
decremento de 7, en funcién de 6.

Para tener en cuenta los efectos de la rugosidad del suelo, los algoritmos L2 y L3 de SMOS
incluyen cuatro parametros (Hgr, Qr, Nrx and Nrv) (Wigneron et al., 2007). El parametro Hr
tiene en cuenta la disminucion en la reflectividad del suelo debida a los efectos de rugosidad;
Qr parametriza los efectos de la polarizacién (mayor o menor influencia) y N&p (p=H, V) la
dependencia de la reflectividad con el angulo de incidencia. En ambos algoritmos (L2 and L3
de SMOS), el valor de Qr se supone igual a cero de manera global, mientras que a Nra y Nrv
se les asignan los valores 2 y 0, respectivamente. Por su parte, los valores de Hr vienen
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definidos en funcién de la clasificacion de usos del suelo ECOCLIMAP, siendo Hr = 0.3 en
bosque y Hr = 0.1 en el resto de suelos (Kerr et al., 2012). En el algoritmo de humedad del
suelo de SMAP L2, el valor de Hr es diferente segin la clasificacién IGBP (International
Geosphere-Biosphere), mientras que Nrp = 2 (p = H, V). A escala local, existen algunas
referencias sobre el valor de los parametros de rugosidad. Como ejemplo, el estudio de
Wigneron et al. (2007) arroja valores de Hr=0.1 - 0.2 para cultivos de soja y trigo y ~ 0.7 para
campos de maiz. En Espana, el estudio de Cano et al. (2010) estima el valor de Hr~ 0.35 sobre
la vegetaciéon de matorral mediterraneo, mientras que el parametro Qr se analiza en
Lawrence et al. (2013), concluyendo que Qr= 0 es un valor generalizable en ausencia de
condiciones de rugosidad extremas. En lo que respecta a los parametros Nra y Nry,
Escorihuela et al. (2007) y Lawrence et al. (2013) proponen una diferencia de Nrx — Nrv ~ 2
para superficies de poco relieve y (~ 1 — 1.5) para suelos rugosos.

Objetivos y organizacion

Esta tesis doctoral se enmarca dentro de los estudios de calibraciéon y validacién de los
algoritmos L2 y L3 de SMOS, elementos clave para la ESA. En estos, el impacto de los
parametros de rugosidad del suelo y vegetacion sobre las estimaciones de humedad del suelo
es de gran importancia. La falta de estudios suficientes que traten la calibracion de dichos
parametros a escala global es la principal motivacion de esta tesis.

El principal objetivo es la calibracién de los parametros de rugosidad del suelo y vegetacion,
creando un nuevo modelo. En primer lugar, dichos parametros se calibran y el modelo se
evaltia a escala local, en la Valencia Anchor Station; ésta es una estacion completamente
equipada para llevar a cabo experimentos en banda L, incluyendo el radiémetro ELBARA-II
proporcionado por ESA para asistir en la validacion de SMOS. En segundo lugar, el objetivo
es trasladar la calibracién de los mismos parametros a escala global, creando un nuevo
producto de SMOS.

Los objetivos especificos de esta tesis se detallan a continuacion:

e Procesar los datos primarios del radiometro ELBARA-II, asi como medidas in situ
de humedad y temperatura del suelo en la Valencia Anchor Station, incluyendo
medidas detalladas de rugosidad del suelo.

e Encontrar la combinacién de parametros de rugosidad del suelo y vegetacion que
optimizan las estimaciones de humedad del suelo en la Valencia Anchor Station
aplicando el modelo L-MEB a series temporales extensas de datos de ELBARA-II.

e Simplificar el algoritmo de SMOS considerando pixeles homogéneos.

e Calibrar los parametros de vegetacion y rugosidad del suelo en el modelo L-MEB a
escala global con los datos de temperatura de brillo de SMOS y las medidas de
humedad del suelo de la red de estaciones de medida ISMN (International Soil
Moisture Network), usadas como referencia.

e  Crear un nuevo producto de humedad del suelo y espesor ptico de la vegetacion,
basado en la calibracién previa.
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e Evaluar el nuevo producto de SMOS con datos in situ, estimaciones de modelos y
datos de satélite.

Resultados y conclusiones

Los resultados y conclusiones de esta tesis se refieren a los tres articulos de los que esta
compuesta, anexos al final de este documento. El primero, es el Articulo 1 (Fernandez-Moran
et al., 2015), basado en resultados de la Valencia Anchor Station, al que le siguen las dos
publicaciones de calibracion y evaluacion a escala global, el Articulo 2 (Fernandez-Moran et
al, 2017b) y Articulo 3 (Fernandez-Moran et al, 2017a). La metodologia y resultados
completos pueden consultarse en los articulos sefialados.

e Articulo 1: “Parametrizaciones de rugosidad del suelo y vegetacién en banda L
para la estimacion de la humedad del suelo en un campo de vifias”

La primera publicacion de esta tesis trata sobre el impacto a escala local de diversas
parametrizaciones de la rugosidad del suelo y vegetacion en las estimaciones de humedad
del suelo (Fernandez-Moran et al., 2015). Con este objetivo, se utilizaron diferentes datos
procedentes de la Valencia Anchor Station; por un lado, las observaciones en banda L del
radiémetro ELBARA-II y la medicién automatizada de la humedad del suelo efectuada con
los sensores Delta-T ML2x, asi como una campana de medidas de rugosidad del suelo
realizadas con un rugosimetro, o perfilador de la rugosidad del suelo.

En este estudio se emplearon diferentes valores de los parametros de rugosidad (Hr Qr Nrv,
Nrr) como entradas en el modelo L-MEB. En una primera etapa, se procedio a la estimacion
(recuperacion) de dos parametros resultantes (2-P), concretamente la humedad del suelo y el
espesor Optico de la vegetacion en nadir (Tyap)- En una segunda fase, se realizo una
estimacion (recuperacion) de tres parametros (3-P), afiadiendo a los anteriores el parametro
de vegetacion ttv.

Se demostr6 que al fijar el pardmetro Nrp=-1 (p = H, V) en las estimaciones 2-P (suponiendo
w = 0), la ecuacién para el calculo de la temperatura de brillo se simplificaba. Este nuevo
método se denomind SRP (Simplified Roughness Parameterizacion). Con dicho método, los
parametros de rugosidad del suelo Hr y vegetacion Tyap se simplifican en un solo pardmetro
(TR) de salida en el modelo L-MEB. Esta combinacion implica la necesidad de calibrar el
parametro Hg, ya estando implicita su contribucion en el parametro de salida TR, que se
extrae conjuntamente con la humedad del suelo.

Con el método SRP se obtuvieron las mejores estimaciones de humedad del suelo al
maximizar la correlacion (R) y minimizar el error cuadratico medio sin sesgo (ECM),
obtenido al comparar dichas estimaciones con las medidas in situ de humedad del suelo de
los sensores Delta-T ML2x, considerados como referencia en la Valencia Anchor Station. No
se obtuvo, sin embargo, el menor sesgo absoluto con el método SRP. Una de las posibles
causas de los valores de sesgo negativos que se encontraron es la diferencia en la profundidad
de muestreo de las estimaciones del radidometro frente a las medidas in situ (= 0-6 cm).
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En cuanto a las estimaciones 3-P, se encontraron correlaciones mas altas y un descenso del
ECM frente a las estimaciones 2-P, mientras que el sesgo absoluto obtenido fue notablemente
mas alto. La ventaja del método 3-P frente al 2-P puede deberse al hecho de que el primero
tiene en cuenta las caracteristicas propias de las vifias, con una orientaciéon de sus ramas
fundamentalmente vertical. En el método 3-P, ttv tiene en cuenta el efecto del angulo de
incidencia sobre el espesor 6ptico de la vegetacion en polarizacion vertical. Sin embargo, en
las estimaciones 2-P, ttv y ttn son considerados iguales (ttv = tf1=1) y por tanto la vegetacién
se supone isotropica, lo que significa que no se tienen en cuenta los cambios en la estructura
de la vegetacion en relacién con su ciclo de crecimiento y senescencia, o las practicas
agricolas.

Aungque los valores estadisticos de este estudio indicaron que el método 3-P fue el mas
adecuado, la desventaja de este método reside en su dependencia del parametro Hr. Dicha
dependencia, sin embargo, fue menos pronunciada en el caso Nrv = Nru = -1. Esta tiltima
suposicion, por lo tanto, resulto ser la mas conveniente para los modelos 2-P y 3-P. Para el
resto de combinaciones de Hr Qr Nrv y Nra donde Nrp # -1, se encontré una correlacion
decreciente y ECM creciente, al aumentar los valores de Hr.

Por otro lado, el uso de las estimaciones de rugosidad del suelo a partir de una campana de
medidas in situ, no demostré una mejora en las estimaciones de la humedad del suelo
respecto al método SRP. Sin embargo, su estudio fue de gran utilidad para confirmar que la
sefal de Ty ,p en el modelo 2-P esta afectada por los cambios de rugosidad en el terreno; estos
cambios son principalmente debidos a las lluvias y practicas agricolas.

En conclusion, este estudio presenta el método SRP como una interesante alternativa que
permite tener en cuenta los efectos de rugosidad del suelo en la estimacion de la humedad
del suelo, sin necesidad de calibrar el parametro Hr.

e Articulo 2: “Una nueva calibracion de los parametros de rugosidad del suelo y
albedo de dispersion simple en el algoritmo de humedad del suelo de SMOS”

Con el objetivo de confirmar los hallazgos del estudio anterior (Fernandez-Moran et al., 2015),
se desarrolld un nuevo estudio a escala global usando los datos de temperatura de brillo de
SMOS (Fernandez-Moran et al., 2017b) (en el estudio anterior los datos de temperatura de
brillo provenian del radiometro ELBARA-II situado en la Valencia Anchor Station). Este
estudio se centrd en la calibracion de los parametros de rugosidad del suelo (Hr, Nru y Nrv)
y vegetacion (mediante el pardmetro w). Para ello, se utiliz6 un amplio rango de valores de
los citados parametros, obteniendo humedad del suelo y Tyap en un niimero significativo de
estaciones donde existen medidas in situ de humedad del suelo. Dichas estaciones estan
situadas en diversas zonas geograficas con coberturas vegetales variables.

Los algoritmos L2 y L3 de SMOS tienen en cuenta diferentes fracciones de suelo (suelo
desnudo o con escasa vegetacion, bosque, agua, ciudad, etc.) dentro de cada footprint de
SMOS. Sin embargo, la estimacion de parametros (es decir, humedad del suelo y Tyap), solo
se realiza sobre una fraccién: o bien la nominal (area de vegetacion escasa) en la mayor parte
de los casos, o sobre bosque. Se estiman también los valores de temperatura de brillo de las
fracciones de pixel que no se consideran para la obtencion de la humedad del suelo y Tyap.
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En el caso de la fraccion de bosque, esta estimacion se realiza en base a datos auxiliares de
humedad del suelo del modelo proporcionados por ECMWE (Centro Europeo de
Previsiones Meteoroldgicas a Medio Plazo). Segun el estudio de Wigneron et al. (2012), el
sesgo introducido en el modelo debido a estos datos auxiliares, produce una subestimacion
de la humedad del suelo en regiones boscosas. Con el fin de evitar dicha subestimacién y
simplificar el algoritmo, en este estudio (Articulo 2) se uso la temperatura de brillo de nivel 3
de SMOS como entrada en el modelo, suponiendo una distribucion homogénea del pixel. A
este procedimiento se le denomind algoritmo simplificado.

Las estimaciones de humedad del suelo se compararon con las correspondientes medidas in
situ procedentes de la red de estaciones de medida ISMN (International Soil Moisture
Network) en el periodo 2011 — 2013 y se evaluaron mediante diferentes estadisticos (R, sesgo
y ECM). En el estudio, solo se consideraron aquellas estaciones contenidas en pixeles
suficientemente homogéneos. Para calibrar los pardmetros de vegetacion y rugosidad del
suelo en el algoritmo, se buscd un compromiso entre los valores éptimos de los estadisticos
analizados; el sesgo se considerd como el criterio menos importante, debido a la diferencia
entre la profundidad de muestreo de las medidas in situ (0-5 cm) y las estimaciones de SMOS
en banda L (~ 0-3 cm).

Las estimaciones de humedad del suelo evaluadas mediante los estadisticos anteriormente
expuestos, mostraron una gran sensibilidad de la humedad del suelo a los valores de w;
siendo w ~ 0.10 el valor 6ptimo para todos los estadisticos. Por el contrario, se demostrd que
la calibracion del parametro Hr requiere el compromiso entre los valores de sesgo absoluto
(menores cuanto mayor es Hr) y el ECM (menor cuanto menor es Hr). Los resultados también
mostraron que el aumento de w y la disminucién de Hr conllevan una subestimacion de la
humedad del suelo.

El estudio estableci6 los valores w = 0.10, Hr = 0.4 y Nrp = -1 (p = H, V) como 6ptimos a
escala global. Estos resultados concuerdan con las conclusiones extraidas del anterior
estudio en la Valencia Anchor Station (Fernandez-Moran et al., 2015), donde se proponia el
método SRP, siendo Nrp = -1. Sin embargo, en el método SRP, el valor de w no se calibré y se
fij6 a 0 (siguiendo los algoritmos L2 y L3 de SMOS). Esta nueva calibracion del parametro w
es consistente con los mapas de w de nivel 4 de SMAP (w = 0.09 + 0.07) y el estudio de Van
der Schalie et al. (2016), que obtuvo un valor de w igual a 0.12 después de aplicar el modelo
LPRM (Land Parameter Retrieval Model) y evaluar las estimaciones de humedad del suelo
resultantes frente a las estimaciones de ERA-Interim/Land y MERRA-Land. Este estudio
también mostréd que el impacto de la rugosidad del suelo sobre la correlaciéon entre las
estimaciones y los modelos es despreciable cuando se supone w = 0.12. Por otro lado, el
estudio de Konings et al. (2016) muestra valores de w entre 0.02 y 0.06, mientras que tanto en
el algoritmo de nivel 2 como en el de nivel 3 de SMOS, el valor de w es 0.06 — 0.08 para bosques
y 0 para el resto de coberturas vegetales.

Para realizar la clasificacion de las estaciones in situ, se usé el esquema IGBP (International
Geosphere-Biosphere) y se propusieron diferentes valores de Hr, Nrp (p=H, V) y w para cada
clase. Los valores de Hr variaban entre la vegetacion poco densa (Hr ~ 0.1) y el resto de
coberturas (entre 0.4 y 0.5) y se estableci6 Nrp = -1 a escala global. Los resultados son
consecuentes con los de Parrens et al. (2017), estudio en el que se calibré el parametro Hr
usando estimaciones de SMOS y LAI (Leaf Area Index) de MODIS (Moderate-Resolution
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Imaging Spectroradiometer). Por otro lado, se propusieron valores de w entre 0.06 y 0.08.

El algoritmo simplificado con las calibraciones propuestas en este estudio, se evalué con los
datos in situ de humedad del suelo de las estaciones ISMN (incluyendo y excluyendo aquellas
estaciones empleadas en el proceso de calibracion). Las estadisticas mostraron que tanto
usando los parametros calibrados globalmente como los dependientes de la clasificacién
IGBP, se obtuvieron valores éptimos de humedad del suelo respecto a aquellos obtenidos
con el producto oficial de nivel 3 de SMOS (version 300): siendo R =0.61, sesgo =-0.01 m3>m3
y ECM =0.062 m*m?3 para el algoritmo simplificado (con la calibraciéon dependiente de IGBP)
y R =0.54, sesgo = -0.034 m*m? y ECM = 0.070 m?>m? para el producto oficial de nivel 3 de
SMOS. Esta mejora no se pudo demostrar como una consecuencia del uso de pixeles
homogéneos. No obstante, el algoritmo de nivel 3 de SMOS mostré un efecto de
subestimacion de la humedad del suelo asociado al uso de pixeles heterogéneos. Esto se
demostré ya que al emplear el algoritmo simplificado (pixeles homogéneos) con una
configuracion de pardmetros de entrada en el modelo L-MEB similares a los del algoritmo
L3 de SMQOS, se obtuvo un sesgo de 0.028 m>m?, frente a -0.034 m3m= obtenido con el
producto oficial L3 de SMOS (pixeles heterogéneos).

Los resultados de este estudio tendran consecuencias directas en la calibracién de los
parametros de rugosidad del suelo y vegetacion en las versiones oficiales futuras de los
algoritmos L2 y L3 de SMOS. Sus resultados son la base de un nuevo producto desarrollado
entre INRA (Institute National de la Recherche Agronomique) y CESBIO (Centre d’Etudes
Spatiales de la BIOspheére), denominado SMOS-IC (SMOS-INRA-CESBIO). La simplicidad
de este algoritmo supone en la practica la implementacion de un procesador eficiente y
rapido, capaz de generar varios afnos de datos en unas cuantas horas mediante el uso de una
supercomputadora.

e Articulo 3: “SMOS-IC: Un producto alternativo de humedad del suelo y espesor
optico de la vegetacion de SMOS”

El producto SMOS-IC (Fernandez-Moran et al., 2017a) proporciona diariamente la humedad
del sueloy Tyap aescala global. En esta tesis se empled una version de prueba (v102) de dicho
producto, el cual se presenta en formato NetCDF con una malla EASE 2.0 (Equal-Area
Scalable Earth) de 25 x 25 km? (Armstrong et al., 1997), al igual que los productos de nivel 3
de SMOS.

El algoritmo de SMOS-IC simplifica el de nivel 3 de SMOS y no tiene en cuenta ciertas
correcciones relativas al patrén de radiacion de la antena y el angulo de vision. El principal
dato de entrada en el algoritmo de SMOS-IC para el proceso de inversion de L-MEB es el
producto multi-angular y en doble polarizacion de TB de nivel 3 de SMOS. En el algoritmo
se consideran los pixeles como homogéneos para evitar posibles errores en los datos que se
emplean para la caracterizacion de la heterogeneidad del pixel. En concreto, SMOS-IC no se
basa en datos LAI de MODIS ni de humedad del suelo de ECMWE; de estos tiltimos, ademas,
se conoce su subestimacion de la humedad del suelo (Albergel et al., 2012).

En SMOS-IC, los pardmetros de entrada del modelo L-MEB relativos a rugosidad del suelo
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(Hr) y w se estiman en funcion de su categoria en la clasificacion IGBP. Estos valores se
derivaron de la calibracion del Articulo 2 mostrado anteriormente (Fernandez-Moran et al.,
2017b) y los mapas de rugosidad Hr estimados por Parrens et al. (2016).

En el Articulo 3 (Fernandez-Moran et al.; 2017a), se presenta SMOS-IC y se muestra una
evaluacion a escala global. Para ello, la humedad del suelo del producto oficial de SMOS de
nivel 3 (version 300) y de SMOS-IC se compararon globalmente con la humedad del suelo
del modelo ECMWE en el periodo 2010 — 2015. Este analisis es una extension de la evaluacion
mostrada en el Articulo 2 (Fernandez-Moran et al., 2017b), donde se utilizaron como
referencia un gran nimero de estaciones de la red internacional ISMN.

Se demostrd que, a escala global, tanto SMOS-IC como el producto de nivel 3 de SMOS
subestimaron la humedad del suelo con respecto a las estimaciones del modelo ECMWE.
Este resultado puede explicarse en parte por la diferencia en la profundidad de muestreo del
modelo ECMWEF (los primeros 7 cm superficiales) frente a SMOS (~ 0 - 3 cm). Por regla
general, se encontrd una correlacién mas elevada y menor ECM (error cuadratico medio)
para SMOS-IC que para el producto de nivel 3 de SMOS.

En cuanto a la evaluacion del espesor 6ptico de la vegetacion tyap, se empled el indice NDVI
como referencia. Este indice es un estimador habitual del parametro 7y, en banda L para
coberturas de poca densidad vegetal durante el periodo de crecimiento de la vegetacion
(O'Neill et al., 2012; Wigneron et al., 2007, Lawrence et al., 2014; Grant et al., 2016). Sin
embargo, deben sefialarse algunas diferencias entre ambos productos. En primer lugar, el
indice NDVI se obtiene mediante sensores 6pticos (y no de microondas). En segundo lugar,
el indice NDVI permite monitorizar el verdor de la vegetacién, mientras que el indice Tyap
se relaciona con el contenido en agua de la vegetacion (incluyendo fundamentalmente tallos,
ramas y troncos). Los valores de tyap de SMOS-IC presentaron un menor rango de valores
(~ 0-1.3) respecto al correspondiente producto de nivel 3 de SMOS (~ 0-1.5) y, en general, se
encontraron correlaciones mas altas entre el indice Tyapde SMOS-IC y el indice NDVI de
MODIS, que entre el indice Tyspde nivel 3 de SMOS y el NDVL

Los buenos resultados hallados en este estudio, demuestran la utilidad e impacto de SMOS-
IC en la evaluacion y futura mejora de los productos oficiales de nivel 2 y 3 de SMOS.
Ademas, al asumir la homogeneidad de los pixeles, SMOS-IC se alinea con otros algoritmos
como el de SMAP o el de AMSR-E (Advanced Microwave Scanning Radiometer); este altimo
ofreciendo estimaciones de humedad del suelo en banda C.

Nuevos estudios que incluyan la validacion de SMOS-IC a escala global seran de gran
utilidad. Los resultados de esta tesis abren futuras vias de estudio; entre ellas se encuentra la
inter-comparacién de los productos de humedad del suelo y Tyap con datos de satélite tales
como la humedad del suelo de SMAP y AMSR-E, el indice LAI de MODIS, medidas de
biomasa de los bosques o estimaciones de humedad del suelo de modelos como MERRA
(Modern-Era Retrospective analysis for Research and Applications) (Reichle et al., 2011).

La simplicidad del algoritmo de SMOS-IC permite implementar mejoras en el algoritmo con
mayor rapidez. Una propuesta de futuro es la utilizacién de temperaturas de suelo y
vegetacion de otros modelos diferentes a ECMWE, o incluso datos de satélite, como entradas
en el modelo L-MEB. Otra opcién de interés es la estimacién de tres parametros (3-P), donde
la humedad del suelo y Tyap se estiman junto a la temperatura efectiva del suelo/vegetacion.
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ABSTRACT

The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has
been analyzed in numerous studies, mostly in the framework of the Soil Moisture Ocean
Salinity (SMOS) and near future SMAP (Soil Moisture Active Passive) space borne missions.
While the soil moisture of the first centimeters of the soil surface (~3 cm) is strongly related
to the Brightness Temperature (TB) measurements, other parameters must be accounted for
in order to produce accurate estimations of SM. To retrieve SM from L-band radiometric
observations, two significant effects have to be accounted for: soil roughness and vegetation.
In the first part of this thesis, the effects of soil roughness on retrieved SM values were
evaluated using in-situ observations acquired by the L-band ELBARA-II radiometer, over a
vineyard field at the Valencia Anchor Station (VAS) site during the year 2013. In the SMOS
algorithm, L-MEB (L-band Microwave Emission of the Biosphere) is the forward model.
Different combinations of the values of the model parameters used to account for soil
roughness effects (Hr Qr Nri and Nrv) were evaluated. The evaluations were made by
comparing in-situ measurements of SM (used here as a reference) against SM retrievals
derived from tower-based ELBARA-II brightness temperatures. The general retrieval
approach consists of the inversion of L-MEB. Two specific configurations were tested: the
classical 2-Parameter (2-P) retrieval configuration [where SM and 7y, (vegetation optical
depth at nadir) were retrieved] and a 3-Parameter (3-P) configuration, accounting for the

additional effects of the vineyard vegetation structure.

Using the 2-P configuration, it was found that setting Nre (P = H or V) equal to -1 produced
the best SM estimations in terms of correlation and unbiased Root Mean Square Error
(ubRMSE). The assumption Nrv = Nri= -1 leads to a simplification in L-MEB, since the two
parameters Ty, and Hr can be grouped and retrieved as a single parameter (method defined
here as the Simplified Retrieval Method (SRP)). A main advantage of the SRP method is that
it is not necessary to calibrate the value of Hr before performing SM retrievals. Using the 3-P
configuration, improved results were obtained in the SM retrievals in terms of correlation
and ubRMSE. Finally, it was found that the use of in-situ roughness measurements to
calibrate the values of the roughness model parameters did not provide significant

improvements in the SM retrievals in comparison with the SRP method.

The second part of the thesis focuses on the calibration of the effective vegetation scattering
albedo (w) and surface soil roughness parameters in the SM retrieval at global scale. In the
current SMOS Level 2 (L2) and Level 3 (L3) retrieval algorithms, low vegetated areas are

parameterized by w =0 and Hr = 0.1, whereas values of w = 0.06 - 0.08 and Hr = 0.3 are used
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for forests. Several parameterizations of the vegetation and soil roughness parameters (w, Hr
and Nrp, p = H, V) were tested. In addition, the inversion approach was simplified by
considering the SMOS pixels as homogeneous instead of retrieving SM only over a fraction
of the pixel (excluding forested areas), as implemented in the operational SMOS L2 and L3
algorithms. Globally-constant values of w = 0.10, Hr = 0.4 and Nrp =-1 (p = H, V) were found
to yield SM retrievals that compared best with in situ SM data measured at many sites
worldwide from the International Soil Moisture Network (ISMN). The calibration was
repeated for collections of in situ sites classified in different land cover categories based on
the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP
land cover class, values of w and Hr varied, respectively, in the range 0.08 - 0.12 and 0.1 - 0.5.
A validation exercise based on in situ measurements confirmed that using either a global or
an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals
compared to the SMOS L3 SM product considering all statistical metrics. This result is a key
step in the calibration of the roughness and vegetation parameters of future versions of the
operational SMOS retrieval algorithm. This result was also at the base of the development of
the so-called SMOS-INRA-CESBIO (SMOS-IC) product.

The SMOS-IC product provides daily values of the SM and 7yap parameters at the global
scale and differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of
retrievals over heterogeneous pixels. SMOS-IC is much simpler and does not account for
corrections associated to the antenna pattern and the complex SMOS viewing angle
geometry. It considers pixels as homogeneous to avoid uncertainties and errors linked to
inconsistent auxiliary data sets which are used to characterize the pixel heterogeneity in the
SMOS L3 algorithm. SMOS-IC also differs from the current SMOSL3 product (Version 300,
V300) in the values of the effective vegetation scattering albedo (w) and soil roughness
parameters. An inter-comparison of the SMOS-IC and SMO3L3 products (V300) is presented
in this thesis based on the use of ECMWF (European Center for Medium range Weather
Forecasting) SM and NDVI (Normalized Difference Vegetation Index) from MODIS
(Moderate-Resolution Imaging Spectroradiometer). A 6 year (2010-2015) inter-comparison of
the two SMOS products (SMOS-IC and SMOSL3 SM (V300)) with ECMWEF SM yielded
higher correlations and lower ubRMSD (unbiased root mean square difference) for SMOS-
IC over most of the pixels. In terms of tyap, SMOS-IC was found to be better correlated to
MODIS NDVI in most regions of the globe, with the exception of the Amazonian basin and
of the northern mid-latitudes. The SMOS-IC VOD product is now extensively used in
applications analyzing the impact of droughts on vegetation carbon budgets/biomass at

continental scales.
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1 INTRODUCTION

The references to Article 1, 2 and 3 correspond to the articles
annexed at the end of this PhD thesis

his chapter intends to introduce the significance of soil moisture at global scale in the
T context of the Soil Moisture and Ocean Salinity (SMOS) mission. It defines briefly the

main concepts and presents the data used in the three papers annexed at the end of
this document, where an extensive methodology for each study can be found. It also shows
the motivation of this PhD study and the thesis outline.

1.1 Background

1.1.1  Soil moisture

Soil moisture is a key element of the global water cycle which allows us to determine the
water and energy fluxes at the surface-atmosphere interface. Direct observations of soil
moisture from the space allow improved estimates of water, energy and carbon transfers
between the land and the atmosphere. Soil moisture is a physical parameter of interest for
many hydrological and agricultural applications (Brocca et al., 2010), weather and climate
predictions (de Rosnay et al., 2013) and early warning of natural hazards.

Before being saturated, any soil absorbs a given amount of water depending of its
composition. Soil moisture interacts directly with the atmosphere through
evapotranspiration and it is related with soil infiltration. The fluxes of sensible heat and
moisture at the base of the atmosphere influence the evolution of weather, then soil moisture
is often a significant factor in the performance of atmospheric models. For numerical weather
prediction (NWP) models, soil moisture is used in forecast initialization. Accurate soil
moisture information enhances their prediction skills.

The availability of soil moisture data set at global scale permits drought monitoring and plant
water stress. Moreover, natural hazards including floods and landslides can be detected,
allowing disaster preparation and response. Flood prediction models require soil moisture
information to understand the partitioning of precipitation into infiltration and runoff.
Similarly, soil moisture plays an important role in the landslides over mountainous areas.
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Another application of soil moisture information is on agriculture for crop management and
forecasting extreme events. Vegetation health and growth is linked directly to the amount of
water available in the root zone (up to 1-2 m), and this zone is related to the soil moisture
measured in the first centimetres of the soil surface. Particularly, the estimation of plant
productivity requires information of the plant water stress, soil moisture status and potential
frost damage.

The measurement of soil moisture from satellite data is possible due to the strong
dependence of surface soil moisture (first centimetres of soil) to the emitted brightness
temperature (TB) at L-band. The sensitivity of the measured TB with respect to soil moisture
is due to the fact that soil emissivity in the microwave domain is highly related to the soil
dielectric constant which is mainly determined by soil moisture.

Surface soil moisture is defined as the fraction of water contained in a volume of humid soil,
considering a superficial soil layer of a few centimeters (WMO, https://www.wmo-
sat.info/oscar/variables/view/149). It can be expressed gravimetrically or volumetrically. In
this study, the ratio of water volume to the volume of the soil containing is used (m*m?3).

11.2 SMOS

SMOS (Soil Moisture Ocean and Salinity) is the first mission dedicated to the measurement
of moisture (Kerr et al., 2012) and salinity at the surface water of the oceans (Reul et al., 2014).
It was launched in November 2009 by the European Space Agency (ESA) and followed by
the Soil Moisture Active Passive (SMAP) mission from National Aeronautics and Space
Administration (NASA), launched in January 2015 (Entekhabi et al., 2010). The development
of the SMOS mission was led by the European Space Agency (ESA) in collaboration with the
Centro para el Desarrollo Tecnolégico Industrial (CDTI) in Spain and the Centre National d’Etudes
Spatiales (CNES) in France. SMOS carries a full polarization L-band 2-D interferometric
radiometer operating in the 1400 — 1427 MHz protected band (Kerr et al., 2001) and achieves
a spatial resolution of around 50 km (43 km on average over the field of view). Moreover, it
provides multi-angular dual polarized TB over the globe with a revisit time of less than 3
days.

Soil moisture in the first centimetres of the soil surface (~ 0 - 3 cm) is strongly related to the
measurements of the emitted TB at L-band (Escorihuela et al., 2010; Njoku and Kong, 1977).
Currently, SMOS and SMAP missions provide global maps of soil moisture and vegetation
optical depth (only operational in the case of SMOS for the latter). The vegetation optical
depth is related to vegetation characteristics such as water content and vegetation structure
(Grant et al., 2016).

The L-band Microwave Emission of the Biosphere (L-MEB) model is the core of the SMOS
level 2 (L2) and 3 (L3) retrieval algorithms (Kerr et al., 2012). In these algorithms, the radiative
transfer model (Mo et al., 1982) parameters related to soil roughness and some vegetation
parameters (Wigneron et al., 2007) are considered to be time independent and their values
are computed based on a land cover map (ECOCLIMAP, Masson et al., 2003).

The SMOS data products are delivered up to level 4 inclusive. The L1 product is the primary
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measurement of the SMOS radiometer, i.e. brightness temperature. The L2 and L3 products
offer the retrieved soil moisture and vegetation optical depth and all the ancillary data
involved in the processing; these products are geo-located, respectively, on the Icosahedral
Snyder Equal Area (ISEA) 4H9 grid (Talone et al.,, 2015) and Equal-Area Scalable Earth
(EASE) grid 2.0 (Armstrong et al., 1997).

1.1.3 L-MEB model: Soil moisture and vegetation optical depth retrieval

The L-MEB model (Wigneron et al., 2007) is the forward model used in the SMOS L2 and L3
soil moisture algorithms, and the basis of all soil moisture and vegetation optical depth
retrievals showed in this study. This model uses multi-angular TB data in horizontal (H) and
vertical (V) polarization and an iterative approach which consists on minimizing a Bayesian
cost function based on the differences between the observed and the simulated brightness
temperature, for all observation angles. This function accounts for the observation
uncertainty, and also contains a prior parameter constraint for the parameters to be retrieved
(soil moisture and vegetation optical depth in the L2 and L3 SMOS algorithms).

L-MEB models the emission of a vegetation-covered soil, taking into account the
contributions of soil, vegetation and sky radiation contributions. The model represents the
soil as a rough surface with a vegetation layer. The simulated TB from the soil vegetation
medium is calculated as the sum of the direct vegetation emission, the soil emission
attenuated by the canopy and the vegetation emission reflected by the soil and attenuated by
the canopy.

Soil moisture and soil emission are linked through the use of the Mironov et al. (2012)
dielectric model and the Fresnel equations, which relate soil moisture to soil dielectric
constant, and the latter to the soil reflectivity of a smooth surface. The soil roughness effects
are considered through a semi-empirical approach. Besides, vegetation is accounted through
the zero-order 7-w radiative transfer model (Mo et al., 1982), where t denotes the vegetation
optical depth and w the single scattering albedo.

1.1.4 Soil roughness and vegetation parameters in L-MEB

At L-band, the measured TB is highly sensitive to soil moisture, but it is important to account
for other factors such as soil and vegetation temperatures (Wigneron et al., 2007), soil texture
and roughness (Wigneron et al., 2008) and vegetation cover and litter (Grant et al., 2007).

The effective vegetation scattering albedo ® accounts for absorption and scattering effects
within the vegetation canopy (Kurum, 2013). In the current L2 and L3 SMOS algorithms, the
value of w is assumed to be 0.06 — 0.08 over forests (Kerr et al., 2012), and zero over low
vegetation canopies (non-forested biomes). The value of w assigned to low vegetation is
based on the analysis of tower-based L-band radiometric measurements (Wigneron et al.,
2007) but it may not be accurate for all canopy types as it was studied over few specific
agricultural sites. Few studies can be found in the literature investigating w at a global scale.
In the SMAP L2 algorithm, the values of w are based on the vegetation type (O'Neill et al.,
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2012) varying from 0 to 0.08. Additionally, the SMAP L4 product globally provides variable
estimates of the effective scattering albedo (and all other parameters) (De Lannoy et al., 2014).
The study of Konings et al. (2016) gives values of w = 0.02 — 0.04 over low vegetation and 0.03
—0.06 over forested areas. On the other hand, the study of Van Der Schalie et al. (2016) found
globally an optimal value of w = 0.12 after applying the Land Parameter Retrieval Model
(LPRM) on SMOS observations against different modelled soil moisture data.

Other parameters that account for vegetation effects in the L-MEB algorithm are ttv and ttm.
These parameters are used to quantify the dependence of vegetation optical depth (7p) on
the incidence angle €. The study of Schwank et al. (2012) focused on the calibration of those
parameters after carrying out an experiment at the Valencia Anchor Station (VAS). This study
found significant variations of tf, (p = H, V) between summer and winter and also for
horizontal and vertical polarization. However, accounting for these effects at global scale is a
difficult task due to the complex effects of trunks, stems, branches and leaves, with irregular
and random orientation. For that reason, in the SMOS L2 and L3 algorithms a value of tfr=1
is assumed. This value corresponds to the isotropic case in which 7p is polarization
independent (ty3(0) = 7y(0) = Tnap)- A value of ttr > 1 or ttr < 1 leads to an increase or
decrease of 7p as function of 8 corresponding to anisotropic vegetation.

In terms of soil roughness, the SMOS L2 and L3 retrieval algorithms include four parameters
(Hg, Qr, Nra and Nrv) (Wigneron et al., 2007). The parameter Hr accounts for the decrease in
the soil reflectivity due to soil roughness effects, Qr for polarization mixing effects, and Nrp
(p =H, V) for the angular dependence of reflectivity. In the SMOS L2 and L3 soil moisture
retrieval algorithms, Qr s fixed globally to 0, while Nru and Nrv are set to 2 and 0 respectively.
The value of Hr is defined based on the ECOCLIMAP classification schema, with Hr= 0.3 for
forests and Hr = 0.1 for the rest of the cover types (Kerr et al.,, 2012). In the SMAP L2 soil
moisture algorithm, Nrp =2 (p = H, V) and the value of Hr differs from the International
Geosphere-Biosphere (IGBP) classes. Some studies have been done over specific vegetation
types. For instance, Wigneron et al. (2007) found values of Hr=0.1 - 0.2 for soybean and wheat
crops and ~ 0.7 for corn fields. Over Spain, Cano et al. (2010) estimated that Hr~ 0.35 over
Mediterranean vegetation. Regarding the Qr parameter, Lawrence et al. (2013) found that Qr
=0 is a reasonable value for non-extreme roughness conditions. As for the parameters Nru
and Nrv, Escorihuela et al. (2007) and Lawrence et al. (2013) proposed a difference of Nru —
Nrv ~ 2 for smooth surfaces and (~ 1 - 1.5) for rough soils.

1.2 Research objectives

This PhD research is part of the studies developed in the frame of the SMOS mission. The
calibration of the SMOS L2 and L3 algorithms and the validation of SMOS soil moisture are
key elements for ESA. In these algorithms, soil roughness and vegetation parameters have
an important impact on the retrieved soil moisture. The lack of sufficient studies about the
calibration of these parameters at global scale is the main motivation of this PhD thesis.

The first main objective is the calibration of the soil roughness and vegetation parameters,
creating a new model. Firstly, these parameters are calibrated and the model is evaluated at
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local scale, specifically at the VAS, a fully-equipped station where very specific in situ
experiments can be carried out. In a second step, a similar calibration and evaluation is done
at global scale and a new SMOS product is developed.

The particular objectives are listed in the following;:

1. Process the ELBARA-II raw data, soil moisture and soil temperature measurements
at the VAS. Perform regular in situ soil roughness measurements.

2. Find the optimal combination of soil roughness and vegetation parameters that
produce the best soil moisture retrievals at the VAS applying the L-MEB model to
long temporal series of ELBARA-II data.

3. Simplify the SMOS retrieval algorithm using an approach based on homogeneous
pixels.

4. Calibrate the soil roughness and vegetation parameters in the L-MEB model at
global scale using SMOS TB data where the soil moisture measurements from the
ISMN are used as reference.

5. Create a new product of soil moisture and vegetation optical depth based on the
previous calibration

6. Evaluate the new product with in situ, modelled and satellite data.

1.3 Thesis outline

The thesis Chapter 1 intends to introduce the objectives of this thesis and also provide
background information on soil moisture estimation at L-band. Chapter 2 shows a summary
of the main results and conclusions from the three articles that make up this thesis, in answer
to the research objectives previously addressed. Chapter “References” lists the main and
basic bibliography for the contents presented in here and additionally a “List of publications”
is given, where all articles (national and international) and conference proceedings, poster
and oral presentations are listed. The previous Chapters are followed by an original copy of
the three papers, where their particular methodology, data and results are well detailed.

Article 1 (Fernandez-Moran et al., 2015) is a local experiment taken at the Valencia Anchor
Station where fieldwork was combined with data analysis, modelling, calibration and
validation. Its aim was the calibration of the soil roughness and vegetation parameters in the
L-MEB model in a vineyard field within the VAS. This paper proposed a method in which
soil moisture could be retrieved jointly with a combination of both vegetation optical depth
and Hr, as both parameters were demonstrated to be strongly linked and not easily
decoupled. The method did not require Hr and it was found that the use of in situ soil
roughness measurements did not improve the soil moisture retrieval.

Article 2 (Fernandez-Moran et al., 2017b) is a global scale calibration of soil roughness and
vegetation parameters in the L-MEB model. The methodology extended the one presented
in Article 1 and included the calibration of the vegetation scattering albedo parameter. A
number of soil roughness and vegetation scattering albedo parameterizations were used in
the retrieval of soil moisture through a simple algorithm where homogeneous pixels were
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assumed. Then, the soil moisture retrieved from these different parameterizations was
compared to long term in situ soil moisture series coming from the International Soil Moisture
Network. A new SMOS product, called SMOS-IC, was developed based on this new
calibration.

Article 3 (Fernandez-Moran et al., 2017a) is a comparison exercise between the SMOS-IC soil
moisture and Tyap against, respectively, the soil moisture modelled by ECMWEF and the
NDVI from MODIS. The results were analysed against the SMOS L3 SM and tysp and
showed an improved performance of SMOS-IC in comparison to SMOS L3.
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2 SUMMARY AND CONCLUSIONS

(Fernandez-Moran et al., 2015), Article 2 (Fernandez-Moran et al., 2017b) and Article
3 (Fernandez-Moran et al., 2017a). An original copy of the three papers is annexed at
the end of this thesis.

T his chapter intends to show the main results and conclusions from Article 1

2.1 Roughness and vegetation parameterizations at L-band for soil
moisture retrievals over a vineyard field

The first study contained in this thesis aims at analysing the impact of several roughness and
vegetation parameterizations on soil moisture retrievals (Fernandez-Moran et al., 2015). To
this aim, different in situ data measured at the Valencia Anchor Station (VAS) were used,
namely the brightness temperature (TB) observations from the L-band ELBARA-II
radiometer, the soil moisture (SM) measured with two Delta-T ML2x soil moisture probes
and the in situ roughness measurements performed with a profiling needle board.

Several values of the roughness parameters (Hr Qr Nrv, Nrt) were set as inputs for the L-
MEB model. In a first step, two parameters were retrieved (2-P retrieval), namely soil
moisture and vegetation optical depth at nadir (tyap). Secondly, a 3-P retrieval was achieved,
adding the retrieval of the vegetation parameter (ttv) to the 2-P retrieval.

It was found that the original formulation of the soil roughness approach used to compute
TB could be simplified when setting Nrp=-1 (p = H, V) in the 2-P retrievals (where w = 0). We
called this the Simplified Roughness Parameterization (SRP) method. In this method, soil
roughness (Hr) and vegetation (in terms of Ty,p) parameters can be accounted for through a
single parameter (TR) that is retrieved (instead of Ty,p). Consequently, Hr does not need to
be calibrated, as its contribution is already accounted for in the TR parameter which is
simultaneously retrieved with SM.

According to the tests done at the VAS in 2013, it was found that the SRP method led to the
best retrievals of SM values in terms of correlation coefficient (R) and unbiased Root Mean
Square Error (ubRMSE) when compared with synchronous in situ SM measurements,
considered as the reference. Conversely, the lowest bias was found with other combinations
of the roughness parameters. Using the SRP configuration, the retrieved SM values
underestimated the measured ones for all tested configurations. However, this result could
be partly explained by the different sampling depths of the retrieved SM data (~ 0-3 cm)
(Escorihuela et al., 2010) and of the in situ measurements (= 0 — 6 cm), which may affect the
analyses in a way or another.

The 3-P retrieval at the VAS generally led to improved results in terms of correlation R and
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ubRMSE against the 2-P retrieval, but the bias between the measured and retrieved SM data
was generally larger. This improvement could be due to the fact that the specific structural
characteristics of the vineyards, with a preferential vertical orientation of the vine stems and
stocks, could be accounted for in the 3-P retrievals, where the free parameter ttv
parameterizes the dependence of the optical depth at V-polarization (ty) on the incidence
angle. Conversely, in 2-P retrievals, both ttv and ttn were set equal to ttv= ttu=1,
corresponding to isotropic conditions which could not account for the changes in the
vegetation structure in relation to the vegetation phenological cycle (growth and senescence)
and the agricultural practices.

Although the 3-P retrieval was found to be the most efficient approach in terms of correlation
R and ubRMSE, over the vineyard field at the VAS, this configuration presents the
disadvantage of being dependent on the Hr parameter. This dependency was less
pronounced for Nrv = Nra =-1.

For both 2-P and 3-P retrievals, the approaches showing the highest performance in terms of
correlation coefficient R and ubRMSE were those corresponding to the case Nrv = Nri = -1
(i.e. the SRP method in the case of 2-P retrievals). For all the other roughness configurations
(HRr Qr Nrv, Nrn), it was found that the correlation coefficient decreased and the ubRMSE
increased for increasing values of Hr.

The use of soil roughness in situ measurements to calibrate the model following the method
described in Lawrence et al., (2013) did not lead to any improvement in the SM retrieval over
the SRP method. However, the estimation of Hr from in situ data showed how the 7y, p signal
can be polluted from soil roughness changes in the field, mainly due to agricultural practices
and rainfall events.

In conclusion, the SRP method was found to be an efficient approach to account for surface
roughness effects in SM retrievals, where the soil roughness parameter Hr does no longer
need to be calibrated.

2.2 A new calibration of the effective scattering albedo and soil
roughness parameters in the SMOS soil moisture retrieval
algorithm

In order to confirm the findings of Fernandez-Moran et al. (2015), a second study was carried
out at global scale using SMOS TB data (at the VAS the ELBARA-II TBs were used). The main
objective of this study was to calibrate the parameters which account for soil roughness (in
terms of Hr, Nru and Nrv values) and vegetation (in terms of effective scattering albedo, w).
For that purpose, a large range of values of the latter parameters were used in order to
retrieve soil moisture (SM) and vegetation optical depth (tyap) over a large number of sites
worldwide.

The SMOS level 2 (L2) and level 3 (L3) SM retrieval algorithms account for the surface fraction
of the main cover types (bare soil and low vegetation, forest, water, urban, etc.) within each
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SMOS footprint. The retrieval is only made over one specific fraction: either the nominal low
vegetation, in most cases, or the forest fraction. Then, the TB value of the pixel fraction which
is not considered in the retrieval is estimated. If that is the case of the forest fraction, this is
estimated based on auxiliary SM data from the European Centre for Medium-range Weather
Forecasting (ECMWFE). This specific approach may lead to dry SM bias in forested regions,
as noted by Wigneron et al. (2012). In the simplified retrieval algorithm used in this study,
the SMOS L3 TB was used as input and pixels were assumed to be homogeneous.

Long term SM retrievals were compared to in situ measurements obtained from the
International Soil Moisture Network (ISMN) over the period 2011 — 2013, and were evaluated
using different metrics (R, bias and ubRMSE). Only stations contained in rather
homogeneous pixels were considered. A compromise between the optimal values of all these
metrics was the basis to find the best values of the vegetation and soil roughness parameters
in the SM retrieval. Bias was considered as a second-order criterion in the assessment of the
results due to the different sampling depths of the in situ measurements (0 - 5 cm) and of the
SMOS L-band observations (~ 0 — 3 cm).

Performances of the SM retrievals, evaluated in terms of R, bias and ubRMSE, showed a high
sensitivity of SM to w and were found optimum for high w values (w ~ 0.10). On the contrary,
the calibration of Hr required to find a compromise between the performances obtained in
terms of ubRMSE (lower for low Hr values) and |bias| (lower for larger Hr values). It was
found that both, increasing w and decreasing Hr values, led to drier SM retrievals.

Values of w =0.10, Hr = 0.4 and Nrp =-1 (p = H, V) were found optimum at global scale.
This finding is consistent with the previous study carried out at the VAS area (Fernandez-
Moran et al., 2015), where Nrp = -1 was the main basis of the SRP method. However, in that
study w was set to 0, following the calibration of SMOS L2 and L3 algorithms in non-forest
areas. The new calibration is consistent with the global map of the effective scattering albedo
provided by the SMAP L4 product (w = 0.09 + 0.07) and with the work of Van der Schalie et
al. (2016), who globally obtained w equal to 0.12 after applying the Land Parameter Retrieval
Model (LPRM) and evaluating SM retrievals against model datasets as ERA-Interim/Land
and MERRA-Land. The latter study also showed the low impact of soil roughness on the
correlation statistics in the SM retrieval when w = 0.12. On the contrary, studies by Konings
et al. (2016) found lower values (w = 0.02 - 0.06) whereas the current set of effective scattering
albedo in the SMOSL3 SM product is w = 0.06 — 0.08 for forest and w = 0 for the rest of the
cover types.

The in situ sites used in the study were classified using the International Geosphere-
Biosphere (IGBP) land cover classification scheme. Then, specific values of Hr, Nrp (p=H, V)
and w were proposed for each class. In low vegetation cover types (open scrublands and
barren or sparsely vegetated covers), low values of Hr (~ 0.1) were found, whereas higher
values, from 0.4 to 0.5, were found for the rest of the IGBP classes. These results are in good
agreement with the global map of Hr obtained by Parrens et al. (2017), who calibrated this
parameter using SMOS retrievals and Leaf Area Index (LAI) data from Moderate-Resolution
Imaging Spectroradiometer (MODIS) as auxiliary data. The values of w ranged from 0.08 to
0.12.

The performance of the simplified soil moisture retrieval algorithm using the calibrated soil
roughness and @ values was evaluated against the SM data measured at the in situ sites
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(including and excluding the ones used for calibration purposes). The metrics showed that
using either globally-constant or IGBP dependent parameters, there was improvement over
SMOSL3 V300 (R =0.61, bias =-0.019 m*m=3 and ubRMSE = 0.062 m3-m? for the IGBP-based
calibration; R = 0.54, bias = -0.034 m*m= and ubRMSE = 0.070 m3-m= for SMOSL3 V300), but
this improvement could not be demonstrated only by the use of the homogeneous retrieval
algorithm. Nonetheless, we noted a drying effect of the SMOSL3 SM algorithm retrieval
caused by the use of the "heterogeneity" approach: considering the same model parameter
calibration, the bias varied from -0.034 m3m? when using the SMOSL3 SM algorithm
(heterogeneous pixels), to 0.028 m*m-? with the homogeneous approach.

The findings presented in this study will have implications for the calibration of soil
roughness and vegetation in the future official versions of the SMOS L2 and L3 algorithms.
Due to the good performance of the product developed in this study, the Institute National de
la Recherche Agronomique (INRA) and the Centre d'Etudes Spatiales de la BIOsphére (CESBIO)
decided to develop a new and alternative SMOS product (referred to as SMOS-INRA-
CESBIO, or SMOS-IC for short) based on the calibration found in this study and the
simplified retrieval algorithm. This simple approach leads to an efficient processor capable
of processing one year of data over a few hours.

2.3 SMOS-IC: An alternative SMOS soil moisture and vegetation
optical depth product

The SMOS-IC product (Fernandez-Moran et al., 2017a) provides daily SM and ty,p at the
global scale and, as explained previously, differs from the operational SMOS L3 (SMOSL3
V300) product in the treatment of the retrieval over heterogeneous pixels. The version
developed and used in this PhD thesis is a beta version (v102) provided in a NetCDF format
on the Equal-Area Scalable Earth (EASE) 2.0 grid (Armstrong et al., 1997), the same as all
SMOS L3 products.

SMOS-IC is much simpler than the SMOSL3 algorithm and does not account for corrections
associated to the complex antenna pattern and SMOS viewing angle geometry. It uses the
multi-angular and dual-polarization SMOSL3 TB product as the main input for the L-MEB
model inversion. It also considers pixels as homogeneous to avoid uncertainties linked to
inconsistent auxiliary data sets which are used to characterize the pixel heterogeneity in the
SMOS L3 algorithm. Specifically, SMOS-IC does not use MODIS LAI and ECMWEF SM data,
whose tendency to SM overestimation is well-known (Albergel et al., 2012).

In SMOS-IC, the L-MEB model input parameters (effective vegetation scattering albedo w
and the roughness parameter Hr) were estimated as a function of IGBP land category classes
which compose the pixel. These parameter values were derived from previous analyses
(Fernandez-Moran et al., 2017b) and global maps of the roughness Hr parameter estimated
by Parrens et al., 2016.

In Fernandez-Moran et al. (2017a), SMOS-IC was presented and evaluated at global scale.
The SMOSL3 V300 and SMOS-IC soil moisture retrievals were compared globally against
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ECMWE SM data for the period 2010 - 2015. This analysis extends the previous evaluation
shown in (Fernandez-Moran et al., 2017b) where numerous in situ SM stations from ISMN
were used as reference.

At global scale, it was found that both the SMOS-IC and SMOSL3 SM products were
generally drier than the ECMWF SM product. However, this result was expected as the soil
layer considered in the modelled ECMWEF SM (top 0-7 cm) differs from the (~ top 0-3 cm) soil
layer measured by SMOS. For this reason, it is a difficult task to truly assess the performance
of the SMOS products in terms of bias at global scale. In terms of temporal variations, higher
correlation values and lower unbiased Root Mean Square Deviation (ubRMSD) values were
generally found between SMOS-IC SM and ECMWEF SM, than between SMOSL3 SM and
ECMWE SM.

For the tyap evaluation, the NDVIindex was taken as reference. This index is frequently used
in literature to provide an estimate of Tyap at L-band over rather low vegetation covers
during the vegetation growth (O'Neill et al., 2012; Wigneron et al., 2007; Lawrence et al.,
2014; Grant et al., 2016). However, some differences between both products must be
remarked. Firstly, the NDVI index is derived from optical sensors while the Ty,p index is
derived from L-band microwave measurements, meaning that it can sense deeper through
the vegetation canopy. Secondly, the NDVI index is used to monitor the green vegetation,
while the Ty,p index is related to the whole vegetation water content (including stems,
trunks, branches and senescent vegetation elements). It was found that the SMOS-IC 7y,p
product presented a slightly lower range of values (~ 0-1.3) than the one obtained with the
SMOSL3 tyap product (~ 0-1.5). In general terms, higher correlation values were obtained
between SMOS-IC tyap and MODIS NDVI, than between SMOSL3 1y,p and MODIS NDVI.

SMOS-IC is an alternative and complementary SM and ty,p product which will be key in
the assessment and development of new versions of the current L2 and L3 SMOS algorithms.
The fact that the SMOS-IC approach is based on homogeneous pixels makes it more aligned
to SM products derived from other space-borne sensors where the retrieval is done under
the homogeneity assumption, such as SMAP and the Advanced Microwave Scanning
Radiometer (AMSR-E); the latter offering a C-band soil moisture product.

Future studies focusing on the global-scale validation would be helpful to assess the
performance of the SMOS-IC product, for instance remotely sensed products such as SMAP
and AMSR-E SM, MODIS LAI, forest biomass or modelled data as MERRA (Modern-Era
Retrospective analysis for Research and Applications) (Reichle et al., 2011).

The simplicity of the SMOS-IC algorithm will also facilitate to implement and test new
approaches in the future with the aim of improving SM and ty,p estimations. For instance,
the implementation of the 3-P retrieval (SM, Tyap and the composite soil-canopy
temperature) or the use of soil and canopy temperatures coming from other satellites or
models in the SMOS-IC algorithm could be of special interest.
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ARTICLE INFO ABSTRACT
AniC{B history: The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has been analyzed in
Received 12 December 2014 numerous studies, mostly in the framework of the ESA SMOS and NASA SMAP missions. To retrieve SM from

Received in revised form 16 September 2015
Accepted 21 September 2015
Available online 6 October 2015

L-band radiometric observations, two significant effects have to be accounted for, namely soil roughness and veg-
etation optical depth. In this study, soil roughness effects on retrieved SM values were evaluated using brightness
temperatures acquired by the L-band ELBARA-II radiometer, over a vineyard field at the Valencia Anchor Station
(VAS) site during the year 2013. Different combinations of the values of the model parameters used to account for

ﬁ{:ﬂge radiometry soil roughness effects (Hg Qg Ngy and Ngy) in the L-MEB model were evaluated. The L-MEB model (L-band
L-band Microwave Emission of the Biosphere) is the forward radiative transfer model used in the SMOS soil moisture re-
Soil moisture trieval algorithm. In this model, Hg parameterizes the intensity of roughness effects, Qg accounts for polarization
Soil roughness effects, and Ngyy and Ngy parameterize the variations of the soil reflectivity as a function of the observation angle,
Vegetation 6, respectively for both H (Horizontal) and V (Vertical) polarizations. These evaluations were made by comparing
L-MEB in-situ measurements of SM (used here as a reference) against SM retrievals derived from tower-based ELBARA-
SMOS 11 brightness temperatures mentioned above. The general retrieval approach consists of the inversion of L-MEB.
Two specific configurations were tested: the classical 2-Parameter (2-P) retrieval configuration where SM and
Tnap (Vvegetation optical depth at nadir) are retrieved, and a 3-Parameter (3-P) configuration, accounting for
the additional effects of the vineyard vegetation structure.
Using the 2-P configuration, it was found that setting Ng, (p = H or V) equals to — 1 provided the best SM
estimations in terms of correlation and unbiased Root Mean Square Error (ubRMSE). The assumption Ngy =
Ngy = — 1 simplifies the L-MEB retrieval, since the two parameters Tyap and Hg can then be grouped and
retrieved as a single parameter (method here defined as the Simplified Retrieval Method (SRP)). The main
advantage of the SRP method is that it is not necessary to calibrate Hg before performing the SM retrievals.
Using the 3-P configuration, the results improved, with respect to SM retrievals, in terms of correlation and
ubRMSE, as the structural characteristics of the vineyards were better accounted for. However, this method
still requires the calibration of Hg, a disadvantage for operational applications. Finally, it was found that the use
of in-situ roughness measurements to calibrate the roughness model parameters did not provide significant
improvements in the SM retrievals as compared to the SRP method.
© 2015 Elsevier Inc. All rights reserved.
1. Introduction NASA SMAP (Soil Moisture Active Passive) can provide global maps of

soil moisture (Entekhabi, Njoku, et al. 2010; Kerr, Waldteufel,

Passive microwave radiometry at L-band (1-2 GHz) is one of the ~ Richaume, et al., 2010; Kerr, Waldteufel, Wigneron, et al., 2010). The sen-
most efficient techniques to monitor surface soil moisture (SM) at global ~ sitivity of brightness temperature (TB) measured at horizontal (p = H)
scale. Satellites such as ESA SMOS (Soil Moisture and Ocean Salinity) and ~ and vertical (p = V) polarization with respect to SM is due to the fact
that soil emissivity in the microwave domain is highly related to the

I soil dielectric constant which is mainly determined by SM. TB is also af-
* Corresponding author. fected by other factors such as soil texture and roughness (Jackson et al,,

http://dx.doi.org/10.1016/j.rse.2015.09.006
0034-4257/© 2015 Elsevier Inc. All rights reserved.

55



270

1980; Njoku & Entekhabi, 1996; Wigneron, Chanzy, De Rosnay, Rudiger,
& Calvet, 2008), vegetation cover and litter (Grant et al., 2007; Jackson
et al., 1980; Saleh, Wigneron, De Rosnay, Calvet, & Kerr, 2006), and by
soil and vegetation temperatures (Wigneron et al,, 2007). Measured TB
generally increase with increasing soil roughness, while vegetation
attenuates soil emission and adds its own contribution to the upwelling
TB measured above the scene.

The effects of soil roughness at L-band have been evaluated in
studies based on modeling (Lawrence, Wigneron, Demontoux, Mialon,
& Kerr, 2013; Parrens et al., 2014; Ulaby et al., 1982; Schwank,
Volksch, et al,, 2010), satellite data (Patton & Hornbuckle, 2013), or in-
situ data (Escorihuela, Chanzy, Wigneron, & Kerr, 2010; Mialon,
Wigneron, De Rosnay, Escorihuela, & Kerr, 2012; Wigneron, Laguerre,
& Kerr, 2001). In the SMOS retrieval algorithm, based on the inversion
of L-MEB (Wigneron et al., 2007), a simple modeling approach based
on four parameters (Hg, Qg, Nrw and Ngy) was selected to model the
roughness effects (Wang & Choudhury, 1981). This approach was
generally found to be simple and accurate (Escorihuela et al., 2007;
Mialon et al, 2012; Wang, O'Neill, Jackson, & Engman, 1983;
Wigneron, Schmugge, Chanzy, Calvet, & Kerr, 1998; Wigneron et al.,
2011).

In SM retrieval studies based on the inversion of L-MEB, the values of
the four soil roughness parameters (Hg, Qg, Ngy and Ngy) have to be
estimated. Some studies have investigated the relationship between
the empirical Hy parameter and soil physical parameters, such as the
standard deviation o of surface heights and the autocorrelation length
Lc of the surface, based on experimental data (Choudhury, Schmugge,
Chang, & Newton, 1979; Wigneron et al., 1998) or modeling approaches
(Lawrence et al., 2013). The roughness parameters were calibrated for
different types of land surfaces or land uses.

In this paper, optimal values of the four roughness parameters have
been evaluated for the Valencia Anchor Station (VAS) region that is a
long-term validation site for the SMOS products (Cano et al., 2010;
Fernandez-Moran et al.,, 2014; Schwank, Wigneron, et al., 2012;
Wigneron et al,, 2012). The area is mainly composed of vineyards
(65-70% cover fraction) and other Mediterranean vegetation species
(shrubs, pine-, almond- and olive-trees, etc.). The European Space
Agency (ESA) selected the VAS site for the installation of one of the
three ELBARA-II prototype radiometers (Schwank, Wiesmann, et al,,
2010) in September 2009 over a vineyard field that was called
MELBEX-IIl (Mediterranean Ecosystem L-band Characterization
Experiment), under the responsibility of the Climatology from Satellites
Group of the University of Valencia. ELBARA-II is an automated L-band
microwave radiometer system that accurately measures TB at horizon-
tal (p = H) and vertical (p = V) polarizations over a range of observa-
tion angles 6 (Schwank, Wiesmann, et al,, 2010; Schwank et al,, 2012).

In the VAS area, the vine phenological cycle extends from April to
October and the surface remains under almost bare seil conditions for
the rest of the year, Since a large part of the VAS area is dedicated to
the production of wine, different agricultural practices are regularly
performed along the year aiming at an optimal grape development.
These agricultural practices include plowing, vine shoot pruning, tying
up long branches to trellis wires, sulfate fertilization and grape harvest
in October. Most of these practices, as well as strong rainfall events,
usually lead to frequent and significant changes in soil roughness.
These changing soil conditions and the opportunity to use long-term
observations from ELBARA-II, make the VAS site a fairly adequate
place to investigate the impact of changes in soil roughness conditions
on the SM estimates retrieved from L-band microwave radiometry.

In this study, we evaluated several combinations of values of the four
roughness parameters (Hg, Qg and Ngp, p = V, H) used to retrieve SM
from multi-angular measurements made by ELBARA-II. The SM retrieval
approach based on the inversion of L-MEB is also the basis for the SMOS
level 2 soil moisture processor used to retrieve simultaneously
vegetation optical depth (Tyap) and SM (Kerr et al., 2012; Wigneron
et al, 2007). In a first step, several combinations of values of the
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roughness parameters were evaluated, by comparing SM retrievals
with in-situ SM measurements, considered here as reference. The
evaluation was made using all available ELBARA-II observations at
6 am and 6 pm during 2013 (323 days of full data; 42 days missing
due to power input failures). In a second step, in-situ measurements
were used to calibrate the values of the roughness parameters based
on models developed by Lawrence et al. (2013 ). The evaluation was
made over 13 dates during 2013 and the results were compared to
those obtained in the first step of the study, using the Simplified
Retrieval Method (SRP).

2. Materials

Results shown in this paper are based on measurements made with
the ELBARA-II radiometer over the MELBEX-III site during 2013. This
site, within the VAS region, is located at the “Finca El Renegado” (39°
31'18.18" N, 1° 17 29.64" W), a vineyard field of “Tempranillo” variety.
The row spacing is 3 m and the spacing between plants is 2 m. The
maximum LAl (Leaf Area Index) is usually reached in August being
close to 2.2 m?-m~? (Schwank et al., 2012; Wigneron et al.,, 2012).
Several instruments are deployed over the site together with the
ELBARA-II L-band radiometer and a number of automatic instruments
used to characterize the soil and vegetation conditions, The year 2013
was selected in this study where we could gather a good dataset of
SM automatic measurements together with an accurate monitoring of
all agricultural practices performed over the vines.

ELBARA-II is a dual polarization L-band microwave radiometer with
two measuring channels (1400-1418 MHz and 1409-1427 MHz) at-
tached to a 23.5 dB gain horn antenna with a field of view of = + 12°
at — 6 dB sensitivity (Schwank, Wiesmann, et al., 2010). The observed
TB, (p=H,V) used in this study are averages of the brightness temper-
ature values measured in two 11 MHz frequency channels within the
protected part (1400-1427 MHz) of the microwave L-band. The
radiometer is placed on a 15 m high platform over the vineyard to
measure TBy and TBy automatically for observation angles in the range
of # = 30°-150° (relative to nadir). The instrument footprint areas at
—9 dB antenna sensitivity (corresponding to 4+9° around the antenna
main direction) range from =33 m? at # = 30° to ~800 m” at § =
70° (Fig. 1b in Schwank et al,, 2012). The ELBARA-II system performs
automated measurements following a protocol consisting of: (i) sky
calibration measurements (every day at 23:55) at 6 = 150°, (ii) angular
scans (f = 30° 35°,40°,45°, 50°, 55, 60°, 65°, 70°) every 30 min, and
(iii) observations at a fixed angle of # = 45 every hour at 10, 20, 40
and 50 min past the hour (Schwank et al,, 2012). The measured multi-
angular TB,, data were filtered out when the presence of radiofrequency
interferences (RFI) was suspected. The filtering was made when either:
(1) TB, exceeds a maximum value (temperature of the air in kelvin) or
is below a minimum value (set here at 50 K), (2) the brightness
temperatures TB, measured in the two frequency channels differ from
more than 0.2 K, or (3) anomalies with the thermal stabilization of the
instrument or short burst of RFI (e.g. from radars) were detected by a
statistical analysis of the data samples at 800 Hz.

Two Delta-T ML2x soil moisture probes (ThetaProbes) are placed in
the MELBEX-III site to estimate SM, 3 m away from the edge of the 30
ELBARA-II footprint. They provide the volumetric soil moisture (m?
m~?) of the top 0-5 cm soil layer. These probes are installed vertically
in the soil and the calibration is based on results obtained by
Wigneron et al. (2012) for a large range of SM conditions. One of the
ThetaProbes is placed close to a vine stump and the other is in the mid-
dle of two rows. Averages of the measurements performed with these
two probes were assumed to be representative of the soil moisture
conditions in the MELBEX-III field site, and thus considered as the SM
reference in this study. A larger number of probes is desirable to better
estimate the average soil moisture value in the field. However, this was
not feasible due to tractor operations and agricultural practices that reg-
ularly damaged the in-situ sensors (at the beginning of the experiment,
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Fig. 1. Correlation coefficient R between retrieved SM values and measured SM values as a function of Hg for 2-P (a, b) and 3-P retrievals (c, d), and when Qg is set equal to 0 (a, ¢) or 0.1 (b, d).

anetwork of 12 SM probes was set up within the ELBARA-II footprint
(Schwank et al.,, 2012; Wigneron et al., 2012)). A needle board was
used to estimate in-situ soil roughness conditions (Mialon et al.,
2012). The board has 201 needles, at 1 cm spacing, free to move vertical-
ly following the local soil elevation profile. The measurement protocol
consisted of eight repetitions, taking into consideration the perpendicu-
lar and parallel directions to the rows of vines, all inside the radiometer
footprint. Then, standard deviation o of surface heights and autocorrela-
tion length Lc were computed from each measurement, and an average
of the eight values was considered as an estimation of the synthetic
roughness parameter Zs defined as Zs = o?/Lc (Lawrence et al., 2013;
Zribi, Gorrab, & Baghdadi, 2014).

In-situ soil roughness measurements were made for 13 dates during
2013, aiming at exploring soil roughness changes after major agricultur-
al practices and rainfall events. Table 1 provides the corresponding
dates and a brief description of the events that occurred during the
days preceding the in-situ measurements. Precipitation during the
year 2013 was obtained from the Caudete de las Fuentes rain gauge
belonging to “Confederacion Hidrogréfica del Jtcar” (Jucar River Basin
Authority) (39° 32 48.97" N, 1° 16 47.64" W), less than 3 km away
from the MELBEX-III site. As expected, as can be seen in Table 1, the
main events influencing soil roughness were plowing and rainfall.
There is generally an increase in the value of o after plowing and a
decrease after rainfall events.

In order to monitor changes in the vegetation conditions (growth
cycle and senescence) at MELBEX-IIl, NDVI (Normalized Difference
Vegetation Index) was obtained from MODIS (Moderate Resolution Im-
aging Spectroradiometer) after a moving window method was applied
over the 16 day NDVI 1 km resolution composite MODIS product.
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3. Theory
3.1. L-MEB model

SM retrievals were based on the inversion of the L-MEB model.
L-MEB uses the zero-order T-o radiative transfer model (Mo,
Choudhury, Schmugge, Wang, & Jackson, 1982) to simulate the thermal

Table 1
Roughness parameters derived from in-situ measurements in 2013 over the MELBEX-IIl
site.

Date Doy  Previous event Le o Zs
(mm) (mm) (cm)
20-02-2013 51  Light precipitation 89 18 03
12-03-2013 71  Not any practice 70 18 05
18-04-2013 108  Row plowing 77 25 08
23-05-2013 143 Plowing and sulfate fertilization 88 23 06
08-07-2013 189  Row plowing 43 23 13
15-07-2013 196  Heavy rain 75 14 03
22-07-2013 203  Long branch pruning 76 14 03
29-07-2013 210  Row plowing 52 25 12
20-09-2013 263  Not any practice 49 19 07
08-10-2013 281  Grape harvest (with combine Ul 16 04
harvester)

05-11-2013 309  Plowing half of the rows only 68 22 0.7
20-11-2013 324  Vine shoot pruning 79 21 05
17-12-2013 351 Plowing half of the rows and 0 16 06

some steady precipitation
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emission of a soil covered with vegetation. At thermal equilibrium, soil
emissivity (ecp) at the observation angle # can be computed from the
corresponding soil reflectivity (rc,):
ecp(tl) =1 —rgy(t) (n
Rough soil reflectivity re, is related to the reflectivity rq, (p = H,
V) of a plane (specular) surface. The latter was computed from the
Fresnel equations as a function of 6 and of the soil dielectric constant
(&), which in turn was computed as a function of SM, soil effective
temperature (Tg), and soil texture in terms of clay fraction (Mironov,
Kerr, Wigneron, Kosolapova, & Demontoux, 2013), For the MELBEX-III
site, Juglea et al. (2010) estimated the following soil fractions: sand
(45%), silt (29%) and clay (26%). A semi-empirical approach developed
originally by Wang and Choudhury (1981) was used to correct the
specular reflectivities rg;; and rey from the roughness effects. The
corresponding semi-empirical roughness model (referred to as the
“QHN model" in the following) includes the four roughness parameters
Qg, Hgand Ny, (p =V, H) (Wigneron et al., 2007):

Ton(t) = [1 - QgiB))rg (0) + Qr(B)r, (0) (2)
Te(8) = [1 - Qe(O)lrey(®) + Q(Bea(6) 3)
Tep(0) = 1, (0) exp[—Hg cos™ (0)] (4)

The parameter Hg accounts for the decrease of the specular
reflectivities rG; (p = H, V) due to soil roughness effects, Qg accounts
for polarization mixing effects, and N, governs the changes in the
angular dependence of reflectivity.

Using the 7- model (Eq. (5)), the emission from a soil covered with
vegetation can be calculated for each polarization as a sum of (i) the
direct upwelling vegetation emission, (ii) the upwelling soil emission
attenuated by the canopy, and (iii) the downwelling vegetation emis-
sion reflected by the soil and attenuated again by the canopy layer.

TBy(6) = (1 - @p) 1= %,0)][1+ %, O)rp )] Te + [1 - 1o 0)],0)T
(3)

where Tg and Tc are respectively the soil and vegetation effective
temperature, 7, is the vegetation transmissivity and w, (p = H, V) is
the effective scattering albedo (Kurum, 2013). The latter is generally
considered to be close to zero over low vegetation covers (Kurum,
2013; Wigneron et al,, 2007). In this study, we set @, = 0.

According to the Beer's law, vegetation transmissivity yp is related to
Tpas:
Y, = exp|—Ty/ cos(f)] (6)

where the optical thickness () at oblique observation angles 6 >0
and polarization p = H, V is expressed as function of the optical thick-
ness Tnap at nadir (6 = 0):
To(8) = Tao | sin®(8)tt, + cos’(8) (7)

where tty and tty are parameters used to quantify the dependence
of 7, on the incidence angle 6. The value tt;; =1 or tty=1 corresponds
to the isotropic case for the Vertical or Horizontal polarization, where
TH(0)= Ty(#) = Tnap. A value of ttp > 1 or ttp <1 leads to an increase or
decrease of 7p as function of 6 corresponding to anisotropic vegetation.

A single parameter called the composite soil-vegetation surface tem-
perature Tgc (Jackson et al., 1980; Wigneron et al., 2007) was consid-
ered to account for both the soil effective temperature T and the
vegetation canopy temperature T (Fernandez-Moran et al., 2014;
Miernecki et al., 2014; Parrens et al., 2014; Wigneron et al, 2012).
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This assumption was made since retrievals were performed at 6 am
and 6 pm, when the soil-vegetation temperature difference is small. In
situ measurements of soil temperature profiles at VAS were discarded
because they contained gaps in 2013. Values of Tzc were obtained
from the ERA-INTERIM 0-7 cm soil temperature product from ECMWF
(European Center for Medium range Weather Forecasting), with a tem-
poral resolution of three hours and a spatial resolution of 1.5°. Following
these assumptions, the T-o radiative transfer model (5) can be simpli-
fied yielding:

TB,(8) = Tec1 - ¥5(6)rc (0] @)

— Hy cos™ (6) )}
)

9

Using Egs. (2)-(4), (6)-(8), TBp can be expressed as:

cos? (6) + ttp sin’ ()

TB(6) = Tgc [1 ~Tgy(0) exp (’27””’ cos(0)

3.2, Soil roughness parameterization

The soil roughness parameterization can be computed by the QHN
model (Lawrence et al., 2013) requiring in-situ data as input parame-
ters. More specifically, the parameters Hg, Qg, Ng, were derived from
the values of the slope parameter Zs = o?/Lc (¢ = standard deviation
of surface height, Lc = autocorrelation length of the surface) using six
different methods as shown in detail in equations A-F of Lawrence
et al. (2013), given in Table 2. In the present study, the parameters Hg,
Qg and N, were calculated for the thirteen dates where in-situ rough-
ness measurements were performed in 2013, These parameters were
used to retrieve soil moisture at 6 am and 6 pm just after the roughness
measurements were made. The results obtained with the ‘Lawrence’

Table 2
Soil roughness parameterizations (Lawrence et al, 2013).
Parameterizations Equations
Hg = 2615(1— ,exply75; ) 75£1.235
1.0279 7521.235
A Qr=0.1771Hg
Nest = 1.615(1— exp(y15))—0.238
Ngy=0.767Hg —0.099
H 2265(1— , expls5y —&), 7551253
79 1046, 751253
B =0253Hs
Nay=0999H; —0.54
Ny = Ngy+2.029-0.7457 Zs
b | 26M01- exp(E), 25512391
1.042, Z5>1.2391
c Qr=0.118Hy
Np = 1.496(1— . exp( 1)) —0.241
Nri=Nav
Hy - 2.689(1— ,exp(8s)), 7551.2314
1.028, Z5>1.2314
D Qr=0
Niw = 1.356(1— , explgis) | —0.602
Ngy=1.759Hg — 0248
_ ] 1762(1— exp(&)). 7551.1894
"7 0836 75-1.1894
E 0z =0050H
Ngy=0
Npy=0
H 262(1— . explyy ), 75<1.1553
7 0853 2511553
F 0x=0
Ngu=0
Ney=0
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parameterizations were compared with those obtained with the SRP
method.

3.3. Simplified roughness parameterization (SRP)
Note that, for the specific case when Ngy = Ngy = —1,Qx = 0, and

vegetation is assumed as isotropic such that tf, = 1 (p = H, V), Eq. (9)
can be simplified as:

TBy(0) = Tec| 1 — 17, (6) exp(—2TR/ cos(8)) (10)
where
TR = Ty + He/2 (11)

In that case, vegetation (through the Tyap parameter) and roughness
effects (through the Hg parameter) can be combined in the single
parameter TR defined in Eq. (11). Thus, there is no need to attempt to
decouple roughness and vegetation effects, which is a difficult task as
suggested in many previous studies (Lawrence et al,, 2013; Pardé
et al., 2004; Patton & Hornbuckle, 2013). Moreover, in that case the cho-
sen value for the Hy parameter has no impact on the SM retrievals:
changes in the value of Hy have solely an impact on the retrieved values
of Tyap but not on the retrieved values of SM. The specific 2-P retrieval
case in which Ngy = Ngy = — 1, tty = tty = 1 will be referred to as
the ‘simplified roughness parameterization’ {SRP).

3.4. Soil moisture retrievals

In this study, SM estimates were retrieved from the ELBARA-Il multi-
angular observations TB,(6) following two retrieval configurations:

= 2-parameter (2-P) retrievals: SM and Tyap were retrieved simulta-
neously while the parameters tt;; = tty = 1 were considered to repre-
sent isotropic vegetation structure, This configuration corresponds to
the classical L-MEB inversion approach (Wigneron, Chanzy, Calvet, &
Bruguier, 1995; Wigneron et al,, 2003, 2007) and is currently used in
the SMOS SM retrieval algorithm (Kerr et al,, 2012).

* 3-parameter (3-P) retrievals: SM, Tyap and the tt, vegetation parame-
ter were retrieved simultaneously (while tt,; = 1 was assumed), as in
Wigneron et al. (2012) and Miernecki et al. (2014). Considering tty as
aretrieved parameter allows accounting for the predominant vertical
structure of the vine vegetation (mostly stems).

For both retrieval configurations, ELBARA-Il measurements were
used for the observation angles 8 = 30, 35, 40, 45, 50, 55°. When
some angles were missing (because of short electricity cuts or RFI),
retrievals were carried out only if the available angular range (the
difference between the highest and the lowest measurement angle)
was at least 10°. It was found that only 13.5% of the dataset contained
one or more missing angles over all the year at 6 am and 6 pm. The
inversion of L-MEB is based on the minimization of a cost-function
(CF) using a least-squares iterative algorithm (Wigneron et al, 2007):

N 2
5 (B -7 (P -P)
a(TB)? a(P)?

F= (12)

Where TBjy,es are the brightness temperatures measured by ELBARA-
[T over all available angles and both polarizations (p = H, V), TB" are the
simulated brightness temperatures following Eq. (9), o(TB) = 1 Kis the
standard deviation associated with TByes (Schwank et al, 2012), P
(i=1,..,N) are apriori estimates of the retrieved parameters P, consid-
ered as initial values during the minimization of the cost-function CF,
o(P;) are the standard deviations associated with the initial guesses
PiM of the retrieved parameters P; (i = 1., N)and P; (i = 1...., N) are
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the values of the retrieved parameters. After each SM retrieval, the
RMSE between the ELBARA-Il measurements (TByes) and the simulated
brightness temperatures (Tg, Eq. (9)) was calculated (referred to as
RMSEqg). High errors in the retrieval process were filtered out by delet-
ing SM values when RMSEr > 12 K, avoiding bad quality retrievals.
These high errors are rare (no one was found) but they generally
happen when the TB angular trend is noisy due to RFI effects, which
were not detected and filtered, or to the sporadic presence of tractors
and machines within the ELBARA-II footprint. Furthermore, SM values
outside the range 0-0.5 m*-m~? were rejected (Juglea et al, 2010). It
happened only 1.5% of the retrievals.

4, Results

To assess performances of the SM retrievals for a number of different
parameterizations of the soil roughness conditions, we compared corre-
sponding SM retrievals (SMrw) derived from the radiometric (RM) ob-
servations against in-situ measurements (SM;y g, considered here as
the reference. The statistic scores used in this study are the correlation
coefficient (R), the bias (B given by Eq. (13)), and the unbiased root
mean square error (ubRMSE given by Eq. (14)). The latter was computed
as a function of the bias and the root mean square error (RMSE)
(Entekhabi, Reichle, Koster and Crow, 2010b):

B= Z?_‘] (SMRM *:M]n—silu) (13)
ubRMSE = v RMSE? — B* (14)

Where n is the total number of SM retrievals considered in the
evaluation.

4.1. Testing different roughness parameterizations

As shown in Table 1, surface roughness of the MELBEX-III site varies
over the year and thus affects soil moisture retrievals, However, it is not
possible to monitor the changes in ¢ and Le over time at large spatial
scales. For this reason, except when the ‘simplified roughness parame-
terization’ (SRP) is used (Hy is retrieved simultaneously to Tyap in that
case), fixed values of the roughness parameters are assumed in this
study. The resulting performances of the SM retrievals, in comparison
with in-situ SM data used here as a reference, are analyzed in this
section. Each statistic score (correlation R, bias B and unbiased root
mean square error ubRMSE) was used separately to find which rough-
ness parameterization leads to the “best” SM retrievals, considering
highest R values, and lowest bias B and ubRMSE values.

In a first step, various combinations of values of the roughness pa-
rameters used in the QHN model (Hg, Qg and Ng,) were explored.
These values correspond to common ones used in the literature in this
domain (Escorihuela et al., 2007; Miernecki et al,, 2014; O'Neill, Chan,
Njoku, Jackson, & Bindlish, 2012; Wigneron et al., 2007): Qg = {0,0.1}
and (New, Nev) =1{(2,2), (1,1),(0,0], (=1, =1),(2,0), (1, =1)}. Hg
values were fixed as Hg = {0,0.1,0.2,0.3,0.4, 0.5, 0.6,0.7, 1}, in order
to find which one performs best. Note that the case Ngy = 2, Npy = 0
corresponds to the default parameterization used currently in the
SMOS SM retrieval algorithm (Kerr, Waldteufel, Richaume, et al,,
2010; Kerr, Waldteufel, Wigneron, et al., 2010, ATBD). The evaluations
were made using all available ELBARA-II observations performed at
6 am and 6 pm during the year 2013. Since very little differences in
the resulting SM were found when taking into account these times sep-
arately, both were considered simultaneously.

4.1.1. Results in terms of correlation

In Fig. 1 we show the correlation coefficients R between measured
and retrieved SM values as a function of Hy, for different values of Qg
and Ngg (p = H, V), for 2-P and 3-P retrievals. For 2-P retrievals, it can
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be seen that the ‘simplified roughness parameterization’ (SRP) configu-
ration led to the highest correlation values in the case Qg = 0 (R = 0.68)
[Fig. 1a] or Qg = 0.1 (R = 0.71) for all values of H [Fig. 1b]. In both
cases, for all other roughness parameterizations than SRP, it can be
noted that R decreases as Hy increases. As noted in Section 2.3, it can
be seen that the retrieved value of SM does not depend on Hy for the
SRP configuration. The same SM retrievals as the SRP method were
found when setting Hz = 0 (in that case Ngy and Ngy have no influence
on the SM retrievals, Eq. (9)). The two parameterizations, where the
values of Ngy and Ngy are different, led to lower R values when
Hg 2 0.4. For 3-P retrievals (when tty is retrieved simultaneously with
SM and Tyap) , it can be seen that the correlation coefficient R depends
on Hg for the Ngy = Ngy = — 1 parameterization (contrary to what was
obtained for the 2-P retrievals). However, whatever the value of Hg
used, considering 3-P parameters led to higher correlation values in
comparison to 2-P retrievals. Furthermore, for a given roughness config-
uration, 3-P retrieval performed better in terms of correlation values
than 2-P in all cases. Increasing values of Hg, led generally to a decrease
in the R values (except when Ny = Npy = —1).

The correlation coefficients R between in-situ and retrieved SM are
analyzed in detail in terms of the highest correlations in Table 3 consid-
ering separately 2-P and 3-P retrievals. In this table, highest R values are
defined as values close to Ry.x (higher than Ry, minus 0.04), where
Rinax is the maximum value of R, considering all tested parameteriza-
tions of the roughness parameters, 2-P and 3-P retrievals were analyzed
separately. For instance, Ry.x = 0.72 was obtained for 2-P retrieval. If
Niiy = Ngy = 1and Q = 0, the condition R 2 (R, - 0.04) was fulfilled
only for the case Hy = 0 and the corresponding value of R was R = 0.68.
The values of Hg, Qg, Ngy and Ngy that satisfy this condition are shown in
Table 3, For 2-P retrievals, whatever the values of Ngy, Nry and Qg,
values of Hg producing “best correlations” can be found. This is not the
case for 3-P retrievals.

4,1.2. Results in terms of bias

In Fig. 2, we present the results of the bias B between measured and
retrieved SM values, For 2-P retrievals, the range of bias values was sim-
ilar when Qg = 0 (—0.046 m*>-m ™3 (SRP) < B< +0.113m*-m ) and
when Qg = 0.1 (—0.078 m*-m~2 (SRP) < B < +0.077 m*-m ). For
both Qg = 0 and Qg = 0.1, it can be noted that the bias B increases,
from negative to positive values, almost linearly as Hg increases. Setting
Qg = 0.1 generally led to lower retrieved SM values. When Qg =0, a
bias B equals zero can be reached for values of Hg in the range
0.3 < Hg £ 0.7, depending on the values of Ngy; and Ngy. When Qg =
0.1, a bias equals zero can be reached for values of Hg > 0.5. The absolute
value|B|of the bias for the SRP method was found to be higher when
Qr = 0.1 (B = —0078 m*-m™>) in comparison with the case Qz = 0
(B=—0046m®-m ).

Using 3-P retrievals, similar results to 2-P retrievals were
obtained, except that lower SM values were retrieved generally

Table 3
Values of Hg, Qg, Ngw and Ngy producing best correlation coefficients (i.e. R (Ry - 0.04))
in 2-P and 3-P retrievals.

2-P retrieval 3-Pretrieval
Nesi Npy 0% Hy R Hy R
2,2 0 0 0.68 - -
2,2 0.1 <05 0.72 <0.1 0.82
1,1 0 0 0.68 <0.1 0.82
1,1 0.1 <0.5 0.71 - -
0,0 0 0 0.68 - -
0,0 0.1 0.7 0.71 - -
-1,—-1 0 No matter 0.68 0,207 0.80
-1,-1 0.1 No matter 0.71 <0.1,20.7 0.82
2,0 0 0 0.68 - -
2,0 0.1 <0.4 0.71 - -
1,-1 0 0 0.68 - -
1,-1 0.1 <04 0.71 1] 0.82
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(—0077 m*>m >3 < B < +0051 m*>m~? for @z = 0, and
—0.091 m* m?<B<+0.040m* m"*for Qg = 0.1). For 3-P retrievals
the range of bias values is slightly lower compared to 2-P retrievals. A
bias equal to zero was achieved for the parameter range 0.5 < H < 0.8
when Qg = 0 and for Hy > 0.6 when Qg = 0.1. For the specific parame-
terization Npy = Npy = —1, the bias is almost constant
(—0.080 m*m™* < B < —0062 m*m~? for Qy = 0, and
—0091 m*-m > <B< —0082m* m > for Qg = 0.1). Table 4 provides
the values of the roughness parameters leading to lowest bias values
(defined here as —0.02 m*-m~2 < B < +0.02 m*-m~?) for 2-P and
3-P retrievals. Only in the case of Ngy = Ngy = — 1, the lowest value
of B cannot be reached. It can be seen that the value of Hy required to
obtain a bias close to zero, tends to increase when Qg = 0.1, in compar-
ison to the case Qg = 0, and also when using 3-P retrievals instead of 2-P
retrievals.

4.1.3. Results in terms of unbiased RMSE

Finally, we considered the results for the unbiased RMSE (ubRMSE)
in Fig. 3. As observed in the previous figures, varying the value of Hy
does not affect the ubRMSE values for the SRP parameterization
(Fig. 3ab). For the other parameterizations, the ubRMSE values generally
increase with increasing values of Hg.

For 2-P retrievals, the lowest value of ubRMSE was reached with SRP
(ubRMSE = 0.056 m*-m ™~ for Qg = 0 and ubRMSE = 0.044 m*-m > for

r = 0.1) while the highest values were ubRMSE = 0.106 m*-m~> for
Qg = 0and ubRMSE = 0.097 m*-m > for Qg = 0.1. Whatever the value
of Hg, the parameterizations in which Ngy, is not equal to Ngy produced
higher ubRMSE values. For the 3-P retrievals, results were relatively sim-
ilar to 2-P retrievals except that lower values of ubRMSE were obtained
(0.035 m*m~* < ubRMSE < 0.086 m*m~> for Qz = 0, and
0.035 m*-m ™2 < ubRMSE < 0.089 m*-m 3 for Qg = 0.1). As for 2-P re-
trievals, the configurations leading to lowest ubRMSE values were those
inwhich Ng, = —1(p=H,V).In summary and in terms of ubRMSE, 3-P
retrievals provided improved results in comparison to 2-P retrievals,
while setting Qg = 0.1, instead of Qg = 0, provided improved results
only in the case of the 2-P retrievals.

In Table 5, the parameterizations providing best ubRMSE values (de-
fined here as values of ubRMSE close to the lowest ubRMSE value
(UBRMSE i), i.e. ubRMSE < ubRMSE,y, + 002 m® m™~>) are presented.
For 2-P retrievals, best ubRMSE values could be obtained for values of
Hg £(0.1-0.7), while best ubRMSE values could be obtained for values
of Hg £ 0.3 for 3-P retrievals,

4.2, lllustration of the SRP results

Inorder to illustrate the retrieval results, Fig. 4 presents the retrieved
SM values using the SRP method (Qg = 0) as well as the simulated
ECMWEF SM values, in-situ measurements of SM and precipitation
values registered by the rain gauge from “Confederacion Hidrografica
del Jacar” (Jucar River Basin Authority) during the year 2013. Fig. 5
shows a scatter plot of the SM values retrieved from ELBARA-II using
the SRP method and the SM measurements for the whole year 2013.
As found earlier, retrieved SM values with the SRP method underesti-
mates the corresponding in-situ measurements, in particular for low
SM values. It should be noted that retrieved SM represents soil moisture
of the =~ 0-3 cm top surface layer (Escorihuela et al,, 2010), while in-situ
measurements (using Theta probes) are assumed to represent SM with-
in the =~0-5 cm top soil layer. Except during rainfall events, this thicker
soil layer is believed to be generally wetter than the 0-3 cm top soil
layer over the vineyard considered in this study. It seems that the bias
B computed between the in-situ measurements and the retrieved SM
values (Figs. 4 and 5) corroborate this hypothesis. For instance, it can
be noted that lower B values were generally obtained during rain events
in contrast to what is obtained during dry periods. During the days
when the field was plowed, no anomalies can be noted in the SM values
retrieved with the SRP method applied to the ELBARA-II data.
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Fig. 2. Bias B between retrieved and in-situ measured SM as a function of Hy for 2-P (a, b) and 3-P retrievals (c, d), and when Qg is set to 0 (a, ¢) or 0.1 (b, d).

4.3. Vegetation and roughness results

Even though the focus of this study is on soil moisture, it was inter-
esting to evaluate the possible relationships between the retrievals of TR
(defined in Eq. (11)) and Tyap with the soil and vegetation variables.
The changes in the vegetation and roughness conditions in the field
over 2013 and the retrievals of TR and Typ for some specific configura-
tions are presented in Fig. 6. The time changes in the NDVI values reflect
the seasonal vegetation cycle of the vineyard field. The vegetation cycle
starts at approximately Day of Year (DoY) 160, when NDVI increases as
leaves start to appear, reaching a maximum value in summer (~0.4).
Senescence begins on DoY = 260. Fig. 6 illustrates the retrieved soil
and vegetation parameters for two cases: TR obtained by the SRP

Table 4
Values of Hg, Qx, Ngys and Ngy producing lowest B| < 002 m*-m~?in 2-Pand 3-Pretrievals.
2-P retrieval 3-P retrieval

Ny, Ngy Qe Hg B(m*m~%) Hg B(m*m~?)
2,2 0 03-0.6 —0.005 0.5-0.7 0.002
2,2 0.1 20.7 -0013 0.6-0.7 —-0.003
1,1 0 03-0.6 0.002 0.5-0.7 —0.001
1,1 0.1 20.7 0010 0.6-0.7 +0.001
0,0 0 05-0.7 0.002 206 —0.009
0,0 0.1 1 -0016 1 —0.004
2,0 0 02-04 0.001 0.4-0.7 —0.005
2,0 0.1 04-0.6 0.001 0.5-0.7 0.003
1,-1 0 02-04 0.003 0.5-0.7 0.004
1,-1 0.1 04-0.6 0.004 0.6-0.7 0.000

method, and Tyap obtained using the 3-P retrieval, for the case Hg =
0, Qz = 0 and Nz, = —1. The values shown in Fig. 6 for Hg were
calculated from in-situ observations using the formulation E from
Lawrence et al. (2013) (see Table 2). The influence of the changes in
the values of H (due to plowing in particular) on TR can be noted, as
expected. However, the influence of the changes in the values Hg on
vegetation optical depth Tyap can be noted too, which suggests that
soil roughness and vegetation effects cannot be decoupled in the 3-P
retrievals. For instance, this effect is very clear on DoY 189 when there
is a significant increase in Hg, and therefore in TR and Tyap just after
plowing. However, heavy rain events the following days significantly
smoothed out soil conditions leading to a strong decrease in the
retrieved Hg values. It seems that both TR and vegetation optical
depth, Tnap, follows that decrease even though this cannot be explained
by the vegetation conditions (no such change can be observed in NDVI).
Other similar episodes showing the influence of the changes in Hg on
the values of TR and Tyap occur on DoY 108 (increase in Hg) and DoY
281 (decrease in Hy).

So, it seems that changes in the soil roughness conditions have an
impact on the values of both TR and Tyap, but the TR parameter seems
to be more sensitive to these changes. Generally, the range of values
of TR seems to be larger than that of Tyap over the vegetation cycle, in
relation with an increased sensitivity of TR to the soil roughness effects.

An illustration of the vegetation anisotropy parameter tty retrieved
with the 3-P approach is shown in Fig. 7 (the same 3-P configuration
was used in both Figs. 6 & 7: Hg = 0, Qg = 0, Ngp = —1). Schwank
etal. (2012) found that vegetation structure is more vertical in winter,
due to the presence of the vine stocks only, leading to a higher differ-
ence between the values of tty and tty;. In Fig. 7, there is a high variability
in the retrieved values of the parameter tty and it is difficult to
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Fig. 3. Unbiased RMSE between retrieved SM values and measured SM values as a function of Hy for 2-P (a, b) and 3-P retrievals (c, d), and when Qx is set equal to 0 (a, ¢) or 0.1 (b, d).

distinguish clear relationships between the changes in tty values and
the phenological vegetation cycle. Nevertheless, higher tty values were
retrieved during the early growing season, contrarily to summer with
lower retrieved values. A lower variability in the retrieved values of tty
can be noted during summer and winter, while higher variability of tty
occurs during the period of vegetation changes (growth and
senescence).

4.4, Roughness parameterizations calibrated from in-situ data
The six roughness parameterizations (A-F, Table 2) proposed by

Lawrence et al. (2013) to compute Hg, Qg, Ngy and Ngy from Zs = /L

Table 5
Values of Hg, Qg, Ngi and Ngy producing best ubRMSE values (i.e. ubRMSE < ubRMSE i, +
002 m*-m~?) in 2-P and 3-P retrievals.

2-P retrieval 3-P retrieval
NNy Qr  Hg ubRMSE (m*m~3)  Hg ubRMSE (m*-m~?)
2,2 0 <02 0.056 0-02 0.040
2,2 0.1 <07 0.044 0-0.1 0.035
1,1 0 <02 0.056 0-02 0.040
1,1 0.1 <07 0.044 0-02 0.035
0,0 0 <04 0.056 0-03 0.040
0,0 0.1 Nomatter 0.044 0-03 0.035
—1,—-1 0 Nomatter 0.056 No matter 0.040
—1,—1 0.1 Nomatter 0.044 No matter 0.035
2,0 0 <01 0.056 0-0.1 0.040
2,0 0.1 <03 0.044 0-0.1 0.035
1,-1 0 <01 0.056 0-02 0.040
L,=1 01 <02 0.044 0-02 0.035
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(oand Lc measured in-situ) were evaluated, and Table 6 shows the statis-
tics scores (R, B,and ubRMSE) obtained from the comparison between in-
situ measurements of SM and retrieved SM values (3-P retrieval). For the
sake of comparison, results obtained with the SRP method (Section 2.2)
are also shown in Table 6. Note that the different number of data given
in Table 6 is due to the data filtering by RMSErg > 12 K as explained in
Section 2.2.

In spite of higher absolute values of bias B and slightly higher values
of ubRMSE, much better results were obtained generally in terms of the
correlation coefficient (R) using the SRP method (R = 0.86). Parameter-
izations E and F corresponding to the case in which Ng, = 0, led to the
worst results in terms of correlation R and bias Bamong the parameter-
izations proposed by Lawrence et al. (2013), while parameterization D
(Qgr = 0) led to a low correlation value (R = 0.59) but to the lowest
bias (B= —0.010 m*-m~3).

5. Discussion and conclusions

The aim of this study was to analyze the impact of several roughness
parameterizations on SM retrievals. To this end, we used multi-angular
TB, observations (p = H, V) measured with the L-band ELBARA-II
radiometer, in-situ measurements of SM, and in-situ roughness
measurements performed in the MELBEX-III vineyard in the VAS area.
Several values of the roughness parameters (Hg Qg Ngv, Ngu) were
tested as inputs for the L-MEB model when retrieving SM simultaneously
with vegetation optical depth Tyap (2-P retrieval) and simultaneously
with both Tyap and the vegetation anisotropy parameter tty (3-P
retrieval).

It was found that when setting Ng, = —1 (p = H, V) in the 2-P
retrievals, the original formulation of the QHN model used to compute
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Fig. 4. Time variations in the values of the retrieved SM (SRP method), in-situ SM, SM from ECMWF modeling (European Center for Medium range Weather Forecasting) and daily

precipitation from the Jucar River Basin Authority, in 2013 over the MELBEX-III site.

TB could be simplified, leading to the SRP method. In the SRP method, it
is mathematically possible to account for the combined impact of soil
roughness (Hg) and vegetation (Tnap) through a single parameter
(TR). In that case Hg does not need to be calibrated, as it is included in
the TR parameter defined in Eq. (11), which is retrieved simultaneously
with SM. Based on the data set acquired over the VAS area in 2013, it
was found that best SM retrievals in terms of correlation coefficient
(R) and ubRMSE were obtained with the SRP method when compared
with synchronous in-situ SM, considered here as the reference.
Conversely, the lowest bias B was found with other combinations of
the roughness parameters. Using the SRP configuration, the retrieved
SM values underestimated the in-situ SM for all tested configurations
(2-P or 3-P retrievals for Qg = 0 or Qg = 0.1) and the bias was in the
range — 0,08 m*-m~> <B < —0.04 m>-m~>. However as noted earlier,
the sampling depths of the retrieved SM (=0-2 cm) and of the in-situ
measurements (=0-5 cm) are not the same, which may affect the
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Fig. 5. Comparison between retrieved (SRP) and measured in-situ SM values in 2013 over
the MELBEX-III site.
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analyses in a way or another, and may have an impact, particularly, on
the bias values (B) (Escorihuela et al., 2010). A study made by
Rondinelli et al. (2015) analyzed this issue as well, concluding that the
bias cannot be explained by the different sampling depths. However,
the latter study was focused in the watershed of the South Fork lowa
River (relatively humid region) while the VAS is located in a semi-arid
region where the differences between SM over the 0-2 cm top layer
and deeper ones are more significant and cover longer periods, over
most of the season of spring and summer.

Considering the vegetation anisotropy parameter tty as a free
parameter in the retrievals (3-P retrievals), generally led to improved
results in terms of correlation R and ubRMSE, but the bias B between
measured and retrieved SM data was generally larger. This improve-
ment could be due to the fact that the specific structural characteristics
of the vineyards, with a preferential vertical orientation of the vine
stems and stocks, could be accounted for in the 3-P retrievals where
the free parameter tty parameterizes the dependence of the optical
depth at V-polarization (7y) on the incidence angle. Conversely, in 2-P
retrievals, both ttyand tty; were set equal to tty = tty; = 1, corresponding
to isotropic conditions which could not account for the changes in the
vegetation structure in relation with the vegetation cycle (growth and
senescence) and the agricultural practices.

Although, over the vineyard field, the 3-P retrieval was found to be
the most efficient approach in terms of correlation R and ubRMSE, this
configuration presents the traditional disadvantages of requiring the
calibration of the Hg parameter. However, note that in the case when
Ngv = Ngy = —1, both the R and ubRMSE criteria were found to be
only slightly dependent on the value of Hg.

In summary, for both 2-P and 3-P retrievals, it was found that the
best approaches in terms of correlation coefficient R and ubRMSE were
those corresponding to the case Ny = Ngyy = — 1 (i.e. the SRP method
in the case of 2-P retrievals). In both cases, the SM retrievals were either
independent for 2-P retrievals (for SRP) or only slightly dependent for
3-P retrievals on the value of Hg. For all the other configurations, it
was found that the correlation coefficient decreased and the ubRMSE
increased for increasing values of Hg.

In a second step we used in-situ measurements of the roughness
characteristics to estimate the model roughness parameters using rela-
tionships developed from numerical modeling approaches by Lawrence
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Fig. 6. Time series of soil and vegetation parameters over 2013: retrieved TR (Eq. (11)) using the SRP method and retrieved Tyap using the 3-P retrieval approach (Hg = 0,Qz = 0,

Nep = —1), Hr € d from in-situ

et al. (2013). The analysis of the statistical criteria showed that the ob-
tained retrieval results with the Lawrence parameterizations, requiring
information on the in-situ roughness conditions, provided better results
in terms of bias and ubRMSE but poorer results in terms of correlation
than those obtained with the SRP method.

In conclusion, the results of this study suggest that the use of the SRP
method is an interesting approach to account for surface roughness
effects in SM retrievals. The SRP method provided the best results in
terms of correlation and unbiased RMSE among all the tested roughness
parameterizations while the soil roughness parameter Hg does no
longer need to be calibrated (as Hy is retrieved simultaneously with veg-
etation optical depth Tyap). More studies evaluating the improvement
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Fig. 7. Retrieved vegetation anisotropy parameter tty over the MELBEX-III site (3-P
retrieval, Hg = 0, Qg = 0, Ngp = —1) in 2013,
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(Lawrence et al, 2013) and NDVI derived from MODIS observations (1 km, 16 days).

in SM retrievals using the SRP method from space borne observations
will be crucial to consolidate this method as a feasible option in the
determination of SM at global scale. In particular, errors due to
uncertainties in the estimations of the L-MEB model input parameters
(soil effective temperature, vegetation parameter ttp, scattering albedo,
etc.) over a large range of vegetation canopy types are to be further
analyzed.
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Performance criteria in SM retrievals using roughness parameterizations calibrated from
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ARTICLEINFO ABSTRACT

Keywords: This study focuses on the calibration of the effective vegetation scattering albedo (w) and surface soil roughness
L-band parameters (Hg, and Ngp, p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave
Effective scattering albedo observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture
Soil moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated
g;g?"ghmss areas are parameterized by = 0 and Hg = 0.1, whereas values of @ = 0.06 — 0.08 and Hy = 0.3 are used for

forests. Several parameterizations of the vegetation and soil roughness parameters (w, Hy and Ngp, p = H,V)
were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM
over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms.
Globally-constant values of @ = 0.10, Hg = 0.4 and Ng, = —1(p = H,V) were found to yield SM retrievals that
compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture
Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover
categories based on the Inter | Geosphere-Biosphere Progi (IGBP) scheme. Depending on the IGBP
land cover class, values of  and Hy varied, respectively, in the range 0.08-0.12 and 0.1-0.5. A validation
exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there
was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all
statistical metrics (R = 0.61, bias = —0.019 m® m ™3, ubRMSE = 0.062 m® m~* for the IGBP-based calibration;
against R = 0.54, bias = —0.034 m* m > and ubRMSE = 0.070 m® m > for the SMOS L3 SM product). This
result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS
retrieval algorithm. The approach presented here is the core of a new forthcoming SMOS optimized SM product.

1. Introduction

L-band (1.1-2GHz) microwave radiometry is one of the main
remote sensing techniques to monitor Soil Moisture (SM) worldwide,
a key element of the global water cycle. SM is a physical parameter of
interest for many hydrological applications (Brocca et al., 2010),
weather and climate predictions (de Rosnay et al., 2013), agricultural
applications (Guérif and Duke, 2000) and early warning of natural
hazards.

SM in the first centimeters of the soil surface (~0-3cm) is strongly
related to the measurements of the emitted Brightness Temperature
(TB) at L-band (Escorihuela et al., 2010; Njoku and Kong, 1977).

* Corresponding author.

However, other parameters must be accounted for in order to produce
accurate estimates of SM, such as soil and canopy temperatures, soil
roughness, texture and the vegetation optical depth and effective
scattering albedo (Wigneron et al., 2017). Currently, the SMOS Soil
Moisture and Ocean Salinity (SMOS) mission from European Space
Agency (ESA), launched in November 2009 (Kerr et al., 2012), and the
Soil Moisture Active Passive (SMAP) mission from National Aeronautics
and Space Administration (NASA), launched in January 2015
(Entekhabi et al., 2010a), provide global maps of soil moisture and
vegetation optical depth Tyap (only operational in the case of SMOS for
this latter). The vegetation optical depth is related to vegetation
features such as water content and vegetation structure (Grant et al.,
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2016).

SMOS uses an interferometric L-band radiometer which measures
brightness temperature at different angles whereas SMAP was origin-
ally conceived to combine the radiometer (passive) information at a
constant incidence angle with radar (active) information to improve
spatial resolution (the radar stopped working on July 7, 2016). These
continuous measurements improve our knowledge of the soil-water
processes which link water, energy and carbon cycles over land in order
to advance in the prediction of droughts, flooding and climate forecasts
(Entekhabi et al., 2014).

The L-band Microwave Emission of the Biosphere (L-MEB) model is
the core of the SMOS level 2 retrieval algorithm (Kerr et al., 2012). In
this algorithm, the radiative transfer model (Mo et al., 1982) para-
meters related to soil roughness and some vegetation parameters
(Wigneron et al., 2007, 2008; Grant et al., 2007) are considered to be
time independent and their values are computed based on a land cover
map (ECOCLIMAP, Masson et al., 2003). Likewise, the SMAP algorithm
is based on the land use classification scheme of the International
Geosphere-Biosphere Programme (IGBP), which is composed of 17
classes. In this algorithm, the vegetation optical depth is estimated
through the vegetation water content (VWC, kg/m?), calculated using
both the Normalized Vegetation Difference Index (NDVI) and values
from a look-up table based on the IGBP classification (O'Neill et al.,
2012).

The first objective of this study was to investigate the impact of the
effective scattering albedo, w, on the soil moisture retrieval accuracy.
The effective scattering albedo  accounts for absorption and scattering
effects within the vegetation canopy (Kurum, 2013a,b). The value of @
is currently assumed to be zero over low vegetation canopies (non-
forested biomes) in the SMOS level 2 (L2) and level 3 (L3) algorithms
and 0.06-0.08 over forests (Kerr et al., 2012). However, the value of &
assigned to low vegetation was based on the analysis of tower-based L-
band radiometric measurements (Wigneron et al., 2007) limited to a
few specific agricultural sites and it may not be accurate for all canopy
types and for measurements made by space-borne sensors such as SMOS
and SMAP (Kurum, 2013a,b; Konings et al., 2016; Wigneron et al.,
2004). Few studies can be found in the literature investigating  at a
global scale. The study of Konings et al. (2016) provides values of
® = 0.02-0.04 over low vegetation and 0.03-0.06 over forested areas.
On the other hand, Van der Schalie et al. (2016) applied the Land
Parameter Retrieval Model (LPRM) on SMOS observations against
modelled SM from MERRA-Land (MERRA) and ERA-Interim/Land
(ERA) and found a value of w = 0.12 globally. In the SMAP L2
algorithm, the values of w are based on the vegetation type (O'Neill
et al., 2012). Additionally, the SMAP level 4 product provides globally
variable estimates of the effective scattering albedo (and all other
parameters) (Reichle et al., 2016; de Lannoy et al., 2013),

The second objective of this study was to investigate the effects of
the soil roughness parameters on SM retrievals. Presently, the model-
ling of the roughness effects in the level 2 SMOS retrieval algorithm is
based on four parameters (Hg, Qg, Ngy and Ngy) (Wigneron et al.,
2007). The parameter Hy accounts for the decrease in the soil
reflectivity due to soil roughness effects, Q, accounts for polarization
mixing effects, and Ng,, (p = H,V) accounts for the angular dependence
of reflectivity. Some studies have been done over specific vegetation
types. For instance, Wigneron et al. (2007) found values of
Hy = 0.1-0.2 for soybean and wheat crops and ~ 0.7 for corn fields.
Over Spain, Cano et al. (2010) estimated that Hg ~ 0.35 over Medi-
terranean vegetation. Regarding the Qg parameter, Lawrence et al.
(2013) found that Qg = 0 is a reasonable value for cases where
roughness conditions are not extreme, As for the parameters Ng;; and
Npy, Escorihuela et al. (2007) and Lawrence et al. (2013) proposed a
difference of Ngy — Ngy ~ 2 for smooth surfaces and (~1-1.5) for
rough soils. In the SMOS L2 and L3 SM retrieval algorithm, Qg is fixed
globally to 0, while Ngy; and Ngy are set to 2 and 0 respectively, The
value of Hy, is defined based on the ECOCLIMAP classification schema,
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with Hg = 0.3 for forests and Hg = 0.1 for the rest of the cover types
(Kerr et al,, 2012). In the SMAP L2 SM algorithm, Ng, (p = H,V) is
considered to be equal to 2 and the value of Hg, is provided based on the
IGBP classes (Entekhabi et al., 2014). Some studies have suggested the
possibility of combining soil roughness and vegetation contributions as
a single parameter in the retrieval algorithm (Fernandez-Moran et al.,
2015; Parrens et al., 2016; Parrens et al., 2017), due to the existing
relationship between the two contributions (Patton and Hornbuckle,
2013). This is done by setting the value of the Ny, (p = H,V) parameter
equal to —1 at both polarizations and by considering that the effective
scattering albedo w is equal to 0.

To achieve the above-mentioned objectives, we investigated the
calibration of the vegetation and soil roughness parameters (w, Hg, Ngy
and Ngy) based on SMOS SM retrievals. To simplify the retrieval
process, the SMOS pixels were assumed to correspond to homogeneous
surfaces over land as suggested by Wigneron et al. (2012), contrary to
the currently operational SMOS L2 and L3 SM retrieval algorithms
which use auxiliary data sets to characterize the pixel heterogeneity.
The simplicity of the assumption of “homogeneous surface” allows to
produce fast retrievals in order to perform very intensive and time
consuming calibration processes as the one presented here.

In this study, retrieved values of SMOS SM were compared with in
situ SM data measured at several sites worldwide available from the
International Soil Moisture Network (ISMN) representing various land
cover and soil types. The calibration was done by finding the values of
the vegetation and soil roughness parameters which minimize the
difference between the retrieved SM values and the in situ ISMN data,
considering the following metrics: correlation (R), bias, root mean
square error (RMSE) and unbiased RMSE (ubRMSE). We evaluated if
the parameter calibration we computed changed depending on the
degree of heterogeneity of the pixel.

In Section 2, the in situ data used in the study is presented along
with the method which was followed for the calibration and the
validation process. The Section 2.1 includes a description of the SMOS
TB, soil temperature and soil texture data, as inputs required to run the
L-MEB model. A description of the level 3 SMOS SM product, the IGBP
classification and the in situ sites used for calibration is also covered in
this section. The Section 2.2 describes the L-MEB model, SM retrievals
and addresses the calibration and performance analysis steps. The
results presented in Section 3 are divided in three subsections: calibra-
tion step of Ny and Ngy (3.1), calibration step of @ and Hy (3.2) and
analysis (3.3). Discussion and conclusions are given in Section 4.

2. Available data and applied methodology

In order to synthesize the content of this section, Fig. 1 shows a flow
chart that helps the reader to follow the use of the data described in
Sections 2.1.1 to 2.1.4 and the methodology, as explained in Sections
2.21t0 2.2.4.

2.1. Data

2.1.1. SMOS data

The main inputs of the L-MEB model inversion are the multi-angular
dual-polarization SMOS TB observations. The SMOS L3 TB (Version
310) product which is produced by the Centre Aval de Traitement des
Données (CATDS) was chosen in this study. The resolution of this
product is 25 km and uses the Equal-Area Scalable Earth (EASE) grid
2.0 (Armstrong et al., 1997) whereas the resolution of the SMOS
radiometer corresponds to a 43-km footprint on average (Kerr et al,,
2012). TB is expressed at the top of the atmosphere (at H and V
polarizations) and at predefined incidence angles, 0, from 2.5 to 62.5°
(in 5° steps). Each TB at an incidence angle, 6, is estimated from a bin of
SMOS TB observations at @ + 2.5% the standard deviation of those TB
observations is given in the SMOS L3 TB product, The availability of the
TB data at different angles depends on the day and the location, taking
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Fig. 1. Methodology flow chart,

into account the globe is fully imaged twice every three days. SMOS has
a sun-synchronous orbit with a 06:00 LST ascending equator crossing
time and 18:00 LST descending equator crossing time.

In this study, for each location and time (only ascending overpasses
were used), the retrievals were performed only if the range of available
incidence angles was larger than 10° (the retrieval error in SM decreases
as the incidence angle range broadens: Wigneron et al., 2000), i.e. at
least there was a difference of 10” between the largest and the smallest
angle for each angle bin. Also, observations at incidence angles lower
than 20" and larger than 55° were discarded as the former correspond to
TB measurements of less quality outside of the optimal SMOS alias free
field of view (Waldteufel et al., 2011) and the latter correspond to very
large Earth antenna footprint (larger than 90 km x 50km -3dB
ellipses) (Kerr et al., 2016). Although SMOS operates in a protected
band, some regions around the world are strongly affected by Radio
Frequency Interferences (RFI). This contamination could be due to
several sources such as radars, radio transmitters, TV communications,
wireless cameras or even other satellites (Oliva et al., 2012). In order to
limit the impact of RFI effects and to improve the quality of the TB data
which were selected for the SM retrievals, TB,,(0) was filtered out when
its standard deviation (given in the L3 TB SMOS product) exceeded
radiometric accuracy by 5K,

In this study, we also used the level 3 SMOS SM daily product
(reprocessed R04, v300) for the performance analysis (Section 2.2.4).
This product is processed by the CATDS and uses the EASE grid 2.0 with
a spatial resolution of 25 km. The data quality index (DQX) present in
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this product estimates the retrieval quality; a maximum value of
0.06 m*m~* was established as an upper threshold (Al-Yaari et al.,
2014a,b). In parallel, the RFI probability flag was used to filter out SM
data contaminated by RFL SM retrievals with an associated RFI
probability higher than 10% were removed. Additionally, SM values
below 0 and over 0.6 m*m ™3 (Dorigo et al., 2013) were filtered out.
In the operational SMOS L3 SM retrieval algorithm (similar to SMOS
L2) (see Section 2.2.2), the total TB (TByyy) is simulated as the sum of
several fractions contribution (Fyo: nominal, Fyo: forest, and others as
urban, water, etc.), i.e. TBrorar = TBeno + TB pro + TBoruers: The
FNO is a non-forest fraction where the retrieval can be done (bare soil,
low vegetation, ...). With the exception of some specific cases in which
the SM retrieval is attempted over Fggo, TBggo is computed from the SM
value over the 0-7 cm layer coming from the ECMWF model to serve as
auxiliary input to the retrieval over the nominal fraction FNO,

2.1.2. ECMWEF soil temperature and soil texture

Soil temperatures were provided by the European Centre for
Medium-range Weather Forecasting (ECMWF) for levels 1 (0-7 cm
depth) and 3 (28-100 cm). It is based on the ERA-Interim dataset,
which uses a numerical weather prediction (NWP) system (IFS —
Cy31r2) to produce reanalyzed data (Berrisford et al., 2011). These data
were reprocessed afterwards by the SMOS L3 preprocessor and
provided on the EASE grid 2.0. Data from frozen soils were discarded,
using the ECMWF level 1 surface temperatures as a threshold
(T < 275.3K). The effective soil temperature was computed from
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the surface (level 1) and deep temperature (level 3) following the
parameterization of Wigneron et al. (2001).

In the L-MEB model, the soil permittivity (¢) computation using the
model by Mironov et al. (2013) requires the soil clay content at global
scale; the latter information was obtained from a map provided on the
EASE 2.0 grid computed from the Food and Agriculture Organization
map (FAO, 1988), the same as the one used in the SMOS L3 algorithm
(Al Bitar et al., 2017).

2.1.3. Inssitu data

In order to calibrate the effective scattering albedo and the soil
roughness parameters over different cover types, the maximum number
of in situ sites with a sufficiently long time series of soil moisture data
was selected. Following this criteria, different sites were selected from
the International Soil Moisture Network (ISMN) (Dorigo et al., 2011):
Soil Climate Analysis Network (SCAN) in North America (Schaefer
et al., 2007), Soil Moisture Observing System — Meteorological
Automatic Network Integrated Application (SMOSMANIA) in the South
of France (Calvet et al., 2007), African Monsoon Multidisciplinary
Analysis (AMMA) in West Africa (Lebel et al., 2009), Valencia Anchor
Station (VAS) in Spain (Wigneron et al., 2012), Red de Estaciones de
Medici6n de la Humedad del Suelo (REMEDHUS) in Spain, (Leng et al.,
2016), DAHRA in Senegal (Olsen et al., 2013), Atmospheric Radiation
Measurement (ARM) in Central USA (Jin and Mullens, 2014), Plate
Boundary Observatory (PBO_H20) in North and Central America
(Larson et al., 2008), SNOpack TELemetry (SNOTEL) in West USA,
including Alaska (Serreze et al., 2001), The U.S. Climate Reference
Network (USCRN) in the USA (Coopersmith et al., 2015), OzNet in
Australia (Riidiger et al., 2010) and four watersheds in the USA (Little
Washita in Oklahoma, Little River in Georgia, Walnut Gulch in Arizona
and Reynolds Creek in Idaho) (Jackson et al., 2012).

A total of 1001 in situ stations providing the volumetric soil
moisture (m®> m~?) of the top 0-5 cm soil layer were considered. The
period of analysis was three years (2011-2013). For the global analysis
of the statistical records, in situ stations with low quality data were
discarded. For this purpose, we computed the p-value associated with
the comparison of the SM retrievals and the in situ measurements. We
accounted only for the stations fulfilling the condition p-value < 0.05
andR > 0.3 (for at least one of the cases of analysis) and for which the
number of data available N > 50 (Al-Yaari et al., 2016). To ensure a
proper inter-comparison, we used strictly the same number of data
(namely the same dates) for all the retrieval configurations which were
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evaluated in terms of input values of effective scattering albedo and
roughness parameters. Fig. 2 shows the locations of all stations: the in
situ stations used for the calibration and performance analysis steps,
and those discarded (as described in the following sections).

2.1.4. IGBP

The IGBP land cover classification scheme was developed during a
series of meetings of the IGBP Land Cover Working Group in 1995
(Belward, 1996). The IGBP schema considers 17 different cover types.
In this study, we used the 0.5km Moderate-Resolution Imaging
Spectroradiometer (MODIS)-based Global Land Cover Climatology
map. It is based on 10 years (2001-2010) of the MODIS MCD12Q1
product, which contains land cover information. The map is generated
by choosing, for each pixel, the land cover classification with the
highest overall confidence from 2001 to 2010, as described in Broxton
et al., 2014, This data has been re-gridded from the MODIS sinusoidal
0.5 km grid to a regular latitude-longitude grid (corresponding to a
spatial resolution of 15 arc seconds. All IGBP pixels (0.5km grid)
contained in each SMOS L3 pixel (EASE 2.0 grid) were accounted for in
order to calculate its composition, i.e. the percentage of each IGBP class
within the SMOS L3 pixels.

2.2. Methodology

2.2.1. L-MEB model

Retrievals of SM from SMOS L-band measurements are based on the
inversion of the L-MEB model. This model has been progressively
refined and improved (Wigneron et al., 2017) and it is based on the
zero-order t-w radiative transfer model (Mo et al., 1982). The latter
simulates the thermal emission of a vegetated soil. The soil microwave
emission expressed in terms of brightness temperature (TBg,, p = V, H)
can be written as a function of the ground emissivity (egp, p = H, V)
and the effective soil temperature (Tg) as (Ulaby et al., 1981 & 1986):

@

The soil emissivity (eg,) at the observation angle 6 can be computed
from the corresponding soil reflectivity (rgp):

eGp(0) = 1 = 165(6)

TBg,(0) = egy(0)Tg

(2)

To model soil roughness effects, a semi-empirical approach was
developed originally by Wang and Choudhury (1981) and modified to
include the Ngy and Ngy parameters (Escorihuela et al., 2007;
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Fig. 2. In situ sites used for calibration (391), performance analysis (279, excluding the calibration sites) and filtered out (331).
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Wigneron et al., 2007). The p-polarized soil reflectivity, 1, is given by:

T6p(0) = rip(@)exp[ ~Hgeos o (0) | 3
where

ron(®) = [1 = Qu(B)]Ees(8) + Qu(@iGy(®) )
Tov(®) = [1 = Qu®]riy (0) + Qu(O)i(8) ®)

where r'g, depends on the smooth surface reflectivity 1y, (p = H, V), i.e.
the reflectivity of a plane (specular) surface (Egs. (4) and (5)). The
latter can be computed from the Fresnel equations as a function of § and
soil permittivity (e). The latter was computed as a function of SM, soil
effective temperature (Tg), and soil texture in terms of clay fraction
from the dielectric model of Mironov et al. (2013). This model is based
on the Generalized Refractive Mixing Dielectric Model (GRMDM) and
accounts for the measured dielectric spectra of moist soil samples for a
given texture and temperature (Wigneron et al., 2017).

The semi-empirical roughness model includes four roughness para-
meters Qq, Hg and Ny, (p=H, V) (Wigneron et al., 2007). The
parameter Hy accounts for the decrease of the specular reflectivity rg,
(p = H, V) due to soil roughness effects, Q, accounts for polarization
mixing effects, and Ng, (p = H, V) accounts for the change in the
angular dependence of reflectivity caused by a rough surface.

From a large data set based on both experimental measurements
and simulations, Lawrence et al. (2013) found that setting Qg = 0 led
to a simplified model with good performance in terms of both TB
modelling and SM retrievals. The assumption of Qg = 0 was made here,
in line with SMOS 1.2 and L3 (Kerr et al., 2012; Al Bitar et al., 2017),
SMAP (O'Neill et al., 2012) and LPRM (Van der Schalie et al., 2015) SM
retrieval algorithms.

Using the - model, the emission of a soil covered with vegetation
can be calculated for each polarization as a sum of: (i) the direct
upwelling vegetation emission; (ii) the upwelling soil emission attenu-
ated by canopy; (iii) the downwelling vegetation emission reflected by
soil and attenuated again by the canopy layer:

TBy(0) = (1 = ) [1 = % O)[1 + 7,O)rgp(®)] T + [1 = 1y (0)]4,(0) T
(6)

where Tg; and T are the soil and vegetation effective temperatures, v, is
the vegetation attenuation factor (also referred as vegetation transmis-
sivity) and wp (p = H, V) is the effective scattering albedo (Kurum,
2013a,b). The latter is generally considered to be close to zero over low
vegetation covers (Wigneron et al., 2007; Kurum, 2013a,b), while it is
considered to be 0,08 for boreal forests and slightly lower for tropical
forests (Rahmoune et al., 2013). In the following, wp is referred to as w
since we did not consider the dependence of the effective scattering
albedo on polarization, as done in the SMOS L2 and L3, SMAP and
LPRM algorithms.

According to Beer’s law, the vegetation attenuation factor y, is
related to t, as:

%= exp[-Tty/cos(8)] %)

where the vegetation optical depth (,) at observation angles 6 > 0
and polarization p = H, V is expressed as a function of the vegetation
optical depth at nadir tap (8 = 0):

7,(0) = Tap[sin?(O)tt, + cos’(0)] (8)

where tty and tty quantify the dependence of 1, on the incidence angle
0. The value tt;; = tty = 1 corresponds to the isotropic case for Vertical
and Horizontal polarizations, where 7(8) = 7y (8) = tyap. This assump-
tion was made in this study, according to the SMOS L2 and L3 SM
retrieval algorithm (Kerr et al., 2006).

2.2.2. SM retrieval
The retrieval of soil moisture relies on the inversion of the L-MEB
model. The process involves the minimization of the following cost
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function (9), which accounts for all incidence angles between 20 and
55" and both polarizations (H and V):

I (TB, () — TB, (0))?
o(TB, ())*

5 (Pim _ Pi)2
= ey

9

where N is the number of observations for different viewing angles (8),
TBj(O)mes is the measured value over the in situ sites (SMOS L3 pixels),
o(TB,(0)) is the standard deviation associated with the brightness
temperature measurements (taken from the SMOS L3 SM product),
TB,(0) is the brightness temperature calculated using Eq. (6), P; (i = 1,
2) is the value of the retrieved parameter (2-P parameter retrieval in
this study, SM, tyap); P{" (i =1, 2) is the initial value of each
parameter in the retrieval process and corresponds to an a priori
estimate of the parameter P;; and o(P) is the standard deviation
associated with this estimate. An initial value of 0.2m>m™% was
selected for SM and o(SM), while it was equal to 0.5 for tyap and 1
for 6(tyap).

Taking into account that retrievals were only considered at SMOS
ascending orbit (around 6 am LST), a thermal equilibrium for the soil-
vegetation layers can be assumed (Jackson, 1980; Wigneron et al,,
2007). The atmospheric contribution was neglected in this study.

2.2.3. Calibration

The calibration process consists of two main steps and was carried
out over three years of SMOS data (2011-2013). In the first step, our
focus was on the calibration of the Ng,, (p = H, V) parameter. In the
second one, it was on the calibration of the effective scattering albedo
(w) and the soil roughness parameter (Hg), using the value of Ng,
(p = H, V) which was previously calibrated.

In the first step, the SM retrievals were carried out over the
calibration sites using a range of values of w, Hy and Ny, (p = H, V)
as follows:

* o = {0, 0.05, 0.08, 0.12}

* Hy = {0, 0.2, 0.5}

® Ny, Ny = {C-1, =1, (-1, 0), (-1, 1), (-1, 2), (0, 0), (0, 1), (0, 2), (1,
1), (1, 2), (2, 2)}

The range of values selected here correspond to common values of
the model parameters used at L-band in the literature (Fernandez-
Moran et al., 2015; Miernecki et al., 2014; Rahmoune et al., 2013;
Wigneron et al., 2007; Escorihuela et al., 2007). The combination of
inputs led to 120 (=4 x 3 x 10) cases of analysis. Different statistical
performance criteria were then computed: correlation coefficient (R),
root mean square error (RMSE), bias and the unbiased root mean square
error (ubRMSE), derived from the comparison between the retrieved
soil moisture and the in situ SM measurements. As the focus in the first
step was on the Ny, (p = H, V) parameter, only a few values of w and
Hy were considered, Taking into account that the sampling depth of the
in situ measurements (5 cm) does not correspond well to the estimated
sampling depth of SM at L-band (~3 cm) (Escorihuela et al., 2010;
Njoku and Kong, 1977), bias was considered as the less important
metric in the calibration process (and RMSE by extension, due to its bias
inclusion).

In the second step, the best N, (p = H, V) estimate obtained from
the first step was withheld and a new analysis was done considering the
following values of w and Hy (72 cases in total):

* o = {0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16}
* Hy = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}

Each in situ site was classified according to the IGBP schema (see
number of in situ stations for each class in Table 1). Only “representa-
tive” in situ stations of the SMOS L3 pixels to which they belong were
selected. For that purpose, a filtering was applied according to the



R. Fernandez-Moran et al.

Table 1
Total and filtered number of in situ stations used for calibration according to IGBP classes.

Class Number of in Number of “representative”
situ stations stations for calibration

0 — Water 4 0

1 — Evergreen needle leaf 122 41
forest

2 — Evergreen broadleaf 9 0
forest

3 - Deciduous needle leaf 0 0
forest

4 — Deciduous broadleal 12 4
forest

5 — Mixed forests 27 1

6 — Closed shrublands 2 0

7 — Open shrublands 100 25

8 — Woody savannas 59 16

9 — Savannas 4 1

10 - Grasslands 419 214

11 - Permanent wetland 7 0

12 - Croplands 119 63

13 - Urban and built-up 16 0

14 — Cropland/Natural 91 23
Vegetation Mosaic

15 — Snow and ice 0 0

16 — Barren and sparsely 10 3
vegetated

TOTAL 1001 391

following criteria:

® The IGBP class of the in situ station was the same as the predominant
class of the L3 pixel (EASE 2.0 grid, 25 km to which it belongs).

* The predominant class covered at least 50% of the L3 pixel.

* The sum of the surface fraction of water, permanent wetland, urban
and snow/ice classes represented less than 10% of the L3 pixel.

Table 1 shows the number of calibration candidate sites after
applying the selection of “representative” stations.

Once the selection of “representative” stations was made, two
calibrations were proposed: (1) globally-constant values of Hg, w and
Ngp (p = H, V) across all in situ stations (2) specific values of Hy, w and
Ngp (p = H, V) for each IGBP class (hereinafter “IGBP-based” calibra-
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tion). Due to the lack of “representative” stations for some IGBP classes,
the estimated parameters in those underrepresented classes were
assigned the globally-constant values. Conversely, specific values were
found for the following classes: evergreen needle leaf forest, open
shrublands, woody savannas, grasslands, croplands, cropland/natural
vegetation mosaic, and barren or sparsely vegetated.

2.2.4. Performance analysis

In the validation process, the SM retrievals obtained from the
following four different approaches were compared to the in situ SM
data: (1) a homogeneous retrieval using the globally-constant inputs
(Hg, @, Ny and Nyy) obtained in the calibration phase, (2) the same as
(1) where the values of the soil and vegetation parameters (Hg, o, Npy
and Ngy) were estimated as a function of the IGBP land use class, (3) the
SMOS L3 SM daily product (namely the official SMOS SM product
available from the CATDS center) and (4) a homogeneous retrieval
using the model parameter (Hy, @, Nyy; and Ngy) used in the SMOS L3
algorithm. For Cases (2) and (4), over a single pixel, each parameter P
(Hg, 6, Ny and Ngy) was weighted according to the percentage of each
IGBP class as:

%

P=X Pigg a0
where P; is the calibrated value of the parameter P for the class i and%,;
is the percentage of the class i present within the SMOS L3 pixel.

After the filtering of in situ sites presented in Section 3, the analysis
process was firstly performed over all the stations (670) and secondly
over all sites excluding those employed in the calibration steps (279).
Concerning data filtering, the same procedure as that described in the
calibration Section 2.2.3 was applied. Additionally, the post filtering
consisted of: (1) removing SM values out of the 0-0.6 m® m™? range
and (2) a quality control based on the RMSE value between the L3 TB
SMOS and the L-MEB modelled TB (retrievals where RMSE was above
12 K were discarded as proposed in Wigneron et al. (2012)).

3. Results and discussion
3.1. Calibration of N,

This section presents the results from the first step of the calibration
process which focused on the calibration of the Ng, (p = H, V)
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Fig. 3. Median correlation (all calibration sites: 391 stations) between in situ and retrieved SM for each Hg, w and Ng, (p = H, V) case.
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Fig. 4. Median absolute bias (all calibration sites: 391 stations) between in situ and retrieved SM for each Hg, @ and Ng, (p = H, V) case.

parameter globally, as the behavior of this parameter was found to be
rather similar across all IGBP classes. All results were obtained through
a direct comparison between retrievals over rather homogeneous pixels
and in situ measurements. Fig. 3 shows the median correlation values
(R) for each retrieval case (considering 120 combinations of ®, Hg, Ngy
and Ny parameters). Values range from R = 0.28 (for the case w = 0)
to R = 0.53 (for the case » = 0.12), highlighting the strong influence
of effective scattering albedo on this metric. Conversely, for a given
value of w, changes in the values of Hg and Ng, (p = H, V) do not lead
to significant changes in the median value of R. Note that for Hg = 0,
N, has no influence on the retrievals, so all R values are the same.

In parallel to the correlation analysis, the absolute value of bias
(|bias|) is shown in Fig. 4. The worst case (|bias| = 0.20) was found for
® =0, Hg = 0.5, Ngy = —1 and Ngy = 2. The soil roughness para-
meter’s impact on the absolute values of bias can be clearly noted,
especially for the lowest albedo value (@ = 0). An increase in o leads to
higher |bias| values when Hy is set equal to zero. The best case
(|bias| = 0.06) was found for several Hg and w scenarios, namely:
Hp=0, 0 =0; Hy = 0, ® = 0.05; Hy = 0.5, Ngy = =1 (p = H, V)
and other cases in which there is a dependency of w on the three
parameters (w, Hg and Ngp, p = H, V). Furthermore, we can note the
low impact of Ng,, (p = H, V) on |bias| when ® = 0.08-0.12. In any
case, Ng, = —1 (p = H, V) was the best choice to obtain the lowest
|bias| values.

Fig. 5 shows, similarly to Figs. 3 and 4, the SM retrievals analysis in
terms of unbiased root mean square error (ubRMSE). The ubRMSE and
the bias together cover the information in the root mean square error
(RMSE, Entekhabi et al., 2010b). Increasing values of o yields lower
ubRMSE values (from 0.11 — 0.18 for ® = 0 to 0.07 - 0.11 for
® = 0.12). Conversely, larger H tend to increase ubRMSE values and
lead to larger differences between the different Ng, (p =H, V)
parameterizations. This effect becomes less remarkable as w increases.
As it was found for |bias|, Ng, = =1 (p = H, V) generally leads to the
lowest ubRMSE values for any given values of o and Hg.
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3.2. Calibration of ® and Hy

This section presents the second part of the calibration process. In
the previous step it was shown that there was a low impact of Ny,
(p=H, V) on the correlation values between the retrieved and
measured SM values for high values of w.

Furthermore, it was found that the values of |bias| and ubRMSE
between the retrieved and measured SM values were generally lower
when Ngp, = =1 (p =H, V). Considering this result, hereinafter,
Ngp = =1 (p = H, V) was selected to be used in the second step of
the calibration process, which consists in the calibration of the Hg and
@ parameters (the subscript “p” for the Ny, parameter will be dropped
in the following). Two calibration approaches were evaluated in this
study for the SM retrieval process: (i) a so-called “globally-constant”
calibration, in which case globally-constant values of Hg, @ and Ny
were estimated, and (ii) a so-called “IGBP-based” calibration, in which
case values of Hg, ® and Ny were estimated for different land cover
classes, tabulated by the IGBP classification scheme.

3.2.1. Globally-constant calibration

Fig. 6 shows the median metrics based on four criteria (R, bias,
RMSE and ubRMSE) obtained through a direct comparison between the
in situ SM measurements and SM retrievals over the calibration sites
contained in rather homogeneous pixels. According to correlation
results, the increase in ® leads to an increase in the values of R,
whereas the effect of Hg on results is rather low. On the other hand, the
bias values are clearly influenced by the values of both Hg and w. For
the case Hg = 0, increasing @ values from 0 to 0.16 leads to a
significant decrease in bias values, from ~0 to —0.11m*m~> A
negative value of bias leads to an underestimation in the retrieved soil
moisture as compared to the in situ measurements. Increasing the value
of w or decreasing the value of Hg leads to “dry” SM retrievals. To make
an optimal choice in terms of bias reduction, a compromise has to be
found between both values of Hg and w. Regarding RMSE, an increase
in both @ and Hg, leads to decreasing errors. Regarding ubRMSE, it was
observed that increasing » and decreasing Hy tends to minimize this
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Fig. 5. Median ubRMSE (all calibration sites: 391 stations) between in situ and retrieved SM for each Hg, @ and Ng, (p = H, V) case.
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Table 2
Calibration of Hg and © as a function of the vegetation IGBP classes (“IGBP-based”
values).

IGBP Class Number of @ w(SMAP Hg Hy
filtered L4) Parrens et al.
stations (2017)
Evergreen needle leaf 41 010 0.2 04 035
forest
Open shrublands 25 0.08 0.11 01 017
Woody savannas 16 012 013 04 035
Grasslands 214 0.10 0.07 0.5 013
Croplands 63 012 012 0.4 017
Cropland/Natural 23 012 015 0.5 0.22
vegetation mosaic
Barren or sparsely 3 012 - 0.1 0.2
vegetated

error. The largest impact of Hy on bias, RMSE and ubRMSE was found
for high w values (0.10 — 0.16).

In order to find a global calibration of the H and @ parameters, a
best compromise among all statistical metrics was attempted by visual
assessment of Fig. 6. Considering mainly two criteria (R and ubRMSE) a
value of ® = 0.10 and Hy = 0.4 was estimated. Note that this Hy value
might cause a slight drying effect (negative SM bias), which could be
explained over many sites by the different sampling depth between the
L-band space-borne observations and the in situ measurements.

3.2.2. IGBP-based calibration

In this section, instead of calibrating a single and global value of the
soil and vegetation parameters » and Hg, we estimated those para-
meters for different land cover classes, tabulated by the [GBP classifica-
tion schema. Metrics were calculated following the same methodology
as presented in Section 3.2.1 but now for subsets of in situ sites
corresponding to each land cover class. Only classes including a
representative number of calibration sites were considered, namely:
evergreen needle leaf forest, open shrublands, woody savannas, grass-
lands, croplands, cropland/natural vegetation mosaic and barren or
sparsely vegetated. Figs. 1S to 7S present the statistic records in terms
of R, RMSE, bias, ubRMSE for each class.

The optimal values of o (ranging from 0.08 to 0.12) were found to
be relatively stable for the different IGBP vegetation classes and for the
different statistical criteria and they are summarized in Table 2. These
values are ¢ with the ones cc d by Van der Schalie et al.
(2016), who found @ = 0.12 using the LPRM algorithm globally. The
latter study showed that increasing @ produces increasing R and
decreasing ubRMSE values, and a dry bias effect, exactly as we did in
this study (see Figs. 1S to 75). A saturation effect was also found for
values of @ > 0.12. Moreover, our findings are consistent with the
SMAP 14 @ product as well. This product was obtained through
calibration with SMOS TB data (De Lannoy et al,, 2013, 2014) and
shows an average value of @ = 0.09 * 0.07 depending on the IGBP
class, as shown in Table 2. The values of SMAP L4  are slightly higher
than the ones found in this study, with the exception of the grasslands
class, for which SMAP L4 w = 0.07 against 0.10 in the present study.

In terms of Hg, all classes presented similar and clear patterns, with
exception of open shrublands. For that latter class, the only clear
pattern was found for bias. The best compromise for all metrics was
generally found when Hg = 0.4-0.5 with the exception of some low
vegetation classes (open shrublands and barren or sparsely vegetated).
For these latter, the best compromise was obtained with a rather low Hg
value (~0.1) in order to avoid SM overestimation. The best R
performances were obtained for croplands and cropland/natural vege-
tation; with a median R varying, respectively, from 0.58 to 0.72 and
from 0.35 to 0.70. On the other hand, the poorest R value was obtained
for the evergreen needle leaf forest and barren or sparsely vegetation
classes (R varying respectively, from 0.2 to 0.4 and from 0.32 to 0.42
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respectively).

Based on the analysis made above, the selected values of Hg for each
vegetation class are summarized in Table 2. These values will be
referred to as “IGBP-based” values, in contrast to the “globally-
constant” values estimated in the previous section. This table also
shows the Hg values which were found by Parrens et al. (2017), based
on SMOS TB and Leaf Area Index (LAI) data from MODIS.

There is a good general agreement between the values computed by
Parrens et al. (2017) and the ones found in the present study. As an
exception, in the grasslands and cropland/natural vegetation mosaic
classes, Parrens et al. (2017) found lower Hg values (0.13 and 0.22
respectively, instead of 0.5 for both vegetation cover types in this
study).

3.3. Performance analysis

The calibration process, presented in the above section, was
performed over a selection of in situ stations which were filtered based
on criteria defined in Section 2.7 (only 391 stations out of a total of
1001 were selected). The selected stations correspond to SMOS pixels
which are rather homogeneous and, as among others selection criteria,
where the predominant class covers at least 50% of the L3 pixel.

In the present section, the calibrated values of the soil and
vegetation parameters (@, Hg and Ng) are tested. Two datasets were
used in the computation of the statistics of this analysis:

 the whole collection of in situ sites, namely, all the selected in situ
stations (391, corresponding to rather homogeneous SMOS L3
pixels) used for the calibration process plus all other in situ stations
(670, corresponding to both rather homogeneous and heteroge-
neous SMOS L3 pixels), and

o exclusively in situ sites (279 stations) which were not previously
accounted for in the calibration step (these in situ sites correspond to
rather “heterogeneous” SMOS L3 pixels).

¢ [n the performance analysis process, three cases were taken into
account (Case (1) and (2) corresponds to the two “optimized”
approaches which have been developed in this study):

o Case (1): SM retrievals using globally-constant calibrated values,
namely @ = 0.10, Hg = 0.4 and Ng = - 1.

o Case (2): SM retrievals using IGBP —based calibrated values,
namely the calibrated values of soil roughness and w which are
dependent of the IGBP classes, as given in Table 2 and computed
following equation 12,

¢ Case (3): the original SMOS L3 SM product.

& Case (4): SM retrievals over homogeneous pixels, as done in Case (1)
and (2), but using the model parameters of the SMOS L3 algorithm,
namely:

O Forest class: @ = 0.06 and Hz = 0.3

® Other classes: @ = 0 and Hg = 0.1

Cases (1) (2) and (4) are thus based on SM retrievals under the
consideration of homogeneous pixels. In those cases, SM and tyap
retrievals were performed over the whole pixel rather than over the
fraction designated as either low vegetation or forest. Note that this
approach is similar to the one considered in the AMSR-E (Owe et al.,
2008), LPRM and SMAP level 2 SM algorithms.

The results are reported in Table 3 in terms of statistical criteria. It
can be seen that the obtained results for configurations (a) and (b) are
rather similar. This shows that our results are relatively independent on
the selection of the in situ sites used in the calibration steps. Taking into
account the configuration (a), slight differences between Case (1) and
Case (2) were found, mainly in terms of R and bias values (R = 0.60,
bias = —0.023m*m~* and R = 0.61, bias = —0.019 m® m~* respec-
tively). This result shows that the use of constant values of the soil and
vegetation parameters w, Hg and Ny is an interesting and simple
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Table 3

Int J Appl Earth Obs Geoinformation 62 (2017) 27-38

Median statistical metrics for each case (considering all stations (a) and all stations except the ones used in calibration (b)).

a b
CASE R bias (m*> m~?) ubRMSE (m*m %) R bias (m® m~?) ubRMSE (m*m™~?)
@ Globally-constant values of @, Hy, and Ny 0.60 -0.023 0.062 0.59 ~0.022 0.061
‘%) 1GBP-based values of w, Hy, Ny 0.61 -0.019 0.062 062 -0019 0.061
¥ $MOS L3 SM 0.54 ~0.034 0.070 0.54 -0.037 0.069
) Homogeneous (SMOS L3 SM , H, Ng) 0.4 0.028 0.086 039 0.035 0.089

alternative, as considering the dependence of these parameters on the
IGBP classification do not lead to significant improvement in the
results.

Compared to the SMOS L3 SM product, results for both approaches
(1) and (2) show an improvement in all metrics. In particular,
considering case (2) R improves by 0.07, and |bias| and ubRMSE errors
decrease by 0.015 and 0.008 m*m~* respectively. However, this
improvement cannot be explained by the use of homogeneous pixels,
as Case (4) leads to poorer R (0.44) and ubRMSE (0.086 m® m~?) than
SMOS L3. The obtained statistical results highlight the impact of using
the calibrated values obtained in Cases (1) and (2), as all metrics are
poorer for Case (4). The inter-comparison of bias for Cases (3) and (4) is
particularly interesting. The difference between these approaches lies
fundamentally in the consideration of pixel heterogeneity. The median
bias given by (3) is —0.034 m® m~3, meaning the SMOS L3 SM product
underestimates SM. Nonetheless, the same approach under the assump-
tion of “homogeneity” (4) leads to a wet bias equal to 0.028 m®*m .

Contrary to Case (4), the SMOS L3 SM retrieval algorithm does not
consider the total TB contribution in the SM retrieval. As it was noted in
Section 2.1.1, in both the SMOS L2 and L3 algorithms, TB is modelled
over the forest fraction (TBggp) as a function of ECMWF SM as auxiliary
information, when the retrieval is performed over the nominal fraction
(TBgno). The well-known ECMWF SM overestimation compared to in
situ SM values (Albergel et al., 2012) is causing a TBgpo underestimation
(Ulaby et al., 1981-1986). This underestimation may lead, by compen-
sation, to an increase in the simulated value of TBgyo during the
inversion process. Considering that the SMOS L3 SM retrieval is
performed mainly over the FNO, the resulting SM tends to decrease.
Such an issue has been revealed over the Valencia Anchor Station site
by Wigneron et al. (2012). This could partly explain the dry bias
obtained by the SMOS L3 SM product (Case (3)) over some pixels
including forested areas, despite the fact that assuming © = 0 (FNO) or
w = 0.06 (FFO) instead of higher w values (as the ones found in this
study) leads to wetter SM retrievals,

To better evaluate the improvement obtained from the use of the
IGBP-based approach (2) over the SMOS L3 SM product (3), Table 4
shows the percentage of in situ stations that performs best in each case
in terms of maximum values of R and minimum values of |bias| and
ubRMSE. The IGBP-based “optimized” approach is the best option for
84,4%, 57.0% and 86.1% of the in situ stations in terms of, respectively
R, bias and ubRMSE values.

4. Conclusions

The main objective of this study was to calibrate the parameters
which account for two crucial effects in the SM retrieval at L-band: soil

Table 4

roughness (in terms of Hg, Ngy and Ngy values) and vegetation (in
terms of effective scattering albedo, w). A large range of values of the
latter parameters were used in order to retrieve soil moisture (SM) and
vegetation optical depth (tyap) over a large number of sites worldwide.
The present study was carried out considering an optimized retrieval
approach which is different from that used in the SMOS L3 SM retrieval
algorithm. In this approach, pixels were assumed to be homogeneous
(SM was retrieved over the whole SMOS pixel), while heterogeneity is
accounted for in the SMOS L3 algorithm. The latter accounts for the
surface fraction of the main cover types (bare soil and low vegetation,
forest, water, urban, etc.) within each SMOS footprint depending on the
incidence angles of the observations. However, the retrieval is only
made over one fraction: either the nominal or forest fraction in some
specific cases.

Long term SM retrievals were compared to in situ measurements
obtained from the International Soil Moisture Network (ISMN) over the
period 2011-2013, and were evaluated using different metrics (R, bias
and ubRMSE). Note that, as the focus of this study was the optimization
of the SM retrievals, the retrieval results concerning the Tyap parameter
were not analyzed here. They will be presented and discussed in future
studies. Some first results are described in Fernandez-Moran et al.
(2017).

Finding the optimal retrieval values of the vegetation and soil
parameters for the SM retrievals requires finding a compromise
considering all the statistical metrics, i.e. the optimization of all of
them (with a focus on R and ubRMSE). Performances of the SM
retrievals, evaluated in terms of R, bias and ubRMSE, showed a high
sensitivity of SM to @ and were found optimum for high « values
(w ~ 0.10). On the contrary, the calibration of Hy, required compromise
between the performances obtained in terms of ubRMSE (lower for low
Hg values) and of |bias| (lower for larger Hy values). It was found that
increasing o and decreasing Hp values led to drier SM retrievals.
However, due to the different sampling depths of the in situ measure-
ments (0-5 cm) and of the SMOS L-band observations (~ 0-3 cm), bias
was considered as a second order criterion in the assessment of the
results, Globally, a value of w = 0.10,Hg = 0.4and N = =1 (p = H,
V) was found optimum at global scale. This finding is consistent with
the work of Van der Schalie et al. (2016), who globally obtained w
equal to 0.12 after applying the Land Parameter Retrieval Model
(LPRM) and evaluating SM retrievals against model datasets as
MERRA-Land (MERRA) and ERA-Interim/Land (ERA). The latter study
has also shown the low influence of soil roughness on the correlation
statistics in terms of SM retrievals when w = 0,12, Furthermore, the
global map of the effective scattering albedo provided by the SMAP L4
product is in agreement with the findings of this study
(® = 0.09 = 0.07). On the contrary, studies by Konings et al. (2016)

Percentage of in situ stations where the best statistical metrics were obtained for each case (considering all stations (a) and all stations except the ones used in the calibration step (b)).

a b
CASE R bias (m* m ™) ubRMSE (m*m %) R bias (m*m %) ubRMSE (m*m ™)
® 1GBP-based values of w, Hy, Ny 84.4% 57.0% 86.1% 79.1% 56.4% 85.3%
9 $MOS L3 SM 15.6% 43.0% 13.9% 20.9% 43.6% 14.7%
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found lower values (w = 0.02-0.06) and the current set of effective
scattering albedo in the SMOS L3 SM product is w = 0.06-0.08 for
forest and @ = 0 for the rest of the cover types.

All in situ sites used in this study were classified using the
International Geosphere-Biosphere Programme (IGBP) land cover clas-
sification scheme, and then specific calibrated values of Hg, Ng,
(p =H, V) and ® were proposed for each class. Over the different
IGBP classes, it was found that w values are in a narrow range, from
0.08 to 0.12, whereas Hy ranged from 0.1 to 0.5. It is noticeable that the
low Hg (~0.1) was associated to low vegetation cover types (open
shrublands and barren or sparsely vegetated covers) whereas higher
values, ranging from 0.4 to 0.5, were linked to the rest of IGBP classes.
These results are in good agreement with the global map of Hy, obtained
by Parrens et al. (2017), who calibrated this parameter using SMOS
retrievals and Leaf Area Index (LAI) data from MODIS as auxiliary data,

The calibrated soil roughness and effective scattering albedo values
were used in an analysis a posteriori. This analysis was based on a
comparison between the SM retrievals using the calibrated values and
the SM data measured at the in situ sites, To evaluate the robustness of
the calibration step two configurations were considered: a comparison
using (a) all in situ sites and (b) all sites, excluding the ones (rather
homogeneous) considered in the calibration step. Results obtained for
both configurations (a) and (b) were generally very similar, which
indicates the robustness of the calibrated values,

This analysis exercise confirmed that using either globally-constant
or IGBP dependent parameters, there was improvement over the SMOS
13 SM product in terms of SM retrieval accuracies, as compared to the
in situ SM data (R=061, bias= -0019m*m~® and
ubRMSE = 0.062 for the IGBP-based calibration; R = 0.54,
bias = —0.034 m*m > and ubRMSE = 0.070 for the SMOS L3 SM
product). By comparing results obtained for the SMOS L3 SM product
and the SMOS L3 SM product under the homogeneous approach we
could show that this improvement could not be explained by the use of
homogeneous pixels, but mainly by the use of the new model parameter
calibration that we computed in this study. Nonetheless, the drying
effect of the SMOS L3 SM algorithm retrieval due to the “heterogeneity”
approach was demonstrated: considering the same model parameter
calibration, the bias varied from —0.034 m® m ™ when using the SMOS
13 SM algorithm (heterogeneous pixels) to 0.028 m*m® when the
homogeneous approach was used.

The findings presented in this study have important implications for
the calibration of soil roughness and vegetation in the current Level 2
and 3 algorithms of the SMOS mission with potential implications for
SMAP as well. An alternative SMOS product (referred to SMOS-INRA-
CESBIO, or SMOS-IC for short) (Fernandez-Moran et al., 2017) based on
the homogeneous retrieval approach and the new calibrated parameters
presented here has been developed by Institut National de la Recherche
Agronomique (INRA) and Centre d'Etudes Spatiales de la BIOsphére
(CESBIO). One of the main advantages of this approach is its simplicity
leading to the development of an efficient processor, capable of
processing one year of data over a few hours, The dependence on the
auxiliary data has also been reduced as compared to the L3 algorithm.
Specifically, SMOS-IC does not use MODIS LAI and ECMWF SM data,
whose tendency to SM overestimation is well-known (Albergel et al.,
2012). Consequently, the products from the SMOS-IC approach are
more aligned to SM products derived from other space-borne sensors
(such as SMAP and AMSR-E), where the retrieval is done under the
homogeneity assumption (Entekhabi et al., 2014; Asheroft and Wentz,
2000; Owe et al,, 2008), Future studies focusing on the global-scale
validation of this product would be helpful to better understand its
strengths and possible shortcomings.
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Abstract: The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces
is the production of global maps of soil moisture (SM) and vegetation optical depth (7) based on
multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level
2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation
opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and
7. In this study, we present an alternative SMOS product that was developed by INRA (Institut
National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphere).
One of the main goals of this SMOS-INRA-CESBIO (SMOS-IC) product is to be as independent as
possible from auxiliary data. The SMOS-IC product provides daily SM and 7 at the global scale and
differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over
heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections
associated with the antenna pattern and the complex SMOS viewing angle geometry. It considers
pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary datasets
which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also
differs from the current SMOSL3 product (Version 300, V300) in the values of the effective vegetation
scattering albedo (w) and soil roughness parameters. An inter-comparison is presented in this study
based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs
and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging
Spectroradiometer). A six-year (2010-2015) inter-comparison of the SMOS products SMOS-IC and
SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased
root mean square difference) for SMOS-IC over most of the pixels. In terms of T, SMOS-IC T was
found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the
Amazonian basin and the northern mid-latitudes.

Keywords: SMOS; L-band; Level 3; ECMWEF; SMOS-IC; soil moisture; vegetation optical depth;
MODIS; NDVI
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1. Introduction

The estimation of surface soil moisture (SM) at global scale is a key objective for the recent
L-band microwave missions SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2012 [1]) and
SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010 [2]). Measurements of soil moisture are
needed for applications related to the study of climate change or agriculture (droughts, floods, etc.) and
hydrological processes (Brocca et al., 2010 [3]) such as precipitation, infiltration, runoff and evaporation.
Moreover, SM is considered as an Essential Climate Variable (ECV) and it is included in in the Climate
Change Initiative (CCI) project (Hollmann et al., 2013 [4]). An ECV is defined as a physical, chemical
or biological variable that critically contributes to the characterization of the Earth’s climate.

The soil moisture of the first 2-3 cm soil layer is highly related to the soil emissivity at L-band
through the soil permittivity. SMOS uses an interferometric radiometer, which delivers multi-angular
brightness temperature measurements at L-band. Currently, various products are derived from the
SMOS data at Level 2 (Kerr et al., 2012 [1]) and at Level 3 (Al Bitar et al., 2017 [5]), such as the
SMOSL3 Brightness Temperature (SMOSL3 TB) and the SMOSL3 SM and 7 products, with a 625 km?
sampling. The SMOS SM retrieval algorithm, which is common to both SMOS Level 2 (L2) and
Level 3 (L3) products, has been continuously improved since the launch of the satellite in 2009
(Kerr et al., 2001 [6]; Mialon et al., 2015 [7]; Al Bitar et al., 2017 [5]). It has been evaluated against several
datasets from various space-borne sensors such as SMAPD, the active Advanced Scatterometer (ASCAT),
the Advanced Microwave Scanning Radiometer (AMSR-E) or different versions of the SMOS products
(Al-Yaari et al., 2014 [8]; Al-Yaari et al., 2015 [9], 2017 [10], Kerr et al., 2016 [11]). All versions of the
Level 2 (L2) and Level 3 (L3) products, are based on the inversion of the L-band Microwave Emission
of the Biosphere (L-MEB) radiative transfer model (Wigneron et al., 2017 [12], thus retrieving two main
parameters: soil moisture and vegetation optical depth at nadir (7).

The SMOS T is a measure of the attenuation of the microwave radiations by the vegetation canopy
at L-band. Vegetation is commonly studied at optical or infrared frequencies. However, the longer
wavelength of L-band sensors allows penetration of the radiations within the canopy. Thus, T can be
related to different vegetation features such as forest height (Rahmoune et al., 2013 [13], 2014 [14]),
vegetation structure (Schwank et al., 2005 [15], 2012 [16]), water content (Jackson and Schmugge,
1991 [17], Mo et al., 1982 [18], Wigneron et al., 1995 [19]; Grant et al., 2012 [20]), sapflow (Schneebeli
et al,, 2011 [21]) and leaf fall (Guglielmetti et al., 2008 [22]; Patton et al., 2012 [23]). Furthermore,
some vegetation indices can also be related to T such as the Leaf Area Index (LAI) (Wigneron et al.,
2007 [24]) and the normalized difference vegetation index (NDVI) (Grant et al., 2016 [25]). Note that
some studies have also demonstrated the notable influence of soil roughness on the retrieved values
of the T parameter at both local and regional scales (Patton et al., 2013 [23]; Fernandez-Moran et al.,
2015 [26]; Parrens et al., 2017 [27]).

The L-MEB model has been progressively refined and improved (Wigneron et al., 2011 [28],
2017 [12]). The SMOS L2 and L3 algorithms are based on a bottom-up approach where the TB
contributions of 4 x 4 km land cover surfaces are convoluted using the antenna pattern to upscale the
TB simulations to the sensor resolution. The use of such a bottom-up approach to retrieve SM and T
presents two main drawbacks. First, this approach is impacted by the uncertainties associated with
the higher resolution auxiliary files, like the land cover maps, which are used to characterize the pixel
heterogeneity. Second, the approach is more time consuming as the exact antenna patterns have to be
applied for each view angle.

In this study, an alternative SMOS product is presented, hereinafter referred to as SMOS-IC
(SMOS-INRA-CESBIO). This product is based on a simplified approach developed by INRA (Institut
National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphére) and
differs from the operational SMOS Level 2 and Level 3 products in four main ways:

I The main objective of this product is to be as independent as possible from auxiliary data.
The SMOS-IC algorithm does not take into consideration pixel land use and assumes the pixel to
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be homogeneous as suggested by Wigneron et al., 2012 [29]. The SM and T retrieval is performed
over the whole pixel rather than over the fraction designated as either low vegetation or forest.
Note that this approach is similar to the one considered in the development of the AMSR-E
and SMAP SM algorithms (O'Neill et al., 2012 [27]). By simplifying the retrieval approach, the
SMOS-IC product becomes independent of the ECMWF soil moisture information currently used
as auxiliary information to estimate TB in the subordinate pixel fractions of heterogeneous pixels
in the operational SMOS L2 and L3 algorithms (Kerr et al., 2012 [1]).

I In relation to the above point, in some cases, the Level 2 and Level 3 algorithms use values of
LAI derived from MODIS [30] to initialize the value of optical depth in the inversion algorithm
(Kerr et al., 2012 [1]). In SMOS-IC, this is not implemented, and the initialization of optical depth
in the inversion algorithm is based on a very simple approach (given in the following) and is
completely independent of the MODIS data.

I SMOS-IC uses as input SMOS Level 3 fixed angle bins Brightness Temperature (TB) data at the top
of the atmosphere and contains different flags allowing to filter SM retrievals accounting for the
quality of the input TB data and for the TB angular range in the L-MEB inversion. SMOS-IC does
not make use of the computationally expensive corrections based on angular antenna patterns to
account for pixel heterogeneity as in the L2 and L3 retrieval algorithms.

IV New values of the effective vegetation scattering albedo (w) and soil roughness parameters (Hg,
Nry, and Ngp) are considered in the SMOS-IC product. This change is based on the results of
Fernandez-Moran et al. (2016) [31] who calibrated the L-MEB vegetation and soil parameters for
different land cover types based on the International Geosphere-Biosphere Programme (IGBP)
classes, as well as the findings of Parrens et al. (2016) [32] who computed a global map of the
soil roughness Hg values. The calibration of Fernandez-Moran et al. (2016) [31] was obtained by
selecting the values of the parameters (Hg, Ngy, Nry, and w) which optimized the SMOS SM
retrievals, with respect to the in situ SM values measured over numerous sites obtained from
ISMN (International Soil Moisture Network). The parameter values resulting from this new
calibration differ from those used in the current SMOS L2 and L3 products. Values currently
used in the SMOS L2 and L3 algorithms (Kerr et al., 2012 [1]) were defined before launch from
literature. Over forested areas, values were updated but not over low vegetation. Consequently,
in Version 620 of the L2 (and Version 300 for L3) algorithm, w is still assumed to be zero over low
vegetation canopies and w ~0.06-0.08 over forests. Similarly, Hy is equal to 0.3 for forests and
Hp = 0.1 for the rest of the cover types, whereas Ny and Ngy are respectively set to 2 and 0 at
global scale.

An evaluation and calibration of SMOS-IC at local scale was performed in Fernandez-Moran et al.
(2016) [31]. The present study aims at presenting SMOS-IC and illustrating the main features of the
SMOS-IC SM and T products at global scale, in comparison to the current SMOSL3 product. To achieve
this, the SMOS-IC and SMOSL3 SM products were compared against the ECMWEF SM product for
ease of comparison. Furthermore, NDVI (Rouse et al., 1974 [33]) from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) was used as a vegetation index to analyze the seasonal changes
in the T products from both SMOS-IC and SMOSL3. The NDVI index which is derived from optical
observations cannot be directly compared to the v product, which is derived from microwave
observations. It must be noted that the L-band TB observations are almost insensitive to green leaves
(Guglielmetti et al., 2007 [34], Santi et al., 2009 [35]), and T is related to the vegetation water content
(VWC, kg/ m?) of the whole vegetation layer. However, the NDVI index is a good indicator of the
vegetation density and it can be used to interpret the seasonal changes in the SMOS 7 product at large
scale over low vegetation as found by Grant et al. (2016) [25], but with some caveats: saturation effects
at high levels of vegetation density, sensitivity to the effects of snow and soil reflectivity (Qi et al.,
1994 [36]), etc. It may be noted that NDVI is the proxy used for estimating 7 in the current operational
algorithm of the SMAP mission (O'Neill et al., 2012 [37]).
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In Section 2, we present a description of both SMOS algorithms (SMOSL3 and SMOS-IC) and of
the MODIS NDVI and ECMWF SM datasets. The inter-comparison of the SMOS products in terms of
soil moisture and vegetation optical depth is given in Section 3. The inter-comparison covers almost
six years of data, from 2010 to 2015, excluding the commissioning phase (the first six months of 2010;
Corbella et al., 2011 [38]). Discussion and conclusions are presented in Section 4.

2. Materials and Methods

2.1. SMOSLS3 Brightness Temperature, Soil Moisture and Vegetation Optical Depth

At Level 3, there are different SMOS products (Al Bitar et al., 2017 [5]). In this study, we used the
SMOS L3 products which include TB, T and SM (version 300) data produced by the CATDS (Centre
Aval de Traitement des Données SMOS) (Al Bitar et al., 2017 [5]). These products are available in the
NetCDF format and on the Equal-Area Scalable Earth (EASE) 2.0 grid (Armstrong et. al, 1997 [39]) with
a 625 km? sampling [40]. The SMOSL3 TB is measured at the top of the atmosphere and provided in
the surface reference frame (i.e., H and V polarizations) at angles ranging from 2.5 + 2.5 to 62.5 + 2.5.
Ascending (~06:00 LST at the equator) and descending (~18:00 LST) orbits are processed separately.
The Level 3 processor uses the same physically based forward model (L-MEB) as the ESA SMOS
Level 2 processor (Kerr et al., 2012 [1], Kerr et al., 2013 [41]) for the retrieval of both SM and 7 from
dual polarization (H, V) and multi-angular SMOS measurements. The retrieval algorithm consists of
the minimization of the differences between observed and modeled Level 1 TB (through the L-MEB
forward model) in a Bayesian cost function, which accounts for the observation uncertainty, and also
contains a prior parameter constraint. One of the characteristics of the TB modeling is the consideration
of surface heterogeneity. The total modeled TB is simulated as the sum of TB contributions from several
fractions (nominal or low vegetation, forest, and others as urban, water, etc.). In most of the cases, the
SM retrieval is estimated from the TB contribution which corresponds to areas with low vegetation
(nominal fraction), while the TB forest contribution is computed using ancillary data such as ECMWE
SM. In other cases, the retrieval is performed entirely over the forest fraction. Dynamic changes as
freezing or rainfall events are considered through ancillary weather data from ECMWFE.

The SMOSL3 T and SM retrievals are provided at different temporal resolutions: daily, 3-days,
10-days, and monthly averaged (Kerr et al., 2013 [41]; Jacquette et al., 2010 [42]). The quality of the
SMOSL3 product containing SM and T data is improved by the use of multi-orbit retrievals (Al Bitar et al.,
2017 [5]). The SMOS ascending (06:00 LST) and descending (18:00 LST) orbits are processed separately
in this product in order to better account for the diurnal effects (surface, total electron content which
drives Faraday rotation and sun corrections) and, in some areas, radio frequency interferences (RFI)
effects (Oliva et al., 2012 [43]) and sun glint impacts at L-band (Khazaal et al., 2016 [44]).

In SMOS-IC, we used the SMOS L3 TB product as input to the inversion algorithm. This product,
which includes many corrections, is very easy and convenient to use (conversely, the L2 and L3
algorithms are based on L1 C TB data, which include multi-incidence angle brightness temperatures at
the top of the atmosphere with a spatial resolution grid of 15 km).

2.2. SMOS-IC

2.2.1. Model Description

As for the L2 and L3 algorithms, in SMOS-IC, the retrieval of the soil moisture and vegetation
optical depth at nadir is based on the L-MEB model inversion (Wigneron et al., 2007 [24]). The retrieval
is performed over pixels which are considered as entirely homogeneous; in other words, a single
representative value of each input model parameter is used for the whole pixel.

In L-MEB, the simulation of the land surface emission is based on the 7-cw radiative transfer model
(Mo et al., 1982 [18]) using simplified (zero-order) radiative transfer equations. The model represents
the soil as a rough surface with a vegetation layer. The modeled TB from the soil vegetation medium is
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calculated as the sum of the direct vegetation emission, the soil emission attenuated by the canopy
and the vegetation emission reflected by the soil and attenuated by the canopy following Equation (1).
The atmospheric contribution is neglected.

TBp(6) = (1- @) [1 = 7p(8)] [1+ 70(0)rcp(6)| Tc + [1 — r6p(8)| 70(6) T (1)

where @ is the incidence angle, r¢p is the soil reflectivity, Tg and T are the soil and canopy effective
temperatures (K), 7, is the vegetation transmissivity (or vegetation attenuation factor) and w is the
effective scattering albedo (polarization effects are not taken into account for this parameter).

Soil roughness effects are parameterized through a semi-empirical approach initially developed
by Wang and Choudhury (1981) [45] and refined in more recent studies (Escorihuela et al., 2007 [46];
Lawrence et al., 2013 [47]; Parrens et al., 2016 [27]). The roughness modeling in SMOS-IC is based on
three parameters (Hg, Ngry and Ngy) and the calculation of the soil reflectivity rgp is given by:

rap(f) = rf;p(ﬂ)exp[—HR-cosNRP(B) (2)

where rip, (P = H, V) is the reflectivity of a plane (specular) surface, which is computed from the
Fresnel equations (Ulaby, 1982 [48]) as a function of 8 and of the soil dielectric constant (), expressed
as a function of SM, soil clay fraction and soil temperature using the model developed by Mironov et al.
(2012) [49]. Hg accounts for the decrease of r;p due to soil roughness effects and its value was estimated
from global maps computed by Parrens et al. (2016) [32]. The values of Ngp (P = H, V) have been
calibrated in Fernandez-Moran et al. (2015, 2016) [31,50]. Optimized values of Ngp = —1 (P = H, V)
were obtained over low vegetation and Ngy = 1 and Ngy = —1 over forests.

Under the assumption of isotropic conditions and no dependence of the vegetation optical depth
on polarization, the vegetation attenuation factor yp can be computed using the Beer’s law as:

Tp = exp{—r/cos(ﬁ)} (3)
The retrieval of SM and T involves the minimization of the following cost function x:

¥ = E{i] (TBP(B)mES - TBP(G))Z +
o(TB)* i

2 P_r'm' o Pi 2
B2 @
=1

o(P)?

where N is the number of observations for different viewing angles (¢) and both polarizations
(H, V), TBp(#),,.s is the measured value over the SMOS pixels from the SMOSL3 TB product
(presented in Section 2.2.2), ¢(TB) is the standard deviation associated with the brightness temperature
measurements (this parameter was set to the constant value of 4 K in this study), TBp(#) is the
brightness temperature calculated using Equation (1), P; (i = 1, 2) is the value of the retrieved parameter
(SM, 1); Pf”i (i=1,2)is an a priori estimate of the parameter F;; and ¢(P;) is the standard deviation
associated with this estimate. A constant initial value of 0.2 m*®/m? was considered for SM and ¢(SM)
and the value of Ty 4p was set equal to a yearly average value (computed from previous runs) and
o(Tyap) was computed as follows:

o(tnyap) = min(0.1+ 0.3-tyap, 0.3) (5)

2.2.2. Effective Vegetation Scattering Albedo, Soil Roughness and Soil Texture Parameters

One of the most important features of the SMOS-IC product is the ability to test new calibrated
values of w (Fernandez-Moran et al, 2016 [31]) and Hg (Parrens et al., 2016 [32]. Table 1 presents these
values for SMOS-IC and SMOSL3 V300 as a function of the IGBP land category classes. It must be
noted that SMOSL3 V300 uses the ECOCLIMARP classification (Masson et al., 2003 [51]) and that in
new versions of SMOSL3, IGBP land use maps could be used.
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In SMOS-IC, the retrieval of SM and 7 is performed over the totality of each pixel and the input
parameters Hy and w are consequently constant values for the whole pixel. However, due to the
heterogeneity present in all pixels, the input Hg and w parameters used in the retrieval are calculated
by linear weighting the Hg and w contribution according to the percentage of each IGBP class within
the pixel based on the values provided in Table 1. For instance, if a pixel is covered by 60% of grasslands
and 40% of croplands, the effective vegetation scattering albedo considered for that pixel is calculated
as follows: w = 0.60 x 0.10 + 0.40 x 0.12 = 0.108. The assumption of linearity, which is questionable,
was made here as it leads to a very simple correction, and as no other more physical and general
formulation was available.

The soil texture in terms of clay content is obtained in the SMOS-IC product from the Food and
Agriculture Organization map (FAQO, 1988) [52]. This map is re-gridded in the same EASE 2.0 grid
used by SMOSL3.

Table 1. Calibrated Values of w and Hg as a Function of the IGBP Land Category Classes for SMOS-IC

and SMOSL3.
Class w w Hg Hg
(SMOS-IC)  (SMOSL3 V300) (SMOS-IC) (SMOSL3 V300)

1—Evergreen needle leaf forest 0.06 0.06-0.08 * 0.30 0.30
2—Evergreen broadleaf forest 0.06 0.06-0.08 * 0.30 0.30
3—Deciduous needle leaf forest 0.06 0.06-0.08 * 0.30 0.30
4—Deciduous broadleaf forest 0.06 0.06-0.08 * 0.30 0.30
5—Mixed forests 0.06 0.06-0.08 * 0.30 0.30
6—Closed shrublands 0.10 0.00 0.27 0.10
7—Open shrublands 0.08 0.00 0.17 0.10
8—Woody savannas 0.06 0.00 0.30 0.10
9—Savannas 0.10 0.00 0.23 0.10
10—Grasslands 0.10 0.00 0.12 0.10
11—Permanent wetland 0.10 0.00 0.19 0.10
12—Croplands 0.12 0.00 0.17 0.10
13—Urban and built-up 0.10 0.00 0.21 0.10
14—Cropland/Natural Vegetation'Mosaic 0.12 0.00 0.22 0.10
15—Snow and ice 0.10 0.00 0.12 0.10
16—Barren and sparsely vegetated 0.12 0.00 0.02 0.10

* w = 0.08 over boreal forests, w = 0.06 over other forest types.

2.2.3. Quality Flags

The data filtering of the SMOS-IC product can be done through different scene and processing
flags which are summarized in Tables 2 and 3. The scene flags indicate the presence of moderate and
strong topography, frozen soil or polluted scene. TB data for pixels where the sum of the water, urban
and ice fractions are higher than 10% are considered as polluted scene. For ECMWEF soil temperatures
below 273 K, the soil is considered as frozen. The processing flags help to filter out all cases suspected
to give dubious results. Retrievals for which the RMSE values between the measured (L3 TB) and
the L-MEB modeled TB data are larger than 12 K can be filtered out as suggested in Wigneron et al.
(2012) [29]. These retrievals and the SM retrievals, which are out of the physical range (0-1 m?/m?),
are flagged using a processing flag (Table 3).

In order to extend the number of retrievals and the spatial coverage of the retrievals of SM and 7,
scene and processing flags were not all considered in this study. More details about the data filtering
used in this study are given in Section 2.4.1.
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Table 2. Description of the SMOS-IC Scene Flags.

Scene Flags Description
Presence of moderate topography Same filter as SMOSL3 V300
Presence of strong topography Same filter as SMOSL3 V300

Water, urban and ice fractions (according to the IGBP
classification) represent less than 10% of the pixel
Frozen scene Soil temperature < 273 K

Polluted scene

Table 3. Description of the SMOS-IC Processing Flags.

Processing Flags Description
SM retrieved successfully
SM retrieved successfully but not recommended RMSE < 12K
Failed retrieval SM <0 orSM >1m?/m?

2.3. ECMWF and MODIS Data

The ECMWF dataset used in this study for the SM product inter-comparison was obtained from
the SMOSL3 SM pre-processor. This ECMWF product has a spatial resolution of 625 km? and 1-day
temporal resolution, using the same EASE 2.0 grid and interpolated in time and space to fit the SMOSL3
sampling resolutions. It is based on the ERA-Interim dataset. ERA-Interim uses a numerical weather
prediction (NWP) system (IFS-Cy31r2) to produce reanalyzed data (Berrisford et al., 2011) [53].

The ECMWE soil surface (Level 1, top 0-7 cm soil layer) and soil deep temperature (Level 3,
28-100 cm) are used in the computation of the effective soil temperature for the SMOS-IC and SMOSL3
SM products following the parameterization of Wigneron et al. (2001) [54]. It is worth noting that,
unlike the SMOSL3 SM product, the SMOS-IC processor does not use the ECMWEF SM product to
compute contributions from the fixed fractions (i.e., fraction of the scene over which the SM retrieval is
not performed), and is only considered for evaluation purpose in this study. The ECMWF SM product
represents the top 0-7 cm surface layer and it has been frequently compared to retrieved SM at global
scale (Al-Yaari et al., 2014 [55]; Albergel et al., 2013 [56]; Leroux et al., 2014) [57]. ECMWEF SM was
found by Albergel et al. (2012) [58] to represent very well the SM variability at large scales. It is also
known to give erroneous values in some areas (Louvet et al., 2015 [59]; Kerr et al., 2016 [11]).

The NDVI product used in this study was obtained from the 16-day NDVI MODIS Aqua and
Terra data (MOD13A2), with a 1 km resolution. This product was re-gridded in the EASE 2.0 grid
in order to make it comparable with SMOS-IC and SMOSL3 SM. Different studies have shown that
T at microwave frequencies has high spatial correspondences with MODIS NDVI (De Jeu and Owe,
2003 [60]; Andela et al., 2013 [61]) and also temporal correspondences regarding both seasonal and
inter-annual scales (Tian et al., 2016a [62], 2016b [63]) even though both products have shown sensitivity
to different aspects of the vegetation dynamics (Grant et al., 2016 [25]).

2.4. Inter-Comparison

The inter-comparison was made for both SMOS-IC and SMOSL3 products by direct comparison
between SM (m?/m?) and 7, respectively, the ECMWF SM and MODIS NDVI products. This section
explains the filtering, which was applied to the latter datasets and the metrics used in the
evaluation process.

2.4.1. Data Filtering

In the evaluation step, only ascending SMOS SM retrievals were selected (Al-Yaari et al.,
2014 [8,55]). For SMOS-IC retrievals, only TB values whose standard deviations were within radiometric
accuracy were kept (TB with a standard deviation exceeding 5 K plus the TB radiometric accuracy were
filtered out). Moreover, only retrievals meeting the following conditions were considered: (i) made
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in the range of incidence angles of 20° to 55°; and (ii) with a range of angular values exceeding 10°
(to ensure a sufficient sampling of the angular distribution).

For the SMOSL3 SM product, a quality index (DQX) estimates the retrieval quality. In this study,
data with DQX > 0.06 m?/m? were excluded. In parallel, the Level 3 RFI probability flag was used
to filter out SM data contaminated by RFI. SM retrievals with an associated RFI probability higher
than 20% and frozen areas were removed (surface temperature < 273 K). The SMOS-IC and SMOSL3
retrievals of SM and 7 used in the study were inter-compared for the same dates. This means that
all the Level 3 flags were implicitly applied to both the SMOS-IC and SMOSL3 data. For both SMOS
products (SMOSL3 and SMOS-IC), SM values out of the range 0-0.6 m*/m? (Dorigo et al., 2013 [64])
and T values out of the range 0-2 were filtered out. We only considered pixels with temporal series of
at least 15 values for the product inter-comparison.

In order to compare T with MODIS NDVI, the daily T values were re-gridded to 16-day mean
values produced every 8 days following the same methodology as described in Grant et al. (2016) [25].

2.4.2. Metrics

For evaluation purposes, the following metrics were used: Pearson correlation coefficient (R), bias,
root mean square difference (RMSD) and unbiased RMSD (ubRMSD). Equations for the calculation of
the SM metrics are the following;:

it (SMEC(I‘) - M) (SMSMOSU) - SMSMDS)

R = ” = — (6)
(- (SMEC(” - SMEC) Y (SMSMOS(i) - SMSMOS)
bias = (SMspios — SMec) @)
RMSD =/ (sM SMgc)?
=V (SMspmos — SMec) ®)

ubRMSD = v RMSD? — bias? 9)

where 1 is the number of SM data pairs, SMspos is the SMOS SM product (SMOSL3 SM or SMOS-IC)
and SMEgc is the ECMWEF SM. The use of RMSD instead of root mean square error (RMSE) should
be noted as ECMWEF SM contain errors and cannot be considered as the “true” ground SM value
(Al-Yaari et al., 2014 [55]). In this study, only significant correlations were considered by means of
a p-value filtering for SM retrievals, i.e., pixels where the p-value was above 0.05 were filtered out.

In order to evaluate 7, R was calculated as follows:

" (NDVI; — NDVI) (TSMOS(” - ?MOS)

(10)

R =
n ND/T 2 I 2
Y (NDVI;— NDVI)" Y7, (TSMOS(:') - TSMOS)
where Tsyos is the vegetation optical depth at nadir (7) retrieved from the SMOSL3 or SMOS-IC product.
3. Results and Discussion

3.1. Seil Moisture

Figure 1 shows the values of the temporal mean SM over the globe and over the period 2010-2015
for the three SM datasets considered in this study: (a) SMOS-IC; (b) SMOSL3 SM; and (c) ECMWFE.
It should be kept in mind that ECMWF SM is representative of the first 0-7 cm of the soil surface
(Albergel et al., 2012 [65]) and the inherent nature of the simulated soil moisture (Koster et al., 2009 [66])
is different to that measured by the SMOS satellite observations, which are sensitive to the first ~0-3
cm of the soil surface (Escorihuela et al., 2010 [67]; Njoku and Kong et al., 1977 [68]). In Figure 1,
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ECMWEF SM must be analyzed in terms of spatial patterns rather than absolute values. Although the
images in Figure 1a,b, have many similarities, some spatial patterns shown by the ECMWEF SM product
are in better agreement with SMOS-IC than with SMOS L3 SM. For instance, over the Appalachian
region in the Eastern US, SMOSL3 SM shows a dry area, whereas SMOS-IC SM is closer to ECMWE, as
these regions are known to be relatively wetter than the regions of west and midwest (Sheffied et al.,
2004 [69]; Fan et al., 2004 [70]). This was partly explained by differences between ECOCLIMAP and
IGBP and the use of ECMWEF SM data in Mahmoodi et al., 2015 [71]. On the other hand, drier retrievals
were found for SMOS-IC in the intertropical regions of Africa, for instance over the savannas and
grasslands of Sahel. Over these regions SMOS-L3 SM is closer to ECMWEF SM than SMOS-IC SM.

a:SMOS-IC SMm*/m®

05

100°W 0° 100°E

Figure 1. Temporal mean of soil moisture (m3/m3) during 2010-2015: (a) SMOS-IC
(SMOS-INRA-CESBIO); (b) SMOSL3 SM (Level 3 SMOS soil moisture); and (¢c) ECMWEF (European
Center for Medium range Weather Forecasting) data. White values mean “no valid SMOS data”.

Figure 2 displays different time series metrics derived from the direct comparison between
SMOSL3 SM (Figure 2a) and SMOS-IC SM (Figure 2b) with ECMWEF SM for 2010-2015. According to
correlation (R) results, lowest R values were found in forests for both products. A lower number of
negative R values were found between the SMOS-IC and ECMWF SM products. Conversely, SMOSL3
SM yielded negative correlations with ECMWE SM over several forest regions, namely the boreal
forests of Alaska, Canada and Russia, and the tropical forests of Amazon and Congo basins. Over the
non-forested biomes, R values were also found to be generally higher for SMOS-IC, when compared to
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SMOSL3 SM. Substantial differences were found in terms of RMSD and ubRMSD. In general, lower
values were obtained for the SMOS-IC product, especially over the intertropical regions of America
and Africa (in terms of ubRMSD) and the boreal forests of Eurasia (in terms of RMSD). On the other
hand, results do not show important differences in terms of bias between the two SMOS products.
Both SMOS-IC and SMOSL3 SM products are generally much drier than ECMWF SM, except over
some arid and semi-arid areas (deserts in central Asia and Australia, and Sahara in northern Africa)
and north of Canada. However, SMOS-IC shows a wet bias in Northern Europe, which cannot be
noted for SMOSL3. The general negative values of the bias can be partly explained by the difference
between the sampling depth of the SMOS observations (~0-3 cm top soil layer) and the top soil layer
considered in the modeled ECMWF SM (0-7 cm top soil layer). Considering this difference, the distinct
SM bias patterns shown in Figure 2 should be interpreted with care.

o
=
Latitude

o 2 ! s g i
100°W 0° 100°E 100°W 0° 100°E

Latitude
(=}
]
Latitude

Latitude
o
o
Latitude

0.10
0.08
0.06
0.04
0.02
0.00

Latitude
Latitude

Figure 2. Pixel-based statistics during 20102015 computed between ECMWEF SM simulations and:
SMOSL3 SM (left); and SMOS-IC (right) SM retrievals: (a,b) correlation coefficient; (c,d) Root Mean
Square Deviation (RMSD); (e,f) bias; and (g,h) unbiased Root Mean Square Deviation (ubRMSD).
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A seasonal statistical analysis that separates cold and warm seasons was carried out and led to
similar results to the ones presented above (Figure S1). Figure S1 shows that the ubRMSD is lower in
the cold season, i.e., January—March (JEM) in the Northern Hemisphere and July-September (JAS) in
the South Hemisphere.

Figure 3 is focused on the results in terms of correlation and ubRMSD, considered as first order
criteria. It displays a world map which shows where the best correlation coefficient (R) and ubRMSD
are obtained by comparing ECMWF SM with SMOS-IC SM (red) or SMOSL3 SM (blue) in the period
2010-2015. Areas where the result differs by less than 0.02 in terms of R values between SMOSL3 SM
and SMOS-IC are represented in green color. This threshold is different for the ubRMSD metric and it
was set to 0.005 m3 /m>. It can be seen that the red color is dominant, meaning that SMOS-IC SM is
generally closer to ECMWE in terms of temporal dynamics but there are some exceptions. For instance,
regions colored in blue (SMOSLS3 is closer to ECMWEF than SMOS-IC) can be found for the ubRMSD
metric, in northeastern Europe and northern Asia. It should be noted here that only pixels with
significant correlations, i.e., p-value < 0.05 and a number of data >15 are presented.

(a) Best R coeff with ECMWF SM

SMOSL3 is closer to ECMWF
SMOS-IC is closer to ECMWF
Diff in UbRMSD < 0.005

Figure 3. Comparison of the SMOS SM products with respect to ECMWEF showing: (a) where SMOS-IC
SM (red) or SMOSL3 SM (blue) leads to the best correlation coefficient, or where the difference in
R <0.02 (green) among both SMOS products; and (b) where SMOS-IC SM (red) or SMOSL3 SM (blue)
lead to the lowest ubRMSE or where the difference in ubRMSD < 0.005 (green).

Figure 4 shows the spatial differences between SMOSL3 and SMOS-IC SM in terms of bias and
ubRMSD. It can be observed that the most significant differences for bias were found for forest regions
(Amazon and Congo basins, Boreal forests, etc.), where SMOSL3 is drier. In these areas, ubRMSD
is also higher, contrary to deserts or barren regions as the Sahara or Central Australia, where the
ubRMSD is close to zero.
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Figure 4. Mean bias (SMOSL3 minus SMOS-IC SM) and ubRMSD between SMOSL3 and SMOS-IC SM
for 2010-2015.

In order to better assess the range of R and ubRMSD values, the dispersion diagrams displayed in
Figure 5 show the scatter plot of both metrics for all pixels and for both SMOS products (SMOS-IC and
SMOSL3 SM). In terms of correlation, the R values are generally larger for SMOS-IC. There are also
a number of pixels where SMOSL3 SM yields negative correlations, whereas R is positive for SMOS-IC.
In terms of ubRMSD, the largest number of pixels with lower ubRMSD corresponds to the SMOS-IC
SM product.
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R coeff between SMOSL3 and ECMWF SM UbRMSD between SMOSL3 and ECMWF SM

Figure 5. Scatter plot of correlation: (a) and ubRMSD values; (b) obtained by comparing both SMOS-IC
and SMOSL3 SM to ECMWF SM.
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3.2. Veegetation Optical Depth

The evaluation of the accuracy of the T values retrieved from SMOS at global scale is not a simple
issue due to the absence of a consensus on the reference values to be considered at large scale coming
from models or in situ measurements. Some studies have been done at local scale. For instance, over
croplands and grasslands, T values at L-band vary generally between 0 and 0.6 (Saleh et al., 2006 [72],
Wigneron et al., 2007 [24]). Over forests and from L-band radiometer measurements, Ferrazzoli et al.
(2002) [73] found maximum values of T ~0.9, and Grant et al. (2008) [74] found values of T ~0.6-0.7
for a mature pine forest stand in les Landes forest in France, and T ~1 for a mature deciduous (beech)
canopy in Switzerland.

Figure 6 shows a global map of the temporal mean of the retrieved 7 values for both SMOS-IC
and SMOSL3 products. Both products show 7 values that are sensitive to vegetation, as the highest T
values were found for the main boreal and tropical forests, and the minimum for dry areas, such as
Inner Asia or Australia. It must be noted that the T values coming from the SMOSL3 product were
slightly larger than those obtained by the SMOS-IC product.

(a) SMOS-IC

100°W 0° 100°E

Figure 6. Temporal mean of T during 2010-2015: (a) SMOS-IC; and (b) SMOSL3.

In order to identify possible patterns, Figure 7 shows a global map which illustrates the differences
of T between both SMOS datasets (SMOSL3 minus SMOS-IC). This result shows that the greatest
differences between both 7 datasets were found over some regions of the Northern Hemisphere, such
as the east of USA, the north of Europe and also in the Amazon basin.
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Figure 7. Mean bias: SMOSL3 T minus SMOS-IC T for 2010-2015.

Figure 8 shows the correlations obtained by comparing the SMOSC-IC and SMOSL3 T datasets to
MODIS NDVI. All correlations values are presented here including those not significant as done by
Grant et al. (2016) [25]. It can be noted that slightly higher correlation values are generally obtained
with SMOS-IC especially in the west of Mexico, the northeastern regions of Brazil and some parts of
the Sahel. Conversely, slightly higher R values were obtained in western and central Europe with
SMOSL3. The lowest correlations were found generally over forests for both SMOS products; a result
which can be partly related to the tendency of NDVI to saturate for high biomass and LAI values.
However, higher R values were obtained with SMOS-IC for some areas of the boreal forests and the
tropical forests of Africa.

(a) SMOS-IC

Latitude

Latitude

100°W 0° 100°E
Figure 8. Correlation (R) values obtained between SMOS-IC T and MODIS NDVI (a); and between
SMOSL3 t and MODIS NDVI (b).

In order to evaluate how NDVI represents the spatial differences in vegetation density, Figure 9
represents the spatial relation between NDVI and SMOS-IC and SMOSL3 7. The results demonstrate
that there is a general positive trend relating the spatial patterns of T and NDVI. The latter saturates for
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values of T larger than ~0.7. It can be seen that the positive trend relating T and NDVI is more distinct
for SMOS-IC than for SMOSL3.
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@ ®
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Figure 9. Scatter plot showing the spatial relationship between mean MODIS NDVI and mean SMOS-IC
7 (a); and mean SMOSL3 7 (b).

Figure 10 presents a global map that shows for each pixel which 7 dataset (SMOSL3 or SMOS-IC)
leads to the largest correlation (R) values with MODIS NDVI. Over northern mid-latitudes, larger
correlations were generally obtained with SMOSL3. However, except for these regions, the highest R
values were generally obtained with SMOS-IC while no clear patterns were found in terms of longitude.
Figure 11 shows a dispersion diagram in order to assess the range of correlation values found for both
SMOS 1 datasets against MODIS NDVI. The diagram generally yields positive correlations, although
a non-negligible number of negative correlations can be noted for both SMOS products. The negative
correlation values between T and NDVI are difficult to explain. In some cases, negative values were
found in dense forest areas and can be related to the saturation of NDVI for large biomass values
(Grant et al., 2016 [25]).

Best R coeff with MODIS NDVI

BO°N - - Agg

40°N -
§ 2°N4 SMOSL3 is closer to NOVI
.§ SMOS-IC is closer to NDVI
- 0° - i Diffin R <0.02

20°5 p¢ 5

40°S .

100°W 0° 100°E

Figure 10. Comparison of SMOS-IC and SMOS-L3 1 products with respect to MODIS NDVI: higher
correlation (R) values between SMOS-IC t and MODIS NDVI (red) or between SMOSL3 t and MODIS
NDVI (blue) and where the difference in R < 0.02 (green).
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R coeff between SMOS-IC t and NDVI
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Figure 11. Scatter plot showing correlation values obtained between SMOS-IC T and MODIS NDVI
against correlation values obtained between the T from SMOSL3 and MODIS NDVL

4. Summary and Conclusions

The main objective of this study is to present an alternative SMOS SM and T product, referred
to as SMOS-IC, and compare it with model data. In terms of soil moisture, the presentation is based
on an inter-comparison between SMOS-IC, the official Level 3 SMOS SM product (SMOSL3, V300),
and a modeled SM product (ECMWF SM). The SMOS-IC product is based on the retrieval of SM and
T over pixels treated as homogeneous by means of the L-MEB model inversion. SMOS-IC uses the
multi-angular and dual-polarization SMOSL3 TB product as the main input for the L-MEB model
inversion. The L-MEB model input parameters (effective vegetation scattering albedo w and the
roughness parameter Hg) are estimated as a function of IGBP land category classes which compose
the pixel. These parameter values are derived from previous analyses made by Fernandez-Moran et al.
(2016) [31] and global maps of the roughness Hg parameter estimated by Parrens et al. (2016) [32].
Conversely, the SMOSL3 product considers different fractions over the pixel and performs SM and ©
retrievals over the main fraction of the pixel (usually low vegetation) or over forests in some cases.
In the SMOSLS3 retrieval algorithm, the TB value of the pixel fraction, which is not considered in
the retrieval (the forest fraction in general), is estimated based on auxiliary ECMWEF SM data. This
specific approach may lead to dry SM bias in forested regions, as noted by Wigneron et al. (2012) [29].
Currently, in the SMOSL3 V300 retrieval algorithm, the values of the vegetation and soil roughness
parameters differ mainly between forest and low vegetation categories.

The SMOSL3 and SMOS-IC soil moisture retrievals were compared globally against ECMWF SM
data for the period 2010-2015. This evaluation extends the work of Fernandez-Moran et al. (2016) [31]
who evaluated a preliminary version of the SMOS-IC product at local scale using numerous in situ SM
stations from ISMN and found higher R and lower ubRMSE with SMOS-IC than with the SMOSL3
V300 product. At global scale, both the SMOS-IC and SMOSL3 SM products were generally found
to be drier than the ECMWEF SM product. However, the different layers considered in the modeled
ECMWF SM (top 0-7 cm soil layer) with respect to the remotely sensed SMOS SM (~top 0-3 cm soil
layer), as well as the inherently different nature of simulated soil moisture (Koster et al., 2009 [66]),
makes it difficult to truly assess the performance of the SMOS products in terms of bias at global scale.
In terms of temporal variations, higher correlation values and lower ubRMSD values were generally
found between SMOS-IC SM and ECMWF SM, than between SMOSL3 SM and ECMWF SM.

The ECMWEF SM dataset is not “truth”, and a larger inter-comparison of SMOS-IC and SMOSL3
against other modeled SM products such as MERRA (Modern-Era Retrospective analysis for Research
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and Applications) (Reichle et al., 2011 [75]) or remotely sensed data (such as SMAP, AMSR-E, and
ASCAT) should be made in the future to confirm the very preliminary results found here. In terms
of T values, the SMOS-IC and SMOSL3 1 products were compared to MODIS NDVI values over
2010-2015 in terms of correlation values. The SMOS-IC T product presents a slightly lower range of
values (~0-1.3) than the one obtained with the SMOSL3 1 product (~0-1.5). These ranges of T values
(obtained for both SMOSL3 and SMOS-IC) are in good agreement with the ranges of retrieved T values
based on in situ L-band radiometric measurements (t ~0.6-1.0) performed over mature coniferous and
deciduous forests in Europe. In general, higher correlation values were obtained between SMOS-IC T
and MODIS NDVI, than between SMOSL3 T and MODIS NDVL

The 7 results should also be interpreted with care: the NDVIindex is derived from optical sensors
while the T index is derived from L-band microwave measurements and therefore can sense deeper
through the vegetation canopy. Moreover, the NDVI index is used to monitor the green vegetation,
while the T index is related to the whole vegetation water content (including stems, trunks, branches
and senescent vegetation elements). Thus, at L-band, the NDVI index (as the LAl index) is only a proxy,
which is used to provide an estimate of T over rather low vegetation covers during the vegetation
growth (O'Neill et al, 2012 [37]; Wigneron et al., 2007 [24]; Lawrence et al., 2014 [76]; Grant et al.,
2016 [25]). A larger inter-comparison of the SMOS-IC and SMOSL3 7 products against different
vegetation datasets (remotely sensed products, LAI, forest biomass) should be made in the future to
confirm the results found in this study.

As for the Level 2 and 3 algorithms, based on rather complex and detailed concepts and auxiliary
datasets, the simple SMOS-IC algorithm will be improved regularly and will be used to improve the
L2 and L3 SMOS retrieval algorithms. These different approaches are complementary and a regular
inter-comparison analysis between them should be of great benefit to improve the L-MEB inversion,
and ultimately the SM and T products retrieved from the SMOS observations.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/5/457/s1,
Figure S1: Pixel-based ubRMSD during 2010-2015 computed between ECMWF SM simulations and: SMOSL3 SM
(eft); and SMOS-IC (right) SM retrievals: (a,b) January-March (JFM); (c,d) July-September (JAS).
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