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SUMMARY 

After the first classification of [3 +2] cycloaddition (32CA) reactions into zw-type and pr-

type reactions, established in 2014, the structure and reactivity of the most important 

three-atom-components (TACs) used in 32CA reactions has been completely 

characterised within the recently proposed Molecular Electron Density Theory (MEDT). 

Among the huge amount of work developed along the present Ph.D thesis, eight 

representative publications have been selected and discussed herein, which allowed 

characterising two new reactivity types as well as consolidating the original zw-type 

reactivity. Thus, depending on the four different electronic structures of TACs, i.e. 

pseudodiradical, pseudoradical, carbenoid and zwitterionic, 32CA reactions have been 

classified into pdr-, pmr-, cb- and zw-type reactions. While pdr-type 32CA reactions are 

the fastest, zw-type reactions are the slowest. The different electronic structures at the 

ground state of the reagents account for this reactivity trend and reveal that the reactivity 

of carbenoid TACs is different. In addition, no TAC can be considered a 1,2-zwitterionic 

structure as proposed for “1,3-dipoles”. The polar character of the reaction, measured by 

the global electron density transfer value computed at the transition state structure (TS), 

affects the four reactivity types in such a manner that the stronger the 

nucleophilic/electrophilic interactions taking place at the TS, the faster the reaction, and 

may even change the molecular mechanism according to the Parr functions defined within 

Conceptual DFT. This MEDT rationalisation of 32CA reactions unravels classical 

Huisgen’s and Firestone’s mechanistic proposals established in the 60’s. Regardless of 

the reactivity type and polar character of the reaction, topological analysis of the electron 

localisation function along one-step 32CA reactions suggests that the bonding changes 

are not “concerted”, but sequential, thus ruling out the classification of these reactions as 

“pericyclic”. In the present thesis, the classical theory of 32CA reactions, established in 

the 60’s of the past century and still prevailing today, is revisited and reinterpreted based 

on MEDT. A solid new reactivity model for 32CA reactions is established, emphasising 

that the way that organic chemists conceive organic chemistry demands a contemporary 

revision aimed towards the analysis of electron density. 
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1.1. Heterocycles 

Heterocyclic compounds are carbocyclic compounds having at least one heteroatom such 

as nitrogen, oxygen and sulphur. Heterocycles can be classified into two categories: 

aliphatic, such as tetrahydrofuran or 4,5-dihydroisoxazole, and aromatic, such as 1,3-

thiazole or quinoline (see Figure 1.1).1 The most common ones are five-membered and 

six-membered heterocycles. 

O O
N

S

N

N
Tetrahydrofuran 4,5-dihydroisoxazole 1,3-thiazole Quinoline  

Figure 1.1. Some aliphatic and aromatic heterocycles. 

The number, diversity, as well as applications of heterocycles is enormous. They have 

received a great deal of attention in recent years, particularly owing to their 

pharmacological as well as synthetic potential.  

Nature is the first and the largest producer of heterocycles. Heterocycles like 

chlorophylls and heme derivatives are responsible for the colour and texture of nature. 

Similarly, base pairs found in DNA and RNA, the genetic material of most living 

organisms, as well as many known natural drugs, such as penicillin, quinine, papaverine, 

atropine, codeine, morphine etc. are also heterocycles (see Figure 1.2). Three out of 

twenty natural amino acids contain heterocyclic ring components and likewise many 

vitamins, e.g. vitamin B series and vitamin C. In addition, the ability of many heterocycles 

to produce stable metalloheterocycles is of immense biochemical significance (e.g. 

haemoglobin, chlorophyll, vitamins, enzymes etc.). 

S
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CO2HO

H
N
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R

N

N

N

NO

O

N
CO2CH3

OCOPh
O

O

OHHO

H

HOH2C OH

Penicillins Caffeine Cocaine Vitamin C  
Figure 1.2. Examples of natural heterocyclic compounds. 

In conjunction with nature, chemists have artificially synthesised and tailored a great 

many heterocyclic compounds. Most of today’s synthetic drugs, such as rofecoxib, 

sulphadiazine, diazepam, chlorpromazine, barbiturates etc. as well as a number of useful 
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materials like dyes (e.g. indigo blue), luminophores (e.g. acridine orange), pesticides, 

(e.g. diazinon), herbicides (e.g. paraquat) etc. possess heterocyclic rings (Figure 1.2).2 

Heterocycles are chemically more flexible and able to respond to the demands of 

biochemical systems. Introduction of heteroatoms into a carbocyclic compound makes a 

spectacular change in its chemistry and renders it synthetically much more attractive. For 

instance, depending on the pH of the medium, heterocycles may behave as acids or bases, 

forming anions or cations. Some interact readily with electrophilic reagents, others with 

nucleophiles, yet others with both. Some are easily oxidised, but resist reduction, while 

others can be readily hydrogenated but are stable towards the action of oxidising agents. 

Certain amphoteric heterocyclic systems simultaneously demonstrate all the above 

mentioned properties. In addition to this, the presence of heteroatoms allows tautomerism 

in heterocyclic series. Such a versatile reactivity is associated with the special electron 

distribution within heterocyclic systems.3  

Considering all of the aforementioned aspects, the synthesis of heterocyclic 

compounds and their derivatives is of significant interest. Various methods currently 

available for the synthesis of heterocyclic compounds can be grouped into the following 

three broad categories: 

- Modification of existing carbocyclic rings 

- Cyclisation processes 

- Cycloaddition reactions 

Among these three methods, cycloaddition reactions involving two simple components 

appear to be the most attractive choice for the synthesis of heterocyclic compounds as it 

provides easy access to them usually with excellent selectivities.4 In particular, 32CA 

reactions are one of the most powerful methods for the synthesis of five-membered 

heterocycles.5  

1.2. 32CA reactions in the synthesis of five-membered heterocycles 

32CA reactions consist of the addition of a multiple bond system to a TAC, which is a 

neutral species whose core framework is constituted by three continued nuclei sharing an 

electron density of 4e (see Scheme 1.1). TACs can be geometrically classified into two 

categories: A-TAC and P-TAC structures;6 while A-TACs are bent, P-TACs have a linear 

structure (see Scheme 1.1).  
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Scheme 1.1. Construction of five-membered heterocyclic compounds by a 32CA reaction and 
geometrical classification of TACs.  

Although 32CA reactions had been experimentally known since the end of the 19th 

century, e.g. the 32CA reactions of diazoacetates 1 and diazomethane 2 with C−C 

multiple bond systems were reported by Büchner and von Pechmann in the 1890s,7  they 

were for the first time recognised for their generality, scope and mechanism by Huisgen 

in 1961.8 The great deal of work and efforts made by Huisgen and co-workers led to the 

rapid development of these reactions and gave him the name “father” of “1,3-dipolar 

cycloadditions”, in which a formally zwitterionic molecule (the “1,3-dipole”) undergoes 

“1,3-addition” of a multiple bond system (the “dipolarophile”).9 It is worth mentioning, 

however, that the concept of “1,3-dipolar cycloadditions” was first suggested in 1938 by 

Smith.10  

1.3. Mechanistic aspects of 32CA reactions 

1.3.1. Huisgen’s and Firestone’s mechanistic proposals based on experiment  

Unlike unsaturated hydrocarbon compounds participating in DA reactions, TACs cannot 

be represented by a single Lewis structure. According to the resonance concept developed 

by Pauling in 192811 within the VBT12 (see Theoretical Background), Huisgen proposed 

in 1961 that “1,3-dipoles” could be mainly represented by octet and sextet resonance 

Lewis structures (see Scheme 1.2).8 While octet resonance structures were suggested to 

be the major contributors to the electronic structure of “1,3-dipoles”, the sextet resonance 

structures symbolised their 1,3-dipolar character and, hence, these species were thus 

considered “heteroallyl anion” systems whose termini are both nucleophilic and 

electrophilic (ambivalent).6a On the other hand, in 1968, Firestone proposed that a 
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diradical resonance structure c equivalent to a↔b may usually be accepted as the 

principal representation of these species (see c in Scheme 1.2).13 Although this idea was 

initially criticised by Huisgen, he finally accepted that at the GS some participation of a 

diradical structure c could be conceivable.6a  

Y
ZX

X Y ZY
ZX

Octet structures

Y
ZX

Y
ZX

Sextet structures

X Y Z

X Y Z X Y Z

A-TACs P-TACs

a ab b

Y
ZX

X Y Z

c c

Diradical structures

 
Scheme 1.2. Resonance Lewis structures used to represent the electronic structure of TACs. 
Sextet structures account for the “1,3-dipolar” concept. 

If the three heavy nuclei are restricted to carbon, nitrogen and oxygen, the TACs shown 

in Table 1 are obtained.6a 

The exponential growth of the new research field of 32CA reactions was 

intrinsically accompanied by an exhaustive theoretical study of the mechanistic aspects 

governing the reactivity and selectivity of TACs, which quickly became the subject of a 

long ranging controversy. In the 1960s, two different models were independently 

proposed by Huisgen14 and Firestone.13 

On the one hand, Huisgen initially proposed that three mechanisms were 

conceivable: A) the positive end of the TAC may initiate the attack and the negative pole 

then complete the additions; B) the negative center may be attached first and then the 

positive end; or C) both charge centers may add at the same time. While routes A and B 

were suggested to take place via octet 1,2-dipoles, route C was considered to take place 

via sextet 1,3-dipoles (see Scheme 1.3). Thus, due to the supposed “concerted” nature of 

mechanism C, Huisgen suggested a “concerted” one-step four-center mechanism in 

which the two new single bonds are both partially formed in the TS, though in 1963 he 
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Table 1. TACs consisting of carbon, nitrogen and oxygen nuclei. 

P-TACs 
Name Formula 

I Nitrile ylides (NY)  RC−N−CR2 
II Nitrile imines (NI)  RC−N−NR 
III Nitrile oxides (NO)  RC−N−O 
IV Diazoalkanes (Da)  N−N−CR2 
V Azides  N−N−NR 
VI Nitrous oxide N2O 

A-TACs 
 Name Formula 
VII Azomethine ylides (AY)  R2C−NR−CR2 
VIII Azomethine imines (AI)  R2C−NR−NR 
IX Nitrones (Ni)  R2C−NR−O 
X Azimines  RN−NR−NR 
XI Azoxy compounds  RN−NR−O 
XII Nitro compounds  RNO2 
   
XIII Carbonyl ylides (CY)  R2C−O−CR2 
XIV Carbonyl imines (CI)  R2C−O−NR 
XV Carbonyl oxides (CO)  R2C−O−O 
XVI Nitrosimines  RN−O−NR 
XVII Nitrosoxides  RN−O−O 
XVIII Ozone  O3 

proposed that not necessarily to the same extent (see Scheme 1.3).14 In accord with this 

mechanism were the kinetics, the weak effect of solvent polarity on the reaction rates, the 

high negative activation entropy associated with these bimolecular processes and low 

activation energies, the general effects of structural variation in the reagents and, most 

particularly, the strict cis nature of the additions.14 

Y

X

Z B Z
Y

X

A B

X
Y

Z A

X

Y

Z

C

+

 
Scheme 1.3. Three possible mechanisms proposed by Huisgen for 32CA reactions. 
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On the other hand, in 1968, Firestone argued several experimental inconsistencies with 

respect Huisgen’s suggestions about the mechanism, stereospecificity, TAC structure, 

solvent effects, acetylenic derivatives and orientation of reagents in these cycloaddition 

reactions, proposing an alternative two-step mechanism via formation of a diradical 

intermediate (see Scheme 1.4), but yet recognising that a duality of mechanisms may 

exist.13 Note that the idea of diradical intermediates in thermal cycloaddition reactions 

had been proposed for the DA reaction in 1937 by Kistiakowsky et al.15 and revived in 

the ‘60s by Walling and Peisach,16 having been also widely suggested for small-ring 

cycloadditions.17 

a
b

c

d e

a

d e

c
b

Huisgen's
mechanism

a

d e

c
b

Firestone's
mechanism

concerted

two-step

b
a

d e

c

 
Scheme 1.4. Huisgen’s and Firestone’s proposed mechanisms for 32CA reactions. 

Approximately twenty years later, in 1985, while working with Houk on the 32CA 

reaction of benzonitrile oxide 3 with styrene 4 and methyle acrylate 5, the observed 

stereospecificity forced Firestone to finally accept the “concerted” mechanism proposed 

by Huisgen.18 Later, in 1986, Huisgen reported the first two-step 32CA cycloaddition,19 

proposing a two-step zwitterionic mechanism in which the rate of rotation around the 

zwitterionic single bond was competitive with the formation of the second, ring-closing 

bond. Today, Firestone still supports the stepwise diradical mechanism20 after having 

gathered many experimental evidence of the presence of diradical species along the 

reaction path of several cycloaddition reactions, thus accounting for a two-step (non-

concerted) mechanism. 

1.3.2. FMO theory study of 32CA reactions 

Until the mid-1950s, chemistry was dominated by the classical VBT. When this theory 

lacked accuracy and did not progress, the MOT21 became increasingly important (see 
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Theoretical Background). In order to study the electronic structure of unsaturated 

hydrocarbon compounds such as ethylene 6 and benzene 7, Hückel established, in 1930, 

the simplest approach to MOT used in organic chemistry, known as HMOT,22 in which 

only valence pz AOs were used to build MOs. This very simple approach, which is still 

widely used in organic chemistry nowadays, was employed in the 1960s to establish 

important organic reactivity models, such as the FMO theory,23 the Evans’ Principle 

formulated by Dewar,24 and the Woodward and Hoffmann orbital symmetry rules25 and 

“pericyclic” mechanism,26 for the study of the reactivity in organic chemistry27 (see 

Theoretical Background). 

In 1972, Sustmann applied, for the first time, these precedents to the study of the 

mechanism of 32CA reactions through semi-empirical computational methods.28 

Depending on the relative disposition of the HOMO and LUMO of the reagents in the 

MO energy diagram, Sustmann classified 32CA reactions into three types: type-I, type-II 

and type-III (see Figure 1.3).29 In type-I (generally referred to as “normal electron 

demand”), the dominant FMO interaction is that of HOMOTAC with LUMOethylene; they 

are accelerated by the presence of ERGs in the TAC and EWGs in the ethylene derivative. 

In type-II, FMO energies of TAC and ethylene derivative are similar, so both are to be 

considered; adding either an ERG or EWG to the TAC or ethylene derivative can 

accelerate these reactions. Finally, type-III cycloadditions (generally referred to as 

“inverse electron demand”) are dominated by interactions between LUMOTAC and 

HOMOethylene; ERGs on the ethylene derivative and EWGs on the TAC will accelerate the 

reaction. According to this classification, 32CA reactions of AYs VII and AIs VIII (see 

Table 1) are typical examples for type-I, Nis IX normally participate in type-II, NO III 

reactions are classified on the borderline to type-III, while inorganic TACs such as nitrous 

oxide VI and ozone XVIII are common examples participating in type-III reactions.29,30 

It should be emphasised that Sustmann concluded that, though a plethora of data could 

be explained in a unifying model, molecules are more than HOMOs and LUMOs and, 

thus, one should not try to overdraw this model based on an oversimplified one-electron 

treatment of the Hückel type.29  

In 1973, Houk calculated a set of FMO energies and coefficients using semi-

empirical methods for ten parent and some substituted nitrilium betaines I-III, diazonium 

betaines IV-VI, azomethinium betaines VII-IX and carbonyl betaines XIII-XV, and for 

a series of substituted alkenes, with the aim of rationalising and predicting relative rates 
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LU

HO
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HO

LU

HO

LU

HO

LU

HO

LU

HO

dipole
dipole

dipoledipolarophile
dipolarophile

dipolarophile

Type-I Type-II Type-III
HO-controlled HO,LU-controlled LU-controlled

normal demand inverse demand  
Figure 1.3. Sustmann’s classification of 1,3-dipolar cycloadditions and Houk’s terminology. 

and regioselectivities of 32CA reactions.31 He renamed the three Sustmann’s types as 

HO-controlled (type-I), HO,LU-controlled (type-II) and LU-controlled (type-III) 

reactions (see Figure 1.3) and, based on these generalised FMOs, provided a qualitative 

explanation32 for the differential reactivity, regioselectivity and “periselectivity” (i.e. 

selective formation of one of the “thermally allowed pericyclic” reaction products)33 

phenomena within the framework of qualitative perturbation MOT.34 This FMO theory 

study led him to confirm the traditional assumed concept of bond formation non-

synchronicity.35  

1.3.3. QC mechanistic studies of 32CA reactions based on the TST 

In the ‘70s, simultaneously to the study of molecular mechanisms based only on the 

features of reagents because of the inherent nature of both the perturbation MOT and 

FMO theories, chemists started the first geometry optimisations of the TSs using QC 

procedures, which enabled the first studies of molecular mechanisms based on the TST.36 

The fact that the orbital symmetry rules established by Woodward and Hoffmann 

systematised in a very satisfactory manner many experimental observations of 

cycloaddition reactions, for which the term “no mechanism reaction” was suggested due 

to the very difficult mechanistic problems they presented,37 caused the “pericyclic 

mechanism” concept26 to spread like wildfire since its establishment in 1969.38 

Accordingly, one-step 32CA reactions were classified as “pericyclic” reactions. 

In 1971, Dewar proposed an alternative theoretical model for the rationalisation of 

the “pericylic” mechanism.38 Based on a general theory of aromaticity24,39 and the analogy 

between the TS of a “pericyclic” process and the classical hybrid of aromatic structures 

(see Scheme 1.5), Dewar described the cyclic TSs as being aromatic, nonaromatic, or 

antiaromatic and related the facility of “pericyclic” reactions to the stability of cyclic TSs 

relative to open chain analogues (see Theoretical Background).38 
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aromatic TS  
Scheme 1.5. Dewar’s proposal of aromatic TSs involved in “concerted” processes.  

Many QC calculations performed on those dates begun the evolution of computational 

studies on 32CA reactions and provided further material for the debates about the relative 

merits of different calculations.40 For instance, while pioneering ab initio calculations by 

Poppinger41 on the reaction of fulminic acid 8 with acetylene 9, an example involving an 

NO III, supported the one-step mechanism with a “concerted aromatic” TS, MNDO 

calculations predicted a two-step reaction involving a diradical intermediate (see Scheme 

1.6).42 Later ab initio calculations carried out by Komornivki et al. confirmed the previous 

ab initio results, i.e. the TS is asynchronous but “concerted”.43 These studies were 

followed by Hiberty and co-workers,44 whose MSCF plus configuration interaction 

calculations predicted that the stepwise diradical mechanism is favoured. Here, ab initio 

calculations with electron correlation and semiempirical calculations appeared to agree 

with each other on a stepwise mechanism. However, MCSCF calculations by McDouall 

et al. showed that the “concerted” one-step mechanism was favoured.45 Finally, using 

high-level calculations, that 32CA reaction was predicted to be “concerted”. 

HC N O

HC CH

HC

HC CH

O
N

HC

HC CH

O
N

concerted

two-step

+

diradical intermediate

HC

HC CH

O
N

aromatic TS

 
Scheme 1.6. Proposed “concerted” and stepwise mechanism for the 32CA reaction between 
fulminic acid 8 and acetylene 9.  

Therefore, until then there were both experimental and theoretical evidence that 32CA 

reactions may occur by one-step or stepwise mechanisms. In general, QC theoretical 

studies of 32CA reactions, based on the characterisation of the stationary points along the 
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reaction path, allowed establishing that most of them take place through a one-step 

mechanism in which the formation of the two single bonds is more or less asynchronous. 

The strong growth of the “pericyclic mechanism” concept since it was proposed in the 

70’s led to the unquestionable classification of one-step 32CA reactions as “pericyclic” 

reactions.46 Today, one-step 32CA reactions remain classified for the majority of 

chemists as “concerted pericyclic” reactions taking place through “aromatic TSs” for 

which the Woodward-Hoffmann orbital symmetry rules as well as Dewar’s aromaticity 

rules explain their allowance.47 However, it should be emphasised that although various 

theoretical derivations for the rules provided by Woodward and Hoffmann were given as 

alternative rationalising models for “pericyclic” reactions, this mechanism was never 

demonstrated. Indeed, the presence of stepwise 32CA reactions suggests that Woodward 

and Hoffmann’s rules are permissive but not obligatory.20  

1.3.4. Houk’s mechanistic studies based on geometry deformation  

To explain the reactivity of TACs in 32CA reactions, Houk proposed, in 2007, a DIEM48 

in which, based on Morokuma’s energy decomposition49 (see Theoretical Background), 

the activation barrier is divided into two additive terms (see Eq. [1]): ≠∆ dE , called 

distortion energy, which is the energy required to distort the reagents into the TS 

geometries without allowing interaction, and ≠∆ iE , called interaction energy, which in 

turn consists of several attractive and repulsive forces.  

∆E≠ = ≠∆ dE  + ≠∆ iE      (1) 

The suitability of this reactivity model was checked in 32CA reactions of nine different 

TACs, six P-TACs 2,8,10-13 and three A-TACs 14-16, with ethylene 6 and acetylene 9 

(see Scheme 1.7).48 Houk found that the computed B3LYP/6-31G(d) activation enthalpies 

correlated very nicely with the distortion energies (see Figure 1.4) and, then, he concluded 

that the distortion energy of the reagents towards the TS is the major factor controlling 

the reactivity differences of TACs. Thus, when distortion energies are approximately the 

same, interactions can become the determining factor. 

However, this finding, which can be considered a computational assertion of 

Hammond’s postulate established in 1955,50 does not resolve the question why activation 

energies depend on geometries, which are the result of the distribution of the molecular 
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Scheme 1.7. The 32CA reactions of nine TACs, 2,8,10-16, with ethylene 6 and acetylene 9 
studied by Houk.  

electron density.51 In addition, the partition of the TS geometry into two separated 

structures has no physical sense within DFT,52 since in this QC model the energy of a 

system is a functional of the electron density ρ(r) and the external potential, i.e. the nuclei 

positions. Consequently, the energy of the two separated fragments cannot be correlated 

with the energy of the TS because each of them loses the external potential created by the 

other fragment.  

 
Figure 1.4. Plot of B3LYP/6-31G(d) activation energies vs distortion energies, in kcal·mol-1, for 
Houk’s 32CA reactions of TACs 2,8,10-16 with ethylene 6 and acetylene 9. 
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1.3.5. QC mechanistic studies based on the MEDT  

Although several theoretical models based on the analysis of MOs, such as the FMO 

theory, have been widely used to explain chemical reactivity in organic chemistry, MOs 

are not physically observable but only mathematical constructs, used to obtain the 

molecular wavefunction, that cannot be determined by experiment.53 In contrast, the 

electron density distribution in a molecule or crystal can be experimentally observed by 

electron diffraction and X-ray crystallography;54 and it can also, and often more readily, 

be obtained from ab initio or DFT calculations. Thus, unlike MOs, only electron density 

is an experimentally accessible scalar field, being responsible for all molecular properties, 

including the geometry. 

Very recently, Domingo proposed a new reactivity theory in organic chemistry, 

namely the MEDT,55 in which changes in the electron density, but not MO interactions 

as the FMO theory proposed,23 are responsible for the reactivity of the organic molecules. 

The proposed MEDT is not only a new model of reactivity in organic chemistry based on 

the analysis of the molecular electron density, but also rejects those models based on the 

analysis of MOs, such as the FMO theory.55 Although many FMO theory studies 

numerically give qualitative results that fit experimental observations, this model is 

conceptually wrong because MOs have no physical reality and then they cannot 

physically interact. In addition, LUMO is the first unoccupied virtual MO without any 

participation in the construction of the molecular wavefunction. 

Unlike the FMO theory, MEDT focuses on the analysis of the electron density and 

the energy changes associated with its redistribution along the reaction path. Within 

MEDT, besides an exhaustive exploration and characterisation of the reaction paths 

associated with the studied reaction, the CDFT reactivity indices,56 as well as QC tools 

based on the topological analysis of the molecular electron density such as the ELF,57 the 

QTAIM58 and the NCI,59 are used in order to study the reactivity in organic chemistry. 

Since the beginning of this century, the analysis of electron density has been applied 

to the study of several organic reactions, including 32CA reactions.60 These early MEDT 

studies supposed the beginning of a revolution in the field of organic chemistry, as 

allowed building a new reactivity model that contributed to the advancement of 

conceptual chemistry as well as ruling out strongly established concepts such as the 

“concerted” and “pericyclic” mechanisms for DA reactions.61 After publishing the first 

scale of the electrophilicity ω index for a series of organic compounds participating in 
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DA reactions,62 in 2003 Domingo established, for the first time, a reactivity scale for the 

simplest TACs participating in 32CA reactions within the CDFT (see Table 2 and 

Theoretical Background).63 

Table 2. Global properties and global electrophilicity scale for the most common simple TACs 
involved in 32CA reactions.  

  HOMO LUMO µ η ω 
Strong electrophiles 
Ozone  -0.3352 -0.1846 -0.2599 0.1505 6.10 
Nitrosoxide -0.3000 -0.1415 -0.2207 0.1585 4.18 
Nitrosimine -0.2589 -0.1037 -0.1813 0.1552 2.88 
Carbonyl oxide  -0.2420 -0.0889 -0.1655 0.1530 2.43 
Nitro compound -0.3215 -0.0852 -0.2034 0.2363 2.38 
Azoxy compound -0.2812 -0.0551 -0.1682 0.2261 1.70 
Carbonyl imine -0.2055 -0.0603 -0.1329 0.1452 1.65 
Moderate electrophiles 
Diazoalkane  -0.2208 -0.0471 -0.1339 0.1737 1.40 
Nitrous oxide  -0.3422 -0.0191 -0.1807 0.3231 1.37 
Azimine -0.2393 -0.0329 -0.1361 0.2064 1.22 
Nitrone -0.2279 -0.0241 -0.1260 0.2038 1.06 
Carbonyl ylide -0.1686 -0.0279 -0.0983 0.1407 0.93 
Marginal electrophiles (nucleophiles) 
Nitrile oxide -0.2709 0.0211 -0.1249 0.2919 0.73 
Azomethine imine -0.1912 -0.0069 -0.0990 0.1844 0.72 
Azide -0.2685 0.0287 -0.1199 0.2972 0.66 
Nitrile ylide -0.1661 -0.0075 -0.0868 0.1586 0.65 
Azomethine ylide -0.1489 0.0155 -0.0667 0.1644 0.37 
Nitrile imine -0.2073 0.0589 -0.0742 0.2661 0.28 
(a) HOMO and LUMO energies, electronic chemical potential, µ, and chemical hardness, η, are 
given in atomic units; global electrophilicity, ω, in eV. 

Early ELF topological analyses of the electronic structure of the simplest AY 1464 and 

CY 1765 carried out in 2010 showed that these TACs present a pseudodiradical electronic 

structure (see Figure 1.5).1 This finding contrasted with the general representation of 

TACs as 1,2- or 1,3-dipoles proposed by Huisgen, but was quite similar to Firestone’s 

proposal of a diradical Lewis structure. DFT calculations revealed that the 32CA reactions 

of these TACs present very low activation energies even having a very low polar 

character.64,65 Note that in DA reactions a good correlation between the polar character 

of a reaction, measured by the GEDT at the TS, and its feasibility was previously 

established for DA reactions,66 in such a manner that the higher the GEDT at the TS, the 

                                                 
1 In 1960 Errede et al. studied the high chemical reactivity of p-xylylene, which was attributed to its 
pseudodiradical character. They defined a pseudodiradical as a diamagnetic compound that behaves 
chemically as if it were a diradical.67  
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faster the reaction (see Theoretical Background). This finding allowed an early 

rationalisation of Houk’s proposal, since TACs having a pseudodiradical character do 

not require any structural distortion. 

H2C
O

CH2H2C
N

CH2

H

14 17  
Figure 1.5. Pseudodiradical electronic structure of AY 14 and CY 17. 

Based on this finding, the 32CA reactions of TACs 2,8,10-16 (see Scheme 1.7) and three 

sulphur-centred TACs 18-20 (see Scheme 1.8), equivalent to the parent XIII-XV (see 

Table 1), with ethylene 6 and acetylene 9 were studied in 2014 in order to establish a 

structure/reactivity relationship.51 This study allowed establishing a reactivity index, 

named the pseudoradical pr index, for distinguishing TACs possessing a pseudodiradical 

character from the rest and, thus, 32CA reactions were classified into two types (see 

Figure 1.6): i) pseudodiradical-type (pr-type) 32CA reactions involving pseudodiradical 

TACs such as AY 14 and CY 17; and ii) zwitterionic-type (zw-type) 32CA reactions 

involving the rest of TACs, for which a 1,2-zwitterionic electronic structure was 

suggested.8 In that study, it was proposed that unlike pr-type 32CA reactions, zw-type 

32CA reactions demand adequate nucleophilic/ electrophilic activations to take place.51 

H2C
S

ZS

Z

S

Z6
H2C CH2

9
HC CH

18 Z =CH2
19  Z = NH
20  Z = O  

Scheme 1.8. 32CA reactions of three sulphur-centred TACs, 18-20, with ethylene 6 and acetylene 
9.  

In order to verify this hypothesis, a series of the most common simple TACs used in 

organic chemistry,5b 2,8,10-12,16 (see Scheme 1.7) and methyl nitronate 16’, showing 

low reactivity in 32CA reactions with ethylene 6 and classified as zwitterionic TACs, 

were further explored,68 demonstrating that the electronic activation of both TACs and 

ethylene derivatives favours the zw-type 32CA reactions via a polar mechanism (see 

Figure 1.7), similarly to the polar model previously established for DA reactions.66 
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N
CH2H2C

H

N
OH2C

H

AY 14 Ni 16

pseudodiradical zwitterionic

Structure

Reactivity

pr-type zw-type  
Figure 1.6. First classification of 32CA reactions according to the electronic structure of TACs.  
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Figure 1.7. (a) activation energies in DCM associated with the 32CA reactions of the non-
substituted TACs 2,8,10-12,16 and methyl nitronate 16’ with ethylene 6, in red, and with 
electrophilic DCE 21, in blue; (b) plot of activation energies in DCM associated with the 32CA 
reactions of the non-substituted TACs 2,8,10-12,16 with DCE 21 vs the nucleophilicity N index 
of TACs. 
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Although Firestone proposed a diradical resonance Lewis structure as the main 

contributor to the resonance hybrid of TACs,13 today organic chemists represent TACs as 

1,2-zwitterionic Lewis structures, according to Huisgen’s proposal.8  

In 2010, ELF topological analysis of the electronic structure of AY 14 and CY 17 

revealed that these relevant TACs present a pseudodiradical structure.64 The high 

reactivity of these TACs in 32CA reactions was, then, attributed to their pseudodiradical 

character. Thus, in 2014, depending on the observed different reactivity patterns of TACs, 

32CA reactions were initially classified into pr-type and zw-type.51 Note that the 

electronic structure of other TACs remained unexplored and, consequently, every TAC 

without a pseudodiradical structure was classified as a zwitterionic TAC.  

In this context, three main objectives were conceived to be dealt with in the present 

thesis: 

1) To complete the characterisation of the electronic structure of the most important 

organic TACs used in 32CA reactions, in order to establish a general classification 

of this significant type of cycloaddition reactions.  

2) To establish the electronic structural factors governing the reactivity of TACs. 

3) To shed light onto the molecular mechanisms of 32CA reactions, which in turn, 

would allow testing the validity of earlier Huisgen’s and Firestone’s mechanistic 

proposals. 

Derived from the above objectives, several additional aims were established: 

4) To provide an explanation to the linear trend between activation energies and 

geometry changes observed by Houk in 32CA reactions.48 

5) To investigate the truthfulness of non-proven assumed classical concepts such as 

the “pericyclic” mechanism proposed for one-step 32CA reactions. Note that the 

“pericyclic” mechanism was previously ruled out for DA reactions.61  

6) And last, but certainly not least, to demonstrate that a rethinking of organic 

chemistry by the study of the molecular electron density as a whole, instead of the 

analysis of individual MOs, is demanded. 

Although along these three years a huge amount of work has been developed by our group 

resulting in more than thirty-five publications, twenty-two of them being devoted to the 

study of 32CA reactions, only eight directly related with the objectives of the thesis are 

presented and discussed herein. 
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In this section, a set of eight selected publications are summarised with the aim of 

describing the process that allowed meeting the aforementioned objectives. As the 

original large group of zw-type 32CA reactions finally resulted to be composed by three 

different types, the present section has been divided into three parts corresponding to each 

type of reactivity except pr-type 32CA reactions, which were already characterised before 

the beginning of the present thesis (see Introduction). These subsections are organised as 

follows: 3.1) 32CA reactions of zwitterionic TACs, such as NOs III and Nis IX (see 

Table 1 in Introduction); 3.2) 32CA reactions of carbenoid TACs, such as NYs I; and 

finally, 3.3) 32CA reactions of pseudo(mono)radical TACs, such as Das IV and AIs VIII. 

3.1. 32CA reactions of zwitterionic TACs 

Zwitterionic TACs are species containing a multiple bond and non-bonding electron 

density belonging to a heteroatom (see Scheme 3.1). They are able to participate only in 

zw-type 32CA reactions, which demand adequate nucleophilic/electrophilic activation of 

the reagents to take place easily. Propargylic NOs III and allylic Nis IX are typical 

examples of zwitterionic TACs.  

R2C
N

O

RC N O

Nis IXNOs III

R

 
Scheme 3.1. Lewis structures of zwitterionic TACs. 

3.1.1. 32CA reactions between substituted NOs III and MA 569  

The 32CA reactions of NOs III with substituted alkenes is one of the most efficient 

methods for the synthesis of isoxazolines, which are versatile intermediates for the 

synthesis of natural products, biologically and medically active compounds,70 as well as 

a variety of functionalities.71 The 32CA reactions of fulminic acid 8, the simplest NO III, 

with substituted alkenes 22 may lead to the formation of two regioisomers, the 4- and/or 

5-substituted 2-isoxazolines 23 and 24 (see Scheme 3.2). 

MA 5 is one of the experimentally most used ethylenes in 32CA reactions.5b,72 

32CA reactions between substituted NOs 8a-c and MA 5 give the 5-substituted isomers 

26a-c with almost complete regioselectivity, the change of substituent R in the TAC 

having little effect on the regioselectivity of these 32CA reactions (see Scheme 3.3). 
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O
N X

22

X
C NH O

2423

+ +
O

N X

8  
Scheme 3.2. 32CA reaction of fulminic acid 8 with substituted alkenes 22 yielding the 4- and/or 
5-substituted 2-isoxazolines 23 and 24. 

 

 
Scheme 3.3. 32CA reaction between substituted NOs 8a-c and MA 5.73  

The 32CA reactions of NOs III with ethylene 6 and acetylene 9 derivatives have been 

widely analysed within the DFT framework.48b,71c,74 Fulminic acid 8 presents a high 

activation enthalpy towards ethylene 6, 13.3 kcal·mol-1, and towards acetylene 9, 13.7 

kcal·mol-1 (B3LYP/6-31G(d)).48b Benzonitrile oxide 8a reacts with electrophilic 

ethylenes, such as DCE 21 (see Table 3 in Appendix), and nucleophilic ethylenes, such 

as 2-methylene-1,3-dioxolane 27, but the regioselectivities of these polar reactions are 

quite different. While the latter is completely regioselective, yielding 5-isoxazoline 30, a 

change in the regioselectivity was observed in the former, which yields a mixture of 4- 

and 5- isoxazolines 29 and 28 (see Scheme 3.4).74j  

NOs III are zwitterionic P-TACs participating in zw-type 32CA reactions, which 

demand the nucleophilic activation of the TAC and the electrophilic activation of the 

ethylene, or vice versa, to take place easily. However, the activation energies associated 

to the mentioned polar 32CA reactions of benzonitrile oxide 8a indicate that the electronic 

activation of the ethylene derivative does not substantially enhance its reactivity (see 

Scheme 3.4). 

Thus, in order to shed light on the participation of NOs III in zw-type 32CA 

reactions and how the substitution in the TAC instead in the ethylene derivative could 

affect the reactivity of NOs III, an MEDT55 study of the 32CA reactions of the three NOs 
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given in Scheme 3.3, 8a (R = Ph), 8b (R = CO2Me) and 8c (R = Br), with electrophilic 

MA 5 (see Table 3 in Appendix) was carried out through DFT calculations at the 

B3LYP/6-31g(d) computational level. 
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Scheme 3.4. 32CA reactions of benzonitrile oxide 8a with DCE 21 and 2-methylene-1,3-
dioxolane 27, showing different regioselectivities. B3LYP/6-31g(d) gas phase activation energies 
(in parentheses), relative to the corresponding reagents, are given in kcal·mol-1. 

3.1.1.1. Topological analysis of the ELF and NPA of NOs 8 and 8a-c 

According to Lewis’s structures, V(C) monosynaptic basins integrating ca. 1e are 

associated to pseudoradical centers, while those integrating ca. 2e in neutral molecules 

are associated to carbenoid centers. Thus, TACs presenting two pseudoradical centers 

have been classified as pseudodiradical TACs, while those presenting only one would be 

considered as pseudo(mono)radical TACs; TACs with a carbenoid center would 

correspond to carbenoid TACs and, at last, TACs presenting only an A-B multiple bond, 

i.e. neither pseudoradical nor carbenoid centers, have been classified as zwitterionic 

TACs (see Scheme 3.1). Note, therefore, that the “zwitterionic” term does not refer to any 

dipolar electronic structure but to the specific bonding pattern (considering no charges) 

of the principal octet resonance Lewis structure represented by Huisgen for “1,3-dipoles” 

(see Introduction). 

ELF topological analysis of fulminic acid 8 and NOs 8a-c is shown in Figure 3.1. 

According to Lewis’s bonding model,75 the V(O1) monosynaptic basins integrating ca. 

5.6e can be associated with three O1 oxygen lone pairs, the V(O1,N2) disynaptic basin 

integrating ca. 1.8e, with a O1−N2 single bond and the V(N2,C3) disynaptic basin 

integrating ca. 5.8e, with an N2−C3 triple bond, in agreement with the common bonding 

pattern represented for NOs III (see Figure 3.1). Consequently, the presence of a clear 



3. Results and discussion 
 

28 
 

C3-N2 triple bond indicates that NOs 8 and 8a-c possess a zwitterionic electronic 

structure that enables their participation only in zw-type 32CA reactions. 

 
Figure 3.1. ELF localisation domains, together with the most representative valence basin 
populations, as well as the proposed Lewis structures, together with the natural atomic charges, 
of NOs 8 and 8a-c. Negative charges are coloured in red, positive charges in blue and negligible 
charges in green. ELF valence basin population and natural atomic charges are given in average 
number of electrons, e.  

NPA at NOs 8 and 8a-c indicated that while the O1 oxygen presents a negative charge of 

ca. 0.37e, the N2 nitrogen is positively charged by ca. 0.18e. This charge distribution, 

which is in reasonable agreement with the representation of NOs III as 1,2-zwitterionic 

Lewis structures, is a consequence of the polarisation of the N−O bonding region. Note 

that the charge distribution obtained by NPA is the consequence of the asymmetric 

electron density delocalisation resulting from the presence of different nuclei in the 

molecule, rather than the consequence of resonance Lewis structures.  

3.1.1.2. Analysis of the CDFT reactivity indices at the GS of the reagents 

CDFT reactivity indices56 of NOs 8 and 8a-c and MA 5, i.e. the electronic chemical 

potential µ, the electrophilicity ω index and the nucleophilicity N index, are gathered in 

Table 3 in Appendix. The electronic chemical potential µ of NO 8a (R = Ph), -3.83 eV, 
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is higher than that of MA 5, -4.31 eV, suggesting that along a polar reaction the GEDT61 

will take place from NO 8a, acting as the nucleophile, to MA 5, acting as the electrophile. 

On the other hand, NOs 8b,c have electronic chemical potentials similar to that of MA 5 

(see Table 3 in Appendix). Consequently, neither of these NOs will have any tendency to 

transfer electron density towards MA 5. 

According to the electrophilicity62 and nucleophilicity76 scales, fulminic acid 8 is 

considered a moderate electrophile, ω = 0.73 eV, and a marginal nucleophile, N = 1.75 

eV; thus, it is expected that this TAC will not participate in polar reactions. Conversely, 

NOs 8a-c are classified as strong electrophiles, ω = 1.5 – 1.9 eV, but as moderate 

nucleophiles except 8b, which is classified as a marginal nucleophile (see Table 3 in 

Appendix). For its part, MA 5 is classified on the borderline of strong electrophiles, ω = 

1.50 eV, and as a marginal nucleophile, N = 1.70 eV; therefore, it will participate in polar 

reactions only towards strong nucleophiles. 

Zw-type 32CA reactions demand the participation of strong nucleophiles, N > 3.0 

eV, and strong electrophiles, ω > 2.0 eV, to take place easily.51 Since the pairs of reagents 

involved in these 32CA reactions do not meet these requirements, it is expected that the 

corresponding reactions will have a low-polar character, presenting similar activation 

energies to that involved in the non-polar 32CA reaction between the simplest NO 8 and 

ethylene 6. 

3.1.1.3. Analysis of the reaction paths of the 32CA reactions between NOs 8a-c and MA 

5 

Due to the non-symmetry of the reagents, the 32CA reactions between NOs 8a-c and MA 

5 can take place along two regioisomeric pathways, the ortho and the meta, leading to the 

formation of the 4- and 5-substituted 2-isoxazolines 25a-c and 26a-c, respectively (see 

Scheme 3.5). Analysis of the stationary points involved in the two competitive reaction 

paths indicates that these 32CA reactions take place through a one-step mechanism. 

Some appealing conclusions were drawn from the thermodynamic data given in 

Scheme 3.5: i) while the activation enthalpy associated with the 32CA reaction involving 

NO 8a, 12.7 kcal·mol-1, is similar to that associated with the 32CA reaction between 

fulminic acid 8 and ethylene 6, 13.3 kcal·mol-1, those involving NOs 8b and 8c 
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Scheme 3.5. Studied competitive regioisomeric pathways associated with the 32CA reactions 
between NOs 8a-c and MA 5. B3LYP/6-31G(d) relative enthalpies and Gibbs free energies (in 
parentheses), computed at 25 ºC and 1 atm in DCM, are given in kcal·mol-1. 

are 3.1 and 5.1 kcal·mol-1 lower. Interestingly, the bromide derivative NO 8c experiences 

the faster acceleration; ii) while the 32CA reaction involving NO 8b is highly ortho 

regioselective, ∆∆E(TSo-TSm) = 3.2 kcal·mol-1, the 32CA reactions involving NOs 8a and 

8c are moderately ortho regioselective, ∆∆E(TSo-TSm) = 2.0 and 1.5 kcal·mol-1; iii) the high 

exergonic character of these 32CA reactions makes these processes irreversible; and iv) 

the 32CA reaction involving bromide derivative NO 8c is kinetically and 

thermodynamically the most favourable one. 

The geometries of the TSs involved in the 32CA reactions of NO 8a-c with MA 5 

(see Figure 3.2) indicated that: i) the more favourable ortho TSs are geometrically more 

asynchronous than the meta ones; ii) the C−C and O−C forming bond distances at the 

more favourable ortho TSs indicate that they have a strongly asynchronous character, in 

which the C−C single bond formation is clearly more advanced than the O−C one; and 

finally, iii) the most favourable TSc-o is the most asynchronous and earliest TS. 

In order to evaluate the electronic nature of the 32CA reactions between NOs 8a-c 

and MA 5, the GEDT at the TSs was analysed.61 The net charge computed at the MA 

frameworks was found between -0.04e and 0.02e. These negligible GEDT values 

indicate that these 32CA reactions have a marked non-polar character, which accounts 

for the high activation energies computed. 
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Figure 3.2. B3LYP/6-31G(d) gas phase optimised geometries for the TSs associated with the 
32CA reactions between NOs 8a-c and MA 5. Distances are given in angstroms, Å, while those 
in DCM are given in brackets. 

3.1.1.4. BET study of the most favourable 32CA reaction between NO 8c and MA 5 

A BET study of the more favourable ortho regioisomeric pathway associated with the 

non-polar 32CA reaction between NO 8c and MA 5 (see Table 4 and Scheme 6.1. in 

Appendix) allowed drawing the following conclusions: i) the IRC associated with the 

ortho regioisomeric reaction path of the 32CA reaction of NO 8c and MA 5 can be divided 

in fourteen differentiated phases, a behaviour that clearly indicates that the bonding 

changes along this one-step mechanism are non-concerted; ii) the reaction begins with 

the rupture of the N2−C3 triple bond of NO 8c, similarly to the 32CA reaction between 

fulminic acid 8 and acetylene 9;60b iii) the bonding changes in the ethylene framework are 

more delayed than at the NO framework; iv) formation of the first C3−C4 single bond 

begins at a distance of ca. 2.00 Å by sharing some non-bonding electron density of the 

C3 carbon and that of the C4 one. Interestingly, after the formation of this bond, the C3 

carbon still displays non-bonding electron density (see Figure 3.3); v) formation of the 

second O1−C5 single bond begins at the end of the reaction at a distance of ca. 1.78 Å by 
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donation of non-bonding electron density of the O1 oxygen of the NO framework to the 

C5 carbon of the MA one (see Figure 3.3), when the first C3−C4 single bond has already 

reached ca. 94% of its final population (see Table 4 in Appendix); vi) this behaviour 

makes it possible to establish that this 32CA reaction takes place through a non-concerted 

two-stage one-step mechanism;77 v) analysis of the GEDT along the ortho reaction path 

confirms the non-polar character of this 32CA reaction; vi) similarly to the 32CA reaction 

between fulminic acid 8 and acetylene 9,60b the bonding changes taking place from the 

reagents to TSc-o are mainly associated to the rupture of the C1−N2 triple bond in NO 

8c. These bonding changes demand an EC of 8.8 kcal·mol-1 from the first point of the 

reaction path. Consequently, the acceleration found in this 32CA reaction with respect to 

that between fulminic acid 8 and ethylene 6 can be associated to the presence of the 

bromide nucleus at the C1 carbon of NO 8c, which favours the rupture of C1−N2 triple 

bond in this non-polar process. 

 
Figure 3.3. ELF localisation domains of the points of the IRC defining the four phases involved 
in the formation of the new O1−C5 and C3−C4 single bonds along the more favourable ortho 
regioisomeric pathway associated with the zw-type 32CA reaction between NO 8c and MA 5. The 
electron populations, in average number of electrons (e), are given in brackets. 

 

3.1.2. 32CA reaction of Nis IX with ketenes78  

Nis IX are zwitterionic A-TACs participating in zw-type 32CA reactions. 32CA reactions 

of Nis IX with allenes 3279 and heteroallenes such as isocyanates 3380 and ketenes 3481 
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are of particular interest since they present alternative reaction paths leading to different 

heterocyclic compounds depending on the allenic part of the system in which the 

cycloaddition takes place (see Scheme 3.6). 
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Scheme 3.6. Reactions of Nis IX with allenes 32 and heteroallenes 33 and 34. 

Although of synthetic utility, mechanistic studies that allow predicting and interpreting 

the adducts to be obtained are scarce. In order to understand the zw-type reactivity51,68 of 

Nis IX towards ketenes 34, the 32CA reaction of N-methyl-C-methyl Ni 41 with ketenes 

34b and 34c yielding dioxazolidines 39b,c and isoxazolidinones 40b,c (see Scheme 3.7) 

were studied within the MEDT55 through DFT calculations at the MPWB1K/6-311G(d,p) 

computational level. 
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Scheme 3.7. 32CA reactions of Ni 41 with ketenes 34a-c yielding 39a-c and 40a-c. 

3.1.2.1. Topological analysis of the ELF and NPA of Nis 16 and 41 

As can be seen in Figure 3.4, Ni 16 presents two V(O1) and V’(O1) monosynaptic basins, 

integrating a total of 5.91e, and one V(O1,N2) disynaptic basin with a population of 1.39e. 

This behaviour suggests that the O1−N2 bonding region is strongly polarised towards the 

O1 oxygen. In addition, the presence of one V(N2,C3) disynaptic basin integrating 3.89e 



3. Results and discussion 
 

34 
 

indicates that the N2−C3 bonding region has a strong double bond character. 

Consequently, ELF topology of the simplest Ni 16 clearly indicates that this TAC presents 

a zwitterionic electronic structure that enables its participation in zw-type 32CA reactions 

only.51  

On the other hand, the ELF topology of Ni 41 shows a very similar bonding pattern 

to that found in the simplest Ni 16. The ELF valence basin populations have varied very 

slightly (see Figure 3.4), although in this case the N2−C3 bonding region is characterised 

by the presence of two disynaptic basins, V(N2,C3) and V’(N2,C3), integrating a total 

population of 4.09e. Therefore, according to the ELF topological analysis, Ni 41 will also 

behave as a zwitterionic TAC participating only in zw-type 32CA reactions,51 just as the 

simplest Ni 16. 

Finally, NPA indicates that neither of these Nis has a 1,2-zwitterionic charge 

distribution with a negative and a positive charge entirely located at the O1 and N2 

centers. Although the O1 oxygen has a high negative charge, -0.48e (16) and -0.53e 

(41), the N2 nitrogen presents practically no charge, -0.06e (16) and 0.08e (41). 

 
Figure 3.4. ELF valence basin attractors, together with the most representative valence basin 
populations and natural atomic charges, ELF localisation domains and the proposed Lewis 
structures of Nis 16 and 41. Negative charges are coloured in red and negligible charges in green. 
ELF valence basin populations and natural atomic charges are given in average number of 
electrons, e.  
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3.1.2.2. Analysis of the CDFT reactivity indices at the GS of the reagents 

CDFT reactivity indices56 of Nis 16 and 41 and ketenes 34a-c are gathered in Table 3 in 

Appendix. As the electronic chemical potential µ of Ni 41, -2.95 eV, is higher than that 

of ketenes 34b,c, -3.23 and  -5.26 eV, the GEDT61 will flux from the Ni framework, 

acting as the nucleophile, towards the ketene framework, acting as the electrophile, along 

polar reactions. On the other hand, according to the electrophilicity62 and 

nucleophilicity76 scales, ketene 34b, ω = 1.02 eV, will behave as a moderate electrophile, 

ketene 34c, ω = 2.47 eV, as a strong electrophile and Ni 41, N = 3.46 eV, as a strong 

nucleophile. 

Regarding the local reactivity, analysis of the nucleophilic  Parr functions82 of 

Ni 41 and the electrophilic  Parr functions82 of ketenes 34b,c indicated that the O1 

oxygen is the most nucleophilic center of the former and the central C5 carbon the most 

electrophilic center of the latter, the terminal C6 carbon being electrophilically 

deactivated (see Figure 3.5). Consequently, analysis of the CDFT reactivity indices56 of 

these Nis and ketenes predicts a complete C=O regio- and chemoselectivity. 

 
Figure 3.5. 3D representations of the ASD of the radical cation 41·+ and the radical anions 34b,c·-

, together with the nucleophilic  Parr functions82 of Ni 41 and the electrophilic  Parr 
functions82 of ketenes 34b,c.  

3.1.2.3. Analysis of the reaction paths of the 32CA reactions between Ni 41 and ketenes 

34b,c 

Due to the non-symmetry of both reagents, the 32CA reactions between Ni 41 and ketenes 

34b,c can take place along four competitive chemo- and regioisomeric reaction paths. 

Due to the predicted high C=O regioselectivity, only the two chemoisomeric pathways 

associated with the initial nucleophilic attack of the Ni O1 oxygen on the central C5 

carbon of ketenes 34b,c were studied.  

−
kP

kP+

−
kP kP+
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As Scheme 3.8 shows, analysis of the stationary points involved in the two reaction 

paths associated with the two studied 32CA reactions indicates that they take place 

through different mechanisms; while the 32CA reaction involving ketene 34b takes place 

via a one-step mechanism, that involving electrophilic ketene 34c takes place via a two-

step mechanism. 
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Scheme 3.8. C=O and C=C chemoisomeric pathways associated with the zw-type 32CA reaction 
between Ni 41 and ketenes 34b,c. MPWB1K/6-311G(d,p) relative Gibbs free energies (in 
parentheses), computed at 25 ºC and 1 atm in benzene, are given in kcal·mol-1. 

Some appealing conclusions were drawn from the Gibbs free energies given in Scheme 

3.8 and the Gibbs free energy profile represented in Figure 3.6: i) both 32CA reactions 

are kinetically very favourable; ii) the 32CA reaction involving ketene 34b is kinetically 

completely C=O chemoselective, as TS-CO is 15.6 kcal·mol-1 lower in Gibbs free energy 

than TS-CC. However, isoxazolidinone 40b could become the product of a 

thermodynamic control under thermal equilibrium conditions as it is more stable than 



  3. Results and discussion 
 

37 
 

dioxazolidine 39b; iii) the 32CA reaction involving ketene 34c is also completely C=O 

chemoselective, as TS2-CO is 10.5 kcal·mol-1 lower in Gibbs free energy than TS2-CC; 

iv) IN-CO and IN-CC are two conformers being interconvertible by an O1-C5 single 

bond rotation implying only 0.3 kcal·mol-1. Consequently, these intermediates connect 

both chemoisomeric reaction paths. Thus, under thermodynamic control, dioxazolidine 

39c could be converted into the more thermodynamically stable 40c with an activation 

energy of 27.5 kcal·mol-1; and finally, v) a comparison between the energy profiles of the 

32CA reactions of Ni 41 with ketenes 34b,c allows obtaining two appealing conclusions: 

a) the electrophilic activation of the ketene changes the molecular mechanism and 

activation energies, but it does not change the thermodynamics of the reaction; and b) in 

both reactions, the ring closure is the step controlling the chemoselectivity. 
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Figure 3.6. MPWB1K/6-311G(d,p) Gibbs free energy profile (∆G, kcal·mol-1), computed at 25 
ºC and 1 atm in benzene, of the 32CA reaction between Ni 41 and electrophilic ketene 34c. 

The geometries of the TSs and intermediates involved in the 32CA reactions of Ni 41 

with ketenes 34b,c are displayed in Figure 3.7. The short distance between the O1 and 

C5 nuclei at both TS-CO and TS-CC indicates that the O1−C5 single bond is already 

formed.83 Consequently, these TSs are associated to the formation of the second C3−O4 

or C3−C6 single bonds. At TS1-CO, the distances between the interacting nuclei 

indicated that this TS is very early, in clear agreement with its low activation energy. At 

intermediates IN-CO and IN-CC, the O1−C5 single bond is already formed, while the 

distances between the C3 and O4/C6 nuclei suggest still delayed bond formation 

processes. Finally, at TS2-CO and TS2-CC, while the length of the O1−C5 single bond 
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has slightly decreased by 0.1 Å, the distances between the C3 and O4/C6 nuclei have 

decreased by ca. 0.7 Å. 

 
Figure 3.7. MPWB1K/6-311G(d,p) gas phase optimised geometries of the TSs and 
intermediates involved in the 32CA reaction of Ni 41 with ketenes 34b,c. Distances are given in 
angstroms, Å, while those in benzene are given in parentheses.  

In order to evaluate the electronic nature of the 32CA reaction of Ni 41 with ketenes 

34b,c, the GEDT at the TSs was analysed.61 At TS-CO and TS-CC, the GEDT that takes 

place from the Ni to the ketene framework is 0.33e and 0.21e, respectively. These high 

values indicate that these TSs have polar character. On the other hand, at the TSs and 

intermediates associated with the 32CA reaction of Ni 41 with electrophilic ketene 34c, 

the GEDT is 0.05e at TS1-CO, 0.45e at IN-CO, 0.44e at IN-CC, 0.41e at TS2-CO and 

0.37e at TS2-CC, indicating a higher polar character of this reaction due to the higher 

electrophilic character of ketene 34c. Analysis of the GEDT is in agreement with the low 

computed activation energies and confirms that the feasibility of these zw-type 32CA 

reactions depends on their polar character, i.e. the electrophilic character of the ketene. 
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3.1.2.4. BET study of the 32CA reaction between Ni 41 and ketene 34b 

A BET study of the most favourable reaction path associated with the 32CA reaction 

between Ni 41 and ketene 34b (see Table 5 and Scheme 6.2 in Appendix) allowed 

drawing the following appealing conclusions: i) the corresponding IRC is divided in eight 

differentiated phases, a behaviour that clearly indicates that the bonding changes along 

this one-step mechanism are non-concerted; ii) formation of the first O1−C5 single bond 

begins at a distance of ca. 1.64 Å, by donation of part of the non-bonding electron density 

of the O1 oxygen of the Ni framework to the C5 carbon of the ketene moiety (see Figure 

3.8). Note that the O1 oxygen is the most nucleophilic center of Ni 41 and the C5 carbon 

corresponds to the most electrophilic center of ketene 34b; iii) formation of this bond 

demands the asymmetric depopulation of the O4−C5 bonding region of ketene 34b. The 

high GEDT, 0.34e, taking place along this zw-type 32CA reaction favours these bonding 

changes according to the electronic behaviour anticipated by the Parr functions,82 which 

is in agreement with the computed total C=O chemoselectivity; iv) formation of the 

second C3−O4 single bond begins at a distance of ca. 1.84 Å by donation of part of the 

non-bonding electron density of the O4 oxygen to the C3 pseudoradical center of the Ni 

framework. This carbon participates with a residual electron density of 0.03e in the 

formation of the C3−O4 single bond (see Figure 3.8); v) the reaction follows a two-stage 

one-step mechanism77 in which the formation of the second C3−O4 bond begins when 

the first O1−C5 single bond is practically already formed, by up to 89% (see Table 5 in 

Appendix). This fact also emphasises that the bonding changes in this one-step reaction 

are non-concerted; vi) the activation energy associated with this 32CA reaction, 9.3 

kcal·mol-1, can mainly be associated with the depopulation of the O4−C5 and N2−C3 

bonding regions towards the O4 oxygen and the N2 nitrogen, respectively, which is 

demanded before the donation of the electron density of the O4 oxygen to the C3 carbon; 

vii) this BET study allowed establishing the molecular mechanism of the zw-type 32CA 

reactions between Nis IX and ketenes 34 as a [2n+2n] mechanism,84 i.e. only two non-

bonding electrons of the oxygen lone pairs of Ni 41, and two non-bonding electrons of 

the oxygen lone pairs of ketene 34b, are mainly involved in the formation of the two C−O 

single bonds of cycloadduct 39b. 
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Figure 3.8. ELF attractor positions for the points of the IRC defining the four phases involved in 
the formation of the O1−C5 and C3−O4 single bonds along the most favourable reaction path 
associated with the zw-type 32CA reaction between Ni 41 and ketene 34b. The electron 
populations, in average number of electrons (e), are given in brackets. 

3.1.2.5. ELF topological analysis of the stationary points involved in the 32CA reaction 

involving electrophilic ketene 34c 

Finally, an ELF topological analysis of the electron density distribution of the stationary 

points involved in the most favourable reaction path associated with the 32CA reaction 

involving electrophilic ketene 34c (see Table 6 and Scheme 6.3 in Appendix) allowed 

obtaining the following conclusions: i) the bonding pattern of TS1-CO (see Figure 3.9) 

resembles that associated with the structures located at the end of Phase I of the reaction 

between Ni 41 and ketene 34b (see Scheme 6.2 in Appendix), emphasising its earlier 

character; ii) as expected, at IN-CO, while formation of the O1−C5 single bond is very 

advanced, formation of the C3−O4 single bond has not yet begun; iii) the bonding pattern 

of IN-CO (see Figure 3.9) resembles that of point P5 of the reaction between Ni 41 and 

ketene 34b (see Scheme 6.2 in Appendix). The main difference between IN-CO and P5 

is the C3−O4 distance: 2.745 Å at IN-CO and 2.329 Å at P5. The short C3−O4 distance 

at P5 justifies that this species cannot be a stationary point; iv) the bonding pattern of 

TS2-CO (see Figure 3.9) resembles that of TS-CO (see Table 5 in Appendix). The only 

difference is that TS2-CO is slightly more advanced than TS-CO; and v) the GEDT at 
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IN-CO and TS2-CO is larger than that at P5 and TS-CO due to the higher electrophilic 

character of ketene 34c than that of ketene 34b. The higher polar character of the zw-type 

32CA reaction between nucleophilic Ni 41 and electrophilic ketene 34c permits the 

stabilisation of the zwitterionic intermediate, thus changing the molecular mechanism 

from a one-step mechanism to a two-step one, but the bonding changes in both 32CA 

reactions are essentially the same. This similar bonding pattern along the two 32CA 

reactions supports the non-concerted nature of the two-stage one-step mechanism.77  

 
Figure 3.9. ELF attractor positions of the stationary points involved in the most favourable 
reaction path associated with the zw-type 32CA reaction between Ni 41 and ketene 34c. The 
electron populations, in average number of electrons (e), are given in brackets. 

 

3.1.3. 32CA reaction of Nis IX with strained allenes85  

The use of strained species such as benzyne 45 and cyclic alkynes such as cyclopentyne 

48 in organic synthesis permits their participation in organic reactions in which linear 

alkynes do not react86 (see Scheme 3.9). 

An ELF topological analysis of the electronic structure of benzyne 45 made it 

possible to explain the high reactivity of this strained aromatic alkyne.86a The ELF 

topology of benzyne 45 showed the presence of two monosynaptic basins, V(C1) and 

V(C2), integrating 0.64e each one (see Figure 3.10). This electronic characteristic of 

benzyne 45 allowed associating its reactivity to that of a highly reactive pseudodiradical 

species.67,86a 

Unlike arynes and cyclic alkynes, whose structure and reactivity have been widely 

studied,86,87 highly strained allene species have been studied to a much lesser extent. Since 
  

TS1-CO IN-CO TS2-CO 
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Scheme 3.9. Non-polar reactions of ethylene derivatives and strained species. Activation 
energies, in parentheses, are given in kcal·mol-1.  

 

  
Figure 3.10. ELF localisation domains of benzyne 45. The two non-bonding V(C1) and V(C2) 
monosynaptic basins are represented in red. 

1966, when Wittig reported, for the first time, the existence of CHDE 50,88 the chemistry 

of this highly strained species has received little attention especially compared to its aryne 

and alkyne counterparts. 

Very recently, Houk et al. studied experimentally as well as theoretically the 32CA 

reaction of the in situ generated CHDE 50 with Ni 51 participating as the TAC, yielding 

the two stereoisomeric isoxazolidines 52 (Ph/H syn:anti 9.5:1); regioisomeric 

isoxazolidines 53 were not observed (see Scheme 3.10).89  

Houk proposed that the predistortion of CHDE 50 into geometries similar to those 

of the TSs for cycloadditions could be responsible for the low activation energy of these 

reactions compared with that for the 32CA reaction with the simplest allene 54.89 
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Scheme 3.10. 32CA reaction of CHDE 50 with Ni 51 yielding the stereoisomeric isoxazolidines 
52.  

However, similarly to benzyne 45,86  the strain present at the sp hybridised C5 carbon of 

CHDE 50 could provide some pseudoradical character to the C5 carbon, enabling this 

compound to experience a different reactivity pattern to that of linear allenes.  

These different interpretations about the role of the strain in the reactivity of 

strained species prompted us to revisit the 32CA reaction of the strained CHDE 50 with 

Ni 51 within the MEDT.55 Thus, in order to understand how the strain modifies the 

reactivity of CHDE 50 with respect to the non-strained linear allene 54 and how this fact 

affects the usual zw-type reactivity of Nis IX, an MEDT55 study of the 32CA reaction of 

Ni 51 with strained CHDE 50 and the simplest allene 54 was performed at the B3LYP/6-

311G(d,p) computational level. 

3.1.3.1. Topological analysis of the ELF and NPA of linear allene 54 and strained CHDE 

50 

As commented, the high reactivity of benzyne 45 was attributed to its pseudodiradical 

character, which was topologically characterised by the presence of two ELF V(C) 

monosynaptic basins (see Figure 3.10).86 However, ELF topological analysis of both 

allenes 50 and 54 did not show the presence of any V(C) monosynaptic basin (see Figure 

3.11). Instead, while the V(Cx,Cy) disynaptic basins associated with the C4−C5 and 

C5−C6 double bonds are clearly differentiated in the linear allene 54 as they are 

positioned in two perpendicular molecular planes, they are linked in a singular and twisted 

manner at strained CHDE 50 due to the slight torsion of the C4=C5=C6 framework. This 

particular feature found in the strained CHDE 50 suggests that this species will have a 

different chemical behaviour to that of linear allene 54, with the participation of the two 

C−C double bonds of the strained allene in its special reactivity.  
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Figure 3.11. ELF valence basin attractors, together with the C4−C5 valence basin populations, in 
average number of electrons (e), ELF localisation domains and the proposed Lewis structures for 
allenes 50 and 54. 

3.1.3.2. Analysis of the CDFT reactivity indices at the GS of the reagents  

CDFT reactivity indices56 of Ni 51 and allenes 50 and 54 are gathered in Table 3 in 

Appendix. As the electronic chemical potential of Ni 51, -3.29 eV, is close to that of the 

simplest allene 54, -3.30 eV, and only slightly higher than that of CHDE 50, -3.44 eV, 

none of the reagents will have any tendency to exchange electron density with the other 

along these 32CA reactions, suggestive of non-polar reactions. 

According to the electrophilicity62 and nucleophilicity76 scales, Ni 51 is classified 

as a moderate electrophile, ω = 1.26 eV, and as a strong nucleophile, N = 3.70 eV. On the 

other hand, CDFT reactivity indices of the simplest linear allene 54 are very similar to 

those of ethylene 6 (see Table 3 in Appendix), thus being classified as a marginal 

electrophile, ω = 0.70 eV, and on the borderline of marginal nucleophiles, N = 1.97 eV. 

Otherwise, the angular strain of the allene framework in CHDE 50 causes an increase of 

both the electrophilicity ω and nucleophilicity N indices so that this species is classified 

as a moderate electrophile, ω = 1.24 eV, and a strong nucleophile, N = 3.29 eV. However, 

in spite of this electrophilic activation with respect to the simplest linear allene 54, this is 

not sufficient to favour the GEDT,61 in clear agreement with the analysis of the global 
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electronic chemical potentials of the reagents. Consequently, it is expected that the 

corresponding non-polar 32CA reactions will present high activation barriers. 

3.1.3.3. Study of the reaction paths associated with the 32CA reaction of Ni 51 with 

strained CHDE 50 

Due to the non-symmetry of the two reagents, the 32CA reaction of Ni 51 with strained 

CHDE 50 can take place along four isomeric reaction paths: one pair of stereoisomeric 

pathways and one pair of regioisomeric ones. As Scheme 3.11 shows, analysis of the 

stationary points involved in the four reaction paths indicates that this 32CA reaction 

takes place through a one-step mechanism. 
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Scheme 3.11. The four competitive reaction paths associated with the 32CA reaction of Ni 51 
with CHDE 50. B3LYP/6-311G(d,p) relative Gibbs free energies (in parentheses), computed at 
80 ºC and 1 atm in acetonitrile, are given in kcal·mol-1. 

Some appealing conclusions were drawn from Scheme 3.11 and the Gibbs free energy 

profile represented in Figure 3.12: i) the activation Gibbs free energy associated with the 

32CA reaction of Ni 51 with CHDE 50 via TS1n is 19.9 kcal·mol-1 lower in energy than 

that associated with the 32CA reaction of Ni 51 with the simplest allene 54, 42.6 kcal·mol-

1; ii) this 32CA reaction presents a low C1−C5 regioselectivity and a low endo 
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stereoselectivity; iii) the 32CA reaction of Ni 51 with strained CHDE 50 presents an 

opposed regioselectivity to that found in the reaction with the simplest allene 54; and 

finally, iv) the strain present in CHDE 50 does not only affect the kinetics, but also the 

thermodynamics: while this 32CA reaction is strongly exergonic (52a), the most 

favourable reaction path associated with the 32CA reaction involving the simplest allene 

54 is exergonic by only 4.3 kcal·mol-1. 

 
Figure 3.12. B3LYP/6-311G(d,p) Gibbs free energy profile, in kcal·mol-1, of the 32CA reaction 
of Ni 51 with CHDE 50. 

The geometries of the TSs involved in the 32CA reaction of Ni 51 with CHDE 50 in 

acetonitrile (see Figure 3.13) indicated that: i) the four TSs correspond to highly 

asynchronous single bond formation processes, while the two regioisomeric TSs 

associated with the 32CA reaction of Ni 51 with the simplest allene 54 are hardly 

asynchronous; ii) the more unfavourable exo TS1x is slightly more advanced and more 

asynchronous than endo TS1n; iii) the formation of the single bond involving the C5 

carbon of CHDE 50 is more advanced than that involving the C4 carbon; iv) CHDE 50 

approaches Ni 51 perpendicularly, while in the 32CA reaction between Ni 51 and the 

simplest allene 54, the two frameworks approach each other in a parallel manner; v) the 

strain present in CHDE 50 notably modifies the reactivity of this strained cyclic allene 

when it is compared to that of the simplest allene 54. Note the different synchronicities 

and approach modes. 
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Figure 3.13. B3LYP/6-311G(d,p) optimised geometries in acetonitrile of the TSs involved in the 
32CA reaction of Ni 51 with CHDE 50. Distances are given in angstroms, Å. 

The GEDT at the four TSs, which fluxes from the Ni to the CHDE frameworks, is 0.02e 

at TS1n, 0.02e at TS1x, 0.02 TS2n and 0.09e at TS2x, indicating that this 32CA reaction 

has a non-polar character,61 in agreement with the analysis of the CDFT reactivity indices 

at the GS of the reagents. 

3.1.3.4. BET study of the 32CA reaction of Ni 51 with strained allene CHDE 50 and linear 

allene 54 

BET data are gathered in Tables 7 and 8 in Appendix while simplified representations of 

the molecular mechanisms arising from the BET study are shown in Schemes 6.4 and 6.5. 

The BET study of the 32CA reaction of Ni 51 with strained allene CHDE 50 (see Table 

8 and Scheme 6.5 in Appendix) allowed drawing the following appealing conclusions: i) 

the IRC of the most favourable endo/r1 reaction path is divided in ten differentiated 

phases related to the disappearance or creation of valence basins, emphasising the non-

concerted nature of the bonding changes along the reaction; ii) the reaction begins with 

the depopulation of the allenic C4−C5−C6 bonding region of strained CHDE 50 in order 
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to permit the creation of a C5 pseudoradical center (see Scheme 6.5 in Appendix). Due 

to the strain present in CHDE 50, this electronic change demands a relatively low EC of 

8.3 kcal·mol-1 (see Table 8 in Appendix), which is 15.1 kcal·mol-1 lower than that 

demanded for the creation of the first pseudoradical center at the Ni framework in the 

reaction involving the simplest allene 54 (see Table 7 in Appendix); iii) thus, the relatively 

low activation energy found in this non-polar 32CA reaction, 8.5 kcal·mol-1, can be 

mainly associated to the creation of a pseudoradical center at the C5 carbon of strained 

allene CHDE 50; iv) once this C5 pseudoradical center is formed in the allenic 

framework, the subsequent rupture of the C1−N2 double bond of the Ni fragment and 

creation of the C1 pseudoradical center has an unappreciable EC, 0.1 kcal·mol-1 (see 

Table 8 in Appendix). Consequently, once the C5 pseudoradical center is created, it 

induces the easy rupture of the C1−N2 double bond. This reactivity behaviour is 

characteristic of radical species; v) formation of the first C1−C5 single bond begins at a 

distance of 1.94 Å through a C-to-C coupling of two C1 and C5 pseudoradical centers61 

(see P4n and P5n in Figure 3.14). Interestingly, the C5 pseudoradical center participates 

with a high electron density, 0.89e, in the formation of the new C1−C5 single bond; vi) 

however, formation of the second O3−C4 single bond begins at a distance of 1.75 Å by 

donation of non-bonding electron density of the O1 oxygen present in the Ni framework 

to the C2 carbon of the allene fragment, similar to previous O−C bond formations83 (see 

P8n and P9n in Figure 3.14); and finally, vii) formation of the second O3−C4 single bond 

takes place at the end of the reaction path once the first C1−C5 single bond has already 

been formed (see Table 8 in Appendix). This fact allows characterising the molecular 

mechanism of this 32CA reaction as a non-concerted two-stage one-step mechanism77 

associated to the attack of the pseudoradical allenic C5 carbon of CHDE 50 onto the C1 

carbon of Ni 51 which, after the complete C1−C5 single bond formation, experiences a 

rapid ring-closure process. 

A comparative analysis of the BET studies of the non-polar 32CA reactions 

between Ni 51 and allenes 50 and 54 made it possible to explain the high reactivity of 

strained cyclic allene CHDE 50. The non-polar 32CA reaction between Ni 51 and the 

simplest allene 54 begins with the rupture of the Ni C1-N2 double bond (see Figure 3.15a 

and Scheme 6.4 in Appendix). However, a completely different scenario was 
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Figure 3.14. ELF attractor positions for the points of the IRC defining the four phases involved 
in the formation of the C1−C5 and O3−C4 single bonds along the most favourable endo/r1 
reaction path associated with the 32CA reaction between Ni 51 and strained allene CHDE 50. The 
electron populations, in average number of electrons (e), are given in brackets.  

found along the non-polar 32CA reaction between Ni 51 and strained allene CHDE 50; 

at the beginning of the reaction, CHDE 50 becomes a pseudoradical species67 (see Figure 

3.15b and Scheme 6.5 in Appendix), which explains the high reactivity of strained allenes 

in cycloaddition reactions.90Consequently, we can conclude that, from an MEDT55 

perspective, the geometrical predistortion of the strained allene CHDE 50 is not 

responsible for the high reactivity of this species as previously proposed,89 but the change 

of reactivity of the strained CHDE 50, which, with a relatively low EC of 8.3 kcal·mol-1, 

behaves as a radical species rather than an ethylene derivative, as occurs in the case of 

linear allene 54. The present MEDT55 study allowed establishing that the radical character 

of CHDE 50 acquired at the beginning of the reaction notably favours the corresponding 

non-polar zw-type 32CA reaction.  
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a b 

Figure 3.15. Relative energy (∆E, in kcal·mol-1) variations along the IRC associated with a) the 
regiosiomeric r1 reaction path of the 32CA reaction between Ni 51 and the simplest allene 54 and 
b) the most favourable endo/r1 reaction path of the 32CA reaction between Ni 51 and strained 
allene CHDE 50. Black dashed lines separate the topological phases along the IRC, the red point 
indicates the position of the TS and the green and magenta lines show the relative position of the 
points of the IRC associated with the formation of the C1 and C5 pseudoradical centers, 
respectively. Relative energies are given with respect to the separated reagents, while the ECs are 
relative to the corresponding molecular complexes. 

 

3.2. 32CA reactions of carbenoid TACs 

Carbenoid TACs are species containing a carbenoid center, i.e. a neutral carbon 

presenting a non-bonding electron density of ca. 2e (see Scheme 3.12). They are able to 

participate in cb-type 32CA reactions with electrophilic ethylene derivatives presenting 

an EWG group. Propargylic NYs I are a typical example of carbenoid TACs. 

C N CR2

NYs I

R

 
Scheme 3.12. Lewis structure of carbenoid TACs. 

3.2.1. Formal 32CA reactions of carbonyl compounds with nucleophilic carbenoid 

intermediates generated from carbene isocyanides84 

Carbene isocyanides i are essential building blocks in modern organic chemistry,91 and it 

has been reported that these species nucleophilically attack dialkyl 

acetylenedicarboxylates ii yielding zwitterionic species iii, which act as crucial 
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intermediates. These reactive intermediates are readily trapped by several kinds of 

electrophilic carbon molecules92 such as aldehydes,92b ketones,92c,d esters,92e and 

sulfonylimines,93 even carbon dioxide.94 When electrophilic molecules are carbonyl 

derivatives iv, the reaction products are 2-imino-furan derivatives v (see Scheme 3.13). 
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Scheme 3.13. Multicomponent domino reaction between carbene isocyanides i, 
acetylenedicarboxylates ii and carbonyl derivatives iv. 

The second step of this domino process was associated with a “1,3-dipolar” cycloaddition 

reaction, for which two mechanisms were proposed92b-d (see Scheme 3.14): i) a one-step 

mechanism in which the C−C and C−O bonds are formed in a single step but 

asynchronously;92d and ii) a stepwise mechanism in which a new zwitterionic 

intermediate vi is formed through the nucleophilic attack of zwitterionic intermediate iii 

on carbonyl derivative iv; the subsequent cyclisation in this intermediate will yield 2-

imino-furan derivative v.92c 
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Scheme 3.14. Proposed mechanisms for the “1,3-dipolar” cycloadditions of intermediate iii with 
carbonyl derivatives iv. 
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Due to the high reactivity evidenced by intermediate iii and the significance of the 

formation of 2-imino-furans v through these reactions involving a large diversity of 

carbonyl derivatives iv,92b-e,94 an MEDT55 study of the multicomponent domino reaction 

between methyl isocyanide 55, DMAD 56 and acetone 57 yielding 2-imino-furan 58, as 

a model, was performed at the MPWB1K/6-311G(d,p) computational level (see Scheme 

3.15) 
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Scheme 3.15. Selected reaction model for the multicomponent domino reaction between 
isocyanides i, acetylenedicarboxylate derivatives ii and carbonyl compounds iv. 

3.2.1.1. Study of the energy profile of the multicomponent reaction between methyl 

isocyanide 55, DMAD 56 and acetone 57  

The multicomponent reaction between methyl isocyanide 55, DMAD 56 and acetone 57 

yielding 2-imino-furan 58 is a domino process that comprises two consecutive addition 

reactions (see Scheme 3.16). The first one is the nucleophilic attack of carbene methyl 

isocyanide 55 on one of the two electrophilic acetylenic carbons of DMAD 56 to yield 

intermediate trans-IN, which, after isomerisation to intermediate cis-IN, attacks acetone 

57 along the second addition reaction. 

Some interesting conclusions were drawn from the thermodynamic data given in 

Scheme 3.16 and the Gibbs free energy profile represented in Figure 3.16: i) the first 

nucleophilic attack of carbene isocyanide 55 on DMAD 56 is the RDS of this domino 

process; ii) intermediate trans-IN quickly isomerises, via TS-tc, to cis-IN, which is 2.4 

kcal·mol-1 more stable and whose cis disposition is required for the following 

cycloaddition reaction with acetone 57 to occur; iii) the activation Gibbs free energy of 

the cycloaddition reaction of intermediate cis-IN with acetone 57 via TS2 is 6.3 kcal/mol 

lower than that of the RDS of the domino process via TS1; iv) the strong exergonic 

character of the cycloaddition reaction between cis-IN and acetone 57 makes this process 

irreversible; and v) although the formation of intermediate cis-IN is slightly endergonic, 
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Scheme 3.16. Domino reaction between methyl isocyanide 55, DMAD 56 and acetone 57. 
MPWB1K/6-311G(d,p) relative enthalpies and Gibbs free energies (in parentheses), computed at 
25 ºC and 1 atm in acetonitrile, with respect to 55, 56 and 57, are given in kcal·mol-1.  

 

 
Figure 3.16. MPWB1K/6-311G(d,p) Gibbs free energy profile (∆G, in kcal·mol-1), computed at 
25 ºC and 1 atm in acetonitrile, of the domino reaction between methyl isocyanide 55, DMAD 56 
and acetone 57.  
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as soon as it is formed it is quickly and irreversibly captured by acetone 57 yielding 2-

mino-furan 58. Accordingly, the multicomponent reaction between isocyanide 55, 

DMAD 56 and acetone 57 is kinetically and thermodynamically very favourable. 

The geometries of the TSs involved in the domino reaction between methyl 

isocyanide 55, DMAD 56 and acetone 57 in acetonitrile are displayed in Figure 3.17. The 

IRC from TS2 towards the final 2-imino-furan 58 indicated that the second reaction of 

this multicomponent process is associated with a two-stage one-step mechanism77 in 

which the C4−C5 single bond is completely formed before the formation of the second 

C2−O6 single bond starts (see later). This finding allowed ruling out the proposed two-

step mechanism for the second addition reaction. In addition, this IRC also showed that 

the carbonyl C5−O6 bond of acetone 57 approaches to intermediate cis-IN in the 

C2−C3−C4 plain, in which the two C4−C5 and C2−O6 single bonds will be formed (see 

TS2 in Figure 3.17). This approach mode is different to that demanded in “1,3-dipolar” 

cycloadditions, in which the “dipolarophile” approaches above the plain of the “1,3-

dipole”. 

 
Figure 3.17. MPWB1K/6-311G(d,p) gas phase optimised geometries of the most important 
stationary points involved in the domino reaction between methyl isocyanide 55, DMAD 56 and 
acetone 57. Distances are given in angstroms, Å, while those in acetonitrile are given in 
parentheses. 
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Finally, the computed GEDT61 values, 0.26e at TS1, 0.62e at trans-IN and 0.26e at TS2, 

emphasised the high polar nature of the domino reaction between methyl isocyanide 55, 

DMAD 56 and acetone 57. 

3.2.1.2. Analysis of the CDFT reactivity indices at the GS of the reagents and intermediate 

cis-IN 

CDFT reactivity indices56 of the species involved in the domino reaction between methyl 

isocyanide 55, DMAD 56 and acetone 57 are gathered in Table 3 in Appendix. The 

electronic chemical potential of carbene isocyanide 55, -3.90 eV, is higher than that of 

DMAD 56, -5.01 eV, indicating that along a polar reaction the GEDT61 will flux from 

the carbene isocyanide framework, acting as the nucleophile, towards the acetylene one, 

acting as the electrophile. In the same way, the higher electronic chemical potential of 

intermediate cis-IN, -3.58 eV, than that of acetone 57, -3.72 eV, suggests that along the 

subsequent cycloaddition reaction, the GEDT will flux towards the ketone framework. 

According to the electrophilicity62 and nucleophilicity76 scales, methyl isocyanide 

55 is classified on the borderline of moderate electrophiles and as a marginal nucleophile, 

ω = 0.66 eV and N = 0.77 eV, while DMAD 56 is classified as a strong electrophile and 

as a marginal nucleophile ω = 1.40 eV and N = 0.91 eV. In spite of the strong electrophilic 

character of DMAD 56, the low nucleophilic character of isocyanide 55 accounts for the 

high activation energy associated with the nucleophilic addition of isocyanide 55 to 

DMAD 2 (see above). cis-IN, ω = 1.06 eV and N = 3.80 eV, is classified on the borderline 

of strong electrophiles and as a strong nucleophile. Finally, acetone 57, ω = 0.77 eV and 

N = 2.16 eV, behaves as a moderate electrophile and a moderate nucleophile. Thus, the 

low electrophilic character of acetone 57 demands its electrophilic activation in order to 

participate in polar reactions. 

Regarding the local reactivity, analysis of the nucleophilic  Parr functions82 of 

carbene isocyanide 55 and cis-IN (see Figure 3.18) showed that the C2 carbon of 

isocyanide 55 and the C4 carbon of intermediate cis-IN are the most nucleophilic centers 

of these species. On the other hand, analysis of the electrophilic  Parr functions82 of 

DMAD 56 indicated that the acetylene C3 and C4 carbons are ca. twice as 

electrophilically activated as the carbonyl carbons. Finally, acetone 57 presents its 

electrophilic activation at the carbonyl carbon. Consequently, the most favourable 

−
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electrophile-nucleophile interaction along the nucleophilic attack of carbene isocyanide 

55 on DMAD 56 will take place between the C2 carbon of isocyanide 55 and the C3 or 

C4 carbons of DMAD 56. Likewise, the most favourable bond formation along the 

nucleophilic attack of intermediate cis-IN on acetone 57 will take place between the C4 

carbon of the former and the electrophilic carbon of the latter. 
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Figure 3.18. Nucleophilic  Parr functions, in blue, and electrophilic  Parr functions, in 
red,82 of methyl isocyanide 55, DMAD 56, acetone 57 and intermediate cis-IN. 

Thus, analysis of the CDFT reactivity indices of the species involved in the model domino 

reaction between methyl isocyanide 55, DMAD 56, acetone 57 made it possible to explain 

the experimentally observed reactivity in the multicomponent reaction between carbene 

isocyanides i, acetylenedicarboxylates ii and carbonyl derivatives iv.  

3.2.1.3. BET study of the domino reaction between methyl isocyanide 55, DMAD 56 and 

acetone 57 

BET data are gathered in Tables 9 and 10 in Appendix, while simplified representations 

of the molecular mechanisms arising from the BET study are shown in Schemes 6.6 and 

6.7. From the BET study of this domino reaction, the following conclusions were drawn: 

i) along the nucleophilic attack of methyl isocyanide 55 on DMAD 56, the C2−C3 bond 

is formed with a high electron density, 2.55e, at a distance of 1.90 Å, by donation of the 

electron density of the cerbene C2 center to one of the two acetylenic carbons of DMAD 

56 (see Figure 3.19); ii) as the consequence of the depopulation of the acetylenic C3−C4 

triple bond, a new V(C4) monosynaptic basin appears at the C4 carbon with an initial 

population of 0.52e. This V(C4) monosynaptic basin reaches 2.06e at intermediate cis-

IN; iii) along the nucleophilic attack of cis-IN on acetone 57, formation of the C4−C5 

single bond begins at a distance of 2.14 Å through by donation of the electron density of 

the carbenoid C4 center of cis-IN to the carbonyl C5 carbon of acetone 57 (see Figure 

3.20); iv) formation of the third C2−O6 single bond begins at the end of the cycloaddition 

−
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path at a distance of 1.75 Å by donation of part of the non-bonding electron density of the 

carbonyl O6 oxygen to the C2 carbon (see Figure 3.20); and finally, v) formation of the 

C2−O6 single bond begins after the almost complete formation of the C4−C5 one by 

above 98% (see Table 10 in Appendix), characterising the mechanism of the 

cycloaddition reaction as a non-concerted two-stage one-step mechanism.77 

Both, analysis of the atomic movements of the cis-IN and acetone 57 molecules 

along the IRC associated with the cycloaddition step and the corresponding BET analysis, 

indicated that the N1−C2 triple bond and C3−C4 double bond regions of intermediate cis-

IN do not actively participate in the cycloaddition reaction, as expected in a “1,3-dipole” 

participating in a “1,3-dipolar” cycloaddition, but the carbenoid C4 carbon and the 

carbonyl O6 oxygen. Consequently, this cycloaddition should be classified as a [2n+2n], 

in which only two lone pairs are involved, instead of a [4π+2π], as proposed in a “1,3-

dipolar” cycloaddition.46  

 
Figure 3.19. ELF basin attractor positions and localisation domains for the most relevant points 
along the IRC associated with the formation of the C2−C3 single bond along the nucleophilic 
addition of methyl isocyanide 55 to DMAD 56. Disynaptic basins are coloured in green and 
monosynaptic basins in red. The electron populations, in average number of electrons (e), are 
given in brackets. 
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Figure 3.20. ELF attractor positions for the most relevant points along the IRC associated with 
the formation of the C4−C5 and C2−O6 single bonds along the cycloaddition reaction of 
intermediate cis-IN with acetone 57. The electron populations, in average number of electrons 
(e), are given in brackets. 

3.2.1.4. The electronic structure of intermediate cis-IN and the origin of the high 

reactivity of carbonyl compounds towards this intermediate 

At first, intermediate cis-IN can be represented by either of the resonance Lewis 

structures, A and B, given in Scheme 3.17. Experimental chemists represent cis-IN by 

means of the 1,3-zwitterionic structure A, since it justifies the participation of cis-IN in a 

32CA reaction with carbonyl derivatives iv. 
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Scheme 3.17. Lewis structures representing zwitterionic intermediate cis-IN.  



  3. Results and discussion 
 

59 
 

Both NPA and ELF analyses of the electronic structure of the intermediate cis-IN yielded 

a different representation for this intermediate (see Figure 3.21). In spite of the 

zwitterionic character of intermediate cis-IN, the high reactivity of this intermediate 

towards carbonyl compounds iv could not be related to its zwitterionic character but rather 

to the singlet carbenoid character of the C4 carbon that grants a high nucleophilic 

character to this molecule. 

 
Figure 3.21. Representation of the electronic structure of carbenoid intermediate cis-IN based on 
(a) NPA, (b) ELF and (c) the mixture of both analyses. Green values in (a) indicate the bond order 
of the corresponding bond.  

MEP of cis-IN showed that the highest positive region corresponds to the methyl 

substituent present in the isocyanide framework (see Figure 3.22a). The MEP of TS2 

showed that along the nucleophilic attack of cis-IN on acetone 57, the GEDT that takes 

place in this polar process gives rise to an increase of electron density at the carbonyl 

oxygen, in agreement with the Parr functions.82 This feature, which is unfavourable in a 

non-catalysed nucleophilic addition to carbonyl compounds, is favoured in TS2 by the 

presence of the positively charged methyl group, which electrostatically stabilises the 

negative charge developed at the carbonyl oxygen (see Figure 3.22b).  

Although some weak interactions between the carbonyl oxygen and the methyl 

isocyanide framework were revealed by NCI,59 no hydrogen bond interaction was 

observed. Consequently, the high reactivity of intermediate cis-IN towards carbonyl 

derivatives iv is due to two specific features: i) the carbenoid character of the sp2 

hybridised C4 carbon more than the negative charge on a carbanionic center, and ii) the 

special geometric disposition of the alkyl substituents in isocyanides i that 

electrostatically favours the GEDT along the nucleophilic attack of these nucleophilic 

carbenoid intermediates iii on carbonyl compounds iv. 
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Figure 3.22. MEP of carbenoid intermediate cis-IN (a) and TS2 (b), and NCIs at TS2 (c). 

 

3.2.2. 32CA reactions of NYs I with electrophilic ethylenes95  

Pyrrolidine 59 and pyrroline 60 are five-membered heterocyclic compounds, containing 

only one nitrogen nucleus in their core framework, of great pharmaceutical importance.96 

These compounds can easily be synthesised by a 32CA reaction of AY 14, an A-TAC, or 

NY 10, a P-TAC, with ethylene 6 (see Scheme 3.18). 

 
Scheme 3.18. 32CA reactions of the simplest AY 14 and NY 10 with ethylene 6. 

The simplest AY 14 is one the most reactive TACs participating in 32CA reactions with 

ethylene 6. Topological analysis of the ELF of AY 14 made it possible to establish its 

pseudodiradical character (see the four V(C) monosynaptic basins at the two carbons of 

AY 14 in Figure 3.23), which allows its participation in pdr-type 32CA reactions.64 
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Figure 3.23. ELF attractor positions at AY 14. 

However, the electronic structure and reactivity of NY 10 remained unexplored. In order 

to characterise the electronic structure of NY 10 and its reactivity, the 32CA reactions of 

NY 10 with ethylene 6 and DCE 21 were studied within MEDT55 at the MPWB1K/6-

31G(d) computational level (see Schemes 3.18 and 3.19). 
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Scheme 3.19. 32CA reaction of NY 10 with DCE 21 yielding pyrrolines 61 and/or 62. 

3.2.2.1. Topological analysis of the ELF and NPA of NY 10 

ELF topology of the simplest NY 10 reveals a different electronic structure to that of AY 

14, which has a pseudodiradical Lewis structure (see Figure 3.23). Interestingly, the C1 

carbon presents a V(C1) monosynaptic basin integrating 1.95e, which can be related to a 

non-bonding sp2 hybridised lone pair (see the red V(C1) monosynaptic basin in Figure 

3.24). In addition, NPA of C1 indicates that this carbon practically presents a null charge. 

This behaviour, together with the slight negative charge of the C3 carbon, -0.22e, as well 

as the presence of two V(C1,N2) and V(N2,C3) disynaptic basins integrating 4.00e and 

3.50e, suggests an allenic structure with a strong carbenoid character (see Figure 3.24), 

instead of the commonly accepted propargylic structure. 

 
Figure 3.24. ELF valence basin attractors, together with the valence basin populations and natural 
atomic charges, ELF localisation domains and the proposed carbenoid Lewis structure of NY 10. 
Negative charges are coloured in red and negligible charges in green. ELF valence basin 
population and natural atomic charges are given in average number of electrons, e. 
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3.2.2.2. Analysis of the CDFT reactivity indices at the GS of the reagents 

CDFT reactivity indices56 of NY 10, ethylene 6 and DCE 21 are gathered in Table 3 in 

Appendix. The electronic chemical potential of NY 10, -2.90 eV, is considerably higher 

than that of DCE 21, -5.64 eV, indicating that along a polar reaction with DCE 21 the 

GEDT61 will flux from the NY framework towards the electrophilic ethylene one. Note 

that the similar electronic chemical potentials of NY 10 and ethylene 6, -3.37 eV, 

suggests that ethylene 6 will hardly participate in a polar reaction with NY 10. 

According to the electrophilicity62 and nucleophilicity76 scales, the simplest NY 10, 

ω = 0.77 eV and N = 3.50 eV, is classified as a marginal electrophile and a strong 

nucleophile, DCE 21, ω = 2.82 eV and N = 0.65 eV, as a strong electrophile and a marginal 

nucleophile, while ethylene 6 cannot participate in polar reactions (see Table 3 in 

Appendix). Thus, analysis of the global reactivity indices indicates that NY 10 will 

participate as the nucleophilic species in the polar 32CA reaction with electrophilic DCE 

21. 

Regarding the local reactivity, analysis of the nucleophilic  Parr functions82 at 

the simplest NY 10 indicated that the carbenoid C1 carbon is the most nucleophilic center 

of this species, although the C3 carbon also presents a strong nucleophilic activation (see 

Figure 3.25). On the other hand, the electrophilic  Parr functions82 of DCE 21 indicate 

that the non-substituted C4 carbon is the most electrophilic center of this electrophilic 

ethylene. Therefore, the most favourable electrophile-nucleophile interaction along the 

nucleophilic attack of NY 10 on DCE 21 will take place between the most nucleophilic 

center of the nucleophile NY 10, the carbenoid C1 carbon, and the most electrophilic 

center of the electrophile DCE 21, the C4 carbon. 
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Figure 3.25. Nucleophilic  Parr functions of NY 10, in blue, and electrophilic  Parr 

functions,82 in red, of DCE 21.  
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3.2.2.3. Analysis of the reaction paths associated with the 32CA reactions of NY 10 with 

ethylene 6 and DCE 21 

Due to the symmetry of ethylene 6, the 32CA reaction involving ethylene 6 can take place 

only through one single reaction path, while the non-symmetry of both reagents in the 

32CA reaction involving DCE 21 causes this reaction to take place through two 

regioisomeric pathways. As Scheme 3.20 shows, analysis of the stationary points 

involved in these 32CA reactions indicates that they take place through a one-step 

mechanism. 
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Scheme 3.20. 32CA reactions of NY 10 with ethylene 6 and DCE 21. MPWB1K/6-31G(d) gas 
phase relative electronic energies, in kcal·mol-1, are given with respect to the separated reagents.  

While the 32CA reaction of NY 10 with ethylene 6 presents a relatively low activation 

energy, 6.1 kcal·mol-1, the most favourable regioisomeric TS associated with the polar 

32CA reaction of NY 10 with DCE 21 is found 7.4 kcal·mol-1 below the separated 

reagents, the reaction being completely regioselective as TS2 is 4.7 kcal·mol-1 below TS3. 

Both 32CA reactions are strongly exothermic. Note that the activation energy of the non-

polar 32CA reaction is ca. 7.5 kcal·mol-1 higher than that of the pdr-type 32CA reaction 

of the simplest AY 14 with ethylene 6 and ca. 4.3 kcal·mol-1 lower than that of the zw-

type 32CA reaction of the simplest Ni 16 with ethylene 6, emphasising the different 

reactivity of NY 10. 
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Some appealing conclusions were obtained from the geometries of the TSs involved 

in the 32CA reactions of NY 10 with ethylene 6 and DCE 21 (see Figure 3.26): i) the long 

distances between the interacting nuclei at the three TSs indicated that these TSs appear 

very early; ii) at TS2 and TS3, the difference between the lengths of the two forming 

bonds showed that they correspond to asynchronous TSs; iii) the most favourable TS2 is 

more asynchronous; and iv) the shortest C−C distance at both TSs corresponds to the C−C 

bond formation at the most electrophilic β-conjugated carbon of DCE 21, i.e. the 

electrophilic species controls the asynchronicity of the formation of the two new C−C 

single bonds. 

 
 

Figure 3.26. MPWB1K/6-31G(d) gas phase optimised geometries of the TSs involved in the 
32CA reaction of NY 10 with ethylene 6 and DCE 21. Distances are given in angstroms, Å. 

In order to evaluate the electronic nature of the 32CA reaction of NY 10 with ethylene 6 

and DCE 21, the GEDT at the TSs was analysed.61 At TS1, there is a slight GEDT from 

the NY to the ethylene one, 0.11e. This GEDT value can be considered as some 

delocalisation of the electron density of the highly nucleophilic NY 10 into the ethylene 

fragment, instead of a GEDT process associated with a polar process. Conversely, there 

is a clear GEDT taking place from the nucleophilic NY 10 to the electrophilic DCE 21, 

0.24e (TS2) and 0.25e (TS3), in agreement with a polar 32CA reaction and thereby with 

the lower activation energies found for the 32CA reaction with DCE 21 than that 

associated with the low-polar process with ethylene 6. 

3.2.2.4. BET study of the 32CA reactions of NY 10 with ethylene 6 and DCE 21 

A BET study of the 32CA reaction between NY 10 and ethylene 6 (see Table 11 and 

Scheme 6.8 in Appendix) allowed drawing the following conclusions: i) the IRC is 

divided in six differentiated phases related to the disappearance or creation of valence 

basins, emphasising the non-concerted nature of the bonding changes along the reaction; 

ii) formation of two new C−C single bonds takes place in an almost synchronous manner 
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at the beginning of the last phase, but with different electron populations (see Figure 

3.27); iii) formation of the C1−C4 single bond begins at a distance of 2.01 Å by donation 

of the non-bonding electron density present at the sp2 hybridised C1 carbon of NY 10 to 

the pseudoradical C4 carbon created at ethylene 6 along the reaction path (see Figure 

3.27); iv) this bonding pattern demands the depopulation of the C1 non-bonding electron 

density present in NY 10 in order to achieve the C−C formation with ethylene 6; v) 

formation of the C3−C5 single bond begins at a distance of 2.04 Å through the C-to-C 

coupling of two C3 and C5 pseudoradical centers61 (see Figure 3.27); vi) in this low-

polar reaction, the two C4 and C5 pseudoradical centers generated in the ethylene 

framework come mainly from the depopulation of the C4−C5 double bond region of 

ethylene 6. 

 
Figure 3.27. ELF attractor positions for the points of the IRC defining the two phases involved 
in the formation of the C1−C4 and C3−C5 single bonds along the 32CA reaction of NY 10 with 
ethylene 6. The electron populations, in average number of electrons (e), are given in brackets. 

A BET study of the more favourable r1 regioisomeric path associated with the 32CA 

reaction between NY 10 and DCE 21 (see Table 12 and Scheme 6.9 in Appendix) allowed 

drawing the following conclusions: i) the IRC is divided in nine differentiated phases; ii) 

formation of the two new C−C single bonds takes place at two well differentiated phases 

of the reaction; iii) formation of the first C1−C4 single bond begins at a distance of ca. 

2.15 Å by donation of the non-bonding electron density belonging to the C1 carbon of 

NY 10 to the β-conjugated C4 carbon of the DCE moiety (see Figure 3.28); iv) formation 

of the second C3−C5 single bond begins in the last phase at a distance of ca. 2.19 Å 

through the C-to-C coupling of the two C3 and C5 pseudoradical centers61 (see Figure 

3.28); v) this polar 32CA reaction presents a two-stage one-step mechanism,77 in which 

formation of the second C3−C5 begins after the almost complete formation of the first 

C1−C4 single bond by above 97% (see Table 12 in Appendix). 



3. Results and discussion 
 

66 
 

 
Figure 3.28. ELF attractor positions for the points of the IRC defining the four phases involved 
in the formation of the C1−C4 and C3−C5 single bonds along the more favourable r1 
regioisomeric pathway associated with 32CA reaction of NY 10 with DCE 21. The electron 
populations, in average number of electrons (e), are given in brackets. 

A BET study of the less favourable r2 regioisomeric path associated with the 32CA 

reaction between NY 10 and DCE 21 (see Table 13 and Scheme 6.10 in Appendix) 

allowed drawing the following conclusions: i) the IRC is divided in eight differentiated 

phases; ii) formation of the two C−C single bonds takes place in a more synchronous 

manner; iii) formation of the first C3−C4 single bond begins at a distance of ca. 2.08 Å 

through the C-to-C coupling of the two pseudoradical centers61 generated at the C3 

carbon of NY 10 and at the C4 carbon of DCE 21 in previous phases (see Figure 3.29); 

iv) formation of the second C1−C5 single bond begins at the last phase at a distance of 

ca. 1.96 Å by sharing the non-bonding electron density coming from the C1 carbon of 

NY 10 and that of a C5 pseudoradical center generated at the DCE framework in the 

previous phase (see Figure 3.29). 
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Figure 3.29. ELF attractor positions for the points of the IRC defining the four phases involved 
in the formation of the C1−C5 and C3−C4 single bonds along the less favourable r2 regioisomeric 
pathway associated with 32CA reaction of NY 10 with DCE 21. The electron populations, in 
average number of electrons (e), are given in brackets. 

3.2.2.5. A new C−C bond formation model involving neutral sp2 hybridised carbon lone 

pairs 

In 2014, based on the ELF topological analysis of the bonding changes along organic 

reactions, Domingo proposed a model for the formation of C−C single bonds involving 

multiple bond systems.61 This model is characterised by three sequential events related to 

the sharing of non-bonding electron density (see Scheme 3.21): i) depopulation of the 

C−C multiple bonds in the two reactant species; ii) creation of two pseudoradical centers 

at the two interacting carbons; and iii) C-to-C coupling of these pseudoradical centers 

yielding the formation of the new C−C single bond. The last event takes place in the short 

distance range of 2.0 – 1.9 Å, with an initial electron density of ca. 1.0e. In polar reactions, 

these pseudoradical centers appear at the most nucleophilic and electrophilic centers of 

the two molecules.61  
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Scheme 3.21. Model for the formation of C−C single bonds involving multiple bond systems by 
sharing non-bonding electron density. 

ELF topological analysis of the C−C single bond formation along the two regioisomeric 

pathways associated with the polar 32CA reaction of NY 10 with DCE 21 made it 

possible to characterise two different models for the C−C bond formation along these 

32CA reactions. Along the less favourable r2 reaction path, formation of the first C−C 

single bond takes place through the C-to-C coupling of two pseudoradical centers 

generated along the reaction at the C3 carbon of NY 10 and at the β-conjugated carbon 

of DCE 21 (see Scheme 3.21), which is the usual bond formation process involving 

unsaturated species.61 Conversely, along the more favourable r1 regioisomeric reaction 

path, formation of the first C−C single bond begins by donation of the non-bonding 

electron density of the C1 carbenoid center of NY 10 to the β-conjugated carbon of DCE 

21 (see Figure 3.30). Note that along both regioisomeric paths, the C−C bond formation 

at the β-conjugation position is more advanced than at the α position; i.e. the 

asynchronicity in the C−C single bond formation is controlled by the electrophile DCE 

21.95 

 
Figure 3.30. ELF localisation domains of the selected points of the IRC, P1 and P2, defining the 
two phases involved in the formation of the C1−C4 single bond. The electron populations, in 
average number of electrons (e), are given in brackets. 
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The carbenoid electronic structure of the simplest NY 10, different from the 

pseudodiradical structure of AYs VII and the zwitterionic structure of Nis IX, as well as 

its reactivity in 32CA reactions, made it possible to introduce not only a new model for 

the formation of C−C single bonds involving carbenoid species (see Scheme 3.22), but 

also a new type of 32CA reaction, namely carbenoid-type (cb-type) reaction, whose 

feasibility, similar to zw-type 32CA reactions, also depends on its polar character. 

 
Scheme 3.22. Model for the formation of C−C single bonds involving carbenoid species by 
donation of non-bonding electron density.95  

 

3.2.3. 32CA reactions of NYs I with electrophilic chiral oxazolidinones97 

The previous MEDT55 study of the 32CA reactions of the simplest NY 10 with ethylene 

6 and electrophilic DCE 2195 allowed establishing the cb-type mechanism within 32CA 

reactions, which, similar to zw-type reactions, is also favoured by the 

nucleophilic/electrophilic interactions taking place along polar processes. 

In 2009, Sibi et al.98 showed that the 32CA reaction of NY 63 with electrophilic 

ethylene 64, possessing a chiral auxiliary, takes place in high yield and stereoselectivity 

(see Scheme 3.23).  
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Scheme 3.23. 32CA reaction of NY 63 with chiral oxazolidinone 64 yielding pyrrolines 65. 
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In order to characterise experimental cb-type 32CA reactions, an MEDT55 study of the 

32CA reaction of NY 63 with 3-((E)-but-2-enoyl)oxazolidin-2-one 64 yielding pyrroline 

65, experimentally studied by Sibi et al.,98 was performed at the MPWB1K/6-31G(d) 

computational level. To this end, the molecular mechanism, as well as the regio- and 

endo/exo stereoselectivity of the 32CA reaction of NY 63 with the non-chiral 

oxazolidinone 67 was first studied (see Scheme 3.23). Then, the syn/anti facial 

diastereoselectivity along the most favourable reaction path of the 32CA reaction of NY 

63 with chiral oxazolidinone 64 was analysed. 

3.2.3.1. Topological analysis of the ELF and NPA of NY 63 

ELF topological analysis of the experimental NY 63 showed a similar bonding pattern to 

that of the simplest NY 10,95 i.e. a linear allenic structure rather than a linear propargylic 

one with a carbenoid center at the C1 carbon, but also suggesting, interestingly, that the 

C3 carbon of NY 63 has a pseudoradical character (see Figure 3.31). 

 
Figure 3.31. ELF valence basin attractors, together with the most representative valence basin 
populations and natural atomic charges, ELF localisation domains and the proposed carbenoid 
Lewis structure of NY 63. Negative charges are coloured in red and positive charges in blue. ELF 
valence basin population and natural atomic charges are given in average number of electrons, e.  

NPA of NY 63 indicated that the presence of the phenyl and aryl substituents at the C1 

and C3 carbons decreases the electron density of these centers with respect to those in the 

simplest NY 10.95 Just as in NY 10, the charge distribution at NY 63 does not agree with 

the common representation of NYs I as 1,2-zwitterionic charged structures with the 

negative charge gathered at the C1 carbon and the positive one at the N2 nitrogen. Note 

that the N2 nitrogen is negatively charged by -0.29e, while the C1 carbon gathers a low 

negative charge of -0.10e. 
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3.2.3.2. Analysis of the CDFT reactivity indices at the GS of the reagents 

CDFT reactivity indices56 of NY 63 and oxazolidinones 64 and 66 are gathered in Table 

3 in Appendix. The electronic chemical potential µ of experimental NY 63, -3.86 eV, is 

higher than that of oxazolidinones 64 and 67, -4.07 and -4.28 eV, indicating that along 

polar reactions the GEDT61 will flux from the NY framework, acting as the nucleophile, 

towards the oxazolidinone one, acting as the electrophile. 

According to the electrophilicity62 and nucleophilicity76 scales, NY 63, ω = 2.33 eV 

and N = 3.67 eV, is classified as a strong electrophile but remains a strong nucleophile as 

the simplest NY 10 (see Table 3 in Appendix), oxazolidinone 67, ω = 1.56 eV and N = 

1.90 eV, is classified on the borderline of strong electrophiles and as a moderate 

nucleophile, and chiral oxazolidinone 64, ω = 1.50 eV and N = 2.30 eV, is slightly less 

electrophilic and more nucleophilic than 67. Thus, the presence of the nitro group in NY 

63 hardly affects its reactivity as nucleophile towards electrophilic oxazolidinones 64 and 

67, which will present similar reactivity in polar processes towards strong nucleophiles. 

Regarding the local reactivity, analysis of the nucleophilic  Parr functions82 of 

NY 63 indicated that the carbenoid C1 carbon is the most nucleophilic center of this 

species, while the electrophilic  Parr functions82 of oxazolidinones 64 and 67 indicated 

that the β-conjugated C5 carbon is the most electrophilic center of these molecules (see 

  

 
Figure 3.32. 3D representations of the ASD of the radical cation 63·+ and the radical anions 64·- 
and 67·-, together with the nucleophilic  Parr functions82 of NY 63 and the electrophilic  
Parr functions82 of oxazolidinones 64 and 67.  
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Figure 3.32). Consequently, the most favourable electrophile-nucleophile 

interactionalong the polar 32CA reactions of NY 63 with oxazolidinones 64 and 67 will 

take place between the most nucleophilic center of NY 63, the carbenoid C1 carbon, and 

the most electrophilic center of oxazolidinones 64 and 67, the β-conjugated C5 carbon, 

in clear agreement with the experimental outcomes. 

3.2.3.3. Study of the reaction paths associated with the 32CA reaction of NY 63 with 

oxazolidinone 67 

Due to the non-symmetry of both reagents, the 32CA reaction between NY 63 and the 

non-chiral oxazolidinone 67 can take place through four competitive reaction paths. As 

Scheme 3.24 shows, analysis of the stationary points involved in the four reaction paths 

indicates that this 32CA reaction takes place along a one-step mechanism. 
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Scheme 3.24. Competitive meta/ortho regio- and endo/exo stereoisomeric reaction paths 
associated with the 32CA reaction between NY 63 and the non-chiral oxazolidinone 67. 
MPWB1K/6-31G(d) relative enthalpies and Gibbs free energies (in parentheses), computed at 25 
ºC and 1 atm in DCM, are given in kcal·mol-1. 
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Some appealing conclusions were drawn from the thermodynamic data given in Scheme 

3.24: i) the activation enthalpy associated with this 32CA reaction is 4.2 kcal·mol-1, via 

the most favourable TS-mn; ii) this 32CA reaction is completely endo stereoselective, as 

TS-mn is 4.3 kcal·mol-1 lower in energy than TS-mx, and completely meta regioselective, 

as TS-mn is 6.2 kcal·mol-1 lower in energy than TS-ox; iii) these behaviours are in 

complete agreement with the experimental results in which only the meta/endo 

cycloadduct 65 is obtained; iv) the strong exergonic character of these 32CA reactions 

makes them irreversible. 

The geometries of the TSs involved in the four competitive reaction paths (see 

Figure 3.33) indicated that: i) the TSs related to the more favourable meta reaction paths 

are more asynchronous than those related to the ortho ones; ii) at the TSs associated with 

the meta reaction paths, the C−C bond formation involving the carbenoid C1 carbon and 

the β-conjugated position of oxazolidinone 67 is more advanced than the other, in clear 

agreement with the analysis of the Parr functions;82 iii) at the synchronous ortho TSs, the 

C−C bond formation involving the carbenoid C1 carbon is slightly more advanced than 

that at the β-conjugated position of oxazolidinone 67; iv) in DCM, the 32CA reaction 

becomes slightly more asynchronous.99 

 
Figure 3.33. MPWB1K/6-31G(d) gas phase optimised geometries of the TSs involved in the 
32CA reaction of NY 63 with the oxazolidinone 67. Distances are given in angstroms, Å, while 
those in DCM are given in parentheses. 

The GEDT61 fluxing from NY 63 toward oxazolidinone 67 at the gas phase TSs is 0.20e 

at TS-mn, 0.19e at TS-mx, 0.18e at TS-on and 0.16e at TS-mx, indicating that this 32CA 
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reaction has some polar character. The GEDT at the more favourable meta TSs is slightly 

higher than that at the ortho ones, and slightly lower than that computed at the meta TS 

associated with the 32CA reaction between the simplest NY 10 and DCE 21 (0.24e).95 

3.2.3.4. Study of the anti/syn facial diastereoselectivity along the meta/endo approach 

mode of NY 63 towards chiral oxazolidinone 64 

The chiral character of oxazolidinone 64 makes that the approach of NY 63 towards the 

two diastereotopic faces of the former could result in two different pyrrolines. Due to the 

high meta/endo selectivity found in the 32CA reaction of non-chiral oxazolidinone 67, 

only the anti and syn approaches of NY 63 to the diastereotopic faces of 64, yielding 

pyrrolines 65 and 66, were studied (see Scheme 3.25). The geometries of the two 

distereoisomeric TSs and their relative energies are displayed in Figure 3.34. 
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Scheme 3.25. Anti/syn diastereoisomeric reaction paths along the meta/endo reactive approach 
mode of NY 63 towards the s-trans and s-cis conformations of chiral oxazolidinone 64. 

The relative energies in DCM showed that anti TS-mna is 5.8 kcal·mol-1 lower in energy 

than syn TS-mns (see Figure 3.34), the reaction presenting complete diastereoselectivity, 

in total agreement with the experimental outcomes. At TS-mna, the phenyl substituent in 

chiral oxazolidinone 64 is located away from NY 63, not causing any steric hindrance. 

Although the phenyl substituent in the most favourable s-trans conformation of chiral 

oxazolidinone 64 prevents the syn approach of NY 63, the C−N single bond rotation in 

oxazolidinone 64 makes it possible that the phenyl substituent could also be located away 
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from NY 63. However, this steric demand makes chiral oxazolidinone 64 adopt the more 

unfavourable s-cis conformation, thus increasing the relative energy of TS-mns. 

The lengths of the forming bonds at TS-mna and TS-mns are close to those found 

at TS-mn (see Figure 3.34), indicating that the inclusion of the phenyl substituent in 

oxazolidinone 67, resulting in oxazolidinone 64, does not excessively modify the TS 

geometries since in both TSs the phenyl substituent is located away from NY 63. 

 
Figure 3.34. MPWB1K/6-31G(d) gas phase optimised geometries of the anti/syn 
diastereoisomeric TSs involved in the meta/endo reaction paths associated with the 32CA reaction 
of NY 63 with chiral oxazolidinone 64. Distances are given in angstroms, Å, while relative 
energies, in parentheses, are given in kcal·mol-1. Distances in DCM are also given in parentheses. 

3.2.3.5. BET study of the 32CA reaction of NY 63 with oxazolidinone 67 

A BET study of the most favourable meta/endo reaction path associated with the 32CA 

reaction between NY 63 and oxazolidinone 67 (see Table 14 and Scheme 6.11) allowed 

drawing the following conclusions: i) the IRC associated with the meta/endo reaction path 

is topologically characterised by ten differentiated phases. Consequently, this 32CA 

reaction is a non-concerted process; ii) formation of the first C1−C5 single bond begins 

at a distance of 2.04 Å by donation of the non-bonding electron density belonging to the 

carbenoid C1 center of NY 63 to the β-conjugated position of the oxazolidinone moiety 

(see P7 in Figure 3.35).95 This behaviour, which is similar to that found in the 32CA 

reaction between the simplest NY 10 and DCE 21, characterises the cb-type mechanism; 

iii) formation of the second C3−C4 single bond begins at a distance of 2.05 Å through the 

C-to-C coupling of two C3 and C4 pseudoradical centers61 generated along the IRC (see 

P8 and P9 in Figure 3.35); iv) formation of the C3−C4 single bond begins when the 

C1−C5 single bond is almost completely formed, by ca. 97% (see Table 14 in Appendix). 
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This behaviour characterises the reaction mechanism as a non-concerted two-stage one-

step mechanism;77 and finally, v) the changes in electron density required to reach the TS, 

which are mainly associated to the depopulation of the C4−C5 double bond, present a low 

EC of 5.0 kcal·mol-1 (see Table 14 in Appendix) as a consequence of the electrophilic 

character of oxazolidinone 67. 

 
Figure 3.35. ELF attractor positions for the points of the IRC defining the four phases involved 
in the formation of the C1−C5 and C3−C4 single bonds along the meta/endo reaction path 
associated with the 32CA reaction of NY 63 with oxazolidinone 67. The electron populations, in 
average number of electrons (e), are given in brackets. 

3.2.3.6. NCI topological analysis of the origin of the endo and anti selectivities in the 

32CA reactions of NY 63 with oxazolidinones 64 and 67 

A detailed analysis of the geometries of the meta TSs showed that while the oxazolidinone 

ring of 64 is positioned away from the aryl substituent at TS-mx, the former ring is 

precisely above the aryl substituent and parallel at the endo TSs (see Figure 3.36). This 

geometrical arrangement allows generating some type of favourable electronic 

interactions between the oxazolidinone and the aryl groups, justifying the preference of 

endo TS-mn over exo TS-mx. As at the ortho TSs the phenyl ring of oxazolidinone 64 is 

positioned orthogonally to the molecular plane, any interaction with the oxazolidinone 

ring is prevented. Consequently, favourable interactions are only feasible along the 

meta/endo reactive pathway. 
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Figure 3.36. Top view of the geometries of TS-mn, TS-mx, TS-mna and TS-mns.  

NCI topological analysis indicated that, although weak attractive VdW interactions are 

appreciable in the TSs associated with the more favourable meta regioisomeric pathways 

(see Figure 3.37), the stronger VdW interactions taking place between the oxazolidinone 

ring of 64 and 67 and the aryl group of NY 63 along the meta/endo approach could be 

responsible for the total stereoselectivity experimentally found in the 32CA reactions of 

NY 63 with oxazolidinone 64.98 In addition, these VdW interactions can reinforce the 

regioselectivity resulting from the most favourable nucleophilic/ electrophilic interaction, 

thus accounting for the high energy difference between TS-mn and TS-on, 6.2 kcal·mol-

1. Interestingly, despite the similar NCI profiles of the anti/syn diastereoisomeric 

 

 
Figure 3.37. NCI gradient isosurfaces of the meta endo/exo TSs associated with the 32CA 
reaction of NY 63 with oxazolidinone 67, of the syn/anti TSs of the meta/endo pathway related 
to the 32CA reaction involving chiral oxazolidinone 64 and of the s-trans and s-cis conformations 
of 64. 
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meta/endo TSs, the presence of a hydrogen-bond between the α-hydrogen and the 

carbonyl oxygen of the oxazolidinone ring in oxazolidinone s-trans 64 appears to be 

responsible for the high anti diastereoisomeric excess experimentally obtained in the 

32CA reaction of NY 63 with oxazolidinone 64. 

 

3.3. 32CA reactions of pseudoradical TACs 

Pseudoradical TACs are species containing one single pseudoradical center (see Scheme 

3.26). They are able to participate in pmr-type 32CA reactions, which take place 

moderately without the necessity of strong electrophilic ethylenes. Propargylic Das IV 

and allylic AIs VIII are typical examples of pseudoradical TACs. 
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Scheme 3.26. Lewis structures of pseudoradical TACs. 

3.3.1. 32CA reactions of Das IV with electrophilic ethylenes100  

After the cycloadditions of diazoacetates 1 and diazomethane 2 toward C−C multiple 

bonds were reported by Büchner and von Pechmann in the 1890s,7 numerous 32CA 

reactions of Das IV have been described. In contrast to many TACs, which are generated 

as transient species in the reaction medium, mono- and di-substituted Das IV have been 

extensively prepared and isolated in pure form.5b  

1-Pyrazolines 68 resulting from a 32CA reaction between Das IV and electrophilic 

ethylenes can experience different subsequent transformations, depending on the 

electronic nature of the substituents present both reagents. As shown in Scheme 3.27, 

cyclopropanes 69, 2-pyrazolines 70 or PYZs 71 can be obtained via the extrusion of the 

nitrogen molecule, tautomerisation or HY elimination at the resulting 1-pyrazolines 68, 

respectively. 
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Scheme 3.27. Transformation of 1-pyrazolines 68 into cyclopropanes 69, 2-pyrazolines 70 or 
PYZs 71 when appropriate substitutions are present in Das IV and in the ethylene derivative. 

Recently, Ivanova et al.101 experimentally studied some 32CA reactions of various Das 

IV containing an α-hydrogen with DNE 73, an electrophilic ethylene. Thus, when 

diazoacetate 72, 1-diazopropan-2-one, was treated with DNE 73 in benzene at 60 ºC for 

6 hr, a mixture of PYZ 74 and DNCP 75 was obtained in 38% and 42% yields, 

respectively (see Scheme 3.28).101  
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Scheme 3.28. Generation of PYZ 74 and DNCP 75 via the 32CA reaction of Da 72 with DNE 73 
experimentally studied by Ivanova et al..101  

In order to understand this complex process, an MEDT55 study of the domino reaction of 

Da 72 with DNE 73 yielding PYZ 74 and DNCP 75, experimentally reported by Ivanova 

et al.,101 was carried out using quantum chemical procedures at the B3LYP/6-31G(d,p) 

computational level. 

3.3.1.1. Topological analysis of the ELF and NPA of the simplest Da 2 and experimental 

Da 72 

As can be seen in Figure 3.38, ELF topology of the simplest Da 2 shows the presence of 

two monosynaptic basins at the sp2 hybridised C1 carbon, V(C1) and V’(C1), integrating 
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a total population of 1.04e, being associated with a C1 pseudoradical center; one 

V(C1,N2) disynaptic basin, integrating 3.06e, characterising a partial C1−N2 double 

bond; two disynaptic basins, V(N2,N3) and V’(N2,N3), integrating 1.80e each one, which 

suggest an N2−N3 double bond; and two monosynaptic basins, V(N3) and V’(N3), with 

a total electron density of 3.90e, associated with two lone pairs at the N3 nitrogen. 

On the other hand, ELF topology of the experimental Da 72 shows a very similar 

electronic structure to that found in the simplest Da 2 (see Figure 3.38). In this TAC, the 

two monosynaptic basins, V(C1) and V’(C1), present a population of 0.50e each one, 

while the C1−N2−N3 bonding region shows a similar bonding pattern to that in Da 2. The 

only topological difference between the two Das is that at Da 72 the non-bonding electron 

density associated to the N3 nitrogen is represented by one single V(N3) monosynaptic 

basin integrating 3.76e. Consequently, ELF topology of the experimental Da 72 and 

simplest Da 2 indicates that these TACs do not present a pseudodiradical,51 nor a 

carbenoid95 nor a zwitterionic51 electronic structure that would enable them to participate 

in pdr-, cb- or zw-type 32CA reactions,51,95 but have a pseudoradical structure. 

 
Figure 3.38. ELF valence basin attractors, together with the valence basin populations and natural 
atomic charges, ELF localisation domains and the proposed pseudoradical Lewis structures of 
Das 2 and 72. Negative charges are coloured in red and negligible charges in green. ELF valence 
basin population and natural atomic charges are given in average number of electrons, e. 

Finally, NPA did not allow characterising any 1,2-zwitterionic structure for these two 

Das. While the C1 carbon has a high negative charge, the nitrogen nuclei have negligible 
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charges (see Figure 3.38). These findings disagree with the commonly accepted Lewis 

structure of Das IV represented by a 1,2-zwitterionic structure. 

3.3.1.2. Analysis of the CDFT reactivity indices at the GS of the reagents 

CDFT reactivity indices56 of Das 2 and 72 and DNE 73 are gathered in Table 3 in 

Appendix. The electronic chemical potential µ of Da 72, -4.40 eV, is higher than that of 

DNE 73, -5.98 eV. Consequently, along a polar 32CA reaction of Da 72 with DNE 73, 

the GEDT61 will flux from Da 72, acting as the nucleophile, toward electrophilic DNE 

73. 

According to the electrophilicity62 and nucleophilicity76 scales, the simplest Da 2, 

ω = 1.40 eV and N = 3.11 eV, is classified on the borderline of strong electrophiles and 

as a strong nucleophile, Da 72, ω = 2.07 eV and N = 2.39 eV, as a strong electrophile and 

as a moderate nucleophile and DNE 73, ω = 3.56 eV and N = 0.62 eV, as a strong 

electrophile and as a marginal nucleophile. 

The low pseudodiradical pr indices51 of P-TACs Das 2 and 72, 0.66 and 0.51 (see 

Table 3 in Appendix), indicate that, in spite of their pseudoradical structure, they will not 

be able to participate in pdr-type 32CA reactions.51 This analysis is in clear agreement 

with the previous ELF topological analysis as well as with the high activation energy 

found in the 32CA reaction between the simplest Da 2 and ethylene 6, 15.4 kcal·mol-1.68 

Regarding the local reactivity, analysis of the nucleophilic  Parr functions82 at 

the reactive sites of Da 72 indicated that the C1 carbon is the most nucleophilic center 

(see Figure 3.39). On the other hand, the electrophilic  Parr functions82 at the reactive 

sites of DNE 73 indicated that the most electrophilic center is the C5 carbon. Therefore, 

the most favourable electrophile-nucleophile interaction along the nucleophilic attack of 

Da 72 onto DNE 73 in a polar process will take place between the most nucleophilic 

center of Da 72, the C1 carbon, and the most electrophilic center of DNE 73, the C4 

carbon. This prediction is in complete agreement with the experimental outcomes101 

favouring the formation of 1-pyrazoline 76 which, in turn, participates in the subsequent 

reactions to generate PYZ 74 and DNCP 75 (see Schemes 3.28 and 3.29). 

−
kP
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Figure 3.39. 3D representations of the ASD of the radical cation 72·+ and the radical anion 73·-, 
together with the nucleophilic  Parr functions82 of Da 72 and the electrophilic  Parr 
functions82 of DNE 73.  

3.3.1.3. Study of the domino reaction between Da 72 and DNE 73 giving PYZ 74 and 

DNCP 75 

The reaction between Da 72 and DNE 73 giving PYZ 74 and DNCP 75 is a domino 

process that comprises several consecutive reactions. The first one is a 32CA reaction 

between Da 72 and DNE 73 yielding 1-pyrazoline 76 (see Scheme 3.29). Then, 76 may 

experience two competitive reactions: i) a tautomerisation and the subsequent loss of 

nitrous acid to yield PYZ 74; or ii) the extrusion of a nitrogen molecule and a ring closure 

resulting in DNCP 75 (see Scheme 3.29). 
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Scheme 3.29. Domino reactions between Da 72 and DNE 73 yielding PYZ 74 and DNCP 75.  

Due to the non-symmetry of both reagents, two regioisomeric approach modes of the 

reagents, i.e. the initial formation of the C1−C5 or C1−C4 single bonds, are feasible along 

the 32CA reaction between Da 72 and DNE 73, yielding 1-pyrazolines 76 and/or 77, 

respectively (see Scheme 3.30). Analysis of the stationary points involved in the two 

regioisomeric paths indicated that this 32CA reaction takes place through a one-step 

mechanism. 

−
kP kP+
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Scheme 3.30. 32CA reaction between Da 72 and DNE 73. B3LYP/6-31G(d,p) relative electronic 
energies, in gas phase and in benzene (in parentheses), are given in kcal·mol-1.  

Some appealing conclusions were drawn from the energy results given in Scheme 3.30: 

i) the activation energy associated with the more favourable TS1, 9.5 kcal·mol-1, is 6.0 

kcal·mol-1 lower in energy than that associated with the 32CA reaction of the simplest Da 

72 with ethylene 6; 15.4 kcal·mol-1;68 ii) this 32CA reaction is completely C1−C5 

regioselective, in clear agreement with the experimentally observed regioselectivity (see 

Scheme 3.29); and iii) the strong exothermic character of this reaction makes the 

formation of 1-pyrazolines 76 and 77 irreversible. Consequently, 1-pyrazoline 76 is 

obtained under kinetic control of the reaction. 

Next, 1-pyrazoline 76 can participate in the competitive reaction paths I and II (see 

Scheme 3.31). Along Path I, this species first tautomerises to 2-pyrazole 78, which by the 

loss of nitrous acid yields PYZ 74, while along Path II, the thermal extrusion of a nitrogen 

molecule yields the final DNCP 75 in a straightforward manner. 

The tautomerisation along Path I is a thermodynamically controlled acid/base 

process. The first step consists of the H1 proton abstraction by the nitrite anion acting as 

a base yielding anionic intermediate IN1 with a very low activation energy, 0.6 kcal·mol-

1. The subsequent proton transfer from nitrous acid to the N3 nitrogen has no activation 

energy. Thus, conversion of 1-pyrazoline 76 into 2-pyrazoline 78 is thermodynamically 

very favourable. This finding is in agreement with the experimental observation that in 

32CA reactions of Das IV containing an α-hydrogen, 2-pyrazolines 70 are obtained as a 

reaction product (see 2-pyrazolines 70 in Scheme 3.27). Due to the relative acidic 

character of the H5 hydrogen of 2-pyrazoline 78, the corresponding proton abstraction 
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Scheme 3.31. Proposed reaction paths for the conversion of 1-pyrazoline 76 into PYZ 74 and 
DNCP 75. B3LYP/6-31G(d,p) relative energies, in gas phase and in benzene (in parentheses), are 
given in kcal·mol-1. 

process from C5 by the nitrite anion presents a low activation energy, 11.9 kcal·mol-1. 

Finally, subsequent loss of the nitrite anion to yield PYZ 74 has no activation energy; i.e. 

the IRC from TS4 towards the products showed that the extrusion of nitrite anion takes 

place in the same elementary step after complete proton abstraction. 

Along Path II, the thermal extrusion of the nitrogen molecule at 1-pyrazoline 76 

takes place via TS5 with a high activation energy, 27.8 kcal·mol-1, but despite this, this 

unimolecular process is not entropically unfavourable. The IRC from TS5 to products 

discontinues at diradical species IN2. However, full optimisation of this species yielded 

the final DNCP 75 in a straightforward manner. Finally, the strong exothermic character 

of the formation of DNCP 75, as well as PYZ 74, makes these domino reactions 

irreversible. 

Gas phase optimised geometries of the TSs involved in the domino reaction 

between Da 72 and DNE 73 are given in Figure 3.40. From the geometries of the two TSs 

associated with the 32CA reaction, some appealing conclusions were drawn: i) the more 

favourable TS1 is associated with a highly asynchronous bond formation process; ii) this 

32CA reaction takes place via a two-stage one-step mechanism77 (see below). Thus, TS1 

is associated with the nucleophilic attack of the C1 carbon of Da 72 on the β-conjugated 
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position of DNE 73, in clear agreement with the analysis of the Parr functions;82 and iii) 

at the two regioisomeric TSs, the single bond formation involving the most electrophilic 

center of DNE 73, the C5 carbon, is more advanced than that involving the C4 carbon. 

 
Figure 3.40. B3LYP/6-31G(d,p) gas phase optimised geometries of the TSs involved in the 
domino reaction between Da 72 and DNE 73 (see Schemes 3.30 and 3.31). Distances are given 
in angstroms, Å, while those in benzene are given in parentheses.  

The polar nature of the 32CA reaction between Da 72 and DNE 73 was analysed by 

computing the GEDT61 at the corresponding TSs. The GEDT that fluxes from the Da 

moiety toward the electrophilic ethylene one is 0.34e at TS1 and 0.24e at TS2. These 

high values indicate that this 32CA reaction has a strong polar character, due to the high 

electrophilicity of DNE 73, in clear agreement with the relatively low activation energy 

associated with this 32CA reaction, 9.4 kcal·mol-1. 

3.3.1.4. BET study of the 32CA reaction between Da 72 and DNE 73 

A BET study along the more favourable C1−C5 regioisomeric pathway associated with 

the 32CA reaction between Da 72 and DNE 73 (see Table 15 and Scheme 6.12 in 

Appendix) allowed obtaining the following conclusions: i) the reaction path can be 

divided in ten differentiated phases associated with the creation or disappearance of 
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valence basins; ii) formation of the first C1−C5 single bond begins at a distance of ca. 

2.01 Å, through the C-to-C coupling of two C1 and C5 pseudoradical centers (see Section 

3.2.2.5 and Figure 3.41);61 iii) while the V(C1) monosynaptic basin was already present 

at Da 72, the V(C5) monosynaptic basin is formed at the DNE 73 framework along the 

reaction path, promoted by a high GEDT;102 iv) a different behaviour is found for the 

formation of the second N3−C4 single bond. Formation of the N3−C4 single bond begins 

at the very short distance of ca. 1.69 Å by sharing the non-bonding electron density of a 

carbon C4 pseudoradical center and part of that related to the N3 nitrogen (see Figure 

3.41); v) formation of the second N3−O4 single bond begins when the first C1−C5 single 

bond is already formed by up to 97% (see Table 15 in Appendix), indicating that this 

32CA reaction takes place through a two-stage one-step mechanism;76 and vi) formation 

of the first C1−C5 single involves the most nucleophilic center of Da 72, the C1 carbon, 

and the most electrophilic center of DNE 73, the C4 carbon, a behaviour anticipated by 

the analysis of the electrophilic and nucleophilic Parr functions.82 

 
Figure 3.41. ELF localisation domains the points of the IRC defining the four phases involved in 
the formation of the C1−C5 and N3−C5 single bonds along the IRC path associated with the 
32CA reaction between Da 72 and DNE 73. The electron populations, in average number of 
electrons (e), are given in brackets. 
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3.3.2. 32CA reactions of the simplest AI 15103  

AY 14, AI 15 and Ni 16 constitute a series of three CH2=NH–X (X = CH2, NH, O) A-

TACs in which the terminal X nucleus changes along the C, N, and O elements of the 

second arrow (see Figure 3.42). In this short series of TACs, the activation energy 

associated with the 32CA reactions with ethylene 6 increases as the electronegativity of 

the nucleus X increases in the order C < N < O (see Figure 3.42).51 Interestingly, while 

the simplest AY 14 has a pseudodiradical electronic structure,64 Ni 16 has a zwitterionic 

one.83 This behaviour causes these two TACs to have a different reactivity in non-polar 

32CA reactions with ethylene 6 (see Figure 3.42). As the activation energy of the 32CA 

reaction of AI 15 with ethylene 6 is 8.7 kcal·mol-1, it is expected that both its structure 

and reactivity will be different. 

 
Figure 3.42. Series of CH2=NH–X (X = CH2, NH, O) A-TACs 14–16. In parentheses, 
MPWB1K/6-311G(d) activation energies with respect to the corresponding molecular complexes, 
in kcal·mol-1, associated with the non-polar 32CA reactions with ethylene 6.  

Thus, considering that the simplest AI 15 has a different activation energy towards 

ethylene 6 from that shown by AY 14 and Ni 16, two TACs with a different electronic 

structure, an MEDT55 study of the 32CA reactions of the simplest AI 15 with ethylene 6 

and the strongly electrophilic DCE 21, was herein carried out at the MPWB1K/6-311G(d) 

computational level in order to establish the structure and reactivity of this TAC (see 

Scheme 3.32). 
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Scheme 3.32. 32CA reactions of AI 15 with ethylene 6 and DCE 21.  
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3.3.2.1. Topological analysis of the ELF and NPA of AI 15 

ELF topological analysis of the simplest AI 15 showed the presence of two V(C1) and 

V’(C1) monosynaptic basins integrating a total population of 0.62e, two V(C1,N2) and 

V(N2,N3) disynaptic basins integrating 2.95e and 2.09e, respectively, and one V(N3) 

monosynaptic basin integrating 3.53e. These ELF basins can be related, according to the 

Lewis’s bonding model, to a C1 pseudoradical center, a partial C1–N2 double bond, an 

N2–N3 single bond and two N3 non-bonding lone pairs (see the proposeed Lewis 

structure of AI 15 in Figure 3.43). Consequently, ELF topological analysis of the 

electronic structure of the simplest AI 15 indicates that this TAC does not have the 

electronic structure of any of the three representative pseudodiradical, carbenoid and 

zwitterionic TACs, but a pseudoradical electronic structure, similar to its propargylic 

counterpart, the simplest Da 2. 

On the other hand, NPA showed that the three heavy nuclei belonging to this TAC 

present negative charges: -0.30e (C1), -0.18e (N2) and -0.54e (N3), while the hydrogen 

nuclei gather the positive charges. This charge distribution is in complete disagreement 

with the commonly accepted 1,2-zwitterionic structure given for AIs VIII in which a 

positive charge and a negative charge are entirely located at the N2 and N3 nitrogens (see 

Figure 3.43).6a,8  

 
Figure 3.43. ELF valence basin attractors, together with the valence basin populations and natural 
atomic charges, ELF localisation domains and the proposed Lewis structure of AI 15. ELF 
valence basin population and natural atomic charges, in red, are given in average number of 
electrons, e. 

Thus, the different electronic structure of AI 15 with respect to pseudodiradical, 

carbenoid and zwitterionic structures justifies the different reactivity of this TAC (see 

Figure 3.42), and therefore, the establishment of a new reactivity model in 32CA 

reactions. 
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3.3.2.2. Analysis of the CDFT reactivity indices at the GS of the reagents 

As shown in Table 3 in Appendix, the electronic chemical potential μ of AI 15, -2.70 eV, 

is higher than that of ethylene 6 and DCE 21. Consequently, along polar 32CA reactions, 

the GEDT61 will take place from AI 15 toward ethylene 6 or DCE 21; however, note that 

ethylene 6 has no tendency to participate in polar processes.104  

According to the electrophilicity62 and nucleophilicity76 scales, the simplest AI 15, 

ω = 0.72 eV and N = 3.92 eV, is classified as a marginal electrophile and as a strong 

nucleophile. Consequently, while DCE 21 participates only as a strong electrophile in 

polar 32CA reactions (see Table 3 in Appendix), AI 15 will participate only as a strong 

nucleophile. Given the strong nucleophilic character of AI 15 and the strong electrophilic 

character of DCE 21, it is expected that the 32CA reaction between AI 15 and DCE 21 

will have a high polar character. On the other hand, the low pseudoradical pr index of AI 

15 (lower than 1.00),51 0.78, indicated that this TAC will not present a pdr-type reactivity 

in 32CA reactions.  

Regarding the local reactivity, analysis of the nucleophilic  Parr functions82 at 

the reactive sites of AI 15 indicated that both the C1 carbon and the N3 nitrogen are 

nucleophilically activated, the latter more than the former despite the pseudoradical 

character of the C1 carbon (see Figure 3.44). Note that at the propargylic counterpart of 

AI 15, Da 2, the most nucleophilic center is the pseudoradical carbon center.100 Therefore, 

the most favourable electrophile-nucleophile interaction along the nucleophilic attack of 

AI 15 on DCE 21 in a polar process will take place between the most nucleophilic center 

of AI 15, the N3 nitrogen, and the most electrophilic center of DCE 21, the C4 carbon 

(see Figure 3.44).  

 
Figure 3.44. 3D representations of the ASD of the radical cation 15·+ and the radical anion 21·-, 
together with the nucleophilic  Parr functions82 of AI 15 and the electrophilic  Parr 
functions82 of DCE 21.  
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3.3.2.3. Study of the reaction paths associated with the 32CA reactions of AI 15 with 

ethylene 6 and DCE 21 

Due to the symmetry of ethylene 6, only one reaction path is feasible for the 32CA 

reaction of AI 15 with ethylene 6. Conversely, due to the non-symmetry of both AI 15 

and DCE 21, the corresponding polar 32CA reaction can take place along two 

regioisomeric reaction paths. As Scheme 3.33 shows, analysis of the stationary points 

involved in the two reactions indicates that these 32CA reactions take place through a 

one-step mechanism. 
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Scheme 3.33. 32CA reactions of AI 15 with ethylene 6 and DCE 21. MPWB1K/6-311G(d) gas 
phase relative energies (in parentheses) are given in kcal·mol-1.  

Some appealing conclusions were drawn from the energy results given in Scheme 3.33 

and the energy profile represented in Figure 3.45: i) the activation energy for the non-

polar 32CA reaction between AI 15 and ethylene 6 is 8.7 kcal·mol−1; ii) the activation 

energy of the polar reaction with DCE 21 via the more favourable TS2-m, 0.4 kcal·mol−1, 

is 8.3 kcal·mol−1 lower than that of the non-polar reaction involving ethylene 6; iii) the 

polar 32CA reaction is highly regioselective, TS2-o being 2.8 kcal·mol−1 above TS2-m; 

and iv) the strong exothermic character of these reactions makes the formation of 

pyrazolidines 79, 80 and 81 irreversible. 
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Figure 3.45. MPWB1K/6-311G(d) energy profile (∆E, in kcal·mol−1) of the 32CA reaction of AI 
15 with ethylene 6, in red, and with DCE 21, in blue.  

The geometries of the TSs involved in the 32CA reactions of AI 15 with ethylene 6 and 

DCE 21 are displayed in Figure 3.46. Some appealing conclusions were obtained: i) 

despite the geometrical symmetry of TS1, the distances between the interacting nuclei 

suggest an asynchronous bond formation process in which the C1–C5 bond formation is 

more advanced than the N3–C4 one;100 ii) TS2-m and TS2-o correspond to highly 

asynchronous single bond formation processes in which the formation at the β-conjugated 

position of DCE 21 is more advanced than that at the α one; iii) the more favourable TS2-

m is more advanced and more asynchronous than TS2-o; and iv) the more favourable 

TS2-m is associated to the two-center interaction between the most nucleophilic center 

of AI 15 and the most electrophilic center of DCE 21, in complete agreement with the 

analysis of the Parr functions82 (see Section 3.3.2.2). 

 
Figure 3.46. MPWB1K/6-311G(d) gas phase optimised geometries of the TSs associated with 
the 32CA reactions of AI 15 with ethylene 6 and DCE 21. Distances are given in angstroms, Å. 

The GEDT that fluxes from the AI moiety towards the ethylene one is 0.10e at TS1, 0.25e 

at TS2-o and 0.27e at TS2-m, indicating that while the 32CA reaction with ethylene 6 
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has a low polar character, that involving DCE 21 has a high polar character, in clear 

agreement with the analysis of the CDFT reactivity indices (see Section 3.3.2.2). These 

results account for the large decrease of the activation energy of the polar 32CA reaction 

involving DCE 21 with respect to the non-polar 32CA reaction involving ethylene 6. 

3.3.2.4. BET study of the 32CA reaction of AI 15 with ethylene 6  

A BET study of the non-polar 32CA reaction of AI 15 with ethylene 6 (see Table 16 and 

Scheme 6.13 in Appendix) allowed drawing the following conclusions: i) the 

corresponding IRC is divided in nine differentiated phases, a behaviour that clearly 

indicates that the bonding changes along this one-step mechanism are non-concerted; ii) 

there is no bonding region between the terminal interacting nuclei at TS1; iii) the 

moderate activation energy associated with this reaction, 8.7 kcal·mol−1, can be mainly 

associated with the rehybridisation of the C1 pseudoradical carbon from sp2 to sp3; iv) 

formation of the first C1–C5 single bond begins at a distance of ca. 2.03 Å through the 

C-to-C coupling of two C1 and C5 pseudoradical centers61 (see P5 and P6 in Figure 

3.47); v) interestingly, while the C5 pseudoradical center is generated along the reaction 

path through the depopulation of the C4–C5 double bond of ethylene 6, the C1 

pseudoradical center is already present at the simplest AI 15 (see Figure 3.47); 

  

 
Figure 3.47. ELF localisation domains of the points of the IRC defining the four phases involved 
in the formation of the C1–C5 and N3–C4 single bonds along the non-polar 32CA reaction 
between AI 15 and ethylene 6. The electron populations, in average number of electrons (e), are 
given in brackets.  
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vi) formation of the second N3–C4 single bond begins at a distance of ca. 1.92 Å by 

sharing non-bonding electron density of the N3 nitrogen and that of the C4 pseudoradical 

(see P7 and P8 in Figrue 3.47); vii) formation of this C–N single bond is thus different to 

that found in the ketene-imine Staudinger reaction in which the first C–N single bond is 

formed by donation of the non-bonding electron density of the imine nitrogen to the 

ketene carbonyl carbon;105 and viii) the present BET study allows characterising the 

molecular mechanism of this non-polar 32CA reaction as a [2n+2τ] process. Note that, in 

1931, first Pauling106 and later Slater12a proposed that the C–C bonding region of ethylene 

6 can be represented by two equivalent bonds named τ bonds. 

3.3.2.5. ELF topological analysis of the C–C and N–C bond formation processes along 

the polar 32CA reaction between AI 15 and DCE 21. Understanding the role of the 

GEDT. 

From the ELF topological analysis along both regioisomeric reaction paths (see Tables 

17 and 18, and Schemes 6.14 and 6.15 in Appendix) the following conclusions were 

drawn: i) formation of the first single bond involves the most electrophilic center of DCE 

21, the C4 carbon (see Figure 3.48); ii) formation of the C–C single bond begins at 

distances of ca. 2.14 Å (meta) and 2.05 Å (ortho) through the C-to-C coupling of two C1 

and C4/C5 pseudoradical centers61 (see P1-o and P2-o in Figure 3.48); iii) interestingly, 

while along the more favourable meta pathway the two C1 and C5 pseudoradical centers 

are created as the reaction progresses, the C1 pseudoradical center is already present at 

ortho MC2-o; iv) while along the more favourable meta pathway the C5 pseudoradical 

center created at the DCE framework participates more than the C1 one created at the AI 

moiety in the C–C bond formation process, along the ortho pathway the C1 pseudoradical 

center already present at MC2-o contributes more; v) conversely, the N–C bond 

formation takes place differently along both reaction paths. Formation of the N–C single 

bond begins at distances of 1.81 Å (meta) and 1.84 Å (ortho) by donation of part of the 

non-bonding electron density of the N3 nitrogen to the C4 carbon along the meta pathway 

(see P1-m and P2-m in Figure 3.48) or by sharing non-bonding electron density of the 

N3 nitrogen and that of the C5 pseudoradical center along the ortho pathway; vi) the 

polar 32CA reaction between AI 15 and DCE 21 proceeds through a two-stage one-step 

mechanism77 in which the formation of the second bond begins when the first one is 

already formed by above 94% (see Tables 17 and 18 in Appendix), in agreement with the 
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high asynchronicity predicted from the geometry analysis; vii) the bonding patterns of 

TS2-o and TS2-m are very similar to those of the corresponding MCs and, accordingly, 

the very low energy barriers relative to the corresponding MCs, 0.6 (TS2-o) and 0.4 (TS2-

m) kcal·mol−1, can mainly be associated with a slight electron density reorganisation 

within the molecular system; viii) therefore, these very low activation energies can be the 

consequence of the GEDT taking place at the polar TSs, which favours the polar 32CA 

reaction through an electronic stabilisation of the entire molecular system controlled by 

the electrophilic framework; ix) the energy difference between TS2-o and TS2-m, 2.8 

kcal·mol−1, is likely to be associated to the higher stability of the electron density 

distribution at TS2-m than that at the pseudoradical structure of TS2-o. 

 
Figure 3.48. ELF localisation domains of the points of the IRC defining the four phases involved 
in the formation of the first N3−C5 (meta) and C1−C4 (ortho) single bonds along the two 
regioisomeric reaction paths associated with the polar 32CA reaction between AI 15 and DCE 
21. The electron populations, in average number of electrons (e), are given in brackets. 

A comparative analysis between both BET and ELF studies made it possible to 

understand the role of the GEDT in the polar process. Some appealing conclusions 

emerged from this comparative analysis: i) while along the non-polar 32CA reaction 

involving ethylene 6 and the less favourable ortho pathway of the polar 32CA reaction 

involving DCE 21, the most favourable interaction is that involving the C1 pseudoradical 

center, along the more favourable meta pathway of the polar 32CA reaction it is that 

involving the most nucleophilic and electrophilic centers of the reagents; ii) thus, while 

the non-polar cycloaddition and the ortho reaction path of the polar reaction begins with 



  3. Results and discussion 
 

95 
 

the initial formation of the C–C single bond, the meta reaction path of the polar reaction 

begins with the initial formation of the N–C single bond. Consequently, both mechanisms 

are different; iii) formation of the new single bonds is slightly asynchronous in the non-

polar reaction but highly asynchronous in the polar reaction; iv) unlike polar Diels–Alder 

reactions and polar zw-type 32CA reactions, in which the GEDT favours the bonding 

changes at the reagents, i.e. the rupture of the double bonds,102 in the polar 32CA reaction 

between AI 15 and DCE 21, the GEDT provokes an electronic stabilisation of the entire 

molecular system controlled by the electrophilic framework, decreasing the activation 

energies from 8.7 kcal·mol−1 (TS1) to 0.4 (TS2-o) and 3.2 (TS2-m) kcal·mol−1. This 

behaviour is similar to that found in the polar 32CA reaction between NY 10 and DCE 

21.95 

Consequently, the GEDT taking place at the polar 32CA involving DCE 21 does 

not only decrease the activation energy associated with the non-polar 32CA reaction 

involving ethylene 6, but also modifies the molecular mechanism of the polar reaction. 
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Since the beginning of the present century, there has been a growing interest in explaining 

the chemical reactivity arising from the analysis of the changes of the electron density 

along a reaction path.60a,107 In this context, in 2016, Domingo proposed the MEDT55 as a 

new reactivity theory in Organic Chemistry, which establishes that the feasibility for the 

changes in the electron density along a reaction path, but not MO interactions, is 

responsible for the reactivity of organic molecules. 

In the present thesis, the 32CA reactions have been tackled based on MEDT, 

allowing us to unravel the classical vision of 32CA reactions widely discussed since the 

60’s, as well as revisiting related theories and concepts also established in the past 

century. 

Recent MEDT studies devoted to the 32CA chemistry, those presented herein being 

among them, have allowed establishing a very good correlation between the electronic 

structure of TACs and their reactivity. Accordingly, depending on the electronic structure 

of the TAC, i.e. pseudodiradical (such as AY 14), pseudoradical (such as AI 15), 

carbenoid (such as NY 10) or zwitterionic (such as Ni 16), 32CA reactions have been 

classified into pseudodiradical-type (pdr-type),51 pseudoradical-type (pmr-type),103 

carbenoid-type (cb-type)95 and zwitterionic-type (zw-type)51 reactions (see Figure 4.1). 

The reactivity trend decreases in the order pseudodiradical > carbenoid ≈ pseudoradical 

> zwitterionic,103 in such a manner that while pdr-type 32CA reactions take place easily 

through early TSs, zw-type 32CA reactions demand adequate nucleophilic/electrophilic 
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Figure 4.1. Electronic structure of TACs and proposed reactivity types in 32CA reactions. 
MPWB1K/6-311G(d) gas phase activation energies of the non-polar 32CA reactions between the 
simplest four representative TACs and ethylene 6, relative to the corresponding molecular 
complexes, are given in kcal·mol-1. 
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activations to take place.51 Note that the polar character of the reaction influences the four 

reactivity types, i.e. the stronger the nucleophilic/electrophilic interactions taking place 

at the TSs, the faster the reaction.102 It is also worth mentioning that although substitution 

may change the electronic structure of the simplest TAC parents,108 the 

structure/reactivity relationship is maintained. 

Figure 4.2 explains the origin of the reactivity trend in non-polar 32CA reactions. 

The two pseudoradical centers present in symmetric pseudodiradical TACs favour the 

synchronous C–C single bond formation process through a homolytic rupture of the C–C 

double bond of the ethylene framework (see Figure 4.2). This behaviour accounts for the 

high reactivity of azomethine and carbonyl ylides 14 and 15, as they already present the 

two pseudoradical centers demanded for the C−C single bond formation61 in such a 

manner that they are already prepared to react. However, this behaviour is not feasible in 

pmr-type 32CA reactions; non-symmetric pseudoradical TACs such as AI 15 and Das 2 

are not able to induce an effective symmetric electron density depopulation of the C–C 

bonding region in the ethylene framework because they do not have the second 

pseudoradical center demanded for the formation of the second new single bond (see 

Figure 4.1). Finally, as the multiple bond present in zwitterionic TACs has to be broken 

beforehand, zw-type 32CA reactions demand the highest EC, which is lowered by the 

polarity of the reaction. 

 
Figure 4.2. Bonding changes associated with the formation of the new C−C single bonds along 
the four types of non-polar 32CA reactions. 

It should be emphasised that the reactivity of carbenoid TACs participating in cb-type 

32CA reactions is completely different to that of the other three types of TACs. In the 

32CA reactions involving carbenoid TACs, formation of the first C−C single bond takes 

place by donation of the non-bonding electron density of the carbenoid center to an 
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electrophilic carbon,84,95 while in the non-polar 32CA reactions involving the other three 

types of TACs, formation of the first C−C single bond takes place by the C-to-C coupling 

of two pseudoradical centers generated at the interacting carbons61 (see Figure 4.2). 

On the other hand, polar 32CA reactions begin by the two-center interaction 

between the most nucleophilic center of the nucleophile and the most electrophilic center 

of the electrophile,109 a behaviour anticipated by the analysis of the Parr functions.82 In 

general, TACs participate as the nucleophilic component in polar 32CA reactions. Thus, 

analysis of the nucleophilic Parr functions of pseudoradical and zwitterionic TACs 

indicates that the terminal heteroatom is usually their most nucleophilic center. In these 

cases, ELF topological analysis of the bonding changes along the most favourable 

reaction path reveals that the reaction begins by donation of part of the non-bonding 

electron density of the most nucleophilic center of the TAC to the most electrophilic 

carbon of the ethylene derivative.69,78,83,103 Consequently, polar pmr-type and zw-type 

32CA reactions follow a molecular mechanism similar to that of cb-type 32CA reactions 

(see Figure 4.3). This behaviour plays an important role in the regioselectivity of these 

reactions and asserts the relevance of the analysis of the CDFT indices at the GS of the 

reagents in the study of the reactivity in 32CA reactions.56 

 
Figure 4.3. Bonding changes associated with the formation of the first new single bond along 
polar 32CA reactions. 

In this sense, from the analysis of the bonding changes along polar zw-type, cb-type and 

pmr-type 32CA reactions, a new model for the formation of C−X (X=C, N, O) single 

bonds by donation of non-bonding electron density has been established (see Figure 4.4). 

Note that while the sharing model demands the homolytic rupture of multiple bonds, the 

donation mechanism demands the initial depopulation of the β-conjugated carbon of the 
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substituted ethylene, a feature only possible when strong EWG groups, such as –CHO or 

–NO2, are present at the α-position. 

 
Figure 4.4. Two models for the formation of C−X (X=C, N, O) single bonds. 

This MEDT rationalisation of 32CA reactions revives, but also unravels, the classical 

controversy between Huisgen’s14 and Firestone’s13 mechanistic proposals.  

Regarding the electronic structure of TACs, analysis of their electron density 

distribution, i.e. bonding pattern, reveals that while zwitterionic TACs correspond to 

Huisgen’s proposal,14 pseudodiradical TACs correspond to Firestone’s one.13 However, 

it should be emphasised that NPA of the charge distribution of TACs suggests that they 

are neither 1,3- nor 1,2- zwitterionic-charged structures with full charge separation14 and, 

therefore, our conception of zwitterionc TACs, which does not consider charges but just 

a bonding pattern, slightly differs from Huisgen’s definition of “1,3-dipoles”. 

Regarding their mechanistic proposals, when two reagents undergo either a polar 

or non-polar 32CA reaction, there are three different conformational approach modes: 

one through a one-step mechanism, A, and other two giving intermediates that must 

experience a single bond rotation for the subsequent bond formation, B and C (see Figure 

4.5). In non-polar 32CA reactions, i.e. the reagents are neither strong nucleophiles nor 

strong electrophiles, these intermediates are diradical (Firestone); conversely, in polar 

32CA reactions, i.e. one reagent is a strong nucleophile and the other one is a strong 

electrophile, these intermediates have a zwitterionic nature (Huisgen).  
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X
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C X
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C60º

-60º 180º

A B C  
Figure 4.5. Conformational approach modes of the ethylene, in red, to the TACs, in blue, yielding 
one-step mechanisms (A) and stepwise ones (B and C). 

Generally, the one-step approach mode A presents lower activation energy than the 

stepwise approach modes B and C and, consequently, the stepwise reaction paths are not 

competitive. However, if both diradical or zwitterionic intermediates are sufficiently 

stabilised, they could be intercepted or undergo rotation at the ethylene, and then the 

reaction could lose its stereospecificity. On the other hand, ELF topological analysis of 

one-step reaction paths type A demonstrates that neither non-polar nor polar one-step 

processes are “concerted”, but the bonding changes are sequential, thus ruling out the 

“pericyclic” mechanism proposed by Woodward and Hoffmann.26 Polarity increases the 

asynchronicity of the bond formation in cycloaddition reactions66 in such a way that most 

polar 32CA reactions take place through a non-concerted two-stage one-step 

mechanism;77 further stabilisation of a feasible zwitterionic intermediate could change 

the mechanism to a two-step one, but the sequential bonding changes remain essentially 

the same. 

Finally, our reactivity model for 32CA reactions, based on the analysis of the 

electron density, allows a rationalisation of Houk’s DIEM,48 based on distortion energies; 

i.e. the feasibility of a 32CA reaction is not controlled by the distortion required to reach 

the TS (Hammond’s postulate)50 but by the semblance of the electronic structure of the 

TAC to that demanded for the formation of new single bonds, causing an earlier and less 

energetic TS (see Figure 4.6 in which the activation energies of the non-polar 32CA 

reactions of twelve different TACs, six A-TACs and six P-TACs, with ethylene 6 are 

represented with respect to a percentage of reaction progress proportional to the ethylene 

C−C length). Thus, the position of the TS, i.e. its early or advanced character, is 

determined by the electronic structure of the TAC (see Figures 4.1 and 4.2) together with 

the non-polar or polar electronic nature of the reaction. 
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Figure 4.6. Plot of activation energies, in kcal·mol-1, relative to the separated reagents, vs the 
percentage of reaction progress calculated as [(d(C−C)TS-d(C−C)Ethylene)/(d(C−C)CA-
d(C−C)Ethylene)]×100, for twelve non-polar 32CA reactions of six P-TACs, in blue, and six A-
TACs, in red, with ethylene 6. 

Some appealing conclusions can be drawn from Figure 4.6: i) only A-TACs can 

participate in pdr-type and pmr-type 32CA reactions, unless substitution is able to change 

the parent electronic structures; ii) only P-TACs can participate in cb-type 32CA 

reactions; iii) non-polar cb-type and pmr-type 32CA reactions present similar activation 

energies, though they follow different molecular mechanisms; iv) linear P-TACs present 

a parallel trend, but with higher activation energies, with respect to that associated with 

bent A-TACs. 

In the present thesis, the classical theory of 32CA reactions,5a established in the 60’s 

of the past century and still prevailing today,46 is revisited and reinterpreted based on the 

MEDT.55 A solid new reactivity model for 32CA reactions is established, while the 

“pericyclic” mechanism and the DIEM, which have been widely used for their 

rationalisation, are ruled out, emphasising that the way that organic chemists conceive 

organic chemistry demands a contemporary revision aimed towards the analysis of the 

electron density.  

 



 

 
 

 

 

 

 

 

 

 

 

 

 
“In all affairs it’s a healthy thing now and 

then to hang a question mark on the things 

you have long taken for granted.” 

−Bertrand Russel 
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Despite our recent exhaustive work developed in the field of 32CA reactions, other 

features still demand further investigation in order to achieve a complete understanding 

of these relevant cycloaddition reactions. 

On the one hand, it is well-established that the GEDT61 taking place along a polar 

cycloaddition reaction decreases the corresponding activation energies, either by 

favouring the bonding changes or simply by an electronic stabilisation of the molecular 

system.61,95,102,103 Unlike DA reactions, which have been classified into non-polar (N-

DA), polar (P-DA) and ionic (I-DA) reactions depending on the electronic nature of the 

reagents,66 32CA reactions lack a clear systematisation of the polar and non-polar 

mechanisms due to the aforementioned diversity of four different types of TACs (see 

Figure 4.1 in Conclusions). Therefore, future work will be focused on how the GEDT 

affects the four types of 32CA reactions. 

On the other hand, the partners of P-TACs and A-TACs have shown to present a 

notably different reactivity in 32CA reactions; i.e. the corresponding trend of activation 

energies associated with P-TACs, though parallel to that associated with A-TACs, 

appears to be energetically higher due to the linear structure of P-TACs (see Figure 4.6 

in Conclusions). Note, for instance, the different reactivity of the NO 8 / Ni 16 (C−N−O) 

and Da 2 / AI 15 (C−N−N) partners. Consequently, in this context, our future research 

will focus on why and how the linearity of P-TACs causes them to be less reactive than 

bent A-TACs. 

Finally, it is worth emphasising that the characterisation of the electronic structure 

of TACs, which permits the identification of the reactivity types in 32CA reactions, is 

only possible through a first topological analysis of the ELF of TACs. Most organic 

chemists do not have adequate computational resources to perform such analyses. In this 

sense, we are currently designing a way to predict the electronic structure of TACs 

directly without ELF calculations.  
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Table 3. B3LYP/6-31G(d) electronic chemical potential, μ, chemical hardness, η, electrophilicity, 
ω, and nucleophilicity, N, in eV, of the TACs and ethylene/acetylene derivatives discussed, as 
well as the pseudodiradical pr index of NY 10, AY 14, Das 2 and 72 and AI 15. 

Reactants µ η ω  N  pr 
DNE 73 -5.98 5.03 3.56 strong 0.62 marginal  
DCE 21 -5.64 5.65 2.82 strong 0.65 marginal  
Ketene 34c (R = CF3) -5.26 5.62 2.47 strong 1.05 marginal  
NY 63 -3.86 3.20 2.33 strong 3.67 strong  
Da 72 -4.40 4.66 2.07 strong 2.39 moderate 0.51 
NO 8b (R = CO2Me) −4.69 5.76 1.91 strong 1.55 marginal  
oxazolidinone 67 -4.28 5.88 1.56 strong 1.90 marginal  
oxazolidinone 64 -4.07 5.51 1.50 moderate 2.30 moderate  
MA 5 −4.31 6.23 1.50 moderate 1.70 marginal  
NO 8c (R = Br) −4.15 5.82 1.48 moderate 2.06 moderate  
NO 8a (R = Ph) −3.83 5.03 1.46 moderate 2.78 moderate  
Da 2 -3.64 4.73 1.40 moderate 3.11 strong 0.66 
DMAD 56 -5.01 8.95 1.40 moderate 0.91 marginal  
Ketene 34a (R = H) -3.76 5.57 1.27 moderate 2.58 moderate  
Ni 51 -3.29 4.27 1.26 moderate 3.70 strong  
CHDE 50 -3.44 4.77 1.24 moderate 3.29 strong  
cis-IN -3.58 6.03 1.06 moderate 3.80 strong  
Ni 16 -3.43 5.55 1.06 moderate 2.92 moderate  
Ketene 34b (R = Me) -3.23 5.08 1.02 moderate 3.35 strong  
Ni 41 -2.95 5.42 0.80 marginal 3.46 strong  
NY 10 -2.90 5.45 0.77 marginal 3.50 strong 0.64 
Acetone 57 -3.72 9.02 0.77 marginal 2.16 moderate  
Ethylene 6 −3.37 7.77 0.73 marginal 1.86 marginal  
NO 8 −3.40 7.94 0.73 marginal 1.75 marginal  
AI 15 −2.70 5.02 0.72 marginal 3.92 strong 0.78 
Allene 54 -3.30 7.72 0.70 marginal 1.97 marginal  
Methyl isocyanide 55 -3.90 11.46 0.66 marginal 0.77 marginal  
Acetylene 9 -3.53 11.34 0.55 marginal 1.20 marginal  
AY 14 -1.82 4.47 0.37 marginal 5.07 strong 1.13 
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Table 4. ELF valence basin populations of the IRC points, P1 – P13, defining the fourteen phases characterising the molecular mechanism of the more 
favourable pathway associated with the polar zw-type 32CA reaction between NO 8c and MA 5. The stationary points TSc-o and 26c are also included. 
Distances are given in angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies in kcal·mol-1.  

Phases     I  II III IV V VI VII VIII IX X XI  XII XIII XIV   
Catastrophes     C F†  F† C  C†  C†  F† C F F† F F F†     
Points 8c 5 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 26c TSc-o 
d(C3−C4)   3.698 3.024 2.973 2.563 2.300 2.269 2.204 2.089 1.997 1.859 1.797 1.764 1.562 1.559 1.504 2.263 
d(O1−C5)   3.531 2.950 2.924 2.694 2.523 2.505 2.462 2.390 2.332 2.240 2.193 2.166 1.789 1.776 1.470 2.501 
∆E   0.0 2.0 2.3 6.3 8.8 8.8 8.7 7.1 4.6 -1.5 -5.1 -7.3 -30.8 -31.5 -45.3 8.8 
GEDT   0.01 0.02 0.03 0.04 0.02 0.01 -0.01 -0.04 -0.06 -0.10 -0.11 -0.12 -0.22 -0.23 -0.28 0.01 
V(O1,N2) 1.96  1.61 1.59 1.59 1.50 1.46 1.44 1.44 1.42 1.40 1.34 1.30 1.30 1.07 1.05 0.90 1.46 
V(N2)      0.76 1.86 1.90 2.02 2.17 2.30 2.44 2.49 2.52 2.77 2.77 2.91 1.91 
V(N2,C3) 5.75  6.42 1.36 2.21 2.13 1.51 1.48 1.46 1.40 1.39 1.36 1.39 1.85 1.77 1.77 1.70 1.48 
V’(N2,C3)    5.05 4.20 2.27 1.71 1.67 1.59 1.52 1.49 1.94 1.90 1.91 1.76 1.75 1.69 1.66 
V(C4,C5)  1.70 1.73 1.69 1.69 1.69 3.20 3.20 3.14 2.89 2.73 2.55 2.40 2.33 2.04 2.04 1.95 3.20 
V’(C4,C5)  1.70 1.71 1.70 1.69 1.63             
V(O1) 5.62  2.84 2.98 2.97 2.85 2.84 2.86 2.87 2.81 2.81 2.85 2.88 2.81 3.27 2.70 2.54 2.85 
V’(O1)   2.83 2.75 2.76 2.83 2.78 2.79 2.79 2.79 2.77 2.77 2.77 2.81 2.78 2.72 2.55 2.79 
V(C3)     0.01 1.44 1.74 0.73 0.68 0.63 0.60 0.55 0.53     0.73 
V’(C3)        1.03 0.61 0.75        1.03 
V’’(C3)         0.54 0.52 0.51        
V(C4)          0.19         
V(C5)             0.05 0.09     
V(O1,C5)                0.66 1.21  
V(C3,C4)                   1.13 1.38 1.47 1.53 1.89 1.90 2.01   
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Scheme 6.1. Simplified representation of the molecular mechanism of the polar zw-type 32CA reaction between NO 8c and MA 5 by Lewis structures arising 
from the topological analysis of the ELF along the more favourable reaction path.  
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Table 5. ELF valence basin populations of the IRC points, P1 – P7, defining the eight phases characterising the molecular mechanism of the most favourable 
pathway associated with the zw-type 32CA reaction between Ni 41 and ketene 34b. The stationary points MC-b, TS-CO and 39b are also included. Distances 
are given in angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies in kcal·mol-1.  

Phases I II III IV V VI VII VIII  
Catastrophes C CF F C† F† F† C†    
Points MC-b P1 P2 P3 P4 P5 P6 P7 39b TS-CO 
d(O1−C5) 3.046 2.284 1.797 1.786 1.644 1.611 1.463 1.445 1.367 1.560 
d(C3−C4) 3.256 2.762 2.552 2.544 2.389 2.329 1.914 1.838 1.420 2.219 
∆E 0.0 2.7 7.0 7.1 8.6 9.0 4.5 1.4 -22.7 9.3 
GEDT 0.01 0.09 0.28 0.28 0.34 0.34 0.24 0.21 0.10 0.33 
V(O1,N2) 1.48 1.43 1.35 1.35 1.26 1.24 1.10 1.10 0.99 1.18 
V(N2)      0.96 1.91 2.01 2.35 1.31 
V(N2,C3) 1.90 1.95 3.79 3.80 3.94 3.04 2.37 2.26 1.91 2.78 
V’(N2,C3) 1.89 1.84          
V(O4,C5) 1.32 2.52 2.32 2.30 2.14 2.08 1.77 1.75 1.53 1.96 
V’(O4,C5) 1.38          
V(C5,C6) 2.08 2.11 2.11 2.11 2.08 2.08 2.06 2.06 2.00  
V’(C5,C6) 2.09 2.11 2.08 2.07 2.03 2.01 1.96 1.97 2.05  
V(O1) 2.95 2.93 2.89 2.88 2.48 2.52 2.44 2.43 2.58 2.47 
V’(O1) 3.04 3.07 3.09 3.15 2.76 2.71 2.49 2.48 2.41 2.65 
V(C5)   0.02         
V(C3)       0.03     
V(O4) 2.45 2.55 2.65 2.65 3.00 3.04 2.90 2.77 2.34 3.08 
V’(O4) 2.48 2.57 2.69 2.69 2.55 2.50 2.79 2.43 2.40 2.54 
V(O1,C5)     0.87 0.90 1.31 1.35 1.51 1.05 
V(C3,O4)        0.60 1.32  
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Scheme 6.2. Simplified representation of the molecular mechanism of the zw-type 32CA reaction between Ni 41 and ketene 34b by Lewis structures arising 
from the topological analysis of the ELF along the most favourable reaction path. 
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Table 6. ELF valence basin populations of the stationary points involved in the most favourable pathway associated with the zw-type 32CA reaction between 
Ni 41 and ketene 34c. Distances are given in angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies 
in kcal·mol-1.  

 

 

 

 

 

 

 

 

 

 

 

  

  

 MC-c TS1-CO IN-CO TS2-CO 39c 
d(O1−C5) 2.647 2.492 1.568 1.479 1.339 
d(C3−O4) 3.204 3.180 2.745 2.101 1.436 
∆E 0.0 -1.0 -6.4 -1.8 -23.7 
GEDT 0.03 0.05 0.45 0.42 0.19 
V(O1,N2) 1.48 1.44 1.29 1.21 1.00 
V(N2)    1.08 2.34 
V(N2,C3) 1.87 1.88 1.90 2.93 1.93 
V’(N2,C3) 1.93 1.91 1.92   
V(O4,C5) 1.51 1.52 2.35 2.27 1.66 
V'(O4,C5) 1.49 1.46    
V(O1) 2.91 2.93 2.50 2.46 2.26 
V’(O1) 3.05 3.09 2.64 2.69 2.52 
V(C5)      
V(C3)      
V(O4) 2.32 2.43 2.76 1.76 4.58 
V’(O4) 2.36 2.27 2.63 3.63  
V(O1,C5)   1.01 1.05 1.65 
V(C3,O4)     1.33 
V(C5,C6) 2.05 2.08 2.09 2.04 1.99 
V’(C5,C6) 2.08 2.03 1.94 2.01 2.00 

6. A
ppendix 



 

 

119 

 

 

 

 

 

 

 
Scheme 6.3. Electronic structure of the stationary points involved in the most favourable pathway associated with the polar zw-type 32CA reaction between 
Ni 41 and ketene 34c by Lewis structures arising from the topological analysis of the ELF. 
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Table 7. ELF valence basin populations of the IRC points, P1 – P7, defining the eight phases characterising the molecular mechanism of the more favourable 
pathway associated with the 32CA reaction between Ni 51 and the simplest allene 54. The stationary points MC1, TS1 and isoxazolidine 82 are also included. 
Distances are given in angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies in kcal·mol-1. 

 

Phases     I II III IV V VI VII VIII  
Catastrophes       [F†]2 C F† C F† F C†     
Points 51 54 MC1 P1 P2 P3 P4 P5 P6 P7 82 TS1 
d(C1−C5)     5.265 2.297 2.292 2.122 1.909 1.885 1.601 1.586 1.527 2.070 
d(O3−C4)     4.120 2.307 2.304 2.220 2.109 2.095 1.804 1.764 1.438 2.195 
∆E   0.0 23.4 23.5 26.7 24.4 23.6 4.1 1.7 -16.9 26.2 
GEDT      0.00 -0.04  -0.04   -0.01 0.06   0.06  0.23  0.25 0.29  0.00 
V(C1,N2) 3.81  3.88 2.88 2.89 2.50 2.21 2.17 1.93 1.94 1.87 2.41 
V(N2)    0.83 0.83 1.24 1.66 1.72 2.16 2.17 2.31 1.36 
V(N2,O3) 1.42  1.36 1.31 1.31 1.24 1.15 1.16 1.01 0.99 0.93 1.23 
V(C4,C5)   1.84 1.84 1.86 3.55 3.03 2.61 2.54 2.20 2.17 2.05 2.92 
V’(C4,C5)  1.85 1.88 1.72          
V(C5,C6)  1.84 1.85 1.87 1.88 1.87 1.86 1.85 1.81 1.83 1.78 1.88 
V’(C5,C6)  1.85 1.86 1.82 1.83 1.80 1.75 1.75 1.76 1.75 1.76 1.77 
V(C1)    0.28 0.28 0.44      0.50  
V(C5)      0.51      0.60 
V(O3) 2.99  3.03 2.90 2.90 2.91 2.82 2.85 3.39 2.68 2.51 2.86 
V’(O3) 3.02  2.93 2.97 2.96 2.91 2.90 2.89 2.76 2.69 2.55 2.94 
V(C4)        0.13     
V(C1,C5)         1.44 1.47 1.88 1.90 1.99   
V(O3,C4)                   0.76 1.26   
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Scheme 6.4. Simplified representation of the molecular mechanism of the 32CA reaction between Ni 51 and the simplest allene 54 by Lewis structures arising 
from the topological analysis of the ELF along the more favourable reaction path. 
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Table 8. ELF valence basin populations of the IRC points, P1n – P9n, defining the ten phases characterising the molecular mechanism of the most favourable 
pathway associated with the 32CA reaction between Ni 51 and strained allene CHDE 50. The stationary points MC1n, TS1n and endo isoxazolidine 52a are 
also included. Distances are given in angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies in 
kcal·mol-1. 

Phases     I II III IV V VI VII VIII IX X   
Catastrophes          F† F† F† C C F† C† F C†     
Points 51 50 MC1n P1n P2n P3n P4n P5n P6n P7n P8n P9n 52a TS1n 
d(C1−C5)     5.658 2.317 2.295 2.249 2.203 1.943 1.593 1.562 1.524 1.522 1.522 2.225 
d(O3−C4)     4.290 2.762 2.753 2.737 2.720 2.641 2.424 2.252 1.779 1.752 1.421 2.726 
∆E     0.0 8.3 8.4 8.5 8.5 5.2 -7.9 -11.8 -29.3 -29.7 -51.6 8.5 
GEDT     0.01 0.04 0.04 0.04 0.03 -0.01 -0.10 -0.14 -0.27  -0.28  -0.33 0.03 
V(C1,N2) 3.81   3.87 3.83 3.60 3.61 2.82 2.28 1.90 1.87 1.85 1.85 1.87 3.61 
V(N2)        0.80 1.36 1.78 1.90 2.21 2.21 2.37   
V(N2,O3) 1.42   1.39 1.35 1.33 1.33 1.33 1.27 1.20 1.14 0.97 0.95 0.89 1.33 
V(C4,C5)   1.73 3.65 3.29 3.26 3.22 3.13 2.94 2.64 2.48 2.23 2.20 2.07 3.17 
V’(C4,C5)  1.91              
V(C5,C6)  1.97 1.96 1.98 1.98 3.53 3.49 3.46 3.39 1.85 1.81 1.81 1.85 3.50 
V’(C5,C6)  1.74 1.72 1.63 1.62     1.55 1.74 1.75 1.78   
V(C1)      0.24 0.29 0.33       0.32 
V(C5)     0.41 0.46 0.55 0.65       0.61 
V(O3) 2.99   3.01 3.02 2.87 2.97 2.98 2.94 2.91 2.97 2.79 2.75 2.48 2.97 
V’(O3) 3.02   2.93 2.86 2.98 2.88 2.88 2.92 2.94 2.92 3.34 2.80 2.54 2.89 
V(C4)          0.10 0.27     
V(C1,C5)         1.47 1.91 1.97 1.99 2.00 1.97   
V(O3,C4)                       0.61 1.31   
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Scheme 6.5. Simplified representation of the molecular mechanism of the 32CA reaction between Ni 51 and strained allene CHDE 50 by Lewis structures 
arising from the topological analysis of the ELF along the most favourable reaction path. 
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Table 9. ELF valence basin populations of the IRC points, P1 – P5, defining the six phases characterising the molecular mechanism associated with the 
addition reaction of carbenoid isocyanide 55 to DMAD 56. The stationary points MC1, trans-IN and cis-IN are also included. Distances are given in 
angstroms (Å), while GEDT values and electron populations are given in average number of electrons (e).  

Phases I II III IV V VI  
Points MC1 P1 P2 P3 P4 P5 trans-IN cis-IN 
d(C2−C3) 3.726 2.282 2.033 1.897 1.551 1.399 1.396 1.393 
GEDT 0.00 0.07 0.18 0.27 0.54 0.60 0.62 0.65 
V(N1,C2) 3.81 3.15 5.12 5.13 4.71 4.40 5.52 3.19 
V’(N1,C2) 1.29 2.00      2.32 
V(C3,C4) 2.68 2.37 2.23 2.10 1.73 3.10 3.13 3.14 
V’C3,C4) 2.65 2.48 2.16 2.02 1.74    
V(C2) 2.65 2.58 2.52      
V(C2,C3)    2.55 2.66 2.73 2.71 2.65 
V(C4)  0.52 1.06 1.31 1.75 1.90 1.97 2.06 
V(N1)     0.66 1.20   
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Scheme 6.6. Simplified representation of the molecular mechanism of the addition reaction of carbenoid isocyanide 55 to DMAD 56 by Lewis structures 
arising from the topological analysis of the ELF along the reaction path. 
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Table 10. ELF valence basin populations of the IRC points, P1 – P7, defining the eight phases characterising the molecular mechanism of the more favourable 
pathway associated with the 32CA reaction between carbenoid intermediate cis-IN and acetone 57. The stationary points MC2 and 58 are also included. 
Distances are given in angstroms (Å), while GEDT values and electron populations are given in average number of electrons (e).  

Phases                 I                    II                    III                   IV                  V                     VI                  VII                   VIII   
Points MC2 P1 P2 P3 P4 P5 P6 P7 58 
d(C4−C5) 3.687 2.798 2.338 2.141 2.070 1.908 1.645 1.578 1.502 
d(C2−O6) 3.090 3.007 2.623 2.462 2.412 2.288 1.953 1.746 1.370 
GEDT 0.00 0.04 0.16 0.26 0.31 0.40 0.39 0.32 0.19 
V(N1,C2) 5.50 1.78 5.48 5.53 4.75 2.14 1.83 1.72 1.64 
V’(N1,C2)  3.70    2.09 1.84 1.74 1.63 
V(N1)     0.8 1.48 2.26 2.48 2.67 
V(C2,C3) 2.60 2.63 2.60 2.59 2.61 2.6 2.47 2.39 2.34 
V(C3,C4) 3.17 3.16 3.24 3.27 1.68 1.64 1.71 1.73 1.73 
V’(C3,C4)     1.61 1.68 1.68 1.68 1.69 
V(O6) 2.64 2.65 2.71 2.85 2.82 2.94 2.92 2.71 2.24 
V’(O6) 2.64 2.70 2.77 2.81 2.87 2.96 2.99 2.69 2.52 
V(C5,O6) 2.39 2.41 2.23 2.18 2.06 1.77 1.53 1.41 1.43 
V(C4) 2.05 2.00 1.92       
V(C4,C5)     1.87 1.89 1.94 2.05 2.06 2.09 
V(C2)       0.20   
V(C2,O6)               0.75 1.49 
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Scheme 6.7. Simplified representation of the molecular mechanism of the 32CA reaction between carbenoid intermediate cis-IN and acetone 57 by Lewis 
structures arising from the topological analysis of the ELF along the more favourable reaction path. 
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Table 11. ELF valence basin populations of the IRC points, P1 – P5, defining the six phases characterising the molecular mechanism of the cb-type 32CA 
reaction between NY 10 and ethylene 6. The stationary points MC1 and pyrroline 60 are also included. Distances are given in angstroms (Å), while GEDT 
values and electron populations are given in average number of electrons (e).  

Phases             I              II          III            IV            V            VI  
Catastrophes  F† C F† F† [C]2  
Points MC1 P1 P2 P3 P4 P5 60 
d(C1−C4) 3.703 2.406 2.324 2.221 2.169 2.009 1.497 
d(C3−C5) 3.769 2.449 2.363 2.255 2.202 2.041 1.539 
GEDT 0.00 0.10 0.11 0.11 0.11 0.10 0.04 
V(C1,N2) 2.03 1.71 1.61 1.52 1.51 1.52 1.48 
V’(C1,N2) 2.03 1.88 1.67 1.69 1.68 1.60 1.62 
V(N2,C3) 3.25 2.47 2.27 2.09 2.04 1.91 1.70 
V(N2)  1.12 1.54 1.95 2.10 2.39 2.71 
V(C4,C5) 1.73 1.80 3.30 2.95 2.58 2.22 1.82 
V’(C4,C5) 1.74 1.56      
V(C1) 1.95 1.65 1.58 1.47 1.40   
V(C4)     0.30   
V(C1,C4)      1.76 2.00 
V(C3) 0.30 0.47 0.57 0.68 0.73   
V(C5)    0.36 0.45   
V(C3,C5)           1.46 1.86 
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Scheme 6.8. Simplified representation of the molecular mechanism of the cb-type 32CA reaction between NY 10 and ethylene 6 by Lewis structures arising 
from the topological analysis of the ELF along the reaction path. 
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Table 12. ELF valence basin populations of the IRC points, P1 – P8, defining the nine phases characterising the molecular mechanism of the more favourable 
pathway associated with the cb-type 32CA reaction between NY 10 and DCE 21. The stationary points MC2 and pyrroline 61 are also included. Distances 
are given in angstroms (Å), while GEDT values and electron populations are given in average number of electrons (e).  

Phases                       I             II            III           IV            V           VI            VII         VIII          IX 
Catastrophes  C C F† F† C† C F† C  
Points MC2 P1 P2 P3 P4 P5 P6 P7 P8 61 
d(C1−C4) 2.638 2.367 2.149 1.978 1.900 1.677 1.556 1.536 1.521 1.498 
d(C3−C5) 3.034 2.922 2.835 2.772 2.743 2.641 2.489 2.392 2.192 1.560 
GEDT 0.14 0.24 0.36 0.46 0.50 0.56 0.53 0.49 0.41 0.19 
V(C1,N2) 2.12 2.12 1.99 1.94 1.88 1.66 1.46 1.68 1.44 1.52 
V’(C1,N2) 1.86 1.90 1.82 1.70 1.66 1.66 1.67 1.47 1.64 1.56 
V(N2)    0.99 1.25 1.85 2.11 2.24 2.36 2.66 
V(N2,C3) 3.42 3.43 3.56 2.88 2.71 2.45 2.39 2.16 2.03 1.74 
V(C4,C5) 1.67 3.29 3.31 3.14 2.78 2.28 2.24 2.17 2.03 1.77 
V’(C4,C5) 1.64          
V(C1) 1.84 1.70         
V(C1,C4)   1.58 1.63 1.68 1.78 1.89 1.92 1.98 2.03 
V(C3)        0.20   
V(C5)     0.32 0.45 0.59 0.66   
V’(C5)      0.18     
V(C3,C5)         1.13 1.85 
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Scheme 6.9. Simplified representation of the molecular mechanism of the cb-type 32CA reaction between NY 10 and DCE 21 by Lewis structures arising 
from the topological analysis of the ELF along the more favourable reaction path.  
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Table 13. ELF valence basin populations of the IRC points, P1 – P7, defining the eight phases characterising the molecular mechanism of the less favourable 
pathway associated with the 32CA reaction between NY 10 and DCE 21. The stationary points MC3 and pyrroline 62 are also included. Distances are given 
in angstroms (Å), while GEDT values and electron populations are given in average number of electrons (e). 

Phases              I                       II                   III                  IV                 V                   VI                 VII               VIII 
Catastrophes  F† C F† F† C F† C  
Points MC3 P1 P2 P3 P4 P5 P6 P7 62 
d(C1−C5) 2.899 2.744 2.615 2.530 2.484 2.437 2.388 1.959 1.535 
d(C3−C4) 2.978 2.661 2.418 2.255 2.169 2.083 1.998 1.606 1.537 
GEDT 0.09 0.16 0.24 0.31 0.35 0.38 0.40 0.30 0.19 
V(C1,N2) 2.14 2.18 2.20 2.07 2.03 1.96 1.91 1.74 1.65 
V’(C1,N2) 1.95 1.93 1.93 1.83 1.77 1.73 1.66 1.57 1.46 
V(N2)    0.85 1.22 1.53 1.80 2.46 2.63 
V(N2,C3) 3.38 3.06 3.07 2.46 2.24 2.09 2.00 1.75 1.74 
V(C4,C5) 1.61 1.57 3.22 3.23 3.08 2.97 2.57 1.98 1.80 
V’(C4,C5) 1.67 1.68        
V(C3)  0.28 0.46 0.61 0.72      
V(C4)     0.20     
V(C3,C4)      1.11 1.26 1.79 1.93 
V(C1) 1.77 1.64 1.42 1.22 1.08 0.93 0.86   
V(C5)       0.37   
V(C1,C5)        1.56 1.88 
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Scheme 6.10. Simplified representation of the molecular mechanism of the cb-type 32CA reaction between NY 10 and DCE 21 by Lewis structures arising 
from the topological analysis of the ELF along the less favourable reaction path. 
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Table 14. ELF valence basin populations of the IRC points, P1 – P9, defining the ten phases characterising the molecular mechanism of the most favourable 
pathway associated with the experimental cb-type 32CA reaction between NY 63 and oxazolidinone 67. The stationary points MC-mn, TS-mn and CA-mn 
are also included. Distances are given in angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies in 
kcal·mol-1. 

 

Phases                     I               II             III             IV                V             VI              VII           VIII             IX            X     
Catastrophes F C F† F F† F† C F† C     
Points MC-mn P1 P2 P3 P4 P5 P6 P7 P8 P9 CA-mn TS-mn 
d(C1−C5) 2.870 2.592 2.386 2.340 2.158 2.072 2.058 2.039 1.967 1.563 1.506 2.249 
d(C3−C4) 3.178 2.982 2.859 2.835 2.723 2.675 2.666 2.656 2.615 2.037 1.571 2.774 
∆E 0.0 3.1 4.7 5.0 4.9 3.9 3.6 3.2 1.2 -34.3 -63.8 5.2 
GEDT 0.05 0.09 0.15 0.17 0.23 0.25 0.26 0.27 0.29 0.15 0.05 0.20 
V(C1,N2) 2.30 2.28 2.22 2.05 1.98 1.91 1.90 1.87 1.83 1.46 1.56 2.01 
V’(C1,N2) 2.13 2.11 2.14 2.15 1.65 1.45 1.43 1.44 1.42 1.64 1.46 1.81 
V(N2,C3) 2.75 2.80 2.90 2.92 2.81 2.71 2.72 2.70 2.34 1.88 2.06 2.62 
V(N2)    0.14 1.27 1.61 1.65 1.68 1.87 2.59 2.76 0.91 
V(C4,C5) 1.66 1.64 3.26 3.24 3.19 3.04 2.95 2.82 2.67 2.05 1.92 3.21 
V’(C4,C5) 1.72 1.73           
V(C1) 1.45 1.44 1.47 1.47 1.44 1.51 1.55     1.43 
V(C5)      0.09 0.10      
V(C1,C5)        1.71 1.76 2.00 2.06   
V(C3) 0.35 0.32 0.29 0.30     0.30   0.29 
V’(C3) 0.31             
V(C4)       0.16 0.16 0.22     
V(C3,C4)                   1.34 1.86   
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Scheme 6.11. Simplified representation of the molecular mechanism of the experimental cb-type 32CA reaction between NY 63 and oxazolidinone 67 by 
Lewis structures arising from the topological analysis of the ELF along the most favourable reaction path. 
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Table 15. ELF valence basin populations of the IRC points, P1 – P9, defining the ten phases characterising the molecular mechanism of the more favourable 
pathway associated with the 32CA reaction between Da 72 and DNE 73. The stationary points MC1 and 1-pyrazoline 76 are also included. Distances are 
given in angstroms (Å), while GEDT values and electron populations are given in average number of electrons (e).  

Phases                I                  II                III              IV               V                VI              VII             VIII             IX               X 
Catastrophes  C C F† F† F† C C C† C  
Points  MC1 P1 P2 P3 P4 P5 P6 P7 P8 P9 76 
d(C1−C5) 3.295 2.803 2.407 2.076 2.057 2.044 2.006 1.654 1.576 1.567 1.534 
d(N3−C4) 3.217 3.001 2.815 2.675 2.667 2.661 2.644 2.371 1.816 1.689 1.503 
GEDT  0.02 0.08 0.18 0.32 0.34 0.35 0.38 0.38 0.14  0.06 -0.04 
V(C1,N2) 3.07 3.12 3.18 3.42 2.27 2.23 2.15 1.77 1.81 1.83 1.80 
V(N2)     1.20 1.24 1.36 2.15 2.54 2.61 2.71 
V(N2,N3) 1.79 1.77 1.78 1.64 1.62 1.61 1.58 2.98 2.67 2.64 2.51 
V’(N2,N3) 1.88 1.87 1.80 1.75 1.73 1.73 1.73     
V(C4,C5) 1.91 2.00 3.78 3.69 3.66 3.14 3.09 2.54 2.13 2.10 2.04 
V’(C4,C5) 1.83 1.76          
V(C1) 0.43 0.51 0.68 0.90 0.92 0.93      
V’(C1) 0.55           
V(C5)    0.14 0.16 0.17      
V(C1,C5)       1.17 1.71 1.83 1.85 1.91 
V(N3) 3.76 3.73 3.69 3.56 3.55 3.55 3.54 3.48 3.07 2.96 2.83 
V’(N3)         0.49   
V(C4)      0.52 0.55 0.78 0.96   
V(N3,C4)                   1.62 1.86 
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Scheme 6.12. Simplified representation of the molecular mechanism of the 32CA reaction between Da 72 and DNE 73 by Lewis structures arising from the 
topological analysis of the ELF along the more favourable reaction path. 
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Table 16. ELF valence basin populations of the IRC points, P1 – P8, defining the nine phases characterising the molecular mechanism of the pmr-type 32CA 
reaction between AI 15 and ethylene 6. The stationary points MC1, TS1 and 79 are also included. Distances are given in angstroms (Å), GEDT values and 
electron populations in average number of electrons (e), and relative energies in kcal·mol-1.  

Phases   I II III IV V VI VII VIII IX    
Catastrophes    C C F† F† F† C C† C    
Points 15 6 MC1 P1 P2 P3 P4 P5 P6 P7 P8 79 TS1 
d(C1−C5)   3.718 2.908 2.311 2.297 2.174 2.091 2.033 1.868 1.849 1.525 2.272 
d(N3−C4)   3.337 2.800 2.319 2.307 2.206 2.136 2.086 1.937 1.919 1.463 2.286 
∆E 0.0 -2.4 -1.5 5.2 5.2 4.3 1.3 -2.1 -17.9 -20.1 -62.0 5.3 
GEDT   0.01 0.04 0.10 0.10 0.09 0.07 0.05 -0.02 -0.03 -0.13 0.10 
V(C1,N2) 2.95  2.97 3.05 3.31 2.55 2.27 2.15 2.07 1.90 1.89 1.75 2.51 
V(N2)      0.76 1.22 1.47 1.61 1.94 1.96 2.28 0.84 
V(N2,N3) 2.10  2.09 2.07 1.90 1.89 1.78 1.70 1.66 1.56 1.55 1.36 1.87 
V(C4,C5)  1.71 1.70 1.67 3.20 3.20 2.96 2.63 2.49 2.19 2.17 1.88 3.18 
V’(C4,C5)  1.71 1.69 1.70          
V(C1) 0.31  0.28 0.25 0.50 0.51 0.60 0.66     0.52 
V’(C1) 0.31  0.29           
V(N3) 3.53  3.54 3.48 3.32 3.32 3.28 3.25 3.23 2.67 2.67 2.28 3.32 
V’(N3)          0.58    
V(C4)        0.21 0.28 0.44    
V(C5)       0.25 0.40      
V(C1,C5)         1.19 1.47 1.50 1.74  
V(N3,C4)           1.03 1.88  
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Scheme 6.13 Simplified representation of the molecular mechanism of the pmr-type 32CA reaction between AI 15 and ethylene 6 by Lewis structures arising 
from the topological analysis of the ELF along the reaction path. 
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Table 17. ELF valence basin populations of the stationary points and some points of the IRC involved in the formation of the new C1−C5 and N3−C4 single 
bonds along the more favourable pathway associated with the pmr-type 32CA reaction between AI 15 and DCE 21. Distances are given in angstroms (Å), 
GEDT values and electron populations in average number of electrons (e), and relative energies in kcal·mol-1.  

Points 15 21 MC2-m TS2-m P1-m P2-m P3-m P4-m 80 
d(C1−C5)   2.957 2.796 2.680 2.675 2.318 2.145 1.564 
d(N3−C4)   2.462 2.142 1.822 1.810 1.521 1.500 1.441 
∆E 0.0 -8.9 -8.5 -11.1 -11.4 -23.1 -29.5 -58.2 
GEDT   0.17 0.27 0.39 0.40 0.34 0.26 0.03 
V(C1,N2) 2.95  3.39 3.46 3.64 3.67 2.38 2.19 1.74 
V(N2)       1.75 1.78 2.25 
V(N2,N3) 2.10  2.02 1.89 1.72 1.70 1.48 1.42 1.38 
V(C4,C5)  1.66 1.66 3.26 2.79 2.78 2.18 2.07 1.83 
V’(C4,C5)  1.66 1.63       
V(C1) 0.31      0.15   
V’(C1) 0.31         
V(N3) 3.53  3.46 3.40 3.61 2.64 2.32 2.27 2.24 
V(C5)     0.31 0.31 0.67   
V(C1,C5)             1.09 1.82 
V(N3,C4)      0.98 1.58 1.64 1.73 
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Scheme 6.14. Electronic structure of the stationary points and simplified representation of the bond formation processes by Lewis structures arising from the 
topological analysis of the ELF along the more favourable pathway associated with the pmr-type 32CA reaction between AI 15 and DCE 21. 
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Table 18. ELF valence basin populations of the stationary points and some selected points of the IRC involved in the formation of the new C1−C4 and 
N3−C5 single bonds along the less favourable pathway associated with the pmr-type 32CA reaction between AI 15 and DCE 21. Distances are given in 
angstroms (Å), GEDT values and electron populations in average number of electrons (e), and relative energies in kcal·mol-1.  

Points 15 21 MC2-o TS2-o P1-o P2-o P3-o P4-o 81 
d(C1−C4)   2.758 2.311 2.121 2.048 1.556 1.554 1.515 
d(N3−C5)   2.752 2.625 2.560 2.536 1.865 1.837 1.474 
∆E 0.0 -6.3 -5.7 -6.5 -7.5 -37.9 -39.2 -56.2 
GEDT   0.14 0.25 0.32 0.35 0.14 0.13 -0.01 
V(C1,N2) 2.95  2.98 2.97 2.96 2.40 1.78 1.77 1.75 
V(N2)      0.61 2.00 2.02 2.26 
V(N2,N3) 2.10  2.12 2.15 2.12 2.10 1.58 1.58 1.36 
V(C4,C5)  1.66 1.64 3.19 3.15 3.01 1.99 1.99 1.82 
V’(C4,C5)  1.66 1.62       
V(C1) 0.31  0.38 0.53 0.69     
V’(C1) 0.31         
V(N3) 3.53  3.36 3.17 3.05 2.92 2.62 2.60 2.25 
V’(N3)       0.32   
V(C4)     0.07     
V(C5)       0.72   
V(C1,C4)         0.96 1.81 1.81 1.89 
V(N3,C5)        1.06 1.70 
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Scheme 6.15. Electronic structure of the stationary points and simplified representation of the bond formation processes by Lewis structures arising from the 
topological analysis of the ELF along the less favourable pathway associated with the polar pmr-type 32CA reaction between AI 15 and DCE 21. 

 
 

6. A
ppendix 



   
 

 
 



 

 

  

7. THEORETICAL BACKGROUND 



 

 
 

  



  7. Theoretical background 
   

147 
 

7.1. QC models 

Since the introduction of the chemical bond concept by Lewis in 1916,75 two different 

QC theories, namely, the VBT12 and the MOT,22 have been developed as an approach to 

the resolution of Schrödinger’s equation, established in 1926 (see Eq. [2]).110 The 

information obtained from the resolution of Schrödinger’s equation (2) is a wavefunction 

Ψ, whose square describes the probability distribution of the particles within the 

molecule, i.e. the molecular electron density, and the total electronic energy E associated 

with this wavefunction Ψ. 

H Ψ = E Ψ (Schrödinger equation)  (2) 

Until the mid-1950s, chemistry was dominated by the classical VBT. However, the 

computational effort required in classical VBT caused it to be employed in an 

oversimplified manner. Relevant concepts used in organic chemistry such as 

hybridisation106 and resonance11 were developed within VBT. When the early ab initio 

VBT lacked accuracy and did not progress, MOT became increasingly important. 

Within MOT, the polyelectronic wavefunction Ψ of Eq. [2] is approximated as an 

antisymmetrised product of a series of monoelectronic orbitals Ψi, named MOs, and spin 

functions. In turn, these MOs are beforehand obtained by LCAO, which are mathematical 

functions describing the electron movement in a hydrogen-type AO.111 Thus, in MOT, 

electrons are not assigned to individual bonds between atoms, but they are treated as 

moving under the influence of the nuclei along MOs in the whole molecule. Similar to 

the wavefunction Ψ, the square of an MO represents the probability distribution of the 

electrons of the MO in space. However, it is worth emphasising that the molecular 

electron density is not obtained from a combination of the electron density of MOs, i.e. 

the square of the occupied MOs. Consequently, the analysis of individual MOs has no 

chemical significance as they do not represent the behaviour of the molecular wave 

function Ψ. 

Parallel to the development of the VBT and MOT based on Schrödinger’s equation 

(2), in the ‘60s of the past century and based on the Hohenberg and Kohn’s theorems, a 

different QC theory to describe the electronic structure of matter, known as DFT,52 in 

which the GS energy of a non-degenerate N-electron system is functional of only the 
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electron density ρ(r), was established (3). Note that unlike the MOs, electron density is 

an experimentally accessible scalar field.112 

𝐸𝐸[𝜌𝜌(𝒓𝒓)] = ∫𝜌𝜌(𝒓𝒓)𝜈𝜈(𝒓𝒓)𝑑𝑑𝑑𝑑 + 𝐹𝐹[𝜌𝜌(𝒓𝒓)]   (3) 

In turn, within the DFT framework, the electron density ρ(r) is expressed as the functional 

derivative of the energy with respect to the external potential, the number of electrons 

being kept constant: 

      𝜌𝜌(𝒓𝒓) = � 𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕(𝒓𝒓)

�
𝑁𝑁

     (4) 

Thus, DFT calculations imply the construction of an expression of the electron density. 

Unfortunately, similar to the QC theories based on Schrödinger’s equation, neither is the 

resolution of the functional of the electron density ρ(r) for a complex system 

computationally feasible. As an approximation, the Kohn–Sham formalism113 was 

introduced in analogy to the HF methods (see Eq. [5]). It should be emphasised, then, that 

Kohn-Sham orbitals were conceived as an instrument to conveniently construct the exact 

density, which could then be substituted into (a good approximation to) the Hohenberg-

Kohn density functional to provide, in turn, the exact (or accurate) total energy: E = 

E[ρ(r)]. Consequently, in the DFT framework, the Kohn–Sham orbitals do not define any 

wavefunction although they are used to calculate the one-electron density distribution 

function.114  

H ΨKS = E Ψ KS (Kohn–Sham equation) (5) 

7.2. Reactivity models derived from HMOT: the FMO theory and the “pericyclic” 

mechanism 

In 1952, studying the reactivity of aromatic compounds, Fukui observed that the electron 

density distribution of the highest occupied π-orbital at the GS correlated well with their 

reactivity, thus establishing that the position at which the electron density is largest is 

most readily attacked by electrophilic or oxidising reagents.115 He concluded that unlike 

other π-electrons, the pair of π-electrons occupying the energetically highest MO, which 

is referred to as frontier electrons, plays a decisive role in the chemical activation of these 

hydrocarbon molecules.115  
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It was in 1964 when Fukui went one-step further and established the FMO theory23 

to study how molecules react with each other. He proposed that a majority of chemical 

reactions should take place at the position and in the direction of maximum overlapping 

of the HOMO (highest occupied MO) and the LUMO (lowest unoccupied MO) of the 

reacting species;116 accordingly, the most favourable interaction will take place by 

overlapping and mixing the two FMOs with the lowest energy separation in such a 

manner that the rate of reaction is inversely related to the energy gap, and between the 

centers of the two molecules with the highest MO coefficients. Consequently, within the 

FMO theory, MOs do not only control the reactivity, but also the regioselectivity. 

Meanwhile, based on HMOT, Hoffmann developed in 1963 the extended HMOT, 

117 which is a semi-empirical QC method that uses the valence ‘s’ AOs additionally to the 

originally employed valence ‘pz’ AOs to build MOs. In 1965, based on the symmetry of 

wavefunctions, Longuet-Higgins and Abrahamson suggested an approach to explain the 

reaction mechanisms.118 If a molecule has some element of symmetry, the molecular 

wavefunction must conform39g to that symmetry. They applied this treatment to several 

simple “pericyclic” reactions of symmetrical molecules, assuming symmetry to be 

retained throughout, and showed what reactions were allowed or forbidden. A simpler 

version of this treatment was adopted in 1965 by Woodward and Hoffmann who, based 

on an analysis of the orbital symmetry of the pz AOs rather than of symmetry of states, 

introduced the orbital symmetry rules to explain the stereochemistry, as well as 

feasibility, in cycloaddition, electrocyclic and sigmatropic reactions.119 It was in 1968 

when they generalised the conservation of orbital symmetry “for every concerted 

reaction”.25 Further, in 1969, in a review devoted to the orbital symmetry rules, they 

defined the concept of “pericyclic” reactions, i.e. “reactions in which all first-order 

changes in bonding relationships take place in concert on a closed curve and must obey 

the selection rules”.26 The original discussion of cycloaddition, electrocyclic and 

sigmatropic reactions by Woodward and Hoffmann119 was formulated in terms of the 

FMO method and later Fukui, in 1971, extended it to the whole range of “pericyclic” 

processes.116g  

For half a century, organic chemists had recognised the possibility that certain 

reactions and molecular rearrangements might take place by a mechanism involving the 

“concerted” (simultaneous) cyclic permutation of bonds round a ring of atoms. In the era 

of the classical electronic theory of Lapworth, Robinson120 and Ingold,121 such 

mechanisms were proposed for a number of reactions using the current curved arrow 
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symbolism to represent the displacement of electron pair bonds. However, although the 

possibility of such processes, which Woodward and Hoffmann26 had termed “pericyclic”, 

was recognised at an early date through the joint-use of the “concerted” concept122 and 

the proposed electron displacement movement by curved arrows121, it was only in the 

60’s that they became a matter of major concern to organic chemists.  

In 1939, Evans and Warhust123 emphasised the analogy between the delocalised 

electrons in the cyclic and linear TSs for the DA reaction of butadiene with ethylene and 

the π system of benzene and hexatriene, respectively. They stated that the additional 

resonance energy of the cyclic TS over the linear TS should be a factor in favouring the 

one-step reaction. In 1952, on the basis of an extension of the HMOT and using the 

perturbation theory, Dewar developed a simple procedure for stating whether a given 

system is aromatic or not39a-f and established a general theory of aromaticity.39g Later, in 

1966,24 Dewar suggested that a “pericyclic” process is formally analogous to the 

conversion of one Kekulé structure for a cyclic polyene into the other. The TS for the 

“pericyclic” reaction was thus suggested to be precisely analogous to the hybrid of 

classical resonance structures in an intermediate “aromatic” structure for the polyene. 

Dewar related, therefore, the facility of a “pericyclic” reaction to the stability of the cyclic 

TS relative to an open chain analogue and thus described the cyclic TSs as being aromatic, 

non-aromatic, or anti-aromatic. This led him to formulate the Evan’s Principle, a rule for 

predicting the facility of “pericyclic” reactions, which says “thermal pericyclic reactions 

take place preferentially via aromatic transition states”.  

In this context, in 1971, Dewar proposed the Evan’s Principle,24 together with the 

perturbation MO treatment of aromaticity and the derived rules for aromaticity,39 to be a 

simple theory of “pericyclic” reactions, regarding it either as a satisfactory theoretical 

basis of the Woodward and Hoffmann rules or as a satisfactory alternative to them.38 He 

concluded that thermally induced “pericyclic” reactions proceed preferentially via 

aromatic TSs, whereas their photochemical counterparts lead to products that are formed 

via anti-aromatic TSs. 

7.3. Development of computational chemistry and application of the TST 

At the beginning of the past century, some important theories based on experiments, such 

as the TST,36 were developed in kinetic chemistry, which permitted to establish 

fundamental concepts used in the study of molecular mechanisms. Within this theory, the 
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concept of the activation complex or TS enabled the establishment of a relationship 

between the experimental activation energy124 and the energy of the TS associated to an 

organic reaction.  

From the extended HMOT developed by Hoffmann in 1963,117 Pople, Santry and 

Segal proposed, in 1965 and 1966, one of the first semi-empirical methods in quantum 

chemistry, namely, the CNDO method.125 CNDO/2 is the main version of CNDO and 

marked the beginning of the development and the application in molecular physics and 

theoretical chemistry of semi-empirical methods taking into account all valence electrons. 

The development of the semi-empirical methods in the late ‘60s allowed the first 

molecular geometry optimisations based on QC procedures. Based on TST, Dewar was 

one of the first in performing molecular geometry optimisations along a reaction path.126 

Thus, in 1970, Dewar obtained approximate geometries for reactants, TSs and products 

involved in the Cope rearrangement and electrocyclic processes.126 

The growth of computation in the two last decades of the 20th century enabled the 

study of the molecular mechanism of many organic reactions by characterising the 

stationary points involved in a reaction, i.e. reagents, TSs, intermediates and products. 

While ab initio HF calculations127 rendered good geometries, experimental activation 

energies were overestimated. Consequently, very time-consuming post-HF energy 

calculations127 were demanded to reproduce the experimental values. Alternatively, in the 

last decades, a series of empiric DFT functionals such as B3LYP,128 MPWB1K129 and, 

more recently, M06-2X,130 which provide more accurate energies, have been developed, 

making the study of organic reactions with a computational demand similar to HF 

calculations possible. Today, these DFT functionals are widely used in the study of the 

mechanism of organic reactions.  

7.4. Application of CDFT reactivity indices to the study of 32CA reactions 

Parallel to the development of QC models to approach the Hohenberg-Kohn equation 

(3),52 Parr developed the so-called “CDFT” in the late 1970s and early 1980s.131 CDFT 

is a DFT-subfield in which relevant concepts and principles are extracted from electron 

density, making it possible to understand and predict the chemical behaviour of a 

molecule. Parr and co-workers, and later a large community of theoretical chemists, were 

able to give precise definitions for chemical concepts which had already been known and 



7. Theoretical background 
  

152 
 

used for many years in various branches of chemistry, thus providing their calculations 

with a quantitative use. 

7.4.1. Global properties 

The main global reactivity indices defined within CDFT are the electronic chemical 

potential µ and the chemical hardness η, from which the electrophilicity ω index was 

further obtained by combination of the two former. Then, several proposals for a 

nucleophilicity N index were developed apart.  

7.4.1.1. Electronic chemical potential 

In 1983, Parr defined the electronic chemical potential µ as the energy changes of the 

system with respect to the electron number N at a fixed external potential ν(r), i.e. the 

potential created by the nuclei (see Eq. [6]).132 The electronic chemical potential µ is 

associated with the feasibility of a system to exchange electron density with the 

environment at the GS. 

𝜇𝜇 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜈𝜈(𝒓𝒓)

     (6) 

Applying the finite difference approximation, the following simple expression is 

obtained: 

𝜇𝜇 ≈ − 𝐼𝐼+𝐴𝐴
2

     (7) 

where I and A are the ionisation potential and the electron affinity of an atom or molecule, 

respectively. Although a large number of experimental I values for organic molecules can 

be obtained, a very small number of experimental A values can be found. Using 

Koopmans’ theorem133 and Kohn–Sham’s formalism113 within DFT, these energies can 

be approached by the frontier HOMO and LUMO energies as I by -EHOMO and A by -

ELUMO. Consequently, the electronic chemical potential µ can be expressed as: 

𝜇𝜇 ≈ 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻+𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
2

     (8) 

Note that this relationship comprises only the FMO energies but not additional physical 

significance and, therefore, the use of the HOMO and LUMO energies of a molecule to 
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approach the I and A values in the CDFT is completely different to the analysis of the 

HOMO–LUMO interactions between two molecules used in the FMO theory. 

The identification of the electronic chemical potential µ with the negative of 

Mulliken electronegativity, −χ, which is a measure of the resistance to electron density 

loss, offers a way to calculate electronegativity values for atoms and molecules. In this 

sense, it was an important step forward, as there was no systematic way to evaluate 

electronegativities for atoms and molecules with the existing scales established by 

Pauling.134 

According to the electronegativity equalisation principle, primarily formulated by 

Sanderson,135 “when two or more atoms initially different in electronegativity combine 

chemically, their electronegativities become equalised in the molecule” through a flux of 

electron density from the less electronegative atom towards the more electronegative one. 

This behaviour can be extrapolated to molecules. Thus, the electronic chemical potential 

µ allows the establishment of the flux direction of the GEDT between two molecules 

along a polar reaction.61 Usually, the larger the electronic chemical potential difference, 

∆µ, the larger the GEDT. 

7.4.1.2. Chemical hardness 

In 1963, Pearson established a classification of Lewis acids and bases into hard and 

soft.136 He proposed that in an acid/base reaction, the most favourable interactions take 

place between hard/hard or soft/soft pairs, the HSAB principle. Within CDFT, Parr 

defined, in 1983, a quantitative expression for the chemical hardness η, which can be 

expressed as the changes of the electronic chemical potential µ of the system with respect 

to the electron number N at a fixed external potential ν(r) (see Eq. [9]).132a Chemical 

hardness η can be thought as the resistance of a molecule to exchange electron density 

with the environment.132a 

𝜂𝜂 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜈𝜈(𝒓𝒓)

= �𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑁𝑁2
�
𝜈𝜈(𝒓𝒓)

    (9) 

Applying the finite difference approximation, the following simple expression is 

obtained: 

 𝜂𝜂 ≈ 𝐼𝐼−𝐴𝐴
2

     (10) 
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which by substitution of I by -EHOMO and A by -ELUMO can be expressed as: 

 𝜂𝜂 ≈ 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
2

     (11) 

Usually, the term 1/2 is neglected, so that chemical hardness η is expressed as: 

η ≈ ELUMO - EHOMO     (12) 

On the other hand, chemical softness S was introduced as the inverse of chemical hardness 

η (see Eq. [13]). 

𝑆𝑆 = 1
𝜂𝜂
      (13) 

7.4.1.3. Electrophilicity 

In 1999, Parr defined the electrophilicity ω index,137 which gives a measure of the energy 

stabilisation of a molecule when it acquires an additional amount of electron density from 

the environment (see Eq. [14]).  

𝜔𝜔 = 𝜇𝜇2

2𝜂𝜂
      (14) 

The electrophilicity ω index has become a powerful tool for the study of the reactivity of 

organic molecules participating in polar reactions.138 A comprehensive study carried out 

in 2002 on the electrophilicity of a series of reagents involved in DA reactions allowed 

establishing a single electrophilicity ω scale.62 In 2003, the TACs participating in 32CA 

reactions were studied using the electrophilicity ω index, allowing a rationalisation of 

their reactivity in polar processes.63 In 2009, Domingo studied the DA reactions of 

cyclopentadiene with twelve ethylenes of increased electrophilicity.66 For this short 

series, a good correlation between the computed activation energies and the 

electrophilicity ω index of these ethylene derivatives was found (see Figure 7.1). In 

addition, a good correlation between the inverse of the electrophilicity ω index of simple 

molecules and their expected nucleophilicity was also found. However, this prediction 

for the nucleophilicity fails for more complex molecules such as captodative ethylenes 

displaying concurrently both electrophilic and nucleophilic behaviours.56b,139  
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Figure 7.1. Plot of the activation barriers (∆E≠) vs the electrophilicity index (ω), R2 = 0.92, for 
the DA reactions of cyclopentadiene with a substituted ethylene series. 

7.4.1.4. Nucleophilicity 

While for the electrophilicity ω index only one expression was established, several 

approaches for the nucleophilicity index were given.56b In 2008, Domingo proposed an 

empirical (relative) nucleophilicity N index for closed-shell organic molecules139 based 

on the HOMO energies and referred to TCE, which is one of the most electrophilic neutral 

species (see Eq. [15]). 

N = ΕHOMO(Nucleophile) - EHOMO(TCE)   (15) 

Similar to the electrophilicity scale,62 analysis of a series of common nucleophilic species 

participating in polar organic reactions allowed establishing a single nucleophilic scale.76 

Several theoretical and experimental studies have evidenced the capability of the 

nucleophilicity N index to predict the nucleophilic behaviour of simple and complex 

organic molecules displaying concurrently electrophilic and nucleophilic behaviours.140 

A good correlation between the experimental rate constant for the reactions of a series of 

5-substituted indoles with benzhydryl cation141 and the nucleophilicity N index of the 

former was found.140 

7.4.2. Local properties 

Another index that directly comes from CDFT is the electronic Fukui function f(r). In 

1984, Parr proposed the f(r) function,142 named frontier function or Fukui function, for a 

molecule, which represents the changes in electron density at a point r with respect to the 

variation of the number of electrons N at a fixed external potential ν(r) (see Eq. [16]).  
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𝑓𝑓(𝒓𝒓) = �𝜕𝜕𝜕𝜕(𝒓𝒓)
𝜕𝜕𝜕𝜕

�
𝜈𝜈(𝒓𝒓)

     (16) 

As a first approach, Parr proposed that nucleophilic f(r)- and electrophilic f(r)+ Fukui 

functions could approach HOMO and LUMO electron densities, respectively: 

𝑓𝑓(𝒓𝒓)− ≈ 𝜌𝜌𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝒓𝒓) for electrophilic attacks (17) 

and  

𝑓𝑓(𝒓𝒓)+ ≈ 𝜌𝜌𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝒓𝒓) for nucleophilic attacks (18) 

In this sense, the regioselectivity analysed within the FMO theory and that using Fukui 

functions based on FMOs is numerically identical, but conceptually completely different; 

while FMO theory establishes the most favourable MO overlap, CDFT establishes the 

most favourable nucleophilic/electrophilic interaction in a polar reaction, which depends 

on the total molecular electron density but not on any specific MO. However, these 

mathematical expressions did not exactly match with the theoretical concept of the 

electronic Fukui functions as derived from the CDFT. 

In case an amount equivalent to one electron is transferred, the nucleophile becomes 

a radical cation, while the electrophile becomes a radical anion. Interestingly, analysis of 

the ASD at the radical cation and the radical anion gives a picture of the distribution of 

the electron density in the nucleophile and the electrophile when they approach each other 

along the reaction progress. Based on these observations, in 2014, Domingo proposed the 

Parr functions P(r),82,143 based on the analysis of the ASD at the atom r of the radical 

cation and anion of a considered molecule; each ASD gathered at the different atoms of 

the radical cation and the radical anion provides the local nucleophilic  and 

electrophilic  Parr functions of the neutral molecule. Note that Parr functions are 

directly obtained from the analysis of the total electron density82 instead of only one 

selected MO that clearly is not representative of the whole system. 

 𝑃𝑃(𝒓𝒓)− = 𝜌𝜌𝑠𝑠𝑟𝑟𝑟𝑟(𝒓𝒓) for electrophilic attacks (19) 

and 

 𝑃𝑃(𝒓𝒓)+ = 𝜌𝜌𝑠𝑠𝑟𝑟𝑟𝑟(𝒓𝒓) for nucleophilic attacks (20) 

−
kP

kP+
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where ρs
rc(r) is the ASD at the r atom of the radical cation of a considered molecule and 

ρs
ra(r) is the ASD at the r atom of the radical anion. Each ASD gathered at the different 

atoms of the radical cation and the radical anion of a molecule provides the local 

nucleophilic  and electrophilic  Parr functions of the neutral molecule. 

A great deal of theoretical work devoted to the study of molecular mechanisms of 

polar reactions involving non-symmetric reagents has shown that the most favourable 

reactive channel is that associated with the two-center interaction between the most 

electrophilic center of the electrophile and the most nucleophilic center of the 

nucleophile.61,63,109 Thus, the local electrophilicity ωk and local nucleophilicity Nk (see 

Eq. [21] and [22]), which permit the distribution of the global electrophilicity ω and 

nucleophilicity N indices at the atomic sites k through the electrophilic  and 

nucleophilic  Parr functions, respectively, enable the characterisation of the most 

electrophilic and nucleophilic centers in the molecule, and thus, the prediction of the 

regio- and chemo- selectivities in polar reactions.   

 𝜔𝜔𝑘𝑘 = 𝜔𝜔 · 𝑃𝑃𝑘𝑘+      (21) 

 𝑁𝑁𝑘𝑘 = 𝑁𝑁 · 𝑃𝑃𝑘𝑘−      (22) 

7.5. GEDT 

Numerous theoretical studies have shown that along a polar reaction, there is an electron 

density transfer from the nucleophilic towards the electrophilic species arising from the 

electronic chemical potential differences of both reagents. This GEDT61 can be computed 

as the sum of the atomic charges (q) of each molecular framework (f) (see Eq. [23]), in 

such a manner that the larger the GEDT at the TS, the more polar the reaction. Note that 

the GEDT concept comes from the observation that the electron density transfer taking 

place from the nucleophile to the electrophile along a polar reaction is not a local process, 

but a global one involving the two interacting frameworks. 

 GEDT (f) =  ∑ 𝑞𝑞𝑞𝑞∈𝑓𝑓 ;  f=nucleophile, electrophile    (23) 

Several studies of cycloaddition reactions allowed establishing a very good correlation 

between the polar character of the reactions and their feasibility; i.e. the larger the GEDT 

at the TS, the more polar and thus, faster, the reaction (see Figure 7.2). Therefore, GEDT 

−
kP kP+

kP+

−
kP
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accelerates polar reactions through more zwitterionic TSs. This good correlation was 

quantitatively ascertained in 200262 and 2003,63 indicating that GEDT could be one of the 

key factors in activation energy.66 The GEDT depends on the nucleophilic/electrophilic 

behaviours of the reagents; the more electrophilic a reagent is and more nucleophilic the 

other is, the higher the GEDT that usually takes place.102 Consequently, to analyse the 

polar character of an organic reaction, 32CA reactions among them, both the 

electrophilicity ω62 and nucleophilicity N indices139,140 of the two reagents should be 

analysed. Note that analysis of the μ of the reagents provides information only about the 

direction of the GEDT flux.61 
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Figure 7.2. Plot of the logarithm of the experimental rate constant k vs the GEDT, in average 
number of electrons, e, for the DA reactions of cyclopentadiene with ethylene 6 and the 
cyanoethylene derivatives series; R2 = 0.99. 

7.6. QC studies based on the topological analysis of electron density 

In spite of the advances made in QC, the characterisation of chemical bonds, and more 

specifically the breaking/forming processes along a reaction, appeared to be 

unresolved,144 hence the unquestionable assumption of concepts such as “concerted” or 

the self-contradictory “asynchronous concerted” based on hypothesis but not on evidence 

about how the formation or rupture of bonds along the reaction takes place.  

Like many other chemical concepts, chemical bonds are defined in a rather 

ambiguous manner as they are not observable, but rather belong to a representation of the 

matter at a microscopic level which is not fully consistent with quantum mechanical 

principles. To harmonise the chemical description of matter with QC postulates, several 

mathematical models have been developed. Among them, the theory of dynamical 
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systems,145 convincingly introduced by Bader in the early 1960s through the theory of 

AIM58,146 has become a powerful method of analysis. The AIM theory enables a partition 

of the electron density within the molecular space into basins associated with atoms (see 

Figure 7.3). The development of the AIM theory was the origin of a significant 

contribution to conceptual chemistry in the definition of concepts such as the atom inside 

a molecule or bond critical points.147 However, as atoms in QTAIM do not overlap, they 

cannot share electron pairs and therefore, the Lewis’s model is not consistent with the 

description of the matter provided by QTAIM.148  

 
Figure 7.3. QTAM analysis of the electron density of the BF3 molecule. 

Another appealing procedure that provides a more straightforward connection between 

the electron density distribution and the chemical structure is the QC analysis of the ELF 

introduced in 1990 by Becke and Edgecombe.57 ELF constitutes a useful relative measure 

of the electron pair localisation characterising the corresponding electron density (see 

Figure 7.4). In 1991, Silvi and Savin presented the ELF in a very chemical fashion, using 

its topological analysis as an appealing model of chemical bonding.149 Thus, the ELF 

description recovers Lewis’s bonding model, providing a very suggestive graphical 

representation of the molecular system. 

 
Figure 7.4. ELF basins of the water molecule 

The characterisation of the electron density reorganisation to evidence the bonding 

changes along a reaction path is the most attractive method to characterise a reaction 
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mechanism.60a,107c,150 To perform these analyses quantitatively, the BET, consisting of the 

joint-use of ELF topology and Thom’s CT,151 was proposed by Krokidis et al.152 in 1997 

as a new tool for analysing the electronic changes in chemical processes, being widely 

applied in the study of different elementary reactions.153 This QC methodology makes it 

possible to establish the nature of the bonding changes associated with the electronic 

rearrangement along a reaction path and, thus, to understand the molecular mechanism of 

the reaction.60a,107a-c 

Until 2010, only several ways to view and analyse covalent and electrostatic 

interactions were available. However, analogous methods for NCI were conspicuously 

missing. Covalent bonds are intuitively represented using conventional Lewis structures75 

and could be characterised by either the ELF or the AIM theory. Also, purely electrostatic 

interactions could be analysed using electrostatic potential maps.154 However, NCI were 

frequently visualised using distance-dependent contacts, generally without consideration 

of hydrogen atoms.155 Hydrogen bonds could be identified from the molecular 

geometry156 and from ELF,157 while grid-based calculations originating from classical 

force fields were used to model other van der Waals interactions.158 In 2010, Johnson et 

al. developed an approach, using the density and its derivatives, that allows simultaneous 

analysis and visualisation of a wide range of non-covalent interactions types as real space 

surfaces (see Figure 7.5),59 adding an important tool to a chemist’s arsenal for the analysis 

of molecular structure based on electron density.  

 
Figure 7.5. NCI analysis of the hydrogen bonds in the acetic acid dimers. 
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A recent analysis about the applicability of the B3LYP128 MPWB1K129 and M06-2X130 

functionals in the study of non-polar and polar cycloaddition reactions allowed selecting 

the two former as the most adequate ones for the study of this type of organic reactions.102 

In addition, several studies have emphasised that the inclusion of diffuse functions127 

produces no notable changes in the relative energies associated with reactions of species 

presenting no located charges, such as TACs.159 Consequently, DFT calculations were 

performed using the B3LYP or the MPWB1K functionals together with the standard 6-

31G(d), 6-311G(d) or 6-311G(d,p) basis sets. Optimisations were carried out using the 

Berny analytical gradient optimisation method.160 The stationary points were 

characterised by frequency computations in order to verify that TSs have one and only 

one imaginary frequency. The IRC paths161 were traced in order to check and obtain the 

energy profiles connecting each TS to the two associated minima of the proposed 

mechanism using the second order González-Schlegel integration method.162 Solvent 

effects were taken into account by full optimisation or single-point energy calculations at 

the gas phase structures using the PCM developed by Tomasi’s group163 in the framework 

of the SCRF.164  

The GEDT61 was computed by the sum of the natural atomic charges (q), obtained 

by an NPA,165 of the atoms belonging to each framework (f) at the TSs; i.e. GEDT (f) =  

∑ 𝑞𝑞𝑞𝑞∈𝑓𝑓 , where f is the TAC or the ethylene framework. The sign indicates the direction 

of the electron density flux in such a manner that positive values mean a flux from the 

considered framework to the other one. CDFT global reactivity indices and Parr 

functions82 were computed using the equations given in the Theoretical Background. All 

computations were carried out with the Gaussian 09 suite of programs.166  

Topological analysis of the ELF57 was performed with the TopMod167 package 

using the corresponding monodeterminantal wavefunctions and considering a cubical 

grid of step size of 0.1 Bohr. For the BET studies,152 the corresponding reaction paths 

were followed by performing the topological analysis of the ELF for at least 300 nuclear 

configurations along the IRC paths. QTAIM58 and NCI59 studies were performed with the 

Multiwfn168 and NCIplot169 programs, respectively, by evaluating the SCF density.  

The molecular geometries and ELF basin attractor positions were visualised using 

the GaussView program,170 while the representation of the ELF basin isosurfaces and NCI 

gradient isosurfaces was done by using the UCSF Chimera program,171 at isovalues of 

0.7–0.8 a.u., and the VMD program,172 at an isovalue of 0.5 a.u., respectively.  
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RESUMEN EN CASTELLANO 

Introducción 

Los compuestos heterocíclicos son especies carbocíclicas que contienen al menos un 

heteroátomo, como nitrógeno, oxígeno o azufre. Se pueden clasificar en dos categorías: 

alifáticos, como el tetrahidrofurano o el 4,5-dihidroisoxazol, y aromáticos, como el 1,3-

tiazol o la quinolina. Los más comunes son de cinco o seis miembros. El número, 

diversidad y aplicaciones de los compuestos heterocíclicos son enormes. En los últimos 

años, han recibido una gran atención, particularmente debido a su potencial tanto 

farmacológico como sintético. 

Las reacciones de cicloadición intermoleculares son una de las mejores opciones 

para sintetizar compuestos heterocíclicos, por su facilidad sintética dando generalmente 

excelentes selectividades. En particular, las reacciones de cicloadición [3+2] (32CA) son 

uno de los métodos más poderosos para la síntesis de compuestos heterocíclicos de cinco 

miembros. 

Las reacciones 32CA consisten en la adición de un sistema con enlaces múltiples a 

un componente triatómico (TAC), que es una especie neutra cuya estructura principal está 

constituida por tres núcleos continuos que comparten una densidad electrónica de 4e. Los 

TACs pueden clasificarse geométricamente en dos categorías: estructuras de tipo alílico 

(A-TAC) y de tipo propargílico (P-TAC); mientras que los A-TACs están doblados, los 

P-TACs tienen una estructura lineal. 

Aunque las reacciones 32CA se conocían experimentalmente desde finales del siglo 

XIX, fueron reconocidas por Huisgen por primera vez en 1961 por su generalidad, 

aplicación y mecanismo. El gran trabajo y esfuerzo de Huisgen y colaboradores en este 

campo condujeron al rápido desarrollo de estas reacciones y le consagraron como el 

“padre” de las “cicloadiciones 1,3-dipolares”. 

A diferencia de los hidrocarburos insaturados que participan en las reacciones de 

Diels-Alder (DA), los TACs no pueden ser representados por una única estructura de 

Lewis. De acuerdo con el concepto de resonancia desarrollado por Pauling en 1928 dentro 

de la Teoría del Enlace de Valencia (VBT), Huisgen propuso en 1961 que los TACs 

podrían representarse principalmente mediante estructuras resonantes octeto y sexteto de 

Lewis. Mientras que las estructuras de resonancia octeto eran las principales 

contribuyentes a la estructura electrónica de los TACs, las estructuras de resonancia 
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sexteto mostraban un carácter “1,3-dipolar” y, por tanto, estas especies se denominaron 

“1,3-dipolos” con ambas terminaciones siendo tanto nucleofílicas como electrofílicas 

(especies ambivalentes). Por otra parte, en 1968, Firestone propuso, como representación 

principal de estas especies, una estructura de resonancia diradical equivalente a las 

estructuras resonantes zwitteriónicas. Aunque esta idea fue inicialmente criticada por 

Huisgen, éste finalmente aceptó una cierta participación de esta estructura diradical en el 

híbrido de resonancia. 

En cuanto al mecanismo, Huisgen propuso inicialmente tres mecanismos: A) el 

extremo positivo del TAC inicia el ataque y el polo negativo completa la adición; B) el 

centro negativo puede actuar primero y luego el positivo; o C) ambos centros cargados 

pueden actuar al mismo tiempo. Si bien sugirió que las rutas A y B tendrían lugar a través 

de los octetos 1,2-dipolares, consideró que la ruta C tenía lugar a través de los sextetos 

1,3-dipolares. Por tanto, debido a la naturaleza supuestamente “concertada” del 

mecanismo C, Huisgen sugirió un mecanismo “concertado” a cuatro centros en un solo 

paso, en el que los dos nuevos enlaces sencillos están parcialmente formados en el estado 

de transición (TS), aunque en 1963 propuso que no necesariamente en la misma medida. 

Por otro lado, en 1968, Firestone expuso varias inconsistencias experimentales 

sobre el mecanismo, la estereoespecificidad, la estructura de los TACs y de los derivados 

de etileno y acetilénicos, el efecto solvente y la orientación de los reactivos que propuso 

Huisgen para estas reacciones de cicloadición, proponiendo un mecanismo alternativo en 

dos etapas a través de la formación de un intermedio diradical, pero reconociendo que 

podía existir una dualidad de mecanismos. 

En esas fechas, diversos cálculos basados en la química cuántica permitieron el 

comienzo de los estudios computacionales sobre las reacciones 32CA. Hasta entonces 

había evidencias tanto teóricas como experimentales de que las reacciones 32CA pueden 

transcurrir por mecanismos de uno o varios pasos. En general, los estudios teóricos de 

reacciones 32CA, basados en la caracterización de los puntos estacionarios a lo largo del 

camino de reacción, permitieron establecer que la mayoría de ellas tienen lugar a través 

de un mecanismo de un solo paso en el que la formación de los dos enlaces sencillos es 

más o menos asíncrona. La gran aceptación que tuvo el concepto de “mecanismo 

pericíclico” desde que se propuso en los años 70 condujo a la clasificación de las 

reacciones 32CA de un solo paso como reacciones “pericíclicas” incuestionablemente. 

Hoy en día, las reacciones 32CA de un solo paso siguen clasificadas para la mayoría de 

los químicos como “reacciones pericíclicas concertadas” que tienen lugar a través de “TSs 
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aromáticos” y que se explican por las reglas de simetría orbital de Woodward-Hoffmann, 

así como las reglas de aromaticidad de Dewar. Sin embargo, debe señalarse que aunque 

varias derivaciones teóricas de las reglas establecidas por Woodward y Hoffmann se 

propusieron como modelos alternativos de racionalización de las reacciones 

“pericíclicas”, este mecanismo nunca se demostró.  

Para explicar la reactividad de los TACs en las reacciones 32CA, Houk propuso, en 

2007, el modelo energético de distorsión/interacción (DIEM) en el que la barrera de 

activación se divide en dos términos aditivos: la energía de distorsión, que es la energía 

necesaria para distorsionar los reactivos hasta la geometría del TS sin permitir interacción 

entre ellos, y la energía de interacción, que consiste, a su vez, en varias fuerzas atractivas 

y repulsivas. La idoneidad de este modelo de reactividad se verificó en las reacciones 

32CA de nueve TACs diferentes, seis P-TAC y tres A-TAC, con etileno y acetileno. Houk 

encontró que las entalpías de activación se correlacionaban muy bien con las energías de 

distorsión, concluyendo que la energía de distorsión de los reactivos hacia el TS es el 

factor principal que controla las diferencias de reactividad de los TACs. Cuando las 

energías de distorsión son aproximadamente las mismas, las interacciones pueden 

convertirse en el factor determinante. 

Sin embargo, este hallazgo, que puede considerarse una afirmación computacional 

del postulado de Hammond establecido en 1955, no resuelve la pregunta de por qué las 

energías de activación dependen de las geometrías, que son el resultado de la distribución 

de la densidad electrónica molecular. Además, la partición de la geometría del TS en dos 

estructuras separadas no tiene sentido físico dentro de la Teoría del Funcional de la 

Densidad (DFT), ya que en este modelo químico-cuántico la energía de un sistema es 

función de la densidad electrónica y el potencial externo, es decir, las posiciones 

nucleares. Por tanto, la energía de los dos fragmentos separados no puede correlacionarse 

con la energía del TS porque cada uno de ellos pierde el potencial externo creado por el 

otro fragmento. 

Aunque varios modelos teóricos basados en el análisis de orbitales moleculares 

(MO), como la teoría de los orbitales moleculares frontera (FMO), se han usado 

ampliamente para explicar la reactividad en química orgánica, los MOs no son 

físicamente observables, sino sólo construcciones matemáticas, que no pueden 

determinarse experimentalmente, utilizadas para obtener la función de onda molecular. 

Por el contrario, la distribución de la densidad electrónica en una molécula o cristal puede 

observarse experimentalmente mediante difracción de electrones y cristalografía de rayos 
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X; de hecho, puede obtenerse también a partir de cálculos ab initio o DFT, y con 

frecuencia más fácilmente que los MOs. Por tanto, a diferencia de los MOs, sólo la 

densidad electrónica, que es responsable de todas las propiedades moleculares, incluida 

la geometría, es un escalar accesible experimentalmente.  

Recientemente, Domingo ha propuesto una nueva teoría de reactividad en química 

orgánica, la Teoría de la Densidad Electrónica Molecular (MEDT), según la cual los 

cambios en la densidad electrónica a lo largo de una reacción, y no las interacciones entre 

MOs como propone la teoría FMO, son los responsables de la reactividad de las moléculas 

orgánicas. La MEDT no es solo un nuevo modelo de reactividad en química orgánica 

basado en el análisis de la densidad electrónica molecular, sino que también descarta los 

modelos basados en el análisis de MOs, como la teoría FMO. Aunque muchos estudios 

teóricos que aplican la teoría FMO dan resultados numéricamente cualitativos que se 

ajustan a las observaciones experimentales, dicho modelo es conceptualmente incorrecto 

porque los MOs no tienen realidad física y por tanto no pueden interactuar físicamente. 

Además, el LUMO es el primer MO virtual no ocupado sin ninguna participación en la 

construcción de la función de onda molecular. 

A diferencia de la teoría FMO, la MEDT se centra en el análisis de la densidad 

electrónica y los cambios energéticos asociados con su redistribución a lo largo del 

camino de reacción. En los análisis llevados a cabo dentro la MEDT, además de una 

exhaustiva exploración y caracterización de los caminos de reacción correspondientes a 

la reacción estudiada, se utilizan los índices de reactividad definidos en la DFT conceptual 

(CDFT), así como herramientas químico-cuánticas basadas en el análisis topológico de la 

densidad electrónica molecular como la función de localización electrónica (ELF), la 

Toería Cuántica de Átomos en Moléculas (QTAIM) y las interacciones no-covalentes 

(NCI), para estudiar la reactividad en química orgánica. 

Desde el comienzo de este siglo, el análisis de la densidad electrónica se ha aplicado 

al estudio de varias reacciones orgánicas, incluidas las reacciones 32CA. Estos primeros 

estudios MEDT supusieron el comienzo de una revolución en el campo de la química 

orgánica, permitiendo la construcción de un nuevo modelo de reactividad que contribuyó 

al avance de la química conceptual así como a descartar conceptos fuertemente 

establecidos tales como los mecanismos “concertados” y “pericíclicos” para las 

reacciones de DA.  
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Objetivos 

Aunque Firestone propuso una estructura resonante de Lewis diradical como el principal 

contribuyente al híbrido de resonancia de los TACs, en la actualidad los químicos 

orgánicos representan los TACs como estructuras de Lewis 1,2-zwitteriónicas, de acuerdo 

con la propuesta de Huisgen. 

En 2010, el análisis topológico de la ELF de la estructura electrónica de los iluros 

de azometino y carbonilo reveló que estos TACs presentan una estructura 

pseudodiradical. La alta reactividad de estos TACs en reacciones 32CA se atribuyó, por 

tanto, a su carácter pseudodiradical. Así, en 2014, dependiendo de los diferentes patrones 

de reactividad observados, las reacciones 32CA se clasificaron inicialmente en tipo pr 

(pseudodiradical) y tipo zw (zwitteriónico). Nótese que la estructura electrónica de otros 

TACs siguió estando inexplorada y, en consecuencia, cualquier TAC que no tuviera una 

estructura pseudodiradical fue clasificado como un TAC zwitteriónico. 

En este contexto, tres fueron los principales objetivos que nos propusimos:  

1) Completar la caracterización de la estructura electrónica de los TAC orgánicos más 

importantes utilizados en las reacciones 32CA, con el fin de establecer una 

clasificación general de este importante tipo de reacciones de cicloadición. 

2) Establecer los factores estructurales electrónicos que rigen la reactividad de los TACs. 

3) Esclarecer los mecanismos moleculares de las reacciones 32CA, lo que, a su vez, 

permitiría probar la validez de las anteriores propuestas mecanísticas de Huisgen y 

Firestone. 

De los objetivos anteriores derivaron varios objetivos adicionales: 

4) Proporcionar una explicación de la tendencia lineal entre las energías de activación y 

los cambios de geometría observados por Houk en las reacciones 32CA. 

5) Investigar la veracidad de los conceptos clásicos supuestamente no demostrados, como 

el mecanismo “pericíclico” propuesto para las reacciones 32CA en un paso. Hay que 

considerar que el mecanismo "pericíclico" se descartó previamente para las reacciones 

de DA. 

6) Y, por último, demostrar que la química orgánica necesita replantearse en base al 

estudio de la densidad electrónica molecular como un todo, en lugar del análisis 

individual de MOs. 
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Si bien a lo largo de estos tres años el grupo ha desarrollado una gran cantidad de 

trabajo, resultando en más de treinta y cinco publicaciones, veintidós de ellas dedicadas 

al estudio de las reacciones 32CA, solo ocho directamente relacionadas con los objetivos 

de la tesis se han presentado y discutido en la presente tesis doctoral. 

Metodología 

Un análisis reciente sobre la aplicabilidad de los funcionales B3LYP, MPWB1K y M06-

2X en el estudio de reacciones de cicloadición no polares y polares permitió seleccionar 

los dos primeros como los más adecuados para el estudio de este tipo de reacciones 

orgánicas. Además, varios estudios han demostrado que la inclusión de funciones difusas 

no produce cambios notables en las energías relativas asociadas a reacciones de especies 

que no presentan cargas localizadas, como los TACs. Por tanto, los cálculos DFT se 

realizaron usando los funcionales B3LYP o MPWB1K junto con las basis sets estándar 

6-31G(d), 6-311G(d) o 6-311G(d, p). Las optimizaciones se llevaron a cabo utilizando el 

método de optimización del gradiente analítico de Berny. Los puntos estacionarios se 

caracterizaron por cálculos de frecuencia para verificar que los TSs tenían una y sólo una 

frecuencia imaginaria. Se trazaron las trayectorias de la coordenada de reacción intrínseca 

(IRC) para verificar y obtener los perfiles de energía que conectan cada TS con los dos 

mínimos asociados del mecanismo propuesto, utilizando el método de integración 

González-Schlegel de segundo orden. Los efectos del disolvente se tuvieron en cuenta 

mediante optimización completa o lectura energética en las estructuras optimizadas en 

fase gas, usando el modelo continuo polarizable (PCM) desarrollado por el grupo de 

Tomasi en el marco del campo de reacción auto-consistente (SCRF). 

La transferencia global de densidad electrónica (GEDT) se calculó como la suma 

de las cargas atómicas naturales (q), obtenidas por un análisis de las poblaciones naturales 

(NPA), de los átomos que pertenecen a cada estructura (f) en los TS; es decir, GEDT (f) 

= ∑ 𝑞𝑞𝑞𝑞∈𝑓𝑓 , donde f es el TAC o el etileno. El signo indica la dirección del flujo de densidad 

electrónica, de tal forma que valores positivos significan un flujo desde la estructura 

considerada hacia la otra. Los índices globales de reactividad definidos en la CDFT y las 

funciones Parr se calcularon usando las ecuaciones publicadas en Molecules 2016, 21, 

748. Todos los cálculos se llevaron a cabo con el paquete de programas Gaussian 09. 

El análisis topológico de la ELF se realizó con el programa TopMod usando las 

funciones de onda monodeterminantes correspondientes y considerando una cuadrícula 
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cúbica de 0.1 Bohr de tamaño. Para los estudios BET, se siguieron las trayectorias de 

reacción correspondientes realizando el análisis topológico de la ELF para al menos 300 

configuraciones nucleares a lo largo de las trayectorias del IRC. Los estudios QTAIM y 

NCI se realizaron con los programas Multiwfn y NCIplot, respectivamente, mediante la 

evaluación de la densidad SCF. 

Las geometrías moleculares y las posiciones de los atractores de los basines de la 

ELF se visualizaron usando el programa GaussView, mientras que las representaciones 

de las isosuperficies de los basines de la ELF y las isosuperficies de gradiente del NCI se 

realizaron utilizando el programa UCSF Chimera, con isovalores de 0.7-0.8 a.u. y el 

programa VMD, con un isovalor de 0.5 a.u., respectivamente. 

Conclusiones 

Desde el comienzo del presente siglo, ha habido un creciente interés en explicar la 

reactividad química a partir del análisis de los cambios de la densidad electrónica a lo 

largo del camino de reacción. En este contexto, en 2016, Domingo propuso la MEDT 

como una nueva teoría de reactividad en Química Orgánica, que establece que los 

cambios en la densidad electrónica a lo largo del camino de reacción, y no las 

interacciones entre MOs, son los responsables de la reactividad de las moléculas 

orgánicas. 

En la presente tesis, se ha abordado el estudio de las reacciones 32CA basándonos 

en la MEDT, lo cual nos ha permitido revisitar la visión clásica de las reacciones 32CA, 

ampliamente discutidas desde los años 60, así como las teorías y conceptos relacionados. 

Los recientes estudios MEDT dedicados a las reacciones 32CA, entre ellos los que se 

incluyen en la presente tesis doctoral, han permitido establecer una muy buena correlación 

entre la estructura electrónica de los TACs y su reactividad. Así, dependiendo de la 

estructura electrónica del TAC, es decir, pseudodiradical, pseudoradical, carbenoide o 

zwitteriónica, las reacciones 32CA se han clasificado en reacciones de tipo 

pseudodiradical (tipo pdr), tipo pseudoradical (tipo pmr), tipo carbenoide (tipo cb) y tipo 

zwitteriónico (tipo zw). La tendencia de reactividad disminuye en el orden 

pseudodiradical > carbenoide ≈ pseudoradical > zwitterionic, de forma que mientras que 

las reacciones 32CA de tipo pdr tienen lugar fácilmente a través de TSs tempranos, las 

reacciones 32CA de tipo zw requieren una adecuada activación nucleofílica/ electrofílica 

para tener lugar. El carácter polar de la reacción influye en los cuatro tipos de reactividad, 
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es decir, cuanto más intensas sean las interacciones nucleofílicas/ electrofílicas que tienen 

lugar en los TSs, más rápidas serán las reacciones. También hay que señalar que aunque 

la sustitución puede cambiar la estructura electrónica de los TACs más simples, la 

relación entre la estructura y la reactividad se mantiene. 

Las características electrónicas de los distintos tipos de estructuras de TACs 

explican el origen de la tendencia de reactividad en las reacciones 32CA no polares. Los 

dos centros pseudodiradicales presentes en los TAC pseudodiradicales simétricos 

favorecen un proceso de formación de enlace simples C-C síncrono a través de una 

ruptura homolítica del doble enlace C-C del etileno. Este comportamiento explica la alta 

reactividad de los iluros de azometino y carbonilo, puesto que ya presentan los dos centros 

pseudoradicales necesarios para la formación del enlace sencillo C-C, de forma que ya 

están preparados para reaccionar. Sin embargo, este comportamiento no es posible en las 

reacciones 32CA de tipo pmr; los TACs pseudoradicales no simétricos no pueden inducir 

una despoblación simétrica del doble enlace C-C del etileno efectiva, ya que no tienen el 

segundo centro pseudoradical requerido para la formación del segundo enlace sencillo. 

Por último, como el enlace múltiple presente en los TACs zwitteriónicos tiene que 

romperse primero, las reacciones 32CA de tipo zw exigen el coste energético más alto, 

que puede reducirse por la polaridad de la reacción. 

La reactividad de los TAC carbenoides que participan en las reacciones 32CA de 

tipo cb es completamente diferente a la de los otros tres tipos de TACs. En las reacciones 

32CA en las que participan TACs carbenoides, la formación del primer enlace sencillo 

C-C tiene lugar mediante la donación de la densidad electrónica no enlazante del centro 

carbenoide a un carbono electrofílico, mientras que en las reacciones 32CA no polares en 

las que participan los otros tres tipos de TACs, la formación del primer enlace sencillo C-

C tiene lugar mediante el acoplamiento de dos centros pseudoradicales generados en los 

átomos de carbono que están interaccionando.  

Por otro lado, las reacciones polares 32CA comienzan por la interacción a dos 

centros entre el centro más nucleofílico del nucleófilo y el centro más electrofílico del 

electrófilo, comportamiento que se anticipa por el análisis de las funciones de Parr. En 

general, los TACs participan como nucleófilos en las reacciones 32CA polares. Así, el 

análisis de las funciones de Parr nucleofílicas de los TACs pseudoradicales y 

zwitteriónicos indica que el heteroátomo terminal es normalmente su centro más 

nucleofílico. En estos casos, el análisis topológico de la ELF de los cambios de enlace a 

lo largo del camino de reacción más favorable revela que la reacción comienza por la 
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donación de parte de la densidad electrónica no enlazante del centro más nucleofílico del 

TAC al carbono más electrofílico del derivado de etileno. Por tanto, las reacciones 32CA 

polares de tipo pmr y zw siguen un mecanismo molecular similar al de las reacciones 

32CA de tipo cb. Este comportamiento juega un papel importante en la regioselectividad 

de estas reacciones y soporta la relevancia del análisis de los índices de la CDFT en el 

estado fundamental de los reactivos en el estudio de la reactividad en reacciones 32CA. 

En este sentido, a partir del análisis de los cambios de enlace a lo largo de las 

reacciones 32CA polares de tipo zw, cb y pmr, se ha establecido un nuevo modelo para 

la formación de enlaces simples C−X (X = C, N, O) por donación de densidad electrónica 

no enlazante. Mientras que el modelo por compartición exige la ruptura homolítica de 

enlaces múltiples, el mecanismo por donación exige la despoblación inicial del carbono 

β-conjugado del etileno sustituido, un hecho que solo es posible cuando hay grupos 

fuertemente atractores de electrones, como -CHO o -NO2, en la posición α. 

Esta racionalización MEDT de las reacciones 32CA revive, pero también aclara, la 

clásica controversia entre las propuestas mecanísticas de Huisgen y Firestone. 

En cuanto a la estructura electrónica de los TACs, el análisis de su distribución de 

densidad electrónica, es decir, el patrón de enlaces, revela que mientras que los TACs 

zwitteriónicos corresponden a la propuesta de Huisgen, los TACs pseudodiradicales 

corresponden a la propuesta de Firestone. Sin embargo, el NPA de la distribución de 

cargas de los TACs sugieren que no son estructuras 1,3- ni 1,2-zwitteriónicas con una 

separación de cargas total y, por lo tanto, nuestra concepción de TACs zwitteriónicos, 

que no considera cargas sino solo un patrón de enlaces, difiere ligeramente de la 

definición de Huisgen de “1,3-dipolos”. 

En cuanto a sus propuestas mecanísticas, cuando dos reactivos experimentan una 

reacción 32CA polar o no polar, hay tres modos de aproximación conformacionales 

diferentes: uno a través de un mecanismo de un paso y otros dos que dan lugar a 

intermedios que deben experimentar una rotación a través del enlace sencillo para la 

formación del siguiente enlace. En reacciones 32CA no polares, es decir, los reactivos no 

son nucleófilos fuertes ni electrófilos fuertes, estos compuestos intermedios son 

diradicales (Firestone); por el contrario, en reacciones 32CA polares, es decir, un reactivo 

es un nucleófilo fuerte y el otro es un electrófilo fuerte, estos intermedios tienen una 

naturaleza zwitteriónica (Huisgen). 
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 En general, el modo de aproximación en una etapa presenta una energía de 

activación más baja que los modos de aproximación por etapas y, por tanto, los caminos 

de reacción por etapas no son competitivos. Sin embargo, si ambos intermedios 

diradicales o zwitteriónicos están lo suficientemente estabilizados, podrían interceptarse 

o experimentar rotación en el etileno, y entonces la reacción podría perder su 

estereoespecificidad. Por otro lado, el análisis topológico de la ELF a lo largo de caminos 

de reacción de un paso demuestra que ni los procesos polares ni los no-polares en una 

etapa son “concertados”, sino que los cambios de enlace son secuenciales, descartando 

así el mecanismo “pericíclico” propuesto por Woodward y Hoffmann. La polaridad 

aumenta la asincronicidad de la formación de los nuevos enlaces sencillos en reacciones 

de cicloadición, de tal forma que la mayoría de las reacciones 32CA polares tienen lugar 

a través de un mecanismo no concertado de dos etapas en un solo paso; la estabilización 

adicional de un intermediario zwitteriónico viable podría cambiar el mecanismo a uno de 

dos pasos, pero los cambios de enlace secuenciales siguen siendo esencialmente los 

mismos. 

Finalmente, nuestro modelo de reactividad para reacciones 32CA, basado en el 

análisis de la densidad electrónica, permite una racionalización del DIEM de Houk, 

basado en energías de distorsión; es decir, la viabilidad de una reacción 32CA no está 

controlada por la distorsión requerida para alcanzar el TS (postulado de Hammond) sino 

por la similitud de la estructura electrónica del TAC a la requerida para la formación de 

los nuevos enlaces simples, que hace que el TS sea menos energético y más temprano Por 

lo tanto, la posición del TS, es decir, su carácter temprano o avanzado, está determinada 

por la estructura electrónica del TAC junto con la naturaleza electrónica polar o no polar 

de la reacción. 

En la presente tesis doctoral, la clásica teoría sobre reacciones 32CA, establecida 

en los años 60 del siglo pasado y que aún prevalece hoy día, se ha revisitado y 

reinterpretado basándonos en la MEDT. Se ha establecido un nuevo y sólido modelo de 

reactividad para las reacciones 32CA, mientras que el mecanismo “pericíclico” y el 

DIEM, que han sido ampliamente utilizados para su racionalización, se descartan, 

enfatizando que la forma en que los químicos orgánicos conciben la química orgánica 

necesita una revisión contemporánea basada en el análisis de la densidad electrónica. 

En resumen, después de la primera clasificación de las reacciones 32CA en reacciones de 

tipo zw y pr, establecidas en el año 2014, la estructura y reactividad de los TACs más 
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importantes utilizados en las reacciones 32CA ha sido completamente caracterizado en 

base a la MEDT propuesta recientemente. Entre la gran cantidad de trabajo desarrollado 

a lo largo de la presente tesis doctoral, se han seleccionado y discutido ocho publicaciones 

representativas, que permitieron caracterizar dos nuevos tipos de reactividad y consolidar 

la reactividad original de tipo zw. Así, dependiendo de las cuatro estructuras electrónicas 

diferentes de los TACs, es decir, pseudodiradical, pseudoradical, carbenoide y 

zwitteriónica, las reacciones 32CA se han clasificado en reacciones de tipo pdr, pmr, cb 

y zw. Mientras que las reacciones 32CA de tipo pdr son las más rápidas, las reacciones 

de tipo zw son las más lentas. Las diferentes estructuras electrónicas en el estado 

fundamental de los reactivos explican esta tendencia de reactividad y revelan que la 

reactividad de los TACs carbenoides es diferente. Además, ningún TAC puede 

considerarse una estructura 1,2-zwitteriónica, tal y como se propone para los “1,3-

dipolos”. El carácter polar de la reacción, medido por el valor de la GEDT calculado en 

la estructura del TS, afecta a los cuatro tipos de reactividad, de tal forma que cuanto más 

fuertes sean las interacciones nucleofílicas / electrofílicas que tienen lugar en el TS, más 

rápida es la reacción, e incluso puede cambiar el mecanismo molecular de acuerdo con 

las funciones de Parr definidas dentro de la CDFT. Esta racionalización basada en la 

MEDT de las reacciones 32CA esclarece las propuestas mecanísticas de Huisgen y 

Firestone establecidas en los años 60. Independientemente del tipo de reactividad y el 

carácter polar de la reacción, el análisis topológico de la ELF a lo largo de las reacciones 

32CA que tienen lugar en un solo paso sugiere que los cambios de enlace no son 

“concertados” sino secuenciales, descartando así la clasificación de estas reacciones 

como “pericíclicas”. En la presente tesis doctoral, la teoría clásica de las reacciones 

32CA, establecida en los años 60 del siglo pasado y que aún prevalece en la actualidad, 

es revisitada y reinterpretada en base a la MEDT. Se establece un nuevo y sólido modelo 

de reactividad para las reacciones 32CA, enfatizando que la visión actual de la química 

orgánica necesita replantearse en base al análisis de la densidad electrónica. 
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A Molecular Electron Density Theory study of the zw‐type 32CA reactions of

acetonitrile oxide (NO) with two 7‐oxanorborn‐5‐en‐2‐ones (ONBs) has been

performed at the DFT B3LYP/6‐31G(d) computational level. These cycloadditions

proceed through one‐step mechanisms with high activation energies and present

low para regio and complete syn diastereofacial selectivities. While the non‐polar
character of these zw‐type 32CA reactions, which is the consequence of the insuffi-

cient electrophilic activation of ONBs, according to the analysis of the conceptual

DFT reactivity indices, accounts for the high activation energies, and low para

regioselectivity, NCI topological analyses at the anti/syn pairs of para TSs reveal

that the steric hindrance encountered between the NO framework and the ONB side

containing the carbonyl group along the anti approach mode is responsible for the

complete syn diastereofacial selectivity.
1 | INTRODUCTION

[3 + 2] Cycloaddition (32CA) reactions have emerged as a
powerful synthetic tool for the construction of five‐mem-
bered heterocyclic compounds [1] after the great effort made
by Huisgen and coworkers.[2] 32CA reactions are bimolecu-
lar in nature and involve the 1,3‐addition of an ethylene
derivative to a three‐atom‐component (TAC), leading to the
formation of five‐membered heterocycles (see Scheme 1).
TACs can be structurally classified into two categories:
allylic type (A‐TAC) and propargylic type (P‐TAC) struc-
tures.[3] While A‐TACs such as nitrone 1 are bent, P‐TACs
such as nitrile oxide (NO) 2 have a linear structure (see
Scheme 1).
wileyonlinelibrary.com/journal/p
Many TACs are readily available and react with a variety
of multiple bond systems in a highly regioselective and
stereoselective manner.[2] Weygand's group was the first to
perform the first 32CA reaction between NOs 3 and olefins
4.[4] Huisgen later categorised NOs 3 as members of a
broader class of TACs able to undergo 32CA reactions.[5]

In particular, the 32CA reactions of NOs 3 with asymmetric
alkenes 4 lead to the formation of 4‐isoxazoline 5 and 5‐
isoxazoline 6 mixtures (Scheme 2), which are versatile inter-
mediates for the synthesis of natural products and biologi-
cally, medically active compounds.[6]

Very recently, Domingo has proposed a new reactivity
theory in organic chemistry, the Molecular Electron Density
Theory (MEDT),[7] in which changes in the electron density
Copyright © 2017 John Wiley & Sons, Ltd.oc 1 of 11

http://orcid.org/0000-0002-2023-0108
mailto:domingo@utopia.uv.es
https://doi.org/10.1002/poc.3710
https://doi.org/10.1002/poc.3710
http://wileyonlinelibrary.com/journal/poc


SCHEME 1 Construction of 5‐membered heterocyclic compounds
by a 32CA reaction and classification of TACs by structure

SCHEME 2 32CA reactions of NOs 3 with alkenes 4 yielding
regiosomeric 4‐ and 5‐isoxazolines 5 and 6

SCHEME 3 Electronic structure of TACs and the proposed
reactivity types in 32CA reactions
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SCHEME 4 Syn and anti stereoisomeric attacks on the 2
diastereotopic faces of norbornene derivatives

SCHEME 5 Exclusive chemoselective syn attacks of NOs 3 on
dicyclopentadiene 9
along an organic reaction, and not molecular orbital (MO)
interactions, are responsible for the molecular organic reactiv-
ity. Note that MOs are not physical observables but only
mathematical constructs that cannot be experimentally deter-
mined,[8] and therefore, they cannot physically interact with
each other, as the Frontier Molecular Orbital[9] theory pro-
posed. Within MEDT, besides a deep exploration and charac-
terisation of the reaction paths associated with the studied
reaction, analysis of the conceptual density functional theory
(CDFT) reactivity indices,[10,11] as well as quantum chemical
tools based on the topological analysis of the electron density
such as the electron localisation function[12] (ELF), quantum
theory of atoms in molecules,[13] and noncovalent interac-
tion[14] (NCI), are used to study the reactivity in organic
chemistry.

Several theoretical studies devoted to the study of the
reactivity of TACs participating in 32CA reactions performed
within the MEDT have allowed establishing a useful classifi-
cation of these cycloaddition reactions into pseudodiradical‐
type (pr‐type, typically an azomethine ylide 7),[15]

carbenoid‐type (cb‐type, typically a nitrile ylide 8),[16] and
zwitterionic‐type (zw‐type, typically a nitrone 1)[15] reactions
(Scheme 3), depending on the electronic structure of the
TAC. Unlike pr‐type 32CA reactions, which take place
quickly even through non‐polar TSs,[15] the feasibility of
cb‐type and zw‐type 32CA reactions depends on the polar
character of the reactions, ie, the nucleophilic character of
the TAC and the electrophilic character of the ethylene deriv-
ative, or vice versa.[15,16] In general, NOs 3 are neither good
nucleophiles nor electrophiles and only react with strongly
electrophilically or nucleophilically activated multiple bond
derivatives in polar zw‐type 32CA reactions.[15–17]
Norbornene derivatives are attacked by a variety of
reagents preferentially from the syn face of the double bond
(see Scheme 4).[18] The preferred syn attack has been attrib-
uted to different stereo‐electronic effects such as steric
effects, torsional effects, “nonequivalent orbital extension,”
or Huisgen's factor “x,”[18–20] which, according to Houk,
arises from enforced staggering of allylic bonds in
norbornene and not from nonequivalent orbital extension or
hypercojugative interactions.[18]

In 2004, Namboothiri et al[21] reported the experimental
chemoselective and stereoselective 32CA reactions of NOs
3 with dicyclopentadiene 9 and its derivatives. In that work,
the approach of NO 3b (R = CH3) takes place exclusively
from the syn face of the dicyclopentadiene moiety providing
a mixture of regioisomers 10 and 11 in an approximate 55:45
ratio (see Scheme 5). Computational studies at ab initio and
DFT levels of theory were in good agreement with the exper-
imental outcomes.

Very recently, Tajabadi et al[22] performed a DFT study
about the regioselectivity and diastereofacial selectivity in
the 32CA reactions between NOs 3 and 1‐substituted 7‐
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oxanorborn‐5‐enes (ONBs) 12 (see Scheme 6), finding that
the reactions are syn diastereofacial and regioselective, and
suggested that they could be classified as pr‐type 32CA reac-
tions taking place through a low asynchronous one‐step
mechanism with non‐polar character. The classification of
this 32CA reaction as a pr‐type 32CA reaction was totally
erroneous, as NOs 3 are zwitterionic TACs participating in
zw‐type 32CA reactions (see later).[17] Indeed, the non‐polar
character of the studied reactions accounted for the high
computed activation energies, a behaviour typical of non‐
polar zw‐type 32CA reactions.

Although the chemistry of NOs 3 with a huge variety of
bicyclic compounds containing multiple bonds has been
widely investigated, the reactivity of these TACs towards 2‐
substituted 7‐oxanorborn‐5‐en‐2‐ones 13 has only been
superficially explored since the 1990, when Plumet
et al[23,24] experimentally studied the 32CA reactions of
NOs 3‐b,c with ONBs 13‐a,b (Scheme 7) giving the corre-
sponding syn adducts exclusively with excellent yields.[23]

Herein, to understand the zw‐type reactivity of NOs 3
towards ONBs 13, as well as to explain the origin of the
regioselectivity and diastereofacial selectivity experimentally
obtained by Plumet et al,[23] an MEDT study of the 32CA
reactions of NO 3‐b with ONBs 13‐a,b was performed using
DFT methods at the B3LYP/6‐31G(d) computational level.
To this end, after characterising of the electronic structure
of NOs 3‐a,b through the topological analysis of the
ELF[12] and the analysis of the reactivity indices defined
within the CDFT,[10,11] the reaction paths associated to both
32CA reactions and NCI taking place in the transition state
SCHEME 7 32CA reactions of NOs 3 with ONBs 13‐a,b yielding
regioisomeric syn adducts 14 and 15

SCHEME 6 Expected exclusive syn attack of NOs 3 on ONBs 12
structures (TSs) are explored and characterised. Moreover,
the possible electronic effect of the bromine substituent of
ONB 13‐b on the molecular mechanism and the reaction rate
of the 32CA reaction involving the simplest ONB 13‐a will
be also discussed.
2 | COMPUTATIONAL METHODS

All geometry optimisations and energy calculations were per-
formed with the Gaussian 3.0 suite of programs.[25] The
geometries of the reactants and TSs were fully optimised
through DFT calculations using the B3LYP[26,27] functional
together with the standard 6‐31G(d) basis set.[28] The station-
ary points were characterised by frequency calculations to
verify the number of imaginary frequencies (zero for local
minimum and one for TSs). The intrinsic reaction coordinate
paths[29] were traced to check the energy profiles connecting
each TS to the two associated minima of the proposed mech-
anism using the second‐order González‐Schlegel integration
method.[30,31] Natural atomic charges were obtained through
a natural population analysis (NPA) within the natural bond
orbital method.[32,33] Solvent effects of benzene in the sin-
gle‐point energy calculations were taken into account using
the polarisable continuum model developed by Tomasi's
group[34,35] in the framework of the self‐consistent reaction
field (SCRF).[36,37] Electron localisation function[12] calcula-
tions were performed with the TopMod[38] program using the
corresponding B3LYP/6‐31G(d) monodeterminantal
wavefunctions over a grid spacing of 0.1 au, and ELF
localisation domains were obtained for an ELF value of
η = 0.75. Noncovalent interaction[14] was computed with
the NCIPLOT program[39,40] by evaluating the Self‐Consis-
tent Field (SCF) density and using the methodology previ-
ously described.

Conceptual density functional theory provides different
indices to rationalise and understand chemical structure and
reactivity.[10,11] The global electrophilicity index,[41] ω, is
given by the following expression, ω= (μ2/2η), in terms of
the electronic chemical potential, μ, and the chemical hard-
ness, η. Both quantities may be approached in terms of the
one‐electron energies of the frontier molecular orbitals
HOMO and LUMO, εH and εL, as μ≈ (εH+ εL)/2 and
η≈ (εL− εH), respectively.[42,43] The empirical (relative)
nucleophilicity index,[44,45] N, based on the HOMO energies
obtained within the Kohn‐Sham scheme,[46] is defined as
N = EHOMO(Nu)−EHOMO(TCE), where tetracyanoethylene
(TCE) is the reference, because it presents the lowest HOMO
energy in a long series of molecules already investigated in
the context of polar organic reactions. This choice allows
handling conveniently a nucleophilicity scale of positive
values. Nucleophilic P−

k and electrophilic Pþ
k Parr func-

tions,[47] which allow for the characterisation of the
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nucleophilic and electrophilic centres of a molecule, were
obtained through the analysis of the Mulliken atomic spin
density (ASD) of the corresponding radical cations or anions,
by single‐point energy calculations over the optimised neutral
geometries.
3 | RESULTS AND DISCUSSION

The present MEDT study has been divided into 4 sections:
(1) in Section 3.1, an ELF topological analysis and an NPA
of NOs 3‐a,b are performed to characterise their electronic
structure; (2) in Section 3.2, an analysis of the CDFT reactiv-
ity indices at the ground state of the reagents involved in the
two 32CA reactions under study, ie, NO 3‐b and ONBs 13‐a,
b, is performed; (3) in Section 3.3, the reaction paths associ-
ated to both 32CA reactions are explored and characterised,
and energy‐ and geometry‐related aspects of the correspond-
ing stationary points are discussed; and finally, (4) in Section
3.4, the origin of the syn diastereofacial selectivity experi-
mentally reported is explained in terms of NCI.
3.1 | ELF topological analysis and NPA of
NOs 3‐a,b
As the reactivity of TACs can be correlated with their
electronic structure,[15,16] an ELF topological analysis of the
simplest NO 3‐a and acetonitrile oxide 3‐b was first
performed to characterise the electronic structure of these
TACs and thus to predict their reactivity in 32CA reactions.
The representation of attractor positions of the ELF valence
basins, as well as ELF electron populations, natural atomic
charges obtained by a NPA, and the Lewis structures arising
of the ELF topological analysis for NOs 3‐a,b, are shown in
Figure 1.
ELF topological analysis of the simplest NO 3‐a shows
the presence of one V(O1) monosynaptic basin integrating
5.56e, which, according to the Lewis bonding model, can
be related to three non‐bonding O1 oxygen lone pairs, and
two disynaptic basins, V(O1,N2) and V(N2,C3), with elec-
tron populations of 2.06e and 5.65e, which correspond to
an O1–N2 single bond and an N2–C3 triple bond (see the
ELF‐based Lewis structure of NO 3‐a in Figure 1). Conse-
quently, ELF topological analysis of the electronic structure
of the simplest NO 3‐a indicates that this TAC will be able
to participate only in zw‐type 32CA reactions. Note that
according to the Lewis structures, V(C) monosynaptic basins
integrating ca. 1e are associated to pseudoradical
centres,[48,49] while those integrating ca. 2e in neutral mole-
cules are associated to a carbenoid centres.[50] TACs
presenting two pseudoradical centres have been classified
as pseudodiradical TACs,[15] while those presenting a
carbenoid centre have been classified as carbenoid TACs.[16]

Finally, TACs that present neither pseudoradical nor
carbenoid centres have been classified as zwitterionic
TACs.[15]

When the ELF topology of NO 3‐b is analysed, some
topological differences with respect to the ELF topological
characteristics of the simplest NO 3‐a are found. Three
monosynaptic basins, V(O1), V′(O1), and V″(O1), integrat-
ing a total population of 5.73e, appear around the O1 oxygen
atom, related to the three non‐bonding O1 oxygen lone pairs.
Likewise, while the V(O1,N2) disynaptic basin
characterising the O1‐N2 single bond integrates an electron
population of 1.61e, three V(N2,C3), V′(N2,C3) and V″
(N2,C3) disynaptic basins are observed in the N2–C3 bond-
ing region with a total integration of 6.18e, thus being associ-
ated to an N2–C3 triple bond. The increase of the electron
density at the O1 oxygen, together the depopulation of the
O1–N2 bonding region, with respect to the ELF populations
FIGURE 1 Representation of electron
localisation function (ELF) attractors and
valence basin populations, in e, natural
atomic charges (negative in red, positive in
blue, and neutral in green), ELF localisation
domains, and the proposed Lewis structures
for NOs 3‐a,b



ADJIEUFACK ET AL. 5 of 11
at the simplest NO 3‐a, is suggestive of a notable polarisation
of the O1–N2 single bond towards the adjacent O1 oxygen
atom. This polarisation, as well as the increase of the electron
density in the N2–C3 bonding region, is the consequence of
the electron‐releasing effect of the methyl group of NO 3‐b.
However, note that despite these topological differences, the
ELF‐based Lewis structures of both NOs are very similar
(see the ELF‐based Lewis structure of NO 3‐b in Figure 1),
thus allowing characterising the zw‐type reactivity of NO 3‐
b in 32CA reactions.

After the establishment of the bonding pattern of NOs 3‐
a,b based on the ELF topological analysis, the charge distri-
bution at both NOs was analysed. The natural atomic charges,
obtained through an NPA, are shown in Figure 1. As can be
observed, while the O1 oxygen presents a considerable nega-
tive charge, −0.38e (3‐a) and −0.41e (3‐b), the N2 nitrogen
is slightly positively charged, 0.17e (1‐a) and 0.16e (1‐b).
However, note that the most positively charged atoms at both
NOs correspond to the hydrogen atoms with positive charges
of 0.25e (3‐a) and 0.27e (3‐b), and that the most negatively
charged atom at NO 3‐b is the methyl carbon with a negative
charge of −0.77e. These charge distributions are in complete
disagreement with the commonly accepted 1,2‐zwitterionic
structure in which a positive charge and a negative charge
are entirely located at the N2 nitrogen and O1 oxygen atoms,
respectively.

Thus, unlike NPA, which reveals that these TACs do not
have a 1,2‐zwitterionic Lewis structure, ELF topological
analysis of the electron density of NOs 3‐a,b makes it possi-
ble to establish a bonding pattern concordant with the com-
monly accepted Lewis structure associated with them and
which is characteristic of TACs participating in zw‐type
32CA reactions.
3.2 | Analysis of the CDFT reactivity indices

Studies devoted to polar organic reactions have shown that
the analysis of the reactivity indices defined within
CDFT[10,11] is a powerful tool to understand the reactivity
in polar cycloadditions. Global CDFT indices, namely, the
electronic chemical potential, μ; chemical hardness, η;
TABLE 1 B3LYP/6‐31G(d) electronic chemical potential, μ; chemi-
cal hardness, η; electrophilicity, ω; and nucleophilicity, N, in eV, of NOs
3‐a,b, ONBs 13‐a,b, and ethylene 18

Compound μ η ω N

NO 3‐b −2.90 7.66 0.55 2.40

Ethylene 18 −3.37 7.77 0.73 1.86

NO 3‐a −3.40 7.94 0.73 1.75

ONB 13‐a −3.57 5.44 1.17 2.84

ONB 13‐b −3.83 5.36 1.37 2.62
electrophilicity, ω; and nucleophilicity, N, at the ground state
of the reagents involved in these 32CA reactions are given in
Table 1.

The electronic chemical potential μ of NO 3‐b, −2.90 eV,
is higher than that of ONBs 13‐a, −3.57 eV, and 13‐b,
−3.83 eV, which indicates that along polar reactions, the
global electron density transfer (GEDT)[51] would take place
from the NO framework towards the ONB one.

Along a polar reaction, there is an electron density trans-
fer from the nucleophilic to the electrophilic species, which is
measured by the GEDT[51] value computed at the TS of the
reaction; the larger the GEDT at the TS, the more polar the
reaction. Note that the GEDT concept comes from the obser-
vation that the electron density transfer taking place from the
nucleophile to the electrophile along a polar reaction is not a
local process, but a global one involving the two interacting
frameworks[51] and depending on the electrophilic/nucleo-
philic interactions taking place between them.

The electrophilicity ω and nucleophilicity N indices of
NO 3‐a, ω = 0.73 and N = 1.75 eV, allow its classification
as a marginal electrophile and a marginal nucleophile based
on the electrophilicity[52]/nucleophilicity[53] scales. Substitu-
tion of the terminal hydrogen by a methyl group decreases
the electrophilicity of NO 3‐b to ω = 0.55 eV and increases
its nucleophilicity to N = 2.40 eV, being classified as a mar-
ginal electrophile and a moderate nucleophile. Note that most
zwitterionic TACs are strong nucleophiles.[17]

Polar cycloaddition reactions require the participation of
good electrophiles and good nucleophiles.[15–17,54] Ethylene
18 is one of the poorest electrophilic, ω = 0.73 eV, and nucle-
ophilic, N = 1.86 eV, species involved in cycloaddition reac-
tions, being classified as a marginal electrophile and a
marginal nucleophile. Consequently, ethylene 18 cannot par-
ticipate in polar reactions.[55] In the simplest ONB 13‐a, both
the electrophilicity ω and N nucleophilicity indices consider-
ably increase, ω = 1.17 and N = 2.84 eV, being classified as a
moderate electrophile and a moderate nucleophile. Substitu-
tion of the C4‐H hydrogen atom of ONB 13‐a by a bromine
one (see Scheme 8 for atom numbering) increases the electro-
philicity and decreases the nucleophilicity of ONB 13‐b,
ω = 1.37 eV and N = 2.62 eV, by ca. 0.2 eV, which is not
notable enough to enhance its reactivity towards NO 3‐b,
thus remaining classified as a moderate electrophile and a
moderate nucleophile. Therefore, no significant electronic
difference between 13‐a and 13‐b, and thus between their
reactivity towards NO 3‐b, is expected.

In polar cycloaddition reactions involving the participa-
tion of non‐symmetric reagents, the most favourable reactive
channel is that involving the initial two‐centre interaction
between the most electrophilic centre of the electrophile
and the most nucleophilic centre of the nucleophile.[47] To
determinate the most electrophilic and nucleophilic centres
of the species participating in a given reaction, Domingo
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channels associated with the 32CA reactions between NO 3‐b and
ONBs 13‐a,b
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et al[47] proposed the nucleophilic P−
k and electrophilic Pþ

k

Parr functions, derived from the changes of spin electron den-
sity reached via the GEDT process from the nucleophile to
the electrophile, as a powerful tool for the study of the local
reactivity in polar processes. Accordingly, the nucleophilic
Pk

− Parr functions of NO 3‐b and the electrophilic Pþ
k Parr

functions of ONBs 13‐a,b (Figure 2) were analysed to
characterise the most electrophilic and nucleophilic centres
of the species involved in these 32CA reactions and, thus,
to explain the expected regioselectivity in a polar reaction.

Analysis of the nucleophilic P−
k Parr functions at NO 3‐b

indicates that the O1 oxygen is the most nucleophilic centre
with a maximum value of P−

k = 0.68, being more than twice
as nucleophilically activated than the C3 carbon, P−

k = 0.30.
At this oxygen atom, the value of the local nucleophilicity
Nk index is 1.63 eV. On the other hand, analysis of the elec-
trophilic Pþ

k Parr functions of ONBs 13‐a,b shows that the
C5 carbon of these species is the most electrophilic centre,
Pþ
k = 0.38 (13‐a) and 0.40 (13‐b), with local electrophilicity

ωk values of 0.44 and 0.52 eV respectively, while the adjacent
alkene C4 carbon is poorly electrophilically activated, Pþ

k

= 0.13 (13‐a) and 0.14 (13‐b). The large differences between
the electrophilic Pþ

k Parr functions of the C4 and C5 carbons
suggest that, in the case of being polar, these 32CA reactions
would present a high regioselectivity. In addition, a notable
electrophilic activation of the carbonyl carbon, Pþ

k = 0.31
(13‐a) and 0.27 (13‐b), which is not involved in the consid-
ered 32CA reactions, is observed.

Consequently, the most favourable nucleophile/electro-
phile interaction along a polar 32CA reaction of NO 3‐b with
ONBs 13‐a,b would take place between the most nucleo-
philic centre of NO 1‐b, the O1 oxygen, and the most electro-
philic centre of ONBs 13‐a,b, the C5 carbon.[47]
3.3 | Study of the reaction paths associated to
the 32CA reactions between NO 3 and ONBs
13‐a,b
Because of the non‐symmetric of both reagents and the chiral
character of ONBs 13‐a,b, four reactive channels are possible
for these 32CA reactions; two regioisomeric pathways,
named meta and para, related to the relative position of the
nitrile oxide O1 oxygen with respect to the carbonyl group
in the 6‐membered ring of the bicyclic ONBs, and two stereo-
isomeric pathways, syn and anti, corresponding to the
approach of NO 3‐b towards the two diastereotopic faces of
ONBs 13‐a,b (Scheme 8).

Analysis of the stationary points involved in the reaction
paths associated with the 32CA reactions between NO 3‐b
and ONBs 13‐a,b indicates that these cycloaddition reactions
take place through a one‐step mechanism. Consequently, the
reagents, NO 3‐b and ONBs 13‐a,b, four TSs, TSms‐a,b,
TSma‐a,b, TSps‐a,b, and TSpa‐a,b, and four cycloadducts,
14‐a,b, 15‐a,b, 16‐a,b, and 17‐a,b, were located and
characterised for each one of the two 32CA reactions
(Scheme 8). Total and relative energies, in gas phase and in
benzene, of the stationary points involved in the 32CA reac-
tions of NO 3‐b with ONBs 13‐a,b are given in Table 2.

The gas phase activation energies associated with the four
competitive channels are 10.5 (TSps‐a), 13.8 (TSpa‐a), 11.0
(TSms‐a), and 17.4 kcal·mol−1 (TSma‐a) for the 32CA reac-
tion of NO 1‐b with ONB 13‐a, and 10.7 (TSps‐b), 15.1
(TSpa‐b), 12.3 (TSms‐b), and 18.7 kcal·mol‐1 (TSma‐b)
for the 32CA reaction involving ONB 13‐b, both reactions
being strongly exothermic by between 47 and 51 kcal·mol
−1. Some appealing conclusions can be drawn from these
energy results: (1) The 32CA reactions of NO 3‐bwith ONBs
13‐a,b present high activation energies, since none of the
reagents is neither a strong nucleophile nor a strong electro-
phile. Note that the activation energy associated with the
32CA reaction of the simplest NO 3‐a, a poor nucleophile,
with ethylene 18, a marginal electrophile, is 11.4 kcal·mol
−1;[16] (2) Interestingly, while syn TSs present similar activa-
tion energies than that associated with the 32CA between the
FIGURE 2 Three‐dimentional
representations of the atomic spin density of
radical cation 3‐b·+ and radical anions 13‐a,b·−,
together with the nucleophilicP−

k Parr functions
of NO 3‐b and the electrophilic P−

k Parr
functions of ONBs 13‐a,b



TABLE 2 B3LYP/6‐31G (d) total (E, in au) and relativea (ΔE, in
kcal·mol−1) energies, in gas phase and in benzene, of the stationary
points involved in the 32CA reactions between NO 3‐b and ONBs 13‐a,b

Gas Phase Benzene

E ΔE E ΔE

3‐b −207.899238 −207.902713

13‐a −382.629956 −382.635147

TSps‐a −590.512496 10.5 −590.519217 11.7

TSpa‐a −590.507128 13.8 −590.513001 15.6

TSms‐a −590.511681 11.0 −590.518483 12.2

TSma‐a −590.501488 17.4 −590.508892 18.2

14‐a −590.609845 −50.6 −590.617257 −49.8

15‐a −590.607725 −49.3 −590.614357 −48.0

16‐a −590.608397 −49.7 −590.616025 −49.0

17‐a −590.603950 −46.9 −590.611423 −46.2

13‐b −2953.732859 −2953.737908

TSps‐b −3161.615025 10.7 −3161.621167 12.1

TSpa‐b −3161.608055 15.1 −3161.613311 17.1

TSms‐b −3161.612520 12.3 −3161.619525 13.4

TSma‐b −3161.602252 18.7 −3161.609608 19.5

14‐b −3161.713249 −50.9 −3161.719991 −49.8

15‐b −3161.712064 −50.2 −3161.717905 −48.5

16‐b −3161.713134 −50.9 −3161.720414 −50.1

17‐b −3161.709768 −48.7 −3161.716899 −47.9
aRelative to the separated reagents NO 3‐b and ONBs 13‐a,b.
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simplest NO 3‐a and ethylene 18, those associated with the
anti TSs are higher, suggesting some type of unfavourable
interactions along the anti approach mode of NO 3‐b towards
ONBs 13‐a,b; (3) both 32CA reactions are thermodynami-
cally irreversible. Consequently, syn cycloadducts are the
product of kinetic control; (4) in gas phase, the 32CA reac-
tion with ONB 13‐a presents a poor para regioselectivity,
as TSps‐a is only 0.5 kcal·mol‐1 lower in energy than
TSms‐a, and a high syn diastereofacial selectivity, as TSps‐
a is 3.3 kcal·mol‐1 below TSpa‐a; (5) in the 32CA reaction
involving ONB 13‐b, both para regioselectivity and syn
diastereofacial selectivity increase to 1.6 and 4.4 kcal·mol‐1,
respectively, making the reaction moderately para regioselec-
tive and completely syn diastereofacially selective, in total
agreement with the experimental outcomes;[23] (6) in spite
of the increase of the selectivities, the use of ONB 13‐b pro-
duces no significant energy differences with respect to the
energy profile of the 32CA reaction involving the simpler
ONB 13‐a, as expected according to the previous analysis
of the CDFT reactivity indices (see Section 3.2).

Solvent effects of benzene increase activation and reac-
tion energies very slightly, by between 1 and 2 kcal·mol−1,
because of a slight better solvation of the reagents than TSs
and cycloadducts (Table 2).[56] Consequently, the low para
regioselectivity and total syn diastereofacial selectivity found
in gas phase remain practically unchanged in the presence of
benzene.

To investigate how thermal corrections can modify the
relative electronic energies and selectivities, thermodynamic
calculations for the 32CA reaction between NO 3‐b and
ONB 13‐a in benzene at 25°C and 1 atm were performed.
Enthalpies, entropies and Gibbs free energies, and the relative
ones are given in Table 3. Inclusion of thermal corrections to
the electronic energies did not significantly change the rela-
tive enthalpies; while relative activation enthalpies remained
almost unchanged, relative reaction enthalpies were slightly
decreased by ca. 3.0 kcal·mol−1. Inclusion of entropies to
enthalpies strongly increased relative Gibbs free energies by
between 12 and 13 kcal·mol−1 because of the unfavourable
entropies associated with this bimolecular process, the reac-
tion being exergonic by between 17 and 18 kcal·mol−1, and
irreversible. Analysis of the Gibbs free energies indicates that
the 32CA reaction between NO 3‐b and ONB 13‐a remains
low para regioselective and completely syn diastereofacial
selective.

Thorough studies have permitted to establish good corre-
lations between the polar character of the reactions and their
feasibility.[15–17,54] To evaluate the electronic nature of the
32CA reaction between NO 3‐b and ONBs 13‐a,b, the
GEDTwas analysed.[51] The GEDT of a reaction is computed
by the sum of the natural atomic charges of the atoms belong-
ing to each framework at the corresponding TSs; the sign
indicating the direction of the electron density flux in such
a manner that positive values mean a flux from the consid-
ered framework to the other one. Reactions with GEDT
values near 0.0e correspond to non‐polar processes, whereas
values higher than 0.2e correspond to polar processes.

The GEDT that fluxes from the NO framework towards
the ONB one at the TSs associated with the 32CA reaction
between NO 3‐b and ONB 13‐a is 0.03e at TSps‐a, 0.01e
at TSpa‐a, 0.01e at TSms‐a, and 0.03e at TSma‐a, while
that at the TSs associated with the 32CA reaction involving
ONB 13‐b is 0.07e at TSps‐b, 0.06e at TSpa‐b, 0.05e at
TSms‐b, and 0.03e at TSma‐b. These negligible GEDT
values indicate that these zw‐type 32CA reactions have a
marked non‐polar character,[15–17,54] which is the conse-
quence of the low electrophilic character of both ONBs 13‐
a,b (see Section 3.2) and, accordingly, accounts for the com-
puted high activation energies.

The geometries of the TSs involved in the 32CA reaction
of NO 3‐b with ONBs 13‐a,b are displayed in Figure 3. At
the para TSs, the distances between the two O1 and C5,
and the two C3 and C4 interacting atoms are 2.323 and
2.291 Å at TSps‐a, 2.336 and 2.248 Å at TSpa‐a, 2.257
and 2.288 Å at TSps‐b, and 2.261 and 2.281 Å at TSpa‐b.



TABLE 3 B3LYP/6‐31G(d) enthalpies (H, in au), entropies (S, in cal·mol−1·K−1) and Gibbs free energies (G, in au), and the relativea ones (ΔH in
kcal·mol−1, ΔS in cal·mol−1·K−1, and ΔG in kcal·mol−1), in benzene and computed at 25°C and 1 atm, for the stationary points involved in the 32CA
reaction between NO 3‐b and ONB 13‐a

H ΔH S ΔS G ΔG

3‐b −207.847051 67.4 −207.879092

13‐a −382.517197 76.5 −382.553560

TSps‐a −590.345597 11.7 103.0 −41.0 −590.394534 23.9

TSpa‐a −590.339323 15.6 99.2 −44.8 −590.386463 29.0

TSms‐a −590.344933 12.1 103.1 −40.9 −590.393923 24.3

TSma‐a −590.335440 18.1 101.8 −42.2 −590.383802 30.7

14‐a −590.439449 −47.2 94.5 −49.4 −590.484360 −32.4

15‐a −590.436342 −45.2 93.8 −50.2 −590.480886 −30.3

16‐a −590.438161 −46.4 94.7 −49.3 −590.483142 −31.7

17‐a −590.433478 −43.4 94.8 −49.1 −590.478531 −28.8
aRelative to the separated reagents NO 3‐b and ONB 13‐a.

FIGURE 3 B3LYP/6‐31G(d) gas phase geometries for the TSs involved in the zw‐type 32CA reaction between NO 3‐b and ONBs 13‐a,b
Distances are given in Angstroms
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On the other hand, at the meta TSs, the distances between the
two O1 and C4, and the two C3 and C5 atoms are 2.350 and
2.281 Å at TSms‐a, 2.381 and 2.251 Å at TSma‐a, 2.384
and 2.252 Å at TSmb‐b, and 2.455 and 2.224 Å at TSma‐
b. It has been well established that the formation of C–C sin-
gle bonds takes place in the short distance range of ca. 1.9‐
2.0 Å,[51] while several studies have shown that the formation
of C–O single bonds begins at shorter distances, ca. 1.7 Å.[57]

Thus, these geometrical parameters suggest asynchronous
bond formation processes initialised by a C3–C4 two‐centre
interaction. It should be emphasised that the presence of the
bromine atom slightly increases the asynchronicity in
general, resulting in the distance between the O1 and C5 atoms
being slightly shorter at the para TSps‐b and TSpa‐b. This
behaviour is in disagreement with the previous analysis of
.

the Parr functions, which gives the NO O1 oxygen and the
ONB C5 atoms as the most nucleophilic and the most
electrophilic centres of the reagents, respectively. This
discordance is the consequence of the non‐polar character
of these zw‐type 32CA reactions (see above). Note that, as
aforementioned, Parr functions are useful for the study of
the local reactivity in polar cycloaddition reactions.[47]
3.4 | Origin of the syn diastereofacial
selectivity along the 32CA reactions between
NO 3‐b and ONBs 13‐a,b
As has been commented, experimental and as well as theoret-
ical evidence reveal that the 32CA reactions of NO 3‐b with
ONBs 13‐a,b are poorly para regioselective and completely
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syn diastereofacially selective. While the low regioselectivity
is the consequence of the non‐polar character of these zw‐
type 32CA reactions (see Section 3.3), Non‐covalent interac-
tions (NCIs) taking place at the TSs could be responsible for
the total diastereofacial selectivity. Thus, NCI topological
analysis of the electron density of the para pairs of syn/anti
TSs associated with the 32CA reaction involving the simpler
ONB 13‐a was performed. The corresponding NCI gradient
isosurfaces are shown in Figure 4.

NCI topological analysis of TSps‐a and TSpa‐a shows
that there is a small green surface between the NO N2
nitrogen and the ONB oxygen atom at TSps‐a; a notably
more extended green surface appears between the entire NO
framework and the ONB side containing the carbonyl group
at TSpa‐a. NCI green colour is usually associated to weak
favourable or non‐favourable Van der Waals (VdW) interac-
tions. Given that TSpa‐a is 3.3 kcal·mol‐1 more unfavourable
than TSps‐a, this extended green surface corresponds to non‐
favourable VdW interactions taking place between the NO
and the ONB H–C–C–O frameworks as a consequence of
the steric hindrance developed along the anti approach of
the NO to the unsaturated system.

To evaluate the favourable/non‐favourable nature of the
noncovalent VdW interaction appearing at TSps‐a, an analy-
sis of the NCIs taking place at the para TSs associated with
the 32CA reaction of NO 3‐b with 7,7‐dimethylnorbornene
FIGURE 4 NCI gradient isosurfaces, represented at an isovalue of
0.5 au, of the TSs involved in the para syn/anti isomeric channels
associated with the 32CA reactions between NO 3‐b and ONB 13‐a or
7,7‐dimethylnorbornene 19
19, having a bulky C7 isopropyl group, was then performed.
In this 32CA reaction, TSps‐19 is 1.2 kcal·mol−1 above
TSpa‐19, thus indicating that along the para regioisomeric
channel, the anti approach mode becomes more favoured
than the syn one. This change in the facial diastereoselectivity
could be caused by the unfavourable steric hindrance encoun-
tered between the NO framework and the norbornene 7‐
methyl substituent at TSps‐19. As can be observed from
the corresponding NCI surfaces shown in Figure 4, while
the extended green NCI surface related to unfavourable
VdW interactions remains exactly unaltered at TSpa‐19, the
green surface present at TSps‐19 between the NO N2
nitrogen and the norbornene 7‐methyl substituent is larger
than that comprising the ONB oxygen at TSps‐a, thus
confirming that the VdW surface appearing at the para/syn
TSs also corresponds to non‐favourable steric interactions.

Consequently, the syn facial diastereoselectivity in 32CA
reactions involving ONBs 13‐a,b appears to be exclusively
controlled by steric factors taking place at the corresponding
TSs, stronger at the anti TSs than at the syn ones, and not by
torsional effects, “nonequivalent orbital extension,” or
Huisgen's factor “x,”[18–20] which arises from enforced stag-
gering of allylic bonds in norbornene, as has been pro-
posed.[18] In fact, it should be emphasised that these
classical observations are based on geometry changes, which
are the consequence of the electron density redistribution
demanded for the subsequent bond formations, and not the
cause of the facial approach mode preference. Note that the
C3–C4–C–H dihedral angles at TSps‐19 and TS‐pa‐19,
49.4 and −87.9, are in disagreement with the preference for
the anti TS according to Huisgen's factor “x,”[19,20] while
the syn facial diastereoselectivity slightly increases along
the meta regioisomeric channel associated with the reaction
involving ONB 13‐b as a consequence of the extra steric hin-
drance provoked by the bromine lone pairs along the anti
approach of NO 3‐b.
4 | CONCLUSIONS

The 32CA reactions of NO 3‐b with ONBs 13‐a,b have been
theoretically studied within the MEDT at the DFT B3LYP/6‐
31G(d) computational level.

ELF topological analysis of the electron density of NOs
3‐a,b permits to establish a bonding pattern concordant with
the commonly accepted Lewis structures, although the
corresponding charge distribution reveals that these TACs
have no 1,2‐zwitterionic Lewis structure, confirming that
these TACs will participate in zw‐type 32CA reactions
controlled by nucleophile/electrophile interactions taking
place along the reaction.

Analysis of the CDFT reactivity indices allows classify-
ing NO 3‐b as a moderate nucleophile and ONBs 13‐a,b as
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moderate electrophiles. Consequently, despite the electronic
chemical potential differences, a low GEDT along these zw‐
type 32CA reactions is expected. No significant reactivity
differences between ONBs 13‐a and b provoked by the pres-
ence of the bromine atom at ONB 13‐b are anticipated.

Analysis of the two zw‐type 32CA reactions of NO 3‐b
with ONBs 13‐a,b shows that four competitive one‐step reac-
tion channels related to the para/meta regio‐ and syn/anti
diastereofacial approaches are feasible. Both cycloadditions
present relatively high activation energies as well as low para
regioselectivity and complete syn diastereofacial selectivity,
in agreement with the experimental outcomes. Formation of
the corresponding syn cycloadducts is strongly exothermic,
being obtained by kinetic control.

Analysis of the geometries of the TSs suggests asynchro-
nous bond formation processes initialised by the two‐centre
interaction between the C3 and C4 carbons. This behaviour
is in disagreement with the analysis of the Parr functions as
a consequence of the non‐polar character of these zw‐type
32CA reactions, evidenced by the negligible GEDT values
computed at the corresponding TSs. In general, the presence
of the bromine atom at ONB 13‐b slightly increases the
asynchronicities.

Finally, while the non‐polar character of these zw‐type
32CA reactions accounts for the high activation energies
and low para regioselectivity, NCI topological analyses at
two para anti/syn pairs of TSs reveal that the steric
hindrance encountered between the NO framework and the
ONB side containing the carbonyl group along the anti
approaches are responsible for the complete syn
diastereofacial selectivity.
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A molecular electron density theory study of
the [3 + 2] cycloaddition reaction of nitrones
with ketenes†

Mar Ríos-Gutiérrez,a Andrea Darù,b Tomás Tejero,b Luis R. Domingo*a and
Pedro Merino*b

The [3 + 2] cycloaddition (32CA) reaction between nitrones and ketenes has been studied within the

Molecular Electron Density Theory (MEDT) at the Density Functional Theory (DFT) MPWB1K/6-311G(d,p)

computational level. Analysis of the conceptual DFT reactivity indices allows the explanation of the reac-

tivity, and the chemo- and regioselectivity experimentally observed. The particular mechanism of this

32CA reaction involving low electrophilic ketenes has been elucidated by using a bonding evolution

theory (BET) study. It is determined that this reaction takes place in one kinetic step only but in a non-

concerted manner since two stages are clearly identified. Indeed, the formation of the second C–O bond

begins when the first O–C bond is already formed. This study has also been applied to predict the reacti-

vity of nitrones with highly electrophilic ketenes. Interestingly, this study predicts a switch to a two-step

mechanism due to the higher polar character of this zw-type 32CA reaction. In both cases, BET supports

the non-concerted nature of the 32CA reactions between nitrones and ketenes.

1. Introduction

Since the first examples gathered by Irvin in 1938,1 demon-
strating that nitrones are capable of undergoing 1,3-additions,
the [3 + 2] cycloaddition (32CA) reaction of nitrones with
alkenes2 has been widely used as a key step for the synthesis of
heterocycles and natural products.3 The ready availability and
ease of use of nitrones,4 the tuneability of the reaction by
using chiral Lewis acids5 and the high efficiency of this trans-
formation6 combine to make this reaction a powerful method
for heterocyclic synthesis.7 Of particular interest are cycloaddi-
tions with allenes 2 8 and heteroallenes such as isocyanates 3 9

and ketenes 4,10 which present alternative reaction paths

leading to different heterocyclic compounds depending on the
allenic part of the system in which the cycloaddition takes
place (Scheme 1).

Despite this synthetic utility, mechanistic studies that
allow the interpretation and prediction of the adducts to be
obtained with allenes or heteroallenes showing different
alternatives like 2–4 are scarce. The reaction of the simplest
nitrone 1a (R1, R2 = H) with the simplest allene 2 (R3,R4 = H)
was computationally studied and it was determined that the
reaction follows a stepwise mechanism.11 Very recently, we

Scheme 1 Reactions of nitrones with allenes and heteroallenes.

†Electronic supplementary information (ESI) available: BET characterisation of
the molecular mechanism of the zw-type 32CA reaction between nitrone 1b and
ketene 4b. ELF topological analysis of the stationary points involved in the most
favourable reactive channel associated with the 32CA reaction of nitrone 1b with
electrophilic ketene 4c. Tables with the MPWB1K/6-311G(d,p) total and relative
electronic energies, in the gas phase and in benzene, and enthalpies, entropies
and Gibbs free energies, and the relative ones, computed at room temperature
and 1 atm in benzene, for the stationary points involved in the 32CA reactions
between nitrone 1b and ketenes 4b,c. See DOI: 10.1039/c6ob02768g
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observed the same preference for a stepwise mechanism
in the reaction with isocyanates.12 Houk and co-coworkers
studied the reaction between N-aryl nitrones and alkylaryl-
ketenes giving rise to a “pericyclic” cascade with chirality
transfer.13 However, their study only referred to a particular
process in which it was suggested that the first cycloaddition
step between the nitrone and the ketene is a one-step reaction
but highly asynchronous.

Several Density Functional Theory14 (DFT) studies carried
out within the Molecular Electron Density Theory (MEDT)15

devoted to the study of the reactivity of three-atom-
components (TACs) participating in 32CA reactions have
allowed the establishment of a useful classification of this
class of cycloaddition reactions depending on the electronic
structure and behaviour of the TAC into pseudodiradical-type
(pr-type, typically an azomethineylide 11),16 carbenoid-type
(cb-type, typically a nitrile ylide 12)17 and zwitterionic-type
(zw-type, typically a nitrone 1a)16 reactions (Scheme 2). The
feasibility of the zw-type 32CA reactions depends on the polar
character of the reactions, i.e. the nucleophilic character of the
nitrones and the electrophilic character of the ethylene deriva-
tives, or vice versa. In general, nitrones are good nucleophiles
that react with electron-deficient alkenes.18

In order to understand the zw-type reactivity16,18 of nitrones
towards ketenes, the 32CA reaction of nitrone 1b (R1, R2 = Me)
with ketenes 4b and 4c yielding cycloadducts (CAs) 9b,c and
10b,c are herein studied within the MEDT through DFT calcu-
lations at the MPWB1K/6-311G(d,p) computational level (see
Scheme 3). The chemoselectivity associated with the 32CA
reactions of nitrone 1b with the CvO and CvC double bonds
of ketenes 4b and 4c is first studied. Then, a Bonding
Evolution Theory19 (BET) analysis of the most favourable
chemoisomeric channel associated with the 32CA reaction of
nitrone 1b with ketene 4b is carried out in order to understand
the mechanism of these zw-type reactions. Finally, an ELF
comparative analysis of the TSs and intermediate related to
the most favourable channel associated with the 32CA reaction
of nitrone 1b with ketene 4c is performed.

2. Computational methods

DFT calculations were performed using the MPWB1K
functional20 together with the 6-311G(d,p) basis set.21

Optimisations were carried out using the Berny analytical
gradient optimization method.22 The stationary points were
characterised by frequency computations in order to verify that
TSs have one and only one imaginary frequency. The IRC
paths23 were traced in order to check the energy profiles con-
necting each TS to the two associated minima of the proposed
mechanism using the second order González–Schlegel inte-
gration method.24 The solvent effects of benzene were taken
into account by full optimization of the gas phase structures at
the MPWB1K/6-311G(d,p) computational level using the polaris-
able continuum model (PCM) developed by Tomasi’s group25

in the framework of the self-consistent reaction field (SCRF).26

The values of enthalpies, entropies and Gibbs free energies in
benzene were calculated with the standard statistical thermo-
dynamics at 25 °C and 1 atm.21 The electronic structures of
the stationary points were characterised by a natural popu-
lation analysis (NPA),27 and by the electron localisation func-
tion (ELF)28 topological analysis of the electron density. All
computations were carried out with the Gaussian 09 suite of
programs.29 ELF studies were performed with the TopMod30

program using the corresponding MPWB1K/6-311G(d,p)
monodeterminantal wavefunctions. For the BET study, the
corresponding reaction channel was followed by performing
the topological analysis of the ELF for 862 nuclear configur-
ations along the IRC path. ELF calculations were computed
over a grid spacing of 0.1 a.u. for each structure and ELF basin
isosurfaces were obtained for an ELF value of 0.75 a.u.

Conceptual DFT (CDFT) provides different indices to ration-
alise and understand chemical structure and reactivity.31 The
global electrophilicity index,32 ω, is given by the following
expression, ω = (μ2/2η), in terms of the electronic chemical
potential μ and the chemical hardness η. Both quantities may
be approached in terms of the one-electron energies of the
frontier molecular orbitals HOMO and LUMO, εH and εL, as
μ = (εH + εL)/2 and η = (εL − εH), respectively.

33 The global nucleo-
philicity index,34 N, based on the HOMO energies obtained
within the Kohn–Sham scheme,35 is defined as N = EHOMO(Nu) −
EHOMO(TCE), where tetracyanoethylene (TCE) is the reference
because it presents the lowest HOMO energy in a long series of
molecules already investigated in the context of polar organic
reactions. The electrophilic Pk

+ and nucleophilic Pk
− Parr

Scheme 2 Electronic structure of TACs and the proposed reactivity
types in 32CA reactions.

Scheme 3 32CA reactions of nitrone 1b with ketenes 4a–c yielding
cycloadducts 9a–c and 10a–c.
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functions,36 which allow for the characterisation of the electro-
philic and nucleophilic centers of a molecule, were obtained
through the analysis of the Mulliken atomic spin density (ASD)
of the radical cation of nitrone 1b and the radical anion of
ketenes 4a and 4c, by single-point energy calculations from the
optimised neutral geometries.

3. Results and discussion

The present MEDT study is organised as follows: in section
3.1, an analysis of the electronic structure of nitrones 1a,b is
performed in order to understand the zw-type reactivity of 1b
in 32CA reactions. Section 3.2 contains an analysis of the
CDFT reactivity indices of the reagents involved in the 32CA
reactions of nitrone 1b with ketenes 4b,c. In section 3.3, the
potential energy surfaces (PESs) associated with the chemoiso-
meric channels associated with the 32CA reactions of nitrone
1b with ketenes 4b,c are explored and characterised. Section
3.4 discusses a BET study characterising the bonding changes,
as well as the energies related to those changes, along the
most favourable reaction channel associated with the 32CA
reaction of nitrone 1b with ketene 4b. And finally, in section
3.5, a comparative ELF topological analysis of the TSs and
intermediate involved in the most favourable reaction channel
associated with the 32CA reaction of nitrone1b with electro-
philic ketene 4c is performed.

3.1. ELF topological analysis of the electronic structure of
nitrones 1a,b

As commented in the Introduction part, the reactivity of TACs
can be correlated with their electronic structure.16,17 Thus, an
ELF topological analysis of the simplest nitrone 1a and nitrone
1b was first performed in order to characterise the electronic
structure of these TACs. The representation and attractor posi-
tions of ELF valence basins, as well as ELF electron populations,
natural atomic charges and the Lewis structures arising from the
ELF topological analysis for nitrones 1a,b are shown in Fig. 1.

The ELF topology of the simplest nitrone 1a permits the
establishment of the Lewis structure of this TAC (see Fig. 1). As
can be seen, nitrone 1a presents two V(O1) and V′(O1) mono-
synaptic basins, integrating a total of 5.91e, and one V(O1,N2)
disynaptic basin with a population of 1.39e. This behaviour
suggests that the O1–N2 bonding region is strongly polarised
towards the O1 oxygen atom. In addition, the presence of one
V(N2,C3) disynaptic basin integrating 3.89e indicates that the
N2–C3 bonding region has a strong double bond character.
Consequently, the ELF topology of the simplest nitrone 1a
clearly indicates that this TAC is able to participate only in
zw-type 32CA reactions, as it neither presents a pseudodiradical37

nor a carbenoid17 electronic structure that would enable it to
participate in pr- or cb-type 32CA reactions.16,17

On the other hand, the ELF topology of nitrone 1b shows a
very similar bonding pattern to that found in the simplest
nitrone 1a. Indeed, the substitution of the hydrogen atoms
bound to the N2 nitrogen and C3 carbon by a methyl group is

expected to produce no significant electronic changes. The
ELF valence basin populations have varied very slightly (see
Fig. 1), although in this case the N2–C3 bonding region is
characterised by the presence of two disynaptic basins, V(N2,
C3) and V′(N2,C3), integrating a total population of 4.09e.
Therefore, according to the ELF topological analysis, nitrone
1b will behave as a zwitterionic TAC participating only in
zw-type 32CA reactions such as the simplest nitrone 1a.16

Although the ELF topological analysis of nitrones 1a and 1b
allows the establishment of a bonding pattern in these TACs,
NPA indicates that neither nitrone has zwitterionic charge dis-
tribution. Note that although the O1 oxygen has a high negative
charge, −0.48e (1a) and−0.53e (1b), the N2 nitrogen presents
practically no charge, −0.06e (1a) and 0.08e (1b). Moreover, the
C3 carbon appears negatively charged at nitrone 1a, −0.26e,
while at nitrone 1b it presents a null charge, −0.01e.

Thus, although ELF topological analysis provides a bonding
pattern concordant with the commonly accepted Lewis struc-
tures of nitrones 1a,b, the NPA is completely in disagreement
with the representation of their electronic structure as a
1,2-zwitterionic structure. Nevertheless, ELF topological charac-
terisation of the electron density distribution at these nitrones
accounts for their zw-type reactivity.

3.2 Analysis of the CDFT reactivity indices of the reagents
involved in the 32CA reactions of nitrone 1b with ketenes 4b,c

Studies devoted to polar organic reactions have shown that the
analysis of the reactivity indices defined within the CDFT31d,38

is a powerful tool to understand the reactivity in polar cyclo-
additions. Global DFT indices, namely, the electronic chemical

Fig. 1 Representation of ELF attractors and valence basin populations,
in e, natural atomic charges (negative in red and positive in blue), ELF
valence basins and proposed Lewis structures for nitrones 1a,b.

Paper Organic & Biomolecular Chemistry

1620 | Org. Biomol. Chem., 2017, 15, 1618–1627 This journal is © The Royal Society of Chemistry 2017



potential, μ, chemical hardness, η, electrophilicity, ω, and
nucleophilicity, N, at the ground state of the reagents involved
in these 32CA reactions are given in Table 1.

The electronic chemical potential of nitrone 1b, −2.95 eV, is
higher than that of ketenes, −3.23 (4b) and −5.26 (4c) eV, indi-
cating that along polar reactions the global electron density
transfer (GEDT)39 will flux from the nitrone framework
towards the ketene one.

Along a polar reaction, there is an electron density transfer
from the nucleophilic to the electrophilic species, which is
measured by the GEDT39 value computed at the TS of the reac-
tion; the larger the GEDT at the TS, the more polar the reac-
tion. Note that the GEDT concept comes from the observation
that the electron density transfer taking place from the nucleo-
phile to the electrophile along a polar reaction is not a local
process, but a global one involving the two interacting frame-
works39 and depending on the electrophilic/nucleophilic inter-
actions taking place between them.

The electrophilicity ω and nucleophilicity N indices of the
simplest nitrone 1a are 1.06 eV and 2.92 eV, being classified as
a moderate electrophile and on the borderline of strong
nucleophiles within the electrophilicity40 and nucleophilicity41

scales. Inclusion of the two electron-releasing (ER) methyl
groups at the N2 and C3 atoms of the simplest nitrone 1a
decreases the electrophilicity ω index of nitrone 1b to 0.80 eV
and increases its nucleophilicity N index to 3.46 eV.
Consequently, nitrone 1b will behave as a strong nucleophile
participating in zw-type 32CA reactions.18

On the other hand, the electrophilicity ω and nucleophili-
city N indices of the simplest ketene 4a are 1.27 eV and 2.58
eV, being classified as a moderate electrophile and nucleo-
phile. Inclusion of the two ER methyl groups at the terminal
C6 carbon of ketene 4a decreases the electrophilicity ω index
of ketene 4b to 1.02 eV and increases its nucleophilicity N
index to 2.58 eV. Thus, ketene 4b will behave as a moderate
electrophile and a strong nucleophile. Regarding ketene 4c,
inclusion of the two electron-withdrawing (EW) trifluoromethyl
(CF3) groups at the terminal C6 carbon of ketene 4a notably
increases the electrophilicity ω index to 2.47 eV and decreases
the nucleophilicity N index to 1.05 eV. Therefore, ketene 4c
will behave as a strong electrophile and a marginal nucleo-
phile. This early analysis of the CDFT global reactivity indices
suggests that, as expected, the zw-type 32CA reaction of nitrone
1b with the more electrophilic ketene 4c will be more favour-
able than that with ketene 4b.

In polar cycloaddition reactions involving the participation
of non-symmetric reagents, the most favourable reactive
channel is that involving the initial two-center interaction
between the most electrophilic center of the electrophile and
the most nucleophilic center of the nucleophile. Recently,
Domingo et al. proposed the electrophilic Pk

+ and nucleophilic
Pk

− Parr functions36 derived from the changes of spin electron
density reached via the GEDT process from the nucleophile to
the electrophile as powerful tools in the study of the local reac-
tivity in polar processes. Accordingly, the nucleophilic Pk

− Parr
functions of nitrone 1b and the electrophilic Pk

+ Parr functions
of ketenes 4b,c were analysed in order to characterise the most
electrophilic and nucleophilic centers of the species involved
in these 32CA reactions and, thus, to explain the regio- and
chemoselectivity experimentally observed (see Fig. 2).

Analysis of the nucleophilic Pk
− Parr functions of nitrone

1b indicates that the O1 oxygen, Pk
− = 0.68, is twice as nucleo-

philically activated as the C3 carbon, Pk
− = 0.37, while the elec-

trophilic Pk
+ Parr functions of ketenes 4b,c indicate that the

central C5 carbon is the most electrophilic center of these
molecules, Pk

+ = 0.63 (4b) and 0.64 (4c). Consequently, the
most favourable electrophile–nucleophile interaction along the
polar zw-type 32CA reactions of nitrone 1b with ketenes 4b,c
will take place between the most nucleophilic center of nitrone
1b, the O1 oxygen atom, and the most electrophilic center of
ketenes 4b,c, the central C5 carbon, in clear agreement with
the regioselectivity experimentally reported first by Taylor42

and further by Houk.13

On the other hand, analysis of the electrophilic Pk
+ Parr

functions of ketenes 4b,c also indicates that while the ketene
O4 oxygen atom presents some electrophilic activation, Pk

+ =
0.25 (4b) and 0.27 (4c), the terminal C6 carbon is slightly elec-
trophilically deactivated, Pk

+ = −0.03. This means that along
the zw-type 32CA reaction of nitrone 1b with ketenes 4b,c, the
terminal carbon does not participate in the reaction, and
thereby, this zw-type 32CA reaction will present a complete
CvO chemoselectivity.

3.3. Analysis of the PESs of the 32CA reactions of nitrone 1b
with ketenes 4b,c

Due to the non-symmetry of both the reagents, the 32CA reac-
tions between nitrone 1b and ketenes 4b,c can take place
through four competitive reaction channels, which are related

Table 1 B3LYP/6-31G(d) electronic chemical potential, μ, chemical
hardness, η, electrophilicity, ω, and nucleophilicity, N, in eV, of nitrones
1a,b and ketenes 4a–c

μ η ω N

4c −5.26 5.62 2.47 1.05
4a −3.76 5.57 1.27 2.58
1a −3.43 5.55 1.06 2.92
4b −3.23 5.08 1.02 3.35
1b −2.95 5.42 0.80 3.46

Fig. 2 3D representations of the ASD of the radical cation 1b•+ and the
radical anions 4b,c•−, together with the nucleophilic Pk

− Parr functions
of nitrone 1b and the electrophilic Pk

+ Parr functions of ketenes 4b,c.
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to the chemoisomeric attacks of nitrone 1b on the CvO and
CvC double bonds of ketenes 4b,c, and with the two regioiso-
meric approach modes of nitrone 1b towards each one of the
two double bonds of ketenes 4b,c. Due to the high regio-
selectivity predicted by the analysis of the electrophilic Pk

+ and
nucleophilic Pk

− Parr functions, only the two chemoisomeric
channels associated with the initial nucleophilic attack of the
nitrone O1 oxygen on the central C5 carbon of ketenes 4b,c
were studied.

Interestingly, analysis of the PESs associated with the two
32CA reactions indicates that they take place through different
mechanisms; the 32CA reaction between nitrone 1b and
ketene 4b takes place via a one-step mechanism, while that of
nitrone 1b with electrophilic ketene 4c takes place via a two-
step mechanism (see Scheme 4). Total and relative energies,
in the gas phase and benzene, as well as total and relative
enthalpies, entropies and Gibbs free energies in benzene, of
the stationary points involved in the 32CA reactions between
nitrone 1b and ketenes 4b,c are given in the ESI.†

The activation Gibbs free energy of the 32CA reaction
between nitrone 1b and ketene 4b presents a low value,
18.8 kcal mol−1, the reaction being exergonic, −9.7 kcal mol−1

(9b) (see relative Gibbs free energies in Scheme 4). Analysis of
the relative Gibbs free energies of TS-CO and TS-CC indicates
that this 32CA is kinetically completely chemoselective, as
TS-CC is 15.6 kcal mol−1 higher in Gibbs free energy than
TS-CO. However, the formation of CA 10b is thermo-
dynamically more favourable than 9b. Consequently, while CA
9b is the product of a kinetic control, CA 10b could become

the product of a thermodynamic control under thermal equili-
brium conditions.

The PES associated with the 32CA reaction between nitrone
1b and electrophilic ketene 4c is more complex. In order to
understand the reaction mechanism, the Gibbs free energy
profiles of the two competitive channels are depicted in Fig. 3.
Analysis of these energy profiles allows one to reach some
appealing conclusions: (i) the nucleophilic attack of nitrone 1b
to ketene 4c via TS1-CO has an activation Gibbs free energy of
6.9 kcal mol−1; (ii) the activation Gibbs free energy associated
with the ring closure from IN-CO via TS2-CO is 6.8 kcal mol−1,
and 8.1 kcal mol−1 from IN-CC via TS2-CC; (iii) this reaction is
completely chemoselective, as TS2-CO is 10.5 kcal mol−1 lower
in Gibbs free energy than TS2-CC; (iv) formation of CAs 9c and
10c is exergonic by 12.2 and 30.4 kcal mol−1, respectively;
(v) interestingly, IN-CO and IN-CC are two conformers being
interconvertible by a O1–C5 single bond rotation implying only
0.3 kcal mol−1. Consequently, these intermediates connect
both chemoisomeric channels. Thus, under thermodynamic
control, CA 9c could be converted into the more thermo-
dynamically stable 10c with an activation energy of 27.5
kcal mol−1; and finally, (vi) a comparison between the energy
profiles of the 32CA reactions of nitrone 1b with ketenes 4b,c
allows one to reach two appealing conclusions: (a) the electro-
philic activation of the ketene changes the molecular mecha-
nism and activation energies, but it does not change the
thermodynamics of the reaction; and (b) in both reactions, the
ring closure is the step controlling the chemoselectivity.

The geometries of the TSs and intermediates involved in
the 32CA reactions of nitrone 1b with ketenes 4b,c are given in
Fig. 4. At the TSs associated with the 32CA reaction of nitrone
1b with ketene 4b, the distances between the two O1 and C5,
and the two C3 and O4/C6 interacting atoms are: 1.560 Å and
2.219 Å at TS-CO and 1.604 Å and 2.546 Å at TS-CC, respect-
ively. The short distance between the O1 and C5 atoms at both

Scheme 4 CvO and CvC chemoisomeric channels associated with
the zw-type 32CA reaction between nitrone 1b and ketenes 4b,c.
Relative Gibbs free energies, in kcal mol−1, are given in parentheses.

Fig. 3 MPWB1K/6-311G(d,p) Gibbs free energy profile (ΔG, kcal mol−1),
in benzene, of the 32CA reaction between nitrone 1b and electrophilic
ketene 4c.
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TSs indicates that the O1–C5 single bond is already formed.43

Consequently, these TSs can be associated with the formation
of the second C3–O4 or C3–C6 single bonds.

At TS1-CO, related to the nucleophilic attack of the nitrone
O1 oxygen atom on the C5 carbon of ketene 4c, the distances
between the O1 and C5, and the C3 and O4 atoms are 2.492
and 3.180 Å. These distances are coherent with an early-
transition state, in clear agreement with its null activation
energy. At intermediates IN-CO and IN-CC, the lengths of the
O1–C5 single bonds are 1.568 and 1.572 Å, respectively, while
the distances between the C3 and O4/C6 atoms are 2.745 and
3.179 Å. Finally, at the TSs associated with the ring closure
along the two reaction paths, the lengths of the formed O1–C5
single bonds are 1.479 Å (TS2-CO) and 1.473 Å (TS2-CC), while
the distances between the C3 and O4/C6 atoms are 2.101 (TS2-
CO) and 2.421 (TS2-CC) Å, respectively.

Inclusion of benzene in the optimisations does not signifi-
cantly modify the geometries of the TSs (see Fig. 4). The
changes in distances in the gas phase and in benzene are
found between 0.05 and 0.01 Å. In general, the distances
between the O1 and C5, and the C3 and O4/C6 atoms are
shorter in benzene as a consequence of the solvent stabilis-
ation of the corresponding species. Only at TS1-CO and inter-
mediates, are the distances between the non-bound atoms
slightly increased.

Thorough studies have made it possible to establish good
correlations between the polar character of the reactions and
their feasibility.44 In order to evaluate the electronic nature of

the 32CA reaction of nitrone 1b with ketenes 4b,c, the GEDT
was analysed. The GEDT of a reaction is computed by the sum
of the natural atomic charges of the atoms belonging to each
framework at the corresponding TSs; the sign indicates the
direction of the electron density flux in such a manner that
positive values mean a flux from the considered framework to
the other one. Reactions with GEDT values near 0.0e corres-
pond to non-polar processes, whereas values higher than 0.2e
correspond to polar processes. Thus, at TS-CO and TS-CC
associated with the 32CA reaction nitrone 1b with ketene 4b,
the GEDT that takes place from the nitrone to the ketene
framework is 0.21e and 0.33e, respectively. These values indi-
cate that these TSs have some polar character. At the TSs and
intermediates associated with the 32CA reaction nitrone 1b
with electrophilic ketene 4c, the GEDT that takes place from
the nitrone to the ketene framework is 0.05e at TS1-CO, 0.45e
at IN-CO, 0.44e at IN-CC, 0.41e at TS2-CO and 0.37e at TS2-CC.
From these GEDT values some appealing conclusions can be
drawn: (i) the negligible GEDT found at TS1-CO is a con-
sequence of the earlier character of this TSs; (ii) a high GEDT is
found at the corresponding intermediates, ca.0.45e emphasis-
ing the zwitterionic character of these species; (iii) a decrease
of the GEDT is found at the TSs associated with the ring
closure step as a consequence of a retrodonation process;
(iv) the GEDT along the two chemoisomeric channels presents
similar values, in spite of the energy differences. This behav-
iour supports the global character of the electron density trans-
fer from the nucleophilic to the electrophilic framework; and
(v) the GEDT at TS2-CO and TS2-CC presents higher values
than that at TS-CO and TS-CC as a consequence of the higher
electrophilic character of ketene 4c, ω = 2.47 eV, than ketene
4b, ω = 1.02 eV.

Analysis of the GEDT along the two competitive reaction
paths associated with these reactions is in agreement with the
low computed activation energies and confirms the zw-type
character of these 32CA reactions, in which the feasibility
of the reaction depends on the electrophilic character of the
ketene.

3.4. BET characterisation of the molecular mechanism of the
zw-type 32CA reaction between nitrone 1b and ketene 4b

When trying to achieve a better understanding of bonding
changes in organic chemical reactions, the so-called BET19 has
proved to be a very useful methodological tool.45 BET applies
Thom’s catastrophe theory (CT) concepts46 to the topological
analysis of the gradient field of the ELF28 along the reaction
coordinate. Several theoretical studies have shown that the
topological analysis of the ELF offers a suitable framework for
the study of the changes of electron density. This methodologi-
cal approach is used as a valuable tool to understand the
bonding changes along the reaction path and, consequently,
to establish the nature of the electronic rearrangement associ-
ated with a given molecular mechanism.47

Recently, a BET study of the bonding changes along the zw-
type 32CA reactions of nitrone 1a with ED acrolein 13 was
carried out in order to understand the O–C and C–C bond

Fig. 4 Geometries of the TSs and intermediates involved in the 32CA
reaction of nitrone 1b with ketenes 4b,c. Lengths are given in
Angstroms. Values in parentheses are associated with the lengths in
benzene.
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formation processes and to determine the molecular mechanism
of these zw-type 32CA processes.43 On the other hand, a recent
BET study of the molecular mechanism of the ketene–imine
Staudinger reaction48 permitted one to characterise the partici-
pation of the C–C double bond of the ketene in the second
step of this reaction. Herein, in order to understand the par-
ticipation of the O–C double bond of ketenes, a BET study of
the most favourable reaction channel associated with the 32CA
reaction between nitrone 1b and ketene 4b is performed with
the aim of characterising the molecular mechanism of 32CA
reactions involving ketenes. The complete BET study is
reported in the ESI.† The equivalence between the topological
characterisation of the different phases and the associated
chemical process is given in Table 2.

Some appealing conclusions can be drawn from this BET
study: (i) the IRC associated with the 32CA reaction of nitrone
1b with ketene 4b is divided in eight differentiated phases.
A behaviour that clearly indicates that the bonding changes
along this one-step mechanism are non-concerted; (ii) for-
mation of the first O1–C5 single bond takes place at a C–O dis-
tance of 1.64 Å, by the donation of some electron density of
the O1 oxygen lone pairs of the nitrone to the C5 carbon atom
of the ketene moiety. Note that the O1 oxygen is the most
nucleophilic center of nitrone 1b and the C5 carbon corres-
ponds to the most electrophilic center of ketene 4b (see the
chemical process taking place in phase V in Table 2, and the
V(O1,C5) disynaptic basin in P4 in Fig. 5); (iii) formation of
this bond demands the asymmetric depopulation of the
O4–C5 bonding region of ketene 4b. The large GEDT, 0.34e,
taking place along this zw-type 32CA reaction favours these
bonding changes according to the electronic behaviour antici-
pated by the Parr functions, which is in agreement with the
chemoselectivity experimentally observed; (iv) formation of the
second C3–O4 single bond takes place at a C–O distance of
1.84 Å by the donation of some of the electron density of the
O4 oxygen lone pairs to the C3 pseudoradical center of the
nitrone framework (see the chemical process taking place in
phase VIII in Table 2, and the V(C3,O4) disynaptic basin in P7
in Fig. 5). This carbon participates with a residual electron
density of 0.03e in the formation of the C3–O4 single bond;
(v) the reaction follows a two-stage one-step mechanism49 in which

the formation of the second C3–O4 one begins when the first
O1–C5 single bond is practically already formed. This fact also
emphasises that the bonding changes in this one-step reaction
are non-concerted processes; (vi) the activation energy associ-
ated with this 32CA reaction, 9.3 kcal mol−1, can be mainly
associated with the depopulation of the O4–C5 and N2–C3
bonding regions towards the O4 oxygen and the N2 nitrogen,
respectively, which is demanded before the donation of the
electron density of the O4 oxygen to the C3 carbon; (vii) the
present BET study allows the establishment of the molecular
mechanism of the zw-type 32CA reactions between nitrones
and ketenes as a [2n,2n] mechanism,50i.e. only two non-
bonding electrons of the oxygen lone pairs of nitrone 1b and
two non-bonding electrons of the oxygen lone pairs of ketene
4b are mainly involved in the formation of the two C–O single
bonds in CA 9b.

Table 2 Sequential bonding changes along the zw-type 32CA reaction between nitrone 1b and ketene 4b, showing the equivalence between the
topological characterisation of the different phases and the associated chemical process

Phases d(O1–C5) d(C3–O4) ΔE GEDT Topological characterisation Chemical process

a I–IV 3.04 ≥ d > 1.79 3.26 ≥ d > 2.39 8.6 ≤0.34 Depopulation of the V(O4,C5)
disynaptic basin

Depopulation of the O4–C5
bonding region

b V 1.64 ≥ d > 1.61 2.39 ≥ d > 2.33 9.0(0.4) 0.34 Formation of the V(O1–C5)
disynaptic basin

Formation of the O1–C5 single
bond

c VI 1.61 ≥ d > 1.46 2.33 ≥ d > 1.91 4.5(−4.5) ≤0.34 Depopulation of the V(N2,C3)
disynaptic basin and the formation
of the V(N2) monosynaptic basin

Rupture of the N2–C3 double
bond and the formation of the
N2 nitrogen lone pair

d VII 1.46 ≥ d > 1.44 1.91 ≥ d > 1.84 1.7(−3.1) ≤0.24 Formation of the non-bonding
V(C3) monosynaptic basin

Formation of the
C3 pseudoradical center

e VIII 1.44 ≥ d ≥ 1.37 1.84 ≥ d ≥ 1.42 −22.7(−24.1) ≤0.21 Formation of the V(C3–O4)
disynaptic basin

Formation of the C3–O4 single
bond

Fig. 5 ELF attractor positions for the points of the IRC defining phases
IV, V, VII and VIII involved in the formation of the O1–C5 and C3–O4
single bonds along the most favourable reactive channel associated with
the zw-type 32CA reaction between nitrone 1b and ketene 4b. The elec-
tron populations, in e, are given in brackets.
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3.5. ELF topological analysis of the stationary points involved
in the most favourable reactive channel associated with the
32CA reaction of nitrone 1b with electrophilic ketene 4c

In order to understand how the EW substitution in the ketene
can modify the molecular mechanism of the zw-type 32CA
reaction of nitrones with electrophilic ketenes, the bonding
patterns of the stationary points involved in the most favour-
able reactive channel associated with the 32CA reaction of
nitrone 1b with electrophilic ketene 4c were characterised by
ELF topological analysis. ELF topological analysis is reported
in the ESI.†

Some appealing conclusions can be obtained from this ELF
topological analysis: (i) at TS1-CO, no bonding change with
respect to MC-c is observed. The bonding pattern of TS1-CO
resembles that associated with the structures located at the
end of phase I of the reaction between nitrone 1b and ketene
4b, emphasising its earlier character; (ii) as expected, at IN-CO,
while the formation of the O1–C5 single bond is very
advanced, the formation of the C3–O4 single bond has not yet
begun; (iii) the bonding pattern of IN-CO resembles that of
point P5 of the reaction between nitrone 1b and ketene 4b.
The main difference between IN-CO and P5 is the C3–O4
distance: 2.745 at IN-CO and 2.329 Å at P5. The short C3–O4
distance at P5 justifies that this species is not a stationary
point in the PES of the 32CA reaction between nitrone 1b
and ketene 4b; (iv) the bonding pattern of TS2-CO resembles
that of TS-CO. The only difference is that TS2-CO is slightly
more advanced than TS-CO; and (v) the GEDT at IN-CO
and TS2-CO is larger than that at P5 and TS-CO as a conse-
quence of the higher electrophilic character of ketene 4c than
ketene 4b. The higher polar character of the zw-type 32CA reac-
tion between nitrone 1b and electrophilic ketene 4c permits
the stabilisation of the zwitterionic intermediate, thus chang-
ing the molecular mechanism from a one-step mechanism
to a two-step one, but the bonding changes in both 32CA
reactions are essentially the same. This similar bonding
pattern along the two 32CA reactions makes it possible to
establish the non-concerted nature of the two-stage one-step
mechanism.49

4. Conclusions

A comprehensive MEDT study of the reaction between nitrones
and ketenes has been carried out using DFT methods at the
MPWB1K/6-311G(d,p) computational level. ELF analysis of
nitrones confirmed their electronic structure as TACs partici-
pating in zw-type 32CA reactions although NPA clearly shows
that the common representation as 1,2-zwitterions is incorrect.
The analysis of CDFT reactivity indices of nitrones and ketenes
correctly predicts the experimentally observed complete CvO
regio- and chemoselectivities. A detailed analysis of the PES
corresponding to the reaction between nitrones and non-
electrophilically activated ketenes indicates that the reaction
follows a two-stage one-step mechanism in which the formation
of the second bond takes place once the first one is almost

completely formed. No significant changes are observed by the
inclusion of solvent effects. Analysis of the thermodynamic
data indicates that while the initial 32CA reaction of the
nitrone towards the ketene C–O double bond is kinetically
regio- and chemoselectively controlled, the products resulting
from the addition of the ketene C–C double bond can be
obtained under thermal equilibrium conditions, in clear agree-
ment with the experimental outcomes.

A complete BET study confirms the non-concerted nature of
the reaction identifying the mechanism as a [2n,2n] process,
i.e. only two non-bonding electrons of the oxygen lone pairs of
the nitrone and two non-bonding electrons of the oxygen lone
pairs of the ketene are mainly involved in the formation of the
two C–O single bonds. Finally, an ELF topological analysis of
the electron density distribution of the stationary points
involved in the most favourable reactive channel associated
with the 32CA reaction involving electrophilic ketenes predicts
a switch of mechanism from two-stage one-step to two-step.
Despite the change of mechanism, the bonding pattern is the
same for the two reactions, thus the present computational
study confirms the non-concerted nature of the cycloaddition
between nitrones and ketenes.
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tron density theory study of the
[3 + 2] cycloaddition reaction of nitrones with
strained allenes†

Luis R. Domingo, *a Mar Ŕıos-Gutiérrez a and Patricia Pérez b

The [3 + 2] cycloaddition (32CA) reaction of C-phenyl-N-tert-butylnitrone with 1,2-cyclohexadiene

(CHDE), a strained allene, has been studied within Molecular Electron Density Theory (MEDT) at the DFT

B3LYP/6-311G(d,p) computational level. This non-polar 32CA reaction, which takes place through a non-

concerted two-stage one-step mechanism, proceeds with a moderate Gibbs free activation energy of

22.7 kcal mol�1, and presents low stereo- and regioselectivities. The reaction begins by the creation of

a pseudoradical center at the central carbon of the strained allene with a relatively low energy cost,

which immediately promotes the formation the first C–C single bond. This scenario is completely

different from that of the 32CA reaction involving the simplest allene. The strain present in CHDE

changes its reactivity to that characteristic of radical species. Consequently, not distortion as previously

proposed, but the radical reactivity type of the strained allene is responsible for the feasibility of this

32CA reaction.
1. Introduction

The use of strained species such as benzyne 5 and cyclic alkynes
such as cyclopentyne 8 in organic synthesis permits their
participation in organic reactions in which linear alkynes do not
react (see Scheme 1). Thus, while the non-polar ene reaction
between 2-methylpropene 1 and ethylene 2 presents a very high
activation energy, 34.7 kcal mol�1,1 the non-polar ene reaction
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between 2-methylbut-2-en 4 and benzyne 5 has an unappreci-
able activation energy, 1.2 kcal mol�1.2 Similarly, the [2 + 2]
cycloaddition between enol ether 7 and cyclopentyne 8 also
presents a low activation energy, 6.2 kcal mol�1.3

One appealing procedure that provides a straightforward
connection between the electron density distribution and the
chemical structure is the quantum chemical analysis of the
Becke and Edgecombe's Electron Localisation Function (ELF).4

An ELF topological analysis of the electronic structure of ben-
zyne 5 made it possible to explain the high reactivity of this
strained aromatic alkyne.2 The ELF of benzyne 5 shows the
Scheme 1 Non-polar reactions of ethylene and strained species.
Activation energies, in parentheses, are given in kcal mol�1.

RSC Adv., 2017, 7, 26879–26887 | 26879

http://crossmark.crossref.org/dialog/?doi=10.1039/c7ra01916e&domain=pdf&date_stamp=2017-05-19
http://orcid.org/0000-0002-2023-0108
http://orcid.org/0000-0001-8894-2710
http://orcid.org/0000-0002-6920-703X


Scheme 2 Cycloaddition reactions of CHDE 10.

RSC Advances Paper
presence of two monosynaptic basins, V(C1) and V(C2), inte-
grating 0.64e each one (see Fig. 1). This electronic characteristic
of benzyne 5 allowed associating its reactivity to that of a high
reactive pseudodiradical species.2,5 Note that pseudoradicals are
closed-shell species topologically characterised by the presence
of at least one V(C) monosynaptic basin integrating less than
1.0e at one carbon atom.6

Unlike arynes and cyclic alkynes, whose structure and reac-
tivity have been widely studied,1–3,7 highly strained allene
species have been studied to a much lesser extent. Since 1966,
when Wittig reported, for the rst time, the existence of 1,2-
cyclohexadiene (CHDE) 10,8 the chemistry of this highly
strained species has received little attention especially
compared to its aryne and alkyne counterparts. Only some
theoretical studies devoted to [2 + 2]9–13 and [4 + 2]14,15 cycload-
ditions of CHDE 10 yielding cycloadducts 12 and 14, respec-
tively, have been reported (see Scheme 2).

Very recently, Houk et al. studied experimentally as well as
theoretically the [3 + 2] cycloaddition (32CA) reaction of the in
situ generated CHDE 10 with nitrone 15 participating as the
three-atom-component (TAC), yielding the two stereoisomeric
isoxazolidines 16 (Ph/H syn : anti 9.5 : 1); regioisomeric iso-
xazolidines 17 were not observed (see Scheme 3).16

B3LYP/6-31G(d) calculations for the four competitive chan-
nels resulted in a poor stereoselectivity, DDGs¼ 0.1 kcal mol�1,
and a poor regioselectivity, DDGs ¼ 0.7 kcal mol�1.16 For the
stereoisomeric channels giving isoxazolidines 16a, Ph and H
syn, and 16b, Ph and H anti, associated with the attack of the C5
carbon of CHDE 10 on the C1 carbon atom of the nitrone (see
Scheme 4 for atom numbering), two reaction mechanisms were
established: (i) a “concerted” mechanism yielding syn iso-
xazolidine 16a; and (ii) a stepwise mechanism yielding an open-
shell diradical intermediate IN. From this open-shell interme-
diate, two competitive reaction channels associated to the ring
closures yielding isoxazolidines 16a and 16b were characterised
(see Scheme 4). Houk proposed that the “concerted” mecha-
nism giving cis isoxazolidine 16a via TSc was easily charac-
terised, while the “concerted” exo transition state structure (TS)
could not be located, suggesting that the “concerted” exo
reaction was higher in energy. Furthermore, he suggested that
the low �15 kcal mol�1 barrier for these reactions compared
with the >30 kcal mol�1 for the 32CA reaction with the simplest
Fig. 1 ELF localisation domains of benzyne 5. The two non-bonding
V(C1) and V(C2) monosynaptic basins are represented in red.
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allene 18 can be attributed to the predistortion of CHDE 10 into
geometries similar to those of the TSs for cycloadditions.16

To explain the reactivity of a series of TACs towards ethylene
2 in 32CA reactions, in 2008, Houk introduced the Distortion/
Interaction Energy Model (DIEM) in order to interpret the
activation energies.17,18 He concluded that the distortion energy
of the reagents towards the TS is themajor factor controlling the
reactivity differences of TACs. However, the distortion energy,
which is computed through the partition of the TS geometry
into two separated structures, has no physical meaning, since
within Density Functional Theory (DFT)19 the energy of a system
is a functional of the electron density and the external potential,
i.e. the nuclei positions. Consequently, the energy of the two
separated fragments cannot be correlated with the energy of the
TS as each of them loses the external potential created by the
other fragment.20

The theoretical study of strained compounds is of special
interest for organic chemists as it allows establishing a rela-
tionship between structure and reactivity. As aforementioned,
Houk proposed that the predistortion of CHDE 10 into geom-
etries similar to those of the TSs for cycloadditions could be
responsible for the low activation energy of these reactions.16

However, similarly to benzyne 5,2 the strain present at the sp
hybridised C5 carbon of CHDE 10 could provide some pseu-
doradical character to the C5 carbon, enabling CHDE 10 to
experience a different reactivity pattern to that of linear allenes,
and consequently, the corresponding reaction paths will be
non-comparable.

These different interpretations about the role of the strain in
the reactivity of strained species prompted us to revisit the 32CA
reaction of the strained CHDE 10 with nitrone 15 within the
recently proposed Molecular Electron Density Theory (MEDT)21

(see Scheme 3). The main purpose of the present theoretical
Scheme 3 32CA reaction of CHDE 10 with nitrone 15 yielding the
stereoisomeric isoxazolidines 16.16

This journal is © The Royal Society of Chemistry 2017



Scheme 4 Houk's “concerted” and stepwise mechanisms associated
to the formation of the stereosiomeric isoxazolidines 16a and 16b.16

B3LYP/6-31G(d) relative Gibbs free energies, in parentheses, are given
in kcal mol�1.

Paper RSC Advances
study is to understand how the strain modies the reactivity of
CHDE 10 with respect to the non-strained linear allene 18; this
MEDT study provides a different explanation to the one previ-
ously reported.16 Thus, in order to establish the special reactivity
of the strained allene CHDE 10, an MEDT study of the 32CA
reaction of nitrone 15 with the simplest allene 18 is also per-
formed for comparative analysis. This MEDT study is given in
ESI.†
2. Computational methods

DFT calculations were performed using the B3LYP func-
tional22,23 together with the 6-311G(d,p) basis set.24 Optimisa-
tions were carried out using the Berny analytical gradient
optimisation method.25,26 The stationary points were charac-
terised by frequency computations in order to verify that TSs
have one and only one imaginary frequency. The IRC paths27

were traced in order to check the energy proles connecting
each TS to the two associated minima of the proposed mecha-
nism using the second order González–Schlegel integration
method.28,29 Solvent effects of acetonitrile were taken into
account by full optimisation of the gas phase structures using
the polarisable continuum model (PCM) developed by Tomasi's
group30,31 in the framework of the self-consistent reaction eld
(SCRF).32–34 Enthalpies, entropies and Gibbs free energies in
acetonitrile were calculated with standard statistical thermo-
dynamics at 80 �C and 1 atm from the optimised structures in
acetonitrile.24 A comparative analysis of the thermodynamic
data, obtained by using the MPWB1K,35 uB97XD36 andM06-2X37

functionals, indicates that the B3LYP and MPWB1K ones are
the more adequate to study this non-polar 32CA reaction (see
the comparative analysis in ESI†);38 therefore, the B3LYP func-
tional was selected in the present MEDT study to be consistent
with previously reported calculations.16 The global electron
density transfer39 (GEDT) is computed by the sum of the natural
atomic charges (q), obtained by a natural population analysis
(NPA),40,41 of the atoms belonging to each framework (f) at the
TSs; GEDT ¼ Sqf. The sign indicates the direction of the elec-
tron density ux in such a manner that positive values mean
a ux from the considered framework to the other one. All
This journal is © The Royal Society of Chemistry 2017
computations were carried out with the Gaussian 09 suite of
programs.42

ELF studies were performed with the TopMod43 program
using the corresponding gas phase B3LYP/6-311G(d,p) mono-
determinantal wavefunctions. For the BET study, the corre-
sponding gas phase reaction channel was followed by
performing the topological analysis of the ELF for 862 nuclear
congurations along the IRC path. ELF calculations were
computed over a grid spacing of 0.1 a.u. for each structure and
ELF basin isosurfaces were obtained for an ELF value of 0.75.

Conceptual DFT44,45 (CDFT) provides different indices to
rationalise and understand chemical structure and reactivity.
The global electrophilicity index,46 u, is given by the following
expression, u ¼ (m2/2h), in terms of the electronic chemical
potential, m, and the chemical hardness, h. Both quantities may
be approached in terms of the one-electron energies of the
frontier molecular orbitals HOMO and LUMO, 3H and 3L, as mz
(3H + 3L)/2 and h z (3L � 3H), respectively.47,48 The global
nucleophilicity index,49,50 N, based on the HOMO energies ob-
tained within the Kohn–Sham scheme,51 is dened as N ¼
EHOMO(Nu) � EHOMO(TCE), where tetracyanoethylene (TCE) is
the reference.
3. Results and discussion

The presentMEDT study has been divided into four parts: (i) in the
rst one, an analysis of the CDFT reactivity indices at the ground
state (GS) of the reagents involved in the 32CA reactions of nitrone
15with allenes 10 and 18 is performed; (ii) then, the reaction paths
associated the 32CA reaction of nitrone 15 with CHDE 10 are
explored and characterised; (iii) in the third part, a topological
analysis of the ELF of the simplest allene 18 and strained CHDE 10
is performed in order to characterise their electronic structures;
and (iv) nally, a BET study of the 32CA reaction of nitrone 15with
CHDE 10 is carried out in order to establish the origin of the high
reactivity of the strained allene CHDE 10.
3.1. Analysis of the CDFT reactivity indices of nitrone 15 and
allenes 10 and 18

Numerous studies devoted to Diels–Alder and 32CA reactions
have shown that the analysis of the reactivity indices dened
within the CDFT44,45 is a powerful tool to understand the reac-
tivity in cycloaddition reactions. Recent MEDT studies have
shown that the feasibility of the 32CA reactions involving
nitrones depends on the nucleophilic character of these TACs
and the electrophilic character of the ethylene derivative.52,53

Consequently, an analysis of the CDFT reactivity indices
computed in gas phase at the GS of nitrone 15 and allenes 10
and 18 was performed to predict their reactivity in 32CA reac-
tions. The global indices, namely, the electronic chemical
potential, m, chemical hardness, h, electrophilicity, u, and
nucleophilicity, N, at the GS of the reagents involved in these
32CA reactions are given in Table 1.

The electronic chemical potential of nitrone 15, m ¼
�3.29 eV, is close to that of the simplest allene 18, m¼�3.30 eV,
and only slightly higher than that of CHDE 10, m ¼ �3.44 eV.
RSC Adv., 2017, 7, 26879–26887 | 26881



Table 1 B3LYP/6-31G(d) electronic chemical potential (m), chemical
hardness (h), electrophilicity (u) and nucleophilicity (N), in eV, of
nitrone 15, allenes 10 and 18, and ethylene 2

m h u N

Nitrone 15 �3.29 4.27 1.26 3.70
CHDE 10 �3.44 4.77 1.24 3.29
Ethylene 2 �3.37 7.77 0.73 1.87
Allene 18 �3.30 7.72 0.70 1.97

Scheme 5 The four competitive reactive channels associated with the
32CA reaction of nitrone 15 with CHDE 10. B3LYP/6-311G(d,p) relative
Gibbs free energies, in acetonitrile, are given in kcal mol�1.
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Thus, none of the reagents will have a tendency to exchange
electron density with the other along these 32CA reactions,
suggesting non-polar reactions.

Nitrone 15 presents an electrophilicity u index of 1.26 eV and
a nucleophilicity N index of 3.70 eV, being classied as
a moderate electrophile and as a strong nucleophile according
to the electrophilicity54 and nucleophilicity55 scales. Note that
nitrones usually behave as nucleophilic zwitterionic TACs
participating in polar 32CA reactions towards electrophilic
ethylene derivatives.52,53

Polar cycloaddition reactions require the participation of
good electrophiles and good nucleophiles. Ethylene 2 is one
of the poorest electrophilic, u ¼ 0.73 eV, and nucleophilic, N
¼ 1.87 eV, species involved in cycloaddition reactions, being
classied as a marginal electrophile and a marginal nucleo-
phile. CDFT reactivity indices of the simplest linear allene 18
are very similar to those of ethylene 2 (see Table 1), thus being
also classied as a marginal electrophile and on the border-
line between marginal and moderate nucleophiles. Other-
wise, the angular strain of the allene framework in CHDE 10
causes an increase of both the electrophilicity u and nucleo-
philicity N indices to 1.24 eV and 3.29 eV, respectively, being
classied as a moderate electrophile and a strong nucleo-
phile. However, in spite of this electrophilic activation with
respect to the simplest linear allene 18, this is not sufficient to
favour the GEDT,39 in clear agreement with the analysis of the
electronic chemical potentials of the reagents. Consequently,
it is expected that the corresponding non-polar 32CA reac-
tions will present high activation barriers (see the 32CA
reaction between nitrone 15 and the simplest allene 18 in
ESI†).

3.2. Study of the reaction paths associated with the 32CA
reaction of nitrone 15 with CHDE 10

Due to the non-symmetry of the two reagents, the 32CA reaction
of nitrone 15 with CHDE 10 can take place along four isomeric
channels: one pair of stereoisomeric channels and one pair of
regioisomeric ones. The regioisomeric channels are related to
the initial formation of the C1–C5 single bond, channel r1, or to
the initial formation of the O3–C5 single bond, channel r2,
while the endo and exo stereoisomeric channels are related to
the relative position of the allenic H4 hydrogen with respect to
the nitrone N2 nitrogen, in such a manner that along the endo
channel this hydrogen atom is far away. This 32CA reaction
presents a one-step mechanism; only one TS, TS1n, TS1x, TS2n
and TS2x, and the corresponding isoxazolidine, 16a, 16b, 17a
26882 | RSC Adv., 2017, 7, 26879–26887
and 17b, were located and characterised along each reactive
channel (see Scheme 5). Relative Gibbs free energies in aceto-
nitrile of the stationary points involved in the 32CA reaction of
nitrone 15 with CHDE 10 are given in Scheme 5, while total
thermodynamic data are gathered in Table S5 in ESI.† The
Gibbs free energy prole is represented in Fig. 2.

The activation Gibbs free energies associated with the four
competitive channels are 22.7 (TS1n), 23.2 (TS1x), 25.5 (TS2n),
and 23.7 (TS2x) kcal mol�1, the reaction being strongly exer-
gonic, between 22–31 kcal mol�1. Some appealing conclusions
can be drawn from these relative energies: (i) the activation
Gibbs free energy associated with the 32CA reaction of nitrone
15 with CHDE 10 via TS1n is 19.9 kcal mol�1 lower in energy
than that associated with the 32CA reaction of nitrone 15 with
the simplest allene 18 (see ESI†); (ii) this 32CA reaction presents
a low endo selectivity as TS1n is 0.5 kcal mol�1 lower in energy
than TS1x; (iii) this 32CA reaction presents a low regioselectivity
as TS2x is only 1.0 kcal mol�1 higher in energy than TS1n; (iv)
the 32CA reaction of nitrone 15 with CHDE 10 presents an
opposed regioselectivity to that found in the reaction with the
simplest allene 18 (see ESI†). The most favourable reactive
channel corresponds to the initial C1–C5 bond formation; (v)
this 32CA reaction is strongly exergonic by 30.9 kcal mol�1

(16a). Note that the most favourable reactive channel associated
with the 32CA reaction involving the simplest allene 18 is
exergonic by only 4.3 kcal mol�1 (see ESI†). Consequently, the
strain present in CHDE 10 does not only affect the kinetics, but
also the thermodynamics; and nally, (vii) the Gibbs free energy
prole corresponding to the exo/r1 reactive channel in aceto-
nitrile is quite different to that reported by Houk et al. in gas
phase (see the stepwise mechanism via an open-shell interme-
diate given in Scheme 4 as proposed by Houk,16 and the one-
step mechanism shown in Fig. 2). It is interesting to note that
the gas phase B3LYP/6-311G(d,p) IRC from exo TS1x to exo
This journal is © The Royal Society of Chemistry 2017



Fig. 2 B3LYP/6-311G(d,p) Gibbs free energy profile, in kcal mol�1, of
the 32CA reaction of nitrone 15 with CHDE 10.
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isoxazolidine 16b discontinues at a species that is not
a stationary point; a downhill calculation from this species gives
the nal exo isoxazolidine 16b in a straightforward manner (see
Fig. S10 in ESI†).

The optimised geometries of the TSs in acetonitrile involved
in the 32CA reaction of nitrone 15 with CHDE 10, including the
distances between the four interacting atoms, are given in
Fig. 3. Some appealing conclusions can be drawn from these
geometrical parameters: (i) the distances between the interact-
ing atoms at the four TSs indicate that they correspond to highly
asynchronous C–C and C–O single bond formation processes;
Fig. 3 B3LYP/6-311G(d,p) geometries in acetonitrile of the TSs
involved in the 32CA reaction of nitrone 15 with CHDE 10. Distances
are given in angstroms, Å.

This journal is © The Royal Society of Chemistry 2017
(ii) at the two pairs of stereoisomeric TSs associated with the
most favourable regioisomeric r1 channel, the more unfav-
ourable exo TS1x is slightly more advanced and more asyn-
chronous than endo TS1n; (iii) at the four TSs, the formation of
the single bond involving the C5 atom of CHDE 10 is more
advanced than that involving the C4 atom; (iv) CHDE 10
approaches nitrone 15 perpendicularly, while in the 32CA
reaction between nitrone 15 and the simplest allene 18, the two
frameworks approach each other in a parallel manner (see
Fig. S1 in ESI†). These different approach modes emphasise
different reactivities; (v) both geometries and relative energies
of the four TSs indicate that the strain present in CHDE 10
notably modies the reactivity of this strained cyclic allene
when it is compared to that of the simplest allene 18. Note that
the two regioisomeric TSs associated with the 32CA reaction of
nitrone 15 with the simplest allene 18 are poorly asynchronous
(see ESI†).

In acetonitrile, endo TS1n and exo TS1x have a great simili-
tude; they present a similar only imaginary frequency,
�297.6918 cm�1 (TS1n) and �311.8100 cm�1 (TS1x), with
a similar transition vector, 0.86023 B(C1–C5) and 0.25045 B(C4–
O3) (TS1n) and 0.80798 B(C1–C5) and 0.31925 B(C4–O3) (TS1x).
The vibration modes of these stereoisomeric TSs are completely
different to those of the TSs associated with the 32CA reaction of
nitrone 15 with the linear allene 18, indicating again different
reactivities; TS1n and TS1x are associated to a two-center
interaction in which only the C5 carbon of CHDE 10 and the
C1 carbon of nitrone 15 participate. In addition, these stereo-
isomeric channels, which are associated to a non-concerted two-
stage one-stepmechanism,56 present analogous IRCs (see Fig. 4).
In this mechanism, the formation of the second O3–C4 single
bond begins once the rst C1–C5 single bond has been
completely formed in a single elementary step (see later).

In order to evaluate the polar or non-polar electronic nature
of these TSs, the GEDT was analysed.39 The GEDT at the four
TSs, which uxes from the nitrone to the CHDE frameworks, is
0.02e at TS1n, 0.02e at TS1x, 0.02e TS2n and 0.09e at TS2x. These
negligible values indicate that this 32CA reaction has a non-
polar character.
3.3. Topological analysis of the ELF of linear allene 18 and
strained CHDE 10

As commented in the introduction, the high reactivity of ben-
zyne 5 was attributed to its pseudodiradical character, which was
topologically characterised by the presence of two ELF V(C)
monosynaptic basins (see Fig. 1).2 Consequently, a topological
analysis of the ELF of linear allene 18 and strained CHDE 10was
performed in order to characterise their electronic structure.
ELF attractors, together with the C4–C5 valence basin pop-
ulations, ELF localisation domains and the proposed ELF-based
Lewis structures are shown in Fig. 5.

ELF topological analysis of both allenes 10 and 18 shows the
presence of two V(C4,C5) and V0(C4,C5) disynaptic basins within
the C4–C5 bonding region, integrating a total population of
3.68e at both allenes, which indicates that the C4–C5 bonding
region possesses a strong double bond character (see Fig. 5).
RSC Adv., 2017, 7, 26879–26887 | 26883



Fig. 4 Relative energy (DE, in kcal mol�1) variations along the IRC (amu1/2 bohr) associatedwith the endo/r1 (a) and exo/r1 (b) reactive channels of
the 32CA reaction between nitrone 15 and strained allene CHDE 10 in acetonitrile. Relative energies are given with respect to the separated
reagents.

Fig. 5 ELF attractors, together with the C4–C5 valence basin pop-
ulations, in average number of electrons (e), ELF localisation domains
and the proposed Lewis structures for allenes 10 and 18.
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However, the topology of the ELF V(Cx,Cy) disynaptic basins
associated with the C4–C5 and C5–C6 bonding regions shows
a notable difference at the two structures; while these disynaptic
basins are clearly differentiated in the linear allene 18 as they
are positioned in two perpendicular molecular planes, they are
linked in a singular and twisted manner at strained CHDE 10
due to the slight torsion of the C1]C2]C3 framework (see ELF
localisation domains in Fig. 5). This particular feature found in
the strained CHDE 10 suggests the participation of the two C–C
double bonds of the strained allene in the special reactivity of
this strained species.

Consequently, although the strained CHDE 10 does not
present a pseudoradical structure such as benzyne 5 (see Fig. 1),
the ELF topological analysis of the C4–C5–C6 bonding region
suggests that this species will have a different chemical
behaviour to that of linear allene 18.
26884 | RSC Adv., 2017, 7, 26879–26887
3.4. BET study of the 32CA reaction between nitrone 15 and
strained allene CHDE 10 yielding endo isoxazolidine 16a

When trying to achieve a better understanding of bonding
changes in organic reactions, the so-called BET57 has proven to
be a very useful methodological tool. This quantum-chemical
methodology makes it possible to understand the bonding
changes along a reaction path and, thus, to establish the nature
of the electronic rearrangement associated with a given
molecular mechanism.58–60

Recently, a BET study of the bonding changes along the 32CA
reactions of C-phenyl-N-methyl nitrone 21 with electron-
decient acrolein 22 was carried out in order to understand
the molecular mechanism of these 32CA processes.61 Herein, in
order to understand the different reactivity of linear or cyclic
strained allenes towards nitrones, a BET study of the molecular
mechanism of the most favourable endo/r1 reaction channel
associated with the 32CA reaction between nitrone 15 and
strained allene CHDE 10 is performed; the complete BET study
is discussed in ESI.† The characterisation of the molecular
mechanism of the 32CA reaction of nitrone 15 with the simplest
linear allene 18 is also carried out with the aim of rationalising
the origin of the differences between the reactivity of both
allenes (see ESI†). The attractor positions of the ELF basins for
the points involved in the bond formation processes are shown
in Fig. 6.

Some appealing conclusions can be drawn from this BET
study: (i) the IRC of the endo/r1 reactive channel is divided in ten
differentiated phases related to the disappearance or creation of
valence basins, emphasising the non-concertedness of the
reaction; (ii) the reaction begins with the depopulation of the
allenic C4–C5–C6 bonding region of the strained CHDE 10 in
order to permit the creation of a C5 pseudoradical center. Due to
the strain present in CHDE 10, this electronic change demands
a moderate energy cost of 8.3 kcal mol�1 (see Table S3 in ESI†),
which is 15.1 kcal mol�1 lower than that demanded for the
creation of the rst pseudoradical center at the nitrone 15 in the
reaction involving the simplest allene 18 (see Table S2 in ESI†);
(iii) thus, the moderate activation energy found in this non-
polar 32CA reaction, 8.5 kcal mol�1, can be mainly associated
to the creation of a pseudoradical center at the C5 carbon of
strained allene CHDE 10; (iv) once the C5 pseudoradical center is
formed in the allenic framework, the subsequent rupture of the
C1–N2 double bond of the nitrone fragment and creation of the
This journal is © The Royal Society of Chemistry 2017



Fig. 6 ELF attractor positions for the points of the IRC involved in the formation of the C1–C5 and O3–C4 single bonds along the most
favourable endo/r1 reactive channel associated with the 32CA reaction between nitrone 15 and strained allene CHDE 10. The electron pop-
ulations, in e, are given in brackets.
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C1 pseudoradical center has an unappreciable energy cost, 0.1
kcal mol�1. Consequently, once the C5 pseudoradical center is
created, it induces the easy rupture of the C1–N2 double bond
(see Table S3 in ESI†). This reactivity behaviour is characteristic
of radical species. (v) Formation of the rst C1–C5 single bond
begins at a C1–C5 distance of 1.94 Å through a C-to-C coupling
of two C1 and C5 pseudoradical centers (see P4 and P5 in
Fig. 6).39 Interestingly, the C5 pseudoradical center participates
with a high electron density, 0.89e, in the formation of the new
C1–C5 single bond; (vi) however, formation of the second O3–
C4 single bond begins at an O3–C4 distance of 1.75 Å through
the donation of the electron density of one of the two O3 oxygen
lone pairs of the nitrone framework to the C2 carbon atom of
the allene fragment, similar to previous O–C bond formations,61

(see P8 and P9 in Fig. 6); and (vii) formation of the second O3–
C4 single bond takes place at the end of the reaction path once
the rst C1–C5 single bond has already reached 99% of its the
population present at endo isoxazolidine 16a. This fact allows
characterising the molecular mechanism of this 32CA reaction
as a non-concerted two-stage one-step mechanism56 associated
to the attack of the pseudoradical allenic C5 carbon of CHDE 10
on the C1 carbon of the nitrone which, aer the complete C1–C5
single bond formation, experiences a rapid ring-closure
process.
This journal is © The Royal Society of Chemistry 2017
A comparative analysis of the BET studies of the non-polar
32CA reactions between nitrone 15 and allenes 10 and 18
makes it possible to explain the high reactivity of strained cyclic
allene CHDE 10. The bonding changes along the non-polar
32CA reaction between nitrone 15 and the simplest allene 18
are very similar to those along the less favourable ortho/endo
regioisomeric channel associated with the low-polar 32CA
reaction of nitrone 21 with electron-decient acrolein 22, which
begins with the rupture of the nitrone C1–N2 double bond.61

The lower activation energy associated with the reaction
involving acrolein 22 can be related to the slight GEDT, which
favours the rupture of the double bonds in the nitrone and
ethylene frameworks involved in this 32CA reaction.61 However,
a completely different scenario is found along the non-polar
32CA reaction between nitrone 15 and strained allene CHDE 10.

At the beginning of the reaction, a pseudoradical center is
created at the central C5 carbon of the strained allene CHDE 10
with an energy cost of 8.3 kcal mol�1. Interestingly, once this C5
pseudoradical center reaches a population of 0.89e, the subse-
quent bonding changes take place very easily (see the shortness
of phases II–IV in the reaction involving CHDE 10 in Fig. S5† in
contrast to their extension in the reaction involving the linear
allene 18 in Fig. S2†). This behaviour indicates that, at the
beginning of the reaction, CHDE 10 becomes a pseudoradical
RSC Adv., 2017, 7, 26879–26887 | 26885
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species,5which explains the high reactivity of strained allenes in
cycloaddition reactions.9–15

These ndings clearly reveal that the bonding changes
demanded to reach the corresponding TSs are completely
different and, consequently, they are neither electronically nor
geometrically comparable.

4. Conclusions

The 32CA reaction of nitrone 15 with the strained allene CHDE
10 giving isoxazolidines 16 and 17 has been studied within
MEDT at the DFT B3LYP/6-311G(d,p) computational level in
order to explain the higher reactivity of CHDE 10 with respect to
linear allenes.

This 32CA reaction can take place along two pairs of regio-
and stereoisomeric reaction channels. In acetonitrile, this
reaction presents a low activation Gibbs free energy, 22.7 kcal
mol�1, as well as low endo stereo- and regioselectivities. The
non-polar character of the reaction measured by the GEDT at
the TSs agrees with the analysis of the CDFT reactivity indices
carried out at the GS of the reagents.

Analysis of the geometries of the endo and exo stereoisomeric
TSs associated with the more favourable r1 regioisomeric
channels indicates that they are related to highly asynchronous
C–C and C–O single bond formation processes. Analysis of the
IRCs associated to these TSs in acetonitrile clearly permits to
establish that this 32CA reaction takes place through a non-
concerted two-stage one-step mechanism initialised by the
attack of the central C5 carbon of CHDE 10 on the C1 carbon of
nitrone 15.

BET analysis of the most favourable endo/r1 reactive channel
allows establishing the molecular mechanism of the 32CA
reaction of nitrone 15 with strained allene CHDE 10. At the
beginning of the reaction, a pseudoradical center with a pop-
ulation of 0.89e is created at the central C5 carbon of the
strained allene framework with a moderate energy cost of 8.3
kcal mol�1, which induces the formation of the C1 pseudor-
adical center at the nitrone moiety, demanded for the formation
of the rst C1–C5 single bond through a two-center interaction.
Formation of the second O3–C4 single bond takes place at the
end of the reaction path when the rst C1–C5 single bond is
almost completely formed. This behaviour supports the mech-
anism of this 32CA reaction as a non-concerted two-stage one-
step one.

This mechanism is completely different to that associated
with the 32CA reaction involving the simplest linear allene 18,
which begins with the rupture of the C1–N2 double bond of the
nitrone framework in order to create the C1 pseudoradical center
required for the formation of the rst C1–C5 single bond. This
bonding change demands an energy cost of 23.4 kcal mol�1,
justifying the high activation energy associated to this non-
polar process, 26.2 kcal mol�1.

Consequently, when comparing the mechanisms of the 32CA
reactions of nitrone 15 with allenes 10 and 18 characterised
from an MEDT perspective, we can conclude that the geomet-
rical predistortion of strained allene CHDE 10 is not responsible
for the high reactivity of this species as previously proposed,16
26886 | RSC Adv., 2017, 7, 26879–26887
but a change of reactivity of the strained CHDE 10, which
behaves as a radical species rather than an ethylene derivative,
as occurs in the case of linear allene 18. It is worth mentioning
that while the pseudoradical character of a species can be
correlated with a molecular strain, the energy associated with
the geometrical distortion of a relaxed species cannot give any
information about its electronic structure.
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e high reactivity of carbonyl
compounds towards nucleophilic carbenoid
intermediates generated from carbene isocyanides

Mar Ŕıos-Gutiérrez,a Luis R. Domingo*a and Patricia Pérezb

The high reactivity of carbonyl compounds towards the carbenoid intermediate cis-IN, generated in situ

by the addition of methyl isocyanide to dimethyl acetylenedicarboxylate (DMAD), has been investigated

at the MPWB1K/6-311G(d,p) computational level by using Molecular Electron-Density Theory (MEDT).

This multicomponent (MC) reaction is a domino process that comprises two sequential reactions: (i)

the formation of a nucleophilic carbenoid intermediate trans-IN; and (ii) the nucleophilic attack of cis-

IN on the carbonyl compound, resulting in the formation of the final 2-iminofuran derivative. The

present MEDT study establishes that the high nucleophilic character and the electronic structure of

the carbenoid intermediate, cis-IN, together with the specific approach mode of the carbonyl C]O

double bond during the nucleophilic attack of the sp2 hybridised carbenoid C4 center of cis-IN on the

carbonyl C5 carbon of acetone, enables the formation of the C4–C5 single bond with a very low

activation enthalpy, 3.3 kcal mol�1, without any external electrophilic activation of the carbonyl group,

and the subsequent ring closure through the downhill formation of the C–O single bond. The

Bonding Evolution Theory (BET) study for the formation of the 2-iminofuran allows characterisation of

the mechanism as a [2n + 2n] cycloaddition, ruling out the proposed 1,3-dipolar cycloaddition

mechanism.
Introduction

Carbene isocyanides I are essential building blocks in modern
organic chemistry,1 and it has been reported that these species
nucleophilically attack dialkyl acetylenedicarboxylates II
yielding zwitterionic species III, which act as crucial interme-
diates. These reactive intermediates are readily trapped by
several kinds of electrophilic carbon molecules2 such as alde-
hydes,3 ketones,4 esters,5 and sulfonylimines,6 and even carbon
dioxide.7 When the electrophilic molecules are carbonyl deriv-
atives IV, the reaction products are 2-iminofuran derivatives V
(see Scheme 1). Polyfunctionalised furans are versatile synthetic
starting materials for the preparation of a great variety of
heterocyclic and acyclic compounds,8 and especially 2,5-disub-
stituted furan-3,4-dicarboxylates, which are very important
starting materials in the synthesis of natural products con-
taining tetrahydrofuran rings.9

This multicomponent (MC) reaction is a domino process
that comprises two consecutive reactions: (i) a nucleophilic
attack of the carbene isocyanides I on the
ica, Departamento de Qúımica Orgánica,

, Spain. E-mail: domingo@utopia.uv.es;

ncias Exactas, Departamento de Ciencias

tiago, Chile

hemistry 2015
acetylenedicarboxylates II, yielding the proposed zwitterionic
intermediates III; and (ii) the quick capture of these interme-
diates by a carbonyl derivative IV yielding the 2-iminofuran
derivatives V. This last step has been associated with a 1,3-
dipolar cycloaddition reaction in which the zwitterionic inter-
mediate III participates as the 1,3-dipole and the carbonyl
derivative acts as the dipolarophile.3,4

For this 1,3-dipolar cycloaddition reaction two mechanisms
have been proposed (see Scheme 2): (i) a one-stepmechanism in
which the C–C and C–O bonds are formed in a single step but
asynchronously;4a and (ii) a stepwise mechanism in which a new
zwitterionic intermediate VI is formed through the nucleophilic
attack of the zwitterionic intermediate III on the carbonyl
derivative IV; the subsequent cyclisation of this intermediate
will yield the 2-iminofuran derivative V.4b

Due to the high reactivity evidenced by the intermediate III
and the signicance of the formation of the 2-iminofurans V
through these MC reactions involving a large diversity of
carbonyl derivatives IV,3–5,7 a Density Functional Theory (DFT)
study of the MC reaction between methyl isocyanide 1, DMAD 2
and acetone 3 yielding 2-iminofuran 4 is performed herein,
usingMolecular Electron-Density Theory (MEDT) to explain this
high reactivity (see Scheme 3). The proposed MEDT, in which
the changes in the electron-density and not molecular orbital
interactions are considered responsible for reactivity in organic
chemistry, uses quantum chemical tools based on the analysis
RSC Adv., 2015, 5, 84797–84809 | 84797
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Scheme 2 Proposed mechanisms for the 1,3-dipolar cycloadditions of intermediate III with carbonyl derivatives IV.

Scheme 1
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of electron-density, such as the conceptual DFT reactivity
indices10 and the topological Electron Localisation Function11

(ELF) analysis of the changes in the molecular electron-density
along the reaction path, in order to establish the molecular
mechanism of an organic reaction.

To this end, a theoretical study at the MPWB1K/6-311G(d,p)
computational level, in which a combination of (i) the explo-
ration and characterisation of the potential energy surfaces
(PESs) associated with the selected domino reaction, (ii) the
analysis of the reactivity indices derived from the conceptual
DFT for the ground state of the reagents and (iii) the Bonding
Evolution Theory12 (BET) analysis of the two consecutive reac-
tions, was carried out. Three unresolved questions will be
answered: (i) what is the electronic structure of the intermediate
III formed in these domino reactions?; (ii) what is the origin of
the high reactivity of the carbonyl compounds IV in these MC
reactions?; and nally, (iii) what is the mechanism of the
Scheme 3 Selected reaction model for the MC reaction of iso-
cyanides I, acetylenedicarboxylate derivatives II and carbonyl
compounds IV.

84798 | RSC Adv., 2015, 5, 84797–84809
cycloaddition step? As these questions cannot be experimen-
tally resolved, our theoretical study provides valuable informa-
tion about these MC reactions.
Computational methods

Several studies have shown that the B3LYP functional13 is rela-
tively accurate for providing kinetic data, although the reaction
exothermicities are underestimated.14 Truhlar’s group has
proposed some functionals, such as the MPWB1K functional,15

which gives good results for combinations of thermochemistry,
thermochemical kinetics and other weak interactions. There-
fore, in this study theMPWB1K functional was selected together
with the standard 6-31G(d) basis set.16 The optimisations were
carried out using the Berny analytical gradient optimisation
method.17 The stationary points were characterised by
frequency computations in order to verify that the TSs have one
and only one imaginary frequency. The IRC paths18 were traced
in order to check the energy proles connecting each TS to the
two associated minima in the proposed mechanism using the
second order González–Schlegel integration method.19 Solvent
effects were taken into account by full optimisation of the gas
phase structures at the MPWB1K/6-311G(d,p) level using the
polarisable continuum model (PCM) developed by Tomasi’s
group20 in the framework of the self-consistent reaction eld
(SCRF).21 The integral equation formalism variant is the SCRF
method used in this work. Several polar solvents such as
dichloromethane, benzene and acetonitrile have been used in
This journal is © The Royal Society of Chemistry 2015
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these MC reactions. Acetonitrile was selected for the solvent
effect calculations since it was used in the reactions of a benzo
[b]acridine-6,11-dione acting as the carbonyl derivative.4b The
values of enthalpy, entropy and Gibbs free energy in acetonitrile
were calculated with the standard statistical thermodynamics at
25 �C and 1 atm.16 No scaling factor in the thermodynamic
calculations was used. The electronic structures of stationary
points were characterised by natural bond orbital (NBO)
analysis.22

Conceptual DFT23 provides different indices to rationalize
and understand chemical structure and reactivity.10 In this
sense, the global electrophilicity index,24 u, is given by the
following expression, u ¼ (m2/2h), in terms of the electronic
chemical potential m and the chemical hardness h. Both quan-
tities may be approached in terms of the one-electron energies
of the frontier molecular orbitals HOMO and LUMO, 3H and 3L,
as mz (3H + 3L)/2 and hz (3L� 3H), respectively.25 The empirical
(relative) nucleophilicity index,26 N, based on the HOMO ener-
gies obtained within the Kohn–Sham scheme,27 is dened as
N ¼ EHOMO(Nu) � EHOMO(TCE), where tetracyanoethylene (TCE)
is the reference because it presents the lowest HOMO energy in
a long series of molecules already investigated in the context of
polar organic reactions. This choice allows convenient handling
of a nucleophilicity scale of positive values. Nucleophilic Pk

�

and electrophilic Pk
+ Parr functions28 were obtained through the

analysis of the Mulliken atomic spin density of the corre-
sponding radical cations or anions.

The characterisation of the electron-density reorganisation
to evidence the bonding changes along a reaction path is the
most attractive method to characterise a reaction mecha-
nism.29 To perform these analyses quantitatively, the BET,12

consisting of the joint-use of ELF topology and Thom’s catas-
trophe theory30 (CT), proposed by Krokidis et al.,12 is a new tool
for analysing the electronic changes in chemical processes.
BET has been applied to different elementary reactions,31

allowing the molecular mechanism to be established. The ELF
topological analysis, h(r),32 was performed with the TopMod
program33 using the corresponding MPWB1K/6-311G(d,p)
monodeterminantal wavefunctions of the selected structures
of the IRC. Non-covalent interactions (NCIs) were computed
using the methodology previously described.34 All computa-
tions were carried out with the Gaussian 09 suite of
programs.35

Results and discussion

The present theoretical study has been divided into four parts:
(i) rst, the PESs associated with the domino reaction between
isocyanide 1, DMAD 2 and acetone 3 yielding 2-iminofuran 4 are
explored and characterised; (ii) then, an analysis of the DFT
reactivity indices for the ground state of the reagents involved in
this domino process is carried out; (iii) next, a BET study of the
two consecutive reactions is performed in order to characterise
the molecular mechanism; and nally, (iv) the electronic
structure of the intermediate cis-IN as well as the origin of the
high reactivity of carbonyl compounds in these MC reactions
are discussed.
This journal is © The Royal Society of Chemistry 2015
(i) Study of the PESs of the MC reaction between methyl
isocyanide 1, DMAD 2 and acetone 3

The MC reaction between methyl isocyanide 1, DMAD 2 and
acetone 3 to yield 2-iminofuran 4 is a domino reaction that
comprises two addition reactions (see Scheme 4). The rst one
is the nucleophilic attack of the carbene methyl isocyanide 1 on
one of the two electrophilic acetylenic carbon atoms of DMAD 2
to yield the intermediate trans-IN, which aer isomerisation to
the intermediate cis-IN attacks acetone 3. The total and relative
electronic energies of the stationary points involved in the two
consecutive processes of the MC reaction between isocyanide 1,
DMAD 2 and acetone 3 are given in Table 1.

The activation energy associated with the nucleophilic attack
of carbene methyl isocyanide 1 on DMAD 2, via TS1, presents a
high value, 17.4 kcal mol�1, with the formation of the inter-
mediate trans-IN being slightly exothermic, �0.4 kcal mol�1.
This intermediate, which presents a trans disposition of the two
carboxylate groups, undergoes a sp2–sp–sp2 rehybridisation
process at the C4 carbon via TS-tc with an estimated activation
energy of 9.4 kcal mol�1 to yield cis-IN, which is 1.4 kcal mol�1

lower in energy than trans-IN. It is noteworthy that the cis
rearrangement of the two carboxylate groups at cis-IN is
required for the subsequent addition of acetone 3 followed by
the concomitant ring closure. From this intermediate, the
formation of 2-iminofuran 4 takes place through the nucleo-
philic attack of cis-IN on acetone 3, followed by a downhill C–O
bond formation. This nucleophilic attack via TS2 presents a very
low activation energy, 4.1 kcal mol�1, the cycloaddition being
strongly exothermic by 88.3 kcal mol�1.

The activation and reaction energies associated with TS1 and
TS2, and 2-iminofuran 4, decrease by 1 kcal mol�1 and 6 kcal
mol�1, respectively, when the solvent effects of acetonitrile are
considered. On the contrary, the activation and reaction ener-
gies associated with TS-tc, and trans-IN and cis-IN, increase by
between 5–7 kcal mol�1. This behaviour is a consequence of the
higher solvation of the intermediates trans-IN and cis-IN than of
the reagents, TSs, and the nal product for this MC reaction.

The relative and non-relative enthalpies, entropies and
Gibbs free energies of the stationary points involved in the
domino reaction between methyl isocyanide 1, DMAD 2 and
acetone 3 are displayed in Table 2. The Gibbs free energy prole
including both consecutive processes is graphically repre-
sented in Fig. 1. Inclusion of the thermal corrections in the
electronic energies does not signicantly change the relative
enthalpies of the stationary points involved in this MC reaction;
those of TS1, TS-tc and cis-IN remain almost unchanged but
those of trans-IN, TS2 and 4 slightly increase by 1–5 kcal mol�1.
Inclusion of the entropies in the enthalpies increases the
relative Gibbs free energies by between 11 and 33 kcal mol�1,
due to the unfavourable entropy associated with this bimolec-
ular reaction.

Thus, the activation Gibbs free energy associated with the
rst nucleophilic attack of isocyanide 1 on DMAD 2, via TS1, is
29.3 kcal mol�1, the formation of the intermediate trans-IN
being endergonic by 7.2 kcal mol�1. The following conversion of
trans-IN into cis-IN presents an activation Gibbs free energy of
RSC Adv., 2015, 5, 84797–84809 | 84799

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c5ra15662a


Scheme 4 Domino reaction between methyl isocyanide 1, DMAD 2 and acetone 3.

Table 1 MPWB1K/6-311G(d,p) total (E, in au) and relativea electronic
energies (DE, in kcal mol�1), in the gas phase and in acetonitrile, of the
stationary points involved in the domino reaction between 1, 2 and 3

Gas phase Acetonitrile

E DE E DE

1 �132.674951 �132.681758
2 �532.962501 �532.971986
3 �193.098437 �193.104691
TS1 �665.609778 17.4 �665.624629 18.3
trans-IN �665.638068 �0.4 �665.664217 �6.6
TS-tc �665.622520 9.4 �665.649492 2.7
cis-IN �665.639621 �1.4 �665.666500 �6.6
TS2 �858.744588 �5.5 �858.765118 �4.2
4 �858.876561 �88.3 �858.888753 �81.8

a Relative to 1, 2 and 3.

Table 2 MPWB1K/6-311G(d,p) enthalpies (H, in au), entropies (S, in cal
mol�1 K�1) and Gibbs free energies (G, in au), and relativea enthalpies
(DH, in kcal mol�1), entropies (DS, in cal mol�1 K�1) and Gibbs free
energies (DG, in kcal mol�1), at 25 �C and 1 atm in acetonitrile, of the
stationary points involved in the domino reaction between 1, 2 and 3

H DH S DS G DG

1 �132.630638 58.298 �132.658324
2 �532.841793 104.873 �532.891597
3 �193.013050 71.406 �193.046960
TS1 �665.442939 18.5 127.102 �36.1 �665.503299 29.3
trans-IN �665.481317 �5.6 120.401 �42.8 �665.538495 7.2
TS-tc �665.467932 2.8 118.198 �45.0 �665.524063 16.2
cis-IN �665.482621 �6.4 125.618 �37.6 �665.542277 4.8
TS2 �858.488597 �2.0 150.779 �83.8 �858.560201 23.0
4 �858.607120 �76.3 143.575 �91.0 �858.675303 �49.2

a Relative to 1, 2 and 3.

Fig. 1 Gibbs free energy profile (DG, in kcal mol�1) of the domino
reaction between methyl isocyanide 1, DMAD 2 and acetone 3.
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9.0 kcal mol�1 (TS-tc), the conversion being exergonic by 2.4
kcal mol�1. Finally, the cycloaddition reaction of cis-IN with
acetone 3 via TS2 yields 2-iminofuran 4 with an activation Gibbs
84800 | RSC Adv., 2015, 5, 84797–84809
free energy of 23.0 kcal mol�1. The formation of the nal
cycloadduct 4 is strongly exergonic by 49.2 kcal mol�1.

Some interesting conclusions can be drawn from the Gibbs
free energy prole presented in Fig. 1: (i) the rst nucleophilic
attack of carbene isocyanide 1 on DMAD 2 is the rate-
determining step (RDS) of this domino process; (ii) the inter-
mediate trans-IN quickly isomerises to cis-IN, which is 2.4 kcal
mol�1 more stable and whose cis disposition is required for the
following cycloaddition reaction with acetone 3 to occur; (iii)
the activation Gibbs free energy of the cycloaddition reaction of
the intermediate cis-IN with acetone 3 via TS2 is 6.3 kcal mol�1

lower than that of the RDS of the domino process via TS1; (iv)
the strong exergonic character of the cycloaddition reaction
between cis-IN and acetone 3 makes this process irreversible;
and (v) although the formation of the intermediate cis-IN is
slightly endergonic, as soon as it is formed it is quickly and
irreversibly captured by acetone 3 yielding 2-iminofuran 4.
Accordingly, the MC reaction between isocyanide 1, DMAD 2
and acetone 3 is kinetically and thermodynamically very
favourable.
This journal is © The Royal Society of Chemistry 2015
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The geometries of the TSs involved in the domino reaction
between methyl isocyanide 1, DMAD 2 and acetone 3 in aceto-
nitrile are shown in Fig. 2. At TS1, associated with the nucleo-
philic addition of methyl isocyanide 1 to DMAD 2, the length of
the C2–C3 forming bond is 1.973 Å, while at the intermediates
trans-IN and cis-IN the length of the formed C2–C3 single bond
is 1.407 Å. At TS2, associated with the cycloaddition reaction of
cis-IN with acetone 3, the lengths of the C4–C5 and C2–O6
forming bonds are 2.147 and 2.556 Å. The IRC from TS2 towards
the nal 2-iminofuran 4 indicates that the second reaction of
this MC process is associated with a two-stage one-step mecha-
nism36 in which the C4–C5 single bond is completely formed
before the formation of the second C2–O6 single bond starts
(see later). In addition, this IRC also shows that the carbonyl
C5–O6 bond of acetone 3 approaches the intermediate cis-IN in
the C2–C3–C4 plain, in which the two C4–C5 and C2–O6 single
bonds will be formed (see TS2 in Fig. 2). This approach mode is
different to that demanded in 1,3-dipolar cycloadditions, in
which the dipolarophile approaches over the plain of the 1,3-
dipole.

The electronic nature of the nucleophilic addition reaction
of carbene isocyanide 1 with DMAD 2, as well as the cycload-
dition reaction of the intermediate cis-IN with acetone 3, were
analysed by computing the global electron-density transfer
(GEDT).37 The natural atomic charges, obtained through a
natural population analysis (NPA), were shared between the two
frameworks involved in these addition reactions. Thus, the
GEDT that uxes from the carbene isocyanide framework
towards the acetylene derivative during the rst reaction is 0.26e
at TS1 and 0.62e at trans-IN, indicating that during the nucle-
ophilic addition of isocyanide 1 to DMAD 2 there is an increase
of the GEDT until the maximum value is reached with the
formation of the C2–C3 single bond at the intermediate trans-
Fig. 2 MPWB1K/6-311G(d,p) geometries of the most important
stationary points involved in the domino reaction between methyl
isocyanide 1, DMAD 2 and acetone 3. Distances are given in
Angstroms. Lengths in acetonitrile are given in parentheses.

This journal is © The Royal Society of Chemistry 2015
IN. On the other hand, the GEDT that uxes from the inter-
mediate cis-IN to the ketone framework during the second
process is 0.26e at TS2, showing the polar character of the
cycloaddition reaction between cis-IN and acetone 3. The GEDT
values calculated for both reactions emphasise the polar nature
of the MC reaction between methyl isocyanide 1, DMAD 2 and
acetone 3.
(ii) Analysis of the global and local DFT reactivity indices for
the ground state of the reagents and of intermediate cis-IN

Studies devoted to polar organic reactions have shown that the
analysis of the reactivity indices dened within conceptual
DFT10 is a powerful tool to understand the reactivity in polar
cycloadditions. The global DFT indices, namely, the electronic
chemical potential m, chemical hardness h, global electrophi-
licity u and nucleophilicity N, of methyl isocyanide 1, DMAD 2,
acetone 3 and the intermediate cis-IN are given in Table 3.

The electronic chemical potential of carbene isocyanide 1,
m ¼ �3.90 eV, is higher than that of DMAD 2, m ¼ �5.01 eV,
indicating that for a polar reaction the GEDT33 will ux from the
carbene isocyanide framework towards the electron-decient
acetylene framework. In the same way, the higher electronic
chemical potential of the intermediate cis-IN, m ¼ �3.58 eV,
than that of acetone 3, m ¼ �3.72 eV, suggests that for the
subsequent cycloaddition reaction between the intermediate
cis-IN and acetone 3, the GEDT will ux towards the ketone
framework.

Methyl isocyanide 1 presents an electrophilicity u index of
0.66 eV and a nucleophilicity N index of 0.77 eV, being classied
on the borderline of moderate electrophiles38 and as a marginal
nucleophile.39 Accordingly, carbene isocyanide 1 is considered a
weak nucleophile participating in polar reactions and, there-
fore, a strongly electrophilically activated molecule will be
necessary to make the nucleophilic attack of methyl isocyanide
1 feasible.

Polar organic reactions require the participation of good
electrophiles and good nucleophiles. Acetylene 5 is one of the
poorest electrophilic, u ¼ 0.55 eV, and nucleophilic, N ¼ 1.20
eV, species involved in polar organic reactions, being classied
as a marginal electrophile and a marginal nucleophile. There-
fore, it cannot participate in polar reactions. The inclusion of
two methyl carboxylate groups in the acetylene framework
drastically increases the electrophilicity u index of DMAD 2, u¼
1.40 eV, being classied as a strong electrophile, and slightly
decreases its nucleophilicity N index to N ¼ 0.91 eV, remaining
Table 3 MPWB1K/6-311G(d,p) electronic chemical potential m,
chemical hardness h, global electrophilicity u and nucleophilicity N, in
eV, of methyl isocyanide 1, DMAD 2, acetone 3 and intermediate cis-IN

m h u N

DMAD 2 �5.01 8.95 1.40 0.91
cis-IN �3.58 6.03 1.06 3.80
Acetone 3 �3.72 9.02 0.77 2.16
Methyl isocyanide 1 �3.90 11.46 0.66 0.77
Acetylene 5 �3.53 11.34 0.55 1.20

RSC Adv., 2015, 5, 84797–84809 | 84801
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classied as a marginal nucleophile. In spite of the strong
electrophilic character of DMAD 2, the low nucleophilic char-
acter of isocyanide 1 accounts for the high activation energy
associated with the nucleophilic addition of isocyanide 1 to
DMAD 2 (see above).

Otherwise, the electrophilicity u and nucleophilicity N
indices of the intermediate cis-IN, u ¼ 1.06 eV and N ¼ 3.80 eV,
allow its classication on the borderline of strong electrophiles
and as a strong nucleophile. Acetone 3, which presents an
electrophilicity u index of u ¼ 0.77 eV and a nucleophilicity N
index of N¼ 2.16 eV, will behave as a moderate electrophile and
a moderate nucleophile. It is interesting to note that the low
electrophilic character of acetone 3 demands its electrophilic
activation in order for it to participate in polar reactions.

Recently, the electrophilic Pk
+ and nucleophilic Pk

� Parr
functions have been proposed to analyse the local reactivity in
polar processes28 involving reactions between a nucleophile–
electrophile pair. Accordingly, the electrophilic Pk

+ Parr func-
tions for DMAD 2 and acetone 3, and the nucleophilic Pk

� Parr
functions for methyl isocyanide 1 and the intermediate cis-IN
are analysed (see Fig. 3).

The analysis of the nucleophilic Pk
� Parr functions of car-

bene isocyanide 1 and cis-IN shows that the C2 carbon of iso-
cyanide 1 and the C4 carbon of the intermediate cis-IN present
the maximum values, Pk

� ¼ 1.24 and 1.00, respectively, indi-
cating that these sites are the most nucleophilic centers of these
species (see Scheme 4 for atom numbering). From these values
two appealing conclusions can be obtained: (i) carbene iso-
cyanide 1 experiences a strong nucleophilic activation at the C2
carbon; and (ii) for the nucleophilic intermediate cis-IN, the
nucleophilic Pk

� Parr functions are concentrated at the C4
carbon. The strong nucleophilic activation at the C2 carbon of
isocyanide 1 is a consequence of the nucleophilic deactivation
of the N1 nitrogen atom.

On the other hand, analysis of the electrophilic Pk
+ Parr

functions of DMAD 2 indicates that the acetylene C3 and C4
carbons, Pk

+¼ 0.22, are ca. twice as electrophilically activated as
the carbonyl carbons, Pk

+ ¼ 0.13. Finally, acetone 3 presents its
electrophilic activation at the carbonyl carbon atom, Pk

+ ¼ 0.54.
Consequently, the most favourable electrophile–nucleophile

interaction for the nucleophilic attack of carbene isocyanide 1
on DMAD 2 will take place between the most nucleophilic
center of isocyanide 1, the C2 carbon, and themost electrophilic
center of DMAD 2, the C3 or C4 carbon. Likewise, the most
favourable bond formation for the nucleophilic attack of the
Fig. 3 Nucleophilic Pk
� Parr functions, in blue, and electrophilic Pk

+

Parr functions, in red, in methyl isocyanide 1, DMAD 2, acetone 3 and
intermediate cis-IN.
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intermediate cis-IN on acetone 3 will take place between the
most nucleophilic center of the former, the C4 carbon, and the
electrophilic carbon atom of acetone 3.
(iii) BET analysis of the domino reaction between methyl
isocyanide 1, DMAD 2 and acetone 3

Several theoretical studies have shown that the ELF topological
analysis of the changes of electron-density, r(r), along a reaction
path can be used as a valuable tool to understand the bonding
changes along the reaction path, and consequently to establish
the molecular mechanisms.29 Aer an analysis of the electron-
density, ELF analysis provides basins of attractors, which are
the domains in which the probability of nding an electron pair
is maximal.40 The spatial points in which the gradient of the ELF
has a maximum value are designated as attractors. The basins
are classied as core basins and valence basins. The latter are
characterised by the synaptic order, i.e. the number of atomic
valence shells in which they participate. Thus, there are
monosynaptic, disynaptic, trisynaptic basins and so on.41

Monosynaptic basins, labelled V(A), correspond to the lone
pairs or non-bonding regions, while disynaptic basins, labelled
V(A,B), connect the core of two nuclei A and B and, thus,
correspond to a bonding region between A and B. This
description recovers the Lewis bonding model, providing a very
suggestive graphical representation of the molecular system.

ELF topological analysis of the structures involved in an
elementary step mainly allows characterisation of three types of
valence basins: (i) protonated basins, V(A,H); (ii) monosynaptic
basins, V(A), associated with lone pairs or non-bonding regions;
and (iii) disynaptic basins, V(A,B), associated with bonding
regions. A set of ELF valence basins topologically characterises a
molecular structure. Analysis of changes in the number or type
of valence basins of the structures involved along the IRC of the
reaction allows the establishment of a set of points, Pi, dening
the different phases that topologically characterise a molecular
mechanism. The further analysis of the different phases char-
acterised by these signicant points permits its
characterisation.31

Herein, a BET study of the MC reaction between isocyanide
1, DMAD 2 and acetone 3 is performed in order to gain insight
into how the bonding changes take place during this domino
reaction, and thus, to establish the molecular mechanism of the
two consecutive reactions.

(iii.a) BET study of the nucleophilic addition reaction of
methyl isocyanide 1 with DMAD 2. The BET study of the
nucleophilic addition reaction of the carbene methyl isocyanide
1 to DMAD 2 indicates that this reaction is topologically char-
acterised by six differentiated phases. The population of the
most signicant valence basins of the selected points of the IRC
is included in Table 4. The attractor positions of the ELF for the
relevant points along the IRC are shown in Fig. 4, while the
basin-population changes along the reaction path are graphi-
cally represented in Fig. 5.

Phase I, 3.73 Å $ d(C2–C3) > 2.28 Å, begins at the molecular
complexMC1, d(C2–C3)¼ 3.726 Å, being aminimum in the PES
connecting TS1 with the separated reagents 1 and 2. The ELF
This journal is © The Royal Society of Chemistry 2015
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Table 4 Valence basin populations N calculated from the ELF analysis
of the IRC points, P1–P5, defining the six phases characterising the
molecular mechanism associated with the addition reaction between
carbene isocyanide 1 and DMAD 2. The stationary pointsMC1, trans-IN
and cis-IN are also included. Distances are given in Å, while the GEDTs
that were obtained by NPA are given in e

Phases
I II III IV V VI

trans-IN cis-INMC1 P1 P2 P3 P4 P5

d(C2–C3) 3.726 2.282 2.033 1.897 1.551 1.399 1.396 1.393
GEDT 0.00 0.07 0.18 0.27 0.54 0.60 0.62 0.65
V(N1,C2) 3.81 3.15 5.12 5.13 4.71 4.40 5.52 3.19
V0(N1,C2) 1.29 2.00 2.32
V(C3,C4) 2.68 2.37 2.23 2.10 1.73 3.10 3.13 3.14
V0(C3,C4) 2.65 2.48 2.16 2.02 1.74
V(C2) 2.65 2.58 2.52
V(C2,C3) 2.55 2.66 2.73 2.71 2.65
V(C4) 0.52 1.06 1.31 1.75 1.90 1.97 2.06
V(N1) 0.66 1.20

Fig. 4 ELF attractor positions and basins for the most relevant points
along the IRC associated with the formation of the C2–C3 single bond
during the nucleophilic addition reaction of methyl isocyanide 1 with
DMAD 2. Disynaptic basins are coloured in green and monosynaptic
basins are in red.

Fig. 5 Graphical representation of the basin population changes
during the cycloaddition reaction between methyl isocyanide 1 and
DMAD 2. Point dotted curves in grey represent the sum of disynaptic
basins describing a bond region or monosynaptic basins describing
lone pairs.
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picture of MC1 exhibits the topological characteristics of the
separated reagents. ELF analysis of MC1 shows two V(N1,C2)
and V0(N1,C2) disynaptic basins with a population of 3.81e and
1.29e, associated with the N1^C2 triple bond region of the
isocyanide framework, and one V(C2) monosynaptic basin
integrating for 2.65e related to the C2 carbon lone pair. In
addition, the ELF topology of MC1 also shows the presence of
two V(C3,C4) and V0(C3,C4) disynaptic basins with populations
of 2.41e and 2.46e belonging to the C3^C4 triple bond of the
acetylene framework.

Phase II, 2.28 Å $ d(C2–C3) > 2.03 Å, starts at P1. The rst
noticeable topological change along the IRC occurs in this
phase; a new V(C4) monosynaptic basin, integrating for 0.53e, is
created at P1. The electron-density of this basin mainly
proceeds from the depopulation of the C3^C4 triple bond
region until the V(C3,C4) and V0(C3,C4) disynaptic basins reach
This journal is © The Royal Society of Chemistry 2015
a total population of 4.85e. Note that the new V(C4) mono-
synaptic basin is associated with the non-bonding sp2 hybri-
dised lone pair present at the C4 carbon of the nucleophilic
intermediate cis-IN. On the other hand, the population of the
V(C2) monosynaptic basin slightly decreases. The GEDT has
increased to a small extent, 0.07e.

Phase III, 2.03 Å $ d(C2–C3) > 1.90 Å, begins at P2. At this
point, the two V(N1,C2) and V0(N1,C2) disynaptic basins present
at MC1 have merged into a new V(N1,C2) disynaptic basin
integrating for 5.12e. This topological change is simply the
consequence of electron-density redistribution in the N1–C2
bonding region. In this phase, the TS of the reaction, TS1, d(C2–
C3) ¼ 1.909 Å, is found. For this structure, only scanty changes
in the electron-density distribution with respect to those found
at P1 are observed with the exception that the population of the
V(C4) monosynaptic basin has increased to 1.06e. The GEDT
has increased to 0.18e.

At phase IV, 1.90 Å $ d(C2–C3) > 1.55 Å, which begins at P3,
the most signicant topological change along the reaction path
takes place. The V(C2) monosynaptic basin present at P2 is
converted into a new V(C2,C3) disynaptic basin with an initial
population of 2.55e (see P2 and P3 in Fig. 4 and the change from
V(C1), in green in P2, to V(C2,C3), in blue in P3, in Fig. 5). In
spite of the unexpected position of the V(C1) ELF attractor, the
depiction of the valence basins associated with P3 shows the
disynaptic character of the corresponding basin (see P3 in
Fig. 4). This relevant topological change indicates that the
formation of the new C2–C3 single bond has already begun at a
distance of 1.90 Å with a high electron-density population. In
addition, the V(C4) monosynaptic basin increases its pop-
ulation to 1.31e together with the decrease of the total pop-
ulation of the V(C3,C4) and V0(C3,C4) disynaptic basins to 4.12e,
which indicates that the C3–C4 bonding region has just
acquired its double bond character. At P3, the GEDT is 0.27e.

Phase V, 1.55 Å$ d(C2–C3) > 1.40 Å, starts at P4. At this point
a new V(N1) monosynaptic basin appears with a population of
0.66e as a consequence of the depopulation of the V(N1,C2)
RSC Adv., 2015, 5, 84797–84809 | 84803
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Fig. 6 ELF attractor positions for the most relevant points along the
IRC associated with the formation of the C4–C5 and C2–O6 single
bonds during the cycloaddition reaction of intermediate cis-IN with
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disynaptic basin to 4.71e. The electron-density of the V(C3,C4)
and V0(C3,C4) disynaptic basins continues to decrease until it
reaches a population of 3.47e, while the V(C4) monosynaptic
basin has increased to 1.75e. The GEDT signicantly increases
to 0.54e.

Finally, the extremely short phase VI, 1.40 Å $ d(C2–C3) $
1.39 Å, begins at P5 and ends at the nucleophilic intermediate
trans-IN, d(C2–C3) ¼ 1.396 Å. At P5, the two V(C3,C4) and
V0(C3,C4) disynaptic basins merge into one V(C3,C4) disynaptic
basin integrating for 3.10e, whereas the V(C4) monosynaptic
basin has received almost the population of a lone pair, 1.90e.
Besides, while the V(N1,C2) disynaptic basin decreases by 0.31e,
the V(N1) monosynaptic and V(C2,C3) disynaptic basins
increase their populations to 1.20e and 2.73e, respectively. At
P5, the maximum GEDT for the reaction takes place, 0.60e.
From P5 to trans-IN, the most noticeable topological change is
the disappearance of the V(N1) monosynaptic basin simulta-
neously to the signicant increase of the population of the
V(N1,C2) disynaptic basin to 5.52e. At trans-IN, the V(C3,C4)
disynaptic basin presents a population of 3.10e, indicating that
the C3–C4 bonding region is very polarised towards the C2–C3
single bond created at phase IV, which is characterised by one
V(C2,C3) disynaptic basin integrating for 2.71e. Finally, the
V(C4) monosynaptic basin associated with the C4 carbon lone
pair has a population of 1.97e. The GEDT computed at trans-IN,
0.62e, is very high.

(iii.b) BET study of the reaction between intermediate cis-
IN and acetone 3. The study of the nucleophilic attack of the
intermediate cis-IN on acetone 3 shows that this reaction can be
topologically characterised by eight differentiated phases. The
populations of the most signicant valence basins of the
selected points of the IRC are compiled in Table 5. The attractor
positions of the ELF for relevant points along the IRC are shown
in Fig. 6, while the basin population changes along the reaction
path are graphically represented in Fig. 7.
Table 5 Valence basin populations N calculated from the ELF analysis
molecular mechanism associated with the cycloaddition reaction betwee
MC2 and 4 are also included. Distances are given in Å, while the GEDTs

Phases
I II III IV

MC2 P1 P2 P3

d(C4–C5) 3.687 2.798 2.338 2.141
d(C2–O6) 3.090 3.007 2.623 2.462
GEDT 0.00 0.04 0.16 0.26
V(N1,C2) 5.50 1.78 5.48 5.53
V0(N1,C2) 3.70
V(N1)
V(C2,C3) 2.60 2.63 2.6 2.59
V(C3,C4) 3.17 3.16 3.24 3.27
V0(C3,C4)
V(O6) 2.64 2.65 2.71 2.85
V0(O6) 2.64 2.70 2.77 2.81
V(C5,O6) 2.39 2.41 2.23 2.18
V(C4) 2.05 2.00 1.92
V(C4,C5) 1.87
V(C2)
V(C2,O6)
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Phase I, 3.69 Å $ d(C4–C5) > 2.80 Å and 3.09 Å $ d(C2–O6) >
3.00 Å, begins at the molecular complexMC2, d(C4–C5) ¼ 3.687
Å and d(C2–O6) ¼ 3.090 Å, which is a minimum in the PES
connecting the intermediate cis-IN and acetone 3 with the cor-
responding TS2. The ELF picture of MC2 shows the topological
behaviour of the separated reagents. Three disynaptic basins,
V(N1,C2), V(C2,C3) and V(C3,C4) integrating for 5.50e, 2.60e and
3.17e, respectively, can be observed, which are associated with
the N1–C2–C3–C4 bonding region of the intermediate cis-IN.
of the IRC points, P1–P7, defining the eight phases characterising the
n nucleophilic intermediate cis-IN and acetone 3. The stationary points
obtained by NPA are given in e

V VI VII VIII
4P4 P5 P6 P7

2.070 1.908 1.645 1.578 1.502
2.412 2.288 1.953 1.746 1.370
0.31 0.40 0.39 0.32 0.19
4.75 2.14 1.83 1.72 1.64

2.09 1.84 1.74 1.63
0.8 1.48 2.26 2.48 2.67
2.61 2.6 2.47 2.39 2.34
1.68 1.64 1.71 1.73 1.73
1.61 1.68 1.68 1.68 1.69
2.82 2.94 2.92 2.71 2.24
2.87 2.96 2.99 2.69 2.52
2.06 1.77 1.53 1.41 1.43

1.89 1.94 2.05 2.06 2.09
0.20

0.75 1.49

acetone 3.

This journal is © The Royal Society of Chemistry 2015
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Fig. 7 Graphical representation of the basin population changes
during the cycloaddition reaction between nucleophilic intermediate
cis-IN and acetone 3. Point dotted curves in grey represent the sum of
disynaptic basins describing a bond region or monosynaptic basins
describing lone pairs.
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The most important characteristic of this framework is the
presence of one V(C4) monosynaptic basin with a population
of 2.05e, which is associated with the non-bonding sp2 hybri-
dised lone pair present on the C4 carbon. On the other hand,
the ELF analysis of MC2 also shows the presence of two
monosynaptic basins, V(O6) and V0(O6), with populations of
2.64e and 2.64e, associated with the O6 oxygen lone pairs, and
one V(C5,O6) disynaptic basin integrating for 2.39e which
belongs to the C–O bonding region of acetone 3. The low
population of the C–O bond together with the high population
of the oxygen lone pairs indicates that the C–O bond of acetone
3 is very polarised.

Phase II, 2.80 Å$ d(C4–C5) > 2.33 Å and 3.00 Å$ d(C2–O6) >
2.62 Å, begins at P1. In this phase the most relevant changes
imply the splitting of the V(N1,C2) disynaptic basin into two
V(N1,C2) and V0(N1,C2) disynaptic basins with populations of
1.78e and 3.70e, and a slight decrease in the population of the
V(C4) monosynaptic basin to 2.00e. The other basins maintain
their populations as shown in phase I. On the acetone frame-
work, the population of the V(C5,O6) disynaptic basin is 2.41e,
while the two V(O6) and V0(O6) monosynaptic basins integrate
for 2.65e and 2.70e, respectively.

Phase III, 2.34 Å $ d(C4–C5) > 2.14 Å and 2.62 Å $ d(C2–O6)
> 2.46 Å, begins at P2. At this point, the V(N1,C2) and V0(N1,C2)
disynaptic basins newly merge into one disynaptic basin
V(N1,C2) integrating for 5.58e, while the population of the V(C4)
monosynaptic basin has slightly decreased to 1.92e on the cis-IN
moiety. The populations of the V(O6) and V0(O6) monosynaptic
basins slightly increase to 2.71e and 2.77e for the acetone
framework. These changes can be related to the GEDT that
uxes from cis-IN to acetone 3 during this polar reaction.

Phase IV, 2.14 Å$ d(C4–C5) > 2.07 Å and 2.46 Å$ d(C2–O6) >
2.41 Å, begins at P3, which corresponds to the TS of the reac-
tion, TS2, d(C4–C5) ¼ 2.141 Å and d(C2–O6) ¼ 2.462 Å. At this
point, the rst most relevant change along the IRC is found;
while the V(C4) monosynaptic basin present in cis-IN has dis-
appeared, a new V(C4,C5) disynaptic basin, integrating for
This journal is © The Royal Society of Chemistry 2015
1.87e, has appeared (see P2 and P3 in Fig. 6 and the change from
V(C4), in green in P2, to V(C4,C5), in blue in P3, in Fig. 7). This
change indicates that the formation of the new C4–C5 single
bond has started at d(C4–C5) ¼ 2.14 Å.

Phase V, 2.07 Å$ d(C4–C5) > 1.91 Å and 2.41 Å $ d(C2–O6) >
2.29 Å, starts at P4. Aer passing TS2, the most important
change is the formation of a new V(N1) monosynaptic basin,
which integrates for 0.80e, together with the depopulation of
the V(N1,C2) disynaptic basin to 4.75e. At this point, the
V(C3,C4) disynaptic basin present in cis-IN splits into two
disynaptic basins, V(C3,C4) and V0(C3,C4), integrating for 1.68e
and 1.61e, respectively. In addition, the population of the
V(C4,C5) disynaptic basin slightly increases to 1.89e, and the
populations of the V(O6) and V0(O6) monosynaptic basins of the
acetone framework increase to 2.82e and 2.87e.

Phase VI, 1.91 Å$ d(C4–C5) > 1.65 Å and 2.29 Å$ d(C2–O6) >
2.14 Å, starts at P5. At this point, the V(N1,C2) disynaptic basin
of the intermediate moiety newly splits into two V(N1,C2) and
V0(N1,C2) disynaptic basins, which integrate for 2.14e and 2.09e,
respectively, while the V(N1) monosynaptic basin reaches a
population of 1.48e. On the acetone moiety, it may be seen that
there is a depopulation of the V(C5,O6) disynaptic basin to 1.77e
and a slight increase of the population of the V(O6) and V0(O6)
monosynaptic basins to 2.94e and 2.96e.

The short phase VII, 1.65 Å$ d(C4–C5) > 1.58 Å and 1.95 Å$

d(C2–O6) > 1.75 Å, starts at P6. At this point, the second relevant
topological change along the IRC takes place: a V(C2) mono-
synaptic basin is created at the C2 carbon, integrating for 0.20e
(see the V(C2) monosynaptic basin in P6 in Fig. 6). This change
shows the preparation of the intermediate fragment for the
subsequent ring closure through the C–O bond formation. In
this phase, the population of the V(C4,C5) disynaptic basin
increases to 2.05e and the population of the V(N1) mono-
synaptic basin increases to 2.26e, whereas the populations of
the V(C5,O6), V(N1,C2) and V0(N1,C2) disynaptic basins
decrease to 1.53e, 1.83e and 1.84e, respectively, along with the
progressing reaction.

Phase VIII, 1.58 Å $ d(C4–C5) $ 1.50 Å and 1.75 Å $ d(C2–
O6)$ 1.37 Å, starts at P7 and ends at cycloadduct 4, d(C4–C5)¼
1.502 Å and d(C2–O6) ¼ 1.370 Å. At this point, the third most
relevant change takes place with the formation of a new
V(C2,O6) disynaptic basin integrating for 0.75e (see the
V(C2,O6) disynaptic basin in P7 in Fig. 6 and the change from
V(C2), in green in P6, to V(C2,O6), in blue in P7, in Fig. 7), while
the populations of the V(O6) and V0(O6) monosynaptic basins
have slightly decreased to 2.71e and 2.69e. This change indi-
cates that the formation of the second C2–O6 single bond has
started at a distance of 1.75 Å. At 2-iminofuran 4, the V(C2,O6)
disynaptic basin reaches a population of 1.49e, while the
V(C4,C5) disynaptic basin shows a population of 2.09e. The low
population of the V(C2,O6) disynaptic basin indicates a very
polarised C2–O6 single bond.

From the BET analysis of this domino reaction some
appealing conclusions can be drawn: (i) during the nucleophilic
attack of methyl isocyanide 1 on DMAD 2, the C2–C3 bond is
formed at a distance of 1.90 Å through the donation of the
electron-density of the carbene C2 lone pair to one of the two
RSC Adv., 2015, 5, 84797–84809 | 84805
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Scheme 5 Lewis structures representing zwitterionic intermediate
cis-IN.
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acetylenic carbons of DMAD 2; (ii) the formation of the new C2–
C3 bond takes place with a high electron-density, 2.55e. Note
that this value is higher than that associated with a C–C single
bond; (iii) during the nucleophilic attack of isocyanide 1 on
DMAD 2, a new V(C4) monosynaptic basin with an initial pop-
ulation of 0.52e appears at the C4 carbon as a consequence of
the depopulation of the acetylenic C3–C4 bonding region. This
V(C4) monosynaptic basin reaches a population of 2.06e at the
intermediate cis-IN, while at the same time the C3–C4 bonding
region is depopulated to reach 3.14e; (iv) during the nucleo-
philic attack of cis-IN on acetone 3, the formation of the C4–C5
single bond begins at a distance of 2.14 Å through the donation
of the electron-density of the carbenoid C4 lone pair of cis-IN to
the carbonyl C5 carbon of acetone 3; (v) formation of the second
C2–O6 single bond takes place at the end of the cycloaddition
path at a distance of 1.75 Å by sharing the electron-density of
the V(C2) monosynaptic basin present at the C2 carbon and
some of the electron-density of the monosynaptic basins asso-
ciated with the oxygen O6 lone pairs; (vi) formation of the C2–
O6 single bond begins aer the complete formation of the C4–
C5 bond, characterising the mechanism of the cycloaddition as
a non-concerted two-stage one-stepmechanism;36 and nally (vii)
during the cycloaddition step, the N1^C2 triple bond of cis-IN
becomes a double bond characterised by the presence of two
V(N1,C2) and V0(N1,C2) disynaptic basins at 2-iminofuran 4. At
the same time, the C2 carbon is rehybridised from sp for cis-IN
to sp2 for 2-iminofuran 4 as a consequence of the formation of
the C2–O6 single bond. The orthogonal character of the new
C2–O6 single bond with respect to the exocyclic N1–C2 double
bond present in 2-iminofuran 4 indicates that the N1–C2 triple
bond and C3–C4 double bond regions of the intermediate cis-IN
do not participate directly in the cycloaddition reaction, as
expected in a 1,3-dipole participating in a 1,3-dipolar
cycloaddition.

Both analysis of the atomic movements of the cis-IN and
acetone 3 molecules along the IRC associated with the cyclo-
addition step and the corresponding BET analysis indicate that
the electron-density of the carbenoid C4 carbon and the
carbonyl O6 oxygen lone pairs mainly participate in the
formation of the C4–C5 and C2–O6 single bonds during the
reaction; consequently, this cycloaddition should be classied
as [2n + 2n], in which two lone pairs are involved, and not as a
[4p + 2p] 1,3-dipolar cycloaddition.
Fig. 8 Electronic representation of the structure of carbenoid inter-
mediate cis-IN based on (a) NPA, (b) ELF analysis and (c) the mixture of
both analyses. Green values in (a) indicate the bond order of the
corresponding bond.
(iv) What is the electronic structure of intermediate cis-IN
and the origin of the high reactivity of carbonyl compounds
towards this intermediate?

At rst, the intermediate cis-IN can be represented by either of
the Lewis resonant structures A and B given in Scheme 5. Both
structures would represent a zwitterionic intermediate in which
the negative charge is located at the C4 carbon atom, while the
positive charge can be located at the C2 or N1 atoms belonging
to the methyl isocyanide framework. Experimental chemists
represent cis-IN by means of the 1,3-zwitterionic structure A,
since it justies the participation of cis-IN in a [3 + 2] cycload-
dition towards carbonyl derivatives.
84806 | RSC Adv., 2015, 5, 84797–84809
NPA and ELF analysis of the electronic structure of the
intermediate cis-IN yield different representations for this
intermediate. NPA of cis-IN clearly shows the zwitterionic
character of this intermediate: while the methyl isocyanide
framework is positively charged, the DMAD framework is
negatively charged (see Fig. 8a). However, while NPA indicates
that the positive charge is mainly located at the C2 carbon, in
agreement with Lewis structure A, the results also indicate that
the negative charge is mainly located at the C3 carbon and the
carboxylate oxygen atoms, the C4 carbon having a negligible
negative charge of �0.07e.

On the other hand, the ELF topology of cis-IN shows the
presence of a monosynaptic basin at C4, V(C4), integrating for
2.07e (see Fig. 8b). In addition, the C3–C4 double bond regions
of the Lewis structures A and B have a noticeable depopulation,
3.14e. This behaviour can account for the negligible negative
charge found at the C4 carbon, �0.07e and thus both Lewis
structures, A and B, can be ruled out as representations for the
intermediate cis-IN.

Consequently, in spite of the zwitterionic character of the
intermediate cis-IN, it appears that the reactivity of this inter-
mediate towards carbonyl compounds cannot be related to its
zwitterionic character but rather to the singlet carbenoid char-
acter of the C4 carbon that grants a high nucleophilic character
to this molecule (see the C4 carbon in green in Fig. 8c).

In order to explain the high reactivity of acetone 3 towards
this intermediate, an analysis of the molecular electrostatic
potential (MEP) at cis-IN and the corresponding TS2 was also
performed (see Fig. 9). The MEP of cis-IN allows two appealing
conclusions to be reached: (i) around the nucleophilic C4
carbon a low negative electrostatic potential (in red) is found
This journal is © The Royal Society of Chemistry 2015
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(see Fig. 9a). Note that the carboxylate oxygen atoms show the
highest values. This behaviour is in agreement with the unap-
preciable negative charge found at the C4 atom; (ii) interest-
ingly, the region of MEP with the highest positive value of cis-IN
corresponds to the methyl substituent present in the isocyanide
framework.

The MEP of the carbenoid intermediate cis-IN shows the
special characteristic of this intermediate that favours the
nucleophilic attack on carbonyl derivatives. As can be seen in
Fig. 9, the analysis of the MEP of TS2 clearly shows that during
the nucleophilic attack of cis-IN on acetone 3, the GEDT that
takes place in this polar process gives rise to an increase of
electron-density of the oxygen carbonyl atom. This feature,
which is unfavourable in an uncatalysed nucleophilic
addition to carbonyl compounds, is favoured in TS2 by the
presence of the positively charged methyl group that electro-
statically stabilises the negative charge developed at the
carbonyl oxygen atom (see Fig. 9b). Note that during the
formation of the rst C4–C5 single bond, the GEDT that takes
place from cis-IN to acetone 3, 0.40e at P5, mainly locates the
electron-density at the carbonyl oxygen atom (see the inte-
gration of the V(O6) and V0(O6) monosynaptic basins at P5
in Table 5).

Finally, in order to rule out a stabilisation of TS2 by a
hydrogen bond between the carbonyl oxygen atom and one
hydrogen atom of the methyl group, an analysis of the NCI at
TS2 was performed. As can be seen in Fig. 9c, although some
weak interactions between the carbonyl oxygen atom and the
methyl isocyanide framework appear (in green), no hydrogen
bond interaction between the carbonyl oxygen and the
hydrogen of the methyl group is observed. Note that strong
hydrogen bonds appear as a dark turquoise surface. Indeed, the
NCI between the carbonyl O6 oxygen atom and the C2 carbon of
the isocyanide framework is stronger than that involving the
hydrogen of the methyl group, indicating the favourable inter-
action preceding the C2–O6 single bond formation.

Consequently, we can conclude that the high reactivity of the
intermediate cis-IN towards carbonyl derivatives is due to two
specic features: (i) the carbenoid character of the sp2 hybri-
dised C4 carbon rather than the negative charge on a carba-
nionic center and, (ii) the special geometric disposition of the
alkyl substituents in isocyanides that electrostatically favours
the GEDT during the nucleophilic attack of these carbenoid
intermediates on carbonyl compounds.
Fig. 9 The MEP of carbenoid intermediate cis-IN (a) and TS2 (b), and
NCIs for TS2 (c).

This journal is © The Royal Society of Chemistry 2015
Conclusions

The high reactivity of acetone 3 towards the nucleophilic car-
benoid intermediate cis-IN, generated in situ by the addition of
methyl isocyanide 1 to DMAD 2, has been studied using DFT
methods at the MPWB1K/6-311G(d,p) computational level
through the combination of the exploration and character-
isation of the PESs associated with this MC reaction and anal-
ysis based on the MEDT, consisting of the analysis of the
reactivity indices derived from the conceptual DFT at the
ground state of the reagents and the BET study for the corre-
sponding reaction paths.

This MC reaction is a domino process that comprises two
consecutive reactions: (i) formation of the carbenoid interme-
diate trans-IN, which quickly equilibrates with the thermody-
namically more stable cis-IN; and (ii) the nucleophilic capture of
acetone 3 by the carbenoid intermediate cis-IN yielding the
formation of the nal 2-iminofuran 4.

Analysis of the relative Gibbs free energies in acetonitrile
indicates that while the initial nucleophilic attack of the car-
bene methyl isocyanide 1 on DMAD 2 is the RDS of this MC
reaction, once the intermediate cis-IN is formed, it quickly and
irreversibly captures acetone 3.

Analysis of the DFT reactivity indices for the intermediate cis-
IN clearly accounts for its high nucleophilic character, entirely
at the carbenoid C4 carbon. These behaviours explain the high
reactivity of the intermediate cis-IN in polar reactions towards
electron-decient carbonyl compounds.

BET analysis of the two reactions involved in this domino
process makes it possible to draw some appealing conclusions
concerning the bonding changes occurring in this MC reaction:
(i) during the nucleophilic attack of isocyanide 1 on DMAD 2,
the C2–C3 bond is formed at a distance of 1.90 Å through the
donation of the electron-density of the carbene C2 lone pair to
one of the two acetylenic carbons of DMAD. Formation of this
C2–C3 bond takes place with a high electron-density, 2.55e; (ii)
during the nucleophilic attack of isocyanide 1 on DMAD 2, a
new V(C4) monosynaptic basin with an initial population of
0.52e appears at the C4 carbon as a consequence of the
depopulation of the acetylenic C3–C4 triple bond. This V(C4)
monosynaptic basin reaches a population of 2.06e for the
intermediate cis-IN; (iii) during the nucleophilic attack of cis-IN
on acetone 3, the formation of the C4–C5 single bond begins at
a distance of 2.14 Å through the donation of the electron-
density of the carbenoid C4 lone pair of cis-IN to the carbonyl
C5 carbon of acetone 3; (iv) formation of the second C2–O6
single bond takes place at the end of the cycloaddition path at a
distance of 1.75 Å by sharing the electron-density of the V(C2)
monosynaptic basin present at the C2 carbon and some
electron-density of the monosynaptic basins associated with the
O6 oxygen lone pairs; and (v) formation of the C2–O6 single
bond begins aer the complete formation of the C4–C5 bond.
This behaviour characterises the mechanism of the cycloaddi-
tion as a non-concerted two-stage one-step mechanism.36

An analysis of the electronic structure of the intermediate cis-
IN makes it possible to explain the high reactivity of this
RSC Adv., 2015, 5, 84797–84809 | 84807
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intermediate towards carbonyl derivatives. Two specic features
of this intermediate enable this MC reaction: (i) the carbenoid
character of the sp2 hybridised C4 carbon of cis-IN, rather than
the negatively charged carbanionic center as it is represented in
the bibliography; and, (ii) the special geometric disposition of
the alkyl substituent present in the isocyanide, which elec-
tronically stabilises the negative charge gathered at the carbonyl
oxygen atom during the nucleophilic attack.

The present MEDT study establishes that the high nucleo-
philic character of the carbenoid intermediate cis-IN together
with the specic approach mode of the carbonyl C]O double
bond during the nucleophilic attack of the sp2 hybridised car-
benoid center of cis-IN on the carbonyl carbon of acetone 3
make the formation of the C–C single bond with a very low
activation enthalpy, 3.3 kcal mol�1, possible, without any
external electrophilic activation of the carbonyl group, while the
geometric and electronic features of this intermediate favour
the subsequent ring closure through the downhill formation of
the C–O single bond, thus providing the answers to the three
unresolved questions posed concerning the electronic structure
of the intermediate involved and the molecular mechanism of
these experimentally widely investigated MC reactions.

Finally, both the analysis of the atomic movements of the
molecules cis-IN and acetone 3 along the IRC associated with
the cycloaddition step and the corresponding BET analysis
allow characterisation of the mechanism of this reaction as a
[2n + 2n] cycloaddition in which two lone pairs are involved in
the formation of the new C4–C5 and C2–O6 single bonds. These
ndings make it possible to reject the 1,3-dipolar cycloaddition
mechanism for the cycloaddition reactions of carbonyl
compounds to these nucleophilic carbenoid intermediates.
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a b s t r a c t

The [3þ2] cycloaddition (32CA) reactions of the nitrile ylide (NY) with ethylene and with dicyanoethylene
(DCE) have been studied using the Molecular Electron Density Theory through DFT calculations at the
MPWB1K/6-31G(d) level. The analysis of the electronic structure of NY indicates that it presents a carbe-
noid structure with an sp2 lone pair at the carbon atom. While the 32CA reaction with ethylene presents
a low activation energy, 6.1 kcal mol�1, the transition state structure associated with the 32CA reaction of
NYwith DCE is located 7.5 kcalmol�1 below the reagents, the reaction being completely regioselective. The
topological analysis of the Electron Localisation Function (ELF) along the reaction path permits to establish
a new model for the CeC bond formation characterised by the donation of the electron density of an sp2

carbon lone pair to the most electrophilic carbon atom of an electron-deficient ethylene. The carbenoid
character of NY allows introducing a new type of 32CA reaction, carbenoid type (cb-type).

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Small ring heterocycles are of great interest in medicinal
chemistry,1 and easily synthesized by a [3þ2] cycloaddition (32CA)
reaction between a Three Atom-Component (TAC) and an ethylene
derivative (see Scheme 1). TACs are species containing four elec-
trons delocalised among three continuous atoms. Substitution of a,
b and c in the TAC, and d and e in the ethylene by C, N, O, P or S
clic compounds by a 32CA

utopia.uv.es (L.R. Domingo).
atoms has proven to be a powerful synthetic tool in the construc-
tion of five-membered heterocyclic compounds.2

TACs can be classified into two categories: allylic type (A-TAC)
and propargylic type (P-TAC) structures.3 While A-TACs are bent, P-
TACs have a linear structure (see Scheme 2). Depending on their
electronic structure, TACs can also be classified as zwitterionic or
pseudodiradical4 TACs. Although the most important TACs such as
nitrones and nitrile oxides have a zwitterionic structure, other
Scheme 2. Classification of TACs.
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relevant TACs such as carbonyl ylides (CY) and azomethine ylides
(AY) have a pseudodiradical structure5 (see Scheme 2).

Based on the electronic structure of the simplest TACs and their
reactivity towards ethylene, a useful classification of 32CA reactions
into pseudodiradical-type (pr-type) and zwitterionic-type (zw-type)
reactions has recently been proposed.4 While TACs with a high
pseudodiradical character participate in pr-type 32CA reactions
taking place easily through earlier transition state structures (TSs)
with a very low polar character, TACs with a high zwitterionic
character participate in zw-type 32CA reactions characterised by
favourable nucleophilic/electrophilic interactions at polar TSs.4

Pyrrolidine 3 and pyrroline 5 are five-membered heterocyclic
compounds containing only one nitrogen atom of great pharma-
ceutical importance.8 These compounds can easily be synthesized
by a 32CA reaction of an AY 1, an A-TAC, or a nitrile ylide (NY) 4, a P-
TAC, with ethylene 2 (see Scheme 3).

Scheme 3. 32CA reactions of the simplest AY 1 and NY 4 with ethylene 2.
The simplest AY 1, which has a high pseudodiradical character,4

participates in pr-type 32CA reactions towards ethylene 2 with
a very low activation energy, below 2.5 kcal mol�1 (see Scheme 3).
A topological analysis of the Electron Localisation Function9 (ELF) of
AY 1 permitted to establish its pseudodiradical character (see the
four V(C) monosynaptic basins at the two carbon atoms of AY 1 in
Fig. 1a).7 The topological analysis of the ELF of the bonding changes
along the reaction path associated with this pr-type 32CA reaction
showed that the CeC single bond formation takes place syn-
chronically at a distance of 2.10 �A by a C-to-C coupling of two
pseudoradical centres, one already present at the carbon atoms of
AY 1 and another one generated at each carbon atom of ethylene 2
along the reaction path (see Fig. 1b and c).7 The very low activation
energy associated with this pr-type 32CA reactionwas attributed to
Fig. 1. Positions of the ELF attractors (a) at AY 1, (b) at a CeC distance of 2.15 �A and (c) at a
the pseudodiradical character of AY 1, which shows a very high
reactivity.

In order to highlight the idea that the feasibility for changes in
the electron density and not the molecular orbital interactions are
responsible of the reactivity of organic molecules,10 Domingo pro-
posed a new reactivity theory named Molecular Electron Density
Theory (MEDT).11 Consequently, the molecular reactivity in or-
ganic chemistry is studied through a quantum chemical analysis of
the changes of the electron density along the reaction path, as well
as of the changes in energies required to reach the TS, in order to
understand experimental activation energies. Besides the explo-
ration and characterisation of the Potential Energy Surfaces (PES)
associated with the studied reaction, within this reactivity model,
the organic reactions are studied using quantum chemical tools
based on the analysis of the electron density such as conceptual
DFT reactivity indices12 and the topological analysis of the ELF fo-
cused on the progress of the bonding changes along the reaction
coordinate.

The characterisation of the electron density reorganisation to
evidence the bonding changes along a reaction path is the most
attractive method to describe a reaction mechanism.13 To perform
these analyses quantitatively, the Bonding Evolution Theory (BET),
consisting of the joint-use of ELF topology and Thom’s catastrophe
theory14 (CT), proposed by Krokidis et al.,15 is a new tool for ana-
lysing the electronic changes in chemical processes. BET has been
applied to various elementary reactions,13,16 allowing themolecular
mechanism to be established.

It is worth to mention that Geerlings has recently directed his
efforts for reinterpreting the Woodward and Hofmann (WH) rules
based on the conceptual DFT, providing orbital-free interpretations
of these rules.17 Previously, Ayers et al. had also explained the WH
rules of pericyclic reactions in terms of changes in electron density
without the use of other model-dependent concepts.18

Herein, the 32CA reactions of P-TAC NY 4 with ethylene 2 and
with dicyanoethylene (DCE) 6, a strongly electrophilic ethylene
derivative, yielding pyrrolines 5 and 7 and/or 8 are studied within
the MEDT through DFT calculations at the MPWB1K/6-31G(d)
computational level (see Schemes 3 and 4). A qualitative ap-
proach of the BET along these 32CA reactions is performed in order
to characterise the molecular mechanisms of these cycloaddition
reactions as well as the CeC single bond formation along the
reaction.

Scheme 4. 32CA reaction of NY 4 with DCE 6 yielding pyrrolines 7 and/or 8.
CeC distance of 2.10 �A along the pr-type 32CA reaction between AY 1 and ethylene 2.



Fig. 2. Representation of ELF attractors and valence basin population, natural charges
in red, ELF basin pictures and proposed pseudodiradical and carbenoid Lewis structures
of AY 1 (Ref. 7) and NY 4 (this work).

Table 1
B3LYP/6-31G(d) electronic chemical potential, m, chemical hardness, h, global elec-
trophilicity, u, and global nucleophilicity, N, in eV, of AY 1, NY 4, ethylene 2 and DCE
6, and the pseudodiradical index,4 pr, of AY 1 and NY 4

m h u N pr

DCE 6 �5.64 5.65 2.82 0.65
CY 9 �2.67 3.83 0.93 4.53 1.18
NY 4 �2.90 5.45 0.77 3.50 0.64
Ethylene 2 �3.37 7.77 0.73 1.86
AY 1 �1.82 4.47 0.37 5.07 1.13
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2. Computational methods

All stationary points involved in these 32CA reactions were
optimised using the MPWB1K hybrid meta functional19 together
with the standard 6-31G(d) basis set.20 This level of theory has
shown to have good results for combinations of thermochemistry
and thermochemical kinetics in processes including weak in-
teractions.19 The optimisations were carried out using the Berny
analytical gradient optimisation method.21 The stationary points
were characterised by frequency computations in order to verify
that TSs have one and only one imaginary frequency. The intrinsic
reaction coordinate (IRC) paths22 were traced in order to check the
energy profiles connecting each TS to the two associated minima of
the proposed mechanism using the second order Gonz�alez-Schle-
gel integration method.23 The electronic structures of stationary
points were characterised by the natural bond orbital (NBO)
analysis.24

The global electrophilicity index,25 u, is given by the following
expression, u ¼ ðm2=2hÞ, in terms of the electronic chemical po-
tential m and the chemical hardness h. Both quantities may be
approached in terms of the one-electron energies of the frontier
molecular orbital HOMO and LUMO, εH and εL, as mzðεH þ εLÞ=2 and
hzðεL � εHÞ, respectively.26 The empirical (relative) nucleophilicity
index,27 N, based on the HOMO energies obtained within the Kohn-
Sham scheme,28 is defined as N¼EHOMO(Nu)�EHOMO(TCE), where
tetracyanoethylene (TCE) is the reference, because it presents the
lowest HOMO energy in a long series of molecules already in-
vestigated in the context of polar organic reactions. This choice
allows conveniently to hand a nucleophilicity scale of positive
values. Nucleophilic P�k and electrophilic Pþk Parr functions29 were
obtained through the analysis of the Mulliken atomic spin density
of the corresponding radical cations or anions.

The topological analysis of the ELF, h(r),9 was performed with
the TopMod program30 using the corresponding MPWB1K/6-
31G(d) monodeterminantal wavefunctions. For the BET studies,
the reaction paths were followed using the IRC procedure in mass-
weighted internals. Steps of 0.1[amu1/2 bohr] along the IRCs were
assumed. A total of 200 points along each side of the IRC were
chosen for the BET analysis. All computations were carried out with
the Gaussian 09 suite of programs.31

3. Results and discussion

The present theoretical study has been divided into five parts: i)
first, a comparative analysis of the electronic structures of AY 1 and
NY 4 is performed; ii) then, an analysis of the conceptual DFT re-
activity indices of the reagents involved in the 32CA reactions of NY
4 with ethylene 2 and DCE 6 is given; iii) the PESs associated with
these 32CA reactions are explored and characterised; iv) a BET
study of the bonding changes along the IRCs of the 32CA reactions
of NY 4 with ethylene 2 and DCE 6 is performed in order to char-
acterise the molecular mechanism, and finally, v) a new model for
the CeC bond formation is proposed.

3.1. Comparative analysis of the electronic structures of AY 1
and NY 4

First, a comparative analysis of the electronic structures of AY 1
and NY 4 is performed in order to understand the dissimilar re-
activity of these TACs. The representation of ELF attractors, natural
atomic charges, obtained through a natural population analysis
(NPA), ELF basin pictures and the proposed pseudodiradical and
carbenoid Lewis structures of AY 1 and NY 4 are shown in Fig. 2.

As has been commented in the introduction section, ELF to-
pology of the simplest AY 1 indicates that this TAC has a pseudo-
diradical Lewis structure. As can be seen, AY 1 presents four V(C)
monosynaptic basins integrating 0.54e. This picture can be con-
sidered as two pseudoradical carbons with an sp2 hybridisation. In
addition, the presence of two V(C,N) disynaptic basins integrating
2.59e suggests the complete delocalisation of the lone pair of the N
nitrogen atom among the two adjacent carbon atoms.

On the other hand, ELF topology of the simplest NY 4 indicates
a different electronic structure than that of AY 1. Interestingly, the
C1 carbon presents a V(C1) monosynaptic basin integrating 1.95e,
which can be related to a non-bonding sp2 hybridised lone pair (see
the V(C1) monosynaptic basin in red in the centre of Fig. 2). In
addition, NPA of C1 indicates that this carbon practically presents
a null charge. This behaviour together with the low negative charge
of the C3 carbon suggests an allenic structure instead of a prop-
argylic one with a high carbenoid character (see the carbenoid
Lewis structure of NY 4 in Fig. 2).

3.2. Analysis of the DFT reactivity indices of the reagents in-
volved in the 32CA reactions of NY 4 with ethylene 2 and DCE
6

Studies devoted to polar organic reactions have shown that the
analysis of the reactivity indices defined within the conceptual DFT
is a powerful tool to understand the reactivity in polar cyclo-
additions.12c,32 Global DFT indices, namely, the electronic chemical
potential, m, chemical hardness, h, electrophilicity, u, and nucleo-
philicity, N, of AY 1, NY 4, ethylene 2 and DCE 6 are given in Table 1.

The electronic chemical potential of NY 4, m¼�2.90 eV, is higher
than that of DCE 6, m¼�5.64, indicating that along a polar reaction
the global electron density transfer (GEDT)10 will flux from the NY
framework towards the electron-deficient (ED) ethylene one. It is
worth to mention that the GEDT concept comes from the
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observation that the electron density transfer that takes place from
a nucleophile to an electrophile along a polar reaction is not a local
process, but a global one involving the two interacting molecules.10

In consequence, the entire system becomes a unique entity since
the beginning of the reaction being, therefore, structurally in-
divisible. Thorough studies have permitted to establish good cor-
relations between the increase of the polar character, measured by
the GEDT at the TSs, and the feasibility of the reactions; the larger
the GEDT at the TS is, the reaction more polar is.10 The GEDT at the
TSs is computed by sharing the natural atomic charges at the TSs
obtained by a NPA analysis between the nucleophilic and the
electrophilic frameworks. Additionally, GEDT values have shown to
be few dependent of the computational method used to obtain the
atomic charges, due to these values come mainly from the in-
tegration of the electron density of two molecular frameworks that
are usually not bound at the TSs yet.33

The electrophilicityu index of the simplest AY 1 is 0.37 eV, being
classified as a marginal electrophile within the electrophilicity
scale.34 On the other hand, the nucleophilicity N index of AY 1 is
5.07 eV, being classified as a strong nucleophile within the nucle-
ophilicity scale.35

Likewise, the electrophilicity u and nucleophilicity N indices of
the simplest NY 4 are 0.77 eV and 3.50 eV, being classified as
a marginal electrophile and a strong nucleophile, respectively,
within the corresponding scales.

Ethylene 2 is one of the poorest electrophilic, u¼0.73 eV, and
nucleophilic, N¼1.86 eV, species involved in organic reactions, be-
ing classified as a marginal electrophile34 and a marginal nucleo-
phile.35 Therefore, it cannot participate in polar reactions.

Inclusion of two electron-withdrawing eCN groups at the C5
carbon (see Fig. 3 for atom numbering) of ethylene 2 drastically
increases the electrophilicity u index of DCE 6 to 2.82 eV, being
classified as a strong electrophile. On the other hand, the nucleo-
philicityN index of DCE 6 is significantly decreased to 0.65 eV, being
classified as a marginal nucleophile. Thus, NY 4 will participate as
the nucleophilic species in polar 32CA reactions towards the elec-
trophilic DCE 6.
Fig. 3. Nucleophilic P�k Parr functions of NY 4 in blue, and electrophilic Pþk Parr
functions of DCE 6, in red.

Table 2
MPWB1K/6-31G(d) gas phase total (E, in a.u.) and relativea (DE, in kcal mol�1)
electronic energies of the stationary points involved in the 32CA reaction of NY 4
with ethylene 2

E DE

NY 4 �132.585923
Ethylene 2 �78.529845
TS1 �211.106042 6.1
5 �211.254344 �87.0

a Relative to 4þ2.

Scheme 5. 32CA reaction between NY 4 and ethylene 2.
In order to characterise the pseudodiradical reactivity of a TAC,
the pr index, which comprises the hardness and the nucleophilicity
index of the TAC, has recently been introduced as pr¼N/h.4 A-TACs
with pr values larger than 0.90 can be related to species having
a very soft character, i.e., with low hardness h values, and low
stabilised frontier electrons, i.e., with low ionisation potential,
while P-TACs have low pr indices, showing a zw-type reactivity.
Thus, the simplest AY 1 and CY 9 present high pr values, 1.13 and
1.18, respectively, in clear agreement with its pseudodiradical
character, revealed by the topological analysis of the ELF (see AY 1
in Fig. 2) and their high reactivity towards non-activated ethyl-
enes.36 On the other hand, NY 4 has a pr value of 0.64, indicating
that it will have low pr-type reactivity. Analysis of the global re-
activity indices indicates that NY 4 will participate as the nucleo-
philic species in polar 32CA reactions towards electrophilic DCE 6.
Along a polar reaction involving the participation of non-
symmetric reagents, the most favourable reactive channel is that
involving the initial two-centre interaction between the most
electrophilic centre of the electrophile and the most nucleophilic
centre of the nucleophile. Recently, we proposed the electrophilic
Pþk and nucleophilic P�k Parr functions, derived from the changes of
the electron density reached via the GEDT process10 from the nu-
cleophile to the electrophile, as powerful tools in the study of the
local reactivity in polar processes.29 Analysis of these functions ac-
counts for the most favourable single bond formation between the
most electrophilic and nucleophilic centres of the reagents.10 Hence,
in order to characterise the most nucleophilic and the most elec-
trophilic centres of the species involved in this 32CA reaction, nu-
cleophilic P�k Parr functions of NY 4 and electrophilic Pþk Parr
functions of ED DCE 6 were analysed (see Fig. 3).

Analysis of the nucleophilic P�k Parr functions at the simplest NY
4 indicates that the carbenoid C1 carbon is the most nucleophilic
centre of this species presenting the maximum value, P�k ¼0.77.
Note that the C3 carbon also presents a strong nucleophilic acti-
vation, P�k ¼0.49. On the other hand, the electrophilic Pþk Parr
functions of DCE 6 indicate that the non-substituted C4 carbon is
the most electrophilic centre of this ED ethylene, Pþk ¼0.74.

Therefore, in the 32CA reaction between NY 4 and DCE 6, the
most favourable electrophile-nucleophile interaction along the
nucleophilic attack of NY 4 on DCE 6 will take place between the
most nucleophilic centre of NY 4, the carbenoid C1 carbon, and the
most electrophilic centre of DCE 6, the C4 carbon.
3.3. Analysis of the PESs of the 32CA reactions of NY 4 with
ethylene 2 and DCE 6

3.3.1. 32CA reaction between NY 4 and ethylene 2. Analysis of the
stationary points involved in the reaction between NY 4 and eth-
ylene 2 indicates that this 32CA reaction takes place through a one-
step mechanism. Consequently, the reagents, NY 4 and ethylene 2,
one TS, TS1, and pyrroline 5 were located and characterised (see
Scheme 5). Gas phase total and relative electronic energies of the
stationary points involved in this 32CA reaction are displayed in
Table 2.
The activation energy associated with the 32CA reaction of NY 4
with ethylene 2 is 6.1 kcal mol�1, the reaction being strongly exo-
thermic,�87.0 kcal mol�1. This activation energy is ca. 4 kcal mol�1



Table 3
MPWB1K/6-31G(d) gas phase total (E, in a.u.) and relativea (DE, in kcal$mol�1)
electronic energies of the stationary points involved in the 32CA reaction of NY 4
with ED DCE 6

E DE

NY 4 �132.585923
DCE 6 �262.926910
MC2 �395.524741 �7.5
MC3 �395.520115 �4.6
TS2 �395.524616 �7.4
TS3 �395.517164 �2.7
7 �395.640171 �79.9
8 �395.636829 �77.8

a Relative to 4þ6.
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higher than that of the 32CA reaction between the simplest AY 1
and ethylene 2.

The geometry of TS1 is given in Fig. 4. At TS1, the lengths of the
two CeC forming bonds are 2.406�A (C1eC4) and 2.449�A (C3eC5).
These large values indicate that this TS is very earlier.

The electronic nature of the 32CA reaction of NY 4with ethylene
2 was analysed by computing the GEDT.10 The natural atomic
charges, obtained through an NPA, were shared between the two
frameworks involved in this 32CA reaction. At TS1, the GEDT that
fluxes from the NY framework towards the ethylene one is 0.11e.
Therefore, there is a slight GEDT from NY 4 to ethylene 2. This GEDT
value at the earlier TS1, which is similar to that found in the non-
polar pr-type 32CA reaction between AY 1 and ethylene 2,6 can be
seen as some delocalisation of the electron density of the higly
nucleophilic NY 4 into the ethylene fragment, instead of a GEDT
process associated with a polar process.
Fig. 4. Geometry of the TS involved in the 32CA reaction between NY 4 and ethylene 2.
Lengths are given in Angstroms.

Fig. 5. Geometries of the two regioisomeric TSs involved in the 32CA reaction between
3.3.2. 32CA reaction between NY 4 and DCE 6. Due to the non-
symmetry of both reagents, the 32CA reaction between NY 4 and
DCE 6 can take place through two regioisomeric channels: along
the r1 regioisomeric channel the reaction begins through the ap-
proach of themost nucleophilic centre of NY 4, the C1 carbon, to the
most electrophilic centre of DCE 6, the C4 one, while along the r2
regioisomeric channel, the C3 carbon of NY 4 approaches to the C4
carbon of DCE 6. Analysis of the stationary points found along the
two regioisomeric channels indicates that this 32CA reaction also
takes place through a one-step mechanism. Calculation of the IRC
from the TSs to the reagents stops in a molecular complex (MC),
which is more stable than the separated reagents. Consequently,
the reagents, twoMCs,MC2 andMC3, twoTSs, TS2 and TS3, and the
corresponding pyrrolines, 7 and 8, were located and characterised
(see Scheme 6). Gas phase total and relative electronic energies of
Scheme 6. 32CA reaction between NY 4 and DCE 6.
the stationary points involved in this 32CA reaction are displayed in
Table 3.

The TSs associated with the two regioisomeric channels are
located below the reagents, �7.5 (TS2) and �2.7 (TS3) kcal$mol�1;
however, if the formation of the corresponding MCs is considered,
the activation energies become positive, 0.1 (TS2) and 1.9 (TS3)
kcal$mol�1. This 32CA is completely regioselective, the most
favourable regioisomeric TS2 being 4.7 kcal mol�1 below TS3, and
strongly exothermic, �79.9 (7) and �77.8 (8) kcal$mol�1

The geometries of TS2 and TS3 are given in Fig. 5. At TS2, the
lengths of the two forming bonds are 2.377 �A (C1eC4) and
2.968 �A (C3eC5), while at the regioisomeric TS3 these lengths are
2.372 �A (C3eC4) and 2.600 �A (C1eC5). From these geometrical
parameters some significant behaviours should be remarked: i)
these large CeC distances indicate that these TSs are earlier; ii) the
difference between the two forming bonds shows that they cor-
respond with asynchronous TSs. The most favourable TS2 is more
asynchronous than TS3; iii) the shortest CeC distance at both TSs
corresponds with the CeC bond formation at the most electrophilic
b-conjugated carbon of DCE 6, i.e., the electrophilic species controls
the asynchronicity of the formation of the two new CeC single
bonds.
NY 4 and DCE 6. Lengths are given in Angstroms.
At the two regioisomeric TSs, the GEDT that fluxes from the NY
framework toward the ED ethylene one is 0.24e (TS2) and 0.25e
(TS3). Therefore, at these TSs there is a clear GEDT taking place from
the nucleophilic NY 4 to the electrophilic DCE 6, in agreement with
a polar 32CA reaction and thereby with the lower activation ener-
gies found for the 32CA reaction with DCE 6 than that associated
with the low polar process with ethylene 2.

As was commented in the introduction section, 32CA reactions
have been classified as pr-type and zw-type reactions depending on
the electronic structure of the TACs. The topological analysis of the
ELF and NPA of the simplest NY 4 indicate that this TAC has a car-
benoid structure, being different from the pseudodiradical structure
of the simplest AY 1 and the zwitterionic structure of nitrone 10
(see Fig. 6).



Fig. 6. Electronic structure of TACs and the proposed reactivity types in 32CA reactions.
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Consequently, it is expected that carbenoid NY 4 presents a dif-
ferent reactivity than that of AY 1, a pr-type reactivity, and that of
nitrone 10, a zw-type reactivity. This finding makes it possible to
introduce in a new kind of 32CA reaction, carbenoid type (cb-type)
that similar to zw-type 32CA reactions, the feasibility of the reaction
depends on its polar character, i.e., the nucleophilic character of the
carbenoid TAC and the electrophilic character of the ethylene
derivative.

3.4. BET study of the molecular mechanisms of the 32CA re-
actions of NY 4 with ethylene 2 and DCE 6

Herein, a BET study of the 32CA reaction of NY 4with ethylene 2
and DCE 6 is performed to gain further insight into how the
bonding changes take place along these cycloaddition reactions,
and therefore, to establish the molecular mechanisms. First, a BET
study of the 32CA reaction between NY 4 and ethylene 2 is per-
formed. Later, a BET study of the two regioisomeric channels, r1 and
r2, associated with the polar cb-type 32CA reaction between NY 4
and DCE 6 is carried out. The corresponding BET studies are given in
Supplementary data.

3.4.1. BET study of the 32CA reaction between NY 4 and ethylene
2. Some appealing conclusions can be drawn from the BET study of
the 32CA reaction between NY 4 and ethylene 2 (see
Supplementary data): i) in this 32CA reaction, formation of two
new CeC single bonds takes place almost synchronically at the
beginning of the last part of phase VI, by means of two C catastro-
phes, but with different electron populations; ii) formation of the
C1eC4 single bond begins at a distance of 2.01 �A by sharing the
electron density of the non-bonding sp2 hybridised lone pair
present at the C1 carbon of NY 4 and that of the pseudoradical C4
carbon created at ethylene 2 along the reaction path, with an initial
population of 1.76e; iii) this bonding pattern demands the de-
population of the C1 lone pair present in NY 4, by 0.59e, in order to
achieve the CeC formation with ethylene 2; iv) formation of the
C3eC5 single bond begins at a distance of 2.04 �A by the C-to-C
coupling of two C3 and C5 pseudoradical centres with an initial
population of 1.46e; v) in this low polar reaction, the two pseu-
doradical C4 and C5 centres generated in the ethylene framework,
which are demanded for the formation of the two new CeC single
bonds, come mainly from the depopulation of the C4eC5 double
bond region of ethylene 2.

3.4.2. BET study of the r1 regioisomeric channel associated with the
32CA reaction between NY 4 and DCE 6. Some appealing
conclusions can be drawn from the BET study of the most favour-
able r1 regioisomeric path associated with the 32CA reaction be-
tween NY 4 and DCE 6 (see Supplementary data): i) along the most
favourable r1 regioisomeric channel, formation of the two new CeC
single bonds takes place at two well differentiated phases of the
reaction; ii) formation of the first C1eC4 single bond begins in
phase II at a distance of ca. 2.15 �A through a C catastrophe. For-
mation of this CeC single bond is achieved by the donation of the
electron density of the non-bonding sp2 hybridised lone pair
present at the C1 carbon of NY 4 to the b-conjugated C4 carbon of
the DCE moiety, with an initial population of 1.58e; iii) formation of
the second C3eC5 single bond begins in the last part of phase VIII at
a distance of ca. 2.19 �A by means of a C catastrophe. Formation of
this CeC single bond is achieved by the C-to-C coupling of the two
C3 and C5 pseudoradical centres, with an initial population of 1.13e;
iv) consequently, this polar cb-type 32CA reaction presents a two-
stage one-stepmechanism, inwhich formation of the second C3eC5
begins in the last part of phase VIII after the complete formation of
the first C1eC4 single bond.

3.4.3. BET study of the r2 regioisomeric channel associated with the
32CA reaction between NY 4 and DCE 6. Some appealing conclu-
sions can be drawn from the BET study of the r2 regioisomeric path
associated with the 32CA reaction between NY 4 and DCE 6 (see
Supplementary data): i) along the least favourable r2 regioisomeric
path, formation of the two CeC single bonds takes place in a more
synchronous manner; ii) formation of the first C3eC4 single bond
ends in phase V at a distance of ca. 2.08 �A through a C catastrophe.
Formation of this CeC single bond is achieved by a C-to-C coupling
of the two pseudoradical centres generated at the C3 carbon of NY 4
and at the C4 carbon of DCE 6 in previous phases, with an initial
population of 1.11e; iii) formation of the second C1eC5 single bond
begins at the end of phase VII at a distance of ca. 1.96�A also through
a C catastrophe. Formation of this CeC single bond is reached by
sharing the electron density proceeding from the sp2 hybridised
lone pair of the C1 carbon of NY 4 and that of the C5 pseudoradical
centre generated at the DCE framework in the previous phase, with
an initial population of 1.56e; iv) along the two regioisomeric
channels, formation of the first CeC single bond begins at the b-
conjugated C4 carbon of DCE 6, which is the most electrophilic
centre of this species; and finally, v) electrophilic DCE 6 shows two
contrary comportments along the two regioisomeric channels;
while along the least favourable r2 regioisomeric channel, a new
V(C5) monosynaptic basin is created at the conjugated C5 carbon of
DCE 6 in order to create the new C1eC5 single bond, along themost
favourable r1 regioisomeric channel, the conjugated C4 carbon
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receives the electron density of the sp2 hybridised lone pair of the
C1 carbon of NY 4 during the formation of the C1eC5 single bond.
Fig. 8. Two models of the formation of CeC single bonds.
3.5. A new CeC bond formation model involving neutral sp2

hybridised carbon lone pairs

Recently, a model for the CeC bond formation in organic re-
actions involving ethylene derivatives has been proposed.10 Topo-
logical analysis of the bonding changes along organic reactions
involving unsaturated species made it possible to establish that the
formation of a new CeC single bond is characterised by three
consecutive events: i) depopulation of the CeC double bond re-
gions in the two reactant species; ii) creation of two pseudoradical
centres at the two interacting carbon atoms; and iii) a C-to-C cou-
pling of these pseudoradical centres yielding the formation of the
new CeC single bond. The last event takes place in the range of
2.0�1.9 �A, with an initial electron density of ca. 1.0 e. In polar re-
actions, these pseudoradical centres appear at themost nucleophilic
and electrophilic centre of the two molecules. Analysis of the for-
mation of the second CeC single bond along the most favourable r1
regioisomeric channel and the first one along the least favourable
r2 regioisomeric channel indicates that the formation of the C3eC5
and C1eC5 single bonds follow this CeC bond formation model.

A different behaviour is found for the formation of the C1eC4
single bond along the most favourable r1 regioisomeric channel. In
this case, formation of the C1eC4 single bond takes place through
the donation of the electron density of the non-bonding sp2

hybridised lone pair present at the C1 carbon of NY 4 to the b-
conjugated C4 carbon of the DCE moiety (see the conversion of the
V(C1) monosynaptic basin in red colour in P1 into the V(C1,C4)
disynaptic basin in green colour in P2 in Fig. 7). This event takes
place at a distance of ca. 2.15 �A and with an initial population of
1.58e.
Fig. 7. Display of the ELF basins of selected points P1 and P2 associated with the
formation of the C1eC4 single bond.
Very recently, we have studied the high reactivity of acetone 11
towards the carbenoid intermediate IN. This reaction is initialised
by the nucleophilic attack of carbenoid intermediate IN on the
carbonyl C5 carbon atom of acetone 11 (see Scheme 7). The topo-
logical analysis of the ELF associated with the formation of the CeC
Scheme 7. Cycloaddition reaction between ca
single bond indicated that it takes place through the donation of
the electron density of the carbenoid C4 non-bonding sp2 hybri-
dised lone pair of IN to the carbonyl C5 carbon of acetone 11, at
a CeC distance of 2.14 �A and with an initial population of 1.78e.

Consequently, the formation of CeC single bonds in organic
reactions involving a nucleophilic species having a non-bonding
sp2 hybridised carbon lone pair and an electrophilic C-X double
bond appears to follow a different pattern to that previously pro-
posed (see Fig. 7). While in reactions involving ethylene derivatives,
CeC bond formation takes place by the C-to-C coupling of two
pseudoradical centres generated along the reaction (see Fig. 8a), in
reactions involving nucleophilic carbenoids, the CeC bond is
formed by donation of the electron density of a neutral non-
bonding sp2 hybridised carbon lone pair to an ED carbon atom
(see Fig. 8b).
Analysis of the nucleophilic P�k Parr functions in carbenoid in-
termediate IN and TAC NY 4 indicates that the carbon atom having
the non-bonding sp2 hybridised lone pair is the most nucleophilic
centre of these species. Consequently, it is expected that in polar
reactions involving these carbenoid species, the most favourable
CeC single bond formation follows this new reactivity model.

4. Conclusions

The 32CA reactions of the simplest NY 4with ethylene 2 and the
electrophilic DCE 6 have been studied within the MEDT through
DFT calculations at the MPWB1K/6-31G(d) computational level.
The obtained results are supported by the combination of the
analysis of the reactivity indices at the ground state of the reagents,
derived from the conceptual DFT, the exploration and character-
isation of the PESs associated with these 32CA reactions and the
BET study of the corresponding reactive channels.

A geometrical and electronic structural analysis of the simplest
NY 4 indicates that this TAC presents a carbenoid structure with
a non-bonding sp2 hybridised lone pair at the C1 carbon atom,
rbenoid intermediate IN and acetone 11.
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which has an unappreciable charge. Due to its high nucleophilicity
N index, N¼3.50 eV, it is expected that NY 4 participates easily in
polar 32CA reactions towards electrophilic ethylenes such as DCE 6.
Analysis of the nucleophilic P�k Parr functions allows characterising
the carbenoid C1 carbon atom as themost nucleophilic centre of NY
4, in clear agreement with the regioselectivity found in the polar
32CA reaction with DCE 6.

An exploration of the PESs associated with these 32CA reactions
indicates that these cycloaddition reactions take place through
a one-step mechanism. While the 32CA reaction of NY 4 with
ethylene 2 presents relative low activation energy, 6.1 kcal mol�1,
the most favourable regioisomeric TS associated with the polar
32CA reaction of NY 4 with DCE 6 is located 7.5 kcal mol�1 below
the reagents, the reaction being completely regioselective. These
32CA reactions are strongly exothermic.

While the BET study of the low polar 32CA reaction of NY 4with
ethylene 2 indicates that the formation of the two CeC single bonds
is an almost synchronous process, this study at the most favourable
regioisomeric channel associated with the polar 32CA reaction of
NY 4with DCE 6 indicates that the CeC single bond formation takes
place via a two-stage one-step mechanism initialised by the nucle-
ophilic attack of the carbenoid C1 carbon of NY 4 on the b-conju-
gated position of DCE 6.

The topological analysis of the bonding changes associated with
the CeC single bond formation along the two regioisomeric chan-
nels associated with the polar 32CA reaction of NY 4 with DCE 6
makes it possible to characterise two dissimilar models for the CeC
bond formation along these 32CA reactions. Along the most
favourable r1 regioisomeric channel, the formation of the first CeC
single bond begins by the donation of the electron density of the C1
sp2 hybridised lone pair of NY 4 to the b-conjugated carbon atom of
DCE 6, while along the least favourable r2 reactive channel the
formation of the first CeC single bond takes place through the C-to-
C coupling of two pseudoradical centres generated along the re-
action at the C3 carbon atom of NY 4 and at the b-conjugated
carbon atom of DCE 6. Along both regioisomeric paths, the asyn-
chronicity in the CeC single bond formation is controlled by the
electrophile DCE 6; the CeC bond formation at the b-conjugation
position is more advanced than at the a position.

Finally, the carbenoid character of the simplest NY 4 makes it
possible to introduce a new type of 32CA reaction, named
carbenoid-type (cb-type) reaction, inwhich similar to zw-type 32CA
reactions, the feasibility of the reaction depends on the polar
character of the reaction, i.e., it depends on the nucleophilic char-
acter of the carbenoid TAC and the electrophilic character of the
ethylene derivative.

This current study emphasizes the idea that molecular mecha-
nisms cannot be characterised only by a static energy and geo-
metric study of the corresponding stationary points but by
a rigorous analysis of the molecular electron density changes along
the reaction path. This choice allows ruling out out-dated concepts
introduced in the past half century and introducing new ones,
making it possible to establish a modern rationalisation and to gain
insight into molecular mechanisms and reactivity in organic
chemistry. Thus, the MEDT is presented as a useful new theory in
the study of organic reactions, stating that while the distribution of
the electron density is responsible for the molecular shape and phys-
ical properties, the capability for changes in electron density, and not
molecular orbital interactions, is responsible for molecular reactivity.
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An MEDT study of the carbenoid-type [3 + 2]
cycloaddition reactions of nitrile ylides with
electron-deficient chiral oxazolidinones†

Luis R. Domingo,*a Mar Ríos-Gutiérreza and Patricia Pérez*b

The molecular mechanism of the carbenoid-type [3 + 2] cycloaddition (32CA) reactions of a nitrile ylide

(NY) with a non-chiral and a chiral oxazolidinone has been studied within Molecular Electron Density

Theory (MEDT) at the MPWB1K/6-31G(d) computational level. Topological analysis of the Electron

Localisation Function (ELF) of the NY shows that it presents a carbenoid structure. The high nucleophilic

character of the NY together with the electrophilic character of the non-chiral oxazolidinone favour a

polar 32CA reaction with a very low activation energy, the reaction being completely meta/endo selective.

A Bonding Evolution Theory (BET) study of the molecular mechanism makes it possible to characterise a

two-stage one-step carbenoid-type mechanism. Non-Covalent Interactions (NCI) analysis of the 32CA

reaction between the NY and chiral oxazolidinone correctly explains the diastereoselectivity experi-

mentally observed.

1. Introduction

Pyrrolines are five-membered heterocyclic compounds of great
pharmaceutical importance containing only one nitrogen
atom.1 They can be easily obtained through a [3 + 2] cyclo-
addition (32CA) reaction of a nitrile ylide (NY), acting as a
three atom-component (TAC), with an ethylene derivative (see
Scheme 1).2

Several Density Functional Theory (DFT) studies carried out
within the Molecular Electron Density Theory (MEDT)3–5

devoted to the study of the reactivity of TACs in 32CA reactions
have allowed establishing a useful classification of this class of
cycloaddition reactions into pseudodiradical-type (pr-type),6,7

carbenoid-type (cb-type)5 and zwitterionic-type (zw-type)6,8 reac-
tions (see Scheme 2).

A recent comparative MEDT study of the 32CA reactions of
the simplest NY 1 with ethylene 2 (see Scheme 1) and with the

electron-deficient (ED) dicyanoethylene (DCE) 6 allowed
drawing two appealing conclusions:5 (i) the cb-type mechanism
for these 32CA reactions was established, and (ii) due to the
high nucleophilic character of NY 1, a fast reaction with elec-
trophilic ethylenes through a polar 32CA reaction was attained.

Scheme 1 32CA reaction of the simplest NY 1 with ethylene 2.

Scheme 2 Electronic structure of TACs and the proposed reactivity
types in 32CA reactions.

†Electronic supplementary information (ESI) available: ELF topological analysis
along the meta/endo reaction channel associated with the 32CA reaction of NY 7

with oxazolidinone 10. MPWB1K/6-31G(d) total and relative electronic energies
in the gas phase and in DCM, as well as absolute enthalpies, entropies and
Gibbs free energies at 25 °C and 1 atm in DCM, of the stationary points involved
in the 32CA reaction of NY 7 with oxazolidinone 10. See DOI: 10.1039/
c6ob01989g
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NYs, initially described over 50 years ago by Huisgen et al.,9

are some of the most reactive TACs. In 2009, Sibi et al.10

showed that the 32CA reaction of NY 7 with ED ethylene 8, pos-
sessing a chiral auxiliary, takes place in high yield and stereo-
selectivity (see Scheme 3).

In order to characterise experimental cb-type 32CA reac-
tions, an MEDT study of the 32CA reaction of NY 7 with 3-((E)-
but-2-enoyl)oxazolidin-2-one 8 yielding pyrroline 9, experi-
mentally studied by Sibi et al.,10 is performed herein at the
MPWB1K/6-31G(d) computational level (see Scheme 3). The
regio-, endo/exo stereo- and syn/anti diastereoselectivity experi-
mentally found in this cb-type 32CA reaction is analysed. To
this end, the molecular mechanism, and the regio- and endo/
exo stereoselectivity of the 32CA reaction of NY 7 with the non-
chiral oxazolidinone 10 are first studied (see Scheme 4). Then,

the diastereoselectivity along the most favourable meta/endo
reaction channels of the 32CA reaction of NY 7 with the chiral
oxazolidinone 8 is analysed.

2. Computational methods

Full geometry optimisations of the stationary points were
carried out using the MPWB1K11 exchange–correlation func-
tional, together with the standard 6-31G(d) basis set.12 The
stationary points were also characterised by frequency compu-
tations in order to verify that TSs have one and only one ima-
ginary frequency. Intrinsic reaction coordinate (IRC)13 path-
ways were traced to verify the connectivity between the minima
and associated TSs. Solvent effects of dichloromethane (DCM)
were taken into account by full optimization of the gas phase
structures at the MPWB1K/6-31G(d) computational level using
the polarisable continuum model (PCM) developed by
Tomasi’s group14 in the framework of the self-consistent reac-
tion field (SCRF).15 Values of enthalpies, entropies and Gibbs
free energies in DCM were calculated with the standard stat-
istical thermodynamics at 25 °C and 1 atm.12 The electronic
structures of critical points were analysed by the natural bond
orbital (NBO) method.16 The electron localisation function
(ELF) topological analysis, η(r),17 was performed with the
TopMod program18 using the corresponding MPWB1K/6-31G(d)
monodeterminantal wavefunctions of the selected structures
of the IRC. Non-covalent interactions (NCIs) were computed by
evaluating the promolecular density and using the methodo-
logy previously described.19,20 All computations were carried
out with the Gaussian 09 suite of programs.21

The global electrophilicity index ω,22 which measures the
stabilisation in energy when the system acquires an additional
electronic charge ΔN from the environment, is expressed by
the following simple equation,22 ω = (μ2/2η), in terms of the
electronic chemical potential, μ, and the chemical hardness,
η. Both quantities may be approached in terms of the one elec-
tron energies of the frontier molecular orbitals HOMO and
LUMO, εH and εL, as μ ≈ (εH + εL)/2 and η = (εL − εH), respec-
tively.23 On the other hand, the nucleophilicity N index is
defined as N = εHOMO − εHOMO(TCE),

24 where εHOMO is the
HOMO energy of the nucleophile and εHOMO(TCE) corresponds
to the HOMO energy of tetracyanoethylene (TCE), taken as a
reference. The electrophilic, Pk

+, and nucleophilic, Pk
−, Parr

functions25 were obtained through the analysis of the
Mulliken atomic spin densities of the corresponding radical
anion and radical cation by single-point energy calculations
over the optimised neutral geometries.

3. Results and discussion

The present MEDT study is organised as follows: in section
3.1, an analysis of the electronic structure of the experimental
NY 7 is performed in order to understand its cb-type reactivity
in 32CA reactions. Section 3.2 contains an analysis of the

Scheme 3 32CA reaction of NY 7 with the chiral oxazolidinone 8 yield-
ing pyrrolines 9.

Scheme 4 Competitive meta/ortho regio- and endo/exo stereo-
selective reaction channels associated with the 32CA reaction between
NY 7 and the non-chiral oxazolidinone 10.
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conceptual DFT reactivity indices of the reagents involved in
the 32CA reactions of NY 7 with oxazolidinones 8 and 10. In
section 3.3, the potential energy surfaces (PESs) associated
with the regio- and endo/exo stereoisomeric channels of the
32CA reaction of NY 7 with non-chiral oxazolidinone 10 are
explored and characterised. Section 3.4 includes the discus-
sion of the diastereoselectivity along the most favourable meta/
endo approach modes of NY 7 towards the chiral oxazolidinone
8, whereas section 3.5 discusses a BET study characterising the
bonding changes along the most favourable meta/endo reaction
channel associated with these 32CA reactions. Finally, in
section 3.6 an NCI analysis is performed with the aim of ratio-
nalising the origin of the endo and anti stereoselectivities in
the 32CA reactions of NY 7 with oxazolidinones 8 and 10.

3.1 Analysis of the electronic structure of NY 7

In order to understand the cb-type reactivity of the experi-
mental NY 7, an analysis of its electronic structure is per-
formed. The representation of ELF attractors, natural atomic
charges, obtained through population analysis (NPA), ELF
basins and valence basin populations, and the proposed Lewis
structures of NYs 1 and 7 are shown in Fig. 1.

Similar to the simplest NY 1,5 ELF topological analysis of
the experimental NY 7 shows the presence of one V(C1) mono-
synaptic basin associated with a non-bonding sp2 hybridised
lone pair with a population of 1.72e, two disynaptic basins,
V(C1,N2) and V′(C1,N2), which integrate 2.20e and 2.11e, and
one V(N2,C3) disynaptic basin integrating a population of
2.81e. This bonding pattern indicates that NY 7 has a linear
allenic structure rather than a linear propargylic one.
Interestingly, NY 7 also presents two monosynaptic basins,
V(C3) and V′(C3), integrating 0.36e and 0.29e each one,
suggesting that the C3 carbon of NY 7 could also have some

pseudoradical character (see Fig. 1). NPA of NY 7 indicates that
the presence of the phenyl and aryl substituents at the C1 and
C3 carbons decreases the electron density of these atoms by
0.27e and 0.12e, with respect to those in the simplest NY 1.5

Analysis of the natural charges of the atoms belonging to the
C–N–C framework does not allow assigning any zwitterionic
structure to the simplest NY 1, as has been proposed.26

3.2 Analysis of the DFT reactivity indices of the reagents
involved in the 32CA reactions of NY 7 with oxazolidinones
8 and 10

Studies devoted to polar organic reactions have shown that the
analysis of the reactivity indices defined within conceptual
DFT is a powerful tool to understand the reactivity in polar
cycloadditions.27 Global DFT indices, namely, the electronic
chemical potential, μ, chemical hardness, η, electrophilicity,
ω, and nucleophilicity, N, at the ground state of the reagents
involved in these 32CA reactions are given in Table 1.

The electronic chemical potential of experimental NY 7, μ =
−3.86 eV, is higher than those of oxazolidinones 8 and 10,
−4.07 (8) and −4.28 (10) eV, indicating that along with polar
reactions the global electron density transfer (GEDT)4 will flux
from the NY framework towards these oxazolidinones.

The electrophilicity ω and nucleophilicity N indices of the
simplest NY 1 are 0.77 eV and 3.50 eV,5 being classified on the
borderline of marginal electrophiles and as a strong nucleo-
phile within the electrophilicity28 and nucleophilicity29 scales.
Inclusion of one phenyl group at C1 and a p-NO2-phenyl group
at C3 of NY 1 notably increases both the electrophilicity ω and
nucleophilicity N index of NY 7 to 2.33 eV and 3.67 eV, being
classified as a strong electrophile but remaining a strong
nucleophile. Thus, the similar nucleophilicity N indices com-
puted for NYs 1 and 7 indicate that the presence of the nitro
group in NY 1 will hardly affect the reactivity of NY 7 as a
nucleophile towards ED oxazolidinones 8 and 10.

Polar cb-type 32CA reactions require the participation of
good electrophiles. Ethylene 2 is one of the poorest electro-
philic species, ω = 0.73 eV, and nucleophilic ones, N = 1.86 eV,
being classified as a marginal electrophile and a marginal
nucleophile and therefore it cannot participate in polar reac-
tions. When an acetyl-oxazolidinone and a methyl group are
added at each carbon atom of ethylene 2 resulting in oxazolidi-
none 10, the electrophilicity ω and nucleophilicity N indices
markedly increase to 1.56 eV and 1.90 eV, which allow 10 to be
classified on the borderline of strong electrophiles and as a

Fig. 1 Representation of ELF attractors and valence basin populations,
natural atomic charges, in red, ELF basins and proposed carbenoid Lewis
structures of NYs 1 5 and 7.

Table 1 B3LYP/6-31G(d) electronic chemical potential, μ, chemical
hardness, η, electrophilicity, ω, and nucleophilicity, N, in eV, of NYs 1 and
7, ethylene 2 and oxazolidinones 8 and 10

μ η ω N

NY 7 −3.86 3.20 2.33 3.67
Oxazolidinone 10 −4.28 5.88 1.56 1.90
Oxazolidinone 8 −4.07 5.51 1.50 2.30
NY 1 −2.90 5.46 0.77 3.50
Ethylene 2 −3.37 7.77 0.73 1.86
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moderate nucleophile. The inclusion of the phenyl substituent
present in chiral oxazolidinone 8 slightly decreases the electro-
philicity, ω = 1.50 eV, however, it increases the nucleophilicity
of experimental oxazolidinone 8 to N = 2.30 eV. Consequently,
it is expected that oxazolidinones 8 and 10 present similar
reactivity in polar processes towards good nucleophiles.

Local reactivity, i.e. regioselectivity, is studied analysing the
nucleophilic Pk

− Parr functions of NY 7 and the electrophilic
Pk

+ Parr functions of oxazolidinones 8 and 10 (see Fig. 2).
Analysis of the nucleophilic Pk

− Parr functions of NYs 7 indi-
cates that the carbenoid C1 carbon is the most nucleophilic
center of this species presenting the maximum value, Pk

− =
0.59. Note that the C3 carbon is half as nucleophilically acti-
vated as the carbenoid C1 carbon, also presenting a consider-
able nucleophilic activation, Pk

− = 0.33. On the other hand, the
electrophilic Pk

+ Parr functions of oxazolidinones 8 and 10
indicate that the β-conjugated C5 carbon is the most electro-
philic center of these molecules, Pk

+ = 0.48 (8) and 0.47 (10),
while the carbonyl carbon atom is somewhat electrophilically
activated, presenting a significant Pk

+ value of 0.30 (8) and
0.29 (10). The α-conjugated C4 carbon has a negligible
Pk

+ value (see Fig. 2). Interestingly, the carbonyl oxygen atom
also presents a slight electrophilic activation, Pk

+ = 0.18.
Consequently, in the 32CA reactions of NY 7 with oxazolidi-
nones 8 and 10, the most favourable electrophile–nucleophile
interaction along this polar reaction will take place between
the most nucleophilic center of NY 7, the carbenoid C1
carbon, and the most electrophilic center of oxazolidinones 8
and 10, the β-conjugated C5 carbon, in clear agreement with
the experimental outcomes.

3.3 Analysis of the PESs of the 32CA reaction of NY 7 with
oxazolidinone 10

Due to the non-symmetry of both reagents, the 32CA reaction
between NY 7 and the non-chiral oxazolidinone 10 can take

place through four competitive reaction channels, which are
related to the two regioisomeric approach modes of oxazolidi-
none 10 towards NY 7, namely, meta and ortho, and the two
possible stereoisomeric approach modes, namely endo and exo
(see Scheme 4). The meta and ortho reaction channels are
associated with the formation of the C1–C4 or C1–C5 single
bonds, respectively, while the endo and exo ones are related to
the relative position of the carbonyl group of oxazolidinone 10
with respect to the position of the phenyl substituent present
at the C3 carbon of NY 7 (see Scheme 4).

As a consequence of the free C–C and C–N single bond
rotation in oxazolidinones 8 and 10, several conformations are
feasible. The most favourable one corresponds to the s-trans
conformation, in which the two carbonyl oxygen atoms are on
the same plane, in an anti rearrangement (see Fig. 3). For the
two oxazolidinones, the s-cis conformation is found to be
7.1 (8) and 8.7 (10) kcal mol−1 more unfavourable than the
s-trans one in the gas phase (see later). Consequently, the
s-trans conformation of 10 was selected for this study.

Analysis of the stationary points involved in the 32CA reac-
tion between NY 7 and oxazolidinone 10 indicates that this
32CA reaction takes place through a one-step mechanism.
Accordingly, the reagents, NY 7 and oxazolidinone 10, four
TSs, TS-mn, TS-mx, TS-on, and TS-ox, and the corresponding
pyrrolines, CA-mn, CA-mx, CA-on, and CA-ox, were located and
characterised (see Scheme 4). Relative energies, in the gas
phase and in DCM, of the stationary points involved in this
32CA reaction are displayed in Table 2. Total energies are given
in Table S2 in the ESI.†

The relative energies of the TSs with respect to the separ-
ated reagents are: −3.8 (TS-mn), 2.5 (TS-mx), 2.7 (TS-on) and
2.5 (TS-ox) kcal mol−1. The most favourable TS-mn is located
below the reagents; however, if the formation of the molecular
complex MC-mn is considered, the activation energy of TS-mn
becomes positive, 4.8 kcal mol−1. These 32CA reactions are
strongly exothermic, between 70 and 73 kcal mol−1. From
these energy parameters some significant conclusions can be
drawn: (i) this 32CA reaction is completely endo stereoselective
as TS-mn is 6.3 kcal mol−1 lower in energy than TS-mx; (ii) this
32CA reaction is also completely meta regioselective as TS-mn
is 6.3 kcal mol−1 lower in energy than TS-ox. These behaviours

Fig. 3 MPWB1K/6-31G(d) gas phase s-cis and s-trans conformations of
chiral oxazolidinone 8. In parenthesis, relative energies for oxazolidi-
nones 8 and 10 in kcal mol−1.

Fig. 2 3D representations of the ASD of the radical cation 7•+ and the
radical anions 8•− and 10•−, and the nucleophilic Pk

− Parr functions of
NY 7 and the electrophilic Pk

+ Parr functions of oxazolidinones 8 and 10.
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are in agreement with the experimental results in which only
the meta/endo oxazolidinone 8 is obtained; (iii) the strong
exothermic character of these 32CA reactions makes them
irreversible.

Inclusion of DCM solvent effects slightly increases the acti-
vation energies and decreases the exothermic character of the
reaction with respect to the reagents as a consequence of a
better solvation of NY 7 and oxazolidinone 10 than TSs and
CAs.30 In spite of this behaviour, the relative energy of TS-mx
remains unchanged. In DCM, TS-mn remains 4.2 kcal mol−1

below TS-mx.
Values of relative enthalpies, entropies and Gibbs free ener-

gies, in DCM, of the stationary points involved in the 32CA
reaction of NY 7 with the non-chiral oxazolidinone 10 are sum-
marised in Table 3. Absolute values are given in Table S3 in
the ESI.† Inclusion of thermal corrections to the electronic
energies increases activation enthalpies by between 1.0 and
1.6 kcal mol−1 and reaction enthalpies by between 4.2 and
4.5 kcal mol−1 (see Table 3). TS-mn remains 4.3 kcal mol−1

lower in enthalpy than TS-mx, and TS-mn is 6.2 kcal mol−1

lower in enthalpy than TS-ox. Addition of the entropic contri-
bution to enthalpies increases the Gibbs free energies to 17.1,
19.2, 21.6 and 21.5 kcal mol−1 for TS-mn, TS-mx, TS-on and
TS-ox, respectively, due to the unfavourable activation entropy

associated with these bimolecular processes, between −53.5
and −59.8 cal mol−1 K−1. Considering the Gibbs free activation
energies, the endo selectivity decreases to 2.1 kcal mol−1, while
the reaction remains completely regioselective as TS-mn is
4.4 kcal mol−1 lower in Gibbs free energy than TS-ox. Finally,
this 32CA is strongly exergonic by ca. 47 kcal mol−1. This
decrease in relative Gibbs free activation energies, ΔΔG, is a
consequence of the higher activation entropy associated with
the most favourable TS-mn (−59.8 cal mol−1 K−1) than those
corresponding to the other three TSs (see Table 3).

The geometries of the TSs involved in the four competitive
reaction channels are given in Fig. 4. At the meta TSs the
lengths of the C1–C4 and C3–C5 forming bonds are 2.249 and
2.775 Å (TS-mn) and 2.267 and 2.706 Å (TS-mx), while at the
ortho TSs the lengths of the C1–C5 and C3–C4 forming bonds
are 2.454 and 2.335 Å (TS-on) and 2.408 and 2.364 Å (TS-ox).
Some appealing conclusions can be drawn from these geo-
metrical parameters: (i) the TSs related to the meta reaction
channels are more asynchronous than those related to the
ortho ones; (ii) at the TSs associated with the more favourable
meta reaction channels, the C–C bond formation involving the
carbenoid C1 carbon and the β-conjugated position of oxazoli-
dinone 10 is more advanced than the other, in clear agreement
with the previous analysis of the Parr functions; (iii) at the syn-
chronous ortho TSs, the C–C bond formation involving the car-
benoid C1 carbon is slightly more advanced than that of the
β-conjugated position of oxazolidinone 10.

Inclusion of DCM solvent effects in the optimisation does
not significantly modify the geometries of the TSs (see Fig. 4).
Along the most favourable meta TSs, formation of the C1–C5
single bond is slightly more advanced than that in the gas
phase, while the formation of the C3–C4 one is slightly more
delayed. Consequently, in DCM, the 32CA reaction becomes
slightly more asynchronous.31

The electronic nature of the 32CA reaction of NY 7 with oxa-
zolidinone 10 was analysed by computing the GEDT at the
four TSs.4 The values of the GEDT at the gas phase TSs, which
fluxes from NY 7 toward oxazolidinone 10, are 0.20e at TS-mn,
0.19e at TS-mx, 0.18e at TS-on and 0.16e at TS-mx. These
values indicate that this 32CA reaction has some polar charac-
ter. The GEDT at the more favourable meta TSs is slightly
higher than that at the ortho ones, and slightly lower than that
computed at the meta TS associated with the 32CA reaction
between the simplest NY 1 and DCE 6 (0.24e).5

3.4 Study of the anti/syn diastereoselectivity along the meta/
endo approach modes of NY 7 towards chiral oxazolidinone 8

The chiral character of oxazolidinone 8 makes it possible that
the approach of NY 7 towards the two diastereotopic faces of
oxazolidinone 8 could result in two pyrrolines. Due to the high
meta/endo selectivity found in the 32CA reaction of non-chiral
oxazolidinone 10, only the anti and syn approach modes of NY
7 to the diastereotopic faces of 8, yielding pyrrolines 9 and 11,
have been studied (see Scheme 5). The geometries of the two
diastereoisomeric TSs and their relative energies are given in
Fig. 5.

Table 2 MPWB1K/6-31G(d) relative energies (relative to NY 7 plus 10,
in kcal mol−1) in the gas phase and in DCM, of the stationary
points involved in the 32CA reaction of NY 7 with the non-chiral
oxazolidinone 10

Gas phase DCM

MC-mn −8.6 −6.5
TS-mn −3.8 −1.7
TS-mx 2.5 2.5
TS-on 2.7 4.4
TS-ox 2.5 4.4
CA-mn −72.6 −70.3
CA-mx −70.9 −69.2
CA-on −70.5 −69.2
CA-ox −70.7 −69.2

Table 3 MPWB1K/6-31G(d) relative enthalpies (ΔH, in kcal mol−1),
entropies (ΔS, in cal mol−1 K−1) and Gibbs free energies (ΔG, in
kcal mol−1), computed at 25 °C and 1 atm in DCM, of the stationary
points involved in the 32CA reaction of NY 7 with the non-chiral
oxazolidinone 10

ΔH ΔS ΔG

MC −4.9 −48.6 9.6
TS-mn −0.7 −59.8 17.1
TS-mx 3.6 −52.2 19.2
TS-on 5.5 −54.2 21.6
TS-ox 5.5 −53.6 21.5
CA-mn −65.8 −62.8 −47.1
CA-mx −64.7 −60.1 −46.8
CA-on −64.8 −58.5 −47.3
CA-ox −65.0 −56.0 −48.3
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Analysis of the relative energies in DCM shows that anti
TS-mna is 5.8 kcal mol−1 lower in energy than syn TS-mns,
presenting a complete diastereoselectivity, in agreement with
the experimental outcomes (see Fig. 5). At TS-mna, the phenyl
substituent in chiral oxazolidinone 8 is located away from NY
7, not causing any steric hindrance. Although the phenyl sub-
stituent in the most favourable s-trans conformation of chiral
oxazolidinone 8 prevents the syn approach of NY 7, the C–N
single bond rotation in oxazolidinone 8 makes it possible that
the phenyl substituent could also be located away from NY 7.
However, this steric demand makes chiral oxazolidinone 8 to

adopt the more unfavourable s-cis conformation, thus increas-
ing the relative energy of TS-mns.

The distances of the C1–C4 and C3–C5 forming bonds at
TS-mna and TS-mns, 2.236 and 2.799 Å, and 2.239 and
2.809 Å, respectively, are closer to those found at TS2-mn.
Consequently, the inclusion of the phenyl substituent in oxa-
zolidinone 10 does not excessively modify the TS geometries.
This behaviour is a consequence of the fact that in both TSs
the phenyl substituent is located away from NY 7.

3.5 BET study characterising the C–C single bond formations
along the most favourable meta/endo reaction channel
associated with the 32CA reaction of NY 7 with
oxazolidinone 10

Within MEDT, the study of the molecular mechanism of an
organic reaction comprises the BET characterisation of the
bonding changes along the reaction path together with the
analysis of the energies associated with these changes. The
BET study along the most favourable meta/endo reaction
channel of the 32CA reaction between NY 7 and oxazolidinone
10 is given in the ESI.† The populations of the most significant
valence basins of the selected points of the IRC are included
in Table S1† and pictures of the attractor positions of the ELF
for the points involved in the bond formation processes are
displayed in Fig. S1.†

From the MEDT analysis of the electron density changes
along the IRC associated with the most favourable meta/endo
reaction channel some appealing conclusions can be drawn:

(i) the meta/endo IRC is topologically characterised by ten
differentiated phases associated with the rupture and for-

Fig. 4 MPWB1K/6-31G(d) geometries of the TSs involved in the 32CA reaction of NY 7 with oxazolidinone 10. Distances are given in Angstroms.
Values in DCM are given in parentheses.

Scheme 5 anti/syn diastereoisomeric reaction channels along the
meta/endo reactive approach mode of NY 7 towards the s-trans and
s-cis conformation of chiral oxazolidinone 8.
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mation of double and single bonds. Consequently, this 32CA
reaction is a non-concerted process;

(ii) formation of the first C1–C5 single bond takes place at a
C–C distance of 2.04 Å with an initial electron density of 1.71e.
This population is achieved through the donation of the
electron density of the carbenoid C1 lone pair present in NY 7
to the β-conjugated position of the oxazolidinone moiety
(see P7 in Fig. S1†);7

(iii) formation of the second C3–C4 single bond takes place
at a C–C distance of 2.05 Å by a C-to-C coupling of two C3 and
C4 pseudoradical centers generated along the IRC (see P8 in
Fig. S1†);4

(iv) formation of the C3–C4 single bond begins when the
C1–C5 single bond has already reached an electron density of
2.00e. This behaviour characterises the reaction mechanism as
a non-concerted two-stage one-step mechanism.32 In this mech-
anism, the first C1–C5 single bond is completely formed along
the first stage of the reaction through the nucleophilic attack
of the carbenoid C1 carbon of NY 7 on the β-conjugated posi-
tion of oxazolidinone 10, while the formation of the second
C3–C4 single bond takes place at the second stage of the reac-
tion through the coupling of two pseudoradical centers. This
behaviour, which is similar to that found in the 32CA reaction
between the simplest NY 1 and DCE 6, characterises the
cb-type mechanism;

(v) and finally, the changes in electron density required for
the formation of the first C1–C5 single bond, which are mainly
associated with the depopulation of the C4–C5 double bond,
present a low energy cost, 5.0 kcal mol−1, as a consequence of
the electrophilic character of oxazolidinone 10.

3.6 NCI analysis of the origin of the endo and anti
selectivities in the 32CA reactions of NY 7 with chiral
oxazolidinones 8 and 10

As commented on in the previous section, the 32CA reaction
of NY 7 with oxazolidinone 10 yields the pyrroline CA-mn,
resulting from a meta/endo approach mode of 10 as the single
product. In addition, when chiral oxazolidinone 8 is used,
pyrroline 9 is experimentally obtained with a > 98 : 2 dr.10

Analysis of the MWB1K/6-31G(d) relative energies in DCM
of meta/endo TS-mn and meta/exo TS-mx gives a ΔΔE≠ =
6.3 kcal mol−1, while the ΔΔE≠ between meta/endo/anti
TS-mna and meta/endo/syn TS-mns is 5.8 kcal mol−1, in com-
plete agreement with the experimental outcomes.

In order to explain the high endo and anti stereoselectivities
along the 32CA reactions of NY 7 with oxazolidinones 8 and
10, a detailed analysis of the geometries of TS-mn, TS-mx,
TS-mna and TS-mns was performed. Fig. 6 shows the top views
of these TSs. As can be seen, while along the exo stereo-
isomeric approach mode the oxazolidinone ring of 8 is posi-
tioned away from the aryl substituent at TS-mx, the former
ring is precisely above the aryl substituent and parallel at endo
TS-mn, TS-mna and TS-mns (see Fig. 6). Therefore, this geo-
metrical arrangement at the meta/endo TSs allows generating
some type of favourable electronic interactions between the
oxazolidinone and the aryl groups, justifying the preference of
endo TS-mn over exo TS-mx. On the other hand, analysis of the
geometries of the TSs associated with the ortho regioisomeric
approach mode, TS-on and TS-ox, indicates that the phenyl
ring of oxazolidinone 8 is positioned orthogonally to the mole-
cular plane, thus preventing any interaction with the oxazolidi-
none ring neither in the endo stereoisomeric channel nor in
the exo one (see Fig. 4). Consequently, favourable interactions
are only feasible along the meta/endo reactive pathway.

In order to characterise the favourable interactions appear-
ing between the oxazolidinone and the aryl substituents at the
meta/endo and meta/endo/anti TSs, an NCI analysis19 of the
electron density of TS-mn, TS-mx, TS-mna and TS-mns, as well
as of the two conformations of oxazolidinone 8 is performed.
NCI low-gradient isosurfaces for these meta TSs are displayed
in Fig. 7, while those for s-trans and s-cis conformations of
oxazolidinone 8 are shown in Fig. 8.

The most appreciable difference revealed from Fig. 7 is the
presence of a larger green surface between the oxazolidinone
ring of oxazolidinones 8 and 10 and the aryl group of NY 7 in
the endo TSs than in the exo one. This larger green surface,
associated with weak attractive van der Waals (VdW) inter-
actions, accounts for the larger stabilisation of endo TS-mn

Fig. 5 MPWB1K/6-31G(d) gas phase geometries of the anti/syn diastereoisomeric TSs involved along the meta/endo reaction channels associated
with the 32CA reaction of NY 7 with chiral oxazolidinone 8. Distances are given in Angstroms. Relative energies in kcal mol−1 and distances in DCM
are given parenthesis.
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with respect to exo TS-mx. In addition, it is noteworthy that
while TS-mna presents a turquoise surface between the
α-hydrogen and the carbonyl oxygen of the oxazolidinone ring,

indicating a strong favourable hydrogen bond between them,
no NCI surface is observed between the two carbonyl oxygen
atoms in TS-mns (see Fig. 8). Consequently, this topological
characteristic accounts for the stronger stabilisation of anti
TS-mna than syn TS-mns. Note that although the s-trans con-
formation of 8 is more stable than the s-cis one, the very high
steric hindrance between the phenyl substituent of the oxazoli-
dinone group of s-cis 8 and the aryl ring of NY 7 along the
syn diastereoisomeric approach mode forces the rotation
around the C–N bond, so that the hydrogen bond interaction,
which is present at s-trans 8, is prevented at TS-mns.

The present NCI topological analysis allows concluding that,
although weak attractive VdW interactions are appreciable in
the TSs associated with the more favourable meta regioisomeric
channels, the stronger VdW interactions taking place between
the oxazolidinone ring of 8 and 10 and the aryl group of NY 7
along the meta/endo approach could be responsible for the
regio- and stereoselectivities experimentally found in the 32CA
reactions of NY 7 with oxazolidinone 8.10 Interestingly, despite
the similar NCI profiles of the anti/syn diastereoisomeric meta/
endo TSs, the presence of a hydrogen-bond between the
α-hydrogen and the carbonyl oxygen of the oxazolidinone ring
in oxazolidinone s-trans 8 appears to be responsible for the
high diastereoisomeric excess experimentally obtained in the
32CA reaction of NY 7 with oxazolidinone 8.

4. Conclusions

The molecular mechanism of the cb-type 32CA reaction of NY
7 with non-chiral oxazolidinone 10 and chiral oxazolidinone 8,

Fig. 7 NCI gradient isosurfaces of TS-mn and TS-mx, and of TS-mna
and TS-mns. Green surfaces indicate weak attractive VdW interactions.

Fig. 8 NCI gradient isosurfaces of TS-mna and TS-mns and of s-trans
and s-cis conformations of chiral oxazolidinone 8. NCI gradient iso-
surfaces of TS-mna and s-trans 8 present the favourable intramolecular
O–H hydrogen bond.

Fig. 6 Top view of the geometries of TS-mn, TS-mx, TS-mna and TS-mns.
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experimentally studied by Sibi et al.,10 has been studied within
the MEDT at the MPWB1K/6-31G(d) computational level. ELF
topological analysis of the electronic structure of NY 7 shows
that this TAC presents a carbenoid structure similar to that
found for the simplest NY 1; i.e. the C1 carbon presents an sp2

lone pair with a high electron density, 1.72e.
Analysis of the conceptual DFT reactivity indices indicates

that in spite of the high electrophilic character of NY 7, ω =
2.33 eV, it also presents a high nucleophilic character, N =
3.67 eV, similar to that for the simplest NY 1, N = 3.50 eV. On
the other hand, oxazolidinones 8 and 10 can participate as
strong electrophiles in polar reactions. Analysis of the nucleo-
philic Parr functions in NY 7 and electrophilic Parr functions
in oxazolidinone 8 correctly predicts the meta regioselectivity
of this polar cb-type 32CA reaction.

Due to the non-symmetry of the reagents, the 32CA reaction
between NY 7 and non-chiral oxazolidinone 10 can take place
through four competitive reaction channels: the meta and
ortho regioisomeric and the endo and exo stereoisomeric ones.
Analysis of the stationary points involved in this 32CA reaction
indicates that it takes place through a one-step mechanism.
The 32CA reaction of the nucleophilic NY 7 with the electro-
philic oxazolidinone 10 presents a very low activation energy.
In fact, the most favourable TS-mn is found below the separ-
ated reagents. Analysis of the relative energies associated with
the four competitive TSs indicates that this 32CA reaction is
completely meta regioselective and completely endo stereo-
selective, in complete agreement with the experimental
outcomes.

Analysis of the TS geometries indicates that at the more
favourable meta regioisomeric TSs, the C–C bond formation
involving the carbenoid C1 carbon and the β-conjugated posi-
tion of the oxazolidinone 10 is more advanced than the other
C–C bond formation.

Inclusion of DCM solvent effects does not substantially
modify the selectivities or the TS geometries. Solvent effects
slightly increase the relative energies as a consequence of a
better solvation of the reagents than TSs and CAs.

A study of the anti/syn diastereoselectivity along the meta/
endo approach modes associated with the 32CA reactions of
NY 7 with the chiral oxazolidinone 8 shows that meta/endo/anti
TS-mna is 5.8 kcal mol−1 lower in energy than the meta/endo/
syn TS-mns, showing complete diastereoselectivity, in good
agreement with the experimental outcomes.

BET analysis of the molecular mechanism along the most
favourable meta/endo reaction channel associated with the
32CA reaction of NY 7 with oxazolidinone 10 indicates that it
takes place through a non-concerted two-stage one-step
mechanism, which is initialised by the nucleophilic attack of
the carbenoid C1 carbon of NY 7 on the β-conjugated position
of oxazolidinone 10. BET analysis makes the characterisation
of the cb-type mechanism possible.

NCI analysis of the meta TSs shows that the favourable VdW
interactions that appear at the endo TS-mn and TS-mna
together with the presence of an intramolecular hydrogen
bond in the s-trans conformation of the chiral oxazolidinone 8,

which remains at TS-mna, are responsible for the complete
diastereoselectivity experimentally found.
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e domino reaction between
1-diazopropan-2-one and 1,1-dinitroethylene. A
molecular electron density theory study of the
[3 + 2] cycloaddition reactions of diazoalkanes with
electron-deficient ethylenes†

Luis R. Domingo,*a Mar Ŕıos-Gutiérreza and Saeedreza Emamianb

The reaction between 1-diazopropan-2-one and 1,1-dinitroethylene has been studied using the Molecular

Electron Density Theory (MEDT) at the B3LYP/6-31G(d,p) computational level. This reaction comprises two

domino processes initialised by a common [3 + 2] cycloaddition (32CA) reaction yielding a 1-pyrazoline,

which participates in two competitive reaction channels. Along channel I, 1-pyrazoline firstly

tautomerises to a 2-pyrazoline, which by a proton abstraction and spontaneous loss of nitrite anion

yields the final pyrazole, while along channel II, the thermal extrusion of the nitrogen molecule in

1-pyrazoline gives a very reactive diradical intermediate which quickly yields the final gem-

dinitrocyclopropane. Analysis of the conceptual DFT reactivity indices permits an explanation of the

participation of 1-diazopropan-2-one in polar 32CA reactions. A Bonding Evolution Theory (BET) study

along the more favourable regioisomeric reaction path associated to the 32CA reaction allows an

explanation of its molecular mechanism. The present MEDT study sheds light on these complex domino

reactions as well as on the participation of diazoalkanes in polar 32CA reactions towards strong

electrophilic ethylenes via a two-stage one-step mechanism.
1. Introduction

Heterocyclic compounds are easily synthesised in a highly
regio- and stereoselective fashion by a [3 + 2] cycloaddition
(32CA) reaction between a three atom-component (TAC) and an
ethylene derivative (see Scheme 1).1 Substitution of a, b and c in
the TAC, and d and e in the ethylene by C, N, O, P or S atoms has
proven to be a powerful synthetic tool in the construction of
a great diversity of ve-membered heterocyclic compounds.1

TACs can be structurally classied into two categories: allylic
type (A-TAC) and propargylic type (P-TAC) structures.2 While A-
TACs such as nitrone I are bent, P-TACs such as nitrile oxide II
have a linear structure (see Scheme 1).

Diazoalkanes (DAAs) are P-TACs in which four electrons are
distributed in a linear C–N–N structure. Aer reporting the
ity of Valencia, Dr. Moliner 50, E-46100

ingo@utopia.uv.es; Web: http://www.

slamic Azad University, Shahrood, Iran

ESI) available: Theoretical background
e BET. BET study of the 32CA reaction
etry of TS6. B3LYP/6-31G(d,p) total
ints involved in the domino process
se and in the presence of benzene. See

5

cycloadditions of diazoacetate and diazomethane toward C–C
multiple bonds by Buchner and von Pechmann in the 1890s,3

many 32CA reactions of DAAs have been reported. In contrast to
many TACs which are generated as transient species in the
reaction medium, mono- and di-substituted DAAs have been
extensively prepared and isolated in pure form.1c The partici-
pation of DAA 1 in a 32CA reaction toward non-symmetrically
Scheme 1 Construction of five-membered heterocyclic compounds
by a 32CA reaction and structural classification of TACs.

This journal is © The Royal Society of Chemistry 2017
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Scheme 2 Participation of DAAs in 32CA reactions toward non-
symmetrically substituted ethylenes to generate two regioisomeric 1-
pyrazolines.

Scheme 4 Electronic structure of TACs and the proposed reactivity
types in 32CA reactions.
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substituted ethylene 2 yields two regioisomeric 1-pyrazolines, 3
and 4, depending on the approach mode of the reagents (see
Scheme 2).

Pyrazolines play a key role in medicinal and agricultural
chemistry due to their potent biological activities. Antimicro-
bial, anticancer, anti-tubercular, anti-inammatory, antiviral,
antitumor and antiangiogenic activities turn the synthesis of
pyrazolines into an attractive and valued research area.4 Due to
the strong repulsion caused by the lone pairs of two adjacent sp2

hybridised nitrogen atoms, 1-pyrazolines potentially tend to
lose a nitrogen molecule.5 In addition, 1-pyrazolines resulting
from a 32CA reaction between DAAs 1 and electron-decient
(ED) ethylenes 5 can experience different subsequent trans-
formations, depending on the electronic nature of the substit-
uents present in the DAA and the ethylene. As shown in
Scheme 3, cyclopropanes 7, 2-pyrazolines 8 or pyrazoles (PYZ) 9
can be obtained, respectively, via the extrusion of the nitrogen
molecule, tautomerisation or HY elimination at the resulting
1-pyrazolines 6.

Establishing a relationship between the molecular elec-
tronic structure and reactivity is the main goal of theoretical
organic chemistry. In this sense, very recently, Domingo
proposed a new reactivity model in organic chemistry named
Molecular Electron Density Theory (MEDT),6 in which changes
in the electron density along an organic reaction, and not
molecular orbital interactions, are responsible for its feasi-
bility. Various MEDT studies devoted to the understanding of
the relationship between the electronic structure of TACs and
Scheme 3 Transformation of 1-pyrazolines 6 into cyclopropanes 7, 2-
pyrazolines 8 or PYZs 9 when appropriate substitutions are present in
DAAs 1 and ethylenes 5.

This journal is © The Royal Society of Chemistry 2017
their reactivity in 32CA reactions have allowed establishing
a useful classication of these cycloaddition reactions into
pseudodiradical-type7 (pr-type), carbenoid-type8 (cb-type) and
zwitterionic-type7 (zw-type) reactions (see Scheme 4). TACs
with a pseudodiradical character participate in pr-type 32CA
reactions taking place easily through earlier transition state
structures (TSs) with very low activation energies and even
non-polar character,7 while TACs with a carbenoid or zwitter-
ionic character participate in cb- or zw-type 32CA reactions
whose feasibility depends on the polar character of the reac-
tion, i.e. the nucleophilic character of the TAC and the elec-
trophilic character of the ethylene derivative, or vice versa.7,8

Recently, Ivanova et al.9 experimentally studied some 32CA
reactions of various DAAs containing an a-hydrogen atom with
1,1-dinitroethylene (DNE) 11, an ED ethylene, in the presence as
well as in the absence of hexacarbonylmolybdenum, Mo(CO)6.
Thus, when DAA 10, 1-diazopropan-2-one, was treated with DNE
11 in benzene at 60 �C for 6 h, a mixture of PYZ 12 and gem-
dinitrocyclopropane (DNCP) 13 was obtained in 38% and 42%
yields, respectively (see Scheme 5). Similar results were ob-
tained in the presence of the Mo(CO)6 complex.9

Herein, an MEDT study of the reaction of DAA 10 with DNE
11 yielding PYZ 12 and DNCP 13, experimentally reported by
Ivanova et al.,9 is carried out using quantum chemical proce-
dures at the B3LYP/6-31G(d,p) computational level in order to
understand this complex process. A Bonding Evolution Theory10

(BET) study of the more favourable regioisomeric channel
associated with the 32CA reaction between DAA 10 and DNE 11
is performed in order to characterise the bonding changes
along the studied 32CA reaction, and thus to establish the
molecular mechanism of the reaction.
Scheme 5 Generation of PYZ 12 and DNCP 13 via the 32CA reaction
of DAA 10 with DNE 11 experimentally studied by Ivanova et al.9

RSC Adv., 2017, 7, 15586–15595 | 15587
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2. Computational details

All stationary points were optimised using the B3LYP func-
tional11 together with the 6-31G(d,p) basis set.12 The Berny
analytical gradient optimisation method13 was employed in
geometry optimisation steps. The stationary points were char-
acterised by frequency calculations in order to verify that TSs
have one and only one imaginary frequency. Intrinsic Reaction
Coordinate (IRC) curves14 were traced in order to check the
energy proles connecting each TS to the two associated
minima of the proposed mechanism using the second order
González–Schlegel integration method.15 Solvent effects of
benzene were taken into account through single point energy
computations at the gas phase optimised stationary points
using the Polarisable Continuum Model (PCM) developed by
Tomasi's group16 in the framework of the Self-Consistent
Reaction Field (SCRF).17 The electronic structures of the
stationary points were analysed by a Natural Population Anal-
ysis (NPA) within the Natural Bond Orbital (NBO) method.18 The
global electron density transfer19 (GEDT) is computed by the
sum of the natural atomic charges (q) of the atoms belonging to
each framework (f) at the TSs; GEDT ¼ P

qf. The sign indicates
the direction of the electron density ux in such a manner that
positive values mean a ux from the considered framework to
the other one. All computations were carried out with the
Gaussian 09 suite of programs.20

The global electrophilicity u index21 is given by the following
expression, u ¼ m2/2h, based on the electronic chemical poten-
tial, m, and the chemical hardness, h. Both quantities may be
approached in terms of the one-electron energies of the frontier
molecular orbitals HOMO and LUMO, 3H and 3L, such as mz (3H
+ 3L)/2 and h z (3L � 3H).22 The global nucleophilicity N index23

based on the HOMO energies obtained within the Kohn–Sham
scheme24 is dened as N ¼ 3HOMO(Nu) � 3HOMO(TCE), in which
Nu denotes the given nucleophile. This relative nucleophilicity N
index is referenced to tetracyanoethylene (TCE). The pr index,
which has recently been introduced in order to characterise the
participation of pseudodiradical TACs in a pr-type 32CA reac-
tion,7 comprises the chemical hardness h and the nucleophilicity
N index of the TAC, as pr ¼ N/h. Electrophilic Pk

+ and nucleo-
philic Pk

� Parr functions25 were obtained through the analysis of
the Mulliken atomic spin densities (ASD) of the radical anion of
DNE 11 and the radical cation of DAA 10. DFT reactivity indices
were computed at the B3LYP/6-31G(d) level.

The topological analysis of the Electron Localisation Func-
tion (ELF), h(r),26 was performed with the TopMod program27

using the corresponding B3LYP/6-31G(d,p) monodeterminantal
wavefunctions. For the BET study,10 the reaction paths were
followed using the IRC procedure in mass-weighted internals.
Steps of 0.1 [amu1/2 bohr] along the IRCs were assumed. A total
of 300 points along each side of the IRC was analysed.

3. Results and discussion

The present theoretical study is divided into four parts: (i) rst,
an analysis of the electronic structure of experimental DAA 10
and the simplest DAA 14 is performed; (ii) then, an analysis of
15588 | RSC Adv., 2017, 7, 15586–15595
Conceptual DFT (CDFT) reactivity indices at the ground state of
the reagents involved in the 32CA reaction between DAA 10 and
DNE 11 is performed in order to predict the reactivity and
regioselectivity in this 32CA reaction; (iii) next, the reaction
paths involved in these domino processes initialised by the
32CA reaction between DAA 10 and DNE 11 yielding PYZ 12 and
DNCP 13 are studied; and (iv) nally, a BET study along the
more favourable regioisomeric channel associated with the
32CA reaction of DAA 10 with DNE 11 is carried out in order to
characterise the molecular mechanism of this cycloaddition.
3.1. Analysis of the electronic structures of DAAs 10 and 14

As commented in the Introduction, the reactivity of TACs can be
correlated with their electronic structure. Consequently, rst,
an ELF topological analysis of the experimental DAA 10 and the
simplest DAA 14 was performed. The representation of ELF
attractors, natural atomic charges, obtained through an NPA,
ELF valence basins and the proposed Lewis structures for DAAs
10 and 14 are shown in Fig. 1.

As can be seen in Fig. 1, ELF topology of the simplest DAA 14
shows the presence of two monosynaptic basins, V(C1) and
V0(C1), integrating a total of 1.04 e, at the sp2 hybridised C1
carbon. The C1–N2 bonding region appears characterised by
the presence of one V(C1,N2) disynaptic basin integrating 3.06
e, while the presence of two disynaptic basins, V(N2,N3) and
V0(N2,N3), integrating 1.80 e each one, suggests the existence of
a N2–N3 double bond according to the Lewis bonding model.
Finally, ELF topology of DAA 14 shows the presence of two
monosynaptic basins, V(N3) and V0(N3), with a total electron
density of 3.90 e, associated with two lone pairs at the N3
nitrogen also according to the Lewis bonding model.

ELF topology of the experimental DAA 10 shows a very
similar electronic structure to that found in the simplest DAA 14
(see Fig. 1). In this TAC, the twomonosynaptic basins, V(C1) and
V0(C1), present a population of 0.50 e each one. On the other
hand, the C1–N2–N3 bonding region shows a similar bonding
pattern than that in DAA 14. The only topological difference
between the two DAAs is that at DAA 10 the non-bonding elec-
tron density associated to the N3 nitrogen atom is represented
by one single V(N3) monosynaptic basin integrating 3.76 e.

According to the Lewis structures, V(C) monosynaptic basins
integrating ca. 1 e are associated to pseudoradical centers,28,29

while those integrating ca. 2 e in neutral molecules are associ-
ated to carbenoid centers.30 TACs presenting two pseudoradical
centers have been classied as pseudodiradical TACs,7 while
those presenting a carbenoid center have been classied as
carbenoid TACs.8 Finally, TACs that neither present pseudor-
adical nor carbenoid centers have been classied as zwitterionic
TACs.7 Consequently, ELF topology of the experimental DAA 10
and simplest DAA 14 indicates that these TACs neither presents
a pseudodiradical,7 nor a carbenoid8 nor a zwitterionic7 elec-
tronic structure that would enable them to participate in pr-, cb-
or zw-type 32CA reactions (see Scheme 4),7,8 but they have
a pseudoradical structure.

Although the ELF topological analysis of DAAs 10 and 14
allows establishing a similar bonding pattern in these TACs,
This journal is © The Royal Society of Chemistry 2017



Fig. 1 Representation of ELF attractors, valence basin populations, in e, natural atomic charges, in e and in blue, ELF valence basins and proposed
pseudoradical Lewis structures for DAAs 10 and 14.
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NPA does not allow characterising any zwitterionic structure for
these two DAAs. It is noteworthy that the C1 carbon has a high
negative charge, �0.48 e (14) and �0.30 e (10), while the N2 and
N3 nitrogen atoms have a negligible charge. These ndings
disagree with the commonly accepted Lewis structure of DAAs
represented by a 1,2-zwitterionic structure.
3.2. Analysis of the global and local CDFT reactivity indices
at the ground state of the reagents involved in the 32CA
reaction

Global reactivity indices dened within CDFT31 are powerful
tools to explain the reactivity in cycloaddition reactions. Since
the global electrophilicity and nucleophilicity scales are given at
the B3LYP/6-31G(d) level, the present analysis has been per-
formed at this computational level. The global indices, namely,
electronic chemical potential (m), chemical hardness (h), global
electrophilicity (u) and global nucleophilicity (N) for DAAs 10
and 14 and DNE 11, and the pr index of DAAs 10 and 14, are
presented in Table 1.

As shown in Table 1, the electronic chemical potential of DAA
10, �4.40 eV, is higher than that of DNE 11, �5.98 eV. Conse-
quently, along the polar 32CA reaction of DAA 10 with DNE 11,
the GEDT19 will take place from DAA 10 toward ED DNE 11.
Table 1 B3LYP/6-31G(d) electronic chemical potential, m, chemical
hardness, h, global electrophilicity, u, and global nucleophilicity, N,
indices, in eV, for DAAs 10 and 14, and DNE 11, and the pr index of
DAAs 10 and 14

m h u N pr

DNE 11 �5.98 5.03 3.56 0.62
DAA 14 �3.64 4.73 1.40 3.11 0.66
DAA 10 �4.40 4.66 2.07 2.39 0.51

This journal is © The Royal Society of Chemistry 2017
Along a polar reaction, there is an electron density transfer
from the nucleophilic to the electrophilic species, which is
measured by the GEDT19 value computed at the TS of the reac-
tion; the larger the GEDT at the TS, the more polar the reaction.
Note that the GEDT concept comes from the observation that
the electron density transfer taking place from the nucleophile
to the electrophile along a polar reaction is not a local process,
but a global one involving the two interacting frameworks and
depending on the electrophilic/nucleophilic interactions taking
place between them.19

The simplest DAA 14 has an electrophilicity u index of
1.40 eV and a nucleophilicity N index of 3.11 eV, being classied
on the borderline of strong electrophiles32 and as a strong
nucleophile.33 Inclusion of a carbonyl group at the C1 carbon
atom of the simplest DAA 14 increases the electrophilicity u

index of the experimental DAA 10 to 2.07 eV and decreases the
nucleophilicity N index to 2.39 eV, being classied as a strong
electrophile and as a moderate nucleophile. Note that most
TACs are strong nucleophilic species.34 Consequently, DAA 10
will participate as a strong electrophile or as a moderate
nucleophile in polar 32CA reactions.

On the other hand, DNE 11 has a global electrophilicity u

index of 3.56 eV and a nucleophilicity N index of 0.62 eV,
being classied as a strong electrophile and as a marginal
nucleophile.

In order to characterise the participation of pseudodiradical
TACs in a pr-type 32CA reaction, the pr index has recently been
introduced.7 A-TACs with pr values larger than 0.90 can be
related to species having a very so character, i.e. with low
hardness h values, and low stabilised frontier electrons, i.e. with
low ionisation potential, participating in pr-type 32CA reac-
tions, while P-TACs with low pr values should participate in zw-
type 32CA reactions. P-TACs 10 and 14 have pr values of 0.51
and 0.66, indicating that in spite of their pseudoradical
RSC Adv., 2017, 7, 15586–15595 | 15589



Fig. 2 3D representations of the ASD of the radical cation 10c+ and the
radical anion 11c�, together with the nucleophilic Pk

� Parr functions of
DAA 10 and the electrophilic Pk

+ Parr functions of DNE 11.
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structure they will have a low pr-type reactivity.7 This analysis is
in clear agreement with the high activation energy found in the
32CA reaction between the simplest DAA 14 and ethylene 17,
16.6 kcal mol�1.34 Consequently, DAA 10 will not be able to
participate in pr-type 32CA reactions, and will thus participate
as a strong electrophile or as a moderate nucleophile in polar
32CA reactions.

By approaching a non-symmetric electrophilic/nucleophilic
pair along a polar or ionic process, the most favourable reac-
tive channel is that associated with the initial two-center
interaction between the most electrophilic center of the
electrophile and the most nucleophilic center of the
nucleophile. Recently, Domingo proposed the nucleophilic
Pk

� and electrophilic Pk
+ Parr functions,25 derived from

the changes of spin electron-density reached via the GEDT
process from the nucleophile to the electrophile, as a powerful
tool in the study of the local reactivity in polar or ionic
processes.

Accordingly, the nucleophilic Pk
� Parr functions of DAA 10 as

well as the electrophilic Pk
+ Parr functions of DNE 11 were

analysed in order to characterise the most nucleophilic and
electrophilic centers of the species involved in this 32CA reac-
tion (see Fig. 2).

Analysis of the nucleophilic Pk
� Parr functions at the reactive

sites of DAA 10 indicates that the C1 carbon atom, with
a maximum Pk

� value of 0.62, is the most nucleophilic center.
On the other hand, the electrophilic Pk

+ Parr functions at the
Scheme 6 Domino reactions between DAA 10 and DNE 11 yielding PYZ

15590 | RSC Adv., 2017, 7, 15586–15595
reactive sites of DNE 11 indicate that the most electrophilic
center is the C5 carbon atom, possessing the maximum value of
Pk

+ ¼ 0.52. Note that the C4 carbon atom is electrophilically
deactivated, possessing a negative Pk

+ value of�0.05. Therefore,
it is predictable that the most favourable electrophile–nucleo-
phile interaction along the nucleophilic attack of DAA 10 on
DNE 11 in a polar process will take place between the most
nucleophilic center of DAA 10, the C1 carbon atom, and the
most electrophilic center of DNE 11, the C5 carbon atom. This
prediction is in complete agreement with the experimental
outcomes9 favouring the formation of 1-pyrazoline 15 which, in
turn, participates in the subsequent reactions to generate PYZ
12 and DNCP 13 (see Scheme 6).
3.3. Study of the domino reaction between DAA 10 and DNE
11 giving PYZ 12 and DNCP 13

The reaction between DAA 10 and DNE 11 giving PYZ 12 and
DNCP 13 is a domino process that comprises several consecu-
tive reactions (see Scheme 6). The rst one is a 32CA reaction
between DAA 10 and DNE 11 yielding 1-pyrazoline 15. Then, 15
may experience two competitive reactions: (i) a tautomerisation
and the subsequent loss of nitrous acid to yield PYZ 12; or (ii)
the extrusion the nitrogen molecule and a rapid ring closure
resulting in DNCP 13.

The rst reaction of these domino processes is a 32CA
reaction between DAA 10 and DNE 11 yielding 1-pyrazolines 15
and/or 16. Formation of these pyrazolines depends on the
regioisomeric approach mode of the reagents, i.e. the initial
formation of the C1–C5 or C1–C4 single bonds. An analysis of
the stationary points involved in the two regioisomeric paths
indicates that this 32CA reaction takes place through a one-step
mechanism. Consequently, two reactive molecular complexes
(MCs), MC1 and MC2, two regioisomeric TSs, TS1 and TS2, and
the two corresponding 1-pyrazolines 15 and 16, were located
and characterised (see Scheme 7). B3LYP/6-31G(d,p) relative
energies in gas phase and in benzene for the 32CA reaction
between DAA 10 and DNE 11 are given in Scheme 7, while total
energies are given in the ESI.†

When DAA 10 and DNE 11 gradually approach each other,
the energy is reduced until the formation of twoMCs located 1.4
(MC1) and 1.5 (MC2) kcal mol�1 below the separated reagents
takes place. Further approach of the two DAA and DNE
12 and DNCP 13.

This journal is © The Royal Society of Chemistry 2017
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frameworks leads to the formation of the TSs, which are located
9.4 (TS1) and 16.7 (TS2) kcal mol�1 above the corresponding
MCs. Moreover, formation of 1-pyrazolines 15 and 16 becomes
exothermic by 23.2 and 19.5 kcal mol�1, respectively. Some
appealing conclusions can be drawn from these energy results:
(i) the activation energy associated with TS1 is 7.4 kcal mol�1

lower in energy than that associated with the 32CA reaction of
the simplest DAA 14 with ethylene 17; 16.6 kcal mol�1.34 It is
interesting to note that in spite of the pseudoradical structure of
DAAs 10 and 14 (see Fig. 1), the low pr index of these TACs (see
Table 1) together with the very high activation energy of the
32CA reaction of DAA 14 with ethylene 17 indicates that they do
not participate in pr-type 32CA reactions; (ii) this 32CA reaction
is completely regioselective, TS2 being 7.9 kcal mol�1 above
TS1, in complete agreement with the experimentally observed
regioselectivity; and (iii) the strong exothermic character of this
reaction makes the formation of 1-pyrazolines 15 and 16 irre-
versible. Consequently, 1-pyrazoline 15 is obtained through the
kinetic control of the reaction.

Inclusion of the solvent effects of benzene does not signi-
cantly modify the relative gas phase energies (see Scheme 7). In
benzene, the activation energy of the reaction slightly decreases
to 8.1 kcal mol�1, while the 32CA reaction remains completely
regioselective.

Aer the formation of 1-pyrazoline 15, this species can
participate in the competitive reaction channels I and II (see
Scheme 8). Along channel I, 1-pyrazoline 15 rst tautomerises to
2-pyrazoline 18, which by a loss of nitrous acid yields PYZ 12,
while along channel II, the thermal extrusion of the nitrogen
molecule in 1-pyrazoline 15 gives the diradical intermediate
IN2, which quickly yields the nal DNCP 13. (U)B3LYP/6-
31G(d,p) relative energies in gas phase and in benzene for the
competitive reactions of 1-pyrazoline 15 are given in Scheme 8,
while total energies are given in the ESI.†

The two consecutive reactions involved in channel I can be
promoted by any acid/basic species present in the reaction
medium. In this study, the HNO2/NO2

� pair was selected as the
acid/basic species since nitrous acid is a reaction product.
Conversion of 1-pyrazoline 15 into 2-pyrazoline 18 is
Scheme 7 32CA reaction between DAA 10 and DNE 11. Relative
energies are given in kcal mol�1. Energies in benzene are given in
parentheses.

This journal is © The Royal Society of Chemistry 2017
a tautomerisation process associated to a 1,3-hydrogen shi.
Several studies have shown that the direct 1,3-hydrogen shi is
energetically very unfavourable due to the formation of
a strained four-membered cyclic TS.35 Consequently, the tau-
tomerisation should take place trough a stepwise mechanism.
The rst step consists in the H1 proton abstraction by the nitrite
anion acting as a base yielding anionic intermediate IN1. From
MC3, in which the nitrite anion forms a hydrogen-bond with the
H1 hydrogen atom, this step has a very low activation energy, 1.3
kcal mol�1 (TS3); formation of intermediate IN1 is slightly
exothermic by 0.6 kcal mol�1. The subsequent proton transfer
from nitrous acid to the N3 nitrogen atom has no activation
barrier, formation of 2-pyrazoline 18 being exothermic by 16.3
kcal mol�1; note that this step is a thermodynamically
controlled acid/base process (since the nitrite anion is involved
in some steps of channel I, relative energies in benzene are
discussed). Conversion of 1-pyrazoline 15 into 2-pyrazoline 18 is
thermodynamically very favourable as it is exothermic by 16.3
kcal mol�1. This nding is in agreement with the experimental
observation that in 32CA reactions involving DAAs containing
an a-hydrogen atom, 2-pyrazolines are obtained as a reaction
product (see 2-pyrazolines 8 in Scheme 3).

Due to the relative acid character of the H5 hydrogen atoms
of 2-pyrazoline 18, the corresponding proton abstraction
process from C5 by the nitrite anion presents a low activation
energy of 7.5 kcal mol�1. Interestingly, aer the H5 proton
abstraction, the subsequent loss of the nitrite anion has not
activation energy; this last step being exothermic by 24.5 kcal
mol�1. Along channel I, formation of nal PYZ 12 plus nitrous
acid from 1-pyrazoline 15 is exothermic by 31.0 kcal mol�1.
Consequently, conversion of 1-pyrazoline 15 into nal PYZ 12
through the studied reaction channel I can be considered
irreversible.

Along channel II, the thermal extrusion of the nitrogen
molecule at 1-pyrazoline 15 gives a diradical intermediate IN2,
which is quickly converted into the nal DNCP 13 by a ring
closure through a C-to-C coupling of the C1 and C4 radical
centers present in intermediate IN2. Due to the diradical
structure of intermediate IN2, channel II was studied using
unrestricted UB3LYP calculations. The activation energy asso-
ciated with the extrusion of the nitrogen molecule via TS5 is
26.8 kcal mol�1. In spite of this high activation energy, this
unimolecular process is not entropically unfavourable. The IRC
from TS5 to products discontinues at species 19, which is 17.0
kcal mol�1 higher in energy than 1-pyrazoline 15. However, full
optimisation of this species yields the nal DNCP 13 in
a straightforward manner, and the extrusion of the nitrogen
molecule and subsequent ring closure being exothermic by
28.5 kcal mol�1. Consequently, the strong exothermic character
of the formation of DNCP 13 as well as PYZ 12 makes these
domino reactions irreversible.

In 1978, Engel studied the extrusion of the nitrogenmolecule
from cyclic and bicyclic azo compounds.36 For the extrusion of
the nitrogen molecule from cyclic azo compound 20 yielding
cyclopropane 21, an activation enthalpy of 39.0 kcal mol�1 was
experimentally estimated (see Scheme 9). Interestingly, a rela-
tively similar gas phase activation energy of 42.1 kcal mol�1 has
RSC Adv., 2017, 7, 15586–15595 | 15591



Scheme 8 Proposed reaction channels for the conversion of 1-pyrazoline 15 into PYZ 12 and DNCP 13. Relative energies are given in kcal mol�1.
Energies in benzene are given in parentheses.
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been obtained at the UB3LYP/6-31G(d,p) level, asserting our
computational level to study this reaction channel. In spite of
this high activation enthalpy, the favourable activation entropy
experimentally estimated for this extrusion reaction, 8.8 cal
mol�1 K, favours this thermal reaction.

Gas-phase optimised TSs involved in the domino reactions
between DAA 10 and DNE 11 (see Schemes 7 and 8), including
some selected distances, are given in Fig. 3. At the TSs associ-
ated with the 32CA reaction between DAA 10 and DNE 11, the
distances between the atoms involved in the formation of the
C–C and C–N single bonds are: 2.025 Å (C1–C5) and 2.653 Å
(N3–C4) at TS1, and 1.941 Å (N3–C5) and 2.369 Å (C1–C4) at TS2.
Some appealing conclusions can be drawn from these geomet-
rical parameters; (i) the more favourable TS1 is associated
with a highly asynchronous bond-formation process; (ii) this
32CA reaction takes place via a two-stage one-step mechanism37

(see below). Thus, TS1 is associated with the nucleophilic attack
of the C1 carbon of DAA 10 on the b-conjugated position of DNE
11, in clear agreement with the analysis of the Parr functions;
and (iii) at the two regioisomeric TSs, the single-bond formation
involving the most electrophilic center of DNE 11, the C5
carbon, is more advanced than that involving the C4 carbon.

At TS3, associated with the proton abstraction at 1-pyrazole
15, the length of the C1–H1 breaking bond is 1.294 Å, while the
length of the H1–O forming bond is 1.381 Å. At TS4, associated
with the proton abstraction at 2-pyrazoline 18, the length of the
Scheme 9 Thermal extrusion of the nitrogen molecule from cyclic
azo compound 20.

15592 | RSC Adv., 2017, 7, 15586–15595
C5–H5 breaking bond is 1.422 Å, while the length of the H5–O
forming bond is 1.240 Å. Finally, at TS5, associated with the
extrusion of the nitrogen molecule in 1-pyrazole 15, the lengths
of the C1–N2 and N2–C3 breaking bonds are 2.052 Å and 2.294
Å, respectively. These lengths are relatively similar to those
obtained at TS6, associated to the extrusion of the nitrogen
Fig. 3 B3LYP/6-31G(d,p) optimised geometries of the TSs involved in
the domino reaction between DAA 10 and DNE 11, see Schemes 7 and
8. Distances are given in Angstroms. Distances in benzene are given in
parentheses.

This journal is © The Royal Society of Chemistry 2017
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molecule from cyclic azo compound 20, namely 2.23 Å (see TS6
in the ESI†).

The inclusion of the solvent effects of benzene does not
substantially modify the TS geometries. At the most favourable
regioisomeric TS1 associated with the 32CA reaction, benzene
slightly increases the asynchronicity as the C3–N4 distance is
increased, but this change has no chemical signicance.

Both, the single imaginary frequency associated to TS4,
�1005.6 cm�1, and the atomic movements associated to this
imaginary frequency, indicate that this TS is mainly associated
with the H5 proton abstraction. However, the IRC from TS4
towards the products shows that the extrusion of nitrite anion
takes place in the same elementary step aer the complete
proton abstraction. On the other hand, as commented before,
the IRC from TS5 towards the products discontinues at species
19 (see Fig. 4). Aer removing the nitrogen molecule, full
UB3LYP/6-31G(d,p) optimisation of a feasible diradical inter-
mediate yields DNCP 13 in a straightforward manner.

The polar nature of the 32CA reaction between DAA 10 and
DNE 11 was analysed by computing the GEDT19 at the corre-
sponding TSs. In order to calculate the GEDT, the natural
atomic charges, obtained through an NPA, at TS1 and TS2,
involved in the studied 32CA reaction, were computed at the
ethylene as well as the DAA frameworks. In gas phase, the GEDT
that uxes from the DAA moiety toward the ED ethylene one is
0.34 e at TS1 and 0.24 e at TS2. These values indicate that this
32CA reaction has a strong polar character. The higher GEDT
value found at the more favourable regioisomeric TS1 is in clear
agreement with the relative low activation energy associated
with this 32CA reaction (see Scheme 7).38 This high polar
character arises from the strong electrophilic character of DNE
11, in spite of the moderate nucleophilic character of DAA 10
(see Section 3.2).
3.4. BET study of the 32CA reaction between DAA 10 and
DNE 11

In order to understand the molecular mechanism of the 32CA
reaction between DAA 10 and DNE 11, a BET study of the more
favourable C1–C5 regioisomeric channel was performed. The
complete BET study is given in the ESI.†

Some appealing conclusions can be drawn from this BET
study: (i) ten differentiated phases associated with the creation
or disappearance of valence basins are distinguished along the
Fig. 4 Diradical species 19 resulting from the IRC from TS5 towards
the products.

This journal is © The Royal Society of Chemistry 2017
C1–C5 regioisomeric reaction channel (see Fig. 5); (ii) TS1 is
found in the very short phase VI presenting a bonding pattern
similar to that found at P5 (see ELF valence basins of P5 in
Fig. 6). TS1 is characterised by the presence of three mono-
synaptic basins, V(C1), V(C4) and V(C5). While the V(C1)
monosynaptic basin was already present at DAA 10, the V(C4)
and V(C5) monosynaptic basins present at the DNE 11 frame-
work are formed along the reaction path on going from MC1 to
TS1. A signicant amount of the electron density of these
monosynaptic basins comes from the high GEDT that takes
place at TS1, 0.35 e.38 (iii) formation of the C1–C5 single bond
begins at phase VII at a C1–C5 distance of 2.01 Å, following the
recently proposed pattern:19 (a) depopulation of the C1–N2 and
C4–C5 bonding regions, (b) formation of two non-bonding
V(C1) and V(C5) monosynaptic basins (see P5 in Fig. 6), and
(c) formation of a new V(C1,C5) disynaptic basin through the
merger of the electron density of the aforementioned mono-
synaptic basins (see the V(C1,C5) disynaptic basin at P6 in
Fig. 6); (iv) a different behaviour is found for the formation of
the N3–C4 single bond. Formation of the N3–C4 single bond
begins with the creation of a new V(N3,C4) disynaptic basin at
the last phase X at the very short N3–C4 distance of 1.69 Å (see
V(N3,C5) disynaptic basin at P9 in Fig. 6). The electron pop-
ulation of this new disynaptic basin proceeds from the electron
density of one V(C4) monosynaptic basin created at the a posi-
tion of the two nitro groups and one V0(N3) monosynaptic basin
associated with a N3 pseudoradical center (see P8 in Fig. 6); (v)
at P9, the V(C1,C5) disynaptic basin has reached 97% of its
population in 1-pyrazoline 15. This behaviour indicates that
this 32CA reaction takes place through a two-stage one-step
mechanism;37 and (vi) along the more favourable regioiso-
meric channel, formation of the rst C1–C5 single bond takes
place through a two-center interaction involving the most
nucleophilic center of DAA 10, the C1 carbon, and the most
electrophilic center of DNE 11, the C5 carbon, a behaviour
anticipated by the analysis of the electrophilic and nucleophilic
Parr functions.25
Fig. 5 Relative energy (DE, in kcal mol�1) variations along the IRC
(amu1/2 bohr) associated with the 32CA reaction between DAA 10with
DNE 11 showing the relative positions of the selected points separating
the ten topological phases along the reaction path.
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Fig. 6 ELF valence basin representations of selected points involved in
the C1–C5 and N3–C5 single bond formation processes along the IRC
path of the 32CA reaction between DAA 10 with DNE 11.
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4. Conclusions

The reaction between DAA 10 and DNE 11 yielding PYZ 12 and
DNCP 13 has been theoretically studied using the MEDT at the
B3LYP/6-31G(d,p) computational level. Formation of PYZ 12
and DNCP 13 takes place through two domino processes ini-
tialised by a polar 32CA reaction between DAA 10 and DNE 11
yielding 1-pyrazoline 15, which experiences two successive
competitive reactions. Along channel I, 1-pyrazoline 15 rst
tautomerises to 2-pyrazoline 18, which by a proton abstraction
and spontaneous loss of nitrite anion yields PYZ 12, while along
channel II, the thermal extrusion of the nitrogen molecule in 1-
pyrazoline 15 gives a diradical intermediate IN2, which quickly
closes yielding the nal DNCP 13. Although the activation
energies of the two competitive channels are not comparable,
due to the need to model the corresponding acid/basic species
demanded for the tautomerisation of 1-pyrazolines into 2-pyr-
azolines, and the further conversion of those into PYZs (see
Scheme 8), the present MEDT study makes it possible to
understand the chemical conversion of 1-pyrazolines obtained
from a 32CA reaction of DAAs with ED ethylenes into the
different reaction products experimentally observed.

ELF analysis of the electronic structures of DAAs 10 and 14
shows that they have a pseudoradical structure. Analysis of the
CDFT reactivity indices indicates that although DAA 10 is not
a strong nucleophile, the strong electrophilic character of DNE
11 favours the 32CA reaction to take place through a polar
mechanism with high polar character and with relatively low
activation energy, 9.4 kcal mol�1. Note that the low pr index of
these TACs together with the high activation energy associated
with the non-polar 32CA reaction of the simplest DAA 14 with
ethylene 17, 15.4 kcal mol�1,34 indicate that these pseudoradical
TACs do not participate in pr-type 32CA reactions.

A BET study of the bonding changes along the more favour-
able regioisomeric channel associated with the 32CA reaction
15594 | RSC Adv., 2017, 7, 15586–15595
between DAA 10 andDNE 11 allows concluding that: (i) formation
of the rst C1–C5 single bond takes place at a C1–C5 distance of
2.01 Å by a C-to-C coupling of two pseudoradical centers, one
already present in DAA 10 and another generated at the most
electrophilic center of DNE 11 as a consequence of the highGEDT
taking place in this polar process;38 (ii) formation of the second
N3–C4 single bond begins at the end of the reaction path at the
very short N3–C4 distance of 1.69 Å through sharing the electron
density of two N3 and C4 pseudoradical centers. This model for
the formation of carbon–heteroatom single bonds is similar to
that found for the C–O single bond formation in the second
stage of the cycloaddition reactions of carbenoid intermediates
with CO2;39 and (iii) the high asynchronicity found in the
formation of the C–C and C–N single bonds indicates that this
polar 32CA reaction takes place through a two-stage one-step
mechanism.37

The present MEDT study sheds light on these complex
domino reactions as well as on the participation of DAAs in
polar 32CA reactions. The electronic structures of the studied
DAAs as well as their reactivity towards ethylene do not permit
the classication of these TACs into one of the three groups in
which TACs are currently classied in Scheme 4. Currently,
further studies devoted to the reactivity of pseudoradical TACs
are being carried out by our group.
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2016, 72, 1524.

9 O. Ivanova, E. M. Budynina, E. B. Averina, T. S. Kuznetsova,
Y. K. Grishin and N. S. Zerov, Synthesis, 2007, 13, 2009.

10 X. Krokidis, S. Noury and B. Silvi, J. Phys. Chem. A, 1997, 101,
7277.
This journal is © The Royal Society of Chemistry 2017



Paper RSC Advances
11 (a) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens.
Matter Mater. Phys., 1988, 37, 785; (b) A. D. Becke, J. Chem.
Phys., 1993, 98, 5648.

12 W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab
initio Molecular Orbital Theory, Wiley, New York, 1986.

13 X. Li and M. J. Frisch, J. Chem. Theory Comput., 2006, 2, 835.
14 K. Fukui, J. Phys. Chem., 1970, 74, 4161.
15 (a) H. B. Schlegel, J. Comput. Chem., 1982, 2, 214; (b)

H. B. Schlegel, in Modern Electronic Structure Theory, ed. D.
R. Yarkony, World Scientic Publishing, Singapore, 1994.

16 (a) J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027; (b)
B. Y. Simkin and I. Sheikhet, Quantum Chemical and
Statistical Theory of Solutions – Computational Approach,
Ellis Horwood, London, 1995.

17 (a) E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys.,
1997, 107, 3032; (b) M. Cossi, V. Barone, R. Cammi and
J. Tomasi, Chem. Phys. Lett., 1996, 255, 327; (c) V. Barone,
M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404.

18 (a) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem.
Phys., 1985, 83, 735; (b) A. E. Reed, L. A. Curtiss and
F. Weinhold, Chem. Rev., 1988, 88, 899.

19 L. R. Domingo, RSC Adv., 2014, 4, 32415.
20 M. J. Frisch, et al., Gaussian 09, Revision A.02, Gaussian, Inc.,

Wallingford CT, 2009.
21 R. G. Parr, L. von Szentpaly and S. Liu, J. Am. Chem. Soc.,

1999, 121, 1922.
22 (a) R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1983, 105,

7512; (b) R. G. Parr and W. Yang, Density Functional Theory of
Atoms and Molecules, Oxford University Press, New York,
1989.

23 (a) L. R. Domingo, E. Chamorro and P. Pérez, J. Org. Chem.,
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P. Pérez, Molecules, 2016, 21, 748.

32 L. R. Domingo, M. J. Aurell, P. Pérez and R. Contreras,
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Abstract: The electronic structure and the participation of the simplest azomethine imine (AI) in
[3+2] cycloaddition (32CA) reactions have been analysed within the Molecular Electron Density
Theory (MEDT) using Density Functional Theory (DFT) calculations at the MPWB1K/6-311G(d) level.
Topological analysis of the electron localisation function reveals that AI has a pseudoradical structure,
while the conceptual DFT reactivity indices characterises this three-atom-component (TAC) as a
moderate electrophile and a good nucleophile. The non-polar 32CA reaction of AI with ethylene takes
place through a one-step mechanism with moderate activation energy, 8.7 kcal·mol−1. A bonding
evolution theory study indicates that this reaction takes place through a non-concerted [2n + 2τ]
mechanism in which the C–C bond formation is clearly anticipated prior to the C–N one. On the
other hand, the polar 32CA reaction of AI with dicyanoethylene takes place through a two-stage
one-step mechanism. Now, the activation energy is only 0.4 kcal·mol−1, in complete agreement with
the high polar character of the more favourable regioisomeric transition state structure. The current
MEDT study makes it possible to extend Domingo’s classification of 32CA reactions to a new
pseudo(mono)radical type (pmr-type) of reactivity.

Keywords: azomethine imine; [3+2] cycloaddition reactions; molecular electron density theory;
conceptual density functional theory; electron localisation function; bonding evolution theory;
electron density; molecular mechanisms; chemical reactivity

1. Introduction

[3+2] cycloaddition (32CA) reactions emerged as a powerful synthetic tool for the construction
of five-membered heterocyclic compounds [1,2]. Although these reactions have been experimentally
known since the end of the 19th century, it was Huisgen who, in 1961, defined them as “1,3-dipolar
cycloadditions” [3,4]. These reactions are bimolecular in nature and involve the 1,3-addition of an
ethylene derivative to a three-atom-component (TAC) (see Scheme 1). TACs can be structurally
classified into two categories: allylic type (A-TAC) and propargylic type (P-TAC) structures [5,6].
While A-TACs such as I are bent, P-TACs such as II have a linear structure (see Scheme 1).

To explain the reactivity of TACs in 32CA reactions, Houk introduced, in 2007, a distortion/
interaction energy model (DIEM) in which the activation barrier is divided into two additive terms:
∆E 6=d , called distortion energy, and ∆E 6=i , called interaction energy [7,8]. The applicability of this model
was checked in 32CA reactions of nine different TACs, three A-TACs 1a–c and six P-TACs 2a–f,
with ethylene 3 and acetylene 4 (see Scheme 2) [7,8].
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Scheme 2. Nine TACs studied by Houk [7,8].

Houk found that the computed B3LYP/6-31G(d) activation enthalpies correlated very nicely with
the distortion energies: ∆E 6= = 0.74 × ∆E 6=d − 0.78 kcal·mol−1 (R2 = 0.97) (see Figure 1). He concluded
that the distortion energy of the reagents towards the transition state structure (TS) is the major factor
controlling the reactivity differences of TACs. This finding, which can be considered a computational
assertion of Hammond’s postulate established in 1955 [9], does not resolve the question why activation
energies depend on geometries, which are the result of the distribution of the molecular electron
density. In addition, the partition of the TS geometries into two separated fragments has no physical
significance within Density Functional Theory [10] (DFT), since in this quantum chemical theory
the energy is a functional of the electron density and the external potential, i.e., the nuclei positions.
Consequently, the energy of the two separated fragments cannot be correlated with the energy of the
TS because each of them loses the external potential created by the other fragment [11].

Very recently, Domingo has proposed a new reactivity theory in organic chemistry, namely,
Molecular Electron Density Theory [12] (MEDT), in which changes in the electron density along an
organic reaction, and not molecular orbital (MOs) interactions as proposed by the Frontier Molecular
Orbital (FMO) theory [13], are responsible for its feasibility.

Several MEDT studies devoted to understanding the reactivity of TACs participating in
32CA reactions have allowed establishing a very good correlation between their electronic
structures and reactivities. Accordingly, depending on the electronic structure of the TAC,
i.e., pseudodiradical (typically an azomethine ylide (AY) 1a) [14], carbenoid (typically a nitrile
ylide 2f) [15] or zwitterionic (typically a nitrone (Ni) 1c), the 32CA reactions towards ethylene
3 have been classified into pseudodiradical-type (pr-type) [16], carbenoid-type (cb-type) [17] and
zwitterionic-type (zw-type) [16] reactions (Scheme 3). The reactivity trend decreases in the order
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pseudodiradical > carbenoid > zwitterionic, in such a manner that while pr-type 32CA reactions take
place easily through earlier TSs even with a very low polar character [16,18], zw-type 32CA reactions
demand the adequate nucleophilic/electrophilic activations to take place [16,17,19]. Note that the
feasibility of the three reactivity types depends on the polar character of the reaction, i.e., the
nucleophilic/electrophilic interactions taking place at the TSs; the more polar the reaction, the faster
the reaction.
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Figure 1. Plot of B3LYP/6-31G(d) activation energies ∆E 6= vs. distortion energies: ∆E 6=d , in kcal·mol−1,
for Houk’s 32CA reactions of TACs 1 and 2 with ethylene 3 and acetylene 4 [7,8]. The position of TACs
1a–c is marked in red (see Scheme 4).
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Scheme 3. Electronic structure of TACs and the proposed reactivity types in 32CA reactions.

AY 1a, azomethine imine (AI) 1b and Ni 1c constitute a series of three CH2=NH–X (X = CH2,
NH, O) A-TACs in which the terminal X atom changes along the C, N, and O elements of the second
arrow (see Scheme 4). In this short series of TACs, the activation energy associated with the 32CA
reactions with ethylene 3 increases as the electronegativity of the atom X increases in the following
order C < N < O (see Scheme 4) [16]. Interestingly, while the simplest AY 1a has a pseudodiradical
structure, [14] Ni 1c has a zwitterionic one [20] (see Scheme 3). This behaviour causes these TACs to
have a different reactivity towards ethylene 3 in 32CA reactions, i.e., the 32CA reaction involving AY
1a is a pr-type reaction presenting a very low activation energy, 1.0 kcal·mol−1, while that involving
Ni 1c is a zw-type reaction with a high activation energy of 14.3 kcal·mol−1 (see Scheme 4). Note that
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it is expected that the reactivity of AI 1b, which presents an activation energy towards ethylene 3 of
7.7 kcal·mol−1, will be different to that of AY 1a and Ni 1c.Molecules 2017, 22, 750 4 of 20 
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activation energies, in kcal·mol−1 and with respect to the corresponding molecular complexes (MCs),
associated with the 32CA reactions with ethylene 3.

Considering that the simplest AI 1b has a different activation energy towards ethylene 3 from that
shown by AY 1a and Ni 1c, two TACs with a different electronic structure (see Scheme 3), an MEDT
study of the 32CA reactions of the simplest AI 1b with ethylene 3 and with electron-deficient (ED)
dicyanoethylene (DCE) 6, a strongly electrophilic ethylene, is herein carried out to establish the
structure and reactivity of this TAC (see Scheme 5). Together with an electron localisation function
(ELF) characterisation of the electronic structure of the simplest AI 1b, a Bonding Evolution Theory [21]
(BET) study of both reactions is performed in order to characterise the molecular mechanisms and to
explain the activation energies implied in these cycloadditions.
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2. Results and Discussion

The present theoretical study is divided into six parts: (i) an analysis of the electronic structure of
AI 1b is performed; (ii) the Conceptual DFT (CDFT) reactivity indices at the ground state (GS) of the
reagents are analysed in order to predict the reactivity and regioselectivity in these 32CA reactions;
(iii) the energy profiles associated with the 32CA reactions of AI 1b with ethylene 3 and DCE 6 are
studied; (iv) a BET study of the 32CA reaction of AI 1b with ethylene 3 is performed to characterise
the molecular mechanism of this cycloaddition; (v) an ELF topological analysis of the C–C and N–C
bond formation processes along the polar 32CA reaction between AI 1b and DCE 6 is carried out;
and (vi) based on the electronic structure of AI 1b and its reactivity towards ethylene 3, a new type of
reactivity in 32CA reactions is proposed.

2.1. ELF Topological Analysis and Natural Population Analysis (NPA) of AI 1b

As the reactivity of the TACs has been correlated with their electronic structure [16,17], an ELF
topological analysis of the simplest AI 1b was first performed in order to characterise the electronic
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structure of this TAC and thus, to predict its reactivity in 32CA reactions. ELF attractors, including the
valence basin populations, the natural atomic charges of C and N atoms, ELF localisation domains
and the proposed Lewis structure arising from the ELF topological analysis for AI 1b, are shown in
Figure 2.Molecules 2017, 22, 750 5 of 20 
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ELF topological analysis of the simplest AI 1b shows the presence of two monosynaptic basins,
V(C1) and V’(C1), integrating a total electron density of 0.62 e, two disynaptic basins, V(C1,N2)
and V(N2,N3), with electron populations of 2.95 e and 2.09 e, and one V(N3) monosynaptic basin
integrating 3.53 e. These ELF basins are related with the presence of a C1 pseudoradical centre, a C1–N2
bonding region integrating ca. 3 e, an N2–N3 single bond and an N3 non-bonding electron density
(see the ELF-based Lewis structure of AI 1b in Figure 2).

According to the Lewis structures, V(C) monosynaptic basins integrating ca. 1 e are associated
to pseudoradical centres [14,18], while those integrating ca. 2 e in neutral molecules are associated to
carbenoid centres [17]. TACs presenting two pseudoradical centres have been classified as pseudodiradical
TACs [16], while those presenting a carbenoid centre have been classified as carbenoid TACs [17].
Finally, TACs that neither present pseudoradical nor carbenoid centres have been classified as
zwitterionic TACs [16]. Consequently, ELF topological analysis of the electronic structure of the
simplest AI 1b indicates that this TAC, which presents a pseudoradical structure, does not have the
electronic structure of any of the three representative pseudodiradical, carbenoid and zwitterionic TACs
given in Scheme 3.

After the establishment of the bonding pattern of AI 1b based on the ELF topological analysis, the
charge distribution was analysed. The natural atomic charges, obtained through an NPA, are shown
in Figure 2. As can be observed, the three atoms belonging to this TAC present negative charges:
−0.30 e (C1), −0.18 e (N2) and −0.54 e (N3), while the hydrogen atoms support the positive charges.
This charge distribution is in complete disagreement with the commonly accepted 1,2-zwitterionic
structure given for AIs in which a positive charge and a negative charge are entirely located at the N2
and N3 nitrogen atoms [3,22].

Thus, while NPA reveals that this TAC does not have a 1,2-zwitterionic Lewis structure, ELF
topological analysis of the electron density of AI 1b permits establishing a pseudoradical electronic
structure with a pseudoradical centre at the C1 carbon atom. The distinct electronic structure of AI 1b
with respect to that of the pseudodiradical, carbenoid and zwitterionic structures given in Scheme 3
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justifies the different reactivity of these TACs (see Scheme 4), and therefore, the establishment of a new
reactivity model in 32CA reactions.

2.2. Analysis of the CDFT Reactivity Indices at the GS of the Reagents

Global reactivity indices defined within CDFT [23,24] are powerful tools to explain the reactivity
in cycloaddition reactions. Since the global electrophilicity and nucleophilicity scales are given at the
B3LYP/6-31G(d) level, the present analysis has been performed at this computational level. The global
indices, namely, the electronic chemical potential (µ), the chemical hardness (η), the electrophilicity (ω)
and the nucleophilicity (N), for AI 1b, ethylene 3 and DCE 6, as well as the pr index of A-TACs 1a–c,
are presented in Table 1.

Table 1. B3LYP/6-31G(d) electronic chemical potential, µ, chemical hardness, η, electrophilicity,ω, and
nucleophilicity, N, in eV, for A-TACs 1a–c, ethylene 3 and DCE 6, and the pr index of 1a–c.

µ η ω N pr

AY 1a −1.82 4.47 0.37 5.07 1.13
AI 1b −2.70 5.02 0.72 3.92 0.78
Ni 1c −3.43 5.55 1.06 2.92 0.53

Ethylene 3 −3.37 7.77 0.73 1.86
DCE 6 −5.64 5.64 2.82 0.65

As shown in Table 1, the electronic chemical potential µ of AI 1b, −2.70 eV, is higher than that
of ethylene 3, −3.37 eV, and DCE 6, −5.64 eV. Consequently, along polar 32CA reactions, the global
electron density transfer [25] (GEDT) will take place from AI 1b toward ethylene 3 or DCE 6; however,
note that ethylene 3 has no tendency to participate in polar processes.

Along a polar reaction, there is an electron density transfer from the nucleophilic to the
electrophilic species, which is measured by the GEDT [25] value computed at the TS of the reaction;
the larger the GEDT at the TS, the more polar the reaction. Note that the GEDT concept comes from
the observation that the electron density transfer taking place from the nucleophile to the electrophile
along a polar reaction is not a local process, but a global one involving the two interacting frameworks
and depending on the electrophilic/nucleophilic interactions taking place between them [25]. It should
be emphasised here that this global property is lost with the molecular fragmentation carried out in
Houk’s DIEM [11].

The simplest AI 1b has an electrophilicity ω index of 0.72 eV and a nucleophilicity N index of
3.92 eV, being classified as a marginal electrophile [26] and as a strong nucleophile [27]. The high
electron density accumulated in the three heavy atoms belonging to AI 1b could account for the high
nucleophilic character of this TAC (see NPA in Section 2.1). Consequently, AI 1b will participate only
as a strong nucleophile in polar 32CA reactions.

Analysis of the reactivity indices of the three A-TACs given in Scheme 4 shows that the
electrophilicityω index increases and the nucleophilicity N index decreases as the electronegativity
of the terminal X atom increases in the following order C < N < O; in any case, the three A-TACs are
strong nucleophiles.

In order to characterise the participation of TACs in a pr-type 32CA reaction, the pseudodiradical
(pr) index, has recently been introduced [16]. A-TACs with pr values larger than 0.90 can be related
to species having a very soft character, i.e., with low hardness η values, and low stabilised frontier
electrons, i.e., low ionisation potential, participating in pr-type 32CA reactions, while A-TACs with
low pr values should participate in zw-type 32CA reactions. A-TACs AY 1a, AI 1b and Ni 1c have pr
values of 1.13, 0.78 and 0.53 (see Table 1), indicating that AI 1b will not present a pr-type reactivity in
32CA reactions.

Polar cycloaddition reactions require the participation of good electrophiles and good nucleophiles.
Ethylene 3 is one of the poorest electrophilic,ω = 0.73 eV, and nucleophilic, N = 1.86 eV, species involved
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in cycloaddition reactions, being classified as a marginal electrophile and as a marginal nucleophile.
Consequently, ethylene 3 cannot participate in polar reactions. Substitution of two gem hydrogen
atoms in ethylene 3 by two electron-withdrawing –CN groups in DCE 6 considerably increases the
electrophilicity ω index to 2.82 eV and decreases the nucleophilicity N index to 0.65 eV. Consequently,
DCE 6 will participate only as a strong electrophile in polar 32CA reactions. Given the high nucleophilic
character of AI 1b and the strong electrophilic character of DCE 6, it is expected that the 32CA reaction
between AI 1b and DCE 6 will have a high polar character.

By approaching a non-symmetric electrophilic/nucleophilic pair along a polar or ionic process,
the most favourable reactive channel is that associated with the initial two-centre interaction between
the most electrophilic centre of the electrophile and the most nucleophilic centre of the nucleophile.
Recently, Domingo proposed the nucleophilic Pk

- and electrophilic Pk
+ Parr functions [28], derived

from the changes of spin electron-density reached via the GEDT process from the nucleophile to
the electrophile, as a powerful tool in the study of the local reactivity in polar or ionic processes.
Accordingly, the nucleophilic Pk

- Parr functions of AI 1b and the electrophilic Pk
+ Parr functions of

DCE 6 were analysed in order to characterise the most nucleophilic and electrophilic centres of the
species involved in this polar 32CA reaction (see Figure 3).
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Figure 3. Three-dimensional (3D) representations of the atomic spin densities (ASD) of the radical
cation 1b·+ and the radical anion 6·−, together with the nucleophilic Pk

- Parr functions of AI 1b and
the electrophilic Pk

+ Parr functions of DCE 6.

Analysis of the nucleophilic Pk
- Parr functions at the reactive sites of AI 1b indicates that both

the C1 carbon atom, with a Pk
- value of 0.54, and the N3 nitrogen atom, with a Pk

- value of 0.72,
are nucleophilically activated, the latter more than the former. Note that the N2 nitrogen atom
is nucleophilically deactivated, possessing a negative Pk

- value of −0.19. On the other hand, the
electrophilic Pk

+ Parr functions at the reactive sites of DCE 6 indicate that the more electrophilic entre
is the C4 carbon atom, possessing the maximum value of Pk

+ = 0.74.
Therefore, it can be predicted that along a polar reaction the most favourable

electrophile-nucleophile interaction along the nucleophilic attack of AI 1b on DCE 6 will take place
between the most nucleophilic centre of AI 1b, the N3 nitrogen atom, and the most electrophilic centre
of DCE 6, the C4 carbon atom.

2.3. Study of the Reaction Channels Associated with the 32CA Reactions of AI 1b with Ethylene 3 and DCE 6

2.3.1. 32CA Reaction Involving Ethylene 3

Due to the symmetry of ethylene 3, the reagents, 1b and 3, one MC, MC1, only one TS, TS1,
and the corresponding pyrazolidinone 5 were located and characterised; consequently, the 32CA
reaction takes place through a one-step mechanism (see Scheme 6). The MPWB1K/6-311G(d) total and
relative energies of the stationary points involved in the 32CA reaction of AI 1b with ethylene 3 are
given in Table S1 of the Supplementary Materials and Scheme 6, respectively, while the energy profile
is graphically represented in red in Figure 4.
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The reaction between AI 1b and ethylene 3 begins with the formation of MC1, which is slightly
stabilised by only 2.4 kcal·mol−1 with respect to the separated reagents (see Figure 4). From MC1,
the activation energy associated with TS1 is 8.7 kcal·mol−1, the reaction being exothermic by
59.6 kcal·mol−1. This activation energy is found between that associated with the non-polar 32CA
reaction of AY 1a with ethylene 3, 1.0 kcal·mol−1, a pr-type reaction, and that associated with the
non-polar 32CA reaction of Ni 1c with ethylene 3, a zw-type reaction, 14.3 kcal·mol−1 (see Scheme 4).
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and with DCE 6, in blue.

The geometry of TS1 is displayed in Figure 5. At TS1, the distances between the C1 and C5,
and the N3 and C4 interacting atoms are 2.272 and 2.289 Å, respectively. It has been well established
that the formation of C–C single bonds takes place in the short distance range of ca. 1.9–2.0 Å [25],
while several studies have shown that formation of C–N single bonds begins at shorter distances,
ca. 1.7 Å [29]. Therefore, despite the geometrical symmetry of TS1, these parameters suggest an
asynchronous bond formation process in which the C1–C5 bond formation is more advanced than the
N3–C4 one.
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The electronic nature of the 32CA reaction between AI 1b and ethylene 3 was analysed by
computing the GEDT [25] at the corresponding TS. Cycloadditions with GEDT values near 0.0 e
correspond to non-polar processes, whereas values higher than 0.2 e correspond to polar processes.
In gas phase, the GEDT that fluxes from the AI moiety towards the ethylene one is 0.10 e at TS1.
This value indicates that this 32CA reaction has a low polar character. Interestingly, the slight GEDT
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computed at TS1, whose direction is in agreement with the analysis of the corresponding electronic
chemical potential µ indices, can be rationalised as a delocalisation of the energetically destabilised
electron density of the AI framework into the ethylene one, rather than a GEDT associated to a polar
process [14]. Note that ethylene 2 has neither electrophilic nor nucleophilic character.

2.3.2. 32CA Reaction Involving DCE 6

Due to the non-symmetry of AI 1b and DCE 6, this 32CA reaction can take place through
two regioisomeric channels, the ortho and the meta (see Scheme 7), i.e., those associated with the
initial formation of the C1–C4 and N3–C4 single bonds, respectively. A search for the stationary
points involved in the two regioisomeric pathways allowed finding two MCs, MC2-o and MC2-m,
two regioisomeric TSs, TS2-o and TS2-m, and the corresponding pyrazolidines 7 and 8, which were
properly characterised; consequently, the 32CA reaction takes place through a one-step mechanism
(see Scheme 7). The MPWB1K/6-311G(d) total and relative energies of the stationary points involved
in the 32CA reaction of AI 1b with DCE 6 are given in Table S2 of the Supplementary Materials and
Scheme 7, respectively, while the energy profile is graphically represented in blue in Figure 4.
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Scheme 7. 32CA reaction between AI 1b and DCE 6.

When AI 1b and DCE 6 gradually approach each other, the energy is reduced until the formation
of two MCs located 6.3 (MC2-o) and 8.9 (MC2-m) kcal·mol−1 below the separated reagents takes
place (see Figure 4). Further approach of both the AI and the DCE frameworks leads to the formation
of the TSs, which are found 3.2 (TS2-o) and 0.4 (TS2-m) kcal·mol−1 above the more stable MC2-m.
Note that both MCs are in thermodynamic equilibrium. Moreover, formation of pyrazolidines 7
and 8 from MC2-m becomes strongly exothermic by 47.3 and 49.3 kcal·mol−1, respectively. Some
appealing conclusions can be drawn from these energy results: (i) the activation barrier associated to
the more favourable TS2-m is 8.3 kcal·mol−1 lower than that associated to TS1, 8.7 kcal·mol−1; (ii) this
32CA reaction is highly regioselective, TS2-o being 2.8 kcal·mol−1 above TS2-m; and (iii) the strong
exothermic character of this reaction makes the formation of pyrazolidines 7 and 8 irreversible.

The geometries of the TSs associated with the 32CA reaction between AI 1b and DCE 6 are
displayed in Figure 6. At the ortho TS2-o, the distances between the C1 and C4, and the N3 and
C5 interacting atoms are 2.311 and 2.625 Å, while at the meta TS2-m, the distances between the N3
and C4, and the C1 and C5 interacting atoms are 2.142 and 2.796 Å. Some appealing conclusions
can be drawn from these geometrical parameters: (i) both TSs correspond to highly asynchronous
single bond formation processes in which the formation at the β conjugated position of DCE 6 is more
advanced than that at the α one; (ii) geometrically, the more favourable TS2-m is more advanced and
more asynchronous than TS2-o; and (iii) the more favourable TS2-m is associated to the two-centre
interaction between the most nucleophilic centre of AI 1b and the most electrophilic centre of DCE 6,
in complete agreement with the analysis of the Parr functions (see Section 2.2).

In gas phase, the GEDT that fluxes from the AI framework towards the ethylene one is 0.25 e at
TS2-o and 0.27 e at TS2-m. The GEDT at the more favourable TS2-m is slightly higher than that at



Molecules 2017, 22, 750 10 of 20

TS2-o. These high values indicate that this 32CA reaction has a high polar character, in clear agreement
with the very high nucleophilic character of AI 1b and the high electrophilic character of DCE 6,
and account for the large decrease of the activation energy with respect to the non-polar 32CA reaction
involving ethylene 3 via TS1.
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2.4. BET Study of the 32CA Reaction of AI 1b with ethylene 3

When trying to achieve a better understanding of bonding changes in organic reactions, the so-called
BET [21] has proven to be a very useful methodological tool. This quantum-chemical methodology
makes it possible to understand the bonding changes along a reaction path and, thus, to establish the
nature of the electronic rearrangement associated with a given molecular mechanism [30].

In order to characterise the molecular mechanism of the non-polar 32CA reaction of AI 1b with
ethylene 3, a BET study along the cycloaddition reaction was carried out. The complete BET study is
provided in the Supplementary Materials. Some appealing conclusions can be drawn from this BET
study: (i) the intrinsic reaction coordinate (IRC) associated with the 32CA reaction of the simplest
AI 1b with ethylene 3 is divided in nine differentiated phases, a behaviour that clearly indicates
that the bonding changes along this one-step mechanism are non-concerted (see Figure 7); (ii) ELF
topological analysis of TS1 indicates that there is no bonding region between the N1 and C4, and the
C3 and C4 interacting atoms, respectively; (iii) the moderate activation energy associated with this
reaction, 8.7 kcal·mol−1, can be mainly associated with the rehybridisation of the C1 carbon from sp2

to sp3; (iii) formation of the first C3–C4 single bond takes place at a C–C distance of 2.03 Å through
the C-to-C coupling of two C3 and C4 pseudoradical centres [25] (see points P5 and P6 in Figure 8);
(iv) interestingly, while the C4 pseudoradical centre is generated along the reaction path through the
depopulation of the C4–C5 double bond of ethylene 3, the C3 pseudoradical centre is already present at
the simplest AI 1b; (v) formation of the second N1–C4 single bond takes place at an N–C distance of
1.92 Å through the C-to-N coupling of two N1 and C5 pseudoradical centres (see points P7 and P8 in
Figure 7); (vi) formation of this C–N single bond is thus different to that found in the ketene-imine
Staudinger reaction in which the first C–N single bond is formed through the donation of the electron
density of the imine nitrogen lone pair to the ketene carbonyl carbon [29]; and (vii) the present BET
study allows establishing the molecular mechanism of the non-polar 32CA reaction between the
simplest AI 1b and ethylene 3 and characterising it as a [2n + 2τ] process. The non-bonding 2n
electrons involved in this 32CA reaction can be associated with the pseudoradical centre present at the
C1 carbon and part of the electron density of the N3 nitrogen lone pairs of the simplest AI 1b, while
the 2τ electrons come from the C4–C5 double bond of ethylene 3. Note that, in 1931, first Pauling [31]
and later Slater [32] proposed that the C–C bonding region of ethylene 3 can be represented by two
equivalent bonds named τ bonds. This electronic representation of C–C double bonds is in complete
agreement with the ELF topological analysis of ethylene 3 in which the corresponding C–C bonding
region is characterised by the presence of two equivalent V(C,C) disynaptic basins integrating ca. 2 e
each one (see the Supplementary Materials).
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2.5. ELF Topological Analysis of the C–C and N–C Bond Formation Processes along the Polar 32CA Reaction
between AI 1b and DCE 6. Understanding the Role of the GEDT

Recently, an ELF topological analysis of some relevant points involved in the formation of the
new single bonds along the IRC associated with the experimental 32CA reaction of an AI derivative
with N-vinyl tetrahydroindole allowed establishing that this reaction takes place through a two-stage
one-step mechanism [33]. Herein, in order to investigate the bond formation processes along the polar
32CA reaction of AI 1b with DCE 6 and to understand the low activation energies associated with the
two meta/ortho regioisomeric channels, an ELF topological analysis of the corresponding stationary
points and some relevant points along the IRC involved in the formation of the new C–C and N–C
single bonds was performed. Note that these points were selected by a similar procedure to that used
in the previous BET study (see Computational Methods). The complete ELF topological analysis is
provided in the Supplementary Materials, while a summary of the most appealing conclusions is
reported herein.

Some appealing conclusions can be drawn from this ELF topological analysis along both meta/ortho
regioisomeric channels: (i) in both reaction channels, the formation of the first single bond involves
the most electrophilic centre of DCE 6, the C4 carbon (see Figure 9); (ii) formation of the C–C single
bonds along the two channels begins at C–C distances of 2.14 Å (meta) and 2.05 Å (ortho) through
the C-to-C coupling of two C1 and C4/C5 pseudoradical centres (see P1-o and P2-o in Figure 9) [29];
(iii) interestingly, while along the more favourable meta channel the two C1 and C5 pseudoradical centres
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are created as the reaction progresses, the C1 pseudoradical centre is already present at ortho MC2-o;
(iv) while along the more favourable meta channel the C5 pseudoradical centre created at the DCE
framework participates more than the C1 one created at the AI moiety in the C–C bond formation
process, along the ortho channel the C1 pseudoradical centre already present at MC2-o contributes more
to the C–C bond formation; (v) conversely, the N–C bond formation takes place differently along both
channels. Formation of the N–C single bond begins at N–C distances of 1.81 Å (meta) and 1.84 Å
(ortho) through the donation of part of the non-bonding electron density of the N3 nitrogen to the C4
carbon along the meta channel (see P1-m and P2-m in Figure 9) or through the C-to-N coupling of two
C5 and N3 pseudoradical centres along the ortho channel; (vi) both reaction channels present highly
asynchronous bond formation processes, in agreement with the previous geometry analysis. The polar
32CA reaction between AI 1b and DCE 6 proceeds through a two-stage one-step mechanism [33] in
which the formation of the second bond begins when the first one is already formed by up to 95%;
(vii) the bonding patterns of TS2-o and TS2-m are very similar to those of the corresponding MCs
and, accordingly, the very low energy barriers relative to the corresponding MCs, 0.6 (TS2-o) and
0.4 (TS2-m) kcal·mol−1, can mainly be associated with slight electron density variations within the
molecular system; (viii) therefore, these very low activation energies can be the consequence of the
GEDT taking place at the polar TSs, which favours the polar 32CA reaction through an electronic
stabilisation of both the nucleophile and electrophile frameworks; (ix) the energy difference between
TS2-o and TS2-m, 2.8 kcal·mol−1, is likely to be associated to the higher stability of the electron density
distribution at TS2-m than that at the pseudoradical structure of TS2-o.
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Figure 9. ELF localisation domains, represented at an isovalue of 0.68, for the selected points of the
IRC involved in the formation of the first N3–C5 (meta) and C1–C4 (ortho) single bonds along the two
meta/ortho reactive channel associated with the polar 32CA reaction between AI 1b and DCE 6.

The GEDT taking place at the TSs of the polar 32CA reaction between AI 1b and DCE 6 does not
only decrease the activation energy associated with the non-polar 32CA reaction involving ethylene 3,
but also modifies the molecular mechanism of the polar reaction making the most favourable reaction
channel that involving the first N–C bond formation instead of the C–C one, in agreement with the
analysis of the Parr functions. Note that, despite the pseudoradical character of the C1 carbon, the N3
nitrogen is the most nucleophilic centre of AI 1b (see Section 2.2).

A comparative analysis between the BET study of the non-polar 32CA reaction involving ethylene
3 and the ELF topological analysis of the bond formation processes along the polar 32CA reaction
involving DCE 6 makes it possible to understand the role of the GEDT in the polar process. Some
appealing conclusions emerge from the corresponding comparative analysis: (i) while along the
non-polar 32CA reaction of AI 1b with ethylene 3 and the less favourable ortho channel of the polar
32CA reaction between AI 1b and DCE 6 the most favourable interaction is that involving the C1
pseudoradical centre, along the more favourable meta channel of the polar 32CA reaction between AI 1b
and DCE 6 is that involving the interaction between the most nucleophilic and electrophilic centres of
the reagents; (ii) thus, while the non-polar cycloaddition and the ortho channel of the polar reaction
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begin with the initial formation of the C–C single bond, the meta channel of the polar reaction begins
with the initial formation of the N–C single bond. Consequently, both mechanisms are different;
(iii) formation of the new single bonds is slightly asynchronous in the non-polar reaction but highly
asynchronous in the polar reaction; (iv) unlike polar Diels–Alder reactions and polar zw-type 32CA
reactions in which the GEDT favours the bonding changes at the reagents, i.e., the rupture of the
double bonds [34], in the polar 32CA reaction between AI 1b and DCE 6, the GEDT provokes an
electronic stabilisation of both the nucleophilic and the electrophilic frameworks at the TSs, decreasing
the activation energies from 8.7 kcal·mol−1 (TS1) to 0.4 (TS2-o) and 3.2 (TS2-m) kcal·mol−1.

2.6. Understanding the Reactivity of AI 1b Possessing a Carbon Pseudoradical Centre

ELF topological analysis of several TACs have shown that unlike butadiene 9, which presents
a conjugated C–C double bond Lewis structure, TACs have very complex electronic structures that
cannot be usually represented by a simple Lewis structure. On the other hand, unlike the non-polar
Diels–Alder reaction between butadiene 9 and ethylene 3, which has a high activation energy of
ca. 25 kcal·mol−1 [35], the non-polar 32CA reactions between TACs and ethylene 3 have activation
energies that range from 1 to 15 kcal·mol−1 [7,8]. Note that ethylene 3 is a poor electrophile and a poor
nucleophile that cannot participate in polar reactions.

As has been aforementioned in the Introduction, a good correlation between the electronic
structures of TACs and the activation energies involved in the non-polar 32CA reactions towards
ethylene 3, i.e., their reactivity, has been found [16,17]. Thus, while zwitterionic TACs such as Ni
1c, which must break the C–N double bond before the creation of the carbon pseudoradical centre
demanded for the subsequent C–C bond formation, present high activation energies towards ethylene
3 (14.3 kcal·mol−1 for the reaction of Ni 1c with ethylene 3), pseudodiradical TACs such as AY 1a, which
already has the two required carbon pseudoradical centres in the structure, present unappreciable
activation energies (1.0 kcal·mol−1 for the reaction of AY 1a with ethylene 3). Note that AY 1a and Ni
1c are located at the extremes of the series given in Figure 10.
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Figure 10. Plot of the MPWB1K/6-311G(d) relative energies ∆E 6= vs. the distortion energies ∆E 6=d ,
in kcal·mol−1, for Houk’s 32CA reactions of TACs 1 and 2, having at least one carbon atom, with ethylene
3 [7,8].

Very recently, the 32CA reactions of diazoalkanes (DAAs) with ED ethylenes have been
studied [36]. ELF topological analysis of the simplest DAA 2c showed that, similar to AI 1b, this TAC
also has a pseudoradical structure (see Figure 11) [36]. However, despite its pseudoradical structure,
the 32CA reaction of DAA 2c with ethylene 3 presents a high activation energy, 16.6 kcal·mol−1, as a
consequence of its lineal P-TAC structure [19].



Molecules 2017, 22, 750 14 of 20

Molecules 2017, 22, 750 14 of 20 

 

Very recently, the 32CA reactions of diazoalkanes (DAAs) with ED ethylenes have been studied 
[36]. ELF topological analysis of the simplest DAA 2c showed that, similar to AI 1b, this TAC also 
has a pseudoradical structure (see Figure 11) [36]. However, despite its pseudoradical structure, the 
32CA reaction of DAA 2c with ethylene 3 presents a high activation energy, 16.6 kcal·mol−1, as a 
consequence of its lineal P-TAC structure [19]. 

 
Figure 11. Representation of the ELF localisation domains and the proposed Lewis structure for DAA 2c. 

Why AI 1b having one pseudoradical centre presents a different reactivity than AY 1a having a 
pseudodiradical structure? Figure 12 shows how the two pseudoradical centres present in the simplest 
AY 1a favour the synchronous C–C single bond formation process through an homolytic rupture of the 
C–C double bond of the ethylene framework [14], a behaviour that is not feasible in the 32CA reactions 
of pseudoradical AI 1b and DAA 2c. Note that, in these TACs, the non-bonding electron density present 
at the nitrogen atom is associated to the nitrogen sp2 lone pairs, which must be redistributed before 
the creation of the nitrogen pseudoradical centre demanded for the C–N single bond formation. 

 
Figure 12. Bonding changes demanded for the C-C bond formation in the pdr-type 32CA reaction 
between AY 1a and ethylene 3, and for the C-C and C-N bond formation in pmr-type 32CA reaction 
between AI 1b and ethylene 3. 

Consequently, from the comparison of the electronic structure and the reactivity of AI 1b in the 
non-polar 32CA reaction with ethylene 3 with those of the three TACs given in Scheme 3, a new type 
of 32CA reaction model should be considered. This new type, called pseudo(mono)radical type (pmr-
type) 32CA reaction, is associated with TACs such as AI 1b and DAA 2c having only one pseudoradical 
carbon centre, i.e., a pseudoradical electronic structure (see Scheme 8). In order to clearly differentiate 
the reactivity of pseudodiradical species from pseudoradical ones, we propose to change the original 
name of pr-type (see Scheme 3) to pdr-type (see Scheme 8). 

H

N
CH2HC

H

N
NHH2C

AY 1a AI 1b

H2C CH2 H2C CH2

Figure 11. Representation of the ELF localisation domains and the proposed Lewis structure for
DAA 2c.

Why AI 1b having one pseudoradical centre presents a different reactivity than AY 1a having a
pseudodiradical structure? Figure 12 shows how the two pseudoradical centres present in the simplest AY
1a favour the synchronous C–C single bond formation process through an homolytic rupture of the
C–C double bond of the ethylene framework [14], a behaviour that is not feasible in the 32CA reactions
of pseudoradical AI 1b and DAA 2c. Note that, in these TACs, the non-bonding electron density present
at the nitrogen atom is associated to the nitrogen sp2 lone pairs, which must be redistributed before
the creation of the nitrogen pseudoradical centre demanded for the C–N single bond formation.
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Figure 12. Bonding changes demanded for the C–C bond formation in the pdr-type 32CA reaction
between AY 1a and ethylene 3, and for the C–C and C–N bond formation in pmr-type 32CA reaction
between AI 1b and ethylene 3.

Consequently, from the comparison of the electronic structure and the reactivity of AI 1b in the
non-polar 32CA reaction with ethylene 3 with those of the three TACs given in Scheme 3, a new type of
32CA reaction model should be considered. This new type, called pseudo(mono)radical type (pmr-type)
32CA reaction, is associated with TACs such as AI 1b and DAA 2c having only one pseudoradical
carbon centre, i.e., a pseudoradical electronic structure (see Scheme 8). In order to clearly differentiate
the reactivity of pseudodiradical species from pseudoradical ones, we propose to change the original name
of pr-type (see Scheme 3) to pdr-type (see Scheme 8).Molecules 2017, 22, 750 15 of 20 
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Thus, unlike symmetric pseudodiradical TACs such as AY 1a, carbonyl ylides and thiocarbonyl
ylides, which induce a symmetric depopulation of the C–C double bond of ethylene 3, non-symmetric
pseudoradical TACs such as AIs 1b and DAAs 2c are not able to induce an effective symmetric electron
density depopulation of the C–C bonding region in the ethylene framework since the electron density
demanded for the formation of the new C–N single bonds is at first being part of the non-bonding
electron density of the nitrogen sp2 lone pairs.

The present theoretical study emphasises how MEDT studies are able to rationalise the reactivity
of organic compounds based on a rigorous analysis of the changes of the electron density along organic
reactions [12]. Conversely, Houk’s DIEM only permits to establish a good relationship between the
distortion energy and the activation energy in the series of non-polar 32CA reactions given in Scheme 2,
i.e., when more distorted the TS is with respect to the separated reagents, higher the activation energy.
This finding, which is a computational assertion of Hammond’s postulate [9], does not resolve the
question why the activation energies of these 32CA reactions depend on the geometry deformations [7,8].

The molecular geometry is the result of the energy minimisation, which, within the DFT, is a
functional of the electron density [10]. Consequently, activation energies, which are the difference in
energies between the GS and the TS, should be understood as the energy involved in the changes
in electron density demanded to reach the TS. Since the electron density in a molecule and its
associated energy depends on the total electrons and the external potential, i.e., the nuclei positions [10],
the geometry of any species involved in a reaction path cannot be divided into separated fragments
because they lose the information of the whole molecular system.

On the other hand, we have proposed that the GEDT taking place at the TSs is one of the more
relevant factors controlling activation energies; the larger GEDT, the lower the activation energy [34].
Such as the non-polar DA reaction between butadiene and ethylene 3 that has a negligible GEDT, the
32CA reactions towards ethylene 3 also do not have any polar character. Consequently, the activation
energies implied in these non-polar 32CA reactions are mainly associated to the energy required for the
changes in the GS electron density, and not to the geometry deformation such as Houk proposed [7,8],
which is a consequence of the former.

3. Conclusions

The electronic structure and chemical properties of the simplest AI 1b as well as its participation
in 32CA reactions towards ethylene 3 and ED DCE 6 have been analysed within MEDT using DFT
calculations at the MPWB1K/6-311G(d) level.

Analysis of the electron density pattern of the simplest AI 1b reveals that this TAC presents a
pseudoradical structure, characterised by the presence of a V(C1) monosynaptic basin integrating 0.62 e
at the C1 carbon atom. The charge distribution at AI 1b does not permit to assign any zwitterionic
structure for this TAC, ruling out the common representation of this TAC as a 1,2-dipole.

CDFT analysis of AI 1b indicates that this TAC is a moderate electrophile and a good nucleophile.
Consequently, it is expected that AI 1b will participate in polar 32CA reactions only towards
electrophilically activated ethylenes. Analysis of the nucleophilic P−k indicates that the N3 nitrogen
atom is more nucleophilically activated than the C1 carbon.

The 32CA reaction of AI 1b with ethylene 3 takes place through a one-step mechanism with
moderate activation energy, 8.7 kcal·mol−1, the reaction being strongly exothermic, −62.0 kcal·mol−1.
Analysis of the TS geometry shows a high symmetry in the lengths of the two C–C and C–N forming
bonds. The GEDT at TS1, 0.10 e, indicates that this reaction has a low polar character.

BET analysis of this non-polar 32CA reaction indicates that in spite of the geometrical symmetry
found at TS1, this one-step mechanism takes place through a non-concerted mechanism in which the
C-C bond formation is clearly anticipated prior to the C–N one. Formation of the first C–C single bond
takes place at a distance of 2.03 Å through the C-to-C coupling of two carbon pseudoradical centres [25],
while formation of the second N–C single bond takes place at a distance of 1.92 Å through the C-to-N
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coupling of two carbon and nitrogen pseudoradical centres. Consequently, at TS1 the formation of the
two single bonds has not yet begun.

BET analysis allows the molecular mechanism of the non-polar 32CA reaction to be characterised
as a [2n + 2τ] process. This MEDT study makes it possible to reject the concept of pericyclic mechanism,
since the bonding changes are neither concerted nor do they take place in a cyclic movement.
In addition, ELF topological analysis of the structures involved in the formation of the two C–C and
C–N single bonds indicates that the C1 pseudoradical and N3 non-bonding electron density belonging
to AI 1b and that belonging to the τ bond of ethylene 3 participate in the reaction. This behaviour,
which indicates that only two electrons of the TAC and two electrons of the ethylene participate in this
reaction, allows rejecting the classification of these reactions as [4π + 2π] processes, and, consequently,
the Woodward–Hoffmann rules of the conservation of orbital symmetry [37], according to which this
thermal 32CA reactions should be forbidden by the MO symmetry.

The polar 32CA reaction of AI 1b with DCE 6 also takes place through a one-step mechanism.
However, the electrophilic activation of ethylene 3 provokes some remarkable changes in the 32CA
reactions of AI 1b towards ED ethylenes. Now, due to the non-symmetry of both reagents, two
regioisomeric channels are feasible. TS2-m, associated with the initial C–N bond formation, is found
2.8 kcal·mol−1 below TS2-o, associated with the initial C–C bond formation; this polar 32CA reaction
is highly regioselective, in clear agreement with the CDFT analysis of the Parr functions at the GS of
the reagents. The activation barrier of the more favourable TS2-m is 8.3 kcal·mol−1 lower than that of
TS1, associated with the non-polar 32CA reaction of AI 1b with ethylene 3. This large acceleration is in
complete agreement with the high GEDT found at the polar TS2-m, 0.25 e, which provokes an electronic
stabilisation of the both the nucleophilic and the electrophilic frameworks at the TSs. These behaviours
are the consequence of the high nucleophilic character of AI 1b and the high electrophilic character of
DCE 6.

Interestingly, ELF analysis of the bonding changes along the two regioisomeric channels indicates
that the electrophilic activation of the ethylene compound does not only accelerate the reaction, but
also changes the mechanism; the non-polar 32CA reaction begins with the C–C single bond formation,
while the more favourable channel associated with the polar 32CA reaction starts with the C–N bond
formation due to the favourable two-centre interaction between the most nucleophilic centre of AI
1b and the most electrophilic centre of DCE 6 taking place in a polar process. In addition, while the
non-polar reaction is only slightly asynchronous, the polar process takes place through a non-concerted
two-stage one-step mechanism [33].

Analysis of the electronic structure of AI 1b and its reactivity towards ethylene 3 indicates that
this TAC is different to those previously studied. The pseudoradical structure and reactivity of the
simplest AI 1b towards ethylene 3, such as those of the simplest DAA 10 [36], which are different to
the pseudodiradical structure and pdr-type reactivity of AY 1a, make it possible to extend Domingo’s
classification to a new type of pseudoradical TACs and pmr-type reactivity.

The present theoretical study emphasises how MEDT is able to rationalise the reactivity of the
organic compounds based on a rigorous analysis of the changes of the electron density along organic
reactions, thus rejecting obsolete concepts and models developed in the last century through the
analysis of MOs [12,25].

4. Computational Methods

DFT calculations were performed using the MPWB1K functional [38] together with the
6–311G(d,p) basis set [39]. Optimisations were carried out using the Berny analytical gradient
optimisation method [40,41]. The stationary points were characterised by frequency computations
in order to verify that TSs have one and only one imaginary frequency. The IRC paths [42] were
traced in order to check the energy profiles connecting each TS to the two associated minima of the
proposed mechanism using the second order González-Schlegel integration method [43,44]. GEDT [25]
is computed by the sum of the natural atomic charges (q), obtained by NPA [45,46], of the atoms
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belonging to each framework (f) at the TSs; GEDT = Σqf. The sign indicates the direction of the electron
density flux in such a manner that positive values mean a flux from the considered framework to the
other one. All computations were carried out with the Gaussian 09 suite of programs [47].

CDFT [23,24] provides different indices to rationalise and understand chemical structure and
reactivity. The global electrophilicity index [48]ω, is given by the following expression, ω = (µ2/2η),
in terms of the electronic chemical potential µ and the chemical hardness η. Both quantities may
be approached in terms of the one-electron energies of the frontier MOs HOMO and LUMO, εH

and εL, as µ ≈ (εH + εL)/2 and η ≈ (εL − εH), respectively [49,50]. The global nucleophilicity
index [51,52], N, based on the HOMO energies obtained within the Kohn-Sham scheme [53], is defined
as N = EHOMO(Nu) − EHOMO(TCE), where tetracyanoethylene (TCE) is the reference. The pr index,
which has recently been introduced in order to characterise the participation of pseudodiradical TACs in
pdr-type 32CA reactions [16], comprises the chemical hardness η and the nucleophilicity N index of the
TAC, as pr = N/η. Electrophilic Pk

- and nucleophilic Pk
- Parr functions [28] were obtained through

the analysis of the Mulliken atomic spin densities (ASD) of the radical anion of DCE 6 and the radical
cation of AI 1b by single point calculations from the neutral species. DFT reactivity indices were
computed at the B3LYP/6-31G(d) level.

ELF [54] studies were performed with the TopMod [55] program and using the corresponding
B3LYP/6-311G(d,p) monodeterminantal wavefunctions over a grid spacing of 0.1 a.u.. For the BET
study, the corresponding reaction channel was followed by performing the topological analysis of
the ELF for 862 nuclear configurations along the IRC path. A BET procedure was used for the
characterisation of the bond formation processes along the two meta/ortho regioisomeric channels
associated to the polar reaction by performing the topological analysis of the ELF for 198 (meta) and
472 (ortho) nuclear configurations.

Supplementary Materials: Supplementary materials are available online. BET study of the non-polar 32CA
reaction between AI 1b and ethylene 3. ELF topological analysis of the C–C and N–C bond formation processes
along the meta and ortho regioisomeric channel associated with the polar 32CA reaction between AI 1b and DCE 6.
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The following abbreviations are used in this manuscript:

32CA [3+2] cycloaddition
AI azomethine imine
ASD atomic spin densities
A-TAC allylic-type TAC
BET Bonding Evolution Theory
cb-type carbenoid-type
CDFT Conceptual DFT
DAA diazoalkanes
DCE dicyanoethylene
DFT Density Functional Theory
DIEM Distortion/Interaction Energy Model
ED electron-deficient
ELF electron localisation function
FMO Frontier Molecular Orbital
GEDT global electron density transfer
GS ground state
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MC molecular complex
MEDT Molecular Electron Density Theory
MO molecular orbital
Ni nitrone
pdr-type pseudodiradical-type
pmr-type pseudoradical-type
P-TAC propargylic-type TAC
TAC three-atom-component
TCE tetracyanoethylene
TS transition state structure
zw-type zwitterionic-type
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