
PHYSICAL REVIEW A 96, 043801 (2017)

Noncritical generation of nonclassical frequency combs via spontaneous
rotational symmetry breaking

Carlos Navarrete-Benlloch,1,2,3 Giuseppe Patera,4 and Germán J. de Valcárcel5
1Max-Planck-Institut für die Physik des Lichts, Staudtstrasse 2, 91058 Erlangen, Germany

2Institute for Theoretical Physics, Erlangen-Nürnberg Universität, Staudtstrasse 7, 91058 Erlangen, Germany
3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-strasse 1, 85748 Garching, Germany

4Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
5Departament d’Òptica, Facultat de Física, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain

(Received 28 November 2016; published 2 October 2017)

Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities driven by mode-locked
lasers, and containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies.
SPOPOs have received a lot of attention lately because their intrinsic multimode nature makes them compact
sources of quantum correlated light with promising applications in modern quantum information technologies.
In this work we show that SPOPOs are also capable of accessing the challenging and interesting regime where
spontaneous symmetry breaking confers strong nonclassical properties to the emitted light, which has eluded
experimental observation so far. Apart from opening the possibility of studying experimentally this elusive regime
of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous
symmetry breaking provides a specific spatiotemporal mode with large quadrature squeezing for any value of the
system parameters, turning SPOPOs into robust sources of highly nonclassical light above threshold.
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I. INTRODUCTION

To date, optical parametric oscillators (OPOs) constitute the
main source of nonclassical states of light in the continuous-
variables regime, finding numerous applications in emerging
quantum technologies, e.g., in the fields of quantum metrology
[1–9] or quantum information with continuous variables
[10–12]. OPOs are optical cavities containing nonlinear
crystals supporting the so-called parametric down-conversion
(PDC) process, by means of which a pump photon of
frequency ωp is converted into a pair of photons of frequencies
ωs and ωi (so-called, arbitrarily in the OPO case, signal
and idler), and vice versa, with ωs + ωi = ωp [13,14]. This
generates strong quantum correlations between signal and
idler (e.g., twin beams [15,16]). The PDC Hamiltonian reads
ih̄χp,s,ifp,s,iâpâ

†
s â

†
i + H.c. [14], where âj annihilates photons

of the corresponding cavity mode, χp,s,i is a coupling constant
proportional to the nonlinear susceptibility and to the spatial
overlap between the modes inside the nonlinear crystal, and
fp,s,i = sincφ ≡ sin φ

φ
, with φ = 1

2 (kp − ks − ki)h the phase
mismatch, with h being the crystal length and kj = n(ωj )ωj /c
the wave number inside the crystal whose refractive index at
frequency ω is n(ω). The condition f = 1 (φ = 0, perfect
phase matching) maximizes PDC, and usually selects which
pair of signal-idler modes are efficiently generated.

Traditionally OPOs are operated under monochromatic
pumping (a single ωp). Since the parametric gain must
compensate for cavity loss, a main feature of OPOs in the
classical limit is the existence of a pumping threshold below
which there is no emission, while above it a macroscopic field
is excited in one specific signal-idler couple. In contrast, a
fully quantum-mechanical theory accounts for the generation
of photon pairs for any signal-idler couple satisfying energy
and momentum conservation, even below threshold. However,
signal-idler modes of different couples do not show quantum
correlations among them because the pump provides no

appreciable feedback, since below threshold it is almost
undepleted, while above the threshold its intracavity amplitude
gets clamped to its threshold value [14,17].

The situation changes dramatically when the pump comes
from a mode-locked laser whose cavity round trip time matches
the OPO one, tcav: synchronously pumped OPOs, or SPOPOs;
see Fig. 1. Such multimode pump field consists of an infinite
train of identical coherent pulses separated by tcav, known
alternatively as a frequency comb as its spectrum consists
of discrete spectral lines separated by $ = 2π/tcav, so-called
cavity free spectral range. As in the monochromatic pump
case, each pump spectral line generates multiple couples of
signal-idler photons and, what is the key ingredient, any
signal-idler photon can be created by any of the different pump
lines, which leads to massive quantum correlations between
signal-idler photons at different frequencies. Of current special
interest are type I SPOPOs [18,19], in which signal and
idler have the same linear polarization and the perfect phase-
matching condition (φ = 0) happens for ωs = ωi = ωp/2 ≡
ω0, a condition achieved by proper crystal orientation and/or
temperature tuning. In this case a single frequency comb
around the subharmonic frequency ω0 is generated and the
distinction between signal and idler photons is completely
superfluous; hence we will refer to any subharmonic photon
as a signal photon for brevity. In order to understand why
such SPOPOs have so remarkable quantum properties, let us
analyze their interaction Hamiltonian which can be written as
[18,19]

Ĥ = ih̄χ
∑

m,q

fm,qp̂m+q ŝ
†
mŝ†q + H.c., (1)

where in the following we denote by p̂j the annihilation
operator of a pump photon of frequency ωp,j = 2ω0 +
j$, and ŝj the annihilation operator of a signal photon
of frequency ωs,j = ω0 + j$, with j ∈ Z. The quantity
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FIG. 1. (Center) OPO pumped by a mode-locked laser with
repetition time 2π/$ equal to the OPO round trip time. The cavity is
transparent for the pump and tuned to the first transverse mode family
at the subharmonic. (Top) The pump beam has a Gaussian transverse
profile, but classical down-conversion takes place in a TEM10 mode
with arbitrary orientation θ . (Bottom) Pump and signal frequency
combs with spectral-line spacing $, and some of the down-conversion
channels of two of the pump lines, j = 0 and j = −3.

fm,q ≡ sinc[ 1
2 (kp,m+q − ks,m − ks,q)h] is the phase-mismatch

factor, and we assumed a common value for the coupling
constant χ for any PDC channel, which is an excellent
approximation [18,19]. Note that (1) is just the sum of infinite
PDC Hamiltonians, each corresponding to the generic PDC
channel [2ω0 + (m + q)$] → [ω0 + m$] + [ω0 + q$], and
since this condition is verified for any m,q ∈ Z, now all the
signal modes are correlated with each other. This has enormous
consequences: on one hand, classical correlations appear (all
signal modes get phase locked, giving rise to well-defined
trains of identical pulses separated by tcav), and on the other
hand strong quantum correlations are built up, leading to highly
multimode squeezing [18,19] and multipartite entanglement
[20,21]. Indeed, recent experiments have proven SPOPOs to
be highly versatile sources of nonclassical light [22–25], with
foreseen applications in quantum computation [21,25] and
communication [25].

A neat way of analyzing the quantum dynamics of SPOPOs
below threshold is by introducing the so-called “supermodes”
[18–20], which are special frequency combs that diagonalize
the nonlinear interaction in which clean quantum properties are

concentrated. Defining the annihilation operators Ŝk for these
supermodes, Hamiltonian (1) becomes Ĥ = ih̄χ

∑
k 'kŜ

†2
k +

H.c. [see the paragraph before Eq. (5) or [18–20] for a
definition of 'k], meaning that a degenerate SPOPO below
threshold is just a collection of independent degenerate
squeezers, but the modes that get squeezed are not individual
cavity modes, but rather the supermodes. Note that Ĥ has the
discrete symmetry Ŝk → −Ŝk , meaning that the emission in a
supermode is phase locked but this locking is bistable, between
two opposite phase values, exactly as degenerate OPOs [26],
which is a signature of degenerate operation.

The strong multimode quantum field generated by SPOPOs
is critical in the sense that its nonclassicality is maximized at
threshold, but it is rapidly degraded as the system is pumped
further [14,26], exactly as it happens with any nonlinear
optical cavity where squeezing is linked with the presence
of bifurcations [27]. Extending those features above threshold
will improve the performance and reliability of these sources.

The Hamiltonian (1) describes the usual case of a de-
generate SPOPO in which both the pump and signal modes
have a Gaussian transverse profile. Recently, however, it has
been predicted in the context of a degenerate OPO pumped
by a monochromatic Gaussian beam that, when the cavity is
tuned to the first transverse mode family at the subharmonic
frequency [28–30], the signal field displays a level of squeezing
above threshold which equals that at threshold [14,31,32], i.e.,
the squeezing production in this case is noncritical [17,31–36].
The physics behind such a remarkable result lies in the
spontaneous rotational symmetry breaking around the cavity
axis brought about by the (above-threshold) classical field,
which necessarily has the shape of a TEM10 mode of arbitrary
orientation because of orbital angular momentum (OAM)
conservation (see Fig. 1). It follows that the TEM01 mode
orthogonal to this field has perfect quadrature squeezing at any
operating point above threshold [14,31,32]. Unfortunately, in
practice it is not possible to stably work under perfect phase
matching for the degenerate process under monochromatic
pump [37–39]. This results in the unavoidable oscillation a pair
of nondegenerate modes above threshold, and has prevented
so far the experimental observation of the phenomenon.

In this work we provide a realistic implementation of
the ideas in [31], based on type I SPOPOs. We will show
that when tuned to the first family of transverse modes at
the subharmonic, such OPOs are perfect platforms for the
study of spontaneous rotational symmetry breaking, as well
as noncritical sources of squeezed frequency combs. All
this happens because type I SPOPOs are truly degenerate
above threshold, displaying phase bistability even though the
degenerate process is not perfectly phase matched, as recent
experiments have shown [40–43].

II. MODEL

As sketched in Fig. 1, we consider a type I SPOPO with a
cavity transparent for the pump (an assumption that simplifies
the analysis and is closer to current experiments), which in
turn comes from a mode-locked laser and has a rotationally
symmetric transverse profile (e.g., the Gaussian of the figure).
The cavity is tuned so that only the first family of transverse
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modes (containing the lowest order Laguerre-Gauss modes
with ±1 OAM) resonates at frequencies ωs,m. The rest of the
transverse modes can be neglected under the assumption that
their threshold for oscillation is higher than the one for the
first family, as naturally happens if their detuning is large
enough or by shaping the transverse profile of the pump beam
appropriately (e.g., a combination of two Gaussians [20]).
Assuming as usual that the resonator Rayleigh length is much
larger than the crystal length, we then write the signal light
electric field inside the nonlinear crystal as [14]

Ê = iE
∑

m∈Z

∑

l=±1

ŝm,l(t)Ll(r⊥)um(z)e−iωs,mt + H.c., (2)

where E is the single photon field amplitude [19], taken
equal for all signal modes to an excellent approximation,
ŝm,l are the (interaction picture) annihilation operators for
photons of frequency ωs,m and transverse profile Ll(r⊥) =√

2/π (r/w2)e−r2/w2
eilφ (OAM = l), r⊥ = r(cos φ, sin φ) are

the transverse coordinates, z is the axial coordinate, w is
the spot size at the waist plane of the subharmonic modes
(located at z = 0 by definiteness), and um(z) is the longitudinal
shape of the mode, equal to exp(iks,mz) for ring cavities or to
sin[ks,m(z + Lcav/2)] for Fabry-Pérot cavities [19].

The quantum Heisenberg-Langevin equations describing
the evolution of the operators ŝm,l(t) are easily found by
following the standard procedure explained in [19], just taking
into account that now PDC generates pairs of photons with
opposite OAM, instead of spatially degenerate pairs as in (1),
which amounts to the replacement ŝ†mŝ

†
q → ŝ

†
m,l ŝ

†
q,−l . We obtain

dŝm,l

dt
= −γ ŝm,l +

√
2γ ŝin,m,l(t)

+
∑

q

fm,q[γ σαm+q +
√

2κp̂in,m+q(t)]ŝ†q,−l

− κ
∑

j,q

fm,qfj,m+q−j ŝj,+1ŝm+q−j,−1ŝ
†
q,−l . (3)

Here, γ is the decay rate through the partially transmitting
mirror and κ is the PDC two-photon damping rate, whose
expressions in terms of physical parameters can be checked
in [19], and can be assumed equal for all modes. αm are
the normalized (

∑
m |αm|2 = 1) spectral amplitudes of the

pump frequency comb, and σ =
√

P/P0, where P is the
external pump power and P0 its value at the SPOPO threshold
for monochromatic pumping (αm = δm,0) [18,19]. Finally the
“in” operators correspond to standard vacuum noise terms
[14,26,44].

In Appendix A we introduce an alternative yet equivalent
mathematical description of the SPOPO model, based on the
master equation of the state and its positive P representation
[45]. The so-obtained set of stochastic Langevin equations is
better suited than Eqs. (3) for the analysis of some properties
that we will comment on later.

III. CLASSICAL EMISSION

The classical SPOPO dynamics is governed by Eqs. (3)
upon substituting operators ŝm,l and ŝ

†
q,l by complex variables

sm,l and s∗
q,l , and ignoring vacuum noises. The solutions

to the remaining nonlinear equations need to be evaluated
numerically in general. They have however several general
properties which will allow us to evaluate the most relevant
quantum properties analytically.

First, there is the below-threshold solution, sm,l = 0 ∀m,
which exists at any pumping level, but is unstable for σ > '−1

0 ,
where '0 is the largest eigenvalue of the matrix L of elements
Lm,q = fm,qαm+q , whose eigenvectors and eigenvalues 'k

define the squeezed below-threshold supermodes mentioned
in the Introduction. For σ > '−1

0 a macroscopic field is
built around the subharmonic frequency ω0, characterized by
nonzero values of the classical spectral components, sm,l ̸=
0 in general. Since Eqs. (3) have the symmetry sm,±1 →
e∓iθ sm,±1 (with θ an arbitrary phase), the collective phase
difference between opposite OAM modes is not fixed. On the
other hand, if the pumping amplitudes αm are real (nonchirped
pulses), experimental and theoretical analysis on standard
Gaussian SPOPOs [40–43,46–48] have shown that there exists
a large parameter region where the phases of the spectral
components get locked to zero or π . This carries on to the phase
sums between opposite OAM modes, leading to a stationary
solution

s̄m,±1 = ρme∓iθ , (4)

with ρm ∈ R and θ an arbitrary phase. Equation (2) then
provides a classical field

Ēθ = EHθ (r⊥)F (z,t), (5)

where Hθ (r⊥) ≡
√

8/πw−2
s r e−r2/w2

cos(φ − θ ) and F (z,t) ≡∑
m∈Z ρmIm{um(z)e−iωs,mt }. Hence the spatiotemporal shape

of the signal mean field emitted above threshold is the simple
product of some propagating (wave) profile given by F (z,t)
(the phase-locked frequency comb) and a transverse profile
given by Hθ (r⊥), which is a Hermite-Gauss TEM10 transverse
mode rotated by an angle θ with respect to the x axis, which
breaks the rotational symmetry of the system (Fig. 1).

IV. QUANTUM PROPERTIES OF THE EMITTED FIELD

In previous works [14,31,32] we have studied how quantum
noise affects the phase θ undefined at the classical level,
proving that it diffuses linearly with time, driven by quantum
noise. The analysis requires a rather technical procedure
based the positive P representation [45], which we present
in Appendix B. Nevertheless, the presence of a noncritically
squeezed mode in the system can be proven without resorting
to such a rigorous analysis by taking arbitrarily θ = 0 in (5).
With such choice the comb emitted at the classical level, Ēθ=0,
has the transverse shape of a horizontal TEM10 mode, and will
be dubbed bright mode.

In order to analyze the quantum properties of the down-
converted frequency comb we then linearize the quantum
Langevin equations (3) around the classical solution (4)
with θ = 0. It is quite remarkable that all the properties
related to spontaneous symmetry breaking can be determined
analytically without the need of specifying the steady-state
amplitudes {ρm}m∈Z. In particular, we prove next that the mode
spatially orthogonal to the bright one, Ēθ=π/2, which has the
transverse shape of a vertical TEM10 mode and we call dark
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mode because it is empty at the classical level, has perfect
quadrature squeezing irrespective of the distance to threshold.

Let us introduce the horizontal and vertical Hermite-Gauss
annihilation operators ŝh,m ≡ (ŝm,+1 + ŝm,−1)/

√
2 and ŝv,m ≡

i(ŝm,+1 − ŝm,−1)/
√

2, respectively, their quantum fluctuations
δŝh,m ≡ ŝh,m − ρm and δŝv,m ≡ ŝv,m, and their associated input
vacuum noises ŝin,µ,m (µ = h,v). Upon linearization of the
quantum Langevin equations (3) with respect to the fluctua-
tions, the dynamics of the horizontal and vertical subspaces
decouple. We get for the vertical subspace:

d

dt
δŝv = Lvδŝv +

√
2γ ŝin,v(t), (6)

where δŝv ≡ col(. . . ,δŝv,m, . . . ,δŝ
†
v,m, . . .) is the fluctuation

vector and ŝin,v ≡ col(. . . ,ŝin,v,m, . . . ,ŝ
†
in,v,m, . . .),

Lv =
(−γI R

R −γI

)
, (7)

with I the identity matrix with the proper dimensions, and the
real, symmetric matrix R has elements

Rm,q = γ σfm,qαm+q − κ
∑

n

fm,qfn,m+q−nρnρm+q−n. (8)

From the classical steady-state equation, it follows that vec-
tors ρ = col(. . . ,ρ−1,ρ0,ρ+1, . . .) and w1 = col(ρ,−ρ) verify
Rρ = γρ and wT

1 Lv = −2γ wT
1 .

Let us define Ŷd = i|ρ|−1 ∑
m ρm(ŝ†v,m − ŝv,m), which is

the quadrature measured in a homodyne detection with local
oscillator matching the dark mode, Ēθ=π/2, and π/2 phase
shifted with respect to the pump comb. As wT

1 δŝv(t) =
i|ρ|δŶd(t), we obtain from (6)

d

dt
δŶd = −2γ δŶd +

√
2γ Ŷd,in(t), (9)

where Ŷd,in = −iwT
1 ŝin,v(t)/|ρ|. The relevant object in experi-

ments and most applications is the noise spectrum of the output
quadrature δŶd,out =

√
2γ δŶd − Ŷd,in [14,26]

V out
Yd

(ω) =
∫ +∞

−∞
dτ e−iωτ lim

t→+∞
⟨δŶd,out(t)δŶd,out(t + τ )⟩, (10)

which measures the homodyne spectral noise power at fre-
quency ω and signals squeezing whenever it is below 1 (zero
meaning no noise: perfect squeezing). From the linear equation
(9), it is straightforward to find

V out
Yd

(ω) = 1 − [1 + (ω/2γ )2]−1, (11)

proving that the quadrature Ŷd has perfect squeezing at zero
noise frequency irrespective of the system parameters, that is,
it shows perfect noncritical squeezing as we wanted to prove.

V. DISCUSSION

We have shown that type I SPOPOs tuned at the sub-
harmonic frequencies to the first transverse mode family
are the perfect platform for studying the consequences that
spontaneous symmetry breaking has on the quantum state of
nonlinear optical cavities [14,17,31–36,49,50]. In particular,
such device emits a (classical) frequency comb with the
transverse profile of a TEM10 mode (bright mode), together

with a perfectly squeezed mode with the same spectral profile
but spatially crossed with respect to it (dark mode).

So far we have assumed θ = 0 in (5). For systems with
perfect rotational symmetry, however, no internal mechanism
sets the orientation angle θ , and quantum noise makes it
diffuse. We prove this analytically in Appendix B, obtaining
a variance of θ given by γ t/4|ρ|2. Hence the orientation’s
diffusion is slower the further we are from threshold (as |ρ|2,
the photon number in the semiclassical approximation, gets
larger). Perfect squeezing can only be detected with a local
oscillator which follows the random orientation of the dark
mode, which is impossible. Fortunately, even using a fixed
local oscillator, large levels of squeezing can be detected, as
we prove for the monochromatic pump case [32]. On the other
hand, actual devices do not have perfect rotational invariance.
Far from being a problem, a certain degree of asymmetry is
indeed beneficial for experiments. In particular, similar to our
analysis in the monochromatic pump case [49,50], it is easy to
prove that the injection of a weak signal seed [51] or a small
anisotropy are able to fix the orientation θ , hence simplifying
enormously the detection of the dark mode’s squeezing, which
in turn is not degraded too much.

Finally, let us remark that the quantum properties of
SPOPOs above threshold are a topic of experimental and
theoretical research [52], and hence an interesting future venue
will be the analysis of the full multimode properties of the
SPOPO configuration that we put forward in this work. In
particular, it can be shown that the dynamics of the fluctuations
in the horizontal subspace {δŝh,m}m∈Z are in all ways equivalent
to those of standard type I SPOPOs. On the other hand, the
equations of motion in the vertical subspace (6) do not find
such equivalence and will require special attention.
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APPENDIX A

In the main text we analyzed the properties of the system
by making use of quantum Langevin equations. In this
appendix we provide an alternative description, better suited
for the analysis of the quantum properties of the system in
the presence of spontaneous symmetry breaking and phase
diffusion (see Appendix B). We start by deriving the master
equation governing the evolution of the state of the signal
modes for our SPOPO configuration in which the pump does
not resonate in the cavity. Then, we apply the positive P
phase-space representation to map the master equation to a
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Fokker-Planck equation, and ultimately to a set of stochastic
Langevin equations.

1. Master equation

In the spirit of [53], our starting point is the Hamiltonian
describing the interaction of the signal cavity resonances
with the continuum of modes outside the cavity (through the
partially transmitting mirror) and the continuum of modes
around the pump comb (through the nonlinear crystal).
Assuming that each spectral line interacts independently with
its own reservoir (a good approximation as long as the
cavity free spectral range $ is larger than the couplings
to the reservoir, a very good approximation in nonlinear
cavity quantum optics), the Hamiltonian can be written as
Ĥ = Ĥs + Ĥp + Ĥb + Ĥps + Ĥbs, with

Ĥs =
∑

j,l

h̄ωs,j ŝ
†
j,l ŝj,l , (A1a)

Ĥb =
∑

j,l

∫

O(ωs,j )
dω h̄ωb̂

†
j,l(ω)b̂j,l(ω), (A1b)

Ĥp =
∑

j

∫

O(ωp,j )
dω h̄ωp̂

†
j (ω)p̂j (ω), (A1c)

Ĥbs = ih̄

√
γ

π

∑

j,l

∫

O(ωs,j )
dω[b̂j,l(ω)ŝ†j,l − b̂

†
j,l(ω)ŝj,l], (A1d)

Ĥps = ih̄

√
2κ

π

∑

jm

fj,m

∫

O(ωp,j+m)
dω

× [p̂j+m(ω)ŝ†j,+1ŝ
†
m,−1 − p̂

†
j+m(ω)ŝj,+1ŝm,−1]. (A1e)

The first three terms account for the free evolution of the
relevant modes; the second to last term describes the intercon-
version between external photons and cavity photons; the last
term models the down-conversion process inside the crystal.
All the commutators between the bosonic operators appearing
in the expression are zero, except for [ŝj,l ,ŝ

†
j ′,l′ ] = δjj ′δll′ ,

[b̂j,l(ω),b̂†j ′,l′ (ω
′)] = δjj ′δll′δ(ω − ω′), and [p̂j (ω),p̂†

j ′(ω′)] =
δjj ′δ(ω − ω′). All the parameters have been defined in the main
text, while O(ω) denotes a short spectral interval (smaller than
$) centered at ω.

In the Heisenberg picture, a formal integration of the
reservoir equations [19,20] leads to the Heisenberg-Langevin
equations (4) used in the main text. In this section, however,
we proceed in the Schrödinger picture where the state of the
system evolves, and derive a master equation for the reduced
state of the cavity modes. Before proceeding, it is convenient to
move to a new picture defined by the transformation operators
Ûc = exp(Ĥct/ih̄), with

Ĥc =
∑

j,l

h̄ωs,j ŝ
†
j,l ŝj,l +

∑

j,l

∫

O(ωs,j )
dω h̄ωs,j b̂

†
j,l(ω)b̂j,l(ω)

+
∑

j

∫

O(ωp,j )
dω h̄ωp,j p̂

†
j (ω)p̂j (ω) (A2)

and

D̂ = exp

⎧
⎨

⎩
∑

j

∫

O(ωp,j )
dω[β∗

j (ω)p̂j (ω) − βj (ω)p̂†
j (ω)]

⎫
⎬

⎭,

(A3)

with βj (ω) = γ σ
√

π/2κδ(ω − ωp,j )αj . Note that the D̂ dis-
places the pump field such that the coherent train of pulses (or
frequency comb) injected in the cavity corresponds to vacuum
in the new picture, where the state evolves according to the
Hamiltonian Ĥ ′ = Ĥ ′

s + Ĥ ′
p + Ĥ ′

b + Ĥps + Ĥbs, with

Ĥ ′
s = ih̄

√
2κ

π

∑

jm

fj,m

∫

O(ωp,j+m)
dω (A4a)

×
[
βj+m(ω)ŝ†j,+1ŝ

†
m,−1 − β∗

j+m(ω)ŝj,+1ŝm,−1
]
,

Ĥ ′
b =

∑

j,l

∫

O(ωs,j )
dω h̄(ω − ωs,j )b̂†j,l(ω)b̂j,l(ω), (A4b)

Ĥ ′
p =

∑

j

∫

O(ωp,j )
dω h̄(ω − ωp,j )p̂†

j (ω)p̂j (ω). (A4c)

In this picture, we can eliminate (trace out) the continuous
reservoirs by taking vacuum as the reference state for all their
modes and applying standard techniques [44], arriving at the
following master equation for the signal state ρ̂:

d

dt
ρ̂ =

⎡

⎣γ σ
∑

j,m

fj,m(α∗
j+mŝj,+1ŝm,−1 − H.c.),ρ̂

⎤

⎦

+ γ
∑

j,l

(2ŝj,l ρ̂ ŝ
†
j,l − ŝ

†
j,l ŝj,l ρ̂ − ρ̂ ŝ

†
j,l ŝj,l)

+ κ
∑

qmpn

fq,mfp,nδp+n,q+m(2ŝp,+1ŝn,−1ρ̂ ŝ
†
q,+1ŝ

†
m,−1

− ŝ
†
p,+1ŝ

†
n,−1ŝq,+1ŝm,−1ρ̂ − ρ̂ ŝ

†
q,+1ŝ

†
m,−1ŝp,+1sn,−1).

(A5)

2. Stochastic Langevin equations

The master equation can be turned into an equivalent set of
stochastic equations by following standard techniques based
on the positive P representation of the state [45]. In our case, it
is simple to show that such a distribution obeys the following
Fokker-Planck equation:

∂

∂t
P (s,s+; t) =

⎡

⎣−
∑

i

∂iAi + 1
2

∑

i,j

∂i∂jDi,j

⎤

⎦P (s,s+; t),

(A6)

where the indices i and j run over the set {s,s+}, with s =
(. . . ,sj,+1, . . . ,sj,−1, . . .) and s+ = (. . . ,s+

j,+1, . . . ,s
+
j,−1, . . .),

and the components of the drift vector read

Asm,l
= −γ sm,l + γ σ

∑

q

fm,qαm+qs
+
q,−l (A7a)
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− κ
∑

q,n,p

fm,qfn,pδm+q,n+psn,+1sp,−1s
+
q,−l ,

As+
m,l

= −γ s+
m,l + γ σ

∑

q

fm,qα
∗
m+qsq,−l

− κ
∑

q,n,p

fm,qfn,pδm+q,n+ps+
n,+1s

+
p,−1sq,−l , (A7b)

while the elements of the diffusion matrix are found to
be Dsm,l ,s

+
q,k

= 0, Ds+
m,l ,sq,k

= 0, Dsm,l ,sq,k
= δl,−kRm,q;l , and

Ds+
m,l ,s

+
q,k

= δl,−kR+
m,q;l , with

Rm,q;l = κ
∑

n,p

fm,qfn,pδm+q,n+psp,−1sn,+1, (A8a)

R+
m,q;l = κ

∑

n,p

fm,qfn,pδm+q,n+ps+
p,−1s

+
n,+1. (A8b)

In order to write down the stochastic equations associated
with Eq. (A6), we first need to find the noise matrixB satisfying
BBT = D [54]. Since the diffusion matrix can be written in
the block form

D =
(

D 0
0 D+

)
=

⎛

⎜⎜⎜⎝

0 R 0 0
R 0 0 0
0 0 0 R+

0 0 R+ 0

⎞

⎟⎟⎟⎠
, (A9)

so can the noise matrix

B =
(

B 0
0 B+

)
, (A10)

such that BBT = D and B+B+T = D+. Assuming, for sake of
argument, that the index of longitudinal modes runs from −N
to N , the matrix D has dimension 2(2N + 1) × 2(2N + 1). On
the contrary, the noise matrix B does not need to be square like
D, its only constraint being that it has to be a 2(2N + 1) × dB
matrix, where we call dB its internal dimension. Then we write
the diffusion matrix as

D =
N∑

m,q=−N

∑

l=±1

D[m,q;l], (A11)

where D[m,q;l] is the 2(2N + 1) × 2(2N + 1) diffusion matrix
associated with the down-conversion of the pair of modes
(sm,l,sq,−l) such that

D
[m,q;l]
i,j =

⎧
⎪⎨

⎪⎩

Rm,q if i = (m,l) and j = (q,−l),
Rm,q if i = (m,−l) and j = (q,l),
0 otherwise.

(A12)

Such a matrix has a simple related noise matrix which can be
written as

B [m,q;l] =
√
Rmq

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
...

...
1 i
...

...
1 −i
...

...
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← (m, + l)

← (q,−l)

, (A13)

where the ellipses must be understood as zeros, so that
B[m,q;l]B[m,q;l]T = D[m,q;l]. The full noise matrix of dimen-
sions 2(2N + 1) × 4(2N + 1)2 is then built as

B =
(
B[−N,−N] B[−N,−N+1] · · · B[N,N]

)
, (A14)

with

B[m,q] =
(
B[m,q;l=−1] B[m,q;l=+1]

)
, (A15)

which has dimensions 2(2N + 1) × 4. By construction the
matrix B satisfies

BBT =
N∑

m,q=−N

∑

l=±1

B[m,q;l] B[m,q;l] T = D. (A16)

Analogously we get the same results for B+ but with the
exchange s ↔ s+.

We are now in conditions of writing the stochastic Langevin
equation corresponding to Eq. (A6),

ds
dt

= A(s,s+) + Bη(t), (A17a)

ds+

dt
= A+(s,s+) + B+η+(t), (A17b)

where we have defined the vectors A and A+ with correspond-
ing elements Am,l = Asm,l

and A+
m,l = As+

m,l
, see Eqs. (A7),

while the components of η and η+ are independent real
Gaussian white noises [54]. Note that with our choice of
noise matrix, we have to deal with 8(2N + 1)2 noises, way
above the minimal choice 4(2N + 1), which might be bad
for numerical purposes, but will make no difference for our
linearized analytic approach.

APPENDIX B

In this appendix we analyze the quantum properties of the
system by taking into consideration spontaneous symmetry
breaking and the corresponding phase diffusion. To this aim,
we adapt the linearization technique developed in [31,32] the
stochastic Langevin equations (A17). This is an approximate
method that provides correct predictions when working above
threshold, as we proved in [32] in the case of a monochromatic
pump. This method will allow us to study analytically the
dynamics of the orientation θ and the quadrature fluctuations
of the dark mode.
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1. Linearization in the presence
of spontaneous symmetry breaking

Let us start by introducing standard linearization, which is
the common linearization technique applicable in situations
where there is no spontaneous symmetry breaking and phase
diffusion. It proceeds by writing the stochastic amplitudes
as s = s̄ + δs and s+ = s̄∗ + δs+, where s̄ is the classical
stationary solution, that is, A(s̄,s̄∗) = 0; then, one assumes that
the fluctuations (δs,δs+) and the noises (η,η+) are small, and
therefore only terms up to linear on these must be considered in
(A17). However, in our case, the equations are invariant under
changes of the phase difference between the Laguerre-Gauss
modes, θ , which means that there is a direction in phase space
in which fluctuations are not damped, and hence they cannot be
assumed small. This is the main reason why we use this positive
P formalism, since the linearization can still be performed by
taking into account the fluctuations of the phase θ explicitly
(which is not clear how to do in the Heisenberg picture,
where the phase-difference operator has a very complicated
expression [55,56]). Let us now then introduce the proper
linearization procedure for this case in which a continuous
symmetry is broken [31,32,57–59]. In our case where the
pump amplitudes αj are real, and the classical solution has
the form introduced in the main text, we proceed by writing
the stochastic variables as

sm,±1 = [ρm + bm,±1(t)]e∓iθ(t), (B1a)

s+
m,±1 = [ρm + b+

m,±1(t)]e±iθ(t), (B1b)

where the phase θ (t) is taken as an explicit stochas-
tic variable whose fluctuations account for the quantum
fluctuations of the corresponding phase difference oper-
ator. Note that the classical amplitudes ρ satisfy the
equation

Rρ = γρ, (B2)

where we have defined the matrix

Rm,q = γ σfm,qαm+q − κ
∑

n,p

fm,qfn,pδm+q,n+pρnρp. (B3)

This property will be of use later.
Writing the stochastic amplitudes in this way, we can now

assume that the fluctuations

b = col(. . . ,bj,+1, . . . ,bj,−1, . . .), (B4a)

b+ = col(. . . ,b+
j,+1, . . . ,b

+
j,−1, . . .), (B4b)

as well as the derivative of the phase θ̇ , are of the
order of the noises, while the phase θ itself is not
bounded. This allows us to linearize the stochastic Langevin
equations (A17) as

−iu0θ̇ + ċ = (L − γI)c + FB̄ξ , (B5)

where we have defined the vector of fluctuations c =
col(b,b+), the noise vector ξ = col(η,η+), the vector

u0 = col(ρ,−ρ,−ρ,ρ), and the matrices

L =

⎛

⎜⎜⎜⎝

T T 0 R

T T R 0
0 R T T

R 0 T T

⎞

⎟⎟⎟⎠
, (B6)

B̄ = B(s = s̄,s+ = s̄∗), (B7)

and

F =

⎛

⎜⎜⎜⎝

F 0 0 0
0 F ∗ 0 0
0 0 F ∗ 0
0 0 0 F

⎞

⎟⎟⎟⎠
, (B8)

with

Tm,n = −κ
∑

q,p

fm,qfn,pδm+q,n+pρnρp, (B9)

and F = eiθI(2N+1)×(2N+1) being proportional to the identity
of the proper dimension. Now, note that the Fokker-Planck
equation associated to this stochastic equation is independent
of θ [14], and hence we can take F = I without loss of
generality.

2. Phase diffusion

Using (B2) and the various definitions above, it is easy to
show that u0 is an eigenvector ofL − γI with zero eigenvalue,
that is, it is the Goldstone mode linked to the symmetry of the
system. Projecting the linearized equations onto u0, we get

θ̇ = i

4|ρ|2
uT

0 B̄ξ (t), (B10)

where we have used uT
0 u0 = 4|ρ|2, and we have set uT

0 c = 0
to remove the variable redundancy that we introduced when
writing the stochastic amplitudes as (B1). This equation tells
us that, as expected, the phase θ is solely driven by quantum
noise. Its solution is

θ (t) = θ (0) + i

4|ρ|2

∫ t

0
dt ′uT

0 B̄ξ (t ′), (B11)

leading to a phase variance

Vθ (t) = ⟨[θ (t) − θ (0)]2⟩ = −
uT

0 B̄B̄
T u0

16|ρ|4
t. (B12)

Finally, using the fact that B̄B̄T = D̄, with

D̄ = D(s = s̄,s+ = s̄∗)=

⎛

⎜⎜⎜⎝

0 R 0 0
R 0 0 0
0 0 0 R

0 0 R 0

⎞

⎟⎟⎟⎠
, (B13)

so that uT
0 D̄u0 = −4ρT Rρ = −4γ |ρ|2, where we used (B2),

we get a phase variance which increases linearly with time as
Vθ (t) = γ t/4|ρ|2, just as was introduced in the main text.
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3. Quadrature fluctuations of the dark mode

Let us consider the mode with the same temporal profile as
the bright mode generated classically, but in a TEM01 mode
spatially orthogonal to the bright TEM10 one. We referred
to this as the dark mode, and its corresponding stochastic
amplitudes within the positive P representation are given by

sd = i√
2|ρ|

∑

n

ρn

(
eiθ sn,+1 − e−iθ sn,−1

)
, (B14a)

s+
d = −i√

2|ρ|

∑

n

ρn

(
e−iθ s+

n,+1 − eiθ s+
n,−1

)
. (B14b)

In the following, we will prove that an output quadra-
ture of this mode is perfectly squeezed at any pump level
above threshold. To this aim, let us evaluate next the noise
spectrum associated with the quadratures Xd = s+

d + sd and
Yd = i(s+

d − sd), which can be written in terms of stochastic
correlators as [14]

V out
Qd

(ω) = 1 + 2γ

∫ +∞

−∞
dτ e−iωt lim

t→∞
⟨Qd(t)Qd(t + τ )⟩,

(B15)

with Qd = Xd,Yd.

It is simple to show from (B2) again that the vector u1 =
col(ρ,−ρ,ρ,−ρ) is another eigenvector of the linear stability
matrix L − γI with −2γ eigenvalue. On the other hand,
using (B1) and (B14), we find the relations uT

0 c = −i
√

2|ρ|Xd

and uT
1 c =

√
2|ρ|Yd. From the previous section, we then see

that Xd(t) = 0, while projecting (B5) onto u1, we obtain the
following evolution equation for Yd(t):

Ẏd = −2γYd + 1√
2|ρ|

uT
1 B̄ξ (t), (B16)

leading to the two-time correlator

lim
t→∞

⟨Yd(t1)Yd(t2)⟩ = uT
1 D̄u1

8γ |ρ|2
e−2γ |t1−t2|. (B17)

Using next the property uT
0 D̄u0 = −4γ |ρ|2, and performing

the Fourier transform appearing in (B15), we finally obtain

V out
Yd

(ω) = 1 − [1 + (ω/2γ )2]−1, (B18a)

V out
Xd

(ω) = 1, (B18b)

showing that, irrespective of the system parameters, Yd is
perfectly squeezed at zero noise frequency, while Xd has
vacuum fluctuations at all noise frequencies.
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