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• Nature based solutions (NBSs) should
become mainstream land management
strategies.

• NBSs are divided in soil-vegetation and
landscape solutions.

• Soil-vegetation solutions are based on
the concept of soil health.

• Landscape solutions are based on the
concept of connectivity.

• NBSs can provide solutions for restoring
ecosystem services.
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The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems
offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solu-
tions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions.
The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal
and rivermanagement as a guide to evaluate other strategies to achieve sustainability. In landmanagement NBSs
are not mainstreammanagement. Through a set of case studies: organic farming in Spain; rewilding in Slovenia;
land restoration in Iceland, sediment trapping in Ethiopia andwetland construction in Sweden, we show the po-
tential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land deg-
radation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil
solutions aim to enhance the soil health and soil functions throughwhich local eco-system services will bemain-
tained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less
connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing
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soilmoisture and reducing droughts and soil erosionwe can achieve the sustainability. The enhanced eco-system
services directly feed into the realization of the Sustainable Development Goals of the United Nations.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Nature-based solutions for a sustainable world

The Earth System has been affected by human abuse of resources,
mismanagement of planning and land uses, and impacted by climate
change induced alterations to the natural Earth System Cycles such as
thewater, carbon or nitrogen cycles, which is resulting in land degrada-
tion and Desertification (Vu et al., 2014; Tarrasón et al., 2016). There-
fore, the UN has defined the Sustainable Development Goals (Griggs
et al., 2013). Many of the 15 goals defined, have a strong link to land
and water management (Keesstra et al., 2016a) and call for a sustain-
able use of resources, ecosystem restoration, biodiversity, carbon se-
questration and sustainable catchment management. For these
challenges a common solution can be found in rehabilitating ecosys-
tems. For this, new holistic approaches are needed which are more
time and cost effective and can tackle multiple problems efficiently
(Favretto et al., 2016; Turner et al., 2016). However, each climate
zone, each ecosystem, each bioma, each region calls for a tailor-made
solution.

The rehabilitation and restoration of land-based ecosystems is a key
strategy to recover services (goods and resources) ecosystems offer to
the humankind (Galati et al., 2016). However, most restoration and re-
habilitation projects are focused on artificial, man-made and high-
maintenance strategies, which are costly and usually, not successful
over a longer period of time, as they depend on external inputs of ener-
gy and money, in addition to human management and control (Miao
et al., 2000; Ramos et al., 2007). Restoration and rehabilitation strategies
that are based on natural processes and cycles are sustainable as they
use naturalflows ofmatter and energy, take advantage of local solutions
and follow the seasonal and temporal changes of the ecosystems (Meli
et al., 2014). Therefore, nature based solutions (NBSs) to restore and re-
habilitate degraded ecosystem can be a sustainable and successful strat-
egy (Temmerman et al., 2013; Laughlin, 2014; Nel et al., 2014).

For the successful implementation of NBSs a deep understanding of
nature's functioning and processes is needed. By working together with
the forces of nature well designedmeasures need less maintenance, are
more cost effective, and if constructed in a goodway,may even bemore
effective over a long time span because nature's forces increase the effi-
ciency of the structure (e.g. build up of terrace like structures upslope
from lines of vegetation, naturally meandering rivers, wetlands,
resprouting species in wild fire effected areas) and the contribution to
the sustainable economy and society of the region (Kabisch et al.,
2016; Villegas-Palacio et al., 2016; Schaubroeck, 2017).

In this paper we aim to show the superior effect of nature based
solutions to enhance the sustainability of catchment systems by pro-
moting desirable soil and landscape functions. We first explain the
concepts behind NBSs, the cascade of processes that occur when
we work together with nature to manage land and water. We review
how these processes interact with the functions of the soil, the flow
of water, sediment and nutrients and the ecosystems that are part
of the landscape. This will be illustrated by showing several case
studies in which NBSs have proved their usefulness in real life exam-
ples from both the Mediterranean and northern European climatic
zones. Each example will show the risk and which solution was ap-
plied to achieve success and will evaluate the management strate-
gies from several sides: (i) the impact it has on the ecosystem; (ii)
which physical processes are the foundation of the measure; and
(iii) how the measure contributes to enhancing ecosystem services.
Finally, we also aim to show policymakers and stakeholders the con-
tribution of the scientific community to achieve sustainability
through NBS.
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2. Why is systems approach a good research framework?

The theory of system thinking forms the basis of the approaches that
are the basis for the NBSs. System thinking has been defined as thinking
in wholes rather than thinking only in the properties of individual ele-
ments and how they interact; understanding emergent behaviour of a
system - as opposed to the reductionist approach (Forrester, 1994;
Flood, 2010). Most natural systems behave in a system equilibrium
way. This means the system has internal negative feedback loops that
dominate the behaviour of the system and brings it back to the equilib-
rium state (Chorley and Kennedy, 1971; Hack, 1975; Ahnert, 1994;
Heimsath et al., 1997). A second important background to understand
a system is that natural systems are adapted to their environment.
This environment consists of natural forces, such as climate, parent ma-
terial, but also management.

To design effective NBSs and similar concepts in a proper way con-
cepts like system thinking, and parallel ones such as connectivity, are
useful tools to understand an predict how a systemwill behave in reac-
tion to the implantation of a certain strategy. It may be useful to link the
benefits of the strategies to ecosystem services as in done in ecology,
where this more holistic way to approach research is mainstream,
while in land management it is not (Machovina and Feeley, 2017;
Steger et al., 2018).

The key in working with nature-based solutions is the dynamics of
the system. The success lies in a deep understanding of the processes
and feedbacks that determine the sediment and water fluxes in a land-
scape and how these fluxes interactwith the existing landscape. The so-
lutions available roughly fall apart in two main categories, the first
category are solutions that are based on changes in the soil, enhancing
the soil functions and with that the resilience the ecosystem has to ex-
ternal driver. These solutions have their fundamentals in the concept
of soil health (Weil and Brady, 2016). The second category comprises
of solutions that are based on changing the fluxes (water, sediment, nu-
trients, pollutants) in the landscape and is based in the concept of con-
nectivity (Parsons et al., 2015).
3. Lessons from coastal and river research

The success of the role of nature-base solutions can have, is clearly
shown in coastal research, where the concept of building with nature
is fully accepted. In coastal defense projects using old style engineered
structures have proven to be expensive and require continuousmainte-
nance. Building with nature projects like the Zandmotor at the Dutch
coast (vandenHoek et al., 2012; Stive et al., 2013)where a large volume
of sand has been put just offshore in the sea close to DeHague to use the
natural current along the coastline to transport and deposit sediment on
the beaches and dunes to enforce the coastal defense. This project
showed that the understanding of the systemdynamics the forces of na-
ture can be used, to defend the Dutch coast from erosion. The coastal
managers have seen their efforts go to waste in one storm; urging
them to rethink the strategies they were using, and finally adopt build-
ing with nature based strategies. They are low-cost in construction and
maintenance.

Alsomanagers of large rivers have adopted the building with nature
concept. A good example of this, are the projects that were implement-
ed after two large subsequent flooding events in Rhine-Meuse delta in
the Netherlands. A project called ‘Room for the River’ (Wiering and
Arts, 2006; Rijke et al., 2012) respects thewater and sediment dynamics
in the river, to allow the river to use a larger part of its former floodplain
to mitigate flood risk. In the same time these projects have been used to
make new green spaces in the floodplain areas which were formerly
used for agriculture.

Then, coastal and river management are well advanced to use NBSs.
However, in land management in agricultural and forest systems NBSs
are not widely accepted, while similar success stories can be expected
as in coastal and riverine systems (Nesshöver et al., 2017; Xing et al.,
2017).

4. Case studies

With an array of case studieswewant to show a few examples of op-
portunities for the NBSs implementation in different environmental
conditions to show the superior use of the NBSs for land management
and restoration. The case studies showhowmultiple ecosystem services
can be enhanced by the NBS and mitigate hydrological risks and land
degradation.

4.1. Organic farming changes the fate of agriculture land in Mediterranean
orchards

Mediterranean type ecosystems are heavily affected by intense soil
erosion processes due to high rainfall intensities, recurrent droughts,
erodible parent materials and a long history of abuse of soil, water,
and vegetation resources. In agriculture soils, erosion rates are extreme-
ly high due to the lack of vegetation cover, intense tillage, widespread
use of herbicides and the soil compaction due to the heavy machinery
used (López-Vicente et al., 2015; Taguas et al., 2015). Especially in
new chemically treated citrus plantation and vineyards soil erosion
rates are extremely high due to the sloping terrain, soil compaction
and crust development as a consequence of the lack of vegetation
(Rodrigo Comino et al., 2016c; Cerdà et al., 2017). The use of herbicides
favours a landscape where the cover of vegetation is reduced to the
crop, and the soil erodibility is high. To reduce soil and water losses in
agriculture soils different strategies were used: mulches, geotextiles,
cover crops, catch crops, chipped branches, no-tillage or terraces
(Keesstra et al., 2016b; Prosdocimi et al., 2016a; Mandal et al., 2017).

However, all these solutions are not solving the problem as they do
not achieve a global strategy to reduce the soil losses and improve the
soil quality, and they use to be applied individually. Organic farming in-
tegrates some of thementioned solutions to reduce soil erosionwith the
strategies to increase biodiversity, protect traditional cultivars and
breeds and achieve sustainability from a biophysical and socio-
economic point of view. The most applied strategies to reduce soil and
water losses are the use of weeds, but also chipped branches, catch
crops andmulches are applied, which can reduce the soil losses and im-
prove soil functions likewater holding capacity and infiltration capacity.
These soil functions, in turn change the ecosystem services such as
water retention and biodiversity increase. In addition, the landscape is
more attractive for tourism and adds to the cultural heritage of these
areas.

Organic farming, moreover, has shown a positive effect on ecosys-
tem service via carbon sequestration (Fig. 1). The application of best
management practices (cover crop, amendments, minimum tillage
and mulches), which are the key elements of organic farming system,
can contribute to reduce climate change due to the sequestration of
CO2 (Novara et al., 2016; Pereira et al., 2017). The soil organic carbon
stock increasewith organic farming application is related to the increase
of carbon input into the soil through plant residues or cover crops, re-
duction of soil organic matter oxidation through minimum tillage, the
use of organic fertilizers, stabilization of organic matter, soil structure
improvement and reduction of soil carbon losses with eroded sediment
(Fig. 1).

In a recent study in Mediterranean vineyards the application of best
management practice using cover crops after 5 years raised of 14% the
total soil organic carbon content in comparison to traditional soil man-
agement (García-Díaz et al., 2016; Kirchhoff et al., 2017). Such SOC in-
crease was equivalent to 11.9 Mg CO2 ha−1 sequestered in five years,
which has an important impact on CO2 mitigation if a catchment vine-
yard area is considered. Organic farming also controls the losses of or-
ganic carbon by reducing eroding organic rich soils and avoiding the
decomposition of organic matter during sediment transport (Novara



Fig. 1. Soil Organic Carbon (SOC) after the management during 22 years of AEMmeasure
in citrus orchards in Eastern Spain. The soil surface layer is enriched with organic carbon.
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et al., 2016). In this way organic farming can also contribute to initia-
tives like the “4 permille” that are associated to the SDGs. This initiative
is mend to counteract carbon emissions by promoting carbon seques-
tration in soils. This initiatives strives to increase the soil organic matter
every yearwith 0.4% (4 pour 1000 initiative)which should be enough to
achieve this goal (Muñoz-Rojas et al., 2015; Rhodes, 2016).
4.2. Rewilding in Slovenia

In many parts of the Mediterranean large scale land abandonment
has taken place due to socio-economic changes causing small scale
farmers to find their livelihood in different economic sectors such as in-
dustry and tourism (Petanidou et al., 2008). In the 1950 due to the po-
litical influence the Slovenian agricultural hinterland was left to
reforest naturally. A 70 km2 catchment in the west of Slovenia rewilded
for about 70% of the catchment over a period of 30 to 50 years, which
caused the catchment system to behave in a different way from a sedi-
ment and water connectivity point of view and has changed the soil
properties and functions. The area is located in a humid Mediterranean
climate whichmeans around 800mmof rain is received predominantly
Fig. 2. Effects of successive rewilding (RW) in Slovenia from 1960 to 2002; wit
in autumn, winter and spring, with a dry summer, with occasional sum-
mer storms.

Rewilding has shown to have both soil as well as landscape benefits.
A recent study in the area (van Hall et al., 2017) found that soil organic
matter content, total nitrogen, bulk density and aggregate stability all
improved in terms of the functions a soil can have. This clearly shows
the benefits this nature based solution has on soil quality, which has a
positive effect on soil biodiversity (Korthals et al., 2001), carbon seques-
tration (Knops and Tilman, 2000) and water holding capacity (Li and
Shao, 2006). An important finding of this study was the fact that the
benefits of rewilding were found to take effect in the first years after
the land abandonment (5–10 y), in the time that the soil is covered
with herbs and grasses and the forest is yet to be developed. The posi-
tive recovery of the vegetation after abandonment has been widely
demonstrated, although sometimes there are contrasted responses
(Romero-Díaz et al., 2017).

The landscape effect of this nature based solutionwas demonstrated
by the studies of Keesstra et al. (2005, 2009). Flood risks have been re-
duced; erosion reduced by 90%, and runoff discharge as well (Fig. 2).
But the forest cover seems to have had also a negative effect in the
area. In the original agricultural system intensive storms caused flood
eventswith high sediment loads, however, therewas a certain baseflow
in summer. In the reforested landscape the flood risks have been re-
duced, but, the river nowadays runs dry in summer due to the higher
water demands of the forest cover. The famous sponge effect does not
apply in these Mediterranean ecosystems due to the high evapo-
transpiration of the trees during the dry summers as was also
found in the Pyrenees by García-Ruiz et al. (2005). Although the
dry river beds in summermay be the natural state of the riverine sys-
tem, the ecosystem services in the area may decline under this ex-
tensive rewilding. Therefore, a managed rewilding may be a better
solution to come to a sustainable situation from multiple points of
view, to come to a desirable state of the catchment system from a
management point of view. When not the whole catchment area
would be forested, but areas with low erosion risk are transformed
in extensively managed grass land, this would have multiple bene-
fits: (i) better water resource management over the year, no floods
and still sufficient base flow; (ii) higher biodiversity, especially en-
dangered bird species in grass land areas; (iii) eco-tourism, summer
activities in the area are more attractive in a riverine system that has
running water in summer; (iv) agro-tourism, extensively or organi-
cally run farms can attract day tourists to their properties.
h stable precipitation, the annual discharge and runoff coefficient reduce.
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4.3. Land restoration in Iceland. Water resources and flood prevention

Iceland is an ideal location to investigate anthropogenic impacts on
the resilience of natural ecosystems and its services. The dramatic defor-
estation after the arrival of the first settlers 1100 years ago, the subse-
quent year round livestock grazing along with devastating ash
emissions during volcanic eruptions and a harsh sub-polar oceanic cli-
mate have led to severe degradation of large areas of Icelandic soils
(Aradóttir et al., 2013; Arnalds, 2005). Overgrazing has been seeing as
a worldwide land degradation threat (Pulido et al., 2017). Since the be-
ginning of the 20th century diverse restorationmeasures have been im-
plemented at a large-scale on the lowland areas of Icelandmaking them
an ideal case study to investigate the effects of restoration on the resil-
ience ofwater resources. Since over 100 years the Soil Conservation Ser-
vice of Iceland (SCSI) has been restoring and investigating degraded
landscapes, collecting valuable information and data on restoration re-
search in Iceland, and specifically of the Rangárvellir area in southern
Iceland, which is stored in a metadatabase (Finger et al., 2016). The
combined effect of all restoration efforts have had a subsequent effect
on the runoff dynamics in the main rivers of Rangárvellir (Fig. 3a).
One can distinguish between three phases of restoration: i) present con-
ditions (Fig. 3b); ii) degraded conditions as was the case 100 years ago
(Fig. 3c); iii) fully restored ecosystems (Fig. 5d). The effects of restora-
tion of runoff dynamics indicate that: i) high discharge peaks decreased
due to successful restoration; ii) groundwater levels are depleting with
low rates during dry periods and erosion rates in the rivers is reduced
due to the lower soil erodibility. These first results suggest that restora-
tion of original ecosystems present an effective method to reduce flood
risks, enhance the resilience of freshwater resources and improvewater
quality due to soil erosion reduction.

4.4. Agroforestry in southern Portugal: modern nature-based solutions im-
prove a traditional and sustainable land-use for semi-arid regions

A large area of the southwestern Iberian peninsula is occupied by a
savannah-like traditional agroforesty system called montado in
Portugal and dehesa in Spain. These systems are open oak formations
(usually Mediterranean evergreen oaks) with a scattered tree cover,
usually associated with rainfed pastures with extensive grazing of
Fig. 3.Overviewof the twowatershed of Ytri- and Eystri Rangá in Rangárvellir in southern Icelan
from land.is). Picture (d) Visualizes natural succession of birch trees in a protected area around
(photo taken in 2014 by Finger)
sheep, pigs and other livestock. This landscape is a human nature-
based solution for the inter-annual fluctuations of water availability
and vegetation productivity typical of semi-arid Mediterranean cli-
mates, designed to prevent degradation and minimizing work input.

Pinto-Correia (1993) provided one of the earliest descriptions of the
functioning of the system. More recent research has highlighted how
this system takes advantage of local climate and soil conditions. The
canopy cover of ca. 40% seems to be optimal, since lower tree cover is as-
sociatedwith lower soil water retention and less infiltration, but a dens-
er cover leads towater competition between trees (Gouveia and Freitas,
2008). Similarly,montado systemshave a higher density and richness of
ectomycorrhizal (ECM) fungal communities than regions with denser
tree and shrub cover, due to lower competition; this can increase the re-
silience of the managed system due to improved nutrient acquisition,
drought tolerance and pathogen resistance (Azul et al., 2010). The
montado landscape has also been shown to have other effects such as
lowering land surface temperature (Godinho et al., 2016) or affecting
soil microbiology (Shvaleva et al., 2015) and soil fauna (Martins da
Silva et al., 2015).

This system, however, has been under threat by recent develop-
ments caused by changes in climate and land use. An increase of
droughts andwildfires has led to a general decrease in tree cover by in-
creasing tree mortality and limiting regeneration (Acácio et al., 2009).
Also, while land abandonment on some areas led to intensification
and an increase in competition for water between trees and shrubs,
the intensification of pasture on others led to an increase in soil degra-
dation, with a consequential loss of productivity and tree health
(Pinto-Correia andMascarenhas, 1999; Pinto-Correia et al., 2016). Rela-
tively moderate changes could therefore threaten the equilibrium
which has kept this landscape sustainable, with consequences not
only for land degradation and human desertification, but also for
water resources in this region, already threatened by climate change
(Nunes et al., 2017b).

To adapt to these changes, recent initiatives have tried to maintain
and improve the sustainability of this landscape with non-traditional
nature based solutions. Ng et al. (2016) note the adoption of practices
such conservation tillage, mulching, adapting cropping to microclimate
(e.g. more intensity in the north side of hills), used elsewhere. Locally
developed solutions include: i) sowing biodiverse permanent pastures
d (a). Picture of Gunnarsholt, the headquarters of the SCSI in 1944 (b) and 2012 (c) (photo
the source of Hróarslækur.
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rich in legumes (Teixeira et al., 2011). These consist of amix of different
seed varieties in pasture, which ensure that species are suited for differ-
ent soil conditions in a pasture, and provide cover in different parts of
the year. This has been shown to also increase soil organic matter
through enhanced productivity. The second solution is, ii) water reten-
tion landscapes (Pijnappels andDietl, 2012; Fig. 4). These consist of a se-
ries of artificial lakes designed for water retention and to promote
percolation, increasing soil and groundwater availability at the expense
of surface runoff, complemented by measures such as swales and
keylines (Yeomans, 1954). There is an ongoing debate about the most
effective mix between lakes and other measures.

Increasingly these solutions are adopted in a holistic approach to
landscape management, including adapting montado tree cover, using
shrubs for erosion control in steep slopes, rainwater harvesting, restora-
tion of riparianvegetation and othermeasures; Campos et al. (2016) de-
scribes an example of how vegetation management can increase the
resilience towards land abandonment and climate change impact.
These solutions are implemented and supported by a network of sus-
tainable communities which also promote the systematization and dis-
semination of these nature-based solutions through bottom-up
approaches (Campos et al., 2016; Esteves, 2017).

4.5. Vegetative sediment trapping measures in Ethiopia grassed waterways

For millennia African farmers have been using NBSs, without calling
them as such. They have been usingmeasures such as grass strips, stone
bunds and agroforestry to sustainably make use of the soil and land-
scape resources (Gebremichael et al., 2005; Vancampenhout et al.,
2006). In recent yearswhen land degradation has become awidespread
problem in the countries like Ethiopia, the pressure of population
growth and extensive livestock grazinghas caused overgrazing and sub-
sidence agriculture on unsuitable areas. Due to the widespread soil ero-
sion taking place there have beenmany projects focusing on on-site soil
and water conservation techniques (Gebremedhin and Swinton, 2003;
Amare et al., 2014; Lemann et al., 2016).

These techniques can partially be classified as NBSs. Techniques such
as grass strips and soil or stone bunds that catch water and sediment
from upstream enhance the initially created structure to slowly form a
terrace like structure as a result of the forces of nature (Fig. 5; Atnae
et al., 2015;Mekonnen et al., 2015). However, the large amounts of sed-
iment accumulating in reservoirs and lakes downstream show that try-
ing to conserve the soil on the fields is an insufficient way to reduce the
fluxes of sediment on a landscape scale. It is necessary to trap the sedi-
ment in its transport path. Also for this there are NBSs, that do this,
Fig. 4.Water retention strategies in Por
grassed waterways, and finally in wetlands where the water can be fil-
tered and retarded before entering a larger water body (Mekonnen
et al., 2015). The most efficient species of grass to trap the sediment
and the amount of grazing possible are important things to take into ac-
count (Mekonnen et al., 2016). However, all thesemeasures are individ-
ually not sufficient to come to sustainable landscapemanagement; but a
cascade of these NBSs has the potential to solve the degradation prob-
lems. A combination of soil solutions such as intercropping and
mulching on the agricultural fields (Prosdocimi et al., 2016b; Tanveer
et al., 2017) and landscape solutions in the pathways as well as in the
form of wetlands close to the outlet of a catchment may solve these
issues.

4.6. Blue-green infrastructure in Sweden

Blue-green infrastructure is currently seen as a way to reduce the
negative effects of urbanisation (flooding) and to adapt to anticipated
climate change (flooding and droughts). Blue-green infrastructure is a
possible way to create multifunctional surfaces with environmental
and social functions. Apart from stormwater management (sustainable
urban drainage systems), it includes greenways and ecological net-
works, which are important components in the concept of green infra-
structure (Demuzere et al., 2014). The overall aim with blue-green
infrastructure is to mimic valuable functions supplied by nature, such
as purification of water, flood control, water storage and heat control.
The Augustenborg area in southern Sweden is one example, where a
several of the concepts related to nature-based solutions for stormwater
control were installed 15 years ago. The main objectives were to adapt
to more extreme rainfall events, achieve sustainable urban develop-
ment, involve residents in development of their neighbourhood and in-
crease biodiversity in the area by making the environment greener
(Sörensen and Emilsson, 2017; Stahre, 2008). The blue-green infra-
structure system in Augustenborg includes trenches, ditches, ponds
and wetlands for retention of flows from roofs, roads and car parks,
and also green roofs built after 1998 and retrofitted on 10,000 m2 of
an existing building (the largest green roof in Scandinavia) (Sörensen
and Emilsson, 2017; Fig. 6).

The systems have been continuously monitored and investigated
over the 15 years since installation and many articles and reports have
been written about different aspects of the Augustenborg re-
development project, e.g. citizen involvement (Marsalek et al., 2004),
environmental assessment (Ludzia et al., 2014), green roof water qual-
ity (Berndtsson, 2010) and quantity (Bengtsson et al., 2004) and design
and maintenance (Kalantari and Folkeson, 2013). As a result of the
tugal, retention lines and keylines.



Fig. 5. Soil and Landscape nature based solution in Ethiopia, stone and soil bunds (red ar-
rows indicate sequence of soil bunds) collect water and sediment to form after some years
a micro-terrace. The combined effect of a whole hillslope with soil bunds magnifies the
effect.
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implementation of the blue-green initiative, there have been no floods
in the area (2009–2014), compared with five floods between 1994
and 1999 (Sörensen and Emilsson, 2017). Moreover, Shukri (2010)
found a 50% decrease in runoff in the Augustenborg area following
heavy rainfall in summer 2007 that led to severe flooding in most
parts of Malmö city (Bengtsson and Milotti, 2010). In addition to flood
risk reduction during minor and severe flood events (Villarreal et al.,
2004; Sörensen and Emilsson, 2017), there are reports of positive effects
of the blue-green infrastructure system in Augustenborg on socio-
economic improvement and environmental impacts (e.g. Ludzia et al.,
2014), as well as increased biodiversity (50%) by providing a better en-
vironment for local plants and wildlife (Manso and Castro-Gomes,
2015).

5. Discussion

We critically assess what the case studies show in terms of what we
think is the superior effect of NBSs to mitigate issues such as flood risk,
fire risk, droughts and pollution. In this assessmentwe take into account
Fig. 6. Locationmap of Augustenborg Eco-City inMalmö in southern Sweden (55.50N, 13.00W;
south part of Malmö, which was redeveloped in the framework of the blue green infrastructur
the role of parameters that influence the designs on different scales
(Table 1) and how the integrated designs influence ecosystem services
(Table 2).

5.1. Classification of nature based solutions

Table 3 gives an overview of different types of NBSs that have been
implemented to areas with various land-use systems, roughly divided
into agricultural areas, managed grassland and forests and riverine
areas. In all these systems soil as well as landscape NBSs can be found.
The assessment of the usefulness and choice of NBSs benefits from clas-
sifying them into Soil-Vegetation and Landscape solutions.

5.1.1. Soil-vegetation solutions
Soil-Vegetation solutions can be characterized by measures that en-

hance soil functions and soil resilience and are based on the concept of
soil health (Abbott andManning, 2015). Parameters and associated pro-
cesses (Tables 1 and 3) can be grouped in soil and surface changing
measures. Better infiltration, soil stability and soil roughness reduce
overland flow and associated sediment transport (Rodrigo-Comino
et al., 2016a, 2016b). Apart from the soil related parameters also surface
parameters influence the potential for rainfall to be transformed into
runoff. Vegetation cover, mulch, surface roughness and crusts also im-
pact the runoff and erodibility of the surface, impacting the water and
sediment fluxes on the small scale. And finally, soil parameters related
to soil structure (porosity, aggregate stability, organic matter content,
water holding capacity) all create a more resilient soil ecosystem
(Asmamaw, 2017; Hueso-González et al., 2014; Muñoz-Rojas et al.,
2016). More resilient systems have a buffer against external impacts
and create a better livelihood conditions for above and below life. In ad-
dition, a healthy soil will have a higher biodiversity, and can store more
carbon (Blouin et al., 2013).

5.1.2. Landscape solutions
The second group of NBSs can be defined as landscape solutions.

Geomorphological parameters such as hillslope morphology, runoff
pathways, topographic wetness and water and sediment sinks deter-
mine the potential for water and sediment to be transported through
a system. Holistically, the soil and landscape processes together form
the connectivity of the landscape. The concept of connectivity
(Bracken et al., 2015; Parsons et al., 2015; Masselink et al., 2017a) is
OpenStreetMap, 2017) and the Blue-green infrastructure in suburb of Augustenborg in the
e implementation. Photos of suburb by Johanna Sörensen.



Table 1
Scale dependent parameters that can be influenced by nature based solutions.

Scale Parameter

Soil processes Porosity
Soil structure
Aggregate stability
Soil organic matter
Water repellency
Water holding capacity

Surface processes Vegetation cover
Mulch cover
Surface roughness
Shear strength
Surface crusts
Combustible fuel load

Geomorphological processes Hillslope geomorphology
Runoff pathways
Topographic wetness
Water and sediment sinks
Connectivity

Chemical processes CEC
Nutrient content
Carbon content
Solute transport and precipitation
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themost useful approach to describe thesewater and sediment dynam-
ics and assess how the systemwill react when the drivers in the system
will change. Process understandingwill make it possible to predict how
the systemwill react to changes in thedrivers in termsofwater and sed-
iment connectivity. And with this knowledge the system can be man-
aged in such a way that it will evolve into the desired system state
that land and water managers wish to have.

The design of these landscape solutions should be based in the cas-
cade of processes that occur when we work together with nature to
manage land and water. The measures can be linked to all parameters
and processes that are of influence the structural and functional connec-
tivity of the system. Using the insights of the role of these different pro-
cesses and parameters can be used to design solutions that can reduce
the connectivity of a system on different spatial levels in the system,
from the plot to the whole catchment. As an example: mulching pro-
motes disconnectivity on the plot scale infiltration can be promoted, re-
ducing the runoff and increasingwater availability for agriculture. In the
same catchment a wetland can reduce the connectivity in the riverine
system (Masselink et al., 2017b). These kinds of management strategies
can mitigate risks like flooding, agricultural droughts and extreme soil
erosion events (Rickson, 2014; Panteli and Mancarella, 2015) and can
enhance biodiversity (Huang et al., 2017).

5.2. Nature based solution in specific systems

5.2.1. NBSs in agricultural systems
In agriculture soil strategies that are focused on reaching a healthier

soil aim to improve soil organic matter content and structure to facili-
tate higher infiltration rates and lower runoff and erosion. Systems
like organic farming are mainly focused on that. Other strategies focus
Table 2
Ecosystem services relevant for nature based solutions.

Ecosystem services

Soil protection
Flood regulation
Water quality regulation
Carbon sequestration
Fire prevention
Biomass growth
Biodiversity
Ecosystem resilience
Nutrient regulation
on protecting the soil surface, like mulching, intercropping and the
use of cover crops (Sharma et al., 2017).

The landscape solution in agriculture are soil andwater conservation
measures that aim at dis-connecting the water and sediment fluxes
when in transport. These strategies, like grassed waterways, vegetation
strips, contour planting, and even the use of soil and stone bunds
(Novara et al., 2013; Vancampenhout et al., 2006), all have the objective
to slow down the surface runoff and enhance infiltration. These kind of
structures have been used for many years, but the impact of the cascade
of these strategies on catchment scale is usually unknown. These mea-
sures are designed for small scale, and how upscaling (for instance
mass implementation of infiltration trenches on the hillslopes) (Paras-
Alcántara et al., 2016) impacts the system downstream like the deple-
tion of water and sediment downstream in the system is usually un-
known. Modelling studies may prove to be useful to predict such
catchment scale design sustainability. In a modelling study by Nunes
et al. (2017a) different scenarios of land use management were tested
for their successfulness to reduce water and sediment fluxes. This ap-
proach proved to be useful to assess the effectiveness of landscapemea-
sures that are based in natural processes.

5.2.2. Grass and forest systems
TheNBSs in grasslands and forests aremainly focused onmaking the

systems more biodiverse in order to make the soil and surface charac-
teristics more favorable to buffer dry andwet conditions. The self-orga-
nization of the vegetation creates a resilient ecosystem, and
continuously protects the soil surface from erosion (Rietkerk et al.,
2002). The different layers and types of vegetation create a surface
that interceptsmore rainfall and prohibits overland flowmore efficient-
ly (Berendse et al., 2015; Osterkamp et al., 2012). When looking at
spatial-temporal dimensions of soil functions, they can be improved
by creating biodiversemanaged landscapes, either in forest or grassland
type of ecosystems. The natural self organization of the vegetation cre-
ates a more resilient ecosystem in terms of buffering the hydrological
system to prevent droughts and floods (Shen et al., 2017). But also
preventing the soil surface to be bare and vulnerable for erosion.

Rewilding of landscapes initially seems the same as natural biodi-
verse forest recovery. The benefits on ‘soil scale’ are the same, but in
landscapes that are rewilded, the natural growth is only allowed on spe-
cific places. Areas which have a high erosion risk will be treated differ-
ently than areas that have a low erosion risk. This mosaic planning
should be done to optimize the ecosystem services that can be found
in such areas. In addition, the agricultural landscape ecosystem services
benefit from natural parcel separations like hedges and tree rows.

In an agro-forestry system this self-organization is artificially mim-
icked. Undergrowth and canopy are managed in such a way that the
surface is better protected because different layers of vegetation grow
at different times in the seasons (Shen et al., 2017). In dry systems
this also has the effect of optimizing water use and minimizing compe-
tition, with advantage for plants and for associated ecosystems
(Gouveia and Freitas, 2008; Azul et al., 2010).

5.2.3. Riverine systems
River restoration projects all over the world nowadays use NBSs to

restore the natural behaviour and ecosystem services of riverine sys-
tems (Surian et al., 2015). NBSs can be implemented in different parts
of the riverine system, the river channel itself, the riparian zone and
wetlands. In the channel allowing the river to behave naturally; mean-
der, incise, flood its floodplains will create a biodiverse environment
that retards high water flows and therefore mitigates flood risks,
which is a common approach in river restoration. Riparian vegetation
has a double function in terms of the benefits it can have. Not only
does it enhance the riverine ecosystem itself, also it retards water and
traps sediment coming from the hillslopes that need to pass the riparian
zone before entering the channel. The final part of the riverine system
are wetlands. The ecosystem services wetlands contribute to are flood



Table 3
Summary of the scale, the physical processes and the impacted ecosystemservices that are relevant for nature based solutions that have been described in the case studies in this paper and
in other papers.

Case Process scale (soil/hillslope/landscape) Physical parameters Ecosystem services

1 Organic farming (Cerdà et al., 2016; Novara et al., 2016) Soil/hillslope Infiltration
Interception
Ponding
Soil surface protection
Ecosystem resilience

Soil protection
Biodiversity
Carbon sequestration
Water quality regulation
Biomass growth
Nutrient regulation
Flood regulation

2 Managed rewilding (Keesstra et al., 2009) Soil/hillslope Infiltration
Interception
Soil surface protection
Ecosystem resilience
Dis-connectivity

Soil protection
Biodiversity
Carbon sequestration
Water quality regulation
Flood regulation

3 Agro-forestry (Pinto-Correia, 1993) Soil & landscape Infiltration
Soil water retention
Soil surface protection
Tree resilience

Soil protection
Drought regulation
Water quality regulation
Carbon sequestration
Biodiversity

5 Land restoration (Finger et al., 2016) Soil/hillslope Infiltration
Interception
Ecosystem resilience
Dis-connectivity
Water and sediment retention

Soil protection
Biodiversity
Carbon sequestration
Water quality regulation
Biomass growth
Nutrient regulation
Flood regulation

6 Wetlands restoration (Kalantari and Folkeson, 2013) Landscape Dis-connectivity
Water and sediment retention

Biodiversity
Water quality regulation
Nutrient regulation
Flood regulation

7 Trapping sediment with vegetational measures (Mekonnen et al., 2015) Landscape Dis-connectivity
Infiltration
Ponding
Interception
Water and sediment retention

Soil protection
Carbon sequestration
Water quality regulation
Biomass growth
Nutrient regulation
Flood regulation
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prevention, retarding and trapping sediment and filter pollutants from
the dischargedwater (He et al., 2015). Because thewetlands are located
in flat areas and divert the water into a large area, the discharge wave is
flattened during a flood (Watson et al., 2016); and suspended sediment
is trapped by the vegetation. Vegetation type and spatial distribution
can be used to enhance the natural function of the system (Mekonnen
et al., 2016).
5.3. Benefits for ecosystem services. Holistic management is useful

As shown in the previous sections NBSs can have multiple societal
benefits: Biodiversity, Carbon sequestration, and Land Restoration,
Food security andWater security. These can all be linked to the Sustain-
able Development Goals (SDGs). Keesstra et al. (2016a) clearly showed
the link between the soil function, the ecosystem services and the SDGs.

Holistically, the soil and landscape processes together forma cascade
of processes in the landscape; and if we work together with nature to
manage land and water this will result in a more resilient system. In
the end, NBSs can regulate four ecosystem services: water provision,
flood regulation, soil protection, and water quality regulation (Fig. 7).

The first ecosystem service is water provision. It shows that while
some NBS decrease the amount of water, most especially improve the
timing of the provision, by promoting infiltration, storing water in the
wet season and releasing it in the dry season (which is how the water
retention landscapes prevent drought). Even though, in the Mediterra-
nean area the infiltrated water will for a large part be evapo-
transpirated, and will never come to discharge. But this change in the
hydrological distribution causes the water to be more available for
plant growth, more water will infiltrate and therefore will not be trans-
formed into surface flow, which causes erosion and flooding.
The second service NBSs provide is flood regulation. Through the
promotion of infiltration, soil water retention, vegetational obstructions
in the drainage system and wetlands the system becomes less connect-
ed. All measures are designed to retard and divert the water to reduce
the speed and the converging of water during a high intensity rainfall
event. Soil solutions can be intercropping (Singh et al., 2016) or land-
scape solutions such as wetland construction (Kalantari and Folkeson,
2013) are solutions useful to improve this ecosystem service.

The third ecosystem service is soil protection. Most NBSs aiming to
improve this ecosystem service are soil based solutions. Mainly the re-
duction of the erodibility of the soil and the reduction of overland
flow are the key processes that will protect the soil from degrading.
The main measure to reduce the erodibility is soil cover, this can be
done by a vegetation cover or mulching with straw, chipped pruned
branches or rock fragments (Zavala et al., 2010; Prosdocimi et al.,
2016b; Abbas et al., 2017). The reduction of overland flow can be pro-
moted through two lines of thought. Infiltration promotion or obstruc-
tions for the overland flow. Infiltration can be promoted through a
better soil structure, better soil infiltration capacity. Organic farming
can promote the soil structure permanently, but also ploughing may
be viewed upon a nature based solution that enhances the infiltration
capacity of the soil, although this is a effect that has a limited timeframe.
The obstruction of overland flow can be promoted by increasing the
roughness of the surface, either by vegetation (grass strips; Dillaha
et al., 1989) or soil bunds (Amare et al., 2014).

The last key ecosystem service is water quality regulation. Water
quality has two components, the suspended material and polluting sol-
utes.When looking at suspended components and substances adsorbed
to organicmatter and clasticmaterial in suspension, similarmeasures as
to the flood prevention can be used. These measures are all directed to
slow down the overland flow and therefore reduce the capacity of the



Fig. 7. Schematic overview of different types of nature based solutions.
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water to transport sediment. However, also healthy soil will be able to
filter pollutants from water (Keesstra et al., 2012).

Other ecosystem services like carbon sequestration, climate change
adaptation, biomass production, biodiversity, nutrient regulation, fire
risk reduction and agricultural productivity all benefit from the mea-
sures described above. We focused this paper on the processes behind
these benefits, however, these ecosystem services are the ones that
are more visible from a stakeholder point of view (Novara et al., 2015;
Galati et al., 2016; Novara et al., 2016).

5.4. Way ahead for managers and policymakers: do NBSs form the solution
for sustainability?

The array of NBSs presented in this paper clearly shows the benefits
they have for ecosystem services and how they help to achieve the
SDGs. However, how can we show that they are superior to traditional
engineered structures? Engineered structures have been shown to be
ineffective and costly in rapidly changing environment such as coastal
and large riverine systems (de Vriend et al., 2014). In these kind of en-
vironments managers have searched (and found) alternative measures
using with, instead of against the forces of nature. Also in areas where
financial constraints do not allow costly engineered structures, people
have referred to NBSs, sometimes with millennia old techniques. In ad-
dition, the engineered structuresmay feel saferwhen they are aimed for
e.g. flood protection; however, they only serve this particular benefit
and never have the multiple benefits that NBSs tend to have.

Although some successful examples were shown in this paper, there
are of course many other situations where NBSs have been
implemented. Currently it seems that there are certain NBSs that are ge-
nerically generating positive effects for ecosystem services. For instance,
organic agriculture, rewilding and landscape mosaic planning seems to
be both worthwhile to do in boreal as well as Mediterranean climates.
One issue that is uncertain, is how thesemeasures wouldwork if imple-
mented over larger areas. Upstream measures may have downstream
effects that may be undesirable. This is recognized by the EU, as nature
based solutions are focal points in their calls for projects.

6. Conclusions

Nature based solutions (NBSs) form a cost-effective long term solu-
tion for mitigating and restoring land affected by degradation processes.
NBSs can be divided into two main groups: soil solutions and landscape
solutions. Soil solutions aim to enhance the soil health and soil functions
through which local eco-system services will be maintained or restored.
Landscape solutionsmainly focus on the concept of connectivity. Making
the landscape less connected, facilitating less rainfall to be transformed
into runoff and therefore reduce flood risk, droughts and erosion prob-
lems. The enhanced eco-system services directly feed into the realization
of the Sustainable Development Goals by the United Nations.
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