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• Short-term spring low severity grass-
land fire impacts on soil properties
were analysed.

• Fire impacts were mainly observed in
the first two months.

• Fire increased soil EC of Ca, Mg and K,
did not change Na, Fe and Zn and re-
duced Al and Mn.

• Fire did not affect SPAR, decreased
Ca:Mg ratio, and increased Ca:Al ratio
immediately after the fire.

• This grassland ecosystem is resilient to
low severity spring fires.
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calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), and theminor elements aluminium (Al), man-
ganese (Mn), iron (Fe) and zinc (Zn). We also calculated the soil Na and K adsorption ratio (SPAR), Ca:Mg and
Ca:Al. The results showed that this low-severity grassland fire significantly decreased soil pH, Al, and Mn but in-
creased EC, Ca,Mg, and K,. There was no effect on Na, Fe, and Zn. There was a decrease of EC, Ca, Mg, and Na from
0months after the fire until 7 months after the fire, with an increase during the last sampling period. Fire did not
significantly affect SPAR. Ca:Mg decreased significantly immediately after the fire, but not to critical levels. Ca:Al
increased after the fire, reducing the potential effects of Al on plants. Overall, fire impacts were mainly limited to
the immediate period after the fire.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Spring grassland fires are common in boreal ecosystems afterwinter
to remove dead grasses as a result of slash and burn agricultural prac-
tices. This activity is carried out on an annual basis. In the early spring,
grassland areas are covered by highly flammable dry grass that burns
easily. The fires that occur during this period have insignificant effects
on soil organic matter concentration, and can be positive for wildlife
habitat and human activities such as the creation of pastures for grazing
and open areas for cattle (Granstrom, 2001; Granstrom and Niklasson,
2008; Pereira et al., 2013b, 2013c). The vegetation normally recuperates
rapidly after grassland fires (Pereira et al., 2013a, 2013b; Valko et al.,
2016). Despite the frequency of grassland fires in European boreal
grasslands, few studies about the impact of these fires on soil properties
have been carried out (Pereira et al., 2014a; Végvári et al., 2016).

Fire is considered a soil forming factor (Certini, 2014) and its impacts
on soil properties depend on the type of soil and vegetation affected, fire
severity, type of ash produced, topography, aspect, and meteorological
characteristics during and after the fire (Bodí et al., 2014; Brook and
Wittenberg, 2016; Campos et al., 2016; Mataix-Solera et al., 2009;
Unzue-Belmonte et al., 2016). One of the most widely reported impacts
of heating andfire on soils is pH change (Blank et al., 2003;Marcos et al.,
2007), which it is attributed to the denaturation of soil organic acids
(Certini, 2005), the formation of oxides (Giovannini et al., 1988), and in-
corporation of ash into the soil profile (Pereira et al., 2014b; Raison and
McGarity, 1980). Low-severity fires or prescribed fires do not have any
impact (Marcos et al., 2009) or increase soil pH (Úbeda et al., 2005) in
the period immediately after afire.Moderate or severewildfires typical-
ly increase soil pH for a short tomedium time after a fire (Murphy et al.,
2006; Martínez-Murillo et al., 2016); however, this effect depends on
the type of soil affected. For example, Badia et al. (2014) observed no
difference in soil pH between burned and unburned areas after a mod-
erate to high severity wildfire in calcareous soils. The increase in soil pH
after a fire can change soil nutrient availability (Certini, 2005; Wang
et al., 2016), with implications for plant recuperation after the fire. Sim-
ilarly, organic matter mineralization and ash incorporation into burned
soils can increase electrical conductivity (EC) due to the greater solubil-
ity of major cations such as calcium (Ca), magnesium (Mg), sodium
(Na) or potassium (K) caused by increased pH. In contrast, the solubility
of minor elements such as aluminium (Al), manganese (Mn), iron (Fe)
or zinc (Zn) may be decreased (Badia et al., 2014; Inbar et al., 2014;
Ponder et al., 2009).

Despite abundant research about fire impacts on soil chemistry
(Gomez-Rey et al., 2013; Shakesby et al., 2015; Tomaz et al., 2014;
amongothers), fewpublications have included analyses of the ratios be-
tween soil chemical elements (Blank et al., 2003; Inbar et al., 2014) be-
yond the frequently reported carbon to nitrogen ratio. Soil ratios can
give us information about changes in soil properties (e.g., sealing of
soil pores, water infiltration, erosion potential, acidity) or risk to plant
nutrition and growth (Cronan and Grigal, 1995; Narhi et al., 2013),
which are important to assess in burned areas. For example, sodium ad-
sorption ratio (SAR) is used to identify the impact of salts on clay disper-
sion. However, previous reports showed that ash and soil solutions can
be rich in K after fire (Gimeno-Garcia et al., 2000; Pereira et al., 2012,
2014b), which can also have important influences on clay dispersion
and soil structure. Sodium (Na) and K are recognized as nutrients with
a high capacity to disperse soil clays (Levy and Torrento, 1995; Pils
et al., 2007). Thus, a new cation ratio was proposed by Sarah (2004)
called sodium and potassium adsorption ratio (SPAR), which calculates
the ratio betweenmonovalent (Na and K) and bivalent (Ca andMg) cat-
ions. The soil Ca:Mg ratio is an indirect indicator of soil structure. Calci-
um ions have a higher flocculation capacity than Mg ions. This is
attributed to the larger Mg ion hydrated radius. Solutions with higher
Mg than Ca can have negative implications on soil structure, infiltration,
and hydraulic conductivity (Bame et al., 2013; Yilmaz et al., 2005). The
ratio between soil Ca and Mg also affects the behaviour of other nutri-
ents such as phosphorous (Manimel Wadu et al., 2013), nitrogen
(Favaretto et al., 2012), and copper (Lombini et al., 2003), as well as
plant biomass and nutrient accumulation in tissues (Kopsell et al.,
2013; Drzewiecka et al., 2014). The soil Ca:Al ratio is an indicator of eco-
system stress as a result of acid deposition and soil infertility. For exam-
ple, Al toxicity may inhibit plant nutrient uptake (Cronan and Grigal,
1995). Previous research has shown that in low-severity fires, extract-
able Al can increase in ash slurries relative to the unburned sample
(Pereira et al., 2011a) with potential impacts on soil acidity. Despite
the importance of the analysis of these ratios for understanding fire ef-
fects on soil status and the capacity of vegetation to recover after fire,
few publications to our knowledge have investigated their temporal
evolution in fire-affected areas. A recent work carried out by Francos
et al. (2016) studied the impacts of an extreme rainfall period on
SPAR, but did not compare it with an unburned area. The goal of this
workwas to study the impacts of a low severity grasslandfire on soil ex-
tractable elements and ratios in the first 9 months after the fire.

2. Materials and methods

2.1. Study area, sample design and laboratory analysis

The fire occurred on 15 April 2011 and affected an area of approxi-
mately 22.5 ha. The burned area was located near Vilnius, Lithuania at
54° 42′ N, 25° 08′ E with an elevation of 158 m a.s.l. (above sea level).
The fire was anthropogenic, as a consequence of burningwood residues
and grass. The soil is classified as an Albeluvisol (WRB, 2014) with a silt
loam texture. The vegetation was mainly composed of fall dandelion
(Leontodon autumnalis L.) and sweet vernal grass (Anthoxanthum
odoratum L.). Mean annual temperature is 8.8 °C and total annual rain-
fall is 735mm(Pereira et al., 2014a). Four days after the fire we selected
flat burned and unburned areaswith the same topographical character-
istics and established a plot of 400 m2 (20 × 20m, with a grid with 5 m
spacing between sampling points) in each of the two areas. We collect-
ed 25 individual samples of mineral soil (0–5 cm depth, single sample)
on each of five different sampling dates at the same gridpoints 0, 2, 5, 7
and 9months after the fire.We sampled at 5 cm depth in order to iden-
tify the direct and indirect impacts of fire on the first 5 cm of the soil, as
used in previous works (Francos et al., 2016). The ash layer was re-
moved prior to sampling. Two months after the fire the ash layer was
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very thin and sporadic and 5months after thefire therewasno evidence
of ash on the soil surface. Soil samples were stored in plastic bags and
taken to the laboratory where they were dried at room temperature
for 24 h before sieving with a 2 mm mesh screen. A subsample of the
sieved soils was taken to analyse soil pH, EC, and water-extractable
ions (Ca, Mg, Na, K, Al, Mn, Fe, and Zn) with a solution of 1:1 soil to
water ratio. The solution produced was filtered and analysed by induc-
tively coupled plasma mass spectrometry with a PerkinElmer model
Elan 6000 spectrometer and by optical emission spectrometry with
the PerkinElmer Optima 3200 RL spectrometer. Each point value corre-
sponds to an average of three analytical replicates. SPAR was calculated
as follows: SPAR= (Na+K) / (Ca+Mg)1/2, according to Sarah (2004).

2.2. Statistical analysis

Data did not follow the normal distribution and homogeneity of var-
iances, even after logarithmic, square root, and box-cox transforma-
tions. Thus, the comparison between the burned and unburned areas
was carried out using the non-parametric Mann-Whitney U (MU) test.
The Kruskal-Wallis test (K-W) was used to identify significant differ-
ences between sampling dates for each response variable. If significant
differences were observed at p b 0.05, the multiple comparisons rank
test was carried out in order to identify differences. Statistical analyses
were carried out using Statistica 6.0 (STATSOFT Inc., 2006).

3. Results

3.1. pH, electrical conductivity, and major elements

Soil pH and EC differed between sampling dates in both the un-
burned and burned areas. Significant differences were identified in
soil pH between areas on all sampling dates except 9 months after the
fire. With the exception of 0 months after the fire, soil pH was signifi-
cantly higher in the burned area than in the unburned area on all sam-
pling dates. Significant differences between areas were also identified
for soil EC 0 and 2 months after the fire. On both sampling dates the
values were significantly higher in the burned area (Table 1).

Calcium, Mg, Na, and K concentrations were significantly different
between sampling dates in the unburned and burned areas. Significant
differences for Ca andMg content between areaswere only observed on
the first sampling date after the fire. The values of both nutrients were
significantly higher in the burned area than in the unburned one,
while no significant differences were observed between the burned
Table 1
Soil pH, electrical conductivity (EC), andmajor cationsmean concentrations in the unburned an
deviation. Different letters indicate significant differences between sampling dates (capital lett
Kruskal-Wallis (K-W) and Mann-Whitney (MU) p-values (*p b 0.05, ***p b 0.001, and n.s, non

Variable Treatment Sampling date

0 months 2 months

pH Unburned 7.63 (0.15)Aa 7.03 (0.48)Bb
Burned 7.12 (0.20)Cb 7.39(0.13)Aa
MU p *** *

EC Unburned 219.72(62.52)Ab 91.92(32.95)Bb
Burned 370.20(97.04)Aa 164.52(63.51)Ba
MU p *** *

Ca Unburned 114.29(28.16)Ab 57.50(25.45)Ba
Burned 135.31(29.80)Aa 60.40(21.71)Ba
MU p *** n.s

Mg Unburned 14.96(4.67)Ab 8.49(4.20)Ba
Burned 26.53(8.59)Aa 10.3(4.25)Ba
MU p *** n.s

Na Unburned 97.74(55.91)Ba 61.06 (37.80)Ba
Burned 95.39(100.19)Ba 51.70(41.89)Ca
MU p n.s n.s

K Unburned 37.50(14.71)Ab 21.10(6.57)Bb
Burned 125.60(30.25)Aa 45.53(21.43)Ba
MU p *** ***
and unburned areas on any of the sampling dates for soil Na content.
Soil K content was always significantly higher in the burned plot than
in the unburned one on all sampling dates. We identified decreases in
EC, Ca, Mg and Na from 0 months after the fire to 7 months after in
both the burned and unburned areas. Nine months after the fire the
values of these nutrients increased significantly in comparison to the
previous sampling date (Table 1).

3.2. Minor elements

Significant differenceswere observedbetween sampling dates in the
concentrations of Al, Mn, Fe, and Zn in the unburned and burned areas.
Aluminium concentration was significantly higher 0 months after the
fire in the unburned plot. Significant differences between areas were
identified for soil Mn content 0 months, when the content was high in
the unburned area, and 9months after the fire, whenMn concentration
was high in the burned plot. The concentration of soil Fe was not signif-
icantly different between the burned and unburned areas on any of the
samplingdates. Soil Zn contentwas significantly higher in the unburned
area compared to the burned area 2 and 5 months after the fire
(Table 2).

3.3. Soil ratios

We observed significant differences in Ca:Mg and Ca:Al ratios be-
tween sampling dates in the burned and unburned areas. No significant
differences in SPAR ratio were identified between the burned and un-
burned areas on any sampling date. The Ca:Mg ratio was significantly
higher 0 and 2 months after the fire in the unburned plot. The Ca:Al
ratio was significantly higher 0 months after the fire in the burned
plot (Table 3).

4. Discussion

4.1. pH, electrical conductivity, and major elements

The immediate decrease in soil pH at 0 months in the burned area
relative to the unburned area contradicts previous works that investi-
gated the effects of low severity fires on pH, which have documented
a non-significant difference (Kutiel and Shaviv, 1992) or significant in-
crease (Blank et al., 2003) in the burned area relative to the unburned
one. Normally soil pH increases due to the incorporation of ash into
the soil profile (Pereira et al., 2011a). Despite a lack of significant
dburnedplots during the studied period. The values in brackets correspond to the standard
ers) and plots (low-case letters). EC data are shown in μm cm3 and major cations in ppm.
-significant at a p b 0.05) are shown for each between-date comparison.

K-W
p

5 months 7 months 9 months

6.80 (0.48)Bb 7.01 (0.49)Bb 6.86 (0.53)Ba ***
7.28(0.23)BCa 7.40(0.21)Aa 7.18 (0.12)Ca ***
*** *** n.s
93.98B(32.52)Ba 51.24(17.95)Ca 70.32(22.01)BCa ***
87.63(36.64)Ca 58.80(14.86)Ca 79.82(74.22)Ba ***
n.s n.s n.s
15.73(9.36)Ca 17.70(13.48)Ca 55.25(32.25)Ba ***
17.08(5.66)Ca 21.14(10.19)Ca 53.61(21.24)Ba ***
n.s n.s n.s
2.77(1.55)Ca 2.65(1.66)Ca 7.33(3.77)Ba ***
3.21(0.76)Ca 3.32C(1.29)Ca 7.75(2.26)Ba ***
n.s n.s n.s
34.85(14.43)Ca 52.45(31.59)BCa 173.62(109.36)Aa ***
45.13(31.33)Ca 66.30(31.08)Ca 189.19(100.98)Aa ***
n.s n.s n.s
9.47(2.49)Cb 9.69(3.47)Cb 2.26(1.49)Db ***
18.69(3.99)Ca 21.96(5.62)Ca 5.56(4.34)Da ***
*** *** ***



Table 2
Soil minor elements mean concentrations in the unburned and burned plots during the studied period. The values in brackets correspond to the standard deviation. Different letters in-
dicate significant differences between sampling dates (capital letters) and plots (low-case letters). Major cations data are shown in ppm. Kruskal-Wallis (K-W) andMann-Whitney (MU)
p-values (*p b 0.05, ***p b 0.001, and n.s, non-significant at a p b 0.05) are shown for each between-date comparison.

Variable Treatment Sampling date K-W
p

0 months 2 months 5 months 7 months 9 months

Al Unburned 1.93(1.15)Ba 4.81(1.95)Aa 0.68(0.35)Ca 1.08(0.45)Ba 3.12(1.40)Aa ***
Burned 1.40(1.12)Bb 4.04(2.89)Aa 0.73(0.28)Ca 1.15(0.48)Ca 3.10(1.35)Aa ***
MU p * n.s n.s n.s n.s

Mn Unburned 0.16(0.12)Ba 0.26(0.10)Aa 0.05(0.03)Ca 0.05(0.04)Ca 0.22(0.10)Ab ***
Burned 0.10(0.09)Bb 0.35(0.56)Aa 0.04(0.02)Ca 0.04(0.02)Ca 0.28(0.10)Aa ***
MU p *** n.s n.s n.s *

Fe Unburned 1.98(1.09)Ba 4.47(1.74)Aa 0.61(0.42)Ca 0.74(0.27)Ca 5.96(6.07)Aa ***
Burned 1.61(1.04)Ca 3.90(2.53)Ba 0.73(0.70)Da 1.12(1.51)Da 4.48(3.70)Aa ***
MU p n.s n.s n.s n.s n.s

Zn Unburned 0.23(0.19)Aa 0.25(0.14)Aa 0.05(0.01)Ba 0.02(0.01)Ba 0.20(0.06)Aa ***
Burned 0.22(0.15)Aa 0.17(0.09)Ab 0.03(0.01)Cb 0.02(0.02)Ca 0.13(0.04)Bb ***
MU p n.s * *** n.s n.s
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differences, Marcos et al. (2009) observed a slight decrease of soil pH in
their burned area relative to the unburned one. A potential explanation
for the decrease in soil pH may be soil nitrification at 0 months as ob-
served byMohamed et al. (2007), as soil nitrification increases soil acid-
ity (Zhou et al., 2014). The fire studied had very little direct impact on
the soil surface (Pereira et al., 2014a) and it is very likely that themicro-
bial community was not affected. The most frequent ash colour ob-
served was black (Pereira et al., 2014a), which normally enhances
microbial activity due to moderate temperature increases (Mataix-
Solera et al., 2009). For example, nitrification may increase, even for a
short period between the fire and the first sampling date (4 days), and
normally is high in burned areas (Kutiel and Naveh, 1987). Warmer
soils increase nitrate production in burned areas compared to unburned
areas (Sharrow andWright, 1977). Also, the presence of pyrolysed ma-
terial in soil increases nitrification (Prommer et al., 2014) and promotes
the liberation of protons that may have contributed to a pH decrease
(Mohamed et al., 2007). In addition, soil nitrification is higher during
the spring and summer than in winter (Casson et al., 2014). The pH de-
crease could also be attributed to increased levels of Al, which can be re-
leased in high quantities by ash produced at low temperatures (Pereira
et al., 2011b). However, in this case Al contents were significantly lower
in the burned area relative to the unburned one. Thus Al was not the
driver of the soil acidification 0 months after the fire.

In contrast, 2, 5, 7, and 9months after thefire soil pHwas significant-
ly higher in the burned area and this may be attributed to the incorpo-
ration of ash into the soil profile, at least until the secondmonth (Pereira
et al., 2015a). This situation was also observed in the study of Marcos
et al. (2009), where, in the months following a fire, soil pH was higher
in the burned area in comparison to the unburned area, despite the
lack of significance. Nevertheless, the authors did not give an explana-
tion for this. In our work we hypothesized that plant consumption in
the burned area reduced nitrate in the soil, allowing the soil pH to
Table 3
Mean soil ratios in the unburned and burned plots during the studied period. The values in brack
(at a p b 0.05) among sampling dates (upper case), and between plots (lower case). Kruskal-W
nificant at a p b 0.05) are shown for each between-date comparison.

Variable Treatment Sampling date

0 months 2 months

SPAR Unburned 1.37(1.11)Aa 0.93(0.55)Aa
Burned 0.86(0.38)Aa 0.85(0.48)Aa
MU p n.s n.s

Ca:Mg Unburned 7.91:1(1.34)Aa 6.92:1(0.79)Ba
Burned 5.27:1(0.66)Cb 6.01:1(0.51)Bb
MU p *** ***

Ca:Al Unburned 84.71(60.80)Ab 17.57(18.77)Ca
Burned 142.51(90.03)Aa 22.83(23.21)Ba
MU p *** n.s
increase. The vegetation recovered very fast in the burned area; forty-
five days after the fire the vegetation had recovered completely
(Pereira et al., 2016a), and this may be an explanatory mechanism for
the hypothesized decrease in soil nitrate which would have led to the
corresponding pH increase 2, 5, 7, and 9 months after the fire.

Soil EC was significantly higher in the burned area 0 and 2 months
after the fire. These results agree with previous works which identified
an increase in soluble elements in the soil after low-severity fires
(Granged et al., 2011), whichwas attributed to the release of soluble el-
ements from ash incorporated into the soil (Pereira et al., 2011b, 2012,
2014b). Five, 7, and 9 months after the fire no significant difference
was observed in soil EC between areas, which we attribute to soil
leaching and plant consumption of nutrients in the burned plot,
returning electrolytes to pre-fire levels.

Calcium andMgwere significantly higher in the burned area than in
the unburned area 0 months after the fire. Similar results were identi-
fied in previous studies, which found that these nutrients increase in
the soil surface immediately after a fire (Ponder et al., 2009). This was
attributed to the same reasonsmentionedpreviously for EC, the dissolu-
tion of these elements from ash. In addition to the high availability of
these elements, the neutral pH observed in the soil (7.12) likely
favoured the dissolution of these elements, which is optimal in the 7
to 8 pH range (Neary et al., 2005). This fire did not significantly affect
Na content in the soil. Some earlier studies in low severity experimental
fires also did not observe changes in Na content respective to the un-
burned area (Gomez-Rey et al., 2013), while in other works significant
differences were identified between burned and unburned areas
(Ponder et al., 2009). The lack of impact of this low-severity fire on
soil Na can be explained by the soil pH values. Soils with pH values
N8.0–8.5 are evidence of a high concentration of Na in solution (Guler
et al., 2014), which was not achieved in this study. On the other hand,
the fire significantly increased K, which was also observed in previous
ets correspond to the standard deviation. Different letters represent significant differences
allis (K-W) and Mann-Whitney (MU) p-values (*p b 0.05, ***p b 0.001, and n.s, non-sig-

K-W
p

5 months 7 months 9 months

0.43(0.28)Ba 0.37(0.33)Ba 0.53(0.61)Ba ***
0.37(0.15)Ba 0.29(0.13)Ba 0.37(0.19)Ba ***
n.s n.s n.s
5.54:1(1.14)C 6.20:1(1.48)B 7.26:1(1.60)AB ***
5.24:1(0.98)C 6.32:1(1.35)AB 6.90:1(1.54)A ***
n.s n.s n.s
30.12(27.34)Ba 26.94(31.48)Ba 23.38(19.58)BCa ***
28.11(17.35)Ba 25.40(23.24)Ba 21.31(15.62)Ba ***
n.s n.s n.s
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studies carried out in low-severity burnings (Knoepp et al., 2004). The
concentration of this element was always significantly higher in the
burned area relative to the unburned area. Soil pH N 7.0 favours the sol-
ubility of K (Neary et al., 2005).

No significant differences occurred in Ca andMg between areas at 2,
5, 7, and 9months after the fire, and this was attributed to the same rea-
sonsmentioned previously for EC. CalciumandMg levels also decreased
each month from 0 through 7 months. Previous works have observed a
reduction of Ca and Mg elements in burned areas (Gomez-Rey et al.,
2013; Martin et al., 2012). However, the content of soil K was signifi-
cantly higher in the burned area for the entire studied period. This can
be attributed to the disturbance induced by fire, which affects plant nu-
trient uptake (Shenoy et al., 2013) and it is very likely that the uptake of
some elements were favoured relative to others (Barot et al., 2014). On
the other hand, antagonism among nutrients has implications on their
availability to plants (Brevik, 2009; Pii et al., 2015). According to
Wakeel (2013), Na competeswithK for plant uptake due to their similar
physicochemical characteristics. Sodium causes plant membrane depo-
larizationmaking it difficult for K to be taken up by roots. This may limit
K plant consumption and help create the significantly higher quantities
of this nutrient in the burned area relative to the unburned area on all
sampling dates. Overall there was a decrease in EC, Ca, Mg and Na
from 0 to 7 months after the fire. Nine months after the fire (sampling
date in January, winter time) there was a slight increase in these vari-
ables. This can be attributed to two factors: a) the continuation ofmicro-
bial activity during winter time, as previous works observed that there
is a continuation of microbial activity, even during
temperatures b 0 °C, and an increase in the nutrients available to plants
during the winter period in northern latitudes (Edwards et al., 2006);
and b) the decrease in plant nutrient consumption during winter time
due to low temperatures, root damage and reduced photosynthetic ac-
tivity from frost conditions (Larsen et al., 2012). These factors may have
contributed to the increase in nutrients observed 9months after the fire
in both the unburned and burned areas.

4.2. Minor elements

This grassland fire significantly reduced the amount of water ex-
tractable Al and Mn and did not impact water extractable Fe and Zn.
Fire normally decreases the availability ofminor elements due to the in-
crease of soil and ash pH,which reduces the solubility of these nutrients
(Ballard, 2000; Pereira et al., 2012, 2014b). The combusted organicmat-
ter incorporated into the soil has significant impacts on soil amount and
type of available nutrients in the period immediately after a fire (Bodí
et al., 2014). The pH levels observed in the unburned and burned soils
0 months after the fire were not favourable for the solubility of Al, Mn,
Fe and Zn. Aluminium is very mobile at pH b 5 and has a low solubility
in the range of pH 5 to 8 (Lee et al., 2002). This may explain the reduced
solubility of this element 0months after the fire, but does not clarify the
significant decrease in the burned area. Previous works observed that
the high presence of Ca, Mg, and K in solution can inhibit the solubility
of Al, and vice-versa, representing an antagonism between these ele-
ments on the soil exchange sites (Scholl et al., 2004). This may be the
cause of the decrease of soil Al in the burned area 0 months after the
fire, since Ca, Mg, and K increased significantly. Two months after the
fire there was an increase of soil Al content in the burned and unburned
areas and this may be attributed to plant consumption or leaching of Ca,
Mg, and K, which decreased significantly in both areas after 2 months.
This situation may have contributed to the increase of soluble Al.

Soil Mn has reduced solubility at the pH levels observed in the
burned and unburned areas. The pH range of Mn solubility is similar
to Al (Lee et al., 2002). At pH levels higher than 7–8 a strong decrease
in Mn solubility is observed (Zeng et al., 2011). This may explain the
low levels ofMn in solution. As in soil Al, the concentration of this nutri-
ent 0months after thefirewas significantly higher in the unburned than
the burned area despite pH levels being lower in the latter. The presence
of Ca and Mg in solution decreases the bioavailability of Mn (Fernando
and Lynch, 2015). The antagonism between Mn and major cations
may be the cause for the significant reduction of their contents in the
burned area, relative to the unburned area, since 0 months after the
fire, the amount of Ca andMg increased significantly, similar to the dis-
cussion in the case of Al. Two months after the fire the levels of Mn in-
creased in both areas, which was opposite to the significant decrease
observed for Ca and Mg.

This fire did not affect soil Fe concentration in the soil 0months after
the fire. This was attributed to the high pH not being favourable to Fe
solubility. According to Lee et al. (2002), the solubility of Fe is reduced
at pH N 4. As observed in this work, pH values in both areas were
above 7, inhibiting the presence of this metal in solution. An increase
of Fe in solution was also observed two months after the fire and this
may be attributed to antagonistic effects. As with Al and Mn, the pres-
ence of other ions in solution affects the availability of Fe. High quanti-
ties of Ca and K decrease the amount of Fe in solution (Varennes, 2003).

Finally, the fire did not have significant impacts on soil Zn. The pH
values observed in the burned and unburned areas did not favour the
solubility of this nutrient. Soil Zn is strongly reduced at pH N 5–6
(Speir et al., 2003). Thus, we assume that because of the pH levels ob-
served in the studied soils, the presence of Zn in solutionwas decreased.
Contrary to the other studiedmetals,we did not observe a significant in-
crease of Zn values in solution twomonths after thefire, the valueswere
very similar. Zinc availability is reduced by thepresence ofmajor cations
(Baker, 1978), Al, and Fe (Gibert et al., 2005) in solution. This fact,
coupledwith consumption by vegetation (Pereira et al., 2016a),may ex-
plain the lack of increase of this element 2 months after the fire. As in
the case of the major elements, there was a decrease in the content of
all minor elements (with the exception of Al) in both areas, which is at-
tributed to the reasonsmentioned above for themajor elements, name-
ly vegetation recuperation and soil leaching. An increase in the content
of all minor elements 9 months after the fire was also observed, which
may be attributed to the same causesmentioned in the previous section
for the major elements.

4.3. Soil ratios

The SPAR ratio did not show significant differences between the
burned and unburned areas. We observed a non-significant decrease
in SPAR 0 months after the fire that may be attributed to the increase
of soil Ca andMg and the lack of the fire's impact on Na. Despite the sig-
nificant increase of K, it was not enough to counterbalance the effects of
the bivalent cations. On the other sampling dates, the values of SPAR in
both areas were very similar. Previous works observed that SPAR in-
creased in soils after a rainfall (Francos et al., 2016) and in ash slurries
(Pereira et al., 2014b) in samples collected in areas affected by high se-
verity fires. Similar to SPAR, SAR levels are higher in soils burned in the
laboratory as compared to unburned samples (Inbar et al., 2014), and
increase with the temperature of combustion (Badia and Marti, 2003).
This situation was also observed in field fires by Blank et al. (2003).

The Ca:Mg ratio was significantly lower in the burned area 0 and
2 months after the fire. This showed that the impact of fire on soil Mg
was higher than on Ca. Despite this significant decrease in the burned
area on the first two sampling dates after the fire, the mean values ob-
served (5.27:1 and 6.01:1) were not considered high enough to induce
soil dispersion. Previous works observed that Ca:Mg ratios lower than
1:1 can reduce soil infiltration and hydraulic conductivity and degrade
soil structural stability (Bame et al., 2013). Thus, in this case, the poten-
tial effects on clay dispersion and soil structure may be reduced. To our
knowledge, no previous work has been carried out to investigate the
impacts of fire on the Ca:Mg ratio. Further studies are needed to under-
stand the impact of fire on this ratio given differing soil conditions and
fire severities.

Fire significantly increased the Ca:Al ratio 0 months after the fire.
This suggests that fire reduced the impact of Al. This was attributed to
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the large amounts of Ca released and the significant reduction observed
in water available Al content. We did not find values of Ca:Al below the
aluminium stress threshold (b1) (Levia et al., 2015) on any of the sam-
pling dates studied, thus therewas no risk of aluminium stress to plants.
Overall, decreasing SPAR with time was observed in both areas, while
no clear trend was observed for the other ratios. Nevertheless, a strong
reduction of Ca:Al 2 months after the fire was identified, which may be
attributed to the high plant consumption of Ca and the slight increase of
Al.

4.4. Overall discussion and implications for land management

This low-severity fire did not have direct or indirect negative im-
pacts on soil properties. Normally, spring grassland fires do not have a
major impact on soil properties and seed banks (Ruprecht et al.,
2013). The ash produced by the fire increased the amount of available
nutrients and acted as a mulch during the 2 months post-fire, which is
fundamental for plant reestablishment (Pereira et al., 2015a, 2015b).
This is very important since soils are highly vulnerable to erosion and
degradation in the immediate post-fire period. This vulnerability de-
creases as the vegetation recovers (Cerda, 1998). One and a half months
after the fire the vegetation recovered completely as a consequence of
the nutrient increases, spring season, and rainfall in the post-fire period
(Pereira et al., 2016a). The impacts of fire on soil properties weremainly
restricted to the immediate post-fire period, and this was due to the
high rainfall in the immediate period after the fire (Pereira et al., 2016a).

Spring grassland fires in these ecosystems are beneficial. In
Lithuania, the use of fire for management proposes is illegal and consid-
ered dangerous by Lithuanian authorities. In addition, the attitude re-
garding fire use is normally negative as a consequence of the lack of
knowledge concerning fire effects on ecosystems (Pereira et al.,
2016b). In this context, the application of controlled fires by farmers
after the winter to remove dried grasses and improve soil properties
for crop production is limited by the political context and stakeholders'
understanding about fire effects on the ecosystem. In the work of
Pereira et al. (2016b) farmers highlighted the importance of fire to
increase nutrients in the soil and felt fire was beneficial to agricultur-
al production. Previous works have highlighted the importance of
low-severity prescribed fires for forest landscape management and
to reduce the risk of large wildfires in other European grasslands
(Valko et al., 2016), the Mediterranean environment (Pinol et al.,
2005), and in temperate (Hancock et al., 2009) and boreal ecosys-
tems (Vanha-Majamaa et al., 2007). Removing political restrictions
would be important to return the ecological role of fire in boreal
grasslands (Pykala, 2000).

5. Conclusions

The studied fire did not have negative impacts on soil properties and
contributed to the increased availability of key soil nutrients, such as Ca,
Mg, and K, in the period immediately after the fire despite the slight de-
crease in pH values. This increasewasmainly limited to the first months
after the fire with the exception of K. The presence of minor nutrients in
solution was reduced because of pH levels, but also as a consequence of
antagonistic effects which limited their availability. Soil SPAR was not
affected by this fire and Ca:Mg decreased slightly, showing that the im-
pact of the post-fire soil solution on clay dispersion and soil aggregate
stability may not be a concern. Ca:Al increased immediately after the
fire, reducing soil acidity and the effects of Al on plant growth. Until
7 months after the fire a decrease in soil EC, Ca, Mg, and Na was ob-
served. Nine months after the fire an increase of these elements was
identified, which may be attributed to the continuation of microbiolog-
ical activity and reduced plant nutrient consumption during winter
time. Overall, the impacts of this fire were limited to the first few
months. Future research is needed to understand the long-term and re-
peated effects of fire in boreal grasslands.
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