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Abstract: Soil erosion in vineyards is considered as an environmental concern as it depletes soil 

fertility and causes damage in the fields and downstream. High soil and water losses decrease soil 

quality, and subsequently, this can reduce the quality of the grapes and wine. However, in 

specialized journals of viticulture and enology, soil erosion studies are not present. This paper 

surveys the soil erosion losses in the vineyards of Celler del Roure, Eastern Spain, as an example of 

Mediterranean vineyards. We applied rainfall simulation experiments (10 plots) using a small 

portable rainfall simulator and 55 mm h−1 in one hour to characterize soil erodibility, runoff 

discharge, and soil erosion rates under low-frequency–high-magnitude rainfall events at different 

positions along the vine inter-row areas. We found that 30% of the rainfall was transformed into 

superficial runoff, the sediment concentration was 23 g L−1, and the soil erosion rates reached 4.1 Mg 

ha−1 h−1; these erosion rates are among the highest found in the existing literature. We suggest that 

the vineyard management should be improved to reduce land degradation, and also should be 

shifted to sustainable agricultural production, which could improve grape and wine quality. 
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1. Introduction 

Soil quality is one of the most important parameters that affects the production of resources in 

agricultural fields [1,2], being especially important in vineyards and their final products such as 

grapes, wine or raisins [3,4]. Vineyards are commonly identified as terroir because they are also 

conditioned by climate and human variables as well [5,6]. However, vineyards’ soils are altered by 

intensive ploughing, the use of herbicides to keep the soil bare, and unsuitable land management 

strategies that favour soil contamination and nutrient impoverishment [7–9]. During the last two 

decades, the scientific community was aware of the driving factors that enhance soil degradation in 

vineyards, and soil erosion is a key factor in desertification processes in vineyards [10].  

In vineyards, the most common driving factors for soil erosion are high slope angles [11], a lack 

of vegetation cover [12,13], the use of heavy machinery [14], the trampling effect [15], spatial 

variability of soil properties [16], the age of the plantation [17,18], and extreme rainfall events [19,20].  
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However, although soil erosion in vineyards has been confirmed to be a concern for grape and 

wine quality and cost [21], in the scientific literature, soil erosion studies in viticultural and enological 

journals are scarce or non-existent [10]. Soil erosion affects plant vigor [22] and causes nutrient losses 

such as loss of nitrogen [23], which is assimilated by plants in the forms of ammonic nitrogen and 

nitric nitrogen [24]. According to some studies, nitrogen has a great influence on the growth of shoots 

and roots, inducing the growth of clusters due to larger numbers of flowers that form in its presence 

and reaching high concentrations in the leaves [25,26]. Also, the soil pH is modified following high 

peaks of surface flow [27], trending towards more acidic levels. These dynamics can also affect the 

composition of the grapes and the taste of the wine. Changes in soil pH influence plants' growth, as 

the pH of the soil determines the pH of the soil water that plants use [28,29]. Soil erosion also affects 

grape quality and water availability to the plants, because it reduces soil depth and infiltration 

capacity [30,31]. In addition, highly eroded soil horizons will have a direct impact on the organic 

matter content and micro-organism activities [32,33]. Therefore, table grapes, raisins, or wine quality 

are affected by the consequences of soil erosion. Hence, special attention is needed to avoid soil 

erosion in vineyards. However, as for other crop cultivations, such as olive or citrus orchards, the 

perception of several farmers and companies is that soil erosion is not an important concern at short–

medium terms [34,35]. A great amount of vine growers and wine producers are reticent to include 

soil erosion control measures such as vegetation cover, because they prefer to have tidy plantations 

and, therefore, they prefer to keep the soil bare [23,36]. The lack of interest of farmers and land owners 

in the damage soil erosion causes is the reason why this problem is still unsolved today worldwide 

[37]. 

Farmers, managers, and landowners need firm and easy-to-understand information to solve the 

environmental problems that soil erosion causes in vineyards. This is why the use of rainfall 

simulation experiments under low-frequency–high-magnitude rainfall events [38,39] can show the 

farmers that when soil is lost, there is also an economical loss due to the fact that soil is a 

nonrenewable resource that endangers the United Nations Sustainability Goals [40]. Therefore, the 

main aim of this research is to measure soil erosion along a vineyard to show the stakeholders the 

high water and soil losses that soil erosion causes. 

2. Materials and Methods 

2.1. Study Area 

The Celler del Roure winery and vineyards are located in Eastern Spain and produce Monastrell, 

Mandó, and other local grape varieties in the Moixent municipality, in the region of Valencia, Spain 

(Figure 1).  
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Figure 1. Study area (Celler del Roure, Valencia, Spain). Yellow symbols represent the location of each 

rainfall simulation experiment. 

The mean annual rainfall is 450 mm and the average mean temperature is 15 °C. The climate is 

defined by three to five drought months in summer (June–September), with a total mean yearly 

rainfall of about 350 mm year−1 and mean temperatures of 13.8 °C. From September to November, 

extreme rainfall events with intensities higher than 200 mm day−1 can be amounted and summer 

thunderstorms yearly can reach 30 mm in half an hour. The vineyards are located on Cretaceous 

limestones (hills) and Eocene marls (valley bottom), as well as on colluvium at the base of hillslopes. 

Soil can be classified as Terric Anthrosol with colluvic material, with an organic matter content of 1.5 

to 2% [41]. The soil texture is sandy loam. The vine plantation framework consists of 3.0 × 1.4 m. Prior 

to planting, soils were leveled and the plants were situated on an unsloping surface (terraces). In the 

soil profiles, we can distinguish a homogeneous horizon with some signals of compaction from a 40 

to 60 cm depth due to the intensive traffic caused after the tillage that occurs four times per year with 

a tractor. The upper part of the hills is covered with a pine forest (Pinus halepensis) and shrubs 

(Quercus coccifera and Juniperus oxycedrus), which are used as rangelands.  

2.2. Rainfall Simulations 

We used rainfall simulation experiments on small plots to measure soil detachment, and the 

whole slope that was planted with vines was surveyed. The total number of plots was 10 and they 

were located at different topographical positions.  

Ten rainfall simulation experiments were carried out at 55 mm h−1 rainfall intensity for one hour 

on circular paired plots (Figure 2A,B; 0.55 m in diameter, 0.25 m2) because it corresponds to the typical 

intensity of a thunderstorm in the region. The plant cover, the rock fragment cover, and the roughness 

coefficient were measured prior to rainfall experiments. The plant and the rock fragment cover were 

determined by measuring the presence (1) or the absence (0) in 100 points regularly distributed at 

each 0.25 m2 plot, and the total amount of 1-values was considered to be representative of each plot 

(Figure 2C) [42]. The roughness of the soil surface was determined in four 55 cm long adjacent 

transects located at the north, the south, the east, and the west of each plot using a 1 m long chain 

[43]. The chain was carefully placed on the irregular soil surface and the roughness coefficient (m m−1) 

was calculated as the total length of the chain that was distributed over a horizontal distance of 55 

cm. Soil samples (0–20 mm) were collected in points a few centimeters downslope from each study 
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plot, and the soil water content (%) was measured on a weight basis after drying the samples (105 °C, 

24 h). The soil organic matter was determined by the Walkley–Black method (Walkley and Black, 

1934). The bulk density was measured by the ring method for the 0–60 mm soil layer. For more 

information, we refer to [44,45].  

All the experiments were carried out during the summer drought, when the soil moisture was 

constant and low. At each plot, the runoff flow was collected at 1 min intervals using plastic bottles, 

and the water volume was measured. The runoff coefficient was calculated as the percentage of 

rainfall water running out of the circular plot. Runoff samples were desiccated (105 °C, 24 h) and the 

sediment yield was calculated on a weight basis in order to calculate the soil loss per area and time 

(Mg ha−1 h−1). The sediment concentration in the runoff was measured every five min and was 

determined by desiccation. During rainfall simulation experiments, the time to ponding (the time 

required for 50% of the surface to be ponded; Tp, s), the time to runoff initiation (Tr, s), and the time 

required by the runoff to reach the outlet (Tro, s) were recorded. The Tp was determined when the 

ponds were found, and the Tr was determined when those ponds were communicated by the runoff.  

Environmental plot characteristics were depicted in box plots using SigmaPlot 13.0 (Systact 

Software Inc., London, UK). The descriptive statistics of soil erosion results such as averages, 

standard deviation, coefficient of variation, maximum and minimum values, skewness, and kurtosis 

were also calculated using SigmaPlot 13.0 (Systact Software Inc.). All the locations of the experiments 

were registered with a GPS in the UTM coordinate system with ETRS 1989 datum. Maps with 

proportionated symbols for soil erosion, runoff coefficient, and sediment concentration were 

performed with ArcMap 10.5 (ESRI, Redlands, CA, USA). 

 

Figure 2. Rainfall simulator (A, B) and ring plot (C). 

3. Results and Discussion 

3.1. Plot Characteristics 

In Figure 3, the environmental plot characteristics were depicted in box plots to show the 

averages, median values, maximum and minimum values, and 5th and 95th percentiles. Mean slopes 
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are 10.1° and showed maximum values of 10° and minimum values of 1°. The vineyards are 

cultivated in low-inclined terraces, which should enhance the water retention capacity and delay or 

disrupt the overland flow; however, against heavy storms, the rapid peaks can be bigger than in 

sloping vineyards [30,46]. The rock fragment cover has an average value of 17%, and 25% and 12% 

as the maximum and minimum values, respectively. The percentage of rock fragments in the soil has 

to be considered when we observe soil erosion results, because other researchers have confirmed 

[42,47,48] that they can reduce soil loss, splash erosion, and runoff, and can enhance infiltration. In 

some viticulture areas such as the Mosel Valley (Germany) or the Montes de Málaga (Spain), rock 

fragments are also known to preserve soil temperatures, which, as farmers acknowledge, directly 

influence grape maturity, intensifying grapes' and wine's taste [49,50]. Low vegetation cover was 

registered in the studied vineyards on an average of only 1%. Therefore, we can consider the soil bare. 

The observed environmental plot characteristics show that the studied vineyards are cultivated on 

bare soils, which enhance soil erosion processes as other authors have confirmed in the past for other 

areas [12,51]. The maximum values of vegetation cover only reach 9%. The roughness is 1.11 mm 

mm−1 and showed maximum values of up to 1.15 mm mm−1. These values are typical for vineyards 

that are tilled by machinery, where the microtopographical changes play an important role in the 

connectivity processes at the pedon scale [52]. Mean bulk density values are 1.24 g cm−3, with 

maximum and minimum values of 1.26 and 1.19 g cm−3, respectively. Finally, the experiments confirm 

very low stable mean values of antecedent soil moisture of less than 7% because the experiments 

were conducted during the dry period in summer. 

 

Figure 3. Environmental plot characteristics depicted in box plots. 

3.2. Hydrological Soil Response 

After starting each rainfall simulation experiment, the time to ponding (Tp), the time to runoff 

generation (Tr), and the time to runoff in outlet (Tro) were registered to assess the hydrological soil 

response (Table 1). These hydrological parameters show the soil’s ability to conserve water for the 

plants, which is highly recommended in areas characterized by poor and shallow soils. As above-
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mentioned, a sufficient soil water content is one of the most important parameters to ensure a good 

productivity and quality of grapes and wines [53,54]. 

The mean Tp in the plots was found to be 251.5 ± 28 s, with a maximum value of 298 s and a 

minimum value of only 215 s. For Tr, values of 434.2 ± 27.1 s were registered, reaching 467 and 401 s 

as maximum and minimum values, respectively. Finally, Tro was 774.3 ± 32.1 s. The time needed to 

pond the surface, to allow for runoff generation, and to reach the outlet of the plot can be considered 

as fast in comparison to other land uses such as persimmons [55], apricots [45], almonds [56], or olive 

orchards [57]. 

Table 1. Time to ponding (Tp), time to runoff generation (Tr) and time to runoff in outlet (Tro). 

Results Tp (s) Tr (s) Tro (s) 

Average 251.5 434.2 774.3 

Standard deviation 28.0 27.1 32.1 

Maximum 298 467 824 

Minimum 215 401 726 

3.3. Soil Erosion Results 

In Table 2, soil erosion results are presented showing the main descriptive statistics and units. 

Moreover, in Figures 4–6, the spatial distribution was mapped.  

Table 2. Soil erosion results. R: Runoff; RC: Runoff coefficient; SC: Sediment concentration; Sy: 

Sediment yield; Se1: Soil erosion in g m−2 h−1; Se2: Soil erosion in Mg ha−1 h−1. 

Results R RC SC Sy Se1 Se2 

Units L % g L−1 g g m−2 h−1 Mg ha−1 h−1 

Average 4.45 32.4 22.9 102.4 409.4 4.1 

Standard deviation 0.4 3.0 3.0 19.9 79.8 0.8 

Maximum 5.2 38.1 28.1 138.2 552.7 5.5 

Minimum 3.9 28.5 19.5 78.6 314.5 3.1 

The total mean runoff (R) was 4.45 ± 0.4 L, reaching maximum values of 5.2 L and minimum 

values of 3.9 L. These results showed a mean runoff coefficient of 32.4 ± 3%, with maximum values 

of 38.1% and minimum values of 28.5%. The sediment concentration (SC) registered values of 22.9 ± 

3 g L−1, with maximum values of 28.1 and minimum values of 19.5 g L−1. Soil erosion (Se2) registered 

in the studied area was 4.1 ± 0.8 Mg ha−1 h−1. The maximum and minimum values were 5.5 Mg ha−1 

h−1 and 3.1 Mg ha−1 h−1, respectively. 

To compare these values in Table 3, the values of other soil erosion studies using the same 

rainfall simulator are summarized. We have to remark that soil erosion results were not related to 

the type of species. The main differences were the age of plantation and the land management. We 

observed that the studied vineyards registered the second highest soil erosion rate after the young 

plantations of vineyards (12.1 Mg ha−1 h−1, the highest), and very similar values were registered with 

the citrus orchards (3.8 Mg ha−1 h−1). Therefore, we can confirm that bare soils and the age of 

plantations are the most important driving factors that enhance soil erosion, as was mentioned above. 

Moreover, we can affirm that soil erosion in vineyards are high and intolerable. Soil erosion rates 

higher than 1 Mg ha−1 year−1 were not sustainable [58], and in the vineyards, soil erosion rates 

were >4.0 Mg ha−1 h−1. Therefore, all the above-mentioned problems related to soil erosion, such as 

soil nutrient losses, pH changes, decrease in plant vigor, and water scarcity could be reduced if we 

performed specific studies on soil conservation.  

Related to the runoff coefficient, although high in comparison with other study areas and land 

uses such as olive orchards, this study showed the lowest runoff coefficient. 

Table 3. Comparison of runoff coefficients (RC) and soil erosion rates (Se) with other studied land 

uses in the Valencia region using the same rainfall simulator. 
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Results RC Se 

Land use % Mg ha−1 h−1 

Persimmons (herbicides) [45] 40.4 0.91 

Citrus [60] 60.1 3.8 

Vineyards with straw mulch [44] 39.3 0.63 

Young vineyards [17] 72 12.6 

This research 32.4 4.1 

 

Figure 4. Spatial distribution of runoff coefficient. 

 

Figure 5. Spatial distribution of sediment concentration. 
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Figure 6. Spatial distribution of soil erosion rates. 

These high rates are also observed by other authors in French [61,62], Spanish [7,63], German 

[64,65], Hungarian [66], and Italian [8,12] vineyards, where subsequent problems related to grapes 

and wine quality and productivity occur. The use of tractors enhances the micro-topographical 

changes [67,68] and the flow path and subsequent connectivity processes are affected by this [69] and 

soil erosion features such as rills or sinks [70,71]. Therefore, the use of soil erosion control measures 

that protect uncovered soils and conserve grape and wine quality can be considered a priority [51,72]. 

However, sometimes water competition in semiarid environments such as the Mediterranean areas 

[73] or the farmers perception [36] can make its application difficult. Thus, other nature-based 

solutions [74] must be developed such as the use of rock fragment covers [42] or the use of agri-

spillways to canalize water and sediments [50]. Finally, we want to claim the importance of soil 

erosion within the viticulture knowledge, because soils are one of the most important part of the 

grape and wine production [5,31] and it should not be obviated by enologists, vine and wine growers. 

4. Conclusions 

Soil erosion rates in vineyards’ bare soils are not sustainable. In our study area, soil erosion rates 

of up to 4.1 Mg ha−1 h−1 were quantified using rainfall simulation experiments. Moreover, high water 

losses were also detected, reaching values of higher than 30%. Using proportional symbol maps, we 

observed high soil erosion rates at different slope positions and under distinct environmental plot 

characteristics. We conclude that bare soils are one of the most important driving factors that enhance 

soil erosion rates. After observing the high soil and water losses in the study, it must be stressed that 

special attention must be paid to the development of soil erosion control measures by vine and wine 

growers. 

Acknowledgments: This research was funded by the European Union Seventh Framework Program (FP7/2007-

2013) under grant No. 603498 (RECARE Project). We acknowledge the Winery Celler del Roure and his owner 

Pablo Calatayud for providing access to the study area. 

Author Contributions: Artemi Cerdà and Saskia Keesstra conceived, designed, and performed the experiments; 

Jesús Rodrigo-Comino analyzed the data and contributed reagents/materials/analysis tools. All the authors 

wrote the paper.  

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design 

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the 

decision to publish the results. 



Beverages 2018, 4, 31  9 of 12 

 

References 

1. Laudicina, V.A.; Palazzolo, E.; Catania, P.; Vallone, M.; García, A.D.; Badalucco, L. Soil quality indicators 

as affected by shallow tillage in a vineyard grown in a semiarid Mediterranean environment. Land Degrad. 

Dev. 2016, doi:10.1002/ldr.2581. 

2. Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J. Assessment and monitoring of 

soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 2016, 28, 128–141, 

doi:10.1002/ldr.2541. 

3. Salome, C.; Coll, P.; Lardo, E.; Villenave, C.; Blanchart, E.; Hinsinger, P.; Marsden, C.; Le Cadre, E. 

Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: The case of 

Mediterranean vineyards. Ecol. Indic. 2014, 43, 83–93, doi:10.1016/j.ecolind.2014.02.016. 

4. Calleja-Cervantes, M.E.; Fernández-González, A.J.; Irigoyen, I.; Fernández-López, M.; Aparicio-Tejo, P.M.; 

Menéndez, S. Thirteen years of continued application of composted organic wastes in a vineyard modify 

soil quality characteristics. Soil Biol. Biochem. 2015, 90, 241–254, doi:10.1016/j.soilbio.2015.07.002. 

5. Vaudour, E. The Quality of Grapes and Wine in Relation to Geography: Notions of Terroir at Various Scales. 

J. Wine Res. 2002, 13, 117–141, doi:10.1080/0957126022000017981. 

6. Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An overview of the recent approaches to terroir 

functional modelling, footprinting and zoning. SOIL 2015, 1, 287–312, doi:10.5194/soil-1-287-2015. 

7. García-Díaz, A.; Marqués, M.J.; Sastre, B.; Bienes, R. Labile and stable soil organic carbon and physical 

improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 2017, 621, 387–397, 

doi:10.1016/j.scitotenv.2017.11.240. 

8. Novara, A.; Gristina, L.; Saladino, S.S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and 

alternative soil managements in a Sicilian vineyard. Soil Tillage Res. 2011, 117, 140–147, 

doi:10.1016/j.still.2011.09.007. 

9. Biddoccu, M.; Ferraris, S.; Opsi, F.; Cavallo, E. Long-term monitoring of soil management effects on runoff 

and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil Tillage Res. 2016, 155, 176–

189, doi:10.1016/j.still.2015.07.005. 

10. Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 

2018, 179, 436–447, doi:10.1016/j.earscirev.2018.02.014. 

11. Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. CATENA 

2016, 141, 1–21, doi:10.1016/j.catena.2016.02.010. 

12. Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavallo, E. Temporal variability of soil management effects on soil 

hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil 

Tillage Res. 2017, 165, 46–58, doi:10.1016/j.still.2016.07.017. 

13. Marques, M.J.; Bienes, R.; Pérez-Rodríguez, R.; Jiménez, L. Soil degradation in central Spain due to sheet 

water erosion by low-intensity rainfall events. Earth Surf. Process. Landf. 2008, 33, 414–423, 

doi:10.1002/esp.1564. 

14. Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Comino, J.R.; Cacic, M.; Brezinscak, L.; Maletic, E.; 

Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 

2017, 10, 340, doi:10.1007/s12517-017-3105-y. 

15. Rodrigo-Comino, J.; Brings, C.; Iserloh, T.; Casper, M.C.; Seeger, M.; Senciales, J.M.; Brevik, E.C.; Ruiz-

Sinoga, J.D.; Ries, J.B. Temporal changes in soil water erosion on sloping vineyards in the Ruwer- Mosel 

Valley. The impact of age and plantation works in young and old vines. J. Hydrol. Hydromech. 2017, 65, 402, 

doi:10.1515/johh-2017-0022. 

16. Ramos, M.C. Martinez-Casasnovas, J.A. Erosion rates and nutrient losses affected by composted cattle 

manure application in vineyard soils of NE. Catena 2006, 68, 177–185. 

17. Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; 

Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are 

enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275, 

doi:10.1016/j.jenvman.2017.07.036. 

18. Rodrigo Comino, J.; Brevik, E.; Cerdà, A. The age of vines as a controlling factor of soil erosion processes 

in Mediterranean vineyards. Sci. Total Environ. 2017, doi:10.1016/j.scitotenv.2017.10.204. 

19. Martínez-Casasnovas, J.A.; Ramos, M.C. The cost of soil erosion in vineyard fields in the Penedès–Anoia 

Region (NE Spain). CATENA 2006, 68, 194–199, doi:10.1016/j.catena.2006.04.007. 



Beverages 2018, 4, 31  10 of 12 

 

20. Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. On-site effects of concentrated flow erosion in 

vineyard fields: Some economic implications. CATENA 2005, 60, 129–146, doi:10.1016/j.catena.2004.11.006. 

21. Galati, A.; Gristina, L.; Crescimanno, M.; Barone, E.; Novara, A. Towards more efficient incentives for agri-

environment measures in degraded and eroded vineyards. Land Degrad. Dev. 2015, 26, 557–564, 

doi:10.1002/ldr.2389. 

22. Novara, A.; Pisciotta, A.; Minacapilli, M.; Maltese, A.; Capodici, F.; Cerdà, A.; Gristina, L. The impact of 

soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and 

remote sensing approaches. Sci. Total Environ. 2018, 622–623, 474–480, doi:10.1016/j.scitotenv.2017.11.272.. 

23. Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. 

Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An 

experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193, doi:10.1016/j.agee.2018.01.015. 

24. Rey-Caramés, C.; Tardaguila, J.; Sanz-Garcia, A.; Chica-Olmo, M.; Diago, M.P. Quantifying spatio-temporal 

variation of leaf chlorophyll and nitrogen contents in vineyards. Biosyst. Eng. 2016, 150, 201–213, 

doi:10.1016/j.biosystemseng.2016.07.015. 

25. Vendramini, C.; Beltran, G.; Nadai, C.; Giacomini, A.; Mas, A.; Corich, V. The role of nitrogen uptake on 

the competition ability of three vineyard Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2017, 258, 

1–11, doi:10.1016/j.ijfoodmicro.2017.07.006. 

26. Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Gonzalo-Diago, A.; Moreno-Simunovic, Y.; Martínez-Gil, A.M. 

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in 

Cabernet Sauvignon vineyard. LWT—Food Sci. Technol. 2017, 75, 147–154, doi:10.1016/j.lwt.2016.08.039. 

27. Rodrigo Comino, J.; Seeger, M.; Senciales, J.M.; Ruiz-Sinoga, J.D.; Ries, J.B. Variación espacio-temporal de 

los procesos hidrológicos del suelo en viñedos con elevadas pendientes (Valle del Ruwer-Mosela, 

Alemania). Cuad. Investig. Geogr. 2016, 42, 281–306, doi:10.18172/cig.2934. 

28. Peña, N.; Antón, A.; Kamilaris, A.; Fantke, P. Modeling ecotoxicity impacts in vineyard production: 

Addressing spatial differentiation for copper fungicides. Sci. Total Environ. 2018, 616–617, 796–804, 

doi:10.1016/j.scitotenv.2017.10.243. 

29. Ozpinar, S.; Ozpinar, A.; Cay, A. Soil management effect on soil properties in traditional and mechanized 

vineyards under a semiarid Mediterranean environment. Soil Tillage Res. 2018, 178, 198–208, 

doi:10.1016/j.still.2018.01.004. 

30. Sofia, G.; Tarolli, P. Hydrological response to ~30 years of agricultural surface water management. Land 

2017, 6, 3, doi:10.3390/land6010003. 

31. Vaudour, E.; Leclercq, L.; Gilliot, J.M.; Chaignon, B. Retrospective 70 y-spatial analysis of repeated vine 

mortality patterns using ancient aerial time series, Pléiades images and multi-source spatial and field data. 

Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 234–248, doi:10.1016/j.jag.2017.02.015. 

32. Fernández-Calviño, D.; Martín, A.; Arias-Estévez, M.; Bååth, E.; Díaz-Raviña, M. Microbial community 

structure of vineyard soils with different pH and copper content. Appl. Soil Ecol. 2010, 46, 276–282, 

doi:10.1016/j.apsoil.2010.08.001. 

33. Bruggisser, O.T.; Schmidt-Entling, M.H.; Bacher, S. Effects of vineyard management on biodiversity at three 

trophic levels. Biol. Conserv. 2010, 143, 1521–1528, doi:10.1016/j.biocon.2010.03.034. 

34. Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and 

farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, 

Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58, doi:10.1016/j.agee.2018.02.015. 

35. Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central 

Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2016, 1–16, 

doi:10.1007/s11368-016-1589-9. 

36. Marques, M.J.; Bienes, R.; Cuadrado, J.; Ruiz-Colmenero, M.; Barbero-Sierra, C.; Velasco, A. Analysing 

perceptions attitudes and responses of winegrowers about sustainable land management in Central Spain. 

Land Degrad. Dev. 2015, 26, 458–467, doi:10.1002/ldr.2355. 

37. Martínez-Casasnovas, J.A.; Ramos, M.C.; Cots-Folch, R. Influence of the EU CAP on terrain morphology 

and vineyard cultivation in the Priorat region of NE Spain. Land Use Policy 2010, 27, 11–21, 

doi:10.1016/j.landusepol.2008.01.009. 

38. Cerdà, A. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil 

Res. Rehabil. 1997, 11, 163–176, doi:10.1080/15324989709381469. 



Beverages 2018, 4, 31  11 of 12 

 

39. Cerdà, A. Simuladores de lluvia y su aplicación a la Geomorfología: Estado de la cuestión. Cuad. Investig. 

Geogr. 1999, 25, 45–84. 

40. Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; 

Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of 

the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128, doi:10.5194/soil-2-111-2016. 

41. IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report; FAO: 

Rome, Italy, 2014. 

42. Rodrigo-Comino, J.; García-Díaz, A.; Brevik, E.C.; Keestra, S.D.; Pereira, P.; Novara, A.; Jordán, A.; Cerdà, 

A. Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. Eur. J. Soil Sci. 

2017, 68, 864–872, doi:10.1111/ejss.12483. 

43. Saleh, A. Soil roughness measurement: Chain method. J. Soil Water Conserv. 1993, 48, 527–529. 

44. Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of 

barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. 

Sci. Total Environ. 2016, 547, 323–330, doi:10.1016/j.scitotenv.2015.12.076. 

45. Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, 

A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 

551–552, 357–366, doi:10.1016/j.scitotenv.2016.01.182. 

46. Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of terraced 

slopes to a very intense rainfall event and relationships with land abandonment: A case study from Cinque 

Terre (Italy). Land Degrad. Dev. 2016, doi:10.1002/ldr.2672. 

47. Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 2001, 

52, 59–68, doi:10.1046/j.1365-2389.2001.00354.x. 

48. Jomaa, S.; Barry, D.A.; Brovelli, A.; Heng, B.C.P.; Sander, G.C.; Parlange, J.-Y.; Rose, C.W. Rain splash soil 

erosion estimation in the presence of rock fragments. CATENA 2012, 92, 38–48, 

doi:10.1016/j.catena.2011.11.008. 

49. Rodrigo Comino, J.; Lassu, T.; González, J.M.S.; Sinoga, J.D.R.; Seeger, K.M.; Ries, J.B. Estudio de procesos 

geomorfodinámicos en campos cultivados de viñedos sobre laderas en pendientes en el valle del Ruwer 

(Alemania). Cuad. Geogr. 2015, 54, 6–26. 

50. Rodrigo-Comino, J.; Wirtz, S.; Brevik, E.C.; Ruiz-Sinoga, J.D.; Ries, J.B. Assessment of agri-spillways as a 

soil erosion protection measure in Mediterranean sloping vineyards. J. Mt. Sci. 2017, 14, 1009–1022, 

doi:10.1007/s11629-016-4269-8. 

51. Blavet, D.; De Noni, G.; Le Bissonnais, Y.; Leonard, M.; Maillo, L.; Laurent, J.Y.; Asseline, J.; Leprun, J.C.; 

Arshad, M.A.; Roose, E. Effect of land use and management on the early stages of soil water erosion in 

French Mediterranean vineyards. Soil Tillage Res. 2009, 106, 124–136, doi:10.1016/j.still.2009.04.010. 

52. López-Vicente, M.; Á lvarez, S. Influence of DEM resolution on modelling hydrological connectivity in a 

complex agricultural catchment with woody crops. Earth Surf. Process. Landf. 2018, doi:10.1002/esp.4321. 

53. Alagna, V.; Di Prima, S.; Rodrigo-Comino, J.; Iovino, M.; Pirastru, M.; Keesstra, S.D.; Novara, A.; Cerdà, A. 

The Impact of the Age of Vines on Soil Hydraulic Conductivity in Vineyards in Eastern Spain. Water 2018, 

10, doi:10.3390/w10010014. 

54. Ramos, M.C. Soil water content and yield variability in vineyards of Mediterranean northeastern Spain 

affected by mechanization and climate variability. Hydrol. Process. 2006, 20, 2271–2283, 

doi:10.1002/hyp.5990. 

55. Cerdà, A.; González-Pelayo, Ó .; Giménez-Morera, A.; Jordán, A.; Pereira, P.; Novara, A.; Brevik, E.C.; 

Prosdocimi, M.; Mahmoodabadi, M.; Keesstra, S.; et al. Use of barley straw residues to avoid high erosion 

and runoff rates on persimmon plantations in Eastern Spain under low frequency–high magnitude 

simulated rainfall events. Soil Res. 2016, 54, 154–165. 

56. Martínez-Hernández, C.; Rodrigo-Comino, J.; Romero-Díaz, A. Impact of lithology and soil properties on 

abandoned dryland terraces during the early stages of soil erosion by water in south-east Spain. Hydrol. 

Process. 2017, 31, 3095–3109, doi:10.1002/hyp.11251. 

57. Taguas, E.V.; Ayuso, J.L.; Pérez, R.; Giráldez, J.V.; Gómez, J.A. Intra and inter-annual variability of runoff 

and sediment yield of an olive micro-catchment with soil protection by natural ground cover in Southern 

Spain. Geoderma 2013, 206, 49–62, doi:10.1016/j.geoderma.2013.04.011. 

58. Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. 

Earth-Sci. Rev. 2009, 94, 23–38, doi:10.1016/j.earscirev.2009.02.003. 



Beverages 2018, 4, 31  12 of 12 

 

59. Taguas, E.V.; Guzmán, E.; Guzmán, G.; Vanwalleghem, T.; Gómez, J.A. Characteristics and importance of 

rill and gully erosion: A case study in a small catchment of a marginal olive grove. Cuad. Investig. Geogr. 

2015, 41, 107–126, doi:10.18172/cig.2644. 

60. Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Novara, A.; Pulido, M.; Kapovic Solomun, M.; 

Keesstra, S. Policies can help to apply successful strategies to control soil and water losses. The case of 

chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy. 2018, in press. 

61. Quiquerez, A.; Chevigny, E.; Allemand, P.; Curmi, P.; Petit, C.; Grandjean, P. Assessing the impact of soil 

surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, 

Burgundy, France). Catena 2014, 116, 163–172, doi:10.1016/j.catena.2013.12.002. 

62. Chevigny, E.; Quiquerez, A.; Petit, C.; Curmi, P. Lithology, landscape structure and management practice 

changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. CATENA 2014, 121, 

354–364, doi:10.1016/j.catena.2014.05.022. 

63. Ruiz-Colmenero, M.; Bienes, R.; Marques, M.J. Soil and water conservation dilemmas associated with the 

use of green cover in steep vineyards. Soil Tillage Res. 2011, 117, 211–223, doi:10.1016/j.still.2011.10.004. 

64. Hacisalihoglu, S. Determination of soil erosion in a steep hill slope with different land-use types: A case 

study in Mertesdorf (Ruwertal/Germany). J. Environ. Biol. Acad. Environ. Biol. India 2007, 28, 433–438. 

65. Rodrigo Comino, J.; Bogunovic, I.; Mohajerani, H.; Pereira, P.; Cerdà, A.; Ruiz-Sinoga, J.; Ries, J. The Impact 

of Vineyard Abandonment on Soil Properties and Hydrological Processes. Vadose Zone J. 2017, 

doi:10.2136/vzj2017.05.0096. 

66. Lieskovský, J.; Kenderessy, P. Modelling the effect of vegetation cover and different tillage practices on soil 

erosion in vineyards: A case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degrad. Dev. 2014, 25, 

288–296, doi:10.1002/ldr.2162. 

67. Arnaez, J.; Lasanta, T.; Ruiz-Flaño, P.; Ortigosa, L. Factors affecting runoff and erosion under simulated 

rainfall in Mediterranean vineyards. Soil Tillage Res. 2007, 93, 324–334, doi:10.1016/j.still.2006.05.013. 

68. Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of tractor traffic on spatial variability of soil strength and water 

content in grass covered and cultivated sloping vineyard. Soil Tillage Res. 2005, 84, 127–138, 

doi:10.1016/j.still.2004.10.003. 

69. López-Vicente, M.; Quijano, L.; Palazón, L.; Gaspar, L.; Navas, A. Assessment of soil redistribution at 

catchment scale by coupling a soil erosion model and a sediment connectivity index (central spanish pre-

pyrenees). Cuad. Investig. Geogr. 2015, 41, 127–147, doi:10.18172/cig.2649. 

70. Quiquerez, A.; Brenot, J.; Garcia, J.-P.; Petit, C. Soil degradation caused by a high-intensity rainfall event: 

Implications for medium-term soil sustainability in Burgundian vineyards. CATENA 2008, 73, 89–97, 

doi:10.1016/j.catena.2007.09.007. 

71. Paroissien, J.-B.; Lagacherie, P.; Le Bissonnais, Y. A regional-scale study of multi-decennial erosion of 

vineyard fields using vine-stock unearthing–burying measurements. CATENA 2010, 82, 159–168, 

doi:10.1016/j.catena.2010.06.002. 

72. Morvan, X.; Naisse, C.; Malam Issa, O.; Desprats, J.F.; Combaud, A.; Cerdan, O. Effect of ground-cover type 

on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use Manag. 2014, 30, 

372–381, doi:10.1111/sum.12129. 

73. Ruiz-Sinoga, J.D.; Garcia-Marin, R.; Gabarron-Galeote, M.A.; Martinez-Murillo, J.F. Analysis of dry periods 

along a pluviometric gradient in Mediterranean southern Spain. Int. J. Climatol. 2012, 32, 1558–1571, 

doi:10.1002/joc.2376. 

74. Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of 

nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–

611, 997–1009, doi:10.1016/j.scitotenv.2017.08.077. 

©  2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


