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• Structure-from-Motion is able to detect
topographic changes at very fine scales.

• Smartphones can be used to obtain reli-
able image datasets for Structure-from-
Motion.

• Sediment connectivity plays a key role
in estimating eroded materials.
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Soilwater erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention,
because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant
problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure
of collecting data and reporting results, mainly due to a variability among the measurement methods applied.
Given this issue and the seriousness of soilwater erosion inMediterranean vineyards, thisworks aims to quantify
the soil losses caused by simulated rainstorms, and compare them with each other depending on two different
methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital
Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The ex-
periments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales.
SfM datawere obtained fromone reflex camera and a smartphone built-in camera. An index of sediment connec-
tivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the
smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of esti-
mating soil loss. Furthermore, soil loss estimatedwith the surface elevation change-based method resulted to be
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Fig. 1. Examples of soil water erosion processes caused by a
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of the same order ofmagnitude of that one obtainedwith rainfall simulation, as long as the sediment connectivity
within the plotwas considered. High-resolution topography derived from SfM revealed to be essential in the sed-
iment connectivity analysis and, therefore, in the estimation of erodedmaterials, when comparing them to those
derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as
much satisfying results as those derived from reflex cameras is a high value added for using SfM.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Throughout theworld, soil erosion bywater is a serious problem, es-
pecially in semi-arid and semi-humid areas (Cerdà et al., 2009, 2015;
Cerdan et al., 2010; Garcìa-Ruiz, 2010; Ligonja and Shrestha, 2015;
Novara et al., 2016;Taguas et al., 2015; Rodrigo Comino et al., 2016a). Al-
though soil erosion bywater consists of physical processes that vary sig-
nificantly in severity and frequency according to when and where they
occur, they are also strongly influenced by anthropic factors such as
land-use changes on large scales and unsustainable farming practices
(Cerdà, 2000; León et al., 2015; López-Vicente et al., 2015;
Ochoa-Cueva et al., 2015; Montgomery, 2007; Mwango et al., 2016;
Nanko et al., 2015; Tarolli et al., 2014). This has led to the definition of
‘accelerated’ soil erosion as being the result of human impact on the
landscape (Tarolli and Sofia, 2016) and this is found in all the continents
(Borrelli et al., 2015; Cao et al., 2015; Gessesse et al., 2015; Rodrigo
Comino et al., 2016b).

The impact of soil erosion on modern society has required to set
threshold values against which to assess the monitoring of soil data,
especially in agriculture (Montgomery, 2007). Among the cultivated
lands, vineyards merit a particular attention, because, aside from
representing one of themost important crops in terms of income and em-
ployment, they also constitute, for theMediterranean areas, a form of ag-
ricultural land use that causes the highest soil losses (Cerdà and Doerr,
2007; Cerdan et al., 2010; Martínez-Casasnovas and Sánchez-Bosch,
2000; Prosdocimi et al., 2016a; Raclot et al., 2009; Rodrigo Comino et al.,
2015; Rodrigo Comino et al., 2016c). One of the main reasons for this is
the bare soil under the vines that is exposed to high intensity rainfall
events, mainly concentrated in spring, autumn andwinter, which charac-
terize the Mediterranean climate (Arnáez et al., 2007; Borga et al., 2011;
Garcìa-Ruiz, 2010; Prosdocimi et al., 2016a). For this cultivation, the two
most common soil management techniques are considered to be tillage,
where the weeds are usually removed mechanically, and no-tillage,
where the weeds are usually removed chemically (Novara et al., 2011;
Raclot et al., 2009), and both of them generally turn out in bare soil man-
agement during the whole year. Extreme rainfall events that occur in the
Mediterranean area are able to cause significant soil water erosion pro-
cesses, especially when no protective material covers the soil (Fig. 1)
(Bisantino et al., 2015; Keesstra et al., 2016; Novara et al., 2016;
40mm in 30min thunderstorm occu
Prosdocimi et al., 2016c). However, to reduce the high soil erosion rates,
more conservation-minded soil management practices have also been
used such as mulching (Cerdà et al., 2015; Costantini et al., 2015; Jordán
et al., 2011; Prosdocimi et al., 2016b, 2016c), cover crops (Novara et al.,
2011), rock fragments (Blavet et al., 2009), natural grassing (Grimaldi et
al., 2015; Mekonnen et al., 2015a; Mekuria et al., 2016; Raclot et al.,
2009) and geotextiles (Giménez Morera et al., 2010; Mekonnen et al.,
2015b; Mengistu et al., 2016). Furthermore, new approaches to evaluate
incentives for the adoption of agri-environment measures in degraded
and eroded vineyards have been implemented (Galati et al., 2015) and
mulching is one of those successful strategies (Prosdocimi et al., 2016c).

Another issue related to soil water erosion in Mediterranean
vineyards is the lack of a standardized procedure of collecting data
and reporting results, mainly due to a great variability among the mea-
surement methods applied to quantify it (Prosdocimi et al., 2016a;
García-Ruiz et al., 2015). This induces difficulties in comparing data
coming from different studies and obtained with different methodolo-
gies. Based on the paper review of Prosdocimi et al. (2016a), six differ-
ent methodologies to assess soil water erosion in vineyards have been
identified: (i) experimental plot stations under simulated or natural
rainfalls, (ii) erosion markers, (iii) models, (iv) the surface elevation
change-based methods, (v) geochemical methods, and (vi) carbon sta-
ble isotopes. This works focuses on the use of plot stations under simu-
lated rainfall and on the surface elevation change-based method.
Rainfall simulation has become a very effective technique for assessing
soil erosion, particle detachment and overland flow at very fine scales
(Arnáez et al., 2007; Cerdà et al., 1997; Iserloh et al., 2013; Rodrigo
Comino et al., 2016b). Several types and designs of rainfall simulators
have been realized to meet the objectives of researchers (Iserloh et al.,
2013; Lassu et al., 2015). In particular, the advantages of using a portable
rainfall simulator are: i) its versatility, ii) low cost and easy operation,
and iii) capability of obtaining data under controlled conditions and
over relatively short periods of time. The surface elevation change-
basedmethod is able to detect the topographic changes over time. It re-
lies on Digital Elevation Models (DEMs) that can be used as basic topo-
graphic information to derivemorphometric attributes and quantify soil
erosion and deposition rates (Martínez-Casasnovas and Sánchez-Bosch,
2000; Martínez-Casasnovas et al., 2002; Prosdocimi et al., 2015). Re-
mote-sensing technologies have proven to facilitate significantly the
rred in mid-June 2015 in the study area. The white arrows point out a gully (a) and a rill (b).
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creation of high-resolution DEMs (Aucelli et al., 2016; Tarolli, 2014;
Tarolli et al., 2015), and the availability of DEMs at multiple scales in
terms of resolution but also temporal coverage is becoming essential
to the understanding of global issues, such sediment production and an-
thropogenic changes to the Earth system, among others (Sofia et al.,
2016). The recent development of the photogrammetric technique
‘Structure-from-Motion’ (SfM) has confirmed to represent a valid and
cheaper alternative to the established airborne and terrestrial lidar
(Light Detection and Ranging) technology for measuring soil surface
changes in different environments (Dandois and Ellis, 2013; Eltner et
al., 2015; James and Robson, 2012; Masiero et al., 2015; Piermattei et
al., 2016; Westoby et al., 2012; Whitehead et al., 2013; Woodget et al.,
2015). All this information can shed light into the connectivity within
the soil and water losses (López-Vicente et al., 2016; Marchamalo et
al., 2016; Masselink et al., 2016).

The growing interest for SfM has been enhanced by the fact that it is
a user-friendly technique, and that it can also rely on smartphone built-
in cameras (Masiero and Vettore, 2016; Micheletti et al., 2014;
Prosdocimi et al., 2015) and on the diffusion of unmanned aerial vehi-
cles (UAVs) (Chen et al., 2015; Colomina and Molina, 2014).

Given the seriousness of soilwater erosion inMediterranean agricul-
tural lands and the issue of putting data obtained with different meth-
odologies in relation to each other, this works intends to quantify the
soil losses caused by simulated rainstorms, and compare them with
each other depending on two different methodologies used: (i) rainfall
simulation and (ii) surface elevation change-based, relying on high-res-
olution DEMs derived from SfM. Furthermore, this work aims to com-
pare the results obtained from SfM with each other, depending on the
type of camera used. The objectives are pursued by carrying out the ex-
periments in a typicalMediterranean vineyard, under tillage conditions,
located within the province of Valencia (Spain), at very fine scales
(0.25 m2).
Fig. 2. Visual perspective of the tilled inter-rows where the tractor wheel tracks are well visib
following the 40 mm in 30 min thunderstorm occurred in mid-June 2015.
2. Material and methods

2.1. Study area

The study area consists in a 25-year-old vineyard, located at El Celler
del Roure in Les Alcusses de Moixent, within the Canyoles river water-
shed in the province of Valencia (La Costera District, eastern Spain)
(38° 48′ 33.12″ N, 0° 49′ 3.27″ O). Vines are located parallel to the con-
tour lines and the inter-rows,which are about 2.5mwide, are artificially
maintained bare during the whole year through tillage operations car-
ried out with a Landini Rex 95 tractor which adopts a tooth arrow as
farm implement. The portion affected by the tractorwheel tracks results
to be about 36% of the total inter-row area (Fig. 2). Climate is typically
Mediterranean with 3–5 months of summer drought (June–Septem-
ber). Mean annual rainfall is about 350 mm yr−1. Rainfall is distributed
among autumn, winter and spring, with maximum peak rainfall inten-
sities during the autumn season, where values higher of
200 mm day−1 were recorded during the last 50 years. Mean annual
temperature is about 13.8 °C while the hottest month (August) has av-
erage temperatures of about 23 °C. The parent materials in this area be-
long to Cretaceous limestones and Tertiary Marly deposits that develop
Typic Xerothent soils (Soil Survey Staff, 1998). The soils are character-
ized by low levels of soil organic matter (b1%) due to the millennia of
agricultural use and soil disturbance (ploughing), basic pH (8)
(Prosdocimi et al., 2016b), sandy loam soil textures (clay 19.3%, silt
13.4% and sand 67.3%), and low bulk density (1.109 g cm−3).

To better characterize the climate of our study site, Walter-Lieth cli-
mate diagram (Walter and Lieth, 1960) has been obtained using data
derived from Ontinyent climate station as it is the one with the longest
records (29 years) closest to the study site (about 17 km) (Fig. 3). The
diagram displays monthly averages for temperature and precipitation
over a year. When the precipitation curve undercuts the temperature
le (black arrows) (a). The white arrows stress the soil sediments that were transported
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curve, the area in between them indicates dry season.When the precip-
itation curve supersedes the temperature curve, the area in between
them indicates moist season. For further information, readers may
refer to http://www.globalbioclimatics.org/.

2.2. Experimental plot design

Four circular steel plots (0.25 m2) were located in the bare inter-
rows of the vines managed with conventional tillage, and are referred
to in the text as 1, 2, 3 and 4. Each plot was placed in a different inter-
row and had an outlet, which allowed to converge and collect the sur-
face runoff samples during the runoff simulation experiments. For
each plot, five targets (SfM-targets), made of black andwhite polythene
squares, were used: four (5.5 cm× 5.5 cm) were placed outside the cir-
cular plots and one (2.5 cm × 2.5 cm) inside the plot (Fig. 4).

SfM-targets centroidswere surveyed using a Topcon GRS-1 rover re-
ceiver running in real time kinematic (RTK) mode. In addition, other
thirteen ground-control points (GCPs) were surveyed in the immediate
neighborhood of each plot.

2.3. Rainfall simulation

A one-nozzle (Hardi-1553-12) rainfall simulator was used to repro-
duce seven rainstorms at 55 mm h−1 rainfall intensity for one hour on
the 4 circular plots of 0.25m2. For plots 1, 2 and 3, a single rainfall exper-
iment was carried out, while for plot 4, four rainfall experiments were
carried out during four consecutive days, and are referred to in the
text as 4A, 4B, 4C and 4D. Storms similar to the ones simulated have a
return period of 10 years in the study area (Cerdà, 1996; Prosdocimi
et al., 2016b). The rainfall simulator used was the one described by
Cerdà et al. (1997) because it revealed to be effective in rugged terrain
conditions proving to give good results in semi-arid environments. Its
basic components are a nozzle, a structure that holds the nozzle, the
connection with the water supply, the pumping system and a tarpaulin
to protect the rainfall simulation from wind. As the nozzle was kept at
about 2 m height over a plane surface, the 0.25 m2 plots were
established at the centre of the 1 m2 sprinkling area, to avoid border in-
terference. Readers are referred to Cerdà et al. (1997) and Iserloh et al.
(2013) for a further description of the rainfall simulator used and
Cerdà (1996, 1997) for more information about the distribution of
Fig. 3.Walter-Lieth climate diagram (Walter and Lieth, 1960) computed for theOntinyent
climate station as it is the one with the longest records (29 years) closest to our study site
(about 17 km). The information above the panel corresponds to station location, the
period of years recorded, the mean annual temperature and the mean annual
precipitation.
rainfall parameters. Surface runoff from the plots were collected and
measured at 1-min intervals during each simulated rainfall event.
Every tenth 1-min runoff sample was collected for laboratory analysis
in order to determine sediment concentration, that was obtained after
the desiccation of the samples in the laboratory. Then, runoff rates and
sediment concentration were used to calculate the soil loss, runoff, run-
off coefficient, and erosion rates.

2.4. Surface elevation changes through Structure-from-Motion

Photographs of each plot were taken using two different types of
camera: (i) a standalone digital reflex camera (Nikon D3000 at
10.2 MP resolution, set at a focal length of 35 mm) and (ii) a
smartphone, precisely a BQ Aquaris E5, built-in camera (13 MP resolu-
tion) with both automatic focusing and exposure enabled. The choice
of using two cameras was due to test the effectiveness of SfM, also
when it relies on an image dataset derived from a smartphone. Twenty
photographs were taken before and after the rainfall simulation using
each camera. A 1 m high support having two boxes, that were 0.3 m
far from each other and capable of holding the cameras, was used to
take the pictures (Fig. 5). Photographs were taken inside the rainfall
simulator covered by the tarpaulin to have a homogeneous light over
the plots.

The SfM technique was then used to obtain three-dimensional (3D)
georeferenced point clouds and to generate 0.01m resolution DEMs for
each plot. The thirteen points collected in the immediate neighborhood
of each plot (see the previous chapter Experimental plot design) were
used as GCPs to assess the accuracy and precision of the DEMs through
the computation of the root-mean-square-error (RMSE), mean error,
and standard deviation of error (SDE). The working principles of SfM
are similar to those of stereoscopic photogrammetry, namely that the
3Dmodel can be created from overlapping, offset images. However, un-
like traditional photogrammetry, in which either the position of the
camera or the positions of some points are known prior to scene recon-
struction (Fonstad et al., 2013; Verhoeven et al., 2012; Westoby et al.,
2012), in the SfM, matches are made between points across many pho-
tographswithout prior knowledge of the camera position (Lowe, 2004).

The images acquired were processed using the commercial software
Agisoft PhotoScan®, as already successfully considered in different analy-
ses (Doneus et al., 2011; Javernick et al., 2014; Piermattei et al., 2016;
Prosdocimi et al., 2015; Verhoeven et al., 2012; Woodget et al., 2015). A
custom algorithm similar to the Lowe's (2004) Scale Invariant Feature
Transform (SIFT) object recognition system was used by the software to
determine the 3D location of matching features in multiple images.
Then, camera positionwas calculated by estimating the camera's intrinsic
(focal length, principal point, and lens distortion) and extrinsic (projec-
tion centre location and the six exterior orientation parameters that de-
fine the image) orientation parameters. This was done by using a
bundle-adjustment algorithm (Javernick et al., 2014; Robertson and
Cipolla, 2009; Verhoeven et al., 2012). Afterwards, the software created
a dense surface, usually referred to as mesh, by using these parameters
and a dense multi-view stereo reconstruction (DMVR) (Agisoft, 2016).
The mesh was generated in a relative ‘image-space’ coordinate system
(Westoby et al., 2012), and therefore, it required to undergo a linear sim-
ilarity transformationusing sevenparameters (three translation, three ro-
tation, and one scaling), based on known GCPs, to be transformed to an
absolute coordinate system. The GCPs corresponded to the SfM-targets
centroids, whose x, y and z coordinates were previously recorded with
Topcon GRS-1. As the linear similarity transformation could not remove
non-linear model misalignments (Woodget et al., 2015), an optimization
transformation method was applied to minimize geometric distortions
within the mesh (Agisoft, 2016). Thereafter the mesh was rebuilt and
the 3D georeferenced point could be exported. The georeferenced point
clouds are referred to in the text as GEOPreNKN and GEOPostNKN, for
those derived from the Nikon camera before and after the rainfall simula-
tion, respectively, and GEOPrePHO and GEOPostPHO for those derived from

http://www.globalbioclimatics.org


Fig. 4. Localization of the study areas (a), that correspond to the four circular plots (1, 2, 3 and 4)where the rainfall simulation and photogrammetric surveyswere carried out. Views of the
rainfall simulator (b) and of the rainfall simulation experiment in action (c) are also shown.
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the smartphone camera before and after the rainfall simulation, respec-
tively. Furthermore, the number of the plot is also included (1, 2, 3, 4A,
4B, 4C and 4D).

Then, the SfM final point clouds were further manipulated using the
open source program CloudCompare® (Girardeau-Montaut, 2015) to
remove additional noise that typically affects these data (Javernick et
al., 2014; Prosdocimi et al., 2015). In this case, given the small size of
the plots, the noise removal was accomplishedmanually. Finally, the el-
evation points were interpolated by the natural neighbor method
(Sibson, 1981) to generate 0.01 m resolution DEMs. The DEMs are re-
ferred to in the text as DEMPreNKN and DEMPostNKN, for those derived
from the Nikon camera before and after the rainfall simulation, respec-
tively, and DEMPrePHO and DEMPostPHO for those derived from the
smartphone camera before and after the rainfall simulation, respective-
ly. Furthermore, the number of the plot is also included (1, 2, 3, 4A, 4B,
4C and 4D). The DEMsPreNKN obtained for each plot are shown in Fig. 6.
Fig. 5. Twovisual perspectives of the support used to take the pictures. The support consists in a
far from each other (b). The boxes were designed to hold the cameras with the lens downwar
For the objectives of this work, all the analysis was based on the final
DEMs, as done by Bangen et al. (2014), Calligaro et al. (2013), Javernick
et al. (2014), Prosdocimi et al. (2015), Tarolli et al. (2015), andWechsler
(2007). The DEMs derived from the smartphone were then directly
compared to the DEMs derived from the camera, by assuming a normal
distribution and using robust statistical methods (Höhle and Höhle,
2009; Prosdocimi et al., 2015). This entailed the computation of the
mean error, SDE, RSME, median, and normalized median absolute devi-
ation (NMAD).

2.5. Computation of soil loss

Soil loss was computed for both rainfall simulation and surface eleva-
tion change-based methodologies. For rainfall simulation methodology,
the runoff samples were used to determine the sediment concentration
and, then, the runoff rates and sediment concentration were used to
main pole, 1mhigh, with two boxes that stick out themain pole for 0.6m (a) and are 0.3m
ds facing.



Fig. 6.DEMsPreNKN (0.01m resolution) obtained for each plot: (a) DEMs1PreNKN, (b) DEMs2PreNKN, (c) DEMs3PreNKN, (d) DEMs4APreNKN, (e) DEMs4BPreNKN, (f) DEMs4CPreNKN, and (g)
DEMs4DPreNKN.
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calculate the total soil loss (g). For the surface elevation change-based
methodology, SfM was applied to obtain high-resolution DEMs before
(DEMsPre) and after (DEMsPost) the rainfall simulation. Then, the so-
called morphological method (Ashmore and Church, 1998) was used to
estimate the soil loss. The morphological method consists in carrying
out repeated topographic surveys from which DEMs can be obtained
and differenced to produce DEMs of difference (DoDs). The volumes of
eroded materials (cm3) were computed by considering the DEMsPre
andDEMsPost for each plot and for each camera by using theGeomorphic
Change Detection (GCD) 6.1.14 toolbar embedded in an ESRI® add-in for
ArcGIS 10.X that is freely downloadable from http://gcd.joewheaton.org/
downloads. Then, the volumes of eroded materials were turned into soil
loss expressed in grams, by knowing the bulk density. The GCD allows
to compute the volumes of deposited materials too, but, for this work,
only eroded materials have been considered, to make a comparison
with the soil loss derived from the rainfall simulation methodology. The
DoDs are referred to in the text as DoDsNKN andDoDsPHO for those derived
from theNikon and smartphone cameras, respectively. DEMs' uncertainty
in DoDs has also been considered (Brasington et al., 2000; Lane et al.,
1994; Lane, 1998; Lane et al., 2003; Prosdocimi et al., 2015; Wheaton,
2008; Wheaton et al., 2010). In this case, DEMs' uncertainties were eval-
uated according to a probabilistic thresholding that can be carried out
with a user-defined confidence interval (Brasington et al., 2003; Lane et
al., 2003; Taylor, 1997):

Ucrit ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDE2new þ SDE2old

q� �
ð1Þ

where Ucrit is the critical threshold error propagated in the DoD and
SDEnew and SDEold are the individual standard deviation errors in DEMnew

(post-event) and DEMold (pre-event), respectively. Ucrit is based on a crit-
ical student's t-value at a chosen confidence interval where:

t ¼ zDEMnew−zDEMoldj j
δuDoD

ð2Þ

where |zDEMnew−zDEMold | is simply the absolute value of the DoD. The
probability of a DoD predicted elevation change occurring due the
uncertainty can then be calculated by relating the t-statistic to its cumula-
tive distribution function. In this work, we used the 95% confidence inter-
val as a threshold, as also suggested by Wheaton et al. (2010).
2.6. Sediment connectivity

Sediment connectivity is defined as the connected transfer of sedi-
ment from a source to a sink in a system through processes of sediment
detachment and transport (Bracken et al., 2015). The concept of connec-
tivity has increasingly been used in quantitative process-based sedi-
ment dynamics research, especially at catchment scales (Ali et al.,
2014; Baartman et al., 2013; Bracken and Croke, 2007; Bracken et al.,
2015; Brierley et al., 2006; Cavalli et al., 2013; Fryirs et al., 2007;
Heckmann and Schwanghart, 2013; Lexartza-Artza and Wainwright,
2011; López-Vicente et al., 2013;Wainwright et al., 2011). Geomorphol-
ogy has been considered as a major driver on determining sediment
connectivity (Heckmann and Schwanghart, 2013; Theler et al., 2010),
and geomorphometric indices have increasingly been developed to as-
sess it (Borselli et al., 2008; Cavalli et al., 2013; López-Vicente et al.,
2013; Reid et al., 2007; Sougnez et al., 2011). In this study we applied
the index of connectivity (IC) as proposed by Cavalli et al. (2013)
based on the work of Borselli et al. (2008), to evaluate the potential ef-
fect of sediment connectivity within the plots. The reasons for this
choice relied on the facts that the IC (i) is a distributed
geomorphometric index that can be easily derived from a DEM, (ii)
can be computed with reference to specific target features, and (iii)
has been adapted for high-resolution DEMs. The IC has been developed
as a ToolBox for ArcGis 10.1 or as stand-alone application based on Py-
thon scripting with bindings for processing geographical datasets. It
uses functionalities and algorithms available in TauDEM 5.2 tool
(Tarboton, 2013) and it is freely downloadable from http://www.
sedalp.eu/download/tools.shtml. This indexmainly focuses on the influ-
ence of topography on sediment connectivity, and takes into account
the characteristics of the drainage area (upslope component, Dup) and
the flow path length that a particle has to travel to arrive at the nearest
sink (downslope component, Ddn).

http://gcd.joewheaton.org/downloads
http://gcd.joewheaton.org/downloads
http://www.sedalp.eu/download/tools.shtml
http://www.sedalp.eu/download/tools.shtml


Table 1
Georeferentiation errors (RMSE) calculated by Agisoft PhotoScan® along the x, y and z-
axes for each point cloud derived from SfM technique. GEOPreNKN and GEOPostNKN refer
to the point clouds derived from theNikon camera before and after the rainfall simulation,
respectively, and GEOPrePHO andGEOPostPHO for those derived from the smartphone cam-
era before and after the rainfall simulation, respectively. The number of the plot is also in-
cluded (1, 2, 3, 4A, 4B, 4C and 4D).

X Error (±m) Y Error (±m) Z Error (±m)

GEO1PreNKN 0.0119 0.0030 0.0038
GEO1PrePHO 0.0119 0.0030 0.0041
GEO1PostNKN 0.0113 0.0029 0.0045
GEO1PostPHO 0.0113 0.0029 0.0046
GEO2PreNKN 0.0123 0.0024 0.0043
GEO2PrePHO 0.0125 0.0026 0.0071
GEO2PostNKN 0.0126 0.0028 0.0034
GEO2PostPHO 0.0138 0.0017 0.0060
GEO3PreNKN 0.0085 0.0033 0.0105
GEO3PrePHO 0.0074 0.0044 0.0094
GEO3PostNKN 0.0093 0.0042 0.0120
GEO3PostPHO 0.0091 0.0042 0.0118
GEO4APreNKN 0.0125 0.0062 0.0041
GEO4APrePHO 0.0131 0.0059 0.0044
GEO4APostNKN 0.0133 0.0079 0.0008
GEO4APostPHO 0.0142 0.0065 0.0010
GEO4BPreNKN 0.0126 0.0083 0.0008
GEO4BPrePHO 0.0127 0.0083 0.0009
GEO4BPostNKN 0.0129 0.0082 0.0006
GEO4BPostPHO 0.0130 0.0083 0.0006
GEO4CPreNKN 0.0127 0.0083 0.0016
GEO4CPrePHO 0.0126 0.0083 0.0017
GEO4CPostNKN 0.0128 0.0084 0.0011
GEO4CPostPHO 0.0127 0.0084 0.0011
GEO4DPreNKN 0.0128 0.0084 0.0011
GEO4DPrePHO 0.0132 0.0085 0.0009
GEO4DPostNKN 0.0132 0.0083 0.0011
GEO4DPostPHO 0.0131 0.0085 0.0011
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The IC is computed as follows:

IC ¼ log10
Dup

Ddn

� �
¼ log10

WS
ffiffiffi
A

p
X
i

di
WiSi

0
BBB@

1
CCCA ð3Þ

where W is the average weighting factor of the upslope contributing
area (dimensionless),S is the average slope gradient of the upslope con-
tributing area (m/m), A is the upslope contributing area (m2), di is the
length of the flowpath along the ith cell according to the steepest down-
slope direction (m),Wi and Si are theweighting factor and the slope gra-
dient of the ith cell, respectively. IC can assumevalues ranging from -∞ to
+∞, with connectivity increasing for larger IC values.

3. Results and discussion

3.1. Nikon and smartphone built-in cameras comparisons

Regarding the comparisons between the Nikon and smartphone
built-in cameras, the georeferentiation errors (RMSE) calculated by
the Agisoft PhotoScan® software along the x, y and z-axes for each
SfM point cloud are reported (Table 1). The SfM point clouds show an
average error of the order of about 0.01 m along the x-axis, and an
even lower order error along the y and z-axes. These good results sup-
port the choice of setting the DEMs resolution equal to 0.01 m and can
be explained by the fact that: (i) the plots were very small, (ii) the 5
SfM-targets were well distributed over each plot, and (iii) the pictures
were taken in a correct way, thanks to the support used, the expedient
of shooting photographs inside the tarpaulin, and the short distance be-
tween the position of the cameras and the plots (about 1 m). Further-
more, differences between the DEMsPHO and DEMsNKN for the
unthresholded DEMs (where no uncertainty analysis was carried out)
were also evaluated with accuracy measures assuming a normal distri-
bution and more robust parameters too (Table 2). From Table 2,
emerges that all the DEMsPHO are comparable to DEMsNKN. Mean values
are of the order of about 0.0001 m and SDE values of the order of about
0.001 m. Skewness and kurtosis confirm the fact that the elevation dif-
ferences do not follow normal distributions (Höhle and Höhle, 2009;
Sofia et al., 2013), and this supports the choice of considering more ro-
bust parameters too such as NMAD and median. However, also when
considering these more robust approaches, DEMsPHO confirm to be
comparable to DEMsNKN, showing NMAD and median values of the
order of about 0.001 and 0.001 m, respectively.

3.2. Soil loss

Fig. 7 shows the DoDs derived from SfM, by considering the
DEMsPreNKN and DEMsPostNKN for each plot, thresholded according to
the probabilistic thresholding with a 95% confidence interval. The fact
that, the thresholding of DoDs entails a loss of information, is expected
and occurs at the expense of a better geomorphic plausibility
(Wheaton et al., 2010). Elevation differences range fromnegative values
(red colour), to which correspond net eroded sediments, to positive
values (blue colour), to which correspond net deposited sediments.
From Fig. 7 emerges that plots 1, 2, 3 and 4Amainly show negative ele-
vation differences. This means that the single simulated rainfall event
caused more erosion than deposition, and this can be explained by the
fact that the plots, at the beginning, have more material which is
prone to be washed away. In contrast, plots 4B, 4C and 4D show greater
elevation differences. This suggests that, as rainfall events follow one
another, the soil particles, that are susceptible to be eroded, diminish,
and therefore, the soil shows elevation differences which are closer to
zero values, where zero corresponds exactly to no difference at all be-
tween before and after the rainstorm.
Fig. 8 shows the soil loss data, expressed in grams, derived fromboth
the methodologies applied. For the surface elevation change-based
method, the data coming from the DoDs obtained with both the Nikon
and smartphone cameras are reported. From Fig. 8 emerges how the
soil loss data estimatedwith the twomethodologies are not comparable
with each other, especially for the plots 1, 2, 3 and 4A, where only a sin-
gle rainstormwas artificially reproduced. On the contrary, soil loss data
derived from the samemethodology, namely surface elevation change-
based, are comparable with each other, independently from the type of
camera used. Soil loss derived from the surface elevation change-based
method result to be of two orders ofmagnitude greater than the one ob-
tainedwith rainfall simulation. However, this discrepancy is in linewith
the processes that are involved and analysed with the two different
methodologies. Rainfall simulation accounts for splash and initial
inter-rill erosion processes and allows to study the impact of rain
drops on sediment detachment, transport and runoff initiation. Howev-
er, when it rains the water is able to disintegrate some of the soil aggre-
gates, leading to the collapse of micro-pores and to the surface seal
formation. Furthermore, the water that infiltrates makes also the soil
heavier, causing a lowering of the soil surface, which is the process
that DoDs are able to detect. To overcome this discrepancy between
the two methodologies, sediment connectivity within the plots has
been taken into consideration too.

3.3. Sediment connectivity analysis

Other than rainfall intensity and kinetic energy, also micro-topogra-
phy plays a key role in the collection of eroded materials, especially
when the experiments are carried out at very fine scales, as in our
case. To prove this, Fig. 9 shows the maps of the connectivity index cal-
culated with regard to the plots outlets, by considering, as inputs, the
DEMsPreNKN. As no reference theory exists for the partitioning of the
connectivity index into classes, we relied on the same classification



Table 2
Accuracy measures of DEMsPHO checked by DEMsNKN with the assumption of normal distribution and more robust parameters too. DEMPreNKN and DEMPostNKN refer to DEMs derived
from the Nikon camera before and after the rainfall simulation, respectively, and DEMPrePHO and DEMPostPHO for those derived from the smartphone camera before and after the rainfall
simulation, respectively. The number of the plot is also included (1, 2, 3, 4A, 4B, 4C and 4D).

Minimum (m) Maximum (m) Mean (m) SDE (m) Kurtosis Skeweness NMAD (m) Median (m)

DEM1PrePHO - DEM1PreNKN −0.0160 0.0210 0.0003 0.0022 12.5108 0.2772 0.0015 0.0003
DEM1PostPHO - DEM1PostNKN −0.0344 0.0336 −0.0002 0.0026 88.9927 −1.3843 0.0010 −0.0002
DEM2PrePHO - DEM2PreNKN −0.0135 0.0142 0.0015 0.0031 4.1464 −0.2322 0.0024 0.0017
DEM2PostPHO - DEM2PostNKN −0.0063 0.0173 0.0049 0.0029 3.9343 −0.0287 0.0022 0.0049
DEM3PrePHO - DEM3PreNKN −0.0062 0.0054 −0.0002 0.0019 2.5106 0.1547 0.0016 −0.0003
DEM3PostPHO - DEM3PostNKN −0.0056 0.0059 −0.0003 0.0010 6.3428 0.1691 0.0007 −0.0003
DEM4APrePHO - DEM4APreNKN −0.0139 0.0168 −0.0009 0.0026 8.5218 0.6003 0.0018 −0.0009
DEM4APostPHO - DEM4APostNKN −0.0201 0.0242 −0.0012 0.0043 5.6034 0.3439 0.0031 −0.0015
DEM4BPrePHO - DEM4BPreNKN −0.0193 0.0239 0.0003 0.0046 4.9291 0.0854 0.0034 0.0002
DEM4BPostPHO - DEM4BPostNKN −0.0067 0.0078 −0.0001 0.0014 6.2354 0.0027 0.0010 −0.0002
DEM4CPrePHO - DEM4CPreNKN −0.0057 0.0061 0.0001 0.0012 5.3686 −0.1376 0.0009 0.0002
DEM4CPostPHO - DEM4CPostNKN −0.0117 0.0128 0.0002 0.0028 5.6941 0.2353 0.0020 0.0002
DEM4DPrePHO - DEM4DPreNKN −0.0068 0.0092 −0.0001 0.0017 5.7170 0.5328 0.0012 −0.0002
DEM4DPostPHO - DEM4DPostNKN −0.0104 0.0115 0.0000 0.0023 5.8356 0.2322 0.0016 −0.0001
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provided by Tarolli and Sofia (2016), in which they proposed to adopt a
relative classification into four classes (High, Medium-High, Medium-
Low and Low) by considering break points that best grouped similar
values andmaximized the differences between classes (natural breaks).

From Fig. 9 emerges how (i) each plot has different patterns of sed-
iment connectivity, which vary whether or not consecutive rainstorms
occur (Fig. 9d–g), and (ii) not all the soil within the plots is connected
to the outlet. This proves the fact that the placement of the plots in
the field is extremely important becausemicro-reliefs with their rough-
ness can facilitate sediment dis-connectivity. The portions of soil that
are more connected to the outlet are those that are closer to it. There-
fore, these portions, which correspond to the Medium-High and High
classes of the connectivity index maps, are reasonably those that will
bemore prone to erosion, once the rainstorm occurs. As a consequence,
by masking the elevation differences maps (Fig. 7) with the Medium-
High and High classes of the connectivity index maps (Fig. 9), we re-
computed the soil loss derived from the surface elevation change-
based method, considering both the Nikon (DoDsNKN IC) and
smartphone (DoDsPHO IC) DoDs (Fig. 10).
Fig. 7.DoDs derived from theNikon dataset, thresholded according to the probabilistic threshold
3, (d) Plot 4A, (e) Plot 4B, (f) Plot 4C, and (g) Plot 4D.
Differently fromwhat emerged from Fig. 8, Fig. 10 illustrates that the
soil loss data, estimated with the two methodologies, are of the same
order of magnitude, as long as the sediment connectivity within the
plot is taken into consideration. These results confirm the importance
of micro-topography in the sediment connectivity and, consequently,
in the estimation of eroded materials.

4. Conclusions

In this work, we quantified the soil losses caused bywater and com-
pared themwith each other, depending on two differentmethodologies
applied: rainfall simulation and surface elevation change-based, relying
on high-resolution DEMs derived from SfM. The experiments were car-
ried out in a typical Mediterranean vineyard, under tillage conditions, at
very fine scales. SfM data were derived from one standalone digital re-
flex camera and a smartphone built-in camera. We also applied an
index of connectivity (IC) to evaluate the potential effect of sediment
connectivity within the plots. Compared to the DEMsNKN, we evaluated
the DEMsPHO in terms of (i) accuracy, and (ii) capability to estimate soil
ingwith a 95% confidence interval and obtained for each plot: (a) Plot 1, (b) Plot 2, (c) Plot



Fig. 8. Soil loss data, expressed in grams, derived for each plot from both themethodologies applied: rainfall simulation and surface elevation change-based relying on DoDs. DoDsNKN and
DoDsPHO refer to soil loss estimated from Nikon and smartphone cameras, respectively.
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loss with regard to the results derived from the rainfall simulation
methodology. In terms of accuracy, the DEMsPHO revealed to be compa-
rable with the DEMsNKN, by assuming a normal distribution of errors
and with more robust parameters too. Also regarding the estimation
of soil losses, caused by the rainstorms artificially reproduced, through
the surface elevation change-based methodology, the results between
the two different types of cameras used were comparable with each
other. What they differed from was the soil losses data estimated with
the rainfall simulation. However, this discrepancy was overcome
when the sediment connectivity within the plot was taken into consid-
eration by computing the IC index. In conclusion, high-resolution topog-
raphy derived from SfM revealed to be essential in the sediment
connectivity analysis and, therefore, this, proved to play a key role in
the estimation of eroded materials, if compared them to those derived
from another methodology such as the rainfall simulation. SfM con-
firmed to be a useful approach to quantify topographic changes in agri-
cultural lands, also at very fine scales, and revealed to be capable of
detecting the more random changes, less easily traceable, induced by
the rainstorms. In addition, the fact that smartphones built-in cameras
Fig. 9. Connectivity indexmaps calculatedwith regard to the plots outlets, by considering, as in
(f) Plot 4C, and (g) Plot 4D.
can produce asmuch satisfying results as those derived from standalone
digital reflex cameras is undoubtedly a high value added. Nowadays,
smartphones are commonly available for anyone, from farmers to re-
searchers, and will become increasingly important for fast and cheap
post-event analyses, as long as they are providedwith a high-resolution
camera. The increasing development of computer vision technologies
and digital camera sensors makes the process of taking good pictures
quite easy. A farmer would require few hours of training to learn how
to take good pictures of a specific case study, i.e. a rill process, located
in its own land. Afterwards, he would be completely independent dur-
ing the whole field survey, and then he could send the pictures taken
to a researcher for further analyses. In this way, the famer could easily
keep monitoring some of the erosion processes that occur in his land
and the researcher could provide him quantitative information about
net erosion and deposition rates. However, it also should be said that
the spatial scale plays a fundamental role in the feasibility of using
smartphones for post-event analyses. For erosion processes that occur
at field or catchment scales, the use of aerial photogrammetry, support-
ed by the increasing diffusion of UAVs, is more recommended.
puts, the DEMsPreNKN, for each plot: (a) Plot 1, (b) Plot 2, (c) Plot 3, (d) Plot 4A, (e) Plot 4B,



Fig. 10. Soil loss data, expressed in grams, derived for each plot fromboth themethodologies applied: rainfall simulation and surface elevation change-based relying onDoDs. DoDsNKN and
DoDsPHO refer to soil loss estimated from Nikon and smartphone cameras, respectively. DoDsNKN IC and DoDsPHO IC refer to soil loss estimated from Nikon and smartphone cameras,
respectively, by considering the connectivity index computed according to the DEMsPre.
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