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Friedreich’s ataxia (FRDA) is a rare inherited recessive disorder affecting the central and peripheral nervous systems and other
extraneural organs such as the heart and pancreas. This incapacitating condition usually manifests in childhood or adolescence,
exhibits an irreversible progression that confines the patient to a wheelchair, and leads to early death. FRDA is caused by a reduced
level of the nuclear-encoded mitochondrial protein frataxin due to an abnormal GAA triplet repeat expansion in the first intron of
the human FXN gene. FXN is evolutionarily conserved, with orthologs in essentially all eukaryotes and some prokaryotes, leading to
the development of experimental models of this disease in different organisms. These FRDA models have contributed substantially
to our current knowledge of frataxin function and the pathogenesis of the disease, as well as to explorations of suitable treatments.
Drosophila melanogaster, an organism that is easy to manipulate genetically, has also become important in FRDA research. This
review describes the substantial contribution of Drosophila to FRDA research since the characterization of the fly frataxin ortholog
more than 15 years ago. Fly models have provided a comprehensive characterization of the defects associated with frataxin deficiency
and have revealed genetic modifiers of disease phenotypes. In addition, these models are now being used in the search for potential

therapeutic compounds for the treatment of this severe and still incurable disease.

1. Introduction

Friedreich’s ataxia (FRDA) is an autosomal recessive neu-
rodegenerative disorder and the most common form of
hereditary ataxia among populations of European origin
(2-4/100,000) [1]. This disabling condition typically mani-
fests before age 25, with progressive neurodegeneration of the
dorsal root ganglia, sensory peripheral nerves, corticospinal
tracts, and dentate nuclei of the cerebellum. A large propor-
tion of patients develop hypertrophic cardiomyopathy, which
is the major cause of reduced life expectancy in this disease.
Diabetes mellitus and impaired glucose tolerance are also
seen in a significant number of FRDA patients (reviewed in
[2]).

FRDA is caused by loss-of-function mutations in the
FXN gene, which encodes the frataxin protein [3]. Frataxin
is a small protein encoded in the nucleus, expressed as

a precursor polypeptide in the cytoplasm and imported
into mitochondria [4-6]. The majority of FRDA patients
are homozygous for an abnormally expanded GAA repeat
in intron 1 of FXN, resulting in strongly reduced frataxin
protein expression (from 5% to 30% of the normal level) [7].
The remaining FRDA patients are compound heterozygotes,
carrying the GAA repeat expansion on one FXN allele and
another pathogenic mutation on the other allele, including
point mutations and insertion and/or deletion mutations
(8].

A lack of available patients and the inherent limitations
of cellular models often hinder the discovery and detailed
analyses of genes and pathways relevant to the pathology of
rare human disorders such as FRDA. Fortunately, the high
evolutionary conservation of frataxin (Figure 1) has enabled
the development of disease models in several organisms, from
bacteria to mice, that have significantly contributed to the
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FIGURE 1: Molecular phylogenetic analysis of frataxin sequences from different species. The picture of Thomas Hunt Morgan was chosen to
represent Homo sapiens because, as a result of his work, D. melanogaster became a major model organism in genetics. Methods: evolutionary
history was inferred with the maximum likelihood method based on Le and Gascuel model [9]. The tree with the highest log likelihood
(—2026.7976) is shown. Initial trees for the heuristic search were obtained automatically by applying the Neighbor-Joining and BioN]
algorithms to a matrix of pairwise distances estimated using a JTT model and then selecting the topology with the superior log likelihood
value. A discrete gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 2.4842)). The
tree is drawn to scale, with branch lengths representing the number of substitutions per site. The analysis involved 16 amino acid sequences.
All positions containing gaps and missing data were eliminated. A total of 90 positions were present in the final dataset. Evolutionary analyses

were conducted in MEGA7 [10].

understanding of frataxin function. The development of these
disease models is an essential step in elucidating underlying
pathological mechanisms and identifying eflicient treatments
in FRDA.

Seminal findings reported by key studies in model organ-
isms (reviewed in [14-23]) have suggested potential roles
for frataxin in iron homeostasis and cellular defense against
reactive oxygen species (ROS), as an activator of the mito-
chondrial respiratory chain, as a mitochondrial chaperone,
and as a regulator of Fe-S cluster (ISC) assembly. Although
frataxin function is not yet fully characterized, its role in ISC
biogenesis is generally accepted [24-26]. Major alterations
associated with frataxin deficiency include mitochondrial

iron accumulation, oxidative stress hypersensitivity, impaired
ISC biogenesis, and aconitase and respiratory chain dysfunc-
tion (reviewed in [27-29]).

Although the arthropod lineage diverged from the ver-
tebrate lineage more than 600 MYA, genome sequencing
projects have revealed a large number of biological pro-
cesses that are conserved between flies and vertebrates.
Most of the genes implicated in familial forms of disease
have at least one Drosophila ortholog [30, 31]. This species
offers many different genetic tools that can be applied
to investigate basic biological questions in a multicellular
organism, with the advantages of easy manipulation and
culture.
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2. The Drosophila Ortholog of the FXN Gene

The D. melanogaster frataxin ortholog was cloned and
characterized in our laboratory in the early 2000s. It was
named dfh (Drosophila frataxin homolog) [32]. This gene is
referred to as fh (frataxin homolog) in FlyBase (CG8971,
FBgn0030092), and this name will be used throughout this
review. We isolated fh by screening a genomic library from
D. subobscura using human FXN probes. Database searches
employing the sequence of D. subobscura positive clones
led to the identification of the D. melanogaster STS 125al2,
mapped to the 8CD region on the X chromosome and cloned
in cosmid 125al2. Further characterization of this cosmid
showed an open reading frame (ORF) encoding a frataxin-
like protein. Screening of an adult cDNA library from D.
melanogaster, using the genomic frataxin ORE, revealed two
transcripts with two different polyadenylation signals. We
confirmed that this gene is located in the 8CD region by in
situ hybridization analysis of polytene chromosomes of D.
melanogaster using fh cDNA as a probe.

The genomic organization of fh is much simpler than that
of the human gene (Figure 2(a)) [32]. fh is approximately
1kb and is composed of two exons of 340 bp and 282 bp,
separated by an intron of 69 bp. RNA in situ hybridization
in whole embryos showed ubiquitous expression of fh in
all developmental stages examined (from 2 to 16 h). ~1kb
major transcript was identified by Northern blot analysis,
in agreement with the predicted size of one of the two
mRNA sequences detected by cDNA library screening. This
transcript was found in embryonic, larval, pupal, and adult
stages [32]. Accordingly, the protein was present in all
developmental stages at varying levels, reaching its highest
level in late embryos [33].

The encoded fly protein was predicted to have 190 amino
acids, with a molecular weight of ~21kDa. A sequence com-
parison of frataxin proteins from different species showed
better alignment in the central and the C-terminal regions
(Figure 2(b)), whereas no alignment was found in the N-
terminal region of the protein. Importantly, this region of fly
frataxin (FH) also showed typical frataxin features, such as
a mitochondrial signal peptide and a putative «-helix with
abundant positively charged amino acids and few negatively
charged residues [32]. Colocalization experiments using
an FH-enhanced green fluorescent fusion protein (EGFP)
and a mitochondrial marker confirmed the localization of
FH in mitochondria [34]. The mature form of FH has a
molecular weight of ~15kDa [33]. The secondary structure
of FH matches the «a-f sandwich motif characteristic of
other frataxin proteins encoded by orthologous genes [32].
Predictions of the 3D structure generated using the Phyre
2 [11] and Chimera 1.12 [12] software show that FH has
an organization similar to that of the human protein (Fig-
ure 2(c)). The biophysical properties of FH indicate that
its thermal and chemical stabilities closely resemble those
of human frataxin [35]. Unlike other eukaryotic frataxin
proteins, FH shows enhanced stability in vitro, making it a
more attractive candidate for evaluation of metal binding and
delivery properties. In these experimental conditions, FH can
bind and deliver Fe(II), which is required for ISC biosynthesis

[35], and, as previously described for human frataxin [36],
it interacts with Isu (the Fe cofactor assembly platform for
ISC cellular production) in an iron-dependent manner [35].
Recently, some authors have provided experimental evidence
that the initial complex of the mitochondrial ISC biosynthetic
machinery is conserved in Drosophila [37, 38]. These results,
along with those reported in mouse (reviewed in [39]),
suggest an evolutionarily conserved role for frataxin in ISC
biosynthesis.

3. Modeling FRDA in Flies

Several models of FRDA have been developed in D. mela-
nogaster, mainly taking advantage of GAL4/UAS transgene-
based RNA interference (RNAi) methodology. RNAi allows
the posttranscriptional silencing of a gene via the expression
of transgenic double-stranded RNAs [40]. The GAL4/UAS
system [13] has been incredibly successful in D. melanogaster
and can induce the expression of a transgene under the
control of UAS (Upstream Activating Sequences) and the
transcriptional activator protein GAL4 (Figure 3). This exper-
imental strategy has been used to induce tissue-specific and
ubiquitous knockdown of fh (Table 1). Therefore, this strategy
allows the phenotypes of FRDA patients to be mimicked by
reducing rather than completely eliminating FH.

The first UAS-transgene construct for RNAi-mediated
silencing of fh expression was reported by Anderson et al.
[33]. This construct consisted of inverted repeats containing
the first 391 nucleotides of the fh coding region, which
were subcloned into the pUAST vector. Fly transformants
were crossed to the da®*> GAL4-driver line (which exhibits
widespread GAL4 protein expression throughout develop-
ment and in most tissues under the control of regulatory
sequences of daughterless) to examine fh silencing. Three
transgenic lines (UDIRI1, UDIR2, and UDIR3) were selected
in which the GAL4-regulated transgene substantially reduced
the FH protein level [33, 41]. Similarly, Llorens et al. [34]
generated another UAS-transgene construct (named UAS-
fHIR) containing two copies of the fh coding region in oppo-
site orientations, separated by a GFP fragment as a spacer.
A transgenic line (fiRNA1 line) was selected showing milder
effect than the GAL4-regulated transgene in UDIR1/2/3 when
crossed with the da®? GALA4 line (Table 1).

The RNAI lines from John Phillips’s laboratory [33] have
also been combined with a ligand-inducible GAL4/UAS
system to deplete frataxin in the Drosophila heart [42].
This system is based on a steroid-activated chimeric GAL4
protein, specifically the GAL4-progesterone-receptor fusion
protein that is activated by RU486 (mifepristone) [43, 44].
Transgene expression is induced by supplementing the fly
food with RU486, and the level of expression is controlled by
changing the dosage of the steroid ligand [43].

More recently, Chen et al. [45] identified the first mutant
allele of fh (fh') in an unbiased genetic screen of the X
chromosome designed to isolate mutations that cause neu-
rodegenerative phenotypes. The mutant allele consisted of an
ethyl-methanesulfonate-induced missense mutation (S136R)
located in a highly conserved region (S157 in the human
protein) required for the binding of human frataxin to the
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FIGURE 2: The Drosophila frataxin ortholog. (a) Genomic organization of the human (FXN) and the fly (fh) genes encoding frataxin. FXN is
located in 9q21.11 and contains seven exons. fh is located in chromosome X: 8Cl14 and has two exons. (b) Multiple alignment of the frataxin
protein sequences of Homo sapiens, Mus musculus, D. melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae. The letters indicate
the amino acid in each position, and the colors classify the amino acids according to their biochemical properties, as described in the MEGA7
program [10]. Invariant amino acids are marked with an asterisk. (c) The 3D structure prediction of the frataxin protein using the Phyre 2
[11] and Chimera 1.12 software [12]; a-helixes appear in blue and f-sheets in green.
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FIGURE 3: The GAL4/UAS system, adapted from yeast, involves the use of two transgenic lines in Drosophila [13]. One line carries the GAL4
transcription factor under the control of a promoter of known expression pattern (the driver line), and the other line contains the transgene
of interest downstream of UAS (the responder line). Many GAL4 driver lines are available, carrying the promoters of genes such as actin
(ubiquitous), elav (pan-neuronal), repo (glial cells), neur (sensory organs), and GMR (eye). This system is very versatile and allows the
expression of specific genes or gene constructs to be induced or suppressed. Triangles indicate a wild-type or mutant protein; the hairpins

represent double-stranded RNA molecules that mediate RNAi.

ISC assembly complex [45, 46]. The authors also generated
mosaic fh mutant mitotic clones of adult photoreceptor
neurons using the eyeless-FLP/FRT system to bypass the
lethality associated with the fi' mutation [45].

These Drosophila models of FRDA have been employed
to study frataxin function, analyze conserved pathological
mechanisms, and search for genetic modifiers and potential
therapies. The main results of such studies are described in
the following sections.

4. Phenotypes of Frataxin
Deficiency in Drosophila

The loss of fh function in Drosophila recapitulates important
biochemical, cellular, and physiological phenotypes of FRDA.
In addition, some phenotypes have been described for the
first time in this organism, revealing new key players in FRDA
pathogenesis. All these phenotypes have been obtained using
the fh constructs and alleles that were described above. Table 1
details these features as well as the temperature of the crosses
when available, because the GAL4/UAS system is sensitive to
this parameter.

Near-complete frataxin depletion in Drosophila seriously
affects viability, similar to observations in the FRDA mouse
model [47] and most likely in humans, since no patients
carrying a pathogenic point mutation or deletion or insertion
mutations in both FXN alleles have been reported. Ubiqui-
tous fh suppression affects larva and pupa development, and
individuals do not reach the adult phase [33, 34]. In agree-
ment with these results, individuals that are hemizygous for
the fh' mutant, carrying the missense S136R mutation, show
lethality from the instar 3 larva to pupa stages [45]. Silencing

of fhin developing muscle and heart tissue (using the 24B and
Dot driver lines) is also lethal in pupal stages, while reduction
of fh expression in subsets of neurons (C96, Ddc, D42,
c698a, and neur) allows the development of viable adults.
Importantly, when fh expression is specifically reduced in the
peripheral nervous system (PNS), using the C96 and neur
GAL4 lines, the adult flies show a shortened lifespan and
reduced climbing ability [33, 34]. These results indicated that,
in Drosophila, as in humans, frataxin is an essential protein
and that different tissues have distinct sensitivity to frataxin
deficiency.

Tricoire et al. [42] obtained the first fly in vivo heart
images after heart-specific depletion of frataxin using the
UDIR2 line and the RU486-inducible Geneswitch driver
HandGS. They observed major cardiac dysfunction including
impaired systolic function and substantial heart dilatation,
resembling the phenotypes observed in FRDA patients. The
cellular neuropathology of frataxin deficiency was examined
in larval motor neurons using the UDIRI line [48]. Loss
of mitochondrial membrane potential was detected in the
cell bodies, axons, and neuromuscular junction of segmental
nerves from second to late third instar larvae. These effects
were followed by defects in mitochondrial retrograde trans-
port in the distal axons, leading to a concomitant dying-
back neuropathy. A dying-back mechanism has also been
described in sensory neurons and the spinocerebellar and
corticospinal motor tract in patients (reviewed in [29]).

To more closely mimic the patient situation, viable adults
with ubiquitous reduction of FH were obtained by Llorens
et al. [34] by crossing the fhiRNAI line with the actin-GAL4
driver at 25°C. Under these experimental conditions, the
fh mRNA level was reduced to one-third compared with
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the normal level. As in humans [7], the remaining frataxin
(approximately 30% of the normal level) allowed normal
embryonic development but resulted in decreased lifespan
and impaired motor performance in adulthood. Specifically,
survival analysis showed a decrease of 60% and 32% in the
mean and maximum lifespan, respectively, compared with
controls. The FRDA flies showed limited climbing ability in
negative geotaxis assays, with 5-day-old adults exhibiting a
45% decline compared with control flies.

Frataxin deficiency in flies also triggers iron accumu-
lation [45, 49] restricted to mitochondria [49], consistent
with findings in other model organisms and FRDA patients.
Importantly, the role of iron in the pathophysiology of FRDA
has not yet been completely established and is still a matter of
debate. The discovery of iron deposits in the hearts of FRDA
patients in the late seventies [50, 51] was the first indication
of an association between frataxin and this transition metal.
This relationship became more important after the discovery
that the loss-of-function of the yeast frataxin ortholog results
in mitochondrial iron accumulation [52]. Since then, iron-
enriched granules have been further confirmed in patient
hearts [53-55] and in several other patient tissues [56, 57].
Surprisingly, analyses of iron levels in neuronal tissues have
shown inconsistent results, even in tissues with high frataxin
expression. On the one hand, histological and imaging
approaches have detected alterations in the expression of
iron-related proteins that support the hypothesis that iron
redistribution rather than iron accumulation is the key defect
underlying frataxin deficiency in the nervous system [58,
59]. On the other hand, increased iron content has been
reported in critical brain areas of FRDA patients [60, 61].
In Drosophila, Chen et al. showed that iron accumulates in
the nervous system in fhl mutants [45]. These authors also
found increased levels of iron in the nervous system in an
FRDA mouse model that exhibits less than 40% of the normal
level of frataxin mRNA in this tissue [62]. By contrast, no
iron deposits have been reported in the nervous system in
other mouse models of FRDA [47, 63-65]. In line with the
proposed iron toxicity in FRDA, all Drosophila models share
an enhanced sensitivity to increased iron content in food
[33, 45, 66].

The analysis of the iron-frataxin relationship in several
FRDA models has provided experimental evidence sup-
porting a role for frataxin in iron homeostasis (storage,
redistribution, chaperone, and ISC biosynthesis, reviewed in
[23, 24]). Supporting a role for frataxin in ISC assembly,
loss of FH expression is associated with impaired activity of
Fe-S containing enzymes, including proteins involved in the
mitochondrial electron transport chain (ETC) and aconitase
[33, 34]. This effect causes problems in ATP production,
which is reduced in Drosophila models independently of
the levels of functional frataxin [33, 34, 45], as well as in
FRDA patients [67, 68]. In addition, the biochemical and
biophysical characterization of FH is consistent with its
expected role as an iron chaperone acting as a regulator
during ISC biosynthesis [35]. In line with this role for frataxin,
its suppression in the prothoracic gland impairs the ability
of larvae to initiate pupariation [69]. This organ produces
ecdysteroid hormones, such as 20-hydroxyecdysone, that
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mediate developmental transitions. Interestingly, some Fe-S-
containing enzymes such as Neverland (converts cholesterol
into 7-dehydrocholesterol) and the fly ferredoxins Fdxh and
Fdxh2 participate in the metabolism of ecdysone, and their
activities are likely impaired in frataxin-deficient larvae. In
agreement with this hypothesis, 20-hydroxyecdysone sup-
plementation improves the defective transitions associated
with frataxin deficiency in the prothoracic gland [69]. An
ecdysone deficiency would explain the giant, long-lived
larvae phenotype reported by Anderson et al. in their fly
model using the UDIR2 line and da®? GAL4 driver [33].
Interestingly, Drosophila models have also revealed that iron
deregulation occurs before the decrease in the activity of
mitochondrial enzymes [49, 66]. This is in agreement with
results from an inducible yeast model in which the iron
regulon was activated long before decreased aconitase activity
was observed [70].

It has been suggested that ROS are generated by iron
accumulation through Fenton’s reaction, damaging the mito-
chondrial ETC and mediating the pathophysiology of FRDA
(reviewed in [20, 71]). However, the role of oxidative stress
in the disease is still questioned, and controversial results
have also been reported in Drosophila. Overexpression of
ROS-scavenging enzymes such as catalase (CAT), superoxide
dismutase 1 (SOD1), or SOD2 could not rescue the pupae
lethality caused by ubiquitous UDIRI and UDIR2 expression
[33] or the photoreceptor neurodegeneration in fh' mutant
clones [45]. CAT overexpression and treatment with EUKS8
(a synthetic superoxide dismutase and catalase mimetic) also
failed to improve cardiac function in frataxin-depleted hearts
[42]. Shidara and Hollenbeck [48] did not detect increased
ROS levels in frataxin-deficient motor neurons, but these
neurons responded to the complex III inhibitor antimycin A
with a larger increase in ROS than control neurons.

However, increasing evidence from different FRDA mod-
els and patient samples suggests that oxidative stress is a
major player in FRDA [34, 41, 65, 72-80]. In Drosophila,
increased levels of malondialdehyde (MDA, a lipoperoxida-
tion product) have been reported in flies with ubiquitous
FH suppression using the fARNAi line and the actin GAL4-
driver line [81, 82]. These flies and flies with tissue-specific
frataxin deficiency in the PNS (C96) or glial cells (repo)
showed increased sensitivity to external oxidative insults (see
Table 1) such as hyperoxia or H,O, treatment [41, 81, 83].
Hyperoxia induces enhanced aconitase inactivation in the
frataxin knockdown flies [34, 83], which compromises the
entire respiratory process. In fact, hyperoxia leads to reduced
oxygen consumption rates in mitochondrial extracts of the
frataxin-depleted flies [34]. Overexpression of the H,O,-
scavenging enzymes CAT, mitoCAT (using a synthetic trans-
gene that targets CAT to the mitochondria), or mitochondrial
peroxiredoxin (mTPx) rescues the shortened lifespan and
increased sensitivity to H,O, in flies with reduced frataxin
expression in the PNS (C96) [41]. These scavengers also
restore aconitase activity in flies with systemic reduction
of FH using the UDIRI line and the da®? GAL4 driver
[41], supporting the role of oxidative stress in aconitase
inactivation. In addition, scavengers of lipid peroxides have
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been shown to improve frataxin-deficient phenotypes [83,
84].

Recently, Hugo Bellen’s laboratory identified a new mech-
anism for neuronal degeneration in FRDA, in which iron
toxicity is not associated with ROS damage [45]. These
authors showed in their fh mutant that iron accumulation
induces sphingolipid synthesis and activates the expression
of the genes 3-phosphoinositide dependent protein kinase-
1 (Pdkl) and myocyte enhancer factor-2 (Mef2) and their
downstream targets, causing loss of photoreceptors in fly
ommatidia. In agreement with these results, inhibition of
sphingolipid synthesis by downregulating the expression of
the rate-limiting enzyme lace (the fly ortholog of serine
palmitoyltransferase) or feeding the mutant flies Myriocin
(a compound that inhibits serine palmitoyltransferase) was
sufficient to partially revert the cellular degeneration [45].
Similarly, silencing Pdkl or Mef2 expression also suppressed
the neurodegenerative phenotype. Remarkably, the authors
found that loss of frataxin in the nervous system in mice
and in heart tissue from patients also activates the same
pathway, suggesting a conserved mechanism [62]. These
results highlight, once more, the relevance of Drosophila in
the study of human disorders such as FRDA. In addition,
they strongly suggest that iron plays an instrumental role in
Drosophila frataxin biology.

Similarly, Drosophila has also been a pioneer model
organism in highlighting the role of frataxin in lipid home-
ostasis [83]. Ubiquitous frataxin knockdown or targeted
frataxin downregulation in glia cells triggered lipid accumu-
lation. Increased amounts of myristic acid (C14:0), palmitic
acid (C16:0), palmitoleic acid (C16:1), oleic acid (C18:1), and
linoleic acid (C18:2) were found. These results suggested
that loss of mitochondrial function also affects fatty acid
beta-oxidation, leading to the accumulation of the most
abundant lipid species [83]. The presence of lipid droplets
had already been characterized in mouse models [63], and the
fly findings indicated the content of these droplets and their
likely association with the disease pathophysiology. These
findings were followed by assessments of lipid deregulation in
other models [85] and in patient samples [86]. The association
between frataxin and lipid metabolism has been extensively
reviewed elsewhere [87].

5. Frataxin Overexpression Phenotypes

Although frataxin overexpression does not model the disease,
it is an excellent complementary tool to further describe the
cellular roles of frataxin. In this regard, Drosophila models
have shown that some increase in frataxin expression is ben-
eficial, whereas its excess beyond certain thresholds is clearly
detrimental. Table 2 summarizes the phenotypes reported for
frataxin overexpression in flies using several GAL4 lines that
drive ubiquitous or tissue-specific fh expression.

Flies with ubiquitous fh expression at a level approx-
imately fourfold higher than the physiological level show
increased longevity, antioxidant defense responses, and resis-
tance to treatment with paraquat (a chemical known to
specifically affect mitochondrial complex I and to generate
free radicals), H,0,, and dietary iron [89]. Similarly, it has

been reported that frataxin overexpression in mice [90, 91] or
in cultured cells [92-94] is innocuous or has a positive effect,
stimulating ATP production or inducing antioxidant defense
responses.

A systemic 9-fold increase in fh mRNA expression
impairs muscle, heart, and PNS development in fly embryos,
leading to lethality from larva to pupa stages [34]. Frataxin
overexpression restricted to developing heart and muscle
tissue (Dot, 24B; Table 2) also has deleterious effects [34].
In contrast, overexpressing FH pan-neuronally (Appl, elav),
in sensory organs (neur), motor neurons (D42), and glial
cells (repo) produces viable adults, but they show a reduced
lifespan and decreased locomotor performance [34, 95]. The
effect of human frataxin expression has also been tested
in Drosophila. FXN is correctly expressed and targeted to
mitochondria in flies and can rescue the aconitase activity
of UDIR2-knockdown flies [95]. These results provide in
vivo evidence that human and fly frataxins have conserved
functions, which was further confirmed by Tricoire et al.
[42] and Chen et al. [45]. As expected, FXN overexpression
in flies produces similar but slightly stronger phenotypes at
biochemical, physiological, and developmental levels than
those observed in flies overexpressing FH [95]. Initially,
it was proposed that frataxin overexpression might act as
a dominant negative mutation and that its toxic effect
might be mediated by oxidative stress [95]. The mechanism
underlying frataxin overexpression has recently been fur-
ther investigated [96]. In this study, the authors reported
that frataxin overexpression increases oxidative phospho-
rylation and modifies iron homeostasis. Such an increase
of mitochondrial activity alters mitochondrial morphology
and sensitizes cells to oxidative damage leading to neu-
rodegeneration and cell death. Importantly, authors found
that iron was a pivotal factor in the neurodegeneration
[96].

These results in Drosophila show that frataxin requires an
optimal balance in expression to function properly and that
control of its expression is important in treatments that aim
to increase its protein level.

6. Genetic Modifiers of FRDA

Drosophila models are important because they offer the abil-
ity to carry out genetic screens for mutations that affect a par-
ticular biological process. This powerful tool provides a way
to identify genetic modifiers of human diseases (Figures 4(a)
and 4(c)). Our group has collaborated with Juan Botas’s lab-
oratory in two studies using this methodology in Drosophila
models of FRDA. These studies followed a biased candidate
approach, selecting genes related to disease pathophysiology
[81, 82]. We set out to test whether genetic modification of
key pathways would improve FRDA phenotypes in flies. Can-
didate genes were selected from pathways involved in metal
homeostasis, the response to oxidative stress, apoptosis, and
autophagy. Approximately 300 lines were analyzed, including
RNAi lines from the Vienna Drosophila Resource Center and
loss-of-function and overexpression lines from the Bloom-
ington Stock Center (Indiana University). The external eye
morphology and motor performance of adult flies were used
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Genetic screen

UAS-GFP —— Driver-GAL4 > UAS-fhRNAi, UAS-GFP (I)

Driver-GAL4 > UAS-fhRNAi X
(FRDA fly)

(FRDA fly/control construct)

Modifier ——> Driver-GAL4 > UAS-fhRNAi, modifier (II)

(FRDA fly/modifier)

UAS-GFP ——  Driver-GAL4 > UAS-GFP, UAS-GFP (III)

Driver-GAL4 > UAS-GFP X
(control fly)

Chemical screen

Treatment

Vehicle (V
Driver-GAL4 > UAS-fhRNAi V)

(FRDA fly) "M Drug (VI)

Driver-GAL4 > UAS-GFp _~1 Vehicle (VID
(control fly) N Drug (VIII)

(b)

(control fly/control construct)

Modifier ——>  Driver-GAL4 > UAS-GFP, modifier (IV)

(control fly/modifier)
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Analysis of modifier/drug effect
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FIGURE 4: Schematic design of a genetic (a) or chemical (b) screen to identify genetic modifiers or potential therapeutic compounds in FRDA
using Drosophila as a model organism. The effect of a genetic modifier or drug is evaluated by monitoring the lifespan and climbing ability
of FRDA flies. (c) A UAS-GFP construct is included in this strategy as an internal control to determine whether the drug can interfere with
the GAL4/UAS system and the potential dilution of the GAL4 protein due to the presence of two UAS construct. In parallel, the effect of the
modifier or drug treatment is analyzed in control flies to identify frataxin interactors. GFP: green fluorescent protein. Vehicle: DMSO/H,O

depending on the drug solubility.

as screening phenotypes. The UDIR2 line [33] (with a 90%
reduction in FH expression when expressed ubiquitously)
produces a mild rough eye phenotype when expressed in
the developing eye [82]. The fhRNAI line [34] (with a 70%
reduction in FH expression that is compatible with normal
development) impairs motor performance when expressed
ubiquitously. We applied a tiered strategy to examine the
effect of metal-related genes on eye morphology, followed
by the effect of eye modifiers on motor performance [82].
In Calap-Quintana et al. [81], we reported the effect of the

remaining candidate genes on the motor performance of the
fhRNAI line.

Five suppressors of both the eye and motor performance
phenotypes were identified: the iron regulatory proteins
encoded by the genes Irp-1A and Irp-1B, their target Trans-
ferrin (Tsfl and Tsf3), and Malvolio (Mvl), the Drosophila
ortholog of the mammalian gene Divalent metal transporter-
1 (DMT1I). The suppression of these FRDA phenotypes was
mediated by reducing the iron abundance associated with
frataxin deficiency [82]. On the one hand, reduced expression
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of Mvl, Tsfl, and Tsf3 decreases cellular iron uptake, which
in turn reduces mitochondrial iron accumulation. On the
other hand, downregulation of Irp-IA and Irp-IB reduces
IRP activity, as suggested in [33, 66], and thus recovers
ferritin expression and normal cellular iron distribution.
In agreement with these findings, Irpl knockout reduces
mitochondrial iron accumulation in frataxin-depleted mouse
livers [97].

Another iron player that can suppress FRDA phenotypes
in flies was identified by Navarro et al. [66]. It is a member
of the mitochondrial solute carrier family named mitoferrin
(Mfrn), which is located in the inner mitochondrial mem-
brane, and its function is to translocate iron into mito-
chondria [98-100]. Downregulation of mfrn was sufficient
to improve iron metabolism in frataxin-deficient flies and to
ameliorate neurodegeneration triggered by targeted frataxin
silencing in glia cells [66]. In this study, overexpression of fer-
ritin subunits was unable to counteract neurodegeneration,
whereas another study reported that ferritin overexpression
had a positive effect in fh mutant clones of fly photoreceptors
[45]. It is likely that the different metabolic requirements of
each cell type might be reflected in the factors that can exert
protective roles.

Knockdown of zinc transporters and copper chaperones
also ameliorates FRDA phenotypes in flies [82]. Members
of the two conserved gene families of zinc transporters
(the ZnT and Zip families) improve the eye and motor
performance phenotypes by normalizing iron levels in some
cases. It has been previously reported that several members
of the Zip family can also transport iron in addition to
zinc [101-103]. Genetic reduction of Atoxl, which encodes a
chaperone that delivers copper to ATP7 transporters located
in the trans-Golgi network [104], and dCutC, encoding a
protein involved in the uptake, storage, delivery, and efflux
of copper [105], suppressed both FRDA phenotypes. We
also found that the Metal-Responsive Transcription Factor-
1 Gene (MTF-1) is a modifier of the motor impairment
phenotype, acting as a suppressor when overexpressed and as
an enhancer when downregulated. Overexpression of MTF-
1 in Drosophila also reduces the toxicity associated with
oxidative stress [106], human A 342 peptide expression [107],
and a parkin null mutation [108]. Under stress conditions,
such as metal overload and oxidative stress, MTF-11is translo-
cated to the nucleus and binds to metal response elements
(MREs) in the regulatory regions of its target genes, such as
metal-sequestering metallothioneins (Mtns). Mtns are small
cysteine-rich proteins that maintain low levels of intracellular
free metal due to their ability to bind metals with high
affinity. Contrary to what was expected, Mtn knockdown
suppressed FRDA phenotypes [82], which could be explained
by the role of Mtns as prooxidants under oxidative stress
conditions [109-111]. Therefore, the beneficial effect of MTF-
1 overexpression may not be mediated by Mtns but rather
by reduced iron accumulation, because the iron level is
normalized in fhRNAI flies with MTF-I overexpression [82].
These results demonstrate that metal dysregulation in FRDA
affects other metals in addition to iron. Importantly, zinc
and copper redistribution have been reported in the dentate
nucleus of the cerebellum in FRDA patients [112].

13

The genetic screen conducted in Calap-Quintana et al.
[81] revealed four modifiers of the motor performance phe-
notype in FRDA flies. These genes encode tuberous sclerosis
complex protein 1 (Tscl), ribosomal protein S6 kinase (S6k),
eukaryotic translation initiation factor 4E (elF-4F), and
leucine-rich repeat kinase (Lrrk). These proteins are involved
in the TORCI signaling pathway, which regulates many major
cellular functions such as protein synthesis, lipid biogenesis,
and autophagy. We found that genetic reduction in TORC1
signaling activity is beneficial, while its genetic activation
produces a detrimental effect in frataxin knockdown flies by
inducing semilethality. Table 3 shows these genetic mediators
of frataxin deficiency as well as other modifiers individually
identified in other studies.

7. Potential Therapeutic Compounds for
FRDA Treatment

Currently, there is no effective treatment for FRDA, although
different therapeutic strategies are being developed or test-
ed in clinical trials (http://www.curefa.org/pipeline). These
strategies include lowering oxidative damage, reducing
iron-mediated toxicity, increasing antioxidant defense, and
increasing frataxin expression and gene therapy [83, 113, 114].
Drosophila models are also gaining increasing significance in
biomedical and pharmaceutical research as a valuable tool for
testing potential treatments (Figures 4(b) and 4(c)).

Table 4 lists the compounds that have been found
to improve some FRDA phenotypes in Drosophila. Our
group has validated the utility of frataxin-depleted flies for
drug screening [49]. We separately tested the effect of two
compounds, the iron chelator deferiprone (DFP) and the
antioxidant idebenone (IDE), that were already in use in
clinical trials for this disease. DFP is a small-molecule,
blood-brain-barrier-permeable drug that preferentially binds
iron and prevents its reaction with ROS. IDE is a synthetic
analog of coenzyme Q10 and can undergo reversible redox
reactions, improving electron flux along the ETC. Each drug
was administered in the fly food at two starting points: early
treatment (from larva to adult stage) and adult treatment (in
adult phase). Both drugs improved the lifespan and motor
ability of flies expressing the fh-RNAi allele in a ubiquitous
pattern or in the PNS (neur), especially when given at
the early treatment timepoint. DFP improved the FRDA
phenotypes by sequestering mitochondrial iron and pre-
venting toxicity induced by iron accumulation. IDE rescued
aconitase activity in flies subjected to external oxidative stress
[49].

Another compound with electron carrier properties,
methylene blue (MB), has been described as a potent ther-
apeutic drug for heart dysfunction in FRDA [42]. Cardiac
defects were decreased in a dose-dependent manner in flies
with heart-specific frataxin depletion treated with different
concentrations of MB. The authors demonstrated that this
drug was also able to reduce heart dilatation associated with
deficiencies in several components of complexes I and III
in mutant flies. These results indicate that respiratory chain
impairment is involved in the cardiac defects associated with
frataxin deficiency and that compounds showing electron
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TABLE 3: Genetic modifiers of FRDA phenotypes in Drosophila.

Modifier Pathway Effect

FerIHCH/Fer2LCH Suppressor of

(Co-expression)

Iron storage

reduced life span [66], ERG, and photoreceptor
neurodegeneration [45]

Fer3HCH (OE)

Iron storage and
oxidative stress
protection

Suppressor of
reduced life span [66] ERG, and photoreceptor
neurodegeneration [45]

Irp-1A (RNAi)
Irp-1B (RNAI)
Irp-1B (LOF)

Iron sensor

Suppressor of
mild rough eye and impaired motor performance [82]

Suppressor of
reduced aconitase activity and IRP-1A and ferritin

mfrn (RNA) ) o levels, impaired motor performance, and increased
Mltoshondrlal ron brain vacuolization [66]
importer Enhancer of
mfrn (OE) locomotor defects and brain vacuolization
[66]
. . Suppressor of

Myl (RNA) fron absorption mild rough eye and impaired motor performance [82]
Tsfl (LOF) Serum iron binding Suppressor of
Ts5f3 (RNA1) transport proteins mild rough eye and impaired motor performance [82]
dZip42C.1 (RNAI) Suppressor of
le'P 42C.2 (RN.A i) Zinc importer mild rough eye and impaired motor performance [82]
dZip88E (RNAI)

. Zinc transporter to Suppressor of
dZnT35C (RNAD) vesicles mild rough eye and impaired motor performance [82]

. . . Suppressor of
dZnT4IF (RNAD) Zinc homeostasis mild rough eye and impaired motor performance [82]

. . Suppressor of
dZnT63C (RNA) Zinc exporter mild rough eye and impaired motor performance [82]
foi (LOF) Zinc importer Suppressor of

impaired motor performance [82]

. Copper chaperone Suppressor of
Atox] (RNAI) donor mild rough eye and impaired motor performance [82]
. Copper uptake and Suppressor of
dCutC (RNAY) storage mild rough eye and impaired motor performance [82]
Suppressor of
MTE-1(0E) Metal responsive impaired motor performance [82]
MTF-1 (LOF) Transcription Factor Enhancer of

impaired motor performance [82]

MtnA (RNAi)

Heavy metal
detoxification

Suppressor of
mild rough eye and impaired motor performance [82]

MitnB (RNAI) Heavy metal Suppressor of
MtnC (RNAI) detoxification mild rough eye [82]
. Enhancer of
Tscl (RNAI) TORCI pathway reduced survival [81]
Suppressor of
S6K (DN) . .
TORCI pathway impaired rréot}(l)r perforfmance [81]
nhancer o
S6K (CA) reduced survival [81]
Suppressor of
elF-4E (LOF) TORCI pathway impaired motor performance [81]
. Suppressor of
Lrrk (RNA) TORCI pathway impaired motor performance [81]
Cat (OE) oo
mCat (OF) Antioxidant (hydrogen Suppressor of

mTPx (OE)

peroxide scavengers)

reduced lifespan when overexpressed in the PNS [41]
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TaBLE 3: Continued.

Modifier Pathway Effect
Suppressor of
dGLaz (OE) Antioxidant defense reduced life span, impaired motor performance,

aconitase inactivation, and lipid peroxidation [83]

Embryonic development
(insulin receptor

Pdkl (RNA) transduction pathway

Suppressor of
photoreceptor neurodegeneration [45]

and apoptotic pathway)
Mef2 (RNAi) Muscle differentiation Suppressor of .
photoreceptor neurodegeneration [45]
. Sphingosine Suppressor of
A . ; .
lace (RNA) biosynthesis pathway photoreceptor neurodegeneration [45]
CA: constitutively active mutation; DN: dominant negative mutation; ERG: electroretinograms; LOF: loss-of-function mutation; OE: overexpression; RNAi:
RNA interference.
TaBLE 4: Compounds that showed beneficial effects in Drosophila models of FRDA.
Compound Mechanism of action Improved phenotype
o Motor performance and
Idebenone Antioxidant Jifespan in adults [42, 49]
Methylene blue Electron carrier Adult heart function [42]

Toluidine blue
Deferiprone

Deferoxamine

LPS 01-03-L-F03
LPS 02-25-L-E10
LPS 02-13-L-E04

Electron carrier
Iron chelator

Iron chelator
Possible iron chelator
Possible iron chelator

Possible iron chelator

Adult heart function [42]

Motor performance and
lifespan in adults [49]

Pupa development [88]
Pupa development [88]
Pupa development [88]
Pupa development [88]
Pupa development [88]

LPS 01-04-L-G10 n.d. Adult heart function [88]
LPS 02-14-L-Bl1 n.d. Pupa development [88]
Rapamycin TORCI inhibitor Motor performance and

Myriocin

Serine palmitoyltransferase
inhibitor

oxidative stress in adults [81]

Photoreceptor function [45]

n.d.: not described.

transfer properties could prevent heart dysfunction in FRDA
patients.

A yeast/Drosophila screen to identify new compounds
for FRDA treatment was carried out by Seguin et al. [88].
The authors showed the utility of using a strategy based on
two complementary models, a unicellular and a multicellular
organism. Accordingly, a frataxin-deleted yeast strain was
used in a primary screen, and positive hits were tested in flies
ubiquitously expressing the UDIR2 allele (secondary screen).
Approximately 6380 compounds were evaluated from two
chemical libraries (the French National Chemical Library and
the Prestwick Collection) to test the ability of the drugs to
improve the fitness of yeast mutants using raffinose as the
main carbon source. Yeast cells with frataxin deficiency grew
slowly when raffinose was provided as the carbon source
[115]. A total of 12 compounds, representative of the different
chemical families, were selected from the yeast-based screen
and their effect was analyzed on the FRDA fly model. Six
of them improved the pupariation impairment of flies, with

LPS 01-04-LGI10 and Deferoxamine B (DFOB) being the
most promising compounds. DFOB, an iron chelator, was
suggested to increase the pools of bioavailable iron and to
reduce iron accumulation in mitochondria. LPS 01-04-L-G10,
a cinnamic derivative, partially rescued heart dilatation in
flies with heart-specific frataxin depletion [88].

The efficacy of iron chelators as potential treatments
has already been assessed in FRDA patients, but unfortu-
nately the results were not conclusive. Studies have reported
improvement of the cardiac and/or neurological conditions
[61, 116, 117], no significant effect [118], or even worsening
of some conditions [119]. However, the Drosophila mod-
els of FRDA indicate that iron is an important factor in
FRDA pathophysiology. Genetic or pharmacological inter-
ventions through pathways regulating iron homeostasis and
the sphingolipid/Pdkl/Mef-2 pathway are new approaches
that might be explored in preclinical studies. In addition,
Drosophila has shown for the first time that alteration of
genes involved in metal detoxification and metal homeostasis
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(copper and zinc in addition to iron) is also a potential
therapeutic strategy.

Finally, the results obtained from the genetic screen
in Drosophila [81] also suggest that rapamycin and its
analogs (rapalogs) are promising molecules for FRDA treat-
ment. Inhibition of TORCI signaling by rapamycin increases
climbing speed, survival, and ATP levels in flies [81]. This
compound enhances antioxidant defenses in both control
and FRDA flies by increasing the nuclear translocation of
the transcription factor encoded by the gene cap-n-collar,
the Drosophila ortholog of Nrf2. As a result, it induces
the expression of a battery of antioxidant genes. In addi-
tion, rapamycin protects against external oxidative stress by
inducing autophagy. Rapamycin is a well-described drug
approved for human uses. There is a large amount of data
regarding the safety, tolerability, and side effects of this drug
and rapalogs, which could facilitate their potential use in
FRDA.

8. Conclusions

D. melanogaster is one of the most studied organisms
in biological research. The conservation of many cellular
and organismal processes between humans and flies and
the constant increase in the number of genetic tools for
Drosophila have made this organism one of the best choices
for studying human genetic diseases. Following the iden-
tification of Friedreich’s ataxia gene by positional cloning,
model organisms have played a decisive role in the inves-
tigation of the function of frataxin and consequently the
underlying pathophysiological mechanisms of FRDA. Here,
we have presented the main contributions of Drosophila
in this area of research. Frataxin-depleted flies recapitulate
important biochemical, cellular, and physiological hallmarks
of FRDA. In addition, the model flies exhibit new phenotypes
that reveal, for the first time, other key players in FRDA
pathogenesis. These models have allowed the identification
of genetic and pharmacological factors capable of modifying
some FRDA phenotypes, revealing new and promising ways
to find effective treatments. Nevertheless, there are still many
other questions that can be addressed by taking advantage of
Drosophila models. Additional models of FRDA in flies are
expected to help us understand the transcriptional silencing
of FXN mediated by the GAA repeat expansion. These new
models will advance our knowledge of the molecular bases of
this disease and facilitate the development of new drugs for
FRDA.
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