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Description of sub-barrier heavy ion fusion in a semiclassical quantum tunneling model
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In this paper we apply the semiclassical method based on the Feynman path integral formalism to sub-barrier
fusion of heavy nuclei. Cross sections are calculated and compared to experimental data and to coupled-
channel calculations for different mass systerff§+ 2*Mg, 58Ni+ 8“Ni, and %0+ 2%%Pb. The semiclassical
method and coupled-channel calculations give comparable results. It is found that the coupling produces a
renormalization of the barrier that is responsible for the enhancement of sub-barrier fusion cross sections and
a dissipative force along the classical tunneling path.

PACS numbds): 25.70.Jj, 24.10.Eq, 21.60.Ev

I. INTRODUCTION nels that can be treated simultaneously. In the path integral
method, however, each different degree of freedom gives an
Sub-barrier fusion of heavy ions has motivated manyindependent contribution to the influence functional. In addi-
theoretical and experimental investigations in the years sincéon, the computational efforts grow slowly with the dimen-
the observation of a large enhancement of experimental fusionality of the system. This makes the path integral method
sion cross sections with respect to the predictions of the on&zonvenient to treat on the same footing single nucleus exci-
dimensional barrier penetration modal. Significant isoto-  tations and complex mechanisms as transfer or deep inelas-
pic effects for different projectile and target combinations intic. Thus the path integral method, although insufficiently
sub-barrier fusion cross sections have also been obsf2yed developed, offers good possibilities for studying fusion
Different theoretical models, which include additional de-coupled to degrees of freedom of a very different nature.
grees of freedom of the fusing system, have been elaboratézpme analytical results have been obtained in the literature
to explain these observations. Among the main onegiare [8,13], but to our knowledge either realistic numerical calcu-
deformed or vibrating potential moddl3,4]; (ii) optical po-  lations of cross sections or comparisons to other me_thods to
tential models in which a part of the imaginary potential is€valuate the real power of this method do not exist. The
associated to fusiofi5]; (iii) coupled-channel models in Purpose of this paper is to present detailed numerical calcu-
which the excited states of each nucleus are treated in a fuptions of sub-barrier fusion cross sections based on the in-
guantum mechanical way leading to the solution of a set ofluence functional formalism for some different systems
coupled Schidinger equations[6]; (iv) approximations (*°S+2Mg, *Ni+®Ni, and *°0+?°®Pb for which there
based on the Feynman path-integral method, in which th&xist measurements of both elastic and fusion cross sections.
effect of additional degrees of freedom on the relative mo-Our results are compared to experimental data and to calcu-
tion is formulated in the influence functional formalism lations performed with the widely employed simplified
[7.8]; (v) models which invoke collective phenomena as neu-<coupled-channel codecrus[14]. We also discuss such fea-
tron flow or neck formatiori9,10]. Coupled-channel models tures of the coupled-tunneling process as adiabaticity, the
are in princip|e well founded and accurate for treating mu|-eﬁect of COUpIing before entrance into the barrier, and dissi-
tidimensional tunneling, the input required is only the levelpative reflections of the trajectory under the barrier.
scheme and some properties of the relevant excited states of
the fusing nuclei together with optical potentials and form Il. DESCRIPTION OF THE MODEL
factors fitted to experimental cross sections. However, in
practice only a few inelastic states can be included in the We consider in this paper only inelastic excitations, which
calculations due to the fast increase of computing time withve assume to be well described by harmonic oscillators that
the number of coupled states and to numerical instabilitie$orm the “intrinsic” system. This system is linearly coupled
arising in large sets of coupled equatiqid,12. Moreover  to the nucleus-nucleus relative motion coordinRtecalled
when one wants to include degrees of freedom of a Ver)‘;collective.” We consider in the calculations of the influence
different nature as transfer or deep inelastic reactions, th&inctional the effects of the coupling before tunneling, which
problem becomes quite difficult to solve by numericalwe account for by the intrinsic state of the fusing system at
coupled-channel methods because of the nonorthogonalifie entrance of the barrier.
and different range of excitation energies of the channel We give below the expressions for only one oscillator;

states. This severely limits in practice the number of chanthose for several oscillators are obtained by a simple addi-
tion. The Hamiltonian for the intrinsic coupled system is
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where o is the deformation length of the excited stas8] . dv
and f(R) the coupling form factor. The time-evolution op- mR=gp+F(7), (10
erator of the intrinsic system can be cast in the Qi

U(t 0):e*ia+a‘”teA<‘>e*B*(t>a+eB(‘)a @ where the forcd=(7) is given by
2
where — 0_ df 7w7'J'T T
F(r)= 7 (dR) e Of[R(Tl)]e dry

io [t -
B(t)=—7f fIR(t")]e *tdt’, P
0 +ew7f f[R(7)]e “"dr,

o 2 [ —iwt’ 47 t " iwt” qsn
A(t):—<%) fof[R(t y]e et dt fo f[R(t")]e'! dt".
3

The intrinsic state of the system at very large radial distances X (e +ev(720), (11

is the vacuum statg0) which is the direct product of the

ground states of both nuclei. When the nuclei approachvhereu is the reduced mass of the system ahithe tunnel-
within the range of the coupling form factor, the intrinsic ing time along the classical trajectory. Integrating by parts
system couples to the radial motion. The intrinsic state at &q. (11), Eq. (10) can be rewritten in the form

given timet is then given by

+ oq;

4
+ev(720) f f[R(;)]e“dr,
0

df
dR

~ + = dVeff(R)
la(t))=U(t,0]0)=eAVe*V2"|0), €) mR=—gp—+Fo(7), (12

with . : : . .
where the effective barrier o is usually called the adiabatic

_ ic . (t o barrier, given by
a(t)=—B*(t)e '®t=— fe*'w‘f f[R(t") et dt’. (5
0

[of(R)]?
. N . Ver(R)=V(R) = ———. (13
It is seen that an intrinsic state coupled linearly evolves as ho
a coherent statel 5,16 when the nuclei approach the barrier.
It is this coherent state which undergoes tunneling when théhe forceFp(7) is given by
nuclei reach the external turning point of the barrier.
The vanishing of the coupling when the nuclei are far o? [ df o df\ .
away allows us to rewritex(t) at the external barrieRg as Fp(r)= %(ﬁ ef“”f (ﬁ R(7,)e“d 7,
an adiabatic value and a shift from adiabaticity, . 0 Tl
L= 4 .
4= diad TV, © —e‘“f j—f R(7)e “dr,
where the adiabatic parametef,q and the shift from adia- 7 71
baticity y are given by Miler and Takigawd 17]: a1
(4 .
of(Rg) +e@(7720) fo (d_R R( Tl)e“”ldrll. (14
Yigd= ~ —7 (7

71

_ 9 iRy (Re)(df) . o’ aur It appears from Eq(12) that the coupling of the nuc!ear
V=758 . |dr R(t")e'“"dt’. (8  degrees of freedom to the relative motion has two effetks:
v a renormalization of the barrier proportional to the inverse of

In the adiabatic process, the intrinsic system is coupled to th%1e gxmta‘uon energy of the stat.(a;) the action alon.g Fhe
relative motion but remains in the ground state. We neglec ominant pqth_of a non-Markovian fordey() .'Fhat IS In
the shifty, and assume that at the entrance of the barrier thgeneral of gllSSlpatlve chgracter. The penetrabll!ty O.f the bar-
ground state is the adiabatic coherent state Elleé]for a given energi in the center of mass is given by
) = e | %iad*2gaiaaa’ | 0y 9
| |ad> | > ( ) P(E)ZPR(E)-P,?(E), (15)
which reduces to the usual ground state & 0. The in-
clusive influence functional is determined by using the comwhere Pg(E) is the contribution to the penetrability along
pleteness relation of the coherent stafé§,16 and the the classical path obtained by solving EGH)) and(12) and
imaginary time procedure for tunnelif@]. The penetrability P,(E) is the contribution of fluctuations of the trajectory
is calculated along the classical trajectory obtained by solvaround the classical path, which is not considered in this
ing the classical equation of motion paper. The penetrabiliti?(E) is then approximated by
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P MRz TABLE |. Parameters of the optical potential for the different
P(E)~Pgr(E)= eXP( - ZJ — U(R) systems.
0
dr System Vy (MeV) ry (fm) ay (fm)
+Wg(7)—E 7)' (16) a5y 24yg 340.47 1.010 0.598
160+ 2%8pp 37.66 1.290 0.361
whereWg, is the influence potential given by %8Ni + ONi 82.30 1.149 0.63

2

o — LW - T —wT
Wr(r)=——-(1+e 20" f[R(7) e the reflected dissipative trajectories have very close values,

and we use the above formula to obtain a first-order quanti-

T tative evaluation.
Xf f[R(7)]e“1d 7+ 20 (hwe 2“7 a;
0

Ill. APPLICATION OF THE MODEL

+of[R(7)](e” T+ 2%)), 17 TO EXPERIMENTAL DATA
The fusion cross section is calculated from the partial wave |n order to compare the results of this model to other
expansion models and to experimental data we have chosen some
nuclear systems for which there are available data of elastic
- . ) .
E)= — 2/+1)P (E), 18 and_fu5|on cross sect[ons swnultaneously. The nuclear part of
o1(E) kZZ ( )PAE) (18) the interaction potentiaV(R) in Eq. (10) has been taken as

the real part of the optical potential parametrized in the
wherek is the asymptotic momentum. In the present calcusnoods-Saxon form

lations we evaluate quantitatively the effect on the sub-

barrier fusion cross section of the renormalization of the bar- Vo

rier and the forcd=, separately. We calculate first the fusion VN(R)=— T TR-Ry| (21
1+ ex;{ )

cross sections using the Hill-Wheeler formula for the pen-

etrabilities with the effective barrier given by E.3), v

1 with parameters fitted to the elastic cross sections with the
P(E)= —2m(E—VE |’ (19 codekcis [20]. The systems chosen have be¥s+ 2Mg
1+exp<—5) [21,22, %0+ 2%pb [23,24), and *Ni+ ®Ni [25,27. The
Qe parameters of the Woods-Saxon potential for the three sys-
tems are given in Table I. The coupling form facfgR) has
been taken as the derivative of the Woods-Saxon potential
|f)lus the Coulomb form factor

wherevgff is the height of the effective barrier arid) o its
curvature. To calculate the classical path we have numer
cally solved Eq.(10) by the Runge-Kutta method of fourth
order. As the equation is an integro-differential one, with the

2 A—1
force depending on the solution for the trajectory, we have  f(R)=— dWn(R)  3ZrZpe”) Re

Rx+15}\719(R_ Re)

used a self-consistent procedure, taking the trajectory with a dR 2 +1

vanishing force as the initial solution. We have found that the R\

?terat?ve process converges rapidly and u_sually five or fewer + ——>5""19(Re—R)|, (22)
iterations are needed. The external turning point has been Rg

taken as the solution &f(R)=E, but due to the dissipation

of the energy along the tunneling trajectory, the internal turnwhereZ,,Z; are the charges of the projectile and target,
ing point differs from that of the classical trajectory without the spin of the excited state, aRg the equilibrium radius of
dissipation and has been taken as the point at which ththe charge density. The coefficienttakes into account the
velocity vanishes. This procedure has been done for eacBR scaling[26,28 which requires the nuclear and electro-
partial wave, stopping the calculations when the penetrabilitynagnetic deformation lengths to be equal. The coupling pa-
becomes negligible. In our calculations of the penetrabilitiesrametero is given in terms of the nuclear deformation length
we have considered the multiple reflections of the trajectoryByR,, by

under the barrier by using the uniform approximation for the

penetrability[19] derived for the nondissipative process BnRy
o= , (23)
o o PE 20 Vamr
unif( )_W(E)' (20

and the nuclear deformation parameters have been obtained
For the dissipative case with which we are concerned, th&om the electromagnetic ongh [21,29,3Q by BR scaling.
action at each reflection can be different due to dissipation]he excited states considered for each nucleus and their re-
and numerical integration along every one of the possiblépective deformation parameters are given in Table II.
multiple-reflection trajectories should be performed to take At energies above the barri&f3, the penetrabilities have
this into account. We assume, however, that the actions alorfgeen calculated without taking the coupling into account, by
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TABLE II. Deformation parameters for the excited states con- 3 | . .
sidered.
Nucleus J7 Eex (MeV) By ] S2g 24Mg ]
BNi 2+ 1.454 0.216
3" 4.475 0.186 o I )
. * L=0
BN 2+ 1.344 0.198 ", Fit
3" 3.560 0.180 o * N * L=8 .
1 N x w ——- Fit
0 2 6.920 0.352 . v Lets
3" 6.130 0.712 1— ’ - —
------ Fit
208pp 3 2.614 0.120 .
2" 4.086 0.055 . _
RES 2" 2.230 0.312
Tal
Mg 27 1.369 0.505 ’ | '
24 a2 36
Ec.m.(M°v)
means of the Hill-Wheeler formula with the heighf and FIG. 1. System %S + 24Mg. The numerical values of
curvaturefi(), of the bare barrier. X(E)=(Vg—E)/%Q are representetstars for the partial waves

We have found that at sub-barrier energies the imaginary~=0, /=8, and/ = 16. Polynomial fits of order 4 are performed to
time method for tunneling breaks down when we move todeduce the penetrabilities between the renormalized and the bare
energies very close to the barrier, typically between the adiabarriers of each partial waughe two stars at higher energy
batic and bare barriers. The barrier width has very small 0 )
values at these energies, usually less than one fermi, and the- Ve - It may be considered that the energy dependence of

penetrabilities calculated from classical trajectories have untiS effectiveX(E) takes into account the coupling effects. It

physical values. This is due to the fact that the influencdS Plotted for the systems and partial waves of Table Il in

: : - ig. 1, Fig. 2, and Fig. 3. A close analysis ¥{E) values
potential makes the barrier lower than the incident energy. T eveals that below the adiabatic barrier they have a quadratic

tackle this problem we have taken the penetrability as 0.5 a(rge endence on enerav. In order to match smoothly the pen-
the bare barrier and interpolated to the region in which the P 9y y P

etrabilities between the adiabatic and the bare barrier we
in which this problem arises is narrow as can be seen fro

. ) X ; i omial on energy, reflecting a more involved nature of the
Table 11l in which the bare and renormalized adiabatic bar'coupling in this energy region. It is seen in Fig. 1, Fig. 2, and

riers are given for partial wave$=0, 8, and 16 for each of Fig. 3 that at energies far below tsewave barrier,X(E)

the systems studied. _ o __ depends quasilinearly on energy, indicating that the use of a
The way in which we have carried out this interpolation is

to fit the numerical penetrabilities obtained in our semiclas-
sical quantum tunneling modéBQT) to the Hill-Wheeler
formula, obtainingX(E) = (Vg— E)/%Q values which repro-
duce these penetrabilities. These empirK@E) values have

been fitted by a fourth-order polynomial vanishing at 18g , 208p,,
Y i
TABLE 1. Values of the bare and adiabatic barriers #6&=0, . * L=18
8, and 16 for the three systems studied. N Fit
a L=8
System / VY (MeV)  VET(MeVv)  4Q, (MeV) ' Fit T
3254 24\g 0 28.090 27.691 3.78 L=0
8 29.395 28.909 3.95 Fit |
16 33.098 32.333 4.40 4
58Nii + 5N 0 100.109 97.780 3.97
8 100.554 98.183 3.96 .
16 101.795 99.304 4.00 ,
T
160+ 29%pp 0 77.231 75.897 6.50 o “
8 77.940 76.578 6.49 Fo.mMeV)
16 79.963 78.470 6.62

FIG. 2. Same as Fig. 1 for the systéfiD + 20%b.
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FIG. 3. Same as Fig. 1 for the systefiNi + ®*Ni. FIG. 5. Fusion cross sections for the syst&f® + 2°%Pb. The
theoretical curves are represented as in Fig. 4.

renormalized barrier independent of energy would be a use-

ful approximation in this region. This is no longer valid 4 coupled channel codecrFus [14]. The ccrusand SQT

when we approach the barner_. . calculations use the same input, with the same potentials and
We have calculated the fusion cross sections for all ene1rf—

ies from below to above the fusion barrier, using the SO orm factors. The initial state used in SQT calculations
9 o . . o 9 hown in the figures is, as iocrFus the initial ground state
penetrabilities below the adiabatic barrier, the interpolate

: . : rresponding to a vanishing parameter. It can be ob-
penetrabilities between the adiabatic and the bare barrier, a ; . e : ;
the Hill-Wheeler formula above the bare barrier. In Fig. 4,% rved in the figures that the renormalization has an impor

Fio. 5. and Fig. 6 the calculations performed with the totaltant effect on the enhancement of the fusion cross sections,
9. 9, 9. © P . especially below thes-wave barrier energy. When the total
force F(7) given in Eqg.(11) are compared to calculations

! . . . X force is considered the enhancement is less important, so we
performed with the adiabatic potential of E4.3), and with conclude that the action of the forée(7) in Eq. (12) is to

decrease the sub-barrier fusion cross sections with respect to

1000 . : : . = the renormalization alone, and therefore is of dissipative
3 ] character.
00— ]
. E g * ' ' 3
- ] ] ]
E 3 101)—E =
) . h 3 3
& 1~ — 7 7
b} E l ) § 10? —§
] ,/ ! * 23 4+ “mg 2 ] E
015 / — .-~ CCFUS 8 1= —
= a = E|
hu ) _ £ = =
] , SQT ( Veff) = % E ]
001 S SQT (Veff+F) ] o o1 -
E 2 Vcoup =0 i 3 * SN + %N 3
] 7 7 —--- CCFUS 7
2.01 —
0.001 . ; I T T 3 — — — SQT(Veff) EE
2 2 b 2 s ] J —— SQT(Veff+F) ]
Eo.m MeV) - B Veoup =0 E
3 / 3
FIG. 4. Fusion cross sections for the systé8 + 2*Mg. The 00001 , | : | :
cross sections in the semiclassical quantum tunneling model with [ 96 104 12
dissipation(full line) and without dissipatioflong dashed lineare E, . (MeV)
compared to those calculated with the cameus (dashed dotted
line), to the unidimensional barrier penetration mo@#dtted ling FIG. 6. Fusion cross sections for the systéfNi + ®Ni. The

and to experimental dai@targ. theoretical curves are represented as in Fig. 4.
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It can be noted that the calculations done with the semielastic excitations of the nucleus, the renormalization effect
classical approximation for linearly coupled tunneling agreds responsible for the enhancement of sub-barrier fusion
quite well with the quantum mechanical calculations ofcross sections. The important contribution of the dissipative
CCFUS At very low energies there are some discrepanciegorce implies that the tunneling process for the systems con-
due mainly to the use of the parabolic approximation insidered is not adiabatic, although during the approach to the
ccFus In further calculations we have set the parameter barrier entrance the adiabatic approximation is adequate. The
equal to its adiabatic value given by Hq), finding that the  coupling before tunneling which is accounted for by an ini-
fusion cross sections are not modified significatively withtial coherent state appears to have a negligible influence on
respect to those calculated with the unpolarized initial statethe fusion cross sections. We have also found, when multiple
The coupling effects before and after the tunneling proceseeflections are considered, that the uniform approximation
do not seem to have a significant influence on the fusiorcan be used for the tunneling penetrabilities in the dissipative
cross sections in this model. We have also found that the usgase with reasonable accuracy.
of the uniform approximation for the penetrabilities to take  Our results allow us to conclude that the semiclassical
into account the multiple reflections of the trajectory undercalculations of the path integral for dissipative tunneling are
the barrier is a fair approximation at energies below thesufficiently accurate for treating sub-barrier fusion at ener-
s-wave barrier for the systems studied. Nonuniform calculagies below the effective barrier. The importance of additional
tions of the penetrabilities do not seem to be, at this stage, afegrees of freedom as transfer or more complex ones as deep

crucial need. inelastic is evident in the case of Ni-Ni. These additional
degrees of freedom in the path integral formalism will be
IV. CONCLUSIONS treated in later works.

We have shown that the approach of path integrals for
heavy-ion sub-barrier fusion gives results comparable tdhis paper has been supported by DGICYT under project
coupled-channel calculations for different systems. For infPB90—0171.
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