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Abstract

We study matrices A € C"*™ such that A°T'R = RA* where R* = I,,,
and s,k are nonnegative integers with k > 2; such matrices are called
{R, s + 1, k, x}-potent matrices. The s = 0 case corresponds to matrices
such that A = RA*R™' with R* = I, and is studied using spectral
properties of the matrix R. For s > 1, various characterizations of the
class of {R,s + 1,k,*}-potent matrices and relationships between these
matrices and other classes of matrices are presented.
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1 Introduction

The set of n x n complex matrices is denoted by C**™. The symbols A* and Af
denote the conjugate transpose and the Moore-Penrose inverse, respectively, of
A € C™*™. The set of distinct eigenvalues of A (the spectrum of A) is denoted
by o(A). The symbol I,, denotes the identity matrix of C™**™.

Throughout this paper we will use matrices R € C"*™ such that R* = I,
where k € {2,3,4,...}. These matrices R are called k-involutory [29, 30, 32],
and are a generalization of the well-studied involutory matrices (the k = 2 case).
We say that k is minimal with respect to R¥ = I, if k is the smallest integer
over all h € {2,3,4,...} such that R" = I,,. Note that the definition given in
[29, 30] differs from that in [32]; in this paper we adopt the definition given in
[32], namely that R is k-involutory does not require that k& be minimal with
respect to RF = I,,.
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For a k-involutory matrix R € C"*™ and s € {0,1,2,3,...}, a matrix A €
C™*™ is called {R, s + 1, k}-potent if it satisfies

ATR = RA (1)

[17, 8]. These matrices generalize the centrosymmetric matrices (matrices A €
C™*™ such that A = JAJ where J is the n x n antidiagonal matrix [31]), the
matrices A € C"*™ such that AP = PA where P is an n X n permutation matrix
[25], and { K, s+1}-potent matrices (matrices A € C"*™ for which KAK = Ast+!
where K2 = I,, [18, 19, 20]).

Characterizations of { R, s+ 1, k}-potent matrices were presented in [17], and
properties of a matrix group constructed from an {R,s + 1, k}-potent matrix
were studied in [8]. Motivated by the results found in these papers and their
connections to important known classes of matrices, we investigate matrices
A € C"*™ where A in the right-hand side of (1) is replaced by f(A) for some
function f. In (1), f(A) = A and in this paper f(A4) = A*. We introduce and
study this further class of matrices related to the {R, s + 1, k}-potent matrices.

Definition 1. Let A € C"*", R € C™*" be k-involutory (that is, R¥ = I,, for
some integer k > 2), and s € {0,1,2,3,...}. The matriz A is called {R,s +
1, k, x}-potent if it satisfies

ATIR = RA*. (2)

The set of all {R, s+ 1, k, *}-potent matrices will be denoted by Pr sk «-

If A€ Prsp-and A= A% then Aisan {R,s+1, k}-potent matrix. Hence,
we are interested in non-Hermitian {R, s+ 1, k, *}-potent matrices. In this case,
A3t and A have the same spectrum up to conjugation.

The s = 0 case corresponds to matrices such that A = RA*R~!. This class
has been investigated when R is either a permutation matrix or an involution,
and will be further addressed in Section 2. Matrices in Prg s i« generalize the
perhermitian matrices (matrices A € C"*" such that A = JA*J where J is
the n x n antidiagonal matrix [24]) and the k-Hermitian matrices (matrices
A € C™*" such that A = KA*K where K is any n X n involutory permutation
matrix [13]).

A Toeplitz matrix T = [t;;] € C**™ satisfies ¢;; = t,;_; for some given se-
quence t_,,...,t,, while a Hankel matrix H = [h;;] € C"*" satisfies h;; =
hiyj—a for some given sequence hg, ..., ha,; note that if J is the n x n antidi-
agonal matrix, then JT is Hankel and HJ is Toeplitz [14]. Every real Toeplitz
matrix T can be written as T = J~'TJ, similarly H* = J~'HJ for any Hankel
matrix H with real entries (here B' denotes the transpose of B); these matrices
provide interesting examples of {R, s + 1, k, *}-potent matrices (R = J, s = 0,
and k = 2).

The well-known Sylvester equations BX + X*C = FE, for arbitrary matri-
ces B, C and FE of conformable sizes, are widely studied in the literature, and
the homogeneous case (E = 0) has recently attracted the attention of several
researchers due to its relationship with palindromic eigenvalue problems [27].



{R, s+ 1, k, x}-potent matrices can be seen as solutions to a subclass of the ho-
mogeneous Sylvester equations (B = R™!, C = —R~! where R is k-involutory,
and s = 0) since the resulting equations relate a matrix with its conjugate
transpose by a k-involutory similarity.

It is known that any n X n matrix over any field is congruent to its transpose
by an involutory congruence, i.e, for any n x n matrix A, there is an X with
X? = I, such that XAX" = A! [15, 10]. In [9], it was shown that any projector
(idempotent matrix) is unitarily similar to its conjugate transpose.

The concepts of generalized and hypergeneralized projectors were introduced
by Grofl and Trenkler [12]: For A € C"*", A is called a generalized projector if
A? = A*, and A is called a hypergeneralized projector if A2 = Af. Benitez and
Thome [6] have extended the definition of generalized projectors to k-generalized
projectors and in this paper we define k-hypergeneralized projectors, for any in-
teger k greater than or equal to 2. Results concerning generalized and hypergen-
eralized projectors and their extensions can be found in [2, 3, 4, 6, 12, 26, 28].
Matrices A € C™**™ satisfying (A — pI,,)(A — ¢qI,,) = O for some p,q € C are
called quadratic matrices [1]; such matrices were generalized and studied in
[11]. We extend the definition in [1] to what we will call {a1, g, . . ., ag}-potent
matrices.

Except in Section 2, we will assume s € N. The s = 0 case is discussed in
Section 2. In Section 3, we derive properties of {R, s + 1, k, *}-potent matrices
and give various characterizations. In [8] it was proved that an {R,s + 1,k}-
potent matrix is always diagonalizable but this is not always true for matrices
in Pr. sk« We impose conditions on R or on the matrix A to recover some of
the properties obtained for the former class of matrices. In Section 4, we study
the relationship between { R, s+1, k, *}-potent matrices and other classes of ma-
trices such as the {s + 1}-generalized projectors, the {s + 1}-hypergeneralized
projectors, and the {a1, as, ..., as}-potent matrices. We summarize these rela-
tionships in a diagram provided in Figure 1.

2 AR = RA* when RF =1,

In this section, we analyze the case s = 0. The techniques used for this case
are different from those for the case s > 1, which will be discussed separately
in the next section. We begin with the following lemma regarding k-involutory
matrices. The expression ged(aq,...,a,) is the greatest common divisor of
integers ay, ..., apy.

Lemma 2. Let R € C™*" with R* = I,, for some positive integer k > 2. Then
o(R) C {w,w?,w?, ..., wF = 1} where w = exp (%) Further, there exists an

invertible S € C™ ™ such that R = SDS~1 with
D=w"l,, @w?l,, ®- - dwrl,,

where p is the number of distinct eigenvalues in o(R), where the a; are positive
integers with 1 < a1 < ag < -+ < o < k, and where the dimension of the



eigenspace of R for w®i is n; for each j. The minimality of k with respect to
RF = I, is equivalent to ged (ay, ag, . .. ,ap, k) = 1.

Proof. Since R* — I, = O, the minimum polynomial of R must divide z* — 1,
which has no repeated roots, and hence, all eigenvalues of R are k' roots of
unity, and all Jordan blocks for R are 1 x 1. Let g = ged (a1, a9, ..., ap, k).
Then there are positive integers 31, f2, ..., Bp so that a; = gfB; for each j, and
a positive integer h so that k = gh. Then, for each j,

) 211 2m 21
w® = exp <kaj> = exp (kgﬁj> = exp (hBJ)

so that w® is actually an h** root of unity where h = k/g. Then
T h
D' =P ()" I, = I.
j=1

Since R" = I, if and only if D" = I,,, the minimality of k is equivalent to
g = 1. D

One would hope that AR = RA* would imply that D = S~'RS and B =
S—1AS would satisfy BD = DB*. However, this requires that

BD = (57'AS) (S™'RS) = S"' (AR) S = S~' (RA") S

and
DB* = (S7'RS) (S7'AS)" = ST'R(55*) A*(S71)*

are the same, which need not be true. What is needed is that S~ = S*, which
is to say, what is needed is that R is unitarily diagonalizable. While requiring
that R = R* suffices, so does the weaker condition, RR* = R*R. (The matrix
R is called a normal matrix when the weaker condition holds, and this condition
is equivalent to unitary diagonalizability.)

Consequently, we assume that R is a normal matrix. We examine what
the condition BD = DB* implies about the matrix B. Begin by imposing the
block partitioning of D on B. Observe that under Hermitian transpose, the
block (B*),; is the block (Bj;)" for 1 <4, < p. Then BD = DB* is equivalent
to the conditions

Bijwa‘f Inj = wai.[ni (B*) .

i for 1<4,5<p.

Equivalently,

Bjj = w™ ™% (B*),;

for 1<id,5<p. (3)
Observe that when i = j, it follows that B;; = (B*);; = (By;)". Hence, each
diagonal block of B must be Hermitian.

Now suppose that i # j. Note that (3) gives

By = w® ™% (B"),,

) = w@i*&j (B])* ;



and it also gives Bj; = w® =% (B;;)". The latter implies (Bj;)" = w® =% B;;.
Combining these results, we see that when i # j,

s % o s o
Bij:wal aj (le) — T a]Bij:‘*ﬂ(al a])Bz’j-

When 2(o;; — ;) # 0 mod k, Bij = Oy, xn,;. Note that 2(c;; — ;) # 0 mod k can
be restated as 2a; # 2c;; mod k. Also, when 2a; = 20; mod k, no restrictions
are imposed on B;;.

When is 20;; = 2a; mod k, and how does this depend on k7

When k is odd, 2 is invertible mod &, and consequently, 2a; = 2o;; mod k if
and only if a; = o; mod k. Since o; and «; are distinct integers in {1,2,..., k},
2(a;—a;) # 0 mod k. Thus, when k is odd, B must be a direct sum of Hermitian
matrices.

What about when k& = 2m for some positive integer m? Note that w™ =
exp (2m) = exp(mi) = —1. Since o; and «; are distinct integers in {1,2, ..., k},
0 < |o; —aj| < k, and consequently, 2(a; — ;) = 0 modk if and only if
2] — aj| = k, or equivalently, if and only if |a; — ;| = m. That is, when
o; < ay, this means a; = o; +m, and when o; > «;, this means o; = a; +m.
Thus, if k¥ = 2m, and if whenever w® is in o(R), w* ™™ = —w* ¢ o(R), then
B must be a direct sum of Hermitian matrices.

The interesting case is when k = 2m and for at least one i, {w®, —w*} C
o(R). In this case, the diagonal blocks of B are all Hermitian, and for B;;
where oj = a; + m modk, Bj; = w* ™% (By;)" = w™(B;;)" = —(Byj)".
Apparently, in this case, there will be some nontrivial off-diagonal blocks, which
are connected by a skew-Hermitian relationship to other off-diagonal blocks.

The preceding arguments lead to the main result of this section.

Theorem 3. Suppose n,k are positive integers, and A, R € C"*™ where R is
normal and k-involutory, with k minimal with respect to R* = I,,. Let S,D €
C™*™ be the unitary and diagonal matrices, respectively, given in Lemma 2
such that R = SDS*. Then, AR = RA* holds if and only if BD = DB* where
B = S*AS. Further,

P
1. When k is odd, BD = DB* if and only if B = @Bjj where each Bjj; is
j=1
an arbitrary n; x n; Hermitian matriz.

2. When k = 2m for some positive integer m, partition B into blocks using
the natural partition of D. The following are equivalent:

(a) BD = DB*

(b) For1l<j<p, Bjj is an arbitrary n; x n; Hermitian matriz. B;; =
O, xn; whenever [a; — aj| # m. If aj = o =m (equivalently, w® =
—w® ) for some a; with 1 < a; < m and some oy, then Byj is an
arbitrary n; x nj complex matriz such that Bj; = —(B;j)*.



Corollary 4. Suppose A,R € C™*", R = R*, and R* = I,, for some minimal
positive integer k. Then k € {1,2}. If R = +1I,,, then AR = RA* if and only if
A= A*. If R # £I,, then o(R) = {—1,1}, k = 2, and there exists a unitary
S € C"" such that R = S (I, ® (—1)I,,,) S*™ where ny > 0 is the multiplicity
of 1 in o(R) and ny > 0 is the multiplicity of —1 in o(R). Let B = S*AS.
Then AR = RA* if and only if

B B2
B - *
{— (Bi2) 322}

where B11 € C™*™ and Boy € C"2*"2 gre Hermitian, and By € C"t*™2 g
arbitrary.

Proof. f R = R*, then o(R) must be real, so o(R) C {—1,1}, and hence,
k € {1,2} by the minimality condition. If o(R) = {1}, then k =1 and R = I,,.
If o(R) = {—1}, then k = 2 and R = —1I,. If o(R) = {—1,1}, then use the
preceding theorem with £k = 2 and p = 2. O

The next corollary follows by using a similar argument.

Corollary 5. Suppose A, R € C"*", R* = —R, and R* = I,, for some minimal
positive integer k. Then k = 4. If R = +il,,, then AR = RA* if and only if
A= A*. If R # +il,, then o(R) = {—i,i} and there exists a unitary S € C"*™
such that R = S (il,,, ® (—1i)1,,) S* where ny > 0 is the multiplicity of i in o(R)
and ng > 0 is the multiplicity of —i in o(R). Let B = S*AS. Then AR = RA*

if and only if
_ B11 O
o-15 5

where B11 € C™*™ gnd Boy € C™%™2 qre Hermitian.
The following example illustrates the second case in Theorem 3.

Example 6. Suppose that k =4 and o(R) = {i,—1,—i}. Here w =14, oy =1,
as =2, a3 =3, n, =4 and nyp =nzg = 1. Then k = 2m where m = 2; w™
and w* = —w* are in o(R); and w*? is in o(R) but w*T™ = —w* is not.
Suppose that S = Is so R = D. If A € C%6 satisfies AR = RA*, then Ayy, Ao
and Asz must be arbitrary Hermitian matrices; Ao, As1, Aoz and Aszs must be
zero matrices; Ay3 must be arbitrary, and As; = — (A13)". That is, AR = RA*
holds if and only if A satisfies

a1 @12 a13 ai4 aie
*
aq9 a22 a23 24 a26
* *
A= ais Qg3 ass a3q ase

0 0 0 0

0
0
0
aj,  ay  ajyy a0 age
ass
* * * *
—ajg —a3s —azs —azs 0

ae6

where each diagonal entry of A is real.



3 Characterizations of {R, s+ 1, k, x}-potent ma-
trices

For a matrix A € C"*™, the group inverse, if it exists, is the unique matrix A%
satisfying the matrix equations AA# A = A, A#AA# = A# and AA# = A# A;
it is well known that A% exists if and only if rank A2 = rank A [5].

Throughout this section, we assume that s,k are integers with s > 1 and
k > 2. First, we list some properties of {R, s + 1, k, *}-potent matrices.

Lemma 7. Suppose that A € Pr sk« Then the following statements hold.

a. A% exists.
b. A# S PR,S,k,*'
C. AA# S ,PR,S’]C’*'

o(A) C {0} U {exp (2’;;2) te {0,1,...,s+1}}.

Proof. (a) Since s > 1, rank(A) = rank(A4*) = rank(R™!A*T!R) = rank(A4°T!) <
rank(A?) < rank(A). Thus, rank(A?) = rank(A4).

(b) Using the relation (A*)# = (A#)*, we obtain (A*)# = (R1ASHLR)# =

R7YASTH#R = RT1(A#)STIR = (A%)*.

(c) Since A, A* € PR gk, (AAT)STE = AsTL(A#)5H]l = RA*RTIR(A¥)*R™! =
RA*(A#)*R™' = R(A¥A)*R™! = R(AA¥)*RL.

(d) From RA*R™! = ATl we have [0(A4)]*T! = o(A*t!) = ¢(RA*R™!) =

o(A*) = 0(A), where o(A) means the set of the conjugate of the eigenvalues of

A. Thus, A € o(A) if and only if A1 = X, which becomes r*T! exp ((s + 1)if) =

rexp(—if) where we assume that A = rexp(if). Now, taking modulus the

&

two possibilities are » = 0 which implies A = 0, or A = exp (%z) ,t €
{0,1,...,s+1}.

Some results related to Lemma 7 were given in [16].
The next result presents a characterization of matrices in Pgr s «.

Theorem 8. Let A, R € C"*" be such that R* = I,, and r = rank(A). Then A
is an {R, s+1, k, x}-potent matriz if and only if there exist nonsingular matrices
PeC"™™ and C € C™™" such that

P! and R:P{‘g g]P*, (4)

for X € C™*7 satisfying XC* = C*T1X with X nonsingular and for any non-
singular T € C=)x(n=7),

Proof. By Lemma 7, A has index at most 1. So, the core-nilpotent representa-

tion gives
_ c O 1
A_P[O O}p



for some nonsingular matrices P € C"*" and C' € C"*". Substituting in A*t! =
RA*R™! we get

c* O cstt O
-1 —1y\* *p—1p _
PIR(PY) {0 O}PR P—{ o 0]
Denoting Z = P7'R(P~1)* and partitioning Z as
XY
7= [ vV T }

of adequate sizes, we arrive at
XY cr ol _Jcstt o XY
vV T O O | O O v T\’
from where we obtain XC* = C*T1X,Y = O, and V = O. Since R is nonsingu-

lar, X and T are nonsingular as well. Substituting in the expression R = PZP*,
we get the representation (4). O

From Theorem 8, it follows that if A is an {R, s+ 1, k, *}-potent matrix with

A as in (4) then
ct o
# _ -1
A —P[ 0 O}P .

Observe that in Theorem 8 we obtain the condition XC* = C*+1X but, in
general, we cannot conclude that C' is an {X, s + 1, k, *}-potent matrix. More-
over, while A is similar to a block diagonal matrix via the matrix P, the corre-
sponding relation for R using the same P is a congruence to a block diagonal
matrix. The concept of EP matrices allows us to improve the form in (4) by
giving (unitary) similarity in R as well.

Recall that a matrix A € C"*" is called EP if AAT = ATA [7], or equiv-
alently, if there exists a unitary matrix U € C™*™ and a nonsingular matrix

C € C™*" such that
C O "
a=0[$ 9]

Theorem 9. Let A, R € C"*" be such that R* = I,, and r = rank(A). Consider
the following three conditions:

a. A is an EP matriz.
b. Ais an {R, s+ 1, k,x}-potent matriz.

c. There exist a unitary matric U € C™"*"™ and a nonsingular matriz C €
C™ " such that

C O . _ X O N
AU{O O]U and RU[O T}U

where C is a {X,s + 1,k,x}-potent matriz for X € C™*" and any T €
C=)x(n=7) satisfying TF = I,,_,.



Then any two of these conditions (a)-(c) imply the third one.
Proof. (a) + (b) = (c): Assume that

¢ O X
AU[O O}U

for some unitary matrix U € C"*™ and a nonsingular matrix C € C™*". Now,
a similar proof as that of Theorem 8 gives (¢). (a) + (¢) = (b): This can be
directly derived from Theorem 8. (b) + (¢) = (a): This direction is trivial. [

The findings in the next result relate to some facts about the diagonalization
of a matrix in Pg s k-

Theorem 10. Let A, R € C"™ " be such that R* = I,, and A is an {R,s +
1, k, x}-potent matriz. Then

a. ACTD — (R(R"Y)*)IA(R*R™Y), j=1,... k.

b. If R is normal, then ACHV™ = A, In this case, A% = AL+ =2,
c. If R is Hermitian, then AGHD* = A. In this case, A# = AG+TD*~2,
d. If R is normal, then A is diagonalizable.

Proof. (a) The definition A**! = RA*R~! implies ALHD? = (AsFh)sHt =
R(Ast1H)*R~1 = R(R™')*AR*R~'. Similarly,

14(5—1—1)3 _ (A(5+1)2)s+1 — R(R—l)*RA*R—lR*R—l

and A" = (R(R71)*)2A*(R~'R*)2. The result follows by induction. (b) If
R is normal, then (R*)"'R = R(R*)~! and inductively,

(R(R™)")* = RE(R™)")" = RE(RY)) 7 =1,
and
(RR™H" = (R)MRTH* = (RO (R = L,

since R* = I,,. Now, the result follows from (a). (c) If R* = R and RF = I,
then R? = I,, because R is (unitarily) diagonalizable and

7(R) CRﬁ{exp (ﬁ;‘%) g€ {0,1,...,q—1}} c{-1,1}.

Hence, R~! = R = R*. Now, again the result follows from (a). (d) This
follows from (b) and by taking into account that all the roots of the polynomial
p(z) = 26D o are simple. In order to compute the group inverses of A
in parts (b) and (c) the following general fact is used: A% = A’ if and only if
At+2 = A for some given integer £ > 1. O



While in [8] it was proved that an {R,s + 1, k}-potent matrix is always
diagonalizable, this property is not always true for matrices in Pg s «. The
next example illustrates this fact.

Example 11. Let w be a primitive root of unity of order 2m,

110 0 Vs+1 0

1
A=]0 1 0|, and  R,=| A5 0 0
00 0 0 0 w

Then R%2™ = I3 and the matriz

0 vs+1
X = 1 0
Vs+1
satisfies XC* = C*M' X and X% = I, where C = (1) 1 Hence, A is a

{Ry,, s+ 1,2m, *}-potent matrix. It is clear that A is not diagonalizable.

Recall that for a pair of matrices A, B € C"*™, the commutator [A, B] is
defined as [A, B] = AB — BA.

Lemma 12. Let R € C"*" be such that R* = I,,. The set
G = {A S 'PR757;€’* : [A,B] =0,VB € PR,s,k.,*}
18 a semigroup under matriz multiplication.

Proof. Let A1, Ay € G. Then, A1, As € Pr s i, and for i = 1,2 we have A;B =
BA, for all B € P« In particular, AjAs = A3A;. Since RATR™! = Af“
for : = 1,2, we get

(A1 Ag)* T = ASTIASH = RATASR™' = R(AA))*R™ = R(A1A2)* R,

that is A1As € Prsk«. Moreover, (A1A2)B = A1BAy = B(A1A) for all
B € Prs i« Hence, A1As € G. O

Remark 13. If A, B € Pr sk« satisfy AB = BA, then AB € Pr s 1+

4 Relationship between Pg ;. and other classes
of matrices

First, we present a general result whose proof will be useful in this section.

Lemma 14. Let A € C"*™ be a matriz of indexr 1 and rank(A) =r > 0. Then
A is a normal matriz if and only if there exist nonsingular matrices P € C"*™
and C € C™7" be such that

- Cc O 1 o | M O
A—P[OO}P and PP—[O N}

where M € C™*" and N € C"=")*(=") qre both positive definite matrices and
C* commutes with MCM 1.

10



Proof. Tt is well known that any matrix of index 1 has the form

_L[C 07,
a-r[S 9]

for some nonsingular matrices P € C"*™ and C' € C"*". Substituting in AA* =
A* A and reordering factors yield

el 8l (5 ]rr-[5 8] (6 8) o

Partitioning P* P with adequate sizes to the partition considered for A we obtain

. M Q
Pr=| g 3

with M and N Hermitian. Since P is nonsingular, by using the positive definite-
ness of P*P it is easy to see that M and N are positive definite. The inversion
formula of Banachiewicz-Schur ensures the nonsingularity of the Schur comple-
ment W = (P*P)/M = N — Q*M~'Q and gives

(P*P)-l _ |: M—1+M—1Qw—lQ*M—1 _M—le—l :| .

7W71Q*M71 Wfl

Substituting in (5) and making the block products we get

QLM Q"LQ o O

where L = C(M~' + M~1QWtQ*M~Y)C*. Thus, MLM = C*MC, MLQ =
O, Q*LM = O, and Q*LQ = O. By the nonsingularity of M and N we get
LQ =0 and Q*L = O, that is

[MLM MLQ}:[C*MC 0]

O=C(M*'+M QW 'Q*MHe*Q=CM I, + QW 'Q*M~1)C*Q.
This last expression gives (I, + QW 1Q*M~1)C*Q = O. Similarly, from O =
Q'L = Q*C(I, + MT\QWIQ )M™1C* we get Q*(I, + M~'QW™1Q") =
O. Now, substituting the expression of L in MLM = C*MC we arrive at
MCM~Y(I, + QW=tQ*M~1)C*M = C*MC which implies

O=MCM NI, +QW'Q*M~HC*Q = C*MCM~'Q,
from where Q = O due to the nonsingularity of C and M. Hence,

P*P:[M O}’

O N

with MCM~1C* = C*MCM =" since L = CM~'C*. The converse is evident.
O
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In Lemma 7 we proved that the projector AA# € Pg 1. provided that
A € Pr.s,i,«- The next result characterizes all projectors that belong to Pr s i «-

Theorem 15. Let A € C™ " be a projector, i.e., A> = A. Then the following
conditions are equivalent:

a. Ais {R,s+1,k,*}-potent.
b. AR= RA*.

c. There exists a nonsingular matriz P € C"*™ such that

B I, O 1 - X O N
AP{O O}P and RP{O T}P

where X € C™*" and T € C=7X(=") gre nonsingular matrices.

Proof. Since A2 = A, we get ATt = A for all s and

A:P[g g}Pﬁ. (6)

(a) <= (b) This follows directly from the definitions. (b) <= (c¢) The form of
R can be found by substituting (6) into AR = RA* and partitioning

-1 1| XY

P~IR(P )_[Z T]

U

Remark 16. Note that in the above theorem the value used for s was not
relevant.

In Theorem 9 we have characterized all {R, s + 1, k, * }-potent matrices that
are EP. Next, we characterize {R, s + 1, k, *}-potent matrices that are normal.

Theorem 17. Let A € C"*™ be a nonzero {R, s+ 1, k, x}-potent matriz. Then
A is normal if and only if there exist monsingular matrices P € C"*" and
C € C™" such that

- C O 1 - XM O 1
A_P{O O]P and R—P[ 0 TN]P

where M € C™*" and N € C"=")*(=") gqre both positive definite matrices and
X € C%" and T € C=*("=") are nonsingular matrices such that XC* =
Ccstix.

Proof. By Theorem 8 there exist nonsingular matrices P € C"*™ and C' € C"™*"
such that

o o7, X 0],
A_P[ O}P and R_P[O T}P,

12



for X € C™*" satisfying XC* = C**1X with X nonsingular and for any non-
singular T' € C(»=7)*(»=7)  Assume that A is normal. Then, a similar proof to
that of Lemma 14 yields

P* = [ MO } pt

O N

where M € C™*" and N € C»=7*("=7) are both positive definite matrices.
Thus, we can deduce that

r-r|

The converse is evident. O

In [12], Grofl and Trenkler defined generalized projectors as matrices A €
Cn*™ that satisfy A2 = A* and denoted this class of matrices by GP. In [6],
Benitez and Thome introduced {s + 1}-generalized projectors (for s > 1) and
for ease we call these matrices {s + 1}-GP matrices [19]. A matrix A € C**"
is called an {s + 1}-GP matriz if A* = AsT1; we denote the set of all n x n
{s + 1}-GP matrices by GPs11. The matrices in GP,11 are characterized as
follows [6]:

A €GP,y <= Ais normal and o(4) C {0} N Q. 2 <= A is normal and A*"® = A

where Q5,5 denotes the roots of unity of order s + 2. We next give another
characterization.

Lemma 18. Let A € C"*". Then A is a {s+1}-GP matriz if and only if there
ezist a unitary matriz U € C"*" and a diagonal matriz D = [d;;] € C"™*" such

that o
D .
A—U[O O]U’

with djj S QS+2.
Proof. This is a straightforward extension of [6, Corollary 2.2]. O
Now, we characterize {R, s + 1, k, *}-potent matrices that are in GPs1.

Theorem 19. Let A € C™ ™ be an {R,s + 1, k,*}-potent matriz. Then, the
following statements are equivalent:

a. Aisa{s+1}-GP.
b. A*R= RA*.

c. There exists a unitary matriz U € C™*™ and a diagonal matriz D = [d;;] €
C™*" such that

* _ Rl O *
U and R—U[O R2:|U

where dj; € Qg0 with Ry € C™*" satisfying RiD = DRy and Ry €
C(n—r)x(n—r).

13



Proof. From the definition A5*t! = RA*R™!, it is easy to see that Ast! = A*
and A*R = RA* are equivalent; thus (a) <= (b). Now, suppose that A is a
{s + 1}-GP matrix. By Lemma 18

D O N
A_U[O O]U’

under the conditions indicated there. Consider the partition

Ry R3:|

URU:[R4 Py

according to the sizes of the partition of U*AU. Equating blocks, we obtain
that the expression A*R = RA* is equivalent to D*R; = R1D*, R3 = O, and
R4 = O, since D is nonsingular; thus (a) <= (c¢). O

Now, we relate the class of {R,s + 1, k, x}-potent matrices to the class of
{s + 1}-HGP matrices. In [12], Grofl and Trenkler defined hypergeneralized
projectors as matrices A € C™*™ that satisfy A2 = AT and denoted this class
of matrices by HGP. We call a matrix A € C"*™ an {s + 1}-hypergeneralized
potent (or {s+1}-HGP) matriz if A1 = AT and we denote the set of all n x n
{s+ 1}-HGP matrices by HGPsy1. The matrices in HG P, are characterized
as follows:

A€ HGP,;; < Ais EP and A°"3 = A.

Theorem 20. Let A € C"*™ be an {R,s + 1,k, x}-potent matriz. Then, the
following statements are equivalent:

a. A is an {s + 1}-HGP matriz.
b. ATR = RA*.

c. There exists a unitary matriz U € C"*™ and a nonsingular matriz C' €
C™" such that

_ C O " _ Ry O "
A_U{O O]U and R_U{O R2:|U

where C™'R; = R C* with Ry € C™*" and Ry € C=")*(=7) satisfying
RY=1I. and R =1,_,.

Proof. The equivalence (a) <= (b) follows directly from the definitions. Sup-
pose that A is a {s + 1}-HGP. Then A is EP, so there exists a unitary matrix
U € C™*" and a nonsingular matrix C' € C"*" such that

AU[C O}U*.

O O
It is clear that o1 o
T _ *
At =U { o o } U*.

14



N{ar, g, .| ., an}

{R,s + 1, k, *}-potent matrices

EP

GPsy1

HGPs41

Figure 1: Relation between {R, s + 1, k 4+ *}-potent matrices and other classes

Now we consider the partition

U*RU{R1 Rﬂ,

Ry Ry

according to the sizes of the partition of U*AU. Substituting in RA* = A'R
and equating blocks we obtain R1C* = C™'R;, R3 = O, and Ry = O. Thus,
the conditions on R have been obtained. Observe that R*¥ = I, implies R’f =1
and RS = I,_,. Hence (a) = (c). Finally, (c) = (b) is straightforward. [

We summarize all the information studied in this section in Figure 1.

A matrix A € C™*" is a partial isometry if A1 = A* or equivalently,
AA*A = A [22]. The relation between Pg s and partial isometries is pre-
sented in the next result.

Theorem 21. Let A € C™*" be a matriz in Pr s k. As in Theorem 8, let

_ Cc O 1 _ X O N
A_P[O O]P and R_P[O T]P’
and partition P*P as
«p_ | M L
PP_[L* N}'

Then A is a partial isometry if and only if I, + L(N — L*M L)1 L*M~1 =
MC—*M-Y(C~ 1.

Proof. The result is obtained by substituting in AA*A = A the expression of
A given in the statement and by using the Banachiewicz-Schur formula for the
inverse of P*P. U
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Finally, we present the relationship between Pg s k.. and {a1,ag,...,a}-
potent matrices. The latter is an extension of the {aq, as}-quadratic matrices
[23].

Definition 22. A matrix A € C"*™ is called an {a1, aa, ..., aq}-potent matric
if
(A—onlp)(A—aoly)...(A—aul,) =0
where aq, g, ...,ap € C are pairwise distinct.
The set of all {a, aa, . . ., g }-potent matrices will be denoted by N{a1, g, ..., az}.

If £ = 2, matrices in N'{a, as} are called {1, as}-quadratic [1, 11]. Allow-
ing equalities between a1, as, ..., ap, the choice a1 = as = --- = ay = 0 leads
to nilpotent matrices.

Lemma 23. A nonzero {R, s+ 1, k, x}-potent matriz is not nilpotent.

Proof. Suppose that A € C"*™ is an {R, s + 1, k, *}-potent matrix that is not
the zero matrix. By Theorem 8§,

_L[C 07,
a-r[S 0]

for some nonsingular matrices P € C"*" and C' € C™*". If we assume that
A™ = O for some positive integer m then C"™ = O, which is impossible. O

Theorem 24. Let A € Pr sk« and let a1, aq,...,ap € C be pairwise distinct.
Then A € N{ai,az,...,az} if and only if oy =0,

_[Dp o7, [y o],.
AL{OO}L and RL[OT]L

or some nonsingular matriz L € C™"*™ and a diagonal matriz D = [d;;] € C"™*"
g J

where d;; € {az,...,ag}ﬂ{exp (fgi),te {0,1,...,s+1}}f0rj:1,27...,7"

and some nonsingular matrices Y € C™", T € C="X(=7) sych that Y D* =
Dstly.

Proof. Since A € Pg s k,«, by Theorem 8 we have

_ c O 1 _ X O ,
A_P[O O]P and R_P{O T}P

for some nonsingular matrices P € C"*", X € C"™" and T € C(»~")*x("=7) guch
that XC* = C*T1X. Suppose that (A — a11,)(A — azly,) ... (A — o) =0
where a1, as,...,a; € C are pairwise distinct. Then

mé_, (C — a;l,) 0
7j=1 Jer
p| =G

—1 _
—Drt_ a1, P—=0.
J=1%J
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So, H?zl(C —a;l) = O and Hleaj = 0. It is clear that there is at least
one j € {1,2,...,4} such that a; = 0 (since o; # oy if ¢ # ¢q). Without
loss of generality, we can assume that oy = 0 (consequently, a; # 0 for all
j € {2,...,0}). Now, H§:2(C’ — «jI;) = O because C is nonsingular, and
p(z) = (z — az)(x —ag)...(z — ag) is a (monic) annihilator polinomial of C
with all its factors linear. Since all o; € C and C is algebraically closed, C' must
be diagonalizable. Let C = QDQ~' with D diagonal. Then

_ QDR 01,1 ,[D O],_
A_P[ o O}Pl_L[OO]Ll

where L = P[ g IO ] Hence, A is diagonalizable. Substituting now,

C = QDQ ™" in I{_,(C — a;I,) = O we get II{_,(D — ojI,) = O, that is
for every ¢ = 1,2,...,¢, Hfzz(djj —aj;) = 0, thus, d;; € {as,...,a,} for all

j=12,...,r. From Lemma 7, d;; € {exp(ffzi) ,te {0,1,...,3—1—1}} for

all j € {1,2,...,r}. By using XC* = C*"1X and C = QDQ~?, we can denote
Y =Q1X(Q*)! to arrive at

X 0], . [vy 0],.
ner[X 0ol 20

O T

with Y D* = D*t'Y and Y nonsingular. O

Remark 25. Notice that, if either a; # 0 for all j € {1,2,...,4} orif a; ¢
{exp (fi@) ,t€{0,1,...,s+ 1}} for somej € {2,...,0} then N{a1,aq,...,ar}N
PR,SJ@,* =
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