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Abstract: The light field microscope has the potential of recording the 3D information of 
biological specimens in real time with a conventional light source. To further extend the 
depth of field to broaden its applications, in this paper, we proposed a multifocal 
high-resistance liquid crystal microlens array instead of the fixed microlens array. The 
developed multifocal liquid crystal microlens array can provide high quality point spread 
function in multiple focal lengths. By adjusting the focal length of the liquid crystal 
microlens array sequentially, the total working range of the light field microscope can be 
much extended. Furthermore, in our proposed system, the intermediate image was placed 
in the virtual image space of the microlens array, where the condition of the lenslets 
numerical aperture was considerably smaller. Consequently, a thin-cell-gap liquid crystal 
microlens array with fast response time can be implemented for time-multiplexed 
scanning. 
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1. Introduction 

Based on the same structure as the conventional optical microscope, the light field 
microscope (LFM) was proposed [1–3]. In this microscope the only extra element is a 
microlens array (MLA) added at the image plane. As shown in Fig. 1 the sensor is 
displaced axially up to the lenslets focal plane. With this microscope the 4D spatial-angular 
information of the light field emitted by the specimen can be recorded on the sensor in just 
one single shot [4–9]. At the price of reducing the lateral resolution, the LFM has a 
collection of horizontal and vertical oblique views of the specimen with a large depth of 
field (DoF). Additionally, one can reconstruct the 3D structure of micro specimens through 
digital rendering processing [10–13]. 

Many proposals have been reported to enhance the spatial resolution of light field 
cameras. One method is to mechanically shift the intermediate image or microlens array by 
half microlens pitch for upper sampling [14–16], but the shaking issue and Nyquist 
theorem will limit the image quality. Furthermore, some computer vision researchers used 
the super-resolution [17–21] or hybrid camera method [22–24] to enhance the image 
resolution, but most methods need an all-in-focus 2D image as the database. Unfortunately, 
it is difficult to obtain an all-in-focus 2D image in the microscope system because of the 
narrow DoF of the optical microscope. In 2008, Georgiev et al. proposed the plenoptic 2.0 
camera, which can increase the spatial resolution of the rendered image to the level of 
conventional cameras [25, 26]. However, the rendered image resolution will seriously 
decrease when objects are not at the optimal focus plane of the MLA. Therefore, the 
extension of the working range of the light field camera with acceptable resolution 
becomes an important issue for LFM applications based on the plenoptic 2.0 system. 

In conventional optical microscope systems, the most straightforward solution to 
extend the working range is that axial-scanning the specimen by tuning the position or the 
effective focal length of the objective lens [27, 28]. However, it will induce non-uniform 
magnification and resolution issues in the LFM systems. To avoid those problems, one can 
use a spatially-modulated MLA and a deconvolution algorithm to extend the DoF of light 
field cameras [29], although it will sacrifice the depth resolution in the longitudinal 
direction. Or, one can use the bifocal MLA, which has two focal lengths of ordinary and 
extra-ordinary light, instead of the fixed MLA to double the working range of LFM [30, 
31]. In addition, one can use the spatial multi-focus MLA, which is an array of interleaved 
micro-lenses with different focal lengths, to obtain even longer working range [32–34]. 
Unfortunately, the multi-focus MLA induces large blinds area between adjacent elemental 
images under the MLA because the effective microlens pitch becomes larger. Another 
solution is using electrically tunable devices, such as a liquid lens or liquid-crystal 
microlens array (LC-MLA), to adjust the effective focal length of the MLA [35, 36]. By 
time-multiplexed capturing a sequence of light field images with different focal length of 
LC-MLA, one can obtain a longer working range of the LFM. Compared with the bifocal 
MLA or the spatial multi-focus MLA, the LFM with the tunable multifocal LC-MLA has a 
dynamic working range and a smaller blind area between adjacent elemental images. 
However, the lens performance of the conventional multifocal LC-MLA is difficult to 
control, and the response time is too slow for the LFM. 

In this paper, we proposed a high-resistance liquid crystal microlens array (HiR 
LC-MLA) for extending the working range of the LFM. Compared with prior LC-MLA, 
the proposed HiR LC-MLA has multifocal lengths with high quality point spread 
functions, low driving voltage and fast response time. By electrically adjusting the focal 
length of the HiR LC-MLA, we can change the optimal focus plane as if we replace the 
MLA with a proper numerical aperture ( MLNA ). Using multiple-steps focusing with fast 

scanning between different focal lengths of HiR LC-MLA, we can ensure that every object 
in the scene is clearly recorded on at least one light field image. Therefore, the total 
working range of the LFM is extended. 

Additionally, in our proposed system, the intermediate image of the 3D specimen is 
placed at the virtual image space of HiR LC-MLA, in where the conditions of MLNA  is 

much smaller, thus HiR LC-MLA can be fabricated with thin cell gap to achieve fast 
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response time for time-multiplexed scanning. Compared with the confocal microscopes, 
which require a slow mechanical scanning process to record 3D objects, the proposed LFM 
with multifocal HiR LC-MLA can cover the larger working range with much less capturing 
time (3-5 frames only). 

Fig. 1. Schematic lay out of the LFM as reported by Levoy et al. 

2. Light field theory

2.1 Light field microscope 

The schematic diagram of the LFM system, as proposed by Levoy et al. [2, 3], is shown in 
Fig. 1. It can be considered a conventional telecentric-based microscope followed by a 
MLA placed just at the image plane. The sensor is displaced up to the lenslets focal plane, 
so that the gap MLg f= , being MLf  the focal length of the lenslets. All along this paper, 

the conventional microscope in which the MLA is inserted will be named as the “host 
microscope”. Assuming a para-geometrical approach, each lenslet produces a microimage, 
which collects a bundle of rays passing through its center and having different slopes. All 
the spatial-angular information collected by the entire collection of microimages is 
grouped in the light field function ( )', 'L x θ . From this light field information it is easy to

obtain the light field at the focal plane provided that we take into account the ABCD 
relation 

/ 0 ' 0 '

0 / ' 0 '
.ob L

L ob

f fx x x

f f M

γ

θ θ θ

−
= =

−

       
              

(1)

In this equation /L obM f f= −  is the lateral magnification of the microscope and 
1Mγ −=  the angular magnification. It is also interesting that in telecentric microscopes the 

axial magnification, β , is calculated as 2Mβ = . Based in these relations we can state 

that ' /NA NA M= , where NA sinα=  and ' 'NA sinα=  stand for the numerical 

aperture of the microscope objective (MO) as evaluated in the object space and the image 
space, respectively. 

Much more interesting in terms of lateral resolution is the LFM design based in the 
plenoptic 2.0 concept [31] In this case the MLA and the sensor are displaced axially so that 
the intermediate image becomes the object of the light field camera part (see Fig. 2). 

Fig. 2. The LFM working in the plenoptic 2.0 mode. In the scheme p  stands for the MLA 

pitch, and δ  for the pixel size. 

The light emitted by the object and therefore passing through the intermediate image is 
projected onto the image sensor by the MLA. Each microlens and its affiliated sensor area 
can be considered as a micro-camera, which will receive a portion of the rays from the 
intermediate image. Because the field of view (FOV) of each micro-camera is much 
smaller than that of the host microscope, every elemental image only records a smaller part 
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of the specimen. Considering that the position of the intermediate image is at the optimal 
focus plane of the MLA, the gap, g, between the MLA and the sensor will be adjusted 
according to the lens law 

1 1 1
,

ML
a g f

+ = (2)

whereas the magnification between the intermediate image plane and the sensor plane is 

ML /M g a= − . The angular resolution limit of this LFM is / Nχ α= , where 

2 /N a Mpα=  is the number microlenses covered by the beam of semi-angle α . In 

other words, / 2Mp aχ = . 

In order to obtain the maximum profit of the pixels of the sensor, and therefore optimize 
the spatial and the angular resolution, the LFM should be setup in such a way that the 
adjacent microimages only touch but no overlap with one another. In Fig. 3, we show that 
setup for two LFM modes. 

Fig. 3. The FOV of any microimage. (a) LFM working in real mode; (b) LFM working in 
virtual mode. 

2.2 Effective resolution of rendered images 

In we consider a planar object placed at the focal plane of the LFM, the intermediate image 
appears just at the image plane of the host microscope and the final image at the sensor. In 
this case the resolution limit, as evaluated at the sensor plane is the result of the competence 
between two factors: the pixel size, δ , and the size of the diffraction spot, ML/s gλ λ φ= , 

where MLφ is the aperture diameter of the microlenses. In other words, the resolution limit

at the sensor plane is given by 

{ }'' max , .sλρ δ= (3)

However, since the LFM captures the images of 3D specimens it is convenient to evaluate 
the resolution also for parts of the specimen that are out from the focal plane. In this case, it 
is also necessary to evaluate the size of the defocused spot, as illustrated in Fig. 4. 
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Fig. 4. Scheme for the calculation of the size of the defocused light spot. 

It is straightforward to find that such size is given by 

( ) 2
1 1 ,

'ML ML
ML ML

g g g g
s z

f a z f a M z
φ φ= − − = − −

− −
(4)

where z  is the distance from the optimal focus plane to the out-of-focus plane (see Fig. 4) 
and ' 2z M z= . Naturally, ( )0 0s = . Therefore, the resolution limit as evaluated at the

sensor plane is 

( ) ( ){ }'' max , , .z s s zλρ δ= (5)

From this value, we can evaluate the resolution limit at the intermediate plane as 

( )
2

''
' '',

ML

a M z
z

M g

ρρ ρ
−

= =  (6)

and at the object plane of the LFM as 

( ) ( ) ( )
2

'
'' .

ob

L

f a M zz
z z

M f g

ρ
ρ ρ

−
= =  (7)

Following Ref [34]. we define the effective resolution ratio (ERR) as the quotient 
between the resolution limit provided by LFM and the one provided by the host 
microscope. Taking into account that the resolution limit of the host microscope, as 
evaluated in the image space, is 

( ) 0.5
' max , , 2 ,hst

M
z NA zM

NA

λρ δ =  
 

(8)

then, the ERR is defined for the LFM as 

( ) ( )
( )

' 0
.

'
hstERR z

z

ρ
ρ

= (9)

For this definition we have assumed that both the LFM and the host microscope are using 
sensors with the same pixel size, and that in the case of the host microscope the resolution 
limit is determined by the pixel size. 

As an example we setup in our laboratory a LFM composed by an infinite-corrected 4x 
MO (Nikon S Fluor 4x, NA = 0.20) and a tube lens of focal length L 200 f mm= . The 

parameters of the MLA were: ML 1.8 f mm= , ML 100 mφ μ= , and 110 p mμ= . The LFM

was set in virtual mode such that 2.25 a mm= −  and 1.0 g mm= . The pixel size was 

3.7 mδ μ=  and the illumination wavelength 0.532 mλ μ= . According to these

parameters the number of perspectives recorded is 2.05N =  and the angular resolution
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limit 0.1 radχ = . Next in Fig. 5 we have plotted the ERR corresponding to the LFM, 

together with the ERR corresponding to the host microscope, which is define as 

( ) ( )
( )

' 0
.

'
hst

hst
hst

ERR z
z

ρ
ρ

= (10)

Fig. 5. Effective resolution ratio corresponding to the host microscope and the LFM. The 
position 0z =  is at the optimal focus plane 2.25 a mm= − . 

As shown in Fig. 5, the ERR curve changes slowly in the region near the optimal focus 
plane, when the intermediate image is within the DoF of the MLA. When the intermediate 
image is out from the DoF of the MLA, the ERR of the rendered image decreases extremely 
rapidly. The maximum ERR of the rendered image does not appear at the focal plane 
( 0z = ) due to the non-linear dependence of ML ( )M z . Assuming, as it happens in this 

example, that sλ δ≥ , the LFM has the maximum ERR at the refocusing plane depth 
2 2 2/ ( )MLz a M aλ φ λ= + , where z  and a  have the same sign. The maximum ERR can 

be described as 

max ,ML

ML

ERR
a

δ φ δ
λ φ
⋅

= +
⋅

(11)

where a  is the distance from the optimal focus plane of the MLA. In other words, the 
MLA is set as the original plane ( 0a = ). 

2.3 Working range 

According to Eq. (9), we can define the working range of the LFM. The objects in the 
working range are clearly recorded on elemental images and reconstructed with acceptable 
resolution. If we assume that the resolution limitation '( )zρ  is determined by the defocus 

effect but not the diffraction effect, the working range of the LFM can be described as 

2
min

21
,

ML

a
WR

ERRM

δ
φ

= ⋅
⋅

(12)

where minERR  is the minimum acceptable resolution ratio of observer [42]. A comparison 

of Eqs. (11) and (12) shows that the working range (WR) and effective resolution ratio 
(ERR) are trade-off. If we design a LFM with the highest maxERR , the working range will 

shrink and become incapable of capturing thick 3D specimens. 
To extend the working range of the LFM, and to maintain the acceptable effective 

resolution ratio at the same time, we used the multifocal LC-MLA instead of the fixed 
MLA in the LFM system as shown in Fig. 6. Assuming that the gap between the LC-MLA 
and the sensor is constant, once we change the focal length of LC-MLA, the working range 
will shift along the optical axis synchronously. By combining the light field images with 
different focal lengths of the LC-MLA, the total working range of the LFM will be much 
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extended as Fig. 7(b). Furthermore, to generate a smooth variation of ERR value at 
different depth planes, the turning points of each ERR curve should be connected to the 
gradual region of adjacent ERR curves. Hence, the numerical apertures of LC-MLA 
( MLNA ) are designed as 1 /n n MLNA NA λ φ+ ≈ + . The extended working range can be 

described as 

1
12

min

1
,N

total N
ML

a a
WR a a

ERRM

δ
φ

 + 
= − + ⋅ 

(13)

where Na  is the optimal focus plane with the largest MLNA . 

Fig. 6. The extended working range of the LFM with multifocal LC-MLA. 

Fig. 7. Effective resolution ratio (ERR) and working range of the LFM (a) with the fixed 
MLA and (b) with the multifocal LC-MLA. The MLA plane is set at 0a = . The symbol 
a  is the depth from the intermediate image plane to the MLA plane. 

3. High-resistance LC microlens array (HiR LC-MLA)

As we mentioned, the multifocal LC-MLA has electrically tunable focal length by applying 
the driving voltages on it. However, it is difficult to modify the ideal parabolic lens profile 
at every focal plane with a single adjustment parameter. In addition, the response time of 
conventional LC-MLA is too slow for the LFM. In this paper, we proposed the HiR 
LC-MLA, which has a thin layer of high-resistance material coated on the electrode 
patterns. The HiR LC-MLA is controllable with not only the driving voltage, but also the 
frequency of the driving signal. The lens performance of HiR LC-MLA can be optimized 
by adjust the composition of driving voltage and frequency. Moreover, the HiR LC-MLA 
has advantages such as lower driving voltage and faster response time for the 
time-multiplexed scanning between different focal lengths. 
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3.1 Multifocal HiR LC-MLA 

As Fig. 8 shows, the high-resistance liquid crystal microlens array (HiR LC-MLA) consists 
of two planar electrode-glass substrates separated by a homogeneous gap as the LC cell. 
The electrode pattern on the top substrate is an array of hexagonal micro-holes, on which a 
thin layer of 2 5Nb O  was coated as the high-resistance (HiR) layer. The bottom substrate 

has a transparent planar ITO electrode. Between them, the nematic LC material was 
injected into the LC cell. As shown in Fig. 9, the constitution of the HiR layer and LC layer 
can be considered an R-C circuit [37–39]. When an alternating current (AC) voltage signal 
is applied to the electrodes, it will induce a gradient voltage distribution on the nodes of the 
R-C circuit. The potential difference will generate a parabolic lens-like phase retardation in 
the LC cell as shown in Fig. 10. Therefore, the focal length of the HiR LC-MLA is
electrically tunable by adjusting the driving voltage and frequency [37]. A higher driving
frequency will induce a larger phase retardation difference between the edge and center
region of each LC microlens; simultaneously, the focal length of the HiR LC-MLA will
shorten. The focal length of the LC microlens can be described as

2

,
8

ML
ML

LC

f
n d

φ
=

⋅ Δ ⋅
(14)

where MLφ is the microlens aperture size, LCd  is the thickness of the LC layer, and nΔ  

is the refractive index difference between the center and the edge of the microlens aperture 
[40]. As shown in Fig. 10, the lens effect in the conventional LC-MLA was generated by 
the fringe field emitted from the edge electrodes; hence, the orientation of the LC 
molecules in the center of the microlens aperture was difficult to control. However, the HiR 
LC-MLA has a smooth electric field and will induce symmetrical lens profile. As shown in 
Fig. 11, the interference patterns of the conventional LC-MLA and HiR LC-MLA show 
that the HiR LC-MLA had less disclination line effect than the conventional LC-MLA. The 
driving voltage of the HiR LC-MLA was half or less than half of the conventional 
LC-MLA with the identical lens power. 

Fig. 8. (a) Section view and (b) hexagonal electrode pattern of the HiR LC-MLA. 

Fig. 9. R-C circuit model of an LC microlens with the HiR layer. 
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Fig. 10. Electric field distribution and LC molecule orientation of the (a) conventional 
fringe-field-controlled LC lens without the HiR layer and (b) HiR LC lens. 

Fig. 11. Interference patterns of the (a) conventional fringe-field-controlled LC-MLA and 
(b) HiR LC-MLA. 

Figure 12 shows the interference patterns (IPs) and point spread functions (PSFs) of the 
HiR LC-MLA with the driving signal. The aperture size of each microlens was 350 μm , 

and the LC cell gap was 60 μm . As we expected, the IPs show the parabolic lens-like 

phase retardation distribution of HiR LC-MLA at different focal lengths. The relation of 
the HiR LC-MLA focal length and driving signal is shown in Fig. 13. By applying a 
voltage of 2.6 Vrms  and changing the frequency from 80 kHz  to 150 kHz , we decreased 

the focal length of the HiR LC-MLA from 3.1 mm  to 1.7 mm ; equivalently, the 
numerical aperture ( MLNA ) value of the HiR LC-MLA changed from 0.056MLNA =  to 

0.103MLNA = . Compared with the fixed MLA, the HiR LC-MLA has tunable lens power; 

but it also induces the unsymmetrical side lobes in the PSFs especially at the short focal 
length case as shown in Fig. 12. The non-uniform high-order aberration on the light field 
images should be considered in the image enhancement processing. 
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Fig. 12. Interference patterns (IPs) and point spread functions (PSFs) of the HiR LC-MLA 

with different focal lengths. Microlens aperture size: 
ML

350 mφ μ= ; LC cell 

gap: 60 
LC

d mμ= . 

Fig. 13. Focal length of the HiR LC-MLA with different driving frequencies. Microlens 

aperture size: 350 
ML

mφ μ= ; LC cell gap: 60 
LC

d mμ= ; driving voltage:
rms

2.6VV = . 

3.2 Virtual mode for fast scanning 

As shown in Fig. 7(b), the proposed LFM with fast scanning multifocal LC-MLA should 
have a larger working range and acceptable resolution compared to the conventional LFM 
with the fixed MLA. Therefore, two boundary conditions should be satisfied: 

1. The effective resolution ratio minERR ERR≥  in the entire working range. 

min .ML

ML

ERR
a

δ φ δ
λ φ
⋅

+ ≥
⋅

(15)
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2. The working range of the LFM should be equal to or larger than that of the host
microscope as hstWR d≥

2
min

21
.hst

ML

a
d

ERRM

δ
φ

⋅ ≥
⋅

(16)

where hstd  is the working range of the host microscope, which is equal to its DoF [41]. 

The intermediate image of the specimen, which is considered the object of the light 
field camera part, is commonly placed in front of the MLA ( 0a > ) as shown in Fig. 14(a) 
[42]. In this case, a higher optical power of the MLA is required to converge the light onto 
the image sensor. Therefore, we proposed to place the intermediate image in the virtual 
image space of the MLA ( 0a < ) as shown in Fig. 14(b) because the length of the entire 
optical system is shorter, and the condition of MLNA  is much smaller than those in the real 

image case. According to Eqs. (15) and (16), if the intermediate image is placed in the real 
mode ( 0a > ) as shown in Fig. 14(a), we have the following limits of MLNA , 

min

2
min

' '
,

2 2 2
ML

ML
hst

ERR

NA
M d ERR

δλ
φ α δ α

δ κ κ

 
⋅ − 
  + ≤ ≤ +

⋅ ⋅
 (17) 

where / MLpκ φ= ; in contrast, if the intermediate image is placed in the virtual mode

( 0a < ) as shown in Fig. 14(b), the limitation of MLNA  is 

min

2
min

' '
.

2 2 2
ML

ML
hst

ERR

NA
M d ERR

δλ
φα δ α

κ κ δ

 
⋅ − 
 − ≤ ≤ −

⋅ ⋅
 (18) 

The condition of MLNA  for the virtual mode is one order smaller than that for the real 

mode. Therefore, the LC cell gap of HiR LC-MLA can be shrunk, and the response time is 
considerably shorter. 

Fig. 14. Intermediate image placed in the (a) real image space and (b) virtual image space 
of LC-MLA. The thickness and numerical aperture of the LC-MLA in real mode are larger 
than those in virtual mode. 
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In the conventional fringe-field-controlled LC-MLA as Fig. 10(a), the aspect ratio of 
the aperture size and LC cell gap was designed as /  5 ~ 6ML LCdφ =  for acceptable lens 

quality [43]. However, the LC molecules orientation of the HiR LC-MLA was electrically 
tunable by modulating the driving voltage and frequency [37]. With the HiR LC-MLA, we 
could achieve the aspect ratio of / 10ML LCdφ = , where the LC lens with small cell gap and 

fast response time becomes possible (Table 1). 

Table 1. HiR LC-MLA with a large aperture size, high MLNA , and fast response 

time. 

Large Aperture High NA Fast Response 
Aperture (D) 350 μm 100 μm 100 μm 

Cell gap ( )LCd  60 μm 15 μm 10 μm 

/ LCD d 5.8 6.67 10

LC birefringence 
( )Δn 0.21 0.29 0.21

MLf 1.7 mm – 3.1 mm 0.33 mm – 0.55 mm 1.2 mm – 3.5 mm 

MLNA 0.10 – 0.06 0.15 – 0.09 0.042 – 0.014 

Interference pattern 

Response time > 1 sec. 0.12 sec. 0.08 sec. 

In this paper, we designed three types of HiR LC-MLA with different aperture sizes, 
cell gaps, and LC materials as the multifocal LC-MLA. All types were coated with 20 nm 

2 5Nb O  as the high-resistance layer. The first structure ( 350 ML mφ μ= , 60 LCd mμ= , 

Δ 0.21n = ) has large aperture size and LC cell gap, which provided large 0.1MLNA =  but 

slow response time (~15 seconds). To reduce the response time of the HiR LC-MLA, we 
shortened the LC cell gap from 60 μm to 15 μm and shrank the aperture size from 350 μm to 
100 μm. Using high-birefringence LC materials, the numerical aperture of the second 
structure ( 100 ML mφ μ= , 15 LCd mμ= , Δ 0.29n = ) was increased to 0.15MLNA = , and 

the response time was reduced to 0.12 seconds. In the third structure, we shortened the LC 
cell gap to 10 μm; hence, the response time of the third structure ( 100 ML mφ μ= , 

10 LCd mμ= , Δn 0.21= ) was reduced to 0.08 seconds. The video showing the response 

time of fast response HiR LC-MLA is shown in https://youtu.be/kVy64Uj017A. 

4. Experiments and results

4.1 Experimental setup 

In this paper, the fast response HiR LC-MLA with a small aperture size 100 ML mφ μ=  and

a small LC cell gap 10 LCd mμ=  was used. The intermediate image of the specimen was 

placed in the virtual image space of HiR LC-MLA ( 0a < ). The experimental setup of the 
long working range LFM with the multifocal HiR LC-MLA is shown in Fig. 6. The 
infinity-corrected 4x MO (Nikon S Fluor 4x/0.20) was used. The focal length of the tube 
lens is 200 Lf mm= , and the magnification of microscopic system is 4M = . Following 

the tube lens were the linear polarizer and HiR LC-MLA; the polarization direction of the 
linear polarizer was parallel to the alignment direction of the HiR LC-MLA. Then, the 
images sensor (pixel size 3.7 mδ μ= ) was effectively placed at 1 g mm=  behind the 

HiR LC-MLA. By adjusting five focal lengths of the HiR LC-MLA as 
1.2 ,1 .4 ,1 .8 , 2.4 , 3.5 MLf mm mm mm mm mm=  ( 0.0143 ~ 0.0417MLNA = ), we would 

capture five light field images with the corresponding focal lengths. A wing of a drain fly 
was placed at the focal plane of the objective lens as the specimen. The LC-MLA plane was 
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set at the original plane ( 0a = ). The intermediate image of the fly’s wing tip was near the 
LC-MLA plane ( 1.4 a mm= − ), and the root of the wing was far from it ( 6.0 a mm= − ). 

4.2 Rendered images 

The raw light field image with 3. 5 MLf mm=  is shown in Fig. 15; every light field image 

has 188 150×  elemental images stacked as a hexagonal array. The resolution of each 
elemental image is 31 30× . Figure 15 also shows the partial enlarged views of the raw 
light field image with 3.5 MLf mm= , in which the optimal focus plane of the HiR 

LC-MLA is at 1.4 a mm= − . Hence, the elemental images of the tip of the wing are clear 
(in-focus); in contrast, the elemental images of the root of the wing are blurry because the 
objects are out-of-focus. Figure 16 shows the rendered images, which refocused at different 
depth planes. The top row images were rendered from the single light field image captured 
by a fixed MLA with 3.5 MLf mm= . The bottom row images were rendered from the light 

field image stack captured with the multifocal HiR LC-MLA. As Fig. 16 shows, when 
refocusing at the tip of the drain fly’s wing ( 1.4 a mm= − ), which was near the LC-MLA 
plane, both rendered images from the single light field image and light field image stack 
could provide rich and colorful details of the veins. However, when refocusing at the root 
of the wing ( 6.0 a mm= − ), only the light field image stack could provide a rendered image 
with acceptable resolution. The single light field image with 3.5 MLf mm= , which had a 

shallower working range, could not reconstruct clear images of the object far from the 
LC-MLA plane. Therefore, the root of the wing in top row image was blurry even when 
refocusing at the correct depth plane. 

Fig. 15. Raw light field image with 3.5 
ML

f mm= . The partial enlarged views show that 

(a) the root ( 6.0 a mm= − ) of the wing is out-of-focus, and (b) the tip ( )1.4 a mm= −  of

the wing is in-focus. 
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Fig. 16. Rendered images of the LFM with (a) fixed focal length MLA and (b) multifocal 
HiR LC-MLA that refocuses at different depth planes. 

Figure 17 shows the effective resolution ratio (ERR) curves of the light field images 
with different MLNA  in the experiment. The light field image with small MLNA  will have 

a higher ERR but a shorter working range; in contrast, the LC-MLA with high MLNA  will 

induce a lower ERR but a longer working range of the LFM. In this paper, we set the 
minimum acceptable effective resolution ratio 0.087minERR =  for human eye condition 

[44]. As shown in Fig. 17, the total working range is from 1 a mm= −  to 7.99 a mm= −  
in the intermediate space. In other words, the working range in the specimen space was 
enlarged from 62.5 μm to 436.8 μm, which is 7 times larger than that of the conventional 
LFM with a fixed MLA. Compared with the confocal microscopes, which must stack 
hundreds of slice image to generate the 3D depth structure of a specimen, the proposed 
LFM with HiR LC-MLA can record and reconstruct the same depth range with only 3 ~5 
light field images. 
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Fig. 17. Effective resolution ratio and total working range of the light field microscope with 
the tunable-focus HiR LC-MLA, which covers from 1 a mm= −  to 7.99 a mm= −  in the 
intermediate space. 

4.3 Oblique view results 

Except to render images that refocus at different depth planes, the LFM can also provide 
rendered images with oblique view information. The video of oblique view images is 
shown in https://youtu.be/xLv4W8re53E; the viewing angle is from 19.29°  to 19.29− ° . 
The viewing angle was determined by the size of the HiR LC-MLA and image sensor but 
not the microlens pitch or numerical aperture MLNA . However, with a smaller microlens 

pitch, both angular resolution and depth resolution of the LFM will increase [34]. 

5. Conclusions

The light field microscope can record the 3D information of the specimen in a single shoot 
without mechanical scanning. However, the working range still limit the applications of 
light field microscope. Therefore, we have proposed a light field microscope with 
high-resistance liquid crystal microlens array (HiR LC-MLA) to much extend the working 
range. The HiR LC-MLA, which is coated with a high resistance layer of 2 5Nb O , has more 

symmetric lens profile and lower driving voltage than the conventional LC-MLA. By 
adjusting the focal length of the HiR LC-MLA and capturing a consequence of light field 
images, we can record and reconstruct the 3D specimen with a continuous and acceptable 
effective resolution ratio (ERR) in a large depth range. 

In the proposed experiment system, the intermediate image of specimen was placed in 
the virtual mode ( 0a < ), thus the fast response HiR LC-MLA ( . 0.08 .Rsp second= ) can 

be used. By adjusting five appropriate focal lengths of the HiR LC-MLA as 
1.2 ~ 3.5 MLf mm=  ( 0.0143 ~ 0.0417MLNA = ) to record the light field image stack, the 

working range of the proposed light field microscope was much extended from 62.5 μm to 
436.8 μm (Almost 7 times). With the long working range, it can capture thick specimens or 
microorganism spreading in large depth range. However; the jelly effect may appear in the 
depth boundary of two light field images when observing the dynamic specimens. For real 
time capturing the light field images, the response time of the HiR LC-MLA and the image 
sensor should be shorten by at least one order. 
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