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ABSTRACT

The study of quantum fields propagating in classical, curved and dynamical space-
times offers a first approach to assess the consequences of the quantum theory
when gravitational phenomena are not negligible. This is an important question

that must be addressed when an intense gravitational field plays a principal role in the
dynamics of a physical system, such as during the early universe (cosmological inflation)
or in the formation of astrophysical black holes.

One of the most striking features of this subject is perhaps that the calculation of
physical observables, even for non-interacting fields, often involves ill-defined quadratic
operators of fields, thus requiring a non-trivial and suitable renormalization method. The
normal-ordering operation, usually employed in Minkowski spacetime, no longer works
here, since additional ultraviolet divergences associated to curvature arise. The standard
approach is to subtract the short-distance asymptotic behaviour of the two-point (Green)
functions of interest. As a consequence, unexpected results are predicted due to finite
remaining terms coming together with renormalization subtractions, and demanded by
general covariance. The goal of this thesis is to give new insights following this direction.

In the first part, we analyze the consequences of renormalization of quantum fields
on diverse aspects of inflationary cosmology. Issues related to the ultraviolet divergences
arising in computation of the angular power spectrum of the CMB in the Sachs-Wolfe
regime, or renormalization of the stress-energy tensor of matter (spin 1/2) fields during
inflation, preheating, or the big-bang expansion of the universe, are considered. The
implications of "hidden" fields present during single-field inflation are also studied and
physical implications coming from CMB bounds are discussed.

Renormalization is in fact of crucial importance since it can even lead to the break-
down of well-known classical symmetries and associated conserved Noether charges,
yielding what is normally referred to in the literature as quantum anomalies. In the
second part of this thesis we present a new and particularly interesting example of this
feature in electrodynamics: the classical E-B duality symmetry of Maxwell equations
without charges and currents fails to hold at the quantum level if spacetime has cur-
vature and non-trivial dynamics. In fact, our results suggest that a dynamical curved
spacetime with significant frame-dragging is able to distinguish between the two (left
and right) circular polarization states of the photons. This offers promishing physical
implications in binary mergers in astrophysics, whose observational window is nowa-
days open thanks to the recent detections of gravitational waves by the LIGO-Virgo
collaboration.
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RESUMEN EN CASTELLANO.

Contexto y motivación
La teoría de la relatividad general es una descripción geométrica del espacio-tiempo
y de la gravitación formulada por A. Einstein en 1915 [136, 184]. En esta teoría el
espacio-tiempo se describe mediante una variedad diferenciable, dotada de un tensor
métrico gab de signatura Lorentziana para proporcionar una noción física de distancia y
causalidad. Lo que caracteriza a este teoría es que el espacio-tiempo se considera una
entidad dinámica: la métrica no es fija sino que, por el contrario, puede evolucionar de
acuerdo a las ecuaciones diferenciales de Einstein, Gab(g) = 8πGTab, donde Gab(g) es
el tensor de Einstein construido a partir de la métrica, el cual captura la información
geométrica, y Tab describe el contenido energético en el espacio-tiempo. Partículas prueba
se propagan en este escenario curvo siguiendo geodésicas, y la interacción gravitatoria
se explica de esta manera como una manifestación de curvatura del espacio-tiempo.

Se trata de la teoría satisfactoria más simple que tenemos para interpretar todos
y cada uno de los fenómenos gravitatorios observados a día de hoy, dando cuenta de
predicciones cuantitativas que han sido comprobadas con gran precisión por muchos y
diversos experimentos a lo largo de estos 100 años de historia [191]. Sin embargo, es
también bien conocido que la teoría conduce a su propio fracaso al predecir, bajo ciertas
circunstancias, la formación de las llamadas singularidades espacio-temporales [113].
Aunque algunas conjeturas proponen la imposibilidad de un observador de "ver" estas
singularidades, como por ejemplo la censura cósmica de Penrose [162], está ampliamente
aceptado que dichas singularidades están realmente señalando los límites de validez
de la teoría. Esto, junto al hecho de que las otras interacciones fundamentales en la
Naturaleza son de origen cuántico, sugiere que la relatividad general probablemente
emerge como un límite clásico, de bajas energías, de una teoría cuántica de la gravedad.

Aunque varias ideas se han desarrollado para construir tal teoría, la falta total
de observaciones a día de hoy que proporcionen información al respecto impone retos
muy serios para distinguir cada una de estas teorías, o incluso falsear cualquiera de
ellas. Uno entonces se ve limitado a seguir principios teóricos, prejuicios y argumentos,
para construir la teoría, con la esperanza de que futuros experimentos comprueben las
predicciones asociadas a ella. Un análisis detallado de las diferentes vías pensadas con
tal fin está fuera del alcance de este texto, y referimos al lector a consultar [163] para
una visión general de la situación.

A falta de una dirección o idea clara y definitiva de lo que una teoría cuántica de
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gravedad debería ser, ¿podríamos, sin embargo, sacar alguna conclusión acerca de la
influencia de gravedad sobre fenómenos cuánticos? Recordemos que en los primeros años
de la teoría cuántica numerosos cálculos se desarrollaron asumiendo la interacción de
materia, descrita cuánticamente, con un entorno electromagnético clásico, dando lugar
a resultados que en última instancia estaban de acuerdo, con alto grado de precisión,
con las predicciones de la teoría electromagnética cuántica completa. Se espera que una
situación similar ocurra para gravedad, en la cual se pueda estudiar la propagación
de materia o radiación, descrita cuánticamente, en un entorno gravitacional clásico.
Esta es el problema tratado por la teoría cuántica de campos en espacio-tiempos curvos
[48, 94, 157, 185], y proporciona un primer paso para abordar las cuestiones relacionadas
con gravedad cuántica. La escala de Planck establece el límite más allá del cual una
teoría cuántica de gravedad completa debe ser tenida en cuenta. Se espera que los efectos
cuánticos de la gravitación puedan ser despreciados siempre y cuando las distancias
involucradas sean mucho mayores que la distancia de Planck, y dado que la longitud de
Planck es minúscula, esto parece proporcionar mucho margen de validez a la teoría.

Este camino proporciona una visión semiclásica, menos ambiciosa que una teoría
cuántica completa, pero observacional y físicamente más accesible, como por ejemplo
la cosmología primordial ha demostrado. En efecto, el trabajo pionero desarrollado por
L. Parker en los sesenta [147–150], el cual dio lugar al descubrimiento de producción
de partículas por universos en expansión, ha resultado ser fundamental para explicar
las inhomogeneidades iniciales en la densidad de energía de materia al inicio de la
expansión del big bang. Dichas irregularidades primordiales, en última instancia, y a
través del colapso gravitatorio, llevaron a la formación de la estructura a gran escala
en el universo que observamos hoy día [72, 77, 189]. Se consideran el resultado de la
amplificación de las fluctuaciones cuánticas de un campo escalar (el inflaton) durante la
violenta expansión del espacio-tiempo que tuvo lugar durante el universo temprano. Por
otro lado, esta teoría es también de gran importancia desde un punto de vista conceptual.
En concreto, el descubrimiento por Hawking en 1975 de la emisión térmica de partículas
durante un colapso gravitatorio, usando estas técnicas [84, 111], es una piedra angular
en física fundamental moderna. Aunque esta radiación no ha sido observada todavía,
es una idea muy convincente y ampliamente reconocida porque establece una conexión
muy sólida entre relatividad general, teoría cuántica de campos, y física estadística
o termodinámica. La visión semiclásica es también relevante pues captura algunos
fenómenos no perturbativos, tales como el efecto Schwinger [85, 157] y las llamadas
anomalías cuánticas [91–93], y uno verdaderamente espera que una teoría cuántica de
gravedad completa también acabe dando cuenta de todos estos fenómenos.

Aunque esta teoría todavía está en sus inicios a nivel experimental, nuevas gen-
eraciones de misiones en cosmología y astrofísica, tal como PLANCK [6], SDSS [7],
LIGO-Virgo [5], satélites y observatorios Multimessenger [2, 3], etc; y experimentos
planeados para un futuro como LISA [4], Einstein telescope [1], etc; están jugando un pa-
pel cada vez más importante en testear física fundamental hoy día, y podrían dar lugar a
avances muy significativos. Desde hace aproximadamente 25 años, la cosmología disfruta
de su edad de oro, numerosos experimentos han sido llevados a cabo con éxito midiendo
cantidades de interés físico en diversas formas complementarias, al mismo tiempo que
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alcanzando precisiones del uno por ciento. De hecho, las misiones cosmológicas actuales
son capaces de observar fenómenos físicos de tal altas energías en la cual la gravedad
es tan intensa que efectos cuánticos de la materia y la radiación son relevantes para
explicar los datos. Por otro lado, la reciente detección directa de ondas gravitacionales
por la colaboración LIGO-Virgo, originadas en la fusión de sistemas binarios de agujeros
negros o estrellas de neutrones, junto al análogo electromagnético observado en todo
el espectro por la astronomía multimessenger, proporcionan acceso único al régimen
extremadamente intenso y no lineal del campo gravitatorio. Esta posibilidad abre una
nueva ventana para testear la relatividad general a muy altas energías en un contexto
astrofísico, y asimismo efectos nuevos podrían ser importantes en la descripción de la
física subyacente.

Para concluir, tales crecientes éxitos experimentales requieren predicciones teóricas
más precisas de la relatividad general y/o de la teoría cuántica. La tesis que presento
apunta en esta dirección, ofreciendo algunos resultados e ideas al respecto. El trabajo
realizado se resume en las siguientes dos secciones.

Aspectos cuánticos en cosmología primordial
En la primera parte de esta tesis nos preocuparemos de estudiar efectos cuánticos de
campos en cosmología. La cosmología es una rama de relatividad general que estudia
el universo como un sistema físico en su totalidad, y cuyo principal objetivo consiste
en entender su estructura y dinámica [72, 77, 125, 189]. Aunque en sus orígenes la
cosmología se soportaba en conjeturas y las observaciones eran escasas, hoy día existe
una cantidad ingente de datos y un marco teórico muy desarrollado que ajusta los datos
cuantitativamente con mucha precisión. Existe buena evidencia de que la materia en el
universo (en forma de galaxias, cúmulos de galaxias, "materia oscura", etc) se distribuye
de manera altamente homogénea e isótropa a escalas suficientemente grandes, y que el
espacio tiempo se expande aceleradamente. Estos hechos, junto con el descubrimiento del
fondo cósmico de radiación de microondas (CMB, por sus siglas en inglés) ha establecido
una teoría de que nuestro universo está en expansión y en enfriamiento, y que se originó
de una "gran explosión" (o "big bang" en inglés).

La dinámica de la expansión se describe por medio de una familia de soluciones de
las ecuaciones de Einstein con constante cosmológica (Gab(g)+Λgab = 8πGTab), que
son espacialmente homogéneas e isótropas. Estas soluciones se conocen como métri-
cas de Fridmann-Lemaitre-Robertson-Walker (FLRW). Para foliaciones con superfi-
cies espaciales planas, y parametrizadas en coordenadas cartesianas, se escriben como
ds2 = dt2−a(t)2δi jdxidx j, y sólo dependen de una función del tiempo cósmico t, llamado
factor de escala a(t), que tiene en cuenta la expansión de estas superficies espaciales con
el tiempo cósmico. La velocidad de la expansión se le atribuye al parámetro de Hubble
H = ȧ/a. Para entender la historia del universo uno debe determinar entones la depen-
dencia funcional del factor de escala con el tiempo. La relatividad general conecta esto
con el contenido energético Tab del universo; en otras palabras, el problema se reduce a
saber cómo la densidad de energía evoluciona con el tiempo cósmico. Pero resulta que
esto es realmente una cuestión muy complicada dado que debemos saber los diferentes
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tipos de especies (materia, radiación, "energía oscura", etc) contribuyendo a ello, cada
una de las cuales reescala de manera diferente con el tiempo.

Por otro lado, el CMB es un fondo observado de radiación electromagnética, prácti-
camente homogéneo e isótropo, que permea todo el universo. Muestra un espectro de
frecuencias de cuerpo negro prácticamente perfecto a una temperatura T0 = 2.725 K .
Este fondo de radiación primordial es una predicción del modelo cosmológico estándar
del big bang y constituye una imagen muy valiosa del universo temprano. Justo después
de que se produjera la "gran explosión", cuando el universo era mucho más caliente y
denso que ahora, no había átomos neutros o núcleos formados. Los fotones y electrones
en particular estaban en continua interacción manteniendo un equilibro térmico. La
alta tasa de interacciones en tal escenario aseguraba que cualquier átomo o núcleo
producido sería inmediatamente destruído por un fotón de alta energía. Conforme el
universo se expandió y enfrió por debajo de las energía de enlace atómico, los elementos
neutros empezaron a formarse. En particular, ls electrones y protones se unieron para
dar lugar a átomos de hidrógeno neutros y estables. De esta manera, hubo un tiempo en
la evolución del universo (normalmente llamado "superficie de última interacción") en
el cual los fotones pararon de interaccionar con la materia, y empezaron a propagarse
libremente desde entonces hasta nuestros días, preservando sus propiedades. Estos son
los fotones que observamos hoy día y constituyen el CMB. Las minúsculas fluctuaciones
de temperatura respecto de una homogeneidad e isotropía perfectas, que se observan al
medir los fotones en diferentes direcciones en el cielo, tienen diferentes orígenes físicos,
y proporcionan una de las fuentes de información más importantes que tenemos sobre la
evolución del universo.

La teoría del big bang, sin embargo, no está libre de inconvenientes. Durante los
primeros instantes parece necesitar de un periodo, conocido como inflación [43, 128, 189],
en la cual una expansión violenta del espacio-tiempo habría tenido lugar. Este periodo
se introduce ad hoc en la teoría del big bang, y se asume que un ajuste suave con la
siguiente evolución debe ser posible. Matemáticamente, este universo se modeliza usando
el conocido espacio-tiempo de Sitter, cuya métrica puede ser expresada como un caso
particular de FLRW con una función exponencial como factor de escala, a(t)∼ exp(Ht). La
importancia del paradigma inflacionario reside en que proporciona un mecanismo sólido
y muy convincente de explicar aquellas pequeñas inhomogeneidades ("perturbaciones
escalares de densidad", en lenguaje de teoría de perturbaciones cosmológicas lineales
[43, 77]) que, tras la evolución cósmica, acaban originando las fluctuaciones tanto de
temperatura del CMB como de la distribución de materia a gran escala en el universo.

Y es aquí cuando la teoría cuántica juega un papel fundamental en gravedad. Estas
inhomogeneidades primordiales puede ser generadas de manera natural durante la
inflación cósmica como resultado de la amplificación de fluctuaciones cuánticas. Como
ya hemos avanzado en la subsección anterior, este mecanismo se entiende gracias al
proceso cuántico, espontáneo o estimulado, de creación de partículas por la dinámica
gravitacional de un universo en expansión, descubierto por L. Parker en los sesenta
[147]. Observaciones detalladas en los últimos años indican que las fluctuaciones de
temperatura del CMB se ajustan con alto grado de precisión a una distribución gaussiana
con un espectro de fourier que es casi invariante de escala [166]. Las observaciones son
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compatibles, de manera no trivial, con las predicciones de inflación, incluso con la
implementación mínima basada en un sólo campo escalar con un potencial de "slow-roll"
conduciendo la expansión inflacionaria. La zoología de modelos [133] que predicen los
mismos valores para observables inflacionarios disponibles hoy día es considerablemente
grande, desafortunadamente, y ello motiva la búsqueda de características adicionales
de inflación que puedan distinguir entre todos estos modelos. La generación de ondas
gravitacionales ("perturbaciones tensoriales") durante la rápida expansión es también
una predicción de inflación, que todavía no ha sido detectada. Algunos experimentos, tal
como PLANCK, están buscando señales de gravitones primordiales en la polarización
magnética de los fotones del CMB. La detección de estas ondas sería un espaldarazo
definitivo a la teoría de inflación, y proporcionarían una fuente valiosa de información
del universo temprano para averiguar las incógnitas del modelo inflacionario.

Tal y como bien se conoce en teoría cuántica de campos, el cálculo de observables
físicos normalmente requiere tomar valores esperados de operadores compuestos, lo
cual resulta no estar bien definido, ya que presentan divergencias ultravioleta (UV) que
necesitan ser tratadas adecuadamente. En espacio-tiempos curvos, la cuestión se hace
más delicada todavía, incluso para campos libres. La operación convencional de hacer
"normal-ordering", usualmente empleada en Minkowski para campos libres, no funciona
aquí dado que surgen varias divergencias UV adicionales asociadas a la curvatura
del espacio tiempo. La cuestión fue resuelta en los setenta y un resumen de todo ello
se puede encontrar en [48]. La idea consiste en sustraer, a la cantidad de interés, el
comportamiento asintótico a pequeñas distancias de la función de dos puntos apropiada
[94]. Tal y como se encontró en [53] por primera vez, las sustracciones pueden ser
reabsorbidas en última instancia en las constantes de acoplo de la teoría, la constante
cosmológica Λ, y la constante de Newton G, dando lugar al final a un marco teórico auto
consistente.

El principal observable cosmológico que apoya la teoría de inflación es el llamado
espectro de potencias angular, y, como veremos en más detalle, su cálculo involucra
tomar el valor esperado de ciertos operadores de campo. Es natural preguntarse entonces
si este cálculo requiere renormalización. Una cuestión similar fue planteada para el
espectro de potencias, la versión de Fourier de la función de dos puntos de perturbaciones
primordiales, y el problema se abordó en el pasado por medio del método de renormal-
ización adiabático [16–19, 146]. Estas ideas llevaron, sin embargo, a un cierto debate
en la literatura [41, 78, 89, 132, 168], con algunas personas argumentando en contra
del uso de renormalización en este contexto. En el capítulo 2 mostraremos el papel de
las divergencias UV que aparecen en el espectro de potencias angular y sugeriremos
la renormalización correspondiente desde una perspectiva espacio-temporal (no recur-
riendo al espacio de Fourier). Las ideas presentadas en este capítulo están basadas en
dos artículos [65, 67]. Usaremos la función de dos puntos de perturbaciones primordiales
generadas durante la inflación para derivar una expresión analítica de los coeficientes
multipolares C` en el régimen de Sachs-Wolfe. Analizamos el correspondiente compor-
tamiento UV y enfatizaremos el hecho de que el resultado estándar actual en la literatura
es realmente equivalente a haber hecho renormalización de la función de dos puntos
a "0 orden adiabático". Luego argumentaremos que renormalización a "segundo orden
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adiabático" resulta ser más apropiado desde un punto de vista físico. Esto podría alterar
significativamente las predicciones para C`, sin llegar a romper la invariancia de escala.

Después del periodo de inflación, y previo a la subsiguiente expansión de la teoría del
big bang, se asume que existió una etapa intermedia conocida como "recalentamiento",
en la cual toda la materia presente hoy día en el universo observado se habría originado.
Existen muy pocos datos disponibles que den información de esta etapa, pero se piensa
que el campo inflatón, que conduce la expansión inflacionaria, es responsable de crear
del vacío todas las partículas del modelo estándar a través de acoplos tipo Yukawa
durante este periodo [123, 124]. Con ello, resulta necesario encontrar un procedimiento
sistemático de calcular observables físicos renormalizados propios de esta etapa.

Con esta motivación en mente, en el capítulo 3 extendemos el método de renor-
malización adiabático para calcular el tensor energía-momento de campos de Dirac.
Lo calcularemos primero para el caso de un campo libre, y luego para el caso en que
el campo tenga un acoplo de Yukawa con un campo escalar de fondo. El formalismo
adiabático es una ténica muy conocida y ampliamente usada para campos cuánticos
en espacio-tiempos homogéneos basados en una expansión asintótica UV de los modos
de fourier del campo, desarrollado por Parker y Fulling [95, 96, 152]. Originalmente,
este método fue llevado a cabo solamente para campos Klein-Gordon en universos en
expansión. La extensión de la expansión adiabática para modos de campos fermiónicos
es sutil y hasta hace poco no se había desarrollado en la literatura. Este método permite
calcular observables físicos sistemáticamente (como densidad de energía renormalizada,
momento, o el número de partículas creadas) de interés en espacio-tiempos en expansión,
como los que normalmente tienen lugar en cosmología. Los resultados de este proyecto se
publicaron en tres artículos [64, 66, 68]. El trabajo fue hecho en colaboración con gente
de Valencia (A. Ferreiro y J. Navarro-Salas) y de Madrid (F. Torrenti).

En el capítulo 4 vamos más allá y consideramos no sólo los efectos cuánticos del
campo que genera la inflación sino el impacto de los efectos cuánticos de otros cam-
pos "espectadores". En concreto, estudiamos la posibilidad de extraer cotas sobre el
número total de campos en el universo a partir de cotas experimentales del CMB en
el espectro de potencias tensoriales. Campos espectadores (que no interaccionan con el
inflaton) presentes durante inflación pueden afectar observables del CMB a través de
sus fluctuaciones cuánticas, amplificadas por la dinámica gravitatoria: son capaces de
inducir una dependencia logarítima en las funciones de correlación de perturbaciones de
curvatura (lo que en inglés se conoce un "running"). En este trabajo hemos considerado
el efecto de un gran número de tales grados de libertad en los observables inflacionarios,
y mostraremos que se puede extraer cotas sobre el contenido de campos espectadores
del universo a través de cotas del índice espectral tensorial (asumiendo que el espectro
tensorial llegue un día a medirse). El proyecto involucró trabajar intensamente con teoría
de perturbaciones lineales en cosmología, inflación, física del CMB, cálculo de funciones
de correlación, y diagramas de Feynman dentro del llamado formalismo "in-in". Este
proyecto se originó durante una estancia de investigación en el grupo de cosmología y
astrofísica de la Universidad de Ginebra en 2016, bajo la supervisión y colaboración de
Ruth Durrer y Subodh P. Patil. En las próximas semanas enviaremos el trabajo para
publicar.
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Aspectos cuánticos en astrofísica

La astrofísica es otro campo de la gravitación que estudia el origen, formación, evolución,
y propiedades de las diferentes estructuras individuales en el universo, tales como
estrellas, galaxias, cúmulos de galaxias, agujeros negros, rayos cósmicos, materia oscura,
etc. Paralelamente a la inflación, los intensos fenómenos gravitacionales que tienen lugar
en típicas situaciones de astrofísica podrían sevir para testear la validez de la relativiad
general y / o teoría cuántica de campos en espacio-tiempos curvos. En particular, la
formación de agujeros negros, típicamente produciéndose como consecuencia del colapso
gravitatorio de una estrella, resulta ser un escenario interesante posible para comprobar
las implicaciones de campos cuánticos propagándose alrededor, como el popular efecto
Hawking [111]. Otro escenario significativo, que es particularmente popular hoy día, es
aquel de un sistema binario de objetos compactos que acaban fusionándose para dar lugar
a un agujero negro, y que durante el proceso liberan una cantidad ingente de energía en
forma de ondas gravitacionales y electromagnéticas. Recientemente, el obsevatorio de
ondas gravitacionales por interferómetro láser (LIGO, por sus siglas en inglés) en EEUU,
conjuntamente con el interferómetro Virgo en Europa, han detectado por primera vez, y
con métodos directos, las ondas gravitatorias emitidas durante la fusión de dos agujeros
negros [5]. De hecho, la colaboración ha detectado más eventos de fusión de binarias, y
no solo resultado de la colisión de dos agujeros neros, sino también de la fusión de dos
estrellas de neutrones. El homólogo electromagnético esperado para este último caso
también fue detectado, casi simultáneamente, y en todo el espectro electromagnético, por
diversos telescopios y observatorios [2, 3], marcando con ello un avance significativo para
la astronomía multi-messenger también. Las observaciones resultantes proporcionan
acceso único a las propiedades del espacio-tiempo en el régimen de gravedad intensa,
altas velocidades, y confirman las predicciones de la relatividad general para la dinámica
no lineal de agujeros negros altamente perturbados.

La segunda parte de esta tesis trata enteramente con la simetría de dualidad eléctrico-
magnética de la teoría de Maxwell sin fuentes a nivel cuántico, asumiendo que el campo
electromagnético se propaga en un espacio-tiempo clásico, curvo y dinámico. Este tema
será cubierto en detalle en el capítulo 5. Aunque originalmente estuvimos interesados en
posibles aplicaciones en cosmología, tal como discutiremos las implicaciones físicas de
este fenómeno resultarán ser mayoritariamente relevantes en astrofísica, principalmente
porque hay disponibles escenarios gravitatorios con cierto grado de vorticidad o "frame-
dragging". El proyecto fue iniciado en una estancia de investigación en Louisiana State
University en 2015, y continuó en la Universitat de València, bajo la supervisión y
estrecha colaboración del Dr. Ivan Agullo y Prof. Jose Navarro Salas.

Clásicamente, la acción de Maxwell para la electrodinámica en ausencia de cargas y
corrientes eléctricas es invariante bajo una rotación de dualidad de los campos eléctricos y
magnéticos, incluso cuando el campo electromagnético está inmerso en un espacio-tiempo
clásico, curvo y dinámico. Asociada a esta simetría existe una carga Noether conservada
que en Minkowski mide la diferencia neta entre fotones polarizados circularmente a
izquierdas y derechas (y con ello resulta estar relacionado con el parámetro V de Stokes).
La simetría de dualidad garantiza que ello sea una constante del movimiento en ausencia
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de fuentes electromagnéticas. En el capítulo 5 mostraremos, sin embargo, que cuando el
campo se cuantiza, esta simetría deja de ser válida, proporcionando lo que se conoce como
una anomalía en la teoría. Puede ser interpretada como el análogo de spin 1 de la llamada
anomalía quiral para fermiones, y como ésta, podría proporcionar implicaciones físicas
interesantes. La estrategia que seguiremos consistirá en simular la teoría fermiónica
tanto como sea posible, en particular reescribiendo la acción clásica como aquella de
Dirac.

El origen de esta anomalía puede ser entendida como una consecuencia de la renor-
malización: cuando uno trata con una simetría clásica, el teorema de Noether nos dice
que la divergencia de la corriente resulta ser proporcional a las ecuaciones de movimiento,
con coeficientes que son los campos en sí. Esto da lugar a un operador cuadrático en
los campos, y como tal necesita ser renormalizado adecuadamente. Las sustracciones
de renormalización no necesariamente respetan las ecuaciones de movimiento de los
campos dado que la restricción principal es que sean covariantes, y de aquí la aparición
de la anomalía. Esto es precisamente lo que ocurre con otras anomalías. Mostraremos
también, complementariamente, que la anomalía puede ser entendida siguiendo la inter-
pretación de Fujikawa. Las amplitudes de transición entre dos estados diferentes del
campo electromagnético pueden ser calculadas usando lo que se conoce como la integral
de camino. Esto requiere sumar sobre todos los caminos posibles en el espacio de fase
entre ambos estados inicial y final, cada uno de ellos pesado por la exponencial de la
acción. Una transformación de dualidad es una transformación canónica en el espacio de
fase, por lo que debe dejar la amplitud de transición (o acción cuántica efectiva a primer
orden) invariante. Se sabe entonces que la acción permanece invariante también, debido
a la simetría clásica. Sin embargo, a diferencia de la teoría clásica, además de la acción
hay una ingrediente adicional, que aparece dentro de la integral de camino, que debe ser
analizado: la medida de la integral podría cambiar en un jacobiano no trivial, en efecto.

Ambos cálculos proporcionan el mismo resultado y confirman la existencia de esta
anomalía cuántica. Independientemente de la interpretación dada, la conclusión es que
contribuciones "off-shell" (fuera de las ecuaciones de movimiento) del campo electromag-
nético anulan la simetría clásica.

El trabajo presentado involucró tratar y estudiar una amplia gamma de temas,
tales como dinámica hamiltoniana, spinores, teoría de campos, cuantización, teorías
gauge, integrales de camino, anomalías cuánticas, formalismo 3+1 en relatividad general,
teoría de la renormalización en espacios curvos, análisis geométrico, etc. Los primeros
resultados fueron publicados en Physical Review Letters [13]. Es de destacar también
que un ensayo [14], que propone y enfatiza potenciales implicaciones físicas de este efecto
cuántico en astrofísica, ganó el primer premio en la prestigiosa competición de ensayos
de la Gravity Research Foundation en 2017. Una continuación del trabajo con muchos
más detalles está siendo preparada para publicación [12].

Desde un punto de física más físico, esta anomalía sugiere que un campo gravitatorio
distingue ambos grados de libertad radiativos de los fotones (es decir, fotones polarizados
circularmente tanto a derecha como a izquierda) induciendo un cambio en su estado de
polarización a través de fluctuaciones cuánticas, posiblemente durante la propagación.
En particular, hemos aprendido recientemente que la anomalía se manifiesta si el campo
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gravitatorio admite la emisión de ondas gravitatorias. Consecuentemente, el resultado
podría ser observacionalmente relevante en espacio-tiempos dinámicos con cierto grado
de vorticidad o "frame-dragging", tal como el colapso de una estrella de neutrones a
un agujero negro de Kerr, o fusión de sistemas de binarias compactas en astrofísica.
Estos últimos son considerados una de las fuentes de emisión de ondas gravitatorias
más importantes y se piensa que constituyen algunos de los eventos más violentos que
tienen lugar en el universo. Los métodos analíticos empleados en estos casos son muy
limitados, y como consecuencia se colabora con expertos en relatividad numérica (N.
Sanchis Gual, V. Mewes, J.A. Font) para estimar el efecto en situaciones astrofísicas
típicas. Se han conseguido algunos resultados, pero el proyecto está todavía en desarrollo.
Aquí comentaremos sólo las ideas principales desde un punto de vista cualitativo. Esta
colaboración ha permitido al autor familiarizarse con aspectos clave en el campo de la
relatividad numérica [20] (condiciones gauge, el problema de los datos iniciales, escalares
de Weyl para extraer información en la emisión de ondas gravitatorias, etc).

Como avanzábamos en el párrafo anterior, el tema de emisión de ondas gravitatorias
está fuertemente conectado con la manifestación de la anomalía en la dualidad electro-
magnética. Esto es realmente una conclusión altamente no trivial, y para llegar a ella
hemos empleado técnicas en relatividad general que versan sobre análisis asintótico.
Estos métodos son bien conocidos para la descripción de espacio-tiempos asintóticamente
planos, un marco teórico que resulta muy conveniente para el estudio de fuentes as-
trofísicas aisladas, tales como agujeros negros en colapso o dinámicos, y la propagación
de radiación emitida por ellos hacia el futuro nulo (los métodos son realmente válidos
para cualquier campo radiativo, no sólo gravitacional). Temas como el "infinito nulo
conforme" y "compactificación a la Penrose", expansiones "peeling-off"; base nula de
Newman-Penrose; dinámica hamiltoniana covariante; simetrías asintóticas BMS; cargas
infrarrojas "suaves" y transformaciones gauge "grandes"; el efecto memoria, etc; son
clave en estos asuntos. Fueron estudiados por el autor mientras visitaba el Instituto para
la Gravitación y el Cosmos en 2017 en una estancia de investigación supervisada por
Abhay Ashtekar. Aunque este trabajo todavía se encuentra en desarrollo, cierto progreso
se ha conseguido y algunos aspectos serán comentados al final de capítulo 5.

Finalmente, damos por finalizada la tesis resumiendo los aspectos principales de los
diferentes capítulos del texto y describiendo pronósticos futuros de trabajo al respecto.
Esto se lleva a cabo en el capítulo 6, que pasamos a resumir a continuación en esta
traducción a castellano.

Conclusiones y futuras direcciones de investigación
Esta tesis es el resultado de la investigación llevada a cabo por el autor durante los
últimos 5 años en colaboración con sus supervisores y otros investigadores. El tema
central es la teoría cuántica de campos que se propagan en espacio-tiempos curvos.
Aunque ya han pasado más de 50 años desde el primer artículo cuantitativo al respecto,
[147], el tema es todavía de gran importancia hoy día, no sólo porque continua dando
nuevos hallazgos en las bases de una supuesta teoría cuántica de la gravedad, sino por
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que conduce a nuevas implicaciones fenomenológicas que, hoy más que nunca, podrían ser
testadas en experimentos. A día de hoy, las misiones cosmológicas han alcanzado tal nivel
de sensibilidad que los efectos cuánticos de los campos presentes durante el universo
temprano deben ser tenidos en cuenta para la correcta interpretación del análisis de
datos en ambos CMB y estructura a gran escala. Por otro lado, la detección de ondas
gravitatorias por la colaboración LIGO-Virgo, junto al análogo electromagnético medido
por la astronomía multi-messenger, ha abierto una nueva era en astrofísica. No hay
duda de que este área de investigación en rápido desarrollo proporcionará una cantidad
considerable de datos de fuentes astrofísicas que permitirán un mejor entendimiento no
sólo de relatividad general, sino también de las consecuencias de la teoría cuántica de
campos alrededor de escenarios tipo agujero negro.

Con esta motivación en mente, en la primera parte de esta tesis hemos trabajado
en ciertas cuestiones relacionadas con cosmología primordial. En el capítulo 2 hemos
analizado el observable más importante que apoya la teoría inflacionaria, el espectro de
potencias angular, usando una perspectiva diferente a la convencional. Reanalizamos
esta cantidad desde un punto de vista espacio-temporal y encontramos que el resultado
estándar considerado en la literatura es realmente divergente en el límite ultravioleta.
La hipótesis usual de tomar el límite de distancias enormes en la función de dos puntos,
que acaba llevando a la bien conocida (y experimentalmente comprobada) invariancia
de escala del espectro, sirve de regulador natural para estas divergencias UV, y resulta
ser equivalente a una sustracción de orden adiabático 0 para la función de dos puntos
involucrada. Hemos argumentado que el segundo orden adiabático debería ser más
natural desde un punto de vista físico. Al hacer esto uno obtiene un término adicional
(también invariante de escala) en el espectro de potencias (véase (2.39) para consultar el
resultado final), y sus posibles consecuencias observables fueron discutidas.

El capítulo 3 constituye un texto detallado que versa sobre el cálculo del tensor
energía-momento renormalizado de campos de spin 1/2 en universos en expansión. El
trabajo se llevó a cabo tanto cuando el campo fermiónico se propaga libremente como
cuando interacciona con un campo escalar a traves de un acoplo tipo Yukawa. Expresiones
finales de los valores renormalizados pueden ser consultados en (3.72) y (3.73); y (3.157),
(3.158), (3.171). Esto permite el estudio de la materia (concretamente, la producción de
partículas y energía) no sólo durante el régimen inflacionario, sino también durante el
recalentamiento, durante el cual toda la materia conocida en el universo se supone que
fue originada a través de las oscilaciones del campo inflatón. Algunos ejemplos de interés
cosmológico usando este formalismo fueron discutidos usando aproximaciones analíticas
(véase sección 3.4 y apéndice B) y algunos usando métodos numéricos (véase apéndice
E). El trabajo que se presenta allana el camino para futuros proyectos relacionados con
aplicaciones numéricas.

El estudio cosmológico acaba con el capítulo 4. En modelos de inflación se asume
normalmente que el único campo relevante para el cálculo de observables físicos es
aquel que conduce la expansión exponencial. En ese capítulo hemos considerado la
presencia e influencia de un gran número N de campos escalares ligeros "espectadores",
es decir, que no interacciónan con el campo inflatón sino solo se acopla a gravedad. Esto
es de interés dado que algunas teorías fundamentales (por ejemplo teoría de cuerdas,
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supergravedad, etc) generalmente requieren de la existencia de ingentes cantidades de
tales campos ligeros por auto-consistencia, y su presencia debería ciertamente tener
algún tipo de consecuencia observacional, por ejemplo en observables del CMB. Resulta
que contribuyen al "running" en ambos espectros escalar y tensorial. En este trabajo
hemos derivado este resultado usando métodos alternativos a los disponibles en la
literatura. Hemos discutido además que, aunque normalmente son despreciados en los
cálculos involucrados de inflación, su contribución en el espectro tensorial podría ser muy
relevante para poner cotas en el posible número N de campos escalares ligeros presentes
en el universo. La cota obtenida y la discusión asociada pueden consultarse en (4.58).
Los resultados podrían restringir ciertos modelos fenomenológicos que requieren de tales
ingentes cantidades de campos ligeros para resolver el problema de la jerarquía en el
modelo estándar.

Volviendo ahora a aspectos más fundamentales de la teoría cuántica de campos,
en el capítulo 5 hemos tratado con la transformación de dualidad eletrocmagnética de
la teoría de Maxwell sin fuentes en espacio-tiempos curvos. Se sabe que clásicamente
es una simetría de la acción de Maxwell si no hay cargas y corrientes eléctricas. Sin
embargo, motivados por el conocimiento de otras anomalías, se planteó y analizó en
detalle la cuestión natural de si esta simetría clásica podría ser extendida a la teoría
cuántica. En efecto, tal y como se mostró por primera vez en 1969 [10, 44, 122], esto es
un asunto no trivial: las simetrías clásicas pueden fallar en la teoría cuántica debido a
contribuciones off-shell procedentes de correcciones cuánticas. En este capítulo hemos
calculado el valor esperado en vacío de la divergencia de la corriente Noether, y hemos
encontrado que no es nula debido a las sustracciones de renormalización, las cuales son
necesarias con el fin de lidiar adecuadamente con las divergencias ultravioletas. Este
resultado conduce por tanto a una anomalía en la teoría cuántica. Hemos comprobado
además el cálculo siguiendo la interpretación de Fujikawa: la medida de la integral de
camino, que determina la amplitud de transición entre estados cuánticos del campo a
diferentes tiempos, se transforma no-trivialmente, proporcionando la anomalía. Hemos
acabado el capítulo comentando implicaciones físicas potencialmente interesantes en
astrofísica.

Respecto a este último capítulo, el trabajo realizado abre varias direcciones de investi-
gación en el futuro, las cuales pasamos a describir a continuación. Nos surgen cuestiones
inmediatas: como deberíamos interpretar esta anomalía de dualidad electromagnética
desde un punto de vista físico? Significa que una muestra inicial de fotones se puede
polarizar si atraviesan un campo gravitatorio fuerte? Más aún, predicen algunas car-
acterísticas distintivas las desviaciones de la teoría de la relatividad general? Existen
implicaciones observables de todo ello, digamos, en astrofísica? Surge esta anomalía
en la radiación gravitatoria también? Planeamos abordar todas estas cuestiones en un
futuro cercano trabajando una serie de direcciones de investigación específicadas abajo.
Responder dichas preguntas nos ayudará a entender las implicaciones de esta anomalía
desde un punto de vista medible, y esto será útil para testear la validez de la relatividad
general y la teoría cuántica de campos en espacio-tiempos curvados en un contexto
astrofísico.

1. El cálculo concreto de la anomalía de dualidad electromagnética fue desarrollado
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considerando el valor esperado en vacío de la corriente de dualidad, es decir, hemos
calculado la cantidad 〈0|∇µ jµ |0〉 6= 0. Este efecto de polarización podría ser interpretado
como creación espontánea de partículas (asimétricamente) del vacío debido a la fuerte
dinámica gravitacional, similar al celebrado efecto Hawking. Si, en lugar de ello, el
estado inicial que describe el campo electromagnético se asume inicialmente con una
distribución de fotones, esperaríamos una contribución estimulada a este fenómeno
desde el estado cuántico, lo cual debe ser mucho más relevante en cualquier situación
práctica de interés cosmológico y astrofísico. Nuestro plan consiste en determinar cuan
grande este efecto puede llegar a ser. En otras palabras, necesitamos calcular 〈ρ∣∣∇µ jµ

∣∣ρ〉
en detalle, donde

∣∣ρ〉 representa un estado mixto que describe fotones con diferentes
helicidades, energías, etc. Con todo ello, en última instancia tendremos que averiguar
cómo esta cantidad podría ser medida por un instrumento cuántico.

Utilizaremos técnicas adicionales de teoría cuántica de campos en espacio-tiempos
curvos y relatividad general. El uso de detectores Unruh-DeWitt, en particular, podría
ser relevante para entender en mayor profundidad cuál es el impacto de la anomalía
sobre los fotones desde un punto de vista físico, dado que estos detectores nos dicen qué
es lo que un campo test u observador sería capaz de medir o no. Análisis asintótico en
relatividad general será importante también para abordar el estudio de la radiación
procedente del pasado nulo infinito y la radiación dispersada hacia el futuro nulo infinito.
Por otro lado, métodos usualmente empleados en ciencia de la información cuántica
podrían ser muy relevante además para analizar la cuestión de la elección del estado
cuántico inicial, por ejemplo por medio de operadores densidad.

2. Una suposición adicional en nuestro cálculo de la anomalía de dualidad electromag-
nética es el uso de relatividad general convencional para describir la gravitación. Dado
que el resultado obtenido es una contribución geométrica pura, podría ser interesante
investigar si teorías modificadas de gravedad proporcionan nuevos términos a 〈0|∇µ jµ |0〉
or 〈ρ∣∣∇µ jµ

∣∣ρ〉. En tal caso, esto podría servir para predecir desviaciones de la relatividad
general en entornos gravitacionales intensos, como por ejemplo a través de nuevas carac-
terísticas en las ondas gravitatorias emitidas. Diversos caminos pueden emprenderse
tanto en teoría de campos como en geometría diferencial. Por ejemplo, si permitimos
torsión o no-metricidad en la conexión, además de la curvatura contribuciones adicionales
a los valores esperados de arriba podrían aparecer.

3. Las ondas gravitatorias también tienen dos grados de libertad radiativos, en
concreto los bien conocidos modos h+ and h×, y existe una noción análoga a la simetría
de dualidad electromagnética. Consecuentemente, a nivel lineal en la teoría, la noción de
una carga que mida el estado de polarización de la radiación debería estar disponible
también. Planeamos analizar esto en detalle y estudiar si existe una anomalía en la
teoría de gravitones que se propagan en un espacio-tiempo curvo no trivial. Es decir, si el
entorno gravitacional distingue (a través de fluctuaciones cuánticas) entre los dos grados
de libertad de las ondas gravitatorias. Esto podría ser particularmente interesante en
futuras medidas de polarización con ondas gravitacionales.

4. Nuestro plan final sería buscar aspectos distintivos de todo ello en astrofísica, en
concreto en física de agujeros negros y emisión de ondas gravitatorias. Trabajar en este
área implicará familiarizarse con fuentes astrofísicas, tales como fusión de binarias o
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agujeros negros dinámicos, así como con métodos analíticos involucrados para extraer de
ellos información de interés físico (análisis asistólico, momentos multipolares de agujeros
negros, cargas asistólicas, etc). Se abordarán cuestiones como por ejemplo si el efecto
crece linearmente con la masa del sistema, o si la polarización o el momento angular
llevados por las ondas juega algún papel. Se espera estrecha colaboración con relativistas
numéricos para poder realizar simulaciones.
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INTRODUCTION

1.1 Overview and motivation

General relativity is a geometrical description of spacetime and gravitation formu-

lated by A. Einstein in 1915 [136, 184]. In this theory spacetime is described by

a smooth manifold, endowed with a Lorentzian metric gab to provide a physical

notion of distance and causality. The key feature is that spacetime is regarded as a

dynamical entity: the metric is not fixed but rather it can evolve according to Einstein’s

hyperbolic differential equations, Gab(g)= 8πGTab, where Gab(g) is the Einstein tensor

constructed from the metric, capturing geometric information, and Tab describes the

energy content of spacetime. Test particles propagate in this curved background by fol-

lowing geodesics, and the gravitational interaction is thus explained as a manifestation

of curvature in spacetime.

This is the simplest successful theory we have for interpreting all gravitational

phenomena observed so far, accounting for concrete predictions that have been tested to

great accuracy by many different experiments during these 100 years of history [191].

However, it is also well known that it leads to its own failure by predicting the formation

of spacetime singularities under certain circumstances [113]. Although some conjectures

regarding the impossibility of an observer to "see" these singularities are formulated,

such as the cosmic censorships [162], it is widely accepted that these features are actually

pointing out the limits of validity of the theory. This, together with the fact that the

other fundamental interactions in Nature are of quantum origin, suggests that general
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CHAPTER 1. INTRODUCTION

relativity probably emerges as the classical low-energy limit of a quantum theory of

gravity.

Although different attempts have been developed for constructing such a theory, the

lack of observations so far raises serious challenges in distinguishing between them, or

even to falsify any of them. One is then limited to follow theoretical principles, prejudices

and arguments to construct the theory, with the hope that future experiments will check

the predictions. A detailed description of the different approaches in this respect is out of

the scope of this text, and the reader is referred to [163] for an overview of the situation.

Lacking a clear or definite idea of what a quantum theory of gravity should be, can

we still hope to learn something about the influence of gravity on quantum phenom-

ena? Recall that in the old history of the quantum theory, numerous calculations were

performed assuming the coupling of quantum matter to a classical electromagnetic back-

ground field, yielding results that eventually were in agreement with the full quantum

electrodynamics theory to an excellent degree of approximation. We may expect that a

analogous situation would occur for gravity, in that the propagation of quantized matter

or radiation fields in a classical gravitational background is studied. This is the subject

of quantum field theory in curved spacetimes [48, 94, 157, 185], and provides the first

step in our way for addressing all these questions. The Planck length indicates the limit

beyond which the full quantum gravity theory must be recalled. It is expected that

quantum gravitational issues are negligible when physical distances involved are much

larger than the Planck length, and since Planck scale is so tiny this seems to provide

much scope for the framework.

This approach yields a semiclassical picture, less ambitious than a full quantum

theory, but observationally and physically more accesible, as for instance primordial

cosmology has shown. Indeed, the pioneering work developed by L. Parker in the 60’s

[147–150], resulting in the discovery of particle production by expanding universes, has

been proven to be fundamental to explain the initial seeds in matter energy density at

the beginning of the big bang expansion that eventually, through gravitational clump,

led to the formation of the large scale structure of the universe that we observe today

[72, 77, 189]. These primordial inhomogeneties in density are regarded as the result of

the amplification of quantum fluctuations of a scalar field during the violent expansion of

spacetime that took place during the early universe. On the other hand, this approach is

also important from a conceptual point of view. Namely, the discovery by Hawking in 1975

of thermal emission of particles by gravitational collapse using these techniques [84, 111]

is a cornerstone in modern fundamental physics. Although this radiation has not been
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observed so far, it is very compelling and widely recognized because it establishes a strong

connection between general relativity, quantum field theory, and statistical physics or

thermodynamics. The semiclassical picture is also very relevant since it captures some

non-perturbative phenomena, such as the Schwinger effect [85, 157] and the so-called

quantum anomalies [91–93], and one expects that a full quantum theory of gravity

should account for all these phenomena as well.

Although this theory is still experimentally very limited, new generations of ob-

servational missions in cosmology and astrophysics, such as PLANCK [6], SDSS [7],

LIGO-Virgo [5], Multimessenger detections [2, 3], etc; and future planned experiments

such as LISA [4], Einstein telescope [1], etc; are playing an increasingly important role

in testing fundamental physics nowadays and could lead to significant advances. For

around 25 years now cosmology enjoys its golden age, numerous experiments have been

carried out measuring quantities of physical interest in diverse complementary ways,

while at the same time reaching sensitivities of one-hundred percent. In fact, currently

cosmological missions are able to test energy scales in which gravity is so strong that

quantum effects of matter and radiation become relevant. On the other hand, the recent

direct detection of gravitational waves by the LIGO-Virgo collaboration, emitted from the

merger of black hole and neutron star binaries, together with the electromagnetic coun-

terpart observed in the whole spectrum by the multimessenger astronomy community,

provide unique access to the strong field, non-linear regime of gravity. This availability

opens a new window to test general relativity at very high energies in an astrophysical

context, and again some novel effects might be important in describing some of the

underlying physics.

Overall, such increasing experimental achievements demand for more accurate

predictions coming from general relativity and/or quantum theory. The presented thesis

points towards this direction, offering some results and insights concerning this. They

are briefly summarized in the following two sections.

Quantum aspects in primordial cosmology

In the first part of this thesis we shall be concerned on quantum effects of fields in

cosmology. Cosmology is a branch of general relativity that studies the Universe as a

whole physical system, and whose main goal consists in understanding its structure and

dynamics. [72, 77, 125, 189]. Although originally cosmology relied on certain assumptions

and observations were very sparse, today there is a huge amount of data and a well-

developed theoretical framework that coincides quantitatively with it. Today there is

3



CHAPTER 1. INTRODUCTION

good evidence that matter in the universe (in the form of galaxies, clusters of galaxies,

"dark matter", etc) appears highly homogeneous and isotropic at sufficiently large scales,

and that spacetime expands acceleratedly. This, together with the discovery of the cosmic

microwave background (CMB), has settled down the well-known "big bang" theory of an

expanding and cooling universe that originated from an initial singularity, in which all

matter and energy was concentrated.

The dynamics of the expansion is described by a family of solutions to Einstein’s

equations with a cosmological constant, Gab(g)+Λgab = 8πGTab, satisfying spatial ho-

mogeneity and isotropy. These are called Fridmann-Lemaitre-Robertson-Walker (FLRW)

metrics. For spatially flat slices they are written as ds2 = dt2 − a(t)2δi jdxidx j using

cartesian coordinates, and only depend on a function of cosmic time t, called scale factor

a(t), which takes into account the expansion of spacetime. The velocity of the expansion

is attributed to the Hubble parameter, H = ȧ
a . To understand the history of the Universe

one must determine then the functional dependence of the scale factor with cosmic time.

General relativity relates this with the energy content Tab filling the universe, i.e. the

problem is reduced to know how the energy density develops with comic time. But this is

actually a complicated issue since we must know the different kinds of species (matter,

radiation, "dark energy", etc) contributing to it, each of which scale distinctly with time.

On the other hand, the CMB is an observed background of electromagnetic radiation

almost perfectly homogeneous and isotropic filling the whole universe. It shows an

almost perfect black body frequency spectrum at a temperature of T0 = 2.725 K . This

background of primordial radiation is a prediction of the standard big bang cosmological

model and constitutes a highly valuable picture of the early universe. Right after the

"big bang" singularity, because the temperature and density of the universe were much

higher, neutral atoms or bound nuclei could not form. Photons, electrons and the rest

of charged particles were in continuous interaction mantaining a thermal equilibrium.

The high rate of interactions in such an environment guaranteed that any nucleus or

atom produced would be instantly annihilated by a high energy photon. As the universe

expands, its temperature decreases until it gets below characteristic binding energies,

allowing this way light elements to form. In particular, electrons and protons join to form

neutral, and stable, hidrogen atoms. This way, there was a time in the evolution of the

universe (normally called "last scattering surface") in which photons stopped interacting

with matter and started propagating freely since then until our days, preserving their

properties. These are the photons that we observe nowadays and constitute the CMB.

The small temperature fluctuations from a perfect homogeneity and isotropy, that are
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found by measuring the photons at different directions in the sky, have different physical

origins, and provide one of the most major references that we have about the evolution of

the universe.

The "big bang" theory, though, is not lack of drawbacks. It appears to need a period

during the early universe, called inflation [43, 128, 189], in which a violent expansion of

spacetime is supposed to take place. This is introduced ad hoc and a smooth match with

the subsequent big bang expansion is expected. Mathematically this universe is modeled

using the well-known de Sitter spacetime, whose metric can be expressed as a particular

case of FLRW with an exponential function as the scale factor: a(t) ∼ exp(Ht). The

importance of the inflationary paradigm is that it provides a solid and compelling way to

explain the initial little inhomogeneities ("scalar density perturbations", in the language

of linear cosmological perturbation theory [43, 77]) that, after the cosmic evolution, are

observed both through the temperature fluctuations of the CMB photons, and at the

large scale distribution of matter in the universe.

And here is when the quantum theory plays a fundamental role in gravity. These

primordial inhomogeneties can be naturally generated during a cosmic inflation period as

a result of the amplification of quantum fluctuations. As already advanced in the previous

subsection, this mechanism is understood thanks to the spontaneous or stimulated

quantum process of particle creation by the gravitational dynamics of the expanding

universe, discovered by L. Parker in the 60’s [147]. Detailed observations in the last

years indicate that temperature fluctuations of the CMB fit with high degree of precision

to a Gaussian distribution with a Fourier spectrum which is almost scale invariant

[166]. The observations are compatible, in a non-trivial way, with the predictions of

inflation, even with the minimal implementation based in a single scalar field with a

"slow-roll" potential driving the expansion. The zoo of models [133] predicting current

inflationary observables is considerably large, though, and this motivates the search

for additional signatures of inflation that may distinguish between all models. The

generation of gravitational waves ("tensorial perturbations") during the rapid expansion

is also a prediction of inflation, that still has not been detected. Some experiments such

as Planck are seeking for signals of primordial gravitons in the magnetic polarization of

CMB photons. The detection of these waves is a smoking gun of the theory of inflation,

and will provide a rich source of information from the very early universe to figure out

the unknowns of the inflationary model.

As it is well-known from quantum field theory, the calculation of physical observables

normally requires taking expectation values of quadratic operators, ill-defined quantities
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that present UV divergences and need to be treated suitably. In curved spacetime the

issue becomes delicated even for free fields. The conventional normal-ordering operation

usually employed in Minkowski spacetime for free fields no longer works here since

several UV divergences associated with the curvature of the spacetime background

arise. The issue was solved in the 1970’s, and nicely summarized in [48]. The idea

consists in subtracting the asymptotic short-distance behaviour of the appropriate two-

point function to the quantity of interest [94]. As first noted in [53], the subtractions

can eventually be reabsorbed in the coupling constants of the theory, the cosmological

constant Λ and the Newton constant G, yielding at the end a self-consistent framework.

The main cosmological observable supporting the theory of inflation is the angular

power spectrum, and, as we shall see in more detail, its calculation involves taking the

vacuum expectation value of some field operators. It is natural then to ask whether

this computation requires renormalization. A similar question was posed for the power

spectrum, the Fourier space version of the two-point function of primordial perturbations,

and several attempts were carried out in the past by means of the so-called adiabatic

renormalization scheme [16–19, 146]. These ideas leaded, though, to some debate in

the literature [41, 78, 89, 132, 168], with some people arguing against the use of renor-

malization here. In Chapter 2 we show the role of ultraviolet divergences arising in the

angular power spectrum and suggest the corresponding renormalization, from a space-

time perspective. The ideas presented in this chapter are based on two papers [65, 67].

We employ the two-point function of primordial perturbations generated during inflation

to derive an analytic expression for the multipole coefficients C` in the Sachs-Wolfe

regime. We analyze then the corresponding ultraviolet behavior and stress the fact that

the current standard result in the literature is actually equivalent to a renormalization

of the two-point function at zeroth adiabatic order. Then we argue that renormalization

at second adiabatic order is more appropriate from a physical point of view. This modifies

the predictions for C`, while keeping scale invariance.

After the period of inflation, and previous to the standard "big bang" expansion of

the universe, it is widely understood that an intermediate stage known as "reheating"

takes place, in which all the matter present today in our universe is supposed to have

originated. There is little amount of information available concerning this stage, but it is

thought that the scalar field driving the inflationary expansion is responsible for creating,

out from the vacuum, all the particles from the Standard Model through Yukawa coupling

during this period [123, 124]. Thus, it appears to be necessary to find a systematic way

of calculating renormalized physical observables originating from this stage.
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With this motivation in mind, in Chapter 3 we extend the adiabatic renormalization

method to calculate the stress-energy tensor of Dirac fields. This is done first for a free

fermion field, and then for the case in which this field has a Yukawa coupling with

a background scalar field. The adiabatic formalism is a well-known and widely used

renormalization technique for quantum fields in homogeneous spacetimes based on an

asymptotic UV expansion of the field Fourier modes, developed by Parker and Fulling

[95, 96, 152]. Originally it was developed only for Klein-Gordon fields in expanding

universes. The extension of the adiabatic expansion of modes to fermions is subtle and

until very recently it was lack in the literature. This method allows to compute physical

observables sistematically (like renormalized energy density, momentum, or the created

amount of particles) of interest in expanding spacetimes, such as the ones normally

taking place in cosmology. Three papers of this project were published in Phys. Rev. D

[64, 66, 68]. This work was done in collaboration with other people, both in Valencia (A.

Ferreiro and J. Navarro-Salas) and Madrid (F. Torrenti).

In chapter 4 we go further and consider not only the quantum effects of the field(s)

driving inflation, but rather the impact of quantum effects coming from others, "spectator"

fields. Namely, we study the possibility of extracting tensor bounds on the hidden field

content of the Universe. Spectator (free) fields present during single-field inflation can

affect CMB observables through quantum fluctuations: they induce logarithmic running

in correlation functions of curvature perturbations. In this work we considered the effect

of a large number of such field degrees of freedom on inflationary observables, and

showed that one can extract bounds on the hidden field content of the universe through

bounds on the tensor running of the spectral index. The project involves dealing with

linear perturbation theory in cosmology, inflation, CMB physics, calculation of correlation

functions, and Feynman diagrammatics within the so-called in-in formalism. This project

was originated during a research stay at the Cosmology and Astrophysics group in

Geneva in 2016, under the supervision and collaboration of Prof. Ruth Durrer, and Dr.

Subodh Patil. A paper concerning these results is being prepared for communication

[63].

Quantum aspects in astrophysics

Astrophysics is another field of gravitation that studies the origin, formation, evolution,

and properties of the different individual structures in the Universe, such as stars,

galaxies, clusters of galaxies, black holes, cosmic rays, dark matter, etc. Parallel to

inflation, the intense gravitational phenomena that take place in some typical situations
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in astrophysics could help to test the validity of general relativity and / or quantum

field theory in curved spacetimes. In particular, the formation of black holes, typically

arising as a consequence of the gravitational collapse of a star, turns out to be a possible

interesting scenario to check the implications of quantum fields propagating nearby, such

as the celebrated Hawking effect [111]. Another significant scenario, which is particularly

popular nowadays, is that of binary systems of compact objects that end up coalescing

to give a black hole, and in the process release a huge amount of energy in the form

of either gravitational and electromagnetic waves. Recently, the Laser Interferometer

Gravitational-Wave Observatory (LIGO) in the USA, jointly with the Virgo interferometer

in Europe, have detected for the very first time, and with direct methods, the gravitational

waves emitted during the merger of two black holes [5]. The collaboration has in fact

detected more events supporting this, and not only from the collision of two black holes,

but also from the merger of two neutron stars. The expected electromagnetic counterpart

for this latter case was also detected in the whole electromagnetic spectrum by several

telescopes and observatories, thereby representing a valuable breakthrough for multi-

messenger astronomy as well. The observations provide deep insight in the behaviour of

spacetime in the regime of intense gravity, high velocities, and confirm the predictions of

general relativity for the non-linear dynamics of two black holes [5].

The second part of this thesis deals entirely with the electric-magnetic duality trans-

formation of source-free Maxwell theory in the quantum regime, assuming the electro-

magnetic field to propagate in a classical and dynamical curved spacetime. This topic

will be covered in detail in chapter 5. Although originally we were interested in possible

applications to cosmology, as we shall argue physical implications of this phenomenon

will turn out to be mostly relevant in astrophysics, mainly because gravitational scenar-

ios with vorticity or frame-dragging are available. The project was initiated in a research

stay at Louisiana State University in 2015, and continued at the University of Valencia,

under the supervision and close collaboration of both Dr. Agullo and Prof. Navarro-Salas,

respectively.

Classically, Maxwell action for electrodynamics in absence of electric charges and

currents is invariant under a duality rotation of the electric and magnetic fields, even

when the electromagnetic field is immersed in a classical and dynamical curved spacetime.

Associated to this symmetry there is a conserved Noether charge (the V-stokes parameter)

which measures the net difference among right- and left-handed circularly polarized

photons. The duality symmetry states that this is a constant of motion in the absence

of electromagnetic sources. We will find, though, that when the electromagnetic field
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is quantized, this symmetry fails to hold, providing a so-called anomaly in the theory.

It can be seen as the spin-1 analog of the so-called chiral anomaly for fermions, and as

the latter, it may provide interesting physical implications. The strategy that we shall

follow will consist in mimicking the fermion theory as much as possible, in particular in

rewriting the classical action as that of a Dirac one.

The origin of this anomaly can be understood in terms of renormalization: when

one deals with a classical symmetry, Noether’s Theorem tells that the divergence of the

current turns out to be proportional to the equations of motion, with coefficients being

the fields themselves. This results in a quadratic operator field and as such needs to be

renormalized properly. Renormalization subtractions need not respect the equations of

motion of the fields since the primary restriction is that they are covariant, and thus

the emergence of an anomaly. This is precisely what happens in other anomalies. We

also show, complementary, that the anomaly can be understood following Fujikawa’s

interpretation. Transition amplitudes between two different states of the electromagnetic

field are calculated using the path integral. This requires summing over all paths in phase

space, each of which weighted with the exponentiated action. A duality transformation

amounts to a canonical transformation in phase space, so must leave the whole transition

amplitude (or one-loop effective action) invariant. One knows then that the action

remains invariant, because of the classical symmetry. However, unlike in the classical

theory, besides the action there is an additional ingredient that must be analyzed

and appears inside the path integral: the measure may change in a non-trivial jacobian,

indeed. Both calculations yield the same result and confirm the existence of this quantum

anomaly. Regardless of the interpretation, the conclusion is that quantum off-shell

contributions of the electromagnetic field spoil the classical symmetry.

The project involves dealing with a wide variety of topics, such as hamiltonian

dynamics, spinors, field theory, quantization, gauge theories, path integrals, anomalies,

3+1 formalism of gravity, renormalization theory in curved spacetime, geometric analysis,

etc. The first results were published in Physical Review Letters [13]. It is also worth to

remark that an essay [14], proposing and emphasizing potential physical implications

of this quantum effect in astrophysics, won the First award in the prestigious Gravity

Research Foundation Essay Competition in 2017. A follow-up paper with more details is

being prepared for publication [12].

From a more physical point of view, this anomaly is suggesting that a gravitational

background distinguishes both radiative degrees of freedom of photons (i.e., right- and

left- handed circularly polarized photons), by inducing a change in their polarization
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state through quantum fluctuations, possibly along the propagation. In particular, we

have recently learnt that the anomaly manifests if gravitational wave emission takes

place in the background. Consequently, the result could be observationally relevant

in dynamical spacetimes with a certain degree of vorticity or frame-dragging, such as

the collapse of a neutron star into a Kerr black hole, or mergers of compact binary

systems in astrophysics. These are considered one of the most important sources for

gravitational-wave emission and are thought to be at the origin of some of the most

violent events in the Universe. Analitycal approaches are very limited in this direction,

and as a consequence I collaborate with experts in numerical relativity (N. Sanchis-Gual,

V. Mewes, J.A. Font) to estimate the effect in typical astrophysical situations. Some

results have been obtained but the project is still ongoing. Here we shall comment only

the main ideas from a qualitatively point of view. This interaction in particular allowed

the author to get familiarized with key issues in the field of numerical relativity [20]

(gauge conditions, initial data, Weyl scalars to infer gravitational waves emission, etc).

As advanced in the previous paragraph, the issue of gravitational wave emission is

strongly connected to the manifestation of this anomaly. This is actually a non-trivial

conclusion and to arrive at this we employ techniques in general relativity dealing with

asymptotic analysis. These are well-known methods to deal with asymptotically flat

spacetimes, a framework that is nice to describe isolated astrophysical sources, such as

dynamical or collapsing black holes, and the propagation of radiation emitted by them

to future null infinity (the methods are actually valid for any radiative field, not only

gravitational). Conformal null infinity and Penrose compactification, peeling-off expan-

sions, Newman-Penrose null basis, covariant hamiltonian dynamics, BMS asymptotic

symmetries, soft (infrared) charges and "large" gauge transformations, "memory" effect,

etc, are key topics related to this framework. These were studied by the author while

visiting the Institute for Gravitation and the Cosmos in 2017, under the supervision of

Prof. Abhay Ashtekar. Although this work is still ongoing, some progress and aspects

are discussed by the end of Chapter 5 using the above techniques to figure out that the

electromagnetic duality anomaly is related to polarized gravitational wave emission. In

particular, it manifests if emission of gravitational waves takes place.

We finally end the thesis by summarizing the main aspects throughout the text and

describing future prospects of our work. This is done in Chapter 6.
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1.2 Methodology

The methods employed in this thesis are essentially theoretical (focused on calculating

observables of physical interest, consult the bibliography, proposing models to explain

phenomenology, predicting results given some theories or assumptions, relating ideas to

produce new results, increase knowledge in both physics and mathematics, clarifying or

giving solutions to questions, etc) and/or computational in some cases (use of advanced

calculus software such as Mathematica). It also required the interaction and collabora-

tion with researchers in other fields of expertise (for instance to run advanced numerical

simulations in relativity). In general, we use tools from diverse areas of physics (such

as classical mechanics, classical theory of fields, quantum field theory, electrodynamics,

gauge theories, general relativity, cosmology, and astrophysics) as well as of mathematics

(linear algebra, real and complex calculous, classical and modern differential geome-

try, functional analysis, and geometric analysis). Specific methods have already been

commented along the introductory text.

1.3 Training

Apart from research, as part of the Ph.D thesis training I tried to improve my knowledge

and education both in physics and mathematics. This is fundamental to gain clarity,

insight, perspective, rigor, new and powerful methodology, etc. In particular, I tried to

cover a considerable number of books for developing the thesis (see the bibliography)

and, in order to increase my background in theoretical physics, I attended several

international summer schools abroad whose lectures ranged from general relativity to

quantum field theory. Here there is a list of them:

• "School on Gravitational waves for Cosmology and Astrophysics", Centro de Cien-

cias Pedro Pascual, Benasque (Spain), May 28th - June 10th, 2017.

• "Foundations and new methods in Theoretical Physics", Wolfersdorf (Germany),

September 4th - 16th, 2016.

• "Geometric aspects of General Relativity", University of Montpellier (France),

September 28th - October 1st, 2015.

• "Group theory in Particle Physics", Institut de Fisica Corpuscular, Valencia (Spain),

June 2nd - 12th, 2015.
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• ”100 years of General Relativity, from theory to experiment and back ”, Israel Insti-

tute for Advanced Studies, Jerusalem (Israel), december 29th 2014 - 8th January

2015.

• ”Mathematical Relativity”, Erwin Schrodinger Institute for Mathematical Physics,

Vienna (Austria), July 28th - August 1th, 2014

• ”Asymptotic analysis in General Relativity”, Joseph Fourier Institute, Grenoble

(France), June 16th - July 4th, 2014.

On the other hand, I also took several lectures in geometry and analysis from the

degree of Mathematics, both at the University of Valencia and at the Spanish National

University of Distance Education. The courses were: Topology, Differential Geometry of

Curves and Surfaces, Hilbert Spaces and Fourier Analysis, Algebraic Topology, Func-

tional Analysis, Differentiable Manifolds and Lie Groups. These lectures provided me a

better and solid understanding of the mathematics underlying quantum theory, general

relativity, and classical mechanics.

Finally, in order to improve my communication skills, I attended and participated in

several conferences all around the world, and gave seminars in different departments.

Here there is a list of them:

• ”Electromagnetic duality anomaly in curved spacetime and possible applications
to astrophysics”, seminar given at IGC Pennsylvania State University, September

18th 2017.

• "CMB bounds on the hidden universe", 12th Iberian Cosmology meeting, Valencia

10-12 April 2017, Spain.

• "Electromagnetic duality anomaly in curved spacetime", Oviedo V posgraduate

meeting on theoretical physics, Oviedo 17-18 November 2016, Spain.

• "Electromagnetic duality in curved spacetime", 21st International Conference on

General Relativity and Gravitation, New York 11-15 July 2016, USA.

• ”Electromagnetic duality anomaly”, seminar given at University of Geneva, March

11th 2016.

• ”Adiabatic regularization for spin 1/2 fields and the renormalized stress-energy
tensor”, 14th Marcel Grossmann Meeting, Rome 12th - 18th July, 2015.
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1.3. TRAINING

• ”The role of renormalization in curved space-time”, seminar given at IFIC Univer-

sity of Valencia, 20th November, 2014.

• ”Space-time analysis of primordial perturbations during slow-roll inflation”, Span-

ish relativity meeting, 1st - 5th September, 2014.

• ”Evidence for quantum effects in gravity: from spontaneous particle production to
BICEP2 discovery”, seminar given at IFIC University of Valencia, 29th April, 2014.
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2
ANALYSIS OF CORRELATORS IN INFLATION AND THE UV

BEHAVIOUR OF THE ANGULAR POWER SPECTRUM

Two-point correlators 〈R(x)R(x′)〉 and self-correlators 〈R2(x)〉 of cosmological

primordial perturbations R(x) in quasi-de Sitter spacetime backgrounds are

considered. For large distance separation between points we find that this cor-

relation function exhibits nearly scale invariance, in agreement to what appears in the

power spectrum, its well-known counterpart in Fourier space. Self-correlators, which

quantify the amplitude of perturbations at a spacetime point, are ill-defined and need

standard renormalization.

We employ then the two-point function of primordial perturbations generated during

inflation to derive an explicit expression for the angular power spectrum C` in the Sachs-

Wolfe regime. We study this without the commonly assumed large distance separation,

and find that it actually diverges. Although the two objects are of different nature, the

renormalized value 〈R2(x)〉ren can be successfully reproduced using the short-distance

behavior of the two-point function 〈R(x)R(x′)〉 by a point-splitting version of adiabatic

regularization. Motivated by the above, we study then the deformation or "renormaliza-

tion" of two-point correlators in order to make them smoothly match the renormalized

self-correlators at coincidence.

We analyze the ultraviolet behavior of the angular power spectrum and stress the

fact that the accepted result in the literature is actually equivalent to a renormalization

of the two-point function at zero adiabatic order. We argue that subtractions up to
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second adiabatic order seems to be more appropriate from a physical point of view. The

corresponding angular power spectrum is evaluated in the Sachs-Wolfe regime of low

multipoles. Scale invariance is maintained, but the amplitude of C` could change in a

nontrivial way.

The content of this chapter is based on papers [65, 67]

2.1 Motivation for considering renormalization

Before turning our attention to explicit calculations of correlators, let us discuss why one

should be interested in the very short-distance behaviour of the two point function, and

its potential implications in physical observables.

As commented in the introduction, the theory of quantum fields interacting with

gravity [48, 157], applied to the very early and rapidly expanding universe, explains well

the pattern of temperature anisotropies of the cosmic microwave background (CMB) as

well as the large scale structure (LSS) of the universe. The calculation of observables in

a curved space-time is, however, not trivial: new ultraviolet (UV) divergences arise in the

computation of local vacuum expectation values, and these infinities can not be removed

by standard methods in Minkowski space-time. Specific methods to define regularization

and renormalization in expanding universes have been constructed to account for the

new UV divergences sourced by curved backgrounds [48, 157] (for more recent works

regarding Dirac fields, see [66, 68, 101, 102, 126, 127]).

Let ϕ represent a generic free field living in an homogeneous and isotropic Fridmann-
Lemaitre-Robertson-Walker (FLRW) spacetime, with line element ds2 = dt2−a2(t)d~x2.

The field ϕ will later describe scalar (or tensor) perturbations during inflation. In the

quantum theory the free field operator is most generally studied by its expansion in

Fourier k-modes ϕk(t),

ϕ(t,~x)=
∫

d3k
[
A~kϕk(t)+ A†

−~kϕ
∗
k(t)

]
ei~k~x , (2.1)

where A~k and A†
~k

are creation and annihilation operators, such that A~k|0〉 = 0, with |0〉
the vacuum state, and satisfy canonical commutation relations, [A~k, A~k ′]= 0 , [A†

~k
, A†

~k ′]=
0 and [A~k, A†

~k ′] = δ3(~k −~k ′). A basic object in quantum field theory is the two-point

function. For future purposes, we will consider it at equal times t = t′

〈ϕ(t,~x)ϕ(t,~x′)〉 =
∫

d3k|ϕk(t)|2ei~k(~x−~x′) . (2.2)
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We can also construct local physical observables of physical interest. For instance, the

local quantum fluctuations of ϕ can be quantified by the mean square fluctuation in the

vacuum state

〈ϕ2(t,~x)〉 =
∫

d3k|ϕk(t)|2 . (2.3)

In fact, it is quite common in cosmology to refer the quantity ∆2
ϕ(k, t)≡ 4πk3|ϕk(t)|2 as

the power spectrum.

A proper definition of the physical power spectrum in inflationary cosmology is not

free of subtleties, as first pointed out in [146], and subsequent studied in [16–19, 153]. In

momentum-space, and for a single mode k, the power spectrum ∆2
ϕ(k, t) is well defined.

However, the formal variance 〈ϕ2(~x, t)〉, which is a sum in all modes, diverges in the

ultraviolet. There is no doubt that the self-correlator needs renormalization when it is

used to quantify the amplitude of quantum perturbations at a single space-time point,

as in (2.3). However, the two-point function (2.2) does not need a priori renormalization

when used to quantify physical observables involving correlations. One could argue that

the two-point function has a well-defined definition in the distributional sense and there

is no mathematical need for any regularization [41]. However, as we shall shortly see,

the spacetime perspective gives another insight to this question: as the spatial points get

close together, the two-point function will grow without bound and produce divergences in

some physical observables [65, 67] (for an advance see expression (2.6) together with (2.7)

). In [16–19, 146, 153] it was argued that the physical power spectrum should be defined

in terms of renormalized quantities. The challenging of this proposal for inflationary

cosmology and quantum gravity has been recently stressed in [192]. The purpose of this

work is to reanalyze these issues, specially from a spacetime viewpoint.

As we have said, (2.3) is UV divergent and needs to be renormalized according to

standard rules. It turns out that, although the two-point function (2.2) and (2.3) are

mathematical different objects, the renormalized value of (2.3) can be calculated in terms

of the two point function by means of a point-splitting version of adiabatic regularization:

〈ϕ2(t,~x)〉 = lim
~x→~x′

[〈ϕ(t,~x)ϕ(t,~x′)〉− (N)GAd((t,~x), (t,~x′))] , (2.4)

where (N)GAd((t,~x), (t,~x′)) is the Nth order adiabatic subtraction term. It is defined via the

adiabatic regularization method, or, equivalently, using the DeWitt-Schwinger scheme

(for more details see [66].) To properly cancel the UV divergences in our 4-dimensional

spacetime the second adiabatic order N = 2 is the right one for the mean square fluctua-

tion 〈ϕ2(t,~x)〉. It must be noted that the proper adiabatic order of the subtraction term

depends on the particular physical quantity to evaluate. For instance, the computation of
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the renormalized expectation value of the stress-energy tensor 〈Tµν(t,~x)〉 needs subtrac-

tion up to the fourth adiabatic order, using [〈ϕ(t,~x)ϕ(t,~x′)〉− (4)GAd((t,~x), (t,~x′))] instead

of 〈ϕ(t,~x)ϕ(t,~x′)〉, and taking the coincident limit.

Apart from these fundamental objects, we can also be interested in integrated quanti-

ties from the two-point function, like

〈ϕ~pϕ~p′〉 =
∫

d3~xd3~x′ei(~p·~x+~p ′·~x ′)〈ϕ(t,~x)ϕ(t,~x ′)〉 = |ϕk(t)|2δ3(~p+~p ′) , (2.5)

or, assuming rotational invariance, we can also construct

Cϕϕ

`
= 1

4π

∫
d2n̂ d2n̂′P`(n̂ · n̂′)〈ϕ(t,~x)ϕ(t,~x′)〉

= 2π
∫ 1

−1
d cosθP`(cosθ)〈ϕ(t,~x)ϕ(t,~x′)〉 = 16π2

∫ ∞

0

dk
k

|ϕk(t)|2 j2
`(k|~x|) , (2.6)

where P` are the Legendre Polynomials, and cosθ =~n ·~n′ is the angle formed by the two

directions ~n =~x/|~x| and ~n′ =~x′/|~x|. The physical motivation for considering this formula

will become clear in the third subsection of next section. For completeness, we have

also added the equivalent and familiar expression in momentum space. It involves the

spherical Bessel functions j`.

Altough the former integral (2.5) is UV finite and nothing else is needed, the latter has

an UV divergence. The underlying reason is that the Legendre polynomials do not decay

to zero as θ→ 0. A detailed inspection reveals that the divergence is of N = 0 adiabatic

order. This conclusion can be deduced from the short-distance (asymptotic/adiabatic UV)

expansion (θ→ 0)

〈ϕ(t,~x)ϕ(t,~x′)〉 ∼ 1
1−cosθ

− (1
6 −ξ)R

2
log(1−cosθ)+ ... (2.7)

and P`(cosθ)∼ 1+ o(θ). Therefore, while (2.5) should be kept unaltered, expression (2.6)

must be modified, perhaps according to the renormalization prescription. One should

then replace 〈ϕ(t,~x)ϕ(t,~x′)〉 by [〈ϕ(t,~x)ϕ(t,~x′)〉− (0)GAd((t,~x), (t,~x′))] in expression (2.6) to

guarantee the UV finiteness of the integral.

However, we should remark that the appropriate choice of the adiabatic subtrac-

tion order n depends on the physically relevant object. In CMB cosmology the direct

physical observables are temperature correlations, which are linked to the space-time

two-point function 〈ϕ(t,~x)ϕ(t,~x′)〉. For instance, in the Sachs-Wolfe regime we have

〈∆T(~n)∆T(~n′)〉SW = T2
0

25 〈ϕ(t,~x)ϕ(t,~x′)〉, where ϕ(t,~x) ≡ R(t,~x) is the comoving curvature

perturbation. These temperature correlations are the ones upon which other observables
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like CTT
`

are constructed

CTT
` =

∫ 1

−1
d cosθP`(cosθ)〈∆T(~n)∆T(~n′)〉 . (2.8)

Since physical correlations are direct observables that can be measured in an experiment,

it seems natural to demand that they must always be finite, even at coincidence~x =~x′. To

achieve that, one should then relate 〈∆T(~n)∆T(~n′)〉 with the quantity [〈ϕ(t,~x)ϕ(t,~x′)〉−
(2)GAd((t,~x), (t,~x′))] to ensure UV finiteness at coincidence. Therefore, we argue that the

actual related multipole coefficients should be constructed with second order adiabatic

subtractions

CN=2
` = 2π

∫ 1

−1
d cosθP`(cosθ)[〈ϕ(t,~x)ϕ(t,~x′)〉− (2)GAd((t,~x), (t,~x′))] . (2.9)

2.2 Spacetime correlators at very large distances

Correlator of tensorial perturbations in a slow-roll scenario

Tensorial perturbations (gravitational waves) generated during inflation can be math-

ematically described by two independent, massless scalar fields propagating in the

unperturbed quasi de Sitter spacetime background. These two scalar fields repre-

sent the two independent polarizations of the tensorial fluctuation modes Di j aris-

ing in the inflationary universe. In cartesian coordinates this can be expressed as

ds2 = dt2 −a2(t)(δi j +Di j)dxidx j.

Indeed, working in this metric and set of coordinates, and expanding the fluctuating

fields Di j in Fourier modes Dk(t)e i j ei~k~x, where e i j is a constant polarization tensor

obeying the conditions e i j = e ji, e ii = 0 and ki e i j = 0, the theory of linear cosmological

perturbations (see [43, 77, 189]) eventually leads to the equation D̈k +3HḊk + k2

a2 Dk = 0,

with k ≡ |~k| and H = ȧ/a. This is the Klein-Gordon equation in Fourier space for a

massless minimally coupled scalar field in a FLRW spacetime. The conditions for the

polarization tensor imply that theperturbation field Di j can be decomposed into two

polarization states described by a couple of massless scalar fields Di j = D+e+i j +D×e×i j,

where es
i j e

s′
i j = 2δss′ (s =+,× stands for the two independent polarizations), both obeying

the above wave equation (see, for instance, [189]). For simplicity we omit the subindex +
or ×.

In the slow-roll approximation of inflation one assumes that the Hubble parameter

H(t) changes very gradually, and the change is parametrized by a slow-roll parameter

ε ≡ −Ḣ/H2 ¿ 1. Within this approximation it is possible to solve the wave equation
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BEHAVIOUR OF THE ANGULAR POWER SPECTRUM

in a closed form in terms of the conformal time η≡ ∫
dt/a(t). Taking into account that

(1−ε)η=− 1
aH , the wave equation for Dk turns out to be of the form

d2Dk

dη2 − 2
η(1−ε)

dDk

dη
+k2Dk = 0 . (2.10)

Treating now the parameter ε as a constant, the general solution is a linear combination

of Hankel functions [105]. One can univocally fix the solution with the requirement of

recovering, for ε→ 0, the Bunch-Davies vacuum [171]. The properly normalized solutions

for the modes are

Dk(t)=
p

16πG√
2(2π)3a3

(−ηaπ/2)1/2H(1)
ν (−kη) , (2.11)

where G is the Newton constant and the index of the Hankel function is exactly ν= 3
2+ ε

1−ε .
Having the explicit form of the modes, we can now compute the two-point function. At

equal times t = t′ we find (the calculation follows closely to [171])

〈D(t,~x)D(t,~x′)〉 = G
πa2η2Γ

(
3
2
+ν

)
Γ

(
3
2
−ν

)
2F1

(
3
2
+ν,

3
2
−ν;2;1− (∆x)2

4η2

)
, (2.12)

where ∆x ≡ |~x−~x′|. For ν= 3/2 (ε= 0) we have the unavoidable infrared divergence of the

Bunch-Davies vacuum [23, 24, 90, 182].

For large separations, a∆x À H−1, one obtains

〈D(t,~x)D(t,~x′)〉 ∼ 4GΓ(3/2−ν)
π3/2

Γ(ν)
a2η2

(
∆x
−η

)2(ν−3/2)
. (2.13)

One can immediately observe that the amplitude above is nearly scale invariant, i.e.

it almost does not depend on the separation distance ∆x. This is consistent with well-

known results working in the Fourier domain. Moreover, the term (−η)1−2ν/a2 is time

independent, which allows us to evaluate it at the most convenient time. In fact, the

correlator can be rewritten as

〈D(t,~x)D(t,~x′)〉 ∼−16πG
2ε

(
H(t∆x)

2π

)2
, (2.14)

where the time t∆x is defined as a(t∆x)∆x = H−1(t∆x). Note that there is an implicit slight

∆x-dependence on H(t∆x), given by the one in (2.13).

Correlator of scalar perturbations in a slow-roll scenario

Scalar perturbations originated during inflation can be studied through the gauge-

invariant field R (the comoving curvature perturbation; see, for instance, [189]). For
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single-field inflation, the modes of the scalar perturbation are given by

Rk(t)=
√ −πη

4(2π)3z2 H(1)
ν (−ηk) , (2.15)

where now ν = 3/2+ (2ε+ δ)/(1− ε) and δ ≡ Ḧ/2HḢ is a second slow-roll parameter.

Moreover, z ≡ aφ̇0/H, where φ0(t) is the homogeneous part of the inflaton field. These

modes determine the vacuum state of scalar perturbations. Such a state can also be

regarded as the natural extension of the Bunch-Davies vacuum of de Sitter space. The

corresponding two-point function 〈R(t,~x),R(t,~x′)〉 is given by

〈R(t,~x)R(t,~x′)〉 = 1
16π2z2η2Γ

(
3
2
+ν

)
Γ

(
3
2
−ν

)
2F1

(
3
2
+ν,

3
2
−ν;2;1− (∆x)2

4η2

)
.(2.16)

For separations larger than the Hubble radius a|~x−~x′|À H−1 we get

〈R(t,~x)R(t,~x′)〉 ∼ Γ(3
2 −ν)

4π2z2η2
Γ(ν)p
π

(
∆x
−η

)2(ν−3/2)
. (2.17)

Again, this is almost scale invariant since ν− 3/2 << 1, as expected from standard

results using the Fourier spectrum. This expression can be rewritten, assuming ν−3/2≡
(1−n)/2≈ 0 (n is the scalar spectral index), as

〈R(t,~x)R(t,~x′)〉 ∼− 4πG
(1−n)ε

(
H(t∆x)

2π

)2
. (2.18)

Angular power spectrum. Recovering standard results

Restricting the two-point function of scalar perturbations to points such that |~x| = |~x′|,
we can further obtain ∆x1−n = 2

1−n
2 |~x|(1−n)(1−cosθ)(1−n)/2 where θ is the angle formed by

~n =~x/|~x| and ~n′ =~x′/|~x|. Then, taking |~x| = rL, where rL is the comoving radial coordinate

of the last scattering surface [189]

rL = H(t0)−1a(t0)−1
∫ 1

1
1+zL

dx√
ΩΛx4 +ΩM x+ΩR

, (2.19)

with the standard cosmological values for zL, ΩΛ, ΩR , and ΩM [166], the correlator of

scalar perturbations for large separations (2.17) shows exactly

〈R(t,~x)R(t,~x′)〉 ∼ 4πG
ε

H2(1−ε)2

16π2

4Γ
(
2− n

2

)
p
π

Γ

(
n−1

2

)
2

1−n
2 r̄1−n

L (1−cosθ)
1−n

2 (2.20)

where we have defined the dimensionless quantity r̄L(t)≡ H(1−ε)arL.
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This two-point function is related to CMB observations as follows. Let ∆T(n̂) be the

temperature fluctuation observed in the CMB for a given direction in the sky n̂ = (θ,φ),

with respect to the (angular) average value of today’s temperature T0, i. e. ∆T(n̂) ≡
T(n̂)−T0, with T0 = 1

4π
∫

d2n̂T(n̂). This magnitude ∆T(n̂) depends on the direction of

observation in the sky n̂. Since what we observe is a real-valued function which takes

values on the spherical 2D surface of the sky, it is convenient to expand it in spherical

harmonics Y m
`

(n̂), which constitutes a complete orthonormal basis: ∆T(n̂)= T(n̂)−T0 =∑
`m a`mY m

`
(n̂), where `= 0,1,2 . . . and the sum goes from m =−` to m =+`. This ` is

known as the multipole and represents a certain angular scale in the sky by means of

the approximation θ ≈π/`. Since ∆T(n̂) is real, a∗
`m = a`−m holds.

Observational missions measure the angular power spectrum, C`, defined by

〈a`ma∗
`′m′〉 = δ``′δmm′C`, (2.21)

where brackets denote some average process. This formula in turn implies C` = 〈|a`m|2〉,
which shows that C` are real and definite positive. Now we can calculate the two point

function of temperature correlations as

〈∆T(n̂)∆T(n̂ ′)〉 =∑
`m

C`Y m
` (n̂)

(
Y m
`

)∗ (n̂ ′)=∑
`

C`
2`+1

4π
P`(n̂ · n̂ ′), (2.22)

where P` are Legendre polynomials. One can now take an inverse Legendre transforma-

tion and obtain a formula for the multipole coefficients C` in terms of this correlator:

C` =
∫

d2n̂ d2n̂ ′ P`(n̂ · n̂ ′)
4π

〈∆T(n̂)∆T(n̂ ′)〉 = 2π
∫ +1

−1
d cosθP`(cosθ)〈∆T(n̂)∆T(n̂ ′)〉 .(2.23)

where in the last step we took into account that the temperature distribution is assumed

to be statistically isotropic.

This two-point function of curvature perturbations originated during inflation (2.20)

is related to the correlation of temperature fluctuations of the CMB, in the regime of

very low values of `, via the Sachs-Wolfe effect (see, e.g., [189])

〈∆T(~n)∆T(~n′)〉SW = T2
0

25
〈R(rL~n)R(rL~n′)〉 . (2.24)

The coefficients C` are thus predicted to be

CSW
`

= 2πT2
0

25
∫ 1
−1 d cosθP`(cosθ)〈R(rL~n)R(rL~n′)〉 . (2.25)

Therefore, the low multipole coefficients, dominated by the Sachs-Wolfe effect, are pro-

portional to the integral

CSW
` ∝

∫ 1

−1
d y(1− y)

1−n
2 P`(y) , (2.26)
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with y≡ cosθ. This integral can be computed analytically [8, 105], and we finally find

CSW
` = 8πT2

0

25
4πG
ε

H2(1−ε)2

16π2

Γ(3−n)Γ(`+ n−1
2 )

Γ(`+2− n−1
2 )

r̄1−n
L , (2.27)

in exact agreement with the result obtained with the momentum-space power spectrum

Ps(k)= |N|2kn−1 [189], by using the formula

C`,SW = 16π2T2
0

25

∫ ∞

0

dk
k

Ps(k) j2
`(krL) , (2.28)

and the amplitude |N|2 given by |N|2 = 4πG
ε

H2(1−ε)2
16π2

23−n

π2 Γ
(
2− n

2

)2
(

r̄L
rL

)1−n ∼ 8πGH2

32π3ε
. For

completeness, taking approximately n ≈ 1 in (2.27) and using the standard assumption

r̄(1−n)
L ≈O(1) [189], the estimated order of magnitude for the amplitude of CSW

`
is

`(`+1)CSW
` ≈ 2GH2T2

0

25ε
r̄1−n

L ∼ 2GH2T2
0

25ε
. (2.29)

We will go back to this point at the end of section 2.4.

We note that if the coefficients CSW
`

in (2.25) were actually evaluated using the exact

expression (2.16) for the two-point function 〈R(t,~x)R(t,~x′)〉, the integral (2.25) would

have been divergent [due to the UV divergences of (2.16) as points ~x and ~x′ merge].

This is essentially the feature that we commented in section 2.1. The use of the large

distance behavior (2.17 and 2.20) everywhere in the integral (2.25) bypasses the UV

divergences and makes the integral convergent. We will see in section 2.4 how the use

of a "renormalized" form of the two-point correlator 〈R(t,~x)R(t,~x′)〉 does the same job,

but with a slightly different final result for the integral. In a certain limit both results

eventually agree, but in general we find a difference that could be potentially probed by

observations.

2.3 Spacetime correlators at very short distances

From now on we shall use φ to denote both scalar and tensorial fluctuations, and ν to

represent the corresponding Hankel index. When necessary we shall return to the letter

R to make some statements explicit.

The two-point function 〈φ(t,~x),φ(t,~x′)〉 can be expanded at short distances as

〈φ(t,~x)φ(t,~x′)〉 = H2(1−ε)2
16π2

{
4
∆x̄2 +

(1
4 −ν2)(−1+2γ+ψ(3/2−ν)+ψ(3/2+ν)+ log ∆x̄2

4

)
+O(∆x̄2)

}
,(2.30)
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where we have introduced the dimensionless quantity ∆x̄ ≡ H(1−ε)a∆x. An additional

prefactor, 4πG/ε or 16πG, needs to be included in considering scalar or tensorial pertur-

bations, respectively.

It is clear then that, as advanced in (2.7), the scalar two-point function diverges when

the two points merge, θ→ 0. This produces an ultraviolet divergence in the expression

for multipole coefficients C` when evaluated in the Sachs-Wolfe regime, for which one

makes the identification (2.24):

CSW
` = 2πT2

0

25

∫ 1

−1
d cosθP`(cosθ)〈R(t,~x)R(t,~x′)〉 =∞ , (2.31)

One could cure this divergence by subtracting the appropriate counterterm, as it is nor-

mally done in renormalization. Different methods can be used to obtain the subtractions

terms. A preferred method for our purposes is the point-splitting version of the adiabatic

regularization scheme. The method determines the subtraction terms univocally. The

replacement 〈R(t,~x)R(t,~x′)〉→ [〈R(t,~x)R(t,~x′)〉−G(0)
Ad((t,~x), (t,~x′))], with G(0)

Ad((t,~x), (t,~x′))
being the leading order term in the short-distance expansion (2.30), yields

CSW(n=0)
`

= 2πT2
0

25

∫ 1

−1
d cosθP`(cosθ)[〈R(t,~x)R(t,~x′)〉−G(0)

Ad((t,~x), (t,~x′))]<∞ . (2.32)

This, eventually, produces (2.27) in the large distances limit. It turns out then that,

implicitly, the result in the literature is the result of "renormalizing" the two-point

function at zero adiabatic order.

Even though this procedure provides a finite result, what we have really encountered

in (2.30) is the typical quadratic and logarithmic short-distance behavior of a two-point

function in a curved background. So, as argued before, it seems natural to remove both

divergences, not only the leading one. Accordingly, it is natural to propose the following

identification

〈∆T(~n)∆T(~n′)〉SW = T2
0

25
[〈R(t,~x)R(t,~x ′)〉−G(2)

Ad((t,~x), (t,~x′))] , (2.33)

instead of 〈∆T(~n)∆T(~n′)〉SW = T2
0

25 [〈R(t,~x)R(t,~x ′)〉−G(0)
Ad((t,~x), (t,~x′))], as used in (2.32)

to obtain (2.27) in the large distances limit. By doing this subtraction, we make the

two-point function match the mean-square fluctuation 〈R2(t,~x)〉.
The point-splitting adiabatic method determines the subtraction terms univocally.

The second order counterterm in the short-distance asymptotic expansion is

G(2)
Ad((t,~x), (t,~x′))= H2(1−ε)2

16π2

{
4
∆x̄2 +

(
1
4
−ν2

)
log

∆x̄2

4
+ 2−ε

3(1−ε)2 +
(

1
4
−ν2

)(
2γ+ log

µ2

H2(1−ε)2

)}
,
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where µ is a renormalization scale and the corresponding prefactor mentioned above for

scalar or tensorial perturbations must be considered. We observe immediately that the

UV divergences of the self-correlator cancel exactly and we are left with

〈φ2(t,~x)〉ren = H2(1−ε)2

16π2

{(
1
4
−ν2

)(
−1+ψ(3/2−ν)+ψ(3/2+ν)− log

µ2

H2(1−ε)2

)
− 2−ε

3(1−ε)2

}
.

(2.34)

The above self-correlators quantify the amplitude of perturbations at a given spacetime

point.

2.4 Modified two-point functions and angular power
spectrum

In previous sections we have studied the correlator 〈φ(t,~x)φ(t,~x′)〉 and self-correlator

〈φ2(t,~x)〉 of tensorial and scalar perturbations in slow-roll inflation. For an ordinary

quantum mechanical system, with a finite number N of degrees of freedom, expectation

values of the form 〈φ(i)φ( j)〉 and 〈φ2(i)〉 match when j = i [for instance, in a chain of spins

with φ(i) ≡ Sz(i) and i = 1, . . . , N]. However, we are facing here a field theory (with an

infinite number of degrees of freedom), and the above matching is not a priori guaranteed.

This is so because the self-correlator requires renormalization. We may either assume this

discontinuity or modify the two-point correlation function to force it to match 〈φ2(t,~x)〉ren

in the coincidence limit~x′ →~x [157]. This second possibility was indirectly explored in

[146] by analyzing the power spectrum of perturbations in momentum space. It has been

somewhat debated in the literature and properly reviewed in [41]. One could naturally

argue that the two-point correlator has a well-defined definition in the distributional

sense and there is not a mathematical need for any regularization [41, 89]. However, as

the spatial points approach each other, the two-point correlator will grow without bound

and diverge as the points merge. Therefore, from the physical point of view it seems

reasonable to use a regularized form of the two-point correlator to consistently match

the self-correlator at coincidence [157] 1. In the conventional approach the expectation

value of the self-correlator 〈φ2(t,~x)〉 plays almost no role. We assume here that the

(renormalized) self-correlator is actually playing a physical role (as in the Casimir effect).

As we will see shortly, the regularized form of the two-point correlator makes the desired

integral (2.25) UV convergent. The consequences of this merit to be explored. Therefore,

1Alternatively, one could also consider short-distance modifications of the two-point function due to
quantum gravity effects. See, for instance, [144]
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we further analyze here this possibility taking advantage of the spacetime viewpoint

sketched above.

We shall modify the correlators by adding the subtraction terms prescribed by renor-

malization and according to (2.33). We note that a distinguishing characteristic of

adiabatic renormalization is that the subtraction terms G(2)
Ad((t,~x), (t,~x′)) are well-defined

for arbitrary point separation. In general this is not possible for an arbitrary spacetime,

but for the homogeneous spaces relevant in cosmology the adiabatic subtraction terms ex-

tend to arbitrary large distances. With this in mind, we will finally compute the angular

power spectrum for primordial perturbations using the modified spacetime correlators.

As a previous step we will compute the two-point function at leading order in slow-roll.

Two-point function at leading order in slow-roll

The procedure is similar for scalar and tensorial fluctuations, so we will do a general

treatment. First, we start off splitting Eqs. (2.12) and (2.16) as a combination of two

hypergeometric functions. To this end we use the transformation properties of hypergeo-

metric functions [8]

F
(
3
2
+ν,

3
2
−ν,2,1−Z

)
= Z− 3

2−νΓ(−2ν)
Γ(3

2 −ν)Γ(1
2 −ν)

Re
{

F
(
3
2
+ν,

1
2
+ν,1+2ν,

1
Z

)}

+ Z− 3
2+νΓ(2ν)

Γ(3
2 +ν)Γ(1

2 +ν)
Re

{
F

(
3
2
−ν,

1
2
−ν,1−2ν,

1
Z

)}
(2.35)

with Z = ∆x̄2/4 ≥ 0. We now expand expression (2.35) as a power series of the “slow-

roll” parameter ν around ν= 3/2, and stay at first order (for details see the Appendix).

Grouping terms, we arrive at the following expression for the two-point function:

〈φ(x)φ(x′)〉 ≈ H2(1−ε)2
16π2

{
4
∆x̄2 −2log ∆x̄2

4 −1 + 2
(3/2−ν)

(
∆x̄2

4

)ν−3/2 + 4Re
[
log

(
∆x̄
2 +

√
∆x̄2

4 −1
)]}

(2.36)

Notice that the UV divergences are just the same as those found in (2.30), but now they

are obtained at leading order in the slow-roll expansion. We recover exactly expression

(2.30) taking the limit ∆x̄ → 0 and the slow-roll approximation.

Modified two-point function

We can now proceed to do the subtraction. The modified two-point function then reads

〈φ(x)φ(x′)〉ren ≈ H2(1−ε)2
16π2

{
2

(3/2−ν)

(
∆x̄2

4

)ν−3/2 +4Re
[
log

(
∆x̄
2 +

√
∆x̄2

4 −1
)]

− 5
3 +4γ+2log µ2

H2

}
.(2.37)
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We remark that, at leading order in the slow-roll expansion, this is an expression valid

for small and large separations. For scales larger than the Hubble horizon, ∆x̄ À 1, we

can further take the approximation, 4Re
[
log

(
∆x̄
2 +

√
∆x̄2

4 −1
)]

≈ 2log(∆x̄2).

Physical angular power spectrum

We now compute the corresponding angular power spectrum from the modified two-point

function for scalar perturbations and for low multipoles

CSW
` = 2πT2

0

25

∫ 1

−1
〈R(x)R(x′)〉ren(y)P`(y)d y . (2.38)

By construction this is a finite quantity, even without taking the large separation limit

for the two-point function [as it was assumed in going from (2.25) to (2.26) and (2.27)].

To evaluate the logarithmic contributions of (2.37) to (2.38) we take into account that∫ 1
−1 d y log(1− y)P`(y) = −2/`(`+1),` = 1,2, . . . . The final result for the angular power

spectrum with the modified two-point function is very well approximated by the following

analytical expression:

CSW
` ≈ 4πG

ε

8πT2
0

25
H2(1−ε)2 r̄1−n

L

16π2

{
Γ(`+ n−1

2 )

Γ(`+2− n−1
2 )

− r̄n−1
L

`(`+1)

}
, (2.39)

where we have used ν− 3
2 = 1−n

2 , and n represents the scalar index of inflation n =
1−4ε−2δ+O(ε,δ)2. Also notice that expression (2.39) is valid for ` ≥ 1, as for ` = 0

there would be present all the constant contributions from the renormalized two-point

function (2.37), including the one depending on the renormalization scale. In fact, the

renormalization scale may be fixed by imposing the natural condition CSW
0 = 0.

Notice that the first term in (2.39) reproduces the standard result (2.27), and would

have been the result of renormalizing at zeroth adiabatic order. The second one comes

from the subtraction terms that we have added to the two-point correlator to continuously

match the self-correlator at coincidence, but it shows scale invariance as well. Therefore,

Eq. (2.39) is consistent with observations [166].

However, the two terms in (2.39) are competing, and the resulting amplitude for

the coefficients CSW
`

depends on the instant of time one evaluates r̄L. The first term is

proportional to H2(t)r̄(1−n)
L (t)/ε(t), and it is time independent. However, the second term

depends slightly on time. The value of r̄L varies along the inflationary period, ranging

from r̄L ≈ 1, immediately after the instant of time ti at which the scale rL crosses the

Hubble horizon [a(ti)rL ≈ H−1(ti)], to r̄L ≈ e60, at the end of inflation (we have assumed
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that inflation lasts for around N = 60 e-foldings since the scale rL exited the horizon at

ti). In the former case, r̄L ≈ 1, the amplitude is severely reduced. In the latter situation,

r̄(n−1)
L ∼ 10−1, where we have assumed that n ≈ 0.96 [166], and the amplitude is then

reduced at least 10%. The adequate value of r̄L to properly evaluate the resulting

amplitude in (2.39) is unclear. This question is closely related to the so-called “quantum-

to-classical transition" [128], characterizing the period of time at which the primordial

quantum perturbations behave as classical ones and define the initial conditions for

the postinflationary evolution, along with its associated power spectrum. In momentum

space (mode-by-mode picture) this process is thought to happen a few Hubble times after

horizon exit [128], when the modes are frozen as classical perturbations. It seems natural

to evaluate r̄L during this period, where quantum fluctuations are imprinted as classical

perturbations. However, this quantum-to-classical mechanism is poorly understood,

and it has not been rigorously established in the literature. Therefore one may regard

r̄(n−1)
L ≡α as a phenomenological parameter, varying in the range 1>α> 0. Note that in

the limiting case α→ 0 one recovers the standard prediction, and this happens when the

subtraction term is evaluated after inflation. If the subtraction terms are evaluated a

few e-foldings after the horizon exit of the scale rL, the parameter α approaches 1 and

the physical significance of the correction increases.

This parameter has influence on the relative strength between multipole amplitudes

`2(`2 +1)CSW
`2

`1(`1 +1)CSW
`1

=
`2(`2 +1)

Γ(`2+ n−1
2 )

Γ(`2+2− n−1
2 )

−α

`1(`1 +1)
Γ(`1+ n−1

2 )
Γ(`1+2− n−1

2 )
−α

. (2.40)

Observations may properly fit the value of this parameter. It produces an observable effect

for a significant range of values of α. As remarked above, the details of how this “quantum-

to-classical transition” takes place are not well established in the literature, and further

work is needed to fully understand this process. Within the present understanding

of quantum gravity it is difficult to determine theoretically the value of α and hence

the relative impact of the subtraction term in the observed angular power spectrum.

However, as we showed above it can potentially be tested with observations.

2.5 Final comments

We have analyzed two-point correlators and self-correlators of primordial cosmological

perturbations in quasi-de Sitter spacetime backgrounds, and studied in considerable

detail the evaluation of the multipole coefficients C` of the angular power spectrum. For
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large separations two-point correlators exhibit nearly scale invariance in a very elegant

way. We have deformed the two-point correlators to smoothly match the self-correlators

at coincidence with the aim of obtaining a finite quantity for C`. To this end we have

used renormalization methods in homogeneous backgrounds. We stressed the fact that

the standard result in the literature is equivalent to a renormalization of the two-point

function at zero adiabatic order, and argued that renormalization at second adiabatic

order would be more suitable from a physical point of view.

We have studied the physical consequences for the angular power spectrum at low

multipoles, i.e. in the so-called Sachs-Wolfe regime of the spectrum. This may change

significantly the predictions of inflation, provided the renormalization subtraction terms

are evaluated a few e-foldings after the first horizon crossing of the scale rL. If one

accepts a mismatch between the standard two-point correlators and the self-correlators

and keeps only the large-scale behavior, the conventional predictions remain unaltered.

We finally stress the importance of getting a better understanding of how to renor-

malize cosmological observables. The analysis carried out in the spacetime framework

for the tree-level power spectrum may offer a way to experimentally probe this issue.

2.6 Appendix

In this short appendix we give the basic steps to obtain the result (2.36). We consider
(2.35) first. Since the first prefactor is of order O((3

2 −ν)1), we only need the corresponding
hypergeometric function to be of order O((3

2 −ν)0). One can see that

Z− 3
2−νRe

{
F

(
3
2
+ν,

1
2
+ν,1+2ν,

1
Z

)}∣∣∣
ν=3/2

= 6Re {log(Z−1)}−6log(Z)+ 3
Z

− 3
(1−Z)

On the other hand, the second prefactor of (2.35) is of order O((3
2 −ν)0), so it is necessary

to evaluate the second hypergeometric function at first order in the slow-roll series. To

this end we will employ the following relation [8]:

F
(
3
2
−ν,

1
2
−ν,1−2ν,

1
Z

)
=

(
1− 1

Z

)−3/4
Pν

1/2

[
2Z−1

2
p

Z(Z−1)

]
2−2ν Γ(1−ν)Z−ν ,

together with

Pν
1/2(Z)=

(
Z+1
Z−1

)ν/2 F
(−1

2 , 3
2 ,1−ν, 1−Z

2
)

Γ(1−ν)
. (2.41)

At this point one can expand

F
(
−1

2
,
3
2

,1−ν,
1−Z

2

)
≈ F

(
−1

2
,
3
2

,−1
2

,
1−Z

2

)
+

(
ν− 3

2

)dF
(−1

2 , 3
2 ,1−ν, 1−Z

2
)

dν

∣∣∣
ν=3/2

, (2.42)
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where the derivative can be performed using the representation series of the hypergeo-

metric function. Doing all the calculation properly one finally arrives at the following

result:

Re
{

F
(
3
2
−ν,

1
2
−ν,1−2ν,

1
Z

)}
≈ 1 (2.43)

+
(3
2
−ν

)[
1

4Z
+ 1

4(1−Z)
− 1

2
Re {log(Z−1)} − 1

2
log(Z)+ 2Re

{
log

(p
Z +

p
Z−1

)}]
.

Taking all these results together for Z ≡∆x̄2/4 in (2.35) we can approximate the two-point

function as in (2.36). We have also checked numerically that this expansion works well

irrespectively of the value of Z.
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3
RENORMALIZED STRESS-ENERGY TENSOR FOR SPIN-1/2

FIELDS IN EXPANDING UNIVERSES

We provide here an explicit expression for the renormalized vacuum expectation

value of the stress-energy tensor 〈Tµν〉 of a spin-1/2 field in a spatially flat

FLRW universe. Its computation is based on the extension of the adiabatic

regularization method to fermion fields introduced recently in the literature. We analyze

first the case in which the field is free, and then extend the method to include the Yukawa

interaction between quantized Dirac fermions and a homogeneous background scalar

field. The resulting tensor is given in terms of UV-finite integrals in momentum space,

which involve the mode functions that define the quantum state.

As illustrative examples of the method efficiency for the free field case, we see how to

compute the renormalized energy density and pressure in two cosmological scenarios

of physical interest: a de Sitter spacetime and a radiation-dominated universe. In the

second case, we explicitly show that the late-time renormalized stress-energy tensor

behaves as that of classical cold matter.

When the Yukawa interaction is switched on, explicit expressions for both 〈Tµν〉
and the bilinear 〈ψ̄ψ〉 are derived. These are basic ingredients in the semiclassical

Einstein’s field equations of fermionic matter in curved spacetime interacting with a

background scalar field. The ultraviolet subtracting terms of the adiabatic regularization

can be naturally interpreted as coming from appropriate geometric counterterms of the

background fields. To test our approach we determine the contribution of the Yukawa
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interaction to the conformal anomaly in the massless limit and show its consistency with

the heat kernel method using the effective action.

In a final stage, we prove that adiabatic regularization and DeWitt-Schwinger point-

splitting provide the same result when renormalizing expectation values of the stress-

energy tensor for spin-1/2 fields. This generalizes the equivalence found for scalar fields,

which is here recovered in a different way. We also argue that the coincidence limit of the

DeWitt-Schwinger proper time expansion of the two-point function agrees exactly with

the analogous expansion defined by the adiabatic regularization method at any order

(for both scalar and spin-1/2 fields). We illustrate the power of the adiabatic method to

compute higher order DeWitt coefficients in FLRW universes.

The content of this chapter is fully based on papers [64, 66, 68].

3.1 Context, motivation and specific goals

The quantization of the gravitational interaction is one of the most important and

difficult problems in theoretical physics. Quantum field theory in curved spacetime offers

a first step to join Einstein’s theory of general relativity and quantum field theory in

Minkowski space within a self-consistent and successful framework [48, 94, 157, 185].

A major problem in the theory of quantized fields in curved spacetimes is the computa-

tion of the expectation values of the stress-energy tensor components. These calculations

are rather convoluted, as they involve products of fields at coincident spacetime points,

which are ultraviolet (UV) divergent even for free fields. In cosmological scenarios, this

is connected to the fundamental phenomenon of particle creation by time-dependent

backgrounds [147–150] (see [151] for a historical review).

A very efficient renormalization method, specifically constructed to deal with the

UV divergences of a free field in an expanding universe, is adiabatic regularization.

Originally, this technique was introduced to tame the divergences of the mean particle

number of a scalar field in a FLRW universe [147], and was later extended to get rid of

the divergences of the stress-energy tensor in such a way that locality and covariance of

the overall renormalization procedure are fully respected [152] [95] [96] [53] [25]. The

key ingredient of the adiabatic scheme is the asymptotic expansion of the field modes, in

which increasingly higher-order terms in the expansion involve increasingly higher-order

time derivatives of the metric (the scale factor). Due to dimensional reasons, this is

equivalent to an UV asymptotic expansion in momenta. This way, one can expand adia-

batically the integrand of the unrenormalized bilinear, identify the UV-divergent terms,
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and subtract them directly to obtain a finite, covariant expression. The renormalized

expectation value is hence expressed as a finite integral in momentum space, depending

exclusively on the mode functions defining the quantum state.

It should be remarked that, in cosmological perturbation theory, other fields apart

from the inflaton, such as the Dirac spinor presented here, are regarded themselves

as first order (otherwise they would provide inhomogeneities at zeroth order). Then, in

order to stay at linear order in cosmological fluctuations at the level of the equations of

motion, it is necessary to study these fields as propagating in the perfectly homogeneous

FLRW background. This is what it is customary done in fact for the scalar curvature

and tensor metric perturbations. Interactions between these metric perturbations and

the Dirac field are of higher order in cosmological perturbation theory. Therefore, when

adiabatic regularization (or any other renormalization method) is applied to inflationary

cosmology, the additional fields should be considered, at leading order, as quantum fields

propagating in the homogeneous FLRW spacetime. This is the reason for which the usual

metric perturbations shall not be considered along the chapter.

In this chapter we shall be concerned with three main goals, described below.

Adiabatic renormalization for a free fermion field.

One of the main issues with the renormalization program in curved spacetime is that

these methods have been mainly developed for free scalar bosons, and less work has been

done for other fields. In particular, an adiabatic regularization method for spin one-half

fields in an expanding universe was missing until very recently [126, 127]. One of the

key features of this extended method is that , while for free scalar fields the well-known

WKB expansion1 provides an adequate solution (see, for instance, [48, 94, 157]), for

spin-1/2 fields, however, the adiabatic expansion takes a different form. The method

is specially suitable for numerical calculations, [26, 27, 42, 110, 117, 118, 159] and

also for analytic approximations [27, 137]. The adiabatic regularization has also been

used to scrutinize the two-point function defining the variance and power spectrum in

inflationary cosmology and related issues [17–19, 21, 22, 41, 65, 78, 89, 132, 146, 186].

We begin this chapter by applying the adiabatic regularization method to obtain

a general and explicit expression for the renormalized stress-energy tensor of a spin

1Named for G. Wentzel, H. Kramers, L Brillouin, it is a method for getting approximate solutions
to linear differential equations with varying coefficients in 1D problems. This is the case for a time-
independent Schrodinger-like equation with a potential function. The idea of the WKB method is that this
function can be thought of as being ”slowly varying".
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one-half field in a FLRW universe. This will be mostly covered by sections 3.2, 3.3, 3.4

and Appendices A, B and C. The main result, given in equations (3.69), (3.72) and (3.73),

is written in terms of UV-convergent momentum integrals involving the field modes.

This is a necessary and unavoidable step to prepare the method to be used for numerical

computations in cosmology. As illustrative examples, we study the renormalized stress-

energy tensor in de Sitter space and in a radiation-dominated universe. In both examples,

we need to specify appropriate initial conditions in order to ensure the renormalizability

properties of the tensor. We also prove here that the same procedure used in [126, 127]

to obtain the adiabatic expansion of the fermionic field modes leads to the well-known

WKB-type expansion when the algorithm is applied for scalar modes. This confirms

definitely the appropriateness of the fermionic adiabatic regularization method.

Adiabatic renormalization for a fermion field interacting with a
background scalar field trough Yukawa coupling

Particle creation also takes place if the quantized field, either a boson or a fermion,

is coupled to a classical background scalar field evolving non-adiabatically in time.

In this case, the interaction term acts in the boson/fermion equation of motion as a

time-dependent effective mass, which excites the field and increases its mean particle

number. The most paradigmatic example of this is probably preheating after inflation

[123, 124]. In the same way as before, new UV divergences associated to this particle

creation appear in the expectation values of the different bilinears, not present in the

absence of interaction, which must be appropriately removed to obtain finite quantities.

Although renormalization of expectation values for interacting fields is generally much

more complicated, adiabatic regularization can be generalized to include interactions

to classical scalar background fields. In this case, the adiabatic expansion of the field

modes used to identify the UV- divergent terms depend on both the scale factor and the

background field, as well as their respective time-derivatives. If the quantized field is a

scalar with a Yukawa-type coupling, the adiabatic expansion is still of the WKB form

[137][28]. However, a generalization of the adiabatic scheme for other interacting species

in an expanding universe is absent in the literature. Here, we will try to partially fill in

this gap.

In this chapter we shall also extend the adiabatic regularization method to Dirac

fields living in a FLRW universe and interacting, via the standard Yukawa coupling,

with an external scalar field. This will be covered in sections 3.5, and appendices D,

34



3.1. CONTEXT, MOTIVATION AND SPECIFIC GOALS

E and F. In this approach, the Dirac field is quantized, while both the metric and the

background field are regarded as classical. This kind of system appears for example in

fermionic preheating, in which the inflaton acts as a background scalar field oscillating

around the minimum of its potential, and decays non-perturbatively into fermions due

to its Yukawa interactions [36, 98, 104, 106, 107, 160]. Another example is the decay of

the Standard Model (SM) Higgs after inflation, in which the Higgs condensate oscillates

around the minimum of its potential, and transfers part of its energy into all the massive

fermions of the Standard Model, coupled to the Higgs with the usual Standard Model

Yukawa couplings [86] [82] (another part being transferred to the SM gauge bosons

[82] [83, 88]). In certain models, the Higgs decay may also lead to the reheating of the

Universe [46, 87, 97]. In this work, we will not focus on a particular scenario, but consider

arbitrary time-dependent scale factors and background fields. The main objective is to

provide well-motivated and rigorous expressions for the renormalized expectation values

of the fermion stress-energy tensor 〈Tµν〉 and the bilinear 〈ψ̄ψ〉. In the semiclassical

equations of motion, these are the quantities that incorporate the backreaction of the

created matter onto the background fields. To check the validity of the adiabatic method,

we will also compute the contribution of the Yukawa interaction to the conformal anomaly

in the massless limit, and check its consistency with the heat kernel method using the

effective action.

Equivalence between adiabatic and DeWitt-Schwinger

An alternative asymptotic expansion (for the two-point function) to consistently identify

the subtraction terms in a generic spacetime was suggested by DeWitt [71], generalizing

the Schwinger proper-time formalism. The DeWitt-Schwinger expansion was imple-

mented with the point-splitting renormalization technique in [59] and it was nicely

rederived from the local momentum-space representation introduced by Bunch and

Parker [54]. Furthermore, by brute force calculation Birrell [47] (see also the appendix

in [25]) checked that point-splitting and adiabatic renormalization give the same renor-

malized stress-energy tensor when applied to scalar fields in homogeneous universes.

The extension of the adiabatic regularization method to spin-1/2 fields has been

achieved very recently [66, 68, 126, 127] (see also [101, 102]). The main difficulty in

extending the adiabatic scheme to fermion fields is that the proper asymptotic adiabatic

expansion of the spin-1/2 field modes does not fit the WKB-type expansion, as happens

for scalar fields. However, as shown in [66, 68, 126, 127], the method has passed a very

nontrivial test of consistency. A major goal of this section is to prove that adiabatic
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regularization and DeWitt-Schwinger point-splitting will give the same result for the

renormalized expectation values of the stress-energy tensor of spin-1/2 fields. We base

our proof on the well-known fact that two different methods to compute 〈Tµν〉 can differ

at most by a linear combination of conserved local curvature tensors. This result assumes

that the renormalization methods obey locality and covariance [185]. Since 〈Tµν〉 has

dimensions of (length)−4 the only candidates are m4 gµν, m2Gµν, (1)Hµν and (2)Hµν (the

last two terms can be obtained by functionally differentiating the quadratic curvature

Lagrangians R2 and RµνRµν). It can be seen that the stress-energy tensor only needs

subtraction up to fourth order in the derivatives of the metric [48, 157], so that higher

order contributions need not be considered.

Therefore, the possible difference between the expectation values 〈Tµν〉Ad, computed

with adiabatic regularization, and 〈Tµν〉DS, computed with the (DeWitt-Schwinger)

point-splitting method, is parametrized by four dimensionless constants ci, i = 1, ...4.

〈Tµν〉Ad −〈Tµν〉DS = c1
(1)Hµν+ c2

(2)Hµν+ c3m2Gµν+ c4m4 gµν . (3.1)

In our case, the constant c4 is necessarily zero since both prescriptions lead to a vanishing

renormalized stress-energy tensor when restricted to Minkowski spacetime. Moreover,

in a FLRW space-time the conserved tensors (2)Hµν and (1)Hµν are not independent, so

we can assume without loss of generality that c2 ≡ 0. Therefore, we are left with

〈Tµν〉Ad −〈Tµν〉DS = c1
(1)Hµν+ c3m2Gµν . (3.2)

Moreover, taking traces in the above relation we get

〈T〉Ad −〈T〉DS =−6c12R− c3m2R . (3.3)

In the massless limit, the classical action of the spin-1/2 field is conformally invariant.

The trace anomaly calculated with the new adiabatic regularization method has been

proved to be in exact agreement with that obtained by other renormalization methods,

and in particular with the DeWitt-Schwinger point-splitting method. This implies that

c1 = 0. Obviously, the same arguments and conclusions apply for a scalar field. The

equivalence between both methods is therefore reduced to check that the remaining

parameter c3 is also zero. This is actually the most subtle point.

The comparison between 〈T Ad〉 and 〈TDS〉 can be better studied by taking into

account that, for spin-1/2 fields, 〈T〉 = m〈ψ̄ψ〉. The equivalence is then reduced to prove

that
(4)〈ψ̄ψ〉Ad = (4)〈ψ̄ψ〉DS , (3.4)
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where (4)〈ψ̄ψ〉Ad,DS stands for the subtraction terms, up to fourth order in the deriva-

tives of the metric, in the adiabatic and DeWitt-Schwinger expansions respectively. As

remarked above, the fourth order is the order required to remove, in general, the UV

divergences in the stress-energy tensor. To prove (3.4) and achieve our goal we will make

use of the (Bunch-Parker) local momentum-space representation [54] of the two-point

function. A conceptual advantage of our strategy in comparing both renormalization

methods is that it offers a better way to spell out their equivalence. In fact, we will also

show that the equivalence found at fourth order can be extended to higher order, for both

scalar and spin-1/2 fields.

Notation

We use natural units c = ~= 1, a 4 dimensional spacetime, and the conventions in [48,

157]. Namely, we follow the (−,−,−) convention of [136], in which the metric signature

is (+,−,−,−), the Riemann tensor is defined through [∇µ,∇ν]kα =−R α
µνβ

kβ, the Ricci

tensor and scalar defined as Rµν = Rα
µαν and R = gµνRµν. We work in a spatially flat

FLRW background, ds2 = dt2−a2(t)d~x2, and we use the Dirac-Pauli representation for

the Dirac gamma matrices, γ0 =
(

I 0
0 −I

)
,~γ=

(
0 ~σ

−~σ 0

)
, with ~σ the usual Pauli matrices.

3.2 Free quantized spin-1/2 fields and the adiabatic
expansion

A spin-1/2 field ψ of mass m in curved spacetime is described by the Dirac equation

(iγµ∇µ−m)ψ= 0 , (3.5)

where γµ(x) are the spacetime-dependent Dirac matrices satisfying the anticommutation

relations {γµ,γν}= 2gµν, and ∇µ is the Levi-Civita connection. In a suitable coordinate

chart we can write ∇µ = ∂µ−Γµ where Γµ is the 1-form spin-connection.

In a spatially flat FLRW universe, ds2 = dt2−a2(t)d~x2, the matrices γµ(t) are related

with the constant Minkowskian matrices γα (which satisfy the Clifford algebra {γα,γβ}=
2ηαβ) by γ0(t)= γ0 and γi(t)= γi/a(t). On the other hand, the spin connection reads Γ0 = 0

and Γi = ȧ
2γ0γi in this metric. Therefore, γµΓµ = −3ȧ

2aγ0, and the differential equation

(3.5) can be written as (
iγ0∂0 + 3i

2
ȧ
a
γ0 + i

a
~γ ·~∇−m

)
ψ= 0 , (3.6)
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where~γ= (γ1,γ2,γ3). Throughout this paper we shall work with the Dirac-Pauli repre-

sentation for the Dirac matrices

γ0 =
(

I 0

0 −I

)
, ~γ=

(
0 ~σ

−~σ 0

)
, (3.7)

where ~σ= (σ1,σ2,σ3) are the usual Pauli matrices. Since the spacetime background is

homogeneous we can work in Fourier space. By extending the quantization procedure in

Minkowski space (see for instance [165]) one can construct, for a given~k, two independent

spinor solutions as

u~kλ(x)= u~kλ(t)ei~k·~x = ei~k·~x√
(2π)3a3

(
hI

k(t)ξλ(~k)

hI I
k (t)~σ·~kk ξλ(~k)

)
, (3.8)

where k ≡ |~k| and ξλ is a constant and normalized two-component spinor ξ†
λ
ξλ′ = δλ′λ.

In this decomposition, hI
k and hI I

k are two particular time-dependent functions obeying

from (3.6) the following coupled differential equations,

hI I
k = ia

k
(∂t + im)hI

k , hI
k =

ia
k

(∂t − im)hI I
k , (3.9)

and the following two uncoupled second order differential equations,(
∂2

t +
ȧ
a
∂t + im

ȧ
a
+m2 + k2

a2

)
hI

k = 0 , (3.10)(
∂2

t +
ȧ
a
∂t − im

ȧ
a
+m2 + k2

a2

)
hI I

k = 0 . (3.11)

For our purposes, it is convenient to use helicity eigenstates ξλ(~k), which follow the

property ~σ~k
2k ξλ(~k) = λ

2ξλ(~k), where λ/2 =±1/2 represent the eigenvalues for the helicity.

Their explicit form is (~k = (k1,k2,k3))

ξ+1(~k)= 1√
2k(k+k3)

(
k+k3

k1 + ik2

)
, ξ−1(~k)= 1√

2k(k+k3)

(
−k1 + ik2

k+k3

)
. (3.12)

Given a particular solution (hI
k(t),hI I

k (t)) to the equations (3.9), one can naturally

construct a new solution to the same equations (−hI I∗
k (t),hI∗

k (t)). In Minkowski space,

this is equivalent to jumping from a positive frequency solution to a negative frequency

one. Therefore, one can construct two more independent and orthogonal solutions as

v~kλ(x)= e−i~k·~x√
(2π)3a3

(
−hI I∗

k (t)ξ−λ(~k)

−hI∗
k (t)~σ·~kk ξ−λ(~k)

)
. (3.13)
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Using this approach, the v~kλ(x)-modes are obtained by the charge conjugation operation:

v~kλ = uc
~kλ

≡ C
[
ū~kλ

]T = iγ2u∗
~kλ

. Note that −iσ2ξ
∗
λ
(~k) = λξ−λ(~k). It is easy to check that

u†
~kλ

v−~kλ′ = 0 and (u~kλ,v~k ′λ′)= 0, where the Dirac scalar product is given by

(ψ1,ψ2)=
∫

d3xa3ψ
†
1ψ2 . (3.14)

The normalization condition for the four-spinors, (u~kλ,u~k ′λ′)= (v~kλ,v~k ′λ′)= δλλ′δ(3)(~k−~k ′)
leads to

|hI
k(t)|2 +|hI I

k (t)|2 = 1 . (3.15)

This condition guaranties the standard anticommutation relations for the creation and

annihilation operators B~kλ and D~kλ, defined by the expansion of the Dirac field in terms

of the spinors introduced above

ψ(x)=
∫

d3~k
∑
λ

[
B~kλu~kλ(x)+D†

~kλ
v~kλ(x)

]
. (3.16)

Adiabatic expansion

The adiabatic regularization method for spin-1/2 fields, introduced in [126, 127], is based

on the following asymptotic UV ansatz for the field modes

hI
k(t)∼

√
ω+m

2ω
e−i

∫ t′Ω(t′)dt′F(t) , hI I
k (t)∼

√
ω−m

2ω
e−i

∫ t′Ω(t′)dt′G(t) , (3.17)

where ω≡
√

(k/a(t))2 +m2 is the frequency of the mode and the time-dependent functions

Ω(t), F(t) and G(t) are expanded adiabatically as

Ω(t) = ω+ω(1) +ω(2) +ω(3) +ω(4) + . . . ,

F(t) = 1+F (1) +F (2) +F (3) +F (4) + . . . ,

G(t) = 1+G(1) +G(2) +G(3) +G(4) + . . . . (3.18)

Here, ω(n), F (n) and G(n) are functions of adiabatic order n, which means that they

contain n derivatives of the scale factor (for example, ȧ is of adiabatic order 1 and äȧ2 is

of adiabatic order 4). In the expansions above, we impose F (0) =G(0) ≡ 1 and ω(0) ≡ω to

recover the Minkowskian solutions in the adiabatic regime.

In order to obtain the different terms of (3.18), we substitute (3.17) into the Dirac

equations (3.9) and the normalization condition (3.15). We have then the following system
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of three equations

ΩF + iḞ + i
F
2

dω
dt

[
1

ω+m
− 1
ω

]
−mF = (ω−m)G ,

ΩG+ iĠ+ i
G
2

dω
dt

[
1

ω−m
− 1
ω

]
+mG = (ω+m)F ,

(ω+m)FF∗+ (ω−m)GG∗ = 2ω . (3.19)

We can obtain expressions for F (n), G(n) and ω(n) by substituting (3.18) into (3.19) and

solving the system order by order. In this process, we need to treat independently the

real and imaginary parts of F (n) and G(n). The expressions obtained contain ambiguities,

which eventually do not appear in the final renormalized physical quantities 〈ψ̄ψ〉 and

〈Tµν〉. For sake of simplicity, one can impose order by order the additional simplifying

condition F (n)(m)=G(n)(−m), which removes the spurious ambiguities and is a natural

choice due to the symmetries of the equations of motion (3.9) under the change of the

mass sign. With this, one obtains for the first two orders

ω(1) = 0 , (3.20)

F (1) = −i
mȧ

4ω2a
, (3.21)

and

ω(2) = 5m4ȧ2

8a2ω5 − 3m2ȧ2

8a2ω3 − m2ä
4aω3 , (3.22)

F (2) = − 5m4ȧ2

16a2ω6 + 5m3ȧ2

16a2ω5 + 3m2ȧ2

32a2ω4 − mȧ2

8a2ω3 + m2ä
8aω4 − mä

8aω3 . (3.23)

The third and fourth order contributions are written in appendix A for completeness.

The adiabatic renormalization method consists in expanding adiabatically the momen-

tum integral of the quantity we want to renormalize using (3.17), and subtracting enough

adiabatic terms in order to ensure its convergence in the UV regime. The renormalization

of the two-point function at coincidence requires subtraction up to second-order, while

the stress-energy tensor needs subtraction up to fourth-order. We apply this procedure

to the renormalization of the stress-energy tensor in section 3.3. First, to gain physical

intuition, and for readers more familiarized with the WKB-expansion for scalar modes,

we see below that a similar technique to the one used here can be equally applied for

scalar fields. We rediscover this way the standard WKB-type adiabatic expansion.
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Another view on the adiabatic expansion for scalar
fields

In this section, we provide a new view on the adiabatic expansion for scalar modes.

Mimicking the procedure designed to deal with fermions, we will recover the well-know

bosonic WKB adiabatic expansion without assuming it as an a priori input. Since the

scalar field is more easy to manage, it can serve to illustrate the prescription used for

fermions. A free scalar field of mass m in curved spacetime is described by the wave

equation

(∇µ∇µ+m2 +ξR)φ= 0 , (3.24)

where ξ is the coupling of the field to the scalar curvature R. Taking the spatially flat

FLRW metric and associated coordinate chart, the equation takes the form

∂2φ

∂t2 +3
ȧ
a
∂φ

∂t
+ 1

a2

∑
i

∂2φ

∂xi2 + (m2 +ξR)φ= 0 , (3.25)

with R = 6 ä
a +6 ȧ2

a2 . One now expands the field as

φ(~x, t)=
∫

d3~k√
2(2πa(t))3

[
A~kei~k~xhk(t)+ A†

~k
e−i~k~xh∗

k(t)
]

, (3.26)

where hk(t) are time-dependent functions, and the commutation relations for the creation

and destruction operators are [A~k, A†
~k′] = δ(3)(~k−~k′), [A†

~k
, A†

~k′] = 0, and [A~k, A~k′] = 0. If

we substitute (3.26) into (3.25), we find that hk(t) obeys the differential equation

d2hk

dt2 + (ω2
k(t)+σ)hk = 0 , (3.27)

with ωk(t) ≡
√

(k/a(t))2 +m2 and σ ≡ (6ξ−3/4) ȧ2

a2 + (6ξ−3/2) ä
a . On the other hand, the

right normalization condition for scalar fields is

hk ḣ∗
k −h∗

k ḣk = 2i . (3.28)

As for our analysis for spin-1/2 fields, we assume the following generic ansatz for the

adiabatic expansion of the mode functions hk(t)

hk(t)∼ H(t)e−i
∫ tΩ(t′)dt′ , (3.29)

where here H(t) and Ω(t) are real functions. This simplifying assumption is somewhat

equivalent to the natural symmetry relation used for spin-1/2 fields F (n)(m)=G(n)(−m).

We can expand them adiabatically as

H(t)= 1p
ωk

+H(1)(t)+H(2)(t)+H(3)(t)+H(4)(t)+ . . . , (3.30)
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and

Ω(t)=ωk +ω(1)(t)+ω(2)(t)+ω(3)(t)+ω(4)(t)+ . . . . (3.31)

As for fermions, we have ensured that the zeroth order term of the expansion recovers

the Minkowskian solutions: H(0)(t)≡ω−1/2
k (t) and ω(0)(t)≡ωk(t)≡ω(t). By substituting

the ansatz (3.29) into the field equation (3.27) and the Wronskian (3.28), we obtain the

following system of two equations

Ḧ−HΩ2 −2iΩḢ− iHΩ̇+ (ω2 +σ)H = 0 ,

ΩH2 = 1 . (3.32)

Substituting (3.30) and (3.31) into (3.32) and solving the system order by order, we find

that the first term of both expansions is null, ω(1) = H(1) = 0, and that the second order

terms are

ω(2)(t)= 5m4ȧ2

8a2ω5 − m2ȧ2

2a2ω3 − ȧ2

2a2ω
+ 3ξȧ2

a2ω
− m2ä

4aω3 − ä
2aω

+ 3ξä
aω

, (3.33)

and

H(2)(t)=− 5m4ȧ2

16a2ω13/2 + m2ȧ2

4a2ω9/2 + ȧ2

4a2ω5/2 − 3ξȧ2

2a2ω5/2 + m2ä
8aω9/2 + ä

4aω5/2 − 3ξä
2aω5/2 . (3.34)

This algorithm can be extended to all orders. One can immediately check that the

expansions obtained this way are equivalent to the usual WKB-type expansions used for

scalar fields [152] [95] [96]:

hk(t)∼ 1√
Wk(t)

e−i
∫ t Wk(t′)dt′ . (3.35)

More specifically, one confirms that the expansion for Wk(t)=ωk +ω(1) +ω(2) + ... is the

same as the one for Ωk(t) obtained above. One also finds that the H(n) are equal to

H(n) =
(

1√
ωk +ω(1) +ω(2) + . . .

)(n)

. (3.36)

One rediscovers this way the WKB expansion for scalar fields. The advantage of this

strategy has been showed for spin-1/2 fields, as it seems that an efficient WKB-type

adiabatic expansion for fermions in an expanding universe does not exist [126, 127].
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3.3 Renormalization of the stress-energy tensor

Dirac stress-energy tensor components

The classical stress-energy tensor for a Dirac field in curved spacetime is given by

Tµν = i
2

[
ψ̄γ

(µ
∇ν)ψ− ψ̄←−∇ (νγ

µ)
ψ

]
, (3.37)

where ψ is the Dirac field and γ(x) are the spacetime-dependent Dirac matrices. In

the case of a FLRW universe, its homogeneity and spatial isotropy imply that we only

have two independent components for this tensor: the energy density, related with the

00-component, and the pressure, related with the ii-component. The 00-component can

be written as

T0
0 = i

2

(
ψ̄γ0∂ψ

∂t
− ∂ψ̄

∂t
γ0ψ

)
, (3.38)

while the ii-component is

T i
i =

i
2a

(
ψ̄γi ∂ψ

∂xi −
∂ψ̄

∂xi γ
iψ

)
, (3.39)

(not sum on i implied). The former is directly computed using Γ0 = 0 and γ
0
(x)= γ0. The

latter is obtained taking into account that Γi = ȧ
2γ0γi and γ

i
(x)= γi/a(t).

The next step is to compute the formal vacuum expectation values of the quantized

stress-energy tensor. To this end, we will use the expansion of the Dirac field (3.16) in

terms of the creation and annihilation operators. As a necessary previous result, we first

compute the quantity 〈ψ̄γµ∂νψ〉. It is given by

〈ψ̄γµ∂νψ〉 =
∫

d3~k
∑
λ=±1

(
v̄~kλγ

µ∂νv~kλ
)

. (3.40)

With this result and with equation (3.13), we will compute the vacuum expectation

value of (3.38) and (3.39) and obtain the corresponding expectation values for the energy

density and pressure operators.

Renormalized energy density

Let’s start with the energy density. If we take the expectation value of (3.38) over the

vacuum and use (3.40) and (3.13), we get after some algebra

〈T00〉 = 1
2π2a3

∫ ∞

0
dkk2ρk , (3.41)

where

ρk(t)≡ i

(
hI

k
∂hI∗

k

∂t
+hI I

k
∂hI I∗

k

∂t
−hI∗

k
∂hI

k

∂t
−hI I∗

k
∂hI I

k

∂t

)
. (3.42)
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Expression (3.41) contains quartic, quadratic and logarithmic ultraviolet divergences,

and consequently, we must expand its integrand adiabatically and subtract from it

enough terms of its expansion in order to have a finite quantity. By dimensionality, one

expects to need subtraction up to fourth adiabatic order2. To see this, we expand (3.42) as

ρk = ρ(0)
k +ρ(1)

k +ρ(2)
k +ρ(3)

k +ρ(4)
k + . . . , (3.44)

where ρ(n)
k is of nth adiabatic order. In order to obtain the terms of the expansion,

we substitute (3.17) and (3.18) into (3.42) and obtain the contribution from the differ-

ent adiabatic terms. We find that the zeroth adiabatic term corresponds to the usual

Minkowskian divergence

ρ(0)
k =−2ω , (3.45)

and that the first odd terms are null

ρ(1)
k = ρ(3)

k = 0 . (3.46)

On the other hand, the second order term is given by

ρ(2)
k = ω+m

ω

(
ImḞ (1) −|F (1)|2ω−2F (2)ω−ω(2)

)
+ ω−m

ω
(F →G) , (3.47)

[(F →G) is the same expression as in the first parenthesis but changing F by G] and the

fourth-order term is

ρ(4)
k = ω+m

ω

(
ImḞ (3) − Ḟ (2)ImF (1) − (F (2))2ω− (F (3)∗F (1) +F (1)∗F (3) +2F (4))ω

+F (2)(ImḞ (1) −2ω(2))−|F (1)|2ω(2) −ω(4)
)
+ ω−m

ω
(F →G) . (3.48)

For completeness, the n-th adiabatic order contribution to (3.42) is given by

ρ(n)
k =−2ω(t)(n) + i

ω+m
2ω

[
FḞ∗−F∗Ḟ

](n) + i
ω−m

2ω
[
GĠ∗−G∗Ġ

](n) . (3.49)

In order to write (??) and (3.48) in terms of ω and the mass, we use (3.20)-(3.23) and

(3.296)-(3.299). This gives

ρ(2)
k =− m4ȧ2

4ω5a2 + m2ȧ2

4ω3a2 , (3.50)

2It follows on dimensional grounds that if a quantity Q has dimensions Md (where M means mass),
the nth adiabatic order term Q(n) in its expansion

Q =Q(0) +Q(1) +Q(2) +Q(3) +Q(4) + . . . , (3.43)

decays in the UV limit as O (k−λ) with λ≥λ∗ ≡ n−d. This can be confirmed by just looking at expressions
(3.20)-(3.23) and (3.296)-(3.299) . For Q = ρk, we have dimension d = 1, and we would require ρk ∼ k−4

in the UV limit in order to have (3.148) finite. Therefore, as n =λ∗+d = 4+1= 5, we need to subtract in
(3.41) all expansion terms from ρ(0)

k to ρ(4)
k . This way, the first contribution to ρk comes from the fifth order

adiabatic terms.

44



3.3. RENORMALIZATION OF THE STRESS-ENERGY TENSOR

and

ρ(4)
k = 105m8ȧ4

64w11a4 − 91m6ȧ4

32w9a4 + 81m4ȧ4

64w7a4 − m2ȧ4

16w5a4 − 7m6ȧ2ä
8w9a3 + 5m4äȧ2

4w7a3

− 3m2ȧ2ä
8w5a3 − m4ä2

16w7a2 + m2ä2

16w5a2 + m4ȧ
...a

8w7a2 − m2ȧ
...a

8w5a2 .

(3.51)

The adiabatic renormalization subtraction terms are then defined as (we proceed in

parallel to the case of scalar fields [152] [95] [96] [48, 157])

〈T00〉Ad ≡ 1
2π2a3

∫ ∞

0
dkk2(ρ(0)

k +ρ(2)
k +ρ(4)

k ) . (3.52)

Hence the renormalized 00-component of the stress-energy tensor is

〈T00〉ren ≡ 〈T00〉−〈T00〉Ad = 1
2π2a3

∫ ∞

0
dkk2(ρk −ρ(0)

k −ρ(2)
k −ρ(4)

k ) . (3.53)

This quantity is finite.

However, looking at expressions (3.50) and (3.51), one can observe that if we had

subtracted only the terms up to second order, the tensor would already be convergent. In

other words, the integral of the fourth-order adiabatic subtraction is, by itself, finite and

independent of the mass of the field

− 1
2π2a3

∫ ∞

0
dkk2ρ(4)

k = 2
2880π2

[
−21

2
ȧ4

a4 +18
ȧ
a

...a
a
−9

ä2

a2 +18
ȧ2

a2
ä
a

]
. (3.54)

Note that this also happens in the renormalization of a scalar field with conformal

coupling ξ= 1/6. However, one must subtract up to the order necessary to remove the

divergences for arbitrary values of ξ, and also for general metrics [157]. For an arbitrary

spacetime, the fourth adiabatic order contains real divergences, which disappear acci-

dentally for FLRW metrics in the case of fermions or scalars with ξ= 1/6 [60]. Therefore,

according to the general rule, we subtract up to fourth adiabatic order. Discarding the

fourth adiabatic subtraction would lead to a vanishing trace anomaly (see Eq. (3.74)

below).

Renormalized pressure

We can also derive the vacuum expectation value of the ii-component of the Dirac stress-

energy tensor (3.39) by direct computation using (3.40). Using (3.13), one should arrive

at the following expression

〈ψ̄γi∂iψ〉 = i
(2π)3a3

∫
d3~k

∑
λ=±1

ki

[
hI

khI I∗
k +hI∗

k hI I
k

]
λ(ξ†

−λσ
iξ−λ) . (3.55)
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The property of isotropy of the FLRW spacetime allows us to perform the calculation for

i = 3 without loss of generality. Therefore,

〈ψ̄γi∂iψ〉 = i2π
(2π)3a3

∫ 1

−1
d(cosθ)cosθ

∑
λ=±1

λ(ξ†
−λσ

3ξ−λ)
∫ ∞

0
dkk3

[
hI

khI I∗
k +hI∗

k hI I
k

]
,(3.56)

where θ is the polar angle (k3 = kcosθ). Using (3.12), one finds∑
λ=±1

λ(ξ†
−λσ

3ξ−λ)=−2cosθ , (3.57)

and plugging this into (3.56), the final result for the ii-component of the stress energy

tensor reads

〈Tii〉 = 1
2π2a

∫ ∞

0
dkk2 pk , (3.58)

with

pk ≡−2k
3a

[hI
khI I∗

k +hI∗
k hI I

k ] . (3.59)

Again, expression (3.58) contains several ultraviolet divergences, and consequently,

we must expand its integrand adiabatically and subtract from it enough terms of its

expansion in order to have a finite quantity. Using the adiabatic expansion in (3.59), we

get

p(n)
k =−ω

2 −m2

3w
[
FG∗+F∗G

](n) . (3.60)

The corresponding renormalized ii-component is also defined as

〈Tii〉ren ≡ 〈Tii〉−〈Tii〉Ad = 1
2π2a

∫ ∞

0
dkk2

[
pk − p(0)

k − p(2)
k − p(4)

k

]
, (3.61)

with
〈Tii〉Ad ≡ 1

2π2a

∫ ∞

0
dkk2

[
p(0)

k + p(2)
k + p(4)

k

]
, (3.62)

and [p(1)
k = p(3)

k = 0]

p(0)
k = −2

3

[
ω− m2

w

]
, (3.63)

p(2)
k = − m2ȧ2

12w3a2 − m2ä
6w3a

+ m4ä
6w5a

+ m4ȧ2

2w5a2 − 5m6ȧ2

12w7a2 , (3.64)

p(4)
k = 385m10ȧ4

64w13a4 − 791m8ȧ4

64w11a4 + 1477m6ȧ4

192w9a4 − 263m4ȧ4

192w7a4 + m2ȧ4

48w5a4

− 77m8ȧ2ä
16w11a3 + 77m6ȧ2ä

16w9a3 + 175m6ȧ2ä
48w9a3 − 175m4ȧ2ä

48w7a3 − m4ȧ2ä
3w7a3 + m2ȧ2ä

3w5a3

+ 7m6ä2

16w9a2 − 5m4ä2

8w7a2 + 3m2ä2

16w5a2 + 7m6ȧ
...a

12w9a2 − 5m4ȧ
...a

6w7a2 + m2ȧ
...a

4w5a2

− m4....a
24w7a

+ m2....a
24w5a

. (3.65)
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We also note that the integral of the fourth-order subtraction terms is finite and

mass-independent

− 1
2π2a

∫ ∞

0
dkk2 p(4)

k = 2a2

2880π2

[
−7

2
ȧ4

a4 −12
ȧ
a

...a
a
−9

ä2

a2 +14
ȧ2

a2
ä
a
−6

....a
a

]
. (3.66)

As a final comment, we stress that combining properly equations (3.9), the following

simple relationship between the pressure, the energy density and the mode functions

can be found

ρk = 3pk −2m
[
|hI

k|2 −|hI I
k |2

]
, (3.67)

where the second term in the right hand side is basically 〈Tµ
µ〉k, with

〈Tµ
µ〉 =

1
2π2a3

∫ ∞

0
dkk2 〈Tµ

µ〉k . (3.68)

To see this, just remember that the trace is 〈Tµ
µ〉 = 〈T00〉− 3

a2 〈Tii〉, and then, 〈Tµ
µ〉k =

ρk −3pk .

Expression for the renormalized stress-energy tensor

The fourth-order adiabatic subtraction terms, (3.54) and (3.66), decouple from the re-

maining contributions and give rise, by themselves, to a finite geometric conserved tensor.

Using again the expressions in Appendix B for the different geometric quantities of a

FLRW spacetime in terms of the scale factor, this conserved tensor turns out to be

〈Tµν〉(4)
Ad = 2

2880π2

[
−1

2
(1)Hµν+ 11

2
(3)Hµν

]
, (3.69)

where

(1)Hµν = 2R;µν−22R gµν+2RRµν− 1
2

R2 gµν , (3.70)

(3)Hµν = Rρ
µRρν− 2

3
RRµν− 1

2
RρσRρσgµν+ 1

4
R2 gµν . (3.71)

Therefore, we get the following expression for the renormalized energy density and

pressure

〈T00〉ren = 1
2π2a3

∫ ∞

0
dkk2

[
i

(
hI

k
∂hI∗

k

∂t
+hI I

k
∂hI I∗

k

∂t
−hI∗

k
∂hI

k

∂t
−hI I∗

k
∂hI I

k

∂t

)

+2ω+ m4ȧ2

4ω5a2 − m2ȧ2

4ω3a2

]
+〈T00〉(4)

Ad , (3.72)
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and

〈Tii〉ren = −1
2π2a

∫ ∞

0
dk k2

[
2k
3a

[hI
khI I∗

k +hI∗
k hI I

k ]− 2
3

[
ω− m2

w

]
(3.73)

− m2ȧ2

12w3a2 − m2ä
6w3a

+ m4ä
6w5a

+ m4ȧ2

2w5a2 − 5m6ȧ2

12w7a2

]
+〈Tii〉(4)

Ad ,

where the functions (hI
k,hI I

k ) above are exact solutions to the equations (3.9) and provide

the mode functions defining the quantum state. Using (3.72) and (3.73) with (3.67), it is

easy to see that, in the massless limit, the trace of the above tensor turns out to be

〈Tµ
µ〉ren = 〈Tµ

µ〉(4)
Ad = 2

2880π2

[
−11

2

(
RµνRµν− 1

3
R2

)
+32R

]
, (3.74)

in exact agreement with the conformal anomaly computed by other renormalization

procedures.

Before seeing some examples of this formalism, we would like to discuss briefly the

interpretation of the subtraction terms in terms of redefinitions of constants in the

gravitational action, and the potential ambiguities of the renormalization algorithm.

As we have seen, the integrals of the zeroth and second order adiabatic subtractions in

(3.52) and (3.62) do contain divergences. Following the procedure of [53], we can isolate

them using dimensional regularization (n is the space-time dimension). We obtain

− 1
2π2a3

∫ ∞

0
dkk2ρ(0)

k → − 1
2π2a3

∫ ∞

0
dkkn−2ρ(0)

k = m4

8π2
1

n−4
+O(n−4) , (3.75)

− 1
2π2a3

∫ ∞

0
dkk2ρ(2)

k → − 1
2π2a3

∫ ∞

0
dkkn−2ρ(2)

k = m2

8π2
1

n−4
ȧ2

a2 +O(n−4) , (3.76)

and

− 1
2π2a

∫ ∞

0
dkk2 p(0)

k → − 1
2π2a

∫ ∞

0
dkkn−2 p(0)

k =−m4a2

8π2
1

n−4
+O(n−4) , (3.77)

− 1
2π2a

∫ ∞

0
dkk2 p(2)

k → − 1
2π2a

∫ ∞

0
dkkn−2 p(2)

k =−m2a2

24π2
1

n−4

(
2

ä
a
+ ȧ2

a2

)
+O(n−4) .(3.78)

The zeroth and second order adiabatic subtraction terms, (3.75)-(3.76) and (3.77)-

(3.78), are formally divergent, but can be suitable expressed as geometric tensors. Using

the geometric identities of Appendix B one can easily find

〈Tµν〉(0)
Ad = m4

8π2
1

n−4
gµν+O(n−4) , (3.79)

〈Tµν〉(2)
Ad = − m2

24π2
1

n−4
Gµν+O(n−4) , (3.80)

with Gµν = Rµν− 1
2 gµνR, the Einstein tensor.

48



3.3. RENORMALIZATION OF THE STRESS-ENERGY TENSOR

Recall now the Einstein’s gravitational field equations

Gµν+Λgµν =−8πG 〈Tµν〉 . (3.81)

Equation (3.79) suggests the possibility of absorbing the UV-divergence of the zeroth

adiabatic order into the cosmological constant, Λ, while expression (3.80) offers the

possibility of renormalizing the second adiabatic order divergence into the Newton’s

universal constant, G. This way, the adiabatic subtraction terms can be nicely interpreted

in terms of renormalization of coupling constants, in parallel to the scalar fields case

[53].

On the other hand, as we have stressed before, in a general space-time the fourth-

order subtraction terms give rise to proper UV divergencies [60]. They turn out to be

proportional to a linear combination of the two independent geometric tensors with

the appropriate dimensions, namely (1)Hµν and (2)Hµν. The four type of divergent

subtraction terms, proportional to m4 gµν,m2Gµν, (1)Hµν and (2)Hµν, generate intrinsic

ambiguities in the curved space renormalization program for the stress-energy tensor [94,

185]. The first two can be naturally associated to the renormalization of the cosmological

constant and Newton’s constant. In our FLRW spacetime (2)Hµν is proportional to (1)Hµν,

and hence we are left with only one relevant renormalization parameter ambiguity. This

translates to the fact that the general expression for the finite fourth order adiabatic

contribution 〈Tµν〉(4)
Ad contains actually an arbitrary coefficient c1

〈Tµν〉(4)
Ad = 2

2880π2

[
c1

(1)Hµν+ 11
2

(3)Hµν

]
. (3.82)

Our adiabatic regularization methods leads to c1 =−1/2. Other renormalization methods

can only potentially differ from our results on the value of this coefficient. However, we

remark that the ambiguity disappears for spacetime backgrounds for which the tensor
(1)Hµν vanishes. This happens for physically relevant space-times, like de Sitter space or

the radiation-dominated universe.

Note that if one considers the general expression (3.82), instead of (3.69), the numeri-

cal coefficient of 2R in (3.74) is actually proportional to c1.

Stress-energy conservation

The above 〈Tµν〉ren is, as expected, a conserved tensor ∇µ 〈Tµν〉ren = 0. The conservation

equations in a FLRW spacetime can be spelled out as

〈T0ν
;ν〉 = 〈Ṫ00〉+3

ȧ
a
〈T00〉+ 3

a2
ȧ
a
〈Tii〉 = 0 , (3.83)

〈T iν
;ν〉 = 0, i = 1,2,3 (3.84)
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and they can be checked by direct computation. This is a consequence of the fact that, for

each adiabatic order of the formal subtraction tensors 〈Tµν〉(n)
Ad, where

〈T00〉(n)
Ad =− 1

2π2a3

∫ ∞

0
dkk2ρ(n)

k , (3.85)

〈Tii〉(n)
Ad =− 1

2π2a

∫ ∞

0
dkk2 p(n)

k , (3.86)

we have the independent conservation laws ∇µ 〈Tµν〉(n)
Ad = 0, for n = 0,2,4.

3.4 Examples

In this section, we work out the renormalized stress-energy tensor for two different

spacetimes: de Sitter space-time and a radiation-dominated universe. For a given scale

factor a(t), we need to solve (3.9). As it is a system of two coupled first-order differential

equations, we have two free parameters which have to be fixed somehow. More specifically,

given a particular solution (hI
k,hI I

k ) normalized as in (3.15), we can construct the general

solution by a Bogolubov-type rotation

hI
k → EkhI

k +FkhI I∗
k ,

hI I
k → EkhI I

k −FkhI∗
k . (3.87)

where Ek and Fk are two arbitrary complex-valued constants. On the other hand, we

should also ensure the normalization condition (3.15), which implies the following con-

straint

|Ek|2 +|Fk|2 = 1 . (3.88)

Note that the renormalization ambiguity associated to the (1)Hµν tensor disappears for

de Sitter space-time and the radiation-dominated universe.

Renormalized stress-energy tensor in de Sitter spacetime

For de Sitter spacetime a(t) = eHt with H a constant, the general solution to the field

equations (3.10) and (3.11) can be conveniently expressed, using the transformation in

(3.87), as the following linear combination

hI
k(t) = Ek

(
i
2
p
πz e

πµ
2 H(1)

1
2−iµ

(z)
)
+Fk

(
1
2
p
πz e

πµ
2 H(1)

− 1
2−iµ

(z)
)∗

, (3.89)

hI I
k (t) = Ek

(
1
2
p
πz e

πµ
2 H(1)

− 1
2−iµ

(z)
)
−Fk

(
i
2
p
πz e

πµ
2 H(1)

1
2−iµ

(z)
)∗

. (3.90)
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where z ≡ kH−1e−Ht, µ ≡ m/H, H(1)(z) are Hankel functions of the first kind and Ek

and Fk are constants that need to be fixed with appropriate initial conditions. A crucial

physical requirement is that, as k →∞, the physical solutions should have the adiabatic

asymptotic form

hI
k ∼

√
ω+m

2ω
e−i

∫ t′
ω(t′)dt′ , hI I

k ∼
√
ω−m

2ω
e−i

∫ t′
ω(t′)dt′ . (3.91)

This way, one recovers in this limit the Minkowskian solutions. This leads to

Ek ∼ 1 , Fk ∼ 0 , (3.92)

as k →∞. The above condition can be naturally achieved by the simple solution Ek = 1

and Fk = 0. This determines a vacuum for spin one-half fields analogous to the Bunch-

Davies vacuum [171] for scalar fields. It is also the natural extension of the conformal

vacuum for massless fields. It can be uniquely characterized by invoking de Sitter

invariance [157].

By changing the integration variable from k to z, we obtain that the energy density

(3.53) is

〈T00〉ren = H3

2π2

∫ ∞

0
dzz2(ρk −ρ(0)

k −ρ(2)
k −ρ(4)

k ) , (3.93)

where from (3.89), (3.90) and (3.92), the bare contribution (3.42) is

ρk(z)= πHeπµz2

2

(µ
z

[
H(1)
ν−1H(2)

−ν−H(1)
ν H(2)

1−ν
]
+ i

[
H(1)
ν−1H(2)

1−ν−H(1)
ν H(2)

−ν
])

, (3.94)

with ν≡ (1/2)− iµ and H(1,2)
ν = H(1,2)

ν (z). On the other hand, the subtraction terms, from

(3.45), (3.50) and (3.51), take the form

ρ(0)
k =−2H

√
z2 +µ2 , (3.95)

ρ(2)
k = H

(
µ2

4(z2 +µ2)3/2 − µ4

4(z2 +µ2)5/2

)
, (3.96)

ρ(4)
k = H

(
105µ8

64(z2 +µ2)11/2 − 119µ6

32(z2 +µ2)9/2 + 165µ4

64(z2 +µ2)7/2 − µ2

2(z2 +µ2)5/2

)
. (3.97)

Similar expressions can be obtained for the renormalized pressure (3.61),

〈Tii〉ren = a2H3

2π2

∫ ∞

0
dzz2(pk − p(0)

k − p(2)
k − p(4)

k ) , (3.98)

where, from (3.59),

pk(z)= i
πHeπµz2

6

[
H(1)
ν−1H(2)

1−ν−H(1)
ν H(2)

−ν
]

. (3.99)
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From these results, one can obtain 〈T00〉ren and 〈Tii〉ren numerically with very high

accuracy. We reproduce exactly the analytical expression already obtained in [126, 127]

from the trace anomaly and the symmetries of de Sitter space-time

〈Tµν〉r = 1
960π2 gµν

[
11H4 +130H2m2 +120m2(H2 +m2)

(
log

(m
H

)
−Re

[
ψ

(
−1+ i

m
H

)])]
,

(3.100)

where ψ(z) is the digamma function.

Radiation dominated Universe

In this section, we apply our general results for a radiation dominated universe. This

is also a nice example to show how the general procedure works. In this case, the two

independent solutions of the differential equation for the field modes with a(t)= a0
p

t
are given in terms of the Whittaker functions 1

a(t)Wκ,µ(z) and 1
a(t)W−κ,µ(−z) (see [40]),

where

κ= 1
4
− ix2, µ= 1

4
, z = i2mt , (3.101)

with x2 ≡ k2/(a2
02m). We choose a set of two linear independent solutions for the field

modes of the form

hI
k = Ek

(
N

Wκ,µ(z)p
a(t)

)
+Fk

(
N

k
2ma(t)3/2

[
Wκ,µ(z)+

(
κ− 3

4

)
Wκ−1,µ(z)

])∗
, (3.102)

where the constant N = a1/2
0

(2m)1/4 e−
π
2 x2

and the condition |Ek|2 +|Fk|2 = 1 are fixed from the

normalization condition (3.15). The adiabatic condition (3.91) for k →∞ also requires

that Ek ∼ 1 and Fk ∼ 0. Moreover, a detailed analysis (see Appendix C) of the asymptotic

properties of the stress energy tensor components using the Whittaker functions [130] al-

lows us to characterize the condition for the renormalizability of the vacuum expectation

values of the stress-tensor as

|Ek|2 −|Fk|2 = 1+O(k−5) . (3.103)

As one can see from Appendix C, this particular combination of Ek and Fk is the crucial

one in the analysis of the renormalized energy density (3.308) and pressure (3.309) for

1/2 spin fields.

In contrast with the previous example of de Sitter space-time, the absence of extra

symmetries (in addition to the standard homogeneity and isotropy of a FLRW space-time)

for the radiation-dominated background does not allow us to fix a natural preferred
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vacuum state. However, the early and late-time behaviors (t << m−1 and t >> m−1,

respectively) of the renormalized stress-energy tensor can be obtained generically, and

agree with the forms assumed by classical cosmology. As detailed in Appendix C, we have

that, as time evolves and reaches the regime t >> m−1, the renormalized energy density

takes the form of cold matter

〈T00〉ren ∼ ρ0m

a3 , (3.104)

where

ρ0m = m
π2

∫ ∞

0
dkk2 [

1− (|Ek|2 −|Fk|2)
]≥ 0 . (3.105)

Notice that, 2 ≥ 1− (|Ek|2 −|Fk|2) = 2|Fk|2 ≥ 0, and together with the renormalizability

condition (3.103), we see that the energy density ρ0m is finite and definite positive. The

specific value of ρ0m depends on the form of the quantum state for our spin-1/2 field, i.e.

of the choice of Ek and Fk. Since at late times t >> m−1 the relation (3.102) transforms

into

hI
k(t)∼ Ek

√
ω+m

2ω
e−i

∫ t′
ω(t′)dt′ +Fk

√
ω−m

2ω
e−i

∫ t′
ω(t′)dt′ , (3.106)

the coefficients Fk are actually the fermionic β-type (Bogolubov) coefficients [147, 148].

Therefore, we actually get ρ0m ∼ m〈n(t)〉, where 〈n(t)〉 is the number density of the

created particles. Moreover, we find

〈Tii〉ren

a2 ∼ 0 , (3.107)

and hence the pressure obeys the cold matter equation of state.

On the other hand, for sufficiently early times in the evolution, t << m−1, we have

(see Appendix C)

〈T00〉ren ∼ ρ0r

a4 , (3.108)

with

ρ0r = 1
π2

∫ ∞

0
dkk3 [

1− (|Ek|2 −|Fk|2)
]≥ 0 , (3.109)

and additionally
〈Tii〉ren

a2 ∼ 1
3
〈T00〉ren . (3.110)

Note again that ρ0r is finite and definite positive. The specific value of ρ0r depends on the

specific form of the quantum state throughout the complex functions Ek and Fk. From

(3.110), we see that p ∼ ρ/3, in agreement with the assumptions of classical cosmology

for the radiation.
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The analysis and phenomenology of the renormalized stress-energy tensor obtained

from specific choices of the vacuum state is beyond the scope of the present work. Note

again that any choice for the quantum state has not a preferred status, in contrast

with the Bunch-Davies type vacuum of the previous example, due to the absence of the

additional symmetries endowed by de Sitter space-time.

3.5 Quantized Dirac field with Yukawa coupling.
Einstein’s semiclassical equations

We consider now a theory defined by the action functional S = S[gµν,Φ,ψ,∇ψ], where ψ

represents a Dirac field, Φ is a scalar field, and gµν stands for the spacetime metric. We

decompose the action as S = Sg +Sm, where Sm is the matter sector

Sm =
∫

d4x
p−g

{
i
2

[ψ̄γµ∇µψ− (∇µψ̄)γµψ)]−mψ̄ψ− gYΦψ̄ψ

}
, (3.111)

and Sg is the gravity-scalar sector, which will be presented in the next subsection.

Here, γµ(x) are the spacetime-dependent Dirac matrices satisfying the anticommutation

relations {γµ,γν} = 2gµν, related to the usual Minkowski ones by the vierbein field

V a
µ (x), defined through gµν(x)=V a

µ (x)V b
ν (x)ηab. On the other hand, ∇µ is the Levi-Civita

connection, which in a suitable coordinate chart we can express as ∇µ ≡ ∂µ−Γµ with Γµ
the 1-form spin-connection; m is the mass of the Dirac field; and gY is the dimensionless

coupling constant of the Yukawa interaction. In (3.111), both the metric gµν(x) and the

scalar field Φ(x) are regarded as classical external fields. The Dirac spinor ψ(x) will be

our quantized field, living in a curved spacetime and possessing a Yukawa coupling to

the classical field Φ. The Dirac equation is

(iγµ∇µ−m− gYΦ)ψ= 0 , (3.112)

and the stress-energy tensor is given by [48]

Tm
µν := 2p−g

δSm

δgµν
= Vνa

detV
δSm

δVµ
a

= i
2

[
ψ̄γ

(µ
∇ν)ψ− (∇(µψ̄)γ

ν)
ψ

]
. (3.113)

The presence of the Yukawa interaction with the external field Φ modifies the standard

conservation equation. We have, instead,

∇µTµν
m = gY ψ̄ψ∇νΦ . (3.114)
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These equations can be easily seen as the consequence of the invariance of the action

functional S under spacetime diffeomorphisms δxµ = εµ(x): δΦ= εµ∇µΦ, δgµν = 2∇(µεν).

One gets

∇µTµν
m + 1p−g

δSm

δΦ
∇νΦ= 0 , (3.115)

which reproduces (3.114). We will assume that the quantum theory fully respects this

symmetry. Therefore, we demand

〈∇µTµν
m 〉 = gY 〈ψ̄ψ〉∇νΦ . (3.116)

Adding the gravity-scalar sector

The complete theory, including the gravity-scalar sector in the action, can be described

by

S = Sg+Sm = 1
16πG

∫
d4x

p−g R(g)+
∫

d4x
p−g

{
1
2

gµν∇µΦ∇νΦ−V (Φ)
}
+Sm , (3.117)

where Sm is the action for the matter sector given in (3.111). We will reconsider the

form of the action in Section 3.8, in view of the counterterms required to cancel the UV

divergences of the quantized Dirac field. However, let us work for the moment with the

action (3.117). The Einstein equations are then

Gµν+8πG(∇µΦ∇νΦ− 1
2

gµν∇ρΦ∇ρΦ+ gµνV (Φ))=−8πGTµν
m , (3.118)

and the equation for the scalar field is

2Φ+ ∂V
∂Φ

=−gY ψ̄ψ . (3.119)

The semiclassical equations are obtained from (3.118) and (3.119) by replacing Tµν
m

and ψ̄ψ by the corresponding (renormalized) vacuum expectation values 〈Tµν
m 〉ren and

〈ψ̄ψ〉ren,

Gµν+8πG(∇µΦ∇νΦ− 1
2

gµν∇ρΦ∇ρΦ+ gµνV (Φ)) = −8πG〈Tµν
m 〉ren , (3.120)

2Φ+ ∂V
∂Φ

= −gY 〈ψ̄ψ〉ren . (3.121)

These equations are consistent with the Bianchi identities ∇µGµν = 0 , since

∇µ(∇µΦ∇νΦ− 1
2

gµν∇ρΦ∇ρΦ+ gµνV (Φ))= (2Φ+ ∂V
∂Φ

)∇νΦ , (3.122)
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and, from (3.116) and (3.121), we have

∇µ〈Tµν
m 〉ren = gY 〈ψ̄ψ〉ren∇νΦ=−(2Φ+ ∂V

∂Φ
)∇νΦ . (3.123)

When the spacetime is an expanding universe (ds2 = dt2 − a2(t)d~x2), and Φ is an

homogeneous scalar field Φ=Φ(t) (e.g. an inflaton), the equations (3.120) and (3.121)

describe the backreaction on the metric-inflaton system due to matter particle produc-

tion and vacuum polarization, codified in the renormalized vacuum expectation values

〈Tµν
m 〉ren and 〈ψ̄ψ〉ren. It is then important to elaborate an efficient method to compute

these quantities in this cosmological setting.

3.6 Adiabatic expansion for a Dirac field with
Yukawa coupling

Recall that in a spatially flat FLRW spacetime, the time-dependent gamma matrices

are related with the Minkowskian ones by γ0(t)= γ0 and γi(t)= γi

a(t) , and the components

of the spin-connections are Γ0 = 0 and Γi = ȧ
2γ0γi. The Dirac equation with the Yukawa

interaction iγµ∇µψ−mψ= gYΦψ, taking Φ as a homogenous scalar field Φ=Φ(t), can

be written in the FLRW coordinate chart as(
∂0 + 3

2
ȧ
a
+ 1

a
γ0~γ~∇+ i(m+ s(t))γ0

)
ψ= 0 , (3.124)

where we have defined s(t) ≡ gYΦ(t). If we expand the field ψ as ψ = ∫ d3~k
(2π)3/2ψ~k(t)ei~k~x,

and we substitute it into (3.124), we obtain the following differential equation for ψ~k:(
∂t + 3ȧ

2a
+ iγ0~γ

~k
a
+ iγ0(m+ s(t))

)
ψ~k = 0 . (3.125)

In order to solve this equation, it is convenient to write the Dirac field in terms of two

two-component spinors of the generic form

ψ~k,λ(t)= 1
a3/2(t)

(
hI

k(t)ξλ(~k)

hI I
k (t)~σ~kk ξλ(~k)

)
, (3.126)

where ξλ with λ=±1 are two constant orthonormal two-spinors (ξ†
λ
ξλ′ = δλ,λ′), eigenvec-

tors of the helicity operator ~σ~k
2k ξλ = λ

2ξλ. The explicit forms of ξ+1 and ξ−1 are given in

(3.12). where~k = (k1,k2,k3) and |~k| = k. The time-dependent functions hI
k and hI I

k satisfy

now the first-order coupled equations

hI I
k = ia

k

(
∂hI

k

∂t
+ i(m+ s(t))hI

k

)
, hI

k =
ia
k

(
∂hI I

k

∂t
− i(m+ s(t))hI I

k

)
. (3.127)
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Given a particular solution {hI
k(t), hI I

k (t)} to equations (3.127), one can construct the

modes as in (3.8). This will be a solution of positive-frequency type in the adiabatic regime.

A solution of negative-frequency type can be obtained by applying a charge conjugate

transformation Cψ= iγ2ψ∗ and reads as in (3.13). Recall that the Dirac inner product

is defined as in (3.14): (ψ1,ψ2)= ∫
d3xa3ψ

†
1ψ2; and that the normalization condition for

the above four-spinors (u~kλ,v~k ′λ′)= 0, (u~kλ,u~k ′λ′) = (v~kλ,v~k ′λ′) = δλλ′δ
(3)(~k−~k ′), reduces

to equation (3.15):

|hI
k|2 +|hI I

k |2 = 1 . (3.128)

Since the Dirac scalar product is preserved by the cosmological evolution, the normal-

ization condition (3.128) holds at any time. This ensures also the standard anticommu-

tation relations for the creation and annihilation operators ({B~k,λ,B†
~k′,λ′

}= δ3(~k−~k′)δλλ′ ,

{B~k,λ,B~k′,λ′}= 0, and similarly for the D~k,λ, D†
~k′,λ′

operators), introduced by the Fourier

expansion of the Dirac field operator (3.16)

ψ(x)=
∫

d3~k
∑
λ

[
B~kλu~kλ(x)+D†

~kλ
v~kλ(x)

]
. (3.129)

Adiabatic expansion

We now compute the adiabatic expansion of a Dirac field living in a FLRW spacetime,

and possessing a Yukawa interaction term with a classical background field. We proceed

similarly to previous sections. We know that, in the adiabatic limit, and in the absence of

interaction, the natural solution of the field modes hI
k and hI I

k is

hI
k(t)∼

√
ω(t)+m

2ω(t)
e−i

∫ t
ω(t′)dt′ , hI I

k (t)∼
√
ω(t)−m

2ω(t)
e−i

∫ t
ω(t′)dt′ , (3.130)

where ω=
√

k2

a2 +m2 is the frequency of the field mode. This will constitute the zeroth-

order term of the adiabatic expansion. Mimicking the ansatz introduced in (3.17) and in

[126, 127], we write the hI
k and hI I

k functions as

hI
k(t)=

√
ω(t)+m

2ω(t)
e−i

∫ tΩ(t′)dt′F(t) , hI I
k (t)=

√
ω(t)−m

2ω(t)
e−i

∫ tΩ(t′)dt′G(t) , (3.131)

where Ω(t), F(t) and G(t) are time-dependent functions, which we expand adiabatically

as [since this case is more general than (3.18) we use the same letters, no confusion
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should arise]

Ω = ω+ω(1) +ω(2) +ω(3) +ω(4) + . . . ,

F = 1+F (1) +F (2) +F (3) +F (4) + . . . ,

G = 1+G(1) +G(2) +G(3) +G(4) + . . . . (3.132)

Here, F (n), G(n) and ω(n) are terms of nth adiabatic order. By substituting (3.131) into

the equations of motion (3.127) and the normalization condition (3.128), we obtain the

following system of three equations,

(ω−m)G =ΩF + iḞ + iF
2

dω
dt

(
1

ω+m
− 1
ω

)
− (m+ s)F ,

(ω+m)F =ΩG+ iĠ+ iG
2

dω
dt

(
1

ω−m
− 1
ω

)
+ (m+ s)G ,

(ω+m)FF∗+ (ω−m)GG∗ = 2ω . (3.133)

To obtain the expressions for Ω(n), F (n), and G(n), we introduce the adiabatic expansions

(3.132) into (3.133), and solve order by order. As usual, we consider ȧ of adiabatic order

1, ä of adiabatic order 2, and so on. On the other hand, we consider the interaction

term s(t) of adiabatic order 1, so that the zeroth order term in (3.131) recovers the free

field solution in the adiabatic limit, defined in (3.130). Similarly, time-derivatives of the

interaction increase the adiabatic order, so that ṡ is of order 2, s̈ of order 3, and so on.

With this, a generic expression f (n) of adiabatic order n (e.g. f (n) = F (n),G(n),Ω(n)) will

be written as a sum of all possible products of nth adiabatic order formed by s, a, and

their time-derivatives. For example, functions of adiabatic orders 1 and 2 will be written

respectively as

f (1) = α1s+α2ȧ ,

f (2) = β1s2 +β2 ṡ+β3ä+β4ȧ2 +β5ȧs , (3.134)

with αn ≡ αn(m,k,a) and βn ≡ βn(m,k,a). The assignment of s as adiabatic order 1

is consistent with the scaling dimension of the scalar field, as it possesses the same

dimensions as ȧ.
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First adiabatic order

By keeping only terms of first adiabatic order in (3.133), the system of three equations

gives

(ω−m)G(1) = (ω−m)F (1) +ω(1) − s+ i
2

dω
dt

(
1

ω+m
− 1
ω

)
,

(ω+m)F (1) = (ω+m)G(1) +ω(1) + s+ i
2

dω
dt

(
1

ω−m
− 1
ω

)
,

(ω+m)(F (1) +F (1)∗)+ (ω−m)(G(1) +G(1)∗)= 0 . (3.135)

We now treat independently the real and imaginary parts by writing F (1) = f (1)
x + i f (1)

y

and G(1) = g(1)
x + ig(1)

y . We obtain for the real part

(ω−m)(g(1)
x − f (1)

x ) = ω(1) − s ,

(ω+m)(g(1)
x − f (1)

x ) = −ω(1) − s ,

(ω+m) f (1)
x + (ω−m)g(1)

x = 0 , (3.136)

which has as solutions

f (1)
x = s

2ω
− ms

2ω2 , g(1)
x =− s

2ω
− ms

2ω2 , ω(1) = ms
ω

. (3.137)

On the other hand, the imaginary part of the system gives

(ω−m)(g(1)
y − f (1)

y ) = 1
2

dω
dt

(
1

ω+m
− 1
ω

)
,

(ω+m)(g(1)
y − f (1)

y ) = −1
2

dω
dt

(
1

ω−m
− 1
ω

)
. (3.138)

These two equations are not independent. The obtained solution for g(1)
y and f (1)

y is

f (1)
y = A− mȧ

2aω2 , g(1)
y = A , (3.139)

where A is an arbitrary first-order adiabatic function. We will choose the simplest

solution

f (1)
y =− mȧ

4ω2a
, g(1)

y = mȧ
4ω2a

, (3.140)

obeying the condition F (1)(m, s)=G(1)(−m,−s). Therefore, the adiabatic expansion will

also preserve the symmetries of the equations (3.127) with respect to the change (m, s)→
(−m,−s). We have checked that physical expectation values are independent to any

potential ambiguity in this kind of choice.
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Second adiabatic order

In the same way, the second-order terms of (3.133) give

(ω−m)G(2) = (ω−m)F (2) + (ω(1) − s)F (1) +ω(2) + iḞ (1) + i
F (1)

2
dω
dt

(
1

ω+m
− 1
ω

)
,

(ω+m)F (2) = (ω+m)G(2) + (ω(1) + s)G(1) +ω(2) + iĠ(1) + i
G(1)

2
dω
dt

(
1

ω−m
− 1
ω

)
,

(ω+m)(F (2) +F (1)F (1)∗+F (2)∗)+ (ω−m)(G(2) +G(1)G(1)∗+G(2)∗)= 0 , (3.141)

where the first-order terms have already been deduced above. Taking the real part of

these equations, we obtain

(ω−m)(g(2)
x − f (2)

x )= (ω(1) − s) f (1)
x +ω(2) − ḟ (1)

y − f (1)
y

2
dω
dt

(
1

ω+m
− 1
ω

)
,

(ω+m)(g(2)
x − f (2)

x )=−(ω(1) + s)g(1)
x −ω(2) + ġ(1)

y + g(1)
y

2
dω
dt

(
1

ω−m
− 1
ω

)
,

(ω+m)(2 f (2)
x + ( f (1)

x )2 + ( f (1)
y )2)+ (ω−m)(2g(2)

x + (g(1)
x )2 + (g(1)

y )2)= 0 , (3.142)

which has as solutions

f (2)
x = m2ä

8aω4 − mä
8aω3 − 5m4ȧ2

16a2ω6 + 5m3ȧ2

16a2ω5 + 3m2ȧ2

32a2ω4 − mȧ2

8a2ω3 + 5m2s2

8ω4 − ms2

2ω3 − s2

8ω2 ,

ω(2) = −m2s2

2ω3 + s2

2ω
+ 5m4ȧ2

8a2ω5 − 3m2ȧ2

8a2ω3 − m2ä
4aω3 , (3.143)

and g(2)
x (m, s)= f (2)

x (−m,−s). On the other hand, taking the imaginary part of the equa-

tions, we have

(ω−m)(g(2)
y − f (2)

y ) = (ω(1) − s) f (1)
y + ḟ (1)

x + f (1)
x

2
dω
dt

(
1

ω+m
− 1
ω

)
,

(ω+m)(g(2)
y − f (2)

y ) = −(ω(1) + s)g(1)
y − ġ(1)

x − g(1)
x

2
dω
dt

(
1

ω−m
− 1
ω

)
. (3.144)

As before, this system contains an arbitrariness in its solution,

f (2)
y = B+ 5m2sȧ

4aω4 − sȧ
2aω2 − ṡ

2ω2 , g(2)
y = B , (3.145)

where now B is a linear combination of second order adiabatic terms. By imposing again

the condition F (2)(m, s)=G(2)(−m,−s), one finds

f (2)
y = 5m2sȧ

8aω4 − sȧ
4aω2 − ṡ

4ω2 , (3.146)

and g(2)
y (m, s)= f (2)

y (−m,−s).
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Third and fourth adiabatic order

The same procedure can be repeated for all orders. The real part of the expansion is totally

determined by the system of equations (3.133), while every imaginary part contains and

arbitrariness that can be solved by fixing the condition F (n)(m, s) = G(n)(−m,−s). The

third and fourth order terms of the expansion are explicitly written in Appendix D

3.7 Renormalization of the stress-energy tensor 〈Tµν〉
and the bilinear 〈ψ̄ψ〉

Recall from previous sections that the classical stress-energy tensor in a FLRW spacetime

(3.37) has two independent components. For a Dirac field, they are (no sum on i),

T0
0 = i

2

(
ψ̄γ0∂ψ

∂t
− ∂ψ̄

∂t
γ0ψ

)
, T i

i =
i

2a

(
ψ̄γi ∂ψ

∂xi −
∂ψ̄

∂xi γ
iψ

)
. (3.147)

We define the vacuum state |0〉 as B~k,λ|0〉 ≡ D~k,λ|0〉 ≡ 0, and denote any expectation

value on this vacuum as e.g. 〈Tµν〉 ≡ 〈0|Tµν|0〉. In the quantum theory, the vacuum

expectation values of the stress-energy tensor take the form (recall (3.41), (3.42) and

(3.58), (3.59))

〈T00〉 = 1
2π2a3

∫ ∞

0
dkk2ρk(t) , ρk(t)≡ 2i

(
hI

k
∂hI∗

k

∂t
+hI I

k
∂hI I∗

k

∂t

)
, (3.148)

and

〈Tii〉 = 1
2π2a

∫ ∞

0
dkk2 pk(t) , pk(t)≡−2k

3a
(hI

khI I∗
k +hI∗

k hI I
k ) . (3.149)

The above formal expressions contain quartic, quadratic, and logarithmic UV divergences,

which turn out to be independent of the particular quantum state. These divergences

are similar to those described in [181]. To characterize them, one plugs in (3.148)-(3.149)

the adiabatic expansion of hI
k and hI I

k , given in equation (3.131). We shall see that, in

the presence of a Yukawa interaction, all adiabatic orders up to the fourth one generate

UV divergences. This is different to what happens in the case of a free field, where the

divergences only appear at zeroth and second adiabatic orders [68]. In general, adiabatic

renormalization proceeds by subtracting those adiabatic terms from the integrand of

the expectation values, producing a formal finite quantity. There are two important

considerations regarding these subtractions. First, they must refer to all contributions

of a given adiabatic term of fixed (adiabatic) order, othe rwise general covariance is not
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maintained. And second, one subtracts only the minimum number of terms required to

get a finite result [157].

We now proceed to calculate the renormalized expressions for the energy density and

pressure.

Renormalized energy density

We start by performing the adiabatic expansion of the energy density in momentum

space (3.148)

ρk = ρ(0)
k +ρ(1)

k +ρ(2)
k +ρ(3)

k +ρ(4)
k + . . . , (3.150)

where ρ(n)
k is of nth adiabatic order. The adiabatic terms producing UV divergences (after

integration in momenta) are

ρ(0)
k = −2ω , (3.151)

ρ(1)
k = −2ms

ω
, (3.152)

ρ(2)
k = − ȧ2m4

4a2ω5 + ȧ2m2

4a2ω3 + m2s2

ω3 − s2

ω
, (3.153)

ρ(3)
k = 5ȧ2m5s

4a2ω7 − 7ȧ2m3s
4a2ω5 + ȧ2ms

2a2ω3 − ȧm3 ṡ
2aω5 + ȧmṡ

2aω3 − m3s3

ω5 + ms3

ω3 , (3.154)

ρ(4)
k = 105ȧ4m8

64a4ω11 − 91ȧ4m6

32a4ω9 + 81ȧ4m4

64a4ω7 − ȧ4m2

16a4ω5 − 7ȧ2m6ä
8a3ω9 + 5ȧ2m4ä

4a3ω7 − 3ȧ2m2ä
8a3ω5 (3.155)

−35ȧ2m6s2

8a2ω9 + 15ȧ2m4s2

2a2ω7 − m4ä2

16a2ω7 − 27ȧ2m2s2

8a2ω5 + m2ä2

16a2ω5 + ȧ2s2

4a2ω3 + ȧm4a(3)

8a2ω7

− ȧm2a(3)

8a2ω5 + 5ȧm4sṡ
2aω7 − 3ȧm2sṡ

aω5 + ȧsṡ
2aω3 + 5m4s4

4ω7 − 3m2s4

2ω5 − m2 ṡ2

4ω5 + s4

4ω3 + ṡ2

4ω3 ,

where we have used the notation a(3) ≡ d3a/dt3,a(4) ≡ d4a/dt4, etc.

We note that if we turn off the Yukawa coupling, we recover the results obtained

in previous sections [68]. The Yukawa interaction produces new contributions and,

in particular, we have now non-zero terms at first and third adiabatic orders. The

physical meaning of them will be given later on. Note here that in the UV limit, ρ(0)
k ∼ k,

(ρ(1)
k +ρ(2)

k )∼ k−1, and (ρ(3)
k +ρ(4)

k )∼ k−3. This indicates that subtracting the zeroth-order

term will cancel the natural quartic divergence of the stress-energy tensor, subtracting

up to second order will cancel also the quadratic divergence, and subtracting up to

fourth order will cancel the logarithmic divergence. Therefore, defining the adiabatic

subtraction terms as

〈T00〉Ad ≡ 1
2π2a3

∫ ∞

0
dkk2(ρ(0)

k +ρ(1)
k +ρ(2)

k +ρ(3)
k +ρ(4)

k )≡ 1
2π2a3

∫ ∞

0
dkk2ρ(0−4)

k , (3.156)
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the renormalized 00-component of the stress-energy tensor is

〈T00〉ren ≡ 〈T00〉−〈T00〉Ad = 1
2π2a3

∫ ∞

0
dkk2(ρk −ρ(0−4)

k ) . (3.157)

This integral is, by construction, finite.

Renormalized pressure

The method proceeds in the same way for the pressure. The renormalized ii-component

of the stress-energy tensor is given by

〈Tii〉ren ≡ 〈Tii〉−〈Tii〉Ad = 1
2π2a

∫ ∞

0
dkk2(pk − p(0−4)

k ) , (3.158)

where p(0−4)
k ≡ p(0)

k + p(1)
k + p(2)

k + p(3)
k + p(4)

k , and

〈Tii〉Ad ≡ 1
2π2a

∫ ∞

0
dkk2 p(0−4)

k . (3.159)

The corresponding adiabatic terms for the pressure are

p(0)
k = −2ω

3
+ 2m2

3ω
, (3.160)

p(1)
k = 2ms

3ω
− 2m3s

3ω3 , (3.161)

p(2)
k = − 5ȧ2m6

12a2ω7 + ȧ2m4

2a2ω5 − ȧ2m2

12a2ω3 + m4ä
6aω5 − m2ä

6aω3 + m4s2

ω5 − 4m2s2

3ω3 + s2

3ω
, (3.162)

p(3)
k = −35ȧ2m7s

12a2ω9 − 5ȧ2m5s
a2ω7 + 9ȧ2m3s

4a2ω5 − ȧ2ms
6a2ω3 − 5m5sä

6aω7 − 5ȧm5 ṡ
6aω7 + 7m3sä

6aω5 + 7ȧm3 ṡ
6aω5

− msä
3aω3 − ȧmṡ

3aω3 − 5m5s3

3ω7 + 8m3s3

3ω5 + m3 s̈
6ω5 − ms3

ω3 − ms̈
6ω3 , (3.163)

p(4)
k = 385ȧ4m10

64a4ω13 − 791ȧ4m8

64a4ω11 + 1477ȧ4m6

192a4ω9 − m4a(4)

24aω7 − 263ȧ4m4

192a4ω7 + m2a(4)

24aω5 + ȧ4m2

48a4ω5

−77ȧ2m8ä
16a3ω11 + 203ȧ2m6ä

24a3ω9 − 191ȧ2m4ä
48a3ω7 + ȧ2m2ä

3a3ω5 − 105ȧ2m8s2

8a2ω11 + 665ȧ2m6s2

24a2ω9 + 7m6ä2

16a2ω9

−145ȧ2m4s2

8a2ω7 − 5m4ä2

8a2ω7 + 29ȧ2m2s2

8a2ω5 + 3m2ä2

16a2ω5 − ȧ2s2

12a2ω3 + 7ȧm6a(3)

12a2ω9 − 5ȧm4a(3)

6a2ω7

+ ȧm2a(3)

4a2ω5 + 35m6s2ä
12aω9 + 35ȧm6sṡ

6aω9 − 5m4s2ä
aω7 − 10ȧm4sṡ

aω7 + 9m2s2ä
4aω5 + 9ȧm2sṡ

2aω5

− s2ä
6aω3 − ȧsṡ

3aω3 + 35m6s4

12ω9 − 65m4s4

12ω7 − 5m4ss̈
6ω7 − 5m4 ṡ2

12ω7 + 11m2s4

4ω5 + m2ss̈
ω5 + m2 ṡ2

3ω5

− s4

4ω3 − ss̈
6ω3 + ṡ2

12ω3 . (3.164)
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As before, we see that in the UV limit, p(0)
k ∼ k, (p(1)

k + p(2)
k ) ∼ k−1, and (p(3)

k + p(4)
k ) ∼

k−3. Subtracting the zeroth-order term eliminates the quartic divergence, subtracting

up to second order removes the quadratic divergence, and subtracting up to fourth

order removes the logarithmic divergence. If the Yukawa interaction is removed, we

recover again the results of previous sections [68]. The interaction produces also non-zero

contributions to the first and third adiabatic orders.

Renormalization of 〈ψ̄ψ〉
As argued in section 3.5, we are also interested in computing the renormalized expecta-

tion value 〈ψ̄ψ〉ren. The formal (unrenormalized) expression for this quantity is

〈ψ̄ψ〉 = −1
π2a3

∫ ∞

0
dkk2〈ψ̄ψ〉k , 〈ψ̄ψ〉k ≡ |hI

k|2 −|hI I
k |2 . (3.165)

We define the corresponding terms in the adiabatic expansion as 〈ψ̄ψ〉k = 〈ψ̄ψ〉(0)
k +

〈ψ̄ψ〉(1)
k +〈ψ̄ψ〉(2)

k +〈ψ̄ψ〉(3)
k + ... . Due to the Yukawa interaction, ultraviolet divergences

arrive until the third adiabatic order. In general, we have

〈ψ̄ψ〉(n)
k = ω+m

2ω
(|F|2)(n) − ω−m

2ω
(|G|2)(n)

. (3.166)

From here, we obtain

〈ψ̄ψ〉(0)
k = m

ω
, (3.167)

〈ψ̄ψ〉(1)
k = s

ω
− m2s

ω3 , (3.168)

〈ψ̄ψ〉(2)
k = −5ȧ2m5

8a2ω7 + 7ȧ2m3

8a2ω5 − ȧ2m
4a2ω3 + m3ä

4aω5 − mä
4aω3 + 3m3s2

2ω5 − 3ms2

2ω3 , (3.169)

〈ψ̄ψ〉(3)
k = 35ȧ2m6s

8a2ω9 − 15ȧ2m4s
2a2ω7 + 27ȧ2m2s

8a2ω5 − ȧ2s
4a2ω3 − 5m4sä

4aω7 − 5ȧm4 ṡ
4aω7 + 3m2sä

2aω5 + 2ȧm2 ṡ
aω5

− sä
4aω3 − 3ȧṡ

4aω3 − 5m4s3

2ω7 + 3m2s3

ω5 + m2 s̈
4ω5 − s3

2ω3 − s̈
4ω3 . (3.170)

The adiabatic prescription leads then to

〈ψ̄ψ〉ren = 〈ψ̄ψ〉−〈ψ̄ψ〉Ad = −1
π2a3

∫ ∞

0
dkk2(〈ψ̄ψ〉k −〈ψ̄ψ〉(0−3)

k ) . (3.171)

In this case, we observe that in the UV limit, (〈ψ̄ψ〉(0)
k +〈ψ̄ψ〉(1)

k )∼ k−1, and (〈ψ̄ψ〉(2)
k +

〈ψ̄ψ〉(3)
k )∼ k−3). Subtracting up to first order eliminates the quadratic divergence, and up

to third order removes the logarithmic one.
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Our results can be generically implemented together with numerical methods to

compute the renormalized expectation values 〈Tµν〉ren and 〈ψ̄ψ〉ren. On the other hand,

we would like to briefly comment that a higher-order adiabatic expansion also serves to

generate asymptotic analytical expressions for the renormalized stress-energy tensor in

some special situations. This happens in spacetime regions where the relevant modes

always evolve adiabatically. For instance, if we approximate the form of the exact modes

{hI
k,hI I

k } by their higher-order adiabatic expansion, we can find in a very straightforward

way an analytic approximation for the renormalized quantities in the adiabatic regime,

as in the example given in Appendix E. Outside the adiabatic regime one should use

numerical methods to find the exact modes and plug them in the generic renormalized

expressions obtained above.

3.8 UV divergences and renormalization
counterterms in the effective action

The ultraviolet divergent terms of the adiabatic subtractions can be univocally related to

particular counterterms in the Lagrangian density including the background gravity-

scalar sector. By writing

L = Lm +p−g

[
1
2

gµν∇µΦ∇νΦ−
4∑

i=1

λi

i!
Φi −ξ1RΦ− 1

2
ξ2RΦ2 − 1

8πG
Λ+ 1

16πG
R

]
(3.172)

+ p−g

[
1
2
δZgµν∇µΦ∇νΦ−

4∑
i=1

δλi

i!
Φi −δξ1RΦ− 1

2
δξ2RΦ2 − 1

8π
δΛ+ 1

16π
δG−1R

]
,

the equations of motion for the scalar field read

(1+δZ)2Φ+ (λ1 +δλ1)+ (λ2 +δλ2)Φ+ (λ3 +δλ3)
1
2
Φ2

+ 1
3!

(λ4 +δλ4)Φ3 + (ξ1 +δξ1)R+ (ξ2 +δξ2)RΦ=−gY 〈ψ̄ψ〉 . (3.173)

From (3.171), we can write the identity

〈ψ̄ψ〉 = 〈ψ̄ψ〉ren+ 1
π2a3

∫ ∞

0
dkk2(〈ψ̄ψ〉(0)

k +〈ψ̄ψ〉(1)
k +〈ψ̄ψ〉(2)

k +〈ψ̄ψ〉(3)
k ) , (3.174)

where 〈ψ̄ψ〉ren is finite and the remaining integrals at the right-hand-side of (3.174)

are the adiabatic subtraction terms. As we shall see, the ultraviolet divergences of the

adiabatic subtraction terms can be removed by counterterms of the form: δZ2Φ, δλ1,

δλ2Φ, δλ3Φ
2, δλ4Φ

3, δξ1R, and δξ2RΦ. To deal with the UV-divergent subtraction terms

65



CHAPTER 3. RENORMALIZED STRESS-ENERGY TENSOR FOR SPIN-1/2 FIELDS IN
EXPANDING UNIVERSES

we use dimensional regularization [53]. We can check that the (covariantly) regulated

divergences take the same form as the above covariant counterterms. For 〈ψ̄ψ〉(0) we

have (n denotes the space-time dimension)

〈ψ̄ψ〉(0) =− 1
π2a3

∫ ∞

0
dkk2

(
− m
ω(t)

)
→− 1

π2a3

∫ ∞

0
dkkn−2

(
− m
ω(t)

)
= m3

2π2(n−4)
+ ...

(3.175)

where we will retain only the poles at n = 4. This divergence can be absorbed by δλ1.

Additionally, we also have

〈ψ̄ψ〉(1) =− 1
π2a3

∫ ∞

0
dkkn−2

(
− s(t)k2

ω3(t)a(t)2

)
= 3gY m2

2π2(n−4)
Φ(t)+·· · . (3.176)

This divergence of adiabatic order one can be absorbed by δλ2. The divergences of

adiabatic order two

〈ψ̄ψ〉(2) =− m
24π2(n−4)

R+ 3mg2
Y

2π2(n−4)
Φ2(t)+·· · (3.177)

can also be eliminated by δξ1 and δλ3. Finally, the three divergences of adiabatic order

three

〈ψ̄ψ〉(3) = gY

4π2(n−4)
2Φ(t)+ gY

24π2(n−4)
RΦ(t)+ g3

Y

2π2(n−4)
Φ3(t)+·· · (3.178)

are absorbed by δZ, δξ2 and δλ4.

On the other hand, the tensorial equations are

1
8π

(
1
G

+δG−1
)
Gµν+ 1

8π

(
Λ

G
+δΛ

)
gµν+ (1+δZ)(∇µΦ∇νΦ− 1

2
gµν∇ρΦ∇ρΦ)

+ gµν
4∑

i=1

(λi +δλi)
i!

Φi −2
2∑

i=1

ξi +δξi

i!
(GµνΦi − gµν2Φi +∇µ∇νΦi)=−〈Tµν

m 〉 ,(3.179)

and we find similar cancelations. However, two extra divergences appear. Focusing, for

simplicity, at zeroth adiabatic order, we have

− 1
2π2a3

∫ ∞

0
dkkn−2ρ(0)

k ≈ m4

8π2
1

n−4
,

− 1
2π2a3

∫ ∞

0
dkkn−2a2 p(0)

k ≈ −m4a2

8π2
1

n−4
. (3.180)

At first adiabatic order we encounter the following divergences

− 1
2π2a3

∫ ∞

0
dkkn−2ρ(1)

k ≈ m3s
2π2

1
n−4

,

− 1
2π2a3

∫ ∞

0
dkkn−2a2 p(1)

k ≈ −m3a2s
2π2

1
n−4

. (3.181)
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3.8. UV DIVERGENCES AND RENORMALIZATION COUNTERTERMS IN THE
EFFECTIVE ACTION

At second adiabatic order we find these divergences

− 1
2π2a3

∫ ∞

0
dkkn−2ρ(2)

k ≈ m2

8π2
1

n−4
ȧ2

a2 + 3m2

4π2
1

n−4
s2 ,

− 1
2π2a3

∫ ∞

0
dkkn−2a2 p(2)

k ≈ −m2a2

24π2
1

n−4

(
2

ä
a
+ ȧ2

a2

)
− 3a2m2s2

4π2
1

n−4
. (3.182)

At third adiabatic order we get the following divergences (H ≡ ȧ/a)

− 1
2π2a3

∫ ∞

0
dkkn−2ρ(3)

k ≈ m
12π2

1
n−4

[
3H2s+3Hṡ+6s3] , (3.183)

− 1
2π2a3

∫ ∞

0
dkkn−2a2 p(3)

k ≈ − ma2

12π2
1

n−4

[
s̈+2Hṡ+

(
H2 +2

ä
a

)
s+6s3

]
.

Finally, at fourth adiabatic order the divergences are

− 1
2π2a3

∫ ∞

0
dkkn−2ρ(4)

k ≈ 1
8π2

1
n−4

[
H2s2 + s4 +2Hṡs+ ṡ2] , (3.184)

− 1
2π2a3

∫ ∞

0
dkkn−2a2 p(4)

k ≈ − a2

8π2
1

n−4

[
s4 +

(
H2 +2

ä
a

)
s2

3
− ṡ2

3
+ 4

3
Hsṡ+ 2

3
ss̈

]
.

All the above divergent expressions arising from the Yukawa interaction can be written

covariantly as

〈Tµν〉(0)
Ad ≈ m4

8π2(n−4)
gµν , (3.185)

〈Tµν〉(1)
Ad ≈ gYΦm3

2π2(n−4)
gµν , (3.186)

〈Tµν〉(2)
Ad ≈ 3g2

YΦ
2m2

4π2(n−4)
gµν− m2

24π2(n−4)
Gµν , (3.187)

〈Tµν〉(3)
Ad ≈ − mgY

12π2(n−4)
[
GµνΦ−2Φgµν+∇µ∇νΦ−6g2

YΦ
3 gµν

]
, (3.188)

〈Tµν〉(4)
Ad ≈ −g2

Y

24π2(n−4)

[
GµνΦ

2 − gµν2Φ2 +∇µ∇νΦ
2 −6(∇µΦ∇νΦ− 1

2
gµν∇ρΦ∇ρΦ)−3g2

YΦ
4 gµν

]
,(3.189)

and can be consistently removed (including also the divergences for 〈ψ̄ψ〉) by the renor-

malization parameters

δΛ=− m4

π(n−4)
, δG−1 = m2

3π(n−4)
, δZ =− g2

Y

4π2(n−4)
, (3.190)

δλ1 =− m3 gY

2π2(n−4)
, δλ2 =− 3m2 g2

Y

2π2(n−4)
, δλ3 =− 3mg3

Y

π2(n−4)
, δλ4 =− 3g4

Y

π2(n−4)
,

(3.191)

δξ1 =− mgY

24π2(n−4)
, δξ2 =− g2

Y

24π2(n−4)
. (3.192)
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We remark that the set of needed counterterms are all possible counterterms having

couplings with non-negative mass dimension, up to Newton’s coupling constant. This

is also in agreement with the results in perturbative QFT in flat spacetime. The renor-

malizability of the Yukawa interaction gYϕψ̄ψ of a quantized massive scalar field ϕ

with a massive quantized Dirac field ψ requires to add terms of the form λZλ

4! ϕ
4, κZκ

3! ϕ
3,

and also a term linear in ϕ [178]. The presence of a curved background would require

to add the terms ξ1Rϕ and ξ2Rϕ2. We note that a term of the form ξ2Rϕ2 is required

by renormalization for a purely quantized scalar field ϕ if a self-interaction term of the

form λ
4!ϕ

4 appears in the bare Lagrangian density [52, 54]. Here we have found that the

Yukawa interaction demands the presence of the renormalized terms ξ1Rϕ and ξ2Rϕ2

(as well as the terms λiϕ
i), even if they are not present in the bare Lagrangian density.

Similar counterterms have been identified in the approach in Ref. [37].

Therefore, the tentative semiclassical equations presented in Section 3.5 should be

reconsidered to include the above required counterterms. In terms of the renormalized

parameters we have

1
8πG

(Gµν+Λgµν)+ (∇µΦ∇νΦ− 1
2

gµν∇ρΦ∇ρΦ+V (Φ)gµν)

− 2
2∑

i=1

ξi

i!
(GµνΦi − gµν2Φi +∇µ∇νΦi)=−〈Tµν

m 〉ren , (3.193)

and

2Φ+ ∂V
∂Φ

+ξ1R+ξ2RΦ=−gY 〈ψ̄ψ〉ren , (3.194)

where the potential V (Φ) should contain the terms

V (Φ)=λ1Φ+ λ2

2
Φ2 + λ3

3!
Φ3 + λ4

4!
Φ4 . (3.195)

Obviously, additional terms, not required by renormalization, can be added to the poten-

tial if one adopts an effective field theory viewpoint. Some of the renormalized parameters

(Λ, ξ1, λ1, · · · ) could take, by fine tuning, zero values. We do not consider these issues in

this work.

3.9 Conformal anomaly

In this section we will analyze the massless limit of the theory and work out the conformal

anomaly. In the massless limit the classical action of the theory enjoys invariance under

the conformal transformations

gµν(x)→Ω2(x)gµν(x) , Φ(x)→Ω−1(x)Φ(x) , (3.196)

68



3.9. CONFORMAL ANOMALY

with

ψ(x)→Ω−3/2(x)ψ(x) , ψ̄(x)→Ω−3/2(x)ψ̄(x). (3.197)

Variation of the action yields the identity

gµνTm
µν+Φ

1p−g
δSm

δΦ
= 0 , (3.198)

which, in our case, turns out to be gµνTµν− gYΦψ̄ψ= 0. At the quantum level the theory

will lose its conformal invariance as a consequence of renormalization [which respects

general covariance and hence (3.116)] and generates an anomaly

gµν〈Tm
µν〉ren − gYΦ〈ψ̄ψ〉ren = C f 6= 0 . (3.199)

C f is independent of the quantum state and depends only on local quantities of the

external fields.

To calculate the conformal anomaly in the adiabatic regularization method, we have

to start with a massive field and take the massless limit at the end of the calculation.

Therefore,

C f = gµν〈Tm
µν〉ren − gYΦ〈ψ̄ψ〉ren = lim

m→0
m(〈ψ̄ψ〉ren −〈ψ̄ψ〉(4)) . (3.200)

Since the divergences of the stress-energy tensor have terms of fourth adiabatic order, the

adiabatic subtractions for 〈ψ̄ψ〉 should also include them. The fourth order subtraction

term, which produces a non-zero finite contribution when m → 0, is codified in 〈ψ̄ψ〉(4).

The term m〈ψ̄ψ〉ren vanishes when m → 0. The remaining piece produces the anomaly

[recall (3.165)-(3.166)]

C f = − lim
m→0

m
π2a3

∫ ∞

0
dkk2

(
− (ω+m)

2ω
[F (4) +F (4)∗+F (1)F (3)∗+F (1)∗F (3) +|F (2)|2]

+ (ω−m)
2ω

[G(4) +G(4)∗+G(1)G(3)∗+G(1)∗G(3) +|G(2)|2]
)

. (3.201)

Applying the adiabatic expansion computed in Section 3.6 and doing the integrals we

obtain

C f =
a(4)

80π2a
+ s2ä

8π2a
+ ä2

80π2a
+ 3sṡȧ

4π2a
+ s2ȧ2

8π2a2 + 3ȧa(3)

80π2a2 − ȧ2ä
60π2a3 + ss̈

4π2 + ṡ2

8π2 + s4

8π2 .(3.202)

Since C f is an scalar, we must be able to rewrite the above result as a linear combina-

tion of covariant scalar terms made out of the metric, the Riemann tensor, covariant

derivatives, and the external scalar field Φ. Our result is

C f =
1

2880π2

[
−11

(
RαβRαβ− 1

3
R2

)
+62R

]
+ g2

Y

8π2

[
∇µΦ∇µΦ+2Φ2Φ+ 1

6
Φ2R+ g2

YΦ
4
]

. (3.203)
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The same result is obtained by using the results of Section 3.7. C f can be re-expressed

as [recall (3.157)-(3.158)]

C f = lim
m→0

−1
2π2a3

∫ ∞

0
dkk2

(
ρ(0−4)

k −3p(0−4)
k −2(s(t)+m)〈ψ̄ψ〉(0−3)

k

)
. (3.204)

Performing the integrals we get exactly (3.202) and hence (3.203).

In Appendix F we have computed the conformal anomaly for a massless scalar

field φ with conformal coupling to the scalar curvature ξ= 1/6, and with a Yukawa-type

interaction of the form g2
YΦ

2φ2. Adiabatic regularization predicts the following conformal

anomaly

Cs = 1
2880π2

[
2R−

(
RµνRµν− 1

3
R2

)]
− h2

48π2 (Φ2Φ+∇µΦ∇µΦ+ 3h2

2
Φ4) . (3.205)

In the absence of Yukawa interaction (h = 0, gY = 0) we reproduce the well-known

trace anomaly for both scalar and spin-1/2 fields (restricted to our FLRW spacetime) [48].

We recall that the trace anomaly is generically given for a conformal free field of spin

0,1/2 or 1 in terms of three coefficients

gµν
〈
Tµν

〉
ren = aCµνρσCµνρσ+bG+ c�R , (3.206)

where Cµνρσ is the Weyl tensor and G = RµνρσRµνρσ−4RµνRµν+R2 is proportional to the

Euler density. The coefficients a and b are independent of the renormalization scheme

and are given by [76, 114]

a = 1
120(4π)2 (Ns +6N f +12Nv) ,

b = −1
360(4π)2 (Ns +11N f +62Nv) , (3.207)

where Ns is the number of real scalar fields, N f is the number of Dirac fields, and Nv is

the number of vector fields. Our results with gY = 0 fit the values in (3.207). [We note that

in the FLRW spacetime of adiabatic regularization the Weyl tensor vanishes identically].

In contrast, the coefficient c depends in general on the particular renormalization scheme

[183]. A local counterterm proportional to R2 in the action can modify the coefficient

c. For instance, for vector fields the point-splitting and the dimensional regularization

method predict different values for c.

When the Yukawa interaction is added, the general form of the conformal anomaly is

gµν
〈

Tm
µν

〉
ren

+Φ 1p−g
〈δSm

δΦ
〉ren = aCµνρσCµνρσ+bG+ c�R (3.208)

+ d g2
Y∇µΦ∇µΦ+ e g2

YΦ2Φ+ f g2
YΦ

2R+ g g4
YΦ

4 .
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Now, the coefficients f and g are independent of the renormalization scheme but d and

e are not. The finite Lagrangian counterterms required by the renormalizability of the

Yukawa interaction obtained in previous sections,

δZ
2

gµν∇µΦ∇νΦ− δξ2

2
RΦ2 − δλ4

4!
Φ4 , (3.209)

might alter the values of the coefficients d and e, but not the coefficients f and g. Note

that, due to classical conformal invariance, one should consider only those countert-

erms having dimensionless coupling parameters. Therefore, our results for the f and g
coefficients are

f = 1
3(4π)2 N f , g = −1

3(4π)2

(
3
2

Ns −6N f

)
. (3.210)

Finally, to show explicitly that the above coefficients are independent on the renor-

malization scheme, we will compute them using the heat-kernel method given in [157],

by means of the one-loop effective action.

Consistency with the heat-kernel results

The conformal anomaly for a field φ j(x) obeying the second-order wave equation[
δi

j g
µν∇µ∇ν+Q i

j(x)
]
φ j = 0 , (3.211)

is given by

C =± 1
(4π)2 tr E2(x) , (3.212)

where E2(x) is the second Seeley-DeWitt coefficient. The minus sign is for bosons and

the plus sign is for fermions. These coefficients are local, scalar functions of Q(x) and the

curvature tensor. E2 is given by

E2 =
(
− 1

30
2R+ 1

72
R2 − 1

180
RµνRµν+ 1

180
RµνρσRµνρσ

)
I+ 1

12
WµνWµν+1

2
Q2−1

6
RQ+1

6
2Q ,

(3.213)

where Wµν = [∇µ,∇ν]. For a single massless scalar field with ξ= 1/6 and an interaction of

the form h2φ2Φ2 we have

Q = 1
6

R+h2Φ2 , (3.214)

and Wµν = 0. For a spatially flat FLRW universe we get

C = 1
2880π2

[
2R−

(
RµνRµν− 1

3
R2

)]
− h2

48π2 (Φ2Φ+∇µΦ∇µΦ+ 3h2

2
Φ4) , (3.215)

in full agreement with the result (3.205) obtained using adiabatic regularization.
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For a single massless Dirac field with a Yukawa interaction we have [(iγµ∇µ−gYΦ)ψ=
0]

Q =
(
1
4

R+ g2
YΦ

2
)

I + igYγ
µ∇µΦ , (3.216)

and

Wµν =−iR αβ
µν Σαβ =−1

8
R αβ
µν [γα,γβ] . (3.217)

Using the properties of the trace of products of gamma matrices, we get

C = 1
2880π2

[
−11

(
RαβRαβ− 1

3
R2

)
+62R

]
+ g2

Y

8π2

[
−1

3
∇µΦ∇µΦ+ 2

3
Φ2Φ+ 1

6
Φ2R+ g2

YΦ
4
]

.

(3.218)

The above result reproduces the coefficients f and g obtained from adiabatic regulariza-

tion. We note that there is a mismatch in the coefficients d and e. These are, however,

the coefficients that might depend on the renormalization scheme.

3.10 Adiabatic vs DeWitt-Schwinger formalisms.
Spin-0 fields

We study now the equivalence between the adiabatic formalism presented above and the

DeWitt-Schinger one. As we have already mentioned in the introduction, the equivalence

between both methods has been checked in [25, 47] for scalar fields by direct computation.

We present here an alternative and simpler approach for scalar fields that will allow us

to prove the equivalence for spin-1/2 fields.

Adiabatic regularization

The general wave equation for a scalar field φ in a curved space-time is (2+m2+ξR)φ= 0,

where m is the mass of the field and ξ is the coupling of the field to the scalar curvature R.

If the field propagates in a FLRW space-time [for simplicity we shall assume a spatially

flat universe with metric ds2 = dt2 −a2(t)d~x2], it can be naturally expanded in the form

φ(x)=
∫

d3k
[
A~k f~k(~x, t)+ A†

~k
f ∗~k (~x, t)

]
, (3.219)

where the field modes f~k are

f~k(t,~x)= ei~k·~x√
2(2π)3a3(t)

hk(t) . (3.220)
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These modes are assumed to obey the normalization condition with respect to the con-

served Klein-Gordon product. This condition translates into a Wronskian-type condition

for the modes: h∗
k ḣk − ḣ∗

khk =−2i, where the dot means derivative with respect to proper

time t. Adiabatic renormalization is based on a generalized WKB-type asymptotic expan-

sion of the modes according to the ansatz

hk(t)∼ 1√
Wk(t)

e−i
∫ t Wk(t′)dt′ , (3.221)

which solves the Wronskian condition. One then expands Wk in an adiabatic series, in

which each contribution is determined by the number of time derivatives of the expansion

factor a(t)

Wk(t)=ω(0)(t)+ω(2)(t)+ω(4)(t)+ ... , (3.222)

where the leading term ω(0)(t) ≡ω(t) =
√

k2/a2(t)+m2 is the usual physical frequency.

Higher order contributions can be univocally obtained by iteration (for details, see

Appendix G), which come from introducing (3.221) into the equation of motion for the

modes. As we have learnt from previus sections, this adiabatic expansion (3.222) is basic

to identify and remove the UV divergences of the expectation values of the stress-energy

tensor.

The adiabatic expansion of the modes can be easily translated to an expansion of the

two-point function 〈φ(x)φ(x′)〉 ≡G(x, x′) at coincidence x = x′:

GAd(x, x)= 1
2(2π)3a3

∫
d3~k [ω−1 + (W−1)(2) + (W−1)(4) + ...] . (3.223)

As remarked above the expansion must be truncated to the minimal adiabatic order

necessary to cancel all UV divergences that appear in the formal expression of the vacuum

expectation value that one wishes to compute. The calculation of the renormalized

variance 〈φ2〉 requires only second adiabatic order, given by

(W−1)(2) = m2ȧ2

2a2ω5 + m2ä
4aω5 − 5m4ȧ2

8a2ω7 + 3(1
6 −ξ)(ȧ2 +aä)

a2ω3 . (3.224)

The renormalization of the vacuum expectation value of the stress-energy tensor needs

up to fourth adiabatic order subtraction. The corresponding fourth order contribution

(W−1)(4) has 30 terms and can be found in [152]. Therefore, the asymptotic two point

function at coincident points, truncated to fourth adiabatic order, can be rewritten as

(4)GAd(x, x)= 1
2(2π)3a3

∫
d3~k

[
1
ω
+ (1

6 −ξ)R
2ω3 + m2ȧ2

2a2ω5 + m2ä
4aω5 − 5m4ȧ2

8a2ω7 + (W−1)(4)

]
,(3.225)
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where we have taken into account that R = 6[ȧ2/a2 + ä/a] in FLRW universes.

We note that only the first two terms in (3.225) are divergent. The remaining terms

can be integrated exactly in momenta producing well-defined finite geometric quantities.

Taking into account that ω= (~k2/a2+m2)1/2, the integration of the second order adiabatic

terms is independent of the mass and gives

1
2(2π)3a3

∫
d3~k

[
m2ȧ2

2a2ω5 + m2ä
4aω5 − 5m4ȧ2

8a2ω7

]
= R

288π2 . (3.226)

The integration of the fourth order terms turns out to be also a well-defined geometrical

quantity
1

2(2π)3a3

∫
d3~k (W−1)(4) = a2

16π2m2 , (3.227)

where

a2 = 1
2

[
ξ− 1

6

]2
R2 − 1

6

[
1
5
−ξ

]
2R− 1

180
(RµνRµν−RµνγδRµνγδ) , (3.228)

is just the coincident point limit a2(x)≡ limx→x′ a2(x, x′) of the second DeWitt coefficient

a2(x, x′) [71]. (We note that, for our conformally flat space-times, the Weyl tensor vanishes

and RµνγδRµνγδ = 2RµνRµν− 1
3 R2).

In summary, the asymptotic two-point function for a scalar field at coincidence

truncated at fourth adiabatic order is given by

(4)GAd(x, x)= 1
4π2a3

∫ ∞

0
dkk2

[
1
ω
+ (1

6 −ξ)R
2ω3

]
+ R

288π2 + a2

16π2m2 , (3.229)

where the formal divergent term can be understood, for future purposes, as the point-

splitting limit

1
4π2a3

∫ ∞

0
dkk2

[
1
ω
+ (1

6 −ξ)R
2ω3

]
≡ lim

|∆~x|→0

1
4π2a3

∫ ∞

0
dkk2 sin(k|∆~x|)

k|∆~x|

[
1
ω
+ (1

6 −ξ)R
2ω3

]
.

(3.230)

Local momentum-space representation and DeWitt-Schwinger
expansion

An alternative asymptotic expansion of the two-point function in momentum space was

introduced by Bunch and Parker in [54]. It was proposed to aim at extending to curved

space the standard momentum-space methods of perturbation theory for interacting

fields in Minkowski space. This way the standard Minkowskian propagator of a scalar
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free field in momentum space (−k2+m2)−1 is replaced by a series expansion. The Fourier

transform leading to local-momentum space is crucially performed with respect to

Riemann normal coordinates yµ around a given point x′, which constitutes the best

possible approximation in curved space to the inertial coordinates of Minkowski space.

In contrast to adiabatic regularization, the method is valid for an arbitrary space-time.

It does not serve to (adiabatically) expand the mode functions, which are otherwise

highly ambiguous in a general background. The method works directly with the two-

point functions, which are regarded as the basic buildings blocks of the renormalization

process.

The covariant expansion of the two-point function GDS(x, x′), obeying the equation

(2x +m2 +ξR)GDS(x, x ′)=−|g(x)|−1/2δ(x− x ′) , (3.231)

is defined in the local-momentum space

GDS(x, x′)= −i|g(x)|−1/4

(2π)4

∫
d4k eikyḠ(k) , (3.232)

where ky≡ k0 y0 −~k~y (note that yµ(x′)= 0), by the series

Ḡ(k) = 1
−k2 +m2 + (1

6 −ξ)R
(−k2 +m2)2 + i(1

6 −ξ)
2

R;α
∂

∂kα

1
(−k2 +m2)2 + 1

3
aαβ

∂

∂kα

∂

∂kβ
(−k2 +m2)−2

+
[(

1
6
−ξ

)2
R2 + 2

3
aαα

]
1

(−k2 +m2)3 + ... , (3.233)

where

aαβ =
(ξ− 1

6 )
2

R;αβ+ 1
120

R;αβ− 1
40

2Rαβ− 1
30

R λ
α Rλβ+ 1

60
RκαλβRκλ+ 1

60
Rλµκ

αRλµκβ .

(3.234)

To compare this local-momentum expansion with the adiabatic one introduced in the

previous subsection we have to convert the momentum-space four-dimensional integrals

into three-dimensional integrals. After performing the k0 integration in the complex

plane, where the poles in Ḡ(k) at k0 = ±
√
~k2 +m2 have been displaced in the same

way as the analogous Green function in Minkowski space-time, one gets tridimensional

integrals. Since all Green functions have the same UV divergences we can perform the

contour k0 integration using, for instance, the Feynman prescription for displacing the
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poles. The result is, up to fourth adiabatic order,

(4)GDS(x, x′) = |g(x)|−1/4

2(2π)3

∫
d3k e−i(~k~y−

p
~k2+m2 y0) (3.235)

×
[

a0

(~k2 +m2)1/2
+ a1(x, x′)(1− i y0ω)

2(~k2 +m2)3/2
+ 3a2(x, x′)(1− i y0ω− (y0)2ω2/3)

4(~k2 +m2)5/2

]
= |g(x)|−1/4

(2π)2|~y|
∫ ∞

0
dk ksin(k|~y|) ei

p
~k2+m2 y0

(3.236)

×
[

a0

(~k2 +m2)1/2
+ a1(x, x′)(1− i y0ω)

2(~k2 +m2)3/2
+ 3a2(x, x′)(1− i y0ω− (y0)2ω2/3)

4(~k2 +m2)5/2

]
,

where a0(x, x′)≡ 1 and, to fourth adiabatic order,

a1(x, x′) =
[

1
6
−ξ

]
R(x′)+ 1

2

[
1
6
−ξ

]
R;α(x′)yα− 1

3
aαβ(x′)yαyβ ,

a2(x, x′) = 1
2

[
1
6
−ξ

]2
R2(x′)+ 1

3
aαα(x′) , (3.237)

which turn out to be the first DeWitt coefficients. The integrals can be worked out

analytically and (3.235) gives the first three terms in the DeWitt-Schwinger expansion

of the two-point function [48]

(4)GDS(x, x′) = |g(x)|−1/4

4π2

[
mp−2σ

K1(m
p
−2σ )+ a1(x, x′)

2
K0(m

p
−2σ )

+a2(x, x′)
4m

p
−2σK1(m

p
−2σ )

]
, (3.238)

where σ(x, x′) is half the square of the geodesic distance between x and x′, i.e., σ(x, x′)=
1
2 yµyµ = ((y0)2 −~y2)/2, and K are the modified Bessel functions of second kind.

It is also important to note that the factor |g(x)|−1/4 in the above expressions is

evaluated in Riemann normal coordinates with origin at x′. The biscalar that reduces to

|g(x)|−1/4 in arbitrary coordinates is ∆1/2(x, x′), where ∆(x, x′) is the Van Vleck - Morette

determinant, defined as

∆(x, x′)=−|g(x)|−1/2 det[−∂µ∂ν′σ(x, x′)]|g(x′)|−1/2 . (3.239)

These expressions fit identically with the conventional definition of the DeWitt-Schwinger

expansion, as first stressed in [54], which is usually written as

GDS(x, x′)≡ ∆1/2(x, x′)
16π2

∫ ∞

0

ids
(is)2 exp

(
−im2s+ σ

2is

)
F(x, x′; is) , (3.240)

with

F(x, x′; is)= a0 +a1(x, x′)is+a2(x, x′)(is)2 + ... , (3.241)
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where a0 = 1,a1,a2, ... are the DeWitt coefficients. To sum up, the Bunch-Parker local

momentum-space expansion turns out to be the momentum-space version of the DeWitt-

Schwinger expansion of the two-point function.

Comparison between (4)GAd(x, x) and (4)GDS(x, x)

To compare the expression (3.238) for GDS(x, x′) with the result of adiabatic regulariza-

tion (3.229) we have to take the coincident limit x = x′ and restrict our analysis to a

spatially flat FLRW universe ds2 = dt2−a2(t)d~x2. The comparison is not trivial since in

the DeWitt-Schwinger formalism the point-splitting is studied in terms of the geodesic

distance σ. As a first approximation, the normal Riemann coordinates in our FLRW

space-time are ~y≈ a∆~x. To rigorously compare with the adiabatic expansion we need the

higher order relations between the physical coordinates (t,~x) and the normal Riemann

coordinates (y0,~y). The following relations (with H = ȧ/a) hold [51]

y0 = ∆t+ 1
2

a2∆~x2H+ 1
3

a2∆~x2∆t
(

R
12

+H2
)
+ . . . , (3.242)

yi = a∆xi
[
1+H∆t+ 1

6
a2∆~x2H2 + ∆t2

3

(
R
6
−H2

)
+ . . .

]
. (3.243)

Moreover,

−2σ=−∆t2 +a2∆~x2 +a2∆~x2H∆t+ 1
3

a2∆~x2∆t2
(

R
6
−H2

)
+ a4∆~x4

12
H2 + . . . , (3.244)

where, in order to compare to our previous result using the adiabatic regularization, we

can just take ∆t = 0 without loss of generality and retain the point splitting in ∆~x.

A useful identity for our purposes, using (3.244) at temporal coincidence ∆t = 0, is

1
−2σ

= 1
a2∆~x2 − H2

12
+O(∆~x2) . (3.245)

Note also that the factor |g(x)|−1/4 in (3.238) is evaluated in Riemann normal coordinates

with origin at x′ so we can expand |g(x, x′)|−1/4 =∆1/2(x, x′)= 1− 1
12 Rµνyµyν+ ... . Another

useful relation can be derived using this last result with formulas (3.242) - (3.243) [note

also that R00 = 3 ä
a ;Rii =−a2 ( ä

a +2H2)],
|g(x)|−1/4 = 1−

[
2H2 + ä

a

]
σ

6
+O(σ3/2) . (3.246)
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Taking into account (3.245) and (3.246), the zeroth order contribution to (4)GDS(x, x)

can be reexpressed as

lim
x→x ′

|g(x)|−1/4m
(2π)2

p−2σ
K1(m

p
−2σ ) = lim

x→x ′ |g(x)|−1/4
[
− 1

8π2σ
+O(log(−σ))

]
(3.247)

= R
288π2 + lim

∆~x→0

m
4π2a|∆~x|K1(ma|∆~x|) (3.248)

= R
288π2 + lim

∆~x→0

1
4π2a3

∫ ∞

0
dkk2 sin(k|∆~x|)

k|∆~x|
1
ω

.(3.249)

Furthermore, the second order contribution is

lim
x→x ′

|g(x)|−1/4

4π2
a1(x, x′)

2
K0(m

p
−2σ ) = lim

x→x ′ |g(x)|−1/4 ×O(log(−σ)) (3.250)

= lim
∆~x→0

1
4π2

(1
6 −ξ

)
R

2
K0(ma|∆~x|) (3.251)

= lim
∆~x→0

1
4π2a3

∫ ∞

0
dkk2 sin(k|∆~x|)

k|∆~x|

(1
6 −ξ

)
R

2ω3 ,(3.252)

while the fourth adiabatic term is given by

lim
x→x ′

|g(x)|−1/4

4π2
a2(x, x′)

4m

p
−2σK1(m

p
−2σ )= a2(x)

16π2m2 . (3.253)

To sum up, we finally get

(4)GDS(x, x)= lim
|∆~x|→0

1
4π2a3

∫ ∞

0
dkk2 sin(k|∆~x|)

k|∆~x|

[
1
ω
+ (1

6 −ξ)R
2ω3

]
+ R

288π2 + a2(x)
16π2m2 .

(3.254)

By direct comparison with (3.229) and (3.230) we obtain

(4)GAd(x, x)= (4)GDS(x, x) . (3.255)

Equivalence for 〈Tµν〉
For the sake of simplicity it is now convenient to restrict ourselves to the case ξ= 1/6.

The reason for which we focus on this particular case is because the spin-1/2 case turns

out to be completely analogous, so that it is an illustrative example. In this situation

the trace of the stress-energy tensor can be expressed as 〈T〉 = m2〈φ2〉. The equivalence

〈T〉Ad = 〈T〉DS, and hence 〈Tµν〉Ad = 〈Tµν〉DS (i.e., c3 = 0, according to the definitions

and arguments given in Sec. 5.1), comes directly from the equivalence (4)GAd(x, x) =
(4)GDS(x, x), since

〈T〉Ad −〈T〉DS = m2
[

(4)GDS(x, x)− (4)GAd(x, x)
]
= 0 . (3.256)
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For a general ξ, one can compute the stress-energy tensor by acting on the symmetric

part of G(x, x′)−(4)G(x, x′) with a certain nonlocal operator, 〈Tµν(x)〉 = limx′→x Dµν(x, x′)[G(x, x′)−
(4)G(x, x′)] [48, 59, 71]. In Section 3.13 we will show the equivalence (4)GAd(x, x′) =
(4)GDS(x, x′), which immediately implies 〈Tµν〉Ad = 〈Tµν〉DS for a general ξ.

3.11 Adiabatic vs DeWitt-Schwinger formalisms.
Spin-1/2 fields

We extend the ideas presented in the previous section for the spin 1/2 case.

Adiabatic regularization

The first step in the adiabatic regularization is to define an asymptotic expansion of the

field modes. The expansion can be regarded as definitions of approximate particle states

in an expanding universe in the limit of infinitely slow expansion.

Spin-1/2 fields obey the Dirac equation (3.5). Taking a spatially flat FLRW space-

time, with line element ds2 = dt2 −a2(t)d~x2, it yields (3.6). Recall that we work with

the Dirac-Pauli representation of the Minkowskian Dirac matrices (3.7). For a given

comoving momentum~k, the basic independent (normalized) spinor solutions are (3.8)

and (3.13). where k ≡ |~k| and ξλ are constant and normalized two-component spinor

ξ
†
λ
ξλ′ = δλ′λ. See section 3.2 for more details. In this decomposition, hI

k and hI I
k are two

particular time-dependent functions obeying the following coupled differential equations

(3.9), and we take, as in previous sections, the following self-consistent expansion for the

field modes

hI
k(t)∼

√
ω+m

2ω
e−i

∫ t′Ω(t′)dt′F(t) , hI I
k (t)∼

√
ω−m

2ω
e−i

∫ t′Ω(t′)dt′G(t) , (3.257)

where ω ≡ ω0 ≡
√

(k/a(t))2 +m2 is the frequency of the mode and the time-dependent

functions Ω(t), F(t) and G(t) are expanded adiabatically as

Ω(t)=
∞∑

n=0
ω(n)(t) , F(t)=

∞∑
n=0

F (n)(t) , G(t)=
∞∑

n=0
G(n)(t) . (3.258)

ω(n), F (n) and G(n) are functions of adiabatic order n, which means that they contain n
derivatives of the scale factor a(t). We impose F (0) =G(0) ≡ 1 at zeroth order to recover

the Minkowskian solutions for a(t) = 1. We can solve ω(n), F (n) and G(n) for n > 1 by

direct substitution of the ansatz (3.257) into (3.9) and solving the system of equations

79



CHAPTER 3. RENORMALIZED STRESS-ENERGY TENSOR FOR SPIN-1/2 FIELDS IN
EXPANDING UNIVERSES

order by order. We also have to impose, as an additional order by order requirement, the

normalization condition |hI
k(t)|2 +|hI I

k (t)|2 = 1. For details, see section 3.2, from (3.19) to

(3.23). The adiabatic series obtained in this way contain ambiguities. The ambiguities

disappear in the adiabatic expansion of physical vacuum expectation values. It is very

convenient, for the sake of simplicity, to impose at all adiabatic orders the additional

condition ImG(n)(m)=−ImF (n)(m). It implies that F (n)(−m)=G(n)(m) and removes all

the ambiguities. Explicit expressions for the series expansion up to fourth adiabatic order

are displayed in (3.20), (3.21), (3.22), (3.23), and Appendix A. The algorithm to obtain

systematically ω(n), F (n) and G(n) for any nth adiabatic order is shown in Appendix H.

In parallel with the scalar field, the adiabatic expansion of the spin-1/2 field modes

can be translated to an expansion of the two-point function 〈ψα(x)ψ̄β(x′)〉 ≡ Sαβ(x, x′) at

coincidence x = x′. Moreover, since we are mainly interested in studying the stress-energy

tensor we will restrict our analysis to the trace of the two-point function 〈ψ̄(x′)ψ(x)〉 =
trS(x, x′). Evaluating this at coincidence, the adiabatic expansion up to fourth order is

tr(4)SAd(x, x)= −2
(2π)3a3

∫
d3k [|gI(4)

k |2 −|gI I(4)
k |2] , (3.259)

where

gI(4)
k (t) ≡

√
ω+m

2ω

4∑
n=0

F (n)(t)exp

[
−i

∫ t 4∑
n=0

ω(n)(t′)dt′
]

,

gI I(4)
k (t) ≡

√
ω−m

2ω

4∑
n=0

G(n)(t)exp

[
−i

∫ t 4∑
n=0

ω(n)(t′)dt′
]

. (3.260)

Taking into account that the trace of the stress-energy tensor can be expressed as

〈T(x)〉 = m〈ψ̄(x)ψ(x)〉, it is very convenient for our purposes to rewrite (3.259) in terms of

the expansion for the energy density and pressure (??),

tr(4)SAd(x, x)= 1
(2π)3a3m

∫
d3k

2∑
i=0

[ρ(2i)
k −3p(2i)

k ] , (3.261)

where,

ρ(0)
k = −2ω , (3.262)

ρ(2)
k = − m4ȧ2

4ω5a2 + m2ȧ2

4ω3a2 , (3.263)

p(0)
k = −2ω

3
+ 2m2

3ω
, (3.264)

p(2)
k = − m2ȧ2

12ω3a2 − m2ä
6ω3a

+ m4ä
6ω5a

+ m4ȧ2

2ω5a2 − 5m6ȧ2

12ω7a2 , (3.265)
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and the contribution of the fourth adiabatic order is itself finite and gives

1
(2π)3a3m

∫
d3k [ρ(4) −3p(4)]= trA2

16π2m
, (3.266)

where A2 turns out to be one of the DeWitt coefficients for spin-1/2 fields at coincidence

[54, 157] (see next subsection)

− A2(x)= a2(ξ= 1/4)I+ 1
48
Σ[αβ]Σ[γδ]RαβλξRγδ

λξ
. (3.267)

In this equation a2(ξ = 1/4) is the DeWitt coefficient for a scalar field with curvature

coupling ξ= 1/4, and

Σ[αβ] ≡
1
4

[
γ
α
γ
β
−γ

β
γ
α

]
. (3.268)

Taking into account that

tr {Σ[αβ]Σ[γδ]}= gαδgβγ− gαγgβδ , (3.269)

the term (3.266) accounts for the trace anomaly in the massless limit

− trA2

16π2 = 2
2880π2

[
−11

2

(
RµνRµν− 1

3
R2

)
+32R

]
. (3.270)

Let us analyze in detail the lower orders. The zeroth order contribution is easy to

handle
1

(2π)3a3m

∫
d3k [ρ(0) −3p(0)]= −m

π2a3

∫ ∞

0
dk k2 1

ω
. (3.271)

However, the second adiabatic order is more subtle. Using the stress-energy tensor

conservation [which is equivalent as imposing the condition ρ̇(n)
k +3H p(n)

k = 0, see (??)],

and dimensional regularization, one can eventually arrive at the following expression

1
(2π)3a3m

∫
d3k [ρ(2) −3p(2)]= lim

n→4

−mR
24π2

[
1

n−4
+ 4

3
− log2

]
. (3.272)

Using now the identity

4m
4π2a3

∫ ∞

0
dk k2 R

24ω3 = lim
n→4

−mR
24π2

[
1

n−4
+1− log2

]
, (3.273)

(3.272) can be finally expressed as

1
(2π)3a3m

∫
d3k [ρ(2) −3p(2)]=−4

[
mR

288π2 − m
4π2a3

∫ ∞

0
dk k2 R

24ω3

]
. (3.274)

Summing up we have

tr(4)SAd(x, x) = −m
π2a3

∫ ∞

0
dk k2

[
1
ω
− R

24ω3

]
− 4mR

288π2 + trA2

16π2m

= −4m(2)GAd(x, x)|ξ=1/4 +
trA2

16π2m
. (3.275)
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Local momentum-space representation and DeWitt-Schwinger
expansion

Following [54, 157], one can construct an asymptotic expansion for the two-point function

〈ψ(x)ψ̄(x′)〉 ≡ S(x, x′) as follows. Introduce the bispinor G (x, x′) as

S(x, x′)≡ (iγµ∇µ+m)G (x, x′) . (3.276)

This way we have, as desired,(
iγµ∇µ−m

)
S(x, x′)=

(
2+m2 + 1

4
R

)
[−G (x, x′)]= |g(x)|−1/2δ(x− x ′) , (3.277)

where we used the identity,
(
γµ∇µ

)2 =2+ 1
4 R [157]. We can perform a Fourier expansion

in Riemann normal coordinates around x′, as in the scalar case,

G (x, x′)= −i|g(x)|−1/4

(2π)4

∫
d4k eikyḠ (k) . (3.278)

The local-momentum expansion for spin-1/2 fields is basically that one for spin-0 fields

taking ξ= 1/4, except for additional spinorial contributions. The detailed expansion can

be looked up in [54, 157], and up to fourth adiabatic order reads

Ḡ (k) = −
{

I

−k2 +m2 − R I

12(−k2 +m2)2 − i
[
I

24
R;α+ 1

12
Σ[αβ]R

αβ λ

µ ;λ

]
∂

∂kα

1
(−k2 +m2)2

+
[
I

3
aαβ(ξ= 1/4)− 1

48
Σ[αβ](RRαβ

µν+Rαβλ

µ;λν+Rαβλ

ν;λµ)

+ 1
96
Σ[αβ]Σ[γδ](R

αβλ
µRγδ

λν
+Rαβλ

νRγδ

λµ
)
]

∂

∂kα

∂

∂kβ
(−k2 +m2)−2

+
[(

R2

288
+ 1

3
aαα(ξ= 1/4)

)
I+ 1

48
Σ[αβ]Σ[γδ]RαβλξRγδ

λξ

]
2

(−k2 +m2)3 + ...
}

, (3.279)

The above expression for the spinor matrix S(x, x′) provides an asymptotic expansion

of the two-point function 〈ψ(x)ψ̄(x′)〉, which also turns out to be equivalent to the DeWitt-

Schwinger expansion [54]. Since we are mainly interested in 〈ψ̄(x)ψ(x)〉 we take the

trace of S(x, x′) in formulas above. Taking into account that tr
(
γµ1 . . .γµ2k+1

)= 0, and after

performing the contour k0 integration, as in the scalar case, we obtain

tr (4)SDS(x, x′)=−4m
|g(x)|−1/4

2(2π)3

∫
d3ke−i(~k~y−

p
~k2+m2 y0)

[
1

(~k2 +m2)1/2
− R(1− i y0ω)

24(~k2 +m2)3/2
+ . . .

]
.

(3.280)

Restricting now the analysis to a spatially flat FLRW spacetime with metric ds2 =
dt2 −a2(t)d~x2 and proceeding in parallel to the scalar case we get, at coincidence x = x′,

tr (4)SDS(x, x)=−4m (2)GDS(x, x)|ξ=1/4 +
trA2(x)
16π2m

. (3.281)
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Comparison between tr (4)SDS(x, x) and tr (4)SAd(x, x) and
equivalence of 〈Tµν〉
It is clear from our previous results that we have a complete agreement between

tr (4)SDS(x, x) and tr (4)SAd(x, x) :

tr (4)SDS(x, x)= tr (4)SAd(x, x)=− m
π2a3

∫ ∞

0
dk k2

[
1
ω
− R

24ω3

]
− 4mR

288π2 + trA2(x)
16π2m

.

(3.282)

As argued in section 5.1, and taking into account that 〈T〉 = m〈ψ̄ψ〉, the equivalence

〈T〉Ad = 〈T〉DS for spin-1/2 fields, and hence 〈Tµν〉Ad = 〈Tµν〉DS, can be simply derived

from (3.282).

3.12 Extension of the equivalence to higher orders

The results obtained in previous sections suggest that the equivalence may go be-

yond the fourth adiabatic order, i.e., the order required to prove the equivalence of

the renormalized expectation values of the stress-energy tensor. We have checked by

computed assisted methods that our fundamental relations (4)GAd(x, x) = (4)GDS(x, x)

and tr (4)SAd(x, x)= tr (4)SDS(x, x) are also valid at sixth adiabatic order. In the former

case we have

(6)GAd(x, x)= (6)GDS(x, x)= 1
4π2a3

∫ ∞

0
dkk2

[
1
ω
+ (1

6 −ξ)R
2ω3

]
+ R

288π2 +
a2

16π2m2 +
a3

16π2m4 ,

(3.283)

where the value obtained for the purely sixth adiabatic order contribution matches

exactly with the third order DeWitt coefficient a3. The general expression for the coef-

ficient a3, which has 28 terms, was first obtained in [103, 173], and can also be found

in [157] (see Chapter 3, Sec. 3.6). We note that the above agreement is consistent with

that found in [121, 134, 135] in terms of the sixth order adiabatic approximation for the

renormalized stress-energy tensor of scalar fields.

We have also tested the equivalence at sixth adiabatic order for spin-1/2 fields

tr (6)SDS(x, x)= tr (6)SAd(x, x)=− m
π2a3

∫ ∞

0
dk k2

[
1
ω
− R

24ω3

]
− 4mR

288π2+
trA2

16π2m
+ trA3

16π2m3 .

(3.284)

The adiabatic method produces the result

trA3 =− 2
21

ȧ4

a4
ä
a
+ 8

21
ȧ2

a2
ä2

a2−
4ä3

45a3+
2

21
ȧ3

a3

...a
a
−2

5
ȧä

...a
a3 −

...a 2

210a2−
ȧ2....a
15a3+

ä
....a

105a2+
2ȧa(5)

35a2 + a(6)

70a
,

(3.285)
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where we have used the obvious notation [a(n) ≡ dn

dtn a]. We have checked that (3.285)

agrees with the third order DeWitt coefficient for fermions [34, 35],

−A3(x) = a3(ξ= 1/4)I−Σ[ab]Σ[cd]
[

R
576

RabµνR µν

cd + 1
720

R ;µ
abµν R ν;α

cdα + 1
120

RabµνR ν;αµ
cdα

+ 1
180

Rabµν;αR µν;α
cd + 1

72
RαβR µ

ab α
Rcdµβ−

1
240

RµναβRabµνRcdαβ

]
+ 1

80
Σ[ab]Σ[cd]Σ[e, f ]RabµνR ν

cd γR γµ

e f . (3.286)

We have also checked that this contribution is consistent with the purely sixth adiabatic

order of the renormalized stress-energy tensor that has been reported in [134, 135].

Taking into account all this, it seems natural to argue that relations (3.283) and

(3.284) are also valid for an arbitrary nth order, since both adiabatic and DeWitt-

Schwinger methods provide a series expansion in which each contribution is univocally

derived from some well-defined recursion relations using the first order terms as seeds

for iteration. We have explicitly seen that the leading sixth order contributions agree,

so it is very likely that higher order terms will agree as well. The calculation of the

fourth and higher order DeWitt coefficients has been an elusive problem for a long

time. The formal solution, given by a very involved recursion mechanism, was given in

[34, 35]. To show the power of the adiabatic method for cosmological space-times, and

also as an illustrative example, we have easily worked out the explicit form of the fourth

DeWitt-Schwinger coefficient a4(x) using (3.376). It is given in Appendix I.

3.13 Extension of the equivalence to separate points

Finally, we would like to analyze the two-point functions, expanded up to a given adiabatic

order, at separate points. The calculations are much more involved. We illustrate here

explicitly the equivalence found at fourth adiabatic order for scalar fields. The adiabatic

scheme provides the following result:

(4)GAd((t,~x), (t,~x′)) = 1
2(2π)3a3

∫
d3~k ei~k∆~x

[
1
ω
+ (1

6 −ξ)R
2ω3 + m2ȧ2

2a2ω5 + m2ä
4aω5 − 5m4ȧ2

8a2ω7 + (W−1)(4)

]

= m
4π2a|∆~x|K1(am|∆~x|)+ (1

6 −ξ)R
8π2 K0(am|∆~x|)

+ R
288π2 (ma|∆~x|)K1(am|∆~x|)− H2

96π2 (am|∆~x|)2K0(am|∆~x|)

+ 1
2(2π)3a3

∫
d3~k ei~k∆~x(W−1)(4) , (3.287)
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where

1
2(2π)3a3

∫
d3~k ei~k∆~x(W−1)(4) = (3.288)

K0(am|∆~x|)
π2

{
−7|∆~x|4a4H4

5760
− 11m2|∆~x|4a4H2ä

5760a
− |∆~x|2ξaH2ä

4a
+ 43|∆~x|2a2H2ä

960a

+3|∆~x|2ä2

320a2 − |∆~x|2ξä2

16a2 + 7|∆~x|2
960

H
...a
a
− |∆~x|2ξH

...a
16a

− |∆~x|2a2....a
960a

}
+K1(am|∆~x|)

π2

{
H4

[ |∆~x|a
32m

− 3ξ|∆~x|a
8m

+ 9ξ2|∆~x|a
8m

− m|∆~x|3a3

180
+ m|∆~x|3a3ξ

32
+ m3|∆~x|5a5

4608

]
H2 ä

a

[
m|∆~x|3a3

2880
+ mξ|∆~x|3a3

32
+ 29|∆~x|a

240m
− 17|∆~x|aξ

16m
+ 9|∆~x|aξ2

4m

]
ä2

a2

[
3|∆~x|a
160m

− −5ξ|∆~x|a
16m

+ 9|∆~x|aξ2

8m
+ m|∆~x|3a3ξ

640

]
+

...a
a

H
[

3|∆~x|a
80m

+ 3|∆~x|aξ
16m

+ m|∆~x|3a3

480

]
(3.289)

+
....a
a

[
− |∆~x|

80m
+ |∆~x|ξ

16m

]}
. (3.290)

On the other hand, the DeWitt-Schwinger calculation provides (3.238). To compare it

with the above result just expand it up to fourth adiabatic order (for the following identi-

ties we shall use the auxiliary parameter T to denote the number of time-derivatives

that are present). Use

g = 1+ 1
3

Rαβyαyβ+ 1
6

Rαβ;γyαyβyγ+
[

1
18

RαβRγδ−
1

90
R k
λαβ Rλ

γδk +
1

20
Rαβ;γδ

]
yαyβyγyδ+O(T−5) ,

(3.291)

and relations (3.242)-(3.244) including the fourth adiabatic contributions [51] (for sim-

plicity we only show here, without loss of generality, the corresponding expressions for

∆t = 0)

y0 = 1
2

Ha2∆x2 + 1
144

a4∆x4HR+O(T−5) , (3.292)

yi = a∆xi
{

1+ 1
6

a2∆x2H2 + 1
120

a4∆x4H2
[
H2 +3

ä
a

]}
+O(T−5) , (3.293)

−2σ = ∆x2a2 + 1
12

a4∆x4H2 + 1
360

a6∆x6H2
[
H2 +3

ä
a

]
+O(T−5) . (3.294)

Using all these auxiliary expressions we can prove that the adiabatic scheme generates

the same two-point function as the DeWitt-Schwinger one up to fourth order in the

derivatives of the metric,

(4)GDS(x, x′)= (4)GAd(x, x′) . (3.295)
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We believe that one might extend this identity up to any order by induction. We note in

passing that the result (3.295) implies the equivalence of the renormalized stress-energy

tensor for ξ 6= 1/6 (see comments below (3.256)).

3.14 Summary and final comments

When a quantum field is coupled to a dynamical classical background, it gets excited,

and undergoes a phase of particle creation. In this case new UV-divergent terms ap-

pear in the expectation values of its quadratic products, which must be appropriately

removed to obtain a physical, finite quantity. In cosmological scenarios, adiabatic regu-

larization provides an appropriate solution to this challenge: by means of an adiabatic

expansion of the field modes in momenta, one can identify the covariant UV-divergent

terms of the corresponding bilinear, and subtract them directly from the unrenormalized

quantity. The background may be the expansion of the Universe itself, as in the case

of inflation, or a classical homogeneous scalar field, as in the preheating phase. The

adiabatic scheme can be applied in both situations, for both bosonic and fermionic species.

We began this chapter by presenting an extension of the adiabatic regularization

method in order to find the renormalized spin-1/2 stress-energy tensor in a FLRW

expanding universe. The main results are equations (3.72) and (3.73), which provide

expressions that are simple and numerically easy to compute, once the quantum state

is given. Then we illustrated this approach by briefly analyzing de Sitter space, with

an assumed Bunch-Davies type vacuum state. The renormalized energy and pressure

densities coincides with those predicted by symmetry arguments [126, 127]. We have also

analyzed the renormalized stress-energy tensor in a purely radiation-dominated universe.

In the latter case the early and late-time behavior of the renormalized stress-energy

tensor can be worked out explicitly, irrespective of the specific form of the quantum

state, and agree with those assumed by classical cosmology for radiation and cold matter,

respectively.

After that, we developed the adiabatic regularization method for spin-1/2 fields in

an expanding Universe when coupled to a classical background scalar field through a

Yukawa interaction term. This is of particular physical interest in models of cosmological

preheating. The results of this work are a natural generalization of the above, and

broaden significantly the range of applicability of the adiabatic method. We have com-
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puted the adiabatic expansion of the spin-1/2 field modes up to 4th adiabatic order, and

used it to obtain expressions for the renormalized expectation values of the stress-energy

tensor 〈Tµν〉ren and the bilinear 〈ψ̄ψ〉ren. These quantities are fundamental ingredients

in the study of the semiclassical equations of fermionic matter interacting with a back-

ground field, as they codify the backreaction effects from the created matter on the

metric/background fields. Therefore, it is essential to develop an efficient renormalization

scheme to correctly quantify the effects of this backreaction. All expressions obtained are

generic, depending only on the background scalar field and scale factor time-dependent

functions. This constitutes probably the major advantage of the adiabatic renormaliza-

tion scheme. We leave the method prepared to perform numerical computations in future

investigations for cosmological scenarios of interest.

We tested the overall theoretical construction by justifying the method in terms of

renormalization of coupling constants, as well as by computing the conformal anomaly.

Our calculation of the conformal anomaly with the Yukawa interaction has been proved

to be fully consistent with the generic results obtained via the one-loop effective action.

Therefore, by considering such a system, we have also improved our general understand-

ing of quantum field theory in curved spacetimes.

A final goal of this chapter was to show the equivalence of the renormalized expec-

tation values of the stress-energy tensor for spin-1/2 fields using both adiabatic and

DeWitt-Schwinger methods. This is a very natural question since the adiabatic renor-

malization scheme for Dirac fields has been introduced very recently in the literature.

The employed strategy to achieve our goal has led us to show the equivalence for scalar

fields as well, in a simpler way to that used in [25, 47]. Moreover, we were naturally led

to investigate the equivalence for the two-point function at coincidence for both DeWitt-

Schwinger and adiabatic series expansion at any order. We have checked explicitly that

the equality holds at sixth adiabatic order and we have argued that the equivalence

must hold at an arbitrary order. This way, the adiabatic regularization method will offer

a very efficient computational tool to evaluate the higher order DeWitt coefficients in

FLRW space-times for both scalar and Dirac fields. This may be relevant to capture

nonperturbative aspects of the effective action in cosmological space-times, as those

found in [154–156, 158]. Finally, we would like to remark that these results suggest that

the equality (n)GAd(x, x)= (n)GDS(x, x) , n = 0,2,4,6, ... (and the analogue for Dirac fields)

could even hold for separate points. This is actually supported by the fact that (3.255),

(3.282), extended to separate points, coincide at least up to the fourth adiabatic order.
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3.15 Appendices

A. Fermionic adiabatic expansion

We give here the third and fourth order contributions to F(t) and ω(t) in (3.18) by solving
the set of equations (3.19) order by order [we have G(n)(m)= F (n)(−m)].

ω(3) = 0 , (3.296)

F (3) = i
(

65m5ȧ3

64a3ω8 − 97m3ȧ3

128a3ω6 + mȧ3

16a3ω4 − 19m3ȧä
32a2ω6 + mȧä

4a2ω4 + m
...a

16aω4

)
, (3.297)

and

ω(4) = − 1105m8ȧ4

128a4ω11 + 337m6ȧ4

32a4ω9 − 377m4ȧ4

128a4ω7 + 3m2ȧ4

32a4ω5 + 221m6ȧ2ä
32a3ω9 − 389m4ȧ2ä

64a3ω7 + 13m2ȧ2ä
16a3ω5 − 19m4ä2

32a2ω7

+ m2ä2

4a2ω5 − 7m4ȧ
...a

8a2ω7 + 15m2ȧ
...a

32a2ω5 + m2....a
16aω5 , (3.298)

F (4) = +2285m8ȧ4

512a4ω12 − 565m7ȧ4

128a4ω11 − 1263m6ȧ4

256a4ω10 + 2611m5ȧ4

512a4ω9 + 2371m4ȧ4

2048a4ω8 − 333m3ȧ4

256a4ω7 − 3m2ȧ4

128a4ω6 + mȧ4

32a4ω5

−457m6ȧ2ä
128a3ω10 + 113m5ȧ2ä

32a3ω9 + 725m4ȧ2ä
256a3ω8 − 749m3ȧ2ä

256a3ω7 − 19m2ȧ2ä
64a3ω6 + 11mȧ2ä

32a3ω5 + 41m4ä2

128a2ω8 − 5m3ä2

16a2ω7

− 17m2ä2

128a2ω6 + mä2

8a2ω5 + 7m4ȧ
...a

16a2ω8 − 7m3ȧ
...a

16a2ω7 − 13m2ȧ
...a

64a2ω6 + 7mȧ
...a

32a2ω5 − m2....a
32aω6 + m

....a
32aω5 . (3.299)

B. Useful formulas for a FLRW spacetime

In checking that the fourth order adiabatic subtraction terms (3.54) and (3.66) give the

covariant result (3.69) we used the following results

R00 = 3
ä
a

, Ri j =−a2
[
2

ȧ2

a2 + ä
a

]
δi j , (3.300)

R2 = 36
[

ȧ4

a4 +2
ȧ2

a2
ä
a
+ ä2

a2

]
, (3.301)

2R = 6
[

ä2

a2 +
....a
a

−5
ȧ2

a2
ä
a
+3

ȧ
a

...a
a

]
, (3.302)

RµνRµν = 12
[

ȧ4

a4 + ä2

a2 + ȧ2

a2
ä
a

]
, (3.303)

R;00 = 6
[ ....a

a
+ ä2

a2 −8
ȧ2

a2
ä
a
+6

ȧ4

a4

]
, (3.304)

R;i j = −6a2
[ ...a

a
ȧ
a
+ ä

a
ȧ2

a2 −2
ȧ4

a4

]
δi j . (3.305)
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C. Asymptotic analysis of the energy density and pressure for a
free spin 1/2 field in a radiation dominated universe

In this Appendix we shall study the asymptotic properties of the stress tensor components

in a radiation-dominated universe. The main results are collected and used in section 3.4,

starting from formula (3.103). The large momentum behaviour of this tensor will give us

a necessary and sufficient condition for its renormalizability, while the late/early-time

behaviour will reproduce the classical results of physics of fluids for a matter/radiation-

dominated universe.

Recall the general solution (3.102) for the modes in a radiation-dominated universe,

and define for simplicity the following quantities,

gI
k(t) ≡ N

Wκ,µ(z)p
a(t)

, (3.306)

gI I
k (t) ≡ N

k
2ma(t)3/2

[
Wκ,µ(z)+

(
κ− 3

4

)
Wκ−1,µ(z)

]
. (3.307)

Expressions (3.42), (3.59), and (3.67), can be rewritten in terms of these independent

solutions by doing a a Bogolubov-type rotation (hI
k → Ek gI

k+Fk gI I∗
k , hI I

k → Ek gI I
k −Fk gI∗

k )

ρk = ρD
k

[|E|2 −|F|2]+EF∗ρND
k +E∗FρND∗

k , (3.308)

pk = pD
k

[|E|2 −|F|2]+EF∗pND
k +E∗F pND∗

k , (3.309)

ρD
k = −3pD

k −2m
[
|gI

k|2 −|gI I
k |2

]
, (3.310)

where

ρD
k = i

[
gI

k
∂gI∗

k

∂t
+ gI I

k
∂gI I∗

k

∂t
− gI∗

k
∂gI

k

∂t
− gI I∗

k
∂gI I

k

∂t

]
, (3.311)

ρND
k = −2i

[
gI

k
∂gI I

k

∂t
− gI I

k
∂gI

k

∂t

]
, (3.312)

pD
k = −2k

3a

[
gI

k gI I∗
k + gI∗

k gI I
k

]
, (3.313)

pND
k = −2k

3a

[
(gI)2 − (gI I)2

]
. (3.314)

The energy density and the pressure functions, expressed this way, show explicitly the

dependence on the vacuum state.

Using the result (3.311), and derivative and functional properties of the Whittaker
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functions [8], one can find for the energy density,

ρD
k = −2m− 4mx2e−πx2

|z|3/2 (3.315)

×
[
|Wκ, 1

4
(z)|2 −

(
1
4
+ x4

)
|Wκ−1, 1

4
(z)|2

]
.

For large values of the momenta, k2/a2 >> m2, the Whittaker function can be very well

approximated by [130]

Wκ,1/4(z) =
p
π z1/4

Γ
(3

4 −κ
) {

cos(2
p
κz )

[
1− M2(z)

κ
+ M4(z)

κ2 −
(

M1(z)
κ

− M3(z)
κ2

)
Γ(3/4−κ)
Γ(1/4−κ)

]
(3.316)

− sin(2
p
κz )p

κ

[
M1(z)− M3(z)

κ
+ M5(z)

κ2 +
(
1− M2(z)

κ
+ M4(z)

κ2

)
Γ(3/4−κ)
Γ(1/4−κ)

]}
+O(|κ|−3) ,

where Mn(z) are a set of polynomials that satisfy

M1(z) = − z3/2

12
, (3.317)

M2(z) = − z
16

(
1− z2

18

)
, (3.318)

M3(z) = − z1/2

32
+ z5/2

120
− z9/2

10368
, (3.319)

M4(z) = − 1
128

+ 19z2

1536
− 11z4

23040
+ z6

497664
, (3.320)

M5(z) = z3/2(2721600−291924z2 +3528z4 −7z6)
209018880

. (3.321)

After a long calculation one can find that

|Wκ, 1
4
(z)|2 −

(
1
4
+ x4

)
|Wκ−1, 1

4
(z)|2 (3.322)

=
(

z
x
− z3/2

2x2 + z2

8x3 − z(1+ z2)
128x5 +O(x−7)

)
eπx2

,

so that, taking the change x =
√

t
2m (w2 −m2) , one gets

ρD
k =

[
−2w+ m2

16t2w3 +O(w−5)
]

. (3.323)

From this expression it is easy to see that we recover those terms of zeroth and second

adiabatic order found in Eqs. (3.45)-(3.50) for a radiation dominated universe. These

contributions give the divergences of the stress-energy tensor. Additionally, the no-

diagonal terms are shown to be

ρND
k = O(ω−1) . (3.324)
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On the other hand, taking (3.313) (or more easily (3.310)) we can find for the pressure

pD
k = −4m

3
− 4mx2e−πx2

3|z|3/2

×
[(

1− z
x2

)
|Wκ, 1

4
(z)|2 −

(
1
4
+ x4

)
|Wκ−1, 1

4
(z)|2

]
= −

[
2
3
ω− 2m2

3w
− m2

48t2ω3 +O(ω−7)
]

, (3.325)

which also agrees with the divergences found in (3.63)-(3.64). Additionally,

pND
k = O(ω−1) . (3.326)

The choice of the parameters Ek and Fk (the choice of the vacuum state) is determined

by imposing some initial condition at a given instant of time, t0. This choice must be in

such a way that leave the stress energy tensor without divergences. According to (3.323),

(3.325) and (3.53), (3.61) respectively, the stress energy tensor renormalizability imposes

a natural constraint on the vacuum state (recall (3.308) and (3.309)),

|Ek|2 −|Fk|2 = 1+O(w−5) . (3.327)

This means that Ek = 1+O(w−5) and Fk =O(w−5/2), which makes EkF∗
k =O(w−5/2), and

it is enough for the no-diagonal terms, (3.324) and (3.326), to not to give new divergences.

Let’s focus now on the stress-energy tensor for late times in the expansion of the

universe. Taking t >> m−1, equation (3.315) behaves as

ρD
k =−2m− 4mx2

z
+ 4mx4

z2 + . . . , (3.328)

while

ρ(0)
k +ρ(2)

k +ρ(4)
k = ρD

k +O(z−7) , (3.329)

so we may state, recalling (3.53),

〈T00〉ren (t >> m−1)= 1
2π2a3

[∫ ∞

0
dkk22m

[
1− (|Ek|2 −|Fk|2)

]+O(z−1)
]

. (3.330)

Similarly, one can study the late times behaviour of the pressure (3.325), and find

pD
k =−8mx2

3z
+ 16mx4

3z2 − 2mx2(−1+8x4)
z3 + . . . , (3.331)

while the corresponding adiabatic subtractions are

p(0)
k + p(2)

k + p(4)
k = pD

k +O(z−7) . (3.332)
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Again, following (3.61) we find

〈Tii〉ren (t >> m−1)= 1
2π2a

[∫ ∞

0
dkk2 8mx2

3z
[
1− (|Ek|2 −|Fk|2)

]+O(z−2)
]

. (3.333)

This time, the dominant contribution to the total pressure, p ≡ 〈Tii〉ren /a2, decays with

time. Basically, equations (3.330) and (3.333) tell us that in a radiation dominated

expansion of the universe, a spin 1/2 field tend to behave as a source of cold matter in

cosmology. This may be useful to analyze in detail the phase transition from radiation to

matter dominated universes, in the standard cosmology.

On the other hand, at early times t << m−1, (3.315) reads [we analyze only the large

momentum behaviour since it is in this case where any problem with divergences might

arise]

ρD
k = i

4mπe−πx2

p
z

[
(−1)1/4

Γ(ix2)Γ(1/2− ix2)
+ (−1)3/4

Γ(−ix2)Γ(1/2+ ix2)

]
+O(z0) (3.334)

= 1p
z

[
−4mx+ m

32x3 + 21m
8192x7 +O(x−11)

]
+O(z0) , (3.335)

and just as in the late-time case we obtain

ρ(0)
k +ρ(2)

k +ρ(4)
k = 1p

z

[
−4mx+ m

32x3 + 21m
8192x7

]
+O(z1/2) , (3.336)

so at early times,

〈T00〉ren (t << m−1)≈ 1
2π2a3

[∫ ∞

0
dkk2 4mxp

z
[
1− (|Ek|2 −|Fk|2)

]+O(z0)
]

. (3.337)

Finally, if one tries to do the same calculation to the pressure (3.325), one finds just the

same results for (3.335) and (3.336) but with a factor 1/3, so recovering this way the

equation of state for classical radiation in cosmology.

D. Adiabatic expansion with Yukawa coupling. Explicit
expressions

In this appendix, we provide the terms of the adiabatic expansion of the spin-1/2 field

modes up to fourth order, discussed in section 3.6. Although the first and second or-

der terms have already been written in there, we copy them here for convenience. As

introduced in equations (3.131) and (3.132), the adiabatic expansion takes the form

hI
k(t) =

√
ω+m

2ω
e−i

∫ t(ω+ω(1)+ω(2)+ω(3)+ω(4)+... )dt′(1+F (1) +F (2) +F (3) +F (4) + . . . ) ,

hI I
k (t) =

√
ω−m

2ω
e−i

∫ t(ω+ω(1)+ω(2)+ω(3)+ω(4)+... )dt′(1+G(1) +G(2) +G(3) +G(4) + . . . ) .(3.338)
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The terms G(n) can be obtained from F (n) with the relation G(n)(m, s)= F (n)(−m,−s), so

we do not explicitly write them here. We denote by f (n)
x and f (n)

y to the real and imaginary

parts of F (n) respectively, so that F (n) = f (n)
x + i f (n)

y .

The first order terms are:

f (1)
x = s

2ω
− ms

2ω2 , (3.339)

f (1)
y = − mȧ

4ω2a
, (3.340)

ω(1) = ms
ω

. (3.341)

The second order terms are:

f (2)
x = m2ä

8aω4 − mä
8aω3 − 5m4ȧ2

16a2ω6 + 5m3ȧ2

16a2ω5 + 3m2ȧ2

32a2ω4 − mȧ2

8a2ω3 + 5m2s2

8ω4 − ms2

2ω3 − s2

8ω2 ,(3.342)

f (2)
y = 5m2sȧ

8aω4 − sȧ
4aω2 − ṡ

4ω2 , (3.343)

ω(2) = −m2s2

2ω3 + s2

2ω
+ 5m4ȧ2

8a2ω5 − 3m2ȧ2

8a2ω3 − m2ä
4aω3 . (3.344)

The third order terms are:

f (3)
x = −15m3s3

16ω6 + 11m2s3

16ω5 + 7ms3

16ω4 − 3s3

16ω3 + 65m5sȧ2

32a2ω8 − 15m4sȧ2

8a2ω7 − 97m3sȧ2

64a2ω6 + 93m2sȧ2

64a2ω5

+ msȧ2

8a2ω4 − sȧ2

8a2ω3 − 5m3ȧṡ
8aω6 + 5m2ȧṡ

8aω5 + 5mȧṡ
16aω4 − 3ȧṡ

8aω3 − 9m3sä
16aω6 + m2sä

2aω5 + 3msä
16aω4

− sä
8aω3 + ms̈

8ω4 − s̈
8ω3 , (3.345)

f (3)
y = −45m3s2ȧ

32aω6 + 31ms2ȧ
32aω4 + 65m5ȧ3

64a3ω8 − 97m3ȧ3

128a3ω6 + mȧ3

16a3ω4 + 5msṡ
8ω4 − 19m3ȧä

32a2ω6 + mȧä
4a2ω4

+ ma(3)

16aω4 , (3.346)

ω(3) = m3s3

2ω5 − ms3

2ω3 − 25m5sȧ2

8a2ω7 + 13m3sȧ2

4a2ω5 − msȧ2

2a2ω3 + 5m3ȧṡ
4aω5 − 7mȧṡ

8aω3 + 3m3sä
4aω5 − 3msä

8aω3 − ms̈
4ω3 .

(3.347)
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Finally, the fourth-order terms are:

f (4)
x = 2285ȧ4m8

512a4ω12 − 565ȧ4m7

128a4ω11 − 1263ȧ4m6

256a4ω10 − 1105s2ȧ2m6

128a2ω10 − 457ȧ2äm6

128a3ω10 + 2611ȧ4m5

512a4ω9 + 965s2ȧ2m5

128a2ω9

+113ȧ2äm5

32a3ω9 + 2371ȧ4m4

2048a4ω8 + 2441s2ȧ2m4

256a2ω8 + 41ä2m4

128a2ω8 + 65sȧṡm4

16aω8 + 725ȧ2äm4

256a3ω8 + 117s2äm4

64aω8

+7ȧa(3)m4

16a2ω8 + 195s4m4

128ω8 − 333ȧ4m3

256a4ω7 − 1049s2ȧ2m3

128a2ω7 − 5ä2m3

16a2ω7 − 15sȧṡm3

4aω7 − 749ȧ2äm3

256a3ω7

−97s2äm3

64aω7 − 7ȧa(3)m3

16a2ω7 − 17s4m3

16ω7 − 3ȧ4m2

128a4ω6 − 561s2ȧ2m2

256a2ω6 − 5ṡ2m2

16ω6 − 17ä2m2

128a2ω6

−95sȧṡm2

32aω6 − 19ȧ2äm2

64a3ω6 − 73s2äm2

64aω6 − 9ss̈m2

16ω6 − 13ȧa(3)m2

64a2ω6 − a(4)m2

32aω6 − 71s4m2

64ω6

+ ȧ4m
32a4ω5 + 111s2ȧ2m

64a2ω5 + 5ṡ2m
16ω5 + ä2m

8a2ω5 + 89sȧṡm
32aω5 + 11ȧ2äm

32a3ω5 + 49s2äm
64aω5 + ss̈m

2ω5

+7ȧa(3)m
32a2ω5 + a(4)m

32aω5 + 9s4m
16ω5 + s2ȧ2

32a2ω4 − ṡ2

32ω4 + sȧṡ
8aω4 + s2ä

16aω4 + ss̈
16ω4 + 11s4

128ω4 , (3.348)

f (4)
y = 195m4s3ȧ

64aω8 − 187m2s3ȧ
64aω6 + 11s3ȧ

32aω4 − 1105m6sȧ3

128a3ω10 + 2571m4sȧ3

256a3ω8 − 329m2sȧ3

128a3ω6 + sȧ3

16a3ω4

−45m2s2 ṡ
32ω6 + 11s2 ṡ

32ω4 + 195m4ȧ2 ṡ
64a2ω8 − 367m2ȧ2 ṡ

128a2ω6 + 7ȧ2 ṡ
16a2ω4 + 247m4sȧä

64a2ω8 − 187m2sȧä
64a2ω6 + sȧä

4a2ω4

−19m2 ṡä
32aω6 + ṡä

4aω4 − 19m2ȧs̈
32aω6 + 3ȧs̈

8aω4 − 9m2sa(3)

32aω6 + sa(3)

16aω4 + s(3)

16ω4 , (3.349)

ω(4) = − 5m4s4

8ω7 + 3m2s4

4ω5 − s4

8ω3 + 175m6s2ȧ2

16a2ω9 − 245m4s2ȧ2

16a2ω7 + 79m2s2ȧ2

16a2ω5 − s2ȧ2

8a2ω3 − 1105m8ȧ4

128a4ω11

+337m6ȧ4

32a4ω9 − 377m4ȧ4

128a4ω7 + 3m2ȧ4

32a4ω5 − 25m4sȧṡ
4aω7 + 23m2sȧṡ

4aω5 − 3sȧṡ
8aω3 + 5m2 ṡ2

8ω5 − 15m4s2ä
8aω7

+25m2s2ä
16aω5 − s2ä

8aω3 + 221m6ȧ2ä
32a3ω9 − 389m4ȧ2ä

64a3ω7 + 13m2ȧ2ä
16a3ω5 − 19m4ä2

32a2ω7 + m2ä2

4a2ω5 + 3m2ss̈
4ω5

− ss̈
8ω3 − 7m4ȧa(3)

8a2ω7 + 15m2ȧa(3)

32a2ω5 + m2a(4)

16aω5 . (3.350)

E. A simple realization of the Yukawa coupling

In this Appendix we consider a simple mathematical example to illustrate how the

adiabatic method works. This is complementary to the results presented in 3.7. We

compute the bilinear 〈ψ̄ψ〉ren of a Dirac field, coupled to a background scalar field

evolving in Minkowski spacetime (a(t)= 1) as

s(t)= gYΦ(t)=µ/t . (3.351)

94



3.15. APPENDICES

For convenience, we have absorbed the Yukawa coupling gY in the dimensionless con-

stant µ. To avoid the mathematical instability at t → 0, we will only consider times in the

range −∞< t < 0. This model has three convenient aspects which simplify significantly

the analysis. First of all, the field mode equations (3.127) have an analytical solution in

terms of the well-known Whitakker functions, so we do not have to solve the equation

numerically. Second, at time t →−∞ we have s, ṡ · · ·→ 0, so that the system is adiabatic

initially, and there is no ambiguity when imposing initial conditions to the field modes.

And third, as we shall see, the system behaves in such a way that, as long as we are well

before the instability, 〈ψ̄ψ〉ren can be approximated by the fourth order in its adiabatic

expansion, giving a final renormalized bilinear that can be easily integrated.

It is useful to define a new dimensionless time z ≡ mt and momenta κ ≡ k/m. The

field equations (3.127) for hI
k and hI I

k in terms of these variables become

hI I
k = i

κ

[
∂hI

k

∂z
+ i

(
1+ µ

z

)
hI

k

]
, hI

k =
i
κ

[
∂hI I

k

∂z
− i

(
1+ µ

z

)
hI I

k

]
, (3.352)

and from these, we obtain the second-order uncoupled equations

d2hI
k

dz2 +
(
1+κ2 + 2µ

z
+ µ(µ− i)

z2

)
hI

k = 0 ,
d2hI I

k

dz2 +
(
1+κ2 + 2µ

z
+ µ(µ+ i)

z2

)
hI I

k = 0 . (3.353)

Let us also define a dimensionless frequency ωκ ≡
p
κ2 +1 , so that ω=

p
k2 +m2 = mωκ.

The general solution for hI
k(t) is a linear combination of the first and second kind

Whittaker functions Mα,λ1 (2iωκt) and Wα,λ1 (2iωκt), where α≡ −iµp
κ2+1

and λ1 ≡−1
2 i(2µ−

i). The solution for hI I
k (t) is similar, with the change λ1 →λ2 ≡−1

2 i(2µ+ i), so we have

hI
k = AI

kMα,λ1 (2iωκz)+BI
kWα,λ1 (2iωκz) ,

hI I
k = AI I

k Mα,λ2 (2iωκz)+BI I
k Wα,λ2 (2iωκz) . (3.354)

Note that hI
k and hI I

k must obey the constraint (3.128), so there is only one degree

of freedom in the fermion solution, which is determined when imposing the initial

conditions. To fix the constants in the linear combinations, we impose the adiabatic

behaviour (3.130) at z →−∞, getting

AI
k = AI I

k = 0 , BI
k =

√
ωκ+1
2ωκ

e
µπ

2ωκ , BI I
k =

√
ωκ−1
2ωκ

e
µπ

2ωκ . (3.355)

The final solution is then

hI
k =

√
ωκ+1
2ωκ

e
µπ

2ωκ Wα,λ1 (2iωκz) , hI I
k =

√
ωκ−1
2ωκ

e
µπ

2ωκ Wα,λ2 (2iωκz) . (3.356)

95



CHAPTER 3. RENORMALIZED STRESS-ENERGY TENSOR FOR SPIN-1/2 FIELDS IN
EXPANDING UNIVERSES

Figure 3.1: The red line shows 1
m3 |〈ψ̄ψ〉ren| as a function of time for µ = 1, given by

equation (3.357). For mt . −0.4 we have 〈ψ̄ψ〉ren < 0 (red continuous line), while for
mt & −0.4 we have 〈ψ̄ψ〉ren > 0 (red dotted line). The purple dashed line shows the
corresponding approximation at 4th adiabatic order, given in equations (3.360).

The renormalized expectation value 〈ψ̄ψ〉ren is given, from (3.171), by

〈ψ̄ψ〉ren = −m3

π2

∫ ∞

0
dκκ2

(
|hI

k|2 −|hI I
k |2 − 1

ωκ
− µ

ωκz
+ µ

ω3
κz

+ 3µ2

2ω3
κz2

− 3µ2

2ω5
κz2

+ µ+µ3

2ω3
κz3

− µ+6µ3

2ω5
κz3

+ 5µ3

2ω7
κz3

)
, (3.357)

where we have that the adiabatic contributions of order n go as 〈ψ̄ψ〉(n) ∝ cn(µ,κ)z−n,

with cn time-independent functions of µ and κ. The above integral is finite, as one can

easily check from the asymptotic expansion of the Whittaker function Wα,λ(x).

We can compute analytically the leading term at z →−∞ by performing the adiabatic

expansion of 〈ψ̄ψ〉 up to fourth order, and subtracting from it the 0th, 1st, 2nd, and 3rd

orders. Therefore, the leading behaviour at very early times is

〈ψ̄ψ〉ren ∼ 〈ψ̄ψ〉(4) ≡ − 1
π2a3

∫ ∞

0
dkk2

((
|hI

k|2
)(4) −

(
|hI I

k |2
)(4)

)
= − 1

π2a3

∫ ∞

0
dkk2

(
(ω−m)

2ω
[G(4) +G(4)∗+G(1)G(3)∗+G(1)∗G(3) +|G(2)|2]

− (ω+m)
2ω

[F (4) +F (4)∗+F (1)F (3)∗+F (1)∗F (3) +|F (2)|2]
)

. (3.358)
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Computing the integral, we finally get

〈ψ̄ψ〉(4) = − a(4)

80π2am
+ ȧ2ä

60π2a3m
− ȧ2s2

8π2a2m
− ä2

80π2a2m
− 3ȧa(3)

80π2a2m
− s2ä

8π2am

− 3ȧṡs
4π2am

− s4

8π2m
− ss̈

4π2m
− ṡ2

8π2m
. (3.359)

Substituting (3.351) in this expression, and setting a = 1, we finally obtain

〈ψ̄ψ〉(4) =−m3µ2(µ2 +5)
8π2z4 , (3.360)

where we have written the solution in terms of z. In Figure 3.1 we show 1
m3 |〈ψ̄ψ〉|ren as

a function of time, comparing the exact result (3.357) with the approximation (3.360).

At very early times z → −∞ we have, as expected, 〈ψ̄ψ〉ren ∼ 0. We observe that the

approximation holds quite well, except when the instability is approached.

F. Scalar field with a Yukawa-type coupling

In this appendix we compute the conformal anomaly of a quantized real scalar field φ,

coupled to another background scalar Φ with a Yukawa-type interaction. This result

is used in Section 3.9. The interaction term can be chosen of the form gΦφ2 or h2Φ2φ2.

Although the adiabatic regularization can be equally applied in both cases, we will focus

on the latter case, since the coupling constant h2 is dimensionless and the classical

theory inherits the conformal invariance. Therefore, the action functional of the scalar

matter field is given by

Sm =
∫

d4x
p−g

1
2

(gµν∇µφ∇νφ−m2φ2 −ξRφ2 −h2Φ2φ2) . (3.361)

As before, the scalar field lives in a spatially flat FLRW metric ds2 = dt2 −a2(t)d~x2,

and we assume that the external field is homogeneous Φ=Φ(t). In this case, the equation

of motion is

(2+m2 + s2(t)+ξR)φ= 0 , (3.362)

where we have introduced the notation s(t) ≡ hΦ(t), similar to the one used for the

spin-1/2 field in the main text. The quantized field is expanded in Fourier modes as

φ(x)= 1√
2(2πa3)

∫
d3~k[A~k f~k(x)+ A†

~k
f ∗~k (x)] , (3.363)

where f~k(x)= ei~k~xhk(t), and A†
~k

and A~k are the usual creation and annihilation operators.

Substituting (3.363) into (3.362) we find

d2

dt2 hk(t)+ [
ω2

k(t)+ s2(t)+σ(t)
]
hk(t)= 0 , (3.364)
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where σ(t)= (6ξ− 3
4 )( ȧ2

a2 )+ (6ξ− 3
2 )( ä

a ), and ωk(t)=
√

k2

a(t)2 +m2 . The adiabatic expansion

for the scalar field modes is based on the usual WKB ansatz

hk(t)= 1√
Wk

e−i
∫ t Wk(t′)dt′ , Wk(t)=ωk +ω(1) +ω(2) +·· · , (3.365)

which solves the Wronskian condition hk ḣ∗
k −h∗

k ḣk = 2i. One can substitute the ansatz

into equation (3.364), and solve order by order to obtain the different terms of the

expansion. The function Wk(t) obeys the differential equation

W4
k = (ω2 + s2 +σ)W2

k + 3
4

Ẇ2
k − 1

2
Ẅ2

k Wk . (3.366)

Note that here, s(t)≡ hΦ is assumed of adiabatic order 1 as in the fermionic case. One

obtains systematically ω(odd) = 0 for all terms of odd order in the expansion. At second

adiabatic order one gets

ω(2) = 1
2ω

(s2 +σ)+ 3ω̇2

8ω3 − ω̈

4ω2

= − m2ä
4aω3 + 3ξä

aω
− ä

2aω
+ 5m4ȧ2

8a2ω5 − m2ȧ2

2a2ω3 + 3ξȧ2

a2ω
− ȧ2

2a2ω
+ s2

2ω
, (3.367)

and at fourth adiabatic order, the result is

ω(4) = 2(s2 +σ)ωω(2) +3/2(ω̇(2)ω̇)−1/2
[
ω̈(2)ω+ ω̈ω(2)]− sω2(ω(2))2

2ω3

= −1105ȧ4m8

128a4ω11 + 221äȧ2m6

32a3ω9 + 221ȧ4m6

16a4ω9 − 7ȧa(3)m4

8a2ω7 − 25s2ȧ2m4

16a2ω7 − 19ä2m4

32a2ω7 − 75ξȧ2äm4

8a3ω7

− 111ȧ2äm4

16a3ω7 − 75ξȧ4m4

8a4ω7 − 69ȧ4m4

16a4ω7 + 9ä2ξm2

4a2ω5 + 15ȧa(3)ξm2

4a2ω5 + 18äȧ2ξm2

a3ω5 + 9ȧ4ξm2

2a4ω5

+ 5sȧṡm2

4aω5 + 3äs2m2

8aω5 + a(4)m2

16aω5 + 2s2ȧ2m2

a2ω5 + ä2m2

16a2ω5 + ȧa(3)m2

16a2ω5 − 15ȧ2äm2

16a3ω5 − ȧ4m2

4a4ω5

+ 3äȧ2ξ

4a3ω3 + 3ȧ4ξ

2a4ω3 + a(4)

8aω3 − ṡ2

4ω3 − ss̈
4ω3 − s4

8ω3 − 3ξs2ä
2aω3 − 5sȧṡ

4aω3 − 3ξa(4)

4aω3 − 3ξs2ȧ2

2a2ω3

− 9ξ2ä2

2a2ω3 − s2ȧ2

4a2ω3 − 3ξä2

4a2ω3 + ä2

4a2ω3 − 15ξȧa(3)

4a2ω3 + 5ȧa(3)

8a2ω3 − 9ξ2ȧ2ä
a3ω3 + äȧ2

8a3ω3

− 9ξ2ȧ4

2a4ω3 − ȧ4

8a4ω3 . (3.368)

Expressions for the subtraction terms in conformal time have been obtained in [137].

Here we will briefly sketch the renormalization counterterms associated to the UV

divergences of the stress-energy tensor and the variance 〈φ2〉. We follow a strategy similar

to the one used in Section 3.8. The Lagrangian density with the required renormalization
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counterterms is

L = Lm +p−g
[

1
2

gµν∇µΦ∇νΦ− m2

2
Φ2 − λ

4!
Φ4 − 1

2
ξ2RΦ2 − 1

8πG
Λ+ 1

16πG
R+αR2

]
+ p−g

[
1
2
δZgµν∇µΦ∇νΦ− δm2

2
Φ2 − δλ

4!
Φ4 − 1

2
δξ2RΦ2 − 1

8π
δΛ+ 1

16π
δG−1R+δαR2

]
.(3.369)

One can check that the above counterterms are enough to absorb all the UV divergences

that emerge in the quantization of the scalar field. We note that, due to the symmetry

Φ→ −Φ of the matter Lagrangian, counterterms of the form RΦ, Φ, Φ3 are absent.

However, a higher-derivative term of the form R2 is now necessary, which did not appear

for the Dirac field in a FLRW spacetime.

We assume the conformal coupling to the curvature ξ = 1/6 in order to make the

classical theory conformal invariant. For a massive field we have

gµνTµν−h2Φ2φ2 = m2φ2 . (3.370)

Classical conformal invariance is obtained then when m2 = 0. In adiabatic regularization

the conformal anomaly is computed by taking the massless limit

Cs = gµν〈Tµν〉−h2Φ2〈φ2〉 =− lim
m2→0

m2〈φ2〉(4) =− lim
m2→0

m2(4πa3)−1
∫ ∞

0
dkk2(W−1

k (t))(4) ,

where (W−1
k (t))(4) =ω−3(ω(2))2−ω−2ω(4) is the fourth order term in the adiabatic expansion

of W−1
k . Note that here, 〈φ2〉(4) is evaluated including fourth-order adiabatic subtractions.

This is different to the physical vacuum expectation value 〈φ2〉ren, which has to be

evaluated with subtractions only up to second order. This is why only the purely fourth

order adiabatic piece contributes to the anomaly. The explicit expression of (W−1
k )(4) for

arbitrary ξ is

(W−1
k )(4)(t)= + 1155ȧ4m8

128a4ω13 − 231ȧ2äm6

32a3ω11 − 231ȧ4m6

16a4ω11 + 105ξȧ4m4

8a4ω9 + 63ȧ4m4

16a4ω9 + 35s2ȧ2m4

16a2ω9

+ 105äξȧ2m4

8a3ω9 + 105äȧ2m4

16a3ω9 + 7a(3)ȧm4

8a2ω9 + 21ä2m4

32a2ω9 + 3ȧ4m2

4a4ω7 + 27äȧ2m2

16a3ω7

− 5ȧsṡm2

4aω7 − 5s2äm2

8aω7 − a(4)m2

16aω7 − 5ȧ2s2m2

2a2ω7 − 15ξä2m2

4a2ω7 − 15ȧξa(3)m2

4a2ω7 + 3ä2m2

16a2ω7

− ȧa(3)m2

16a2ω7 − 45ȧ2ξäm2

2a3ω7 − 15ȧ4ξm2

2a4ω7 + 27ξ2ȧ4

2a4ω5 + 3ȧ4

8a4ω5 + 9s2ξȧ2

2a2ω5 + 27äξ2ȧ2

a3ω5

+ 3äȧ2

8a3ω5 + ṡ2

4ω5 + 15a(3)ξȧ
4a2ω5 + 5sȧṡ

4aω5 + ss̈
4ω5 + 3s4

8ω5 − s2ä
2aω5 + 9s2äξ

2aω5 + 3a(4)ξ

4aω5

− a(4)

8aω5 + 27ä2ξ2

2a2ω5 − ȧ2s2

4a2ω5 − 9ξä2

4a2ω5 − 5ȧa(3)

8a2ω5 − 27ȧ2ξä
4a3ω5 − 9ȧ4ξ

2a4ω5 . (3.371)
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The integral in comoving momenta is finite and independent of the mass. Assuming

now ξ= 1/6, the result is

Cs = a(4)

480π2a
+ ä2

480π2a2 − sȧṡ
16π2a

+ a(3)ȧ
160π2a2 − ȧ2ä

160π2a3 − ss̈
48π2 − ṡ2

48π2 − s4

32π2 . (3.372)

We can rewrite the expression in terms of covariant scalar terms as

Cs = 1
2880π2

{
2R−

(
RµνRµν− 1

3
R2

)}
− h2

48π2 (Φ2Φ+∇µΦ∇µΦ+ 3h2

2
Φ4) , (3.373)

which is the result given in equation (3.205).

G. Adiabatic expansion for Klen-Gordon fields. Master formula.

In this section we show the generic expression for the nth contribution in the WKB

adiabatic expansion given by (3.222). Introducing the ansatz (3.221) into the equation of

motion for the modes, one finds the following equation [48, 157],

W2
k =ω2 +σ+ 3

4
Ẇk

2

W2
k

− 1
2

Ẅk

Wk
, (3.374)

where

σ=
(
6ξ− 3

4

)(
ȧ
a

)2
+

(
6ξ− 3

2

)
ä
a

. (3.375)

Equation (3.374) can be solved algebraically by iteration for initial value ω(0) ≡ ω =√
(k/a)2 +m2 . Performing the calculation up to nth adiabatic order it can be shown that

ω(n) = 1
2ω3

{
ω2

[
(ω(n/2))2 +2

n/2−1∑
i=2

ω(i)ω(n−i)

]
+σ

[
(ω(n/2−1))2 +2

n/2−2∑
i=0

ω(i)ω(n−2−i)

]
(3.376)

+3
4

[
(ω̇(n/2−1))2 +2

n/2−2∑
i=0

ω̇(i)ω̇(n−2−i)

]
− 1

2

[
ω̈(n/2−1)ω(n/2−1) +

n/2−2∑
i=0

(
ω̈(i)ω(n−2−i) +ω(i)ω̈(n−2−i)

)]

−
[

6
n/4−1∑
i=0

(ω(i))2(ω(n/2−i))2 +4
n/2−1∑
k=0

(ω(k))2
n/2−k−1∑

i=2
ω(i)ω(n−i−2k) +4

n/2−1∑
k=2

(ω(k))2
n/2−k−1∑

i=0
ω(i)ω(n−i−2k)

+8
n/4−2∑
i=0

ω(i)
n/2−2−i∑

j=i+2
ω( j)

n− j−2i−2∑
k= j+2

ω(k)ω(n−k−i− j) +8
n/4−3/2∑

k=0
(ω(k))2

n/2−k−1∑
i=k+2

ω(i)ω(n−i−2k) + (ω(n/4))4

]}
,

with ω(s) = 0 for s < 0 or s being a fractional number. With this formula we can recover

ω(s) = 0, for s being an odd integer, and the corresponding expressions for orders 2 and 4

from [48, 157],

ω(2) = 1
2
ω−1/2 d2

dt2ω
−1/2 + 1

2
ω−1σ , (3.377)

ω(4) = 1
4
ω(2)ω−3/2 d2

dt2ω
−1/2 − 1

2
ω−1(ω(2))2 − 1

4
ω−1/2 d2

dt2

[
ω−3/2ω(2)

]
, (3.378)

100



3.15. APPENDICES

as well. In general, (3.376) allows us to obtain any ω(n) in terms of lower order adiabatic

terms and its derivatives.

H. Adiabatic expansion for Dirac fields. Master formula.

In this section we present the generic expressions for the nth contribution in the Dirac

adiabatic expansion given by (3.257)-(3.258). Introducing these expressions into the

equation of motion for the modes, (3.9), one gets a set of coupled algebraic equations

(3.19):

(ω−m)G = (Ω−ω)F + iḞ − imω̇

2ω(ω+m)
F + (ω−m)F , (3.379)

(ω+m)F = (Ω−ω)G+ iĠ+ imω̇

2ω(ω−m)
G+ (ω+m)G , (3.380)

2ω = (ω+m)FF∗+ (ω−m)GG∗ , (3.381)

which can be solved algebraically by iteration for initial values F (0) =G(0) = 1 and ω(0) =ω.

The general algorithm to compute the three fundamental objects [notice that G(−m)

satisfies the same equations as F(m), so we take G(−m)= F(m)] is provided by

ω(n) = −m
ω

{
n−1∑
l=1

ω(l)F (n−l) + iḞ (n−1) − imω̇

2ω(ω+m)
F (n−1)

}
(3.382)

+
(
1− m

ω

){
− i

2

[
Ḟ (n−1) + Ġ(n−1)

]
− 1

2

n−1∑
l=1

ω(l)
[
F (n−l) +G(n−l)

]
+ imω̇

4ω

[
F (n−1)

(ω+m)
− G(n−1)

(ω−m)

]}
,

Re F (n)(m) = δn0

2
− 1

4ω

n−1∑
l=1

[
F (l)F∗(n−l)(ω+m)+G(l)G∗(n−l)(ω−m)

]
+ 1

2ω
ImḞ (n−1)(m)

− 1
2ω

n∑
l=1

ω(l)Re F (n−l)(m)− mω̇

4ω2(m+ω)
ImF (n−1)(m) , (3.383)

ImF (n)(m) = ImG(n)(m)− 1
ω−m

{
n∑

l=1
ω(l)ImF (n−l)(m)+Re Ḟ (n−1)(m)− mω̇

2ω(ω+m)
Re F (n−1)(m)

}
,(3.384)

with F = Re F(m)+ iImF(m) and G = ReG(m)+ iImG(m). Notice that there is an in-

herent ambiguity in the formalism reflected in the choice for ImG(m), but it can be

explicitly seen that it does not affect the observables such as 〈ψ̄ψ〉 or 〈Tµν〉 [? ]. The

simplest way to remove the ambiguities is to assume ImG(n)(m)=−ImF (n)(m). Detailed

expressions for the first adiabatic contributions can be found in [126, 127]. In general,

(3.382)-(3.384) allow us to obtain any Dirac adiabatic contribution in terms of lower order

adiabatic terms and its derivatives.
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I. DeWitt-Schwinger a4 coefficient.

We give here the result for the a4 DeWitt coefficient for a spatially flat FLRW spacetime

obtained with the adiabatic regularization method (3.376). It is used to illustrate the

efficiency of the adiabatic formalism to get the higher-order DeWitt coefficients, as

discused in 3.12.

a4(x) = 29ȧ8

120a8 − 379ȧ6ä
210a7 + 899ȧ4ä2

280a6 + 83ȧ2ä3

35a5 − 13ä4

21a4 + 47ȧ5...a
70a6 + 2ȧ3ä

...a
3a5 − 103ȧä2...a

28a4 − 647ȧ2...a 2

840a4

+103ä2....a
210a3 − 2ȧ4....a

21a5 − 93ȧ2ä
....a

70a4 + 34ä2....a
105a3 + 199ȧ

...a ....a
420a3 + 11

....a 2

504a2 − 13ȧ3a(5)

210a4 + 41ȧäa(5)

140a3

+29
...a a(5)

1260a2 + 3ȧ2a(6)

70a3 + 13äa(6)

1260a2 − ȧa(7)

126a2 − a(8)

630a
− 7ξȧ8

5a8 − 39ξ2ȧ8

5a8 + 36ξ3ȧ8

a8 + 54ξ4ȧ8

a8

+383ȧ6ä
20a7 − 15ξ2ȧ6ä

a7 − 234ξ3ȧ6ä
a7 + 216ξ4ȧ6ä

a7 − 8123ξȧ4ä2

140a6 + 2859ξ2ȧ4ä2

10a6

−432ξ3ȧ4ä2

a6 + 324ξ4ȧ4ä2

a6 − 254ξȧ2ä3

15a5 + 264ξ2ȧ2ä3

5a5 − 180ξ3ȧ2ä3

a5 + 216ξ4ȧ2ä3

a5 + 523ξä4

105a4

−81ξ2ä4

10a4 − 18ξ3ä4

a4 + 54ξ4ä4

a4 − 211ξȧ5...a
20a6 + 201ξ2ȧ5...a

5a6 − 18ξ3ȧ5...a
a6 + 53ξȧ3ä

...a
7a5 − 69ξ2ȧ3ä

...a
a5

+72ξ3ȧ3ä
...a

a5 + 439ξȧä2...a
14a5 − 84ξ2ȧä2...a

a4 + 90ξ3ȧä2...a
a4 + 6ξȧ2...a 2

a4 − 147ξ2ȧ2...a 2

10a4

+18ξ3ȧ2...a 2

a4 − 51ξ3ä
...a 2

20a3 − 3ξ2ä
...a 2

a3 + 18ξ3ä
...a 2

a3 + 11ξȧ4....a
4a5 − 15ξ2ȧ4....a

a5 + 18ξ3ȧ4....a
a5

+157ξȧ2ä
....a

14a4 − 153ξ2ȧ2ä
....a

5a4 + 36ξ3ȧ2ä
....a

a4 − 19ξä2....a
14a3 − 24ξ2ä2....a

5a3 + 18ξ3ä2....a
a3

−237ξȧ
...a ....a

70a3 + 27ξ2ȧ
...a ....a

5a3 − 39ξ
....a 2

140a2 + 9ξ2....a 2

10a2 + 3ξȧ3a(5)

10a4 + 41ȧäa(5)

140a3 − 15ξȧäa(5)

7a3

+18ξ2ȧäa(5)

5a3 − 12ξ
...a a(5)

35a2 + 6ξ2...a a(5)

5a2 + 3ȧ2a(6)

70a3 − 23ξȧ2a(6)

70a3 + 3ξ2ȧ2a(6)

5a3 − 6ξäa(6)

35a2 + 3ξ2äa(6)

5a2

+ξȧa(7)

28a2 + ξa(8)

140a2 . (3.385)

δ ε λ ϕ→ B F L P ζ T Rc G H ∇ x k p R̂ H A Q O M N S p k
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4
LOOP CORRECTIONS DURING INFLATION AND BOUNDS

FROM CMB DATA

During single-field inflation, spectator or hidden fields – i.e. those that only

propagate in the gravitational background and do not couple to the inflaton

– can typically affect CMB observables only through quantum fluctuations.

After renormalizing background quantities, such as slow-roll parameter ε or Planck

mass Mpl (that are fixed by observations at some pivot scale), all that remains are

logarithmic runnings that are suppressed by both Mpl and slow roll parameters. In this

paper we show how a large number of spectator fields can overcome this suppression

and induce an observable running in the tensor two point function. As a consequence,

one can infer bounds on the hidden field content of the universe from bounds on the

tensor tilt, assuming primordial tensors are ever detected. We point out that the bounds

obtained from spectral running are more competitive than the naive bound inferred from

requiring inflation to occur below the strong coupling scale of gravity if the eventual

measurement of the tensor tilt is negative, and if we can bound deviations from the

tensor to scalar consistency relation to within the percent level. We finally discuss some

phenomenological scenarios where this idea could have potential implications, such as

constructions that address the hierarchy problem in the standard model with a huge

number of species.

The work presented in this chapter is done in collaboration with R. Durrer and S. P.

Patil [63].
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CHAPTER 4. LOOP CORRECTIONS DURING INFLATION AND BOUNDS FROM CMB
DATA

4.1 Motivation

Observations strongly suggest that our Universe went through an early phase of quasi-

exponential expansion, that we call inflation. Such an inflationary stage not only solves

the horizon and flatness puzzles [108, 129], it also originates in a natural way an

almost scale invariant spectrum of matter density fluctuations [38, 109, 112, 139,

179] in agreement with measurements from the cosmic microwave background (CMB).

These primordial inhomogeneities were generated as quantum vacuum fluctuations that

were forced out of the horizon by the huge gravitational dynamics of the Universe and

subsequently squeezed, resulting in their phase coherence. The inflationary expansion

also amplifies vacuum fluctuations of the transverse traceless part of the metric, leading

to the generation of primordial gravitons [180] as well as fluctuations of all other fields

present in the quantum vacuum regardless they couple directly to the inflaton or not.

In this chapter we examine in detail the contribution of fields that one would natu-

rally be tempted to neglect during inflation: hidden or spectator fields, defined as fields

that only propagate in the curved spacetime background and have no direct couplings to

the inflaton. Typically, such fields would only serve to renormalize background quanti-

ties1 and produce unconceivable small (i.e. Planck suppressed) logarithmic dependence

of momentum (runnings) in the cosmological two-point functions. Nevertheless, for suffi-

ciently large amounts, their effects can add up to an observable running of the spectral

index of the two point function of the tensor perturbations, consistently inferable via a

"large N" expansion that allows us to resum a restricted class of diagrams. As we shall

argue, the analogue running produced for correlators of curvature perturbations remains

indistinguishable from the other expected contributions, though, since the relative sup-

pression by factors of ε is too great to be overcome by large N and still consistent with

being below the strong coupling scale of gravity.

Taking into account this observation, we can use it to infer bounds on the possible

number of hidden fields present in the universe with masses below the scale of inflation

through bounds on the tensor to scalar consistency relation, provided primordial tensors

are ever observed 2 For simplicity, we focus on hidden scalars, although the argument

follows straightforwardly to particles of any spin. We find that any upper bound on the

1Whose effects therefore would simply be absorbed into physical measurements of quantities such as
ε :=−Ḣ/H2 (e.g. through the detection of primordial tensors) and its derivatives or the ratio H2/M2

pl , all of
which denote renormalized quantities.

2Although fields with masses much greater than the Hubble scale during inflation also contribute
to the running their spectrum is very suppressed at long wavelengths and so will not contribute to the
bounds derived here.
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tensor to scalar consistency relation

nT + r?
8

≤ ξ (4.1)

for some ξ, translates into a bound on the number of hidden species as

N ≤ ξ

r2
?

∆−1
ζ (4.2)

where ∆ζ ≈ 2.44×10−9 [166] is the amplitude of the spectrum of curvature perturbations

at the pivot scale where we determine the tensor to salar ratio. Assuming the value of r?
to be that of his current experimental bound, r ∼O (10−1), the best we can bound N is by

N .
109

r2
?

ξ∼ 1011 ×ξ (4.3)

This result will be only interesting if it gives a stronger bound than the one arising

from the fact that inflation must have occurred below the scale at which gravity becomes

strongly coupled: H2 . M2
pl /N, [79]. We shall argue that, although in order to get a

better bound it is necessary that nT < 0 in future measurements, the bigger the eventual

measurement of |nT | is, the stronger bound we get (as compared to the strong coupling).

As we shall discuss, one can look to bound the parameter space of a variety of models

that attempt to address the hierarchy problem with a large number of sectors.

Notation. In what follows, we shall use the (+,+,+) convention of [136]. We shall

consider a flat FLRW metric in cartesian coordinates

ds2 = a2(η)
[
−dη2 +δi jdxidx j

]
= gµνdxµdxν (4.4)

where η denotes conformal time, while the physical time t is given by dt = adη. Deriva-

tives with respect to η are denoted by a prime and those with respecto to t by an overdot.

The physical Hubble parameter is H = ȧ
a while the conformal one is H = a′

a = ȧ.

4.2 Outline of the calculation

In this section we present an outline of our calculations and their results with the details

deferred to several appendices. We consider an inflationary Universe with an inflaton

φ taken to be the only field with an evolving background (hence energy density) and N
additional hidden scalar fields χn minimally coupled to gravity and taken to be in their

respective adiabatic vacuum states. We only consider hidden fields with mass m2 ¿ H2,

which can therefore be treated as effectively massless but are quantum mechanically
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excited during inflation. By assumption the χn have no non-gravitational interactions.

The action is then given by:

S =
M2

pl

2

∫
d4x

p−g R[g]− 1
2

∫
d4x

p−g

[
∂µφ∂

µφ+2V (φ)+
N∑

n=1

(
∂µχn∂

µχn +m2
nχ

2
n
)]

,(4.5)

where Mpl = (8πG)−1/2 is the reduced Planck mass3. We presume the background to be

quasi de-Sitter, such that

ε := φ̇2
0

2H2M2
pl

=− Ḣ
H2 ¿ 1 , δ := φ̈0

φ̇0H
= Ḧ

2ḢH
¿ 1 , (4.6)

so that H2 =V (φ0)/(3M2
pl)∼ const, and for completeness we introduce the higher order

slow roll parameters εi, defined by

ε1 ≡ ε , εi+1 = ε̇i

Hεi
, i ≥ 1 . (4.7)

Note that ε2 = 2(δ+ε). These slow roll parameters are then of the same order of magnitude

εi+1 ∼ εi ∼ ε.
In order to discuss perturbations around this background, we first ADM decompose

the metric as

ds2 =−N2dt2 +hi j(dxi +N idt)(dx j +N jdt), (4.8)

and work in comoving gauge, defined to be the foliation in which we have gauged away

the inflaton fluctuations. In this gauge, the only dynamical degrees of freedom are

contained in the 3-metric hi j which has now acquired, or ‘eaten’ the scalar polarization

that was the inflaton fluctuation [57]

φ(t, x) = φ0(t), (4.9)

hi j(t, x) = a2(t)e2ζ(t,x)ĥi j, ĥi j = exp
[
γi j

]
(4.10)

where γi
i = ∂iγ

i
j = 0 is the (transverse traceless) graviton, and ζ is the comoving curvature

perturbation. The quasi dS background then results in a nearly scale invariant spectrum

of curvature perturbations [77, 138, 189]

Pζ(k)= H2

8π2εM2
pl

(
k

k?

)ns−1
, ns −1=−4ε−2δ=−2ε−ε2 . (4.11)

3This so far bare quantity will also end up being renormalized via diagrams involving external graviton
legs with loops of hidden fields. However, we only end up seeing this quantity through the dimensionless
ratio H2/M2

pl which we presume to be fixed through given any observation of primordial tensors at some
fixed scale
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In addition helicity 2 tensor perturbations of the metric are amplified from their initial

quantum vacuum state leading to a power spectrum for primordial gravitational waves

given by

Pγ(k)= 2H2

π2M2
pl

(
k

k?

)nT

, nT =−2ε . (4.12)

The ratio of these two quantities

r = Pγ(k?)
Pζ(k?)

= 16ε (4.13)

defines the tensor to scalar ratio. Note that its value depends on the pivot scale k?. At

present, no tensor perturbations have been identified in the observed CMB anisotropies

and an upper limit of r < 0.11 has been derived for k? = 0.002 Mpc−1 [9]. We remind

the reader that there are higher order corrections to the tilt of the scalar and tensor

spectra that come from the background dynamics alone (see (4.51)-(4.55) below). We are

interested in additional corrections to these from virtual effects of the hidden fields χn.

Diagrammatic preliminaries in the ‘in-in’ formalism

By following a perturbative study in powers of ε of the action (4.5) in comoving gauge

(4.9) results in the quadratic action

S2,ζ = M2
pl

∫
d4xa3 ε

[
ζ̇2 − 1

a2 (∂ζ)2
]

(4.14)

S2,χ = 1
2

∫
d4xa3

[
χ̇nχ̇n − 1

a2∂iχn∂iχn −m2
nχ

2
n

]
(4.15)

and the cubic interaction vertex

S3,ζχ =
∫

d4xa3ε

[
ζ

2

(
χ̇nχ̇

n + 1
a2∂iχn∂iχn +m2

nχ
2
n

)
− χ̇n∂iχn∂i∂

−2ζ̇

]
(4.16)

S3,γχ = 1
2

∫
d4xaγi j∂iχn∂ jχn (4.17)

The form of (4.16) – in particular its ε suppression – is not immediately obvious

from naively expanding the original action (4.5) having solved for the lapse and shift

constraints, which would result in an expression that is nominally unsuppressed in ε

(4.74). However, as shown in detail in Appendix A, similar to what occurs for the cubic and

higher order self interactions for ζ [131], enough integrations by parts makes manifest

the fact that the ζχχ cubic interactions are in fact suppressed by an overall factor of

ε. Similarly, interactions that are higher order in ζ will be sequentially suppressed by
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additional powers of ε, consistent with its nature as an order parameter parametrizing

the breaking of time translational invariance by slow roll [58].

The standard approach at this stage would be to work in the Schwinger-Keldysh, or

in-in formalism to calculate the finite time correlation functions

k3〈ζk(τ)ζp(τ)〉 := 2π2δ2(k+p)Pζ(k), (4.18)

k3〈γr
i j,k(τ)γr

i j,p(τ)〉 := 2π2δrsδ2(k+p)Pγ(k), (4.19)

These quantities are of the form 〈O (τ)〉, where the angled brackets denote expectation

values with a given initial density matrix (which we take to correspond to the Bunch-

Davies vacuum in this work) unitarily evolved forward in the interaction picture with

the Dyson operator

U(τ,−∞)= T exp
(
−i

∫ τ

−∞
HI(τ′)dτ′

)
, (4.20)

where T denotes time ordering and where HI is the interaction Hamiltonian (which is

equal to minus the interaction Lagrangian eq. (4.16) for the interactions in question

[188]). Explicitly then, the operator expectation value is a shorthand for

〈O (τ)〉 = 〈0in |̄
[
Texp

(
−i

∫ τ

−∞
HI(τ′)dτ′

)]†
O0(τ)

[
T exp

(
−i

∫ τ

−∞
HI(τ′)dτ′

)]
|0in〉 (4.21)

Reading right to left, one evidently evolves the Bunch-Davies vacuum from the initial

time −∞ to τ, acts with the operator O (τ) at time τ and then evolves back to −∞ (see

Fig. 4.1). It can be shown that the above is equivalent to the expression [188]

〈O (τ)〉 =
∞∑

n=0
in

∫ τ

−∞
dτn

∫ τn

−∞
dτn−1...

∫ τ2

−∞
dτ1〈[HI(τ1), [HI(τ2), ...[HI(τn),O (τ)]...]]〉 (4.22)

provided one is mindful of how one selects the correct initial interacting vacuum [11].

Although useful for practical purposes, such an expectation value does not lend itself

to the usual diagrammatic expansion one avails of when dealing with S-matrix elements.

In order to implement this one can equivalently consider expressions like (4.21) as the

product of an arbitrary operator O (τ) with the unitary operator:

〈O (τ)〉 = 〈0in|TC

[
exp

(
−i

∮
HI(τ′)dτ′

)
O (τ)

]
|0in〉 (4.23)

with the contour going from −∞→ τ and back again, and with TC denoting contour

ordering with fields living on the reversed contour being treated as independent fields

for intermediate manipulations, only being set equal to the original fields at the end of

the calculation. Due to its formal similarity with an S-matrix element, the former does
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6

FIG. 1: The S-matrix contour (left) compared
to the Schwinger-Keldysh contour (right).

FIG. 2: One loop corrections to h⇣⇣i. Solid lines
denote the curvature perturbation propagator,

dashed lines denote the �-propagator.

one can equivalently consider the expression (23) as the product of an arbitrary operator O0(⌧)
with the unitary operator:

hO(⌧)i = h0in|TC


exp

✓
�i

I
HI(⌧

0)d⌧ 0
◆

O0(⌧)

�
|0ini (25)

with the contour going from �1 ! ⌧ and back again (cf. Fig. 1), and with TC denoting contour
ordering with fields living on the reverse contour treated as independent fields for intermediate
manipulations, only being set equal to the original fields at the end of the calculation. Due to its
formal similarity with an S-matrix element, the former does indeed lend itself to a diagrammatic
expansion which we will not make explicit use of in the following, but we find useful for building
diagrammatic intuition.

Suppressing the di↵erence between the fields that live on the future and past directed contours
(as a result of which there are typically many cancellations as one sums up relevant diagrams)
as shorthand, one can nevertheless intuit the parametric and external momentum dependences
of the various graphs that one can write down. For example, at one loop, one has two possible
contributions to the correction to the two point correlation function of the curvature perturbation7

as indicated in Fig. 2. However only the diagram involving two cubic vertices results in any
dependence on the external momenta8 and hence contributions to the running of the spectral
index, which is the object of our interest.

At two loops, we notice that the double sunset graphs (involving two independent loops of hidden
fields) dominate when N � 1/✏ relative to all other contributions (Fig. 3)9. This structure persists
at each loop order and permits the resummation of a restricted subset of diagrams (consisting only
of the sunset diagrams) in the large N limit, allowing us to consistently infer the running even in
the event that it were large. It is here that we lose interest in the corrections to the running of the

7 There are also contributions from cubic interactions involving ⇣ alone, but these will be suppressed by two extra
powers of ✏ [18, 20].

8 The quartic ‘seagull’ interactions contributes to wavefunction renormalization which is accounted for in practice
by fixing the (fully renormalized) expressions H2/M2

pl and ✏ via the amplitude of the power spectrum and the
tensor to scalar ratio at some pivot scale k⇤.

9 There are an additional two loop diagrams corresponding to a single sunset graph with a tadpole insertion to an
internal � propagator, but this is accounted for by wavefunction renormalization of the � fields and considering
diagrams with internal lines taken to be renormalized propagators when summing graphs.

FIGURE 4.1. The S-matrix contour (left) compared to the Schwinger-Keldysh
contour (right)

indeed lend itself to the usual diagrammatic expansion, which we will not make explicit

use of in the following, but we find useful for building diagrammatic intuition.

Suppressing the difference between the fields that live on the future and past directed

contours (as a result of which there are typically cancellations as one sums up relevant

diagrams) as shorthand, one can nevertheless diagrammatically intuit the parametric

and external momentum dependences of the various graphs that one can write down. At

one loop, one has two possible contributions to the correction to the two point correlation

function4 as indicated in fig. 4.2. However only the diagram involving two cubic vertices

results in any dependence on the external momenta5 and hence contributions to the

running of the spectral index, which is the object of our interest.

Some versions of this calculation in the in-in formalism already exist in the literature

[188], though some conceptual mistakes were detected by [176]. We provide another

version of the calculation done in the Heisenberg picture, after which we will turn to

the main result of this paper – that it is possible to resum these diagrams in the large

N limit so that we could consistently infer the running induced by a large number of

hidden fields.

4There are also contributions from cubic interactions involving ζ alone, but these will be suppressed
by two extra powers of ε [131, 177].

5The quartic seagull interactions contributes to wave-function renormalization which is accounted for
in practice by fixing the (fully renormalized) expressions H2/M2

pl and ε via the amplitude of the power
spectrum and the tensor to scalar ratio at some pivot scale k∗.
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FIGURE 4.2. One loop corrections to 〈ζζ〉. Solid lines denote the curvature
perturbation propagator, dashed lines denote the χ-propagator.

Heisenberg picture calculation

Let us consider the (classical) equation of motion for a given mode χk of the Fourier mode

k of a hidden scalar field in a FLRW universe (we neglect the mass term, m ¿ H):

χ̈k +3Hχ̇k +
k2

a2 χk = 0, χ′′k +2Haχ′k +k2χk = 0 (4.24)

Assuming that the field be in the so-called Bunch-Davies vacuum initially (in the limit

ε→ 0 and |kη|À 1), (4.24) is solved by

χk(t)=
p−πη

2a
H(1)
µ

(−kη
)

, µ= 3
2
+ε . (4.25)

We assume each of these fields to contribute as a first-order perturbation in the perturbed

Einstein’s equations (see Appendix A). The k-modes of the energy momentum tensor of a

hidden field,

Tχ
µν =−1

2
ḡµν∂σχ∂σχ+∂µχ∂νχ ,

can now be calculated as convolutions. They are second order on the fields χ, hence of

second order in linear perturbation theory.

This second order energy momentum tensor also induces metric fluctuations, besides

the fluctuations originated by the inflaton field itself. It provides scalar (helicity zero),

vector (helicity 1) and tensor (helicity 2) fluctuations which decouple in first order. Here

we only consider scalar and tensor perturbations since vector perturbations decay after

inflation.
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Scalar perturbations

Inserting it into the perturbed Einstein equations in unitary gauge and using energy

momentum conservation of the scalar field χ we find (see Appendix B for a detailed

derivation),

ζ′′+2
z′

z
ζ′+k2ζ= 1

2M2
pl

a2
{
ρ− p+ 2

3
Πs + q

a
ε′

ε

}
, z = aφ′

0

H
. (4.26)

We can obtain the above equation of motion also from the cubic interaction eq. (4.16)

derived in Appendix A:

S3,ζχ =
∫

d4x a3ε

{
ζ

2

[
χ̇χ̇+ 1

a2∂iχ∂iχ

]
+ ζ̇∂−2∂i(χ̇∂iχ)

}
(4.27)

=
∫

d4x a3ε{ζρ− qζ̇}=
∫

d4x a3ε ζ

[
ρ+ q̇+3Hq+ ε̇

ε
q
]

(4.28)

Using momentum conservation, the source term becomes ρ+ q̇+3Hq+ ε̇
ε
q = ρ− p+ 2

3Πs+
ε′
ε

q
a , so that the variation of S3,ζχ wrt. ζ simply yields the right hand side of (4.26). As is

well known, the quadratic action for ζ yields the left hand side.

Setting the right hand side of eq. (4.26) to zero, results in the Mukhanov-Sasaki

equation. Its solution with initial conditions given by the Bunch-Davies vacuum leads

to the spectrum (4.11). This is the homogeneous part of the solution. The source term

on the right hand side is determined by the scalar fields χn. Their energy density and

pressure are given by ρ and p, q is the potential of the energy flux and Πs is the scalar

anisotropic stress potential, see Appendix B and C for all details. As the source term

is second order in χ, the inhomogeneous contribution to the spectrum is fourth order

in χn and can be computed using Wick’s theorem for the Gaussian (free) fields χn. This

calculation is presented in detail in Appendix D with the result

Pζi (k) ≈ H4

15×8π2M4
pl

[
c+ log

Hk

H?

](
k

k?

)ns−1
. (4.29)

The parameters ns −1=−4ε−2δ+O(ε2) is the standard scalar spectral index and c is a

constant; k? is the pivot scale, the Hubble parameter and the slow roll parameters have

to be evaluated at H? ≡ H(k?). We denoted H with a subindex k inside the logarithm,

the reason will be made clear in a couple of subsections. The index ’i’ indicates that this

is the contribution from the inhomogeneous solution sourced by the scale field χn. A total

nomber of N such scalar fields contributes

NPζi (k) ≈ NεH2

15π2M2
pl

[
c+ log

Hk

H?

]
Pζ(k) . (4.30)
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As we show below, the first term ∝ c actually just contributes to a renormalisation of

the slow roll parameter ε, it is not directly observable. However the second term induces

a running of the spectral index which we shall discuss in a couple of subsection.

Tensor perturbations

Tensor perturbations are sourced by the tensor (i.e. transverse traceless) part of the

anisotropic stress of Tµν
χ . Denoting the tensor metric perturbations in Fourier space by

γi j(t,k), the perturbed Einstein equations are

γ̂′′i j +2H γ̂′i j +k2γ̂i j = 2
M2

pl

ΠT
i j , (4.31)

where ΠT
i j are the tensor modes of the anisotropic stress. Alternatively, one can iden-

tify the relevant cubic interaction term as in (4.83). In appendix E we compute the

corresponding power spectrum with the result

NPγi (k) ≈ NH4

15π2M4
Pl

[
c+ log

H
H?

](
k

k?

)nT

, (4.32)

where N denotes the number of hidden scalar fields χ present in the theory. Since no

tensor perturbation have been detected so far, we can presently only derive an upper

limit on the amplitude.

Running of the one-loop corrections

We notice that the original calculation of [188] and subsequent derivations in [11] using

the in-in formalism obtained a log(k/H?) dependence instead of the log(Hk/H?) presented

in formulas above. They concluded this way that one-loop corrections certainly contribute

to the running of the power spectra. However, as realized in [176], the log(k/H?) depen-

dence is only one of two contributions to the loop correction. An additional dependence

log(H/k) also arises from corrections to the mode functions proportional to δ in the

dimensional regularization process when one is dealing with 3+δ spatial dimensions.

This results in a log(k/H?)+ log(H/k)= log(H/H?) dependence (see section 3.2 in ([176])

for a detailed discussion). Thus, after fixing renormalized quantities at some pivot scale

H?, the dependence in (4.30) and (4.32) arises. Nevertheless, it is important to realize

that H ≡ Hk itself runs as a function of k as inflation progresses. As we shall see shortly

the dependence is logk again, but suppressed with an extra factor of ε and an additional

minus sign. So at the end the original conclusion that one-loop corrections to two-point
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functions induce a running in their spectra is still valid, though further suppressed by

extra factors of slow-roll parameters.

The number of e-folds produced during the expansion at time t is defined to be N (t) :=
loga(t). At the time tk when the mode k crosses the horizon (defined by k =: a(tk)Hk), the

number of e-foldings is characterized by Nk ≡N (tk)= logk− logHk. The evolution of the

inflationary expansion can thus be parametrized by the modes k as well. On the other

hand, recall that by definition ε can be written as dH
dN

=−εH. This can be integrated:

log
Hk

H?
∼−

∫ Nk

N∗
ε(N ′)dN ′ (4.33)

We can further obtain:

log
Hk

H?
= log

k
k?

− (Nk −N?) (4.34)

Taking derivatives at both sides

∂Nk

∂ logk/k?
= 1− ∂ logHk/H?

∂ logk/k?
(4.35)

and using the chain rule

∂ logHk/H?

∂ logk/k?
= ∂Nk

∂ logk/k?

∂ logHk/H?

∂Nk
=−εk

∂Nk

∂ logk/k?
=−εk

[
1− ∂ logHk/H?

∂ logk/k?

]
(4.36)

Note so far this relation is exact. Therefore:

∂ logH/Hk

∂k/k?
=− εk

1−εk
(4.37)

In the limit in which εk is small and constant we get

log
Hk

H?
=−ε log

k
k?

+O(ε2) (4.38)

This is the reason for which we denoted H a subindex k inside the logarithm. This

contribution will be taken into account in the following discussions.

4.3 Observational limits on the number of hidden
fields N

Running of the spectral index

As alluded to in the outline, in order to consider the contribution of hidden fields to

the running of the spectral index, we only need to consider the contribution of the
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one loop diagram involving two cubic vertices as illustrated in Fig. 4.2. Nominally,

each curvature perturbation propagator contributes a factor 1/(εM2
pl) due to the non-

canonically normalized nature of its kinetic term (4.14) whereas each ζχχ vertex is first

order in ε due to the factor ε in the cubic action (4.16), while the ζζχχ vertex will be

second order in ε while each loop contributes a factor NH2

16π2 after being dimensionally

regularized. Hence the ‘seagull’ contribution is of the same order in ε as the correction

obtained from the cubic interactions – the extra factor of ε is compensated for by the fact

that one fewer vertex is required. However, the loop momentum going around the seagull

graph is independent of the incoming momenta and so cannot affect the dependence of

the correlator of the external momentum and thus only contributes to wave-function

renormalization – in practice accounted for by measurements of H2/M2
pl and ε at some

pivot scale k∗, the latter requiring an observation of primordial tensors.

Resummation in the large N limit

The correction to the power spectrum of the curvature perturbation at one loop from N
hidden scalar fields is calculated in the appendices and shown in (4.30). The total power

spectrum is given by

P1−loop
ζ

= Pζ+NPζi = H2

8π2εM2
pl

(
k

k?

)ns−1
(
1−N

ε2H2

15M2
Pl

log
k

k?

)

= ∆

(
k

k?

)ns−1
[

1−N
ε2H2

15M2
pl

log
k

k?

]
, (4.39)

where Pζ =∆
(

k
k?

)ns−1
, is the standard measured power spectrum with amplitude ∆≡

H2

8π2εM2
pl

' 2.2×10−9 [166]. All quantities appearing above are presumed to have also

taken wave function renormalization into account, with ∆ and ε to be independently

fixed by measurements of the amplitude of the power spectrum and the tensor to scalar

ratio at k∗.

As illustrated in fig. 4.3 we see that among the two loop graphs indicated, the first

one dominates in the limit of a large number of hidden fields due to its additional factor

N. Hence, in the large N limit, one can perform a resummation of the basic one loop

correction (4.39) such that we can consistently extract the running induced even in the

limit where the one loop correction becomes comparable to the tree-level result:

Pζ,tot =
∆

(
k

k∗

)ns−1

1+N ε2H2

15M2
pl

log k
k?

. (4.40)
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FIG. 3: Two loop corrections to h⇣⇣i. Wavy
lines denote the graviton propagator. The

double sunset graph dominates when N � 1/✏.
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FIG. 4: Two loop corrections to h��i, where
now we only require N � 1 for the double

sunset graph to dominate.

curvature perturbation, since it will turn out that no amount of enhancement by factors of N can
overcome the slow-roll suppression of the corrections. This is in part because of the ✏ suppression
of the interaction vertices (A18) and (A21), but also because of the observation of [1] that before
fixing renormalization conditions, the corrections must be of the form log Hk/µ as opposed to the
log k/µ. Tensor perturbations on the other hand, have interactions that are unsuppressed by ✏ and
will have potentially observable consequences, which we turn to presently.

B. Running of the tensor two-point function

For the rest of this paper, we’ll be interested in the operator expectation value (21), which is
shorthand for

h�s
ij,k(⌧)�s0

ij,k0(⌧)i = h
⇣
T e�i

R ⌧
�1 d⌧ 0HI(⌧ 0)

⌘†
�0,s

ij,k(⌧)�0,s0
ij,k0(⌧)

⇣
T e�i

R ⌧
�1 d⌧ 0HI(⌧ 0)

⌘
i (26)

Nominally (26) is equivalent to the following expression [11]

h�s
ij,k(⌧)�s0

ij,k0(⌧)i = �
Z ⌧

�1
d⌧2

Z ⌧2

�1
d⌧1h[HI(⌧1), [HI(⌧2), �

0,s
ij,k(⌧)�0,s0

ij,k0(⌧)]]i (27)

However, we have to be careful, since we’ll be deforming the contour in imaginary time in the past
to pick out the correct interacting vacuum. Therefore, we really need to be calculating

h�s
ij,k(⌧)�s0

ij,k0(⌧)i = h
⇣
T e

�i
R ⌧
�1(1+i✏) d⌧ 0HI(⌧ 0)

⌘†
�0,s

ij,k(⌧)�0,s0
ij,k0(⌧)

⇣
T e

�i
R ⌧
�1(1+i✏0) d⌧ 0HI(⌧ 0)

⌘
i (28)

with ✏, ✏0 independent. This means that the symmetry in the domains of integration that allow
one to express a time ordered product of integrals in terms of an integral over a simplex is broken
whenever we have one operator from the time ordered product and another from the anti-time
ordered product – this is a requisite for the expression (26) to equal (27) [10]. Not accounting for
this will result in missing contributions to the loop integral in addition to spurious divergences.
Mindful of the latter, we go through the details of the calculation in appendix B. The intermediate
result is the one loop correction

P�(k⇤) =
2H2

⇤
⇡2M2

pl

"
1 +

N

8

H2
⇤

M2
pl

12⇡

5
log (Hk/H⇤)

#
(29)

FIGURE 4.3. (a) Two loop contributions to the propagator 〈ζζ〉.Solid lines denote
the curvature perturbation propagator; wavy lines represent the graviton
propagator; while dash lines denote the external χ field. The double sunset
graph dominates when N >> 1/ε. (b) Two loop contributions to 〈γγ〉, where
now it is only necessary N >> 1 for the double sunset graph to dominate.

The same reasoning applies for the tensor spectrum and the corresponding resummation

gives

Pγ tot =
2H2

π2M2
pl

(
k

k∗

)nT

1+Nε H2

30M2
pl

log k
k?

. (4.41)

where Pγ = 2H2

π2M2
pl

(
k

k∗

)nT
is the predicted tree-level result for the tensor spectrum.

Logarithmic running

Referring to the parametrization used by the Planck collaboration [9]

logPζ = log∆+ logk/k∗
[
ns(k∗)−1+ 1

2
d ns

d logk

∣∣∣
k∗

log k/k∗+ ...
]

(4.42)

we see from (Table 4) in the same reference that

ns(k?)−1 = d logPtot

d(logk)

∣∣∣∣
k=k?

= 0.9644±0.0049, (4.43)

α(k?) = d2 logPtot

d(logk)2

∣∣∣∣
k=k?

=−0.0085±0.0076, (4.44)

r(k?) < 0.149 . (4.45)
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where the pivot scale is taken to be k? = 0.05Mpc−1. From Eqs. (4.40) and (4.41), one

infers additional corrections to the tilt and the running:

ntot
s (k)−1 = ns(k)−1−

ε2NH2

15M2
pl

1+ ε2NH2

15M2
pl

log(k/k?)
(4.46)

αtot
s (k) = αs(k)+αs

N(k) =αs(k)+ 1[
1+N ε2H2

15M2
pl

log k
k?

]2

[
ε2NH2

15M2
pl

]2

(4.47)

r tot(k) = r

1+ε2N 4π
15

H2

M2
pl

log(k/k?)

1+ Nε
30

H2

M2
pl

log(k/k?)

 (4.48)

ntot
T (k) = nT(k)−

εNH2

30M2
pl

1+ εNH2

30M2
pl

log(k/k?)
(4.49)

αtot
T (k) = αT(k)+αT

N(k) =αT(k)+ 1[
1+N εH2

30M2
pl

log k
k?

]2

[
εNH2

30M2
pl

]2

(4.50)

To second order in the Hubble hierarchy one gets [56, 175]:

ntot
s (k?)−1 = −2ε−ε2 −2ε2 − (2C+3)εε2 −Cε2ε3 +2ε2λN , (4.51)

αtot(k?) = −2εε2 −ε2ε3 , (4.52)

r tot(k?) = r(k?)= 16ε (4.53)

ntot
T (k?) = −2ε+ελN +2ε2 +2(C+1)εε2 , (4.54)

αT tot(k?) = −λ2
N −2εε2 . (4.55)

Here C = γE + log2−2, γE ' 0.577 is the Euler-Mascheroni constant, and we have

introduced

λN = N
H2

30M2
pl

= N
π2 r?

60
∆ζ < N ·10−10 . (4.56)

In this formulas we include the standard slow roll results up to second order in the slow

roll parameters [56, 175].

From these results it is clear that the tensor spectral index and its running contain

the clearest signature of the scalar field contributions. Because N does not appear in the

leading order term in slow-roll parameters in the scalar tilt and running, its contribution

is too feble to compete.
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The leading order contribution to the spectral tilt of tensor modes becomes ntot
T =

−2ε+λε. The consistency relation is then modified since r?, as found above, is unchanged,

but now

ntot
T =− r?

8

[
1− λ

2

]
(4.57)

The value predicted for N using (4.56) is

N =∆−1
ζ

15
π2r2

?

[r?+8nT] (4.58)

As a consequence, if we can bound the consistency relation by some positive number, i.e.

if, to some degree of confidence we can find some upper bound ξ:

r?+8nT < ξ (4.59)

then

N . 109 ξ

r2
?

(4.60)

The most optimistic case is when r? ∼ 10−1, which would imply: N . 1011ξ. So the more

the consistency relation is violated, the more stringent bound this calculation provides.

Comparison with strong coupling bounds

The above results are to be compared with the strong coupling bound, which states that

gravity becomes strongly coupled at the scale M2
pl /N [79]. This implies an upper bound

on the curvature of spacetime before quantum gravity effects become relevant. Hence a

consistent semi-classical treatment requires that H2 < M2
pl /N, implying that the number

of species cannot be greater than

N <
2∆−1

ζ

π2r?
=: B , λN < 1 . (4.61)

We can rewrite now (4.58) as

N =∆−1
ζ

15
π2r?

[
1+ 8ntot

T

r?

]
= B

15
2

[
1− −8ntot

T

r?

]
(4.62)

Therefore, deviations on the tensor to scalar consistency relation
−8ntot

T
r?

= 1 improve the

bound on N imposed by the strong coupling. The more deviated, the strongest constraint
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on N. Note also that, in order to improve the bound on N, it is crucial that the eventual

measure of ntot
T gives a negative value. Assuming this is the case, the experimental

bound on r? (4.45) leads to

N < B
15
2

[1−50|nT |] (4.63)

The greater the eventual measure of |nT | is, the stronger the bound on N will be.

Conversely, given a particular value of N, predicted by a specific theory, one could bound

the expected |nT | to be measured.

Of course the strong coupling bound is derived from theoretical consistency of the

theory, while the bounds we have derived are experimental (assuming a phase of slow

roll inflation has taken place).

4.4 Discussion

From the fact that even hidden quantum fields generate, at 1-loop, perturbations in the

metric with a non-vanishing spectrum, we have derived a limit on the number of such

scalar fields. For this we have demanded that their presence does not spoil inflation

(the strong coupling bound). The discussion in this paper is easily extended to fields

with higher spin or to non-minimally coupled scalar fields. All fields lead to very similar

corrections the ζ and γ which differ mainly in their pre-factor but not in the parametric

form. We therefore conclude that N can be considered as the total number of fundamental

degrees of freedom with masses m ¿ H during inflation. This will be worked out in

future investigations.

The bounds found in this work may put serious challenges to some phenomenological

models that request the existence of a large amounts of light degrees of freedom in the

universe. Some of these models propose to solve the radiative stability of hierarchy be-

tween the Planck and the weak (TeV) scale (so-called "Hierarchy problem") by assuming

large numbers of particle species. For instance, in [80], it was proposed that 1032 mirror

copies of the standard model coupled only through gravity would explain the problem. It

is conjectured that the fundamental cutoff of gravity M? could actually be TeV and that

Mpl is a derived scale Mpl ∼
p

N M?. A similar situation was considered in [29], in which

N copies of the standard model are introduced, each one with different values of the

higgs mass. Depending on whether gauge coupling unification and SUSY is considered or

not, they require the existence of 104 or up to 1016 extra degrees of freedom. The bounds

considered in this work put additional arguments to constrain the parameter space.
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4.5 Appendices

A. On the ε dependence of the vertices

We consider the action for the zero mode of the (canonically normalized) inflaton plus N

hidden scalars.

S =
M2

pl

2

∫
d4x

p−g R[g]− 1
2

∫
d4x

p−g
[
∂µφ∂

µφ+2V (φ)
]

(4.64)

−
N∑

n=1

1
2

∫
d4x

p−g
[
∂µχn∂

µχn +m2
nχ

2
n
]+ ...

Where the ellipses denote higher order terms which we will consider further. By assump-

tion, the χ fields have no classically evolving background, and so appear in the action to

leading order as quadratic in perturbations. We ADM decompose the metric

ds2 =−N2dt2 +hi j(dxi +N idt)(dx j +N jdt), (4.65)

and work in comoving gauge

φ(t, x) = φ0(t), (4.66)

hi j(t, x) = a2(t)e2ζ(t,x)δi j. (4.67)

This gauge is defined by the foliation where the inflaton is the clock (no other field has a

background). Writing

N = 1+α1 (4.68)

N i = ∂iθ+N i
T , w/∂iN i

T ≡ 0

where α1, θ and N i
T all first order quantities, we find the solutions (we only need to

calculate to first order for the constraints to obtain the action to cubic order [131])

α1 = ζ̇

H
(4.69)

∂2θ =− ∂2ζ

a2H
+εζ̇ (4.70)

where ∂2 ≡ ∂i∂i contains no factors of the scale factor, and where ε is defined as:

ε := φ̇2
0

2H2M2
pl

(4.71)
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The relevant quadratic and cubic terms are (summation over n implicit)

S2,ζ = M2
pl

∫
d4xa3 ε

[
ζ̇2 − 1

a2 (∂ζ)2
]

(4.72)

S2,χ = 1
2

∫
d4xa3

[
χ̇nχ̇n − 1

a2∂iχn∂iχn −m2
nχ

2
n

]
(4.73)

S3,ζχ = 1
2

∫
d4x

{
a3χ̇nχ̇n

(
3ζ− ζ̇

H

)
−2a3χ̇n∂iθ∂iχn (4.74)

− a3
(
ζ+ ζ̇

H

)
1
a2∂iχn∂iχn −a3

(
3ζ+ ζ̇

H

)
m2

nχ
2
n

}
We do not write the cubic action for ζ since all we will need from it is the fact that it is

suppressed by ε2 to leading order after enough integrations by parts [131]. A similar

thing happens for (4.74) – although it may appear that the cubic interactions between ζ

and the χa might be of order ε0, these interactions in fact of order ε. This is readily seen

by realizing that this contribution to the action is nothing other than the variation of

the quadratic action for the hidden fields to first order in metric perturbations. That is,

if Lχ =−1
2 (∂µχn∂

µχn +m2
nχ

2
n), then the cubic interaction action for the hidden fields is

given merely by the first order variation

S3,ζχ = δgµν

∫
d4x

p−g Lχ = 1
2

∫
d4x

p−g Tµν
χ δ1 gµν, (4.75)

where Tµν
χ corresponds to the stress-energy tensor of a minimally coupled massless scalar

field in an unperturbed background

Tχ
µν =− ḡµν

2

(
∂λχn∂

λχn +m2
nχ

2
n

)
+∂µχn∂νχn (4.76)

From (4.65), (4.69) and (4.70) we see that the first order metric variations can be read off

as

δ1 gµν =
(
−2 ζ̇

H a2∂iθ

a2∂iθ a2δi j2ζ

)
(4.77)

One can explicitly verify that the trace of the product of the above with (4.76) reproduces

(4.74). We observe that one can write (4.77) as 6

δ1 gµν =∇µβν+∇νβµ+∆µν, (4.78)
6the underlying reason of this decomposition lies in the fact that the unambigous physical contribution

to scalar perturbations is obtained by writing down the choice of gauge explicitly as a time diffeomorphism,
xµ→ xµ+βµ, where β0 is the goldstone boson eaten by the metric in comoving gauge [57]
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where

β0 =− ζ

H
, βi ≡ 0 (4.79)

and where

∆µν := ε
(

2ζ a2∂i∂
−2ζ̇

a2∂i∂
−2ζ̇ 0

)
(4.80)

Because ∇µTµν
χ = 0, clearly only the second term in (4.78) gives a non-vanishing contri-

bution. Therefore the relevant cubic interactions are given by

S3,ζχ =
∫

d4xa3ε

[
ζ

2

(
χ̇nχ̇

n + 1
a2∂iχn∂iχn +m2

nχ
2
n

)
− χ̇n∂iχn∂i∂

−2ζ̇

]
(4.81)

where we take note of the advertised ε suppression of the cubic interaction vertices.

Similarly, the relevant cubic interaction term for the tensor perturbations can also be

written as (4.75), but now

δ1 gµν =
(
0 0

0 a2γi j

)
(4.82)

which has no gauge ambiguities. Thus

S3,γχ = 1
2

∫
d4xa5T i jγi j = 1

2

∫
d4xa5Πi jγi j (4.83)

where in the last line we used the fact that γi j selects the traceless and transverse

contribution of the stress-energy tensor.

B. Equation of motion for curvature perturbations during
inflation

We shall approach the problem now from the perspective of the equations of motion We

derive a second-order differential equation determining the evolution of the comoving

curvature perturbation ζ in presence of external sources such as the N hidden scalar

fields, following closely to [50]. This will result in a generalized Mukhanov-Sasaki

equation. As we shall see, energy momentum conservation will be very crucial for

deriving the correct result, as it was in getting from (4.74) to (4.81) with the aim of

determining the correct order of ε of the vertex interaction. 7

7The main difference with [50] is that in our case the scalar field energy momentum tensor is separately
conserved while in [50] a U(1) gauge field is considered which is non-minimally coupled to the inflaton.
The resulting equations of motion are different. This is why a new derivation needs to be done.
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The background inflaton field φ0 with its slow-roll potential V (φ0), satisfies the

equation of motion φ̈0 +3Hφ̇0 +V ′(φ0)= 0. Its energy-momentum tensor reads

Tµν

0 = − ḡµν
[

1
2
∂σφ0∂

σφ0 +V (φ0)
]
+∂µφ0∂

νφ0 . (4.84)

It has the form of the energy-momentum tensor of a perfect fluid, Tµν = (ρ+p)uµuν+pḡµν

with uµ = 1p
−∂σφ0∂σφ0

∂µφ0 for the energy-flux vector. Since uµuµ =−1, one can choose a

foliation of spacetime with this unit timelike vector, and write ḡµν =−uµuν+hµν. Given

that the field is homogeneous, φ0 = φ0(t), this vector is simply uµ = (−1,0,0,0) in the

FLRW coordinate basis. In other words, φ0 is our "clock". Energy density and pressure

are given by

ρ0 = uµuνTµν

0 =−1
2
∂σφ0∂

σφ0 +V (φ0) , (4.85)

p0 = 1
3

hµνTµν

0 =−1
2
∂σφ0∂

σφ0 −V (φ0) . (4.86)

We now introduce an external source consisting of a set of N minimally-coupled

light scalar fields {χn}. The energy-momentum tensor is again given by (4.84) with a

negligible potential, but in the foliation determined by uµ, and since we admit the

χ-fields to be inhomogeneous, this no longer has the form of a perfect fluid, and non-

vanishing anisotropic stresses Πµν and energy fluxes qµ will appear. The corresponding

decomposition in the foliation defined by φ0 reads

Tµν
χ = (ρ+ p)uµuν+ pḡµν+2u(µqν) +Πµν . (4.87)

The imposition, ∇µTµν
χ = 0, leads to 2 conservation equations of the scalar sector:

0 = ρ̇+3H(ρ+ p)−∂i qi , (4.88)

0 = ∂i q̇i +3H∂i qi − ∂2

a2 p+ 2
3a2∂

2Πs , (4.89)

where ∂2 ≡ ∂i∂i, qi = −uµTµi, and the scalar contribution of the anisotropic stress is

parametrized by Πs
i j =−a2(∂−2∂i∂ j − 1

3δi j)Πs. In Fourier space we introduce the energy

flux potential q via

k2q = ∂i qi = iki qi . (4.90)

Equivalently the scalar anisotropic stress potential is given by

2
3

k2Πs = a2(−kik j + k2

3
δi j)T i j . (4.91)
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Note that q has dimension 3 while all other variables describing the χ-energy momentum

tensor have dimension 4. Using conformal time, the conservation equations in Fourier

space simply become

0 = ρ′+3H (ρ+ p)− k2

a
q , (4.92)

0 = q′+3H q+ p− 2
3
Πs . (4.93)

We have to consider inhomogeneous linear perturbations of the inflaton field by setting

φ(t,x)=φ0(t)+δφ(t,x), which are responsible for the primordial density fluctuations in

the early universe. As a result, this leads to a perturbed metric gµν. We shall work in the

unitary gauge, defined by δφ(t,x) = 0. As an additional gauge condition we set g0i ≡ 0.

This (nearly) completely fixes the gauge. The first-order perturbed FLRW metric can

then be written as

gµνdxµdxν = a2
{
−(1+2A)dη2 +

[(
1+2HL +2

HT

3

)
δi j +2HTY,i j

]
dxidx j

}
. (4.94)

The first order perturbations of the inflaton energy-momentum tensor in this gauge are

(in Fourier space)

δρφ = φ̇0δφ̇+V ′(φ)δφ− Aφ̇2
0 =−Aφ̇2

0 , (4.95)

δpφ = φ̇0δφ̇−V ′(φ)δφ− Aφ̇2
0 =−Aφ̇2

0 , (4.96)

δqφ := i
ki

k2δqφi = i
ki

k2 ikiφ̇0δφ=−φ̇0δφ= 0 , (4.97)

Inserting this in the first-order perturbed Einstein equations δGµν = M−2
pl δTµν we find

3H 2A−3H H′
L −k2(HL + HT

3
) = a2

2M2
Pl

{
φ′2

0

a2 A−ρ
}

,(4.98)

H A−H′
L − H′

T

3
= − a

2M2
pl

q , (4.99)

H′′
T +2H H′

T −k2(A+HL + HT

3
) = a2

M2
Pl

Πs , (4.100)

H A′+ (2H ′+H 2)A− k2

3
(A+HL + HT

3
)−2H H′

L −H′′
L = a2

2M2
pl

{
−φ

′2
0

a2 A+ p

}
.(4.101)

The first two are the constraint equations, while (4.100) and (4.100) are the evolution

equations. Here ρ, p, Πs, and qi ≡−ki q represent the energy density, pressure, scalar

anisotropic stress, and energy-flux vector of the external source, {χn}. Primes denote
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derivative with respect conformal time, dη= dt
a . The equations above have been extracted

from [50], and they have been checked with Appendix B of [43] by translating the

notation.

The comoving curvature perturbation ζ is gauge invariant, and hence a suitable

physical quantity to describe scalar cosmological perturbations. In our gauge it is given

by ζ=+HL+HT
3 − H

ρ0+p0
δqϕ =+HL+HT

3 The above set of equations can be rearranged so

to obtain an evolution equation for ζ:

(H − H ′

H
)ζ′′+

[
2H 2 −2H ′+

(
H ′

H

)2

−
(
H ′

H

)′]
ζ′+ (H − H ′

H
)k2ζ= (4.102)

+ a2

2M2
pl

{
ρ′− q′

a

[
2H + H ′

H

]
−ρ

[
H ′

H
−4H

]

−q
a

[
k2 +H ′−2H 2 +

(
H ′

H

)′
−

[
2H + H ′

H

][
H ′

H
−4H

]]
+2HΠs

}
.

We make use of the following identities which are realized in slow-roll inflation:

H 2 −H ′ = εH 2 ,
φ′′

0

φ′
0
=H (1+δ) , (4.103)

where ε and δ are the slow roll parameters, defined in (4.6). We also use [189] ε̇ =
2Hε[δ+ε]. At leading leading order in slow-roll parameters, we find

ζ′′+
[
2H + ε′

ε

]
ζ′+k2ζ = +a2

2M2
plεH

{
ρ′− q′

a
H (3−ε)+ρH (3+ε)

−q
a

(
k2 +9H 2 −3εH 2 −ε′H )+2HΠs

}
.

The leading order contribution on the RHS is actually of order ε0, and not ε−1. Using the

conservation equations (4.92) and (4.93), one finds that all the terms of order ε−1 cancel

and we remain with

ζ′′+2
z′

z
ζ′+k2ζ= a2

2M2
pl

{
ρ− p+ 2

3
Πs + q

a
ε′

ε

}
. (4.104)

which is the Mukhanov-Sasaki equation, with a source term determined by the scalar

fields χn. It is customary to write it in terms of z2 ≡ a22M2
plε = a2 φ2

0
H2 . Note that it is

important that the hidden fields are separately conserved (do not interact with the

inflaton field) in order for the ε−1 contributions to the source term to vanish. If this

were not the case, we would obtain much larger corrections and therefore much tighter

constraints.
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The correction for the power spectrum will have an order of magnitude ε in agreement

with the findings of [188]. The equation is manifestly gauge-invariant, and is not limited

to scalar fields, since in the derivation we made only use of the general form (4.87) of the

energy-momentum tensor. It can also be applied to other matter fields, Dirac spinors for

instance. Note also that in the non-relativistic limit the Poisson equation + k2

a2 ζ= 4πGρ
is recovered. Expression (4.104) is our central equation. The last term can actually be

ignored as it is of higher order in the slow-roll parameters.

We now show that (4.104) can also be obtained via the action. The relevant cubic

interaction in the action derived in (4.81) can be arranged as

S3,ζχ =
∫

d4x a3ε

{
ζ

2

[
χ̇χ̇+ 1

a2∂iχ∂iχ

]
+ (∂−2ζ̇)∂i(χ̇∂iχ)

}
(4.105)

=
∫

d4x a3ε

{
ζ

2

[
χ̇χ̇+ 1

a2∂iχ∂iχ

]
+ ζ̇∂−2∂i(χ̇∂iχ)

}
(4.106)

=
∫

d4x a3ε{ζρ− qζ̇}=
∫

d4x a3ε ζ

[
ρ+ q̇+3Hq+ ε̇

ε
q
]

(4.107)

Using momentum conservation to eliminate q̇+3Hq we obtain the source term ρ+ q̇+
3Hq+ ε̇

ε
q = ρ− p+ 2

3Πs + ε′
ε

q
a , which is in full agreement with (4.104).

C. Contribution from the hidden sector to the power spectra

In this appendix we want to determine the particular solution of (4.104) due to the source,

correcting the wellknown homogeneous result. We present the details of the calculation

of the two-point function.

For convenience we introduce an auxiliary field ϕk(η)= zζk(η). In terms of ϕk equation

(4.104) simplifies to [
d2

dη2 +k2 − 1
z

d2z
dη2

]
ϕk =

√
ε

4πG
4πG
H3

Sk(η)
η3 . (4.108)

where Sk(η) can be read off from (4.104). The general inhomogeneous solution of this

equation is given by (we assume the slow-roll field approximation, in which ε, δ are

constant with time)

ϕk(η)=
√

ε

4πG
4πG
H3

∫ 0

−∞
dη′G R

k (η,η′)
Sk(η′)
η′3

, (4.109)

where G R
k (η,η′) is the retarded Green function of (4.108). Since G R

k (η,η′)∝Θ(η−η′)= 0

for η< η′, the homogeneous (Mukhanov-Sasaki) solution corresponds to the solution of

the field equation at η→−∞, i.e. before the interaction with the external source has

taken place.
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Vacuum expectation values of products of free fields can be associated with the Green

functions of the equation of motion [48]. The so-called Hadamard elementary function

(Feynman propagator) G (x, x′) of a linear differential equation like the Klein-Gordon

equation is the difference of the advanced and retarded Green functions, GR(x, x′) =
−Θ(η−η′)G (x, x′) and GA(x, x′)=Θ(η′−η)G (x, x′). It appears as the vacuum expectation

value of the anticommutator of a scalar field with itself,

G (x, x′)= 〈{ϕ(x),ϕ(x′)}〉 =
∫

d3k
(2π)3 Gk(η,η′)eik(x−x′) . (4.110)

which for (exact) de Sitter space leads to, yk ≡−kη, y′k ≡−kη′

Gk(η,η′) = 2Re
[
ϕk(η)ϕ∗

k(η′)
]= 1

kyk y′k

[
(1+ yk y′k)cos(yk − y′k)+ (yk − y′k)sin(yk − y′k)

]
.(4.111)

Up to a normalization factor y′3 which must be included, the corresponding retarded

function is indeed a Green function:[
d2

dη2 +k2 − 1
z

d2z
dη2

]
(−1)Gk(η,η′)Θ(η−η′) = −k

[
d2

d y2
k

+1− 2
y2

k

]
Gk(yk, y′k)Θ(η−η′)= k

y′3k
δ(yk − y′k)

= 1
y′3k

δ(η−η′)

and hence, the formal expression (4.109) is a solution of the inhomogeneous equation

(4.108) if we set G R
k (η,η′)=−y′3k Gk(η,η′)Θ(η−η′). For practical purposes in future calcu-

lations, it is convenient to take the superhorizon limit of (4.111): yk ¿ 1 or y′k ¿ 1. It

yields,

y′3k Gk(η,η′)≈ η′2

η
, y′k ¿ 1, and yk ¿ 1 . (4.112)

For a slow-roll inflationary background, the modes become ϕk(η)=
p−πη

2 H(1)
3/2+2ε+δ(−kη),

the large-scale behaviour of the retarded Green function is given by

G R
k (η,η′) := (−y′3k )Gk(η,η′)Θ(η−η′) ≈ −η

′2+2ε+δ

η1+2ε+δ Θ(η−η′), y′k << 1, and yk << 1 .(4.113)

We use this expression to determine the inhomogeneous solution (4.109). But first, we

need to determine the source which comes entirely from the hidden sector, the N external

fields.

The equation of motion for a massless minimally coupled scalar field χ is given by

2χ(x) = 0. In order to solve the equation of motion, we descompose the field in terms
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of Fourier modes χk. We take advantage of the maximal group of spatial symmetries

to decouple the temporal dependence from the spatial one, χk = χk(t)eik·x. The Klein-

Gordon equation is translated then to a second-order differential equation of motion for

the modes

χ̈k +3Hχ̇k +
k2

a2χk = 0, χ′′k +2H χ′k +k2χk = 0 (4.114)

Assuming the natural extension of the Bunch-Davies vacuum state to slow-roll inflation,

the standard mode solutions are

χk(t)=
p−πη

2a
H(1)
µ

(−kη
)
. (4.115)

As above, we use the variable yk ≡−kη= k
aH(1−ε) below.

With the modes solution (4.115) we now determine the source term in the inhomo-

geneous solution (4.109). In the foliation defined by the inflaton field φ0, the energy-

momentum tensor of an external field is of the form (4.87). A scalar field produces

Tχ
µν = −1

2 ḡµν∂σχ∂σχ+∂µχ∂νχ. According to (4.104) we are interested in the following

components:

ρ = Tχ
µνuµuν = 1

2

[
χ̇2 + 1

a2 (∇χ)2
]

, (4.116)

p = 1
3

hµνTµν
χ = 1

2

[
χ̇2 − 1

3a2 (∇χ)2
]

, (4.117)

Πi j = hαi hβj Tχ

αβ
− 1

3
Tχ

αβ
hαβhi j = (∂iχ)(∂ jχ)− 1

3a2 (∇χ)2hi j . (4.118)

The corresponding modes are obtained by applying the convolution theorem,

ρk = 1
2

[
(χ̇∗ χ̇)k+ 1

a2 (∇χ∗∇χ)k
]
= 1

2

∫
d3 p
(2π)3

[
(χ̇)p(χ̇)k−p+ 1

a2 (~∇χ)p(~∇χ)k−p

]
= 1

2

∫
d3 p
(2π)3

[
˙̂χp ˙̂χk−p− p(k−p)

a2 χ̂pχ̂k−p

]
. (4.119)

pk = 1
2

[
(χ̇∗ χ̇)k− 1

3a2 (~∇χ∗~∇χ)k
]
= 1

2

∫
d3p

(2π)3

[
(χ̇)p(χ̇)k−p− 1

3a2 (~∇χ)p(~∇χ)k−p

]
= 1

2

∫
d3 p
(2π)3

[
˙̂χp ˙̂χk−p+ p(k−p)

3a2 χ̂pχ̂k−p

]
. (4.120)

(Πi j)k = (∂iχ∗∂ jχ)k− 1
3a2 (∇χ∗∇χ)khi j =

∫
d3p

(2π)3

[
(∂iχ)p(∂ jχ)k−p− 1

3a2 (~∇χ)p(~∇χ)k−phi j

]
= −

∫
d3 p
(2π)3

[
pi(k j − p j)− 1

3a2 p(k−p)hi j

]
χ̂pχ̂k−p . (4.121)
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where χ̂k(t) = âkχk(t)+ â†
−kχ

∗
k(t) is the Fourier transform of the external scalar field,

χ(x)= ∫ d3k
(2π)3 χ̂k(t)eik·x (reality of χ(x) implies χ̂†

k(t)= χ̂−k(t)). The scalar anisotropic contri-

bution is defined by the relation (Πi j)s
k ≡−a2 (

k̂i k̂ j − 1
3δi j

)
Πs

k; thus, Πs
k =−3

2 a2k̂i k̂ j(Πi j)k.

Namely,

Πs
k = 3

2

∫
d3p

(2π)3

[
k ·p
a2

(
1− k ·p

k2

)
− p(k−p)

3a2

]
χ̂pχ̂k−p. . (4.122)

Taking into account all these expressions the source term in (4.104) reads

Sk ≡ ρk− pk+ 2
3
Πs

k =
∫

d3p
(2π)3

p2 − (k̂ ·p)2

a2 χ̂pχ̂k−p =
∫

d3p
(2π)3

p2 sin2θ

a2 χ̂pχ̂k−p . (4.123)

D. Scalar power spectrum

The contribution of the source to the power spectrum of curvature perturbations is

determined by the two-point function of modes (4.109),

k3 〈ζk(η) ·ζk′(η)〉 = (2π)3Pζ(η)δ(3)(k+k′) . (4.124)

Thus,

〈ζk(η) ·ζk′(η)〉 = 〈ϕk(η)
z

· ϕk′(η)
z

〉 = 1
4M4

pla
2H6

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2

G R
k (η,τ1)

τ3
1

G R
k′ (η,τ2)

τ3
2

〈Sk(τ1) ·Sk ′(τ2)〉 .

We define the auxiliary power spectrum 〈Sk(τ1) ·Sk′(τ2)〉 = (2π)3PS(τ1,τ2)δ(3)(k+k′)
which we first determine. The computation of 〈Sk(τ1) ·Sk′(τ2)〉 requires to study the

vacuum expectation value of four fields, and, with the help of χ̂k(t)= âkχk(t)+ â†
−kχ

∗
k(t),

only the following contributions do not vanish,

〈χ̂p(τ1)χ̂k−p(τ1)χ̂p ′(τ2)χ̂k ′−p ′(τ2)〉 = 〈apak−pa†
−p ′a

†
−k ′+p ′〉χp(τ1)χk−p(τ1)χ∗p ′(τ2)χ∗k ′−p ′(τ2)

+〈apa†
−k+pap ′a†

−k ′+p ′〉χp(τ1)χ∗k−p(τ1)χp ′(τ2)χ∗k ′−p ′(τ2), (4.125)

using standard conmutation relations and ap |0〉 = 0, we find

〈χ̂p(τ1)χ̂k−p(τ1)χ̂p ′(τ2)χ̂k ′−p ′(τ2)〉 =
(2π)6

[
δ(3)(k−p+p ′)δ(3)(p+k′−p ′)+δ(3)(p+p ′)δ(3)(k−p+k′−p ′)

]
×χp(τ1)χk−p(τ1)χ∗p ′(τ2)χ∗k ′−p ′(τ2)

+ (2π)6δ(k)δ(k′)χp(τ1)χ∗k−p(τ1)χp ′(τ2)χ∗k ′−p ′(τ2). (4.126)
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The first two terms are actually identical and integration over d3p′ yields

PS(τ1,τ2) = 2
∫

d3p
(2π)3 Mp,k−p(τ1)M∗

k−p,p(τ2)

+ (2π)3δ(3)(k)
∫

d3p
(2π)3 Np(τ1)

∫
d3p ′

(2π)3 Np′(τ2), (4.127)

where we have introduced the auxiliary functions (note the difference with (4.123): χ is a

function while χ̂ is an operator)

Mp,k−p = p2 sin2θ

a2 χpχk−p, (4.128)

Np = p2 sin2θ

a2 |χp|2. (4.129)

We neglect the contribution with δ(3)(k) which is a zero mode and only contributes to the

background. The power spectrum of curvature perturbations (4.124) yields finally

Pζ(η) = η2k3

4M4
plH

4

∫ 0

ηin

dτ1

∫ 0

ηin

dτ2
G R

k (η,τ1)

τ3
1

G R
k (η,τ2)

τ3
2

PS(τ1,τ2)

= η2k3

2M4
plH

4

∫
d3p

(2π)3

∣∣∣∫ 0

ηin

dη′
G R

k (η,η′)
η′3

Mp,k−p(η′)
∣∣∣2. (4.130)

On subhorizon scales the mode functions oscillate rapidly and do not contribute sig-

nificantly to the result, Therefore we have restricted the integrals to times which are

between ηin and η, for which the sourcing modes have exited the horizon. This means,

Max
[
− 1

p
,− 1

|k−p|
]
< η′ < η. (4.131)

Equation (4.128) can be written as Mp,k−p(η) = χpχk−pH2η2 p2 sin2θ. In the super-

horizon limit |kη| << 1 we have χp =
p−πη

2a H(1)
µ (yp) ∼ iHp

2
(−η)−εp−3/2−ε, independent of

time on superhorizon scales. Taking into account all this, the time integral in (4.130)

yields

∫ 0

ηin

dη′
G R

k (η,η′)
η′3

Mp,k−p(η′) ≈ H4

4η1+2ε
1

p3/2+ε
1

|k−p|3/2+ε y2
p sin2θ

[
1−Max

[
1
yp

,
1

y|k−p|

]2+2ε+δ]
,

and with this, the power spectrum of curvature perturbations reads

Pζ(η) ≈ y3
kH4

2(8π)2M4
Pl

∫ ∞

0
d yp y3−2ε

p

∫ +1

−1
dcosθ

1
y3+2ε
|k−p|

sin4θMax
[

1
yp

,
1

y|k−p|

]4+4ε+2δ
.(4.132)
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where we introduced the Planck mass Mpl ≡ (8πG)−1/2. The following consideration

determines the minimum momenta:

y2
|k−p|− y2

p = y2
k −2yk yp cosθ = yk(yk −2yp cosθ), yk, yp ≥ 0 . (4.133)

If yk > 2yp, then yk−p > yp for all angles, −1< cosθ < 1. For yk < 2yp we have to constrain

the angle of integration. If −1 < cosθ < 0, then yk−p > yp directly. Moreover, this is

satisfied also if 0< cosθ < yk
2yp

. Then,

−1< cosθ < yk

2yp
, =⇒ yk−p > yp . (4.134)

On the other hand,

yk

2yp
< cosθ < 1, =⇒ yk−p < yp . (4.135)

Therefore, we split the integral (4.132) into three pieces, as follows

Pζ(η) ≈ y3
kH4

2(8π)2M4
Pl

{∫ yk
2

0

d yp

y1+6ε+2δ
p

∫ 1

−1

dx
y3+2ε

k−p

(1− x2)2

+
∫ ∞

yk
2

d yp

y1+6ε+2δ
p

∫ yk
2yp

−1

dx
y3+2ε

k−p

(1− x2)2

+
∫ ∞

yk
2

d yp y3−2ε
p

∫ 1

yk
2yp

dx
y7+6ε+2δ

k−p

(1− x2)2

}
. (4.136)

The integrals can be solved analytically, for example, with Mathematica. The first

and third integrals have to be regularized properly to avoid an IR divergence (there are

poles at p= 0 and p=k). Dimensional regularization amounts in taking the substitution

y1−s
p → y1−s

p , (1− x2)2 → (1− x2)2+s/2, y3
k → y3−s

k , and H → H · (H/H?)s/2, where we

introduced a parameter H? that compensates the dimensions of H (this is called the

renormalization constant). To leading order in the slow-roll parameters, the final result

is

Pζ(η) ≈ 8H4

15(8π)2M4
pl

[
c+ 2nT

nT +ns −1
log

Hk

H?

](
k

k?

)ns−1
. (4.137)

where ns −1=−4ε−2δ and nT =−2ε are the scalar and tensor spectral indices, respec-

tively; and c is a constant. The result is nearly the same as the scalar inflaton spectrum.

In addition, there is an implicit logarithmic k-dependence in H ≡ Hk which comes from

the contribution of the set of N light scalar fields. The constant term cannot discriminated
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from the inflaton contribution, because the observational power spectrum is measuring

the whole curvature perturbation power spectrum. It is important to remark that the

logarithmic contribution comes from the regularization process of the p = 0 pole, only.

Note: for constant ε one has [189] δ = −ε and consequently 2nT
nT+nS−1 = 1. We use this

simplified version in the main text.

E. The tensor power spectrum

Tensor modes are determined by the traceless and divergenceless symmetric contribution

of the perturbed metric at linear order: gT
µνdxµdxν = a2 [−dη2 + (δi j +γi j(t,x))dxidx j].

In first order perturbation theory the field γi j(t,x) is assumed to propagate in the

unperturbed FLRW background. Homogeneity allows to decompose the field in Fourier

modes

γi j(t,x) = ∑
s=±2

∫
d3k

(2π)3 eik·xγ̂s
i j(t,k)= ∑

s=±2

∫
d3k

(2π)3 eik·xγ̂s(t,k)es
i j(k̂) , (4.138)

where s =±2 denote the two possible helicity states of the graviton, γ̂s(k, t)= âs
kγk(t)+

âs †
−kγ

∗
k(t) are the quantum modes, and es

i j(k̂) is the polarization tensor in direction k̂,

which must verify the above mentioned properties: it is divergencefree ki es
i j(k̂) = 0,

symmetric es
i j(k̂) = es

ji(k̂), and traceless δi j es
i j(k̂) = 0. For a wave propagating in the

êz-direction the polarization tensor is of the form

e±i j(êz)= 1p
2


1 ±i 0

±i −1 0

0 0 0

 . (4.139)

For a generic direction k̂, the polarization tensor is given by e±i j(k̂)= Sik(k̂)S jl(k̂)e±kl(ẑ),

where Si j(k̂) is the standard 3-dimensional rotation matrix that takes the êz axis into

the k̂-direction. For k̂= (sinθ cosφ,sinθsinφ,cosθ) it reads

Si j(k̂)=


cosφcosθ −sinφ sinθ cosφ

sinφcosθ cosφ sinθsinφ

−sinθ 0 cosθ

 , S ·ST = ST ·S = I . (4.140)

It is easy to verify that e±i j = (e∓i j)
∗, e±i j(−k̂)= e∓i j(k̂), and e±i j e

±
i j = 0, e±i j e

∓
i j = 2.

In Fourier space, the differential equation that governs the dynamics of the tensor

metric fluctuations γ̂i j is

γ̂′′i j +2H γ̂′i j +k2γ̂i j = 2
M2

pl

ΠT
i j , (4.141)
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where ΠT
i j are the tensor modes of the anisotropic stress. For a massless and minimally-

coupled scalar field χ, the total anisotropic stress is calculated in (4.121). By projecting

equation (4.141) with the polarization tensor we obtain

γ̂′′±+2H γ̂′±+k2γ̂± =− a2

2M2
pl

S±
T . (4.142)

where S±
T =− 2

a2Π
T
i j e

∓
i j is the external source for tensor fluctuations, introduced to em-

phasize the close analogy with the scalar equation (4.104).

Recalling equation (4.121), since Πi j =Πs
i j +ΠV

i j +ΠT
i j such that e±i jΠ

s
i j = e±i jΠ

V
i j = 0,

one obtains

e±i j(k̂)ΠT
i j(k̂) = e±i j(k̂)Πi j(k̂)= e±i j(k̂)

∫
d3p

(2π)3 pi p j χ̂pχ̂k−p

=
∫

d3p
(2π)3 p2e±33(k̂)χ̂pχ̂k−p

=
∫

d3p
(2π)3 p2S3i(k̂)S3 j(k̂)e±i j(êz)χ̂pχ̂k−p

= 1p
2

∫
d3p

(2π)3 p2 sin2θχ̂pχ̂k−p ,

so that

S±
T =−

p
2

∫
d3p

(2π)3
p2

a2 sin2θχ̂pχ̂k−p . (4.143)

The contributions from both tensor polarizations are exactly equal (a consequency of

parity invariance), so that an additional factor 2 must be included when considering the

total tensor power spectrum, defined by 〈γ̂k · γ̂k′〉 = (2π)3Pγδ
(3)(k+k′).

Comparing with the analogous expression for the scalar source, (4.123), we find that

the tensor spectrum is simply 8 times that found for the scalar case (4.137),

Pγ(k) ≈ H4

15π2M4
pl

[
c+ log

H
H?

](
k

k?

)nT

. (4.144)
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5
ELECTROMAGNETIC DUALITY ANOMALY IN CURVED

SPACETIMES

The source-free Maxwell action is invariant under electric-magnetic duality rota-

tions in arbitrary spacetimes. This leads to a conserved classical Noether charge.

We show that this conservation law is broken at the quantum level in the pres-

ence of a classical and dynamical gravitational background field characterized by a

nontrivial Chern-Pontryagin invariant, in parallel with the chiral anomaly for massless

Dirac fermions. We discuss physical consequences in astrophysics, among which the net

polarization of the quantum electromagnetic field is not conserved.

The work presented in this chapter was developed in collaboration with I. Agullo and

J. Navarro-Salas [12–14].

5.1 Introduction

Symmetries play a primary role in all areas of physics. They are widely considered as

the guiding principle for constructing any physically viable theory, and their connection

with conservation laws found by Noether almost one century ago [142] is a cornerstone

in understanding all modern fundamental theories.

A particularly interesting example of this is given by Maxwell theory of electrody-

namics, whose invariance under Poincare tranformations, which can also be enlarged

to the full conformal transformation group, leads to conservation of energy, linear and
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angular momentum. The theory is also invariant under gauge transformations when

the electromagnetic potential is introduced and coupled to matter fields, and implies the

conservation of electric charge. But not only that, in the absence of electric charges or

currents, and in four dimensions, there is still another symmetry, which perhaps has

received much less attention historically, at least from a dynamical point of view. It is a

simple exercise to check that both source-free Maxwell equations and stress-energy tensor

are manifestly invariant, in 4 dimensions, under a so-called duality transformation of

the electromagnetic field, that essentially consists of a U(1) rotation between the electric

and magnetic fields. Although apparently trivial, this symmetry can have interesting

consequences.

It seems that it was Heaviside [115, 116], after reformulating Maxwell equations in

the modern language of vector calculous, the first who pointed out the manifest symmetry

of source-free Maxwell dynamics under the exchange of the electric and magnetic fields.

Then Raichnich [167] introduced the continuous transformation in modern terms. Around

50 years later, Deser and Teitelboim [70] (see also [69]) proved that this transformation

is also a symmetry of the standard action by working with the basic dynamical variables,

the electromagnetic potential. The validity of this was extended for an arbitrary curved

spacetime, and the corresponding conserved Noether charge was identified. It should be

stressed that in Minkowski spacetime this charge was previously recognised as the net

difference between right- and left-handed circularly polarized radiation intensity [55]. In

optics literature this is called optical helicity [39]1, and it corresponds to the V-stokes

parameter describing the polarization state of light. Henceforth, besides conservation of

energy or momenta, the polarization of radiation is also a constant of motion as long as

no electromagnetic sources are present, courtesy of the classical duality symmetry.

A natural question now is whether this symmetry continues to hold in quantum

electrodynamics. Note that it is not trivial to promote a classical symmetry to the

quantum theory: Noether’s theorem states that the continuity equation for a given

current is a linear combination of the equations of motion, with the coefficients being

the fields themselves, thereby leading to a quadratic operator. Off-shell contributions

coming from quantum corrections might spoil the classical invariance, specially if we

have an external background field. When this occurs, we speak of a quantum anomaly in

the theory.

Historically, the issue of quantum anomalies first appeared in the seminal works by

Adler, Bell and Jackiw [10, 44]. They found that the usual chiral symmetry of a massless

1see also [45] for a related — but different — notion: the magnetic helicity
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Dirac theory, when the fermionic field is interacting with a classical electromagnetic

field, breaks down at the quantum level due to the renormalization process, thus yielding

the so-called chiral or axial anomaly. Immediately after, Kimura [122] found a similar

anomaly when the massless Dirac field is immersed in a classical gravitational back-

ground. These discoveries led to an outbreak of interest in anomalies in the QFT and

mathematical physics communities, leading to further examples and a connection with

the well-known index-theorems in geometric analysis [81, 140]. From a physical point of

view they have important implications, for instance they provide an understanding of

the pion decay to two photons [44], or a partial understanding of the Standard Model

via anomaly cancelation [174]. They have played a major role in string theories too. A

decade later of the discovery, an important insight about the origin of quantum anomalies

was given by Fujikawa [91, 92] using the path-integral language [119]. He found that,

although the classical action remains invariant, it is the measure of the path integral

describing the transition amplitude that fails to be invariant under the transformation

of interest, and here the reason for the anomaly.

In this chapter we address the question of whether the classical duality symmetry ex-

tends to the quantum electromagnetic theory if a dynamical, classical, curved spacetime

background is switched on, and in the total absence of electromagnetic sources. To clarify

the question in precise terms, one needs to compute the vacuum expectation value of the

continuity equation, 〈∇µ jµD〉, where jµD is the Noether current of the duality transfor-

mations. To this matter, we shall stress the role played by a duality transformation in

Maxwell theory as that of a generalization of a chiral rotation for a massless Dirac field.

Then apply standard techniques from quantum field theory in curved backgrounds such

as renormalization, geometric analysis (asymptotic expansion of the heat kernel), and

Fujikawa’s viewpoint using path integrals. In particular we shall show that a duality

anomaly arises in the failure of the measure of the path integral to respect the symmetry

of the action. Discussions on promising physical implications of all this in astrophysics

and connected with gravitational waves are presented at the end of the chapter.

Main results of this chapter were summarized in [13, 14], and a follow-up paper

concerning the rest of results that appear in this chapter are planned to be published

somewhere.

Notation. We follow the convention ε0123 = 1 and metric signature (+,−,−,−). More

specifically, we follow the (−,−,−) convention of [136]. We always restrict to 4-dimensional

spacetimes. Greek indices denote spacetime indices while Minkowski space carries latin

indices. We reserve the letters i, j,k . . . for purely spatial objects. Capital indices I, J, or

135



CHAPTER 5. ELECTROMAGNETIC DUALITY ANOMALY IN CURVED SPACETIMES

İ, J̇ refers to internal indices associated to the three-dimensional Lorentz representations.

Sum over repeated indices is understood. We assume c = 1 but not necessarily ~= 1. For

any issue related with the electromagnetic theory, we follow notation of [120]. Unless

otherwise stated, we assume all fields to be smooth and that decay sufficiently fast at

infinity.

5.2 Classical theory and electric-magnetic rotations

Lagrangian formalism

In this paper we are concerned with free Maxwell’s theory, i.e. electromagnetic fields

in the absence of electric charges and currents, formulated on a globally hyperbolic

spacetime with metric tensor gµν. The classical theory is described by the action

S[Aµ]=−1
4

∫
d4x

p−g FµνFµν (5.1)

where F is a closed two-form (dF= 0) defined in terms of its potential A as F= dA, or in

components, Fµν =∇µAν−∇νAµ. Maxwell’s equations read 2Aν−∇µ∇νAµ = 0, where ∇
is the covariant derivative associated with gµν and 2≡ gµν∇µ∇ν. When written in terms

of the dual tensor ?F, these equations take the compact form d?F= 0 and, together with

dF= 0, make manifest that dynamics is invariant under electric-magnetic rotations

F −→ F cosθ+?F sinθ ,
?F −→ ?F cosθ−F sinθ . (5.2)

For θ = π/2 one has the more familiar duality transformation F → ?F and ?F →−F. If

this one-parameter family of transformations are a true symmetry of the action, then

Noether’s analysis must provide a conserved charge associated to it. We now analyze this

problem. Our presentation re-phrases in a manifestly covariant way the results of [70].

The transformation (5.2) is a symmetry of the action if its infinitesimal version (δF=
?Fδθ, δ?F=−Fδθ) leaves the action invariant or, equivalently, changes the Lagrangian

density L =−1
4
p−g FµνFµν by a total derivative δL =p−g∇µhµ, for some current hµ.

This must be true even off-shell, i.e. when F and ?F do not satisfy the equations of motion.

In analyzing if this is the case one faces two difficulties. On the one hand, since F is by
construction a closed two-form (i.e. dF= 0), for the transformation (5.2) to be consistent
?F must be also closed, and this amounts to say that ?F satisfies the equations of motion.

In other words, the transformation (5.2) is only valid on-shell, and a more general
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transformation has to be considered for this analysis (i.e. something like δF= δθdZ, for

some 1-form Z; see below).2 And secondly, since the configuration variables of Maxwell’s

action are the vector potential A rather than the field F, to apply Noether’s techniques

we first need to re-write (5.2) in terms of A. A convenient strategy to deal with these two

issues is to define a more general transformation, that will agree with electric-magnetic

rotations only on-shell, as follows

δAµ = Zµδθ , (5.3)

where Zµ is a functional of Aµ implicitly defined by dZ = ?F+G, where G is a two-form

whose explicit form will not be needed, but that is subject to the following conditions:

1. It is not closed, dG 6= 0. This guarantees the off-shell character (d?F 6= 0) of the

whole Noether analysis.

2. It vanishes when Aµ satisfies the equations of motion, G|on−shell = 0. This ensures

that the usual electromagnetic transformation between the electric and magnetic

fields is recovered, δF|on−shell = ?Fδθ.

3. Fix an arbitrary time-like vector field nν. Then G should have zero magnetic part,

i.e. nν?Gµν = 0, with ?G the dual of G. This is motivated by working in the reduced

phase space, in which the source-free Gauss law holds, and this way Z can be

understood as the "potential" for the electric field (see Appendix A for more details).

Notice that condition 2 also implies that on-shell Z is simply the potential of the dual field
?F, and (5.3) reproduces then the electric-magnetic rotations [take exterior derivative of

(5.3) to see this explicitly]. Note also that Zµ is a non-local functional of Aµ: indeed, as

introduced in more detail in Appendix A, we define Z to be the vector "potential" of the

electric field, and in the lagrangian formalism Ea = nb(∇b Aa −∇a Ab) holds. However, as

discussed in [70], this is a non-locality in space, and not in time, and therefore it is not

an impediment to apply Noether’s formalism.

Under the transformation (5.3), we obtain (see Appendix A)

δL =−δθ
p−g

2
∇µ

[
Aν

?Fµν−Zν (dZ)µν
]≡p−g∇µhµ . (5.4)

2This “difficulty” is singular of the second order formalism. If one uses a first order Lagrangian, or a
Hamiltonian formulation, the usual electric-magnetic rotations can be implemented off-shell. This point
has been emphasized in [69] and will be manifest in the rest of this paper.
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This confirms that electric-magnetic rotations are a symmetry of source-free Maxwell’s

theory. The density current associated with this symmetry is

jµD = (−g)−1/2
(

∂L

∂∇µAν
δAν

)
−hµ = 1

2

[
Aν

?Fµν−Zν2Fµν−Zν (?dZ)µν
]

(5.5)

(we have dropped δθ from the definition of jµD). This current is gauge-dependent and

non-local in space. But this is not a problem, as long as the associated conserved charge

is gauge invariant, which is in fact the case. When evaluated on-shell (i.e. when dZ = ?F)

jµD |on−shell =
1
2

[
Aν

?Fµν−ZνFµν
]

. (5.6)

Now, if we foliate the spacetime using a one parameter family of Cauchy hyper-surfaces

Σt, the quantity

QD =
∫
Σt

dΣµ jµD = 1
2

∫
Σt

dΣ3
(
AµBµ−ZµEµ

)
, (5.7)

is a conserved charge, in the sense that it is independent of the choice of “leaf” Σt. In

this expression, dΣ3 is the volume element in Σt; Eµ := nνFνµ and Bµ := nν?Fνµ are the

electric and magnetic parts, respectively, of the electromagnetic tensor field F relative to

the foliation Σt. The same expression for QD is obtained if jµD |on−shell is used in place

of jµD in (5.7), and hence the conserved charge is insensitive to the extension of the

transformation done above.

In section 5.4 we will re-derive jµD by using self-dual and anti self-dual variables, and

this will make the derivation significantly more transparent. The physical interpretation

of QD will become also more clear, and we postpone the discussion until then.

The current is conserved on-shell, as it should. Indeed:

∇µ jµD = 1p−g

[
[∇µ

∂L

∂∇µAν
]δAν+ ∂L

∂∇µAν
∇µδAν

]
−∇µhµ = 1p−g

[
∇µ

∂L

∂∇µAν

]
δAν

= −Zν∇µFµν (5.8)

so that, by imposing Maxwell equations ∇µFµν|on−shell = 0, we find the desired result.

Ultimately, the question that we want to address in this chapter is whether the

symmetry continues to hold at the quantum level. This means that we have to calculate

the vacuum expectation value of the divergence of the current and check if it vanishes or

not 3. Notice that this is not a trivial question, since the RHS of (5.8) will be a composite
3There are good reasons to expect a non-vanishing value for the right-hand-side of (5.8). Explicit

calculations for the local expectation values of 〈FµνFµν〉 [15], 〈Fµν
?Fµν〉 [73, 169] produce in a non-zero

result. If the symmetry were preserved quantum-mechanically and the vacuum state were invariant under
this transformation, vacuum expectation values of operators that reverse sign under a discrete duality
transformation [i.e. ~E → ~B, ~B → -~E], such as FµνFµν = 2[EµEµ−BµBµ], or 〈Fµν

?Fµν〉 = −4EµBµ should
vanish.
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operator in the quantum theory and this need not vanish. The subtractions required

to renormalize expectation values of quadratic operators fail, in general, to respect the

classical relations between fields, even if they involve the equations of motion. The main

difficulty in this calculation is the fact that it is a non-local functional of A. To overcome

this inconvenient we shall approach the question from the first-order or Hamiltonian

point of view. Working in phase space allows two additional degrees of freedom per

spacetime point to work with, which we can assign to the potential Z to consider it local

in space. The cost of doing this, as we shall see, is that the fundamental Poisson brackets

will not be local, but this aspect will not be problem at the end of the day.

Hamiltonian formalism

The Hamiltonian formalism provides a complementary approach to the study of the

electric-magnetic symmetry, and in this subsection we briefly summarize the derivation

of QD in this framework. We will restrict here to Minkowski spacetime, since the gen-

eralization to curved geometries using the standard vector potential and electric field

as canonical coordinates becomes cumbersome. The extension to curved spacetime will

become more straightforward once we introduce the self-dual and anti self-dual variable,

and we postpone the discussion to section 5.4 and Appendix D.

Given an inertial frame in Minkowski spacetime, Maxwell’s Lagrangian (5.1) takes

the form

L[A, Ȧ]=
∫

d3xL [A, Ȧ]=
∫

d3x
1
2

[
(−~̇A−~∇A0)2 − (~∇× ~A)2

]
, (5.9)

where ~∇ is the usual three-dimensional derivative operator. From this Lagrangian,

we see that the canonically conjugate variable of ~A is the negative of the electric field
δL
δ~̇A

= (~̇A+~∇A0)=−~E, and the conjugate variable πA0 of A0 vanishes, since the Lagrangian

does not involve Ȧ0. This introduces the constraint πA0 = 0. Then A0 is simply a Lagrange

multiplier, and from its equation of motion one obtains a constraint, the familiar Gauss’

law ~∇·~E = 0. Normally one works in the reduced phase space in which πA0 = 0 always

holds and A0 is an (otherwise arbitrary) fixed function. Then, the phase space can

be taken as made of pairs (~A,~E), with a symplectic, or Poisson structure given by

{A i(~x),E j(~x′)}=−δ j
i δ

(3)(~x−~x′). A Legendre transformation gives rise to the Hamiltonian

H[A,E]=
∫

d3x
1
2

[
~E2 + (~∇× ~A)2 − A0 (~∇·~E)

]
(5.10)

In Dirac’s terminology, ~∇·~E = 0 is a first class constraint, and tells us that there is a

gauge freedom in the theory, given precisely by the canonical transformations generated
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by ~∇·~E.

Hamilton’s equations read

~̇A = {~A,H}=−~E−~∇A0

~̇E = {~E,H}=~∇× (~∇× ~A) . (5.11)

where A0(~x) is now interpreted as an arbitrary function without dynamics, and the term

proportional to it in the expression for ~̇A corresponds precisely to the gauge flow. These

six equations, together with the Gauss constraint, are equivalent to standard Maxwell’s

equations (once we define ~B ≡~∇× ~A). To get to the 4 dimensionality per spacetime point

of the physical phase space of electrodynamics, one has to fix the gauge.

Electric-magnetic rotations in phase space are given by

δ~E = (~∇× ~A)≡ ~B , δ~A = −(~∇×)−1~E ≡~Z , (5.12)

where (~∇×)−1 is the inverse of the curl; when acting on traverse fields (such as ~E) it

can be easily computed using the relation (~∇×)−1 =−∇−2~∇· The presence of the operator

(~∇×)−1 in (5.12) makes evident that we are dealing with a transformation that is non-

local in space. Now, the generator of the transformation (5.12) can be easily obtained by

computing the symplectic product of (~A,−~E) and (δ~A,−δ~E):

QD =Ω[(~A,−~E), (δ~A,−δ~E)]= 1
2

∫
d3x [~A ·δ~E−δ~A ·~E]= 1

2

∫
d3x [~A ·~B−~Z ·~E] . (5.13)

We obtain in this way the same result as in the previous section [compare with equation

(5.7)]. QD is independent of A0, and integrating by parts equation (5.13) it is easy to

show that only the transverse part of ~A and ~Z contribute to QD ; hence it is gauge

invariant. It is also a straightforward to check that QD is indeed the correct generator,

since δ~A = {~A,QD} and δ~E = {~E,QD} produce expressions that agree with (5.12). Since

the transformation is generated by a charge then the duality transformation (5.12) is

canonical in phase space.

To finish, one can now check that Q̇D = {QD ,H} = 0. Therefore, QD is a constant of

motion, and the canonical transformations it generates are a symmetry of the theory.

5.3 Electrodynamics in terms of self- and anti
self-dual variables

Many aspects of the Maxwell’s theory in absence of charges and currents become more

transparent when self- and anti self-dual variables are used (see e.g. [74, 75, 170, 187]).
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Several advantages of these variables are well-known and, in particular, they are com-

monly used in the spinorial formulation of electrodynamics [100, 143, 164]. Our interest

here lies mainly in the fact that the duality transformation can be simply described by

a chiral transformation using this language, and this will help us in following the clue

to Dirac fields and the associated quantum chiral anomaly. For the sake of clarity, we

introduce these variables first in Minkowski spacetime, and extend the formalism later

to curved geometries.

Minkowski spacetime

The self- and anti self-dual components of of the electromagnetic field are defined as
~H± ≡ 1p

2
(~E ± i~B). We now enumerate the properties and interesting aspects of these

complex variables.

1. Electric-magnetic rotations

The duality transformation rule of the electric and magnetic field

~E −→ ~E cosθ+~B sinθ ,

~B −→ ~B cosθ−~E sinθ , (5.14)

translates to
~H± −→ e∓ iθ~H± . (5.15)

An ordinary duality transformation ?~E = ~B, ?~B =−~E corresponds to θ =π/2. Then,

the operator i? produces4 i? ~H± = ± ~H±. It is for this reason that ~H+ and ~H−
are called the self- and anti self-dual components of the electromagnetic field,

respectively.

2. Lorentz transformations

The components of ~E and ~B mix with each other under a Lorentz transformation.

For instance, under a boost of velocity v in the x-direction

~E = (Ex,E y,Ez) −→ [Ex,γ (E y −vBz),γ (Ez +vBy)] ,

~B = (Bx,By,Bz) −→ [Bx,γ (By +vEz),γ (Bz −vBy)] , (5.16)

4It is common to add the imaginary unit i because in that way the operator i? has real eigenvalues,
and it can be represented by a self-adjoint operator in the quantum theory.
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where γ= 1/
p

1−v2 . This transformation does not correspond to any irreducible

representation of the Lorentz group. However, when ~E and ~B are combined into
~H±, it is easy to see that the components of ~H+ and ~H− no longer mix

~H± = (Hx
±,H y

±,Hz
±)−→ [Hx

±,γ (H y
±± i v Hz

±),γ (Hz
±∓i v H y

±)] . (5.17)

These are the transformation rules associated to the two irreducible represen-

tations of the Lorentz group for fields of spin s = 1. They are the so-called (1,0)

representation for ~H+, and the (0,1) one for ~H−. More generally, for any element

of the restricted Lorentz group SO+(1,3) (rotations + boots), the infinitesimal

transformation reads

HJ
± →[D(εab)]IJ HJ

± =
[
δIJ +εab

±Σab
IJ

]
HJ

± , (5.18)

where ±Σab
IJ are the generators of the (1,0) and (0,1) representations, and the

anti-symmetric matrix εab = ε[ab] contains the parameters of the transformation5.

This makes transparent the fact that electrodynamics describes fields of spin s = 1,

something that is more obscure when working with ~E and ~B, the field strength F,

or even the vector potential Aµ.

3. Maxwell’s equations

The equations of motions for ~E and ~B,

~∇·~E = 0 , ~∇·~B = 0 ,

~∇×~E = −∂t ~B , ~∇×~B = ∂t ~E . (5.19)

when written in terms of ~H±, take the form

~∇· ~H± = 0 , ~∇× ~H± =±i∂t ~H± . (5.20)

Notice that, in contrast to ~E and ~B, the self and anti self-dual fields are not coupled

by the dynamics. The equations for ~H− and ~H+ are related by complex conjugation.

This is a linear theory, and the space of solutions has vector space structure. It is

spanned by positive- and negative-frequency solutions:

~H±(t,~x)=
∫

d3k
(2π)3

[
h±(~k) e−i(k t−~k·~x) + h̄∓(~k) ei(k t−~k·~x)

]
ε̂±(~k) , (5.21)

5Along this paper we use latin indices a,b, c, · · · for tensors in (four dimensional) Minkowski space,
and Greek indices µ,ν,α, · · · for curved spaces. Upper case latin indices I, J,K , · · · take values from 1 to 3.
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where k = |~k|, and h±(~k) are complex-valued functions that indicate the amplitude

of the positive and negative frequency components of a particular solution. The

polarization vectors are given by ε̂±(~k)= 1p
2

(ê1(~k)± i ê2(~k)) where ê1(~k) and ê2(~k)

are any two unit-vectors that, together with k̂, form an orthonormal triad of space-

like vectors, with orientation defined by ê1(~k)× ê2(~k)=+k̂.

The explicitly form of a generic solution (5.21) helps to understand the relation

between self- or anti self-duality and helicity in Minkowski spacetime. By paying

attention to the way the electric and magnetic parts (i.e. the real and imaginary

parts of ~H±, respectively) rotate with respect to the direction of propagation k̂
during the course of time, one finds the following relation:

• Positive-frequency Fourier modes h±(~k) e−i(k t−~k·~x) ε̂±(~k) have positive helicity

(that corresponds to left-handed circular polarization) for self-dual fields, and

negative helicity for anti self-dual fields.

• For negative-frequency modes h̄∓(~k) ei(k t−~k·~x) ε̂±(~k) the relation is inverse: they

have negative helicity (right-handed circular polarization) for self-dual fields,

and positive helicity for anti self-dual fields.

We see that duality and helicity are closely related concepts in Minkowski space-

time, although the relation is not trivial; one needs to distinguish between self-

and anti self-dual fields and positive and negative frequencies. This is the analog

of the familiar relation between chirality and helicity for spin 1/2 fermions. In this

sense, duality is the chirality of photons.

In more general spacetimes where neither Fourier modes nor the notions of positive

and negative frequency are anymore useful, self- or anti self-duality generalizes

the concept of helicity, or handedness of electromagnetic waves.

4. Self- and anti self-dual potentials

The constraints ~∇· ~H± = 0 allow us to define the potentials ~A± by:

~H± =± i~∇× ~A±. (5.22)

It is clear from this definition that the longitudinal part of ~A± contains a gauge

ambiguity ~A± → ~A±+~∇A0±, where A0+(t,~x) and A0−(t,~x) are arbitrary functions,

complex conjugate from each other. Note that no time derivatives have been in-

volved in the definition of these potentials.

143



CHAPTER 5. ELECTROMAGNETIC DUALITY ANOMALY IN CURVED SPACETIMES

5. Maxwell’s equations for potentials

Substituting (5.22) in the field equations (5.20), produces

± i~∇× ~A± =−∂t ~A±+~∇A0
± . (5.23)

These equations by themselves are equivalent to Maxwell’s equations. It may be

surprising at first that Maxwell’s theory can be written as first order equations for

potentials. The reason comes from the fact that in—and only in—the source-free

theory, in addition to the standard potential ~A defined from ~B =~∇× ~A, Gauss’s law
~∇·~E = 0 allows us to define a second potential ~Z, such that ~E ≡−~∇×~Z. Then, the

first order equations

~̇A = ~∇×~Z+~∇A0 ,

~̇Z = −~∇× ~A+~∇Z0 , (5.24)

are equivalent to Maxwell equations (to see this, take curl and use the relation

between potentials and fields). Therefore, Maxwell’s equations can be written as

first order equations for potentials at the expenses of duplicating the number of

potentials. The relation between the two sets of potentials is Aa
± = 1p

2
(Aa ± i Za).

6. Manifestly Lorentz-covariant equations

The equations (5.20) and (5.23) for fields and potentials can be re-written in a more

compact way as

αab
I ∂aH I

+ = 0 , ᾱab
I ∂a A+b = 0 . (5.25)

The equations for H− and A− are obtained by complex conjugation. In these

expressions αab
I are three 4×4 matrices, for I = 1,2,3, and the bar over αab

I indicates

complex conjugation. The components of these matrices in an inertial frame can be

identified by comparing these equations with (5.20) and (5.23):

αab
1 =


0 1 0 0

−1 0 0 0

0 0 0 −i
0 0 i 0

 , αab
2 =


0 0 1 0

0 0 0 i
−1 0 0 0

0 −i 0 0

 , αab
3 =


0 0 0 1

0 0 −i 0

0 i 0 0

−1 0 0 0

(5.26)

This matrices are anti-symmetric (αab
I = α[ab]

I ) and self-dual (i?αab
I = αab

I ). As

mentioned above, the equations for the potentials can be obtained from the equa-

tions for the fields. The reverse is also true. Therefore, either set of equations

completely describes the theory.
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Equations for the field similar to αab
I ∂aH I+ = 0 have been written before in [75, 187],

and are also equivalent to Maxwell’s equations when written in the language

of spinors [170]. For the potentials, we are not aware of a treatment similar to

the one presented in this paper. Although electromagnetic potentials have been

defined in the spinorial language [143, 164, 170], to the best of our knowledge their

generalization to curved spacetimes have not been developed. We do this in the

next section.

7. Relation between ~H± and the field strength Fab

From the fields strength F and its dual ?F, we define the self and anti self-dual

two-forms F± = 1p
2

(F± i?F), obeying i?Fab
± =±Fab

± . The relation with ~H± is then

given by

Fab
+ =αab

I H I
+ , Fab

− = ᾱab
İ H İ

− . (5.27)

These relations imply that one can understand the three αab
I matrices as a basis

(thus complete and orthonormal) of the three-dimensional space of self-dual fields

in Minkowski spacetime. Then H I+ are simply the components of Fab
+ in this basis.

Similarly, ᾱab
I provides a basis for anti self-dual fields.

On the other hand, by using the relations (5.27), and the fact that the αI-matrices

are constant in spacetime, so they are transparent to derivatives, the field equations

αab
I ∂aH I+ = 0 and ᾱab

I ∂aH I− = 0 can be written as ∂aFab
+ = 0 and ∂aFab

− = 0, which

are equivalent Maxwell’s equations in their more standard form dF= 0, d?F= 0.

8. Properties of the αab
I matrices

To better understand the properties of the α-matrices, and to generalize them

to curved spacetimes (next section), it will be convenient to take a slightly more

abstract viewpoint and think about the field H I+ as belonging to and abstract

complex three-dimensional vector space V , that is support of a (1,0) irreducible

representation of the Lorentz group. This space is isomorphic to the space of

self-dual tensors F+ in Minkowski spacetime, and αab
I provides the isomorphism.

Furthermore, if V is equipped with an Euclidean inner product δIJ , then αab
I

provides an isometry between these two complex vector spaces.6 This viewpoint

makes clearer the analogy between the αab
I and the Pauli matrices σAB

i (recall

that σAB
i provides an isometry between spatial vectors and SU(2) spinors). The

6I.e., given any two self-dual tensors (1)Fab
+ and (2)Fab

+ , the isomorphism satisfies (1)Fab
+ (2)Fcd

+ ηac ηbd =
(1)H I+ (2)HJ+ δIJ , where (i)Fab

+ =αab
I

(i)H I+.
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following properties of αI can be thought as the analog of the familiar properties of

the Pauli matrices:

• Anti-commutation relations: {αI ,αJ}≡αa
b I α

bc
J +αa

b Jα
bc

I =−δIJ η
ac .

• Commutation relations: [αI ,αJ]≡αa
b I α

bc
J −αa

b Jα
bc

I = 2+Σac
IJ .

If ~H+ is an element of the complex vector space V , then ~H− is an element of V̄ ,

the complex conjugate space. Although naturally isomorphic, these two spaces are

different, and we will use doted indices on elements of V̄ 3 H İ−. The properties of

ᾱab
İ

are obtained by complex conjugating the properties of αab
I written above. The

anti-commutation relations are identical. However, the conjugation changes the

commutation relation to [ᾱİ , ᾱJ̇] = 2−Σab
İ J̇

, where now it is the generator of the

(0,1) representation of the Lorentz group that enters in the equation. Appendix 5.7

contains a detailed list of other properties of these tensors.

9. Second order equations for the potentials A+a

We focus on A+a, since the derivation for A−a can be obtained form it by complex

conjugation. The fastest way to obtain the familiar second order differential equa-

tion for A+a is to take time derivative of (5.23), use commutativity with the curl,

and then use again (5.23) to eliminate the first derivative in time in favor of the

curl. The result can then be written in covariant form as 2A+a −∂b∂a A+b = 0.

But we are more interested in a derivation that can be generalized to curved

spacetimes.

With the definitions introduced in Appendix B.3, the relation (5.22) between H I+
and A+a can be written as the “curl" H I+ = i εIab∂a A+b. Then, by using (5.113),

when A+a satisfies the equations of motion (5.25), ᾱab
İ
∂a A+b = 0, the relation

between H I+ and A+a reduces to

H I
+ = 1

2
αab I∂[a A+b] . (5.28)

Substituting in the equation of motion for H I+, (5.25), we find

αab
I ∂aH I

+ =αab
I ∂aα

cd I∂[c A+d] =−2A+ c +∂d∂
c A+d = 0 , (5.29)

where in the second equality we have used that αab
I αcd I is a projector on self-

dual forms, which acts on ∂[c A+d] as the identity operator when A+ c satisfies the

equations of motion. We show this way that all solutions of the first order equations
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for A+ c(t,~x) are also solutions of the familiar second order equations. Reciprocally,

given the RHS of (5.29) we get the LHS with the relation (5.28). The b = 0 equation

allows to write H I+ = i εIab∂a A+b again, and by property (5.113) we get again with

the first-order equations (5.25) for the potentials. So all solutions to the familiar

second-order equations are also solutions to the first-order ones, and therefore we

conclude that both sets of equations are equivalent.

Notice that the equations of motion ᾱab
İ
∂a A+b = 0, imply that the two-form ∂[a A+b]

must be self-dual. This is because, on the one hand, the anti-symmetry of ᾱab
İ

makes

that only the anti-symmetric part of ∂a A+b contributes to the equations and, on

the other, because contraction with ᾱab
İ

extracts the anti self-dual component of

dA+. Therefore, when the equations of motion hold, A+a is the potential of the self

dual field strength, F+|on−shell = dA+. This latter formula can be explicitly checked

by contracting with α
µν

I equation (5.28) and using property (5.95) and (5.92).

10. Conserved current and charge

In terms of self- and anti-self dual variables, electric-magnetic rotations take the

simple form

H I
±(x)→ e∓iθ H I

±(x) , Aa
±(x)→ e∓iθ Aa

±(x) . (5.30)

And the on-shell current (5.6) takes the form

ja
D |on−shell =− i

2

[
H I

+α
ab
I A−b −H İ

− ᾱ
ab
İ A+b

]
, (5.31)

(note that this is manifestly real). By using the form of the generic solution to the

field equations (5.21), we find that the conserved charge

QD =
∫

d3x j0
D |on−shell =

∫
d3k

(2π)3
1
k

Re
[
h2
+(~k)−h2

−(~k)
]

, (5.32)

is proportional to the difference of intensity between the self- and anti-self dual

parts of field or, equivalently, the difference between the right and left circularly

polarized components—i.e. the net helicity. (QD , therefore, has dimensions of

angular momentum.) For this reason this quantity is often called the optical
helicity of the electro-magnetic field. Note that this is nothing but the V-Stokes

parameter used to describe the polarization state of electromagnetic radiation.

Note in particular that if h±(~k)= h̄∓(~k), corresponding to a wave solution with the

same right and left amplitudes, the above charge yields zero.

11. Energy-momentum tensor
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Maxwell’s energy-momentum tensor, when written in terms of self- and anti self-

dual variables takes the form

Tab =
1
2

(FacF c
b +?Fac

?F c
b )=F+ac F c

−b =αI ac ᾱ
İ c
b H I

+H− İ , (5.33)

that is manifestly invariant under electric-magnetic rotations. The time-time

component provides the energy density

T00 =αI 0c ᾱ
İ c
0 H I

+H− İ = δİ
I H I

+H− İ =
1
2

(E2 +B2) . (5.34)

Curved spacetimes

The generalization to curved spacetimes of the formalism just presented follows the strat-

egy commonly used for Dirac spin 1/2 fields. Namely, one first introduces an orthonormal

tetrad field, or Vierbein, in spacetime eµa(x). This non-coordinate basis is defined by

gµν(x) = ηabea
µ(x)eb

ν(x), with ηab = diag{+1,−1,−1,−1}. With it, the curved spacetime

αI-matices are obtained from the flat space ones αab
I by

α
µν

I (x)= eµa(x)eνb(x)αab
I , (5.35)

The Minkowski metric ηab is replaced by gµν(x); ηab is used to raise and lower flat-

space indices a,b, c, · · · , gµν(x) for indices in the tangent space of the spacetime manifold

µ,ν,β, · · · , and δIJ and δİ J̇ for spin 1 indices. The matrices α
µν

I (x) satisfy algebraic

properties analog of the ones derived in Minkowski space

{αI ,αJ}≡αµ
ν I α

νβ

J +αµ
νJα

νβ

I =−δIJ gµβ . (5.36)

[αI ,αJ]≡αµ
ν I α

νβ

J −αµ
νJα

νβ

I = 2+ΣµβIJ . (5.37)

The extension of the covariant derivative ∇µ is obtained also using standard arguments

(see e.g. chapter 3.1 and Appendix A of [33]). Namely, the action of ∇µ on indices I of fields

H I+ ∈V is uniquely determined by demanding compatibility with the isomorphism α
µν

I (x),

∇µα
βν

I (x)= 0. The result, as one would expect, agrees with the text-book expression for

the covariant derivative acting on fields of spin s, particularized to s = 1

∇µH I
+ = ∂µH I

+− (wµ)ab
+Σab I

J HJ
+ ,

∇µH İ
− = ∂µH İ

−− (wµ)ab
−Σab İ

J̇ H J̇
− , (5.38)

where 2±Σ are the generators of the (1,0) and (0,1) representations of the Lorentz algebra

introduced in the previous section (by direct calculation one can check: [2+Σab,2+Σcd]=
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ηac2[+Σ]bd −ηad2[+Σ]bc +ηbd2[+Σ]ac −ηbc2[+Σ]ad), and (wµ)ab is the standard one form

spin-connection:

(wµ)a
b = ea

α∂µeαb + ea
αeβbΓ

α
µβ , (5.39)

where Γα
µβ

are the Christoffel symbols.

With this in hand, the generalization is straightforward:

1. Maxwell’s equations for the fields

α
µν

I ∇µH I
+ = 0 , ᾱ

µν

İ
∇µH İ

− = 0 . (5.40)

Note the similarity with Dirac’s equation. The relation between H± and the self and

anti self-dual parts of the field strength F is given by Fµν
+ =αµνI H I+ and Fµν

− = ᾱµν
İ

H İ+.

With this, and keeping in mind that ∇µα
βν

I = 0, equations (5.40) become manifestly

equivalent to Maxwell’s equations in their familiar form dF+ = 0= dF−.

2. Potentials A±µ

The self- and anti self-dual potentials satisfy the first order equations:

ᾱ
µν

İ
∇µA+ν = 0 , α

µν

I ∇µA−ν = 0 . (5.41)

These are equivalent to Maxwell equations. The proof follows the same steps as in

Minkowski spacetime, though technically more tricky (see Appendix C for details

of the derivation).

The relation between A±µ and H I
± (before involving any equation of motion) re-

quires of a foliation of spacetime in spatial Cauchy hyper-surfaces Σt. Given that,

A+µ and H I+ are related by means of the “curl”:

H I
+ = i εIµν∇µA+ν (5.42)

(and similarly for A−µ and H İ−) where εIµν is defined in Appendix B.3 and denotes

a generalized, purely spatial antisymmetric tensor.7

As shown in appendix C, one can easily see that if A+ν is a solution of (5.41),

then A±µ are potentials for F±, and they also satisfy the second order equation

2A+µ =∇ν∇µA+ν = 0. And reciprocally, if A+ν is a solution to (5.41), then it is a

solution of the second order equations.

7Notice that this curl is independent of the connexion ∇µ, due to the antisymmetry of εIµν in µ and ν.
It is useful to keep this in mind in manipulating expressions involving H I

± and A±µ.
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5.4 First order Lagrangian formalism: Dirac-type
formulation

The goal of this section is to write a Lagrangian for electrodynamics in terms of self- and

anti self-dual variables. The similarity of equations (5.40) and (5.41) with Dirac’s equa-

tion, together with the drawback found in the non-locality of Z that makes difficult the

calculation of the expectation value of (5.8), motivate us to write a first order Lagrangian

(i.e. linear in time derivatives) and write it in a form that will make Maxwell’s theory

manifestly analog to Dirac’s theory, where the mathematical structures associated with

spin s = 1/2 will be replaced by their s = 1 analogs. This formulation will become very

useful in the study of the electric-magnetic rotations in the quantum theory.

Hamiltonian framework

Given a foliation Σt in spacetime, the Hamiltonian of the theory can be easily obtained

from the time-time component of the energy-momentum tensor (5.33), after adding the

Gauss’ constraint

H[A+, A−]=
∫

dΣ3

[
γİ

I H I
+ H− İ −H I

+γ
µ

I ∇µA0
− −H İ

−γ
µ

I ∇µA0
+
]

, (5.43)

where γµI is defined in Appendix B.3. It is more convenient to take the potentials A+ and

A− as coordinates in phase space, since this makes it clear that we are describing the

correct number of degrees of freedom.8 H I+ and H I− are then understood a shorthands for

i εIµν∇µA+ν and −i εİµν∇µA−ν, respectively. However, the basic Poisson brackets take a

simpler form when expressed in in terms of H±

{A−µ(~x),−H I
+(~x′)}= δI

µδ(~x,~x′) . (5.44)

and similarly for {A+µ(~x),−H I−(~x′)}, where δ(~x,~x′)≡ h−1/2δ(3)(~x−~x′), and h is the determi-

nant of hµν, the pull-back of the spacetime metric gµν on the space-like hyper-surface Σt.

The Poisson brackets between A+ and A− can be derived form the previous ones, and

they are different from zero (although A+ and A− do not form a Darboux pair)

From the Hamiltonian we see that A0
± are a Lagrange multiplier. For the spatial

components of A+µ, Hamilton’s equations read

Ȧ± I = {A± i,H}= H+ I +DI A0
± , (5.45)

8We have 8 real degrees of freedom in A+µ and A−µand two constraints. Since these constraints are
first class, each removes two degrees of freedom, making the reduced phase space four-dimensional.
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where DI A0+ ≡ γ
µ

I∇µA0+ is the spatial derivative of A0+. These equation, when written

in covariant form, are precisely the equations of motion derived in the previos section,

ᾱ
µν

İ
∇µA+ν = 0, and α

µν

I ∇µA−ν = 0.The charge generating electric-magnetic rotations

δAµ
± =∓iθAµ

± can be again obtained from the symplectic product

QD =Ω[(A+µ, A−µ), (δA+µ,δA−µ)]=+ i
2

∫
Σt

dΣ3

[
A+µH İ

−δ
µ

İ
− A−µH I

+δ
µ

I

]
. (5.46)

This result agrees with (5.7) if we write it in terms of the real variable.

Lagrangian framework

We now obtain a first order Lagrangian, by Legendre-transforming the Hamiltonian

written in the previous section

S[A+, A−] =
∫

d4x
p−g

[
−1

2
Ȧ+µH İ

−δ
µ

İ
− 1

2
Ȧ−µH I

+δ
µ

I −H[A+, A−]
]

= −1
2

∫
dΣ4

[
H İ

− ᾱ
µν

İ
∇µA+

ν +H I
+α

µν

I∇µA−
ν

]
. (5.47)

where dΣ4 is the four-dimensional volume element, that in a given chart reads d4x
p−g .

The Lagrangian density in (5.47) differs by a total derivative from the standard La-

grangian in (5.1), (see Appendix D), thus leading to the same dynamics. The passing

from Minkowski to curved spacetime is achieved using the minimal coupling prescrip-

tion, as the result is written covariantly. The independent variables in this action are

taken A±
ν , and therefore H I+ and H İ− are understood as shorthands for i εIµν∇µA+ν and

−i εİµν∇µA−ν, respectively. Note that this action is first order in time derivatives of A±µ,

and second order in spatial derivatives. Extremizing the action with respect to A+ν
produces the desired equations of motion (the explicit calculation is not direct and is left

in the Appendix E)
δS
δA+µ

= 0 −→ α
µν

I ∇µA−ν = 0 . (5.48)

The complex conjugate equation is obtained from δS
δA−µ = 0.

For the computations presented in the next section it would be convenient to fix

the Lorenz gauge, ∇µAµ
± = 0. There is a remarkably simple way of incorporating this

condition in the action (5.47). All we need to do is to extend the domain of the indices I
and İ from {1,2,3} to {0,1,2,3}, and define αµν0 = ᾱµν0 ≡−gµν. This is analog to the familiar

extension of the Pauli matrices~σ by adding σ0 (the identity), which conmutes with all σi,

i = 1,2,3. Algebraic properties of the αµνI -matrices extended in this way can be consulted

in the Appendix B.1
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To simplify the notation, we will use the same name for the action, although from

now on the index I is understood to run from 0 to 3. The equations of motion still take

take the same form

ᾱ
µν

İ
∇µA+

ν = 0 , α
µν

I ∇µA−
ν = 0 , (5.49)

but they now include the Lorenz condition as the equation for I = 0 (İ = 0)

gµν∇µA+
ν = 0 , gµν∇µA−

ν = 0 . (5.50)

Note that the variables H0
± in the action have the sole role of acting as Lagrange

multipliers to enforce Lorenz’s condition. In fact, the equations of motion enforce H0
± to

be constant (see Appendix G).

Inspection of the action (5.47) reveals that, contrary to the standard Maxwell’s

Lagrangian, the Lagrangian density in (5.47) is manifestly invariant, δL = 0, under

electric-magnetic rotations Aµ
± → e∓iθ Aµ

±. It is straightforward to derive the Noether’s

current (see Appendix F)

jD |on−shell = (−g)−1/2
(

δL

δ∇µA+ν
δA+ν+ δL

δ∇µA−ν
δA−ν

)
|on−shell =

i
2

[
H İ

− ᾱ
µν

İ
A+
ν−H I

+α
µν

I A−
ν

]
.

(5.51)

Using the relation between self- and anti self-dual variables, and ordinary variables

Aµ and Fµν, it is straightforward to check that this expression agrees with jµD |on−shell

obtained in section 5.2, equation (5.6). The agreement is in fact off-shell. This is checked

in Appendix F.

Dirac-type Lagrangian

The goal of this section is to re-write the action (5.47) in a more convenient form. The

new form will make the theory formally similar to Dirac’s theory of spin 1/2 fermions

and will facilitate the computations in the next sections, as well as the comparison with

results derived for fermions.

Integrating by parts (5.47)

S =−1
4

∫
d4x

p−g
[
H İ

− ᾱ
µν

İ
∇µA+

ν − A+
ν ᾱ

µν

İ
∇µH İ

−+H I
+α

µν

I∇µ A−
ν − A−

ν α
µν

I∇µH I
+
]

.

(5.52)

and this result can be written as

S[A+, A−]=−1
4

∫
dΣ4 Ψ̄ iβµ∇µΨ (5.53)
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where we have defined (see Appendix H)

Ψ=


A+

H+
A−

H−

 , Ψ̄= (A+,H+, A−,H−) , βµ = i


0 0 0 ᾱµ

0 0 −αµ 0

0 αµ 0 0

−ᾱµ 0 0 0

 . (5.54)

Remark: It is convenient to include an (arbitrary) parameter `−1 with dimensions of

inverse of length in the definition of Ψ and Ψ̄ multiplying A± and compensate it by mul-

tiplying the RHS of (5.53) by `. The action, and the physical predictions obtained from it

remain obviously invariant, but the introduction of ` will make all the components of Ψ

and Ψ̄ to have the same dimensions (namely,
p

E/L3 ). To simplify the notation, we will

not write ` explicitly, but it should be taken into account in counting the dimensions of

expressions containing Ψ and Ψ̄.

The exact position of the indices in A±, H±, αµ and ᾱµ can be easily obtained by

comparing (5.52), (5.53) and (5.54). We have omitted them in the main body of this paper

to simplify the notation, and further details can be found in Appendix H. Equation (5.53)

is formally analog to the action of a Majorana 4-spinor, whose lower two components are

complex conjugate from the upper ones.

From the algebraic properties of the extended α-matrices, (5.132) and (5.134) , we

derive the commutation and anti-commutation properties of βµ

{βµ,βν}= 2gµνI , [βν,βν]=−4


+Σµν 0 0 0

0 +Σµν 0 0

0 0 −Σµν 0

0 0 0 −Σµν

 (5.55)

The anti-commutations relations tell us that the matrices βµ provide a (16×16) rep-

resentations of the Clifford algebra, while the commutation relations indicate that

the sub-algebra formed by the quadratic elements β[µβν] contains the (1,0) and (0,1)

irreducible representations of the Lorentz group. These are the spin 1 analog of the

properties of the Dirac γµ matrices (in the Weyl representation). From the properties of

the α-matrices, we also have that ∇νβ
µ(x)= 0.
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We now introduce the “chiral” matrix

β5 = i
4!
εαβγδβ

αβββγβδ =


−I 0 0 0

0 −I 0 0

0 0 I 0

0 0 0 I

 (5.56)

Some properties can be immediately checked out:

{βµ,β5}= 0 , β2
5 = I , (β5)† =β5 . (5.57)

Additional properties of these matrices can be found in Appendix H.

Although the basic variables in the action are the potentials A±µ, at the practical

level one can work by considering Ψ and Ψ̄ as independent fields—note that this is the

same as one does when working with Majorana spinors. The equation of motion take the

form

δS
δΨ̄

= 0 −→ iβµ∇µΨ= 0 . (5.58)

They contain four equations, one for each of the four components of Ψ. The upper two

are equations ᾱµν
İ
∇µA+

ν = 0 and α
µν

I ∇µH I+ = 0. As discussed in previous sections, these

two sets of equations are equivalent to each other, once the relations H I+ = iεIµν∇µA+ν
are taken into account. The lower two components in (5.58) produce equations that are

complex conjugated from the previous ones.

Second order equations can be calculated

(−iβα∇α) iβµ∇µΨ= (β(αβµ) +β[αβµ])∇α∇µΨ= (2+Q)Ψ= 0 (5.59)

where

QΨ≡ 1
2
β[αβµ] WαµΨ (5.60)

with

WαµΨ≡ [∇α,∇µ]Ψ= 1
2

Rαµσρ


Σσρ 0 0 0

0 2+Σσρ 0 0

0 0 Σσρ 0

0 0 0 2−Σσρ

Ψ . (5.61)

where Σσρ =+ Σσρ+−Σσρ.

Looking at the expression for WαµΨ we see that it contains real terms, RαµσρΣ
σρ,

as well as complex ones, Rαµσρ
±Σσρ. The real terms come from the action of covariant

154



5.4. FIRST ORDER LAGRANGIAN FORMALISM: DIRAC-TYPE FORMULATION

derivatives on Aµ
±. Since Aµ

± is a vector in spacetime, the covariant derivatives of them

includes a connexion associated to the (1/2,1/2) (real) representation of the Lorentz

group—although this does not mean that they transform according to the (1/2,1/2)

representation; the do only up to a gauge transformation [187, 190]. The complex terms

in WµνΨ originate from the (1,0) and (0,1) representations, to which H± are associated

with.

The canonical Poisson brackets of the classical theory read

{ΨA(t,~x),ΠB
Ψ(t,~x′)}= δB

A δ(~x,~x′) (5.62)

where ΠΨ ≡ δL
δΨ̇

=− i
4Ψ̄β

0. These are promoted to commutation relations in the quantum

theory. If anti-commutators were rather used to quantize the theory, one would find the

quantum propagator to violate causuality, as expected from the spin-statistics theorem.

Therefore, in spite of the fermion-like appearance of the formulation used in this section,

we are describing a theory bosons, with a symmetric Hilbert space.

Axial current

We now describe how electric-magnetic rotations and their associated conservation law

looks like in the language introduced in this section. By using the chiral matrix β5, the

transformation reads

Ψ→ eiθβ5Ψ , Ψ̄→ Ψ̄eiθβ5 (5.63)

Notice that they have the same form as chiral transformations for fermions. Looking

at the form of β5 in equation (5.56), it is clear that the upper two components of Ψ,

i.e. (A+,H+), represent the self-dual, or positive chirality part of the field, while the

lower two components (A−,H−) contain the anti self-dual, or the negative chiral part. As

discussed in previous sections, the Lagrangian density is manifestly invariant under

these transformation, and in terms of Ψ the conserved current reads

jµD = 1
4
Ψ̄βµβ5Ψ . (5.64)

The associated Noether charge is

QD =
∫
Σ

dΣµ jµD = 1
4

∫
dΣ3 Ψ̄β

0β5Ψ (5.65)

This is equivalent to the expressions for QD we have written in previous sections [equa-

tions (5.7) and (5.46)] when one expands as in (5.54).
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5.5 The quantum anomaly

We present two ways to calculate the anomaly. The first one relies on the familiar

subtraction procedure, in which the UV divergences are identified and subtracted in

a covariant and self-consistent way. The second one is based on the path integral and

Fujikawa’s interpretation on the emergence of anomalies. In this approach an anomaly

arises because, despite the action remains symmetric under the classical transformation,

the measure of the integral fails to be invariant.

5.5.1 Direct computation

Both jµD and ∇µ jµD are operators quadratic in fields, and therefore the computation of

their expectation values must include renormalization subtractions to eliminate the

potential divergences and to produce a finite, physically reasonable quantity.9 The

regularization of UV divergences can be achieved by subtracting the short-distance

behavior of Green functions S(x, y). The DeWitt-Schwinger scheme is a representative

method of this. In this framework the quadratic operator of interest is evaluated at

different spacetime points and one subtracts the asymptotic short-distance behavior of

the bare quantity by expanding it in powers of derivatives of the metric.

〈∇µ jµD〉ren = 〈∇µ jµD〉 f ormal −〈∇µ jµD〉Ad(4) . (5.66)

In this expression, 〈∇µ jµD〉Ad(4) are the terms of the asymptotic expansion of 〈∇µ jµD〉 f ormal

up to four derivatives of the metric. Alternatively to point-splitting, one can keep the

points coincident and introduce a parameter m > 0 in the theory — that will serve as a

regulator, and will be sent to zero at the end of the calculation—by replacing the wave

equation (5.58) by (D−m)Ψ= 0, with D ≡ iβµ∇µ. Then

∇µ jµD = lim
m→0

− i
4
Ψ̄

←
Dβ5Ψ+ i

4
Ψ̄β5

→
DΨ= lim

m→0

i
2

mΨ̄β5Ψ= lim
m→0

i
2

mTr[β5ΨΨ̄] , (5.67)

where we have used {βµ,β5}= 0 in the first equality, and Ψ̄A(β5) B
A ΨB = (β5) B

A ΨBΨ̄
A =

Tr[(β5) B
A ΨBΨ̄

C] in the second one. If we now make a choice of vacuum state |0〉:
〈0|Ψm(x)Ψ̄m(y) |0〉 = S(x, y,m) and we obtain

〈∇µ jµD〉 f ormal = lim
m→0

i
2

mTr
[
β5 S(x, x,m)

]
. (5.68)

9Recall that one must include all the subtractions that would produce divergences for generic values
of the parameters of the theory—mass, coupling to the curvature, etc.—even if the concrete value of these
parameters that one is interested in makes the divergences to disappear.
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and

〈∇µ jµD〉ren = lim
m→0

i
2

mTr
[
β5

(
S(x, x,m)−S(x, x,m)Ad(4)

)]
. (5.69)

In the last expression, S(x, x′) contains the information about the vacuum state, while

S(x, x′)Ad(4) removes the universal ultra-violet divergences. It turns out that, because

the operator D is not self-adjoint10, and because the heat kernel expansion is well-

known for second order differential equations, it is convenient to work with the green

function associated with the latter. By writing S(x, y,m)= (D+m)G(x, y,m) one gets that

(D2+m2)G(x, y,m)= δ(4)(x, y). The asymptotic expansion of G(x, y,m) is now well-known.

It is given by11

G(x, x)Ad(4) =
~

16π2

2∑
k=0

∫ ∞

0
dτ e−iτm2

(iτ)(k−2)Ek(x) (5.70)

where the functions Ek(x) are local, geometric quantities, built from the metric and its

first 2kth derivatives. Their specific values are known [103, 157]. For manifolds without

boundary they read:

E0(x) = I

E1(x) = 1
6

R I−Q

E2(x) =
[

1
72

R2 − 1
180

RµνRµν+ 1
180

RαβµνRαβµν− 1
30

2R
]
I

+ 1
12

WµνWµν+ 1
2

Q2 − 1
6

RQ+ 1
6
2Q,

where the expression for Wµν ≡ [∇µ,∇ν] and Q(x) were given in (5.61) and (5.60). R, Rµν,

and Rαβµν are the Ricci scalar, Ricci tensor, and Riemann curvature tensor, respectively.

It turns out that, because of the symmetry of the classical action, the contribution

of S(x, x′) to (5.69) vanishes. Therefore, 〈∇µ jµD〉ren arises entirely from the subtraction

terms, S(x, x′)Ad(4).This implies that 〈∇µ jµD〉ren is independent of the choice of vacuum.

Once the limit m → 0 is taken the fourth order contribution will provide a residual finite

term, resulting thus in the anomalous conservation of the current. Notice that the same

occurs in the calculation of other anomalies, such as the fermionic chiral anomaly or the

trace anomaly.
10Precisely, this is the reason why the anomaly arises from a mathematically point of view: D and its

adjoint D† have different zero-eigenvalue multiplicity and the analitical index dimkerD−dimkerD† 6= 0.
The Atiyah-Singer index theorems tell us then that the result will depend on the background topology.

11 This expression for G(x, x′)Ad(4) is obtained by writing G(x, x′)Ad in terms of its heat kernel
K(τ, x, x′), G(x, x′)Ad = i~

∫ ∞
0 dτ e−im2τK(τ, x, x′), and then using the asymptotic expansion K(τ, x, x) ∼

i
16π2

∑∞
k=0(iτ)k−2 Ek(x) for τ→ 0. See e.g. [157] for further details.
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Taking into account that (for details see Appendix I)

Tr[β5E0] = 0, Tr[β5β
µE0]= 0

Tr[β5E1] = 0, Tr[β5β
µE1]= 0

Tr[β5E2] = 1
12

Tr[β5 WµνWµν]= i
1
3

Rαβµν
?Rαβµν

Tr[β5β
µE2] = 0 (5.71)

where ?Rαβµν = 1p−g 2!ε
αβσρR µν

σρ is the dual of the Riemann tensor, equation (5.69)

produces:

〈∇µ jµD〉ren =− ~
96π2 Rαβµν

?Rαβµν . (5.72)

A few comments are in order now:

1. This result reveals that quantum fluctuations spoil the conservation of the axial

current jµD , and break the classical symmetry under electric-magnetic (or chiral)

transformations.

2. The pseudo-scalar Rαβµν
?Rαβµν is known as the Chern-Pontryagin density (its

integral across the entire spacetime manifold is the Chern-Pontryagin topological

invariant).

3. Only the complex elements in the diagonal of Wµν contribute to (5.71) (see (5.61)

and the discussion below that equation). This means that the anomalous non-

conservation is linked to the (1,0) and (0,1) representations of the Lorentz group.

4. It is important to notice the parallelism with the chiral anomaly for spin 1/2

fermions. The computations in that case would de identical, except that in (5.71)

one would have to used the commutator of covariant derivatives Wµν = [∇µ,∇ν]

associated with spin 1/2 fields, rather than spin 1. That would change only the

numerical coefficient in (5.71) and (5.72).

5.5.2 Path integral formalism

The functional integral for the theory under consideration is12

12As usual, the inclusion of the Lorentz gauge introduces two ghost scalar fields. These fields do
contribute to certain observables, such as the trace anomaly. However, one can check explicitly that they
do not affect the computation os ∇µ jµD . It is for this reason that we have not written their contribution to
the path integral.
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Z =
∫

DΨ̄DΨ ei/~S[Ψ,Ψ̄] (5.73)

The strategy is the following. The generating functional Z is invariant under the

replacement (Ψ,Ψ̄) → (Ψ′ = e+iβ5θΨ,Ψ̄′ = Ψ̄e+iβ5θ), since this plays the role of a mere

change of variables (it is a canonical transformation in phase space), and the path integral

must remain invariant under such a change. Noether’s theorem in its second version—in

which one considers the parameter of the transformation θ(x) to be a spacetime function

of compact support—, tell us that δS =−∫
d4x

p−g θ(x)∇µ jµD . Furthermore, the integral

measure DΨ̄DΨ could change by a non-trivial Jacobian, DΨ̄DΨ→ J DΨ̄′ DΨ′. Then,

invariance of Z implies that, quantum mechanically, J · e−i/~
∫

d4x
p−g θ(x)∇µ jµD must be

equal to one. From this we see that quantum anomalies will appear for those classical

symmetries that do not leave the measure of the path integral invariant. The value

of 〈∇µ jµD〉 can be then determined by J. The goal of this section is to compute these

quantities.

The Jacobian J can be determined by using standard functional analysis techniques

applied to the wave operator D := iβµ∇µ. Consider the space of square-integrable com-

plex fields Ψ(x) with respect to the product 〈Ψ1,Ψ2〉 = α
4

∫
d4x

p−g Ψ̄1βΨ2, where the

operator β is an involution defined in Appendix H and α is a parameter with dimen-

sions of action13. In terms of the original variables A± and H±, the norm of Ψ(x) reads

〈Ψ,Ψ〉 = α
4

∫
d4x

p−g [2 |A+|2 +2 |H+|2]≥ 0. Note also that the action can be expressed as

S[Ψ,Ψ̄]=−〈Ψ,βDΨ〉.
The operator D†D is self-adjoint with respect to the product 〈Ψ1,Ψ2〉. The self-

adjointness guarantees the existence of an orthonormal basis {Ψn}n∈N made of eigen-

states, D†DΨn =λ2
nΨn. We will denote by an the components of a vector Ψ in this basis.

An electric-magnetic rotation Ψ→Ψ′ = e+iθβ5Ψ can be now expressed as a change of

the components an → a′
n =∑

m Cnm am, yielding Cnm = 〈Ψn,βe+iθβ5Ψm〉. With this, the

Jacobian of the transformation reads

DΨ̄DΨ→ J DΨ̄′ DΨ′ , with J = (detC)2 = 1+2iTr
∑
n∈N

〈Ψn,ββ5θΨn〉+O(θ2) (5.74)

Now, the invariance of the path integral implies that, quantum mechanically

〈∇µ jµD〉ren = 2~
α

4

∞∑
n=0

Ψ̄nβ5Ψn . (5.75)

13It is introduced in order to make the product dimensionless and, although α= ~ would be a natural
choice, we leave it unspecified to make manifest that physical observables are independent of it; it cancels
out in intermediate steps.
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To evaluate this expression we use again the heat kernel approach. The heat kernel of

the equation, D†DΨ= 0, is [157]

K(τ, x, x′)=α
∞∑

n=0
e−iτλ2

NΨn(x)Ψ̄n(x′) (5.76)

Then

〈∇µ jµD〉ren = 1
2
~ lim
τ→0

Tr[β5 K(τ, x, x′)]= i
~

32π2 Tr[β5E2]=− ~
96π2 Rαβµν

?Rαβµν . (5.77)

where in the second equality we have used the expansion of K(τ, x, x′) for τ→ 0, written

in Footnote 11, and in the last equality we have used (5.71). For details of the calculation

see Appendix I.

Remark: Recall that the path integral produces transition amplitudes for time-

ordered products of operators between the “in" and “out” vacuum. However, since the

result for 〈∇µ jµD〉ren comes entirely from the asymptotic terms in the heat kernel, those

depend on the background and are universal for any vacuum state. Therefore, the result

(5.77) agrees with the expectation value of ∇µ jµD in any vacuum state.

5.6 Conclusions and future prospects

The above result (5.77) implies that the charge QD , classically associated with the duality

symmetry of the source-free Maxwell action, is no longer conserved in the quantum

theory in a general spacetime.

It is interesting now to estimate in more precise terms which physical implications

this anomaly could provide. Since in flat space QD represents the difference in number

between photons of opposite helicity [55], this result could perhaps be interpreted as

a nonconservation of the V-stokes parameter of the quantum electromagnetic field in

curved spacetimes. In order to figure out quantitatively the significancy of this, one

needs to study the RHS of (5.77). Note first that the Pontryagin density invariant only

depends on the vacuum geometry of the background (even if Rab 6= 0): Rabcd
?Rabcd =

Cabcd
?Cabcd = 16EabBab, where Cabcd, Eab, Bab are respectively the Weyl tensor, and

its Electric and Magnetic parts. The change in QD between two different spatial Cauchy

surfaces could be stated as

∆QD = 2~
3π2

∫ t2

t1

∫
Σ

d4x
p−g EµνBµν . (5.78)
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An analog of this effect arises for fermions in the creation of pairs from the vacuum by

strong electric fields. In this situation the presence of a magnetic field would induce

a non-zero net chirality on the particles created, as predicted by the chiral anomaly
〈∂a ja

1/2〉 ∼ EaBa, [141, 193]. Likewise, apart from gravitational tidal forces produced by

Eµν, frame dragging effects, described by Bµν, are necessary to induce net polarization

on the created photons.

To illustrate this, consider the process of collapse of a neutron star into a Kerr black

hole. In the vicinity of the region where the event horizon will form, the gravitational

field is strongly changing and spontaneous creation of photons will occur. Our result

indicates that the created photons, when measured far from the star, will carry a net

polarization given by ∆QD . Some preliminar numerical simulations done by the Valencia

numerical relativity group (N. Sanchis-Gual, V. Mewes, J. A. Font) indicate that for a

neutron star of M = 1.73 solar masses and angular momentum J = 0.36M2 the collapse

produces around 30 photons per second more with one circular polarization than the

other. This process has no classical counterpart and is different from the standard,

late-time Hawking radiation, which does not contribute to ∆QD .14Although this number

is small—given the short duration of the gravitational collapse—it is significant if we

compare it with the ≈ 20 total photons per second, steadily emitted by the formed black

hole via Hawking radiation, with net polarization equal zero [145].

It is expected that ∆QD becomes significantly larger in more violent processes, as

for instance the collision and merger of two black holes as the ones observed by the

LIGO-Virgo collaboration [5]. A toy-model numerical simulation of two ∼ 0.5M¯ merging

Schwarzchild black holes gives an amount of around 1000 photons, for instance. But more

importantly, the existence of spontaneous creation of photons implies that the stimulated
counterpart must exist. Therefore, electromagnetic radiation traveling in spacetimes

with a non-zero value of (5.78), such as the ones mentioned above, will experience a

change in its net polarization. Light rays coming from different sides of those systems

not only would bend around, but an effective difference in polarization could also be

induced between them through quantum fluctuations.

Let us give some additional insights. We need to consider gravitational systems that

present both huge tidal (E) and frame dragging (B) effects. As argued astrophysical

rotating systems such as stars collapsing to Kerr black holes, or binary mergers in

astrophysics, are ideal to address this question. This requires the study of asymptotically

14 In fact, for an exact Kerr geometry expression (5.78) yields zero if integrated in the whole two-sphere.
Therefore, ∆QD comes from the (transient) process of collapse, in contrast to the Hawking effect, which is
associated with the final, stationary black hole configuration.
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flat spacetimes, for which a conformal completion a la Penrose can be made. The use of

techniques for dealing with asymptotically flat spacetimes was developed successfully

in the 60’s by Bondi, Penrose and others [49, 161, 172] in order to determine rigorously

the question of gravitational wave emission. See also [30, 99] for comprehensive reviews

and more technical and modern details. The physical spacetime M is compactified by

adding a boundary J± representing future and past null infinity. Incoming radiation or

massless fields start from J− while outgoing radiation propagate to J+. See Penrose

diagram adjoint.

Figure 5.1: Penrose diagram for Minkowski spacetime. Radiation (waves) described by
massless fields propagate from past null infinity J−, cross the origin r = 0 (vertical line),
and propagate then to future null infinity J+.

Given a physical conserved current ∇a ja
D = 0, one can deduce that

0=
∫

M∪J+∪J−
dV ol(x)∇a ja

D(x)=
∫
J+

dJ+
a ja

D −
∫
J−

dJ−
a ja

D =Q+−Q− (5.79)

where in the second equality we used Stokes Theorem and assumed that no other bound-

aries exist. The flux of the physical quantity of interest that "enters" spacetime, Q−,

equals the flux of the same physical quantity that leaves, Q+. This is the standard

conservation law. In our case, the Noether charge associated to the classical electromag-

netic duality symmetry measures the net difference between right- and left- circularly

polarized photons. So this result means, at least classically, that if no electric charges or

currents are present in the spacetime, the polarization measured initially at J− equals
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that measured finally at J+. In the astrophysical systems that we are interested in, the

appearance of horizons or black hole singularities may require the necessity of taking

into account the contribution of the flux through an internal (timelike or null) boundary

I as well:

0=
∫

M∪J+∪J−
dV ol(x)∇a ja

D(x)=Q+−Q−+
∫
I

dIa ja
D (5.80)

On statistical grounds, one could expect the number of right and left photons crossing

the horizon to be the same, so the above conclusion could be achieved as well.

In the quantum theory, however, we would have

〈Q+〉−〈Q−〉+
∫
I

dIa 〈 ja
D〉 =

∫
M∪J+∪J−

dV ol(x)〈∇a ja
D(x)〉∝

∫
M∪J+∪J−

dV ol(x)EabBab

and so gravitation can have an influence on the polarization state of photons. Analitically

it is difficult (possibly not available) to find solutions to Einstein’s equations that give

a non-vanishing value of the RHS. So we are forced to solve them numerically in order

to give an estimate to this integral. Regarding the LHS, we have to focus on each of

the terms individually. In this work we are concerned only with outgoing radiation, i.e.

radiation that propagates to future null infinity J+ and is generated through quantum

fluctuations inside the physical spacetime M (i.e. there is no incoming radiation from

J−). Therefore, initially (i.e. at J− ) there are no photons and we can safely say that
〈Q−〉 = 0 15. The calculation of 〈Q+〉, however, amounts to obtain∫

J+
dJ+

a Ja
CS (5.81)

where Ja
CS is the Chern-Simons gravitational current (one can check that ∇aJa

CS =
Rabcd

?Rabcd). This can be worked out using the above mentioned asymptotic techniques.

A calculation following [31] shows that the result depends on the shear σ0 of the gravita-

tional waves arriving there∫
J+

dJ+
a Ja

CS ∼
∫
J+

dJ+Im
[
σ̈0 ˙̄σ0] (5.82)

where dot denotes derivative with respect to retarded time (u = t− r). This is to be

compared with

QD ∼
∫
J+

dJ+Im
[
Ā0

2 Ȧ0
2
]

(5.83)

15〈Q−〉 6= 0 if the initial quantum state is not vacuum, but this requires another derivation dealing with
the stimulated quantum process, which will be considered in the future.
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where A0
2 is the transverse component of the electromagnetic potential in the Newman-

Penrose basis at J+. This expression is formally equal to the above by identifying the

Bondi news N ∼ σ̇0 with the electromagnetic potential. So perhaps we could interpret the

above formula as being the V-stokes parameter associated to gravitational waves. The

Bondi news is important because it is known that GW are emitted if and only if N = 0.

As a consequence, we also conclude that the duality anomaly manifests if gravitational

waves are emitted (assuming the internal boundary to be negligible in this discussion).

Finally, the calculation of the flux crossing the horizon is still subject to study, but

perhaps it could be related to the transient process of black hole collapse, and could give

information about multipole moment expansions of the geometry of the horizon [32].

If so, this anomaly could serve to infer information of the geometry of the black hole

horizon by measuring both gravitational and electromagnetic polarization at future null

infinity.

We plan to address all these issues in detail in the future.

5.7 Appendices

Appendix A. Noether current

We derive here in more detail the variation of the lagrangian density (5.4) under the

infinitesimal transformation (5.3). Namely,

δL = ∂L

∂Aν
δAν+ ∂L

∂∇µAν
δ∇µAν =−Fµν∇µδAν =−Fµν∇µZν (5.84)

The equality ?F = dZ+G leads to F =−?dZ−?G. Then ?GµνGµν = (?Fµν−dZµν)(−(?dZ)µν−
Fµν)= dZµν(?dZ)µν−Fµν?Fµν+2dZµνFµν, from which we can deduce

δL =−1
2
∇µ(Aν

?Fµν−Zν
?dZµν)− 1

4
?GµνGµν (5.85)

The final term seems to prevents this to be a total derivative. It is, however, vanishing.

Given a foliation of spacetime in spatial hypersurfaces with unit timelike normal vector

nµ, the electric field measured by the associated observer is Eµ = nνFνµ. The magnetic

part of G is zero, i.e. nν?Gµν = 0, because we work in the reduced phase space in which

the source-free Gauss law, DµEµ = 0, holds [D denoting the 3D Levi-Civita connection]. In

fact, Z is introduced as the "potential" for the electric field that solves the constraint, and

thus defined by Eµ =−εµνρDνZρ. Then, since S is antisymmetric, it can be irreducibly
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decomposed in terms of its electric Es and magnetic Bs parts as well. The final term

on the RHS above is equal to Es,µBµ
s , so this term vanishes. Then the variation of the

lagrangian density is a total derivative, δL =∇µhµ
p−g .

The Noether current is finally given by

jµD = 1p−g
∂L

∂∇µAν
δAν−hµ = 1

2
[
Aν

?Fµν−2FµνZν−?dZµνZν

]
(5.86)

which agrees with (5.5).

Appendix B. The soldering form αI
ab

We dwell here on the formal introduction of the α objects and its algebraic properties,

introduced in point 8 of section 5.3, and used throughout the main text.

Remark: the whole derivation can be similarly reproduced for the complex conjugate

vector space V̄ , which is isomorphic to the subspace V− of anti-self dual 2-forms, V̄ ∼=V−.

All the results are the same, it is only necessary to take the complex conjugate, and

denoting with a dot the indices.

1. Definition and properties

Let {na, xa, ya, za} be an orthonormal basis in 4D Minkowski spacetime associated with a

global family of inertial observers; the metric reads ηab = nanb − xaxb − ya yb − zazb. The

following set of tensors

α1
ab = −2n[axb] + i2y[azb] , (5.87)

α2
ab = −2n[a yb] + i2z[axb] , (5.88)

α3
ab = −2n[azb] + i2x[a yb] , (5.89)

constitute an orthogonal basis in the subspace V+ of complex self-dual 2-forms,

αI
abα

ab
J = −4δI

J , (5.90)

αI
abᾱ

ab
J̇ = 0 . (5.91)

Then, one can write any self-dual two form in this basis, like the electromagnetic field
+Fab, in terms of 3 components +HI

+Fab = +H Iα
I
ab (5.92)
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Let V be now a 3-dimensional complex vector space endowed with an euclidean metric

ηIJ [I, J = 1,2,3], and let {X I ,Y I , Z I} be an orthonormal basis of (V ,η). The metric can

be expressed as ηIJ = −X I XJ −YIYJ − ZI ZJ . We define then a linear isomorphism,

"soldering 2-form", between V and V+, by identifying the corresponding two basis

α I
ab =α1

ab X I +α2
abY I +α3

abZ I (5.93)

(tensorial products omitted for simplicity) which provides a one-to-one identification

between elements of the 3-dimensional complex space V and the subspace of self-dual

2-forms in Minkowski V+, i.e., αi
ab

+H I = +Fab, and αab
I
+Fab = 4+H I . Also note that

i?αab
I =αab

I .

For practical purposes it will be convenient to be aware that in the basis above the

matrix components of these tensors read:

[α] I
ab =−2

[
+Σ0I

]
ab

(5.94)

We can work out the algebraic properties of these tensors in the given basis by using

these matrices, and the results will hold for any arbitrary orthonormal basis. For the sake

of clarity, we distinguish between the different indices in order to be able to know which

basis element corresponds to, although in matrix notation they are simple labels. (note

that, as a matrix, the position of the indexes does matter now, even denoted differently)

Proposition. The following properties hold:

α I
ab αcd I = −2

[+Σab
]

cd (5.95)

αab I α
ab

J = 4ηIJ (5.96)

αab I ᾱ
ab

J = 0 (5.97)

αab
Iα

c
b J = ηIJη

ac −2
[+ΣIJ

]ac (5.98)

Proof:

α I
ab αcd I =α I

ab α
J

cd ηIJ = 4
[+Σ0I

]
ab

[
+Σ0I

]
cd

=−2
[+Σab

]
cd (5.99)

αab I α
ab

J = 4
[+Σ0I

]
ab

[+Σ0J
]ab = 2([Σ0I]ab + i

[
?Σ0I

]
ab)

[+Σ0J
]ab

= −4
[+Σ0J

]
0I −4

[
i?+

Σ0J

]
0I

=−8
[+Σ0J

]
0I =−4[Σ0J]0I = 4ηIJ(5.100)

αab I ᾱ
ab

J = 4
[+Σ0I

]
ab [−Σ0J]ab = 2([Σ0I]ab + i

[
?Σ0I

]
ab) [−Σ0J]ab

= −4[−Σ0J]0I −4
[
i?−

Σ0J
]
0I = 0 (5.101)
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αab
Iα

c
b J = 4

[+Σ0I
]ab [+Σ0J

]c
b = ηa

Iη
c
J + taηIJ tc + iε c

0J I ta + iε a
0I J tc −ε ab

0I ε c
0J b

= 2iε [c
0J I ta] +ηIJη

ac +2η[a
I η

c]
J = ηIJη

ac −2
[+ΣIJ

]ac . (5.102)

The first two expressions reflect the mapping-preservation of the two natural struc-

tures of V+ and V . Namely,
[+Σab

]
cd and ηIJ . On the other hand, taking the symmetric

and antisymmetric parts of the fourth property yields useful equations:

α[a
c Iα

b]c
J = −2

[
+Σab

]
IJ

(5.103)

α(a
cIα

b)c
J = ηabηIJ (5.104)

The quantities 2
[+Σac]

IJ are infinitesimal generators of the (1,0) representation, as one

can check by direct computation,

[2+Σab,2+Σcd] = ηac2[+Σ]bd −ηad2[+Σ]bc +ηbd2[+Σ]ac −ηbc2[+Σ]ad . (5.105)

2. Covariant derivative operator

Let us consider now a globally hyperbolic physical spacetime (M, gµν). At each point in

this space, we attach a Minkowski vector space through the vierbein eµa(x). This is a non-

coordinate basis that is defined through the isomorphism gµν(x)= ηabea
µ(x)eb

ν(x), with a,b
some labels and ηab = diag{+1,−1,−1,−1}. At each spacetime point, we regard then ea(x)

as vectors belonging to a certain vector space, that, endowed with ηab, is isomorphic to

Minkowski. Latin indices are lowered and raised with ηab while greek indices with gµν(x).

We extend the domain of applicability of the covariant derivative operator to objects

belonging to this internal space by imposing the compatibility condition ∇µea
ν(x) = 0.

There should be then a connection 1-form ωµ that satisfies:

0=∇µeνa = ∂µeνa +Γνµαeαa +ω b
µa eνb (5.106)

The metric-connection compatibility ∇µgαβ(x)= 0 implies antisymmetry of the connection

1-form, ωab
µ =ω[ab]

µ . From the previous equation one gets

ωab
µ = ea

ν∂µebν+Γνµαea
νeαb (5.107)

In turn, we will also have the space V attached to each point of M. We need to define

the extension of the covariant derivative operator when acting on objects of this space.

Following [184], we know that the difference between two derivative operators is linear,

so that

(∇µ−∇̄µ)HI =−C J
µ I HJ , HI ∈V (5.108)
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One of those can be taken to be the partial derivative operator, ∇̄µ = ∂µ. We choose the

other derivative operator to be compatible with the soldering form, i.e.

0≡∇µα
αβ

I = ∂µααβI +ΓαµραρβI +ΓβµρααρI −C J
µ I α

αβ

J

where we denote α
αβ

I (x) = eαa(x)eβb(x)αab
I . Taking (5.96) into account we now multiply

with αI
αβ

,

C J
µ I = 1

2
ea
α(∂µeαc )αJ

abα
cb
I + 1

2
αJ
αβΓ

α
µρα

ρβ

I = 1
2
αJ

ab

[
ea
α(∂µeαc )+Γνµαea

νeαc
]
αcb

I

= 1
2
αJ

abα
b

I c ω
ac
µ = 1

2
α[a J

b αc]b
Iωµac = 1

2
ω ab
µ 2

[+Σab
] J

I (5.109)

Therefore, the covariant derivative acting on the field H+
I is given by

∇µH+
I = ∂µH+

I − 1
2
ωab
µ 2[+Σab] J

I H+
J . (5.110)

We note that the general form of the covariant derivative is given by ∇µ = ∂µ− 1
2ω

ab
µ Σab ,

where Σab stands for the generator of the representation associated to the field to be

derived. For instance, for the field H+
I , the generator Σab is 2[+Σab] J

I and hence the

covariant derivative is (5.110).

One can check immediately the following identities involving the covariant derivative

of invariant tensors

∇µηIJ = −ω ab
µ

[+Σab
] K

I ηK J −ω ab
µ

[+Σab
] K

J ηIK

= −2ω ab
µ

[+Σab
]
(IJ) = 0 (5.111)

and the same for ηIJ or δI
J . Secondly [εIJKεIJK =−6]

0 = ∇µεIJK

= −ω ab
µ

[+Σab
] L

I εLIK −ω ab
µ

[+Σab
] L

J εILK −ω ab
µ

[+Σab
] L

K εIJL

which can be checked to vanish identically by recalling the identity

ηI[NεM]JK +ηJ[NεM]K I +ηK[NεM]IJ = 0 . (5.112)

3. 3+1 spacetime decomposition and the γ
µ

I

If spacetime is globally hyperbolic it can be foliated by a family of spatial hypersurfaces

Σt, M ' R×Σt, all of them orthogonal to a unit time-like vector nµ at each point (see

[184]). The metric can be decomposed as gµν = nµnν+ hµν, where hµν is the induced

spatial metric (the projected metric tensor) on the hypersurfaces.

We can now use the isomorphism (5.93) to build the following mixed tensors:
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• γ
µ

I := nνα
νµ

I provides an isomorphisms between vectors in V and vectors in space-

time that are spatial (in the inertial frame we are using).

• γ
µ

İ
:= nνᾱ

νµ

İ
is similar to the previous map replacing V by its complex conjugated

space V̄

• γİ
I := γµIγİ

µ provides an isomorphisms between V and V̄ .

• εIµν := nαγI
β
εαβµν defines a totally antisymmetric, purely spatial tensor with mixed

indces.

In particular, from the last definition one can derive (use εαβµν = i
[+Σαβ]µν− i

[−Σαβ]µν)

i2εIµν =αµνI − ᾱµνJ̇ δI
J̇ (5.113)

As we have just seen, there is a one-to-one correspondence between +Fµν and +HI .

Now we can see that the associated 1-form +Hµ = nν+Fνµ is also in one-to-one correspon-

dence. Indeed:

H+
ν = nµ+Fµν = nµα I

µνH+
I = γI

νH+
I (5.114)

where we introduced γI
ν :=αI

µνnµ. From the above definitions, and using (5.95) and (5.98),

one can easily verify the following properties,

γνIγ
β I = α

µν

I nµαρβI nρ =−2
[+Σµν]ρβnµnρ =−[

Σµν
]ρβnµnρ

= −nνnβ+ gνβ = hνβ (5.115)

γνIγνJ = α
µν

I nµαρνJ nρ =α(µ|ν
I nµαρ)νJ nρ

= ηIJ (5.116)

Notice that ∇µγ
ν
I 6= 0, but DµHµ

+ = DI H I+ holds true. Proof:

DµHµ
+ = hµν∇µH+

ν = hµν∇µγ
I
νH+

I = γµI∇µH+
I +hµν(∇µγ

I
ν)H+

I

= γµI∇µH+
I +hµνασ I

ν (nµaσ+Kµσ)H+
I = γµi∇µH+

I ≡ DI H I
+ (5.117)

where we used that ∇µnσ = nµaσ+Kµσ, aσ is the 4-acceleration of nν and Kµν = K(µν) its

extrinsic curvature.
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4. αI
ab as an invariant symbol of the Lorentz group

Consider a local Lorentz transformation Λ acting on the self-dual field F+
ab = H+

I α
I

ab with

the tensorial rule

F+ → F ′+ =ΛTF+Λ= H′+
I α

I . (5.118)

By construction this transformation leave invariant the quantity

− 1
4

F ′+abF ′+
ab =−1

4
F+abF+

ab , (5.119)

which corresponds to H′+
I H′I+ = H+

I H I+. In other words, the Lorentz transformation Λ

induces an action

H+
I → H′+

I = R(Λ) J
I H+

J (5.120)

preserving the metric ηIJ of the three-dimensional complex space. This is just the (1,0)

representation of the Lorentz group. The above matrices α I
ab define then an invariant

symbol, and hence an invariant mixed tensor, of the Lorentz group:

R I
Jα

J
cd Λ

c
aΛ

d
b =α I

ab . (5.121)

The symbol ηIJ is also an invariant symbol of the Lorentz group:

ηMNRM
I RN

J = ηIJ . (5.122)

It can be regarded as the analogue of the metric ηab in the three-dimensional complex

space of the (1,0) representation. Note that it is also the analogue of the invariant

(antisymmetric) symbol εαβ of the (1/2,0) representation. Moreover, since the matrices

R(Λ) J
I have unit determinant, the Levi-Civita symbol εIJK is also an invariant tensor of

the Lorentz group.

In the spinor language of [33, 100], the basic tensor α I
ab can also be regarded as a

“soldering form”, i.e., an isomorphism identifying the space of self-dual two-forms in 4D
Minkowski space and the three-dimensional complex space with an Euclidean scalar

product.

We can also construct the (0,1) Lorentz representation using the anti-self-dual field

strength and the matrices ᾱ J̇
ab . With the definition

F−
ab = H−

J̇α
J̇

ab , (5.123)

we can define the Lorentz action

F− → F ′− =ΛTF−Λ= H′−
İ ᾱ

İ , (5.124)
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and therefore

H−
İ → H′−

İ = R(Λ) J̇
İ H−

J̇ . (5.125)

Note that R(Λ) J̇
İ

= (R(Λ) J
I )∗. The invariant symbols for the (0,1) representation are

R İ
J̇ᾱ

J̇
cd Λ

c
aΛ

d
b = ᾱ İ

ab , (5.126)

ηṀṄRṀ
İ RṄ

J̇ = η İ J̇ , (5.127)

where

εṀṄȮRṀ
İ RṄ

J̇RȮ
K̇ = εİ J̇K̇ . (5.128)

5. Extended αI
ab and its algebraic properties

In order to fix the gauge in the first-order Lagrangian (5.47) in section 5.4 we extended

the internal vector space structure to accommodate for the Lagrange multiplier H0
±. We

introduced then a fourth α element, as normally done with the spin−1/2 case with Pauli

matrices. We show here the new α elements and its extended algebraic properties, that

are used throughout the main text.

Let V̂ =V ⊕R, endowed with a Lorentzian flat metric ηIJ , be now our internal vector

space at each spacetime point, with indices I, J running from 0 to 3. The complex 3-

dimensional vector space V , isomorphic to the space of self-dual 2-forms in Minkowski,

is now a vector subspace. Let nI denote a unit vector (ηIJ nI nJ = 1) orthogonal to the

V subspace (nI mIηIJ = 0, mJ ∈ V ). It spans a 1-dimensional vector space. In fact the

metric in this space can be written as ηIJ = nI nJ +γIJ . By defining nIα
µν

I :=−gµν, we

can write

α
µν

I =−nI gµν+αµνJ γJ
I (5.129)

where we denote now γJ
I := γνIγνJ . Notice that αµνJ γJ

I is now what in previous subsections

of this Appendix we identified as αµνI with I = 1,2,3.

As argued before, in order to define the actuation of the covariant derivative op-

erator of elements belonging to this (extended) internal vector space we demand the

compatibility condition

∇ρα
µν

I = 0 (5.130)

and equivalently ∇ρᾱ
µν

İ
= 0. We notice that this condition, in turn, imply several other

useful ones. First of all, by following a similar reason as (5.111) we conclude that
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∇µηIJ = 0. Secondly, by multiplying with the metric gµν the above expression using

(5.129) one gets ∇ρnI = 0. But turning back again to (5.130) one finds the old compatibility

condition:

∇ρ(αµνJ γJ
I )= 0 (5.131)

Therefore, all results that used this condition are still valid with the new extended

internal space and new compatibility condition. Finally, if ∇µnI = 0 and ∇µηIJ = 0, then

∇µγIJ = 0.

Now we shall derive the algebraic properties of the new alpha matrices when the

index I runs from 0 to 3. Equation (5.95) can be written also as α I
abα

J
cdγIJ =−2[−Σac]bd−

[Σad]cb, and then

α I
abαcd I =α I

abα
J
cdγIJ + gab gdc = ηbdηac −2[−Σac]bd (5.132)

Furthermore, from (5.96) we can obtain

αab Iα
ab
J =αab Mα

ab
Nγ

M
I γ

N
J +ηabη

abnI nJ = 4γIJ +4nI nJ = 4ηIJ (5.133)

The third property, (5.98), yields

αab
I α

c
b J = αab

Mα
c
b Nγ

M
I γ

N
J −nIα

ca
J −nJα

ac
I +ηacnI nJ

= αab
Mα

c
b Nγ

M
I γ

N
J +ηacnI nJ +2nI[+Σ0J]ca +2nJ[+ΣI0]ca

= ηIJη
ac −2

[+Σac]
IJ (5.134)

Finally, we shall prove that, as matrices, the alphas are hermitian, (αµ)† =αµ.[
αa]b

I = −nI gab −2[+Σ0I]ab =−nI gab −2[−Σ0a] b
I − [Σ0b]a

I

= −nI nanb −nI hab + iεab
I −ha

I nb +habnI −habnI +hb
I na

= −nI nanb −nI hab −ha
I nb −hb

I na + iεab
I (5.135)

with this expression it is clear that [αa]b
I = [ᾱa] b

I .

Appendix C. Maxwell equations in curved spacetime

In this appendix we shall be concerned on deriving the first-order equations of motion

for the vector potentials in curved space, which was presented in Sec. IIIB. Although

conceptually equal to the Minkowskian case, Sec. IIIA, it is technically more involved,

and we give the details here.
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The full set of Maxwell equations ∇µFµν
± = 0 can be rewritten in the Weyl form

α
µν

I ∇µH I
+ = 0 , ᾱ

µν

İ
∇µH İ

− = 0 , (5.136)

Given a spacetime foliation, take tµ as the unit timelike vector field normal to the

hypersurface Σt. We can solve the constraint equations, i.e.,

DI H I
+ ≡ nν(αµ)νI∇µH I

+ = 0 (5.137)

(and its complex conjugate) to introduce complex potentials by means of the "curl"

H I
± =±iεIµν∇µA±

ν (5.138)

where we define εIµν and γνI as in 5.7. Indeed,

DI H I
+ = DαHα

+ = iDαε
αµν∇µA+

ν = εαµνDα∇µA+
ν = εαµν∇α∇µA+

ν ∝ εαµνRαµνβAβ
+ = 0(5.139)

where in the first equality we used the identity derived in (5.117); also (5.114) and

(5.115). Note that the potentials inherit the usual gauge ambiguity A+
ν → A+

ν +∇µλ. The

second-order equations of motion for these potentials can be obtained form (5.136). The

projection with nµ is trivial by construction, while the remaining components satisfy the

standard wave equations

hαβ[2Aβ
+−∇ν∇βAν

+]= 0 (5.140)

where we made use of (5.113). There are only 3 independent dynamical equations, while

the fourth one is the (Gauss) constraint used to define the complex potentials. Note also

that we have not fixed the gauge freedom so far.

We are interested in getting a closer view to Dirac spin 1/2 theory, in particular,

working with a first-order Lagrangian. Since these equations of motion are of second

order, one may expect that source-free Maxwell action can only be of second-order for

potentials. We shall see right now that, however, that these second order equation can be

obtained from first-order ones thanks to the introduction of complex potentials.

Maxwell equations in the absence of charges and currents can be recovered from

d+F = 0, and requiring +Fab be self-dual, i.e. , +Fab = i
2εabcd

+F cd, which in turn implies

the irreducible decomposition +Fab = 1
2

[
Fab + i?Fab

]
for some 2-form F. Indeed, both

expressions lead to

dF = 0, d?F = 0. (5.141)
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and hence F is an electromagnetic field. Conversely, given these equations for an electro-

magnetic field F, one can construct ±F := 1
2 [F ± i?F], which satisfies +Fab = i

2εabcd
+F cd

and d+F = 0.

We shall take this reformulation as our starting point. We shall always assume +F
as a self-dual 2-form. The equation d+F = 0 allows one to define the local potential A+
by writing +F = dA+ ; while the self-duality property +Fab = i

2εabcd
+F cd, when written

in terms of A+, gives the dynamical equations (5.41) for A+:

∇a A+
b −∇b A+

a = iεabcd∇c Ad
+ (5.142)

The first-order equation of motion for the 4-vector potential can be rearranged as

[−Σαβ]µν∇µA+
ν = 0 . (5.143)

where [−Σαβ]µν = 1
2 {[Σαβ]µν− i[?Σαβ]µν} with [Σαβ]µν = 1

2ε
αβρσε

µν
ρσ , [?Σαβ]µν =−εαβµν.

Now, we shall show that this equation is equivalent to the standard second-order

equation of motion for the 4-vector potential. Acting with the derivative operator

[−Σαβ]µν∇α∇µA+
ν = 0 (5.144)

leads to

∇ν∇βA+
ν −2Aβ

++ iεαβµν∇α∇µA+
ν = 0 (5.145)

The second term vanishes because of the Bianchi Identity:

εαβµν∇[α∇µ]A+
ν ∝ εαβµνRαµνρAρ

+ = 0 (5.146)

Thus we get

2Aβ
+−∇ν∇βAν

+ = 0 (5.147)

which is precisely what one gets from ∇µ
+Fµν = 0 if +F = dA+. The same is true for the

antiself dual potential, ∇µ
−Fµν = 0. Since +Fab = 1

2

[
Fab + i?Fab

]
, joining both expres-

sions together we end up with

∇µFµν = 0 , ∇µ
?Fµν = 0 . (5.148)

Note that there are 16 equations in (5.143), but only 3 are linearly independent

(antisymmetry reduces to 6, and anti-selfduality brings down this number to 3). To better
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express the dynamics act on the LHS by [ᾱα] İ
β

, and using properties (5.95) and (5.96)

we get

ᾱ
µν

İ
∇µA+

ν = 0 , α
µν

I∇µA−
ν = 0 . (5.149)

From this equation we see that A0 has no dynamics (no time derivative for it appears).

There are then 3 (complex) first-order differential equations for 3 (complex) propagating

degrees of freedom in phase space. Since there is gauge freedom (only the transversal

part of the potentials contribute non-trivially to the equations), one can supplement this

purely dynamical equation with a gauge fixing.

We put emphasis in the fact that the the duality condition of the electromagnetic field

gives source-free Maxwell equations, and that complex potentials allow the diagonal-

ization of them, allowing to write first-order equations of motion. It is worth to remark

that in Minkowski one can find an alternative derivation of this equations using vector

calculous identities, as did in the main text.

Alternative derivation: on-shell F+ = dA+ holds, so inverting (5.92) using (5.96)

we can also find useful relations:

H+
I = 1

4
αab

I
+Fab =

1
2
α
µν

I ∇µA+
ν (5.150)

but notice this is only valid at the level of equations of motion. In fact, by using the

off-shell valid relations (5.138), together with (5.113), we recover in a different way

equations (5.149) for complex potentials.

Appendix D. Maxwell action from the first-order
Lagrangian in self-dual variables

We prove here that the action functional (5.47) is equivalent to the standard Maxwell

action (5.1). We do the calculation in Minkowski, but the generalization to curved

spacetimes is straightforward.

1. First of all we prove here that the symplectic structure with self-dual variables

is equivalent to the standard one, i.e., that the transformation {A+, A−} → {A;−E} is

canonical.

−
∫

d3~x [δ1A i
+δ2H−

i −δ2A i
+δ1H−

i ] ≡ −
∫

d3~xδA i
+∧δH−

i →−1
2

∫
d3~x (δA+ iδZ)i ∧ (δE− iδB)i

= −1
2

∫
d3~x {δA i ∧δE i +δZ i ∧δBi + iδZ i ∧δE i − iδA i ∧δBi}
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Since ~B =~∇× ~A and ~E =−~∇×~Z, by integrating by parts the last two terms vanish. Now:

−
∫

d3~xδA i
+∧δH−

i → −1
2

∫
d3~xδA i ∧δE i +δZ i ∧εi jk∂

jδAk =−1
2

∫
d3~xδA i ∧δE i −εi jk∂

jδZ i ∧δAk

= −
∫

d3~xδA i ∧δE i (5.151)

Exactly the same analysis can be carried out with the other couple (A−,H+). Then

−
∫

d3~xδA i ∧δE i →−1
2

∫
d3~x {δA i

+∧δH−
i +δA i

−∧δH+
i } (5.152)

2. We prove now that the first-order action written in terms of self-dual variables

(5.47) is equivalent to the standard one. Namely,

L[~A+, ~A−, ~̇A+, ~̇A−]=−1
2

∫
d3~x{~̇A i

+H−
i + ~̇A i

−H+
i }−H[A+, A−] (5.153)

with Hamiltonian

H[A+, A−]=
∫

d3~x(~∇× ~A+)(~∇× ~A−)+ 1
2

A+
0 ∂iH i

−+
1
2

A−
0 ∂iH i

+ (5.154)

when we make the transformation {A+, A−} → {A, ;−E} it leads to∫
dtL[~A+, ~A−, ~̇A+, ~̇A−] = −

∫
d4xRe Ȧ i

+H−
i −

∫
dt H[A+, A−]

→ −1
2

∫
d4xRe (Ȧ+ iŻ)i(E− iB)i −

∫
dt H[A+, A−]

= −1
2

∫
d4xȦ iE i + Ż iBi −

∫
dt H[A+, A−]

= −1
2

∫
d4xȦ iE i + Ż iεi jk∂

j Ak −
∫

dt H[A+, A−]

= −1
2

∫
d4xȦ iE i −Z iεi jk∂

j Ȧk −
∫

dt H[A+, A−]

= −1
2

∫
d4xȦ iE i +εi jk∂

jZ i Ȧk −
∫

dt H[A+, A−]

= −
∫

d4xȦ iE i −
∫

dt H[A+, A−] (5.155)

where in the process we integrated by parts in time and space. Notice that in this

transformation

H[A+, A−]=
∫

d3~xH i
−H+

i → 1
2

∫
d3~x(E2 + (εi jk∂

j Ak)2)= H[A,E] (5.156)

so that in second order or lagrangian formalism [after the Legendre transform which

takes E i to Ȧ i] we recover the standard result∫
dtL[~A+, ~A−, ~̇A+, ~̇A−] →

∫
dtL[A, Ȧ]=

∫
d4x{

1
2

(εi jk∂ j Ak)2 − 1
2

Ȧ i Ȧ i}=−1
4

∫
d4xFabFab(5.157)
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3. Now we prove that this first-order Lagrangian (5.153) can be written in a manifestly

Lorentz invariant way. From (5.47) and (5.43) we can deduce

L(~A+, ~A−, Ȧ+, Ȧ−) = −1
2

∫
d3~x{H−

i (Ȧ i
+− iεi jk∂ j A+

k )+H+
i (Ȧ i

−+ iεi jk∂ j A−
k )+ A+

0 ∂iH i
−+ A−

0 ∂iH i
+}

= −1
2

∫
d3~x{H i

−ᾱ
µ j

i∂µA+
j +H i

+α
µ j

i∂µA−
j + A+

0 ∂iH i
−+ A−

0 ∂iH i
+}

= −1
2

∫
d3~x{H i

−ᾱ
µν

i∂µA+
ν +H i

+α
µν

i∂µA−
ν }

≡ −1
2

∫
d3~x{H İ

−ᾱ
µν

İ
∂µA+

ν +H I
+α

µν

I∂µA−
ν } (5.158)

where in the last step we introduced the appropriate notation to indicate the behaviour

of the indices under Lorentz transformations (this is the correct way to say that this

expression is Lorentz invariant). See Appendix B for details regarding the α matrices.

The generalization to curved spacetime is straightforward from here. In particular, one

can directly invoke the minimal coupling prescription from (5.158) and gets the second

line in (5.47).

Appendix E. Deriving the equations of motion from
the first-order action

We check here that Maxwell equations for the complex potentials are derived correctly.

Given the action functional (5.47)

SM[A+, A−]=−1
2

∫
d4x

p−g
[
H İ

−ᾱ
µν

İ
∇µA+

ν +H I
+α

µν

I∇µA−
ν

]
(5.159)

we recover Maxwell equations. Indeed,

0= δSM

δA+
ν

= 1
2
ᾱ
µν

İ
∇µH İ

−+∇µ
i
2
εIµνα

αβ

I∇αA−
β (5.160)

we use now the identity (5.113) [note that since ∇µᾱ
µνI 6= 0, then ∇µε

Iµν 6= 0] and (5.95)

to write

0 = 1
2
ᾱ
µν

İ
∇µH İ

−+
1
4
αµνIα

αβ

I∇µ∇αA−
β −

i
2
∇µᾱ

µνIε
αβ

I∇αA−
β −

1
4
ᾱµνİᾱ

αβ

İ
∇µ∇αA−

β

= 1
2
ᾱ
µν

İ
∇µH İ

−−
i
2
∇µᾱ

µνİε
αβ

İ
∇αA−

β −
1
2

[+Σµν]αβ∇µ∇αA−
β +

1
2

[−Σµν]αβ∇µ∇αA−
β(5.161)

[at certain points we changed I to İ like in ᾱµνIᾱ
αβ

I = ᾱµνİᾱ
αβ

İ
in order to take the

derivative operator ∇µ through]. Recalling that H İ− =−iεİµν∇µA±
ν , and using the Bianchi
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Identity εabcdRbcde = 0, we get

0 = ᾱ
µν

İ
∇µH İ

−− i[?Σµν]αβ∇µ∇αA−
β

= ᾱ
µν

İ
∇µH İ

−+
i
2
εµναβRµαβσAσ

−

= ᾱ
µν

İ
∇µH İ

− (5.162)

Analogously, by differentiating with respect to A− we get the corresponding complex-

conjugate equation.

This particular calculation allows to write the action functional (5.47) as

SM[A+, A−]=−
∫

d4x
p−g H İ

−ᾱ
µν

İ
∇µA+

ν (5.163)

since, by integrating by parts and assuming the fields to decay sufficiently fast at infinity

so that we can neglect "boundary" terms, one can express

−1
2

∫
d4x

p−g H I
+α

µν

I∇µA−
ν =

∫
d4x

p−g
i
2

A+
ν∇µε

Iµνα
αβ

I∇αA−
β = 1

2

∫
d4x

p−g A+
ν ᾱ

µν

İ
∇µH İ

−(5.164)

where we used the calculation above in the last equality. A last integration by parts gives

the above formula.

Once we derive Maxwell equations for the fields, (5.162), we can obtain the cor-

responding first order equations for the potentials. Recall that ?Fµν = α
µν

I H I+, then

Maxwell equations above imply ∇µ
+Fµν = 0. As +Fµν is self-dual (hence the motiva-

tion for introducing the α matrices) then ∇µ
?F+

µν = 0 as well, or equivalently dF+ = 0.

Thus we can solve Maxwell equations by introducing "another" potential, +F = dB. This

implies H+
i = 1

4α
µν

I
+Fµν = 1

2α
µν

I ∇µBν. Using (5.95) we can invert this relation

2∇[µBν] =+ Fµν =α I
µν H+

I = iα I
µν εIαβ∇αAβ

+ (5.165)

Then,

2εIµν∇µBν = iεIµνα J
µν εJαβ∇αAβ

+ = 2εIµν∇µA+
ν (5.166)

where we noticed (5.113) and used (5.96)-(5.97). Recall that the potential A+ is defined

through a "curl" like this. Then, without loss of generality we can take B ≡ A+, modulo

gauge transformation.

Now, using both expressions for H+:

iεIµν∇µA+
ν = 1

2
αµνI∇µA+

ν (5.167)

and using 2iεIµν =αµνI − ᾱµνI , we finally get the desired result:

ᾱ
µν

İ
∇µA+

ν = 0 (5.168)
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F. Deriving the Noether current from the first-order
action

In this section we derive the Noether current in first-order formalism by working directly

with the standard variables A+ and A− and the action functional (5.47).

If the lagrangian density is the functional L = L[A+, A−], then its variation under an

infinitesimal duality rotation of the potential, δA± =∓iθA±, yields

δL = ∂L
∂A+

a
δA+

a + ∂L
∂∇a A+

b
δ∇a A+

b + c.c.

= −1
2

H i
−ᾱ

ab
i(−iθ)∇a A+

b − 1
2

iεiabαcd
i∇c A−

d(−iθ)∇a A+
b + c.c.

= iθ
2

H i
−ᾱ

ab
i∇a A+

b + iθ
2

H i
+α

cd
i∇c A−

d + c.c.= 0≡∇aha (5.169)

We find that, unlike in second-order formalism, the duality rotation is an exact symmetry

transformation of the first-order Lagrangian. The Noether current is now constructed as

ja = ∂L
∂∇a A+

b
δA+

b + c.c.−ha (5.170)

= −1
2

H İ
−ᾱ

µν

İ
(−iθ)A+

ν −
1
2

iεIabαcd
I∇c A−

d(−iθ)A+
b + c.c.

= iθ
2

[H i
−ᾱ

ab
i A

+
b −H i

+α
ab

i A
−
b ]− θ

2
εIab A+

bα
cd

I∇c A−
d + c.c. (5.171)

Note: the last term vanishes on-shell. This term is precisely the one that makes this

expression for the current different to that given by (5.64). Classically it does not matter,

but perhaps quantum-mechanically could be important (actually something similar

appears in the trace anomaly for Dirac fields, in which a piece in the stress energy tensor

is proportional to the equations of motion and one neglects it because classically one is

able to do it, but quantum fluctuations may be important there). However the charge

agrees in both cases since the odd term above vanishes when contracted with na.

Let us evaluate now the divergence of the current:

∇a ja = i
2

(∇aH İ
−)ᾱab

İ A+
b + i

2
H İ

−ᾱ
ab

İ∇a A+
b − i

2
(∇aH I

+)αab
I A−

b − i
2

H I
+α

ab
I∇a A−

b (5.172)

− 1
2

A+
bα

cd
I∇aε

Iab∇c A−
d − 1

2
εIab∇a A+

bα
cd

I∇c A−
d − 1

2
A−

b ᾱ
cd

İ∇aε
İab∇c A+

d − 1
2
εİab∇a A−

b ᾱ
cd

İ∇c A+
d

note that the second and last term cancel each other, as well as the fourth and the sixth

terms. We are left with

∇a ja = Re
[
i(∇aH İ

−)ᾱab
İ A+

b

]
−Re

[
A+

bα
cd

I∇aε
Iab∇c A−

d

]
= Re

[
i(∇aFab

− )A+
b

]
+Re

[
A+

b iᾱab
İ∇aH İ

−
]
= 2Re

[
i(∇aFab

− )A+
b

]
(5.173)
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Now we would like to compare to the familiar expression that we got in second-order or

lagrangian formalism (5.8). We have to be careful at this point. The relation between the

3-dimensional vector fields H i+ and potential A+ is

H+
I = 1

2
αab

I∇a A+
b (5.174)

valid only on-shell. This is equivalent to the equality +F = dA+. To pass from first to

second order one has to do the Legendre transform, which amounts in the relation

E i = Ȧ i. It can be readily seen that the real part of the equation above gives this, while

the imaginary part gives the wave equation for the potential Bi = εi jk∂ j Ak = Ż i. By

focusing only on the real part, i.e. Re(+F)= Re(dA+), it turns out that F = dA and this

leads to ∇µ
?Fµν = 0:

∇a ja
D = −(∇aFab)Zb (5.175)

which is what we expected.

Appendix G. Lorentz Gauge fixing and the extension
of the α’s

As argued in the paragraphs following (5.47), there is a very nice way of incorporating

the Lorentz gauge fixing term in the action into the language of α. This is analogous

to what is usually done in the fermion case, in which besides the Pauli matrices one

introduces a fourth matrix σ0 ≡ I2×2 that conmutes with the others. In this appendix we

shall check that the standard source-free Maxwell equations are still recovered with this

additional input to the action. In this appendix I = 1,2,3 still.

Let us denote the "bare" action by

S0[A+, A−]=−1
2

∫
dΣ4

[
H İ

− ᾱ
µν

İ
∇µA+

ν +H I
+α

µν

I∇µA−
ν

]
(5.176)

As shown in Appendix X variation with respect to A+
µ recover Maxwell equations

α
µν

I ∇νH I+ = 0. However the extended action reads now

S[A+, A−]= S0[A+, A−]+ 1
2

∫
dΣ4

[
H0

−∇a Aa
++H0

+∇a Aa
−
]

(5.177)

Variation with respecto to H0
± provides the Lorentz gauge fixing: ∇a Aa

± = 0. On the other

hand, variation with respecto to A+
ν yields

0= δSM

δA+
ν

= ᾱµν
İ
∇µH İ

−−
1
2
∇νH0

− (5.178)
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Now, on the one hand we can multiply this by tν, which taking into account that D İ H İ− = 0

by construction (since H İ− =−iεİµν∇µA−
ν — see (5.139) ), provides tµ∇µH0− ≡ ∂tH0− = 0. On

the other hand, multiplying by ∇ν one gets 2H0− = 0 because of the identity ᾱµν
İ
∇ν∇µH İ− =

0. This last formula can be checked as follows:

ᾱ
µν

İ
∇ν∇µH İ

− = ∇µ∇νᾱ
µν

İ
H İ

− =∇µ∇νFµν
− = 1

2
R µ
µνα Fαν

− + 1
2

R ν
µνα Fµα

−

= 1
2

RναFαν
− − 1

2
RµαFµα

− = 0 (5.179)

If both 2H0− = 0 and ∂tH0− = 0 hold, then DID I H0− = 0 holds. Choosing appropriate

boundary conditions one can solve the equation and get H0− be constant. Turning back

to (5.178), ∇µH0− = 0 one gets the desired source-free Maxwell equations. An identical

reasoning can be applied for H+. Following now the same arguments as in Appendix E

one gets to the extended first-order equations of motion for the potentials:

ᾱ
µν

İ ′ ∇µA+
ν = 0 (5.180)

where I = 0,1,2,3 now.

Appendix H. Definition of Ψ and βµ and properties

In section (5.4) we wrote the action functional as similar to the Dirac case. In the

successive steps of reasoning we introduced without much explanation certain elements

that were used throughout the remaining text. We define here those elements in detail

and provide their main properties.

Given the complex potentials A±
µ and the electromagnetic self- and antiself- dual

fields, H I+ and H İ−, we can construct the direct sum of their correspondings space of

functions. Let X denote this space. An arbitrary element of this space will have the form:

Ψ=


A+
µ

H I+
A−
µ

H İ−

 ∈ X (5.181)

We define now the vector-valued mapping βµ : X −→ X as

βµΨ= i


ᾱ
µν

İ
H İ−

−αµνI A−
ν

α
µν

I H I+
−ᾱµν

İ
A+
ν

 (5.182)
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which is well-defined (βµΨ ∈ X ,∀Ψ ∈ X ) and is linear. This allows to write

βµ =−i


0 0 0 −ᾱµν

İ
0 0 α

µν

I 0

0 −αµνI 0 0

ᾱ
µν

İ
0 0 0

 (5.183)

Define now the product of two βµ as the composite operation, βµβν : X −→ X , by

(βµβν)Ψ=βµ(βνΨ), that is well-defined and linear. This leads to

βνβµ =


ᾱν

νJ̇
ᾱ
µ J̇
ρ 0 0 0

0 α
νρ

Jα
µ

ρI 0 0

0 0 αν
νJα

µ J
ρ 0

0 0 0 ᾱ
νρ

J̇
ᾱ
µ

ρ İ

 (5.184)

whose symmetric and antisymmetric parts, using (5.103)-(5.104), recover formulas (5.55).

The "chiral" operation is a linear application β5 : X −→ X defined by formula (5.56).

It yields

β5 = i
4!
εabcdβ

aβbβcβd = i
4!
εabcdβ

[aβb]β[cβd]

= i
6
εabcd


[+Σab]

σρ

[+Σcd]ρ
α 0 0 0

0
[+Σab]

IK
[+Σcd]K

J 0 0

0 0
[−Σab]

σρ

[−Σcd]ρ
α 0

0 0 0
[−Σab]

İ K̇
[−Σcd]K̇

J̇



= 1
3


[+Σcd

]
σρ

[+Σcd]ρ
α 0 0 0

0
[+Σcd

]
IK

[+Σcd]K
J 0 0

0 0 − [−Σcd]σρ
[−Σcd]ρ

α 0

0 0 0 − [−Σcd]İ K̇
[−Σcd]K̇

J̇



= 1
3


−2

[+Σσρ]ρα 0 0 0

0 −2
[+ΣIK

]K
J 0 0

0 0 2
[−Σσρ]ρα 0

0 0 0 2
[−Σİ K̇

]K̇
J̇



=


−gµν 0 0 0

0 −ηIJ 0 0

0 0 gµν 0

0 0 0 η İ J̇

 (5.185)
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and satisfies

β2
5 =


gµν 0 0 0

0 ηIJ 0 0

0 0 gµν 0

0 0 0 η İ J̇

 , {β5,βµ}= 0 (5.186)

Note that both β5β
µ : X −→ X and βµβ5 : X −→ X are well-defined as composite opera-

tions. The duality transformation is defined by means of a linear application Tθ : X −→ X ,

Tθ = eiθβ5 , θ ∈R.

Let X∗ be now the dual space, the space of bounded linear functionals φ : X −→C. We

shall work on a particular class of elements of this space: given Ψ ∈ X , we shall define

Ψ̄ ∈ X∗ by

Ψ̄ :=
(

A+
µ H I+ A−

µ H İ−
)

(5.187)

This way, the action functional (5.53) is a well-defined quantity.

Lastly, we introduce the "complex-conjugation" in this space of elements by β : X −→
X ,

βΨ=


A−
µ

H I−
A+
µ

H İ+

 (5.188)

which leads to

β=


0 0 δ

µ
ν 0

0 0 0 δI
İ

δ
µ
ν 0 0 0

0 δİ
I 0 0

 (5.189)

This is useful since now Ψ̄βΨ ∈C is well-defined, and moreover Ψ̄βΨ≥ 0. Thus, the inner

product used in 5.5.2 is well-defined.

Appendix I. Explicit calculations of the
electromagnetic duality anomaly

From (5.69) and (5.70) and text in between we can write

〈∇µ jµD〉ren = ~
32π2 lim

m→0
m

2∑
k=0

Tr
[
(iβµ∇µ+m)β5Ek(x)

]∫ ∞

0
d(iτ) e−iτm2

(iτ)(k−2) (5.190)
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In order to make the integral convergent we need to add here a tiny imaginary contri-

bution to the mass, which amounts in a choice for the Green function. It corresponds to

m2 → m2 − iε. Solving the integral yields

〈∇µ jµD〉ren = ~
32π2 lim

m→0
m

2∑
k=0

Γ(k−1)(im2)1−k Tr
[
(iβµ∇µ+m)β5Ek(x)

]
(5.191)

In order to obtain the Heat Kernel coefficients we need to obtain a quadratic equation

of motion for the field. Since ∇µβ
ν(x) = 0, the quadratic operator is 0 = βµβν∇µ∇νΨ =[

β(µβν) +β[µβν]]∇µ∇νΨ

{I gµν∇µ∇ν−


+Σµν 0 0 0

0 +Σµν 0 0

0 0 −Σµν 0

0 0 0 −Σµν

 [∇µ,∇ν]}Ψ= 0

If we express (2+Q)Ψ= 0, then

Q ≡−1
2

Rµναβ


+ΣµνΣαβ 0 0 0

0 2+Σµν+Σαβ 0 0

0 0 −ΣµνΣαβ 0

0 0 0 2−Σµν−Σαβ

 (5.192)

Note: given ∇µΨ= ∂µΨ− 1
2ω

ab
µ MabΨ, with Mab a generator of the Lorentz symmetry

group, it can be checked that
[∇µ,∇ν

]
Ψ= 1

2 R ab
µν MabΨ. The proof can be found in Parker-

Toms, pages 225-226. See Formulas (5.270)-(5.271).

Since E0 = I, then Tr(β5E0)= 0 and Tr(βµβ5E0)= 0. On the other hand, E1 = 1
6 RI−Q,

and consequently Tr(β5E1)=−Tr(β5Q),

Tr(β5E1) = i Rµναβ ImTr{+Σµν(2+Σαβ+Σαβ)}=−5
4

RµναβTr{Σµν?Σαβ}

= −5
4

RµναβΣ
µν

IJ
?Σ

αβJI =−5
2

RIJαβε
IJαβ =−5

2
Rµναβε

µναβ = 0 (5.193)

where in the last step we used the Bianchi identity. The equality Tr(βµβ5E1)= 0 can be

easily obtained by noting that no diagonal terms appear in the "matrix" βµβ5E1. The

same argument holds for Tr(βµβ5E2)= 0. After all, (5.191) reduces to

〈∇µ jµD〉 = −i~
32π2 Tr(β5E2) (5.194)

= −i~
32π2

[
1

12
Tr(β5WµνWµν)+ 1

2
Tr(β5Q

2)
]
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Recall that

WµνΨ= [∇µ,∇ν]Ψ= 1
2

Rµναβ


Σαβ 0 0 0

0 2+Σαβ 0 0

0 0 Σαβ 0

0 0 0 2−Σαβ

Ψ

and hence

WµνWµν = 1
4

RµναβRµν
σρ


ΣαβΣσρ 0 0 0

0 4+Σαβ+Σσρ 0 0

0 0 ΣαβΣσρ 0

0 0 0 4−Σαβ−Σσρ


so that

Tr(β5WµνWµν) = −1
4

RµναβRµν
σρ2i ImTr

[
ΣαβΣσρ+4+Σαβ+Σσρ

]
= −2iRµναβRµν

σρImTr
[
+Σαβ+Σσρ

]
= − i

2
RµναβRµν

σρTr
[
Σαβ?Σ

σρ+?Σ
αβ
Σσρ

]
= −iRµναβRµν

σρTr
[
Σαβ?Σ

σρ
]

= 2iRµνIJRµν
σρε

σρIJ =−2iRµναβRµν
σρε

σραβ

= 4iRµναβ
?Rµναβ (5.195)

On the other hand,

Tr(β5Q
2) = −1

4
RµναβRabcd 2i ImTr{+ΣµνΣαβ+Σab

Σcd +4+Σµν+Σαβ+Σab+Σcd}

= − i
8

RµναβRabcdTr{ΣµνΣαβ?Σab
Σcd +?Σ

µν
ΣαβΣabΣcd

+ ?Σ
µν
ΣαβΣabΣcd +Σµν?ΣαβΣabΣcd

+ ΣµνΣαβ?Σ
ab
Σcd +ΣµνΣαβΣab?Σ

cd

+ ?Σ
µν?Σ

αβ?Σ
ab
Σcd +?Σ

µν?Σ
αβ
Σab?Σ

cd

+ ?Σ
µν
Σαβ?Σ

ab?Σ
cd +Σµν?Σαβ?Σab?Σ

cd} (5.196)

Using the Bianchi identity (?Ra
bac = 0), each of these terms vanishes. Finally then,

〈∇µ jµD〉 = −~i
32π2

[
1

12
Tr(β5WµνWµν)+ 1

2
Tr(β5Q

2)
]

= −~
96π2 Rµναβ[?R]µναβ . (5.197)
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Since the heat kernel asymptotic series of the heat kernel does not depend on the vacuum

state chosen, this expectation value is (vacuum) state independent.

Appendix J. Trace anomaly

As a non trivial check, one might be interested in reproducing the trace anomaly using

the Dirac-type approach introduced in this work. The calculation is straightforward

following the recipes given above, but considerably more lenghty since there are non-

vanishing contributions coming from all terms in the heat kernel expansion. We can

predict, though, what the result should read by following Chirstensen and Duff analysis

[61, 62].

Our formulation would yield a trace anomaly determined by the A±, H± fields,

which transform under Lorentz trasformations according to the (1/2,1/2) and (1,0)/(0,1)

representations. From the action (5.53) one can conclude that:

〈Tµ
µ〉 = −1

4
〈Ψ̄DΨ〉+2〈c2c〉

= −1
4

[b4(1/2,1/2)+b4(1,0)+b4(1/2,1/2)+b4(0,1)]−2b4(0,0) (5.198)

where c represents one of the two ghosts (we omitted them along the text since they are

irrelevant for the duality anomaly), that is described by a minimally coupled, massless,

scalar field. In the second line we introduced b4(A,B); it denotes the coefficient in the

heat kernel expansion of 4th order in derivatives of the metric, and can be determined

by a knowledge of the associated Lorentz representation upon which the field of interest

transforms with, as calculated in [61, 62]. The −1
4 factor would come from the weird

normalization in the action (5.53). It can be deduced from [61] that b4(1,0)+b4(0,1)=
−6b4(1/2,1/2). Then we recover

〈Tµ
µ〉 = b4(1/2,1/2)−2b4(0,0) (5.199)

which is the standard result [48].
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6
CONCLUSIONS AND OUTLOOK

T his thesis is the result of the research carried out by the author during the last

5 years in collaboration with his supervisors and other people. The common topic

is the quantum theory of fields propagating in curved spacetimes. Although more

50 years have passed since the first quantitative paper on the subject [147], the topic is

still of great importance nowadays, not only because it continues to give new insights

in the foundations of a supposed quantum theory of gravity, but it also leads to new

phenomenological implications that, today more than ever, could be tested in experiments.

To the present day, cosmological missions have reached such a level of sensitivity that

quantum effects of fields during the early universe must be taken into account for the

correct interpretation of both CMB and large scale structure data analysis. On the other

hand, the detection of gravitational waves by the LIGO-Virgo collaboration, together with

the electromagnetic counterpart measured by multimessenger astronomy, has opened up

a new era in astrophysics. There is no doubt that this rapidly increasing research area

will provide considerable amounts of data from astrophysical sources that will allow a

better understanding, not only of general relativity, but also of the consequences of the

quantum theory of fields around black holes scenarios.

With this motivation in mind, in the first part of this thesis we have dealt with

several questions related to primordial cosmology. In Chapter 2 we analyzed the most

important observable supporting the theory of inflation, the angular power spectrum,

from a different, not conventional, perspective. We reexamined this quantity from a

spacetime point of view and found that the standard result considered in the literature
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actually diverges in the ultraviolet. This is complementary to the work done in Fourier

space a decade ago. The usually referred assumption of taking the large distance limit

in the two-point function of primordial cosmological perturbations, leading to the well-

known – and experimentally checked – scale invariance of the power spectrum, serves

as a natural regulator of the UV divergences. This, however, turns out to correspond

to a zeroth-order adiabatic subtraction (as it is known in the specialized literature of

renormalization). We argued that subtractions up to second adiabatic order should be

more natural from a physical point of view. By doing this one gets an additional (scale

invariant) term in the power spectrum (see (2.39) for the final result), and its possible

observable consequences were discussed.

Chapter 3 is a throughout text that deals with the calculation of the renormalized

stress-energy tensor of spin 1/2 fields in expanding universes. This was achieved both

when the fermion field propagates freely and when the field is interacting with an

external scalar field through a Yukawa coupling. Final expressions for the renormalized

values can be looked up in (3.72) and (3.73); and (3.157), (3.158), and (3.171). The

underlying motivation was finding the possibility of carrying out the study of matter

(namely, the production of particles and energy) not only during the inflationary regime,

but also during the preheating era, when all matter known in the universe is supposed

to have originated from the inflaton field oscillations. Some examples of cosmological

interest using this formalism were discussed using analytical approximations (see section

3.4 and Appendix B) and some using numerical approaches (see Appendix E). The work

done here paves the way for future projects regarding numerical implementations of

matter particle production during the early universe.

The cosmology study ends with Chapter 4. In single field models of inflation, it is

normally assumed that the only field relevant for the computation of physical observables

is the one that drives the exponential expansion itself. In this chapter we considered

the presence and influence of a large number N of test or spectator light scalar fields,

fields that do not couple directly to the inflaton field, only propagate in the spacetime

background. This is of interest since some fundamental theories (i.e. string theory,

supergravity, etc) generally require the existence of large amounts of light fields for

self-consistency, and their presence should certainly have some imprint somewhere, for

instance in CMB observables. It turns out that they amount to a running contribution

(logk dependence) to both the scalar and tensorial Fourier spectra. We argued that,

though normally neglected in standard approaches to inflation, their impact in the tensor

spectrum could be well relevant to put bounds on the possible number of N light scalar
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fields present in the universe. The bound obtained and associated discussion is found

in (4.58) and ahead. The results could constrain phenomenological models that require

such huge amounts of light fields to solve the hierarchy problem in the standard model

of particles.

Turning then to more fundamental aspects of quantum field theory, in Chapter

5 we dealt with the electromagnetic duality transformation of source-free Maxwell

theory in curved spacetimes. Classically, this was shown to be a dynamical symmetry of

the Maxwell action if no electric charges of currents are present. However, motivated

by the knowledge of other anomalies, the natural question of whether this symmetry

could be extended to the quantum theory was posed and analyzed in detail. Indeed,

as first shown in 1969 [10, 44, 122], this is a non-trivial issue: classical symmetries

may fail to hold in the quantum regime due to off-shell contributions, coming from

quantum corrections. In this chapter we calculated the vacuum expectation value of

the divergence of the Noether current, and found that it is not vanishing due to the

renormalization subtractions that one needs to consider in order to properly account for

the UV divergences. The particular value obtained can be looked up in (5.77). This result

thus leads to an anomaly in the quantum theory. We also checked the calculation by

following Fujikawa’s interpretation: the measure of the path integral — this latter one

yielding the transition amplitudes between quantum states of the field in different times

— transforms non-trivially, providing the anomaly. Finally, we ended the chapter by

commenting on potential physical implications of this in astrophysics and gravitational

wave physics (see section 5.6).

Concerning this last point, our results opens up several avenues for future research,

some of which I proceed to describe now. Immediate questions arise: how should we

interpret the electromagnetic duality anomaly from a physical point of view? Does it

mean that an initial sample of photons get polarized if they pass through a strong gravi-

tational background? Moreover, do deviations from general relativity predict distinctive

signatures? Are there observable implications of all this, say, in astrophysics? Does this

anomaly arise in gravitational radiation as well? We plan to address these questions in

the near future by working out the specific research directions listed below. Answering

them will help us to understand the implications of the anomaly from a measurable

viewpoint, and this will be useful in testing either the validity of general relativity or

quantum field theory in curved spacetimes in an astrophysical context.

1. The detailed calculation of the electromagnetic duality anomaly was only carried

out considering the vacuum expectation value of the duality current jµ, i.e. we computed
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the quantity 〈0|∇µ jµ |0〉 6= 0. This polarization effect could be interpreted as spontaneous

(asymmetric) creation of particles from vacuum due to the strong gravitational dynamics,

similarly to the celebrated Hawking effect. If, instead, the initial state describing the

electromagnetic field had already a distribution of photons, we would expect an stimu-

lated contribution to this phenomenon from the quantum state, which must be much

more significant in any practical situation of astrophysical or cosmological interest. Our

plan is to determine how big this effect can be. In other words, we need to calculate
〈ρ∣∣∇µ jµ

∣∣ρ〉 in detail, where
∣∣ρ〉 represents a mixed state describing photons with differ-

ent helicities, frecuencies, etc. Then, we have to figure out how this quantity is measured

by or imprinted in a quantum device.

We shall borrow additional techniques from quantum field theory in curved spacetime

and general relativity. The use of Unruh-DeWitt detectors, in particular, will be important

to understand in more depth what physically the impact of this anomaly on photons could

be, since these detectors can tell what a test field or observer is able to measure or not.

Asympotic analysis in General Relativity will also be important to address the question

of incoming radiation from past null infinity and the scattered radiation to future null

infinity. On the other hand, techniques usually employed in quantum information science

might be well relevant for analyzing the issue of the choice of quantum state, i.e. for

instance by means of density operators.

2. An additional assumption in our computation of the electromagnetic duality

anomaly was the use of conventional general relativity. Since the result is a purely

geometrical contribution, it could be interesting to investigate whether modified theories

of gravity provide new terms to 〈0|∇µ jµ |0〉 or 〈ρ∣∣∇µ jµ
∣∣ρ〉. If so, this could serve to predict

deviations from general relativity in strong gravitational scenarios, for instance through

new signatures in GW emission. Several approaches in field theory or differential geome-

try could be investigated here. To give an example, if we allow torsion or non-metricity on

the connection, apart from curvature additional contributions to the above expectation

value might arise; etc.

3. Gravitational waves also have two radiative degrees of freedom, namely the

well-known h+ and h× modes, and there exists an analogue of electromagnetic duality

symmetry. Consequently, at the linearized level the notion of a charge measuring the

state of polarization of gravitational radiation should be available as well. We plan to

examine this in detail and study whether there is an anomaly in the theory of gravitons

propagating in a non-trivial curved spacetime, i.e. if the background distinguishes

(quantum-mechanically) between the two degrees of freedom. This could be particularly
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interesting in future measurements of polarization of gravitational waves.

4. Our eventual plan would be to search signatures of all this in astrophysics, namely

in black hole physics and gravitational wave emission. Working in this area will imply

getting familiarized with astrophysical sources, such as binary mergers or dynamical

black holes, as well as the analytical techniques involved to extract physical information

(asymptotic analysis, black hole multipole moments, asymptotic charges, etc). Questions

such as if the effect grows linearly with the mass of the system, or if the polarization or

angular momentum carried away by gravitational waves plays any role, will be addressed.

Close collaboration with numerical relativists is expected.
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