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ABSTRACT 
The aim of this research was to optimise the performance of the storage, 

retrieval, analysis and interactive visualisation of biomolecular pathways data. 

This was achieved by the adoption of new technologies and a variety of highly 

optimised data structures, algorithms and strategies across the different layers 

of the software. 

The first challenge to overcome was the creation of a long-lasting, large-scale 

web application to enable pathways navigation; the Pathway Browser. This 

tool had to aggregate different modules to allow users to browse pathway 

content and use their own data to perform pathway analysis. 

Another challenge was the development of a high-performance pathway 

analysis tool to enable the analysis of genome-wide datasets within seconds. 

Once developed, it was also integrated into the Pathway Browser allowing 

interactive exploration and analysis of high throughput data. 

The Pathways Overview layout and widget were created to enable the 

representation of the complex parent-child relationships present in the 

pathways hierarchical organisation. This module provides a means to overlay 

analysis results in such a way that the user can easily distinguish the most 

significant areas of biology represented in their data. Although an existing 

force-directed layout algorithm was initially utilised for the graphical 

representation, it did not achieve the expected results and a custom radial 

layout algorithm was developed instead. 

A new version of the pathway Diagram Viewer was engineered to achieve 

loading and rendering of 97% of the target diagrams in less than 1 second. 

Combining the multi-layer HTML5 Canvas strategy with a space partitioning 
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data structure minimised CPU workload, enabling the introduction of new 

features that further enhance user experience.  

On the server side, the work focused on the adoption of a graph database 

(Neo4j) and the creation of the new Content Service (REST API) that provides 

access to these data. The Neo4j graph database and its query language, 

Cypher, enabled efficient access to the complex pathway data model, 

facilitating easy traversal and knowledge discovery. The adoption of this 

technology greatly improved query efficiency, reducing the average query 

time by 93%. 
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1. INTRODUCTION 
As a computer scientist with an interest in the field of biology, my main 

motivation for conducting the work in this thesis was the possibility of delving 

deeper into biomolecular pathways data, applying the concepts learnt during 

my degree in computer science engineering and master in artificial 

intelligence with focus on data modelling. 

This thesis focuses on the storage, retrieval, analysis and visualisation of 

biomolecular pathways data. Therefore, this introduction starts with a 

summary of concepts relevant to the biology of biomolecular pathways, 

continues with an introduction to the Reactome pathways database and 

finishes by setting the aims and objectives. 

1.1. BACKGROUND 

The basic unit of a biomolecular pathway is a reaction, typically with 

substrates, enzymes, and products (Figure 1.1a). A collection of connected 

biomolecular reactions can be considered to constitute a biological pathway. 

Connections are formed when an output of one reaction becomes an input for 

a subsequent reaction, or when that output can act as a catalyst for another 

reaction (Figure 1.1b).  

A Pathway Database (PDB), also referred to as a “knowledge base”, is a 

bioinformatics database that condenses biological knowledge of molecular 

interactions into pathway data collections that describe defined biochemical 

pathways. PDBs can usually retrieve and display data from different sources, 

creating useful links between different databases. Most PDBs contain 

computable descriptions of pathways structured by using a formal ontology, 
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as opposed to textual or semistructured descriptions of pathways [Karp 2001; 

Garcia-Campos et al. 2015]. 

 

Figure 1.1. Reactions and pathways. (a) Example of a reaction containing reactants 

(AMP, H2O), catalyst (NT5C1B), regulators (ADP) and products (Pi, Ade-Rib). (b) 

Abstract representation of a pathway (yellow arrow) as the concatenation of two or 

more reactions where an output of one reaction becomes an input or catalyst for a 

subsequent reaction. 

Generally, experimental evidence from literature provides provenance for the 

curation of a reaction. Computational analyses can be carried out by the 

database itself to infer possible functions of homologous biomolecules. 

Additionally, cross-referencing of shared data between databases is generally 

performed. Currently hundreds of PDBs projects are established, each 

actively annotating biological knowledge in specialised contexts. The current 

PDB catalogue is truly abundant and diverse, differing in species focus, 

curation approach and the kinds of pathways and interactions they describe 

[Bader et al. 2006]. As the PDB catalogue has grown, it has increasingly 

allowed the interconnectedness between different data from different 

databases, improving the knowledge of biological processes for use in 

research and discovery [Garcia-Campos et al. 2015]. 

Researchers who want more information on proteins of interest can use 

pathway analysis tools to help them better understand or interpret ‘omics data 
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from PDBs. These analysis methods have applications in biomedical research 

where the results can help to uncover new insights into the biomolecules and 

processes [Garcia-Campos et al. 2015]. The data returned from pathway 

analysis tools should never be treated as a complete truth, it is better 

considered as a useful starting point that may reveal relationships within 

discrete biological areas. 

To better understand complex biological data, enrichment techniques are key 

tools to reduce data complexity, improve data interpretation and help generate 

plausible hypotheses. Although ‘omics tools are growing and steadily 

improving, useful metabolomic analysis tools are scarce, most being 

developed from other ‘omics technologies [Marco-Ramell et al. 2018]. 

The most common analysis method for performing pathway analyses is 

functional enrichment, also called over-representation analysis (ORA). This 

method is a statistical test that determines whether certain molecules are over-

represented (enriched) in the submitted data. Current ORA methods can 

provide robust, consistent and reproducible results, regardless of their 

analytical approach or PDB used [Marco-Ramell et al. 2018]. The overall aim 

of ‘omics analysis tools is to produce clear and meaningful integrated displays 

without showing the intrinsic complexity of the data that ultimately helps to 

provide biological insight [Gehlenborg et al. 2010]. 

The aim is to generate testable hypotheses about biological processes that 

govern system behaviour [Moyano et al. 2015]. Therefore, biological 

processes are modelled as networks of graphical maps that consist of nodes 

and edges, representing the individual system components and their 

relationships, respectively. Depending on the system components used, 

different biological networks can arise, such as gene regulatory networks, 

signalling networks, and metabolic networks. 
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As demonstrated by their frequent use in scientific literature and discussions, 

diagrams are an important communication tool for biologists. From the user’s 

perspective, representing pathway knowledge as a diagram is a helpful, 

intuitive way to representing biological information and share it with others 

[Perini 2013]. For pathway visualisation, Le Novere et al. define three 

orthogonal, complementary types of diagram for the Systems Biology 

Graphical Notation (SBGN) that can be seen as alternative projections of 

complex biological information. These are the process diagram, the entity 

relationship diagram and the SBGN activity flow diagram. Of these types, the 

most appropriate method for representing Reactome pathways is the entity 

relationship diagram, because it emphasises the influences that entities have 

upon each other’s transformations, rather than the transformations themselves 

[Le Novere et al. 2009]. 

The challenge of pathway data visualisation has been addressed by several 

resources. In cases like MINERVA [Gawron et al. 2016] and NAVICELL 

[Kuperstein et al. 2013] the Google map engine was adopted to visualise 

pathways using SBGN. WikiPathways [Kutmon et al. 2016] and KEGG 

[Kanehisa et al. 2014] display pathways using an in-house developed viewer. 

Resources such as Pathway Commons [Cerami et al. 2011] display pathways 

as networks of gene–gene interactions. The most common navigation features 

used to explore pathway diagrams are zooming, panning and selection of 

pathway elements to view detailed information. Some tools, such as 

MINERVA and WikiPathways, also allow users to map drug targets or 

overlay experimental data. Another popular tool for pathway analysis and 

visualisation is the Ingenuity Pathway Analysis tool 

(https://www.qiagenbioinformatics.com), but as a commercial tool it is 

inaccessible to many users. 
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User Experience (UX) is conceptually a dynamic, context-dependent and 

subjective process, which stems from the broad range of potential benefits that 

users may derive from a product. UX is a relatively new area that is 

increasingly considered to be an essential part of the human-computer 

interaction domain, which should now be grounded in user-centred design 

practices [Law et al. 2009]. Efficient performance has a positive influence on 

UX measurements. It has been shown that users can have immediate 

impressions about an application after being exposed to it for as little as 50 

ms [Lindgaard et al. 2011]. 

1.2. ABOUT REACTOME 

Reactome (https://reactome.org) is a free, open-source, open-data, curated and 

peer reviewed pathway database. Its goal is to provide intuitive bioinformatics 

tools for the visualisation, interpretation and analysis of pathway knowledge 

to support basic research, genome analysis, modelling, systems biology and 

education. Information in the database is authored, entered and maintained by 

a team of expert biologists. 

Life on the cellular level is a network of molecular interactions. Molecules are 

synthesised and degraded, undergo a bewildering array of temporary and 

permanent modifications, are transported from one location to another, and 

form complexes with other molecules. Reactome represents all of this 

complexity as reactions in which input molecules are converted to output. 

These reactions can occur spontaneously or be facilitated by physical entities 

acting as catalysts, and their progress can be modulated by regulatory effects 

of other physical entities. Reactions are linked together by shared physical 

entities: a product from one reaction may be a substrate in another reaction 

and may catalyse yet a third. It is often convenient, if sometimes arbitrary, to 

group such sets of interlinked reactions into pathways. 
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The functions of macromolecular entities such as proteins are often 

determined not only by their primary sequences but by chemical 

modifications they have undergone. In Reactome, unmodified and modified 

forms of a protein are distinct physical entities and the modification process 

is treated as an explicit reaction. A macromolecule’s function may depend on 

whether the molecule is free or complexed with specific other molecules. 

Reactome treats complexes as physical entities distinct from their 

components, and the multimerisation events that build up complexes are 

modelled explicitly as reactions. 

A Physical Entity (PE) can be any individual molecule, sets of molecules or 

complexes grouped together on the basis of shared characteristics. In 

Reactome, PEs can be chemicals, proteins, DNA or RNA and sets or 

complexes of any of these in combination (complexes) or collection (sets). 

The difference between a complex and a set is that the first one represents real 

constructs present in biology whereas the second one is a conceptual idea to 

represent similar molecules that have indistinguishable roles in a reaction. A 

special case of set is the candidate set which describes a set of molecules that 

contains at least one member that might be anticipated to be functionally 

equivalent to the other members of the set but this has yet to be experimentally 

verified. Candidate sets are often used in Reactome when some members of a 

protein family have been demonstrated to participate in a reaction (defined as 

Members of the set) and other related proteins are anticipated to have similar 

properties but have not been proven to do so. 

Many biochemical entities and processes appear redundant: there are two or 

more chemically distinct entities that can act more or less interchangeably. It 

is often useful to treat functionally equivalent protein isoforms, splice 

variants, and paralogues as a collection in a set, implying that any individual 
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entity from the given set could fulfil the same role in a given situation. The 

Reactome data model allows this type of generalisation, but does so explicitly 

in a way that allows researchers to trace specific functions back to the 

individual molecules covered by the generalisation. 

Cellular compartments play a key role in biological processes. The 

segregation of molecules into different compartments often regulates the 

reactions in which those entities can participate, or can be responsible for 

driving a reaction forward. In Reactome, a molecule in one compartment is 

distinct from that molecule in another compartment. Thus, extracellular and 

cytosolic glucose are different Reactome entities and, e.g., the movement of 

glucose across the plasma membrane is a reaction that converts the 

extracellular glucose entity into the cytosolic one. 

The goal of the Reactome knowledgebase is to represent human biological 

processes, but many of these processes have not been directly studied in 

humans. Rather, a human event has been inferred from experiments on 

material from a model organism. In such cases, the model organism reaction 

is annotated in Reactome, the inferred human reaction is annotated as a 

separate event, and the inferential link between the two reactions is explicitly 

noted. 

Reactome utilises a frame-based knowledge representation [Vastrik et al. 

2007]. The data model (https://reactome.org/content/schema) consists of 

classes (frames) that describe different concepts such as reaction or entity. 

Classes have attributes (slots) that hold properties of the represented class 

instances, e.g. names and identifiers. The value types contained in the slots 

can be primitive (string, numbers, or boolean) or references to other class 

instances. Knowledge in Reactome is captured as instances of these classes 

with their associated attributes. 
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1.2.1. CURATION 

Reactome systematically links human proteins to their molecular functions, 

providing a resource that functions both as an archive of biological processes 

and as a tool for discovering unexpected functional relationships in data such 

as gene expression pattern surveys or somatic mutation catalogues from tumor 

cells. Reactome database annotations are manually curated from literature by 

expert biologists, and cross-referenced to many resources such as PubMed 

(www.ncbi.nlm.nih.gov/pubmed/), Ensembl (www.ensembl.org) [Zerbino et 

al. 2018], UniProt (www.uniprot.org/) [Uniprot Consortium 2017], NCBI 

(www.ncbi.nlm.nih.gov/) [NCBI Consortium 2018], ChEBI 

(www.ebi.ac.uk/chebi/) [Hastings et al. 2013], KEGG (Gene and Compound) 

(www.genome.jp/kegg/) [Kanehisa et al. 2016], and Gene Ontology (GO) 

(www.geneontology.org/) [GO Consortium 2017]. 

Part of the curation process is to draw the connected reactions in a pathway 

using the Reactome curator tool interface. Reactions can be considered as 

pathway ‘steps’. These diagrams, together with the curated data, is uploaded 

to the central database from where it will be displayed on the Reactome 

website. 

The goal of Reactome is to describe the known biochemical details of human 

biological pathways. A Reactome curator's job is to work with experts in 

different fields of biology to identify and curate suitable human pathways by 

breaking them down into subpathways and reactions and describing them in a 

format that is compatible with the Reactome data model. There are several 

ways curators can start their project (Figure 1.2a). They may already have 

expertise in a specific biological area, recruit an external expert at 

conferences, jamborees and training events, recruit an expert via their help 
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mail they've sent to Reactome to add new material or identify an expert who 

wishes to collaborate with the Reactome project. 

 

Figure 1.2. Schematic view of the curation process. (a) Reactome curators and 

recruited experts work together to identify, curate and layout suitable human 

pathways. (b) Recruited reviewers check the final result and work together with 

Reactome curators to ensure accuracy and correctness of the work so the curated 

pathway can be released. 

Once recruited, an expert is able to provide the fine-grained, molecular details 

a Reactome curator uses to create the relevant reactions and pathways in the 

Reactome curator tool interface. Once a pathway has been created, it is sent 

to a senior curator who checks the pathway to make sure it conforms to the 

data-model. When that process is done, external reviewers are invited to peer-

review the material to check that it conforms to a generally-accepted view of 

the biological area it represents. The reviewer may send feedback to the 

curator to revise some parts of the pathway (Figure 1.2b). When the external 

reviewer is completely happy with the material, the pathway is now ready for 

the quarterly release process for public access. 

1.2.2. SOFTWARE 

The Reactome software ecosystem comprises open source tools and 

applications that can be grouped into two main categories based on their use: 

(i) software tools, used internally, to support or carry out the curation and 
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release process and (ii) software tools and services, used by the public, to 

browse, visualise, search, discover, and analyse the Reactome content. 

The first group includes the Curator Tool, a JAVA desktop application meant 

for use by curators to annotate biological pathways based on the Reactome 

schema, and the Release Automation Pipeline (RAP), an aggregation of Perl 

and Shell scripts that automate and coordinate the execution of all the 

necessary steps before the curated content is released to the public. It should 

be noted that knowledge is stored in a MySQL relational database and 

accessed via the GKInstance library, a custom Object-Relational Mapping 

(ORM) and persistence layer that handles all database transactions. RAP is 

triggered on quarterly basis and includes a variety of steps that link and cross-

reference the Reactome content with many other resources (e.g UniProt, 

Ensembl etc), create inferences to other species, index the content, produce 

mapping and other intermediate files to later be used by the second group of 

tools in production and assist other editorial tasks. Data curated in human is 

finally inferred to other species through a series of steps during the release 

phase (https://reactome.org/documentation/inferred-events). 

The second group includes the RESTful API (Application Program Interface), 

the Pathway Browser, the Pathway and Expression Analysis tools, and the 

ReactomeFIViz. Developed in JAVA and on top of the GKInstance library, 

the RESTful API provided programmatic, read only access to the Reactome 

content. The Pathway Browser, is a web application that relies on the RESTful 

API and enables users to access and visualise the Reactome content through 

a web browser without the burden of downloading and installing any 

additional software. This web application is developed in JAVA using the 

GWT framework.  
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The Pathway Analysis tool analyses user-supplied lists of genes, proteins and 

small molecules and provides ID mapping, pathway assignment and 

overrepresentation analysis. Both developed in JAVA, overrepresentation and 

expression analysis tools accept gene and protein accession numbers and 

identifiers that are associated with popular commercial platforms (e.g. 

Illumina, Agilent and Affymetrix). Analysis results can be both presented in 

a tabular form and visualised on top of pathways within the Pathway Browser. 

The ReactomeFIVIz [Wu et al. 2014] is a Cytoscape [Smoot et al. 2011] app 

designed to find pathways and network patterns related to cancer and other 

types of diseases. The app accesses the Reactome content, helps users perform 

pathway enrichment analysis for a set of genes, visualise hit pathways using 

manually laid-out pathway diagrams directly in Cytoscape, and investigate 

functional relationships among genes in hit pathways. ReactomeFIVIz is 

developed in JAVA using the Cytoscape API. 

Despite Reactome’s rich software ecosystem, its tools and services were faced 

with a series of challenges revolving around concerns about functionality, 

performance and user friendliness that needed to be addressed. 

1.3. AIM AND OBJECTIVES 

The aim of this work is the study and implementation of engineering solutions 

to optimise the performance of biological pathway data storage and retrieval 

as well as improving its interactive visualisation. More specifically, the study 

and the development was done within Reactome scope and use cases, but the 

resulting techniques, data structures and strategies can be applied to a wider 

range of pathway database resources or other type of resources where the data 

model and/or needs are equivalent.  
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After evaluating the status of the tools and services provided by the resource 

and analysing the set of user requirements gathered by the Reactome team, 

the focus was set on the need of: 

● Improving the existing version of Pathway Browser. 

● Design and develop a better performing version of the pathway 

analysis algorithm and associated web service. 

● Finding an easy way to graphically represent the pathways and their 

parent-child relationships to provide a means of overlaying analysis 

results so users can easily distinguish the most significant areas of 

biology represented in their data. 

● Create a new version of the Diagram Viewer to improve the 

performance and enable it to deal with different views depending on 

the level of zoom. 

● Change the underlying data storage mechanism to take advantage of 

the graph database technologies. 

Although a number of subprojects of this thesis have been published 

separately in different journals, others needed to be dissertated in this 

document to bring a complete picture. The author then opted to create a 

chapter per each main topic enumerated above. 
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2. PATHWAY BROWSER 

The Pathway Browser (https://reactome.org/PathwayBrowser/) is Reactome’s 

primary means of viewing and interacting with pathways data. Due to the 

inherent complexity of the represented knowledge, creating a long-lasting 

large-scale tool to interactively browse Reactome content presents a set of 

significant challenges to overcome. These challenges comprise specific 

aspects such as choosing the programming language or framework, as well as 

more generic concepts such as the code layout and data retrieval strategies. 

These were addressed with the objective of offering a product that fulfils the 

user’s requirements. 

User requirements and needs typically evolve over time requiring software 

engineers to design applications in a way that reduces the hurdle of adding 

new features or extra capabilities as much as possible. This is a very well 

know problem in computer science and there are several established 

techniques to help developers minimise the impact of changes or additions. 

This chapter begins with a description of the status of the Pathway Browser 

prior to the development work undertaken for this thesis and later explains the 

requirements and options considered for the re-engineering, focusing on four 

main aspects: (i) the code layout pattern, (ii) the strategy followed to improve 

the memory consumption, (iii) a discussion of the State Manager module and 

finally (iv) the different widgets (either reused from third parties or 

developed) to display data from other resources within the Pathway Browser. 
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2.1. REACTOME PATHWAY BROWSER STATE OF THE ART 

In its early years, Reactome relied on a set of dynamically-generated web 

pages to enable users to browse its content. The Event Browser was an 

aggregation of pages generated using Perl-CGI scripts to present a basic User 

Interface (UI) and limited means for user interaction (Figure 2.1) [Vastrik et 

al. 2007]. 

Released in 2011, the first version of the Pathway Browser was developed on 

top of the Event Browser, aiming to support pathway analysis and visual 

navigation based upon the Systems Biology Graphical Notation (SBGN) 

[Croft et al. 2010]. To address the needs of this first version, two new features 

were added in the event browser; a Hierarchy Tree and a pathway Diagram 

Viewer (Figure 2.2). The application was developed in JavaScript, employing 

an early version of the Yahoo User Interface (YUI) framework [Croft et al. 

2010]. 

Although this application provided an improved way to browse Reactome 

content, it was faced with a set of major challenges that significantly impeded 

further development. Originally developed to be a small-scale tool, the 

application grew organically with new features being added upon request. 

Since the code structure did not follow a modular approach, it soon resulted 

in a set of large and difficult to manipulate files with no clear segregation of 

responsibilities. This made the addition of new features a challenging and 

inefficient task.  
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Figure 2.1. Event Browser. Reactome’s early tool for accessing its content. 

 

 

Figure 2.2. The first version of the Reactome Pathway Browser. 
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2.2. RE-ENGINEERING THE PATHWAY BROWSER 

As Reactome content increased, the limitations of the existing tool brought it 

to an unsustainable point where a re-engineering phase became necessary to 

cope with fast growing users’ demands. From the beginning of the redesign, 

one of the main requirements was that the new Pathway Browser had to be 

implemented in a modular way and thus allow for long term maintenance. 

Developing any large-scale application, such as the Pathway Browser, has its 

hurdles. On one hand, implementing a custom solution enables full control 

over features and capabilities, though at the cost of longer development time. 

On the other hand, reusing existing software has the advantage of launching 

the final product in a shorter period of time but opportunities to add features 

are limited by the capabilities of the existing third-party software [Krueger 

1992]. 

The new Pathway Browser had to incorporate Reactome’s pathway and 

expression Analysis Tools (Chapter 3). These tools enable mapping of entity 

identifiers and gene symbols to pathways, over-representation analysis and 

expression data overlay of user data sets. Additionally, since Reactome 

includes pathway annotation and supports analysis in other species 

(https://reactome.org/documentation/inferred-events), the new version had to 

feature a simple species-switching mechanism.  

Like many other resources, Reatome tools have always been subject to the 

limitations of available web technologies. Reactome’s website has evolved 

over the years as (i) new technologies provided more advanced tools, (ii) 

faster and more robust web browsers were released and (iii) better web 

technologies were implemented. The rise/expansion of HTML5, AJAX and 

HTML5 Canvas were the cornerstone of modern web development. An 
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additional problem that Reactome has needed to address is the problem of 

cross-browser compatibility and differences between versions of the same 

browser. Therefore, while retaining the main features of its predecessor but 

taking into account the requirements discussed above and considering the 

need for a long-term support strategy, a new version of the Pathway Browser 

was implemented from scratch as an aggregation of components and modules 

using GWT Toolkit (http://www.gwtproject.org/). GWT is a development 

toolkit for building and optimizing complex browser-based applications. Its 

goal is to enable productive development of high-performance web 

applications. It allows writing client-side applications in Java and then 

compile the source to highly optimised JavaScript that runs across all 

browsers. The GWT compiler performs comprehensive optimisations across 

the codebase such as in-lining methods, removing dead code or optimizing 

strings.  

This section is divided into five subsections that cover different aspects of the 

new implementation, namely (i) the software layout pattern, (ii) ways to 

improve memory consumption, (iii) strategies to control the status of the 

application, (iv) how different widgets were developed or reused from third 

parties to include data from other resources, and (v) a subsection describing 

the resulting web application. 

2.2.1. SOFTWARE LAYOUT PATTERN. MODEL VIEW PRESENTER (MVP) 

Whatever the selected programming language and frameworks, as previously 

mentioned, developing any large-scale application comes with a set of 

challenges. Perhaps the most important of these when developing a large-scale 

application is establishing a clean code base with a clearly defined architecture 

that can be easily maintained and extended in the future.  
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To accomplish this, the separation of concerns (SoC) principle was used to 

design the new architecture. This dictates that computer programs should be 

separated into distinct sections/modules, such that each section addresses a 

separate concern. SoC can be achieved by encapsulating information inside a 

module that has a well-defined interface. By following this approach, 

individual modules can be reused, as well as developed and updated 

independently. In addition, a module can be modified without having to know 

the details of other modules, and without having to introduce corresponding 

changes to those modules, thus, simplifying development and maintenance of 

computer programs.  

Adopting a layered architecture becomes even more important in applications 

that feature a complex user interface (UI). Over the past years, a number of 

design patterns have been introduced aiming to compartmentalise areas of 

responsibility within an application. Design patterns such as Presentation-

Abstraction-Control (PAC), Model-View-Controller (MVC), or Model-

View-Presenter (MVP), come with distinct benefits, all having the potential 

to decrease application development time to focus on different modules of the 

application. 

The MVP architecture was selected for the new version of the pathway 

browser. Figure 2.3, illustrates the position and role of each of the three main 

actors in the pattern. In particular: (i) the Model encompasses business 

objects, (ii) the View contains all of the UI components of the application, 

including any tables, labels, buttons, text boxes, etc. The View is also 

responsible for the layout of the UI components. It is worth mentioning that 

in MVP the View does not have any direct interaction with the Model, (iii) 

the Presenter contains all of the business logic for the application and acts as 

the mediator between Model and View. As a general rule, for every view there 
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is a presenter to drive it and handle events that are sourced from the UI widgets 

within the view. 

 

Figure 2.3. The position and role of each of the three main actors in the MVP 

pattern. 

Although very similar to MVC, MVP has a fundamental difference; it replaces 

the Controller with a Presenter. The latter can update the View directly, 

something that is not allowed for a Controller. Also, the Presenter is 

responsible for handling all user events raised from the View. As a result, all 

the complex view logic can be removed from the View and included in the 

Presenter, leaving the View with only the drawing logic. Therefore, the MVP 

architecture achieves a finer and clearer separation of functionality between 

business logic and UI, decoupling development in a way that allows multiple 

developers to work simultaneously. Additionally, adopting MVP makes 

automated unit testing simpler as the Presenter can be tested without direct 

need of screen elements, by creating a test class implementing the interface of 

the View. 
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As previously explained, the Pathway Browser follows a modular 

architecture. All components comprising the Pathway Browser can be 

classified into two main categories: (i) Modules are components having to 

update their UI elements and thus featuring their own View, e.g. the Hierarchy 

Panel, or the Pathway Diagram Viewer and (ii) managers are components 

without UI, which do not have a View, e.g. the State Manager. 

2.2.2. EVENT BUS 

Communication among the different modules and managers within the 

Pathway Browser is achieved via the use of an Event Bus (Figure 2.4). The 

latter is a publish/subscribe-style mechanism for dispatching events to 

interested parties, without requiring the components to explicitly be aware of 

each other. Its major advantage is that it eases decoupling by allowing 

components to interact without having direct dependencies upon one another, 

and without requiring event sources to deal with maintaining handler lists.  

 

Figure 2.4. Event bus with the different modules and managers. 

The use of an Event Bus can assist in producing scalable applications with 

loosely coupled modules. However, it should not be overused, in particular, 

not all events should be placed on the Event Bus, as this could lead to ‘chatty’ 



2.2. Re-engineering the Pathway Browser 

 

25 

applications that get slowed down by event handling. In other words, event 

proliferation should be avoided as it results in a fair amount of boilerplate 

code to define, source, sink, and act upon these events. 

2.2.3. STATE MANAGER 

When updating the content of a page, making multiple requests to the web 

server for mark-up is unnecessary. JavaScript is capable of loading content, 

updating parts or displaying and hiding fragments of the Document Object 

Model (DOM) without reloading the whole page. Asynchronous JavaScript 

And XML (AJAX) uses a combination of browser built-in XMLHttpRequests 

and JavaScript to allow web pages to be updated asynchronously, by 

exchanging data with a web server behind the scenes. As a result, AJAX has 

become the main data pipeline, with requests occurring in the background. 

 

Figure 2.5. The traditional page life cycle versus the SPA life cycle (adapted from 

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx). 

This model of web application that loads a single HTML page and 

dynamically updates that page as the user interacts with the application using 

AJAX and HTML5, without constant page reloads, is commonly referred to 

as a Single Page Application (SPA). Figure 2.5 illustrates how the SPA 

lifecycle compares to the traditional one. The SPA model has become very 
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important since it has contributed to transforming web applications into their 

native desktop application counterparts in terms of look and feel. 

Developers have gradually adopted the SPA model as it provides a richer 

experience for the final users. However, abandoning the traditional page 

lifecycle in favour of performing asynchronous background requests and 

handling page rendering has one serious side effect with significant usability 

implications; the browser’s history managing mechanism gets systematically 

circumvented, rendering the browser back and forward buttons useless 

[Mikowski and Powell 2013]. 

Since the Pathway Browser was intended to run inside a web browser as an 

SPA, one of the main challenges posed was to maintain its state and allow 

users to take advantage of existing history management features. Simply put, 

the user should be able to use the web browser’s back and forward buttons to 

seamlessly control the state of the application.  

This is why developing the State Manager within the Pathway Browser 

became vital. This manager, also referred to as the History Manager, is 

responsible for keeping track of any changes in the state of the application and 

passively update the URL to notify the web browser of such a change. To 

accomplish this, the module (i) subscribes to the event bus (Figure 2.4), listens 

for relevant events, as a result of the user interaction, and updates accordingly 

the URL on the browser’s address bar and (ii) listens for any change in the 

address bar and fires an event in the event bus that notifies the rest of the 

modules about the change in state. 

The State Manager changes only one parameter of the URL at a time based 

on user actions and by doing so, it enables the browser back and forward 

button capability. Since the application keeps track of the state for each 
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interaction and updates the URL, a given state or view in the Pathway Browser 

can be shared by simply sharing the URL. As a result of opening the shared 

URL, the recipient will be placed in the exact same view thanks to the State 

Manager. 

Technically speaking, the State Manager can be seen as an approximation to 

a finite state machine model, which is a well-studied model for describing a 

synchronous sequential machine [Moore 1964]. Its implementation is as 

simple as powerful and is one of the key features of the new version of the 

Pathway Browser together with the data retrieval strategy to keep a low 

memory consumption allowing users to use the web application for longer 

periods of time without losing performance. 

2.2.4. MEMORY CONSUMPTION 

The advent of the Web 2.0 era, a term introduced back in 1999 [DiNucci 

1999], gave birth to a new breed of web applications that emphasised user-

generated content, usability and interoperability for end users. Modern web 

applications provide more functionality, richer user experience and improved 

performance. Nevertheless, all these benefits came at the cost of increased 

complexity.  

Nowadays, web applications have become more and more client-side oriented 

and it is very common for a user to stay on a single web page for hours without 

leaving. The web browser just retrieves data from the server through 

asynchronous requests and displays it in ever more interesting ways. As a 

result, over the past years, web applications have become greedy for 

resources, at a pace that browsers cannot keep up with. The intense utilisation 

of JavaScript to interact with the Document Object Model (DOM) exposed 

the poor memory management of most major browsers of the time. The 
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Pathway Browser is an example for this kind of application, so properly 

managing the memory consumption was an issue to be taken into account.  

Although web browsers have evolved, improving their memory management, 

most of these issues persist. Developers should not only be aware of them, but 

they should also prevent them in their applications. However, there seems to 

be some confusion when it comes to separating memory leak issues from 

memory consumption. 

Memory consumption stands for the amount of memory a particular program 

requires throughout its execution. Since every application relies on the 

underlying memory to store its variables and data structures, it is a common 

assumption that more complicated applications require more memory. A 

memory leak is a specific case of misusing the memory. Memory leaks are 

bugs in the memory management of either the web browser or the application 

itself. A leak refers to a situation in which a program occupies a piece of 

memory that later it does not release, resulting in this memory piece becoming 

useless and inaccessible. Depending on its size, a single leak can be harmless. 

However, by repeating this process over time, leaks can accumulate leading 

to paging and eventually memory starvation. Simply put, the application 

becomes slower, less responsive and eventually crashes as it is unable to 

continue the execution due to insufficient memory resources.  

As mentioned before, modern web browsers have improved their memory 

management over the years. Nevertheless, since memory leaks are mainly 

caused by specific programming patterns, almost any browser can leak 

memory under certain circumstances. Thus, understanding what causes them 

is valuable. Leaks can be classified in the following categories according to 

Justin Rogers under “Understanding and Solving Internet Explorer Leak 
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Patterns” in the msdn documentation (http://msdn.microsoft.com/en-

us/library/Bb250448): 

● Circular References are the most common cause of leaks. Objects can 

leak memory when mutual references are counted between the 

browser’s infrastructure and any scripting engine.  

● Closures are often responsible for leaks because they create circular 

references, as parent function parameters and local variables will be 

frozen in time, referenced, and held until the closure itself is released. 

● Cross-Page Leaks refer to very small leaks of internal bookkeeping 

objects while moving from site to site.  

● Pseudo-Leaks. Although these cannot be considered leaks, it refers to 

extremely annoying scenarios when the over usage of memory cannot 

be understood. 

Aiming to minimise memory consumption and prevent any memory leaks that 

would compromise stability and performance, a well-engineered data retrieval 

strategy was adopted in the new Pathway Browser. To avoid excessive 

memory usage objects were loaded on demand and cached before their re-use 

to avoid unnecessary requests to the server. Moreover, the objects are stored 

in a Least Recently Used (LRU) list, so when the list is full the new objects 

will replace those that have not been used for longer. To address DOM 

memory leaks across all modern browsers, development was based on the 

GWT Toolkit. The latter deals with each browser’s peculiarities and ensures 

efficient garbage collection. Also, special attention was given to every 

instantiation of a new object and disposal of those that were no longer 

required. 
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2.2.5. WIDGETS FOR THIRD PARTY DATA INTEGRATION 

The main modules in the Pathway Browser were designed to represent 

Reactome content. However, there are circumstances when integrating data 

from other resources might help the user gain a better understanding of the 

represented biology. To enrich the Pathway Browser with such a capability, 

third party widgets were used where available, and a number of modules were 

newly developed as widgets. These retrieve data from third party resources 

and show their content based on items selected in the Pathway Browser. 

 

Figure 2.6. Pathway Browser main viewport and “Structures” tab. The main viewport 

is showing part of the pathway “Amino acid synthesis and interconversion 

(transamination)” with the selected reaction “Glutamate + NH4+ + ATP => glutamine 

+ ADP + orthophosphate [GLUL]”. “Structures” is the active tab in the Details Panel 

and it shows two widgets.  The widget on the top shows data from Rhea and the one 

below from PDBe. (https://reactome.org/PathwayBrowser/#/R-HSA-

70614&SEL=R-HSA-70606&DTAB=ST). 
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Table 1.1. Entity type with its associated resource and its description. Data from these 

resources are retrieved and shown by the widgets shown in the “Structures” tab within 

the Details Panel 

Entity type Resource Resource Description 

Compound 
ChEBI 

https://www.ebi.ac.uk/chebi/ 
[Hastings et al. 2013] 

Freely available dictionary of molecular 
entities focused on ‘small’ chemical 
compounds. The term ‘molecular entity’ 
refers to any constitutionally or 
isotopically distinct atom, molecule, ion, 
ion pair, radical, radical ion, complex, 
conformer, etc., identifiable as a 
separately distinguishable entity. The 
molecular entities in question are either 
products of nature or synthetic products 
used to intervene in the processes of living 
organisms. 

Protein 
Structure 

PDBe  
https://www.ebi.ac.uk/pdbe 

[Mir et al. 2018] 

Integrated resource of high-quality 
macromolecular structures and related 
data. 

Reaction 
Rhea 

http://www.rhea-db.org/ 
[Morgat et al. 2017] 

Expert curated resource of biochemical 
reactions designed for the annotation of 
enzymes and genome-scale metabolic 
networks and models. 

 

These widgets are integrated in two different tabs of the Details Panel; (i) the 

“Structures” tab and (ii) the “Expression” tab. The “Structures” tab shows a 

set of widgets from a given resource depending on whether a reaction, protein 

or compound is selected (Figure 2.6). When a complex or set is selected, their 

participants are retrieved and listed in the “Structures” tab and the appropriate 

resource widget is used for each of them. Table 1.1 shows the entity types and 

resources from which data are retrieved. 
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Figure 2.7. Pathway Browser main viewport and “Expression” tab. The main 

viewport is showing part of the pathway “Amino acid synthesis and interconversion 

(transamination)”. Expression is the active tab in the Details Panel and it shows the 

stand-alone widget provided by Expression Atlas 

(https://reactome.org/PathwayBrowser/#/R-HSA-70614&DTAB=EX). 

In the “Expression” tab, one of the several stand-alone widgets available from 

Expression Atlas (https://www.ebi.ac.uk/gxa) was integrated (Figure 2.7). 

Expression Atlas is an open science resource that gives users a powerful way 

to find information about gene and protein expression across species and 

biological conditions such as different tissues, cell types, developmental 

stages and diseases, among others. The widget receives a set of identifiers and 

shows condition specific gene expression data that is stored in this resource. 

Main web browsers implement the Same-Origin Policy (SOP) which prevents 

scripts from accessing data from servers other than that which originally 

served the page. SOP is a security measure enforced by browsers that restricts 
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malicious websites from running JavaScript inside external websites. In many 

cases, widgets developed by a given resource R1 to be used in third party 

resources need to access data that are hosted in the R1 server which is not the 

server that will provide the main content of the page where the widget will be 

hosted.  

There are two ways to avoid the SOP: (i) using a proxy in the third party 

resource server side to redirect calls to the server hosting the targeted data or 

(ii) making use of Cross-Origin Resource Sharing (CORS). CORS is a 

mechanism that uses additional HTTP headers to let a user agent gain 

permission to access selected resources from a server on a different origin 

(domain) than the site currently in use. These two techniques were used in 

both the implemented and the reused widgets for third party data integration; 

ChEBI and Rhea widgets were implemented to use the proxy approach whilst 

the remaining widgets take advantage of CORS. 

2.2.6. RESULTING WEB APPLICATION 

The reengineering of the Pathway Browser described in this thesis has taken 

place over a period of several years. The application has gradually improved 

in both design and performance [Croft et al. 2013; Fabregat et al. 2015 and 

2017].  
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Figure 2.8. Pathway Browser illustration highlighting the different panels. Access to 

events is provided via the ‘hierarchy panel’ of events on the left and by clicking on 

event nodes in the Pathways Overview within the ‘viewport’. More information for 

the selected entity is shown in the ‘Details Panel'. When a pathway is opened, the 

Diagram Viewer is revealed in the ‘viewport’ replacing the Pathways Overview. 

Buttons to the right of the logo in the ‘header panel’ show the current software version 

(3.5) with access to the Github software repository, and the current version of 

Reactome data (release 63). A button to the right of the ‘header panel’ provides access 

to the Analysis Tools. Clicking on the layout buttons (top right) closes and reopens 

the hierarchical display and Details Panel. The ‘tour’ button provides access to a brief 

video tour of the main features. 

Amongst the improvements, the Pathway Browser (Figure 2.8) was re-

engineered to reduce loading time and provide a more attractive user interface. 

Buttons for widely used actions were made more prominent, icons and colour 

schemes were re-designed and features including colour profiles were added 

to allow user customisation. The Pathway Browser now opens with the 
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Pathways Overview (Chapter 4) visible in the main viewport. This overview 

is integrated in the Pathway Browser main view, sharing the location used by 

the Diagram Viewer (Chapter 5), used to display pathway diagrams 

representing detailed molecular events. When the Pathway Browser loads, the 

Events Hierarchy and the Details Panel appear on the left and bottom of the 

viewport, respectively. Double-clicking a pathway in the events hierarchy or 

its node in the Pathways Overview triggers a zoom animation in the main 

Viewport leading to the equivalent pathway diagram. 

The components of the Pathway Browser are connected through the Event 

Bus, so that user actions affecting the display of one component will cause 

other components to update, presenting information consistently across the 

display elements. For example, selecting a reaction node or a physical entity 

glyph in the pathway diagram will trigger an update of the information 

displayed in the Details Panel, located below the pathway Diagram Viewer, 

and in the Events Hierarchy panel on the left side. 

2.3. SUMMARY 

Reactome software has evolved over the years, aiming to provide 

bioinformatics tools for visualisation, interpretation and analysis of pathway 

knowledge to support basic research, genome analysis, modelling, systems 

biology and education. Among the tools, the Pathway Browser has become 

Reactome’s main means for accessing its content. It has to be easy to use and 

responsive in order to offer a good user experience. 

Creating a long-lasting large-scale tool presented a set of significant 

challenges to overcome. The new version of Pathway Browser was developed 

using the MVP software layout pattern to (i) decrease the application 
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development time, (ii) separate the view implementation from the business 

logic and (iii) to provide with a scalable and easy to maintain tool. 

Controlling the memory consumption and preventing memory leaks were 

other challenges to be addressed. To avoid excessive memory usage, objects 

are loaded on demand and cached in an LRU list. To control DOM memory 

leaks across all modern browsers, the development was based on the GWT 

Toolkit, so the framework itself that takes care of this. 

A State Manager was put in place to maintain the internal application state 

and allow users to take advantage of the existing browser history management 

features. The benefit of it is to allow users to use the web browser’s back and 

forward buttons to seamlessly control the state of the application.  

All the components and modules in the Pathway Brower are tightly connected 

through the Event Bus, so that user actions affecting the display of one 

component will cause other components to update, presenting information 

consistently across the display elements.  

Integrating data in the Pathway Browser from other resources helps users to 

gain a better understanding of the represented biology. To accomplish this 

task, third party widgets were used, when available and a number of modules 

were newly developed as widgets. These retrieve data from third party 

resources and show their content based on items selected in the Pathway 

Browser. 

The Pathway Browser was re-engineered to reduce loading time and provide 

a more attractive user interface. It also integrates the Analysis Tools, allowing 

users to submit their data and then navigate through the results taking 

advantage of the other integrated modules. 
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3. PATHWAY ANALYSIS TOOLS 

In bioinformatics research, pathway analysis software is used to compare a set 

of genes or proteins, usually generated by an ‘omics method, to canonical 

prior knowledge structured in the form of pathways. Pathway analysis 

methods have a broad range of applications in physiological and biomedical 

research. These methods help researchers discover which areas of biology, 

and biomolecules, are crucial to understand the phenomena under study. 

However, pathway analysis methods should never be taken as black boxes 

where experimental data goes in and true statements come out, rather they are 

better considered as metal detectors, helping researchers to find biologically 

meaningful needles in the proverbial haystack [García-Campos et al. 2015]. 

Reactome's annotated pathway data represents the molecular details of events 

that are sufficiently well-established to be agreed upon by experts in the area. 

They show what could happen if all annotated proteins and small molecules 

were present simultaneously in a generic human cell. By overlaying an 

experimental dataset on these annotations, such as a list of proteins activated 

in response to an experimental stimulus, or genes expressed in transformed 

cells but not their normal counterparts, a user can identify modulation of 

specific pathways. By overlaying quantitative expression data, such as a time 

series or stages of disease development, a user can visualise the extent of 

change and its progression in affected pathways. 

The first section of this chapter discusses the previous approach using a 

relational database to support the pathway analysis. The second section 

summarises the new approach described in the paper “Reactome pathway 

analysis: a high-performance in-memory approach” [Fabregat et al. 2017] 

(Publication P.1) and presents the new tools built on top of the latter to cope 
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with Reactome users needs such as the analysis service and its lightweight 

client, which is integrated in the Pathway Browser. 

3.1. THE RELATIONAL DATABASES APPROACH 

Relational databases are widely used in pathway databases for data 

management; either during curation, the release process or in the final 

production phase. It is also very common to store the information in third 

normal form due to its convenience for data integrity assurance [Chowdhury 

2015; Shin and Sanders 2006; Codd 1972]. 

Relational databases in their third normal form can be efficient in 

computational terms. For the above-mentioned use cases, however, this 

approach greatly slows the execution of analysis algorithms, due to the size 

of the temporary tables for the queries and later projections. For this reason, 

database-based analysis approaches use denormalised versions of the 

databases instead [Talbi and Zomaya 2008]. The denormalisation process 

replicates a lot of data to speed up the queries but it may penalise analysis 

execution time as the original database content grows bigger. 

Focusing on the computational side of the problem, the query containment 

problem is undecidable for relational algebra and SQL, but is decidable and 

NP-complete for conjunctive queries. In fact, the query containment problem 

for conjunctive queries is exactly the same problem as the query evaluation 

problem [Abiteboul et al. 1995]. When queries tend to be small, NP-

completeness is usually considered acceptable but its performance falls when 

queries tend to be big. In addition, it is also worth considering that creating 

intermediate tables in memory after executing a “join” statement is one of the 

heaviest operations for a database engine. 
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Reactome’s previous implementation of the pathway analysis was based on a 

denormalised version of the Reactome relational database. Among its 

limitations were that it provided results only of the higher-level pathways in 

Reactome, and the lack of programmatic access. In addition, the previous 

implementation suffered from poor performance mainly due to the fact that, 

on every analysis request, it connected to the relational database, rather than 

querying an intermediate in-memory data structure. Thus, the response time 

of the previous Reactome analysis could reach 5 min, as soon as the user 

sample included a few hundreds of gene identifiers, causing a high server load 

that, combined with a number of concurrent analysis requests, affected the 

stability of the Reactome website and often resulted in outages. 

3.2. A HIGH-PERFORMANCE IN-MEMORY APPROACH 

The use of high-throughput platform technologies has transformed biological 

research. High-throughput results often contain thousands of identifiers and 

the size of sample data is predicted to continue increasing [Reuter et al. 2015]. 

Growth in query size, increasing usage of analysis tools and expanding 

content all contribute to rapidly increasing demands on Reactome’s Pathway 

Analysis Service. To address this, a new set of improved pathway Analysis 

Tools that can handle the increasing demands were developed to provide 

reliable and accurate results with interactive response times measured in 

seconds. 

To better address the challenges mentioned in Section 3.1, a novel 

implementation of the enrichment analysis (ORA) method [Drǎghici et al. 

2003] was developed, focussing on the computer science aspect as well as 

elaborating on the different data structures and design patterns used to 

optimise execution time and reduce server load. This new implementation 

achieves interactive speed that is more than adequate for genome scale 
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datasets, typically providing results for a dataset of 5,000 identifiers in under 

3 seconds. This new implementation also offers fine-grained results at all 

levels of Reactome’s hierarchy of events. The analysis provides measures of 

target pathway coverage in terms of matching molecules and in terms of 

matching reaction-like events. 

To solve the described NP-complete problem for the relational database 

approach, the procedure was to break down the analysis problem into 

subproblems that are simple enough to be solved in polynomial time by 

identifying a convenient data structure, the so-called ‘divide and conquer’ 

rule. The pathway overrepresentation analysis algorithm can be split into four 

parts: (i) Check whether the user’s protein/chemical identifiers are present in 

Reactome, (ii) if present, determine whether they are part of complexes and/or 

sets as well as the species projection (Section 1.2), (iii) aggregate the found 

identifiers by the pathways (and super-pathways) where they occur and finally 

(iv) calculate the likelihood that the overlap between the identifiers and the 

pathway is due to chance. 

In the first step, the main requirement is to efficiently determine whether 

identifiers in the sample correspond to one or many entities in Reactome (gene 

names for example can map to more than one protein identifier). This is best 

achieved by the reverse approach whereby a lookup table is created containing 

all the identifiers that correspond to entities in Reactome. This lookup table 

was constructed as a radix tree, (Figure 3.1a), which is a space-optimised trie 

data structure where nodes with only one child are merged with their parents 

[Morrison 1968]. A trie is an ordered tree data structure that is used to store a 

dynamic set or associative array where the keys are usually strings [De la 

Briandais et al. 1959].  
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The data structure selected for the second part of the analysis had to model 

the entities composition problem, namely projection to other species orthologs 

and identifier to entity mapping. To achieve this a directed graph was utilised 

(Figure 3.1b). A directed graph is a graph, or set of nodes connected by edges, 

where the edges have a direction associated with them. For a given graph G 

with several nodes (a, b and c), if G has an arrow from a to b and another 

arrow from b to c, then the composed graph G2 has an arrow from a to c. 

The data structure used to model the third and fourth parts of the analysis is a 

double-linked tree (Figure 3.1c). In this structure, each node represents a 

pathway and contains links to its parent and children. When a node in the tree 

is hit, the action is recursively propagated all the way up to the root. To reduce 

the memory footprint, only identifiers, names and placeholders for results 

calculation are stored in the nodes. When the identifier search finishes, a 

binomial test is used to calculate the probability for each pathway node. The 

P-values are corrected for the multiple testing Benjamini–Hochberg 

procedure that arises from evaluating the submitted list of identifiers against 

every pathway [Benjamini and Hochberg 1995]. 

Summarising the steps (Figure 3.1), for each identifier in the user’s sample, 

the first action is to find whether it is present in Reactome using a previously 

built radix-tree as a lookup-table. This significantly speeds up the process but 

requires a low memory footprint. For identifiers that are matched, the 

corresponding radix-tree nodes point to one or many other nodes in a graph 

which is used as the second data structure to store the curated relationships 

between Physical Entities and their other-species orthology. Traversing this 

second data structure, while applying or not the projection to species, provides 

pointers to all pathways stored in the final data structure, a double-linked tree, 
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which serves to aggregate the result and acts as a placeholder for the last step 

when the analysis statistics are calculated. 

 

Figure 3.1. Representation of two analysis use cases joining the different data 

structures. In red an analysis performed using the projection to human. In green an 

analysis performed without projection [Fabregat et al. 2017]. 

Even though the presented analysis strategy processes each identifier in the 

submitted sample in a sequential fashion, different analyses requested at the 

same time are executed concurrently by separate threads at the Analysis 

Service level (Section 3.2.1). Finer grain parallelisation could be implemented 

in the future, if required, to further reduce the analysis time per each individual 
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request, at the cost of additional code complexity and therefore its associated 

maintenance burden. 

3.2.1. NEW SOFTWARE ECOSYSTEM 

Resources provide web services to facilitate their integration into third-party 

pipelines, scripts or applications. Once the analysis core algorithm was built, 

the next step was to provide a mechanism to make it accessible to the 

community. As an in-memory approach was used to achieve a fast-resolving 

algorithm, the populated data structures must be placed in memory while the 

service is running. 

The task of populating the defined data structures with Reactome database 

content is relatively large, taking approximately 20 minutes to complete on a 

standard laptop featuring an Intel Core i7 at 2.6 GHz, 16 GB of DDR3 

memory at 1,600 MHz, and 256 GB of flash storage. This is too slow for a 

usable service, so a strategy was put in place to make the data available when 

running the service to minimise the start time. To achieve this, an intermediate 

data file containing a serialised version of the data structures in memory was 

created, using Kryo (https://github.com/EsotericSoftware/kryo). Kryo is a 

fast, efficient object graph serialisation framework for Java. After running the 

analysis core builder, data structures placed in memory are serialised into an 

intermediate data file and stored on the hard drive (Figure 3.2a). 

When the RESTful service for analysis is started, it reads from the 

intermediate data file (Figure 3.2b) and loads its content into memory in 

approximately one minute. Once content is loaded, the service is ready to 

serve user analysis requests. As one use-case for the Analysis Service, a 

lightweight client (Figure 3.2c) was developed and integrated into the 

Pathway Browser. 
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Figure 3.2. Analysis Service ecosystem. a) Reading content from the Reactome 

database and creating the intermediate data file using the builder process. b) When 

the analysis service starts, the intermediate data file is consumed reducing the service 

loading time. c) A lightweight client querying against the analysis service has been 

developed as a module of the Pathway Browser. 

The Analysis Service was developed as a RESTful web service. REST stands 

for Representational State Transfer, which is an architectural style for 

networked hypermedia applications often used in web services that are 
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lightweight, maintainable, and scalable. A RESTful web service, also referred 

to as a RESTful API (Application Program Interface), defines a series of 

requests to GET, PUT, POST and DELETE data. Although REST is not 

dependent on any protocol, most RESTful services use HTTP as their 

underlying protocol. 

 

Figure 3.3. Reactome Analysis Service RESTful API documentation page 

(https://reactome.org/AnalysisService/#/identifiers). 

All major development languages include frameworks for building RESTful 

web services. For the Analysis Service 

(https://reactome.org/AnalysisService), Java was chosen as the programming 

language with Spring MVC (http://spring.io) for the framework. API 

documentation (Figure 3.3) was integrated using OpenAPI, formerly known 

as Swagger v2.0 (http://swagger.io). 
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When an analysis is performed, a subset of the result is retrieved in order to 

improve the server-client data exchange time. To establish a mechanism 

whereby the client can introspect further though the details of a given analysis, 

a system based on tokens was enabled. Each analysis result has a different 

token that is assigned based on the user’s input file MD5. This strategy helps 

in two aspects; (i) the same file won’t be analysed twice during the same 

release cycle and (ii) collisions between different analysis tokens are 

prevented. 

When a token is created, a serialised version of the result is kept on the server 

side, which requires hard drive space for file storage. To prevent excessive 

use of server side storage, the token’s life is ensured for a minimum of 7 days 

but beyond this it enters into an LRU list, meaning that when the available 

space in the hard drive becomes limited, the result file associated with the 

least recently used token will be deleted and the token will be flagged as no 

longer available, leading to a prompting for the user to submit the sample 

again if the result is needed further. The token can be shared and allows later 

access through the API. 

3.2.2. LIGHTWEIGHT CLIENT INTEGRATED INTO THE PATHWAY BROWSER 

The Analysis Service was developed as a building block for Reactome 

pathways analysis, not only for third party users but also as the data analysis 

provider for a lightweight client integrated into the Pathway Brower.  

The pathway analysis data submission interface, which is integrated into the 

Pathway Browser, can be launched by selecting the analysis button located in 

the top right corner of the Pathway Browser. User data is submitted by 

uploading a file or pasting content into the allocated text area (Figure 3.4). 
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The analysis is performed on the server side, with the results displayed in the 

Pathway Browser. 

 

Figure 3.4. The Analysis tools data submission interface, showing an example of the 

format used for multi-sample expression data (e.g. a time-series). Rows contain an 

identifier (probe set, gene name, etc.) in the first column. Subsequent columns contain 

numeric (expression) values for four time points, entered as tab-delimited text. The 

‘project to human’ box at the bottom of the form, which is selected by default, causes 

any identifiers for non-human proteins in the data to be replaced by their human 

orthologs. Instructions for formatting data and lists of acceptable identifiers are 

provided in the user guide [Fabregat et al. 2015]. 

3.2.3. OVERLAYING ANALYSIS RESULTS IN THE PATHWAY BROWSER 

A new tab of the Details Panel was developed to display analysis results in a 

tabular form (Figure 3.5). In addition, different components of the Pathway 

Browser are overlaid with analysis results. These are the Event Hierarchy tree, 

the Pathways Overview (Chapter 4) and the pathway Diagram Viewer 

(Chapter 5). In the case of the Event Hierarchy tree, there are two different 
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overlay cases: (i) for pathways, a suffix is added, detailing the number of hit 

entities and the number of entities contained in the pathway plus the FDR 

value for that pathway and (ii) for matched reaction events, the name is boxed. 

Having the analysis results visually represented in the Pathways Overview 

widget, provides a birds-eye view of results that allows the user to navigate 

(zoom in) on areas of greatest interest. Selecting a row in the results table 

highlights the corresponding events in the hierarchy and focuses the Pathways 

Overview on the corresponding ‘burst’, or loads the corresponding pathway 

diagram. The analysis results overlay for the Pathways Overview and the 

Diagram Viewer is further explained in Chapters 4 and 5. 

 

Figure 3.5. Analysis results for a PRIDE dataset to identify proteins over-expressed 

in activated human platelet releasate (assay 27929 

https://www.ebi.ac.uk/pride/ws/archive/protein/list/assay/27929.acc in project 

PXD000072 http://www.ebi.ac.uk/pride/archive/projects/PXD000072). The results 

are overlaid on the different modules: the events hierarchy on the left, the Details 

Panel at the bottom and the viewport in the centre. 
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3.3. SUMMARY 

Through the use of highly optimised, in-memory data structures and 

algorithms, a stable, high performance pathway analysis service has been 

developed to enable the analysis of genome-wide datasets within seconds, 

allowing interactive exploration and analysis of high throughput data. This 

was achieved by splitting the pathway analysis method in four steps, in a way 

that every challenge can be easily addressed in a polynomial time using the 

appropriate data structures, speeding up the process and minimising the 

memory usage so the whole data structure can be kept in memory for a high-

performance analysis. The result is a new set of Analysis Tools which vastly 

improve Reactome analysis interface performance and stability. 

This high-throughput pathway analysis is supported by a new RESTful web 

service interface (API), documented in detail 

(https://reactome.org/AnalysisService/), which allows use of the Reactome 

server for batch dataset analysis. Over-representation and expression data 

analysis can be performed against the Reactome database (/identifier and 

/identifiers methods) as well as species comparison (/species method). Once 

the data analysis or species comparison has been performed, a token is 

included in the client results allowing further service calls to retrieve more 

data related to the result (/token and /download methods). More information 

on how to use the analysis can be found in Reactome’s developer zone at 

https://reactome.org/dev/analysis/. 

A pathway analysis data submission interface was integrated into the Pathway 

Browser. The results of the analysis are displayed in a tabular form in a new 

tab integrated in the Details Panel. In addition, the results are overlaid in other 

modules of the Pathway Browser such as the Hierarchy Tree, the Diagram 

Viewer or the Pathways Overview.  
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The pathway analysis approach described in this chapter was deployed in the 

Reactome production web site, stably handling 78,827 analyses in 2015 and 

growing to handle 147,747 in 2016 and 733,988 in 2017 across 136,331 

unique users. Memory usage for the Apache Tomcat running this service plus 

other services on the server side is set to 2 GB. 
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4. PATHWAYS OVERVIEW 

When the task of integrating the Analysis Service into the Pathway Browser 

was explored, it was considered important to provide a means to easily 

visualise the results and their significance as a genome-wide overview. In 

earlier implementations, results of the analysis were shown in a table-like 

representation or as a graphic representing the ontology-like hierarchical 

organisation of Reactome pathways [Petri et al. 2014]. 

Although both of these earlier methods represented analysis results, neither 

provided a complete picture that represented all areas of biology. For the 

table-like representation the order of the pathways was based on the statistics, 

instead of their parent-child relationship. In the case of the ontology-like tree 

visualisation, because the lower levels of the hierarchical organisation were 

hidden until expanded by the user, pathways located at higher positions in the 

tree with weak results could potentially mislead the user by not indicating the 

presence of highly significant ‘child’ pathways lower in the hierarchy. 

 

Figure 4.1. A reaction map view called “Starry Sky” because of its resemblance to 

the constellations at night. Decommissioned in 2011, it provided an interactive 

graphical representation of Reactome pathways. In this view a pathway is depicted as 

a set of interconnected arrows, each representing a reaction (e.g., "Formation of 

Cyclin E1:Cdk2 complexes"; "Phosphorylation of Cyclin E1:Cdk2 complexes"). 

Each of the reaction arrows is linked into pathways as dictated by the order of 

reactions in that pathway. 
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On early versions of the Reactome website, content was represented on the 

homepage as a graphical reaction map, commonly referred to as the ‘Starry 

Sky’ (Figure 4.1). This had a similar purpose to the Pathways Overview 

described later in this chapter, but used a completely different approach. The 

Starry Sky represented each reaction-like event, grouped by pathway. This 

view was also used to represent analysis results and was very popular with 

users, but it was laid out and maintained manually. As the number of pathways 

and reaction-like events increased, it became unmanageable and was 

eventually decommissioned [Croft et al. 2010]. Creating a graphical 

overview, capable of representing all pathways and their parent-child 

relationship in a way that could be perpetually extended with minimal manual 

intervention was one of the major requirements of the analysis redesign plan. 

The popular notion of "a picture is worth a thousand words" is used to suggest 

that a complex set of ideas can be conveyed with just a single image, or that 

an image can convey meaning more effectively than a description. Following 

this guiding principle, finding an easy way to graphically represent Reactome 

pathways and their parent-child relationships is the first step to resolve the 

analysis result visualisation problem. This chapter focuses on the process of 

finding an appropriate layout and then explains the development of a 

lightweight web client to be included in the Pathway Browser to achieve the 

analysis result visualisation target. 

4.1. FINDING AN APPROPRIATE LAYOUT 

The Pathways Overview representation is a genome-wide, hierarchical 

visualisation of pathways showing their parent-child relationships in a space-

filling graph. As Reactome is released quarterly, content is unaltered between 
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releases, so the layout for each species represented in Reactome can be 

generated once per release and then reused as needed. 

This section discusses the initially proposed solution, which was based on a 

force-directed layout approach. Consequent problems, caveats, requirements 

and specification are described, finishing with a description of a custom 

deterministic layout algorithm created to address the problem in a future-

proof, scalable and maintainable manner. 

4.1.1. FORCE-DIRECTED LAYOUT APPROACH 

The first step towards designing the Pathways Overview was exploring the 

options to reuse an existing forced-directed layout algorithm, to assess 

whether the results fit the requirements. Force-directed layout algorithms are 

a class of graph drawing algorithms that produce an aesthetically pleasing 

result. These algorithms do not rely on contextual information; they are based 

solely on information contained within the graph structure [Kobourov 2012]. 

A simple use-case of force-directed algorithm would use repulsive forces 

between detached nodes and attractive forces between connected nodes. 

Force-directed layout algorithms are implemented in many Java libraries such 

as yFiles (https://www.yworks.com/products/yfiles-for-java-2.x), GRAD 

(https://www.gradlibrary.net/) or Gephi Toolkit (https://gephi.org/toolkit/). 

The first of these, yFiles, is a commercial library, consequently it was 

discarded in favour of an open source option. Gephi Toolkit offers a well-

documented API (https://github.com/gephi/gephi/wiki/How-to-code-with-

the-Toolkit) that allows graph creation using custom data and facilitates the 

execution of layout algorithms for a given set of conditions. 

Amongst the available layout algorithms, Gephi implements Force Atlas, a 

specific type of force-directed layout used for real-world networks [Bastian et 
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al. 2009] and ForceAtlas2, an improved version of the latter that can handle 

large networks while retaining high quality. With ForceAtlas2 node repulsion 

is approximated with a Barnes-Hut calculation, which reduces algorithm 

complexity by replacing the attraction and repulsion forces with a scaling 

parameter [Jacomy et al. 2014]. 

To use the Force Atlas layout algorithm with Reactome data, all human 

pathways and their parent-child relationships were extracted and a graph 

instance created using the Gephi API. Options such as the duration of the 

algorithm can be easily set up with the AutoLayout object. Figure 4.2 shows 

the result of applying the Force Atlas layout to the Reactome human pathways 

graph for different durations using the option to locate all nodes in the same 

position at the start. 

 

Figure 4.2. Force Atlas layout algorithm applied to the human pathways in Reactome 

(release 51). Duration of the execution of the algorithm from left to right is 1, 5 and 

10 minutes respectively. Nodes corresponds to a human pathway and each edge 

indicates a parent-child relationship. For the three cases, all nodes starting position is 

the same to start applying the Force Atlas layout. 

Applying the Force Atlas layout algorithm, the first observation is that while 

the algorithm stabilises after a short amount of time, a slightly longer 

execution time results in a clearer separation between the different biological 
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areas, or top-level pathways as named in Reactome (Figure 4.2 b and c). 

Consequently, the different related areas of biology, that were already 

connected with one or more edges, remain closer due to the topology of the 

graph being laid out. A problem with this method is that, due to the nature of 

the algorithm, each execution even when run for the same duration, produces 

a different result. 

The disadvantage of having slightly different results at each release becomes 

clearer when considering use cases such as the comparison of data analysis 

results between releases. Using a geographical map analogy, it is expected 

that a country will always be in the same location on the map. Extending this 

analogy to pathway data, it would be more intuitive for the user if pathways 

remain in the same location from one release to the next.  

 

Figure 4.3. Force Atlas layout for a duration of 10 minutes. (a) The top-level 

pathways are fixed to a grid layout. (b) The top-level pathways are fixed to 

circumference in the inner ring. Each node in every image corresponds to a pathway 

and the edges indicate the parent-child relationship. 
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A first approach to overcome this variability in location of the main areas of 

biology was to try the option available for the Force Atlas layout algorithm 

that prevents a set of nodes being moved during execution. Configuration of 

this starting scenario consisted of fixing the location of all top-level-pathways 

organised in a grid layout, making them static so the layout algorithm could 

not move them from their original location. The rationale behind this approach 

is to keep together in the same area the connected nodes that represent 

subpathways. Figure 4.3a shows the result for this case after execution of the 

algorithm for 10 minutes. 

The organisation of top-level-pathways in a grid layout (Figure 4.3a) 

introduces a constraint that results in crossing edges and therefore works 

against the principle of force-directed layouts, which are designed to reduce 

this. As an alternative, the top-level-pathways were arranged in a radial 

organisation. The results of this second scenario are presented in Figure 4.3b, 

illustrating the problems associated with this alternative, namely that the 

centre of the view is crowded and difficult to examine while space in the 

corners is underutilised. 

After this exploratory phase using an existing force-directed layout algorithm, 

a better understanding of the problem was acquired and an improved set of 

requirements were established. The requirements are exposed in subsection 

4.1.2 and a custom layout algorithm to fulfil them is presented in 4.1.3. 

4.1.2. LAYOUT REQUIREMENT 

Based on the results of the previous work, a new set of requirements for an 

appropriate layout were determined, covering two main targets: (i) the layout 

must graphically display the parent-child relationships present in Reactome’s 

pathway hierarchy and (ii) provide an easy way to overlay analysis results that 
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facilitates comprehension. For the first of these requirements, a more detailed 

specification is as follows: 

● The view has to be structured, easy to follow and intuitive for the final 

user. 

● The size of each node should be proportional to the size of the 

represented pathway. 

● There must be only one node for each pathway. 

● Since the pathways parent-child relationships forms a graph, the 

crossing edges should be minimised. 

● Nodes should keep their relative positions after each release. When 

new sibling nodes are introduced (new branches added to the 

hierarchical tree), existing nodes should remain as close as possible 

to their previous positions. 

4.1.3. CUSTOM RADIAL LAYOUT DEFINITION 

The result in section 4.1.1 was not satisfactory because the layout algorithm 

did not make good use of the available space and there were too many crossing 

edges. To overcome these problems, a second implementation of the layout 

algorithm was developed where each top-level-pathway was manually laid 

out, separately arranged to optimise the use of the viewport space and 

minimise the number of crossing edges. 

Based on the experience with a force-layout algorithm, adopting a radial 

layout seemed an appropriate way forward. Using this type of layout, each 

concentric ring could be used to place nodes representing subpathways of the 

direct inner ring. Conventional radial tree layouts [Eades 1992; Melançon & 

Herman 1998; Teoh & Herman 1998; Wills 1999] did not satisfactorily meet 

the full set of requirements, suggesting that new constraints are required. A 
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custom radial layout was developed and applied in two different ways. In the 

first, a generic case was created to lay out all top-level-pathways in one 

‘burst’. 

In this section, a pathway node is defined as 𝑃"#  where 𝑙  is its level in the 

events hierarchy (or the ring in the layout, e.g. 1 for top-level-pathway or 2 

for children of a given top-level-pathway) and 𝑖 is the position among its 

siblings. Common to both phases is the definition of the size of a node when 

laid out in the viewport. Following the requirements, the size of each node has 

to be proportional to the size of the represented pathway, so for a given 

pathway 𝑖, its ratio 𝑅" is defined as: 

𝑅" = 	
𝑆"
𝑆  

Where 𝑖	 ∈ [1, 𝑝] being 𝑝 the number of pathways in the pathway species, 𝑆 

is the number of unique entities annotated in that species, known as species 

background, and 𝑆" the number of unique entities annotated in the pathway 

represented by the node 𝑃". Using the ratio of a given pathway 𝑖, its radius 𝑟" 

is: 

𝑟" = 𝑅"	𝐹 

Where 𝐹 is a factor to be chosen in the final view to artificially alter all the 

nodes size for aesthetic reasons. Note that the size of a node representing a 

pathway is calculated in the same way for all nodes regardless of their position 

in the viewport. The method used to calculate ratios varies, based for the 

location of the node within the layout, as explained in detail below. 
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Scenario 1: All top-level-pathways in a single burst 

The areas of biology represented in Reactome, as well as their associated 

hierarchical subpathway branches, differ significantly in size, in terms of the 

number of unique entities they contain and the number of hierarchical levels. 

When a common radial layout algorithm is used, this tends to result in some 

very crowded areas while other areas are relatively empty.  

 

Figure 4.4. Hypothetical example of pathways and their relationships for scenario 1. 

The centre node represents the unique entities curated in the species. Each node 

represents a pathway and the number in it represents its number of unique curated 

entities. Edges represent their parent-child relationship where the outermost is child 

of the innermost. Nodes labelled with 𝑃"# are the building blocks for figures 4.5, 4.6, 

4.7 and 4.9. 
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Figure 4.5. Schematic representation of the construction of the customised radial 

layout for the first level of Figure 4.4 containing 5 hypothetical top-level-pathways. 

In (i) the radius is defined. From (ii) to (vi) a top-level-pathway area is reserved at the 

time by calculating the angle based on its ratio. 

To address this problem, the available space should be partitioned according 

to the relative size of the pathway, which as seen above is its ratio 𝑅". In this 

scenario the aim was to represent all pathways in the same view, laid out as a 

single radial layout where the top-level pathways in Reactome form a circle, 

with branches radiating from them to represent lower hierarchical levels. 

To reinforce the explanation of the custom layout algorithm, figures 4.5, 4.6, 

4.7 and 4.9 refer to the hypothetical pathways example shown in Figure 4.4 

instead of a real case using Reactome data. In scenario 1, top-level-pathways 

are represented in the first ring (Figure 4.5), subsequent hierarchical levels are 

placed in concentric rings radiating outwards from the centre of the circle, 
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based on their parent-child relationships (Figure 4.6). Consequently, the 

centre of the layout does not contain a node rather it conceptually represents 

all of biology for the given species.  

The angle associated with each top-level-pathway 𝑃"2 is based on its ratio 𝑅"2 

which is calculated as its number of unique curated entities 𝑆"2 divided by the 

number of unique curated entities in its species 𝑆: 

𝑅"2 	=
34
5

3
  

Due to the nature of its construction, the sum of the ratios for all top-level-

pathways equals one: 

6𝑅"2
7

"82

	= 	1 

Where 𝑡 is the number of top-level-pathways. Once the ratio for each top-

level-pathway 𝑅"2 is defined, their angle 𝛼"2 is calculated as the proportion of 

2𝛱 by the ratio 𝑅"2: 

𝛼"
2 	= 	 =>

?4
5   

Similarly to the ratios, the sum of the angles for all top-level-pathways cover 

the circumference: 

6𝛼"2
7

"82

= 2𝛱 
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Figure 4.6. Schematic representation of the construction of the second ring of the 

customised radial layout where the area for each of the children of a top-level-

pathways is reserved based on its ratio relative to their parent. 

Assuming that 𝛬A#B2 is the ancestor of a given pathway 𝑃A# (where 𝑙 > 1) and 

𝜓A#B2  is the number of unique curated entities it contains and 𝜙A#B2  is its 

assigned angle, then the method to calculate the ratio 𝛩A# of 𝑃A# varies from the 

original 𝑅 because it must split the available ancestor angle 𝜙A#B2: 

𝛩A
G 	=

𝑆AG

𝜓AGB2
 

In this case, as it happens for the top-level-pathways case, the sum of the ratios 

for all children equals one: 

6𝛩AG
H

A82

	= 	1 
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Where 𝑚 is the number of 𝛬A#B2  children. Once the ratio 𝛩"2  is known, the 

angle 𝛼"2 for the node representing each child of pathway 𝑃"GB2, is calculated 

as the proportion of ancestor angle 𝜙A
GB2 divided by its ratio: 

𝛼A
G 	= 	

𝜙A#B2

𝛩AG
 

In this case, the sum of the angles for all 𝛬A#B2  children equals the parent 

assigned angle 𝜙A
#B2: 

6𝛼AG
H

A82

= 𝜙A#B2 

A further calculation defines the location of each node, but before presenting 

this, it is important to explain the radius requirements for each ring. To make 

the final view more appealing, each ring needs sufficient space to clearly 

differentiate the level. To accomplish this, a fixed radius can ensure a clear 

differentiation but in some cases cannot be used for deeper levels because the 

available arc angle for each sets of siblings is reduced at each level. 

Consequently, there can be scenarios in which there is insufficient space to 

render the nodes in the arc, using a fixed node radius. In these cases the radius 

must be increased to allocate enough space to render all the required nodes 

without overlap. The radius for each level 𝑟# is calculated as: 

𝑟# 	= 	
∑ =	K4

LM
4N5
OP
LQ5  if 𝑟# < 	𝑟 then the used radius is the default one 𝑟  
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Figure 4.7. Represents the logic behind the calculation of centre of the node to be 

added to a given ring. 

The final step is to calculate the point at which a given pathway node 𝑃"G is 

laid out (Figure 4.7). This is calculated differently depending on whether the 

node is present in the first ring or in another. If in the first ring, the angle 𝛽"G 

is calculated depending on the value of 𝑖: 

𝛽"
G 	= T4

U

=
     when 𝑖 = 1  

𝛽"
G 	= ∑ 𝛼AG"B2

A82 	+ T4
U

=
    when 𝑖 > 1 

Where the node is not in the first ring, the accumulative arc inherited from the 

parent previous siblings 𝛹  must be taken into account. The formula used 
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depends on the value of 𝑖, such that for i greater than 1, the angle of the 

previous sibling must also be taken into account: 

𝛽"
G 	= 𝛹	 +	T4

U

=
     when 𝑖 = 1 

𝛽"
G 	= 𝛹	 +	∑ 𝛼AG"B2

A82 	+ T4
U

=
   when 𝑖 > 1 

Then its node location point (𝐿Z, 𝐿[) is calculated based on the center 

coordinates (𝐶Z, 𝐶[) and the angle 𝛽"G as: 

𝐿Z = 𝐶Z + 𝑟G	𝑐𝑜𝑠(𝛽"G) 

𝐿[ = 𝐶[ + 𝑟G	𝑠𝑖𝑛(𝛽"G) 

Where 𝑟G is the radius of level for current pathway node. 

Once the nodes are laid out, the next step is to connect them following their 

parent-child relationship. When the lines representing this relationship are 

drawn, the two main options to consider are (i) linear curves or (ii) quadratic 

curves. Linear functions are typically in the form of 𝑦 = 𝑚𝑥	 + 𝑏 where 𝑚 

stands for the slope, or rate of change, and 𝑏  is the 𝑦  intercept. This are 

graphed as straight lines because the x variable is not raised to any exponent. 

Quadratic functions are typically in the form 𝑦	 = 	𝑎𝑥= 	+ 	𝑏𝑥	 + 	𝑐  that 

always have the 𝑥 variable to the second power, or in other words, the 𝑥 is 

squared. This makes for a symmetrical, curved graph called a parabola 

[Hughes-Hallett et al. 2013]. 

Even though linear curves are easier to compute and therefore to render, there 

are cases where the node size cannot be differentiated from the edge width 

when these are used, so the final users might not perceive it appropriately 
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(Figure 4.8a). This situation can be easily avoided by the usage of quadratic 

curves that form shapes similar to parabolas (Figure 4.8b). 

 

Figure 4.8. Quadratic functions to render lines joining parent-child related nodes vs 

linear functions. 

 

Figure 4.9. Result of applying the custom radial layout algorithm to the hypothetical 

example of pathways and their relationships for scenario 1 presented in Figure 4.4. 
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Quadratic curves, more specifically Bezier curves, were chosen to represent 

pathway parent-child relationships due to their smooth shape in the final result 

of the custom radial layout (Figures 4.9 and 4.10). Bezier curves are 

parametric smooth curves generated from the two end points, corresponding 

with the centre of the connected nodes and one or more control points, which 

may not necessarily fall on the curve, used to calculate the path of the curve 

via interpolation [Bartels et al. 1998]. Figure 4.9 exemplifies the result of 

applying the custom radial layout algorithm for the hypothetical case shown 

in Figure 4.4; Figure 4.10 shows all the human pathways in release 51. 

 

Figure 4.10. Pathways Overview using the custom radial layout for scenario 1 

including all human pathways for release 51. All the top-level-pathways populate the 

first ring (release 51). 

Scenario 1 results in a very crowded layout in the centre of the image that, at 

the same time, has a lot of empty space in the corners. This causes a lot of 
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edge crossing, which goes against the requirements set in section 4.1.2. In 

order to optimise the usage of the available space, a second scenario is 

contemplated in which a burst will be created per top-level-pathway. 

Scenario 2: One burst per top-level-pathway 

To overcome the problems found with the result of scenario 1, the idea for 

scenario 2 was to apply the same algorithm to a number of bursts where a top-

level-pathway node was setup in the centre. In practise, the procedure is the 

same as for the previous scenario, but taking the number of unique entities 

curated in each top-level-pathway as the background for the first ring of each 

burst, instead of the number of unique entities curated in the species.  

Since each top-level-pathway node’s initial location is set up manually, the 

layout algorithm can now be classified as semi-automatic. Figure 4.11 

presents the result for scenario 2 where the initial position of each top-level-

pathway node was set in a regular grid. This approach optimises the space 

usage although the initial distribution causes a lot of edge crossing. Most of 

the edge crossing could be avoided with a cleverer organisation of the initial 

top-level-pathways arrangement. 

Apart from the capability of setting up the location of each top-level-pathway 

node, other useful options to avoid edge crossing that were added to the layout 

algorithm are (i) the starting angle and (ii) the direction for which the 

algorithm lays out the children (e.g. clockwise or anticlockwise). After 

carefully applying all the settings for each node (top-level-pathway node 

location, starting angle and direction) the result for all human pathways in 

release 52 is shown in Figure 4.12. 
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Figure 4.11. First attempt using the custom layout algorithm per top-level pathway 

(release 51). Only edges are rendered. Nodes arranged in a grid following alphabetical 

order causing too much edge crossing (Scenario 2). 

The custom layout algorithm applied in the scenario 2 covers all the 

requirements enumerated in subsection 4.1.2 because (i) it produces a 

structured view that seems easy to follow and intuitive for the final user, (ii) 

the size of each node is proportional to the size of the represented pathway, 

(iii) there is only one node for each pathway, (iv) the number of crossing edges 

is minimised, although its optimisation cannot be ensured due to the human 

intervention component of the semi-automatic approach and (v) nodes are 

likely to keep their relative positions after each release based on the 

deterministic approach in which the layout algorithm has been developed. 
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Figure 4.12. Final representation of the Pathways Overview using the custom radial 

layout for each top-level-pathway for release 52. The location, starting angle and 

orientation for each top-level-pathway node was set manually aiming to minimise the 

edge crossing. The name added next to each burst centre indicates the represented 

area of biology. 

Laying out the inferred pathways for other species 

Previous subsections focused on the human pathway nodes layout. However, 

during each quarterly release, Reactome content is computationally inferred 

to different, evolutionarily divergent eukaryotic species for which high-

quality whole-genome sequence data are available 

(https://reactome.org/documentation/inferred-events). 

The computationally inferred pathways in other species represent a subset of 

those in human, so when the Pathways Overview is generated for other 

inferred species, the pathways nodes should remain in the same location as 
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the layout algorithm positioned their human orthologs. To achieve the 

described result, each human pathway node position is used for the node 

representing the inferred pathway node in the target species. 

4.1.4. STORING THE RESULT OF THE CUSTOM RADIAL LAYOUT 

With each new data release, the custom radial layout algorithm is executed 

and a different file is generated per species. Thus, it must be stored to be used 

every time the Pathways Overview is rendered. 

 

Figure 4.13. UML class diagram for the Pathways Overview layout data container. 

The Node class contains information related to each pathway node such as the 

identifier, name, ratio or its location (x,y). The Edge class contains the parent-child 

relationships between nodes. The Graph class contains information related to the 

species of the represented Pathways Overview and aggregates the Node and Edge 

instances. 

The required information to render the Pathways Overview are the collection 

of nodes and their parent-child relationship (Figure 4.13). The essential data 

for each node, apart from the represented pathway identifier and name, are the 

location (x,y) for the render algorithm to know where to locate it and a 

parameter to define its size (in this case the ratio). 

When the model in Figure 4.13 is populated, the next step is serialising it to a 

file in a specific format. As discussed in the publication for the Reactome 

Diagram Viewer [Fabregat et al. 2017], the JavaScript Object Notation (JSON 

- http://www.json.org) is less verbose than the eXtensible Markup Language 
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(XML) format (https://www.w3.org/TR/REC-xml) and thus has a smaller 

footprint that helps reducing client loading time. Moreover, JSON’s natural 

mapping to JavaScript objects is faster and uses fewer resources than its XML 

counterpart [Lin et al. 2012; Nurseitov et al. 2009; Wang 2011]. Therefore 

JSON was chosen; an example of the Pathways Overview layout content for 

human is shown in Figure 4.14. 

 

Figure 4.14. JSON example for release 63. It does not show all the file content but a 

representative part of it where nodes and edges are represented. The file is generated 

once per release and is available in the download section at 

https://reactome.org/download/current/fireworks/Homo_sapiens.json. 
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4.2. LIGHTWEIGHT WEB BROWSER WIDGET 

Finding an appropriate layout for the Pathways Overview was the first of a 

two-step process. The second step was providing a web browser widget to 

display the overview and allow users to interactively navigate through the 

pathways in a graphical manner. The widget was originally conceived to be 

integrated as a module in the Pathway Browser. 

One goal of the widget was to offer a mechanism for overlaying pathway 

analysis results, as a means to offer users a first-glance tool that helps identify 

the areas of biology that were significantly represented in a given query. 

Details of the widget are explained in section 4.2.1, while the capability of 

overlaying pathway analysis results is discussed in section 4.2.2. 

4.2.1. WIDGET DETAILS 

The widget was developed for inclusion as one module of the Pathway 

Browser. Thus, it was written using Java and the GWT toolkit (Section 2.2). 

The source code and documentation are available in GitHub at 

https://github.com/reactome-pwp/fireworks. To be reused by third parties, a 

JavaScript version was needed to be easily included in their sites. To address 

this, a JavaScript wrapper was developed so the transpilation produces a result 

that can be easily reused in JavaScript. The wrapper is available at 

https://github.com/reactome-pwp/fireworks-js and its API documentation is 

at https://reactome.org/dev/pathways-overview/js. 

When the widget was first developed, as presented in this thesis, it did not 

include all the features that it has now. For example, the integrated Solr-based 

search against all Reactome content and the right-hand side context menu 

were added later. These features were developed together with other members 

of the Reactome developer team and therefore are not included in this section. 
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Figure 4.15. Pathways Overview widget representing the pathways contained in the 

data release version 54 (Figure 1 B in Fabregat et al, 2015). 

Figure 4.15 shows the Pathways Overview widget. Controls in the bottom 

right corner allow movement of the viewport content up/down/left/right as 

well as zooming in and out. The zoom effect can also be achieved using the 

mouse scroll wheel or similar touchpad actions. When zooming is performed 

with the mouse wheel, the action occurs relative to the position of the mouse 

and captures the scrolling speed such that a strong movement of the wheel 

rapidly accelerates zooming to quickly show the final zoom level. Slower 

mouse wheel scrolling produces small changes of the level of zoom. 

Depending on the level of zoom, more or less information is shown on the 

screen. As the zoom level increases, pathway names appear alongside the 

pathway nodes, as sufficient space becomes available to avoid an 

overcrowded view at lower levels of zoom (Figure 4.16). Names are rendered 

starting from the outside edge of the ring of nodes oriented to follow the angle 

of association of the node to its parent. This strategy avoids overlapping text, 
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optimises the use of space and clearly distinguishes to which node the name 

is assigned. 

 

Figure 4.16. A zoomed-in view of the Metabolism burst showing individual 

subpathway groups (Figure 1 C in Fabregat et al. 2015). 

Controls in the top left corner from left to right allow the user to perform the 

following functions: search; set the zoom level to fit the diagram to the 

available area; open the diagram for the pathway represented by the selected 

node. The latter action of opening the diagram for the pathway represented 

could also be achieved by double-clicking on the node or its pointing edge. 

The search, as it was originally developed, only supported the use of pathway 

names and identifiers (Figure 4.17). 
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Figure 4.17. The RAF/MAP kinase cascade pathway is highlighted to show its 

involvement in multiple bursts (Figure 1 A in Fabregat et al. 2015). 

In this graphical representation, when a specific pathway like RAF/MAP 

kinase cascade is present in more than one branch of Reactome’s hierarchy of 

pathways, it is displayed as shared by more than one burst by the inclusion of 

an arc that connects its representing nodes between bursts. When any of its 

nodes are selected, all of them, as well as their parents up to the burst centres 

are highlighted (Figure 4.17). 

The controls on the top right corner starting from the left-hand side allow the 

user to (i) display the associated illustration when available for the selected 

node, (ii) save a snapshot of the current view, (iii) display the Pathways 

Overview key and (iv) display an options menu where colour profiles for the 

display and overlay can be selected. 



4.2. Lightweight web browser widget 

 

81 

When the selection of a pathway is performed outside the widget and the 

corresponding method in the API is called to update the status, the widget 

smoothly updates the view. The update consists of moving the selected node 

into the viewport and setting the appropriate level of zoom to display all the 

parent nodes. The time and speed of movement depend on the euclidean 

distance from the centre of the current view to the position and area of the 

target node. The transition movement is linear and coincides with the zoom. 

The thumbnail in the bottom left corner interactively updates its content as 

actions take effect in the main display. When the view is zoomed-in, the 

thumbnail shows the visible region as a box. Moving this box in the thumbnail 

changes the region displayed in the main viewport (Figure 4.17). 

To develop this widget, some techniques used in the gaming industry were 

studied and applied. The multi-layer HTML5 canvas technique was included 

to improve visual feedback while a QuadTree data structure was used to 

rapidly identify when the mouse pointer is hovered over a node or edge 

[Agarwal and Erickson, 1998]. These techniques were also used in the 

Diagram Viewer implementation (Chapter 5 - Section 5.2.1) and are discussed 

in detail in one of the papers that support this thesis: “Reactome diagram 

viewer: data structures and strategies to boost performance” [Fabregat et al. 

2017]. 

4.2.2. OVERLAYING ANALYSIS RESULTS 

The Pathways Overview widget has a module that integrates the Reactome 

Analysis Service. Analysing data produces an analysis token (Section 3.2.1) 

that can be set so the result is displayed as an overlay on top of the Pathways 

Overview. Nodes and edges are coloured according to their relevance in the 

analysis results [Fabregat et al. 2015]. 
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Figure 4.18. Different types of analysis overlay for the Pathways Overview widget. 

a) Overrepresentation analysis overlay. b) Expression analysis overlay. 

When an analysis result is overlaid, the widget shows a control panel on the 

bottom centre of the viewport and a colour legend on the right-hand side 

(Figure 4.18). For enrichment and species comparison, the control panel 

identifies the analysis type and includes a button to remove the overlay 

(Figure 4.18 a). For expression analysis, the control panel also includes a 

mechanism to move through multiple samples, for instance a time series, 
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either manually by using the back/forward ‘double arrow’ buttons or 

automatically by clicking on the "play button" (Figure 4.18 b). Once playing 

is activated, the speed can be adjusted using the enabled ‘speed selection’ 

button. The expression analysis results overlay also takes into account the 

pathways significance. 

 

Figure 4.19. Pathways Overview zoomed in to “Metabolism” overlaying the results 

of an expression analysis. The node representing the “Selenocysteine synthesis” 

pathway is selected and the node representing the “Carnitine synthesis” pathway is 

hovered over with the mouse pointer. The legend on the right-hand side show the 

scale for the expression values overlaid and two flags appear; the one on top belongs 

to the selected pathway and the one below to the hovered over. These can be used to 

visually compare the expression values associated to the pathways. 

For all types of analysis, the colours legend represents the results using 

colours based on the selected colour profile. When nodes are selected or 

hovered, the colour legend shows lines to indicate their significance or 

expression values (Figure 4.19). For enrichment and species comparison, if 

the hovered/selected pathway is not significant, the line does not appear. 
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The analysis result is also overlaid in the thumbnail and when a time series is 

"played" the thumbnail changes at the same time as the main view, so that 

when zoomed in in a specific area, it is still possible to observe changes across 

the entire pathway. Use of the "play" feature for a time series does not prevent 

the use of all the selection and movement features described previously.  

4.3. SUMMARY 

This chapter introduces a graphical pathway representation for use with 

Reactome data, enabling the representation of the complex parent-child 

relationships present in Reactome’s hierarchical organisation. The main 

reason for having such a representation is to provide a means to overlay 

analysis result in such a way that the user can easily distinguish the most 

significant areas of biology represented in their data. 

Although an existing force-directed layout algorithm was initially utilised, it 

did not achieve the expected results and a custom radial layout algorithm was 

developed instead. This was applied in two scenarios; (i) all pathways in one 

burst and (ii) each top-level-pathway in a different burst. The second scenario 

produced the desired result, so was used to fix the location of the nodes 

representing the top-level-pathway in a way that minimises the crossing of 

edges. The resulting custom radial layout algorithm only needs to be executed 

once for each Reactome quarterly release. Finally, a widget was developed to 

interactively render analysis results within the Pathways Overview. This 

widget has been part of the Reactome Pathway Browser 

https://reactome.org/PathwayBrowser/ since release 52 [Fabregat et al. 2015]. 

Source code for the layout algorithm and widget is available in separate 

GitHub repositories. The layout is available at https://github.com/reactome-

pwp/fireworks-layout and the widget at https://github.com/reactome-
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pwp/fireworks. A JavaScript stand-alone wrapper was also developed and 

made available for third parties to reuse. Documentation for this widget is 

available at https://reactome.org/dev/pathways-overview and the code for the 

wrapper is at https://github.com/reactome-pwp/fireworks-js. 
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5. DIAGRAM VIEWER 

The Diagram Viewer is a Systems Biology Graphical Notation (SBGN)-based 

visualisation system that supports zooming, scrolling and event highlighting. 

It exploits PSI Common Query Interface (PSICQUIC) web services [Aranda 

et al. 2011] to overlay Reactome curated pathways with molecular interaction 

data from the Reactome Functional Interaction Network and external 

interaction databases such as IntAct [Orchard et al. 2014], BioGRID [Chatr-

Aryamontri et al. 2017], ChEMBL [Gaulton et al. 2017] and MINT [Licata et 

al. 2012].  

As demonstrated by their frequent usage in scientific literature and 

discussions, diagrams are important communication tools for biologists. From 

the user’s perspective, representing pathway knowledge as a diagram is a 

helpful, intuitive way to represent information in a biological context and 

share it with others [Perini 2013]. 

 

Figure 5.1. User interface for the first version of the Reactome Event Browser. 
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Reactome represents the steps of a pathway as a series of interconnected 

molecular events, known as “reactions”. Early implementations of the 

Reactome website did not have pathway diagrams, instead events were shown 

in a text-based format, sometimes with corresponding illustrations (Figure 

5.1).  

Diagrams were first made available in October 2010, when the first version 

of the Pathway Browser was released as a support for visual navigation and 

analysis of the Reactome data based upon SBGN [Croft et al. 2010]. Pathway 

diagrams graphically represent individual reaction events as molecular 

entities that are associated with a ‘reaction node’. By demonstrating that 

molecular entities are produced as reaction event outputs and subsequently 

used as the inputs of further events, reactions are connected in a graph. The 

resulting series of connected events represents a pathway. 

Section 5.1 explains the state of the art of the Diagram Viewer, exposing both 

version 1 and 2 of this widget with their strengths and weaknesses. These two 

initial versions were developed by former Reactome staff members. Section 

5.2 summarises two of the papers associated with this thesis describing the 

work that led to Diagram Viewer version 3. 

5.1. EVOLUTION OF THE PREVIOUS VERSIONS OF THE DIAGRAM 

VIEWER 

Reactome has always provided online tools to browse its content, but in terms 

of diagram visualisation and pathways analysis, it was October 2010 when the 

first web application to browse pathways in a SBGN-like format was launched 

[Croft et al. 2010]. SBGN is a standard that aims to specify the connectivity 

of biological graphs and the types of nodes and edges but does not specify 

their layout [Le Novere et al. 2009]. It includes methods to differentially 
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represent classes of molecule and multi-molecular entities such as complexes 

and includes several different classes of reaction-like event. The semantics of 

an SBGN diagram do not depend on the relative position of the symbols. 

While the labels of symbols are not regulated and only required to be unique 

within a map, it is important to note that SBGN does not depend on colours, 

patterns, shades and thickness of edges. 

Le Novere et al. (2009) define three orthogonal, complementary types of 

diagrams for SBGN that can be seen as three alternative projections of the 

underlying more complex biological information; namely the process 

diagram, the entity relationship diagram and the SBGN activity flow diagram. 

Of the three types, the method selected as most appropriate for representing 

Reactome pathways is the entity relationship diagram because it emphases the 

influences that entities have upon each other’s transformations, rather than the 

transformations themselves. 

In the entity relationship diagrams used to represent Reactome curated 

pathways, each relationship represents a specific molecular event. The 

presence of entities in the map represents the effects they have upon each other 

and the sharing of entities demonstrates the connectivity between events. The 

annotated knowledge underlying this representation is manually extracted 

from experimental data in published scientific literature.  

Reactome diagrams are closely aligned with the process of dividing Reactome 

content into a set of canonical pathways, which correspond to distinct 

biological processes, with minimal overlap of reactions, arranged in a 

hierarchy that corresponds to the Gene Ontology (GO) Biological Process 

hierarchy [GO Consortium 2000]. 
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Pathway diagrams represent cellular compartments as boxes with a 

surrounding double line. A typical pathway diagram has a box representing 

the cytosol, bounded by a double-line that represents the plasma membrane. 

The white background outside the box represents the extracellular space. 

Other organelles are represented as additional labelled boxes within the 

cytosol. The icons representing molecular objects are placed onto the 

physiologically-correct box or associated boundary line to represent they are 

associated with the named cellular compartment or its containing membrane, 

respectively, e.g. a molecular object is placed on the boundary of the cytosol 

to represent that it is associated with the plasma membrane. 

5.1.1. DIAGRAM VIEWER VERSION 1 

At the time when the first pathway Diagram Viewer (Figure 5.2) was released, 

Reactome’s content was organised into 161 canonical pathways, each 

represented and displayed in pathway diagrams following the SBGN standard. 

The Diagram Viewer offered interactive and dynamic pathway diagrams 

permitting zooming, scrolling and highlighting of events and molecules. 

This first viewer version was developed entirely in JavaScript, which was 

chosen because the JavaScript engine was embedded in most popular Web 

browsers of the time (e.g., Internet Explorer, Firefox, Safari). As a result, no 

software installation was required, presenting a major benefit from the user's 

point of view.  

Diagram content was displayed using a tiled maps approach, which involved 

creating the pathway images as a set of tiles on the server side during the 

release process, so that later they could be loaded on demand by the client. To 

enable different levels of zoom, each pathway diagram required several sets 

of tile images. To improve diagram loading time by reducing the amount of 
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data required, tiles were cropped to exclude retrieval of data not visible in the 

viewport, at the selected level of zoom. 

Although graphically representing the pathway is the main purpose of the 

Diagram Viewer, another very important feature is allowing the user to 

interact and inspect the details of elements of the pathway such as reactions, 

reactants, products, catalysts or regulators. Selecting and/or hovering over 

elements are very common actions that need feedback to enrich the user 

experience. As the images themselves were not at this time interactive, a 

means to map the location of pathway elements onto raster coordinates was 

created to enable this requirement. 

 

Figure 5.2. First version of the Diagram Viewer. The displayed pathway is “EGFR 

downregulation”. The selected reaction (green box) is “binding of CBL to EGFR” 

[Croft et al. 2010]. 

Displaying an image and superimposing visual feedback is a difficult task 

because the position of the elements in the viewer depends on the set of tiles 

that are loaded, which as explained above depends on panning and zooming 
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performed by the user. The solution adopted to meet this requirement was to 

place a green box around the selected element. An example of this is shown 

in Figure 5.2 where the green box is the result of selecting the reaction 

“binding of CBL to EGFR”. Diagram entities were also surrounded with a 

green box when selected. 

The first version of the pathway Diagram Viewer did not offer a true zoomable 

user interface (ZUI), as the user could not pan or zoom the map in a 

satisfactorily fast interactive fashion [Latendresse et al. 2011]. The tiled maps 

approach was limited because both panning and zooming actions required 

server requests to retrieve the appropriate diagram tiles, as the content was 

shifted in the direction of pan actions or zoomed-in or -out resulting in a 

noticeable lag in response. 

A major challenge for researchers and bioinformaticians is the integration of 

experimental and computational proteomics results with information relating 

to specific biological pathways [Haw et al. 2011]. One means to provide this 

interactivity for users is by implementing a system for data analysis and 

results visualisation (as described in Chapter 3). These analyses determine 

which pathways overlap significantly with a set of genes, proteins and/or 

compounds, specified by a submitted list of identifiers. Once a matching 

pathway is identified by the analysis, a useful means to indicate the matched 

entities in that pathway is to colour them. Overlaying analysis results is a very 

useful and popular feature that was included in the first version of the Diagram 

Viewer (Figure 5.3). The technique used was based on HTML floating DIVs 

placed on the viewport. Though the visual result was good enough to be 

usable, user interaction was slow and visually it was not appealing, 

particularly in the case of complexes and sets, where the overlay colour was 
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black and a second user action was required to visualise individual 

participating molecules. 

 

Figure 5.3. Diagram displaying the coloured physical entities that correspond to 

expression values of the experimental data. The nodes in this diagram are colour-

coded: grey, no match; black, a (multicomponent) complex entity; and other colours 

represent expression levels. If the numerical data are a time series, the grey bar at the 

bottom of the coloured pathway diagram allows the user to step through time points 

and visualise the changes in the expression levels with the time of the individual genes 

involved in the pathway [Haw et al. 2011]. 

Although Reactome data sets are a high-quality resource for pathway-based 

data analysis, its usage as a platform for high-throughput data analysis is to 

some extent limited by its coverage of human proteins. Integrating molecular 

interactions (protein-protein and protein-compound) into Reactome pathway 

diagrams (Figure 5.4) was introduced as a way to extend coverage and give 
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access to functional annotations associated with the interactors [Haw et al. 

2011]. 

 

Figure 5.4. Protein–protein interactions displayed in the Pathway Browser for SHC1 

[cytosol] and SHP2 [cytosol] physical entities [Haw et al. 2011]. 

Molecular interactions were integrated as an overlay that employed 

PSICQUIC web services to import binary interaction data from interaction 

databases (https://github.com/PSICQUIC). The default interaction database 

was IntAct. Two of the datasets, ‘Reactome’ and ‘Reactome-FIs’, were 

generated by the Reactome group. Molecular interactions were overlaid in the 

diagram interactively when selected by the user. One problem associated with 

this implementation was that there was no way to identify whether interactors 

were available prior to the user interaction. Consequently, it was necessary to 

click, wait and perhaps eventually find that no interactors were available. In 

addition, it was not possible to incorporate interactors as potential extensions 

of the pathway when performing pathway analysis, nor were interactors 

searchable within the pathway diagram. 
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Although this first version of the Diagram Viewer offered useful functionality, 

a number of improvements were suggested that could not be fulfilled due to 

limitations of the technology used. The most important of these was an 

improved visual feedback mechanism including a true ZUI, to improve the 

analysis results overlay and to provide a stand-alone widget that could be 

included in third party web pages. Achieving this required a new approach 

and selection of a new technology suitable for a long-term development and 

maintenance.  

5.1.2. DIAGRAM VIEWER VERSION 2 

To address the limitations encountered in the first version of the Diagram 

Viewer, a second version was proposed and developed for integration within 

the new Pathway Browser. To make integration with other elements of the 

Pathway Browser easier, the programing language chosen was Java, while 

GWT Toolkit was utilised for the framework. The technologies considered 

for graphic representation were HTML5 canvas and SVG. These two 

alternatives offer graphics features that are supported by major browsers. 

These technologies were, and still are, meant to address a range of different 

graphic scenarios. 

Whilst HTML5 Canvas offers bitmaps with an immediate mode graphics API 

for drawing onto it, SVG offers a retained mode graphics model persisting in 

an in-memory model. SVG can be considered analogous to HTML because it 

builds an object model of elements, attributes and styles. HTML5 Canvas is a 

“fire and forget” model that renders its graphics directly to its bitmap and then 

subsequently has no sense of the shapes that were drawn; only the resulting 

bitmap persists. 
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While comparing HTML5 canvas and SVG, there was no obvious best 

approach. The decision required a comparison of the options before 

commitment to a single technology. The key consideration that led to rejection 

of SVG was that it results in slower rendering as document complexity 

increases due to its integration into the DOM. Consequently, the decision was 

made to implement the Diagram Viewer using HTML5 Canvas, despite its 

relatively poor text rendering capabilities and lack of animation, as it was 

determined that these deficiencies could be addressed by implementing layers 

for the final product. 

 

 

Figure 5.5. Pathway analysis overlay in the Diagram Viewer version 2. The data 

analysis workflow proceeds in three steps: data submission, a tabular display of 

results and visual display of results as an overlay in a Pathway Browser window. The 

fourth pane shows a detail of the Pathway Browser window, to highlight the display 

of expression levels [Croft et al. 2013]. 
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The second version of the Diagram Viewer was released on October 2013. It 

included several improvements over its predecessor. The use of HTML5 

canvas contributed to a better general look and feel. The previous tiled-map 

approach was replaced with a new approach that consisted of loading XML 

with the content and layout of the diagrams so these could be rendered using 

the HTML5 canvas API. This second version of the viewer improved the ZUI 

when compared with its predecessor by avoiding server requests for each user 

action of zooming or padding. It also provided an enhanced view of the 

analysis result overlay where the black filling for complexes and sets (Figure 

5.3) was replaced with strips of varying size and colour, reflecting the 

expression values of contained elements (Figure 5.5). 

In addition to the requirements of its predecessor, the second version of the 

Diagram Viewer included support for the visualisation of disease pathways. 

These can be split into two groups in terms of their development. The first 

group is infectious diseases, which differ from non-disease (‘normal’ 

pathways) only by the presence of microbial proteins or nucleic acids. The 

second group contains both gain- and loss-of-function events, commonly 

found in cancer and metabolic disorders, respectively. These events have an 

associated normal event counterpart, providing the framework that is used to 

represent the ‘abnormal’ event that occurs when the ‘normal’ event is 

disrupted by a mutation or similar disrupting molecular abnormality. 

As explained previously, SBGN was the description language chosen to 

represent physical entities and their interactions in Reactome pathways. When 

disease pathways were included, the software had to be extended to create 

disease displays in which the modified entities and consequent event 

variations associated with a disease process are shown superimposed and 
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highlighted on top of the normal event in the pathway diagram (Figure 5.6) 

[Croft et al. 2013]. 

 

Figure 5.6. Example of disease curation and visualisation in Reactome. The normal 

process of glucose export from the liver under fasting conditions (A) is disrupted by 

mutations that block glucose-6-phosphate hydrolysis within the endoplasmic 

reticulum (B) or the transport of glucose 6-phosphate and orthophosphate (Pi) 

between the endoplasmic reticulum and the cytosol (C) [Croft et al. 2013]. 

A deeper analysis of the display details for this gain- and loss-of-function 

group of events reveals that they are rendered in a “three iteration strategy”. 

The first iteration renders the normal pathway without alterations or additions 

of any kind. The second iteration adds a grey layer covering the whole 

viewport where the diagram is being rendered. Finally, the third iteration 

overlays the changes caused by the disease. 

5.2. DIAGRAM VIEWER VERSION 3 

Systematic user experience testing and informal user feedback on the second 

version of the Diagram Viewer suggested that loading time and user 

interactivity needed improvement. These sessions revealed that users (i) had 

difficulty using and understanding the results of the diagram search 

functionality, (ii) found diagrams too crowded/complex, especially in 
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zoomed-out views, and (iii) often lost diagram context while navigating 

through the event hierarchy due to the slow loading of diagrams and abrupt 

changes of diagram graphic, rather than an animated transition to the target 

position. Other comments highlighted that users would prefer a progressive 

zoom rather than zooming in predefined steps. 

Section 5.2.1 provides a summary of the paper “Reactome diagram viewer: 

Data structures and strategies to boost performance” [Fabregat et al. 2017] 

included as Publication P.2. This publication describes how problems 

identified in user experience sessions focused on version 2 of the Diagram 

Viewer were addressed in version 3. Sections 5.2.2 and 5.2.3 summarise the 

paper “Reactome enhanced pathway visualisation” [Sidiropoulos et al. 2017] 

(Publication P.3). This paper describes two new features included in version 

3 of the Diagram Viewer. In this last paper, the author of this thesis appears 

last in the list of authors reflecting his role in the design and supervision of 

the work. 

5.2.1. DATA STRUCTURES AND STRATEGIES TO BOOST PERFORMANCE 

While requirement definition and project design of the work presented in this 

section were completed by the author of this thesis, code development was 

shared in equal parts with a colleague, Konstantinos Sidiropoulos. As 

mentioned previously, some of the data structures and strategies utilised in the 

development of version 3 of the Diagram Viewer were already included in the 

Pathways Overview widget. 

The paper associated with this section describes how loading time and user 

experience were improved by implementing a more efficient diagram storage 

format and adopting new strategies for client data storage, retrieval and 

rendering. These improvements included: (i) a restructuring of the data format 
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used to send data from the server to the client, (ii) use of a graph data structure 

to store pathway content on the client side, (iii) boosting the client content 

load strategy, (iv) implementation of a multi-layer canvas approach, (v) 

utilisation of a space partitioning data structure to store the elements to be 

rendered and (vi) employment of a delegate design pattern to control the flow 

of information based on the level of zoom. This section describes each 

strategy in more detail. 

Data format update 

Version 2 of the Diagram Viewer used a custom eXtensible Markup Language 

(XML) format (https://www.w3.org/TR/REC-xml) for diagram data storage. 

JavaScript Object Notation (JSON) (http://www.json.org) is less verbose than 

XML and thus has a smaller footprint. Hence, the first step to improve the 

overall user experience was to reduce the client loading time by replacing the 

XML with JSON. 

JSON’s natural mapping to JavaScript objects is faster and uses fewer 

resources than its XML counterpart [Lin et al. 2012; Nurseitov et al. 2009; 

Wang 2011]. Therefore, for version 3 of the Diagram Viewer all Reactome 

pathways containing diagram layout information were converted from XML 

to JSON and stored on the server side as static resources during the release 

process. The resulting files are smaller in size than the equivalent XML file 

(Figure 5.7a), which improves processing time (Figure 5.7b). 

As part of this process, a graph of all the entities and reactions contained in 

the pathway diagram is generated and stored in an additional JSON file. This 

enables a richer browsing and search experience throughout the diagram 

content since the new graph file contains information for all the pathway 
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participants along with its structures. The next subsection elaborates on the 

creation of the graph and its usage along with the layout information. 

 

Figure 5.7. XML vs JSON comparison charts. (a) Comparison of file sizes for XML 

and JSON formats versus the diagram size in terms of number of entities present per 

diagram. (b) Comparison of processing times achieved by Diagram Viewer v2.0 

(consuming diagrams in XML) and Diagram Viewer v3.0 (consuming diagrams in 

JSON) versus the total number of diagram entities. Measured over all human pathway 

diagrams present in Reactome data version 52 [Fabregat et al. 2017]. 
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Underlying graph structure 

Amongst other elements, diagrams contain macromolecular complexes and 

entity sets, comprised of components and members, respectively. Entity sets 

are used to group entities that have a common property and are 

interchangeable. Complexes are the result of several molecules coming 

together to create a single functional entity. Sets and complexes may contain 

complexes or sets as their constituents [D’Eustachio 2011]. 

This aggregating and nested approach can quickly generate highly structured 

networks of entities that can be represented in a diagram by a single glyph, 

greatly simplifying the view. However, the Diagram Viewer needs to both 

present this simplified view while allowing access to the full complexity of 

the represented data. In particular, the Diagram Viewer needs to include a 

search function that is able to find the constituents of complexes and sets that 

may not be visible in the diagram and to allow the user to discover the 

constituents of complexes and sets. 

In previous versions of the Diagram Viewer, the client retrieved a file with 

the identifiers defining each element present in the diagram from the server 

side. In the new version, a file with a graph representing the content of the 

different complexes and sets for each diagram and annotating the participants 

of every included reaction is required (Figure 5.8). This approach introduced 

an additional file with the graph content that is consumed separately by the 

client and merged with the layout data, once both are loaded. 

The graph and layout content have elements in common but in most cases the 

graph contains more information. In the example presented in Figure 5.8, the 

pathway diagram layout contains 7 elements; 5 entities and 2 reactions (Figure 

5.8a), and the graph contains 11 elements; 9 entities and 2 reactions (Figure 
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5.8b). The 4 extra elements in the graph represent components of C2 (4 

entities) that are not present as individual entities in the layout. A less obvious 

benefit of the graph is that entities that are part of different complexes or sets 

are represented only once but remain accessible via graph traversing. 

 

Figure 5.8. Schematic view of a pathway made up of two reactions. (a) The pathway 

diagram as presented to the final user. (b) Underlying graph with the whole content 

of the pathway. (c) Representation of the merging of both the diagram and graph on 

the client side. In the figure, Pn are proteins, SMn are chemicals, Cn are complexes and 

Rn are reactions. From the graph, it can be extracted that C1 contains [P1, P2], C2 

contains [P3, P4, SM1, SM2] and C3 contains [C1, C2], but by traversing the graph it 

can be easily inferred that C3 actually contains [P1, P2, P3, P4, SM1, SM2] [Fabregat et 

al. 2017]. 

The information stored in the layout and graph files is complimentary; the 

client side code implements a technique that merges the information from 

them (Figure 5.8c). The approach used is to propagate user actions from the 

layout level to the graph level, creating an intuitive means to traverse diagram 

content and allowing the highlighting of relevant entities by traversing from 
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the graph to the layout. In addition, the diagram search now has the ability to 

find both entities that are represented by a glyph in the diagram and contained 

entities within the set or complex represented by that glyph. This allows the 

user to search all the entities and components/members of complexes/sets 

present in a single diagram. The client can highlight all the diagram entities 

that match the search term. 

Updated loading and caching strategies 

The introduction of separate layout and graph files was accompanied by the 

adoption of a render-first client loading strategy (Figure 5.9). The client makes 

concurrent XMLHttpRequest calls for the layout and graph data 

(https://xhr.spec.whatwg.org). Once the layout data is available, the viewer 

processes it and renders the diagram on the canvas. When the graph content 

is ready, it is processed and linked to the diagram layout and used for 

interactive navigation, search and if performed, analysis overlay purposes. 

This render-first approach primes the Diagram Viewer with the layout while 

it retrieves the graph behind the scenes. This strategy improves user 

experience by reducing both the true and perceived loading time. 

Strategies to prioritise the loading of information that is sufficient to render 

something on the screen and engage the user are particularly useful when full 

visualisation may require an extended loading period. People can only define 

a duration if there are clear start and end times [Seow 2008]. Consequently, 

when a user can see something rendered on the screen they assume loading 

has ended. Full loading can continue behind the scenes. 

Users often go back and forth between pathways, causing the viewer to load 

and show the same diagram several times. Therefore, a pathway diagram that 

has been viewed is very likely to be revisited again shortly afterwards. In 
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computer science, this is known as locality of reference [Denning 2005] and 

is a clear use case for cache mechanisms. The Diagram Viewer implements a 

Least Recently Used (LRU) caching mechanism [Denning 1968] to record the 

layout and view status (zoom level and panning) of the most recently viewed 

diagrams so that when a diagram is revisited, the viewer does not need to 

request data from the server, instead it uses cached data to display content as 

it was previously viewed. 

 

Figure 5.9. UML sequence diagram comparing sequential and render-first loading 

strategies. The difference between the blue and red lines shows the true loading time 

improvement. The improvement in the perceived loading time is highlighted by the 

difference between the green and red lines [Fabregat et al. 2017]. 

Multi-layer HTML5 canvas strategy 

The new version of the Diagram Viewer responds to common user actions, 

such as hovering over an element with the mouse or selecting an entity in the 

diagram, by highlighting hovered elements and marking the selected entity, 

respectively. To improve user experience and visually reinforce user actions, 

the Diagram Viewer draws a halo around selected elements (reactions and 

participating entities). In addition, when the user selects an entity that is 

repeated in the same diagram, the viewer marks all instances of that entity as 

selected and draws halos around all elements related to them. 
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Figure 5.10. A simplified example of the multi-layer canvas strategy. The first four 

images from left to right represent different layers that compose the final image: (1) 

Cellular compartments, (2) Halo effect, (3) Nodes and Edges and (4) Selection and 

Highlight. The rightmost image shows the pathway diagram as seen from the user’s 

perspective [Fabregat et al. 2017]. 

To improve visual feedback and optimize the diagram rendering process, the 

new version of the viewer implements a set of advanced techniques used in 

the gaming industry. In particular, the multi-layer canvas approach was 

adopted to reduce the processing and redrawing overhead inherent to a single 

canvas update when the user interacts with it or animation is performed 

(https://www.ibm.com/developerworks/library/wa-canvashtml5layering). 

Each of the stacked canvases in Figure 5.10 represents a conceptual layer and 

is reserved for drawing specific types of glyphs corresponding to different 

diagram objects such as compartments, reactions, nodes, entities or 

interactors. By employing this technique, only those layers that require 

redrawing are updated, resulting in reduced rendering times for actions such 

as highlighting or selection. This enhances the user experience. 

For instance, while the user moves the mouse pointer across a diagram, only 

the ‘Selection and Highlighting’ layer needs updating in order to reflect the 

changes in the highlighted element. Similarly, when a diagram element is 

selected, only the ‘Halo effect’ and ‘Selection and Highlight’ layers require 

updating. 
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Space partitioning data structure 

Identifying the elements under the mouse pointer is a computationally 

demanding task if it is performed by a brute force or exhaustive search 

algorithm [Knuth 1997]. The cost of an exhaustive search algorithm is a linear 

function of the number of elements to be searched, O(n) in big O notation. 

Determining whether the mouse pointer position intersects with the area each 

element occupies can be slow, delaying the action of highlighting and making 

the interface appear unresponsive to the user. 

To address this problem a QuadTree was used in the new implementation. A 

QuadTree is a tree data structure used to partition a two-dimensional space by 

recursively subdividing it into four quadrants or regions [Finkel and Bentley, 

1974]. The QuadTree is employed to efficiently (i) query only those diagram 

entities present in the viewport that need to be rendered and (ii) identify 

entities when hovered over, or selected without the need to use the brute force 

method. 

 

Figure 5.11. Hypothetical diagram composed of two separate reactions where (a) 

shows how the viewport is recursively split into different quadrants, so each of them 

contains two or less elements, (b) is the representation of the resulting QuadTree to 

achieve the two-dimensional space partitioning. The red dot in (a) represents the 

mouse pointer location and the red path in (b) depicts the tree traversing steps to 

narrow down the elements to be checked against the mouse location [Fabregat et al. 

2017]. 
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Figure 5.11 provides an example of how elements in a diagram are located in 

a QuadTree with quadrant size 2, meaning that only two objects are allowed 

per quadrant. The red line in Figure 5.11b highlights the path traversed in the 

tree to identify the element under the mouse pointer (red dot) based on a series 

of quick comparisons between the mouse coordinates and every quadrant 

centre starting for the root and progressively moving down the nodes of the 

tree. From the root (centre of the viewport) the red dot (Fig. 5.11a) is the 3rd 

quadrant (Q3); from the centre of Q3 the red dot is in the first quadrant (Q1); 

from the centre of Q1 the red dot is again in its first quadrant (Q1). Since this 

last quadrant is not further split, the position of the mouse pointer only needs 

to be compared against the contents of that quadrant, which in this case is only 

P3. Thus, determining that P3 is the element hovered over by the mouse 

pointer takes three quadrant comparisons and checking only one element of 

the nine present in the diagram. This provides a significant improvement over 

the brute force method that would check the mouse position against every 

element present in the diagram. 

For the new Diagram Viewer, the QuadTree was extended to work not only 

with points but also with shapes that occupy diagram areas, thereby further 

narrowing the number of elements to be redrawn by determining whether they 

are in the part of the diagram visible in the client viewport. This allows a fast, 

selective redraw limited to visible regions of the diagram, improving 

interactivity of the Diagram Viewer. 

Renderer delegates 

To meet users’ requests for less cluttered pathway diagrams but at the same 

time preserve access to all the information stored in Reactome, the new viewer 

controls the amount of visualised information by zoom level. In practice, this 

means that the viewer enriches or abstracts layers of information, depending 
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on the zoom level. Thus, diagram entities are rendered according to the level 

of zoom, progressively revealing more details as the user zooms in (Figure 

5.12). For instance, common ‘housekeeping’ molecules, such as ADP, ATP 

or water are hidden in the zoomed-out view, resulting in less crowded 

diagrams. 

 

Figure 5.12. Diagram Viewer version 3 controls the flow of displayed information 

by the level of zoom abstracting or enriching the view with layers of information 

[Fabregat et al. 2017]. 

This strategy also improves rendering time because fewer details are drawn. 

Other simplifications include not rounding off of box corners, showing 

reaction backbones without the central reaction node and removing node 

attachments and boxes to indicate stoichiometry. As the user zooms in to a 

specific area the number of displayed elements falls and more detail is added. 

5.2.2. TEXT BOOK STYLE ILLUSTRATIONS: ENHANCED HIGH LEVEL 
DIAGRAMS 

The pathway diagrams interactive viewer has a limitation that makes it less 

well suited to the display of pathways at higher levels of the hierarchical 

organisation. Higher level pathways are aggregators that represent biological 
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functions or parts of the same process. It is often impossible to represent 

molecular details of the entire process in a single, readable diagram. The paper 

associated with this section [Sidiropoulos et al. 2017] presents recent updates 

in the Reactome web interface that improve visualisation and navigation of 

Reactome pathways, particularly at higher levels of the hierarchy, as well as 

new options for downloading and re-using the pathway diagrams. 

As shown in Figure 5.13, higher level pathway diagrams previously did not 

represent each molecular event, instead entire subpathways were represented 

as a single glyph consisting of a box with a thick green boundary that served 

as a link to lower levels of the hierarchy. This allowed the user to navigate to 

the lower subpathway levels with their associated detailed pathway diagrams 

but it offered no visual feedback on the contents or relationships between 

subpathways or any notion of sequence or dependence. 

 

Figure 5.13. Hemostasis as previously represented with subpathway icons. 

User experience testing identified that users struggled to identify the process 

represented in these type of Reactome pathway diagrams. This was at least 

partly a consequence of the use of the SBGN standard, which despite being a 

recognised standard in the systems biology community, is unfamiliar to many 

biologists. Illustrations are an established means to help people understand the 

relationships between and within processes. 
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Vision is the dominant sense in Humans [Schneck 1996], so illustrations can 

make a pathway easier to comprehend, but the styles used in textbooks and 

journals vary enormously. Static figures and illustrations were incorporated 

into the Reactome website from the earliest version but not consistently and 

with a variety of styles.  

In the earliest implementation, Reactome offered static illustrations that were 

displayed inline with other details, later these were linked as a selectable side 

resource (Figure 5.14). Although these static illustrations were well received, 

they lacked interactivity and could not be automatically enriched with 

overlays or visual feedback or linked to the corresponding pathway diagram. 

 

Figure 5.14. Hemostasis as an Illustration. 

Feedback on the small number of available illustrations suggested that those 

would be well-received by Reactome users, particularly as a replacement for 

the higher-level diagrams that consisted entirely of subpathway icons. It was 

also clear that it would be beneficial to use a set of standardised glyphs in 



  5. Diagram Viewer 

 

114 

these illustrations that make use of a common iconography to help the user 

understand the represented process. 

To improve upon these illustrations and make them interactive in the scope of 

Reactome’s Pathway Browser, a number of requirements had to be 

considered. These requirements can be split between technical and 

conceptual. Technically, the illustration had to be produced in a format that 

could be easily processed by a computer, for example SVG. Conceptually, the 

illustration (i) had to have a one to one mapping between what was annotated 

(present in the represented level of the hierarchy) and its sub levels and (ii) 

the main elements contained in the new format needed to be annotated and 

stored within SVG in a manner that makes object types recognisable for the 

software that displays them (explained in detail on this page of Reactome 

documentation https://reactome.org/icon-info). To achieve this, Reactome 

recruited an expert graphic designer to produce the illustrations, referred to 

internally as Enhanced High Level Diagrams (EHLDs).  

 

Figure 5.15. Hemostasis as an Enhanced High Level Diagram (with the SVG). 
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The designer used sketches produced by Reactome curators to create EHLDs 

that meet the conceptual requirements, producing SVGs that comply with the 

technical requirements. An example is shown in Figure 5.15. When compared 

with Figure 5.13, the pathway diagram is no longer a set of subpathway boxes, 

instead it combines the newly-designed illustration logic with a one to one 

mapping between areas in the diagram and sub-pathways. The EHLD is 

“interpreted” by the software and is fully interactive, offering all the features 

available in detailed pathway diagrams such as hovering over elements, 

selection, flagging and importantly, pathway analysis results overlay. 

EHLDs, including analysis results overlays if present, can be downloaded and 

saved in SVG format. The exported files can be edited in commercial and 

open-source graphics applications. EHLDs use a consistent iconography that 

reuses glyphs when the represented entity has a role in more than one 

biological process. For example, all representations of platelets in the 

Hemostasis EHLD use same symbol. A library of these graphical elements in 

SVG, PNG and EMF formats is available at https://reactome.org/icon-lib, 

distributed under the terms of the CC-BY license 

(https://creativecommons.org/licenses/by/4.0/). The aims of providing such a 

library are to facilitate the creation of uniform diagrams through the use of 

pre-existing glyphs and to offer these components to the community for reuse. 

The work presented in this Section has been performed by Reactome staff 

under the direct supervision of the author of this thesis. More specifically, 

code written to support the use of EHLDs in the Diagram Viewer was 

developed by Konstantinos while the illustrations were created by Christoffer 

Sevilla with the help of all Reactome curators, but particularly Steve Jupe. At 

the time of writing, the available Reactome database was version 63 where 
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80% of diagrams previously represented entirely by subpathway boxes have 

been replaced by EHLDs. 

5.2.3. OVERLAYING ANALYSIS RESULTS 

The Diagram Viewer has a module that integrates the Reactome Analysis 

Service. Analysing data produces an analysis token (Section 3.2.1) that can 

be set so the result is displayed as an overlay on top of both regular diagram 

and EHLDs [Fabregat et al. 2015 and 2017]. For regular diagrams, the 

analysis overlay feature was available in version 1 and 2. 

Version 3 improves on the functionality of version 2 by enhancing the method 

used to produce the analysis result overlay for regular pathway diagrams. The 

analysis overlay is implemented at the level of the renderer delegates and also 

takes advantage of the underlying graph structure, both described in the 

previous subsection. 

Following over-representation analysis (Figure 5.16a), pathway diagram 

entities that were represented in the submitted data set are re-coloured, using 

yellow in the default colour scheme. Complexes, sets and subpathway icons 

are coloured to represent the proportion of molecules contained by the entity 

that were represented in the submitted identifier list. In Figure 5.16a, PRKCA 

is yellow indicating that is was in the submitted list. CREB1 was not in the 

submitted list so it is not re-coloured. The complex of “Protein Kinase C, 

alpha type: DAG” is part re-coloured, part not, indicating that some molecules 

in the complex were represented in the submitted dataset. 

Following expression data submission, objects in the diagram are re-coloured 

according to the numeric values submitted with the identifiers (Figure 5.16b). 

The colours used represent expression values corresponding to the scale 

presented as a bar on the right-hand side. There are several colour schemes, 
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which can be selected using the Settings pop-out panel on the right side. The 

scale automatically adjusts to fit the range of values in the dataset. 

 

Figure 5.16. Overrepresentation and Expression analysis overlay. (a) Pathway 

diagram for “Gastrin-CREB signalling pathway via PKC and MAPK” overlaying the 

results for the “UniProt Accession List” example. (b) Bottom left corner of the 

pathway diagram for “RNA Pol II CTD phosphorylation and interaction with CE” 

with expression analysis result overlay for the “Microarray data” example. The 

examples are provided in the analysis submission interface integrated in the Pathway 

Browser (https://reactome.org/PathwayBrowser/#/TOOL=AT). 
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Entities that were not represented in the input data are not re-coloured. Entities 

with bands of colour represent complexes or sets containing more than one 

molecule. When zoomed out, the colour of the band reflects the average of the 

values submitted, for molecules represented in the dataset. The size of the 

band reflects the proportion of molecules that had submitted values. At higher 

levels of zoom each molecule is represented by a band, coloured according to 

the associated submitted value, arranged alphabetically by name. If multiple 

columns of values were submitted, representing multiple samples, e.g. time-

points or a disease progression, the order of the bands is the same for each 

sample. 

When expression analysis is overlaid, the experiment browser toolbar (bottom 

of Figure 5.16b) is used to step through overlays representing multiple 

columns of data. The intended usage is with, for example, a time-series or 

disease progression. The user can move between them by clicking the arrow 

buttons or the play feature. The header of the data column (if present) is 

displayed between the arrows. The Pathway Diagram re-colours to reflect the 

new values. 

The viewer allows users to overlay pathway analysis results onto EHLDs 

(Figure 5.17a). The results are displayed in the label of each subpathway. The 

label is overlaid by a coloured rectangular shape; its width and colour 

represent the percentage of hit entities and the P-value, respectively (Figure 

5.17b). Subpathways with a P-value below a certain threshold (P < 0.05) are 

coloured in grey. For hit subpathways, additional information about the hit 

elements and the false discovery rate are displayed next to the label. Upon 

hovering or selection of a subpathway, its P-value is indicated in the coloured 

legend bar displayed on the right side of the viewport. As explained in detail 

in Chapter 3, analysis results are temporarily stored on the Reactome server. 
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The storage period depends on usage of the service but is at least 7 days. 

Stored results are available via the token assigned to the results file when it is 

created and displayed in the URL for the results report. Users can easily share 

their view of Reactome with the results of their analysis overlaid by simply 

sharing the URL [Fabregat et al. 2015]. 

 

Figure 5.17. Correspondence between the hierarchy and EHLD. (a) Haemostasis 

EHLD overlaid with pathway enrichment analysis results. The width of the yellow 

bar under the pathway label indicates the proportion of pathway entities contained in 

the analysed dataset. (b) A closer view to ‘Platelet Homeostasis’ label with analysis 

results overlaid [Sidiropoulos et al. 2017] (http://reactome.org/PathwayBrowser/#/R-

HSA-109582). 

5.2.4. EXPORT OPTIONS 

Users often want to save pathways of interest in a format that can be reused 

outside the website, for use in a presentation or paper. In some cases, users 

might want to use the content as it appears on the website, but, in other cases, 

they might want to add further details or customize the contents to show the 

results of their research, or propose an improved layout. The export of static 

images such as PNGs files would cover the first use case but to cover the 

second, other formats are required. 
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Office tools such as Microsoft PowerPoint, Apple Note, or Apache 

OpenOffice Impress allow the creation of multimedia presentations where the 

users can rearrange the contained objects and customise other properties such 

as size, colour and shape. Providing the ability to export Reactome diagrams 

in the standard format used by these tools (PPTX) allows users to benefit from 

these features. This may appear to be a simple export process but there were 

several issues to address. 

Reactome diagrams use SBGN to represent their content, but the storage 

format was defined ‘in-house’. The latter was originally thought to improve 

raster-representation based algorithms. Interconnections between different 

objects, as well as anchor points between reactions shapes and their 

participants, were not defined. To achieve the desired result when exporting 

the diagram as objects to a document (Figure 5.18), this limitation had to be 

programmatically addressed during the conversion phase. 

 

Figure 5.18. The pathway diagram for Striated Muscle Contraction exported to 

Microsoft PowerPoint (http://reactome.org/PathwayBrowser/#/R-HSA-390522) 

[Sidiropoulos et al. 2017]. 
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In addition, different techniques were used in pathway diagrams for the 

various objects that represent a reaction and its associated relationships with 

other reactions or regulators, such as invisible anchor points to join segments 

of reactions and grouping of objects that visually define reactions properties 

(i.e. catalyst and regulatory line endings). Each required a solution to permit 

representation in the exported document. Additionally, the PPTX exporter 

was designed to reflect the user's preference for colour profile and other 

display options available in the user interface. 

PowerPoint exporter code was developed by Guilherme Viteri (Reactome 

developer) under the direct supervision of the author of this thesis. Although 

the design and definition of requirements was performed by the author of this 

thesis, Guilherme played a key role in the evaluation of the different libraries 

to generate the Power Point files. 

5.2.5. RESULTS AND DISCUSSION 

The new pathway Diagram Viewer combines the strategies and data structures 

described above to improve performance and includes new features that aim 

to address shortcomings in the previous version as highlighted by user 

experience testing. An updated diagram storage format combined with an 

improved ‘render-first’ loading strategy has resulted in faster loading of 

diagrams. 

Additionally, faster rendering was accomplished by a combination of (i) a 

QuadTree to identify the elements required to drawn the visible area, (ii) 

rendering delegates that declutter the view by regulating the level of detail to 

be drawn and (iii) a multi-layer HTML5 canvas strategy that optimizes 

rendering by updating only those layers that require redrawing. Optimised 

rendering enables the introduction of animation and smooth transitions that 
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help users maintain an understanding of the diagram context while navigating 

through pathways. The underlying graph structure provides the basis for an 

improved built-in search feature that can consider all the molecules 

participating in the pathway, whether they are visible or not. 

Updating the storage format had a positive impact on performance. To assess 

this, a comparison was done for the file sizes of the previous (XML) and new 

data format (JSON) and the time required by the client to process them, 

including the time required to populate the model in the client side with 

diagram data once retrieved. 

 

Figure 5.19. Comparison of perceived loading times achieved by Diagram Viewer 

version 2 and version 3 versus the diagram size (in number of diagram entities). 

Measured over all human pathway diagrams from Reactome data version 52 

[Fabregat et al. 2017]. 
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The update in the storage format combined with the new render first loading 

strategy contributed to reducing the overall diagram loading time, as it is 

perceived by the user. This includes the time required until the diagram is 

loaded and fully rendered by the client. Figure 5.19 presents a chart comparing 

the times required by the previous and the new version of the client to display 

diagrams against the diagram size (measured in number of entities present in 

a diagram). 

A striking feature of the comparison of perceived loading times (Figure 5.19) 

is that the new Diagram Viewer is both faster and more consistent. Loading 

times measured for the previous Diagram Viewer exhibit high variability, 

especially for smaller diagrams, because the number of items drawn in the 

diagram does not represent the size of the pathway in terms of participating 

molecules. Complexes and sets contain multiple participant molecules; 

encapsulated pathways will also add a large number of participants. Pathways 

at higher levels of the Reactome hierarchy are frequently represented as 

diagrams that contain only subpathways, it is unsurprising that they contain a 

large number of participants. Combined with the inefficient sequential loading 

strategy (Figure 5.9), this explains why relatively small pathways, with only 

a few entities, required up to 1.5 s to load. Simply put, before rendering 

anything on screen, the previous client had to retrieve and parse a large 

amount of information to create a map of all participating entities. 

As illustrated in Figure 5.19, the new version of the pathway Diagram Viewer 

achieves better performance for all Reactome diagrams. The new version of 

the client accomplishes loading and rendering of 97% of Reactome diagrams 

in less that 1 second (versus 57% previously); 74% of the total number of 

diagrams are loaded and rendered in under 0.5 s (versus 31% previously). This 

has a positive impact on the user experience and is particularly important in a 
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web application that runs in a web browser environment, where code is 

executed in a single thread, without use of concurrency. The adoption of a 

multi-layer HTML5 canvas strategy and space partitioning data structure 

helps minimize CPU workload and allows new features such as animated 

transitions without penalising the user experience. 

EHLDs have been designed to contain images that will be familiar to 

biologists. They use a consistent iconography that is based on a survey of 

typical textbook and online representations of the process. The intention is to 

make the navigation experience more intuitive and visually pleasing; the user 

will recognize the process that is represented and be able to select the 

appropriate region of the illustration to navigate to the next level of the 

Reactome hierarchy level without the need to read and understand text labels; 

ultimately the user will arrive at a classic, detailed pathway diagram that 

represents the molecular mechanism underlying the pathway. For users who 

are not familiar with the graphical representation used in EHLDs the text 

labels are retained. 

5.3. SUMMARY 

Through the use of highly optimised data structures and algorithms, Reactome 

now has a pathway Diagram Viewer that is improved in terms of performance 

and usability. The new version provides a robust, scalable pathway 

visualisation that is easily integrated into third party applications. It was 

developed to be both extended and easily integrated in third party 

applications. Reactome currently offers two options for integrating the 

pathway Diagram Viewer in other web applications using either the GWT 

implementation or the JavaScript wrapper. Details and examples can be found 

at https://reactome.org/dev/diagram/. 
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The new features presented above are fully integrated in the current version 

of the Reactome Pathway Portal. EHLDs and the option to export diagrams to 

PowerPoint are available to users via the Pathway Portal and through the 

stand-alone version of the Diagram Viewer widget, which is available for 

integration in third party applications (http://reactome.org/dev/diagram). 

With the collaboration of Reactome curators and designers, informative and 

visually appealing EHLD illustrations have been created. Feedback from 

users regarding this new feature has been very positive. In particular, users 

found the new, interactive graphical representation of Reactome pathways 

more descriptive of the biological process and consequently more intuitive to 

navigate when compared to the previous static diagrams. 

Visual appeal and navigability issues of previous Reactome diagrams have 

been addressed by the introduction of EHLDs, which represent biological 

processes in a familiar textbook style that allows intuitive navigation to more 

specific subtopics. In addition, EHLDs are used to represent summarised 

analysis results. EHLD images and associated analysis result overlays can also 

be exported in a lossless, editable format, enabling users to represent their 

own research results in the context of Reactome pathway diagrams. In 

addition, the Reactome pathway iconography library provides graphical 

representations of common molecular biology elements suitable for use in 

slides and publications. Finally, classic pathway diagrams can now be 

exported in PPTX format, allowing their editing and reuse with familiar 

presentation software.  
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6. THE GRAPH DATABASE 

Reactome contains a detailed representation of cellular processes, as an 

ordered network of molecular reactions, interconnecting terms to form a graph 

of biological knowledge. Like many knowledge bases, Reactome uses a 

relational database to store its content. Although they are widely used for 

pathway data management, relational databases are not ideal for this purpose 

[Van Bruggen 2014; Vukotic et al. 2015]. Relational databases can be 

designed to represent and store with precision the many variables and 

annotation of complicated pathway information, but the final product will 

inevitably require intermediate tables to represent many-to-many 

relationships. As a result, database queries can require a high number of table 

join operations, which are both difficult to formulate and result in poor 

performance in terms of response times. 

Reactome’s data model comprises an interconnected entity/event network 

consisting of nodes connected by directed edges, that lends itself to be 

represented as a directed graph [Sedgewick and Wayne 2011]. Storing 

Reactome pathway data in this form has multiple benefits. Most significantly, 

it does not require transformation of the data into a flat or denormalised table 

format. Instead, it can be represented and maintained as originally represented 

in literature and annotated by Reactome curators, thereby reducing the 

complexity of the database and allowing a more straightforward and arguably 

more intuitive access to Reactome content [Vukotic et al. 2015]. 

This chapter summarises the content of Fabregat et al. 2018 (Publication P.4) 

which describes the motivation that led to the adoption of a graph database 

and details how Reactome benefits from this change in the underlying storage 

technology. The first section explains the underlying data model; the second 
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section describes how data was stored in a graph database and the quality 

assessment queries that were developed, having been made possible by the 

availability of the graph database and its associated query language. The third 

section shows the new software ecosystem built on top of the graph database. 

The graph database migration was conceived, designed and supervised by the 

author of the thesis; development work was shared in equal parts with Florian 

Korninger, a student intern who was later employed as a Reactome staff 

member. 

6.1. REACTOME DATA MODEL 

Reactome utilises a frame-based knowledge representation [Vastrik et al. 

2007]. The data model (https://reactome.org/content/schema) consists of 

classes (frames) that describe different concepts such as reaction or entity. 

Classes have attributes (slots) that hold properties of the represented class 

instances, e.g. names and identifiers. The value types contained in the slots 

can be primitive (string, numbers, or boolean) or references to other class 

instances. Knowledge in Reactome is captured as instances of these classes 

with their associated attributes. 

The Event and PhysicalEntity (PE) classes are core components of the 

Reactome data model. Events are the building blocks used in Reactome to 

represent biological processes and are further subclassed into Pathways and 

ReactionLikeEvents (RLE). RLEs are single-step molecular transformations. 

RLE includes Reaction among other types like FailedReaction, 

Polymerisation, Depolymerisation, and BlackBoxEvent. Although, all the 

examples discussed in this chapter involve transformations of the “Reaction” 

type, all types are handled in the same way with the same results. Ordered 

groups of RLEs, that together carry out a biological process, constitute 
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Pathways. PEs are the participants in these events. PE types include 

SimpleEntity for chemicals, EntityWithAccessionedSequence for proteins, 

Complex for multi-molecular structures and EntitySet for PEs grouped 

together on the basis of their shared function.  

6.2. MOVING FROM A RELATIONAL TO A GRAPH DATABASE 

Model persistence can be achieved with flat files, a relational database, or a 

non-relational database such as a graph database. The choice of storage 

mechanism determines how data are physically stored and accessed. 

Consequently, each of these options has strengths and weaknesses in terms of 

performance and scalability.  

Until recently, Reactome relied on a MySQL relational database for both 

storing its content during curation and accessing it in the production phase. 

Factors that contributed to this decision included (i) use of ontology editor 

Protégé (http://protege.stanford.edu) as the curator tool during Reactome's 

early years with a Perl script processing the Protégé files to store content into 

a MySQL database, which was modelled according to the Protégé schema, (ii) 

at the time a relational database met Reactome’s needs for data integrity and 

consistency, and (iii) relational databases were well established for biological 

data whereas graph based solutions were hardly used in the field [Have and 

Jensen 2013; Henkel et al. 2015].  

As a result of these factors, when Reactome’s relational database was 

implemented, the physical design was optimised for flexibility rather than 

performance. The relational design incorporated an increased level of 

abstraction to allow easier adoption of new concepts but at the expense of 

increased complexity and consequent query execution time. It should be 

underlined that as the graph database natively stores Reactome content in a 
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graph model, this trade-off between flexibility and performance is no longer 

necessary. 

6.2.1. THE GRAPH IMPORTER 

Graph databases have only recently become a popular technology for use in 

the area of computational biology. Henkel et al. proposed the concept of using 

graph databases for storage and retrieval of computational models 

representing biological systems [Henkel et al. 2015]. Summer et al. developed 

a Cytoscape application that takes advantage of the Neo4j database to perform 

server-side analysis of large and complex biological networks [Summer et al. 

2015]. In [Lysenko et al. 2016] the authors explored the potential of using a 

graph database to facilitate data management and analysis to provide 

biological context to disease-related genes and proteins. Toure et al. 

developed a Java-based framework that transforms biological pathways 

represented in SBGN format into the Neo4j graph database, enabling more 

powerful management and querying of complex biological networks [Toure 

et al. 2016]. Balaur et al. demonstrated that advanced exploration of highly 

connected and comprehensive genome-scale metabolic reconstructions can 

benefit from an integrated graph representation of the model and associated 

data [Balaur et al. 2017]. Swainston et al. described biochem4j, which enables 

complex queries by linking a number of widely used chemical, biochemical 

and biology resources within a graph database [Swainston et al. 2017].  

Recognising the potential value of graph databases, the author considered the 

possibility of gradually moving the production server from using the relational 

database to be based on a Neo4j graph database (https://neo4j.com/). Neo4j is 

an open source, transactional and ACID (Atomicity, Consistency, Isolation, 

and Durability) compliant graph database [Robinson et al. 2013]. Native 

graph databases, such as Neo4j, naturally store, manage, analyse, and use data 
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within the context of connections to improve performance and flexibility 

when handling highly interconnected data compared to that in SQL. Neo4j’s 

greatest advantage and probably its most defining feature is Cypher: a 

declarative, pattern matching query language, specifically designed for 

dealing with graph data structures [Lal 2015; Neubauer et al. 2010]. 

Figure 6.1 provides a simplified example where reactions only contain lists of 

reactants and products, instances of the PE class. In the relational use case, 

two junction tables, Reaction-input and Reaction-output, are required to 

model these many-to-many relationships (Figure 6.1a). Each junction table 

contains foreign keys of the Reactions and the associated PEs. The SQL query 

to retrieve input and output entities of a given reaction requires two join 

operations per junction table (Figure 6.1b). In the first stage of its execution, 

each join operation forms the cartesian product between the tables and, during 

the filtering process, all rows of the result set that are not of interest are 

discarded. 

The same structure of a reaction with inputs and outputs can be modelled in a 

simpler way with Neo4j, as exemplified by the reaction presented in Figure 

6.1c. The reaction (green node), contains named outgoing relationships to 

corresponding input and output entities (purple nodes). Taking advantage of 

Cypher, the same query can be written in a shorter but more intuitive manner 

thanks to its ASCII-Art syntax [Vukotic et al. 2015] to represent patterns 

(Figure 6.1d). The query describes a pattern that includes a Reaction, 

identified by its identifier, with its associated outgoing input and output 

relationships. Finally, all nodes matching the specified pattern are returned. 
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Figure 6.1. A simplified example where reactions only contain reactants and products 

represented by the class PhysicalEntity. (a) In the relational use case, two junction 

tables are required to model these many-to-many relationships (b) SQL query used to 

retrieve input and output entities of a given reaction where two join operations are 

needed per junction table. (c) The same reaction modelled as a graph. The reaction 

(green node) contains named outgoing relationships to corresponding input and output 

entities (purple nodes). (d) The same query written in Cypher illustrating a 

comparatively short and intuitive style [Fabregat et al. 2018]. 
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The Reactome knowledgebase has many use cases similar to the example 

presented in Figure 6.1, where the use of a graph model combined with the 

Cypher query language can greatly improve response times and simplify the 

code required to access the data. For instance, recursively retrieving all the 

reactions of a pathway, retrieving the participants of a reaction or a pathway, 

deconstructing a complex or a set into its participating molecules, or 

enumerating the chain of consecutive reactions that lead to the formation of a 

signalling complex are common use cases that benefit from traversing the 

Reactome graph database rather than its MySQL counterpart. 

Since their introduction in the 1970’s, relational database engines have been 

optimised to provide efficient execution of SQL queries. This is particularly 

the case with global queries that aggregate large amounts of data without the 

need to perform any traversal operations. However, Reactome data contain 

many relationships, like those illustrated in Figure 6.1, and thus many join 

tables. Consequently, queries generally require traversal operations, a 

computationally intensive task that tends to result in poor performance 

compared to graph databases [Vicknair et al. 2010]. To address this issue and 

improve query performance, some resources have created redundant 

denormalised copies of their relational database [Birney et al. 2004, Eppig et 

al. 2015, Štefanič et al. 2015]. Nowadays, graph databases, such as Neo4j, 

offer a more appropriate alternative for cases of highly interconnected data. 

The graph database batch importer (https://github.com/reactome/graph-

importer) was developed to migrate the content from the relational database 

used in curation, to a graph database during each quarterly release process. 

Although the underlying data storage was changed, the original data model, 

also used in the MySQL database, was retained. The conversion was done 

following a depth-first approach starting from the top-level pathways and 
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traversing all the content, ensuring that each object is processed only once 

during the conversion. Every object constitutes a node in the graph and the 

edges that connect the nodes correspond to the names of the slots as defined 

in the domain model (Figure 6.2). The result is the generation of a Neo4j graph 

database that contains Reactome data. This can be directly queried by third 

parties using Cypher to retrieve target data. 

 

Figure 6.2. Representation of the content migration to the graph database. The 

example shows a Reaction class reduced to its inputs, outputs, catalyst and regulators. 

A model class instance is converted to a graph database node where (1) slots with 

primitive value types become node properties and (2) slots allocating instances of 

another class become relationships [Fabregat et al. 2018]. 
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A number of tests were developed to ensure that both the Reactome graph and 

relational database have the same content after conversion. These tests are 

part of the graph-core and are executed after migration of the relational 

database to the graph database. Their purpose is to ensure that the data has 

been properly stored. The tests include checks to verify: (i) that the number of 

top level pathways present in the graph database corresponds to the number 

of those present in the relational database, (ii) that a given pathway in the 

graph database has the same ancestors as its counterpart in the relational 

database and (iii) that the content of a given complex is the same in both 

databases. 

6.2.2. DATA INTEGRITY, CONSISTENCY AND QUALITY ASSESSMENT  

Determining the quality of data provided by a company or a resource such as 

Reactome is challenging. Currently, most data quality measures are developed 

on an ad hoc basis to solve specific problems [Pipino et al. 2002] but in general 

there are three important aspects to consider: (i) data quality, (ii) data integrity 

and (iii) data consistency. 

Data quality is a multi-dimensional concept. Data providers must consider 

both the subjective perceptions of individuals consuming the data and 

objective measurements based on the data set in question [Pipino et al. 2002]. 

Subjective data quality assessments reflect the needs and experiences of 

stakeholders (e.g. the collectors, custodians, and consumers of data products). 

Objective assessments can be task-independent or task-dependent. Task-

independent metrics reflect states of the data without the contextual 

knowledge of the application, and can be applied to any data set, regardless 

of the tasks at hand. Task-dependent metrics, which take into account the 

organisation’s business rules, company and government regulations, and 

constraints provided by the database administrator, are developed in specific 
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application contexts. Although these data quality metrics are out of the initial 

scope of this thesis, the development of the graph database provides the means 

to build a dashboard-like system where data quality could be measured 

following these principles. 

Data consistency in database systems refers to the requirement that any given 

database transaction must change the relevant data only in allowed ways. Data 

written to the database must be valid according to all defined rules, including 

constraints, cascades, triggers, and any combination thereof. 

Data integrity refers to maintaining and ensuring the accuracy and consistency 

of data stored in a database, over its entire life-cycle. This is a critical aspect 

of the design, implementation and usage of any system which stores, 

processes, or retrieves data. In its broadest use, ‘data integrity’ refers to the 

accuracy and consistency of data stored in a database, data warehouse, data 

mart or other construct. The term ‘data integrity’ can be used to describe a 

state, a process or a function and is often used as a proxy for ‘data quality’. 

Data with ‘integrity’ is said to have a complete or whole structure. Data values 

are standardised according to a data model and/or data type. All characteristics 

of the data must be correct (including business rules, relations, dates, 

definitions and lineage) for data to be complete. Data integrity is imposed 

within a database when it is designed and is authenticated through the ongoing 

use of error checking and validation routines. As a simple example, to 

maintain data integrity numeric columns/cells should not accept alphabetic 

data. 

When data integrity and consistency concepts are correctly applied in a 

systematic way, the need of defensive programming when data is retrieved 

from the database is reduced or becomes unnecessary. Defensive programing 
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is a form of defensive design intended to ensure the continuing function of a 

piece of software under unforeseen circumstances. If data is systematically 

consistent across the database, when retrieving data for required slots does not 

require to check whether they are ‘null’ or not simply because that will not be 

the case. Avoiding defensive programming when consuming the database 

content reduces the code base keeping it easy to follow and therefore eases its 

future extension and maintenance. 

 

Figure 6.3. Example of data quality test written in Cypher. Reports Reaction class 

instances where none of its inputs, catalyst or regulators match with any of the outputs 

of its preceding event. 

Once Reactome data was available in a Neo4j graph database, it became 

possible to use Cypher to query that data in an easier and more comprehensive 

way. In addition, the syntax of the new query language opened the door to 

systematically elaborate advanced queries to identify data inconsistencies 

and/or incomplete annotations. It is important to note that these queries could 

have been written against the relational database, but this was sufficiently 

challenging that it was never attempted. Construction of the appropriate SQL 

queries against the relational database built from Protégé files was a 

complicated task and Reactome developers found it necessary to write 

elaborate scripts to track down data quality issues. Appendix A contains a 
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subset of the Cypher queries developed for data quality checks over the graph 

database, namely: 

● Event class instances which preceding events have an ongoing 

relationship pointing to them (Appendix A.1). 

● Object pairs that reference each other, excluding 'author', 'created', 

'edited', 'modified', 'revised', 'reviewed', 'inferredTo' and 

'precedingEvent' slots, i.e. the objects have a cyclical relationship 

(Appendix A.2). 

● CandidateSet class instances where 'hasMember' and 'hasCandidate' 

slots reference the same object (Appendix A.4). A given 

PhysicalEntity class instance cannot be member and candidate of a 

CandidateSet at the same time. 

● CatalystActivity class instances where 'physicalEntity' and 

'activeUnit' point to the same Complex class instance (Appendix A.5). 

The ‘activeUnit’ slot is not required in a CatalystActivity class 

instance unless it contains a subset of the object pointed in the 

‘physicalEntity’ slot. 

● Objects containing duplicated instances in multivalued slots that 

should not contain duplicates (i.e. members of an EntitySet or 

candidates in a CandidateSet) (Appendix A.5). 

● Orphan events, i.e. events that have no hierarchical route connecting 

them to a top level pathway (Appendix A.6). 

● ReactionLikeEvent class instances whose inputs, catalyst and 

regulators do not match any of the outputs of their annotated 

preceding events (Figure 6.3 and Appendix A.7). The 

‘precedingEvent’ slot in a ReactionLikeEvent class instance is meant 
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to point to another instance of this class that occurs one step earlier in 

the series of events forming the pathway. 

● Duplicated Complex and EntitySet class instances, i.e. two objects 

represent the same biological complex or set, in the same 

compartment (Appendix A.8). This happens when curators create an 

instance of a complex that already exists instead of reusing the 

existing one. 

● Event class instances without regulator where the associated 

'compartment' is not present in any of the participating molecules 

(Appendix A.9). The ‘compartment’ of a given reaction has to match 

with at least one of its participants. 

The quality assessment project was first implemented for Reactome release 

56 and has been run at each subsequent release. Reactome editorial staff use 

the results to report the identified instances to the curator responsible for 

checking and correction, to ensure high-quality content at each release. 

6.2.3. NEW SOFTWARE ECOSYSTEM BASED ON THE GRAPH DATABASE 

Before the graph database was made available, Reactome content was stored 

in MySQL and, thus, Reactome projects were built on top of this database. 

The GKInstance library for Java was used to access the data. This library was 

designed taking into account genericity over performance. It features a class 

called GKInstance that behaves as a placeholder for any class inheriting the 

abstract root class in the Reactome database (DatabaseObject - 

https://reactome.org/content/schema/DatabaseObject).  

The GKInstance library allows developers to retrieve a set of objects 

belonging to a given class or sharing a set of properties. Additionally, single 

DatabaseObject class instances can be loaded using their database identifier 

(dbId). In both cases, these basic loading features only retrieved a handful of 
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single valued slots such as dbId, displayName or schemaClass. Once an object 

was loaded, retrieving the data in other fields required the developer to 

explicitly call a series of methods. To ensure success when calling these 

methods, the developer needed to write additional code to check whether the 

object SchemaClass was as expected and therefore would include the slots 

containing the data to be retrieved. In addition, most GKInstance methods 

handling data retrieval throw checked exceptions, making it mandatory to 

handle them. These constraints forced developers to write lengthy code for 

even the most basic actions over the MySQL database, creating an 

unnecessary boilerplate that hides the actual script purpose under a forced 

code scaffolding, resulting in very difficult to follow and maintain code. 

 

Figure 6.4. A schematic diagram of the new software ecosystem. The relational 

database is converted to a graph database via the batch importer that relies on the 

Domain Model. Spring Data Neo4j and AspectJ are two main pillars for the graph-

core, which also rests on the Domain Model. Users access services or use tools that 

make direct use of the graph-core as a library that eliminates the code boilerplate for 

data retrieval and offers a data persistency mechanism. Finally, export tools take 

advantage of Cypher to generate flat mapping files [Fabregat et al. 2018]. 
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After creating the graph database, the next requirement was to provide a new 

means of accessing the data, replacing the former GKInstance library. A new 

Java library named graph-core (https://github.com/reactome/graph-core) was 

developed to serve as a data access layer. The aim of this library was to 

provide easy access and data persistence as well as to reduce boilerplate code 

in third party projects that need to access and traverse Reactome content.  

The graph-core uses Spring Data Neo4j (SDN) [Hunger 2016] to access graph 

content and AspectJ to enable lazy loading [Laddad 2010]. Lazy loading 

commonly refers to a design pattern that postpones the retrieval of object 

attributes until the point at which they are needed.  

In this case, AspectJ weaver is used to intercept the getter methods and run 

specific code to silently retrieve more data when needed. Figure 6.4 presents 

a schematic illustration of the new Reactome graph database ecosystem. 

The Content Service (https://reactome.org/ContentService) is a REST based 

web service [W3C 2004] built on top of the graph-core to provide 

programmatic access to the Graph Database for third party developers 

(https://github.com/reactome/content-service). Implemented using Spring 

MVC (https://spring.io/), the Content Service utilises the graph-core library 

and is fully documented with Open API (https://www.openapis.org/) (Figure 

6.5). The Content Service provides equivalent methods to its predecessor and 

a set of new methods developed to cope with requests from external and 

internal users. 
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Figure 6.5. Content Service documentation page. The methods available are grouped 

under categories such as entities, events, orthology, participants, query, etc. This view 

shows the methods available under the query category. Each method is fully 

documented. When expanded, OpenAPI offers the possibility of using them directly 

in the interface, for testing purposes  (https://reactome.org/ContentService/#/query). 
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6.2.4. RESULTS AND DISCUSSION 

One of the main advantages of this new solution is that it is faster and less 

computationally intensive than previous methods that were based on the 

relational database. Performing queries against the graph database constitutes 

a more scalable approach, resulting in higher throughput and ultimately a 

more robust Content Service, able to cope with an ever-increasing number of 

requests. Additionally, the resulting product is easier to maintain; most new 

methods can be added by simply writing the respective Cypher queries, 

avoiding the need to write complex algorithms (Figure 6.1b). 

 

Figure 6.6. Examples of frequent use cases that can be answered using Cypher 

queries. (a) Retrieving the participating molecules for “Interleukin-4 and 13 

signalling” pathway. (b) Retrieving the pathways in which CCR5 participates 

[Fabregat et al. 2018]. 

The use cases in Figure 6.6 aim to emphasise how Reactome data queries have 

been simplified by the adoption of the graph database and they are available 

as methods in the Content Service API 

(https://reactome.org/ContentService/). In particular, the query in Figure 6.6a 

shows how participating molecules for a pathway can be retrieved. The 

reverse query, identifying pathways where a molecule participates, is shown 

in Figure 6.6b. It uses a similar pattern to Figure 6.6a, but fixes the molecule 
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identifier for the reference entity so the pathways containing it can be 

populated after traversing. 

To assess the improvements, a set of stress tests was designed to measure the 

impact of adopting the graph database in Reactome. All stress tests were 

executed on a standard laptop featuring an Intel Core i7 at 2.6 GHz, 16 GB of 

DDR3 memory at 1,600 MHz, and 256 GB of flash storage. The tests do not 

aim to compare the two storage technologies (MySQL and Neo4j) but instead 

their usage by Reactome. The stress tests were run against the web services 

build on top of each storage technology and included two scenarios: (i) 

simulation of one user sequentially querying 5,000 reactions for Homo 

sapiens and (ii) simulating an increasing set of users simultaneously 

performing the previous task. In each case the resulting data for every reaction 

had to be marshalled as an instance of the correspondent model class. The test 

comprised four executions; two against the previous web service running on 

top of the relational database and two accessing the new web service running 

on top of the graph database through the newly created graph-core library 

(https://github.com/reactome/graph-core). Reactions were accessed in a 

sequential fashion to ensure that caching would not provide an advantage for 

either approach. Sequential access ensures that a queried object will never be 

retrieved more than once in the same test. It should be mentioned that prior to 

execution of the stress tests both Neo4j and MySQL databases were 

configured to allocate 50% of the available physical memory (8 GB). 
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Figure 6.7. Comparison of the response and elapsed time for one user sequentially 

retrieving 5,000 reaction instances from the graph and relational databases (blue and 

orange respectively). The graph database software ecosystem achieved a 93% average 

improvement in performance compared to that of the relational database [Fabregat et 

al. 2018]. 

As illustrated in Figure 6.7, querying the data stored in the relational database 

resulted in significantly longer response times. In particular, in the case of the 

relational implementation of the Reactome knowledgebase, the average query 

time was 173.11 ms (±25.81) while in the case of the graph implementation, 

the average response time dropped to 12.56 ms (±2.94), a 93% reduction in 

average query time. The new implementation supported higher throughput in 

terms of transactions per second (TPS), reaching 79.5 TPS compared to 5.8 

TPS. As a result of this boost in performance, all 5,000 queries to the graph 

database were performed in 63 seconds; the relational implementation 

required more than 14 minutes to complete the same task. 
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Figure 6.8. Response time versus an increasing set of users simultaneously 

performing queries for 5,000 reaction instances. Starting with one and scaling up to 

20 concurrent users, the relational database performance drops while the graph 

database keeps a low response time and a good throughput as the number of active 

threads increases [Fabregat et al. 2018]. 

A second stress test simulated a more realistic scenario where multiple users 

perform concurrent database queries (Figure 6.8). Once again, querying the 

Reactome knowledgebase in its relational implementation resulted in 

significantly longer response times. For instance, in case of 10 concurrent 

threads performing queries to the relational implementation of the Reactome 

knowledgebase the average response time was 1,516 ms, while in the case of 

the graph implementation, the average response time dropped to 49.05 ms. In 

addition, the new implementation achieved higher throughput reaching 203.6 

TPS compared to 6.6 TPS. Consequently, the graph implementation of 

Reactome provides higher scalability enabling Reactome to handle larger 

volumes of user requests. 
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Figure 6.9. Throughput measured in transactions per second, versus the number of 

users concurrently performing queries for 5,000 reaction instances in Homo sapiens 

[Fabregat et al. 2018]. 

Figure 6.9 presents a comparison between the throughputs achieved by both 

systems against the number of users performing concurrent queries. The graph 

implementation achieved a higher number of transactions per second that 

reached a plateau after the point where the number of active threads becomes 

equal to the available processor cores, in this case 4. In comparison, the 

measured throughput of the relational implementation does not seem to be 

improved by the availability of multiple processor cores. 

Reactome usage statistics show that a growing number of users download the 

Reactome graph database. Based on questions received by Reactome’s help 

desk service, it is believed that users are regularly performing local Cypher 

queries against the complete Reactome knowledgebase. During the first year 

that the Reactome graph database was available there were 2,385 downloads 

by 912 unique users. 118 of these users downloaded the graph database after 

each data release. It is noteworthy that at the time of writing the size of the 
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Reactome relational database (release v63) is around 2.1 GB while the size of 

the graph database is approximately 1.9 GB. Figure 6.10 provides a summary 

of the graph database. 

 

 

Figure 6.10. The Reactome graph database in numbers for the total size, the number 

of nodes, relationships, node types, relationship types and property keys (adapted 

from Fabregat et al. 2018, updating the numbers for version 63). 

With a powerful tool for managing highly connected data sets and complex 

queries at its disposal, Reactome is able to provide faster and more stable 

services to researchers around the world. In the near future, Reactome plans 

to upgrade its services and leverage the full potential of Cypher to answer 

questions that require deeper examination of its data. In particular, the 

integration of a graph database lowers the complexity of problems that require 

traversing the knowledgebase, such as identifying causal interactions or 

revealing all possible paths between two molecules. 
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The creation of the graph database has also made possible new set of data 

quality checks that have revealed previously-unidentified data consistency 

issues. Once visible, Reactome curators have been able to address the issues 

and eliminate them before making the data public. 

Future development in Reactome is unlikely to be negatively influenced by 

the fact that Neo4j is by nature schema-less, mainly because the rigid schema 

of Reactome relational database, with all the applied constraints, is used to 

ensure data consistency during the curation phase. As already mentioned, 

currently, data are migrated to Neo4j during each quarterly release process 

and are used to speed up queries in production.  

In conclusion, through the adoption of the Neo4j graph database, which allows 

the power of its query language to be harnessed, Reactome provides efficient 

access to its pathway knowledgebase. As a result of this shift in the underlying 

data storage technology, the average query time has been reduced by up to 

93%. In addition, the graph-core library and the Content Service leverage the 

benefits of this shift and can be used by third party applications to efficiently 

access Reactome. 

 

6.3. SUMMARY 

The Reactome data model perfectly fits with the definition of a directed graph. 

By migrating its content to a Neo4j graph database, the resource could benefit 

of the advantages that this technology offers to better support genome 

analysis, modelling and systems biology. Therefore, the graph-importer was 

developed to migrate the Reactome content from the relational database used 

in curation to a graph database during each quarterly release process. This 

conversion was done following a depth-first approach starting from the top-
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level pathways and traversing all the content, ensuring that each object is 

processed only once during the conversion.  

A new software ecosystem was developed on top of the graph database. A 

new java library, graph-core, was developed to act as the data access layer and 

cope with the concept of data persistence. This library transparently retrieves 

data to make it available when needed and reduces the boilerplate code. A 

new RESTful service, named Content Service, was developed to provide 

programmatic access to the community, containing similar methods to its 

predecessor plus a new set of advanced methods to cope with users requests. 

The new graph database has two main advantages; higher performance and 

simpler ways to perform complex queries. This has also made possible new 

set of data quality checks that have revealed previously-unidentified data 

consistency issues. Reactome now provides efficient access to its pathway 

knowledgebase and as a result of this shift in the underlying data storage 

technology, the average query time has been reduced up to 93%. In addition, 

the graph-core library and the Content Service leverage these benefits of this 

shift and can be used by third party applications to efficiently access 

Reactome. 
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7. CONCLUSIONS 

The work presented in this thesis approaches the performance optimisation of 

biological pathway data storage and retrieval as well as its interactive 

visualisation. Different problems for pathway data storage, analysis and 

visualisation have been addressed by studying and applying a variety of 

techniques and concepts in both server and client side. Although the proposed 

strategies, development frameworks, data structures, libraries and storage 

management system have been applied to Reactome, they can also be applied 

to other similar resources in order to achieve analogous results in performance 

and visualisation improvement. 

The Pathway Browser is Reactome’s primary means of viewing and 

interacting with its data. A new version of it was re-engineered to provide a 

responsive, easy to use, long-lasting and large-scale tool. The main goal was 

offering a good user experience by reducing the loading time and providing a 

more attractive user interface. The new version of the Pathway Browser was 

developed using the MVP software layout pattern. Excessive memory usage 

was avoided by loading objects on demand and caching them in an LRU list 

with a maximum capacity defined. A State Manager was put in place to 

maintain the internal application state and allow users to take advantage of the 

existing browser history management features. Third party widgets were used 

when available, and a number of modules were developed as widgets. These 

retrieve data from third party resources and show their content based on items 

selected in the Pathway Browser. 

Through the use of highly optimised, in-memory data structures and 

algorithms, a stable, high performance pathway analysis service was 

developed to enable the analysis of genome-wide datasets within seconds, 
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allowing interactive exploration and analysis of high throughput data. This 

was achieved by splitting the pathway analysis method in four steps, in a way 

that every challenge can be easily addressed in polynomial time using the 

appropriate data structures, speeding up the process and minimising the 

memory usage, so the whole data structure can be kept in memory for a high-

performance analysis. The result is a new set of Analysis Tools which vastly 

improve Reactome analysis interface performance and stability. A new 

RESTful web service was developed to support the high-throughput pathway 

analysis. This service is documented in detail and allows the use of the 

Reactome server for batch dataset analysis. A pathway analysis data 

submission interface was integrated into the Pathway Browser to facilitate 

users performing analysis and display the results in that tool. 

A representation of the complex parent-child relationships present in 

Reactome’s hierarchical organisation was created to provide a means of easily 

navigating these data and overlaying analysis result in a way that the user can 

easily distinguish the most significant areas of biology represented in their 

data. A custom radial layout algorithm was developed to produce the desired 

result. Finally, a widget was developed to interactively render the Pathways 

Overview and overlay the analysis results. 

A new version of the pathway Diagram Viewer was developed to boost 

performance and improve usability through the use of highly optimised data 

structures and algorithms. The new version provides a robust, scalable 

solution to pathway visualisation that is easily integrated into third party 

applications. It accomplishes loading and rendering of 97% of the diagrams 

in Reactome in less that 1 s (versus 57% previously); 74% of the total number 

of diagrams are loaded and rendered in under 0.5 s (versus 31% previously). 

Visual appeal and navigability issues of previous Reactome diagrams have 
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been addressed by the introduction of Enhanced High Level Diagrams, which 

represent biological processes in a familiar textbook style that allows intuitive 

navigation to more specific subtopics. In addition, the Reactome pathway 

iconography library provides graphical representations of common molecular 

biology elements suitable for use in slides and publications. Finally, classic 

pathway diagrams can now be exported in PPTX format, allowing their 

editing and reuse with familiar presentation software. 

The Reactome content was moved from a relational database to a graph 

database (Neo4j) to benefit from the advantages that this technology offers to 

better support genome analysis, modeling and systems biology. A new 

software ecosystem was developed on top of the new graph database where 

the graph-core, a java library, is the data access layer that copes with the 

concept of data persistence. A new RESTful service, the Content Service, was 

also made available to provide programmatic access to the community. These 

changes result in an efficient access to Reactome content and as a result of 

this shift in the underlying data storage technology, the average query time 

has been reduced up to 93%. In addition, the graph-core library and the 

Content Service leverage the benefits of this shift and can be used by third 

party applications to efficiently access Reactome. 

As a consequence of this work there is a plan to modify the pathways analysis 

tools to allow the use of post-translational modifications to differentiate 

different variants of same protein. The Pathways Overview and Diagram 

Viewer widgets will also be updated to reflect these changes. The graph-core 

will focus on updating the SDN version and integrating interaction data from 

IntAct (http://www.ebi.ac.uk/intact/). 

Finally, the achievements and conclusions in this thesis demonstrate the major 

impact achieved with the reengineering of the main components of Reactome, 
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including moving the Reactome public database to a graph database and the 

software layer to manage these data. Although this resulted in a great boost in 

performance and improved visualisation, this should be considered as an 

initial milestone, setting a robust fundations for further development and the 

potential for entirely new functionalities in the growing ‘omics ecosystem, 

pathways databases and network-oriented biomolecular data resources. The 

author would like to invite the community to use the open data Reactome 

graph database and the associated infrastructure improvements to develop 

their own novel uses of Reactome data and consider the software engineering 

approaches discussed above. 
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A. QUERIES FOR DATA QUALITY ASSESSMENT 

Tests for data integrity are performed when the content of the relational 

database is converted to a graph database using the graph-importer. Once the 

graph database is available, the graph-qa tests for data consistency and quality 

tests are executed. As the code might be included in a future publication, at 

present the graph-qa project is a private project in the Reactome GitHub 

repository (https://github.com/reactome/graph-qa). To counteract the 

accessibility problem, this appendix contains a subset of Cypher queries 

developed for data quality checks over the graph database. 

 

 
A.1. Event class instances which preceding events have an ongoing 

relationship pointing to them. 

 
A.2. Object pairs that reference each other, excluding 'author', 'created', 

'edited', 'modified', 'revised', 'reviewed', 'inferredTo' and 'precedingEvent' 

slots, i.e. the objects have a cyclical relationship. 
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A.3. CandidateSet class instances where 'hasMember' and 'hasCandidate' slots 

reference the same object (a given PhysicalEntity class instance cannot be 

member and candidate of a CandidateSet). 

 

 
A.4. CatalystActivity class instances where 'physicalEntity' and 'activeUnit' 

point to the same Complex class instance (‘activeUnit’ is not required unless 

it is a subset of the ‘physicalEntity’). 

 

 
A.5. Objects containing duplicated instances in multivalued slots that should 

not contain duplicates (i.e. members of an EntitySet or candidates in a 

CandidateSet). 
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A.6. Orphan events, i.e. events that have no hierarchical route connecting 

them to a top level pathway. 

 

 
A.7. Reaction class instances whose inputs, catalyst and regulators do not 

match any of the outputs of their preceding events. 

 

 

 

 

 



 A. Queries for data quality assessment 

 

164 

 

 
A.8. Duplicated Complex class instances, i.e. two objects represent the same 

biological complex in the same compartment. 

 

 

 
A.9. Event class instances without regulator where the associated 

'compartment' is not present in any of the participating molecules 
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Reactome pathway analysis: a high-
performance in-memory approach
Antonio Fabregat1,2, Konstantinos Sidiropoulos1, Guilherme Viteri1, Oscar Forner1, Pablo Marin-Garcia3,4,
Vicente Arnau5,6, Peter D’Eustachio7, Lincoln Stein8,9 and Henning Hermjakob1,10*

Abstract

Background: Reactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway
knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis
methods have a broad range of applications in physiological and biomedical research; one of the main problems, from
the analysis methods performance point of view, is the constantly increasing size of the data samples.

Results: Here, we present a new high-performance in-memory implementation of the well-established over-
representation analysis method. To achieve the target, the over-representation analysis method is divided in four
different steps and, for each of them, specific data structures are used to improve performance and minimise the
memory footprint. The first step, finding out whether an identifier in the user’s sample corresponds to an entity in
Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals,
their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The
third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.

Conclusion: Through the use of highly optimised, in-memory data structures and algorithms, Reactome has
achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets
within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway
analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic
access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open
source project and all of its source code, including the one described here, is available in the AnalysisTools
repository in the Reactome GitHub (https://github.com/reactome/).

Keywords: Pathway analysis, Over-representation analysis, Data structures

Background
Reactome (http://reactome.org) is a free, open-source,
curated and peer-reviewed knowledge-base of biomolecular
pathways. It aims to provide bioinformatics tools for visual-
isation, interpretation and analysis of pathway knowledge
to support basic research, genome analysis, modelling,
systems biology and education.
Nowadays, pathway analysis methods have a broad

range of applications in physiological and biomedical

research. On the one hand, based on a given dataset,
these methods help researchers to discover which areas
of biology, and biomolecules, are crucial to understand
the phenomena under study. On the other hand, path-
way analysis methods should never be taken as black
boxes from where experimental data goes in, and true
statements come out, but perhaps more as metal detec-
tors in haystacks helping researchers to find biologically
meaningful needles [1].
Pathway analysis methods are mainly used to analyse

Omics data obtained from high-throughput technolo-
gies. Since the size of the data samples is constantly
increasing [2, 3], Reactome offers a set of pathway ana-
lysis tools which aim to deal with this scenario and yet
provide reliable and accurate results with interactive
(seconds) response time for genome-wide datasets.
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Here, we are discussing the high performance Reac-
tome implementation of the well established over-
representation analysis (ORA) method [4], focussing on
the computer science aspect, elaborating on the different
data structures and design patterns used to optimise the
execution time and reduce the server load.
Initially the focus is on the strengths and weaknesses

of keeping the data directly in a relational database and
its usage to perform in-database analyses. Then we
continue with a detailed explanation of the new pathway
analysis approach, and conclude with the presentation of
the results and the discussion.

The relational databases approach
Relational databases are widely used in pathway
knowledge-bases for data management; either during
curation, the release process or in the final production
phase. It is also very common to store the information
in third normal form due to its convenience for data
integrity assurance [5–7].
Relational databases in their third normal form can be

efficient in computational terms. For the above men-
tioned use cases, however, this approach greatly slows
the execution of analysis algorithms, due to the size of
the temporary tables for the queries and later projec-
tions. For this reason database-based analysis approaches
use denormalised versions of the databases instead [8].
The denormalisation process replicates a lot of data to
speed up the queries but it may penalise analysis execu-
tion time as the original database content grows bigger.
Focusing on the computational side of the problem,

the query containment problem is undecidable for rela-
tional algebra and SQL, but is decidable and NP-complete
for conjunctive queries. In fact, the query containment
problem for conjunctive queries is exactly the same prob-
lem as the query evaluation problem [9]. When queries
tend to be small, NP-completeness is usually considered
acceptable but its performance falls when queries tend
to be big. In addition, it is also worth considering that
creating intermediate tables in memory after executing
a “join” statement is one of the heaviest operations for
a database engine.
Reactome’s previous implementation of the pathway

analysis was based on a denormalised version of the
Reactome relational database. Among its limitations
were that it provided results only of the higher-level
pathways in Reactome, and the lack of programmatic
access. In addition, the previous implementation suffered
from poor performance mainly due to the fact that, on
every analysis request, it connected to the relational
database, rather than querying an intermediate in-
memory data structure. Thus, the response time of the
previous Reactome analysis could reach 5 min, as soon
as the user sample included a few hundreds of gene

identifiers, causing a high server load that, combined
with a number of concurrent analysis requests, affected
the stability of the Reactome website and often resulted
in outages.
In resources like Reactome, analyses use not only

curated data but also extra information and cross-
references to other resources that are included in the
final version of the database, for example to allow usage
of identifiers from other resources than the main ones
used by the curators to identify proteins, genes, micro-
RNAs or chemicals. Each major resource uses its own
conventions when assigning identifiers, so the problem
of mapping the various, potentially unstable, identifiers
that refer to identical entities, commonly known as
identifiers mapping, constitutes a major challenge. There
is a number of resources that aim to provide a solution
to this problem, most notably, the Protein Identifier
Cross-Reference (PICR) [10], BridgeDB [11] and UniProt
[12]. However, Reactome addresses this problem during
each release process by cross-referencing every curated
entity to other resources. In particular, based on the
UniProt or ChEBI identifiers of the curated entities,
filled in during curation, Reactome queries Orphanet,
Protein Ontology (PRO), IntAct, RHEA, DOCKBlaster,
FlyBase, The Human Metabolome Database (HMDB),
Zinc, KEGG, UniProt, ENSEMBL, BRENDA and IntEnz
to get their cross-references for entities annotated in
Reactome. Both, curated and cross-referenced identifiers
are included in the analysis lookup table, as explained in
the Implementation section.
As the amount of curated data in Reactome grows and

the number of cross-references increases due to the in-
clusion of new resources, the database-based approach
does not scale well, so there is a need to implement a
new approach to provide fast, accurate and reliable
analysis tools to the final users. This new approach is
based on the concatenation of different steps, each one
resolved via the appropriate data structure, as explained
in the next section.

Implementation
Identifying a convenient data structure to solve a given
problem is one of the main factors to achieve a high
performance final product. As Skiena explains in [13],
picking the wrong data structure for the job can be
disastrous in terms of performance but identifying the
very best data structure is usually not as critical, because
there can be several choices that perform similarly.
Based on the divide and conquer rule, the first step is

breaking down the analysis problem into different sub-
problems simple enough to be solved in polynomial time
by identifying a convenient data structure. Here, the
analysis algorithm can be split into four parts: (1) check-
ing whether the user’s protein/chemical identifiers are
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present in Reactome, (2) for the present ones, finding
whether these are parts of complexes and/or sets as well
as the species projection, (3) aggregating the found
identifiers in the pathways (and super-pathways) where
these are present and finally (4) performing the statis-
tical testing to calculate the likelihood that the associ-
ation between the sample identifiers and the found
pathway is due to random chance.
Further on in this section each part is discussed in

detail to determine its peculiarities; to expose the chosen
data structure and the mechanisms adopted for its
improvement; and to show how to connect each step to
the following one to come up with the final improved
analysis algorithm. Another point of emphasis for opti-
misation will be the memory usage of each step, so that
the filled data structures can be kept in memory to im-
prove the performance of the data traversing algorithms
implemented on top of them.

User sample identifiers search in Reactome
Annotated physical entities (PE) in Reactome can be
either single entities or complexes. Single entities include
proteins, small molecules, RNA, DNA, carbohydrates, or
lipids, whilst complexes consist of a combination of any of
the single entities, or polymers synthesized from the single
entities. However, apart from these two main categories,
curators in Reactome can group related entities into sets.
PEs are the building blocks that later on will be used as
inputs, outputs, catalysts or regulators in reactions.
Identifiers or accession numbers are used to unequivo-

cally refer to a single entity, but PEs have different slots
to hold the main identifier, secondary identifier, cross-
references, synonyms and other identifiers. The main
identifier slot is always manually annotated by the
experts who curate data in Reactome (curators), and the
other slots can either be manually filled during curation or
automatically populated during the release process. This
strategy allows storing identifiers for a wide range of

resources: UniProt, ChEBI, Ensembl, miRBase, GenBank/
EMBL/DDBJ, RefPep, RefSeq, EntrezGene, OMIM, Inter-
Pro, Affymetrix, Agilent, KEGG Compound, Illumina, etc.
Therefore, in the first part of the analysis, the main

requirement is to improve the process of finding out
whether each identifier in the user’s sample corresponds
to one or many PEs in Reactome. An identifier corre-
sponds to a PE if it matches with any of the identifiers
stored in the different slots mentioned afore. In fact, the
best way to solve this problem is by following the reverse
approach; creating a lookup table with all the correspond-
ing PEs per each identifier cross-referenced in Reactome.
As a consequence, another important requirement is to
minimise the memory usage so the data can be kept in
memory to improve the query time.
The selection of a good data structure is then deter-

mined by requirements both to implement a fast lookup
table and to keep memory usage low. A Trie is an or-
dered tree data structure that is used to store a dynamic
set or associative array where the keys are usually strings
[14]. A radix tree is a space-optimized Trie data struc-
ture where each node with only one child is merged with
its parent [15].
On the one hand, a radix tree has relatively low

memory usage for the lookup table because the common
prefixes are shared avoiding data duplication (Fig. 1). On
the other hand, the cost of comparing a search key for
equality with a key from the data structure can be a
dominant cost which cannot be neglected. The radix tree
string lookup algorithm fits the analysis algorithm’s
original purpose because iterating over tree nodes keeps
the identifier seeking time restricted to each identifier’s
length and existence in the Reactome target set. As a
consequence of this, in case the searched identifier is
not contained in the data structure, there is no need to
read all of it as happens in the hashing methods where
the hash value of the string has to be calculated in every
case by reading it entirely.

Fig. 1 Radix tree representation for the identifiers P60484, P60467, P60468, P29172, P11087, P11086, P10639, P10636, P10635, P10622, P10620,
P12939, P12938, P12931, P05480, P05386, PTEN
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In summary, once a tree node is reached following the
radix tree lookup algorithm for a given identifier, the
presence or absence of references to PEs indicates
whether the associated identifier is present or not in the
database. Actually, the mentioned “references to PE” are
indeed pointers to nodes in the data structure chosen
for the next part of the analysis.
Reactome uses unique primary identifiers for the PEs

it references, in particular UniProt for proteins and
ChEBI for chemical entities. Thus, if users submit
datasets using these reference systems, the mapping to
PEs is straightforward. However, following frequent
user requests, we also accept input data with non-
unique identifiers, in particular gene names. These are
then potentially mapped to multiple PEs. Thus, each
target node in the tree could contain more than one
pointer to the next data structure.

Traversing complexes/sets composition and species
projection
Reaching the associated single entity for a given identi-
fier is the beginning of the second step in the analysis.
When these single entities are part of a complex, they
are also a target in this step of the analysis. Besides the
single entities and complexes, there is another type of
PE called sets which, along with complexes, are also to
be considered. A set is an abstract representation of a
group of two or more entities which are not interacting
with each other but are functionally equivalent in the
situation where the set is used, for example multiple
members of a family of enzymes that could each poten-
tially catalyse a reaction. Furthermore, complexes and
sets can also contain other complexes and sets in order
to represent much more elaborate structures causing
the problem’s intricacy to grow.

Another specific requirement is the possibility of
performing species projection to collect the results for
Homo sapiens independently of the species for which
the identifiers are provided, to benefit from the more
complete Reactome annotation for Human. To do so,
the species orthologs annotated in Reactome have to
be taken into account. Orthologs are entities in differ-
ent species that evolved from a common ancestor by
speciation.
The last requirement in this step is to keep track of

the identifiers mapping between the submitted identi-
fiers and those used in Reactome to curate the single
entities: UniProt accessions for proteins, Ensembl
identifier for genes, CHEBI identifiers for small mole-
cules and miRBase for microRNAs. Although an im-
portant part of this mapping started by including the
known cross-references as identifiers in the radix tree
in the previous step, the mapping itself has to be imple-
mented in this step.
Summarising the exposed requirements for this step of

the analysis, the chosen data structure has to model the
entities composition problem, the species orthologs
projection and the entities mapping. A directed graph is
a graph, or set of nodes connected by edges, where the
edges have a direction associated with them. For a given
graph G with several nodes (a, b, c and d), if G has an
arrow from a to b and another arrow from b to c, then
the composed graph G2 has an arrow from a to c. If G
has an arrow from a to b, another arrow from b to c and
yet another from c to d, then the composed graph G3

has an arrow from a to d.
Building one graph per species (Fig. 2a) and intercon-

necting all of them linking all the ortholog nodes
(Fig. 2b) creates a bigger graph where the projection re-
quirement is then satisfied. Due to the node uniqueness

Fig. 2 Graph representation where P are proteins; C are complexes, S are sets and prime nodes are the same but for other species. a One species
graph. b Relation between two species. c Base node content
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in the final graph, for those cases where a node is part of
one or more structured entities, it contains as many
edges pointing to other graph nodes as structures in
which it is contained, so structured entities are easily
modelled. Finally, if each node of the graph contains its
associated entity main identifier (Fig. 2c), when it is
reached from a radix tree node representing an identifier
other than the main one, this association is stored in
order to be offered as part of the result as the required
mapping once the analysis is finished.
The graph in Fig. 2a shows three proteins (P1, P2 and

P3), two complexes (C1 and C2), and two sets (S1 and
S2). By following the edge from node to node, S2 could
be either P2 or P3, formally represented as [P2,P3]. C1 is
a complex which, due to its edge from S2, is then poten-
tially two complexes: {P1,P2} or {P1,P3}, represented as
[{P1,P2},{P1,P3}]. Following this deconstruction, S1 is
then [P1, {P1,P2}, {P1,P3}] and finally C2 is [{P1,P2},
{{P1,P2},P2}, {{P1,P3},P2}].
For instance, when an identifier matching with P3 is

processed and its corresponding node in the graph is
reached from the radix tree, it takes miniscule processing
time to traverse the graph and reach the nodes S2, C1, S1
and C2. Likewise, if the target protein is P1, the reachable
nodes following the graph edges are C1, S1 and C2. In
both examples each target protein is part of the complexes
and sets represented by the traversed nodes.
Employing a graph improves the analysis algorithm

cost and, important in building an in-memory analysis,
the memory usage is kept low because there is no data
duplication as the node for a given main identifier is
only in memory once. In addition, the final number of
node iterations of the algorithm is limited by the related
entities for a given identifier, avoiding queries against a
large amount of data and intermediate results merging,
as done in the database based approach.

As for the radix tree described above, the graph also
requires a strategy to allow the algorithm to move on to
the next analysis step. In this case, each graph node
representing an entity directly associated to one or
several pathways will contain as many links to the
following data structure as different locations where it is
present. Although in the current analysis step each
entity associated with the target identifier is found, for
the final result and the statistics calculation, there is still
one more data structure to be used, as explained in the
following sub-section.

Results aggregation into the pathways organisation
Every PE that was directly or indirectly hit in the
previous step is associated to one or more pathways. To
calculate the significance of each pathway, for a given
user sample, it is essential to determine the number of
entities found per pathway. Due to the parent-child or-
ganisation of the Reactome pathways in an ontology-like
hierarchy, when an entity is present in a certain pathway
it is also present in its super-pathways in a recursive
manner until a top-level pathway is reached (i.e. if a
protein is present in “Metabolism of carbohydrates”, it is
also present in “Metabolism”).
Taking into account the requirements previously dis-

cussed, a good data structure to model this step is a
double-linked tree, where each node represents a path-
way and contains links to its parent and children (Fig. 3).
When a node in the tree is hit, the action can be recur-
sively propagated all the way up to the root. To reduce
the memory footprint only identifiers, names and place-
holders for results calculation are kept in each node.
Apart from being a convenient data structure to speed

up collection of results and a good holder for the statis-
tics results, once the analysis is finished, this data struc-
ture can also be serialised to a file to persist the result.

Fig. 3 Double-linked tree to represent the event hierarchy in Reactome. The root node defines the species and its children represent the
different pathways and sub-pathways in Reactome. Each node contains the pathway identifier, name, the total curated entities and the
number of entities found in the user’s sample
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In addition, associating the file to a token provides an
easy way to create finer grained methods that allow
filtering of the result on the server side to help speeding
up light-weight clients. In this scenario, the clients can
keep the token once the initial analysis is finished and
depending on the user’s needs, perform several requests
to the server referencing the associated token.

Analysis result statistics calculation
The basic hypothesis in an over-representation analysis
is that relevant pathways can be detected if the proportion
of differentially expressed genes, within a given pathway,
exceeds the proportion of genes that could be randomly
expected [1]. Consequently, the fourth and last step in the
analysis method involves the statistics calculation. This
step does not require any extra data structure because the
double-linked tree fits perfectly to the purpose.

The p-Value shows the statistical significance of each hit
pathway for a given sample and the background for which
the analysis has been performed. In Reactome the method
used to calculate the statistical significance is the Binomial
Test. Together with the p-Value, the False Discovery Rate
(FDR) helps estimating the false positives and it is calcu-
lated using the Benjamini-Hochberg approach [16]. As
mentioned afore, we have focussed on optimising the per-
formance of the Reactome pathway analysis, while main-
taining the basic algorithm as previously published [17].

Results and discussion
This paper shows how splitting the pathway analysis
method in four steps, in a way that every challenge can be
easily addressed in a polynomial time using the appropri-
ate data structures, speeds up the process and minimises
the memory usage so the whole data structure can be kept

Fig. 4 Representation of two analysis use cases joining the different data structures. In red an analysis performed using the projection to human.
In green an analysis performed without projection
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in memory for a high-performance analysis. The result is
a new set of analysis tools which vastly improve Reactome
analysis interface performance and stability.
Summarising the steps (Fig. 4), for each identifier in the

user’s sample, the first action is to find whether it is
present in Reactome using a previously built radix-tree as
a look-up-table. This speeds up the process, keeping a low
memory footprint. For those that are present, the radix-
tree nodes point to one or many nodes in a graph which is
used as the second data structure to keep the curated rela-
tions between PEs as well as species orthology. Traversing
this second data structure, applying or not the projection
to species, provides pointers to all pathways stored in the
final data structure, which is a double-linked tree, that
helps aggregating the result and acts as a placeholder for
the last step when the analysis statistics are calculated.
The described method has been developed using Java

as programming language and can be downloaded from
https://github.com/reactome/AnalysisTools. This pack-
age contains two main modules; Core and Service. The
improved strategy has been developed in the Core,
where the analysis is executed. The Service module is a
Spring MVC (http://spring.io/) layer to create a RESTful
service with a documented API, using OpenAPI,
formerly known as Swagger v2.0 (http://swagger.io/),
providing programmatic access. Hence, there are two
ways of accessing the analysis tools; (1) programmat-
ically via a web service (http://reactome.org/Analysis
Service/) or (2) through a graphical user interface directly
integrated in Reactome’s Pathway Browser (http://reacto
me.org/PathwayBrowser/#/TOOL=AT).

The web service is used to integrate the analysis in
other system’s scripts, pipelines or to integrate the ana-
lysis in third-party applications. More information on
how to do so can be found in Reactome’s developer
zone (http://goo.gl/k5ffhu).
The pathway analysis approach described here is

deployed in the Reactome production web site, stably
handling on average 10.850 analysis requests from
2.000 unique users per month in the first half of 2016.
Memory usage for the Apache Tomcat running this ser-
vice plus other services in the server side is set to 2GB.

Comparison with other resources
Among the plethora of pathway databases [1], there are
resources with similar tools that perform over-
representation analysis. Most notably, Gene Set Enrich-
ment Analysis (GSEA) [18], the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID)
[19], the Protein Analysis Through Evolutionary Rela-
tionships (PANTHER) [20] and ConsensusPathDB [21]
are using similar statistical algorithms in their imple-
mentations and are freely available for academic use.
Table 1 presents a comparison among these resources.
For the comparison of processing time, only the first
column in the four test sets, containing the gene identi-
fiers, has been used. Reactome uses all genes annotated
in the knowledge base as the background distribution.
To our knowledge, this is also the approach used in the
comparator tools, and we have not used options for
custom background distributions, as statistics calculation
could take longer in this scenario.

Table 1 Comparison of resources providing analysis methods and accessibility
Resource Analysis

methods
Online
tool

Programmatic
access

Processing time

Hippocampal
atrophy -
79 genesa

Migraine disorder -
644 genesb

Parkinson’s disease -
1492 genesc

Multiple sclerosis -
2570 genesd

Inflammatory
bowel disease -
4110 genese

PANTHER ORA ✔ – ~2 s ~4 s ~6 s ~8 s ~12 s

Consensus
PathDB

ORA ✔ SOAP/WSDL ~1 min ~1 min ~3 min ~3 min ~1 min

DAVID ORA ✔ SOAP/WSDL ~4 s ~4 s for conversion
of official gene ids
to 7498 DAVID ids.
Analysis not
performed - sample
size limitation

~5 s for conversion
of official gene ids
to 17272 DAVID ids.
Analysis not
performed - sample
size limitation

~8 s for conversion
of official gene ids
to 29420 DAVID ids.
Analysis not
performed - sample
size limitation

Not performed -
sample size
limitation

GSEA ORA – – – – – –

REACTOME v1.0 ORA ✔ – ~2 min ~7 min ~12 min ~19 min ~25 min

REACTOME v2.0 ORA ✔ REST ~1 s ~1 s ~2 s ~2 s ~3 s

Comparison between different resources and whether they provide analysis methods which are accessible online (UX or programmatic access) and the average
response time for a predefined sample. For the comparison of processing time, only the first column in the test sets -the gene identifiers- has been used. Datasets
are available in
ahttps://www.targetvalidation.org/disease/EFO_0005039/associations (accessed 13/07/2016)
bhttps://www.targetvalidation.org/disease/EFO_0003821/associations (accessed 13/07/2016)
chttps://www.targetvalidation.org/disease/EFO_0002508/associations (accessed 13/07/2016)
dhttps://www.targetvalidation.org/disease/EFO_0003885/associations (accessed 13/07/2016)
ehttps://www.targetvalidation.org/disease/EFO_0003767/associations (accessed 13/07/2016)
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GSEA offers its analysis tool exclusively through a
desktop application and therefore requires download
and installation before usage, rendering the tool suitable
for more experienced users. On the other hand, DAVID,
PANTHER and ConsensusPathDB provide online access
to their analysis tools via a web interface, similarly to
REACTOME. Thus, users can submit their sample for
analysis through their favourite web browser.
Furthermore, besides REACTOME, DAVID and

ConsensusPathDB are also allowing users to access their
analysis tools programmatically, through a set of web
services. Hence, researchers and software developers
can integrate the provided analysis tools into their
pipelines and applications. However, while DAVID and
ConsensusPathDB rely on the Simple Object Access
Protocol (SOAP) and the Web Service Description
Language (WSDL) for their web services, Reactome
analysis web service is based on the Representational
State Transfer (REST). The adoption of REST eliminates
the need for complex clients and renders Reactome
analysis service simpler, more lightweight, more flexible,
and, thus, easier to integrate into third party software
compared to its SOAP/WSDL counterparts.
Leveraging on the performance gained by the in-

memory analysis approach explained above and the use
of RESTful web services, the Reactome analysis tool
does not impose any limitations on the sample size or
the frequency of analysis requests, unlike DAVID. Re-
garding its weaknesses compared to DAVID, Reactome
analysis tool has a more limited coverage, as it does
not integrate as many resources as DAVID does, but it
focuses on high quality manually curated pathways that
are updated quarterly. In addition, Reactome does not
allow users to customise the background population of
their analysis.

Conclusions
Through the use of highly optimised, in-memory data
structures and algorithms, Reactome has achieved a
stable, high performance pathway analysis service,
enabling the analysis of genome-wide datasets within
seconds, allowing interactive exploration and analysis
of high throughput data.
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Abstract

Motivation: Reactome is a free, open-source, open-data, curated and peer-reviewed knowledge-
base of biomolecular pathways. For web-based pathway visualization, Reactome uses a custom
pathway diagram viewer that has been evolved over the past years. Here, we present comprehen-
sive enhancements in usability and performance based on extensive usability testing sessions and
technology developments, aiming to optimize the viewer towards the needs of the community.
Results: The pathway diagram viewer version 3 achieves consistently better performance, loading
and rendering of 97% of the diagrams in Reactome in less than 1 s. Combining the multi-layer
html5 canvas strategy with a space partitioning data structure minimizes CPU workload, enabling
the introduction of new features that further enhance user experience. Through the use of highly
optimized data structures and algorithms, Reactome has boosted the performance and usability of
the new pathway diagram viewer, providing a robust, scalable and easy-to-integrate solution to
pathway visualization. As graph-based visualization of complex data is a frequent challenge in bio-
informatics, many of the individual strategies presented here are applicable to a wide range of
web-based bioinformatics resources.
Availability and implementation: Reactome is available online at: https://reactome.org. The dia-
gram viewer is part of the Reactome pathway browser (https://reactome.org/PathwayBrowser/) and
also available as a stand-alone widget at: https://reactome.org/dev/diagram/. The source code is
freely available at: https://github.com/reactome-pwp/diagram.
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1 Introduction

Reactome (https://reactome.org) is a free, open-source, open-

data, curated and peer-reviewed knowledgebase of biomolecular

pathways. It provides bioinformatics tools for visualization,

interpretation and analysis of biomolecular data to support

basic research, genome analysis, modelling, systems biology and

education.

At the cellular level, life is a network of molecular reactions

that include signal transduction, transport, DNA replication, pro-

tein synthesis and intermediary metabolism. In Reactome, these

processes are systematically described in molecular detail to gener-

ate an ordered network of molecular transformations, resulting in

an extended version of a classic metabolic map described by a sin-

gle, consistent data model (Fabregat et al., 2016). The Reactome

knowledgebase thus systematically links human proteins to their

molecular functions, providing a resource that functions both as an

archive of biological processes and as a tool for exploring and dis-

covering unexpected functional relationships in data such as gene

expression pattern surveys or somatic mutation catalogues from tu-

mour cells. In Reactome the steps of a pathway are represented as

connected molecular events termed ‘reactions’. Reactome’s content

is organized into a set of canonical pathways that corresponds to

distinct biological processes with minimal overlap of reactions and

proteins, arranged in a hierarchy corresponding to the GO biolo-

gical process hierarchy. Each pathway is represented in a pathway

diagram laid out following the Systems Biology Graphical

Notation (SBGN) (Le Novère et al., 2009) process description lan-

guage (Fabregat et al., 2016). Additionally, Reactome offers a path-

way analysis service that supports enrichment and expression

analysis (Fabregat et al., 2016, 2017). Users can submit their own

dataset for analysis and visualize the result as overlays on top of

pathway diagrams.

Web browsers are one of the main types of application used for

retrieving, presenting and traversing information resources on the

World Wide Web. Creating an interactive pathway diagram viewer

for web browsers poses a series of challenges that need to be ad-

dressed in order to offer a fast-loading and responsive product. On

the one hand, implementing a custom solution enables full control

over features and capabilities at the cost of longer development

time. On the other hand, reusing existing software has the advantage

of launching the final product in a shorter period of time but

with additional features limited by the existing capabilities of the se-

lected third party software (Krueger, 1992). Some resources like

MINERVA (Gawron et al., 2016) and NAVICELL (Kuperstein

et al., 2013) have adopted the Google mapTM engine. Others such as

Pathway Commons (Cerami et al., 2011), WikiPathways (Kutmon

et al., 2016) and KEGG (Kanehisa et al., 2014) developed and use

their own viewers.

Reactome has always used an in-house developed diagram

viewer which has evolved over the years to include enhancements

in usability and performance as a response to extensive usability

testing sessions aiming to improve the tool towards the needs of the

community (Roto et al., 2009). When the second version of the dia-

gram viewer was released in 2013, systematic user experience test-

ing and informal user feedback pointed out that the loading time

and user interactivity needed to be improved. We describe here

how we addressed these challenges, by implementing a more effi-

cient diagram storage format, and by adopting new strategies for

client data storage, retrieval and rendering. Additionally, this study

aims to provide guidance to other researchers or groups working

on similar visualization tools.

2 Implementation

The usability testing sessions showed that the users (i) had trouble

using the diagram search functionality, (ii) found the diagrams too

crowded/complex, especially in zoomed-out views and (iii) often

lost diagram context while navigating through the event hierarchy

due to the diagram’s flashing and abrupt changes of location, in-

stead of an animated transition to the target position. Other com-

ments highlighted the fact that the zoom was not progressive, but

instead users could only zoom in predefined steps.

Aiming to address these challenges and enhance the overall user

experience, a new version of the Pathway Diagram Viewer was im-

plemented. The new version (version 3) was also focused on faster

data loading, diagram rendering and element seeking. This decision

was made based on the fact that users retain the feeling of being in

control when an interaction between them and the computer

takes no more than one second (http://www.nngroup.com/articles/

powers-of-10-time-scales-in-ux).

Improvements targeted different levels and included: (i) restruc-

turing of the data format used to send the data from the server to

the client, (ii) using a graph data structure to store the pathway con-

tent on the client side, (iii) boosting the client content load strategy,

(iv) implementing a multi-layer canvas approach, (v) utilising a

space partitioning data structure to store the elements to be rendered

and (vi) employing the delegate design pattern to control the flow of

information based on the level of zoom. This section delves deeper

into each aspect to describe them in finer grain.

2.1 Data format update
The first step to improve the overall user experience was to reduce

the client loading time by replacing the eXtensible Markup

Language (XML) format (https://www.w3.org/TR/REC-xml) for

diagram data storage with JavaScript Object Notation (JSON)

(http://www.json.org). JSON is less verbose than XML and thus has

a smaller footprint. More important, JSON’s natural mapping to

JavaScript objects is faster and uses fewer resources than its XML

counterpart (Boci et al., 2012; Nurseitov et al., 2009; Wang, 2011).

For all these reasons, resources that rely heavily on XML for their stor-

age format, could potentially benefit from transitioning to JSON.

Therefore, all Reactome pathways containing diagram layout in-

formation are converted from XML to JSON and stored on the ser-

ver side as static resources during the quarterly release process. In

the same process, for every diagram, a graph of all the contained

entities and reactions is generated and stored in an additional JSON

file to enable a richer browsing and search experience throughout

the diagram content. The next subsection elaborates on the creation

of the graph and its usage along with the layout information.

2.2 Underlying graph structure
Among other elements, diagrams contain macromolecular com-

plexes and entity sets comprised of components and members, re-

spectively. Entity sets are used to group entities together based on

common properties. Sets and complexes may have other complexes

or sets as their constituents (D’eustachio, 2011). This approach

quickly builds up to a highly structured network of contained enti-

ties that, in most diagrams, is conveniently represented by a single

glyph that simplifies the view. Thus, the diagram viewer must be

aware of all this information and able to take full advantage of it, in

order to provide a much richer search function and smarter inter-

action with the constituents of complexes/sets.

For example, a search for a protein should highlight not only in-

stances of the protein visible in the diagram but also any complex

Reactome diagram viewer: data structures and strategies to boost performance 1209

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/7/1208/4653698
by Wellcome Trust Genome Campus user
on 04 May 2018



P.2. Reactome diagram viewer: Data structures and strategies to boost performance  

 

177 

 

 

instances of which the protein is a part and any set of which it is a

member.

In previous versions, the client retrieved a file with the identifiers

defining each element present in the diagram from the server side. In

the new version, a file with a graph representing the content of the

different complexes and sets for each diagram and annotating the

participants of every included reaction is required (Fig. 1). This ap-

proach introduced an additional file with the graph content that has

to be consumed separately by the client and merged with the layout

data, once both are loaded.

The graph and layout content have elements in common, but in

most cases the graph will contain more information. In the example

presented in Figure 1, the pathway diagram layout contains 7 elem-

ents; 5 entities and 2 reactions (Fig. 1a), and the graph contains

11 elements; 9 entities and 2 reactions (Fig. 1b). The 4 extra elements

in the graph can be justified by the fact that none of the components

of C2 (4 entities) are present in the layout. Another benefit of the

graph is that entities that are part of different complexes or sets are

represented only once and remain accessible via graph traversing.

Because of the complementary nature of information stored in

the layout and the graph files, the client side needs to implement a

technique that merges both contents and allows them to seam-

lessly work together (Fig. 1c). Our approach is to propagate user

actions from the layout level down to the graph level in order to

have an easy way to traverse the content and identify the relevant

entities to be highlighted by traversing up to the layout again. In

addition, the built-in search feature can now take into account not

only entities that are represented by a glyph in a diagram, but also

all the contained entities composing that glyph. For instance, users

can search among all components/members of the complexes/sets

present in a single diagram. The client is able to highlight all

those diagram entities containing a component (or member) that

matches the search term.

For most applications that feature interactive visualizations, ac-

companying layout information with additional semantic metadata

can prove a good practice, as it enriches the visualizations by assign-

ing a meaning to all visual entities. In addition, this extra informa-

tion can be used to enrich any existing search functionality by

extending it to more than what is visualized.

2.3 Updated loading and caching strategies
The introduction of separate layout and graph files was accompa-

nied by the adoption of a render-first loading strategy in the client

(Fig. 2). The client makes concurrent XMLHttpRequest calls for the

layout and the graph data content (https://xhr.spec.whatwg.org). As

soon as the layout data is available, the viewer processes it and ren-

ders the diagram on the canvas. Once the graph content is ready, the

latter is processed and linked to the diagram layout to be used for

interactive navigation, search and future analysis overlay purposes.

Following this render-first approach, the new version of the diagram

viewer primes the display of the layout while it retrieves the graph

behind the scenes. This strategy boosts the user experience by reduc-

ing both the true and perceived loading time.

Adopting a similar strategy that prioritizes the loading of that bit

of information necessary to render something useful on the screen

and, thus, engage the user, can prove particularly useful to any visu-

alization application that requires excessive loading time. People

can define a duration only when there is a clear start time and a clear

end time (Seow, 2008). As a result, when users get to a point where

they finally see something rendered on the screen that they can inter-

act with, they naturally and mentally assume as the end. The rest of

the loading can continue behind the scenes.

While browsing pathways, users often go back and forth among

several pathways of interest, causing the viewer to load and show

the same diagram several times in a relatively short period of time.

Fig. 1. Schematic view of a pathway made up of two reactions. (a) The pathway diagram as presented to the final user. (b) Underlying graph with the whole con-

tent of the pathway. (c) Representation of the merging of both the diagram and graph on the client side. In the figure, Pn are proteins, SMn are chemicals, Cn are

complexes and Rn are reactions. From the graph, it can be extracted that C1 contains [P1 , P2], C2 contains [P3, P4 , SM1 , SM2] and C3 contains [C1 , C2], but by tra-

versing the graph it can be easily inferred that C3 actually contains [P1 , P2, P3, P4 , SM1 , SM2]
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A pathway diagram that has been loaded is very likely to be revisited

shortly after visits to other pathways. In computer science, this is

known as locality of reference (Denning, 2005), being a very clear

use case for cache mechanisms. Hence, the diagram viewer imple-

ments a Least Recently Used (LRU) caching mechanism (Denning,

1968) to keep the layout and the view status (zoom level and pan-

ning) of the most recently viewed diagrams. When a diagram is re-

visited, the viewer does not need to request data from the server but

uses the cached one in order to display the content as the user previ-

ously left it.

2.4 Multi-layer HTML5 canvas strategy
The new version of the diagram viewer responds to common user ac-

tions, such as hovering over an element with the mouse and selecting

an entity in the diagram, by highlighting the hovered element and

marking the selected entity, respectively. Aiming to provide a richer

user experience and visually reinforce user actions, the diagram

viewer draws a halo around the elements (reactions and participat-

ing entities) related to the selection. In addition, when the user se-

lects an entity that is repeated in the same diagram, the viewer

marks all instances of that entity as selected and draws halos around

all elements related to them.

To improve the visual feedback and optimize the diagram ren-

dering process, the new version of the viewer implements a set of

advanced techniques developed and used by the gaming industry. In

particular, the multi-layer canvas approach (www.ibm.com/develo

perworks/library/wa-canvashtml5layering) was adopted to reduce

the processing and redrawing overhead inherent to a single canvas

update. Each of the stacked canvases in Figure 3 represents a con-

ceptual layer and is reserved for drawing specific types of glyphs

corresponding to different diagram objects such as compartments,

reactions, nodes, entities or interactors. By employing this tech-

nique, only layers that require redrawing are updated, resulting in

reduced rendering times in actions like highlighting or selection.

This contributes to enhancing the user experience due to a more re-

sponsive behavior.

For instance, while the user moves the mouse pointer across a

diagram, only the ‘Selection and Highlighting’ layer needs to be

updated in order to reflect the changes in the highlighted element.

Similarly, in case a diagram element is selected, only the ‘Halo ef-

fect’ and ‘Selection and Highlight’ layers need to be updated. Other

resources featuring interactive visualizations that contain a lot of

elements can take advantage of this strategy to improve the user

experience.

2.5 Space partitioning data structure
Identifying the elements under the mouse pointer is a computation-

ally demanding task if it is performed by a brute force or exhaustive

search algorithm (Knuth, 1997). The cost of an exhaustive search al-

gorithm is a linear function of the number of elements to be

searched, O(n) in big O notation. Determining whether the mouse

pointer position intersects with the area each element occupies can

be slow, delaying the action of highlighting and making the interface

appear unresponsive to the user.

Fig. 2. UML sequence diagram comparing sequential and render-first loading strategies. The difference between the blue and red lines shows the true loading

time improvement. The improvement in the perceived loading time is highlighted by the difference between the green and red lines

Fig. 3. A simplified example of the adopted multi-layer canvas strategy. First four images from left to right represent different layers composing the final image:

(1) Cellular compartments, (2) Halo effect, (3) Nodes & Edges and (4) Selection and Highlight. The rightmost image shows the pathway diagram as seen from the

user’s perspective
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To speed the search of the hovered element, our new implemen-

tation employs a space partitioning data structure, an approach

often used to optimize performance. The main advantage of this

data structure is that it provides a much less computationally inten-

sive way to query for elements present in a given point or area in

space, with a cost that is a logarithmic function of the number of

elements to be searched O(log n) (Agarwal and Erickson, 1998).

Here, we employed a QuadTree, a tree data structure used to par-

tition a two-dimensional space by recursively subdividing it into four

quadrants or regions (Finkel and Bentley, 1974). The QuadTree is em-

ployed to efficiently (i) query only those diagram entities present in

the viewport that need to be rendered and (ii) identify the entities hov-

ered over, or selected by the mouse without having to follow the brute

force method and exhaustively check every diagram object.

Figure 4 provides an example of how the elements in a diagram

are located in a QuadTree with quadrant size 2, meaning that only

two objects are allowed per quadrant. The red line in Figure 4b

highlights the path traversed in the tree to identify the element under

the mouse pointer (red dot) based on a series of quick comparisons

between the mouse coordinates and every quadrant center starting

for the root and progressively moving down the nodes of the tree.

From the root (center of the viewport) the red dot (Fig. 4a) is the 3rd

quadrant (Q3); from the center of Q3 the red dot is in the first quad-

rant (Q1); from the center of Q1 the red dot is again in its first quad-

rant (Q1). Since this last quadrant is not further split, the position of

the mouse pointer only needs to be compared against the contents of

that quadrant, which in this case is only P3. Thus, determining that

P3 is the element hovered over by the mouse pointer takes three

quadrant comparisons and checking only one element of the nine

present in the diagram. This provides a significant improvement

over the brute force method that would check the mouse position

against every element present in the diagram.

For the new diagram viewer, the QuadTree was extended to

work not only with points but also with shapes that occupy diagram

areas. The aim was to use it in order to narrow down the number of

elements to be drawn depending on whether they are in the part of

the diagram visible in the client viewport. This allows a fast, select-

ive redraw limited to visible regions of the diagram, again improving

interactivity of the diagram viewer.

Hence, the usage of this data structure could prove particularly

useful for other resources featuring interactive visualizations that

contain a lot of elements where the requirements include one or

more of the following features: (i) determining the element hovered

over by the mouse pointer, (ii) determining the selected element

upon user’s click or tab action, (iii) smooth animated view transi-

tions or (iv) progressive zoom.

2.6 Renderer delegates
In order to tackle users’ requests for less cluttered pathway dia-

grams, but at the same time preserve access to all information stored

in Reactome knowledgebase, the new viewer enables the user to

control the flow of visualized information through the level of

zoom. This practically means that depending on the zoom level, the

viewer enriches or abstracts layers of information. Thus, each dia-

gram entity is rendered in a slightly different way according to the

level of zoom, progressively revealing more details as the user zooms

in. For instance, as illustrated in Figure 5, common ‘house-keeping’

molecules, such as ADP, ATP, AMP, water, etc., are hidden in the

zoomed out view, resulting in simpler and less crowded diagrams, as

explicitly requested by our users.

This strategy also improves rendering time when many elements

are in the viewport because fewer details are drawn. Other simplifi-

cations are to avoiding rounded corners, only showing reaction

backbones without central decorators, or removing node attach-

ments or stoichiometry. As users zoom in to specific areas, the num-

ber of elements in the viewport falls and more detail is added.

The adoption of this strategy could prove particularly useful for

other resources featuring complex visualizations as it allows control-

ling the granularity of information displayed for a given object and

level of zoom. Usability-wise, this enables resources to show different

views of the same element based on the zoom, determining the optimal

level of detail and type of information to be displayed in each case.

3 Results and discussion

The new pathway diagram viewer combines the set of strategies and

data structures described above to improve performance and to

include new features that aim to address the shortcomings of the

previous version highlighted by the usability testing sessions. The

updated diagram storage format combined with the improved

‘Render-first’ loading strategy resulted in faster loading of diagrams.

Additionally, faster rendering was accomplished via the combined

use of (i) a QuadTree that efficiently filters down the elements to be

drawn based on the visible area, (ii) rendering delegates that declut-

ter the view by regulating the level of detail to be drawn depending

on the number of visible elements and (iii) a multi-layer html5 can-

vas strategy that optimizes rendering by updating only the layers

Fig. 4. Hypothetical diagram composed of two separate reactions where (a) shows how the viewport is recursively split into different quadrants, so each of them

contains two or less elements, (b) is the representation of the resulting QuadTree to achieve the two-dimensional space partitioning while (c) presents the same

diagram elements placed in a normal collection for comparison purposes. The red dot in (a) represents the mouse pointer location and the red path in (b) depicts

the tree traversing steps to narrow down the elements to be checked against the mouse location
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that require redrawing. Optimized rendering enabled the introduc-

tion of animation and smooth transitions that, in turn, help users to

maintain diagram context while navigating through pathways. The

use of an underlying graph structure provided the basis for improv-

ing the built-in search feature, by including all the participating mol-

ecules of the pathway whether or not they are visible in the diagram.

Updating the underlying storage format had a positive impact on

the performance of the new version of the pathway diagram viewer.

To assess this performance boost, we compared the resulting file

sizes for both the previous (XML) and the new data format (JSON),

as well as the respective times required by the client to process them.

This included the time required to populate the model in the client

with the diagram data once they were retrieved from the server.

To measure the improvement in performance, a series of experi-

ments were conducted and the results are presented graphically in

Figure 6. In particular, Figure 6a presents a chart comparing the file

sizes of the Reactome diagrams against the total number of graph-

ical entities present in them for both XML and JSON data format.

As expected, for any given pathway diagram, its JSON version has a

smaller file size compared to its XML version.

Figure 6b presents a comparison between the times required by the

previous (2) and current (3) versions of the client to process diagrams

stored in XML and JSON format, respectively, against the number of

the diagram entities. The new client requires significantly less time to

process any given diagram, which can be attributed to JSON’s smaller

file size as well as its natural mapping to JavaScript objects, which

eliminates the need for complex parsing infrastructure.

The update in the storage format combined with the new render-

first loading strategy contributed to reducing the overall diagram

loading time, as it is perceived by the user. This includes the time

required until the diagram is loaded and fully rendered by the client.

Figure 6c presents a chart comparing the times required by the previ-

ous and the new version of the client to display diagrams stored in

XML and JSON format respectively against the diagram size (meas-

ured in number of entities present in a diagram).

A striking feature of the comparison of perceived loading times

(Fig. 6c) is that the new diagram viewer is both faster and more

consistent. One can easily notice that the times measured for the

previous diagram viewer exhibit high variability, especially for

smaller diagrams. This can be explained by the fact that the number

of items to be drawn in diagram does not represent the actual size of

the pathway in terms of participating molecules. Complexes and

sets often contain several participating molecules, and encapsulated

pathways might also contain a large number of participants. Also,

taking into account that the top-level pathways, in the Reactome

event hierarchy, are represented with diagrams which mostly con-

tain subpathways, it is expected that they will contain a quite large

number of participating molecules. This fact combined with the pre-

vious sequential loading strategy, presented in Figure 2, provides a

simple explanation for those relatively small pathways, with only a

few entities, that require up to 1.5 s to load. Simply put, before ren-

dering anything on screen, the previous client had to retrieve and

parse a large amount of information in order to create the map of all

participating entities.

As illustrated in Figure 6c, the new version of the pathway dia-

gram viewer achieves better performance in any given Reactome

diagram. In particular, the new version of the client accomplishes

loading and rendering of 97% of the diagrams in Reactome in less

that 1 s (versus 57% previously); 74% of the total number of dia-

grams are loaded and rendered in under 0.5 s (versus 31% previ-

ously). As previously stated, keeping the application’s response

times as low as possible has a positive impact on the user experience.

This is particularly the case in a web application that is supposed to

run inside a web browser environment, where most of its code is

executed in a single thread, without use of concurrency. As a result,

the adoption of the multi-layer html5 canvas strategy and the space

partitioning data structure contributed to minimize CPU workload

and therefore allowed room for new features such as animated tran-

sitions to be included without penalising the user’s experience.

We have conducted a usability testing session centered on the im-

provements described here (Supplementary Table S1). Users appreci-

ated the animated transitions and progressive zoom functionality as

they allowed for smoother and easier navigation. Users also found

the new diagram viewer more responsive as it reacted to common

user actions by highlighting a hovered element and marking a se-

lected entity. Users did not express concern about crowded/complex

Fig. 5. In the new pathway diagram viewer, the flow of displayed information is controlled through zooming in and out. As a result, depending on the zoom level,

the viewer abstracts or enriches the view with layers of information
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pathway diagrams, but did react positively to the features in the new

diagram that enable users to control the amount of detail displayed

by zooming in and out. Regarding our improved search functional-

ity, users made positive comments on the fact that they could now

search for entities that were indirectly part of a given diagram such

as members of a complex or set.

The new diagram viewer was developed in a way that can be

both extended or easily integrated as it is in third party applications.

Currently, Reactome offers two options for integrating this pathway

diagram viewer in other web applications; either using the GWT im-

plementation or the JavaScript wrapper. More details and examples

on how to reuse this as a widget can be found at https://reactome.

org/dev/diagram/.

Conclusions

Through the use of highly optimized data structures and algorithms,

Reactome has improved the pathway diagram viewer in terms of

performance and usability. The new version of the diagram viewer

provides a robust, scalable solution to pathway visualization that is

easily integrated into third party applications.
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Abstract

Motivation: Reactome is a free, open-source, open-data, curated and peer-reviewed knowledge
base of biomolecular pathways. Pathways are arranged in a hierarchical structure that largely
corresponds to the GO biological process hierarchy, allowing the user to navigate from high level
concepts like immune system to detailed pathway diagrams showing biomolecular events like
membrane transport or phosphorylation. Here, we present new developments in the Reactome
visualization system that facilitate navigation through the pathway hierarchy and enable efficient
reuse of Reactome visualizations for users’ own research presentations and publications.
Results: For the higher levels of the hierarchy, Reactome now provides scalable, interactive
textbook-style diagrams in SVG format, which are also freely downloadable and editable. Repeated
diagram elements like ‘mitochondrion’ or ‘receptor’ are available as a library of graphic elements.
Detailed lower-level diagrams are now downloadable in editable PPTX format as sets of intercon-
nected objects.
Availability and implementation:http://reactome.org
Contact:fabregat@ebi.ac.uk or hhe@ebi.ac.uk

1 Introduction

Pathway databases like Reactome systematically associate proteins

with their functions and link them into networks that describe the

reaction space of an organism. The basic unit of a pathway database

is a reaction in which molecules are transformed. Transformations

include the chemical changes of intermediary metabolism, as well as

chemical modifications of proteins and other macromolecules,

formation and reorganization of complexes, and transport events

that move molecules from one cellular location to another.

Pathways that accomplish more complex tasks like glycolysis or sig-

nal transduction mediated by a tyrosine kinase receptor, can be

assembled from these reactions and can be grouped further to de-

scribe domains of biology like metabolism or signaling. Functional

linkages between processes are consistently visible as shared
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molecules and dependencies, e.g. the output of one reaction is the in-

put of another or positively regulates it, within or between pathways

and domains.

Pathways in Reactome are organized hierarchically, grouping

related detailed pathways (e.g. translation, protein folding and post-

translational modification) into larger domains of biological func-

tion like metabolism of proteins. This hierarchical organization

largely follows that of the Gene Ontology (GO) biological process

hierarchy (Ashburner et al., 2000; The Gene Ontology Consortium,

2015). Reactome pathways can be distinguished into two different

types: higher level pathways (HLPs) that aggregate pathways within

a similar biological process and detailed lower level pathways

(LLPs) where the molecular processes are annotated as series of bio-

molecular reactions. Previously, HLP diagrams (HLDs) were simply

implemented as a series of boxes symbolizing the subpathways, and

allowing to navigate to them.

A formal data model such as the one embodied in Reactome

makes pathways computationally accessible. Additionally, Reactome

offers a pathway analysis service that supports enrichment and ex-

pression analysis (Fabregat et al., 2016). Using the analysis service

users can easily ask, e.g. whether the set of proteins up-regulated in a

model system in response to a stress is distributed at random over re-

action space or is clustered in particular domains, or could take ad-

vantage of the disease visualization to find out whether a mutation

that blocks the function of a protein of interest would directly perturb

any of the reactions that make up a process of interest. Additional

tools are needed, however, to enable biologists to browse database

content to visualize the relationships between parts of a domain or to

explore possible relationships between domains.

Well-designed pathway visualization tools need to support di-

verse views providing different levels of detail. Dynamic navigation

between views enables human users to visualize connections be-

tween pathways and domains (Suderman and Hallett, 2007).

Diagrams can support inference more efficiently than equivalent lin-

guistic representations (Perini, 2013). To facilitate interoperability it

is also valuable for visualization tools to conform as much as pos-

sible to community standards like Systems Biology Graphical

Notation (SBGN) (Le Novère et al., 2009).

The challenge of pathway data visualization has been ap-

proached by several resources. In cases like MINERVA (Gawron

et al., 2016) and NAVICELL (Kuperstein et al., 2013) the Google

map engine was adopted to visualize pathways using SBGN.

WikiPathways (Kutmon et al., 2016) and KEGG (Kanehisa et al.,

2014) display pathways using an in-house developed viewer.

Finally, other resources like Pathway Commons (Cerami et al.,

2011) display pathways as networks of gene–gene interactions. The

most common navigation features used to explore pathway dia-

grams include zooming, panning and selection of pathway elements

to view detailed information. Some tools, such as MINERVA or

WikiPathways, also allow users to map drug targets or overlay ex-

perimental data. Another popular tool for pathway analysis and vis-

ualization is Ingenuity Pathway Analysis (https://www.

qiagenbioinformatics.com), but as a commercial tool, it is inaccess-

ible to many users.

Reactome’s approach to scalable visualization environment, in

place since 2015 (Fabregat et al., 2016), provides multiple levels of

detail as shown in Figure 1. A user starts with the ‘pathways over-

view’ view of all of reaction space, chooses to view the domain

‘haemostasis’, and within that domain chooses the pathway, ‘plate-

let adhesion to exposed collagen’. The first view is a graph of the en-

tire Reactome event hierarchy (Fig. 1a); the final view shows the

molecular details of a reaction sequence in a familiar SBGN-

compliant format close to that of a classic metabolic map (Fig. 1d).

The intermediate view, showing the pathways comprising haemosta-

sis as a set of labeled green boxes (Fig. 1b), provides functionality

for navigation and data analysis, but conceals the relevant biology,

that this process is happening in a damaged blood vessel, that its

parts occur in a causal sequence and that they involve complex inter-

actions among molecules and cells in the blood and components of

the vessel wall.

In addition to improved navigation, researchers have frequently

requested options to export and save their pathways of interest in a

format that can be reused for presentations, papers or other pur-

poses, allowing them to easily manipulate the available pathway vis-

ualizations (e.g. alter the layout of a diagram or overlay the results

of their research).

Here, we present the recent updates in the Reactome web inter-

face providing improved visualization and navigation of Reactome

pathways, as well as new options for downloading and re-using the

pathway diagrams.

2 Implementation

Aiming to address these challenges and boost the overall user experi-

ence, three new features were developed and integrated in the

Reactome pathway diagram viewer (Fig. 2): (i) textbook-style

enhanced high level diagrams (EHLDs), (ii) a mechanism to high-

light different subpathways using coloured boxes in zoomed-out

views of classic LLP diagrams and (iii) an option to export regular

diagrams to PowerPoint.

Figure 2 presents the use of EHLDs to support a user who wants

to navigate through the Cell Cycle domain of biology to arrive fi-

nally at the molecular details of pathway of interest, Mitotic

Prophase. This top-down navigation of the Reactome pathways vis-

ualization begins with the Pathways Overview which provides a gen-

ome wide view of all the pathways in Reactome and their parent–

child relationships. As the user progressively zooms in on Cell cycle,

a series of EHLDs are displayed as interactive textbook-like illustra-

tions that provide a visual representation of key biological concepts.

EHLDs aim to assist users to easily identify and focus on areas of

interest by taking advantage of the human ability to easily perceive

complex but visually obvious concepts. In this example, two levels

of HLPs (Mitotic Cell Cycle and M Phase) are traversed through

EHLDs, leading to the classic pathway diagram of the Mitotic pro-

phase. This diagram, initially presented in its zoomed-out view, in-

cludes coloured boxes that highlight its different subpathways,

helping the user to easily identify and comprehend the internal parts

of this biological process. Subpathway highlighting progressively

fades out as the user further zooms into the diagram and focuses on

the reactions of a specific subpathway, for example Cisternae

Pericentriolar Stack Reorganization.

2.1 Implementation of interactive EHLDs
Reactome previously used very simple sets of green box icons to fa-

cilitate navigation from highly abstract to more concrete, detailed

levels of the pathway hierarchy (Fig. 1b). In some cases these were

supplemented by static illustrations depicting the relationship of

these pathways to each other (Fig. 1c). These static illustrations are

often visually striking images of biological processes, but they lack

interactivity; users cannot navigate to contained subpathways nor

overlay summarized views of user data.

To enhance the HLP illustrations and make them interactive in

the scope of the Reactome pathway browser, a number of technical
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Fig. 1. Reactome’s previous approach to scalable visualization (a) Pathways overview (b) HLDs were shown as a set of green boxes (c) Static images of biological

processes illustrations were provided for some of the diagrams (d) SBGN-compliant diagrams containing molecular details of a reaction sequence

Fig. 2. Different levels of visualization address different scenarios. The top row shows navigation from the entirety of reaction space to focus on Cell Cycle. The

middle row presents EHLDs displaying successively narrower aspects of the cell cycle process. The bottom row presents navigation down to molecular details of

individual reactions involved in mitotic prophase, and the optional export of this view to Microsoft PowerPoint
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and conceptual requirements had to be considered. Technically, the

illustration had to be stored in a format that could be easily pro-

cessed, while conceptually the illustration needed to provide a one-

to-one mapping between the annotated pathway hierarchy and the

graphical elements.

The task of producing these new EHLDs was assigned to a team

of expert curators and illustrators who worked closely together to

generate high quality overview diagrams for the higher levels of the

Reactome pathway hierarchy. A common style and iconography

was adopted wherever possible to enhance the ‘recognition effect’

and facilitate efficient navigation.

On the technical side, the SVG format was selected mainly due

to the advantages it presents over other graphic formats such as

PNG or JPEG. These advantages include (i) object-based vector rep-

resentation for easy editing, (ii) resolution-independent zooming

(Battiato et al., 2005) suitable for the observation of large integrated

pathways, (iii) interaction features for richer interfaces, (iv) data in

regular text format as a subset of an eXtensible Markup Language

(XML) that can be easily handled by computer programs or text edi-

tors and (v) support by most popular web browsers. Additionally,

most popular graphic software packages used by designers, such as

Adobe Illustrator, Corel Draw, Inkscape, can be used to import, edit

and export in SVG format.

In the detailed LLP diagrams, the large number of entities and

the variety of custom overlaid features made the usage of a multi-

layered HTML5 Canvas an appropriate technology (Miller et al.,

2013). However, since EHLDs have a limited number of entities,

simple overlay features and a simpler rendering strategy, where the

flow of information does not depend on the level of zoom, the adop-

tion of an SVG renderer was deemed to be the best solution because

modern browsers directly render this format. This allowed devel-

opers to focus on features such as overlays, zoom or translation

which were implemented by applying a series of filters and

transformations.

As part of the Reactome web interface, we have implemented an

SVG rendering component that, beyond standard zooming and pan-

ning, allows specific regions of the diagram to be highlighted, recog-

nizes mouse click events on specific regions to allow navigation to

subpathways and allows analysis results to be overlaid onto the dia-

gram. For the purposes of EHLDs, all of the required technical an-

notations were included in the SVG files by using the database id

attribute of each relevant diagram element. In particular, three dif-

ferent types of technical annotations were used: (i) regions that rep-

resent a specific subpathway, (ii) labels containing the name of that

subpathway and (iii) the region to be overlaid with the analysis re-

sults. Any element with no technical annotation was considered a

decoration. The EHLD viewer reads the SVG file, renders the con-

tent and based on the technical annotations sets up the active re-

gions, which can later be highlighted/selected or overlaid with

analysis results. By interacting with any of the active regions repre-

senting subpathways, users can navigate to the respective subpath-

way diagram. The relevant code is part of the EHLD package

available on the Reactome public GitHub repository (https://github.

com/reactome-pwp/diagram). In addition, EHLDs are also available

in the reusable stand-alone JavaScript diagram viewer (http://reac

tome.org/dev/diagram/js).

In the example EHLD presented in Figure 3b, the Haemostasis

pathway hierarchy is no longer represented as a set of green boxes.

Instead, the EHLD combines the illustration logic with a new design

which includes a one-to-one mapping of its subpathways. This

EHLD is processed by the software and placed as a fully interactive

diagram skin, providing all the features of regular pathway diagrams

such as hovering over elements, selection, flagging and pathway ana-

lysis results overlay. Moreover, the user interface provides fast

zooming and panning support, with no image quality degradation.

To provide easier in-diagram navigation, the viewer features a small

thumbnail at the bottom-left corner of the viewport. EHLDs build

on the power of illustrations to convey the depicted biological proc-

esses and their causal relationships, by adding interactivity and pro-

viding a rich user experience. For instance, the EHLD of

Haemostasis (Fig. 3b) provides a clearer visual description regarding

the role and order of each of the seven subpathways.

The viewer allows users to overlay pathway analysis results onto

EHLDs (Fig. 3c). The results are displayed in the label of each sub-

pathway. The label is overlaid by a coloured rectangular shape; its

width and colour represent the percentage of hit entities and the P-

value, respectively (Fig. 3d). Subpathways with a P-value below a

certain threshold (P < 0.05) are coloured in grey. For hit subpath-

ways, additional information about the hit elements and the false

discovery rate are displayed next to the label. Upon hovering or se-

lection of a subpathway, its P-value is indicated in the coloured le-

gend bar displayed on the right side of the viewport. Analysis results

are temporarily stored on the Reactome server. The storage period

depends on usage of the service but is at least 7 days. Stored results

are available via the token assigned to the results file when it is cre-

ated and displayed in the URL for the results report. Users can easily

share their view of Reactome with the results of their analysis over-

laid by simply sharing the URL (Fabregat et al., 2016).

EHLDs, including any analysis result overlay present at the time,

can be easily downloaded and saved in SVG format. Users can edit

the content of the exported files through the use of commercial or

open-source graphics applications. EHLDs use a consistent iconog-

raphy that reuses glyphs when the same entity plays a role in more

than one biological process. For example, all platelets in the

Haemostasis EHLD are represented by the same symbol. We have

made a library of these graphical elements to provide them in SVG,

PNG and EMF formats. The icon library is available at http://reac

tome.org/icon-lib and is distributed under the terms of the CC-BY li-

cense (https://creativecommons.org/licenses/by/4.0/). The aims of

providing such a library are to facilitate the creation of uniform dia-

grams through the use of pre-existing glyphs and to offer these com-

ponents to the community for reuse. Figure 4 presents a small

sample of the elements that are available through the Reactome

iconography library.

Researchers can use the provided icons to create their own illus-

trations to convey their findings and ideas, whether in a pathway

diagram or a grant application illustration. Additionally, we would

also like to encourage the community to contribute to the extension

of this library through new glyphs (http://reactome.org/icon-info).

2.2 Subpathway highlighting
Coloured boxes that highlight and distinguish subpathways within

an LLD have been implemented to support easier navigation. Figure

5 compares the same pathway before (a) and after (b) the inclusion

of this functionality. The boxes highlight the specific diagram reac-

tions belonging to each subpathway, allowing further zooming in to

the areas of interest within a given pathway diagram.

The position and colour of boxes is calculated on the server side

at database release time and persists for the 3-month lifetime of the

release. This strategy supports fast loading and ensures that the look

and feel remains the same. The most complicated part of the task of

automatic subpathway highlighting is deciding where to place the

text inside each box. The adopted algorithm follows a basic space
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partitioning approach where the text is placed in the largest and

widest possible rectangle inside each subpathway box after calculat-

ing the overlap with all the other subpathway boxes.

2.3 Export options
In addition to easy visualization and navigation, users often want to

export/save pathways of interest in a format that can be reused for

presentations, publications, or other purposes. In some cases, users

want to use the pathway layout without modification, but in other

cases, they may want to alter the diagram content to show the re-

sults of their own research or alter the layout. Exporting static

images such as PNG files covers the first use case but to cover the se-

cond requirement, other formats are needed.

When exporting to other editable formats, there are several op-

tions to consider. A UX testing session with domain experts con-

ceived the idea of exporting diagrams as an interconnected set of

objects that adapt to layout changes. The main requirement was

that when a glyph is moved around all the connected objects must

follow e.g. when the user moves the glyph of a given reaction prod-

uct, the reaction output line has to automatically readjust to keep

pointing to it. Office tools such as Microsoft PowerPoint (http://of

fice.microsoft.com/PowerPoint) are very common among biologists

and allow the creation of multimedia presentations where the user

can rearrange the contained objects and customize other properties

such as size, colour or shape. By exporting Reactome diagrams to

these tools in a standard format (PPTX), users can take advantage of

all these features. Other options as SVG or PDF would export the

content of a given diagram in a set of non-interconnected objects

making changes in layout more difficult due to the need of manually

moving every affected object.

Several issues were addressed to enable PPTX export. Reactome

diagrams follow the SBGN standard, but the internal Reactome dia-

gram data model does not define interconnections between different

objects or anchor points between reactions, shapes and their partici-

pants. This absence of interconnection between elements needed to

Fig. 4. Example of different elements provided in the iconography library.

http://reactome.org/icon-lib

Fig. 3. Correspondence between the hierarchy and EHLD. (a) Pathway hierarchy view for Haemostasis. (b) Haemostasis as an EHLD representation.

(c) Haemostasis EHLD overlaid with pathway enrichment analysis results. The width of the yellow bar under the pathway label indicates the proportion of path-

way entities contained in the analysed dataset. (d) A closer view to ‘Platelet Homeostasis’ label with analysis results overlaid. http://reactome.org/

PathwayBrowser/#/R-HSA-109582
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be programmatically addressed during the conversion phase to

achieve movability of the contained objects without affecting their

relationship with connecting lines. Different techniques were em-

ployed, including the use of invisible anchor points to join the seg-

ments of a reaction object and group the objects that visually define

reaction properties (i.e. catalysis or regulation line endings).

The PPTX files are generated on the server side, using the colour

profile selected by the user on the client side. Storing the content in

PPTX format is not straightforward, so Reactome utilized

Aspose.Slides (https://www.aspose.com/products/slides/java), a

commercial JAVA API for reading, writing and manipulating

PowerPoint documents. Figure 6 presents an example of a regular

diagram exported to Microsoft PowerPoint.

3 Discussion

The new features presented above have been included in the

Reactome Pathway Diagram Viewer, which is fully integrated in the

current version of the Reactome Pathway Portal. EHLDs and the op-

tion to export diagrams to PowerPoint are available to users access-

ing Reactome through the Pathway Portal or through the standalone

version of the Diagram Viewer widget, which is available for inte-

gration in third party applications (http://reactome.org/dev/

diagram).

Reactome curators and designers have created informative and

visually appealing EHLD illustrations. Feedback from users regard-

ing this new feature has been very positive. In particular, users found

the new, interactive graphical representation of Reactome pathways

more descriptive of the biological process and consequently more in-

tuitive to navigate when compared to the previous static HLDs.

EHLDs have been designed to contain images that will be famil-

iar to biologists. They use a consistent iconography that is based on

a survey of typical textbook and online representations of the pro-

cess. The intention is to make the navigation experience more intui-

tive and visually pleasing; the user will recognize the process that is

represented and be able to select the appropriate region of the illus-

tration to navigate to the next level of the Reactome hierarchy level

without the need to read and understand text labels; ultimately the

user will arrive at a classic, detailed pathway diagram that repre-

sents the molecular mechanism underlying the pathway. For users

who are not familiar with the graphical representation used in

EHLDs the text labels are retained.

Reactome users have responded positively to the inclusion of the

subpathways highlight feature. Specifically, users found the new

method of rendering LLDs (Fig. 5) more descriptive and less clut-

tered. The coloured boxes around subpathways give users a bird’s

eye view of the displayed pathway, and to identify and later focus

on regions of interest.

Apart from requesting enhancements of web visualization, users

have often reported that the ability to export to PowerPoint would

be a useful feature, mainly because it would enable them to conveni-

ently open and edit Reactome pathway diagrams with the tool they

use for creating posters and presentations. Feedback was particu-

larly positive in relation to the ability to reposition diagram entities.

The limited visual appeal and navigability issues of previous

Reactome HLDs have been addressed by the introduction of

EHLDs, which represent biological processes in a familiar textbook

style that allows intuitive navigation to more specific sub-topics. In

addition, EHLDs are used to represent summarized analysis results.

We have provided the ability to export EHLD images and associated

analysis result overlays in a lossless, editable format, enabling users

to represent their own research results in the context of Reactome

pathway diagrams. In addition, the Reactome pathway iconography

library provides graphical representations of common molecular

Fig. 5. Pathway diagram for Gene silencing by RNA. (a) As it was displayed prior to the inclusion of the subpathways highlighting. (b) After adding the feature of

highlighting the existing subpathways in the zoomed-out view (where the text in the entity icons is also omitted). http://reactome.org/PathwayBrowser/#/R-HSA-

211000

Fig. 6. The pathway diagram for Striated Muscle Contraction exported to

Microsoft PowerPoint. (http://reactome.org/PathwayBrowser/#/R-HSA-390522)
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biology elements suitable for use in slides and publications. Finally,

classic pathway diagrams can now be exported in PPTX format,

allowing their editing and reuse with familiar presentation software.

Regarding future work, in the short term Reactome curators and

designers will replace all HLDs (ca. 85) with textbook-style EHLDs.

In the mid-term, we plan to improve the integrated diagram search

feature by taking advantage of Solr and our graph database (http://

reactome.org/dev/graph-database). Finally, in a more generic fash-

ion, we will continue improving the user interface to make it more

user-friendly and responsive to the user’s behaviour and environ-

ment such as screen size, platform and orientation.
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Abstract

Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase

of biomolecular pathways. One of its main priorities is to provide easy and efficient access

to its high quality curated data. At present, biological pathway databases typically store

their contents in relational databases. This limits access efficiency because there are per-

formance issues associated with queries traversing highly interconnected data. The

same data in a graph database can be queried more efficiently. Here we present the ratio-

nale behind the adoption of a graph database (Neo4j) as well as the new ContentService

(REST API) that provides access to these data. The Neo4j graph database and its query

language, Cypher, provide efficient access to the complex Reactome data model, facili-

tating easy traversal and knowledge discovery. The adoption of this technology greatly

improved query efficiency, reducing the average query time by 93%. The web service

built on top of the graph database provides programmatic access to Reactome data by

object oriented queries, but also supports more complex queries that take advantage of

the new underlying graph-based data storage. By adopting graph database technology

we are providing a high performance pathway data resource to the community. The Reac-

tome graph database use case shows the power of NoSQL database engines for complex

biological data types.

Author summary

To better support genome analysis, modeling, systems biology and education, we now
offer our knowledgebase of biomolecular pathways as a graph database. We have devel-
oped a tool to migrate the Reactome content from the relational database used in curation
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to a graph database during each quarterly release process. The new graph database has
two main advantages; higher performance and simpler ways to perform complex queries.
Reactome has already adapted its software infrastructure to benefit from this growing in
popularity storage technology, significantly improving query efficiency, by reducing the
average query time by 93%. We strongly believe that the successful adoption of a graph
database by Reactome demonstrates the positive impact this new technology could poten-
tially have in the field and could provide a practical example for other community projects
with similar complex data models to move their storage to a graph database while retain-
ing their data models.

This is a PLOS Computational Biology Software paper.

Introduction

Reactome (https://reactome.org) is a free, open-source, open-data, curated and peer-reviewed
knowledgebase of biomolecular pathways. Reactome annotates processes in a consistent path-
way model to create an online resource for researchers as a core reusable pathway dataset for
systems biology approaches. Reactome provides infrastructure and intuitive bioinformatics
tools for search, visualisation, interpretation and analysis of pathways [1].

Reactome contains a detailed representation of cellular processes, as an ordered network of
molecular reactions, interconnecting terms to form a graph of biological knowledge. Like
most biomolecular pathway knowledgebases, Reactome has relied on a relational database to
store its content. Although widely used among pathway knowledgebases for data management,
relational databases are not always the best fit to deal with today’s performance requirements
and increasing data complexity [2, 3]. Relational databases cope well with modeling and stor-
ing complex pathway information, but the final product is very likely to contain many inter-
mediate tables to represent many-to-many relationships. As a result, database queries across a
network of highly interconnected pathway data are often difficult to formulate and require a
high number of join operations, ultimately resulting in degradation of performance and exces-
sive response times.

The Reactome data model naturally forms a large interconnected network that can be seen
as a directed graph, which consists of a set of nodes and a collection of directed edges connect-
ing ordered pairs of nodes [4]. Storing Reactome pathway data in its natural form has multiple
benefits. Most significantly, it does not require any transformation of data into a flat or denor-
malised table format. As a result, data can be persisted as originally designed, reducing the
complexity of the database and thus allowing a more straightforward access to the Reactome
knowledgebase [3].

Here we describe the motivation behind our adoption of a graph database and show how
Reactome benefits from this change in the underlying storage technology to overcome the pre-
viously mentioned limitations imposed by relational databases. The main target audiences for
this manuscript are bioinformatics developers, who might be inspired to apply a graph data-
base in a similar domain, and bioinformaticians involved in pathway analysis, who might ben-
efit from using our graph database directly. While users of the Reactome web interface take
advantage of the described gains in performance, features, and stability, the Reactome web
interface is described in detail in [1].

Reactome graph database: Efficient access to complex pathway data
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Design and implementation

The Reactome data model

Reactome uses a frame-based knowledge representation [5]. The data model (https://
reactome.org/content/schema) consists of classes (frames) that describe different concepts like
reaction or entity. Classes have attributes (slots) that hold properties of the represented class
instances, like names or identifiers. The value types contained in the slots can be primitive
(string, numbers, or boolean) or references to other class instances. Therefore, knowledge in
Reactome is captured as instances of these classes with their associated attributes.

While implementing its relational database, Reactome opted for a physical design that
favoured flexibility over performance. Simply put, the relational database incorporated an
increased level of abstraction in its physical design resulting in easier adoption of new concepts
but at the same time heavily impacting the complexity and execution time of its queries. How-
ever, since the graph database natively stores Reactome content in a graph following its model,
this trade-off between flexibility and performance is no longer needed.

The Event and PhysicalEntity (PE) classes hold prominent positions in the Reactome
model. Events are the building blocks used in Reactome to represent biological processes and
are further subclassed into Pathways and ReactionLikeEvents (RLE). RLEs are single-step
molecular transformations. RLE includes Reaction among other types like FailedReaction,
Polymerisation, Depolymerisation, and BlackBoxEvent. Examples discussed here all involve
transformations of the “Reaction” type but all types are handled in the same way with the same
results. Pathways are ordered groups of RLEs that together carry out a biological process. PEs
are the participants in these events. PE types include SimpleEntity for chemicals, Entity-
WithAccessionedSequence for proteins, Complex for multi-molecular structures and EntitySet
for PEs grouped together on the basis of their shared function.

Moving from a relational to a graph database

Persistence of a model, like the one described above, can be achieved with flat files, a relational
database, or a non-relational database (e.g. a graph database). The selected underlying storage
mechanism determines how data are physically stored and accessed. Consequently, each of
these options comes with both advantages and disadvantages in terms of performance and
scalability. Until recently, Reactome relied on a relational database (MySQL) for both storing
its content during curation and accessing it in its production phase. Among the factors that
contributed to this decision were that (1) Protégé (http://protege.stanford.edu) was used as the
curator tool during Reactome’s nascent years with a Perl script processing the Protégé files to
store content into a MySQL database, which was modeled according to the Protégé schema,
(2) at the time a relational database met Reactome’s needs for data integrity and consistency,
and (3) relational databases were well established for biological data whereas graph based solu-
tions were hardly used in the field [6, 7].

It was not until recently that graph databases became a popular technology in different
areas of computational biology. Henkel et al. proposed the concept of graph databases for stor-
age and retrieval of computational models of biological systems [7]. Summer et al. developed a
Cytoscape application that takes advantage of the Neo4j database to perform server-side analy-
sis of large and complex biological networks [8]. In [9] the authors explored the potential of
using a graph database to facilitate data management and analysis to provide biological context
to disease-related genes and proteins. Toure et al. developed a Java-based framework that
transforms biological pathways represented in SBGN format into the Neo4j graph database,
enabling more powerful management and querying of complex biological networks [10].

Reactome graph database: Efficient access to complex pathway data
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Balaur et al. demonstrated that advanced exploration of highly connected and comprehensive
genome-scale metabolic reconstructions can benefit from an integrated graph representation
of the model and associated data [11]. Swainston et al. described biochem4j that enables com-
plex queries by linking a number of widely used chemical, biochemical and biology resources
within a graph database [12].

Reactome has gradually introduced a Neo4j graph database (https://neo4j.com/) to store
and query its content in the production phase since July 2016 (version 57). Neo4j is an open
source, transactional and ACID (Atomicity, Consistency, Isolation, and Durability) compliant
graph database [13]. Native graph databases, such as Neo4j, naturally store, manage, analyze,
and use data within the context of connections to improve performance and flexibility when
handling highly interconnected data compared to that in SQL. Neo4j’s greatest advantage and
probably its most defining feature is Cypher: a declarative, pattern matching query language,
specifically designed for dealing with graph data structures [14, 15].

The Reactome knowledgebase has many use cases, like the one in Fig 1, where the use of a
graph model together with a query language like Cypher can greatly improve response times
and simplify the code necessary to access the data. For instance, recursively retrieving all reac-
tions of a pathway, retrieving the participants of a reaction or a pathway, deconstructing a
complex or a set into its participating molecules, or enumerating the chain of consecutive reac-
tions that lead to the formation of a signalling complex are typical use cases that benefit greatly
from traversing the graph version of the Reactome knowledgebase.

Fig 1 provides a simplified example where reactions only contain lists of reactants and
products, instances of the PE class. In the relational use case, two junction tables, Reaction-
input and Reaction-output, are required to model these many-to-many relationships (Fig 1A).
Each junction table contains foreign keys of the Reactions and the associated PEs. The SQL
query to retrieve input and output entities of a given reaction requires two join operations per
junction table (Fig 1B). In the first stage of its execution, each join operation forms the carte-
sian product between the tables and, during the filtering process, all rows of the result set that
are not of interest are discarded.

The same structure of a reaction with inputs and outputs can be modelled in a simpler way
with Neo4j as exemplified by the reaction presented in Fig 1C. The reaction (green node), con-
tains named outgoing relationships to corresponding input and output entities (purple nodes).
Taking advantage of Cypher, the same query, can be written in a shorter but more intuitive
manner thanks to its ASCII-Art syntax [3] to represent patterns (Fig 1D). The query describes
a pattern that includes a Reaction, again identified by its identifier, with its outgoing input and
output relationships. Finally, all nodes matching the specified pattern are returned.

Since their introduction in the 1970’s, relational database engines have been optimised to
provide efficient execution of SQL queries. This is particularly the case with global queries that
aggregate large amounts of data without the need to perform any traversal operations. How-
ever, Reactome data contain many relationships, like those illustrated in Fig 1, and thus many
join tables, so queries generally require traversal operations, a computational intensive task
that tends to result in poor performance compared to graph databases [16]. To address this
issue and improve query performance, some resources have created redundant denormalised
copies of their relational database [17, 18, 19]. Nowadays, graph databases, such as Neo4j, offer
a more appropriate alternative for cases of highly interconnected data.

The new graph database ecosystem

The graph database batch importer (https://github.com/reactome/graph-importer) was devel-
oped to migrate the content from the relational database used in curation, to a graph database

Reactome graph database: Efficient access to complex pathway data
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during each quarterly release process. Although the underlying data storage was changed, the
original data model used by MySQL was kept the same. The conversion was done following a
depth-first approach starting from the top level pathways and traversing all the content, ensur-
ing that each object is processed only once during the conversion. Every object constitutes a
node in the graph and the edges that connect the nodes correspond to the names of the slots as
defined in the domain model (Fig 2). As a result, a Neo4j graph database is generated and con-
tains all the Reactome data. It can be directly used for third parties in order to use Cypher to
retrieve the target data.

Fig 1. A simplified example where reactions only contain reactants and products represented by the class
PhysicalEntity. (a) In the relational use case, two junction tables are required to model these many-to-many
relationships (b) SQL query used to retrieve input and output entities of a given reaction where two join operations are
needed per junction table. (c) The same reaction modelled as a graph. The reaction (green node) contains named
outgoing relationships to corresponding input and output entities (purple nodes). (d) The same query written in
Cypher, in a shorter but more intuitive manner.

https://doi.org/10.1371/journal.pcbi.1005968.g001

Reactome graph database: Efficient access to complex pathway data
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A number of integrity tests have been put in place to ensure that both the graph and rela-
tional database have the same content after conversion. These tests are part of the graph-core
and they are executed after migrating the relational database to the graph database to ensure
that the data has been properly stored. The tests include checks to verify: that the number of
top level pathways present in the graph database corresponds to the number of those present
in the relational database; that a given pathway in the graph database has the same ancestors as
its counterpart in the relational database; that the content of a given complex is the same in
both databases.

Fig 2. Representation of the content migration. The example shows a Reaction class reduced to its inputs, outputs, catalyst and regulators. A model class instance
is converted to a graph database node where (1) slots with primitive value types become node properties and (2) slots allocating instances of another class become
relationships.

https://doi.org/10.1371/journal.pcbi.1005968.g002

Reactome graph database: Efficient access to complex pathway data
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Fig 3 presents a schematic illustration of the new Reactome graph database ecosystem. A
library called graph-core (https://github.com/reactome/graph-core) was developed on top
of the graph database to serve as a data access layer. The aim of the library is to provide
easy access and data persistence as well as to reduce the boilerplate code in third party proj-
ects that require accessing and traversing Reactome content. The graph-core uses Spring
Data Neo4j (SDN) [20] to access the graph content and AspectJ to enable lazy loading [21].
Lazy loading commonly refers to a design pattern, that postpones the retrieval of object
attributes until the point at which they are needed. In our case, AspectJ weaver is used to
intercept the getter methods and run specific code to silently retrieve more data when
needed.

The ContentService (https://reactome.org/ContentService) is a REST based web service
[22], built on top of the graph-core, to provide programmatic access to the Graph Database for
third party developers (https://github.com/reactome/content-service). Implemented on top of
Spring MVC (https://spring.io/), the ContentService utilises the graph-core library and is fully
documented with Open API (https://www.openapis.org/).

Results and discussion

Among its main advantages, this new solution is faster and less computationally intensive than
the previous one based on the relational database. Performing queries against the graph data-
base constitutes a more scalable approach, resulting in higher throughput and, ultimately, to a
more robust ContentService able to cope with an always increasing number of requests. Addi-
tionally, the resulting product is easier to maintain as most new methods can be added by sim-
ply writing the respective Cypher queries, avoiding writing complex algorithms in a given
programming language (Fig 1B).

Fig 3. A schematic diagram of the new ecosystem. The relational database is converted to a graph database via the batch importer that relies on the Domain Model.
Spring Data Neo4j and AspectJ are two main pillars for the graph-core, which also rests on the Domain Model. Users access services or use tools that make direct use
of the graph-core as a library that eliminates the code boilerplate for data retrieval and offers a data persistency mechanism. Finally, export tools take advantage of
Cypher to generate flat mapping files.

https://doi.org/10.1371/journal.pcbi.1005968.g003

Reactome graph database: Efficient access to complex pathway data
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The use cases above are available as methods in the ContentService API (https://reactome.
org/ContentService/). Fig 4 emphasises how queries of Reactome data have been simplified by
the adoption of the graph database. The query in Fig 4A shows how to retrieve the participat-
ing molecules for a pathway. The reverse query, identifying pathways where a molecule partici-
pates, is shown in Fig 4B, which follows a similar pattern to Fig 4A, but fixes the end-bound
and leaves the upper-side open for traversing results. Based on feedback provided by people
contacting our help desk (help@reactome.org) and attending our training sessions, the new
way of querying Reactome is easy and intuitive to learn, and researchers, who are interested in
performing queries against Reactome data, can learn to write them in Cypher in a relatively
short amount of time.

To assess the improvement we designed a set of stress tests to measure the impact of adopt-
ing the graph database in Reactome. All stress tests were executed on a standard laptop featur-
ing an Intel Core i7 at 2.6 GHz, 16 GB of DDR3 memory at 1,600 MHz, and 256 GB of flash
storage. The tests do not aim to compare the two storage technologies (MySQL and Neo4j) but
instead their usage by Reactome. The stress tests were run against the web services build on
top of each storage technology and included two scenarios: (1) simulation of one user sequen-
tially querying 5,000 reactions for Homo sapiens and (2) simulating an increasing set of users
simultaneously performing the previous task. In each case the resulting data for every reaction
had to be marshalled as an instance of the correspondent model class. The test comprised four
executions; two against the previous web service running on top of the relational database and
the other two accessing the new web service running on top of the graph database through the
newly created graph-core library (https://github.com/reactome/graph-core). The reactions
were accessed in a sequential fashion to ensure that caching did not provide any sort of advan-
tage for any of the approaches, because a queried object would never be retrieved again in the
same test. It should be mentioned that prior to any stress test’s execution, both Neo4j and
MySQL databases were configured to allocate 50% of the available physical memory (8GB).

As illustrated in Fig 5, querying the data stored in the relational database resulted in signifi-
cantly longer response times. In particular, in the case of the relational implementation of the
Reactome knowledgebase the average query time was 173.11 ms (±25.81) while in the case of
the graph implementation, the average response time dropped to 12.56 ms (±2.94),a 93%

Fig 4. Examples of frequent use cases that can be answered using Cypher queries. a) Retrieving the participating molecules for “Interleukin-4 and 13 signalling”
pathway. b) Retrieving the pathways in which CCR5 participates.

https://doi.org/10.1371/journal.pcbi.1005968.g004
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reduction in the average query time. The new implementation supported higher throughput,
in terms of transactions per second (TPS), reaching 79.5 TPS compared to 5.8 TPS. As a result
of this boost in performance, all 5,000 queries to the graph database were performed in 63 sec-
onds while the relational implementation required more than 14 minutes for the same task.

A second stress test simulated a more realistic scenario where multiple users perform con-
current database queries (Fig 6). Once again, querying the Reactome knowledgebase in its rela-
tional implementation resulted in significantly longer response times. For instance, in case of
10 concurrent threads performing queries to the relational implementation of the Reactome
knowledgebase the average response time was 1,516 ms while in the case of the graph imple-
mentation, the average response time dropped to 49.05 ms. In addition, the new implementa-
tion achieved higher throughput reaching 203.6 TPS compared to 6.6 TPS. Consequently, the
graph implementation of Reactome provides higher scalability enabling Reactome to handle
larger volumes of user requests.

Fig 7 presents a comparison between the throughputs achieved by both systems against the
number of users performing concurrent queries. The graph implementation achieved a higher
number of transactions per second that reached a plateau after the point where the number of
active threads becomes equal to the available processor cores; in this case 4. On the other hand,
the measured throughput in case of the relational implementation is stable and does not seem
to take advantage of any concurrency.

Many users choose to download the Reactome graph database and access the data through
Cypher queries directly in their computers. Our usage statistics show that a growing number
of users have downloaded the Reactome graph database and, based on the questions gathered
by our help desk service, we believe that they have used it to perform local queries against the

Fig 5. Comparison of the response and elapsed time for one user sequentially retrieving 5,000 reaction instances from the graph and relational databases (blue and
orange respectively). The graph database software ecosystem achieved a 93% average improvement in performance compared to that of the relational database.

https://doi.org/10.1371/journal.pcbi.1005968.g005
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complete Reactome knowledgebase. In particular, during the first year that Reactome provided
the graph database, there were 2,385 downloads by 912 unique users. 118 of those users down-
loaded the graph database after each data release. It is worth mentioning that during writing of
this manuscript, the size of the Reactome relational database in its current data release (v62) is
around 2.0GB while the size of the graph database is approximately 1.8GB. Fig 8 provides a
summary of the graph database.

With a tool so powerful at managing highly connected data sets and complex queries at our
disposal, Reactome is providing faster and more stable services to researchers around the
world. In the near future, Reactome plans to upgrade its services and leverage the full potential
of Cypher in order to provide answers to questions that require diving deeper into our data. In
particular, the integration of a graph database lowers the complexity of problems that require
traversing of our knowledgebase, such as identifying causal interactions or revealing all possi-
ble paths between two molecules.

Future development in Reactome is not likely to be affected by the fact that Neo4j is by
nature schema-less, mainly because the rigid schema of our relational database with all the
applied constraints is used to ensure data consistency during the curation phase. Currently,
data are migrated to Neo4j during each quarterly release process and are used to speed up que-
ries in production.

In conclusion, through the adoption of the Neo4j graph database, and by harnessing the
power of its query language, Reactome provides efficient access to its pathway knowledgebase.
As a result of this shift in the underlying data storage technology, the average query time has
been reduced up to 93%. In addition, the graph-core library and the ContentService leverage

Fig 6. Response time versus an increasing set of users simultaneously performing queries for 5,000 reaction instances. Starting with one and scaling up to 20
concurrent users, the relational database performance drops while the graph database keeps a low response time and a good throughput as the number of active threads
increases.

https://doi.org/10.1371/journal.pcbi.1005968.g006
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these benefits of this shift and can be used by third party applications to efficiently access
Reactome.

Reactome’s successful use case constitutes a strong argument in favour of the positive
impact this new technology can have in the field. By following Reactome’s use case, other com-
munity projects with similar complex models could benefit from moving their storage to a
graph database while keeping their data model. While we have demonstrated the major impact
of moving the Reactome public database to a graph database in terms of usability, stability, and
response time, we think this is only a milestone in the growing ecosystem of network-oriented
biomolecular data resources that will enable entirely new functionalities through moving to
modern database technology that better reflects the graph-like structure of their source data.
While we will work directly with internal and external resources to move along that path, we
would also like to invite the community to use the open data Reactome graph database to
develop their own novel uses of Reactome data.

Availability and future directions

The Reactome graph database is freely available at: https://reactome.org/dev/graph-database.
The API for the ContentService is available at https://reactome.org/ContentService with docu-
mentation and tutorials available at: https://reactome.org/dev/content-service. The source
code, in Java, is freely available at: https://github.com/reactome (See the graph-core, graph-
importer and content-service repositories).

Future development will focus on updating the version of SDN and integrating interaction
data from IntAct (http://www.ebi.ac.uk/intact/) directly to the Reactome graph database.

Fig 7. Throughput measured in transactions per second, versus the number of users concurrently performing queries for 5,000 reaction instances in Homo sapiens.

https://doi.org/10.1371/journal.pcbi.1005968.g007
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ABSTRACT

The Reactome Knowledgebase (https://reactome.
org) provides molecular details of signal transduc-
tion, transport, DNA replication, metabolism, and
other cellular processes as an ordered network of
molecular transformations––an extended version of
a classic metabolic map, in a single consistent data
model. Reactome functions both as an archive of
biological processes and as a tool for discovering
unexpected functional relationships in data such as
gene expression profiles or somatic mutation cata-
logues from tumor cells. To support the continued
brisk growth in the size and complexity of Reactome,
we have implemented a graph database, improved
performance of data analysis tools, and designed
new data structures and strategies to boost diagram
viewer performance. To make our website more ac-
cessible to human users, we have improved pathway
display and navigation by implementing interactive
Enhanced High Level Diagrams (EHLDs) with an as-
sociated icon library, and subpathway highlighting
and zooming, in a simplified and reorganized web
site with adaptive design. To encourage re-use of
our content, we have enabled export of pathway dia-
grams as ‘PowerPoint’ files.

INTRODUCTION

At the cellular level, life is a network of molecular reactions
that include signal transduction, transport, DNA replica-
tion, protein synthesis, and intermediary metabolism. A va-
riety of online resources capture aspects of this information
at the level of individual reactions such as Rhea (1) or at
the level of reaction sequences spanning various domains
of biology such as KEGG (2), MetaCyc (3) or PANTHER
(4). The Reactome Knowledgebase is distinctive in focus-
ing its manual annotation effort on a single species, Homo
sapiens, and applying a single consistent data model across
all of these domains of biology. Processes are systemati-
cally described in molecular detail to generate an ordered
network of molecular transformations, resulting in an ex-
tended version of a classic metabolic map (5). The Reac-
tome Knowledgebase systematically links human proteins
to their molecular functions, providing a resource that func-
tions both as an archive of biological processes and as a tool
for discovering unexpected functional relationships in data
such as gene expression surveys or catalogs of somatic mu-
tations in tumor cells.

Reactome (version 62––September 2017) has entries
for 10 719 human genes, 53% of the 20 338 pre-
dicted human protein-coding genes (http://www.ensembl.
org/Homo sapiens/Info/Annotation), supporting the anno-
tation of 24 704 specific forms of proteins distinguished
by co- and post-translational modifications and subcellu-
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lar localizations. These function with 1768 small molecules
as substrates, catalysts, and regulators in 11 302 reactions
annotated on the basis of data from 27 526 literature ref-
erences. These tallies include 1334 mutant variants and
their post-translationally modified forms derived from 285
gene products, used to annotate 906 disease-specific reac-
tions, tagged with 294 Disease Ontology terms (6). These
reactions form 2102 pathways (e.g. Interleukin-15 signal-
ing; phosphatidylinositol phosphate metabolism; receptor-
mediated mitophagy) grouped into 26 superpathways that
correspond to domains of biology such as metabolism and
signal transduction. Reactome’s dataset continues to grow
briskly, with 74 new human pathways added in the first three
quarters of 2017.

Notable additions include extensive new annotations of
cytokine signaling, including a comprehensive catalog of
known interleukin signaling pathways. We have also re-
vised and supplemented existing pathways, continuing to
build our catalogs of signaling processes mediated by G
protein-coupled receptors, of transport processes, and of
metabolism. Notably, where our initial annotations in these
domains centered on the most extensively studied, ‘text-
book’ versions of pathways and molecules, we are now
systematically adding proteins whose properties indicate
closely-related biological roles, to increase the density and
connectivity of the reaction network in Reactome that is
available for visualization and computational analysis.

This growth has come at a cost. Our SBGN-based (7)
scheme for representing pathways, implemented eight years
ago, yields pathway diagrams that become cluttered and
difficult for biologist users to navigate as we achieve more
nearly complete annotations of the participants in a process
and their functions, and our approximately 120 diagrams of
superpathways are essentially lists of the names of compo-
nent pathways, functional but uninformative and unappeal-
ing to biologist users. Meanwhile, this growth in the num-
ber and complexity of our annotations has made our rela-
tional data structure slow and unwieldy for handling com-
plex queries and large scale data analyses.

We have addressed the computational aspects of these
challenges by implementing a Neo4j graph database struc-
ture for our production web site, developing a new high-
performance in-memory implementation of our core over-
representation data analysis tool, and implementing a new
Pathway Diagram Viewer to support faster data loading,
diagram rendering and element seeking. To improve us-
ability we have developed Enhanced High Level Diagrams
(EHLDs) that combine an iconography familiar from text-
books and review articles with web functionality, to repre-
sent superpathways, and have added features to our path-
way diagrams to improve their legibility. A redesigned web
site with adaptive technology is accessible from tablets and
mobile devices, and supports more intuitive navigation.

Here, we provide brief descriptions of these changes and
their contributions to the usability of the Reactome data re-
sources.

IMPROVED PERFORMANCE AND SCALABILITY

Implementation of a graph database

Relational databases work well to model and store complex
pathway information and their engines have been optimized
to provide efficient execution of global SQL queries that
aggregate large amounts of data without requiring traver-
sal operations. Reactome data, however, contain many re-
lationships and thus many join tables, so queries generally
require traversal operations resulting in degraded perfor-
mance and long response times.

To preserve our well-established and well-tested tools
for data annotation and internal storage while improv-
ing performance of our public resource, we continue to
maintain the relational Reactome database but have devel-
oped a graph database batch importer to migrate content
to a Neo4j graph database during each quarterly release.
Third parties can directly use Cypher, a declarative, pat-
tern matching query language specifically designed to re-
trieve data from graph data structures. A fully documented
REST based web content service has been built on top of
the graph-core to provide third party developers with pro-
grammatic access to the graph database. Stress-testing the
graph and relational implementations of Reactome indi-
cates approximately a 30-fold improvement in throughput
for queries submitted to the graph implementation. Users
can download the Reactome graph database and access the
data through Cypher queries directly on their computers. In
the first year that Reactome provided the graph database,
there were 2385 downloads by 912 unique users, 118 of
whom downloaded the graph database after each data re-
lease.

The Reactome graph database is freely avail-
able at: https://reactome.org/dev/graph-database.
The API for the ContentService is available at
https://reactome.org/ContentService with documenta-
tion and tutorials available at: https://reactome.org/dev/
content-service. The Java source code is freely available
at: https://github.com/reactome in the graph-core, graph-
importer and content-service repositories. (See Table 1 for
a summary of on-line resources discussed in this paper.)

Improved performance of data analysis tools

Reactome provides an over-representation analysis tool (8)
to support interpretation of expression data sets. The tool
calculates whether a user-generated list of proteins, for ex-
ample, ones whose expression is changed in response to a
stress, contains more annotated to each Reactome pathway
than would be expected by chance given the number of pro-
teins in the set, the number annotated to the pathway, and
the number annotated in all of Reactome. The Reactome
implementation uses a hypergeometric distribution test to
generate a probability score, which is corrected for false dis-
covery rate using the Benjamani-Hochberg method (9,10).
We have now developed a high-performance in-memory im-
plementation that divides the method into four steps, each
with a specific data structure to improve performance and
minimize the memory footprint. First, each identifier in the
user’s sample is matched to an entity in Reactome using
a radix tree as a lookup table. Second, a graph is used to
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Table 1. Reactome online resources

Home page https://reactome.org
an introductory video for users https://youtu.be/-skixrvI4nU
The Reactome graph database https://reactome.org/dev/graph-database
API for the ContentService https://reactome.org/ContentService
documentation and tutorials https://reactome.org/dev/content-service
Java source code https://github.com/reactome
includes graph-core, graph-importer, content-service and analysis-tools repositories
EHLD source code https://github.com/reactome-pwp/diagram
reusable stand-alone JavaScript EHLD viewer https://reactome.org/dev/diagram/js
EHLD icon library https://reactome.org/icon-lib
community contributions to the library https://reactome.org/icon-info

model proteins, chemicals, their orthologs in other species
and their composition in complexes and sets. The third and
fourth steps aggregate the results and calculate the statis-
tics, employing a double-linked tree. This implementation
provides a stable, high performance pathway analysis ser-
vice, enabling the analysis of genome-wide datasets within
seconds, allowing interactive exploration and analysis of
high throughput data. It is accessible on our web site both
via the AnalysisService for programmatic access and a user
submission interface integrated into the PathwayBrowser.
All of its source code is freely available in the Analysis-
Tools repository in the Reactome GitHub (https://github.
com/reactome/) (10).

Data structures and strategies to boost diagram viewer per-
formance

A new version of the Pathway Diagram Viewer (version 3)
was implemented to provide faster data loading, diagram
rendering and element seeking, with the goal of completing
most user interactions in less than a second. Improvements
include: (i) restructuring of the data format used to send the
data from the server to the client from XML to JSON, (ii)
using a graph data structure to store the pathway content
on the client side, (iii) boosting the client content load strat-
egy, (iv) implementing a multi-layer canvas approach and
(v) utilizing a space partitioning data structure to store the
elements to be rendered. Conversion from XML to JSON
reduced diagram sizes only by about 20% but reduced pro-
cessing and loading times by at least 65% over the full range
of sizes.

IMPROVED PATHWAY DISPLAY AND NAVIGATION

Implementation of interactive Enhanced High Level Dia-
grams (EHLDs)

To improve the quality of the graphics used to represent
pathways and to make pathway navigation easier, we have
integrated three new features into the Reactome pathway
browser: textbook-style EHLDs to represent superpath-
ways such as signaling and immune function, a mechanism
to highlight different subpathways with colored overlays in
zoomed-out views of detailed pathway diagrams coupled to
changes in amount of detail displayed as users zoom into
and out of diagrams, and an option to export EHLDs, in-
dividual EHLD icons and pathway diagrams in editable,
reusable forms (11).

EHLDs (Figure 1) resemble overviews of biological pro-
cesses shown in textbooks or review articles, with a con-
sistent iconography based on widely used simple diagrams
of molecules, cellular structures, cells, and tissues, to make
navigation intuitive and familiar. This design helps the user
to recognize the process represented in an EHLD and select
the appropriate region of the EHLD to navigate to the next
more detailed level of the Reactome hierarchy, ultimately to
arrive at a detailed pathway diagram that shows individual
physical entities participating in individual reactions.

EHLDs were produced by a team of curators and illustra-
tors who revised the Reactome event hierarchy as necessary
and developed overview diagrams for the higher levels of
the hierarchy. They developed a common style and iconog-
raphy to enhance the ‘recognition effect’ and facilitate effi-
cient navigation. Of the 120 high-level pathways represented
as lists of subpathway names, 48 have been converted to
EHLDs; conversion of the remainder should be complete
by late in 2018.

The SVG format was selected for EHLDs because it al-
lows object-based vector representation for easy editing,
resolution-independent zooming, interaction features for
richer interfaces, use of data in regular text format as a sub-
set of an eXtensible Markup Language (XML) that can be
easily handled by computer programs or text editors, and
support by most popular web browsers and compatibility
with most popular graphic software packages.

EHLDs have a limited number of entities, so the mul-
tilayered HTML5 Canvas approach implemented for de-
tailed pathway diagrams (above) was not needed. Instead,
for EHLDs, their simple overlay features and a rendering
strategy where the flow of information does not depend on
the level of zoom, allowed the adoption of an SVG renderer.
This allowed developers to implement features such as over-
lays, zoom and translation by applying a series of filters and
transformations.

The Reactome web interface now has an SVG render-
ing component that, beyond standard zooming and pan-
ning, allows specific regions of an EHLD to be highlighted,
recognizes mouse click events on specific regions to allow
navigation to subpathways and allows analysis results to
be overlaid on it. All of the required technical annotations
were included in the SVG files by using the database iden-
tifier attribute of each relevant diagram element. Any ele-
ment with no technical annotation was considered a dec-
oration, so EHLDs can accommodate placeholder icons
for subpathways that are still in development. The code is
part of the EHLD package available on the Reactome pub-
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Figure 1. ‘Hemostasis’ top-level pathway represented as an Entity High Level Diagram (EHLD) above, and with expression data analysis results overlaid,
below, showing relative overexpression of gene products involved in platelet adhesion to exposed collagen.

lic GitHub repository (https://github.com/reactome-pwp/
diagram). EHLDs are also available in the reusable stand-
alone JavaScript diagram viewer (https://reactome.org/dev/
diagram/js).

Pathway analysis results (1) can be overlaid on EHLDs.
The results are displayed in the label of each subpathway,
which is overlaid by a colored rectangular shape whose
width and color represent the percentage of hit entities and
the P-value, respectively (Figure 1).

EHLDs, including any analysis result overlay, can be
easily downloaded and saved in SVG format. Users can
edit the content of the exported files with commercial or
open-source graphics applications. EHLDs use a consistent

iconography that reuses glyphs when the same entity plays
a role in more than one biological process. We have made
a library of these graphical elements to provide them in
SVG, PNG and EMF formats. The icon library is available
at https://reactome.org/icon-lib and is distributed under the
terms of the CC-BY license (https://creativecommons.org/
licenses/by/4.0/) to facilitate the creation of uniform dia-
grams through the use of pre-existing glyphs and to offer
these components to the community for reuse.

Researchers can use these icons to create their own illus-
trations to convey their findings and ideas, whether in a pa-
per or a grant application. Additionally, we encourage the
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Figure 2. Pathway navigation with detail matched to zoom level. A user who selects the pathway ‘nucleotide metabolism’ is presented with an EHLD that
shows the entire process with its major subpathways labeled (A). Double-clicking anywhere in the region of nucleobase biosynthesis (red box in A) yields
a pathway diagram for that process, with its subpathways labeled and only its major components shown (B). As the user zooms in to view the last steps of
purine biosynthesis (red box in B), housekeeping entities are revealed and names of all entities are displayed (C). Finally, as the user zooms in to a specific
region of the pathway (red box in C), structures of small molecules and proteins are shown (D).

community to contribute new icons to extend this library
(https://reactome.org/icon-info).

Subpathway highlighting and zooming

To make the navigation of complex SBGN-like pathway di-
agrams easier, the web display has been modified to make
the amount and kind of information displayed dependent
on zoom level, as shown in Figure 2. When a user enters a
pathway diagram from the event hierarchy or a superpath-
way EHLD, only key components are shown, unlabeled,
but with boxes superimposed to highlight pathway bound-

aries and show pathway names. As a user zooms further
into the pathway more detail is shown until individual enti-
ties are shown as molecular structures. For fast loading and
a consistent look and feel, the position and color of path-
way boxes is calculated on the server side at database release
time.

Export of pathway diagrams as ‘PowerPoint’ files

Pathway diagrams have previously been available as static
PNG images. To enable users to modify diagrams for their
own use, we have developed a strategy to export a path-
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Figure 3. Reorganized Reactome website. From the simplified home page (A), a single step leads to the pathway browser (B), our main tool for data
visualization and analysis for human users. Users needing help in navigating and interpreting the site can navigate in a single step to on-line documentation,
organized by topic and including solved examples (C). The same documentation button also leads to pages for developers who want access to our analysis
service, content service, graph database and widget to include Reactome pathway displays in their web applications (D).

way diagrams from the Pathway Browser as an intercon-
nected set of objects that adapt to layout changes so that
when a glyph is moved in an exported diagram all con-
nected objects follow. Our implementation (11) generates
PPTX files on the server side, using the color profile se-
lected by the user on the client side and uses Aspose.Slides
(https://www.aspose.com/products/slides/java), a commer-
cial JAVA API for reading, writing and manipulating Pow-
erPoint documents, to store the content in PPTX format.

A simplified and reorganized web site with adaptive design

We have redesigned our landing page and several key pages
linked to it to simplify them and make the navigation to de-
sired tools and documentation more straightforward (Fig-
ure 3). The new design includes adaptive features to make

our content accessible from tablets and mobile devices.
Documentation for biologist users and developers has been
revised to bring it up to date and reorganized to make it
more easily navigated.

A video that introduces the pathway browser and data
analysis tools is available at https://youtu.be/-skixrvI4nU.

CONCLUSIONS

Both the Reactome Knowledgebase and user needs for data
visualization and analysis have grown in size and complex-
ity, and will continue to grow briskly. We have addressed
the computational aspects of this growth and change by
implementing a Neo4j graph database structure for our
production web site, developing a new high-performance
in-memory implementation of our core overrepresentation
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data analysis tool, and implementing a new Pathway Dia-
gram Viewer to support faster data loading, diagram ren-
dering and element seeking. To improve usability we have
developed Enhanced High Level Diagrams (EHLDs) that
combine an iconography familiar from textbooks and re-
view articles with web functionality, to represent superpath-
ways, and have added features to our pathway diagrams to
improve their legibility. A redesigned web site with adaptive
technology is accessible from tablets and mobile devices,
and supports more intuitive navigation.
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ABSTRACT

The Reactome Knowledgebase (www.reactome.org)
provides molecular details of signal transduction,
transport, DNA replication, metabolism and other
cellular processes as an ordered network of molecu-
lar transformations––an extended version of a clas-
sic metabolic map, in a single consistent data model.
Reactome functions both as an archive of biological
processes and as a tool for discovering unexpected
functional relationships in data such as gene expres-
sion pattern surveys or somatic mutation catalogues
from tumour cells. Over the last two years we re-
developed major components of the Reactome web
interface to improve usability, responsiveness and
data visualization. A new pathway diagram viewer
provides a faster, clearer interface and smooth zoom-
ing from the entire reaction network to the details of
individual reactions. Tool performance for analysis of
user datasets has been substantially improved, now
generating detailed results for genome-wide expres-
sion datasets within seconds. The analysis module
can now be accessed through a RESTFul interface,
facilitating its inclusion in third party applications.
A new overview module allows the visualization of
analysis results on a genome-wide Reactome path-
way hierarchy using a single screen page. The search
interface now provides auto-completion as well as a
faceted search to narrow result lists efficiently.

INTRODUCTION

At the cellular level, life is a network of molecular reactions
that include signal transduction, transport, DNA replica-
tion, protein synthesis and intermediary metabolism. In
Reactome, these processes are systematically described in
molecular detail to generate an ordered network of molec-
ular transformations, resulting in an extended version of a
classic metabolic map described by a single, consistent data
model (1). The Reactome Knowledgebase thus systemat-
ically links human proteins to their molecular functions,
providing a resource that functions both as an archive of bi-
ological processes and as a tool for discovering unexpected
functional relationships in data such as gene expression pat-
tern surveys or somatic mutation catalogues from tumour
cells.

Since its inception 12 years ago, Reactome has grown
to include (version 54––September 2015) entries for 8701
human genes (43% of the 20 296 predicted human
protein-coding genes––http://Jul2015.archive.ensembl.org/
Homo sapiens/Info/Annotation), supporting the annota-
tion of 18 658 specific forms of proteins distinguished by
co- and post-translational modifications and subcellular lo-
calizations. These entities function together with 1540 small
molecules as substrates, catalysts and regulators in 8770 re-
actions annotated on the basis of data from 20 708 literature
references. These tallies include 1155 mutant variants and
their post-translationally modified forms derived from 249
gene products, used to annotate 787 disease-specific reac-
tions, tagged with 262 Disease Ontology terms (2). Recent
additions include hedgehog signalling, host cell damage by
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Figure 1. Pathway Overview. The entire pathways overview map (A). The RAF/MAP kinase cascade pathway is highlighted to show its involvement in
multiple bursts (B). A zoomed-in view of the Metabolism burst showing individual subpathway groups (C).

bacterial toxins and extended annotations of DNA repair
processes.

Here, we focus on three aspects of Reactome that have
been extensively redesigned and improved since its last re-
view in NAR (1): the web visualization and navigation
browser, the toolkit for data analysis and the search utility.

PATHWAY OVERVIEW

Pathways in Reactome are organized hierarchically, group-
ing detailed pathways for translation, protein folding and
post-translational modification into larger domains of bi-
ological function like protein metabolism. This hierarchi-
cal organization largely follows that of the Gene Ontology

(GO) biological process hierarchy (3,4). Reactome thus im-
plements a pathway graph.

The pathway overview visualization provides an
overview of all Reactome pathways, that high-
lights parent–child relationships and processes
that are shared between pathways (Figure 1;
http://www.reactome.org/PathwayBrowser/). In this
view the 24 major Reactome pathway groups are each
organized as a roughly circular ‘burst’. The central node
of each burst corresponds to the uppermost level of the
Reactome event hierarchy (e.g. hemostasis, gene expres-
sion, signal transduction). Concentric rings of nodes
around the central node represent successive more specific
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Figure 2. Diagram viewer. The central panel shows details of reactions and participating molecules in the nine-step process of ubiquinol (ubiquinol-
10, Q10H2) biosynthesis. Buttons around the panel support functions including panning and zooming (lower right), changing the view (upper left) and
downloading a snapshot of the pathway (upper right).

levels of the event hierarchy (e.g. signal transduction →
signalling by FGFR → signalling by FGFR1). The arcs
connecting nodes between successive rings within a burst
represent parent–child (is-a) relationships in the event
hierarchy. When a specific pathway like RAF/MAP kinase
cascade is shared by more than one burst, arcs connect
its nodes between bursts. A node’s size is proportional
to the number of physical entities (proteins, complexes,
chemicals) it contains. Bursts are manually positioned to
minimize crossing of arcs between bursts, and new bursts
are manually added to the layout. With each new data
release, a layout algorithm automatically adjusts the loca-
tions of existing nodes within the bursts to accommodate
newly added nodes, maintaining spacing within rings and
avoiding overlaps of nodes from neighbouring bursts,
while minimizing displacement of the groups from their
previous positions in the overview. Changes in the overall
organization of the whole reaction network due to updates
are thereby minimized, helping users identify and track
areas of interest. This layout provides a legible, stable,
informative overview and entry point to Reactome content
even as the number of annotated proteins and processes in
Reactome continues to increase.

DIAGRAM VIEWER

The new version of the diagram viewer reduces the loading
time for diagrams and data, as well as the analysis results
displayed on top of them. It provides visual feedback for
common actions like hovering and focusing, has smoother
transitions for zooming and selection and implements a
mechanism to coordinate the amount of detail shown with

the zoom level––as the user zooms into specific parts of a
diagram, more detailed information is progressively over-
laid. A new search tool enables users to find items of interest
within a diagram.

To support efficient navigation and searching within di-
agrams we have implemented a directed graph data struc-
ture which holds information such as the identities of the
physical entities that make up complexes or sets and anno-
tated preceding/following relationships between reactions
in a pathway. This data structure is linked to the entities
and events displayed in the diagram and takes advantage
of graph traversing algorithms to support features such as
rapid drilling down into complexes to reveal their compo-
nents and navigation to all occurrences of an entity, both as
an individual entity or as part of a larger composite entity,
when present multiple times in a diagram (e.g. pyrophos-
phate (PPi) and H+ in Figure 2).

PATHWAY BROWSER

The pathway browser (http://www.reactome.org/
PathwayBrowser/) (Figure 3) has been updated to re-
duce its loading time and provide a more attractive user
interface. Buttons for widely used actions have been made
more prominent, icons and colour schemes have been
re-designed, and features including colour profiles can be
customized by users. The pathway browser opens with the
‘starburst’ overview explained in the previous section. This
overview is integrated with a diagram viewer that shows
molecular details of pathways and individual reactions.
When the pathway browser is loaded, the events hierarchy
and the details panel appear on the left and bottom of the
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Figure 3. Pathway browser view centred on the ‘gene expression’ top-level pathway. Access to subpathways is provided via the hierarchical display of events
on the left and by clicking on event nodes in the pathway display (viewport). Details for the selected event are shown in the panel under the pathway display.
Buttons at the right of the top bar show the current version of our software (3.0) with access to our Github software repository, and the current version of
our data (release 54). A button in the top bar provide access to the analysis tools (see below, Figure 4). Clicking on the layout buttons closes and re-opens
the hierarchical display and details panels. The ‘tour’ button provides access to a brief video tour of the main features of the web site. Clicking on the
gearwheel icon in the upper right corner of the pathway diagram provides access to a tool to customize diagram colouring and to an ‘About . . . ’ pop-up
that briefly describes pathway diagram features and contains a link to the detailed users’ guide. (This guide is also accessible via the ‘documentation’
drop-down menu at the top of the home page).

viewport, respectively. The pathways overview widget is
placed in the main viewport. Double clicking a pathway in
the events hierarchy or its node in the main viewport will
trigger a smooth, animated zoom in the main viewport to
reveal the diagram for the pathway.

All display components are tightly connected, so that ac-
tions in one component will cause updates in others to con-
sistently present information across the different display ele-
ments in accordance with the user’s selection. For example,
choosing a reaction node or a physical entity glyph in the
pathway diagram will trigger an update of the information
displayed in the details panel under the pathway diagram
and the events hierarchy panel on the left.

PATHWAY ANALYSIS

Reactome’s annotated data are a part of list that shows what
could happen if all annotated proteins and small molecules
were present and active simultaneously in a cell. By over-
laying an experimental dataset on these annotations, such
as a list of genes activated in response to an experimen-
tal stimulus or expressed in transformed cells but not their
normal counterparts, a user can search for patterns in the
dataset such as modulation of specific pathways. By over-
laying quantitative expression data or time series, a user can

visualize the extent of change in affected pathways and its
progression.

Changing use patterns and growing data content are
rapidly increasing performance demands for Reactome
Pathway Analysis; high-throughput datasets often contain
thousands or tens of thousands of identifiers. To address
this challenge, we have re-implemented the analysis sys-
tem, which now achieves interactive speed for genome-wide
datasets, typically providing results for a dataset with 20
000 identifiers in less than 3 s. In addition to high execu-
tion speed, we now offer fine-grained results across all path-
way levels in the Reactome events hierarchy. We provide a
measure of target pathway coverage not only in terms of
identified molecules, but also in terms of hit reactions per
pathway.

The pathway analysis data submission interface is
launched by selecting the analysis button located in the right
top corner of the pathway browser. Once the user data is
submitted by uploading or pasting a file into the allocated
text area (Figure 4), the analysis is performed on the server
side with the results shown in the pathway browser.

A new details panel displays results in tabular form.
We have taken advantage of the new Reactome pathway
overview visualization to show the analysis results as an
overlay, allowing users to start with a high-level overview
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Figure 4. Analysis tool user data submission interface, showing time-series data. Each row represents data for a different gene. Columns contain an identifier
(probe set, gene name, etc.) on the left and expression values for four time points to the right, entered as tab-delimited text. UniProt identifiers, gene names
and Affimetrix identifiers, among others, can be submitted. The ‘project to human’ box at the bottom of the form, which is selected by default, causes any
non-human identifiers in the data to be replaced by their human equivalents and the latter to be used for the analysis. Instructions for formatting data and
lists of acceptable identifiers are provided in the users’ guide (Figure 3).

Figure 5. Analysis results. Top panels, an analysis of a PRIDE dataset (assay 27 929––http://www.ebi.ac.uk/pride/ws/archive/protein/list/assay/27929.acc
in project PXD000072––http://www.ebi.ac.uk/pride/archive/projects/PXD000072) to identify proteins over-expressed in activated human platelet releasate
(5). Bottom panels, an expression analysis. Left panels show overlays on the pathways overview; right panels are an overlay of the data for a selected pathway
on the pathway diagram. The details panel at the bottom lists results and statistics for each pathway, including numbers of identifiers in the submitted
dataset that did not match anything in the Reactome dataset. A binomial test is used to calculate the probability shown for each result, and the P-values
are corrected for the multiple testing (Benjamini–Hochberg procedure) that arises from evaluating the submitted list of identifiers against every pathway.

of results and then zoom in on areas of interest. Selecting a
row in the results table highlights the corresponding events
in the hierarchy and focuses the pathway overview on the
corresponding burst, or loads the corresponding pathway
diagram (Figure 5).

Analysis results are temporarily stored on the Reactome
server. The storage period depends on usage of the service

but is at least 7 days. Stored results are available via the to-
ken assigned to the results file when it is created and dis-
played in the URL for the results report. The token can be
shared and allows later access through the API.

High-throughput pathway analysis is supported by a new
RESTFul web service interface (API), documented in de-
tail (http://www.reactome.org/AnalysisService/), which al-
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Figure 6. Redesigned search interface, showing term auto suggestion, grouping of results and highlighting of search terms in the results. The check boxes
along the left side of the results page allow results to be further limited by species, data type, subcellular location and other parameters.

lows use of the Reactome server for batch dataset analy-
sis. Over-representation and expression data analysis can be
performed against the Reactome database (/identifier and
/identifiers methods) as well as species comparison (/species
method). Once the data analysis or species comparison has
been performed, a token is included in the client results
allowing further service calls to refine the initial findings
(/token and /download methods).

FULL-TEXT SEARCH

The search tool has been redesigned to provide fast data ac-
cess and incorporate additional data type attributes, yield-
ing more accurate search results (Figure 6). The search
core employs Solr, a high performance scalable full-text
search engine specifically designed to search through large
datasets. New features include filtering, results grouping, hit
highlighting, spell checking and auto completion as the user
types terms into the search text box.

CONCLUSIONS

The changes to the Reactome site and data analysis tools de-
scribed here provide users with faster, easier access to Reac-

tome data increasing its utility both as an archive of known
human biology and as a tool for generating and testing ex-
perimental hypotheses. The newly developed tools scale well
to support the continued growth of Reactome content and
its extension to new data types such as non-coding RNAs.
These tools have been designed to support persistent growth
in the number, size and complexity of user-supplied datasets
for analysis.
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ABSTRACT

Reactome (http://www.reactome.org) is a manually
curated open-source open-data resource of human
pathways and reactions. The current version 46 de-
scribes 7088 human proteins (34% of the predicted
human proteome), participating in 6744 reactions
based on data extracted from 15 107 research
publications with PubMed links. The Reactome
Web site and analysis tool set have been completely
redesigned to increase speed, flexibility and user
friendliness. The data model has been extended
to support annotation of disease processes due to
infectious agents and to mutation.

INTRODUCTION

At the cellular level, life is a network of molecular reac-
tions that can be organized into higher order intercon-
nected pathways. Molecules are synthesized, degraded,
transported from one location to another and assembled
into complexes and higher order structures with other
molecules. Intensive studies of cellular signaling,
motility, vesicular trafficking and other aspects of cell
biology, coupled with the development of comprehensive
catalogs of human genes and their protein products, have
enabled the description of many cellular processes in the
same molecular detail that has been a standard for meta-
bolic processes for a generation. By annotating all of these
processes in a single, consistent reaction-pathway format,
the Reactome Knowledgebase systematically links human

proteins to their molecular functions, providing a resource
that functions both as an archive of biological processes
and as a tool for discovering unexpected functional rela-
tionships in data from gene expression pattern surveys or
somatic mutation catalogues from tumor cells (e.g. 1–3).

Since its inception 10 years ago, Reactome has grown to
include (version 46–September 2013) annotations for 7088
of the 20 774 protein-coding genes in the current Ensembl
human genome assembly (34% coverage), 15 107 literature
references and 1421 small molecules organized into 6744
reactions collected in 1481pathways. Notable recent add-
itions include extensive annotations of phospholipid and
eicosanoid metabolism, protein glycosylation and SCF-
KIT, IGF1R, NOTCH and HIPPO signaling, as well as
annotations of regulatory processes mediated by non-
coding RNAs.

Here, we will focus on three new features of Reactome:
the development of a strategy to annotate the disease
counterparts of normal human processes, the deployment
of a redesigned Web site and the extension of tools for
data analysis.

Disease curation using an enhanced data model

The Reactome data model (4) builds on earlier work by
Kanehisa et al. (5) and Karp et al. (6) to classify and
catalog physical entities (proteins and other macromol-
ecules, small molecules, complexes of these entities and
post-translationally modified forms of them), their
subcellular locations and the transformations they can
undergo (biochemical reaction, association to form a
complex and translocation from one cellular compartment
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to another). The central class of the Reactome data model
is a Reaction, and subclasses of Reaction model these core
biological events. Reactions are grouped into pathways,
which in turn are assembled into a hierarchy of biological
processes. Wherever appropriate, Reactome entities are
linked to external reference databases such as UniProt
(7), Ensembl (8), ChEBI (9) and Rhea (10). The full
Reactome database schema is available at http://www.
reactome.org/cgi-bin/classbrowser?DB=gk_current.

A straightforward definition of disease allows us to
annotate a broad range of major disease processes at the
molecular level. Diseases that can now be annotated in
Reactome arise in one of three ways: a mutation, somatic
or germ-line, leads to a non-functional gene product so
processes that normally depend on that gene product do
not take place; a mutation leads to a gene product with a
novel function, enabling novel reactions whose products
perturb normal human processes; or an infectious agent
such as a virus introduces novel gene products whose
novel reactions perturb normal human processes.

To identify disease-associated entities and events, a new
‘disease’ attribute is added, taking its value terms from a
disease ontology [currently http://disease-ontology.org/
(11)]. This attribute is multivalued, so an entity or event
that has roles in multiple disease processes can be
annotated to capture all of those roles.

With this addition, diseases due to infection can be
annotated within our data structure. Our existing
‘species’ attribute allows pathogen-derived proteins,
DNA and RNA to be distinguished from molecules
encoded in the human genome. The ‘species’ attribute,
also associated with complexes, reactions and pathways,
can be multivalued, allowing complexes containing both
host and viral proteins or reactions involving host and
viral components to be properly identified. Finally,
addition of Gene Ontology (GO) (12) host_cell terms to
our cell compartment vocabulary allows us to localize
pathogen-derived entities accurately, in compliance with
GO annotation practice.

To denote molecular properties of a protein modified
by a somatic or germline mutation in the gene that
encodes it, as opposed to post translational modifica-
tion, we created a new class. This class of genetic modi-
fications has subclasses to accommodate substitution of
a canonical residue by a different one, the insertion or
deletion of multiple contiguous residues into a canonical
sequence and the generation of a fusion protein contain-
ing fragments of two canonical ones (13). The
underlying chemical similarity between a protein that
differs from its canonical form due to a mutation and
one that differs due to co- or post-translational modifi-
cation allows us to maintain compliance with the
PSI-MOD standard for annotation of protein
modifications (14).
Reactions involving mutated proteins as catalysts,

inputs, outputs and regulators are annotated exactly as
wild-type reactions are. To link reactions involving a
mutated protein to those involving its normal counterpart,
an optional ‘normal reaction’ attribute is used. A reaction
in which a receptor constitutively activated by a mutation
transmits a signal is thereby paired with the wild-type
reaction in which a normal receptor is activated by
ligand binding. A reaction catalyzed by the normal form
of an enzyme is paired with the different one catalyzed by
its gain-of-function mutant counterpart or with a dead-
end reaction (normal inputs, no outputs) associated with
its loss-of-function mutant counterpart. A limitation of
this strategy at present is that, as Reactome does not
capture quantitative data such as reaction rates or
binding affinities, quantitative effects of mutations are
not readily annotated.
At the level of our event hierarchy, these normal-disease

pairings support a disease event hierarchy that parallels
our normal event hierarchy, a useful and generalizable
organization. These pairings also support a visualization
scheme that highlights the relationship between the
normal and disease processes. As described previously
(15), the physical entities and their interactions that

Figure 1. Example of disease curation and visualization in Reactome. The normal process of glucose export from the liver under fasting conditions
(A) is disrupted by mutations that block glucose-6-phosphate hydrolysis within the endoplasmic reticulum (B) or the transport of glucose
6-phosphate and orthophosphate (Pi) between the endoplasmic reticulum and the cytosol (C).
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comprise a pathway are laid out in a pathway diagram
that follows the SBGN process description language
(http://www.sbgn.org/Documents/Specifications) and
that is displayed on our Web site. The software that gen-
erates these displays has been extended to create disease
displays in which the variant forms of the events respon-
sible for a disease process are superimposed and high-
lighted on the normal process diagram (Figure 1).
We have used these extensions of the Reactome data

model and pathway visualization process to create a new
disease pathway classification in our event hierarchy that
incorporates existing material such as the HIV and influ-
enza life cycles, amyloid formation and botulinus toxin
neurotoxicity, together with new material that includes
malignant transformation due to mutations in the
EGFR and FGFR signaling pathways and mucopolysac-
charidoses. Our current release includes annotations for
420 mutant forms of 68 proteins.

Updated Reactome Web site

Our home page has been redesigned completely to support
intuitive access to our pathway browsing and data analysis
tools. The new Web site retains a top menu bar to provide
easy access to all of our tools and resources, accompanied
by a central panel of links to our most widely used tools
and a footer that displays all tools and resources. This
organization is consistent with the general model for
resources associated with EBI. News is now available as
an interactive Twitter display, which also provides open
real-time feedback, both by the Reactome group and our
user community.

Dynamic pathway portal

We have improved the flexibility and performance of our
pathway browser by creating a new pathway diagram
visualization tool using the canvas element introduced in
HTML 5. The canvas element is used to render whole
pathway diagrams in a Google map-like way with XML-
encoded pathway diagram data retrieved from the server
using a RESTful API (Figure 2A). The new diagram
visualization tool offers quicker performance and better
data overlaying technologies (see later in text) and
bypasses the slow step to generate static images during
database release.
The event hierarchy panel to the left has been re-

designed to provide interactivity and access to the entire
listing of all the Reactome pathways. Icons now indicate
whether a pathway is new (N) or updated (U), and identify
ones that are parts of disease processes (+). Navigation
controls in the upper left corner enable zooming and
panning across the pathway panel. A diagram thumbnail
in the lower left shows the part of the pathway currently
displayed in the visualization panel. A widget icon in the
upper right corner of the panel links to tools for searching
within the displayed pathway, overlaying the pathway
with functional interactors (see later in text) and for down-
loading the diagram as a snapshot or PNG file.
A new tabbed ‘Details’ panel, below the pathway

diagram, provides additional graphical and textual
information. The ‘Overview’ tab provides summary

Figure 2. Visualization of the execution phase of apoptosis.
(A) Choosing the entry for this event from the event hierarchy in the
left panel of the web page causes the pathway to be displayed in a large
panel to the right, laid out in SBGN process description format. Buttons
at the top of the panel open a diagram key and give access to a brief tour of
features of the web page. The panel at the bottom of the page contains text
descriptions of various features of the pathway and participating mol-
ecules, linked to external databases. (B) The user has selected the
reaction ‘Caspase 3-mediated cleavage of PKC delta’; the ‘Structures’
detail tab displays PDB 3D structural data and citations for proteins in
that reaction and the ‘Expression’ detail tab (C) displays condition-
specific gene expression data from the Gene Expression Atlas. (D) The
molecular interaction (MI) overlay displays proteins that interact with
user-specified proteins PRKCQ and PRKCD.
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information relating to the pathway, reaction or entity
selected. The ‘Molecule’ tab displays external annotation
and linking-out to other bioinformatic resources
describing the selected molecule. The ‘Structures’ tab
(Figure 2B) displays 3D structural data and citations for
proteins from PDB (16), for small molecules from ChEBI
and for the stoichiometry of metabolic reactions from
Rhea. The ‘Expression’ tab (Figure 2C) serves condition-
specific gene expression data from the Gene Expression
Atlas (17). The ‘Processes’ tab displays Reactome
pathways and reactions associated with the selected
pathway node or event. Finally, the ‘Download’ tab
allows users to download the description of the pathway
in a variety of formats compatible with third-party tools.

Based on usability testing and feedback from our user
community, we modified the context sensitive menus. In
this new version, the mouse cursor can be positioned on
the pathway background and right-clicked to display a
new set of pathway diagram options.

The molecular interaction overlay that provides the
display of proteins or small molecules that interact with
Reactome pathway proteins (Figure 2D) is revised to
include additional interaction databases through the
PSIQUIC registry (18) including BindingDB (19),
DrugBank (20) and GeneMANIA (21).

Unified pathway analysis portal

We have merged pathway identifier mapping, over-
representation and expression analysis tools into a single
tabbed data analysis portal with integrated visualization
and summary features (Figure 3). The pathway data
analysis module accepts gene lists or expression data
with numerical values (e.g. expression, abundance, fold
expression change and quality scores). It will automatic-
ally distinguish between tab-delimited, comma-delimited
or Microsoft Excel files and can cope with files that have
been ZIP compressed.
The results of an analysis are displayed in three tabs

that provide three different views of the same data.
Pathway-oriented expression analysis provides a table of
top-level pathways plus information relevant to the type
of data submitted by the user. If presented with a list of
identifiers, an enrichment analysis will be shown; numer-
ical data will be summarized in a graphical way, using
color to indicate average expression values. The identifier
mapping view lists each of the identifiers supplied by the
user with the corresponding UniProt identifier and a list of
pathways in Reactome in which it functions. The overview
is a completely new feature. It provides a canvas-based
aggregated summary of the entire set of Reactome
pathways, using visual cues to inform the user about the

Figure 3. Pathway analysis. The data analysis workflow proceeds in three steps: data submission, a tabular display of results and visual display of
results as an overlay in a pathway browser window. The fourth pane shows a detail of the pathway browser window, to highlight the display of
expression levels.
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number of participating entities, relations between the
pathways, average expression levels and other details.
The pathway names in the pathway-oriented view are

clickable links, which take the user to the relevant
pathway diagram. In it, the sub-pathway nodes, com-
plexes and entities are colored according to expression
level. Entities that lack gene expression information are
colored white. Pathway and complex nodes are colored
in vertical segments with each segment representing a
protein in the pathway or a component of the complex.
The segments are stacked in order from lowest to highest
expression level. A new icon at the base of the diagram
allows the user to single step through the individual
experiments or time points.

Community relationships and data exchange

Reactome continues to collaborate with other data re-
sources, such as GO, NCBI, EBI and WikiPathways
(22). Reactome provides a series of link-outs to many
online bioinformatics resources from its protein pages;
we have added links to GeneCards annotations (23).
Reactome is open-source and open-data, and we have
continuously supported the major open-data standards
in the domain, including BioPAX levels 2 and 3 (24),
PSI MITAB (18), Protégé (http://protege.stanford.edu),
SBML-ML (25) and SBGN export format. Reactome
now provides an SBGN file format generated using
libSBGN for individual pathways. The Reactome SBML
export has been upgraded to Level 2, Version 4 and is
enriched with a wide variety of additional annotations,
including Systems Biology Ontology terms (26).
Reactome also supports the Protein Ontology in develop-
ing an ontology for protein modifications and protein
complexes (27). Our new RESTful API provides outside
users with direct access to pathway data in Reactome.
The Reactome data model has been adopted by the

Gramene group for manual annotation of plant
pathways, especially metabolic processes specific to
plants. The current release of Plant Reactome (http://
plants.reactome.org) includes 131 rice pathways.
Since 2011, Reactome has participated in the Google

Summer of Code program as part of the Genome
Informatics group, helping to create the software compo-
nents for the new pathway browser, RESTful API and the
pathway overview. The Reactome data and source code
continues to be publically accessible under the terms of a
Creative Commons Attribution 3.0 Unported License.
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O.1. GRAMENE 2018: UNIFYING COMPARATIVE GENOMICS AND 
PATHWAY RESOURCES FOR PLANT RESEARCH 

Nucleic Acids Research, gkx1111, https://doi.org/10.1093/nar/gkx1111 (20 

November 2017) 

Abstract 

Gramene (http://www.gramene.org) is a knowledgebase for comparative functional 

analysis in major crops and model plant species. The current release, #54, includes 

over 1.7 million genes from 44 reference genomes, most of which were organized 

into 62,367 gene families through orthologous and paralogous gene classification, 

whole-genome alignments, and synteny. Additional gene annotations include 

ontology-based protein structure and function; genetic, epigenetic, and phenotypic 

diversity; and pathway associations. Gramene's Plant Reactome provides a 

knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated 

rice reference pathways to derive pathway projections for an additional 66 species 

based on gene orthology, and facilitates display of gene expression, gene–gene 

interactions, and user-defined omics data in the context of these pathways. As a 

community portal, Gramene integrates best-of-class software and infrastructure 

components including the Ensembl genome browser, Reactome Pathway Browser, 

and Expression Atlas widgets, and undergoes periodic data and software upgrades. 

Via powerful, intuitive search interfaces, users can easily query across various portals 

and interactively analyze search results by clicking on diverse features such as 

genomic context, highly augmented gene trees, gene expression anatomograms, 

associated pathways, and external informatics resources. All data in Gramene are 

accessible through both visual and programmatic interfaces.  
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O.2. OPEN TARGETS: A PLATFORM FOR THERAPEUTIC TARGET 
IDENTIFICATION AND VALIDATION  

Nucleic Acids Research, Volume 45, Issue D1, 4 January 2017, Pages D985–

D994, https://doi.org/10.1093/nar/gkw1055 (08 December 2016) 

Abstract 

We have designed and developed a data integration and visualization platform 

that provides evidence about the association of known and potential drug 

targets with diseases. The platform is designed to support identification and 

prioritization of biological targets for follow-up. Each drug target is linked to 

a disease using integrated genome-wide data from a broad range of data 

sources. The platform provides either a target-centric workflow to identify 

diseases that may be associated with a specific target, or a disease-centric 

workflow to identify targets that may be associated with a specific disease. 

Users can easily transition between these target- and disease-centric 

workflows. The Open Targets Validation Platform is accessible 

at https://www.targetvalidation.org. 

 

  



 

 

229 

O.3. PLANT REACTOME: A RESOURCE FOR PLANT PATHWAYS AND 
COMPARATIVE ANALYSIS 

Nucleic Acids Research, Volume 45, Issue D1, 4 January 2017, Pages D1029–

D1039, https://doi.org/10.1093/nar/gkw932 (30 October 2016) 

Abstract 

Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, 

curated plant pathway database portal, provided as part of the Gramene 

project. The database provides intuitive bioinformatics tools for the 

visualization, analysis and interpretation of pathway knowledge to support 

genome annotation, genome analysis, modeling, systems biology, basic 

research and education. Plant Reactome employs the structural framework of 

a plant cell to show metabolic, transport, genetic, developmental and signaling 

pathways. We manually curate molecular details of pathways in these 

domains for reference species Oryza sativa (rice) supported by published 

literature and annotation of well-characterized genes. Two hundred twenty-

two rice pathways, 1025 reactions associated with 1173 proteins, 907 small 

molecules and 256 literature references have been curated to date. These 

reference annotations were used to project pathways for 62 model, crop and 

evolutionarily significant plant species based on gene homology. Database 

users can search and browse various components of the database, visualize 

curated baseline expression of pathway-associated genes provided by the 

Expression Atlas and upload and analyze their Omics datasets. The database 

also offers data access via Application Programming Interfaces (APIs) and in 

various standardized pathway formats, such as SBML and BioPAX.  
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O.4. GRAMENE 2016: COMPARATIVE PLANT GENOMICS AND PATHWAY 
RESOURCES 

Nucleic Acids Research, Volume 44, Issue D1, 4 January 2016, Pages D1133–

D1140, https://doi.org/10.1093/nar/gkv1179 (08 November 2015) 

Abstract 

Gramene (http://www.gramene.org) is an online resource for comparative 

functional genomics in crops and model plant species. Its two main 

frameworks are genomes (collaboration with Ensembl Plants) and pathways 

(The Plant Reactome and archival BioCyc databases). Since our last NAR 

update, the database website adopted a new Drupal management platform. 

The genomes section features 39 fully assembled reference genomes that are 

integrated using ontology-based annotation and comparative analyses, and 

accessed through both visual and programmatic interfaces. Additional 

community data, such as genetic variation, expression and methylation, are 

also mapped for a subset of genomes. The Plant Reactome pathway portal 

(http://plantreactome.gramene.org) provides a reference resource for 

analyzing plant metabolic and regulatory pathways. In addition to ∼200 

curated rice reference pathways, the portal hosts gene homology-based 

pathway projections for 33 plant species. Both the genome and Pathway 

Browsers interface with the EMBL-EBI's Expression Atlas to enable the 

projection of baseline and differential expression data from curated 

expression studies in plants. Gramene's archive website 

(http://archive.gramene.org) continues to provide previously reported 

resources on comparative maps, markers and QTL. To further aid our users, 

we have also introduced a live monthly educational webinar series and a 

Gramene YouTube channel carrying video tutorials.  



 

 

231 

 


