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Resumen

El rápido avance en métodos de micro- y nanofabricación, tanto

teórica como experimentalmente, han hecho posible a d́ıa de hoy que

podamos controlar el flujo de luz con una precisión sin precedentes. Los

metamateriales y las metasuperficies son nanoestructuras compuestas

a partir de celdas unidad diseñadas, de forma que permitan manipu-

lar la luz con una respuesta estipulada. Como resultado de esto, los

metamateriales han proporcinoado un gran número de posibles aplica-

ciones nuevas que antes eran inconcebibles. En esta Tesis Doctoral nos

hemos centrado en el uso de estos metamateriales excepcionales pa-

ra conseguir, espećıficamente, part́ıculas indetectables y también para

controlar el modelado de haces de luz.

El objetivo principal de esta Tesis es proponer nuevas estructuras

fotónicas basadas en metamateriales multicapa metal-dieléctricos que,

gracias a su alta anisotroṕıa de forma, son capaces de generar distribu-
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ciones de luz altamente localizadas, aśı como respuestas ópticamente

inertes en el campo lejano. Hemos analizado el mecanismo para con-

seguir la cancelación de la dispersión en nanopart́ıculas con simetŕıa

ciĺındrica. Es posible ajustar con gran precisión la cancelación de la

dispersión a diferentes longitudes de onda para conseguir invisibilidad

si tenemos un control preciso tanto de la morfoloǵıa como de la combi-

nación apropiada de los materiales. Por otro lado, teniendo un diseño

adecuado de metarrecubrimientos de tamaño alrededor del nanómetro,

podemos conseguir una fuerte focalización de ondas electromagnéticas

con gran apertura numérica. Además, dado un campo convergente es-

tos metarrecubrimientos pueden aumentar de forma significativa la

apertura numérica. Es más, usando las metasuperficies diseñadas se

puede moldear el haz para transformar ondas convergentes de gran

angular en haces acelerados que presevan su forma.

El trabajo que hemos llevado a cabo no se limita exclusivamente a

desarrollos basados en fundamentos teóricos y simulaciones numéricas,

sino que también nos involucramos en tareas experimentales. Siguien-

do esta dirección, estudiamos las ondas de superficie de Dyakonov

(DSWs), que se pueden encontrar en la interfase entre un medio bi-

rrefringente y otro isótropo. La excitación ocurre en el campo cercano

bajo fotoluminiscencia, y la prueba de la existencia de las DSWs se
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basa en la determinación experimental de su constante de propaga-

ción compleja, cuya parte imaginaria es significativamente menor que

la encontrada tanto en modos guiados como en leaky modes.
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Abstract

The rapid theoretical and experimental advances in micro- and

nanofabrication methods has currently made possible the governing

of light flow with unprecedented control. Metamaterials and meta-

surfaces are engineered nanostructures composed by designed building

blocks with the ability to manipulate light under a prescribed response.

As a result, metamaterials provide a high number of novel potential

applications which were previously inconceivable. This Ph.D. Thesis

explores on some uses of these exceptional metamaterials, specifically

to achieve optical undetectability and controlled beamshaping.

The main objective of this Thesis is the proposal of new photonic

structures based on metal-dielectric multilayered metamaterials, which

due to their high form anisotropy are capable of generating highly lo-

calized light distributions, as well as optically inert responses in the

far field. The mechanism of scattering cancellation is thoroughly an-

IX



X

alyzed in nanoparticles of cylindrical symmetry. With an accurate

control of a multilayered morphology and a proper combination of

materials, it is possible to fine-tune the scattering cancellation at dif-

ferent wavelengths to achieve invisibility. Secondly, an adequate de-

sign of a nonplanar metacoating in the nanoscale gives us the ability

of achieving tight focusing of high numerical-aperture electromagnetic

waves. Moreover, the use of the engineered metasurfaces may exe-

cute a beam shaping to transform wide-angle converging waves into

shape-preserving accelerating beams.

The work developed here is not limited exclusively to developments

based on theoretical foundations and numerical simulations, but also

an attempt to immerse into the experimental labor. In this direction

we studied the Dyakonov surface waves (DSWs), which can be found

at the interface between a birefringent medium and another isotropic

medium. The excitation occurs in the near field under photolumi-

nescence, and the evidence of the existence of the DSWs is based on

the experimental determination of its complex propagation constant,

whose imaginary part is significantly smaller compared to that found

in the guided and leaky modes in the surrounding media.
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1.6 Objetivos de la Tesis . . . . . . . . . . . . . . . . . . . 21

1.7 Publicaciones de la Tesis . . . . . . . . . . . . . . . . . 26

XI



XII CONTENTS

2 Introduction (English) 33

2.1 Metamaterials . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Cloaking structures . . . . . . . . . . . . . . . . . . . . 39

2.3 Scattering cancellation . . . . . . . . . . . . . . . . . . 41

2.4 Metalenses and metasurfaces . . . . . . . . . . . . . . . 45

2.5 Optical surface waves in anisotropic substrates . . . . . 49

2.6 Thesis objectives . . . . . . . . . . . . . . . . . . . . . 51

2.7 Publications of the Thesis . . . . . . . . . . . . . . . . 55

3 Methodology 61

3.1 Mie theory . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Particles with multilayered coating . . . . . . . 63

3.2 The effective medium approach . . . . . . . . . . . . . 68

3.2.1 Hyperbolic media . . . . . . . . . . . . . . . . . 71

3.3 Anisotropic waveguides . . . . . . . . . . . . . . . . . . 73

3.3.1 Dispersion equation of DSWs . . . . . . . . . . 74

3.3.2 A thin dielectric waveguide on an anisotropic

substrate . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Finite Element Method (FEM) . . . . . . . . . . . . . 79

3.4.1 Commercial software based on FEM . . . . . . 82

4 Results and analysis 85



CONTENTS XIII

4.1 Anisotropic particles . . . . . . . . . . . . . . . . . . . 86

4.1.1 Invisibility in hyperbolic nanotubes . . . . . . . 87

4.1.2 Non-homogenized cylindrical nanoparticles . . . 98

4.1.3 Optimized nanostructure . . . . . . . . . . . . . 106

4.2 Anisotropic metasurfaces . . . . . . . . . . . . . . . . . 119

4.2.1 Ultrathin high-index metasurfaces for shaping

focused beams . . . . . . . . . . . . . . . . . . . 119

4.2.2 Beamshaping under high numerical aperture . . 123

4.2.3 Accelerating converging waves in the near field . 128

4.3 Anisotropic waveguides . . . . . . . . . . . . . . . . . . 134

4.3.1 Fabrication techniques . . . . . . . . . . . . . . 135

4.3.1.1 Deposition process . . . . . . . . . . . 135

4.3.1.2 Doctor blade and baking process . . . 136

4.3.1.3 Sample characterization . . . . . . . . 138

4.3.1.4 Spin-coating . . . . . . . . . . . . . . . 142

4.3.2 Experimental results . . . . . . . . . . . . . . . 144

4.3.3 Theoretical results . . . . . . . . . . . . . . . . 151

5 Conclusions 157

Bibliography 165

Publications annex 193



XIV CONTENTS



Caṕıtulo 1

Introducción (Español)

El control del flujo luminoso es actualmente posible con un dominio

sin precedentes gracias al progreso de diferentes métodos de micro- y

nanofabricación [1]. Los metamateriales y las metasuperficies son na-

noestructuras diseñadas formadas por elementos básicos concebidos,

también llamados meta-átomos, con la habilidad de manipular la luz

con una respuesta prescrita. Como resultado, los metamateriales dejan

la puerta abierta a un número notable de aplicaciones potenciales que

tradicionalmente eran inimaginables. Gracias a ello, no estamos nece-

sariamente limitados por la respuesta electromagnética de los materia-

les encontrados en la naturaleza y sus componentes qúımicos. Como

alternativa, podemos modificar el tamaño y la forma de las unidades
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2 CAPÍTULO 1. INTRODUCCIÓN (ESPAÑOL)

básicas del metamaterial, ajustar la composición y la morfoloǵıa de la

estructura óptica, y obtener nuevas funcionalidades. Las propiedades

excepcionales de los metamateriales y dispositivos fotónicos basados

en la óptica de transformación, que fueron concebidos gracias a los

metamateriales, permiten tener un ı́ndice de refracción negativo, ob-

tener imágenes con una resolución por debajo de la longitud de onda,

diseñar concentradores de luz efectivos, e idear camuflajes ópticos. En

esta Tesis avanzamos en esta dirección y proponemos nuevas estructu-

ras fotónicas las cuales, debido a su morfoloǵıa anisótropa, son capaces

de generar distribuciones de luz altamente localizadas, aśı como res-

puestas ópticamente inertes en el campo lejano.

1.1 Metamateriales

Una de las capacidades humanas más provechosas para nosotros es

la habilidad de ver, hecho que está presente en nuestra vida diaria y el

cual involucra la propagación de las ondas electromagnéticas. Las on-

das se propagan, y también interactúan con los materiales. Se pueden

observar efectos muy interesantes de la interacción luz-materia, como

colores iridiscentes en los cuerpos de algunos escarabajos y conchas

marinas, o distribuciones de color fantásticas en las alas de una mari-
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posa [2, 3]. Estos fenómenos ocurren debido a la interacción de la luz

con las distribuciones estructurales periódicas que forman los cuerpos.

Es posible reproducir este tipo de estructuras periódicas en un labo-

ratorio mediante materiales dieléctricos y plasmónicos. La plasmónica

tiene gran importancia y está siendo aplicada actualmente en nanotec-

noloǵıa [4]. Ciertos fenómenos únicos como confinamiento por debajo

de la longitud de onda [5], amplificación de las ondas evanescentes [6],

transmisión extraordinaria [7], dispersión hiperbólica en compuestos

metálicos complejos [8], y resonancias en nanopart́ıculas y meta-áto-

mos [9] han causado un impacto tremendo. Este tipo de estructu-

ras conduce a numerosos dispositivos y aplicaciones en fotónica como

superlentes [10], nanoantenas [11], gúıas con tamaños por debajo de

la longitud de onda [12], estructuras de camuflaje/invisibilidad [13],

sensores optimizados para la detección de agentes qúımicos y biológi-

cos [14], y metamoléculas quirales [15] que trabajan en el infrarrojo

cercano y el rango óptico, grabados de color con resoluciones hasta

el ĺımite de difracción [16], metasuperficies perforadas [17] o antenas

ópticas con forma de V [18] para la modificación del frente de ondas

mediante nanoestructuras resonadoras [19], y confinamiento de luz en

celdas solares de capa fina [20]. Todos estos dispositivos y aplicaiones

están basados en la habilidad de controlar y manipular la propagación
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del campo electromagnético.

Figura 1.1: (a) Metamaterial quiral fabricado por inscripción láser directa [15]. (b)
Matriz de calcograf́ıa genérica de metamaterial de metamoléculas de anillos simples
con tamaños por debajo de la longitud de onda inscritos en una superficie metálica
para generar color metálico estructural [21]. (c) Imagen obtenida por microscoṕıa
de barrido con electrones de una metasuperficie que consiste en una matriz de
antenas ópticas de oro con forma de V fabricadas sobre una oblea de silicio, donde
Γ = 11µm [22] (d) Metasuperficie de silicio que presenta una resonancia Fano,
donde se muestra un fuerte aumento en la generación del tercer armónico [23].

Una de nuestras metas es controlar la desviación de la luz. Podemos

ver este efecto si cogemos un vaso de agua y ponemos un boĺıgrafo en

él. Utilizando los materiales apropiados, aquéllos con la permitividad

eléctrica (ε) y permeabilidad magnética (µ) adecuadas para el caso
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que queremos estudiar, podemos controlar la propagación de las ondas

de luz. Con este propósito, normalmente no encontramos materiales

naturales disponibles con los valores deseados de ε y µ. En estos casos

tenemos que diseñar materiales artificiales que nos permitan controlar

la propagación de la luz. Los materiales se combinan en una estructura

más pequeña que la longitud de onda utilizada para conseguir los

parámetros electromagnéticos necesarios con el fin de manipular las

ondas. La combinación de estos materiales da estructuras llamadas

“metamateriales”.

Los metamateriales se pueden comportar como materiales hiperbóli-

cos, que presentan una relación de dispersión que soporta frecuencias

espaciales muy altas. Los materiales hiperbólicos presentan una aniso-

troṕıa óptica poco común [24], una caracteŕıstica cŕıtica para conse-

guir, por ejemplo, una imagen superresolvente [25–28] y un volumen

focal mucho más pequeño que λ3 [28,29]. Este tipo de metamateriales

serán de provecho para nosotros con el objetivo de alcanzar un efecto

de invisibilidad.

La producción de metamateriales en el visible e infrarrojo necesita

de una miniaturización extrema que impone restricciones severas en los

procesos de fabricación, permitiendo el ensamblaje de geometŕıas ele-

mentales. Posiblemente, la geometŕıa más simple es la nanoestructura
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multicapa metal-dieléctrico, que ha sido analizada teóricamente [30]

y fabricada [31] copiosamente. En el análisis teórico de nanomateria-

les estratificados con tamaños por debajo de la longitud de onda, se

emplea generalmente una aproximación de medio efectivo (EMA, del

inglés Effective Medium Approximation) [32, 33] y dicha aproxima-

ción es explotada para el diseño de dispositivos plasmónicos [34, 35].

Sin embargo, esta aproximación se ha demostrado que falla cuando

se emplea con ondas polarizadas con campos magnéticos transversales

(TM) [36–38], es decir, cuando el campo magnético es perpendicular a

la dirección de la periodicidad de la nanoestructura metal-dieléctrico

(MD). En este caso, aparecen efectos no locales bajo la condición de

que la anchura de las capas metálicas se reduce e incluso sobrepasa la

profundidad de penetración del metal [39]. Considerando que la tec-

noloǵıa actual ha dado un salto en la fabricación de nanoestruturas

multicapa con capas metálicas uniformes y espaciados inferiores a 10

nm [40, 41] y que la profundidad de penetración para un metal como

la plata (oro) está alrededor de los 24 nm (31 nm) a λ = 600 nm,

podemos concluir que los efectos no locales tienen lugar generalmente

en disposiciones plasmónicas realistas.

Uno de los efectos más destacados motivado por la no-localidad de

la respuesta óptica es la existencia de un modo extraordinario adicional
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en la polarización TM [42–45]. Bajo ciertas condiciones, un haz puede

dividirse en dos paquetes de ondas en una interfase aire/metamaterial,

de forma que uno de ellos sufra refracción positiva y el otro haz se re-

fracte con ángulos negativos. Junto con la refracción simple exhibida

por ondas incidentes con polarización transversal eléctrica (TE), los

materiales multicapa metalodieléctricos pueden manifestar trirrefrin-

gencia. En otras palabras, se necesitan tres ı́ndices de refracción pa-

ra tipificar dicho comportamiento exótico. Conviene destacar que los

cristales fotónicos adecuados también muestran propiedades multirre-

fringentes, aunque los detalles estructurales del medio (constantes de

red) sean en la escala del rango de longitudes de onda ópticas [46].

En todos estos estudios previos llevados a cabo en metamateriales

MD trirrefringentes se ha especificado una descripción detallada de la

dirección de propagación de haces multirrefractados. No obstante, la

distribución de flujo energético que corresponde a cada haz refracta-

do no está clara, especialmente en la polarización TM. Una evalua-

ción precisa de la transmisividad y reflectividad puede proporcionar

un conocimiento más profundo derivado de los efectos no-locales del

metamaterial.
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1.2 Estructuras para camuflaje

Desde un punto de vista diferente, conviene señalar que un ı́ndice

de refracción inhomogéneo puede proporcionarnos cierto control so-

bre el camino óptico de haces luminosos, como ocurre por ejemplo

en lentes de gradiente de ı́ndice [47]. Para manipular este ı́ndice de

refracción necesitamos diseñar metamateriales con una permitividad

y permeabilidad requeridas, las cuales también pueden ser anisótro-

pas. Para un material anisótropo, la respuesta de la luz depende de su

polarización [48]. En particular, el camuflaje óptico se consigue mani-

pulando la propagación de la luz, y llegó a ser muy popular entre los

miembros de la comunidad cient́ıfica después de la publicación de sen-

dos art́ıculos [49,50]. En ellos se propusieron diversos métodos para el

diseño de dispositivos para camuflaje basados en el método de trans-

formación óptica (TOM, del inglés Transformation Optics Method).

Este tipo de dispositivos permiten que la luz incidente se desv́ıe bor-

deando la estructura a aislar ópticamente, y aśı mantener las mismas

caracteŕısticas de propagación como si no hubiera nada en el volumen

objetivo [51]. Uno puede introducir cualquier objeto para ocultarlo

dentro de esa estructura, de forma que la luz viaja alrededor de ella

y ningún observador fuera del dispositivo ve perturbación alguna del

campo luminoso. El desarrollo de estas ideas en forma de tapices de
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camuflaje, aśı como camuflajes tipo piel, se han demostrado reciente-

mente de forma experimental (ver fig. 1.2).

Figura 1.2: (a) Imagen de microscoṕıa de barrido por electrones de un tapiz de
camuflaje fabricado. Diseño de tapiz de camuflaje que transforma un espejo con un
bache en un espejo virtualmente plano [52]. (b) Una metasuperficie de camuflaje
tipo piel para un objeto 3D con forma arbitraria. Recuadro interior: Ilustración
3D de una nanoantena utilizada para la construcción de la metasuperficie [53].

Teniendo en cuenta el TOM en su concepto original, la estructura

considerada posee comúnmente una anisotroṕıa considerablemente al-

ta. Los parámetros del material tomarán valores extremos en algunas

regiones del camuflaje, cosa que hace imposible la selección de ma-

teriales naturales para este propósito [54]. Además, la permitividad

y permeabilidad deben ser similares en las regiones exteriores de la

estructura para satisfacer la condición de correspondencia en impe-

dancia. Afortunadamente, usando metamateriales es posible ajustar

la anisotroṕıa tanto de la permeabilidad como de la permitividad del



10 CAPÍTULO 1. INTRODUCCIÓN (ESPAÑOL)

material [55]. Ésta es la relación del camuflaje con los metamateria-

les: la estructura para conseguir un camuflaje perfecto está formada

por metamateriales. Los primeros metamateriales utilizados para de-

mostrar el camuflaje fueron resonadores con forma de anillo incom-

pleto [51], y son probablemente las estructuras más utilizadas para

este propósito [56–58]. El enorme progreso realizado en el desarrollo

de nuevas estructuras para camuflaje ha transformado completamente

el escenario actual. Los avances en ciencia e industria hacen posible el

estudio y la fabricación de nuevos y más pequeños camuflajes y senso-

res invisibles, todos ellos realizados con metamateriales [59–61]. Con

estos novedosos dispositivos y técnicas, el camuflaje para invisibilidad

está atrayendo la atención de investigadores en todo el mundo.

1.3 Cancelación de la dispersión

Aunque el camuflaje perfecto es un método sumamente estudia-

do para suprimir completamente la visibilidad de un objeto, conta-

mos con v́ıas suplementarias para, al menos, minimizar su percepción

electromagnética. Un método alternativo especialmente adaptado pa-

ra part́ıculas pequeñas y acuñado como cancelación de la dispersión

conduce a la invisibilidad mediante la reducción al mı́nimo de la sec-
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ción eficaz de dispersión para una estructura que puede estar par-

cialmente compuesta por metamateriales [62]. La idea básica consiste

en hacer una part́ıcula indetectable cubriéndola con revestimientos o

metasuperficies ultrafinas, de forma que la dispersión del dispositivo

sea mucho más reducida que si no llevara la cubierta nanoestructura-

da [63–66]. Se propusieron estructuras como nanohilos de silicio cu-

biertos de oro [67] para reducir la dispersión de la luz en detectores

e incrementar la señal óptica al mismo tiempo, como se ilustra en la

fig. 1.3. Más recientemente, también se han propuesto camuflajes con

superficies de grosor atómico utilizando grafeno para frecuencias de

THz [68, 69].

La disminución de la dispersión en metarrecubrimientos se puede

atribuir a diferentes aspectos de la interacción luz-materia. De he-

cho, la polarizabilidad local de distintos componentes de un objeto de

tamaño moderado y signo opuesto puede ser cancelada en una confi-

guración diseñada apropiadamente [63, 71–77]. Como ejemplo, consi-

deremos un nanohilo, con núcleo y cubierta, de permitividad interna

(externa) ε1 (ε2) y radio de curvatura r1 (r2) embebido en una región

de permitividad ε3, el cual exhibe una polarizabilidad [78]

α = 4πε0
[(ε1 − ε2) (ε2 + ε3) r

2
1 + (ε1 + ε2) (ε2 − ε3) r

2
2]

(ε1 − ε2) (ε2 − ε3) r21 + (ε1 + ε2) (ε2 + ε3) r22
, (1.1)
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Figura 1.3: (a) Esquema de un fotodetector de nanohilos de oro/silicio. (b) Imagen
SEM de un nanohilo de silicio con un diámetro de 50 nm con recubrimiento de
oro de 20 nm de espesor. Barra de escala, 100 nm [67]. (c) Distribución de cam-
po cercano para los modos anapolares excitados en un nanodisco de silicio bajo
incidencia plana [70]. (d) La interferencia destructiva de un dipolo eléctrico (iz-
quierda) y un dipolo toroidal (derecha) llevan a la formación de un modo anapolar
no radiativo.

donde ε0 es la permitividad en el vaćıo. Por lo tanto, la polarizabili-

dad puede extinguirse teóricamente para una combinación espećıfica

de los parámetros del recubrimiento r2 y ε2. El vector de polarización

en cada uno de los materiales elementales es antiparalelo con respec-

to al resto, lo que implica que se induce un momento dipolar de fase

opuesta. Tenemos un interés especial en la inclusión de recubrimientos

con epsilon cercano a cero en el rango espectral deseado. Esta inclu-
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sión puede conllevar una reducción significativa del espectro de disper-

sión de la estructura y también crear un efecto pantalla en el espacio

colindante [79]. Centrándonos en dispersores con simetŕıa ciĺındrica

en el eje z, compuestos por materiales dieléctricos y plasmónicos, los

efectos de las polarizabilidades opuestas se aprecian sobre todo en

campos de onda con polarización TMz, mientras que las resonancias

Fano, otra aproximación para la cancelación de la dispersión, puede

ser usada simplemente en configuraciones con polarización TEz. Las

propiedades del patrón caracteŕıstico de una resonancia Fano pueden

ser motivadas por la cancelación de la dispersión de una nanopart́ıcula

dispersora previamente diseñada. En este caso particular, la emisión

de ondas electromagnéticas por el objeto crea una interferencia entre

la dispersión no resonante de la part́ıcula y la dispersión debida a mo-

dos de Mie [80]. Este efecto también se ha observado en nanopart́ıculas

de alto ı́ndice sin recubrimientos adicionales [81].

Es importante mencionar que la dispersión de ondas electromagnéti-

cas por una part́ıcula dada más pequeña que la longitud de onda la

podemos describir mediante una descomposición multipolar del campo

electromagnético que permite caracterizar la intensidad de dispersión

por la interferencia de los modos multipolares dominantes. Dichos efec-

tos de interferencia multipolar podŕıan involucrar multipolos eléctri-
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cos, magnéticos y toroidales, que conducen, por ejemplo, a anapolos

ópticos no radiativos [70], como se ilustra en la fig. 1.3. Este mecanismo

reciente desarrollado para la reducción de la eficiencia de dispersión de

un objeto es actualmente un área de investigación muy activa, aunque

queda fuera del ámbito de esta Tesis.

Hay un tipo particular de nanoestructura para invisibilidad que

llamó nuestra atención, el cual está basado en metamateriales hi-

perbólicos caracterizados por una anisotroṕıa de forma enorme, y que

tiene forma de nanotubo del tamaño de la longitud de onda [82]. Las

capas de metal y dieléctrico están diseñadas para permitir a la luz pro-

pagarse a través de la estructura sin que la onda incidente se distorsio-

ne, tanto para luz incidente con polarización TE, como con polariza-

ción TM. Según el estudio preliminar, cuando la permitividad efectiva

del nanotubo hiperbólico es cercana a cero en la dirección angular,

la dispersión se reduce significativamente, induciéndose un efecto de

invisibilidad. La propuesta original se centró en el análisis de cómo el

factor de llenado metálico y el diámetro interno del nanotubo afectaba

a la cancelación de la dispersión. Estos resultados han sido compara-

dos también considerando un nanotubo con dispersión hiperbólica, a

modo de modelización teórica, y se aprecia que la invisibilidad del na-

notubo por capas puede ser bastante ajustada, por lo que se podŕıa
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utilizar en dispositivos nanofotónicos que se fabriquen en un futuro.

En esta tesis profundizamos en las propiedades de estas nanoestruc-

turas, y estudiamos cómo otros parámetros entre los que destacamos

los efectos de borde o la permitividad tanto del medio interior como

del medio exterior alteran la dispersión de los nanocilindros.

1.4 Metalentes y metamateriales concen-

tradores de luz

También estamos interesados en dispositivos focalizadores basados

en metasuperficies y metalentes. El funcionamiento de un gran número

de dispositivos ópticos, como lentes, prismas, axiconos, y modulado-

res espaciales de luz, está basado en controlar el frente de onda de un

haz luminoso modificando su fase, amplitud y estado de polarización.

Los efectos de propagación son los responsables de la formación del

haz llevada a cabo mediante los componentes ópticos antes menciona-

dos. En este caso, los metamateriales volumétricos pueden presentar

un problema: normalmente presentan grandes pérdidas [85]. Una al-

ternativa consiste en diseñar metamateriales ultrafinos que permitan

a las ondas pasar a través de ellos con una reducción considerable de

los efectos dispersivos del material. Las metapantallas perforadas o
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Figura 1.4: (a) Lente plana basada en una matriz de rendijas a nanoescala en una
peĺıcula metálica. La lente consiste en una capa ópticamente gruesa de 400 nm de
oro (amarillo) con rendijas de aire de anchos diferentes (de 80 a 150 nm) (azul
claro) fresadas sobre un sustrato de śılice fundido (azul oscuro) [83]. (b) Imagen
SEM de una metalente plasmónica plana que consiste en una peĺıcula de oro de 30
nm de grosor perforada concéntricamente, con una distancia focal de 2.5 µm bajo
una longitud de onda de 676 nm [84].

las metasuperficies basadas en nanorresonadores son buenas eleccio-

nes actualmente, como se ilustra en las figs. 1.4 y 1.5. Por ende, es

posible controlar las propiedades de la luz, como la dirección de la

onda e incluso transformar una onda evanescente en una homogénea.

Por ejemplo, un metamaterial multicapa metal-dieléctrico soporta la

propagación de las ondas para ı́ndices de refracción efectivos extrema-
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damente altos [45]

neff = Re

√
εdεm

εdfm + εm (1 − fm)
(1.2)

donde εm y εd denotan la permitividad del metal y del dieléctrico,

respectivamente, con caracteŕısticas ajustables mediante la simple va-

riación del factor de llenado del metal fm en el metamaterial. Por

tanto, los campos que pasan a través de dichos metamateriales metal-

dieléctricos experimentan variaciones rápidas de fase del campo disper-

sado incluso teniendo en cuenta una distancia de propagación inferior

a la longitud de onda. Es más, algunas metasuperficies proporcionan

corrientes electromagnéticas inducidas que producen una distribución

de campo electromagnético concreta como respuesta a un frente de

ondas elctromagnéticas incidente conocido [86, 87]. Con estas meta-

superficies, que son el equivalente en 2D de los metamateriales, uno

puede tener un control excepcional de los frentes de onda de haces

ópticos, y presentan la ventaja de estar compuestos por celdas unidad

más pequeñas que la longitud de onda, con grosor también inferior a

la longitud de onda. Esto nos permite moldear a voluntad el frente

de onda incidente y controlar las ondas electromagnéticas mediante

variaciones espaciales introducidas en las celdas unidad [88–92].

Es bien sabido que la resolución espacial de un campo electro-
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Figura 1.5: (a) Metalente diseñada para la longitud de onda de 660 nm, que consiste
en nanoaletas de TiO2 sobre un sustrato de vidrio. Barra de escala, 40 µm [93].
(b) Lente basada en red de difracción con f = 100µm fabricada con técnicas de
microfabricación en silicio estándar [94].

magnético difractado está acotada por el ĺımite de difracción de la

luz [95], el cual tiene un fuerte impacto en aplicaciones como almace-

namiento de datos o microscoṕıa de campo lejano [96,97]. Se han reali-

zado muchos intentos para conseguir alcanzar este ĺımite en resolución,

e incluso sobrepasarlo, empleando metasuperficies planas [98–100].

Aparte de usar configuraciones planas, hay algunos otros diseños con

geometŕıas curviĺıneas que permiten un rendimiento mejor para mol-

dear las ondas ópticas [101–103]. En particular, las ondas de gran

apertura óptica se pueden transformar en haces no paraxiales adifrac-

cionales. Estos haces muestran también una fuerte aceleración espa-

cial [104,105]. Dentro de nuestra ĺınea de investigación, esto fue llevado
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a cabo utilizando metamateriales MD con la misma curvatura que la

onda focal, por lo que podemos conseguir ondas aceleradas altamente

localizadas. Mediante el uso de la misma configuración ciĺındrica (o

esférica, utilizando el diseño apropiado) del haz incidente evitamos un

modelado inadecuado del haz que puede ser inducido por aberraciones

ópticas. Conviene mencionar que no sólo los metamateriales de alto

ı́ndice efectivo son capaces de moldear adecuadamente una onda plana

para convertirlos en ondas de Bessel con trayectorias no cerradas, sino

también los metarrecubrimientos con epsilon cercano a cero, los cuales

pueden ser implementados por ejemplo sobre sustratos transparentes

plano-cóncavos [106, 107].

1.5 Ondas superficiales en medios anisó-

tropos

La interfase plana que separa dos materiales diferentes contribuye

significativamente en muchos fenómenos ópticos. Una onda electro-

magnética superficial puede viajar a lo largo de toda la interfase, pero

en cada lado de la superficie su amplitud es imperceptible siempre

que observemos suficientemente lejos de la interfase. La relevancia del

concepto de onda electromagnética superficial se expuso por primera
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vez en 1907 cuando Zenneck [108] lanzó un estudio teórico en el cual

exploraba la posibilidad de encontrar ondas guiadas en la interfase

que separa la atmósfera y la tierra o una gran masa de agua. Este caso

particular está centrado en ondas de radio, cuya región del espectro

electromagnético se encuentra lejos del régimen óptico en el cual esta-

mos interesados, pero la base f́ısica de este fenómeno es la misma, dada

la invariancia escalar en las ecuaciones de Maxwell. Es más, el plasmón

polaritón de superficie (SPP, del inglés Surface Plasmon Polariton) se

ha extendido a d́ıa de hoy, dominando el escenario nanotecnológico

actual en el espectro visible, y permitiendo aśı avances importantes

en técnicas de nanofabricación existentes para la creación de sensores

biológicos o qúımicos, por mencionar uno de los ejemplos más signi-

ficativos [109]. Mientras la interfase de un material plasmónico y uno

polarizable soporta SPPs, también es posible encontrar otros tipos de

ondas superficiales propagándose por la interfase de dos materiales

polarizables distintos.

Podemos encontrar un tipo particular de onda de superficie en la

interfase de dos materiales dieléctricos homogéneos, siempre que al

menos uno de ellos sea anisótropo, incluso aunque cualquier compo-

nente de la permitividad diádica tenga una parte real que sea posi-

tiva para ambos materiales. Después de que Dyakonov analizara en
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1988 [110] los modos ligados que aparećıan en la interfase entre un

material dieléctrico uniáxico y un material dieléctrico isótropo sur-

gió cierto interés en la propagación de ondas guiadas en la superficie

de dos materiales dieléctricos homogeneoss. De hecho, la birrefringen-

cia de forma inherente en metamateriales proporcionaŕıa un control

preciso de estas ondas superficiales de Dyakonov (DSWs, del inglés

Dyakonov Surface Waves) [111–114]. Una de las caracteŕısticas más

prominentes de las DSWs es su oblicuidad, es decir, la propagación de

la onda de superficie siempre se produce oblicuamente con respecto al

eje de anisotroṕıa del dieléctrico uniáxico. También existen pruebas

experimentales de este fenómeno, que en ocasiones aparece en conni-

vencia con las pérdidas del material.

1.6 Objetivos de la Tesis

El objetivo general de esta Tesis es el diseño de dispositivos fotóni-

cos y disposiciones basadas en estructuras con alta anisotroṕıa, las

cuales están formadas por una combinación adecuada de elementos

dieléctricos y metálicos. Entre las aplicaciones potenciales que pueden

aprovecharse de esta propiedad de anisotroṕıa de forma en metama-

teriales, en esta Tesis nos centramos en dos de ellas: 1) nanorreso-
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nadores para aplicaciones en invisibilidad óptica, y 2) metalentes y

metasuperficies para localización espacial de luz. Finalmente, también

nos proponemos llevar a cabo ciertos experimentos que pudieran con-

firmar la existencia de ondas de superficie en sustratos anisótropos,

para los que, en esta propuesta preliminar, ha sido utilizado un medio

anisótropo natural, TeO2. Obviamente, la extensión de estas ideas a

metasustratos con forma anisótropa parece inmediata.

Primero estudiaremos el mecanismo de cancelación de la disper-

sión en part́ıculas con tamaños más pequeños que la longitud de onda,

especialmente en geometŕıas simples: estamos interesados en cilindros

multicapa infinitamente largos. Estudios previos mostraron que una

reducción drástica de la dispersión puede llevarse a cabo mediante la

interferencia destructiva de señales ópticas causada por una combina-

ción adecuada de capas de metal y dieléctrico. Debido a la anisotroṕıa

geométrica de los nanorresonadores que se investigan, la dinámica

electromagnética diferirá para iluminación con onda plana suponiendo

bien polarización TE o bien TM. Utilizando morfoloǵıas controladas

y combinaciones adecuadas de materiales llegamos a un ajuste fino

de la cancelación de la dispersión a diferentes longitudes de onda.

Por ejemplo, la plata y el TiO2 se consideran materiales adecuados

para la reducción de la señal de dispersión en el régimen visible, aun-
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que la aplicación del modelo de Drude para materiales plasmónicos

proporcionará resultados más genéricos. La estimación anaĺıtica de la

eficiencia de dispersión para una polarización dada de la luz inciden-

te será desarrollada mediante el método de Lorenz-Mie. Dado que la

utilización de un gran número de capas puede hacer el procedimien-

to estándar tedioso, se desarrollará una formulación de matrices de

transferencia para una estimación más rápida [115–117]. Además, pro-

gramas comerciales como MatLab y Mathematica serán ampliamente

utilizados para resolver nuestros problemas matemáticos. El software

de cálculo COMSOL Multiphysics será particularmente útil; consiste

en una herramienta de simulación para la resolución de problemas de

ondas electromagnéticas, que también será empleado a lo largo de es-

ta Tesis, el cual es capaz de resolver numéricamente las ecuaciones de

Maxwell y por tanto proporciona simulaciones precisas del comporta-

miento de dispersión de nuestras nanoestructuras.

En segundo lugar, nos encontraremos con graves restricciones geo-

métricas de las metalentes planas para alcanzar aperturas numéricas

extremadamente altas. Nuestras propuestas consisten en modelar una

superficie cóncava, usando redes metal-dieléctrico, seguido de un di-

seño adecuado de metarrecubrimientos curvos para conseguir nuestros

objetivos. Para nosotros es especialmente importante conseguir una
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focalización extrema de ondas electromagnéticas basada en aperturas

numéricas (NAs) altas, además destacando una incréıble miniaturi-

zación de los componentes fotónicos. Por tanto, necesitamos utilizar

el concepto básico de anisotroṕıa extrema observado en los metama-

teriales multicapa metal-dieléctricos para diseñar recubrimientos más

pequeños que la longitud de onda con un cierto gradiente de ı́ndice

para que funcionen bajo una alta eficiencia como dispositivos foca-

lizadores de alta apertura numérica [118]. Además, la curvatura del

frente de onda de un campo electromagnético convergente puede ser

convenientemente modificada para incrementar significativamente la

apertura numérica de la arquitectura óptica [119]. Asimismo, la mani-

pulación de un haz dado puede extenderse a campos localizados más

generales en el régimen no paraxial. En particular, estamos interesa-

dos en transformar ondas convergentes de gran apertura angular en un

haz acelerado que conserve la forma, especialmente cuando la anchura

del haz permanece cerca del ĺımite de difracción [120].

Es importante notar que los efectos no locales encontrados en me-

tamateriales altamente anisótropos pueden inducir cambios en el com-

portamiento fotónico estimado con teoŕıas de medio efectivo. Este tipo

de análisis se llevó a cabo previamente a la admisión en el Programa

de Doctorado en F́ısica, durante la realización del curso de Máster en
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F́ısica Avanzada, también en la Universidad de Valencia. En particu-

lar, analizamos un metamaterial “volumétrico” compuesto por capas

delgadas alternas de metal y dieléctrico que claramente manifiestan

trirrefringencia [121]. Debido a la excitación colectiva de plasmones

polaritones de superficie en capas metálicas más pequeñas que la longi-

tud de onda, uno puede observar simultáneamente dos ondas de Bloch

con un comportamiento contrapropagante. Dichas observaciones en

experimentos numéricos han ayudado a diseñar correctamente los dis-

positivos fotónicos objeto de nuestro análisis, aśı como permitir la

aplicación de las correcciones apropiadas en circunstancias en las que

las teoŕıas de medio efectivo pueden desviarse notablemente.

Finalmente, nuestra última meta es obtener experimentalmente

pruebas de la formación de ondas de superficie no plasmónicas que

pueden aparecer en la interfase entre un sustrato anisótropo y un ma-

terial isótropo dieléctrico. Además, si éste último emite una señal lu-

miniscente fuerte, la excitación de ondas de superficie es factible como

resultado del acoplo de la parte evanescente que integra la caracteŕısti-

ca emisión dipolar. Con este propósito, unimos fuerzas con el Prof.

Juan P. Mart́ınez Pastor, responsable de la Unidad de Materiales y

Dispositivos Optoelectrónicos (UMDO), que también pertenece a la

Universidad de Valencia. Su experiencia en la fabricación de sistemas
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ópticos multicapa, en particular utilizando materiales semiconducto-

res, será decisiva para la viabilidad de nuestra propuesta.

1.7 Publicaciones asociadas a la presente

Tesis

Esta Tesis Doctoral puede ser dividida en tres bloques. El prime-

ro de ellos está relacionado con técnicas de invisibilidad aplicadas a

part́ıculas pequeñas y dio como resultado tres publicaciones en tres

revistas internacionales diferentes. El diseño de las metasuperficies y

metalentes seŕıa la segunda área, donde el estudiante colaboró en la

realización de tres art́ıculos más. Finalmente, el estudiante llevó a ca-

bo algunos experimentos en relación con gúıas de ondas anisótropas

que constituiŕıan el tercer bloque de la presente Tesis.

En la parte introductoria de la Tesis (apartados 1.1 a 1.3) inclui-

mos brevemente conceptos relacionados con la dispersión luminosa en

part́ıculas y cómo se puede reducir la señal dispersada en cuerpos

pequeños, lo que constituye la principal meta del trabajo presente,

como se menciona en el apartado 1.6. Investigamos sobre este tema

y diseñamos un mecanismo que consiste en una estructura multicapa

ciĺındrica que permite la cancelación de la dispersión. En el aparta-
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do 4.1 describiremos el procedimiento para conseguir invisibilidad con

una nanoestructura multicapa, y presentaremos varios diseños para

mejorarla con el fin de aumentar la cancelación de la dispersión. Pri-

mero describimos algunas condiciones satisfactorias para hacer una

nanocavidad invisible (ver apartado 4.1.2) y cómo optimizar su diseño

(ver apartado 4.1.3) con los materiales dados; en nuestro caso, plata

y TiO2. A continuación, aplicamos la aproximación de medio efectivo

para tratar las nanoestructuras diseñadas como un medio hiperbólico,

haciendo posible aśı una simplificación sustancial del problema y, lo

que es más importante, proporcionando esquemas para la reducción

de la dispersión en configuraciones más generales (ver apartado 4.1.1).

Tres art́ıculos cient́ıficos resumen los principales resultados de nuestro

estudio.

El primer trabajo, titulado “Conditions for achieving invisi-

bility of hyperbolic multilayered nanotubes” (“Condiciones pa-

ra conseguir invisibilidad en nanotubos multicapa”), fue publicado en

la revista Optics Communications (factor de impacto 1.588 en 2016 y

clasificada 52/92 en la categoŕıa Óptica del JCR). El art́ıculo está ane-

xado a la presente Tesis y es citado como referencia [115]. El trabajo

del estudiante se basó principalmente en el análisis de la estructura

multicapa diseñada: modelado de la part́ıcula multicapa, estimación
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de la permitividad efectiva en el rango visible, investigación del ajuste

de la permitividad del nanotubo mediante la modificación del factor de

llenado de los constituyentes de la estructura, análisis de la eficiencia

de dispersión en el rango de longitudes de onda deseado, y simulación

del comportamiento óptico de la part́ıcula cuando los elementos ma-

teriales son cambiados de posición y se vaŕıa el número de capas dado

un cierto grosor de la estructura.

La segunda publicación lleva como t́ıtulo “Optimization of mul-

tilayered nanotubes for maximal scattering cancellation” (“Op-

timización de nanotubos multicapa para una máxima cancelación de

la dispersión”). Fue publicada en Optics Express (factor de impacto

3.307 en 2016 y clasificada 17/92 en la categoŕıa Óptica del JCR).

Este trabajo queda adjunto a esta Tesis y se hace referencia a él co-

mo [117]. En este art́ıculo el estudiante se inspiró en las soluciones del

trabajo anterior e investigó cómo mejorar la estructura para reducir

su dispersión para diferentes medios internos y externos. Para ello,

simuló la eficiencia de dispersión de la estructura utilizando diferentes

permitividades del medio exterior a ella y también varió la permiti-

vidad del material cubierto por el cilindro multicapa. El estudiante

evaluó anaĺıtica y numéricamente el comportamiento óptico del nano-

tubo cuando la celda unidad periódica se fija en el sentido en el que
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las capas interior y exterior están fabricadas con el mismo material, de

forma que uno puede ajustar el grosor de dichas capas para aumentar

la cancelación del campo dispersado. El estudio fue llevado a cabo en

el rango de longitudes de onda del visible, para diferentes factores de

llenado y tanto para polarización de la luz incidente TM como TE.

El t́ıtulo del tercer art́ıculo cient́ıfico del primer bloque de esta Tesis

es “Tunable scattering cancellation of light using anisotropic

cylindrical cavities” (“Cancelación sintonizable de la dispersión de

la luz usando cavidades ciĺındricas anisótropas”). La revista en la que

fue publicado es Plasmonics (factor de impacto 2.339 en 2016 y clasifi-

cada 114/275 en la categoŕıa Ciencia de Materiales, Multidisciplinario

del JCR). Este art́ıculo se encuentra como anexo a la presente Tesis

y se cita como la referencia [116]. El trabajo del estudiante para la

realización de este art́ıculo fue llevar a cabo el modelado y los cálcu-

los (tanto anaĺıticos como numéricos) de la nanopart́ıcula hiperbólica.

Los cálculos se hicieron para un amplio abanico de condiciones; para

completar nuestro estudio se variaron parámetros en el sistema co-

mo la frecuencia de la luz, los radios interno y externo del nanotubo

uniáxico, la permitividad de los medios que rodean la nanocavidad

hiperbólica, y la anisotroṕıa del metamaterial empleada para analizar

la corteza invisible.
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La segunda parte de esta Tesis se centra en el diseño y análisis

del comportamiento de metalentes y metasuperficies metal-dieléctri-

cas cuando se usan para controlar el frente de ondas de un haz de luz.

En el apartado 2.4 nos centramos en las ventajas existentes cuando se

usan estructuras MD multicapa para alterar a voluntad las principales

propiedades de la luz, como su dirección de propagación. Es posible,

teóricamente, alcanzar una gran localización espacial cercana al ĺımi-

te de difracción con las metasuperficies MD diseñadas, formadas por

subestrcturas más pequeñas que la longitud de onda, como se descri-

be en los siguientes art́ıculos que están publicados en varias revistas

internacionales revisadas.

Los resultados derivados de esta segunda ĺınea de investigación

condujeron a la publicación de tres art́ıculos cient́ıficos. El primero

de ellos se titula “Accelerating wide-angle converging waves

in the near field” (“Ondas convergentes de gran apertura angu-

lar aceleradas en el campo cercano”) y fue publicado en Journal of

Optics (factor de impacto 1.847 en 2015 y clasificada 36/90 en la

categoŕıa Óptica del JCR). El segundo trabajo lleva como t́ıtulo “Ul-

trathin high-index metasurfaces for shaping focused beams”

(“Metasuperficies ultrafinas de alto ı́ndice para el conformado de ha-

ces focalizados”) y se publicó en Applied Optics (factor de impacto
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1.598 en 2015 y clasificada 45/90). La tercera y última publicación de

este bloque se titula “Metacoatings for wavelength-scale, high-

numerical-aperture plano-concave focusing lenses” (“Meta-

rrecubrimientos para lentes focalizadoras plano-cóncavas de alta aper-

tura numérica y a escala de la longitud de onda”). Se publicó en Jour-

nal of the Optical Society of America B (factor de impacto 1.843 y

clasificada 41/92 en 2016). En todos estos tres casos el estudiante con-

tribuyó en la realización de ciertas simulaciones numéricas utilizando

principalmente COMSOL Multiphysics.

Finalmente, en la tercera parte de esta Tesis el estudiante realizó al-

gunos trabajos experimentales con el objetivo de obtener pruebas

emṕıricas de la existencia de ondas superficiales en gúıas de ondas

anisótropas completamente dieléctricas. El trabajo del estudiante en

esta tarea consistió en la fabricación de una gúıa de ondas activa pla-

na sustentada por un material anisótropo; espećıficamente utilizamos

un sustrato de TeO2. Por otra parte, la capa activa está compuesta

por perovskita, y la deposición se llevó a cabo mediante el uso de un

grupo de varias técnicas comunes, rápidas y baratas, como el Doctor-

blading y el spin-coating. Después del proceso de fabricación, el estu-

diante caracterizó la muestra preparada (ver apartado 4.3.1). También

realizó algunas medidas experimentales (procedimiento descrito en el
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apartado 4.3.2), y posteriormente confirmó que los resultados obteni-

dos concordaban con los calculados a partir de simulaciones numéricas

(ver también apartado 4.3.3). En el momento del depósito de la Tesis

Doctoral hay un art́ıculo en preparación, en el que se recopilan los

resultados principales de nuestro estudio.



Chapter 2

Introduction (English)

Governing the flow of light is currently possible with unprecedented

control by means of recent progress in micro- and nanofabrication

methods [1]. Metamaterials and metasurfaces are designed nanostruc-

tures formed by engineered building blocks, also known as meta-atoms,

with the ability to manipulate light under a prescribed response. As

a result, metamaterials leave open the door to a number of potential

applications which were formerly considered unimaginable. One is not

necessarily limited to the electromagnetic response of materials found

in nature and their chemical compounds. Alternatively, we modify

the size and shape of the basic units of a metamaterial, fine-tune the

composition and morphology of the optical structure, and gain novel

33
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functionalities. The exceptional properties of photonic metamateri-

als and devices based on transformation optics, which were conceived

by metamaterials, enable a negative index of refraction, imaging with

subwavelength resolution, effective light concentrators, and invisibil-

ity cloaks. In this Thesis we take a step in this direction and propose

new photonic structures that due to their form anisotropy are capable

of generating highly localized light distributions, as well as optically

inert responses in the far field.

2.1 Metamaterials

One of the most profitable human features is the ability of seeing,

which involves electromagnetic wave propagation, a phenomenon that

is present in our daily life. Waves propagate and also interact with

materials. Very exciting effects of the light-matter interaction can be

observed, such as iridescent colors on the bodies of some beetles or

seashells, or fantastic color patterns on the wings of a butterfly [2, 3].

This happens because of interaction of light with structural periodic

distributions on them. It is possible to reproduce that kind of peri-

odic structures in a laboratory by means of dielectric and also plas-

monic materials. Plasmonics is of great significance and it is applied
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in current nanotechnology [4]. Unique phenomena like subwavelength

confinement [5], amplification of evanescent waves [6], extraordinary

transmission [7], hyperbolic dispersion in complex metallic compos-

ites [8], and sharp resonances in nanoparticles and meta-atoms [9] have

caused a tremendous impact. These lead to numerous devices and ap-

plications in photonics such as superlenses [10], nanoantennas [11],

subwavelength waveguides [12], invisibility-cloaking structures [13],

enhanced sensors for chemical detection of biological agents [14], and

chiral metamolecules [15] that work in the near-infrared and opti-

cal range, color prints with resolutions up to the optical diffraction

limit [16], drilled-hole metasurfaces [17] or V-shaped optical anten-

nas [18] for shaping of wave fields by means of resonant nanostruc-

tures [19], and light trapping in thin film solar cells [20]. They are all

based on the ability to control and manipulate the propagation of the

electromagnetic field.

One of our goals is to control the light bending. We see this effect if

we take a glass of water and we put a pen in it. Using the appropriate

materials, those with suitable electric permittivity (ε) and magnetic

permeability (µ) for the case in study, we may control the propagation

of the light waves. For this purpose, frequently there are no natural

materials available with the required values of ε and µ. On these
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Figure 2.1: (a) Chiral metamaterial fabricated by direct laser writing [15]. (b)
Generic intaglio metamaterial array of sub-wavelength single ring meta-molecules
inscribed into a metal surface to generate metallic structural color [21]. (c) Scan-
ning electron microscopy image of a metasurface consisting of an array of V-shaped
gold optical antennas fabricated on a silicon wafer, where Γ = 11µm [22] (d) A
Fano-resonant silicon metasurface showing strong enhancement of third-harmonic
generation [23].

cases we have to design artificial materials to let us control the light.

Materials combine in a subwavelength structure to achieve the electro-

magnetic parameters needed to manipulate waves. The combination

of these materials gives structures called ‘metamaterials’.

Metamaterials may behave as hyperbolic materials, which present a

dispersion relation that supports very high values of the wavenumber.
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Hyperbolic materials present an uncommon optical anisotropy [24], a

critical feature to achieve subwavelength imaging [25–28] and focusing

[28, 29] for example. This kind of metamaterials will be profitable for

us to exploit the invisibility phenomenon.

Producing metamaterials in the visible and infrared needs of an

extreme miniaturization that imposes severe restrictions in the fab-

rication processes, allowing the assembly of elementary geometries.

Maybe the simplest one is the metal–insulator multilayered nanostruc-

ture, which has been theoretically analyzed [30] and fabricated [31] ex-

tensively. In the theoretical analysis of subwavelength stratified nano-

materials, an effective medium approach (EMA) is widely employed

[32,33] and exploited for the design of plasmonic devices [34,35]. How-

ever, such an approach was proved to fail when dealing with transverse

magnetic (TM) polarized waves [36–38], that is, when the magnetic

field is perpendicular to the axis of periodicity of the metal–dielectric

(MD) nanostructure. In this case, nonlocal effects arise provided that

the width of the metallic layers becomes close and even surpasses the

penetration depth of the metal [39]. Bearing in mind that current

technologies meet a bound in the fabrication of multilayered nanos-

tructures with smooth metal slabs and gaps thinner than 10 nm [40,41]

and that the penetration depth for a metal like silver (gold) is around
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24 nm (31 nm) at λ = 600 nm, we may conclude that nonlocal effects

are generally taking place in realistic plasmonic arrangements.

One of the most outstanding effects driven by nonlocalities is the

existence of an additional extraordinary mode in TM polarization

[42–45]. Under certain conditions, a beam will split into two wave

packets in an air/metamaterial interface, one of them undergoing pos-

itive refraction and the other beam being refracted under negative

angles. Together with single refraction displayed for incident trans-

verse electric (TE) polarized, metallodielectric multilayered metama-

terials may manifest trirefringence. In other words, three indices of

refraction are necessary to typify such exotic behavior. We point out

that tailored photonic crystals also exhibit multirefringent properties,

nevertheless provided that the structural details of the media (lattice

constants) are on the scale of the optical wavelength [46].

In all the studies carried out formerly on trirefringent MD meta-

materials, a detailed description of the direction of propagation of the

multirefracted beams has been specified. However, the distribution of

energy flow that corresponds to each refracted beam is not clear, es-

pecially in TM polarization. An accurate evaluation of transmissivity

and reflectivity may provide new insights included in nonlocalities.
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2.2 Cloaking structures

From a different point of view, let us point out that an inhomoge-

neous refractive index can give us some control of the light path, as

happens for instance on gradient-index (GRIN) lenses [47]. To ma-

nipulate this refractive index, we need to engineer the permittivity

and permeability, which can also be anisotropic. For an anisotropic

material light response depends on its polarization [48]. In particular,

optical cloaking is achieved by manipulating light propagation, and

it became very popular for the researchers after the publication of

two seminar papers [49,50]. They proposed two different cloaking de-

vices which are based on the Transformation Optics Method (TOM).

This kind of devices allow incident light to flow bordering the cloaking

structure, and keep the same propagation features as there was noth-

ing there [51]. One can introduce some given objects to be hidden

inside that structure, so light goes around them and any observer out-

side of the device sees no perturbation on the light field. Development

of these ideas in the form of carpet cloaks and also skin cloaks have

been recently demonstrated experimentally (see fig. 2.2).

Taking into account TOM in its original concept, the structure

considered commonly exhibits a very high anisotropy. The material

parameters will take extreme values at some regions of the cloak, which
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Figure 2.2: (a) Scanning electron microscope image of a fabricated carpet cloak.
The carpet cloak design that transforms a mirror with a bump into a virtually flat
mirror [52]. (b) A metasurface invisibility skin cloak for a 3D arbitrarily shaped
object. Inset: A 3D illustration of a nanoantenna used to build the metasurface
[53].

makes impossible the selection of natural materials [54]. In addition,

permittivity and permeability should be similar at the outer regions

of the structure to satisfy the impedance-matched condition. Fortu-

nately, using metamaterials it is possible to tune the anisotropy of

both permeability and permittivity [55]. This is the relation of cloak-

ing with metamaterials: the structure for achieving perfect cloaking

is made of metamaterials. The first metamaterials for demonstrating

cloaking were split ring resonators [51], probably the most used struc-

tures for this purpose [56–58]. Importantly, revolutionary progress in

the development of new structures for cloaking has completely trans-

formed the current scenario. Advances on science and industry make
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possible the study and fabrication of new and smaller camouflages

and invisibility sensors made by metamaterials [59–61]. With these

novel devices and techniques, invisibility cloaking keeps attracting the

attention of researchers on the whole world.

2.3 Scattering cancellation

Although perfect cloaking is a highly studied method to completely

suppress the visibility of an object, we count on supplemental ways

to at least minimize its electromagnetic perceptibility. An alternate

method specially adapted to small particles and coined as scattering

cancellation leads to invisibility by reducing to minimum the scattering

cross section of a structure which partially can be made of metama-

terials [62]. The basic idea consists of turning a particle undetectable

by covering it with ultra-thin coatings or metasurfaces, so the scat-

tering of the arrangement is much reduced than the one without the

covering nanostructured element [63–66]. Strucutres like gold-covered

silicon nanowires [67] were proposed for reducing light scattering from

detectors and increase the optical signal at the same time, as illus-

trated in fig. 2.3. More recently, atomically thin surface cloaks have

been proposed using graphene at THz frequencies [68, 69].
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Figure 2.3: (a) Schematic of a gold/silicon nanowire photodetector. (b) SEM image
of a 50-nm-diameter silicon nanowire with a 20-nm-thick gold cover. Scale bar,
100 nm [67]. (c) The near-field distributions for the anapole modes excited within
a silicon nanodisc with plane wave incidence [70]. (d) The destructive interference
of an electric dipole (left) and a toroidal dipole (middle) leads to the formation of
a non-radiating anapole mode.

The scattering drop in metacoated structures may be attributed to

different aspects of the light matter interaction. For instance, the local

polarizability of distinct components of a moderately sized object with

opposite signs may be canceled out in a proper designed configuration

[63, 71–77]. As an example, let us consider a core-shell nanowire of

internal (external) permittivity ε1 (ε2) and radius of curvature r1 (r2)
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embedded in a region of permittivity ε3 exhibits a polarizability [78]

α = 4πε0
[(ε1 − ε2) (ε2 + ε3) r

2
1 + (ε1 + ε2) (ε2 − ε3) r

2
2]

(ε1 − ε2) (ε2 − ε3) r21 + (ε1 + ε2) (ε2 + ε3) r22
, (2.1)

where ε0 is the permittivity in vacuum. Therefore, the polarizability

can theoretically vanish for a specific combination of the shell param-

eters r2 and ε2. The polarization vector in each of the elementary

materials is antiparallel with respect to each other, implying that a

dipole moment of opposite phase is induced. The inclusion of epsilon-

near-zero shells in the spectral range of interest is of particular inter-

est. It may lead to a significant drop of scattering spectrum of the

structure and also create a shielding effect in the boundary space [79].

Focusing on scatterers with cylindrical symmetry along z axis, com-

posed of dielectric and plasmonic materials, the effects of opposite po-

larizabilities is mostly observed in TMz-polarized wavefields, whereas

Fano resonances, another approach for the cancellation of scattering

may be simply used in TEz polarization configurations. Properties of

the characteristic lineshape of Fano resonance can be driven for the

cancellation of scattering of an engineered scatterer. In the particu-

lar case, the emission of electromagnetic waves by the object create

the interference between the nonresonant scattering from the parti-

cle and scattering by narrow Mie modes [80]. This effect has also
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been observed in high-index nanoparticles without additional coating

layers [81].

It is worth to mention that scattering of electromagnetic waves

by a given subwavelength particle can be described by a multipole

decomposition of the electromagnetic field enabling to characterize

the scattering intensity by interference of dominant multipole modes.

Such multipolar intereference effects might involve electric, magnetic

and toroidal multipoles leading, for instance, to non-radiating optical

anapoles [70], as illustrated in fig. 2.3. This novel mechanism for

reducing the scattering efficiency of an object is currently an active

area of research, though it remains out of the scope of this Thesis.

A particular kind of invisible nanostructure called our attention,

which is based on hyperbolic metamaterials exhibiting an enormous

form anisotropy and shaped as wavelength-scale nanotubes [82]. These

metal and dielectric layers are designed to allow light to propagate

throw the structure without distortion of the incident wave, for both

TE- and TM-polarized incident light. When the effective permittivity

of the hyperbolic nanotube is close to zero in the angular direction, the

scattering is reduced significantly, producing invisibility. The original

proposal focused on the analysis of how the filling fraction and inner

diameter of the nanotube affect the scattering cancellation. These
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results are also compared by considering a hyperbolic nanotube instead

of a layered one and appreciate that the invisibility of the layered

nanotube can be tuned, so it may be used in future nanophotonic

devices. In this Thesis we go beyond and study how other parameters

as edge effects or inner and outer permittivity alter the scattering of

the nanocylinder.

2.4 Metalenses and light-concentrator

metasurfaces

We are also concerned on focusing devices based on metasurfaces

and metalenses. The operation of a large number of optical devices,

such as lenses, prisms, axicons, and spatial light modulators, is based

on controlling the wavefront of light by modifying its phase, ampli-

tude and state of polarization. Propagation effects are responsible of

the beam shaping carried out by the above-mentioned optical com-

ponents. In this case, bulk metamaterials would present a problem:

they usually are too lossy [85]. An alternative consists of designing

ultrathin metamaterials that enable waves pass through with a con-

siderable reduction of losses. Perforated metascreens or engineered

nanoresonator-based metasurfaces are currently good choices, as illus-
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Figure 2.4: (a) Planar lens based on nanoscale slit array in metallic film. The lens
consisting of a 400 nm optically thick gold film (yellow) with air slits of different
widths (80 to 150 nm) (light blue) milled therein on a fused silica substrate (dark
blue) [83]. (b) A SEM image of a planar plasmonic metalens consisting of a
concentrically perforated 30-nm-thick gold film, with a focal length of 2.5 µm at
an operational wavelength of 676 nm [84].

trated in figs. 2.4 and 2.5. Hence, it is possible to control light prop-

erties, such as the wave direction and even transform an evanescent

wave into a homogeneous one. For instance, a metal-dielectric mul-

tilayered metamaterial supports wave propogation at extremely-high

effective index of refraction [45]

neff = Re

√
εdεm

εdfm + εm (1 − fm)
(2.2)
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where εm and εd denote the permittivity of the metal and the dielectric,

respectively, with tunable features by simply engineering the metal fill-

ing fraction fm in the metamaterial. Thus, fields passing through such

metal-dielectric metamaterials undergo fast phase variations of the

scattered field even taking into accound a subwavelength propagation

distance. Furthermore, some metasurfaces provide electromagnetic

currents to produce a certain electromagnetic field distribution as a

response of a known incident electromagnetic wavefront [86,87]. With

these metasurfaces, which are the 2D equivalent to bulk metamateri-

als, one can take an exceptional control of electromagnetic wavefronts,

and present the advantage of being composed by subwavelength unit

cells with subwavelength thickness too. They permit us to mold the

incident wavefront into the desired one, and to control electromag-

netic waves, by means of spatial variations introduced in the unit

cells [88–92].

It is well known that the spatial resolution is constrained by the

diffraction limit of light [95], which has a deep impact in applica-

tions such as data storage or far field microscopy [96, 97]. Many at-

tempts have been done to achieve this resolution limit, and even sur-

pass it, employing flat metasurfaces [98–100]. Apart of using flat con-

figurations, there are some other designs with non-planar geometries
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Figure 2.5: (a) Metalens designed at the wavelength of 660 nm, which consists of
TiO2 nanofins on a glass substrate. Scale bar, 40 µm [93]. (b) Grating lens for f
= 100 µm fabricated with standard silicon microfabrication techniques [94].

that allow a better performance for molding optical waves [101–103].

In particular, high-aperture optical waves can be transformed into

diffraction-free non-paraxial beams. These beams also exhibit strong

spatial acceleration [104, 105]. Within our research, it was carried

out by using MD metamaterials with the same curvature as the fo-

cal wave, so we can achieve highly localized accelerating waves. By

using the same cylindrical (or spherical using the appropriate design)

configuration of the impinging beam we avoid an inadequate beam

shaping which may be induced by optical aberrations. It is worth

to mention that not only high-index metamaterials but also epsilon-

near-zero metacoatings, which can be implemented for instance over
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plano-concave transparent substrates, demonstrate an adequate shap-

ing of a plane wave into Bessel wave fields with non-closed trajecto-

ries [106, 107].

2.5 Optical surface waves in anisotropic

substrates

The flat interface separating two different materials contributes

significantly in many optical phenomena. An electromagnetic surface

wave may travel all along the interface but, on each side of the surface,

its amplitude is imperceptible when moving far enough from the in-

terface. The relevance of the concept of electromagnetic surface wave

was revealed in 1907 when Zenneck [108] released a theoretical study

exploring the possibility of finding guided waves at the interface that

separates the atmosphere and the earth or a large body of water. This

particular case focused on radio waves, which is a region of the elec-

tromagnetic spectrum that is far from the optical regime on which we

are interested, but the physical basis of this phenomenon is the same,

given the scale invariance of the Maxwell’s equations. Furthermore,

the surface plasmon polariton (SPP) has reached our days, dominat-

ing the current technological scenario in the visible spectrum, thus
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allowing significant advances in current nanotechnology such as the

creation of bio/chemical sensors, to mention one of the most signifi-

cant examples [109]. While the interface of a plasmonic material and

a polarizable material supports SPPs, other types of surface waves can

also be supported by the interface of two distinct polarizable materials.

A particular type of surface wave can be found at the interface

of two homogeneous dielectric materials, provided that at least one is

anisotropic, even though every component of the permittivity dyadics

has a real part that is positive for both materials. Some interest arose

from guided waves propagating on the surface separating two dielec-

tric materials after Dyakonov analyzed in 1988 [110] the bound modes

appearing at the interface between a uniaxial dielectric material and

an isotropic dielectric material. In fact, form birefringence inherent in

metamaterials would also enable a precise control of these Dyakonov

surface waves (DSWs) [111–114]. One of the most prominent features

of the DSW is its obliquity, that is, propagation of the surface wave is

always carried out obliquely to the optic axis of the anisotropic ma-

terial. In this Thesis we also perform a thorough analysis of DSWs

taking place along the optic axis of the uniaxial dielectric. Experimen-

tal evidences of this phenomenon, that appears with the connivance

of the losses of the material, are also provided.



2.6. THESIS OBJECTIVES 51

2.6 Thesis objectives

The general objective of this Thesis is the design of photonic devices

and arrangements based on structures with a high form anisotropy,

the latter derived from the convenient combination of dielectric and

metallic elements. Among the potential applications that can take

advantage of this property of optical anisotropy of metamaterials, in

this Thesis we focus on two of them: 1) nanoresonators for applications

in optical invisibility, and 2) metalentes and metasurfaces for light

focusing. Finally, we also aim to carry out experiments that might

confirm the existence of surface waves in anisotropic substrates, in

which a natural anisotropic medium, TeO2, has been used. Obviously,

the extension of these ideas to meta-substrates with form anisotropy

seems immediate.

First, the mechanism of scattering cancellation will be explored

in subwavelength particles of simple geometries: infinitely-long multi-

layered cylinders are of our interest. Previous studies showed that a

drastic reduction of scattering can be driven by the destructive inter-

ference of optical signals caused by a convenient combination of metal

and dielectric layers. Due to the anisotropic geometry of the nanores-

onators under investigation, the electromagnetic dynamics will differ

for plane wave illumination assuming either TE or TM polarization.
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Controlled morphologies and proper combination of materials can lead

us to fine tune the scattering cancellation at different wavelengths. For

instance, silver and TiO2 are considered as adequate materials for re-

ducing the scattered signal in the visible regime, though application of

the Drude model for plasmonic materials will provide more general re-

sults. The analytical estimation of the scattering efficiency for a given

polarization of the incident light will be performed by using of the

Lorenz-Mie method. Since a large number of layers can make the stan-

dard procedure rather tedious, a transfer matrix formulation can be

developed for the fast estimation of the scattering efficiency [115–117].

Furthermore, Matlab and Mathematica software are extensively used

to solve our math problems. Particularly useful is COMSOL Multi-

physics, a simulation tool for solving wave electromagnetics problems,

which has also been employed all along this Thesis, which is capable of

solve numerically the Maxwell’s equation and thus provides accurate

simulations of the scattering behavior of our nanostructures.

Secondly, we will be faced with the severe geometrical restric-

tions of flat metalenses to attain extremely high numerical apertures.

Our proposals consist of sculpturing a concave surface, by using sub-

wavelength metal–dielectric arrays, following the adequate design of

the nonplanar metacoating to accomplish our objectives. Achiev-
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ing tight focusing of high numerical aperture (NA) electromagnetic

waves with an incredible miniaturization of the components is of spe-

cial significance for us. Thus we might use the basic concept of

extremely anisotropy observed in metal-dielectric multilayered meta-

materials to engineer gradient-index subwavelength coatings as high-

numerical-aperture focusing devices exhibiting high efficiency [118].

Also a given wavefront curvature from a converging wave field can

be conveniently modified to increase significantly the numerical aper-

ture of the optical architecture [119]. Furthermore, executing a given

beam shaping can be extended to more general localized fields in the

nonparaxial regime. In particular, we are interested in transform-

ing wide-angle converging waves into a shape-preserving accelerating

beam, specially when the beam-width remains near the diffraction

limit [120].

It is important to note that nonlocal effects of highly anisotropic

metamaterials can induce significant changes in the photonic behavior

estimated with effective medium theories. This type of analysis was

carried out prior to admission to the Doctoral Programme in Physics,

during the completion of the Master’s Degree in Advanced Physics,

also in the University of Valencia. In particular, we analyzed a ‘bulk’

metamaterial made by alternative flat layers of metal and dielectric
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which clearly manifests trirefringence [121]. Due to the collective ex-

citation of surface plasmon polaritons in the subwavelength metallic

layers, one can observe simultaneously two Bloch waves exhibiting a

counterpropagating behaviour. Such observations in numerical exper-

iments have helped to design correctly the photonic devices object of

our analysis, as well as to allow the application of the appropriate

corrections in circumstances where the effective medium theories can

deviate notably.

Finally, our ultimate goal is to obtain experimental evidences of

the formation of non-plasmonic surface waves that may appear at the

interface between an anisotropic substrate and a dielectric isotropic

material. If, in addition, the latter exhibits a strong luminescent sig-

nal, the excitation of surface waves is feasible as a result of coupling the

evanescent part which integrates the characteristic dipolar emission.

For that purpose, we join forces with Prof. Juan P. Mart́ınez Pastor,

responsible for the Optoelectronic Materials and Devices Unit, also

belonging to the University of Valencia. His experience in the fabrica-

tion of multilayered optical systems, in particular using semiconductor

materials, will be decisive for the viability of our proposal.
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2.7 Publications associated to the present

Thesis

This Ph.D. Thesis may be divided in three blocks. The first one

is related with invisibility techniques applied to small particles and

gave as a result three publications in three different peer-reviewed

international journals. Metasurfaces and metalenses design would be

the second area, where the student collaborated in the realization of

three more articles. Finally, the student performed some experiments

in relation with anisotropic waveguides constituting the third block of

the present Thesis.

In the introductory part of this Thesis (sections 2.1 to 2.3) we

briefly included concepts related with optical scattering and how to

reduce the scattered signal in small bodies, which is the first goal

of the present work, as mentioned in section 2.6. We investigated

about this topic and we designed a mechanism that consists on a

cylindrical multilayer structure that allows scattering cancellation. In

section 4.1 we will describe a procedure to achieve invisibility with a

multilayered nanostructure, and several designs will be presented to

improve it in order to gain scattering cancellation. We first describe

some satisfactory conditions to turn the nanocavity invisible (see sec-
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tion 4.1.2) and how to optimize its design (see section 4.1.3) with the

given materials; in our case silver and TiO2. Next, we will apply an

effective-medium approach to treat the engineered nanostructure as a

hyperbolic medium, enabling a substantial simplification of the prob-

lem and more importantly providing schemes for scattering reduction

in more general configurations (see section 4.1.1). Three peer-reviewed

scientific articles summarize the main results of our study.

The first work, entitled ‘Conditions for achieving invisibil-

ity of hyperbolic multilayered nanotubes,’ was published in Op-

tics Communications journal (impact factor 1.588 in 2016 and ranked

52/92 in the Optics JCR-category). The paper is annexed in the

present Thesis and it is cited as reference [115]. The work of the

student relied mostly on the analysis of the designed multilayer struc-

ture: modeling the multilayered particle, estimating the effective per-

mittivity in the visible range, investigating the tunability of the nan-

otube permittivity by modifying the filling factor of the structure con-

stituents, analyzing the scattering efficiency in the desired wavelength

range, and simulating the optical behavior of the particle when the

material elements changed in position and varying the number of lay-

ers given a structure thickness.

The second publication is entitled ‘Optimization of multilay-
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ered nanotubes for maximal scattering cancellation.’ It was

published in Optics Express (impact factor 3.307 in 2016 and ranked

17/92 in the Optics JCR-category). This work is attached to this

Thesis and it is referenced to as [117]. In this article the student was

inspired in the solutions of the previous work and investigated how to

improve the structure to reduce its scattering for different outer and

inner media. For that, he simulated the scattering efficiency of the

structure for different permittivities of the medium outside of it and

also varying the permittivity of the material covered by the multilay-

ered cylinder. The student evaluated analytically and numerically the

optical behavior of the nanotube when the periodic unit cell is set in

a way that the inner and outer layers are made of the same material,

so that one might tune their thickness in order to enhance the cancel-

lation of the scattered field. The study was performed in the visible

wavelength range, for different filling factors and for both TM and TE

incident light polarizations.

The title of the third scientific article within the first block of

this Thesis is ‘Tunable scattering cancellation of light using

anisotropic cylindrical cavities.’ The journal in which it is pub-

lished is Plasmonics (impact factor 2.339 in 2016 and ranked 114/275

in the Materials Science, Multidisciplinary JCR-category). This paper
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is set as an annex of the present Thesis and it is cited as reference [116].

The work of the student for the realization of this article was to per-

form the modeling and calculations (both analytical and numerical) of

the hyperbolic nanoparticle. Calculations were carried out for a wide

range of conditions: parameters in the system like the light frequency,

the inner and outer radii of the uniaxial nanotube, the permittivity of

the media surrounding the hiperbolic nanocavity, and the metamate-

rial anisotropy employed to analyze the invisible shell were varied to

complete our study.

The second part of the Thesis in focused on the design and perfor-

mance analysis of metal-dielectric metalenses and metasurfaces when

they are used to control the light wavefront. In section 2.4 we gave a

glimpse of the advantages when using this MD structures to alter at

will the main light properties, such as its direction of propagation. It

is theoretically possible to reach a high spatial localization near the

diffraction limit with the designed subwavelength MD metasurfaces,

as it is described in the following papers which are published in diverse

peer-reviewed international journals.

The results derived in this second research line led to the publica-

tion of three scientific articles. The first of them is titled ‘Accelerating

wide-angle converging waves in the near field’ and it was pub-
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lished in Journal of Optics (impact factor 1.847 in 2015 and ranked

36/90 in the Optics JCR-category). The second work is entitled

‘Ultrathin high-index metasurfaces for shaping focused beams’

and it was published in Applied Optics (impact factor 1.598 in 2015

and ranked 45/90). The third and last publication of this block is

entitled ‘Metacoatings for wavelength-scale, high-numerical-

aperture plano–concave focusing lenses.’ It was published in

Journal of the Optical Society of America B (impact factor 1.843 and

ranked 41/92 in 2016). In all these three cases the student contributed

in performing certain numerical simulations, mostly using COMSOL

Multiphysics.

Finally, in the third part of this Thesis the student carried out

some exploratory experiences with the objective of obtaining experi-

mental evidences of the existence of surface waves in anisotropic all-

dielectric waveguides. The work of the student in this task consisted

on fabricating a planar active waveguide supported by an anisotropic

material; specifically we used a TeO2 substrate. Furthermore, the ac-

tive layer is made of perovskite, and the deposition was performed by

using a group of various common, fast and cheap techniques, such as

Doctor-blading and spin-coating. After the fabrication process, the

student characterized the prepared sample (see section 4.3.1). He also



60 CHAPTER 2. INTRODUCTION (ENGLISH)

conducted some experimental measurements (procedure described in

section 4.3.2), and subsequently he confirmed that the given results

were in agreement with the ones obtained from numerical simulations

(see also section 4.3.3). At the moment of the Doctoral Thesis de-

posit, there is an article in preparation collecting the main results of

our study.



Chapter 3

Methodology

In this section we describe a number of mathematical procedures,

basic theoretical schemes and numerical methods enabling the proper

design of metamaterial nanostructures, which exhibit certain interest-

ing optical effects such as scattering cancellation and efficient beam

shaping, to mention those that are more relevant in this Thesis. For

this purpose, we follow the Mie theory of scattering to evaluate the

scattering cross section of cylindrical nanostructures. In particular

we focus on multilayered structures, where metals and dielectric ma-

terials can be combined. In addition, useful approximations such as

the effective medium approach are briefly described, which allows a

simplified calculation in our designs. Finally, numerical methods as

61
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the finite element method are succinctly outlined, providing a valuable

tool to simulate the optical behavior of complex nanostructures and

potentially confirming the validity of our approaches.

3.1 Mie theory

In 1908, Gustav Mie wrote a well-known paper focused on light

dispersion by spherical particles, motivated by the striking chromatic

effects observed in colloidal gold solutions. Nowadays, the interest in

Mie’s theory covers a much broader spectrum. Note that plane wave

scattering by a homogeneous isotropic sphere is commonly referred to

as Lorenz-Mie theory [122, 123]. Nonspherical particles can also be

treated analytically, though restricted to simple geometries, by using

the guidelines of the Lorenz-Mie theory [124]. Here we consider mul-

tilayered cylindrical structures, a particular case enabling analytical

solutions to the Maxwell’s equations [125, 126]. Furthermore, we de-

velop a matrix formalism for the rapid evaluation of the scattering

efficiency of our stratified nanotubes.
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3.1.1 Particles with multilayered coating

The nanoscatterer considered here is a cylindrical shell made of a

multilayered nanostructure formed by N layers. The thickness of the

shell is T = RN+1 −R1, where RN+1 (also denoted by R) is the outer

radius of the whole structure and R1 is the inner radius of the cylinder,

as shown in fig. 3.1. We will assume that the core of the structure is

made of a material with permittivity εC , and the cylinder is embedded

in a medium of dielectric constant ε. The permittivity of a given layer

q is then characterized by εq.
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Figure 3.1: (a) Illustration of the multilayered and infinitely-long nanotube. (b)
Permittivity of the scatterer as a function of the radial coordinate.

Assuming the incident light is a TMz polarized plane wave (for

incident TEz polarized light the fields would be simply determined by

means of the duality principle [127]) which propagates along x axis
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direction, the electric field for the incident light can be written as

Ein = ẑE0

+∞∑

n=−∞
inJn(kr) exp(inφ), (3.1)

expressed in function of the radial and azimuthal cylindrical coordi-

nates, r and φ respectively, a constant amplitude E0, the Bessel func-

tion of first kind and order n, Jn(·), and the wavenumber k = k0
√
ε,

where k0 = ω/c is the vacuum wavenumber. In addition, the scattered

electric field outside the structure (r > R) is set as [122]

Esca = −ẑE0

+∞∑

n=−∞
ani

nH(1)
n (kr) exp(inφ), (3.2)

where H
(1)
n (·) = Jn(·) + iYn(·) is the Hankel function of first kind and

order n. The coefficients an of eq. (3.2) must be determined imposing

the proper boundary conditions. The total electric field outside the

structure is the sum of the incident field given in eq. (3.1) and the

scattered one of eq. (3.2), Etot = Ein + Esca.

On the other hand, for the electric field in the layer q of the strat-

ified shell, we have [122]

Eq = ẑE0

+∞∑

n=−∞
in [bn,qJn(kqr) + cn,qYn(kqr)] exp(inφ), (3.3)
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where Rq < r < Rq+1, q = 1, 2, 3, ..., N is the medium considered, and

the wavenumber is kq = k0
√
εq. The electric field in the core of the

nanoscatterer, (r < R1), is set as

EC = ẑE0

+∞∑

n=−∞
indnJn(kCr) exp(inφ), (3.4)

and the wavenumber is kC = k0
√
εC in this case. Finally, the scattering

coefficients an, bn, cn and dn are determined by setting the appropriate

boundary conditions.

The above-mentioned conditions are based on the continuity of the

z-component of the electric field and the φ-component of the magnetic

field, Hφ = (i/ω)∂rEz. These boundary conditions must be accom-

plished at the environment-multilayer shell interface (r = R) and also

at all internal interfaces (r = Rq+1, with 0 < q < N). For the internal

interfaces at r = Rq+1 the boundary conditions can be expressed in

matrix form as [128]

Dn,q(Rq+1) ·


bn,q
cn,q


 = Dn,q+1(Rq+1) ·


bn,q+1

cn,q+1


 , (3.5)
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where

Dn,m(x) =


 Jn(kmx) Yn(kmx)

Z−1
m J ′

n(kmx) Z−1
m Y ′

n(kmx)


 (3.6)

is called the dynamical matrix. It is given in terms of the reduced

impedance, that is Zm = 1/
√
εm, and Zq = 1/

√
εC for the core of the

nanocavity (m = C). The prime in the Bessel functions Jn(x) and

Yn(x) means derivative with respect to the argument x. In a similar

way, for the interface at r = R1 we have

Dn,1(R1) ·


dn
0


 = Dn,2(R1) ·


bn
cn


 (3.7)

On the other hand, at the utmost interface r = R we can apply

the proper boundary conditions and we get

Dn,N(R) ·


bn,N
cn,N


 = Dn,N+1 ·


1 − an

−ian


 , (3.8)

where ZN+1 = 1/
√
ε and kN+1 = k.

In particular, we are interested on the fields outside of the nanotube

and in its core. In fact, there is a way of evaluating these fields with

no need to calculating any field in the intermediate layered medium.
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For that purpose, we use the following matrix equation:


dn
0


 =Mn ·


1 − an

ian


 , (3.9)

where the matrix Mn is calculated as follows:

Mn =


Mn,11 Mn,12

Mn,21 Mn,22


 =

= [Dn,C(R1)]
−1 ·

{
N∏

q=1

Dn,q(Rq) · [Dn,q(Rq+1)]
−1

}
·Dn,N+1(R).

(3.10)

In particular we obtain

an =
Mn,21

Mn,21 + iMn,22
. (3.11)

In other words, with our matrix formalism we are able to calculate

analytically the coefficients an characterizing the scattered field in

eq. (3.2). Finally, it is possible to estimate the scattering efficiency

as [122]

Qsca =
2

kR

+∞∑

n=−∞
|an|2 . (3.12)
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3.2 The effective medium approach in 1D

stratified periodic media

The treatment of electromagnetic wave propagation in a periodic

medium has certainly some similarities with the motion of electrons

in crystalline solids. Therefore, the formulation based on the Kronig-

Penney model that is used in elementary band theory of solids can be

appropriately applied to the description of optical radiation in peri-

odic layered media [129]. Next we consider a simple stratified periodic

medium consisting of alternating flat layers made of transparent non-

magnetic materials. The direction perpendicular to the layers is set

by the x axis. The variation of the permittivity in the unit cell is

given by ε1, for x0 < x < x1, and ε2, for x1 < x < x2. In addition,

ε (x) = ε (x+ Λ) holds, where w1 = x1 − x0 (w2 = x2 − x1) is the

thickness of the layer of permittivity ε1 (ε2) and Λ = w1 + w2 stands

for the period of the structure.

Following the Floquet theorem, the electric field in a periodic

medium may be set as E (x+ Λ) = E (x) exp (iKΛ), where K stands

for the well-known Bloch wavenumber. Furthermore, the equation

cos (KqΛ) =
1
2
tr{Mq} provides the dispersion relation for q = TE and

q = TM modes, written in terms of the trace of the unit cell transla-
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tion matrix [2, 129]. Denoting KTE (KTM) the Bloch wavenumber K

associated with the TE (TM) mode, and writing

tr{MTE} = 2 cos (w1kx1) cos (w2kx2)

− (k2x1 + k2x2)

kx1kx2
sin (w1kx1) sin (w2kx2) , (3.13a)

tr{MTM} = 2 cos (w1kx1) cos (w2kx2)

− (ε22k
2
x1 + ε21k

2
x2)

ε1ε2kx1kx2
sin (w1kx1) sin (w2kx2) , (3.13b)

we find the dispersion equation of a binary periodic medium for each

polarization. Also, kxi =
√
εik20 −

(
k2y + k2z

)
gives the x-component of

the wave vector in each part of the unit cell.

For ultra-thin metallic layers, typically lower than the penetration

depth, the dispersion curves resembles ellipses and circumferences for

TM and TE modes, respectively. In reference to such point, recent

advances in nanofabrication technology open the door for engineer-

ing this kind of subwavelength structures [130]. At increasing val-

ues of the metal width, however, some deviations are evident giving

rise to the so-called nonlocal effects. Neglecting at the moment these

effects, for near-infrared and visible wavelengths, nanolayered metal-

dielectric compounds enable a simplified description of the medium

by using the long-wavelength approximation; note that this also in-
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volves an homogenization not only of the structured metamaterial but

also of the wave fields [32,131]. The MD multilayered metamaterial is

represented as a uniaxial plasmonic crystal, having its optical axis ori-

ented normally to the layers. Moreover, a relative permittivity tensor

ε = ε‖ (xx) + ε⊥ (yy + zz), where [132]

ε‖ =
ε1ε2

(1 − f) ε2 + fε1
, (3.14)

gives the permittivity along the optical axis, and

ε⊥ = (1 − f) ε1 + fε2 (3.15)

provides the permittivity in the transversal direction. The metal rate

in a unit cell is given by the filling factor f = w2/(w1 + w2). The

dispersion equation for TE (o-) waves is then given by k2x + k2y + k2z =

ε⊥k20, where kx represents the Bloch wavenumber KTE , and for TM

(e-) waves we have
k2x
ε⊥

+
k2y + k2z
ε‖

= k20, (3.16)

where kx represents now the Bloch wavenumber KTM .
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3.2.1 Hyperbolic media

As we have discussed above, nanolayered metal-dielectric com-

pounds behave like plasmonic homogeneous crystals. Under certain

conditions, the second-rank tensor characterizing the permittivity in

the medium include elements of opposite sign, leading to extremely

anisotropic metamaterials [133,134]. This class of nanostructured me-

dia with hyperbolic dispersion, as seen in eq. (3.16), are proposed for

a plethora of practical applications ranging from biosensing to fluores-

cence engineering [135].

A uniaxially anisotropic medium which can be described by a per-

mittivity tensor with negative ε‖ but positive ε⊥ is referred as type I

hyperbolic medium. In this case, eq. (3.16) leads to a two-sheet hy-

perboloid [136]. Contrarily, type II hyperbolic media leads to positive

ε‖ and negative ε⊥, thus eq. (3.16) giving a one-sheet hyperboloid.

Importantly, a hyperbolic dispersion allows wave propagation over a

broad spatial spectrum, which includes forbidden spectral bands in or-

dinary isotropic dielectrics [8]. At the optical range, hyperbolic media

can be manufactured by using metallic nanowires instead of metal-

dielectric multilayers [137].

The system under analysis for numerical purposes consists of a

periodic binary medium, where a transparent dielectric medium is
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Figure 3.2: Real part of the components ε‖ (orange line) and ε⊥ of the permittivity
tensor for the multilayered metamaterial composed of a plasmonic material, which
follows the Drude model and γ = ωP /100, and an insulator with εI = 10 [115].
Three different filling factors are considered: (a) f = 0.2, (b) f = 0.5 and (c)
f = 0.8. Brown shaded regions denote spectral bands where the material exhibits
a hyperbolical dispersion of type I; green shaded regions are for hyperbolical dis-
persion of type II.

referred to as medium 1 which ideally is nondispersive. We take a

lossy Drude metal where its permittivity ε2 = 1 − ω2
P/ (ω

2 + iωγ),

and a dielectric medium with permittivity ε1 = 10, varying the filling

factor. If necessary, frequencies can be expressed in units of the plasma

frequency, ωP . In fig. 3.2 we represent permittivities ε‖ and ε⊥ of the

plasmonic crystals for a wide range of frequencies. For a realistic

metamaterial, its dissipative effects are governed by the metal filling

factor, thus low values of f are of great convenience in practice, as

plotted in fig. 3.2(a). For low frequencies, propagating TEx modes

(Ex = 0) cannot exist in the bulk crystal since it behaves like a metal,

contrarily to what happens with TMx waves. This is a characteristic
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of Type II hyperbolic media. Near the plasma frequency, eq. (3.16)

turns to an hyperboloidal shape (Type I hyperbolic medium). Note

that the upper limit of this hyperbolic band is determined by the

condition ε‖ = 0, occurring precisely at the plasma frequency [45].

3.3 Surface bound modes in anisotropic

waveguides

Bound modes can arise in all-dielectric multilayered structures.

Probably the most known mode of this type is the Bloch surface wave,

also known as photonic Tamm state, provided one semi-space is com-

posed of a 1-D photonic crystal [138]. However, dielectric homoge-

neous media also establish appropriate conditions to sustain surface

waves. For instance, Dyakonov surface waves (DSWs) are supported

at the interface between an isotropic medium and a birefringent mate-

rial. Following the original work by Dyakonov, whose English version

was reported in 1988 [110], here we consider that the optical axis of

a uniaxial medium is set in-plane with respect to the interface. Nev-

ertheless, developments of DSWs proposing alternate materials such

as biaxial crystals [139], structurally chiral materials [140], and even

structurally-anisotropic multilayered media [141] are still in progress.
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3.3.1 Dispersion equation of DSWs

Isotropic
medium

Surface
wave

Uniaxial
material

Optic axisθ

x yz

Figure 3.3: Squematic setup supporting DSWs at the plane x = 0, consisting of a
semi-infinite uniaxial material with its optic axis oriented along the z axis (x < 0)
and an isotropic substrate (x > 0).

Fig. 3.3 shows the optical system under analysis, where we

have two semi-infinite media, one of them is isotropic and the second

one is birefringent. In particular, the indices “1” and “2” refer to

the birefringent material and the isotropic medium, respectively. A

comprehensive analysis of this case can be found in [142], and here

we will provide the most basic steps. The permittivity of the uniaxial

anisotropic medium along its optical axis is set as εz1 = ε‖, and the

permittivity in the transverse direction is εx1 = εy1 = ε⊥. From

hereon, the permittivity ε2 of the isotropic medium in x > 0 will be

denoted by ε.

We may establish the diffraction equation giving the 2D wave vec-
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tor kD = [0, ky, kz] of the surface wave propagating in x = 0 ana-

lytically. For that purpose, hybrid-polarized surface modes should be

considered. In the isotropic medium we consider TEx (Ex = 0) and

TMx (Hx = 0) waves simultaneously, whose wave vectors have identi-

cal real components ky and kz in the plane x = 0. The electric field in

the isotropic medium (also in the birefringent material) may be set as

Etot = E (x) exp (ikyy + ikzz − iωt). (3.17)

These fields decay evanescently inside the isotropic medium and in

the birefringent material. In the anisotropic medium (x < 0) the

evanescent electric amplitude can be written as

E (x) = Bo1b̂o1 exp (−iko1x) +Be1b̂e1 exp (−ike1x), (3.18)

where the ordinary and extraordinary waves in the uniaxial medium

decay exponentially with rates given by κo = −iko1 and κe = −ike1,
respectively. Note that koi =

√
εxik

2
0 −

(
k2y + k2z

)
for the o-waves, and

kei =
√
εzik20 −

(
k2y + εzik

2
z/εxi

)
for the e-waves. The vectors b̂o1 and

b̂e1 indicate the state of polarization of the o-wave and the e-wave,

respectively, with constant amplitudes Bo1 and Be1. In the isotropic
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medium (x > 0) the amplitude of the electric field is

E (x) = A′
TE2âTE2 exp (ikx2x) + A′

TM2âTM2 exp (ikx2x), (3.19)

where the evanescent decay for TE and TM modes is κ = −ikx2. Now
the amplitudes A′

TE2 and A′
TM2, and the vectors âTE2 and âTM2, are

characteristic for the TE and TM modes.

Once we have the amplitudes in both sides of the interface, we

apply the boundary conditions at x = 0, which reduce to




0

Bo1

0

Be1



= Mh




A′
TE2

0

A′
TM2

0



, (3.20)

where the transmission matrix Mh = D−1
1 · D2 establishes a relation-

ship between the amplitudes of hybrid -polarized modes. More specif-
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ically,

Di =




koi −koi kykz kykz

0 0 k2z − εxik
2
0 k2z − εxik

2
0

−kykz −kykz εxik
2
0kei −εxik20kei

−k2z + εxik
2
0 −k2z + εxik

2
0 0 0




(3.21)

applies for the anisotropic medium, and

Di =




kz kz −kykxi kykxi

−ky −ky −kzkxi kzkxi

kykxi −kykxi εik
2
0kz εik

2
0kz

kzkxi −kzkxi −εik20ky −εik20ky




(3.22)

is used for the isotropic medium. Finally, Dyakonov equation is the

solution to eq. (3.20), giving

k20k
2
yε⊥ (κ+ κe) (εκo + ε⊥κ) = κok

2
z (κ+ κo)

(
εκ2o + ε⊥κκe

)
, (3.23)

which provides a spectral map of allowed values (ky, kz). Assuming

that ε‖, ε⊥, and all decay rates are positive, the additional restriction

ε⊥ < ε < ε‖ can be deduced for the existence of surface waves. As a

consequence, positive birefringence is mandatory to ensure a station-
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ary solution of Maxwell’s equations. Importantly, DSWs cannot exist

when propagating along the optical axis (ky = 0) and perperdicularly

to this (kz = 0).

3.3.2 A thin dielectric waveguide on an anisotrop-

ic substrate

Let us now assume that a new medium (numbered as “3”) is in-

cluded in our photonic system. Again, medium “1” is anisotropic and

medium “2” is isotropic, the latter having a width w2. Bound modes

now can be determined using again eq. (3.20), which should be conve-

niently modified. In particular the column vector [A′
TE2, 0, A

′
TM2, 0]

is now associated with the semi-infinite medium “3” so that we should

use [A′
TE3, 0, A

′
TM3, 0] instead. In addition, the matrix of the strati-

fied optical system is now evaluated as Mh = D−1
1 ·D2 ·P2 ·D−1

2 ·D3,

taking into account the propagation matrix [142]

Pi =




e−ikxiwi 0 0 0

0 eikxiwi 0 0

0 0 e−ikxiwi 0

0 0 0 eikxiwi



, (3.24)
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which is characteristic of the thin dielectric waveguide.

Note that eq. (3.20) provides not only Dyakonov surface waves in

interface between the thin isotropic waveguide and the birefringent

cladding. This equation also provides any other kind of bound modes,

not necessarily coined as surface waves. In particular, guided modes

and leaky waves can also be estimated using our matrix formulation.

3.4 Finite Element Method (FEM)

Scientific advances and modern technological improvement chal-

lenge scientists to carry out high resources’ consuming calculations.

The applicability of these jobs covers a wide range of scientific areas

such as photonics in general but also nuclear applications, aeronautics,

water course management or radiofrequency applications. To properly

understand the analyzed problems we need mathematical models to

simulate the behavior of the system. These models are based on dif-

ferential and integral equation systems and the FEM has become one

of the most frequently used methods for solving them. Although this

is a method that requires an intensive use of a computer, it can be

employed to solve the majority of these problems. It can be applied

in the resolution of projects in one, two or three dimensions even if
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the geometry is complex or the considered material is heterogeneous.

In a few cases the problems can be solved analytically, as the exam-

ples given in previous subsections, but most of them need a numerical

method for resolution. The FEM consists on using a simple approxi-

mation of unknown variables, typically based upon different types of

discretizations, to transform the differential or integral equations into

numerical model equations which are easier to solve. For a detailed

description see [143–145]. The first step of this approximation is to

replace the continuous system by an equivalent discrete one. To do so

we divide the domain into smaller subdomains called finite elements.

The elements are connected with points called nodes, in which we

solve the numerical model equations. Solving methods are based on

comparison with a test function (fig. 3.4) built from a set of combined

basis functions. Assuming the function that we want to model is u,

we can approximate it by

u ≈
∑

uiψi, (3.25)

where the approximated function can be described with a set of basis

functions ψi properly weighted.

In the example shown in fig. 3.4 the basis functions ψi can only

have values 1 at their respective nodes or 0 at others. But with the
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Figure 3.4: Example of 1D resolution process by evaluating a set of basis test
funtions ψi properly weighted by ui [146]. The interval where function u is defined
is discretized in 10 nodes or elements in which the approximated function uj is
evaluated.

appropriate weight ui in each case we can obtain a very approximated

solution of the function u. These weights are calculated with different

numerical methods such as direct methods based on LU decomposition

or iterative methods, depending on the job, which are not described

in this Thesis but can be found in literature [147, 148].

It is easy to observe that we need more points (a finer mesh) for

the areas of the domain in which we think that our function is more

abrupted. By doing so we will reproduce better the curve or field that

we are calculating.
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3.4.1 Commercial software based on FEM

In our case, we chose a commercial software called COMSOL Mul-

tiphysics to model and simulate our photonic structures [146]. The

version employed here is v.5.1.0. It allows us to perform the simula-

tions from its graphical user interface or from MatLab software. The

first way might be more intuitive since you can graphically model the

structure and the program presents a lists of parameters, materials, ge-

ometry characteristics and study resolutions visible in every moment.

Another advantage of the software is that the user is capable of giving

different attributes to any geometry domain at any moment. We can

select a different material for each region, set the proper boundary

conditions and, if needed, a constraint.

For the simulations which are required we need the module ‘elec-

tromagnetic waves, frequency domain.’ After selecting the study for

each case we define the parameters to use in the model and build the

geometry. With the geometry set and the materials defined we have

to mesh our model (fig. 3.5). This mesh is a subdivision of each do-

main into small finite elements to calculate the electromagnetic fields

in each discretized point. As it was mentioned before, we must adjust

the mesh by increasing the density points in areas where the electro-

magnetic field is expected to vary more (in interfaces between two
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Figure 3.5: Division of each domain into multiple subdomains. Example of a
COMSOL image which shows a meshed model of a multilayer nanotube in an
environment medium developed for performing some studies of scattering cancel-
lation.

materials with quite different refractive index) and leaving it larger

(but never larger than half a wavelength) in areas where we think the

variation of the fields is smoother. By doing this we can reach enough

accuracy and at the same time we save calculation resources, i.e. the

job will be less time consuming but we will have results with high

enough precision. In some calculations, like for obtaining the propa-

gation constant associated to a mode traveling in a waveguide, we also

need to give the program an appropriate seed which can be estimated
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with other methods or we can even try some values from experimental

results. In the case of scattering wave fields this is not necessary and

the program will provide us all the electric and magnetic fields resulted

from the given illumination and the appropriate boundary conditions,

typically Perfectly Matched Layers (PMLs).



Chapter 4

Results and analysis

In this chapter we gather the main results achieved for this Ph.D.

Thesis work. Section 4.1 gives the most important conclusions of the

first from the three blocks in which this Thesis consists of. This is

focused on the conditions that an anisotropic cylindrical particle must

accomplish to make invisibility feasible. Then we clarify how to opti-

mize the structure geometry to improve its scattering cancellation, and

we also compare such results with those estimated by means of sim-

plified models based on considering the scatterer having a hyperbolic

structure.

In section 4.2 we meet with the second block of the studies per-

formed for the elaboration of this work. We collect the most relevant

85
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results of the numerical simulations which I have performed with the

purpose of investigating the shaping of focused beams by using ul-

trathin high-index metasurfaces and the design conditions that these

metasurfaces need to hold. In addition, we explore beamshaping under

high NA and the structures employed to achieve this effect. Briefly, we

also mention how to exploit metasurfaces for accelerating converging

waves in the near field.

Finally, section 4.3 is devoted to explain the experimental part of

the work in this Thesis; that consists on the third block of it. Our ob-

jective is to find appropriate conditions for the observation of surface

waves in all-dielectric materials. We need to mention the experimental

techniques employed both in the fabrication and in the characteriza-

tion processes and we introduce the reader to them. After this, some

experimental results are presented and compared with theoretical cal-

culations that prove their validity.

4.1 Anisotropic particles

This first section is focused on the capability of multilayered scat-

terers to become optically undetectable. In particular, an engineered

metastructure that consists of a MD multilayered nanotube will con-
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duct to invisibility, and a subsequent interpretation of our estimations

is given in detail. This nanocavity is characterized by some opto-

geometric parameters, such as its thickness including its constituent

layers, its metal filling factor, and in general the materials that con-

form the multilayered nanoparticle. Our study is based on fixing the

materials employed and tuning the remaining parameters in addition

to the wavelength of the radiation for a complete spectroscopy ex-

amination. By analyzing the structure behavior under these changes

we are able to estimate the conditions that must be satisfied to en-

hance the scattering cancellation. Furthermore, with the estimations

obtained we proceed to optimize the nanostructure thus dropping the

scattering cross section to a minimum and making the nanoparticle

undetectable in the far field. We also compare the results with the

ones calculated if an effective medium approach is considered.

4.1.1 Invisibility in hyperbolic nanotubes

Let us start by establishing the proper conditions for a multi-

layered cylindrical nanostructure to become invisible. The structure

used in our study is an infinitely long MD multilayered nanotube,

shown in fig. 4.1. The stratified shell is periodicaly arranged in deep-

subwavelength units so that the effective medium approach described
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Figure 4.1: (a) Schematics of the multilayered metamaterial establishing a radial
form birefringence. (b) Illustration of the anisotropic nanotube under analysis.

in section 3.2 can be employed. The permittivities along the op-

tic axis (OA), ε‖, which is radially directed, and perpendicular to

the OA, ε⊥, constitute the components of the permittivity tensor

ε = ε‖r̂r̂ + ε⊥θ̂θ̂ + ε⊥ẑẑ. To estimate analytically the scattering effi-

ciency of the anisotropic nanotube, we followed the Lorenz-Mie scat-

tering method given for instance in refs. [149] and [150]; also details

are given in one of our recently published manuscripts [115]. For nu-

merical purposes, the multilayered nanotube is composed of a nondis-

persive insulator with permittivity εd = 10 in the frequency range of

study and a metal which permittivity follows the Drude model in the

spectral range of interest:

εm = 1 − ω2
P

ω2 + iωγ
. (4.1)
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Again, ωP represents the plasma frequency of the plasmonic material

and γ is the damping rate.

As shown in fig. 3.2, which was previously discussed in section 3.2.1,

when Re(ε‖)Re(ε⊥) < 0 is accomplished provided that Re(ε⊥) > 0 it

corresponds with the so-called hyperbolic regime of type I, whereas

Re(ε⊥) < 0 denotes a type II hyperbolic medium. For the particular

case when both insulator and plasmonic layers have the same width

(f = 0.5), both a zero of ε⊥ and a pole of ε‖ occur simultaneously at

the frequency ωP/
√
1 + εd, in addition happening when Re(εm) = −εd.

Importantly, the hyperbolic regime spans the whole spectrum below

plasma frequency in such a case.

In fig. 4.2 we show the scattering efficiency in terms of the material

filling factor that corresponds with the Drude medium and consider-

ing the latter with a low damping factor γ = ωP/100. The numerical

evaluation of Qsca is performed for a TEz-polarized incident light; the

case of TMz-polarized waves will be treated in section 4.1.2. We as-

sume the anisotropic cavity immersed in air (ε = εC = 1) and that it

is small enough (R1 = T = k−1
P /20 where kP = ωP/c) to excite only

the dipole term n = 1. The symmetric and antisymmetric coupling

between the surface charges associated with the cavity and surface po-

laritons at r = R1 and r = R [151,152] produce two resonances shown
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Figure 4.2: Scattering efficiency Qsca expressed in dB of an anisotropic cavity with
R1 = T = k−1

P /20 immersed in air (ε = εC = 1). The filling factor of the Drude
medium varies from 0 to 1, where the damping rate is kept at γ = ωP /100. The
calculations are performed for a TEz-polarized incident light. The zeros of ε⊥ and
the poles of ε‖ are included in red dashed line and blue dashed line, respectively.

in fig. 4.2. Close to the resonance we find a minimum in scattering.

Scattering cancellation is virtually achieved for fundamental fre-

quencies ωzero and represented by the red dashed line in fig. 4.2. These

frequencies coincide with the condition of ε⊥ near zero. In principle,

we should be able to tune the invisibility frequency just changing the

filling factor f , as suggested by Kim et al [82]. However, we find

that close to the plasma frequency it is not possible, even considering

values of f close to unity. The invisibility associated with the fun-

damental peak is observed in this case at an intermediate frequency
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between the symmetric and antisymmetric resonances below ωP . In

the limit of a filling factor f → 1 the invisibility condition is found

for a frequency ω = 0.707ωP ≈ ωP/
√
2, coinciding with the surface

plasmon frequency. On the other hand, as it is shown in fig. 4.2, ωzero

approaches the plasma frequency at this limit.

To achieve scattering cancellation near the plasma frequency we

should take profit of the second minimum of scattering efficiency lo-

cated close to ωP as we show in fig. 4.2. For instance, for a filling factor

of f = 0.5 there is a first minimum of Qsca = 30.7 · 10−7 at ω = 0.3ωP

and there is also a secondary minimum of Qsca = 5.11 · 10−5 at a

frequency ω = 0.9454ωP . We see that the invisibility for a lower en-

ergy provides a better performance than the one found at a higher

frequency.

In fig. 4.3 we present the scattering efficiency of different nanocav-

ities with a filling factor f = 0.5 and a damping factor given by

γ = ωP/100. The ratio of the thickness of the nanocavity to its outer-

most radius is set constant (T/R = 1/2) in all the structures studied.

We compare the structure analyzed in fig. 4.2 with those where the

inmost radius and tube thickness take the values R1 = T = k−1
P /4,

R1 = T = k−1
P /2 and R1 = T = k−1

P . All curves show essentially

the same behavior regarding the spectral position of the fundamental
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Figure 4.3: Scattering efficiency for nanocavities with different tube thicknesses T
(expressed in units of k−1

P ) provided T/R = 0.5 is conserved. Again, the considered
filling factor is f = 0.5 and the damping factor is γ = ωP /100.

resonance and the scattering cancellation at the lowest energy. For

instance, the invisibility is found for ω = 0.3ωP in all cases with scat-

tering efficiencies of Qsca = 3.7 · 10−5, 2.7 · 10−4 and 2.3 · 10−3. We

realize that the invisibility window is invariant upon the cavity diam-

eter, provided that the modulation is performed in the subwavelength

scale. As expected, the scattering efficiency increases in approximately

one order of magnitude when the nanotube doubles its size, although

it reaches a minimum at the mentioned frequency.

When we focus on the secondary minimum the situation changes

abruptly. For the smallest cavities the scattering pattern remains un-

altered except for a scaling factor. However, the rise of additional
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resonances at increasing sizes manages the contour of the spectrum in

the vicinity of the plasma frequency.
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Figure 4.4: Normalized scattering magnetic field |B|/B0 for anisotropic cavities
characterized by R1 = T = k−1

P /20 and R1 = T = k−1
P , both with f = 0.5, and

for frequencies ω = 0.3ωP and ω = 0.945ωP .

In fig. 4.4 we represent the magnetic field near the cylindrical cav-

ities for the frequencies of interest in order to infer further insights.

We show |B|/B0 for two anisotropic scatterers with R1 = T = k−1
P /20
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and R1 = T = k−1
P , with a filling factor f = 0.5 for both of them and

at frequencies of minimum scattering ω = 0.3ωP and ω = 0.945ωP .

For the smallest cavity we find a dominant dipole contribution at

both frequencies. Despite the extreme birefringence revealed in the

nanocavity, the magnetic fields present a remarkably low contrast in-

side the nanostructure and nearby. The field distribution along the

radial direction at the lowest frequency is antisymmetric inside the

anisotropic shell, whereas it becomes symmetric for the highest res-

onant frequency. This confirms the existence of a symmetric and

antisymmetric coupling between the surface charges associated with

the cavity and surface polaritons. We find a similar behavior for the

biggest nanostructure, but for the first resonant frequency ω = 0.3ωP

only. Because of the non-negligible contribution of high order scatter-

ing coefficients the magnetic field distribution for the highest frequency

becomes much more intricate. The existence of an invisibility window

near ωP is not possible due to this fact.

The spectrum of Qsca for cylinders of utmost radius R = k−1
P /2

and various values of the aspect ratio T/R, with a filling factor rang-

ing from 0 to 1, was also analyzed in ref. [115]. For an anisotropic

nanocavity with a tiny concentric hole (T = 0.9R), we highlight the

occurrence of multiple peaks and their associated minima scattering
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efficiency. Notably, the fundamental frequency of scattering cancella-

tion continues attached to the condition of ε⊥ near zero.
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Figure 4.5: Scattering efficiency of a tubular anisotropic metamaterial of equal
outermost radius and shell thickness R = T = k−1

P /4 immersed in air and with
a filling factor f = 0.5. The damping rate of the Drude medium varies from
γ = ωP /10 to γ = ωP /1000.

We analyze now the influence of losses of the Drude medium.

We plot in fig. 4.5 the scattering efficiency of a hollow metamaterial

nanocylinder immersed in air, with a filling factor f = 0.5, outer-

most radius R = k−1
P /2 and shell thickness T = R/2. Metamaterials

with the lowest damping rate for the Drude medium plotted in fig. 4.5

achieve a minimum of scattering of around one order of magnitude

lower than the scattering efficiency obtained for γ = ωP/100. If we

examine the peaks associated to the fundamental resonance we find
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the opposite. Thus, the peak-to-valley contrast increases two orders

of magnitude when the damping rate of the Drude medium is reduced

in only one order of magnitude. The additional ultra-narrow peaks

emerging may be attributed to multipole Mie resonances occurring for

higher orders. Nevertheless, this cannot be applied to achieve invisi-

bility in a practical case. On the other hand, when we consider higher

losses for the Drude medium we obtain a reduction of several orders

of magnitude of the peak-to-valley contrast.
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Figure 4.6: Scattering efficiency, expressed in dB, of a cylindrical cavity of utmost
radius R = k−1

P /2 and shell thickness T = R/2. The dielectric constant of the core
and environment medium are (a) εC = 10 and ε = 1, (b) εC = 1 and ε = 10, and
(c) εC = ε = 10. The red line corresponds to the frequencies ωzero.

Until this moment the only discrepancy of scattering cancellation

to the rule of ε⊥ near zero was found for cavities with high filling

factor f of the Drude medium. But this is not the unique exception.

We study the influence of both the core and environment medium

permittivities on invisibility for a cylindrical cavity of outermost radius
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R = k−1
P /2, shell thickness T = k−1

P /4 and a damping factor of γ =

ωP/100 for the Drude material. The filling factor f will range from 0

to 1. In fig. 4.6(a) we analyze the Qsca of the tubular cavity immersed

in air (ε = 1) and a core permittivity of εC = 10. It is evident

the presence of two resonances associated with the symmetric and

antisymmetric excitation of surface polaritons. The loci of the Qsca

minima are shifted with respect to the case in which ε = εC = 1.

Note that the fundamental frequency of invisibility is substantially

displaced from ωzero even at low and moderate filling factors.

In fig. 4.6(b) we have the situation in which we exchange dielectric

constants, being ε = 10 and εC = 1. First of all we identify the fun-

damental Fano resonance with an enormous spectral gap between its

peak and valley frequencies. In addition, the peak-to-valley efficiency

contrast is moderate. For a filling factor f = 0.5 the peak is located at

ω = 0.153ωP , whereas the valley frequency is ω = 0.707ωP . This sug-

gests that the reduction of scattering efficiency associated with Fano

resonances is practically vanished.

Finally, in fig. 4.6(c) we examine the scattering efficiency when the

anisotropic cavity is immersed in a high permittivity medium and has

a core with high dielectric constant simultaneously (ε = εC = 10). We

find that the fundamental frequency of invisibility remains practically
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in the same value for all filling factors. For instance, taking a filling

factor of f = 0.2 the invisibility frequency is found at ω = 0.292ωP ;

if we increase f to 0.8 the frequency of the best scattering reduction

is now ω = 0.294ωP . These results demonstrate an important depen-

dence of the invisibility effect with the permittivities of the core and

the environment medium. This conclusion is in disagreement with pre-

vious studies in which the condition given by ωzero was remarked [82].

4.1.2 Non-homogenized cylindrical nanoparticles
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Figure 4.7: Illustration of the nanotube employed in the analysis of invisibility
conditions.

Realistic conditions for a cylindrical nanostructure to become in-

visible can be treated by means of the Lorenz-Mie scattering theory,

which is briefly resumed in section 3.1. This is the motivation of our

recently published manuscript given in ref. [116]. The structure used

here is an infinitely long Ag-TiO2 multilayered nanotube, presented

in fig. 4.7. First it is set with a metal filling factor f = 0.5, metal
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and dielectric widths of wAg = 10 nm and wT iO2 = 10 nm respectively,

and a cylinder diameter of D = 220 nm. As it is shown in this figure,

we first assumed TEz polarization for the incident light. By using the

Lorenz-Mie theory we can estimate the scattering efficiency by means

of eq. (3.12). The invisibility conditions are established provided that

the scattering coefficients an given in eq. (3.11) approach simultane-

ously to a near-zero value. In our specific case, we found that eq. (3.12)

is accurately estimated with |n| < 5, which may save computational

time.
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Figure 4.8: Scattering efficiency of a Ag-TiO2 multilayered nanocylinder composed
of 6 layers. The nanotube shell is T = 60 nm, the nanocavity diameter is D =
220 nm and the metal filling factor is f = 0.5. Blue curve stands for the inmost
layer made of Ag and red curve is for a TiO2 inner layer. Calculations were
performed for TEz-polarized incident light.
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Although the effective medium approach, as described in section 3.2,

sets that the cylinder would behave in the same manner if we exchange

the order of the materials for the layers in our nanocylinder, it is clear

from our results (fig. 4.8) that the calculated scattering efficiency Qsca

exhibits significant discrepancies when the inmost layer is metallic or

dielectric. The minimum for the scatering efficiency when the inte-

rior layer of the nanocavity is made of silver results Qsca = 0.053 at

λ = 437 nm, as reported in [82]. However, if the inner layer is made

of TiO2 the minimum of scattering efficiency is shifted to λ = 491 nm

and it reaches a value of 0.53, which is an order of magnitude higher

than with the former sequence of layers.

The fact that the minimum value of Qsca varies when exchanging

the materials of the layers evidences that the EMA might not be cor-

rectly applied in some cases. The deviations of the actual structure as

compared with respect to the homogenized nanoparticle based on the

effective medium approach are specially notable in the case of setting

a metallic outer layer (see fig. 4.11 and discussion below). We analyze

the fields in the structure for a wavelength of λ = 437 nm, for which

the EMA expects invisibility [82]. In fig. 4.9 we show the modulus

of the magnetic field |H| for the mentioned wavelength provided the

incident wave is TEz-polarized. For the case in which titanium dioxide
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is the material of the inner layer we find strong variations of the field

especially at the rear part of the nanotube. In one hand, this fact

reveals a strong deviation from homogenization approaches, and on

the other hand, this is critical for making it not useful for invisibility.

Finally, when the utmost covering layer is TiO2, one can observe in

fig. 4.9(a) that the field amplitude at the center of the nanotube and

its neighborhood is, in average, near the amplitude of the remaining

field in the environment.

When the number of layers in our nanotube is increased while its

thickness (T = 60 nm) and metal filling factor (f = 0.5) remain con-

stant, thus reducing metal and dielectric layer widths, the shape of the

scattering efficiency curves become more similar, in agreement with

the postulates of homogenization, though notable differences still are

evident. For the sake of illustration, we calculate Qsca for a nanocylin-

der made of 12 metal-dielectric alternating layers. We kept the shell

thickness T and the metal filling factor f at the same value as for the

6-layers structure and we reduced to one half both the period of the

multilayered structure and the layer width. The scattering efficiency

of this new nanotube is shown in fig. 4.10.

For this configuration we evaluated again the scattering efficiency

by means of the Lorenz-Mie method. When the layer in contact with
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Figure 4.9: Amplitude distribution of normalized magnetic field |H|/|H0| at λ =
437 nm for a 6 layer nanocylinder with (a) inner layer made of Ag and (b) TiO2

inmost layer.

the core is silver, the minimum value of Qsca is 0.026 at λ = 444 nm.

Compared with the one estimated for a 6 layer nanocylinder, the dif-

ference is slightly. On the other hand, when the inmost layer is made

of titanium dioxide we find a minimum of scattering efficiency of 0.345

at λ = 477 nm.

The amplitude of the magnetic field is represented in fig. 4.11,

where one can realize of the abrupt changes in the metal-dielectric in-
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Figure 4.10: Scattering efficiency of a Ag-TiO2 multilayered nanocylinder com-
posed of 12 layers where shell thickness is T = 60 nm, the nanocavity diameter
is D = 220 nm and the metal filling factor is f = 0.5. Blue curve stands for the
inmost layer made of silver and red curve is for a titanium dioxide inner layer.

terfaces, as occurred also for the nanotube with 6 layers. In fig. 4.11(a)

we represent the amplitude distribution of the magnetic field for λ =

444 nm assuming the material of the inmost layer is Ag. If we calcu-

late the average value it would present a slow variation with reduced

dispersion inside the metamaterial. In addition, we find a non-zero

minimum of intensity near the origin of coordinates disabling the gain

of a shielding effect in the cloaked region. In fig. 4.11(b) it is shown

the magnetic field distribution when we consider the interior layer as

made of TiO2. The mechanism responsible for the increase of scatter-

ing efficiency in this configuration seems to be the resonant excitation
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Figure 4.11: Amplitude distribution of normalized magnetic field |H|/|H0| at λ =
444 nm for a nanocylinder made of 12 layers where T = 60 nm, D = 220 nm and
f = 0.5. The inmost layer is made of (a) silver and (b) titanium dioxide.

of collective SPPs at the rear part of the structure, which develop an

inhomogeneous Bloch wave in the multilayered metamaterial.

After analyzing these two structures, one can conclude that in-

troducing a higher number of layers while maintaining the same shell

thickness as well as the same structure diameter and filling factor both

the scattering efficiency spectrum and magnetic field pattern, for the

Ag and TiO2 ending layers, will approach themselves towards the re-
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Figure 4.12: (a) Scattering efficiency for a nanocylinder of thickness T = 60 nm and
total diameter D = 220 nm, made of a hyperbolic metamaterial. The components
of the permittivity tensor for the metamaterial are given by eq. (3.14) and eq. (3.15)
where a filling factor f = 0.5 is considered. (b) Normalized magnetic field |H|/H0

along the x-axis at the invisibility wavelength λ = 459 nm.

sponse of a purely hyperbolic nanocylinder. Fig. 4.12(a) represents

the scattering efficiency Qsca of a hollow nanocylinder of thickness

T = 60 nm and total diameter D = 220 nm composed of a hyper-

bolic metamaterial with components of permittivity tensor given by

eqs. (3.14) and (3.15), considering a filling factor f = 0.5. The min-

imum for the scattering efficiency is Qsca = 0.172 found at an invisi-

bility wavelength of λ = 459 nm. It is also plotted in fig. 4.12(b) the

magnetic field amplitude distribution at the invisibility wavelength

(λ = 459 nm). There exists a formation of localized surface waves in

the two air-hyperbolic metamaterial interfaces whose pattern is closer

to the field distribution pictured in fig. 4.11(a), where the material of

the inmost layer is silver, than the one exhibited in fig. 4.11(b), where
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the inmost layer is made of titanium dioxide.

4.1.3 Optimized nanostructure

As we already demonstrated, the number of layers is critical to

make the effective medium approach accurate enough to be employed

in simplified calculations. However, a high number of layers with such

low thickness presents an important technological challenge so it might

be a great idea to improve the metamaterial nanocylinder structure

instead of introducing more and thinner layers. In this case the EMA

should not be employed, characterized by its lack of precision, to a

larger extent due to edge effects as discussed in section 4.1.2.

We introduce a new degree of freedom to our analysis of the struc-

ture to take advantage of these edge effects which consists on building

the unit cell as a layer of one material surrounded by the other one.

More details are given in one of our recently published manuscripts

[117]. With this arrangement we will have the central metal layer

of the unit cell of width wm for instance, surrounded by two slices of

widthsmwd and (1−m)wd of insulator, wherem is the marginal factor

currently introduced which can take values from -1 to +1. A negative

value means that the central layer of the unit cell is an insulator in-

stead. Due to the periodicity of the nanostructure, the internal radial
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distribution is kept unaltered with a periodicity given by Λ = wd+wd

and only the marginal layers may change. The width of the inmost

marginal layer is given by win = R2 − R1 and the outermost width is

wout = RN+1 − RN . Positive values of m denote dielectric marginal

layers. In this case we define win = (1 −m)wd and wout = mwd, pro-

viding wd = win +wout, so the extreme value m = +1 stands for a full

dielectric outermost layer (full metallic inmost layer) and in m = 0 we

consider a full dielectric inmost layer (full metallic outermost layer).

For negative values of m we consider metallic marginal layers. The

limit m = −1 would be formally the same situation as for m = +1,

where the outermost layer is metallic and the inmost one is dielectric.

To show the relevance of the introduced new degree of freedom we

developed numerical simulations for the multilayered nanotube made

of silver and titanium dioxide and composed of T/Λ = 3 periods, that

is N = 7 layers taking into account the new unit cell composition.

The inner radius is R1 = 50 nm and the shell thickness is T = 60 nm.

Metal width and dielectric width are wm = 10 nm and wd = 10 nm

respectively, so the metal filling factor results f = 0.5. In fig. 4.13

we plot the scattering efficiency in the visible wavelength range of the

previously described nanotube immersed in air (ε = 1 and εC = 1).

For a TMz-polarized field we found two local minima in Qsca, as shown
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Figure 4.13: Scattering efficiency of a MD multilayered nanotube inmersed in air
with T = 60 nm, R1 = 50 nm, Λ = 20 nm and f = 0.5 for different values of
marginal factor m. (a)-(b) Incident TMz-polarized plane wave. (c)-(d) Incident
TEz-polarized plane wave. In (b) and (d) we compare the scattered fields of the
nanotubes for the optimal marginal configurations here studied (top scatterer)
with the nanotubes proposed in [82] (bottom scatterer) for different wavelengths.
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in fig. 4.13(a): a first minimum for Qsca = 1.40 · 10−3 at λ = 421 nm

with m = −0.53, and a second minimum where Qsca = 1.20 · 10−3

at λ = 419 nm for m = 0.48. In both cases, the marginal factor

is close to |m| = 0.5, which means that marginal layers are about

5 nm thick each. This represents a notorious improvement of two

orders of magnitude compared with the case analyzed in [82], which

corresponds to the case where m = −1. We represent in fig. 4.13(b)

the comparison of the scattered electric field for the structure with

the configuration of m = −0.5 and the one with m = −1 at the

invisibility wavelength calculated for our nanocavity (λ = 420 nm,

where Qsca = 2.15 · 10−3) and the one obtained in [82] (λ = 436 nm,

where Qsca = 0.21). In addition, our structure with m = −0.5 has a

similar behavior (Qsca = 0.27) as the previously proposed nanocavity

at its best performance wavelength.

For a TEz-polarized incident wave the scattering efficiency varies

considerably. In fig. 4.13(c) we show the results of Qsca for this po-

larization. We find one minimum for a marginal factor m = −0.85

at λ = 440 nm for which Qsca = 3.02 · 10−3 and a second minimum

for m = 0.86 at λ = 442 nm for which Qsca = 5.47 · 10−3. Our

approach provides a reduction of one order of magnitude for the scat-

tering efficiency compared to the nanocavity reported by Kim et al
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(Qsca = 5.30 · 10−2 at λ = 437 nm), as we illustrate in fig. 4.13(d)

where we compare the wave fields scattered by those two nanocylin-

ders (m = −0.85 on the top and m = −1 on the bottom).

To understand this significant drop of the scattered signal, we will

consider sufficiently narrow slabs (Λ ≪ λ) where a radially form bire-

fringence may be established for the metamaterial composed of concen-

tric multilayers. Under this consideration the TMz fields behave like

ordinary waves that propagate in a uniaxial crystal with optic axis set

along the radial coordinate [129]. The variation of the electric field Ez

is negligible for the waves that propagate through the metallodielec-

tric metamaterial. However, the electric displacement field D = Dz ẑ

experiments critical discontinuities at the metal-dielectric interfaces.

Due to the negative value of the real part of εm the electric displace-

ment field decreases when the metal filling factor grows, even vanishing

at the epsilon-near-zero regime. To estimate the z-component of the

effective permittivity of the multilayered metamaterial we may employ

〈εz〉 =
∫
ε(r)Ez(r, φ) r dr dφ∫
Ez(r, φ) r dr dφ

≈ 2

(R2 − R2
1)

∫ R

R1

ε(r) r dr. (4.2)

On the other hand, TEz-polarized wave fields propagate like ex-

traordinary waves in the multilayered metamaterial where the aver-

age permittivity components 〈εφ〉 (which coincides with 〈εz〉) and 〈εr〉
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characterize the radial anisotropy, and the latter takes much higher

values than the former. Analyzing eq. (4.2) we find that the average

permittivity 〈εz〉 depends on the absolute value of the marginal pa-

rameter m. As we see in fig. 4.13(a) and (c) there exists a symmetry

for the valleys and peaks with |m|, so we potentially may establish a

correlation of the locations of these peaks and valleys in terms of 〈εz〉.
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Figure 4.14: (a) Real part of 〈εz〉 calculated for an Ag-TiO2 multilayered
nanocylinder with R1 = 50 nm, T = 60 nm, Λ = 20 nm and f = 0.5. (b) Val-
ues of iso-permittivity curves for 〈εz〉 = 0 and 〈εz〉 = 1. Also plotted the Qsca

minima shown in fig. 4.13(a) for TMz (blue line) and fig. 4.13(c) for TEz (red line).

In fig. 4.14(a) we show the real part of 〈εz〉 calculated with eq. (4.2)

for an Ag-TiO2 nanocavity with inmost radius R1 = 50 nm, shell thick-

ness T = 60 nm, period Λ = 20 nm and filling factor f = 0.5 for differ-

ent marginal factors. We found that 〈εz〉 increases with |m| reaching
the highest value for |m| = 1. The permittivity matching of the core

and environment medium with the multilayered structure, given by
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the condition Re(〈εz〉) = 1, is accomplished at λ = 405 nm for m = 0

and shifts to longer wavelengths for higher |m|, up to λ = 430 nm for

|m| = 1. Such permittivity matching is behind the invisibility effect

that occurs when we illuminate the structure with a TMz-polarized

plane wave, for moderate and high |m| values, as we see in fig. 4.14(b).

For the optimal case in which m = 0.5, Re(〈εz〉) = 1 is achieved for

λ = 417 nm, quite close to the minimum shown in fig. 4.13(a) at

λ = 419 nm. Nevertheless, the EMA presents some remarkable lim-

itations. For low |m| we find notorious deviations of the condition

Re(〈εz〉) = 1 and the loci of minima of scattering efficiency. More-

over, the extraordinary reduction of Qsca for marginal factors around

|m| = 0.5 cannot be predicted by the EMA.

For TEz-polarized fields the differences are even more abrupted.

The minima given in fig. 4.13(c) for the scattering efficiency are blue-

shifted along with higher values of |m|, advancing to the opposite

direction to the one predicted by any iso-permittivity curve with in-

variant 〈εφ〉 (=〈εz〉). The validity of the effective medium approach is

then questionable to describe the invisibility effect treated here. Par-

ticularly, for the minimum found at λ = 440 nm for m = −0.85 the

effective permittivity is Re(〈εφ〉) = 0.437, far from unity. Especially

under TEz polarization the nonlocalities inherent in MD nanostruc-
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tures lead to edge effects that seem to be the causal agent of the

anomalous behavior of the long-wavelength approximation, as we pre-

viously pointed out in section 4.1.2.
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Figure 4.15: Scattering efficiency of an Ag-TiO2 multilayered nanocavity with
R1 = 50 nm, T = 60 nm and f = 0.5. Marginal factor m and period length Λ
parameters are varied. (a) Λ = 5 nm (N = 25 layers), and (b) Λ = 30 nm (N = 5).

To obtain further and revelatory conclusions we evaluated the scat-

tering efficiency of our designed nanotube of T = 60 nm, R1 = 50 nm

and f = 0.5 for different number of periods. The results of this analysis

are pictured in fig. 4.15 where we can appreciate the greater impor-

tance of the marginal factorm for larger periods, making inappropriate

the use of EMA in these situations. For the smallest period (Λ = 5 nm)

the marginal factor has a limited influence on the scattering spectrum.

In this case we find for TMz polarization a minimum of scattering effi-
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ciency of Qsca = 1.17 ·10−3 at λ = 417 nm. For TEz-polarized incident

light the minimum value increases in nearly two orders of magnitude

reaching Qsca = 8.99 · 10−2 at λ = 451 nm. Note that this configura-

tion presents a technological challenge due to the high number of layers

and their thin width (2.5 nm each layer). Also, the long-wavelength

approximation is valid in this case as it might be expected, and the

nanocylinder might be considered as a radially-anisotropic medium.

Now if we take a look at the other extreme for which Λ = 30 nm

the minima for the scattering efficiency are of the same order for both

polarizations. In the case of TMz-polarized fields the minimum of

Qsca = 1.43 · 10−3 is found at λ = 422 nm and for m = 0.48, whereas

for TEz-polarized wave fields the minimum of scattering efficiency is

Qsca = 1.28 · 10−3 at λ = 441 nm for m = −0.72. In addition, this

latter configuration presents certain practical advantages such as the

reduced number of layers and the thickness of them (5 layers of 15 nm

thick each, except for the margin layers). We will consider from now

on a multilayered nanocylinder with a period of Λ = 30 nm due to its

genuine invisibility performance and its convenience for a fabrication

process.

Using the new arrangement for the nanocavity we now study the

behavior of our structure under variation of both core and environment
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Figure 4.16: Scattering efficiency of an Ag-TiO2 multilayered nanotube with R1 =
50 nm, T = 60 nm, Λ = 30 nm and f = 0.5 for different marginal factors m.
The core and environment medium permittivities are set as (a) ε = εC = 1, (b)
ε = εC = 2 and (c) ε = εC = 3. The solid lines indicate the minimum of Qsca for
each value of m for TMz polarization (red line) and TEz polarization (blue line).

permittivities. For simplicity we will assume ε and εC to be the same.

Fig. 4.16 illustrates the minimum of scattering efficiency for differ-

ent marginal factors and with various core and environment medium

permittivities. For TMz incident light polarization the scattering ef-

ficiency experiments again a dramatic drop but at lower wavelengths

when both permittivities increase. The index matching condition to

find now the minimum of Qsca should be reestablished as Re(〈εz〉) = ε

which is in agreement with the shift undergone by the invisibility wave-

length. We point out that the optimal geometrical configuration in

found for a value of marginal factor |m| near 0.5 in all cases.

Considering TEz-polarized wave fields a dramatical increase of

scattering efficiency is observed. The minimum of Qsca remains ap-

proximately in the same spectral band, slightly shifting to longer
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wavelengths for higher-index media. However, scattering efficiency

increases several orders of magnitude with permittivity. The mini-

mum scattering efficiency for the higher permittivity considered in this

analysis ε = 3 is Qsca = 0.435, found at λ = 449 nm for a marginal

factor of m = −0.935. The wavelengths at which the minima of Qsca

are located for this polarization seem to be essentially determined by

the optogeometrical characteristics of the nanocylinder, so the core

and environment medium permittivity changes do not affect its loca-

tion significantly. Nevertheless, for extremely high values of permit-

tivities this may not remain valid and significant variations may be

found [115], as seen in section 4.1. This confirms the resonant behav-

ior of the invisibility effect for the structure found for TEz-polarized

incident fields, differently from what is observed for TMz-polarized

wave fields.

In fig. 4.17 we study the scattering efficiency of nanocylinders with

inmost radius R1 = 50 nm, shell thickness T = 60 nm and multilayer

period Λ = 30 nm for different metal filling factors f = wm/Λ. We

show the minimum of Qsca for the best marginal factor configuration

at each metal filling factor analyzed. We set a permittivity of unity for

both core and environment medium in this study. The wavelength for

which the best invisibility performance occurs decreases around 200
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Figure 4.17: Optimal marginal factor m for invisible nanotubes with R1 = 50 nm,
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TMz-polarized incident light and red line refers to TEz polarization. The minimum
of scattering efficiency Qsca at such optimal configuration is also shown and the
wavelength λ for which it is achieved.

nm, for both polarizations concurrently, when the metal filling factor

f varies from 0.3 to 0.7. This suggests a way of tunning the invisibility

spectral band of the multilayered nanotube [82]. For TMz scattered

wave fields this optimization leads to nanocylinders with marginal

factors of modulus close to 0.5, which provide scattering efficiencies

below -25 dB for a filling factor range between 0.3 and 0.7. In the case
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of TEz-polarized fields the scattering efficiency is partially reduced, at

least for lower values of f . This happens for nanocavities where the

inmost silver layer is considerably wider than the outermost one, that

is for marginal factors m near -0.8. However, for high filling factors we

appreciate that Qsca cannot decrease the limit of -20 dB. This should

not have a critical impact in the tunability of the invisible spectral

band unless we need it for ultrasensitive applications.

To conclude, as the size of the nanocavity might be essential con-

cerning the applicability of the EMA in TMz-polarized fields, and more

critically the resonant behavior of the nanotube for TEz-polarized

wave fields, we studied the scattering efficiency of Ag-TiO2 multilay-

ered nanocylinders of shell thickness T = 60 nm, with different inner

radii and immersed in air. In the case of incident TMz-polarized waves

it can be shown a minimal alteration for a range of inmost radius from

R1 = 50 nm to R1 = 200 nm. These limited deviations are attributed

to the reduced dependence of εz with the inmost radius R1. On the

other hand, for TEz-polarized scattered fields, Qsca pattern is signifi-

cantly modified. The minimum in scattering efficiency increases two

orders from Qsca = 1.41 · 10−3 for R1 = 50 nm to Qsca = 0.135 for

R1 = 100 nm. For this polarization, the ability of our structures for

canceling the scattering wave field in the optical wavelength range de-
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cays progressively when inmost radius R1 grows. This is certainly due

to the existence of multiple localized resonances.

4.2 Anisotropic metasurfaces

In this section we focus on the second block of the present The-

sis. We analyze the results obtained from the simulations of metal-

dielectric metasurfaces to perform beamshaping and summarize the

design conditions to achieve the desired behavior. We first study the

shaping of focused beams to improve their numerical aperture and

their spot width. Secondly, we examine the possibility of improving

the previous behavior by introducing a second MD metasurface. Then

we explain the modifications of the MD structure to accelerate con-

verging waves in the near field.

4.2.1 Ultrathin high-index metasurfaces for shap-

ing focused beams

The structure used in the simulations was a cylindrical MD multi-

layered metasurface. It consists on alternating gold and silicon layers

of different filling factors and unit cell periods to introduce a dephase

that permits to control light and increase the NA of the incident con-
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verging beam. It is characterized by a thickness much lower than the

wavelength and the multilayer arrangement is radially distributed.

Also, the distribution has to compensate the optical path in excess

L(θ), so we use different periods of the multilayer to adjust it. For

an ideal case in which the path in excess is corrected in a continuous

way we should use N → ∞ steps of the refractive index. In practical

terms this is not possible and we must use a finite number of steps.

When one simulates the performance of the arrangement with differ-

ent number of steps it can be found that N = 4 steps are enough to

provide a decent field distribution at the exit of the metasurface, as it

is shown in fig. 4.18.

In the case of using N = 2 steps of π radians each we obtain

sidelobes that affect the resulted field distribution, but for N = 4

the field pattern is much more similar to the one simulated assuming

a continuous variation of the refraction index n(θ) = n(0) − L(θ)d,

where d is the thickness of the metasurface (d ≪ λ). For dephases

of π/2 radians (N = 4 steps) the multilayer is divided in periods Λi

which, together with the metal width wi, define the metal filling factor

fi = wi/Λi. In fig. 4.19 it is illustrated a scheme of the arrangement of

the MD multilayer to produce a variation of two units (ni = ni−1 +2)

for the effective index of refraction (n0 = 3.69 for the bulk silicon layer)
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Figure 4.18: Intensity distribution |H(r)|2 of focal waves with its phase modulated
by N steps of N/2π radians.

by changing both the period and the metal filling factor to obtain the

desired sequence, which is characterized by f = 0, 0.37, 0.49, and 0.54.

In views of a practical case the geometrical parameters chosen for

the structure were (w1,Λ1) = (9, 24) nm, (w2,Λ2) = (15, 30) nm and

(w3,Λ3) = (20, 35) nm, that have filling factors of f = 0, 0.38 0.50

and 0.57 which are in good agreement with the previous estimation.
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e e

Figure 4.19: Illustration of the basic arrangement of a flat metasurface with a bulk
dielectric and N − 1 = 3 metallic gratings. By controlling the metal filling factor
fi it is possible to produce a phase shift of π/2 radians.

These metamaterials, together with silicon, were arranged to form an

ultrathin curved metasurface of 4µm inner radius and a thickness of

d = 100 nm. Apart from non-negligible sidelobes a super-resolved

focal spot with reduced full width at half maximum (FWHM) in both

directions is achieved. Concretely, the on-axis FWHM is reduced from

2.4 µm to 1.2 µm, as it is shown in fig. 4.20.

If the incident light is TEz-polarized the behavior differs notably,

presenting a strong blurring of the focal spot. This occurs because the

waves propagating in each metallic grating behave like ordinary waves

in an effective uniaxial crystal.
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Figure 4.20: Intensity |H(r)|2 in the focal region of the converging field shaped
by the Au-Si curved metasurface. A cylindrical surface current (SC) with super-
Gaussian apodization (Ω = 45o) is employed for excitation. The inset on the left
shows the composition of the layers in detail. In the inset on the right the intensity
in the focal region is depicted.

4.2.2 Beamshaping under high numerical aper-

ture

Continuing with the idea of focusing a wave field by means of

MD metasurfaces, we designed a solution for the case in which the

impinging light is a plane wave and it impinges to a plano-concave

pure dielectric lens immersed in air. For an index of the lens n > 1,

as occurs in natural dielectric materials, it will present a divergent

behavior. Therefore, to achieve focusing the effective index of the lens

must be lower than unity. This is possible by using metamaterials.
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In the special case in which n = 0 the focusing will be performed

at the center of the curvature of the concave surface of the lens, as

illustrated in fig. 4.21(b). To achieve an increased numerical aperture

a metamaterial with negative index must be used (fig. 4.21(c)). In

this case, Ohmic losses present an inconvenient at the infrared and

visible range. Our approach consists on a dielectric plano-concave

thick lens coated by graded-index ultrathin metasurfaces (fig. 4.21(d)).

The metacoatings are set to compensate the divergence of the dielectric

lens and transform the incident field into a cylindrical wave with center

at the focusing point F ′. The first metasurface converts the incident

plane wave into a cylindrical one centered at C, and the metacoating

set at the curved surface increases the focusing power as explained

in section 4.2.1. This configuration takes the advantage of a high

reduction of losses with respect to considering a metamaterial lens.

Both metacoatings used here are composed of four types of zones.

One of them is bulk silicon and the other three are constituted by

metal-dielectric subwavelength gratings, enabling the introduction of

controlled phase shifts of multiples of π/2 radians. The thickness of

the metasurfaces is considered as d = 100 nm with slits of dielectric

widths wd = 15 nm which are arranged in arrays of periods Λ1 =

24 nm, Λ2 = 30 nm and Λ3 = 38 nm. The phase shift introduced
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Figure 4.21: Scheme of the focusing action of a plano-concave lens (a) with an
index of refraction greater than unity (divergent), (b) made of an epsilon-near-
zero metamaterial (focusing at the center of curvature), (c) made of a metamaterial
with negative index (increased numerical aperture), and (d) made of a dielectric
(n > 1) with metacoatings set at the entrance and the exit surfaces of the lens.
For the latter the numerical aperture is again increased leading to a focus closer
to the curved surface.

by the metasurfaces is symmetric with respect to the center of each

metacoating, exhibiting a mirror symmetry with respect to y = 0.

In fig. 4.22 we compare the focusing effect for a TMz-polarized
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Figure 4.22: Intensity of the magnetic field for an impinging TMz-polarized plane
wave with λ = 800 nm over a silicon plano-concave lens of radius R = 3µm and
vertex distance of 200 nm. (a) Lens with no metacoatings. (b) One metacoating
is set at the flat surface of the lens. (c) Lens with coupled metacoatings on both
flat and curved surfaces. (d) Close-up view of the gold nanoslit arrays set on the
flat (top) and curved (bottom) surfaces of the lens.

plane wave impinging onto a silicon plano-concave lens coated with

the designed metasurfaces with the cases in which only the flat meta-

coating is set and the one considering the Si lens alone. The silicon

lens has a radius of R = 3µm and a vertex distance of 200 nm. The
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illuminating wavelength is λ = 800 nm. In fig. 4.22(a) we appreci-

ate the divergent behavior of the silicon lens when no metacoating is

set, in agreement with fig. 4.21(a). When the flat metacoating is set

at the flat surface of the lens we find a beam focusing on the center

of the curvature of the lens (fig. 4.22(b)), as previously described in

fig. 4.21(b). Finally, in fig. 4.22(c) it is shown that for the structure

engineered with both metacoatings set at the flat and curved meta-

surfaces of the silicon lens a focal shift of a = 1.5µm with respect

to the case of considering only the flat metacoating is obtained, thus

presenting a super-resolved focal spot. In particular, the FWHM of

the magnetic field intensity decreases from 1.12µm for the case pre-

sented in fig. 4.22(b) to 0.84µm for the designed structure analyzed

in fig. 4.22(c).

Figure 4.23: Field intensity of focal waves produced by incident tilted TMz-
polarized plane waves. Tilt angles are (a) θ = 5o, (b) θ = 10o and (c) θ = 15o

measured with respect to the optical axis y = 0.
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Under oblique incident TMz-polarized waves the engineered struc-

ture also presents a favorable performance. In fig. 4.23 it is shown

the behavior of the structure under three different tilted angles of the

incident illumination. In these cases the spot is not focused on F ′

but it is laterally displaced. Both the lateral and on-axis resolutions

are practically unaltered due to the essentially conserved beam shape

with respect to the previous studied case.

4.2.3 Accelerating converging waves in the near

field

The lateral deviations presented above can also be achieved ac-

celerating a focal incident wave. Lets assume a cylindrical metasur-

face impinged by a TMz-polarized focal wave. In agreement with the

diffraction theory of Debye the scattered field can be expressed in

terms of the apodization function A(θ) which takes into account the

truncation of the converging field passing the metasurface, and a phase

only term exp(iw(θ)) where w(θ) denotes deviations of the wavefront

of the converging field from the reference cylinder:

Hsca(θ) = A(θ) exp(iw(θ)). (4.3)
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The deviation w(θ) will be induced by the metasurface to shape an

aberration-free cylindrical wave. On the other hand, the apodization

function used will be a super-Gaussian function given by

A(θ) = A0 exp(−(θ/Ω)6), (4.4)

to reduce edge effects, where Ω is the semi-aperture angle. For w(θ) a

series expansion around θ = 0 is considered, thus setting w(θ) = mθ

provided we neglected defocusing and higher order terms of the expan-

sion and also a constant term which will not contribute significantly.

The parameter m will govern the curvilinear trajectory around the

focus of the original wave and the radius of the caustic curve will be

rm = |m|/k, being k = ω/c the wavenumber.

In fig. 4.24 it is shown the simulations of the magnetic field distri-

bution |H(r)|2 for different semi-apertures Ω and normalized radii m.

Illuminating wavelength is λ = 632.8 nm. As expected, the parame-

ter m determines the distance from the geometrical focus F and the

radius of curvature increases with it. On the other hand, we see that

the length of the accelerated beam trajectory is proportional to the

semi-aperture Ω.

The structure proposed by us for the molding of an incident con-

verging wave into an accelerating beam is based on metal-dielectric
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Figure 4.24: Magnetic field intensity |H(r)|2 simulated for different semi-apertures
Ω and normalized radiim. The white crosses indicate the focal point of the original
converging beam.

multilayer stacks with a circular pattern. This arrangement may be

considered as an inhomogeneous uniaxial metamaterial with permit-

tivities given by eqs. (3.14) and (3.15) as explained in section 3.2.

The permittivities of the metal and dielectric constituents are εm =

−10.77, which corresponds to the real part of the dielectric constant
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for the gold at λ = 632.8 nm, and εd = 1, respectively.

Figure 4.25: (a) Real part of the magnetic field distribution for a plane wave
scattered by the proposed inhomogeneous anisotropic metamaterial in a planar
configuration. (b) Energy density for the metamaterial in an annular configuration
with inner radius R = 2.4415µm.

In fig. 4.25(a) we show the behavior of the proposed MD metama-

terial with a planar configuration of thickness d = 660 nm under the

impinge of a collimated TMz-polarized beam. The normally incident

wave field experiments an angular deviation φ′ ≈ 19o. Fig. 4.25(b)

presents a circular arrangement which has more interest for us. We will

focus on this arrangement from now on. It is represented in fig. 4.25(b)

the time-averaged energy density of the accelerated wave field. The

incident wavelength is again λ = 632.8 nm. The arrangement of the

cylindrical metamaterial is designed to convert a cylindrical incident

wave into an accelerating beam of order m = 8. The radius at the
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exit surface is estimated as R = 2.4415µm provided the slab thick-

ness is d = 660 nm. The resultant beam is in good agreement with the

prediction of fig. 4.24.

Figure 4.26: Time-averaged energy density of accelerating beams at λ = 632.8 nm.
The focal waves are accelerated by a concentric graded grating made of gold which
width is wm = 25 nm at the exit surface. The dielectric widths range from 5 to 78
nm (a) continuously and (b) with steps higher than 1 nm.

To introduce the dephase needed to accelerate focal waves the

thickness of the films composing the circular metamaterial must be

subwavelength. In fact, for the metal it must be lower than its pen-

etration depth, which is typically a few tens of nanometers in the

optical range. Taking into account losses, the permittivity for gold

is εm = −10.77 − 0.79i at λ = 632.8 nm. We consider a converging

super-Gaussian beam with semi-aperture Ω = 2π/7 impinging on the
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outermost radius of the metamaterial and propagating inside the MD

metamaterial for a distance of d = 660 nm (fig. 4.26). The MD in-

terfaces of the metamaterial are concentric to the focal point of the

incident beam, which is represented by a white X mark in the figure.

In fig. 4.26(a) it is shown the time-averaged energy density of the

spatially-accelerated beam after being transformed by the subwave-

length engineered metamaterial. Comparing the results obtained with

fig. 4.25(b) one can verify that they are in good agreement. In practi-

cal terms we are constrained to design the metamaterial with integer

values in nanometers for the dielectric width wd (at the exit surface).

The result of this is presented in fig. 4.26(b), where artificial ripples

are evident close to the metamaterial. However, the main lobe of the

accelerated wave is kept almost unaltered.

As one may expect, the behavior of the metamaterial will change

when varying its thickness d. In fig. 4.27 we appreciate that for dif-

ferent values of d. It is important to note that the value of the radius

rm = |m|/k of the accelerating beam must be shorter than the radius

of the metamaterial at its exit surface. In the considered situations

this means that the thickness d must be shorter 2.95µm to avoid total

internal reflection at the exit surface of the metamaterial as occurs at

fig. 4.27(a).
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Figure 4.27: Accelerating beams resultant of engineered metamaterials with differ-
ent thickness: (a) d = 3.0µm, (b) d = 1.0µm, (c) d = 0.4µm and (d) d = 0.1µm.

4.3 Anisotropic waveguides

As mentioned above, the last part of this Thesis is devoted to the

experimental observation of surface waves propagating at the interface

of a uniaxial medium and an isotropic material. In this section we will

first briefly examine the experimental fabrication and characterization

of anisotropic waveguides which serve as support for the surface waves.

After that, we will describe the experimental measurements evidencing
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the existence of surface waves. Finally, numerical calculations are

performed to corroborate our assumptions.

4.3.1 Fabrication techniques

The experimental sample fabrication is inspired in a method pro-

posed by the Materials and Optoelectronic Devices Group also in the

University of Valencia. It consists in depositing a solution that con-

tains the active mineral, here we used hybrid halide perovskite, set over

an anisotropic glass substrate (we choose TeO2). After the solution

deposition, doctor blade can be used to spread the liquid uniformly all

along the substrate surface. Subsequently, the solvent is evaporated

by heating the sample. As a result, we have the mineral deposited over

the substrate. It is convenient to rapidly characterize the roughness

and thickness of the deposited mineral, and to cover the sample by

using poly(methyl methacrylate), in order to prevent the perovskite

being in contact with air and thus to degrade.

4.3.1.1 Deposition process

The process of fabrication begins when we receive the solution of

perovskite. The preparation of the solution was performed by some

members of our group, not detailed here since it is out of the scope
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of this Thesis. Once arrived to the solution concentration which is re-

quired, we prepare the substrate by removing any dust particles; after

that we deposit a drop of the solution on it. We found out that deposit-

ing a tiny drop of toluene over the perovskite-based drop improves the

surface roughness of the sample after the baking process. The concen-

tration of the perovskite solution is one of the factors involved in the

resultant thickness of the perovskite layer, observing thicker layers for

higher concentrations. In our particular case, for a deposition of 20 µl

of a 5% concentration of perovskite we obtain a thickness about 4 µm.

With a deposition of 20 µl of a 10% concentration the width changes

to 8 µm. Next we transfer the sample to the doctor blade setup to

spread the liquid over the whole substrate.

4.3.1.2 Doctor blade and baking process

Doctor blade is a technique which permits us spreading many sub-

stances over solid substrates [153–155]. The device we used is shown

in fig. 4.28. It consists of a blade mounted perpendicularly to the sur-

face where one leaves the substrate. We let the blade moving parallel

to the substrate at a certain height, which is fixed by the user. Occa-

sionally, it is employed to remove the excess of substance deposited on

the top of the substrate. Mainly, our purpose is simply to spread the
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perovskite solution over the whole substrate surface. As mentioned

above, the thickness of the perovskite layer will depend on the min-

eral concentration of the solution, but also the volume of it applied,

the blade gap above the substrate and the blading speed [154]. Some

advantages of this method are the possibility of a large area deposition

and the reduced fabrication time. We point out that an accurate con-

trol of the spreading is provided by adjusting the blade height which

offers a highly efficient utilization of the mineral solution.

Operative
controls

Speed
selector

Hot plate

Blade

Blade holder

Height
adjusters

Figure 4.28: Doctor blade device for film application. Next to the doctor blade a
hot plate is shown.
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The substrate surface on which we deposited the perovskite solu-

tion has a squared shape with 10 mm× 10 mm area. The thickness of

the TeO2 crystal was 1 mm. Once the substrate is set on the doctor

blade device, we adjust its height by using a couple of black screws

on the top of the blade holder (fig. 4.28). When we drop the solution

(concentration 10%) and the toluene over it, next we pass the blade

over the surface to spread the liquid mixture [154]. After that, we take

the sample carefully and put it on the hot plate, which is previously

preheated to 100 degrees Celsius. We leave the sample baking for an

hour to ensure all the solvent is evaporated. After this time, we have

the perovskite deposited over the TeO2 anisotropic substrate. Next

we proceed to characterize the fabricated structure.

4.3.1.3 Sample characterization

In this step we use the spectrometer shown in fig. 4.29 to measure

the transmissivity and reflectivity of the sample, and the profilometer

shown in fig. 4.30 to measure both the depth and the surface roughness

of the perovskite layer.

Our spectrometer is designed in a way allowing to measure both

transmissivity and reflectivity of thin films. The light source provides

a wide range of wavelengths, from UV to visible, and the optical signal
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for reflectivity fiber
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for transmissivity

Figure 4.29: Mikropack NanoCalc 2000 spectrometer for transmissivity and reflec-
tivity measurements.

is collected and analyzed by the Mikropack NanoCalc 2000 device. A

personalized program which is installed in a connected computer lets

choosing to collect light from the top or from the bottom of the sample,

depending on if we need to measure reflectivity or transmissivity of the

sample, respectively, assuming illumination is launched from the top of

the configuration, as shown in fig. 4.29. It is important to mention that

this is a non-invasive process, and the sample is maintained unaltered

during these measurements.
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Mechanism for holder

displacement

Needle Sample holder

Figure 4.30: Veeco Dektak 150 Surface Profilometer used for surface characteriza-
cion and width estimation of the deposited layer.

Note that we need to scratch the sample in order to characterize

the thickness of the deposited layer. To that end, we perform such tiny

scratch in a representative area, that is an area close to a border of

the substrate with enough mineral deposited on it but which will not

interfere with subsequent measurements. In other words, assuming

that the sample is uniformly covered with perovskite, we will scratch

it close to a corner of the sample in such a way that the rest of the

border remains wide enough to be used in following measurements.
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The scratch penetrates to the top of the substrate in a way to prevent

substrate damage. This allows a precise measurement of the thickness

of the perovskite layer.

The contact profilometer Dektak 150 Surface Profiler, from Veeco,

which we used is shown in fig. 4.30. It consists of a stylus with a well-

defined tip and a detector that acquires the deviation of the needle

from its original position. Based on the out-of-plane deviation of the

needle, the device registers the profile of the layer surface. Vertical

resolution is about 2nm. To shift horizontally the sample in order to

characterize its surface profile, a piezoelectric is used for each of the

two plane axes. To control the profilometer and collect the data, we

use the computer shown in fig. 4.30 and a commercial software also

given with Dektak.

Both the surface roughness and the thickness of the perovskite layer

deposited on the anisotropic substrate can be measured at the same

time. However, it is convenient to perform some other measurements

of the surface roughness on different areas to ensure the validity of

our results. We put the sample on the profilometer plate and activate

it to lower the needle. We must be sure that the needle falls on a

proper region of the surface, at least close to the one that we pretend

to characterize. After that, we proceed to the profile registration by
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means of the required software. Provided that we are by an area

where there is no scratch, we can only measure the roughness of the

film surface. On the other hand, setting the needle where our previous

mark is will allow us to estimate the thickness of the mineral layer.

After full characterization is completed, it is important to prevent

degrade the sample in contact with air and humidity, as we mentioned

before. Therefore, we will cover the sample with a very thin layer of

poly(methyl methacrylate) (PMMA).

4.3.1.4 Spin-coating

To cover the prepared sample with PMMA we use a common and

simple technique coined as spin-coating [155–158]. It consists basically

in depositing a drop of a material dispersed or diluted in a solution

(PMMA in our case) on the sample and spinning it to cover the whole

surface with a thin film of the desired material. In fig. 4.31 we show

our spin-coating device, together with a hot plate to bake the samples

after deposition and spinning.

To protect our sample, we put it on the spinning sample holder.

First of all, we have to make sure that the vacuum which holds the

sample on the device while it spins is well done. Otherwise, the sam-

ple might fly out probably breaking it up. After setting the sample
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Figure 4.31: Spinning mechanism on the left of the image, protected with alu-
minum foil to reduce dirt accumulation on the device when it spins. A hot plate
can also be seen on the right.

correctly with the vacuum we deposit 10 µl of a PMMA solution with

1% concentration on the center of the perovskite layer. Note that we

control the final thickness of the layer by modifying the rotation ve-

locity and the solvent concentration. Once the spinning velocity is set

at 2000 revolutions per second, we activate the device and wait for 30

seconds until the solution is spread on the entire surface. Immediately

after completing the spinning we bake the sample again at 80◦C and
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150◦C during two minutes at each temperature [156]. The first baking

will evaporate the PMMA solvent completely, and the second baking is

made under a higher temperature for glass transition (around 105◦C)

for its polymerization. The resultant thickness of the PMMA cover is

estimated as 50 nm. It is worth to mention that although the active

layer is protected, it is convenient to perform any remaining sample

processing, measurements and analysis as soon as possible to minimize

any residual degradation of the sample.

4.3.2 Experimental results

Once the multilayered sample is fabricated, it is still necessary to

prepare it conveniently for our specific experimental setup. First we

polish the output surface from which we will collect the scattered field

from bound waves propagating all along the sample. This process

is made by an initial smoothing with a set of three abrasive papers,

specifically with 600, 800 and 1200 grains per square centimeter. Next

we use several polishing pastes categorized by their grain size, starting

with a grain of 15µm and finishing with one of 1/4µm.

After polishing the output surface of the sample, we take it to the

experimental setup illustrated in fig. 4.32. The sample is illuminated

from above by using a fiber tip, impinging normally to the PMMA flat
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film. Finally, light interacts with the active medium, that is the hybrid

halide perovskite, activating a photoluminescence (PL) effect. The

photo-physical and semiconducting properties of hybrid halide per-

ovskites are based on recombination processes of photo-excited charge

carriers, which lead to a high efficient radiative recombination [159].

As a result, the PL signal exhibits a longer wavelength than the light

previously absorbed by the sample.

Perovskite

TeO
2

Laser source

Spectrometer

Fiber optics
Illuminating

fiber tip

Illuminating point

Microscope

objective

High pass

filter

Cylindrical lens

Sample

z

PMMA

Figure 4.32: Schematics of experimental setup used to detect guiding surface
modes in anisotropic waveguides.

The optical fiber is positioned perpendicularly and close to the

mineral in order to maximize light-matter interaction in the active
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layer. The light source is a Nd:Yag laser emitting at a wavelength

λ = 532 nm (second harmonic signal). Perovskite absorbs this ra-

diation efficiently, inducing a broadband PL emission centered at a

wavelength ∼ 780 nm. A key point is that the PL signal will gener-

ate bound modes in the anisotropic waveguide by near-field coupling,

including waves tightly confined in the perovskite layer and surface

waves localized on the perovskite-TeO2 interface. Guided waves then

travel along the multilayered photonic structure for a given distance,

so that we may collect them at the output edge, which is the one that

we polished in advance. Collection of light is performed with a 20x

microscope objective which focuses it into a second optical fiber to be

channeled and analyzed into a HR4000 Ocean Optics spectrograph.

To remove the component of scattered light produced on the PMMA

surface, which is directly given by the laser, we use a filter to be set

between our sample and the spectrometer input fiber, right behind

the microscope objective. Finally, with the appropriate software, we

are able to manage the input data, that is the light intensity emerging

from the anisotropic waveguide, within a wide range of wavelengths.

Our objective is to characterize the inherent losses of surface and

bound modes excited by the photoluminiscence of the perovskite.

They represent a modal signature in the detected signal. For that
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purpose, we proceed in the following way. First we displace the optical

fiber tip along the PMMA flat surface from the output edge towards

the center of the sample. The spatial coordinate z determines the dis-

tance from the tip position to the output edge, as shown in fig. 4.32.

For a given value of z, we measure the collected light intensity. We ex-

pect to determine the modal attenuation in the anisotropic waveguide

by monitoring the output intensity versus z, thus revealing the propa-

gation characteristic of the dominant bound mode propagating along

a specific direction. The existence of a few dominant bound modes

can also be treated appropriately. The set of points captured in the

spectrometer can be adjusted to a double exponential decay function

in the form

Ψ = A1 · exp(−α1 · z) + A2 · exp(−α2 · z), (4.5)

where A1 and A2 are constant amplitudes which depend on the max-

imum collected intensity, and α1 and α2 are the decay parameters.

Specifically, α1 provides the imaginary part of the effective refractive

index of the propagating mode as

n′′
eff =

α1 · λ
4π

. (4.6)
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Note that the captured data, for each position of the illumination

tip, can be analyzed with a specific software tool by representing both

the power spectrum and also the integrated intensity within a desired

wavelength range. When we represent the spectrum of the collected

intensity for a given displacement z, such set of points can be adjusted

to a Gaussian function (not shown here) with a given peak center and

standard deviation. Furthermore, we might appreciate any spectral

shift by analyzing the centroid of this Gaussian function.

To investigate the anisotropic response of the waveguide, we mea-

sure the output signal of bound waves propagating along the optic

axis of the TeO2, and also its perpendicular direction. Oblique prop-

agation is not determined due to evident experimental difficulties in

preparing the output edge. The integrated intensity measured in both

directions, as a function of the position z of the fiber tip, and the

central peak of the spectrum at each value of z, are shown in figs. 4.33

and 4.34.

From the results given in figs. 4.33 and 4.34 we can deduce that

losses are lower for the coupled light propagating along a perpendicular

direction of the optic axis. In particular, α1 = 0.1 (n′′
eff = 0.006) for

waves propagating along the optic axis (A1 = 1, A2 = 0.015 and

α2 = 0.001 for the fit as explained in eq. (4.5)), and α1 = 0.06 (n′′
eff =
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Figure 4.33: Output intensity (a) and spectral shift (b) of waves propagating in
the multilayered structure, in a direction parallel to the TeO2 optic axis. In (a) we
also include the intensity fitted to eq. (4.5). Inset in (b) shows the power spectra
of the detected signal when the fiber is located at z = 10µm (solid black line) and
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Figure 4.34: The same as in fig. 4.33 but waves propagate in a direction perpen-
dicular to the TeO2 optic axis.

0.004) for waves propagating perpendicularly (A1 = 0.65, A2 = 0.45

and α2 = 0.0015 for the fit as explained in eq. (4.5)). Regarding the
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spectral shift analyzed in the output signal, a red shift induced at

higher z is evident when guided light propagates along the optic axis,

as shown in fig. 4.33(b). For the measurements performed by collecting

the light that is guided in the structure, traveling perpendicularly

to the optic axis, shown in fig. 4.34(b), we find almost no spectral

displacement. The spectral shift found for light collection parallel to

the optic axis is related to a stronger absorption of the perovskite

at lower wavelengths [160], as shown in fig. 4.35, which causes an

increasing redshift at longer propagation distance z. On the other

hand, when we collect the guided light propagating perpendicular to

the optic axis the tail of the surface bound mode penetrates less into

the perovskite layer making the spectral shift negligible.

From the estimated imaginary part of the complex refractive in-

dex at both perpendicular directions of propagation, we infer that the

modal confinement in the lossy material (perovskite) differs substan-

tially for these directions. In fact, we will numerically demonstrate

that the governing wave mode propagating perpendicular to the op-

tic axis of the substrate is a surface wave, in opposition to the mode

guided in the perovskite when propagation is directed along the op-

tic axis. Specifically, this surface bound mode propagates along the

interface between the perovskite and the TeO2. The numerical sim-
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Figure 4.35: Absorbance, photoluminescence and amplified spontaneous emission
curves for perovskite [160], the latter not of interest here. Note a greater ab-
sorbance at lower wavelengths and the PL peak centered at 780 nm.

ulations are performed by using the FEM-based commercial software

which was previously described in section 3.4. We also used Wolfram

Mathematica to calculate the wave modes by means of the transfer

matrix theory (see section 3.3), corroborating our previous results.

4.3.3 Theoretical results

To confirm our experimental results we performed some numerical

simulations based on FEM, as we briefly explained in section 3.4. In

particular, we used the commercial available software COMSOL Mul-

tiphysics to model our multilayered waveguide and to obtain the effec-

tive refractive index and the fields in the structure. Also, we performed
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some simulations by using the transfer matrix theory, as described in

section 3.3. The latter problem can be numerically solved to obtain the

effective refractive index neff , which is a complex number. For these

calculations we employed the Wolfram Mathematica software. Note

that both numerical procedures will provide the decay in intensity

when bound and surface waves propagate along the optic axis of the

substrate and perpendicularly to it. In all cases, we use a wavelength

λ = 780 nm, a dielectric constant ε = 5.47− 0.23 i (n = 2.34− 0.05 i)

for the perovskite [160], and ε‖ = 5.692 and ε⊥ = 5.003 for TeO2 [161].

Note that ε⊥ < Re(ε) < ε‖, which is commonly required for the exis-

tence of DSWs [110].

First, we numerically determined a minimum width of perovskite

needed to sustain DSWs in its boundary with the substrate. With

less than 7 micrometers we found no propagating surface waves. As

a result, we considered a layer width of 8µm in our simulations. Our

samples were fabricated in agreement with this restriction, using a

perovskite layer of 8µm (approximately) and a PMMA layer of 50 nm,

the latter disregarded in our numerical simulations.

In fig. 4.36 and fig. 4.37 we show two different modal fields simu-

lated with FEM when the wave fields propagate perpendicular to the

optic axis. We specifically choose confined modes with decaying fields
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Figure 4.36: Fields for a propagating surface wave in the interface between the
perovskite layer and the TeO2 substrate. The components of the EM field not
shown are zero. Propagation perpendicular to the optic axis.

when moving far from the active layer, also exhibiting the lowest losses.

The latter condition implies that the selected field will dominate the

intensity distribution of the excited waves, by near-field coupling, after

propagating a certain distance. In fig. 4.36 we show all the components

of the chosen electromagnetic field, which clearly represent a surface

wave in the isotropic-anisotropic surface. Furthermore, this surface

mode has a propagation constant β = 1.6290−0.0143 i and it exhibits



154 CHAPTER 4. RESULTS AND ANALYSIS

TEy polarization (propagation is set along the z axis). It is important

to note that in a lossless multilayered structure, we cannot find DSWs

propagating neither perpendicular nor parallel to the optic axis of the

uniaxial medium. As a consequence, the existence of such confined

wave field is directly related to the presence of the lossy perovskite.
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Figure 4.37: Fields for the guided mode in the perovskite layer. The field compo-
nents not shown are zero. Propagation perpendicular to the optic axis.

In addition to this surface wave we find other types of modes. One

example is the fundamental mode of the perovskite waveguide under

TMy polarization, shown in fig. 4.37. The main difference that we
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take profit of to distinguish perovskite modes from the propagating

surface wave in which we are interested in is focused on the modal

losses. When we estimate the effective index we appreciate a larger

imaginary part for the mode in the perovskite. This means that the

mode in the mineral has greater losses. Specifically, the fundamental

guided mode traveling in the perovskite layer presents a propagation

constant β = 2.3395 − 0.0500 i. Note that this value is essentially

the same found for a plane wave propagation in bulk perovskite, and

its intensity decays notably stronger than that found for the surface

wave. We point out that complementary TEy-polarized guided modes

can be found, not shown in the figures, exhibiting practically the same

propagation constant.

When we calculate the modes propagating parallel to the optic

axis, we numerically find that there is no surface bound modes in this

direction. On the other hand, guided modes in the perovskite layer

still remain. For the fundamental mode, we observe practically the

same effective refractive index than that calculated for propagation

along the perpendicular orientation. Therefore, we conclude that the

waveguide presents a clear anisotropic response, where a surface mode

is found only in one principal direction. This is consistent with the

experimental results given in section 4.3.2.
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Chapter 5

Conclusions

In this Ph.D. Thesis we have proposed the use of anisotropic ma-

terials and metamaterials for various technological applications, from

invisibility and wave field bending to surface light guiding. In this

chapter we will sum up the main results and conclusions of the studies

performed along this work. We will differentiate the three blocks that

give form to this Thesis and we will focus on the results obtained in

each of them.

In the first block of this Thesis we first studied a cylindrical cav-

ity formed by a radially anisotropic medium established by the form

birefringence of a metamaterial composed of a periodic distribution of

subwavelength concentric multilayers. For this subwavelength struc-

157
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ture we analyzed the scattering efficiency and we observed two reso-

nances which correspond to the symmetric and antisymmetric modes

of surface polaritons. By the side of each resonant peak, at a slightly

higher frequency, we found a minimum in scattering efficiency that

can be attributed to Fano shapes. When the nanocavity is immersed

in air the fundamental frequency at which we find a minimum for

scattering is the one at which the metamaterial permittivity ε⊥ takes

values near zero. With this in mind, by balancing the composition of

the metamaterial shell, we might tune the invisibility frequency up to

the plasma frequency of the Drude medium. Unfortunately, for filling

factors close to unity this approach is not valid because the nanotube

behaves like a low-birefringent plasmonic cavity. For high filling fac-

tors we should use the secondary dip in the scattering spectrum to

obtain invisibility. When the cavity size increases, in the order of the

wavelength, additional resonances emerge governing the contour of the

scattering spectrum and vanishing the invisibility effect. For different

values of the shell thickness-utmost radius ratio T/R the main invisi-

bility frequencies remain practically unaltered. The case of a cylinder

with a very small concentric hole is of special relevance due to the

appearance of multiple peaks and their associated minima of scatter-

ing, which reveals an accumulation of excited Fano resonance. Also,
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when the permittivity constant of both the core and the environment

medium is modified, we found severe discrepancies to the rule of ε⊥

near zero. For instance, for a high dielectric constant in both media,

the fundamental invisibility frequency is practically fixed for the whole

range of filling factors. The results obtained demonstrate that the in-

visibility regime completely depends on the permittivities of the core

and environment medium.

Secondly, we analyzed the conditions to achieve invisibility with

the use of realistic metal-dielectric metamaterials. We investigated

numerically the scattering efficiency of a MD multilayered nanotube

composed of Ag and TiO2 with special emphasis in the invisibility re-

gion. We demonstrated that when the dielectric layer is set in contact

with the core of the nanocylinder the invisibility of the hyperbolic

nanotube is cleared away, even for layers of a few nanometers. In

this case plasmonic-Bloch resonances are found on the wave fields lo-

calized at the rear part of the structure. Furthermore, the effective

medium theory gives inaccurate estimations of the characterization of

the nanostructure, although such effect is weaker if the width of the

nanolayers is lower than 5 nanometers.

Finally, we proposed a new degree of freedom in the design of the

multilayered nanotube in which we include a marginal factor. This
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feature allows us to improve the invisibility achieved by such metama-

terials with the additional advantage of tunability in a broad spectral

band. The achieved reduction of the scattering efficiency of these

structures of nearly two orders of magnitude in comparison with pre-

vious studies also based on radially-periodic arrangements is conse-

quence of the inherent nonlocal effects of metallodielectric nanostruc-

tures. Invisibility of our Ag-TiO2 nanotube is mainly attributed to

scattering cancellation for TMz-polarized incident plane waves and to

a Fano-type isolated resonance in the case of TEz-polarized incident

fields. The resonant behavior of the nanotube under TEz polariza-

tion made it to reduce the maximal efficiency to changes in external

environment, diameter of the nanocylinder and the period of the mul-

tilayered shell. We can adjust the nanocavity response to present a

significant reduction of scattering efficiency for both polarizations al-

though the response of the cylindrical cavity is very selective under

polarization. Moreover, we set the Lorenz-Mie scattering coefficients

in terms of a transfer matrix formalism that enables a fast evaluation

of the scattering efficiency of the multilayered nanocylinder.

In the second block of this Thesis we continue describing the use

of MD metasurfaces for beamshaping and focusing applications. In

this case the structures are designed with the interfaces in a concen-
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tric way instead of the layers. As it is described in section 4.2.1 the

use of curved ultrahigh-refraction-index MD metasurfaces enables a

high-NA beam shaping. With these structures it is possible to control

the dephase of the transmitted TMz-polarized wave field, modifying

the curvature of the exit wavefront, to obtain an increased NA which

demonstrates an exceptional super-resolution effect on axis. Further-

more, assuming the impinging field is a plane wave we can achieve a

similar behavior by setting two MD metasurfaces on the faces of a di-

electric plano-concave lens (section 4.2.2). It is demonstrated that the

use of a planar MD metasurface on the plane face of the lens together

with the curved metacoating on the concave face allows tightly focus-

ing of light in the interior of the hollow opening and even its lateral shif

by controlling the tilt angle of the incident plane wave. The use of such

ultrathin metacoatings offers a considerable reduction of Ohmic losses

and efficient coupling to exterior radiation. Our design of a curved

MD multilayered metamaterial also enables the acceleration of focal

converging waves around their geometrical focus. With a controlled

variation of the metal width in the multilayer it is possible to induce

a selective dephase at different parts of the incident wave to obtain

such accelerating beams. In particular, the arrangement explained in

section 4.2.3 enables the introduction of a certain dephase on the con-
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verging incident beam to transform it into an accelerating Bessel beam

with order m = 8 at a wavelength λ = 632.8 nm. On the other hand,

a metamaterial thickness too high will enable total internal reflection

at the exit surface of the structure. From the technological point of

view, the fabrication of these MD metamaterials should not be a prob-

lem since the silver and silica deposition by e-beam evaporation is a

practicable procedure.

Finally, in the third and last part of this Thesis we performed

some experiments supported by numerical simulations. We were able

to fabricate an anisotropic surface waveguide made of an active min-

eral (perovskite) and an anisotropic substrate (TeO2). I was able to

employ different experimental devices and procedures to fabricate the

waveguiding structure, as doctor blade and spin coating, among other

interesting techniques for sample characterization. After studying the

structure we deduced lower losses for the light collected perpendicu-

lar to the optic axis, and higher when the analysis is performed in

the parallel direction with respect to the optic axis. When compared

this results with the simulations, it is revealed a surface bound mode

propagating along perpendicular direction with respect to the optic

axis but not in the parallel one. This fact explains the lower losses in

the perpendicular direction. This propagating surface bound mode is
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found only in one direction because of the anisotropic nature of the

substrate material.
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[100] C. J. Zapata-Rodŕıguez, D. Pastor, M. T. Caballero, and J. J.

Miret, “Diffraction-managed superlensing using plasmonic lat-

tices,” Opt. Commun. 285, 3358–3362 (2012).

[101] L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua,

U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength



182 BIBLIOGRAPHY

focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–

1402 (2005).

[102] Y. A. Barnakov, N. Kiriy, P. Black, H. Li, A. V. Yakim, L. Gu,

M. Mayy, E. E. Narimanov, and M. A. Noginov, “Toward curvi-

linear metamaterials based on silver-filled alumina templates,”

Opt. Mater. Express 1, 1061–1064 (2011).

[103] G. Wu, J. Chen, R. Zhang, J. Xiao, and Q. Gong, “Highly ef-

ficient nanofocusing in a single step-like microslit,” Opt. Lett.

38, 3776–3779 (2013).

[104] M. Naserpour, C. J. Zapata-Rodŕıguez, A. Zakery, and J. J.
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gues, J. F. Sánchez-Royo, R. Garćıa-Calzada, and J. P. M. Pas-
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Carlos Dı́az-Aviñó1 · Mahin Naserpour1,2 · Carlos J. Zapata-Rodrı́guez1

Received: 13 April 2016 / Accepted: 14 June 2016 / Published online: 15 July 2016
© Springer Science+Business Media New York 2016

Abstract Engineered core-shell cylinders are good candi-
dates for applications in invisibility and cloaking. In par-
ticular, hyperbolic nanotubes demonstrate tunable ultra-low
scattering cross section in the visible spectral range. In this
work, we investigate the limits of validity of the condition
for invisibility, which was shown to rely on reaching an
epsilon near zero in one of the components of the effective
permittivity tensor of the anisotropic metamaterial cavity.
For incident light polarized perpendicularly to the scat-
terer axis, critical deviations are found in low-birefringent
arrangements and also with high-index cores. We suggest
that the ability of anisotropic metallodielectric nanocavities
to dramatically reduce the scattered light is associated with
a multiple Fano-resonance phenomenon. We extensively
explore such resonant effect to identify tunable windows of
invisibility.

Keywords Anisotropic metamaterial · Invisibility ·
Plasmonics

Introduction

Cloaking and invisibility are optical techniques with consid-
erable advances recently due to the advent of metamaterials.

� Carlos J. Zapata-Rodrı́guez
carlos.zapata@uv.es

1 Department of Optics and Optometry and Vision Science,
University of Valencia, Dr. Moliner 50, Burjassot 46100,
Spain

2 Department of Physics, College of Science, Shiraz University,
Shiraz 71454, Iran

Designs for cloaking where a shadow region prevents the
light-matter interaction with a tailored target placed therein
are largely based on transformation optics [1–3] providing
extensive theoretical studies and physical analysis without
drawing on numerical simulations [4, 5]. On the other hand,
invisibility relies on the scattering cancellation of a given
object by using for instance a metallic coating and even
complex nanostructured coverings [6, 7]; the negative polar-
izability of the carpet layer might severely drop the scat-
tering cross section of the particle making it undetectable
[8]. The first experimental realization was performed in the
microwave spectral range by using an array of metallic fins,
immersed in a high-permittivity environment, thus creat-
ing a metamaterial cloaking shell [9]. Of particular interest
results the inclusion of shells made of materials with a per-
mittivity near zero in the spectral range of interest, which
may lead to a significant drop of the scattering spectrum
and, in addition, create a shielding effect in the bounded
space [10].

The development of multilayered plasmonic coatings and
metasurfaces integrates the current state of the art in the
engineering of devices for applications in invisibility and
cloaking [11–13]. The possibility to experimentally realize
a structured nanoparticle which is invisible in the optical
range remains a challenge, and designs using experimental
data can be conveniently considered [14]. A recent proposal
proving a critical reduction of the scattering cross section
consists of alternating metallic and dielectric coatings which
are arranged in a periodic radial distribution, thus shaping an
anisotropic-nanostructured hyperbolic shell [15, 16]. For the
purpose of simplifying the description of the stratified meta-
material and the application of the analytical Lorenz-Mie
scattering method [17, 18], a long-wavelength approxima-
tion is used thus enabling an adequate interpretation of the
resulting spectra under some circumstances [19]. A key
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issue is that the permittivity tensor describing the nanotube
reaches near zero values of one of its components in the
vicinities of the invisibility regime.

In this study, we analyze in detail the validity of such
an approach and we extend their results to achieve a higher
tunability degree concerning the invisibility spectral win-
dows. For that purpose, we first evaluate the scattering cross
section for different configurations of a nanostructured
infinitely-long shell and for different core and environment
media in order to verify the existence of a minimum in
the epsilon-near-zero regime. For the sake of generality,
we assume a Drude free-electron theory for the charac-
terization of the material with negative permittivity [20],
and we employ the effective medium theory to describe
the form anisotropy of the hollow cylinder. Furthermore,
we establish a matrix-transfer formulation with applications
in multilayered radially anisotropic media, which presents
some similarities to developments previously implemented
in stratified plane metamaterials [21]. We demonstrate that
in the narrow band with epsilon-near-zero cylinders, the
invisibility of the particle becomes a reality provided that
the core and environment medium are not polarizable, and
that the Drude medium composing the shell has a moder-
ate and low filling factor. Additional higher-energy bands
of scattering reduction are found for large particles with
applications in invisibility. The ability of anisotropic met-
allodielectric nanocavities to dramatically reduce the scat-
tered light is also discussed in terms of the Fano-resonance
phenomenon.

The Lorenz-Mie Scattering Coefficients

We consider a cylindrical shell formed by a radially
anisotropic nanostructure. The optical arrangement is illus-
trated in Fig. 1a. The permittivities along the optic axis
(OA), ε‖, which is radially directed, and perpendicular to the
OA, ε⊥, constitute the components of the permittivity tensor
ε = ε‖r̂ r̂ + ε⊥θ̂ θ̂ + ε⊥ẑẑ. In principle, these permittivi-
ties may be complex valued, thus taking into account losses
in the metamaterial, and their real part may take a positive,
a negative, and even a near zero value. In our numerical

simulations, we considered an anisotropic tube of utmost
radius R with a shell thickness given by T < R. In this
study, we examined tubes with a core material with per-
mittivity εC and immersed in an environment medium of
permittivity ε.

To estimate analytically the scattering efficiency of the
anisotropic nanotube, we followed the Lorenz-Mie scat-
tering method given for instance in Refs. [22] and [23].
First we assumed that the nanotube is illuminated by a
TEz-polarized plane wave propagating along the x axis, as
illustrated in Fig. 1a. The magnetic field of the incident
plane wave may be set as

Bi = ẑB0 exp (ikx) , (1)

where B0 is a constant amplitude, k = k0
√

ε and k0 = ω/c

is the wavenumber in the vacuum. In this case, the scattered
magnetic field in the environment medium, r > R, may be
set as [18]

Bs = ẑB0

+∞∑

n=−∞
ani

nH(1)
n (kr) exp (inφ) , (2)

where r and φ are the radial and azimuthal cylindrical coor-
dinates, respectively, and H

(1)
n is the Hankel function of

the first kind and order n. The total magnetic field in the
environment medium is simply B(tot) = Bi + Bs .

In the anisotropic shell (medium 2), R1 < r < R, where
R1 = R − T , the magnetic field may be set as [22]

B(2) = ẑB0

+∞∑

n=−∞
in [bnJn′ (k2r)+cnYn′ (k2r)] exp (inφ) , (3)

where Jn′ and Yn′ are the Bessel functions of the first and
second kind, respectively, both of the order n′ given by

n′ =
√

ε⊥
ε‖

n, (4)

and the wavenumber k2 = k0
√

ε⊥. Finally, the magnetic
field in the core of the anisotropic tube, which corresponds
to the medium 1 (r < R1), is expressed as

B(1) = ẑB0

+∞∑

n=−∞
indnJn (k1r) exp (inφ) , (5)

Fig. 1 a Illustration of the
anisotropic infinitely-long
cavity. b Coaxial multilayered
metamaterial establishing a
radial-form birefringence
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where the wavenumber k1 = k0
√

εC .
The Lorenz-Mie scattering coefficients an, bn, cn, and dn,

are determined by means of the proper boundary conditions,
that is, continuity of the z-component of the magnetic field
and the φ-component of the electric field, established at the
environment-anisotropic medium interface given at r = R

and at the core-anisotropic medium interface set at r = R1.
In particular, the boundary conditions applied at r = R1

may be set in matrix form as

DY
n,1 (R1) ·

[
dn

0

]
= DY

n′,2 (R1) ·
[

bn

cn

]
, (6)

where the matrix

DY
n,m (x) =

[
Jn (kmx) Yn (kmx)

ZmJ ′
n (kmx) ZmY ′

n (kmx)

]
(7)

is given in terms of the reduced impedance Z1 = 1/
√

εC

and Z2 = 1/
√

ε⊥ for the media m = 1 and m = 2,
respectively. Here, the prime appearing in J ′

n (α) and Y ′
n (α)

denotes derivative with respect to the variable α. By apply-
ing the boundary conditions at r = R, we may write

DH
n (R) ·

[
1
an

]
= DY

n′,2 (R) ·
[

bn

cn

]
, (8)

where

DH
n (R) =

[
Jn (kR) H

(1)
n (kR)

ZJ ′
n (kR) ZH(1)′

n (kR)

]
, (9)

where Z = 1/
√

ε.
Finally, we may estimate the fields in the core space

and outside the nanotube without calculating the fields in
the anisotropic medium by means of the following matrix
equation:
[

1
an

]
= Mn ·

[
dn

0

]
, (10)

where the matrix

Mn=
[

Mn,11 Mn,12

Mn,21 Mn,22

]
(11)

=
[
DH

n (R)
]−1 ·DY

n′,2 (R) ·
[
DY

n′,2 (R1)
]−1 · DY

n,1 (R1) .

By using this transfer matrix formalism, it is possible to
evaluate analytically the scattering coefficients

an = Mn,21

Mn,11
, (12)

which provide an exact estimation of the scattering effi-
ciency as

Qs = 2

kR

+∞∑

n=−∞
|an|2. (13)

The nanotube resonances are determined by the poles of the
coefficients an, that is for the zeros of Mn,11. On the other

hand, the invisibility condition is established provided that
the scattering coefficients an (or alternatively Mn,21) arrive
simultaneously to a value near zero.

Metamaterial with form Birefringence

From a practical point of view, a radially anisotropic
medium may be established by the proper form birefrin-
gence of a metamaterial composed of concentric multilayers
as illustrated in Fig. 1b [24, 25]. Here, two materials with
permittivity of opposite sign were used for the stratified
medium in order to substantially increase the form birefrin-
gence [26]. A plasmonic nanofilm of width wP is set by the
side of an insulator layer of width wI, thus forming the unit
cell of a periodic distribution along the radial coordinate.
In our numerical simulations, we considered a nanostruc-
tured tube of utmost radius R and composed of a number of
subwavelength layers giving a total shell thickness T . The
permittivity of the plasmonic material, given by

εP(ω) = 1 − ω2
p

ω2 + iωγ
, (14)

follows the Drude model within the spectral range of inter-
est [27]. In the previous equation, ωp represents the plasma
frequency and γ stands for the damping rate. The real part
of εP(ω) is negative provided that ω2 < ω2

p − γ 2, the lat-
ter condition approaching ω < ωp for a low-loss plasmonic
material. For simplicity, we will consider a nondispersive
permittivity εI = 10 for the insulator in the frequency range
under study.

For our structured metamaterial with a deeply subwave-
length period, the medium may be considered as a uniaxial
crystal within the limits of the long-wavelength approxi-
mation [28, 29]. In fact, a satisfactory approach can be
implemented in practice with a multilayered tube includ-
ing real metals and just only three periods [15, 16, 30]. The
optic axis of the metamaterial is set along the direction of
periodicity; in our particular case, the OA is oriented along
the radial axis. The effective anisotropic medium is then
optically characterized by a local permittivity tensor ε of
component [28]

ε‖(ω) = εIεP(ω)

f εI + (1 − f )εP(ω)
, (15)

along the OA, and

ε⊥(ω) = f εP(ω) + (1 − f )εI, (16)

in the perpendicular direction. In the previous equations, the
filling factor of the Drude medium in the metamaterial is
given by

f = wP

wP + wI
, (17)
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which represents the unique geometrical parameter deter-
mining the effective permittivities ε‖ and ε⊥ of the metama-
terial, regardless the internal one-dimensional distribution
of the materials involved in the unit cell.

In Fig. 2, we represent the real values of ε‖ and ε⊥ of a
metamaterial composed of a Drude medium and an insulator
of permittivity εI = 10, evaluated within a range of frequen-
cies near ωp and below, considering different values of the
filling factor f . We observe that the real part of ε⊥ is near
zero around a frequency

ωzero =

√(
ω2

p − γ 2
)

f − γ 2(1 − f )εI

√
εI − f (εI − 1)

, (18)

whereas the real part of ε‖ is near a pole around

ωpole = ωp

√
1 − f√

f (εI − 1) + 1
, (19)

the latter being valid when γ � ωp. The hyperbolic regime
is determined by the condition Re(ε‖)Re(ε⊥) < 0, indicated
as shaded regions in Fig. 2. The choice Re(ε⊥) > 0 cor-
responds to the so-called type I hyperbolic metamaterials,
whereas the choice Re(ε⊥) < 0 denotes a type II hyper-
bolic medium [31]. Note that when f = 1/2, corresponding
to the case that the plasmonic and insulator layers have
the same width, both a zero of ε⊥ and a pole of ε‖ occurs
simultaneously at a frequency ωp/

√
1 + εI, in addition hap-

pening when Re(εP) = −εI. In this case, the hyperbolic
regime spans the whole spectrum below the plasma fre-
quency. Let us point out that the extraordinary dispersion
features of hyperbolic and epsilon-near-zero metamaterials
have inspired us in a plethora of novel applications such as
subwavelength imaging [32, 33], surface-wave engineering
[34, 35], and double refraction [19, 36], to mention a few.

Results and Discussion

In Fig. 3, we represent the scattering efficiency Qs in dB
as derived from Eq. 13 and calculated by means of the
transfer matrix method described above, that is assuming
a TEz-polarized incident light. The scattering spectrum is
evaluated in terms of the ε-negative material filling factor f ,
assuming a low-loss Drude medium with γ = ωp/100. The
anisotropic cavity is immersed in air, where ε = εC = 1,
and it is small enough (R1 = T = k−1

p /20, where kp =
ωp/c) to excite only the dipole term n = 1 of the series
given in Eq. 13. We observe two resonances correspond-
ing to the symmetric and antisymmetric coupling between
the surface charges associated with the cavity and surface
polaritons at r = R1 and r = R [37, 38]. By the side of each
resonance peak, a minimum in scattering at a slightly higher
frequency is found. This effect has also been found in solid
high-index cylinders and wires, which is attributed to the
existence of Fano resonances [39] where, contrarily to what
is commonly assumed, a single scattering coefficient can
manifest the interference of two different resonant signals.
When the index mismatch with the environment medium
is significantly high, one of these resonances arises within
a narrow band where a Fano-type lineshape is developed.
In our case, we presume that it also happens as a result of
the extreme anisotropy of the scatterer. It is worth to men-
tion that the asymmetric resonant response observed in the
efficiency spectrum can be categorized in a more general
context concerning the coupling of a discrete state with a
continuum [40], which was first described by Fano in the
context of quantum mechanical systems [41]. Since its pio-
neering theoretical treatment, Fano resonances have been
evidenced in many other frameworks such as in the absorp-
tion of a heterogeneous dimer composed of a gold and a
silver nanoparticle due to the near-field coupling between
the silver surface-plasmon-resonance and the gold interband
transitions [42], in plasmonic lattices where the long-living
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Fig. 2 Real part of the components ε‖ (orange line) and ε⊥ (blue line)
of the permittivity tensor for the metamaterial composed of a Drude
medium with γ = ωp/100 and an insulator of permittivity εI = 10,
assuming different filling factors: a f = 0.2, b f = 0.5, and c

f = 0.8. The shaded regions denote spectral bands where the metama-
terial exhibits a hyperbolic dispersion of the type I (shaded in mauve)
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subradiant mode overlaps the spectrally broad superradi-
ant mode [43], and the symmetry-breaking trapped-mode
resonances in planar metamaterials [44].

Note that the set of fundamental frequencies where the
scattering cancellation is shown at the lowest energy, is set
virtually over the curve ωzero given in Eq. 18, coinciding
with a metamaterial permittivity ε⊥ near zero. We point out
that such outcome has been previously reported by Kim et
al in Ref. [15]. Since ε⊥ spans the whole spectrum below
ωp by balancing the composition of the Drude medium, in
principle we might tune the invisibility frequency by simply
changing the value of f from 0 to 1.

However, such a procedure cannot be followed for invis-
ibility bands near the plasma frequency, even considering
values of the filling factor f close to unity. Kim’s approach
is not valid for filling factors f close to unity, where the
tubular particle behaves like a low-birefringent plasmonic
cavity. In this case, the scattering cancellation associated
with the fundamental peak is observed at an intermedi-
ate frequency between the symmetric and antisymmetric
resonances found below ωp; in particular, the invisibility
frequency is found at ω = 0.707ωp in the limit f → 1.
On the other hand, ωzero approaches the plasma frequency
of the Drude medium in such a limit.

Importantly, proper conditions for invisibility are found
at higher energies provided that the filling factor f takes
moderate values. Specifically, such scattering cancellation
may be observed in the vicinities of the plasma frequency
ωp. From Fig. 2, it is clear that, in order to achieve a
scattering cancellation near ωp, a second minimum of Qs

which is located close to the plasma frequency might be
also exploited. For instance, at f = 1/2, we find the first

minimum in the scattering efficiency, Qs = 3.07 × 10−7,
at the fundamental frequency ω = 0.3ωp, and a secondary
minimum Qs = 5.11 × 10−5 located at a frequency ω =
0.945ωp. Here, we conclude that invisibility at the lowest
energy provides a better performance than the reduction in
scattering found near the plasma frequency.

In Fig. 4, we show the scattering efficiency of anisotropic
cavities of a higher size. In particular, we set a filling fac-
tor f = 1/2, and compare the case analyzed in Fig. 3
with those where the inmost radius and the tube thickness
take the values R1 = T = k−1

p /4, R1 = T = k−1
p /2

and R1 = T = k−1
p . Regarding the spectral position of

the fundamental resonance and the lowest-energy cancel-
lation of scattering, all curves show essentially the same
behavior. For instance, the invisibility frequency is found at
ω = 0.3ωp in all cases with valley efficiencies given by
Qs = 3.7 × 10−5, 2.7 × 10−4, and 2.3 × 10−3, as long as
the tubular particle increases in size. As a consequence, the
invisibility window is invariant upon the cavity diameter,
provided that the modulation is performed in the subwave-
length scale. As expected, although the scattering efficiency
reaches a minimum at the mentioned frequency, such effi-
ciency grows approximately one order of magnitude when
the tube doubles in size.

On the other hand, the situation changes dramatically
when analyzing the scattering spectrum near the secondary
minimum. The pattern of the scattering efficiency is main-
tained unaltered for the smallest cavities, except for a
scaling factor. However, the onset of additional resonances
at increasing sizes (in the order of the current wavelength)
governs the contour of the spectrum in the vicinity of the
plasma frequency. Since the minima of the high-order Fano
resonances, which in nature present a lower depth than
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p . The anisotropic metamaterial is again
characterized by a filling factor of the Drude medium set as f = 1/2,
where the damping rate is γ = ωp/100
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the fundamental resonance, overlap with the peaks of the
neighbors thus vanishing the invisibility effect.

Further insights are inferred by representing the magnetic
field near the cylindrical cavities for the frequencies of inter-
est. In Fig. 5, we represent |B| for an anisotropic scatterer of
R1 = T = k−1

p /20 and filling factor f = 1/2 at frequencies
of minimum scattering ω = 0.3ωp and ω = 0.945ωp. In
both cases, it is evidenced the dominant dipolar contribution
of the scattered field. In spite of the extreme birefringence
manifested in the nanostructure, the magnetic fields present
remarkably low contrast inside the nanotube and nearby. For
the lowest frequency, the field distribution is antisymmet-
ric along the radial direction inside the anisotropic shell;
however, it becomes symmetric for the highest resonant fre-
quency, thus confirming the existence of a symmetric and
antisymmetric coupling between the surface charges asso-
ciated with the cavity and surface polaritons. Increasing the
size of the scatterer up to R1 = T = k−1

p leads to an
analogous behavior only at ω = 0.3ωp. Near the plasma fre-
quency, the field distribution becomes much more complex
due to the non-negligible contribution of high-order scat-
tering coefficients For instance, we estimate |a0| = 0.97,
|a1| = 0.10, and |a2| = 0.14 as the leading terms at
ω = 0.945ωp. This fact certainly impedes the existence of
an invisibility window near ωp.

The spectrum of the scattering efficiency with respect
to the filling factor f of the metamaterial, for cylinders
of radius R = k−1

p /2 and different geometrical con-
figurations, i.e., various values of the aspect ratio T/R,
is depicted in Fig. 6. First, we analyzed the response
of an anisotropic cavity with a very narrow shell. In
Fig. 6a, we represent the scattering efficiency when T =
R/10. The position of the two polaritonic resonances
are clearly displaced with respect to the cases shown
above. In particular, the secondary peak is located in the
very-close neighborhood of the plasma frequency. The
latter has a dramatic consequence: the secondary fre-
quency associated with scattering cancellation drops out
of sight, limiting the tunability of the invisibility effect.
Notably, the main invisibility frequency remains practically
unaltered, approaching ωzero at low and moderate filling
factors.

Examining the case where T = 0.9R, which suggests a
cylinder with a very small concentric hole, we obtained the
scattering efficiency depicted in Fig. 6b. The main feature of
the derived pattern is the occurrence of multiple peaks and
their associated minima in efficiency, indicating an accu-
mulation of excited Fano resonances [39]. Nevertheless,
the fundamental frequency of invisibility again continues
attached to the condition of ε⊥ near zero.

Fig. 5 Scattered magnetic field
|B| (normalized to B0) for
anisotropic cavities of
R1 = T = k−1

p /20 and

R1 = T = k−1
p , both with a

filling factor f = 1/2, at
invisibility frequencies
ω = 0.3ωp and ω = 0.945ωp
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The influence of losses in the Drude medium are ana-
lyzed in the following. In Fig. 7, we represent the scattering
efficiency of a hollow metamaterial cylinder immersed in
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Fig. 7 Scattering efficiency of a tubular anisotropic metamaterial
(f = 1/2) of equal radius and thickness, R = T = k−1

p /4, immersed
in air. The damping rate of the Drude medium varies from γ = 1/10,
expressed in units of ωp , and γ = 1/1000

air and with dimensions given by R = k−1
p /2 and T = R/2.

Again, the filling factor is f = 1/2. We observe that
metamaterials including an ultra low-loss Drude medium,
like that assuming γ = ωp/1000 and analyzed in Fig. 7,
gives a minimum in scattering which represents approxi-
mately one order of magnitude lower than that obtained
for a damping rate of γ = ωp/100. The inverse occurs
when examining the peaks corresponding to the fundamen-
tal resonance. As a consequence, the peak-to-valley contrast
increases two orders of magnitude for a decrement of only
one order of magnitude in the damping rate of the Drude
medium. Regimes for ultra-cancellation of scattering are
inevitably related with strong Fano resonances observed
in low-loss Drude media. Also note that additional ultra-
narrow peaks emerge, which may be attributed to multipole
Mie resonances occurring for high orders n > 1. How-
ever, this cannot be applied to achieve an invisibility effect
in practice.

On the other hand, considering higher losses of the
Drude medium, the minimum and maximum of scatter-
ing efficiency associated with the fundamental Fano res-
onance may reduce their contrast in several orders of
magnitude. This is illustrated in Fig. 7 by evaluating the
scattering efficiency of an anisotropic metamaterial includ-
ing a Drude medium with γ = ωp/10. This critical
issue is of relevance since the electrons in the Drude
medium experience a significant reduction of their effective
mean free path in realistic multilayered anisotropic meta-
materials; note that electron scattering in ultrathin layers
results in the loss of electron phase coherence leading to
a higher damping rate [37]. Finally, the drop of peak-to-
valley contrast may be also observed in higher energy Fano
resonances.

Heretofore, the only discrepancy to the rule of ε⊥ near
zero, enabling to find the principal Fano resonance with
associated scattering cancellation, was found with cavity
metamaterials of a high filling factor f . However, that is not
certainly unique. As an illustration, we examine the effects
of the dielectric constant in the core (εC) and in the environ-
ment medium (ε). In particular, we evaluated the scattering
efficiency of a cylindrical cavity of radius R = k−1

p /2 and

shell thickness T = k−1
p /4. Again, a fixed damping rate

γ = ωp/100 is considered. In Fig. 8a, we plot Qs for cylin-
ders of different filling factors f immersed in air and having
a high permittivity core of εC = 10. Two resonances asso-
ciated with the excitation of symmetric and antisymmetric
surface polaritons, showing a peak-to-valley spectral pat-
tern, govern again the scattering efficiency of the core-shell
cylinder. The loci of the maxima are clearly shifted with
respect to the case of a hollow cavity with εC = 1. Remark-
ably, the fundamental frequency of invisibility undergoes a
substantial departure from ωzero even at low and moderate
filling factors.
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Fig. 8 Scattering efficiency, expressed in dB, of a cylindrical cavity of
radius R = k−1

p /2 and thickness T = R/2, when varying the dielectric
constant of the core and environment medium: a εC = 10 and ε = 1,

b εC = 1 and ε = 10, and c εC = 10 and ε = 10. The red dashed line
corresponds to frequencies ωzero which are solutions to the Eq. 18

In the reversed scene, where the environment medium
presents a high permittivity, for instance ε = 10 as shown
in Fig. 8b, and the core is filled with air, the behavior in
scattering changes completely. Firstly, we identify the fun-
damental Fano resonance with an enormous spectral gap
between its peak frequency and the first valley frequency,
where the peak-to-valley efficiency has a moderate con-
trast. When the filling factor f = 1/2, the main peak is
found at ω = 0.153ωp, whereas the first valley is located at
ω = 0.707ωp. This fact suggests that the reduction of Qs

associated with the fundamental Fano resonance is deleted
in practical terms, enabling to observe exclusively minima
of higher order resonances in the scattering spectrum. In this
sense, additional resonances covering the spectrum below
ωp may be found. We conclude that the effect of invisibility
is basically erased from this picture.

Finally, we analyzed the scattering efficiency of the
anisotropic cavity for a high dielectric constant of the core
and environment medium, simultaneously. In Fig. 8c, we
represent Qs when εC = ε = 10. Importantly, the funda-
mental frequency of invisibility is set practically in the same
value for the whole range of filling factors. For instance, the
scattering cancellation is produced at ω = 292ωp when the
filling factor is f = 0.2; increasing such a factor to f =
0.8, the frequency corresponding to the valley of lowest
energy is found at ω = 0.294ωp. These results demonstrate
that the invisibility regime dramatically depends on the
permittivities of the core and environment medium, a con-
clusion that might be in disagreement with previous studies
which remarked the importance of the condition given
by ωzero [15].

Conclusions

In summary, we investigated the scattering efficiency of
cylindrical cavities formed by a radially anisotropic nanos-
tructure, when the illumination is carried out by a TEz plane

wave. A radially anisotropic medium was established by the
form birefringence of a metamaterial composed of periodic
distribution of subwavelength concentric multilayers. The
Lorenz-Mie scattering coefficients are determined by means
of the proper boundary conditions, which we set in terms of
a transfer matrix formalism.

For subwavelength cavities, we observe two resonances
corresponding to modal symmetric and antisymmetric sur-
face polaritons. By the side of each resonance peak, a
minimum in scattering at a slightly higher frequency is
found, which can be attributed to Fano shapes. For scat-
terers immersed in air, the fundamental frequency where
the scattering cancellation is shown at the lowest energy
makes the metamaterial permittivity ε⊥ takes values near
zero. Thus, by balancing the composition of the metama-
terial, we might tune the invisibility frequency up to the
plasma frequency of the constituting Drude medium. Unfor-
tunately, such approach is not valid for high filling factors
close to unity, where the tubular particle behaves like a low-
birefringent plasmonic cavity. In these cases, the secondary
dip in the scattering spectrum might efficiently be used to
obtain an invisibility effect.

The onset of additional resonances at increasing cav-
ity sizes, in the order of the current wavelength, governs
the contour of the scattering spectrum thus vanishing the
invisibility effect. The main invisibility frequency remains
practically unaltered of various values of the aspect ratio
T/R. In particular, examining the case which suggests a
cylinder with a very small concentric hole, we obtained the
occurrence of multiple peaks and their associated minima
in efficiency, indicating an accumulation of excited Fano
resonances.

Finally, severe discrepancies to the rule of ε⊥ near zero,
enabling to find the principal Fano resonance with asso-
ciated scattering cancellation, were found by modifying
the dielectric constant in the core and in the environ-
ment medium, even at low and moderate filling factors.
For instance, for a high dielectric constant of the core
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and environment medium, the fundamental frequency of
invisibility is set practically fixed for the whole range of
filling factors. These results demonstrate that the invisibil-
ity regime dramatically depends on the permittivities of the
core and environment medium.
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a b s t r a c t

Highly anisotropic plasmonic nanotubes exhibit a dramatic drop of the scattering cross section in the
transition regime from hyperbolic to elliptic dispersion. The characterization of a realistic multilayered
metamaterial is typically carried out by means of an effective medium approach providing average
components of the permittivity tensor and wave fields. Here, the edge effects of the metal-dielectric
stratified nanotube for different combinations were thoroughly analyzed. We show how the boundary
layers, which in principle remain fully irrelevant in the estimation of the effective permittivity of the
nanotube, however play a critical role in the resonant scattering spectra and the near field patterns. A
remarkable enhancement of the scattered wave field is unexpectedly experienced at the frequencies of
interest when a dielectric layer is chosen to be in contact with the cavity core.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Metamaterials with unprecedented optical properties have
been recently proposed by several groups for applications in
cloaking and invisibility. A vast majority of cloaking nanos-
tructures are engineered in the basis of transformation optics
principles [1–3] enabling analytical expressions of the electro-
magnetic fields and metamaterial properties [4–6]. An original
concept suggested by Alu and Engheta has also attracted great
attention which relies on the use of metamaterial (or metal)
coatings to severely drop the scattering efficiency of an object by
means of a nonresonant scattering-cancellation approach [7]. The
strategy of such scattering cancellation takes advantage of the
local negative polarizability of metamaterials, and its experimental
realization was first demonstrated at microwave frequencies by
using an array of metallic fins which are embedded in a high-
permittivity environment to generate a metamaterial cloaking
shell [8].

Novel extensions of the previous concepts have more recently
made the scene, which are based on the use of double-shell and
multilayered plasmonic coatings [9,10]. For instance, using plas-
monic shells with an epsilon-near-zero material enables to reduce
substantially the scattering losses and simultaneously providing
the shielding of the cloaked region [11,12]. As an alternative, a
nanotube consisting of a periodic distribution of metal and di-
electric alternating layers, where the stratified metamaterial was

described as a radial-anisotropic hyperbolic medium, has recently
demonstrated narrow-band ultra-low scattering [13]. The in-
visibility spectral band occurs when one of the components of the
effective permittivity tensor is near zero. The effective medium
theory was adopted to efficiently reproduce the results provided
by the analytical Lorenz–Mie scattering method [14,15].

Here, we study in detail the edge effects of the stratified hy-
perbolic nanotube employed in Ref. [13] for different combina-
tions, that is, when the layer in contact with the environment
medium is either the metal or the nonconducting material. We
demonstrated that boundary effects play a relevant role in the
resulting scattering efficiency of the nanotube, potentially clearing
away the characteristic invisibility of the nanotube and boosting
additional plasmonic resonances in the visible. Explicitly, when
silver is set as the constituent material of the outermost layer,
unexpectedly, a significant enhancement of the scattered signal is
observed. As a consequence, the effective medium theory enabling
a simplified model for the optical characterization of the nano-
particle may apparently lead to fallacious estimations even for
metamaterials composed of subwavelength layers with a few-
nanometers width.

2. The hyperbolic multilayered nanotube

Let us consider a cylindrical shell formed by a multilayered
nanostructure as illustrated in Fig. 1. Following Ref. [13], silver and
titanium dioxide was used for the stratified medium. A silver na-
nofilm of width wAg is set by the side of a TiO2 layer of width wTiO2

,
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thus forming the unit cell of periodic distribution along the radial
coordinate. In our numerical simulations we considered a nanos-
tructured tube of outermost diameter D and composed of six
layers, giving a total shell thickness of = ( + )T w w3 Ag TiO2

. The re-
lative permittivities of silver and TiO2 within the visible range of
frequencies may be approximated by [13]

λ
λ λ

ϵ ( ) = −
( ) + ( ) ( )i

3.691
9. 152

1.24/ 0.021 1.24/
,

1
Ag

2

2

and

λ
λ

ϵ ( ) = +
− ( )

5.193
0.244

0.0803
,

2TiO 22

respectively. In the previous equations, the working wavelength λ
is set in micrometers. In this study we examined hollow cylinders
immersed in air.

Within a long-wavelength approach, the multilayered meta-
material may be considered as a uniaxial mediumwhose optic axis
is set along the direction of periodicity, that is the radial axis in our
particular case. The effective anisotropic medium is then optically
characterized by a local permittivity tensor ϵ of component [16]

ϵ =
ϵ ϵ

ϵ
+ ( − )ϵ
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∥ f
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3

Ag TiO

TiO
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along the optic axis, and

ϵ = ϵ + ( − )ϵ ( )⊥ f f1 , 4Ag TiO2

in the perpendicular direction. In the previous equations, the
metal filling factor

=
+ ( )

f
w

w w
,

5

Ag

Ag TiO2

represents the unique geometrical parameter determining the
effective permittivities of the metamaterial, regardless the internal
one-dimensional distribution of the materials involved in the unit
cell.

In Fig. 2 we represent the real values of ϵ∥ and ϵ⊥ within the
visible range of frequencies, for different values of the metal filling
factor. We observe that the real part of ϵ⊥ is near zero around a
filling factor = ϵ (ϵ − (ϵ ))f / Rez TiO TiO Ag2 2

, whereas the real part of ϵ∥ is
near a pole around a filling factor = (ϵ ) ( (ϵ ) − ϵ )f Re / Rep Ag Ag TiO2

. The
hyperbolic regime is determined by the condition (ϵ ) (ϵ ) <∥ ⊥Re Re 0,
indicated as shaded regions in Fig. 2. The choice (ϵ ) >⊥Re 0
corresponds to the so-called Type I hyperbolic metamaterials,
whereas the choice (ϵ ) <⊥Re 0 denotes a Type II hyperbolic med-
ium [17]. Note that when (ϵ ) = − ϵRe Ag TiO2

occurring at a wave-
length λ = 448 nm, both fz and fp coincide at a value 0.5, denoting

that the silver layers and the TiO2 layers have the same width. In
this case, the hyperbolic regime spans the whole spectrum. Let us
point out that the extraordinary dispersion features of hyperbolic
and epsilon-near-zero metamaterials have inspired us in a ple-
thora of applications such as subwavelength imaging [18,19], sur-
face-wave engineering [20,21], and double refraction [22,23], to
mention a few.

3. Results and discussion

To estimate analytically the scattering efficiency of the multi-
layered Ag–TiO2 nanotube we followed the Lorenz–Mie scattering
method [14]. Note that the axis of the cylindrical cavity is oriented
along the z-axis. First we assumed that the nanotube is illumi-
nated by a TEz-polarized plane wave propagating along the x-axis,
as illustrated in Fig. 1. The magnetic field of the incident plane
wave may be set as

( )= ^
( )zH ikxH exp , 6

i
0

where H0 is a constant amplitude and π λ=k 2 / is the wavenumber
in air. In this case, the scattered magnetic field may be set as

∑ ϕ= ^ ( ) ( )
( )=−∞

+∞
( )zH a i H kr inH exp ,

7
s

n
n

n
n0
1

where r and ϕ are the radial and azimuthal cylindrical coordinates,
respectively, and ( )Hn

1 is the Hankel function of the first kind and
order n. By using the Lorenz–Mie theory [15], it is possible to
evaluate analytically the scattering coefficients an, which provide
the estimation of the scattering efficiency as

∑= | |
( )=−∞

+∞

Q
kD

a
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.
8
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n

n
2

Plasmonic resonances are determined by the poles of the coeffi-
cients an. On the other hand, the invisibility condition is estab-
lished provided that the scattering coefficients an arrive simulta-
neously to a value near zero.

In Fig. 3 we show the scattering efficiency of our Ag–TiO2 na-
notube calculated with Eq. (8), provided that the hyperbolic me-
tamaterial has a metal filling factor f¼0.5 and that the hollow
particle is illuminated by a TEz polarized plane wave. In the nu-
merical simulations we set a layer width wAg and wTiO2

of 10 nm
and a cylinder diameter of D¼220 nm. Eq. (8) is accurately esti-
mated by using a finite number of scattering coefficients satisfying
| | <n 5. As illustrated in Fig. 3, the calculated Qs exhibits significant
discrepancies when the inmost layer is either Ag or TiO2, despite ϵ∥
and ϵ⊥ remain the same in both cases. When the interior layer is
made of silver, the scattering efficiency of the nanostructure
reaches a minimum of 0.053 at λ = 437 nm, as reported in Ref.
[13], where (ϵ ) =⊥Re 0.34 and (ϵ ) = −∥Re 143. In addition, a high
peak of Qs¼5.36 is found at λ = 510 nm, where (ϵ ) = −⊥Re 1.96 and

(ϵ ) =∥Re 35. However, the number of resonant peaks increases if
titanium dioxide is set in the inmost layer. In this case, the highest
peak is located at a wavelength of 560 nm where the scattering
efficiency yields 3.50, and a secondary strong peak is found at
λ = 525 nm (Qs¼2.46). In addition, its minimum in scattering ef-
ficiency is shifted at λ = 491 nm where importantly it reaches a
value of 0.53. We point out that such minimum in scattering ef-
ficiency, which is far of being associated with invisibility, is one
order of magnitude higher than that estimated previously for an
Ag inmost coating. Finally, a dissimilar behavior in scattering is
also manifested for TMz-polarized incident light (not shown in
Fig. 3).

In order to provide a physical insight of such a behavior, we

Fig. 1. Illustration of the multilayered nanotube.
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analytically calculated the electromagnetic fields inside the na-
notube and in the air core and in the environment medium. In
Fig. 4 we represent the modulus of the magnetic field, | |H , at the
invisibility wavelength λ = 437 nm for different geometric con-
figurations, calculated by means of the Lorenz–Mie scattering
method, provided that the incident wave field is TEz polarized.
When silver is set in the inmost layer of the hyperbolic metama-
terial, we observe a moderate enhancement of the field at three
different Ag–TiO2 interfaces, as shown in Fig. 4(a), which corres-
ponds to a collective excitation of surface plasmon polaritons
(SPPs). It is clear that the field exhibits strong irregularities derived
from nonlocal effects in the multilayered metal-dielectric nanos-
tructure [24]. Though such phenomenon severely puts into ques-
tion the validity of the effective medium approach followed in Ref.
[13], the deviations from an average field inside the hyperbolic
nanotube are moderate in this case. Analyzing the case that tita-
nium dioxide is placed in contact with the interior medium,
however, we observe even abrupter variations of the field espe-
cially at the rear part of the nanotube (in the semi-space >x 0), as
shown in Fig. 4(b). Furthermore, now the field distribution is
clearly asymmetric with respect to the origin of coordinates,
leaving a strong backscattered signal.

Finally, we observe from Fig. 4 that the field amplitude at the
center of the nanotube and in its neighborhood is, in average, near
the field remaining in the environment medium rather than zero.
This fact evidences that the shielding effect that commonly is re-
cognized in epsilon-near-zero core–shell nanocylinders [12]

cannot be reproduced in our hyperbolic metamaterial nanotube
when the light impinges under TEz polarization.

The following analyzes the effects of increasing the number of
layers in our nanotube maintaining the thickness T¼60 nm and
the metal filling factor f¼0.5 of the shell, implying that the layer
width wAg and wTiO2

of the metamaterial is reduced. Considering 12
alternating layers of silver and titanium dioxide, the layer width
(and the period of the multilayered nanostructure) is reduced to
one half with respect to the cases analyzed above and illustrated in
Figs. 3 and 4. The scattering efficiency of such additional nanotube
is shown in Fig. 5, considering the examples where the inmost
layer is either Ag or TiO2; the efficiency Qs is again evaluated by
means of the Lorenz–Mie scattering method. When the layer in
contact with the core is silver, we find a minimum of Qs equal to
0.026 at a wavelength λ = 444 nm, representing an exiguous var-
iation in comparison with the hyperbolic nanotube of 6 layers. In
addition, the maximum of scattering efficiency reaches a value of
5.20 at λ = 507 nm. If now we consider a nanotube with the in-
terior layer made of TiO2, its scattering efficiency at the invisibility
wavelength λ = 444 nm reaches a value of 0.671, representing a
factor of 25 with respect to the case previously analyzed. In fact,
the minimum of the scattering efficiency is 0.345, which is found
at λ = 477 nm. The overall shape of Qs, however, becomes rela-
tively similar in both cases.

The profile of the magnetic field at the new invisibility wave-
length λ = 444 nm again exhibits abrupt changes at the metal–
dielectric interfaces, as shown in Fig. 6(a) for a nanotube with
inmost layer made of Ag, but the envelope enabling the estimation
of an average value presents a slow variation inside the metama-
terial. Moreover, a minimum of intensity is found near the origin
of coordinates, however such intensity is far of zero disabling the
gain of a shielding effect. In Fig. 6(b) we represent the magnetic
field of the nanotube at the invisibility wavelength of λ = 444 nm,
considering a nanotube of interior layer made of TiO2. The re-
sonant excitation of collective SPPs at the rear part of the nano-
cylinder, developing a chief (inhomogeneous) Bloch wave in the
multilayered metamaterial [25], seems to be responsible of the
significant increase in the scattering efficiency and subsequently
the predominant visibility of the nanotube. Now this is clear that
the appearance of a predominant radially evanescent Bloch wave
also occurs for a 6-layer nanostructure, as shown in Fig. 4(b).

Obviously, by including a higher number of layers and, at the
same time, maintaining the thickness T of the nanotube and the
filling factor f of the metamaterial, both the scattering efficiency
spectrum and the field pattern will continuously approach for the
Ag and TiO2 ending layers, leading to the response of a purely
hyperbolic nanotube [13]. Fig. 7(a) shows the scattering efficiency
Qs of a hollow nanocylinder of thickness T¼60 nm and total dia-
meter D¼220 nm, which is composed of a hyperbolic

Fig. 2. Real part of the components ϵ∥ (red line) and ϵ⊥ (blue line) of the permittivity tensor in the visible regime for different metal filling factors. The shaded regions denote
spectral bands where the metamaterial exhibits a hyperbolic dispersion of the Type I (shaded in yellow) and the Type II (shaded in blue). (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)

ff

Fig. 3. Scattering efficiency (Qs) of a hollow metamaterial cylinder composed of
6 layers, where the nanotube thickness is T¼60 nm, its diameter is D¼220 nm, and
the silver filling factor is f¼0.5. The inmost layer is made of either silver (blue line)
or titanium dioxide (red line). The calculations are performed in the visible spectral
range for TEz-polarized incident light. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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metamaterial with components of its permittivity tensor as given
by Eqs. (3) and (4), considering that the filling factor f¼0.5. The
calculations were carried out by using the Lorenz–Mie scattering
method described in Refs. [26–28]. The minimum efficiency
(Qs¼0.172) is found at λ = 459 nm establishing the invisibility
wavelength, where (ϵ ) = −⊥Re 0.36 and (ϵ ) =∥Re 151. The main ef-
ficiency peak reaching 4.76 is localized at λ = 513 nm. The field
distribution in the nanotube is also plotted in Fig. 7(b) at the in-
visibility wavelength λ = 459 nm. We observe the formation of
surface waves in the two air-hyperbolic metamaterial interfaces. In
average, this field pattern is closer to the field distribution shown
in Fig. 6(a) for an Ag inmost layer than that exhibited for a

nanostructured tube of Ag ending coating depicted in Fig. 6(b). At
the rear part of the nanotube, the field oscillations inside the
multilayered metamaterial become stronger near the core; how-
ever, a surface wave at the metamaterial-core interface is only
produced when a silver layer remains in contact with the core, as
shown in Fig. 6(a) but not in Fig. 6(b).

4. Conclusions

In summary, we investigated numerically the scattering effi-
ciency, with emphasis in the invisibility regime, of multilayered
Ag–TiO2 nanotubes with configurations of a different ending layer.
We demonstrated that when the nonconducting layer remains in
contact with the core of the hollow cylinder, the characteristic
invisibility of the hyperbolic nanotube is cleared away, even con-
sidering elementary layers of a few nanometers. In this case there
is an additional boosting of plasmonic-Bloch resonances markedly
observed on the wave fields localized at the rear part of the
multilayered nanocylinder. Furthermore, the effective medium
theory enabling a simplified model for the optical characterization
of the nanoparticle will lead to fallacious estimations. Such effect
becomes weaker for metamaterials composed of subwavelength
layers with less-than-5-nanometers width.
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Fig. 4. Amplitude distribution of the normalized magnetic field | | | |HH / 0 at the invisibility wavelength λ = 437 nm and different arrangements of the metamaterial; the inmost
layer is made of (a) Ag and (b) TiO2.

Fig. 5. Scattering efficiency of a hollow metamaterial cylinder composed of 12
layers, where T¼60 nm, D¼220 nm, and f¼0.5. The interior layer is made of either
titanium dioxide (red line) or silver (blue line). (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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1. Introduction

The rapid theoretical and experimental advancement in nanomaterials during the last
two decades has enabled to engineer multifunctional devices for the control of light
with unprecedented proficiency. For instance, some schemes which are mostly based on
transformation optics allow the isolation of a region from interaction with an external light
that, in addition, remains unperturbed far from the shadowed space [1–3]. Consequently, an
outside observer cannot detect any target placed inside the cloak by means of an electromagnetic
wave field. However, such cloaking devices are commonly subject to stringent conditions like
the need of materials with exotic electromagnetic parameters reducing their applicability to
specific frequencies. Alternatively we may turn a nanoparticle to be invisible by integrating
some nanostructured element like ultrathin coatings and metasurfaces in such a way that scatte-
ring of the arrangement is much reduced in comparison with the bare object [4–10]. In this case,
light indeed interacts with the nanocomposite, but scattering from different elements interferes
destructively to almost cancel the total scattered signal.

The origin of such scattering drop, thus reducing dramatically the overall visibility of the
scatterer, may be attributed to different aspects of the light-matter interaction. For instance,
the local polarizability of distinct components of a moderately sized object with opposite
signs may be canceled out in a proper designed configuration [4–6]. The polarization vector
in the elementary materials is anti-parallel with respect to each other, implying that a dipole
moment of opposite phase is induced. Another approach for the cancellation of scattering from
an engineered scatterer is based on the properties of the characteristic lineshape of the Fano
resonance, where the emission of electromagnetic waves by the object create the interference
between the nonresonant scattering from the particle and scattering by narrow Mie modes [11].
This effect has also been observed in high-index nanoparticles without additional coating layers
[12]. Of particular interest follows the inclusion of epsilon-near-zero shells in the spectral range
of interest, which may lead to a significant drop of the scattering spectrum and, in addition,
create a shielding effect in the bounded space [7]. For scatterers with cylindrical symmetry
(along the z axis) and composed of dielectric and plasmonic materials, the effect of opposite
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polarizabilities is mostly observed in TMz-polarized wave fields, whereas Fano resonances may
be simply utilized in TEz polarization configurations.

Recently, a multilayered metallodielectric nanotube with radially-periodic structure has been
proposed, which presents a tunable spectral band with significant reduction of its scattering
efficiency [13]. Such scattering cancellation is produced simultaneously for both polarizations
and occurs when one of the components of the permittivity tensor characterizing the effective
anisotropy of the metamaterial approaches zero, that is near the boundary of the hyperbolic
regime [14]. Particularly for TEz-polarized fields, a large birefringence of the nanoshell enables
a self-guiding effect along the radial direction that is applied to validate the observed scattering
reduction.

In this work we extend the previous idea of employing radially-periodic metal-dielectric
nanotubes to optimize the scattering cancellation of the nanocavity. For that purpose, we
introduce a new degree of freedom that concerns the marginal layers set by the side of the
core and the environment medium, the latter playing a critical role primarily in the presence
of metamaterial nonlocalities [15]. We also present a critical discussion on the predominant
causes leading to such invisibility effect. The estimation of our results is performed using the
full-wave Lorenz-Mie method [16], and a matrix formulation is developed in order to further
simplify the evaluation of the scattering efficiency, which presents some similarities to the
transfer matrix formalism previously implemented in stratified plane metamaterials [17]. In
fact, the later formulation might be applied to any complex multilayered cylindrical scatterer
composed of homogeneous and isotropic materials.

2. The transfer matrix formulation
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Fig. 1. (a) Illustration of the coaxial multilayered metamaterial forming the infinitely-long
nanotube. (b) Permittivity function of our scatterer with radially periodic variation, ε(r) =
ε(r+Λ), and designer marginal layers.

Let us consider a cylindrical shell formed by a multilayered metal-dielectric nanostructure,
as illustrated in Fig. 1. The nanotube, which has a radius R (= RN+1), is composed of N layers
with a shell thickness given by T = RN+1 −R1 < R. The relative permittivities of the metal εm

and the dielectric εd determine the permittivity distribution of the metamaterial along the radial
direction, ε(r). In this study we consider a periodic distribution, ε(r) = ε(r +Λ) within the
nanotube, where the period Λ = wm +wd includes the width of the metal and the width of the
dielectric. In particular, the permittivity εm is complex valued, thus taking into account losses in
the metal. Here we examined nanotubes with a core material of permittivity εC and immersed
in an environment medium of dielectric constant ε .
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To estimate analytically the scattering efficiency of the multilayered nanocavity, we followed
the Lorenz-Mie scattering method given in detail for instance in Refs. [18, 19]. Following
previously well-established algebraic treatments of plane multilayered photonic structures [17],
here we propose a transfer-matrix formalism enabling a fast evaluation of the scattering (and
potentially extinction) cross section of an infinitely-long cylindrical scatterer composed of a
large number of layers.

In this section we assume that the nanotube is illuminated by a TMz plane wave propagating
along the x axis, as illustrated in Fig. 1. Let us point out that the case of TEz incident wave
fields might be simply determined by means of the duality principle [20]. The electric field of
the incident plane wave may be set as

Ein = ẑE0 exp(ikx) = ẑE0

+∞

∑
n=−∞

inJn (kr)exp(inφ) , (1)

where r and φ are the radial and azimuthal cylindrical coordinates, respectively, E0 is a constant
amplitude, Jn(·) is the Bessel function of the first kind and order n, k = k0

√
ε and k0 = ω/c is

the wavenumber in the vacuum. In Eq. (1) we used the Jacobi-Anger expansion of a plane wave
in a series of cylindrical waves. The scattered electric field in the environment medium, r > R,
may be set as [16]

Esca = −ẑE0

+∞

∑
n=−∞

aninH(1)
n (kr)exp(inφ) , (2)

where H(1)
n (·) = Jn(·) + iYn(·) is the Hankel function of the first kind and order n, and the

coefficients an must be determined. The total electric field in the environment medium is simply
Etot =Ein+Esca. In a given layer of the nanostructured shell (medium q), Rq < r < Rq+1, where
q = {1,2, · · · ,N}, the electric field may be expressed analytically as [16]

Eq = ẑE0

+∞

∑
n=−∞

in [bn,qJn (kqr)+ cn,qYn (kqr)]exp(inφ) , (3)

where the wavenumber kq = k0
√

εd for a dielectric layer, and kq = k0
√

εm for a metallic layer.
Finally, the electric field in the core of the multilayered tube (r < R1) is expressed as

EC = ẑE0

+∞

∑
n=−∞

indnJn (kCr)exp(inφ) , (4)

where the wavenumber kC = k0
√

εC.
The Lorenz-Mie scattering coefficients an, bn,q, cn,q, and dn, are determined by means of

the proper boundary conditions, that is, continuity of (the z-component of) the electric field
and the φ -component of the magnetic field, Hφ = (i/ω)∂rEz, established at the environment-
multilayered medium interface given at r = R and at internal interfaces set at r = R1 (boundary
with the core) and r = Rq+1 (q < N). In particular, the boundary conditions applied at r = Rq+1

may be set in matrix form as [21]

Dn,q
(
Rq+1

)
·
[

bn,q

cn,q

]
= Dn,q+1

(
Rq+1

)
·
[

bn,q+1

cn,q+1

]
, (5)

where the dynamical matrix

Dn,m (x) =

[
Jn (kmx) Yn (kmx)

Z−1
m J′

n (kmx) Z−1
m Y ′

n (kmx)

]
(6)
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is given in terms of the reduced impedance Zq = 1/
√

εm (Zq = 1/
√

εd) for the metallic
(dielectric) m = q layer, and ZC = 1/

√
εC for the core, m = C. Here the prime appearing in

J′
n (α) and Y ′

n (α) denotes derivative with respect to the variable α . Note that Dn,m is a real-
valued matrix provided that the permittivity of the medium m is also real. By applying the
boundary conditions at r = R we may write

Dn,N (R) ·
[

bn,N

cn,N

]
= Dn,N+1 (R) ·

[
1−an

−ian

]
, (7)

where, in this case, we set ZN+1 = 1/
√

ε and kN+1 = k.
Importantly, we may estimate the fields in the core space and outside the nanotube without

calculating the fields in the anisotropic medium by means of the following matrix equation:
[

dn

0

]
= Mn ·

[
1−an

−ian

]
, (8)

where the matrix

Mn =

[
Mn,11 Mn,12

Mn,21 Mn,22

]
(9)

= [Dn,C (R1)]
−1 ·

{
N

∏
q=1

Dn,q (Rq) ·
[
Dn,q

(
Rq+1

)]−1

}
·Dn,N+1 (R) .

By using this transfer matrix formalism, it is possible to evaluate analytically the scattering
coefficient

an =
Mn,21

Mn,21 + iMn,22
, (10)

which provide the estimation of the scattering efficiency as [16]

Qsca =
2

kR

+∞

∑
n=−∞

|an|2. (11)

The invisibility condition is established provided that the scattering coefficients an (or
alternatively Mn,21/Mn,22) arrive simultaneously to a value near zero.

3. Optimization procedure

In this study we propose a multilayered metal-dielectric nanotube following a periodic distribu-
tion along the radial coordinate. The basic arrangement consisting of alternating metallic and
dielectric layers of widths wm and wd , respectively, was recently introduced by Kim et al in
Ref. [13]. As a new degree of freedom, we utilize a unit cell within which one of the layers may
be surrounded by a second material, and consequently its associated layer must be split into
two as illustrated in Fig. 1(b). Due to the periodicity of the nanostructure, the internal radial
distribution remains unaltered displaying a cycle length Λ = wm +wd , and only the marginal
layers may change. We point out that the marginal layers within a stratified plane nanostructure
demonstrate a key role for instance in superlensing [22–24]. Finally, the integer T/Λ provides
the number of periods found in the nanotube.

In order to characterize the inmost marginal layer of width win = R2 −R1 and the outermost
marginal layer of width wout =RN+1 −RN , we define the factor m ranging from -1 to +1. Positive
values of m stands for dielectric layers set on the interior and exterior sides of the nanotube. In
this case, by writing win = (1 − m)wd and wout = mwd , providing win +wout = wd , we also
include the extreme value m = +1 taking into account a full dielectric outermost layer and
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m = 0 referring to a full dielectric inmost layer. Following an equivalent rule, m < 0 is applied
to metallic marginal layers, where win = −mwm and wout = (1+m)wm. In the limit m = −1 we
consider a full metallic inmost layer, formally the same case accounted for m =+1.

In the next numerical simulations we will consider nanotube shells with T/Λ= 3 periods, that
is a total number N = 7 layers provided that 0 < |m| < 1. We examine silver and TiO2 layers,
which permittivities may be analytically approximated within the visible range of frequencies
by

εm(λ ) = 3.691− 9.1522

(1.24/λ )2 + i0.021(1.24/λ )
, (12)

and

εd(λ ) = 5.193+
0.244

λ 2 −0.0803
, (13)

respectively [13]. In the previous equations, the working wavelength λ is set in micrometers.
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Fig. 2. Scattering efficiency Qsca of a periodic Ag-TiO2 nanotube immersed in air with
inmost radius R1 = 50 nm, thickness T = 60 nm, period Λ = 20 nm, and metal filling
fraction f = 0.5, when varying the marginal parameter m. The incident plane wave is:
(a)-(b) TMz polarized, and (c)-(d) TEz polarized. In (b) and (d) we compare the scattered
wave fields of the nanocavities under optimal marginal configurations here analyzed (top
scatterer) with the nanotubes proposed in [13] (bottom scatterer) for different wavelengths.

For the sake of illustration, in Fig. 2 we plot the efficiency spectrum Qsca, for wavelengths
in the visible, of a nanotube which inmost radius is R1 = 50 nm and thickness T = 60 nm. The
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scattering efficiency is evaluated using Eq. (11) and the transfer-matrix formulation developed
above. For TEz-polarized wave fields, the dynamical matrices given in Eq. (6) should include
the transformation Z−1

m → Zm in agreement with the duality principle [20]. We initially assume a
metallic layer width of wm = 10 nm and also a dielectric of width wd equal to 10 nm, so the metal
filling fraction f = wm/(wm +wd) yields 0.5. The nanotube is immersed in air, where εC = 1
and also ε = 1. For TMz polarized wave fields, two local minima in the scattering efficiency
are found, as shown in Fig. 2(a): a first minimum Qsca = 1.40 × 10−3 for the marginal factor
m = −0.53 at λ = 421 nm, in which case the inmost and outermost silver layers approximately
have a width of 5 nm each one, and a second minimum Qsca = 1.20 × 10−3 for m = 0.48 at
λ = 419 nm, where the inmost and outermost layers are made of titanium dioxide and also
have a thickness of around 5 nm. This represents a substantial improvement of two orders
of magnitude with respect to the case m = −1 analyzed in Ref. [13], where the minimum in
efficiency Qsca = 0.21 is found at λ = 436 nm. Fig. 2(b) shows the electric field scattered by two
nanocavities, one with m = −0.5 and the other one with m = −1, at the wavelengths of interest.
It is demonstrated that our nanocavity with half-width marginal layers exhibits an extraordinary
effect of invisibility (Qsca = 2.15 × 10−3) at the designer wavelength of λ = 420 nm, and in
addition has a similar behavior (Qsca = 0.27) compared with the previously proposed nanotube
at its best performance wavelength given at λ = 436 nm.

In the case that the incident field is a TEz-polarized plane wave, the resultant scattering
efficiency of the nanotubes varies considerably as shown in Fig. 2(c). It is worth noting the
nearly symmetric response of Qsca with respect to the sign of the factor m, providing an
analogous spectrum when the marginal layers are made of either TiO2 or silver, independently
of the modal polarization under consideration. Now the minima are found for a marginal
factor m = −0.85 at λ = 440 nm, where Qsca = 3.02 × 10−3, and for m = 0.86 giving
Qsca = 5.47×10−3 at λ = 442 nm. Note that Kim et al reported a scattering cancellation effect
giving Qsca = 5.30× 10−2 at λ = 437 nm, when we take into account 6 layers and the inmost
layer is made of silver (m = −1). Again, our approach provides a remarkable decrease in scat-
tering efficiency, as illustrated in Fig. 2(d) comparing the wave fields scattered by those two
nanocylinders (m = −0.85 on the top and m = −1 on the bottom) set together.

4. Discussion

The interpretation of such significant reduction in scattering may be carried out, at least partially,
in terms of the effective medium theory. For sufficiently narrow slabs (Λ � λ ), a radially
form birefringence may be established for the metamaterial composed of concentric multilayers
[25,26]. In this case, TMz-polarized fields behave like ordinary waves propagating in a uniaxial
crystal with optic axis set along the radial coordinate [27]. Waves propagate through the
metallodielectric metamaterial with negligible variation of the electric field Ez, a fact that in
addition is in agreement with the electrostatic limit. However, the electric displacement D=Dzẑ
undergoes critical discontinuities at the metal-dielectric interfaces. In average, Dz decreases
when the metal filling fraction grows, even vanishing in the so-called epsilon-near-zero regime,
due to the negative value of the real part of εm [28]. The z-component of the effective permittivity
of the layered metamaterial may be estimated accordingly as

〈εz〉 =
∫

ε(r)Ez(r,φ)rdrdφ∫
Ez(r,φ)rdrdφ

≈ 2(
R2 −R2

1

)
∫ R

R1

ε(r)rdr. (14)

The definition of the weight averaged ε(r) is intuitive, and refined analyses may be found
elsewhere [29]. On the other hand, TEz-polarized fields propagate inside the multilayered
metamaterial in the same manner as extraordinary waves, where the radial anisotropy is
characterized by an average permittivity of components 〈εφ 〉 (that coincides with 〈εz〉) and 〈εr〉,
the latter taking much higher values than the former [13].
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Fig. 3. (a) Real part of the average permittivity 〈εz〉 defined in Eq. (14) for an Ag-TiO2
multilayered nanocavity with inmost radius R1 = 50 nm, thickness T = 60 nm, period
Λ = 20 nm, and metal filling fraction f = 0.5. The values of the iso-permittivity curves
〈εz〉= 0 and 〈εz〉= 1 are represented in (b) together with the minima in scattering efficiency
found in Fig. 2(a) for TMz (blue solid line) and Fig. 2(c) for TEz (red solid line).

Equation (14) yields exactly the well-known expression ε⊥ = f εm + (1− f )εd , associated
with the component along the perpendicular direction of the optic axis of the permittivity
tensor ε , in a Cartesian coordinate system, of a form-birefringent metamaterial [27], only in
the particular case that m =±1/2, that is for half-width marginal layers. Otherwise, the average
permittivity 〈εz〉 critically depends on the inmost radius R1 and the marginal parameter m; only
when the shell is sufficiently narrow, T � R, enabling the limit R1 → R, the average permittivity
reduces to 〈εz〉 → ε⊥ in all cases. On the other hand, further symmetries may be found when the
definition of the average permittivity given in Eq. (14) is applied to a metal-dielectric periodic
nanocavity. In particular, 〈εz〉 depends on the absolute value of the marginal parameter m. Since
the scattering spectra shown in Figs. 2(a) and 2(c) also exhibit such a symmetry, we potentially
may establish a correlation of the location of spectral peaks and valleys in terms of the average
permittivity.

In Fig. 3(a) we plot the real part of the average permittivity 〈εz〉 evaluated in an Ag-TiO2

cylindrical cavity with inmost radius R1 = 50 nm, thickness T = 60 nm, period Λ = 20 nm,
metal filling fraction f = 0.5, and varying marginal factor m. The average permittivity increases
for higher |m| and reaches its maximum value at |m| = 1 for the whole spectral range. For
instance, the condition Re〈εz〉 = 1, where the average permittivity of the multilayered nanotube
matches the permittivity of the core and the environment medium, is attained at λ = 405 nm
for m = 0 and shifts to longer wavelengths for different marginal factors up to λ = 430 nm
for |m| = 1. As illustrated in Fig. 3(b), such permittivity matching is behind the invisibility
effect observed when the incident plane wave is TMz polarized, at least for moderate (and high)
|m| for which Qsca presents its minima in efficiency. In the near-optimal case where m = 0.5,
Re〈εz〉 = 1 is attained at λ = 417 nm, very close to the dip shown in Fig. 2(a) at λ = 419 nm.
However, the effective medium approximation evidences remarkable limitations. For instance,
there exists critical deviations of the condition Re〈εz〉 = 1 and the loci of minima in Qsca for
low |m|. More importantly, it cannot predict the extraordinary scattering reduction for marginal
factors around |m| = 0.5, in comparison with other configurations.

The scene is even more intricate for scattered fields under TEz polarization. The minima
of the spectral scattering are blue-shifted along with higher values of |m|, just advancing to
the opposite direction with respect to any iso-permittivity curve with invariant 〈εφ 〉 (= 〈εz〉).
Such severe deviations then put into question the validity of the effective medium theory as
an appropriate approach to describe the invisibility effect observed here. Specifically at the
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Fig. 4. Scattering efficiency of an Ag-TiO2 nanotube with R1 = 50 nm, T = 60 nm, f = 0.5,
and varying marginal factor m, considering a period Λ of (a) 5 nm (N = 25 layers), (b)
10 nm (N = 13), (c) 20 nm (N = 7) and (c) 30 nm (N = 5). Profiting from the symmetric
response of Qsca on the sign of m, we represent the scattering spectrum for TMz-polarized
waves at m > 0 and for TEz-polarized fields at negative marginal factors.

minimum Qsca =−25.2 dB found at λ = 440 nm for m =−0.85, the effective permittivity rises
to Re〈εφ 〉= 0.437. In practical terms, we might affirm that the invisibility regime is established
for marginal factors in the range 0.7 ≤ |m| ≤ 1 occurring in the spectral band that satisfies
0 ≤ Re〈εφ 〉 ≤ 1.

Let us point out that, in one side, the existence of a peak near the scattering minimum in every
spectra for this specific polarization suggests the occurrence of an isolated Fano resonance
[30]. As a consequence of the resonant mechanism of invisibility, it is expected a dramatic
impact on external factors such as the permittivity of the core and the environment medium,
and also structural aspects such as scale and internal architecture of the nanocavity. On the
other hand, nonlocalities that are inherent in metal-dielectric nanostructures, specially under
TEz polarization [31], lead for instance to edge effects that seems to be behind an anomalous
behavior out of the long-wavelength approximation, as highlighted in Ref. [15].

We may obtain further and revelatory conclusions by evaluating the scattering efficiency of
our Ag-TiO2 nanotube of T = 60 nm for different number of periods. In Fig. 4 we graphically
represent the spectrum of Qsca for nanotubes with T/Λ= 2, 3, 6 and 12 periods. For the smallest
period, Λ = 5 nm, the marginal factor m has a limited influence on the scattering spectrum.
For TMz-polarized wave fields, the minimum of scattering efficiency reaches Qsca = 1.17 ×
10−3 at λ = 417 nm. On the other hand, the scattering efficiency rises significantly when the
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polarization of the incident plane wave is TEz, for which a minimum value of Qsca = 8.99×10−2

at λ = 451 nm, representing a difference of nearly two orders of magnitude. Note that such
nanostructure embodies a technological challenge since it takes into account a large number
of Ag and TiO2 layers, each one with a layer width of 2.5 nm. As might be expected, the
long-wavelength approximation is valid in this case, and the nanotube might be considered as
a radially-anisotropic medium. For instance, provided that the calculations were carried out by
using the Lorenz-Mie scattering method for radially-anisotropic cylinders [30, 32], considering
a TEz incident plane wave, the minimum efficiency yields Qsca = 0.172 which is found at λ =
459 nm, in which case Re(ε⊥) = -0.36 and Re(ε‖) = 151 [13, 15].

When the period increases to Λ = 10 nm, the impact of the marginal factor is evident as a
direct result of nonlocal effects. In this case, the minimum efficiency for TMz-polarized fields,
Qsca = 1.22×10−3, is attained at λ = 417 nm (for m= 0.5), manifesting a negligible variation in
comparison with the previous case. For TEz polarization, the invisibility effect clearly improves
in the limiting marginal factor m =−1, for which minimum scattering efficiency Qsca = 2.60×
10−2 got at λ = 443 nm. On the other extreme, when the period Λ = 30 nm, the minima in
scattering efficiency are of the same order for both polarizations. For TMz-polarized fields we
have a minimum Qsca = 1.43×10−3 at λ = 422 nm and m= 0.48, whereas for TEz polarization
the minimum Qsca = 1.28 × 10−3 is found at λ = 441 nm for m = −0.72, providing a good
performance in the first case and the best invisibility behavior in the latter. In addition, this sort
of nanotube with the longest period manifests certain advantages from the practical point of
view, such as the reduced number of layers (only 5) with widths of 15 nm except for the margins.
As a consequence, from now on we consider Ag-TiO2 nanotubes of a period Λ = 30 nm. We
point out that stratified nanotubes with a period higher than Λ = 5 nm cannot be treated as a
mono-layered hyperbolic nanocavity where Mie scattering theory for anisotropic shell objects
should be accurate [13,30], and consequently the more elaborated matrix formalism given above
is apparently unavoidable.

The influence of cores and environment media with different permittivities is examined in
Fig. 5, for the same Ag-TiO2 nanotube described above. For brevity we analyzed the case where
the dielectric constants εC and ε have the same value, since dissimilar permittivities may lead
to a loss of the invisibility effect [13]. For TMz-polarized incident light, a dramatic drop in
the scattering efficiency is again observed but at lower wavelengths when the permittivity ε
(and εC) increases. In fact, to find the minimum of Qsca, the index matching condition may be
established as Re〈εz〉 = ε in agreement with the shift undergone by the invisibility wavelength
at every marginal factor, that is an extremely accurate approach for moderate and high |m|.
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reached for such optimal configuration, expressed in dB, and the wavelength λ for which
the latter is achieved.

The lower difference between the permittivity of the dielectric part of the metamaterial and
that of the external material, εd and ε respectively, requires of a metal with a permittivity
also approaching ε which occurs closer to the plasma frequency [4]. Importantly, the optimal
geometrical configuration is found for a marginal factor |m| around 0.5 in all cases. As an
example, a minimum of Qsca = 1.14 × 10−2 is found at λ = 370 nm for m = 0.441 when the
permittivity of the environment medium is set as ε = 3.

On the other hand, the scattering efficiency dramatically increases for TEz-polarized wave
fields. The loci of minima in Qsca practically remain in the same spectral band, slightly shifted
to longer wavelengths at higher-index core and environment medium, demonstrating a high
robustness under changes in the permittivity ε . However, their efficiencies increase several
orders of magnitude. Taking ε = 3 for instance, Qsca = 0.435 is the minimum efficiency
which is found at λ = 449 nm and m = −0.935. The wavelengths where minima of Qsca

are located for TEz-polarized fields seem to be essentially determined by the optogeometrical
characteristics of the nanocavity thus being barely unaltered under changes in the environment;
however, this is not longer valid for exceptionally-higher values of the index of refraction and
significant deviations might be found [30]. This confirms the resonant behavior of the invisibility
effect sustained in TEz-polarized wave fields, differently from what occurs for scattered TMz-
polarized waves

In Fig. 6 we consider nanotubes of different metal filling fractions f =wm/Λ, but maintaining
a nanostructure of period Λ = 30 nm; again the inmost radius R1 = 50 nm and the nanotube
thickness T = 60 nm, but the marginal factor m is varied to minimize the scattering efficiency.
A permittivity of unity is set for the core and environment medium in the estimation of Qsca.
The invisibility wavelength in the optimal configuration decreases 200 nm approximately, for
both polarizations concurrently, when f varies between 0.3 and 0.7. This fact suggests a means
of tuning the invisibility spectral band of the multilayered scatterers [13]. For TMz-polarized
scattered fields, the undertaken optimization leads to nanocylinders with marginal factors of
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Fig. 7. The same as in Fig. 4(d), but the inmost radius R1 takes values: (a) 50 nm, (b)
100 nm, and (c) 200 nm.

modulus around 0.5, which provide scattering efficiencies below -25 dB in the range between
f = 0.3 and 0.7. On the other hand, the scattering efficiency is reduced to some extent when the
incident plane wave is TEz polarized, at least for the lowest values of f . This most favorable
arrangement happens for nanostructures where the inmost silver layer is considerably wider
than the outer layer giving marginal factors m neighboring -0.8. However, Qsca cannot decrease
and even reach the limit of -20 dB for the top range of filling fractions, which in principle has no
critical impact in the tunability of the invisibility spectral band of the nanotubes expect maybe
in ultrasensitive applications.

The size of the metallodielectric nanocavity might be essential concerning the applicability
of the effective medium approximation in TMz-polarized wave fields, and more critically the
resonant behavior of the nanotube for TEz polarization. In Fig. 7 we plot the scattering efficiency
of Ag-TiO2 multilayered nanoshells with different radii immersed in air. We maintain the
scatterer thickness T = 60 nm, period Λ = 30 nm, metal filling fraction f = 0.5, and we change
the marginal factor m in order to find the configuration with optimal scattering cancellation.
For TMz polarized fields, the plots remain practically unaltered for inmost radius ranging from
R1 = 50 nm up to R1 = 200 nm. Limited deviations are attributed to the reduced dependence of
〈εz〉 on R1 in spite of the considerable difference in size of the cylindrical scatterers. Considering
now scattered fields under TEz polarization, the efficiency pattern is modified significantly. The
minimum in scattering efficiency changes from Qsca = 1.41×10−3 for R1 = 50 nm as discussed
above, increasing to Qsca = 0.135 for R1 = 100 nm that is found at λ = 443 nm when m=−0.80,
and reaching Qsca = 0.446 for R1 = 200 nm (at λ = 426 nm and m = −0.43). For this specific
polarization, the capacity of the nanotubes for canceling the scattered wave field, within the
spectral band of interest, decays progressively when the radius R1 grows certainly due to the
existence of multiple localized resonances that are associated with whispering-gallery modes.
On the other hand, note that for radius R1 in the micro-scale, such optical microcavities with
whispering-gallery modes have stimulated multifunctional applications to optofluidic devices
such as microlasers and bio/chemical sensors [33].

5. Conclusions

The study carried out here shows the route for the optimal utilization of the marginal layers
in metal-dielectric multilayered nanotubes as invisible conducting scatterers within a tunable
spectral band. We utilize the inherent nonlocal effects of metallodielectric nanostructures in
support of a drastic reduction of the scattered signal of the designer cylindrical nanocavity.
Our approach leads to a drop of the nanoparticle scattering efficiency that may reach up to
two orders of magnitude in comparison with previous proposals also based on radially-periodic
arrangements. The remarkable invisibility of our Ag-TiO2 nanotube is largely ascribed to scatte-
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ring cancellation for TMz-polarized incident plane waves and a Fano-type isolated resonance for
TEz-polarized fields. The resonant behavior of the nanotubes in TEz polarization configurations
made it reducing the maximal efficiency to changes in the external environment, diameter of
the nanoparticle and even the period of the metamaterial. Although the cylindrical cavity has a
polarization-selective response, it can be adjusted to present a significant reduction of the scatte-
ring efficiency simultaneously for both polarizations. Furthermore, it is reasonable to conceive
a refined approach enabling the ultimate minimization of the scattered signal for the TEz and
TMz polarization concurrently. Importantly, the Lorenz-Mie scattering coefficients are set in
terms of a transfer matrix formalism leading to the fast evaluation of the scattering efficiency
of the multilayered nanocavity. We believe that the use of invisible conducting nanocavities
for invisible electrodes and waveguides presents a promising strategy toward next-generation
optofluidic and sensing.
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curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the
transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength
gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be
applied to nanolithography and optical microscopy. © 2015 Optical Society of America
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1. INTRODUCTION

The wave nature of light imposes a fundamental constraint on
the attainable spatial resolution known as the diffraction limit
of light [1]. Importantly, the diffraction limit has a deep impact
in far-field microscopy and data storage [2,3]. According to the
Rayleigh criterion, this diffraction limit is of the order of half
of the wavelength for a high numerical aperture (NA). For
moderate and lowNAs, the transverse resolution is directly gov-
erned by the inverse of the NA of the focusing arrangement,
whereas the on-axis resolution is determined by the inverse
squared of its value.

Massive efforts have been carried out in order to reach and
even surpass such a limit of diffraction. Gain in the spatial res-
olution can be achieved by introducing diffraction filters, which
tune the complex-valued pattern of the converging beam in the
far field, thus molding its focal distribution [4]. A plethora of
alternate ways can be found in the literature, such as structuring
light used in confocal (also 4Pi-confocal) scanning microscopy
[5,6], by employing stimulated emission to inhibit the fluores-
cence process in the outer regions of the excitation point-spread
function [7], two-photon excitations, and multiphoton imple-
mentations [8], to mention an few. The use of metamaterials
and metasurfaces has also come on to super-resolution since
they may actively control the wave direction and even trans-
form the evanescent nature of waves into homogeneous propa-
gating signals [9–12].

In this work, we propose an ultrathin metasurface to effi-
ciently modify the wavefront curvature of a given converging
field. In this way, we alter the focal waves by simply increasing
the NA of the optical architecture. For that purpose, the beam
shaping is carried out near the focal region, thus enhancing the
super-resolving effect. The elements of the metasurface will be
semi-transparent metal-insulator (MI) gratings with subwave-
length features exhibiting an effective high index of refraction.
A simple cylindrical arrangement consisting of four of these
elements with incremental dephases of π∕2 radians will satis-
factorily serve our aim.

2. THEORY AND METHODS

Let us first consider a monochromatic converging wave field of
semi-angular aperture Ω that is focused to a point F . Without
loss of generality, we will consider cylindrical waves propagating
in the x–z plane for which the physical problem is symmetric
with respect to y axis; in addition, the magnetic field will be
expressed as H � H �x; z� exp�−iωt�ŷ, where ŷ stands for
the unitary vector pointing along y axis. As illustrated in
Figs. 1(a) and 1(b), we place an ultrathin metasurface, in such
a way that it is concentric to the wavefront of the incident con-
verging beam at the point F . The metasurface will reshape the
cylindrical wavefront of the incident beam by increasing its cur-
vature. At the exit of the metasurface, the field is focused to a
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point F 0 that is shifted a distance a toward this ultrathin optical
element. Reshaping the wavefront of the incident converging
wave leads to an increment in the NA at the exit curved surface
of the metamaterial. Induced by the metasurface, the semi-
angular aperture of the converging wave field is increased from
Ω to Ω 0. Provided that the radius of the metasurface is R > 0
and a > 0 stands for the focal shift induced by the metasurface,
we infer that

a
sin�Ω 0 − Ω� �

R
sin�Ω 0� ; (1)

where sin�Ω 0� is the NA (in free space) of the transmitted wave-
front of radius R 0 � R − a as shown in Fig. 1(b). In Fig. 2, we
present the increased NA sin�Ω 0� of a given converging
wavefront of NA evaluated by sin�Ω�, which is molded by a

metasurface of radius R � 4 μm. For instance, if the incident
wave field originally has an NA of 0.71 (that is, Ω � 45°), then
we may reach the highest emerging NA, sin�Ω 0� � 1, by sim-
ply shifting the focal point to a distance of a � 2.83 μm.

Finally, we may infer that the distance from a given point P
of the reference cylinder, where the ultrathin metasurface is
placed, to the wavefront of the emerging wave field of radius
R 0, as measured along an optic ray traveling from P to F 0, is
given by

L�θ� � −�R − a� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2 − 2aR cos θ

p
; (2)

where θ is the azimuthal angle as measured with respect to z
axis. The optical path in excess, L�θ�, must be compensated by
a metasurface of amplitude transmittance

T �θ� � exp��−ikL�θ���; (3)

introducing a dephase, where k � 2π∕λ is the wavenumber.
According to Debye diffraction theory, the wave field in the

focal region can be estimated by means of the following diffrac-
tion integral [13,14]:

H �r� �
ffiffiffiffiffiffiffi
kR
2πi

r
exp�ikR�

Z
π

−π
Hs�θ� exp�−ik�q̂ · r��dθ; (4)

where the integral is evaluated over the cylindrical wavefront. In
Eq. (4), r � �z; x� with center at focus and Hs is the scattered
magnetic field as measured over the cylindrical wavefront.
Finally, q̂ � �cos θ; sin θ� is a unit vector pointing from the
focal point in the direction of a given point on the curved
wavefront. The field amplitude, Hs�θ�, which modulates the
cylindrical wavefront of the converging beam, will be expressed
by means of a real and positive term taking into account the
truncation of the converging field.

We will consider a super-Gaussian apodization function that
has the role of an aperture but minimizes edge effects and is
given by

Hs�θ� � Hs�0� exp�−�θ∕Ω�6�; (5)

where Ω represents the semi-aperture angle, which in addition
determines the NA of the cylindrical wavefront. In Figs. 3(a)–
3(c), we present the field intensity jH �r�j2 derived from the
Debye diffraction Eq. (4) for different NAs. Let us note that
the field intensity is independent of the wavefront radius;
however, it is clearly modified by the NA of the optical
arrangement. Importantly, the intensity distribution is mirror-
symmetric with respect to x and z axes, thus neglecting
asymmetric spatial effects caused when the metasurface
approaches the focal region [15], as we will see below.
Nevertheless, Eq. (4) serves as an accurate estimation of the
limit of resolution both transversally to the direction of propa-
gation and on axis. In Fig. 3(d), we plot the full width at
half-maximum (FWHM) of the central peak for different val-
ues of the wavefront NA, as measured along x and z axes. The
on-axis resolution, which varies as the inverse square of the NA,
is further improved than the transverse resolution, which is
inversely proportional to the NA of the cylindrical wavefront.

Finally, we point out that the electric field is kept in the x–z
plane for TM polarization. In high-NA arrangements, in addi-
tion, its on-axis component cannot be neglected in the focal
region, resulting from applying the equation

(a) (b)

Fig. 1. (a) Geometrical interpretation of the beam shaping using
optical rays. The focal point F of a given converging beam of
semi-aperture angle Ω will be refocused by passing through an ultra-
thin curved metasurface. (b) Schematic diagram of the converging-
wave configuration and illustration of notation. The origin of the co-
ordinate system is placed at the geometrical focus F , which is the
center of the reference cylinder with radius R. The shaped emerging
wave propagates in the x–z plane and deviates from the reference
cylinder by L�θ�.

Fig. 2. Variation of the output NA, sin�Ω 0�, versus the input NA,
sin�Ω�, for a metasurface of radius R � 4 μm and different values of
the focal shift parameter a.
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Ez�r� � �i∕ωϵ0�∂H �x; z�∕∂x; (6)

where ϵ0 is the permittivity of vacuum. The confinement of the
magnetic field at the wavelength scale along the transverse di-
rection leads to mean terms of the order of k when applying the
differential operator ∂∕∂x. As a consequence of the vectorial
nature of light, the transverse electric field Ex and the compo-
nent Ez given in the previous equation can be alike in average.
For axisymmetric field distributions, as we take into account
here, a phase singularity of Ez will be found on axis, which
may produce a deterioration of the transverse resolution [16].

3. RESULTS AND DISCUSSION

Let us demonstrate numerically that by patterning a phase
distribution exp��−ikL�θ��� along a given converging beam,
where the optical path in excess, L, is given in Eq. (2), we
may produce a controlled focal shift. For that purpose, we
use COMSOL Multiphysics, which is a finite-element analysis
software environment for modeling and simulation of any
electromagnetic system. By introducing a cylindrical surface
current (SC) of radius R � 4 μm, which in addition is apo-
dized by a super-Gaussian distribution with semi-aperture
angle Ω, we may create a focused field around its center of cur-
vature with an NA of 0.71 (Ω � 45°), as shown in Fig. 4(a).
This is in agreement with the Debye diffraction formulation, as
shown in Fig. 3(c). The effect of the metasurface is simulated
by including an additional phase distribution like that given in
Eq. (3). In Fig. 4(b), we show the focal field of the shaped
converging wave, provided that the focal shift parameter
a � 2 μm. We observe that the molded wave field is shifted
accordingly, and that the intensity distribution is essentially

that of a cylindrical converging field of a semi-angular aperture
of Ω 0 � 73.7°, as illustrated in Fig. 3(b).

The cylindrical metasurface of amplitude transmittance
T �θ� can be formed by an inhomogeneous transparent material
of refractive index n�θ� � n�0� − L�θ�∕d , provided that d is
the width of such an ultrathin layer. However, current nano-
technology presents certain limitations for the fabrication of
phase-only nanoplates following a continuous variation of the
refractive index n [17]. Then it is more appropriate to design a
nanostructure that shapes the phase of the impinging converg-
ing field by discrete ranges. In Fig. 5, we show the result of

(a) (b)

(c) (d)

Fig. 3. Intensity pattern of the magnetic field derived from Eq. (4)
at λ � 800 nm for different semi-aperture angles: (a) Ω � 90.0°,
(b) Ω � 73.7°, and (c) Ω � 45.0°. (d) FWHM of the central peak
as measured along x axis (dotted line) and z axis (dashed–dotted line).

(a) (b)

Fig. 4. Intensity distribution jH �r�j2 corresponding to a mono-
chromatic converging wave, which is apodized at points placed at a
distance R � 4 μm from the focus (in our model we used an SC) with
(a) a super-Gaussian distribution of semi-angular aperture Ω � 45°
and (b) an additional phase modulation with a prescribed parameter
a � 2 μm. The working wavelength is λ � 800 nm. The centered
white cross represents the origin of coordinates.

Fig. 5. Intensity distribution jH �r�j2 of focal waves modulated by a
piecewise phase-only function exp��−ikL�θ��� of different number N
of steps.

7588 Vol. 54, No. 25 / September 1 2015 / Applied Optics Research Article



modulating the phase by N steps of 2π∕N radians. For in-
stance, N � 2 denotes a modulation of the phase in two types
of zones by introducing phase shifts of π radians, leading to an
effective focal shift with an increased NA, although exhibiting
significant sidelobes. Provided thatN � 4, which is carried out
using four elements with different refractive indices, the result-
ant wave field is certainly interchangeable to the optimized de-
sign (N → ∞), as illustrated in Fig. 5.

For the design of the ultrathin metasurface, where d ≪ λ,
we will utilize N types of (meta)materials exhibiting indices of
refraction of ni � n0 � iλ∕�Nd �, where i is an integer ranging
from 0 to N − 1 and n0 is an arbitrary value for the index of
refraction. This procedure requires sharp tunability and a broad
range of refractive indices, which has been used elsewhere [18].
An extremely high index of refraction can be obtained by using
MI metamaterials, including metallic nanospheres [19] and
nanolayers [20]. In our case, we consider gold nanogratings
of adjustable metal filling factors f i � wi∕Λi, where wi is
the width of the Au layer and Λi is the period of the grating
(see Fig. 6). Specifically, we assume that w0 � 0 so that n0 re-
fers to the refractive index of the bulk insulator. Assuming that
propagation is carried out along the MI layers, the optical path
gained by the transmitted field is nid , where

ni � Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵd ϵm

ϵd f i � ϵm�1 − f i�
r

(7)

is the “extraordinary” refractive index of the effective uniaxial
nanostructure [21], and ϵm and ϵd are the permittivities of the
metal and insulator (we chose silicon) hosting the gold nano-
layers, respectively. At λ � 800 nm, we considered ϵm �
−23.36� i0.77 for gold [22] and ϵd � 13.64 for silicon.
Assuming a discrete number of π∕2 dephases (N � 4) and
a metasurface width of d � 100 nm, we may infer that a se-
quence of f � 0, 0.37, 0.49, and 0.54 provides changes of two
units (n0 � 3.69) in the effective index of refraction,
ni − ni−1 � 2, as required.

A more accurate design may be performed by using the pro-
cedure given in Ref. [18], which is based on Floquet theory. In
this case, we solved the Bloch equation for TM-polarized
modes propagating with zero Bloch pseudomomentum in order
to obtain the effective index for each Au-grating configuration.
In Fig. 7, we show the index of refraction obtained from Eq. (7)
based on the long-wavelength approximation (LWA) and that
estimated from the Bloch equation for an Au–Si nanostructure
assuming that the width of the silicon layer is kept fixed as

15 nm. The Bloch approach deviates from the LWA if the
widths of the Au layers reach and surpass the penetration depth
of the metal [23]. The origin of this nonlocal effect in MI sub-
wavelength gratings lies in a strong variation of the fields on the
scale of a single layer [24]. In addition, homogenization of the
MI nanostructure precludes the existence of gap surface plas-
mon polariton modes for large metal filling factors; there we
may consider that the thin Si layer is sandwiched between
two Au surfaces (with metal extending indefinitely on both
sides of the layer) [25]. We found three periodic Au–Si
compounds with prescribed effective indices of refraction,
which are characterized by the following geometrical parame-
ters: �w1;Λ1� � �9; 24� nm, �w2;Λ2� � �15; 30� nm, and
�w3;Λ3� � �20; 35� nm; again n0 � 3.69 takes into account
bulk silicon as a reference material. Note that the sequence of
Au filling factors, f � 0, 0.38, 0.50, and 0.57, is in good
agreement with the estimation given above based on the LWA.

Next we apply the three designed metamaterials of effective
refractive indices of ni � ni−1 � 2 (approximately, where
i � 1; 2; 3) and silicon to arrange an ultrathin curved metasur-
face of 4 μm inner radius and a width of d � 100 nm. The
assembly of Au–Si multilayers is engineered to create a phase
modulation over the impinging converging wave following the
function exp��−ikL�θ���, sampled for N � 4 steps, in the way
we have illustrated in Fig. 5. A modulation in transmissivity
also occurs due to successive reflections and refractions in
the entrance and exit sides of the metasurface, and to a lesser
extent due to metal losses. For instance, the modulus of the
transmission factor T for pure Si gives 0.93, whereas for the
subwavelength gratings it reaches 0.33, 0.61, and 0.13, set
in order of increasing metal filling factor. The intensity jH �r�j2
of the molded focal wave is calculated using COMSOL
Multiphysics, as shown in Fig. 8. Apart from some non-
negligible sidelobes, we achieve a super-resolved focal spot with
reduced FWHM both laterally and on axis. Specifically, the
on-axis FWHM decreases to 1.2 μm, taking into account that
the unshaped converging field produces a central peak with a
2.4 μm on-axis FWHM. Ultimately, we point out that in the
optimal case of applying nonabsorbing materials of refractive

Fig. 6. Scheme of the preformed flat metasurface showing a basic
arrangement of a bulk insulator and N − 1 � 3 metallic gratings.
Neighboring elementary gratings of periods Λi and Λi�1 will induce
a dephase of π∕2 radians. For the sake of clarity, we show the basic
nanostructured arrangement in a planar geometry.

Fig. 7. Effective index of refraction of the Au–Si nanostructure
based on the LWA (black solid line), that is, Eq. (7), and also evaluated
by means of the Bloch equation (blue solid line) assuming that the
width of the silicon layer is 15 nm.
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indices ni, an increase of 26% in the in-focus intensity is
achievable.

The behavior of our curved metasurface differs substantially
if the incident focused beam is transverse-electric (TE)-polar-
ized, that is, provided the electric field may be expressed as
E � E�x; z� exp�−iωt�ŷ. Figure 9(a) shows the intensity
jE�r�j2 of the scattered field, which evidences a strong blurring
of the focal spot. In this case, the wave field propagating in each
metallic grating behaves like ordinary waves (o waves) in an ef-
fective uniaxial crystal of transverse (with respect to the optic
axis) dielectric constant [26]

ϵ⊥i � f iϵm � �1 − f i�ϵd : (8)

Note that the circular symmetry of the nanostructure leads
to an inhomogeneous distribution of the optic axis, which in
addition is set perpendicular to the propagation direction of the
impinging wave field. In Fig. 9(b), we represent the modal
indices of TE Bloch waves propagating along the MI layers,
indicating high agreement with the LWA. The modal indices
in the gratings of metal widths �w1; w2; w3� are (0.365, 0.087,
0.079) respectively, much lower than the refraction index of
silicon. In practical terms, the phase distribution at the exit

surface is binary instead of quaternary. Moreover, increasing the
metal filling factor leads to a notable decrease of the transmitted
intensity, attributed to the fact that in these cases the MI lattice
behaves like an opaque metal. As a result, the MI metasurface
causes a serious disturbance of the complex amplitude, leading
to a divergent scattered field. We point out that the examina-
tion of the polarization dependence has been carried out
previously in closely related works [27].

Finally, we analyze the behavior of the engineered metasur-
face for TM-polarized waves with wavelengths in the vicinity of
λ � 800 nm. For decreasing wavelengths, the field transmitted
through the multigrating device has an averaged lower intensity,
which is mainly caused by interband absorption in gold. Such
reduced transmissivity is illustrated in Fig. 10(a) for λ �
700 nm where Au permittivity is set as ϵm � −15.78�
i0.66 [22]. In these cases, metallic materials with lower loss like
silver can be used, instead [28]. In addition, some spurious
spots appear off axis and a ring-shaped caustic curve is evident,
which are induced by a major departure from the designed
phase-only term T �θ� given in Eq. (3). On the other hand,
higher wavelengths reveal a more solid resistance to the rise
of aberration-driven sidelobes in the focal region, as shown
in Fig. 10(b) for λ � 900 nm. In the latter case, the size of
the spot set at F 0 yields 0.99 μm on axis. It is noteworthy that
the metasurface cannot fully remove the diffracted field of the
incident converging field at the focal point F .

4. CONCLUSIONS

We have designed a curved metasurface for high-NA beam
shaping. By using ultrahigh-refraction-index MI gratings, we
have a controlled dephase of the TM-polarized transmitted
wave field, modifying the curvature of the exit wavefront. The
resultant increased NA demonstrates a limited gain in the trans-
verse resolution and an exceptional super-resolution effect on
axis. Finally, from a technological point of view, it is important
to emphasize that the fabrication of the grating-based configu-
ration does not present limitations since the silver and silica
layer deposition by e-beam evaporation is a practicable pro-
cedure. In relation to the curved shape of the metamaterial,
in addition, we point out that analogous schemes with exper-
imental evidence have been reported elsewhere [29,30]. Our

Fig. 8. Numerical simulation based on the finite-element method
of the intensity jH�r�j2 in the focal region of the converging field
shaped by the Au–Si curved metasurface. Excitation is performed
by a cylindrical SC with super-Gaussian apodization (Ω � 45°), in
the same way as shown in Fig. 4(a). The inset on the left shows
the composition of layers in detail; the on-axis intensity in the focal
region is depicted in the inset on the right.

(a) (b)

Fig. 9. (a) Intensity jE�r�j2 of the scattered field for TE polariza-
tion. (b) Effective indices for TE-polarized waves propagating through
MI lattices of different Au filling factors. The index of refraction
derived from the LWA is included.

(a) (b)

Fig. 10. Normalized intensity jH�r�j2 in the focal region of
TM-polarized converging fields of wavelengths (a) λ � 700 nm and
(b) λ � 900 nm shaped by the engineered Au–Si curved metasurface.
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results may be of relevance in optical microscopy and
nanolithography.
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We design plano–concave silicon lenses with coupled gradient-index plasmonic metacoatings for ultrawide
apertured focusing utilizing a reduced region of ∼20λ2. The anomalous refraction induced in the planar input
side of the lens and in the boundary of the wavelength-scale focal region boosts the curvature of the emerging
wavefront, thus significantly enhancing the resolution of the tightly focused optical wave. The formation of a
light tongue with dimensions approaching those of the concave opening is here evidenced. This scheme is expected
to have potential applications in optical trapping and detection. © 2016 Optical Society of America
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1. INTRODUCTION

Tight focusing of electromagnetic waves is essential to a myriad
of applications, such as photolithography and optical trapping,
typically using dielectric thick lenses of high numerical aperture
(NA). However, the unceasing miniaturization and integrabil-
ity of photonic devices imposes severe restrictions on the
implementation of such sorts of bulky pieces. In this context,
concave positive lenses composed of meta-atoms to change the
sign of its macroscopic refractive index might be incorporated
in high-NA focusing platforms within a reduced region [1–4].
Epsilon-near-zero plano–concave lenses also prove a good per-
formance prompted by the phenomenon of energy squeezing
[5,6]. In particular, such architectures cannot operate at optical
frequencies mainly due to material losses and demanding fab-
rication challenges.

Advances in current techniques for nanofabrication, some of
them based on plasmonics, have opened new prospects for pro-
ducing compact, planar focusing systems. Plasmonic flat lenses
enabling a plane-wave efficient shaping into an output converg-
ing wavefront within a subwavelength interaction space have
been developed using arrays of nanoholes [7,8], nanoslits
[9,10], nanoparticles [11,12], corrugations [13], and nanoan-
tennas [14,15]. In the previous examples, the mechanism set
behind the control of the scattered light relies on the suitable
spatial distribution of engineered, subwavelength phase shifters
included on the active surface [16]. Therefore, a critical design

aspect of the focusing device is the choice of the elementary
scatterers for obtaining the required phase distribution.

In the so-called metasurfaces, Mie resonances lead to con-
trollable phase discontinuities, which are applied to adminis-
trate the beam shaping [15]. Alternatively, the phase of the
electromagnetic field may change after passing through a sub-
wavelength metal–dielectric structure on the basis of a modal
coupling to the external radiation. Such a phenomenon is suit-
ably explained in terms of an effective refractive index, and can
be achieved with extremely high performance in transmission
[17]. For instance, a set of metallic slits with controllable width
can locally tune the effective index of refraction of the guided
plasmonic modes [18]. These sorts of ultrathin nanostructures
are here coined as graded-index metacoatings.

Flat metalenses offer some advantages accessibly to manufac-
ture and integrate in complex devices; however, they suffer from
severe geometrical restrictions to attain extremely high numeri-
cal apertures [19,20]. An alternative design relies on sculpturing
a concave surface. In such a manner an aplanatic metasurface
patterned on a spherical substrate has been proposed to focus
light without coma and spherical aberrations [21]. The concept
of metamaterials with engineered dispersion in curvilinear
coordinates, with coaxial and concentric geometries, has been
extensively exploited, for instance, in hyperlensing [22–24]

Previously we presented a design of nonplanar metacoatings
composed of subwavelength metal–dielectric arrays to
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accelerate optical waves in the near field [25–27]. These nano-
structures allow us to grade ultrahigh indices of refraction
together with high transmissivity, demonstrating controllable
phase and amplitude responses over subwavelength propaga-
tion ranges for TM-polarized waves. Here, we utilize such a
basic concept to engineer gradient-index ultrathin coatings,
in a parallelizable assembly, as focusing elements with high
efficiency. In fact, advantages of cascading a set of metasurfaces
have been previously reported, for instance, as a polarization
rotator [28], as an efficient cylindrical-vector-vortex beam
generator [29], and as a polarization-controlled lens [30].
Conveniently implemented over the two sides of a plano–
concave (divergent) dielectric microlens, we achieve miniatur-
ized lenses with aberration-free high-numerical-aperture
focalization.

2. LENS DESIGN

The medullary component of our focusing device is a bulky
dielectric lens, which, without loss of generality, we consider
as immersed in air. Light impinges over the flat surface of
the lens, and the exit spherical surface has a short radius
R > 0, whose center is set at a given point C , as depicted
in Fig. 1. Here we consider that R remains in the scale of
the wavelength, although our approach is not strictly restricted
to such a regime. Under certain circumstances, this arrange-
ment enables a high-aperture focusing of light emerging from

the concave surface of the lens. From the geometrical point of
view, the optical power is carried by the second surface of the
thick lens characterized by a paraxial focal length,

f � R
1 − n

; (1)

where n denotes the refractive index of the lens. If n > 1 as
occurs in natural dielectric materials, the lens is divergent with
negative focal length, f < 0, disabling to focus light behind the
concave surface, as illustrated in Fig. 1(a). Therefore, focusing is
only available with a refractive index below the unity, which can
be achieved by using metamaterials [6]. In the specific case of
epsilon-near-zero metamaterials, setting n � 0, light is focused
at the center of curvature of the concave exit surface, as shown
in Fig. 1(b) [5]. This arrangement has recently been demon-
strated experimentally in microwave frequencies and presents
fascinating characteristics, such as reduced aberrations in con-
figurations with numerical apertures close to unity [31]. An
increased numerical aperture might be achieved by means of
negative-index plano–concave lenses, as shown in Fig. 1(c).
However, thick negative-index metamaterials in the near-
infrared and visible frequency range exhibit a deficient
performance mainly due to material Ohmic losses and inhomo-
geneities scattering.

Our approach is based on a transparent dielectric thick lens
coated by graded-index ultrathin metasurfaces, as illustrated in
Fig. 1(d). Therefore, material losses have a reduced impact in
the lens performance. The coated metasurfaces, here coined
metacoatings, are designed to compensate the negative optical
power of the plano–concave dielectric lens. We propose a first
metacoating set on the entrance flat surface to transform the
incident plane wave into a spherical wave of center at F ,
coinciding with the center of curvature C of the concave surface
in the lens. Such appropriate configuration reduces losses de-
rived by reflections in the curved interface, and establishes a
first numerical aperture in terms of the beam angle Ω. In order
to even further increase the numerical aperture of the lens, a
second metacoating is placed in the concave surface. A con-
trolled focal shift a < R leads to a magnified far-field angle
of the resulting converging wave [32]. As a result, the transmit-
ted wave field will focus at F 0 by free-space propagation, char-
acterized by a numerical aperture NA 0 � sin�Ω 0�. Assuming
that the focal point F 0 of the coupled metacoating thick lens
is located closer to the concave surface than F , that is,
a � FF 0 > 0, the numerical aperture

NA 0 � NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �a∕R�2 − 2�a∕R� cos Ω

p (2)

is also higher than the numerical aperture NA � sin Ω of the
single-coated lens [32]. SpecificallyNA 0 reaches the unity when
a � R cos Ω. Note that the transverse and on-axis resolutions
are dependent on the overall numerical aperture of the focusing
lens. In particular, this procedure leads to a critically improved
axial resolution, which is determined by the inverse squared of
the value of NA 0.

Next we design the gradient-index metasurfaces, which are
overlaid on the lens surfaces, taking over the wavefront man-
agement of the incident plane wave. Without loss of generality,

(a) (b)

(c) (d)

Fig. 1. Schematics based on optical rays of the focusing action of
plano–concave dielectric lenses. (a) Transparent dielectrics with an in-
dex of refraction higher than unity lead to a diverging configuration.
(b) An epsilon-near-zero metamaterial enables us to focus light at the
center of curvature of the concave surface. (c) An increased numerical
aperture is attained by using negative-index metamaterials. (d) Our
proposal based on coupled metacoatings set at the entrance and exit
surfaces of a transparent dielectric thick lens. A focused beam of semi-
aperture angle Ω will be generated by passing through the gradient-
index flat metasurface. The converging wave field propagating inside
the lens will be refocused at F 0 by means of the active curved meta-
coating, having an increased semiaperture angle Ω 0.
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we will consider cylindrical lenses enabling a description of the
problem in two dimensions. Note that the dielectric material of
the thick lens having a refractive index n has a minor signifi-
cance in the functioning of the focusing device. Following the
Fermat’s principle by evaluating equal optical path lengths, a
normally incident plane wave passing through the first flat
metacoating will be focused at the point F , found at a distance
f 1 and transversally centered at y � 0, provided that the phase
shift produced by the gradient-index metasurface yields

ϕ1�y� � ϕ1�0� � nk
�
f 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � f 2

1

q �
; (3)

where k � 2π∕λ is the wavenumber in vacuum, ϕ1�0� is an
arbitrary phase, and y is the transverse coordinate indicating
the distance from the optical axis. Assuming an ultrathin
metacoating of width d , the gradient index is then given by
n1�y� � ϕ1�y�∕kd . Of course, this approach disregards multi-
ple reflections produced at the metacoating facets, and a more
rigorous treatment will be implemented below.

As mentioned above, the cylindrical metacoating set at the
back of the thick lens has a center of curvature C that is located
exactly at the focal point F . Note that the constraint R < f 1

must be considered, where f 1 − R stands for the vertex distance
of the plano–concave lens. Therefore the wavefront of the im-
pinging field remains concentric to the concave metacoating
arriving at normal incidence. The induced phase shift on such
a metasurface will reshape the incident wavefront by increasing
its curvature. The field emerging from the nanolens then prop-
agates in free space to focus at the point F 0 that is shifted a
length a toward the rear metacoating. The dephase induced
by the cylindrical metasurface is [32]

ϕ2�θ� � ϕ2�0� � k
h
�R − a� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2 − 2aR cos θ

p i
; (4)

where ϕ2�0� is again an arbitrary phase term, and θ is the
azimuthal coordinate as measured from C and determining
the angle from the optical axis. In practical terms, ϕ2 will
be operative in the range jθj ≤ Ω. If the width of the back
metacoating is again d , the gradient index is now given
by n2�θ� � ϕ2�θ�∕kd.

To illustrate the impact of ideal metacoatings, Fig. 2(a)
shows the intensity distribution of the magnetic field, jH j2,
produced by a nonuniform magnetic surface current set on
the front lens facet and having a phase distribution governed
by the expression given in Eq. (3). The numerical simulations
are calculated for a silicon plano–concave nanolens (n � 3.69)
of radius R � 3 μm at a wavelength λ � 800 nm by using
COMSOLMultiphysics, which is a finite element analysis soft-
ware environment for modeling and simulation of electromag-
netic systems. In Fig. 2(a), the length of the surface current
is 8 μm, and it is designed to focus light at a distance
f 1 � 3.2 μm. In this way we generate a focused field around
the center of curvature C with semiaperture angle Ω � 51.3°.
The effect of the back metacoating on the nanolens focal field is
simulated in Fig. 2(b), where we introduce a cylindrical surface
current of curvature center set at C and with semiaperture angle
Ω. Additionally, a phase distribution of the surface current
following Eq. (4), for a focal shift a � 1.5 μm, is implemented

in the numerical simulation. It is evident that the shaped focal
field is axially shifted from C to the focal point F 0. In addition,
an increased semiangular aperture Ω 0 � 81.3°, which is esti-
mated with Eq. (2), will also make the numerical aperture
NA 0 grow accordingly. Moreover, the enlarged numerical aper-
ture leads to a resolution improvement in terms of the full
width at half-maximum (FWHM) of the intensity, as measured
along the x-axis, which is reduced from 1.5 to 0.76 μm, as
shown in Fig. 2(c). Finally, the transverse resolution experiences
a negligible improvement of 20 nm (the FWHM yields
0.40 μm with the back phased current), as evidenced in
Fig. 2(d), due to its proximity to the diffraction limit.

3. ULTRATHIN GRADED-INDEX METACOATINGS

Next we proceed to design ultrathin metacoatings for the
proper generation of the phase distribution ϕ1�y� and
ϕ2�θ�, given in Eqs. (3) and (4), respectively, all along the front
surface and back surface of the plano–concave lens. A great
variety of strategies can be found in the literature for such a
purpose, for instance gradient metasurfaces utilizing the
Pancharatnam–Berry phase elements [33,34], which in addi-
tion can provide a good efficiency. However, plano–concave
cylindrical lenses may benefit from simplicity in the fabrication
of the active metacoating if, for instance, their elementary
units should not be patterned along the cylinder axis.
A subwavelength metallic film of thickness d ≪ λ including

Fig. 2. (a) Intensity distribution jH j2 generated by a nonuniform
surface current with modulated phase distribution given by Eq. (3) and
set at the front surface of a plano–concave Si lens (sketched in white
solid line), mimicking the effect of the designer metacoating. In (b) we
set the surface current with phase distribution given by Eq. (4) at the
back surface of the Si lens. Normalized intensity of the magnetic field
in the focal volume of the flat (cylindrical) surface current, represented
in green solid lines (red dashed lines) as measured along (c) the x-axis
and (d) the y-axis. On-axis resolution critically improves with an active
cylindrical surface while transverse resolution does not change
significantly.
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nanoslits with controlled width proved to be good candidates
for a tunable phase manipulation not only for spherical wave-
fronts [32] but also to accelerate focal beams and to create light
capsules [25–27]. The resulting metacoating can be considered
as a graded-index uniaxial metamaterial by simply altering the
metal filling fraction f � wm∕�wm � wd � along the corre-
sponding spatial coordinates, y and θ, where wd and wm stand
for the width of the slit and the metallic segment, respectively.
Assuming that wm remains below the penetration depth of the
wave field inside the metal, the periodic array of metallic slits
with nanoscale size optically behaves like an effective uniaxial
crystal [35,36]. When light passes through the metallic slits,
coupled surface plasmons are excited enabling wave propaga-
tion with characteristic propagation constant. In these circum-
stances, the multilayered metal–dielectric material behaves
like a semitransparent effective medium exhibiting extreme
anisotropy. Assuming that the incident plane wave is polarized
perpendicularly to the nanoslits, the effective index of refraction
of such metallodielectric metamaterial is approximately esti-
mated as [37]

neff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵd ϵm
f ϵd � �1 − f �ϵm

r
; (5)

where ϵm and ϵd denote the relative permittivities of the metal
and the medium in the slits, respectively.

As illustration, we show in Fig. 3 the effective index of
refraction evaluated for a gold metamaterial patterned by a
uniform distribution of nanoslits of constant thickness,
wd � 15 nm. For a convenient design of the metamaterial,
we consider that the nanoslits are filled with silicon, a material
that is also employed for the bulky plano–concave lens.
Alternatively, one might propose a holey metacoating where
the metallic slits are filled with air, but its lower index of re-
fraction in comparison with Si critically limits the range of
practical neff . At a wavelength λ � 800 nm we set ϵm �
−23.36� i0.77 for Au and ϵd � 13.64 (� n2) for Si. An in-
creasing metal filling fraction enables us to establish an ultra-
high effective index neff that surpasses the refractive index of
silicon. However, this is attained at the cost of growing
Ohmic losses. For instance, a wave field propagating in an
all-dielectric medium will gain a phase shift of π∕2 rad if,
instead, the material now includes metallic components of

wm � 8.7 nm (Re�neff � � 5.69 � n� λ∕4d ), assuming a
propagation length as short as d � 100 nm. Incremental phase
shifts of π∕2 rad can be obtained with Au elements of wm �
14.2 nm and wm � 17.7 nm, providing effective indices
Re�neff � � 7.69 and Re�neff � � 9.69, respectively.

Note that the giant modulation of the effective index of re-
fraction of our nanogratings cannot be experienced by plane
waves with TE polarization. In this case, the electric field is
set along the nanoslits, and the real part of neff decreases when
the metal filling factor grows [26,32]. For wm higher than
9 nm, the multilayered metamaterial behaves like a metal with
Re�neff � ≈ 0 and increasing Im�neff �. As a consequence, the
designed metacoating is highly sensitive to the polarization
of the incident light, and can only be used for TM-polarized
incoming light.

The estimation of such rapidly evolving phase shifts reached
by wave fields in our Au-Si metamaterials is only approximate
and more accurate evaluations are required to take into ac-
count, for instance, nonlocal effects [38], setting some bounds
in the homogenization of the metallodielectric medium, and
also cavity resonances derived from multiple reflections in
the metacoating interfaces [37], as we will detail below.
Figure 4 shows the phase shift gained by a TM-polarized plane

Fig. 3. Effective index of refraction evaluated with Eq. (5) for a
gold-silicon periodic medium at a wavelength of λ � 800 nm.
Silicon layers are set with a fixed width wd � 15 nm. The metal filling
fraction is governed by the Au films width wm.

Fig. 4. Phase shift gained by a TM-polarized plane wave traversing
through an Au-Si metacoating of thickness d � 100 nm, as set in an
air/silicon plane interface. For simplicity, we represent the phase shift
in an interval ranging from −π to π. The slit width of the periodic
nanostructure is fixed at wd � 15 nm and we vary the metal width
wm. In (a) the beam impinges from air, and in (b) from silicon.
The red dashed line establishes the phase shift measured for an all-
dielectric coating (wm � 0). Red squares illustrate that metamaterials
with wm � 9, 15, and 23 nm producing incremental phase shifts of
approximately π∕2 rad with respect to a nonconducting film.
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wave field of λ � 800 nm after passing through a gold film of
width d � 100 nm including Si-filled nanoslits of thickness
wd � 15 nm. The numerical simulations are again performed
with COMSOL Multiphysics, which confirm (not shown in
the figure) that the phase shift gained by the incident wave field
is approximately proportional to the real part of neff as evalu-
ated by Eq. (5), at least for metacoatings of moderate and low
filling fraction where wm remains below 15 nm. Figure 4(a)
refers to the phase behavior of a nanopatterned film when a
beam impinges from air and propagates in Si after passing
through such an ultrathin device, as occurring in the front
metacoating of a plano–concave lens. The simulations repro-
ducing the conditions of the metacoating at the back of the
plano–concave lens are depicted in Fig. 4(b). Note that for
a high metal filling fraction, we found that Eq. (5) overesti-
mates the effective index of refraction of the metal–dielectric
metamaterial. Nevertheless, we verify from our results (not
entirely shown in the figure) that changing the parameter
wm, which determines the metal filling fraction of the nano-
structure, enables a phase detuning of the transmitted optical
signal within the required range of 2π rad.

Cavity resonances produced in the metacoating may lead to
enhanced losses set in addition to Ohmic losses which are nat-
urally present in the metal. This effect is illustrated in Fig. 5,
where we evaluate the transmittance (also reflectance and
absorptance) of our metacoatings of width d � 100 nm and
nanoslit thickness wd � 15 nm, employing our numerical
solver based on the finite element method (FEM). Figure 5
evidences the relevance of absorption in the metamaterial for
certain values of wm and also the loss of transmitted intensity
driven by reflections. Furthermore, nanostructures with values
of wm higher than 25 nm are opaque in practical terms, a length
which roughly represents the penetration depth in the metal.
We point out that surface plasmon resonances enabling extraor-
dinary optical transmission, which is caused by the periodicity
of the metallic nanostructure, are negligible in our case due to
the deep subwavelength scale of Λ � wm � wd [39]. Now it is
evident that a spatial modulation of the metal filling fraction
in the metacoating leads not only to a graded-index neff , which
modifies the phase of the transmitted field, but also contributes
to the formation of gray zones where the intensity of the field
can drop severely.

On the other hand, we may analytically estimate the ampli-
tude and the phase transformation undergone by the scattered
(magnetic) field after passing through the metallodielectric
nanostructured film, by introducing the zero-order transmis-
sion amplitude: [37]

t � τ12τ23 exp�ikneffd �
1 − ρ21ρ23 exp�2ikneff d �

: (6)

Here, τ12 and τ23 are transmission coefficients at the front and
back surface of the metacoating, respectively; ρ21 and ρ23 are
reflection coefficients at the two ends of the nanostructure,
in all cases containing both magnitude and phase. These
coefficients are evaluated using ταβ � nβ∕�nα � nβ� and
ραβ � ταβ − 1, where n2 � neff . Transmittance is simply
computed as T � jtj2�n1∕n3�. Then our metamaterial reaches
its optimal transmittance when arg�ρ21ρ23� � 2kd Re�neff �

satisfies the resonance condition reaching an entire multiple
of 2π rad.

From the analysis given above, it is apparent that an
optimized response of the nanogratings in terms of the trans-
mission efficiency might be achieved provided that the width of
the Si layers in the multilayered nanostructure is not fixed but it
can also vary appropriately. Nevertheless, further restrictions
derived from fabrication tolerances in current nanotechnology
support us to disregard narrower Si layers, enabling metamate-
rials with ultrahigh effective index of refraction, and also
thinner metacoatings.

At this point we are in a position with the above-given analy-
sis to design the elements of our graded-index metacoatings.
From a practical point of view, it is appropriate to perform
a discrete phase shift rather than to apply a continuous modu-
lation of the incident wavefront. In this case, a finite number of
metal–dielectric nanostructures are necessary to obtain the
outlined phase range. In particular, we provide four periodic
metallodielectric nanostructures producing incremental phase
shifts of π∕2 rad, which has been proved to yield a satisfactory
beam shaping [26]. We first consider an all-dielectric film
(wm � 0), which demonstrates an optimal transmittance. In
agreement with the results shown in Fig. 4, the remaining three
Au-Si slit composites with prescribed dephases of π∕2 rad are

Fig. 5. Transmittance (T), reflectance (R), and absorptance (A) cal-
culated for Au-Si metacoatings as described in Fig. 4, varying the width
wm of the metallic wires. The beam impinges from (a) air and from
(b) Si.
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then identified by wm � 9; 15; 23 nm, respectively, when the
silicon layer width is kept fixed as wd � 15 nm. These values
are highlighted in red squares in Fig. 4. It is worth noting that
current technology allows us to assemble ultrathin, uniformly
continuous metallic films of thicknesses of only 5 nm with re-
duced surface roughness of around 0.2 nm [40]. As a conse-
quence, the values of wm are here set as an integer in units
of nanometers, and therefore the phase shift produced by these
four elements of the graded-index metacoating are not exactly
π∕2 rad; nevertheless, the produced deviation is small enough
to be neglected.

Finally, we show the performance of our metallic gratings
with different values of d . In Fig. 6 we illustrate the
high-to-moderate transparency of gratings with wm �
9; 15; 23 nm and lengths d ranging from 100 to 400 nm.
As expected, Fabry–Perot resonances with a periodic behavior
governed by the effective index of refraction are responsible for
the sinusoidal modulation of the transmitted field. Specifically,
here we verify that Eq. (5) clearly overestimates neff in the case
of wm � 23 nm. Finally, we recognize that our approach does
not permit an engineered phase modulation coinciding with
peak transmittances through the elements of the metacoating,
at least for short lengths d .

4. RESULTS AND DISCUSSION

Next we show some FEM-based numerical simulations to
illustrate the validity of our approach, which relies on the
use of coupled metacoatings set on the front and back surfaces
of a wavelength-scale plano–concave lens thus enabling a plane
wave to be tightly focused. As detailed above, the first meta-
coating is designed to convert a plane wavefront into a cylin-
drical wavefront that is concentric to the back surface at the
point C , and the second metasurface further increases the
angular aperture of the miniaturized lens. The metacoatings
are composed of four types of zones, three of them constituted
by metal–dielectric subwavelength gratings to induce con-
trolled phase shifts in multiples of π∕2 with respect to bulk
Si. We considered nanopatterned films of thickness d �
100 nm with slits of wd � 15 nm, arranged in arrays of period
Λ1 � 24 nm,Λ2 � 30 nm, and Λ3 � 38 nm. The phase pat-
tern of the transmitted fields, approaching the continuous dis-
tribution given in Eqs. (3) and (4), are symmetric with respect

to the center of each metacoating, and therefore the designed
metacoatings exhibit a mirror symmetry with respect to y � 0.

Figure 7(a) shows the refractive behavior of a bare Si plano–
concave lens of radius R � 3 μm and vertex distance of
200 nm when a TM-polarized plane wave is used with
λ � 800 nm. Note that the effective area of the thick lens in-
cluding the concave focal region is roughly Aeff � 2Rf 1, which
represents an extent of only 30λ2. In agreement with Fig. 1(a),
the beam spreads out by passing through the thick lens and it is
unable to focus light. Figure 7(b) shows the performance of the
same Si plano–concave lens but including a flat metacoating in
its front surface to focus the beam at a distance of 3.2 μm from
it, exactly at the center point C . In particular, the central
element of the metacoating (Si) has a semilength of 400 nm,
followed by a nanograting of period Λ3 and total length of
304 nm (eight periods), an elementary grating of period Λ2

and 210 nm length (seven periods), and a metal–dielectric peri-
odic nanostructure of period Λ1 and length of 192 nm (eight
periods); this sequence of elementary gratings is repeated
to gain the necessary phase shift ϕ1�y� given in Eq. (3).
Comparing with Fig. 2(a), one can realize that the result of
using elementary gratings to induce phase shifts of π∕2 rad
is in a good agreement with the optimal designer metacoating
producing a continuous phase distribution. Finally, we com-
bine the action of a flat metacoating and a cylindrical metacoat-
ing set simultaneously, as shown in Fig. 7(c), thus obtaining a
focal shift of a � 1.5 μm and consequently a superresolved fo-
cal spot. The arched metacoating has a central silicon piece of
apical semiangle 15°, assembled to a periodic nanostructure of
Au filling factor f � 0.61 and aperture angle Δθ � 11.7°

Fig. 6. Transmittance of metallic nanostructures with different Au
wire width wm as a function of thickness d of the metacoating,
calculated at a wavelength λ � 800 nm. Here we set wd � 15 nm.

Fig. 7. FEM-based numerical simulations showing the intensity of
the magnetic field when a monochromatic TM-polarized plane wave
passes through a Si plano–concave lens of radius R � 3 μm and vertex
distance of 200 nm: (a) without metacoatings, (b) including a single
metacoating set on the flat front surface, and (c) with coupled meta-
coatings lying on the front and back surfaces of the lens. (d) Close-up
of patterned Au nanoslit arrays in the flat (top) and concave (bottom)
surfaces of the Si lens.
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(16 periods), a cylindrical nanograting of f � 0.50 and angle
9.12° (15 periods), a curved metamaterial of f � 0.38 and
angular range of 7.9° (17 periods), and so on to achieve the
designed phase shift ϕ2�θ�. In particular, the on-axis
FWHM of the field intensity is decreased from 1.12 μm for
the case shown in Fig. 7(b) to 0.84 μm measured from
Fig. 7(c).

Here we point out that in spite of the low transmittance
experienced by the elementary grating with wm � 23 nm in
comparison with other metal–dielectric nanostructures, such
a phase shifter is still applicable. The modulation undergone
by the real amplitude of the scattered field has minimal effect
regarding the construction of the focused wave, which might
remind a Fresnel zone plate. It affects the energy efficiency
of the lens and perhaps in the emergence of sidelobes and sec-
ondary peaks. It can be seen by comparing the resulting focal
field in Fig. 2(b), where no amplitude modulation is applied,
and Fig. 7(c).

Note that the metacoatings used in Fig. 7 are engineered to
provide the maximum energy density at focus F 0, a condition
that is satisfied when the metal–dielectric gratings are symmet-
rically set off-axis. In this case, the central zone around y � 0
shaping a major energy flux of the resultant focused field
presents reduced losses derived by reflection and absorption,
as shown in Fig. 5. To illustrate such an effect, in Fig. 8 we
consider metacoatings whose central zone is formed by a
metal–dielectric grating of period Λ � 38 nm, which presents
dramatic losses due to its high metal filling factor. In order to
obtain the required phase shift described in Eqs. (3) and (4), the
distribution of elementary metallodielectric gratings should be

permuted accordingly. When such lossy nanostructure is set in
the central zone of the front metacoating and the back meta-
coating simultaneously, the plano–concave focusing lens is
essentially opaque, as shown in Fig. 8(a). The impact of setting
such lossy grating in the central zone is much notable on the
cylindrical back metacoating rather than in the flat front meta-
coating, as depicted in Figs. 8(b) and 8(c). In the latter case,
however, spurious spots appear in the focal volume, with special
relevance of that located at the central point C . Finally, the
noisy focal waves are clearly corrected when semitransparent
phase shifters are set in the central zone of the coupled
metacoatings, as shown in Fig. 8(d).

Our plano–concave lens with coupled metacoatings also
presents a favorable performance under oblique incident illu-
mination. For a comprehensive analysis of the refraction
(and reflection) phenomenon involved in the interaction of
monochromatic beams entering in metal–dielectric multilay-
ered metamaterials, see Ref. [41]. As shown in Fig. 9, the beam
is not focused at the focal point F 0 but the spot is laterally dis-
placed as long as the impinging plane wave is tilted for paraxial
angles ranging from θ � 5° to θ � 15°. The resulting focal
wave does not present a significant atrophy of the beam shape
and, consequently, the lateral and on-axis resolution remain
practically unaltered.

In specific applications, such as particle trapping and sens-
ing, it might be of interest to use high-numerical-aperture
plano–concave lenses in the scale of the wavelength where
R ≳ λ. In this case, the concave opening operates like an optical
mouth within which it is possible to observe the formation of a
focal wave in the form of a light tongue with appropriate dimen-
sions. Here we explore the behavior of our proposal as pushed
to such a limit. In Fig. 10 we show the intensity of a focused
wave field performed by a metacoated plano–concave lens of
inner radius R � 2 μm where the focal point shifted from
C a distance a � 1 μm, again using a working wavelength
of λ � 800 nm. Since f 1 is kept fixed for simplicity, the thick-
ness of the Si lens increased from 0.2 to 1.1 μm, which carries
no impact in the generation of the focal wave. Here the effective
area of the thick lens including the focal region decreases to
Aeff � 20λ2. As suggested above, an all-dielectric central zone
is used to maximize the energy efficiency of the focusing device.
The resultant focal spot again remains near the diffraction limit
without a significant distortion in comparison with a virtually
aberration-free focal wave. We may conclude that the reduction
of the lens radius can be proceeded in effect, however, limited
by diffraction.

0
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Fig. 8. Intensity distribution produced in the focal region of a Si
plano–concave lens including metacoatings with different arrange-
ments of elementary metal–dielectric gratings. (a) A metallic grating
of period Λ3 � 38 nm is used at the central zone of both metacoat-
ings. Alternatively, we use an all-dielectric central zone for one meta-
coating and a metallic grating of period Λ3 in the center of (b) the
cylindrical metacoating, and (c) the front flat metacoating. In
(d) we reproduce Fig. 7(c), where the central zone of both metacoat-
ings has no metallic components, but here using the same color map of
previous subfigures.

Fig. 9. Intensity distribution of focal waves produced by tilted
TM-polarized plane waves with angles (a) θ � 5°, (b) 10°, and
(c) 15°, all measured with respect to the optical axis y � 0.
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5. CONCLUSIONS

We designed cascaded metacoatings for the plano–concave sur-
faces of a wavelength-scale silicon lens to tightly focus light in
the interior of the hollow opening in the form of a light tongue,
which can shift laterally by controlling the tilt angle of the
incident plane wave. The gradient-index metacoatings are here
composed of a patterned gold film with engineered nanoslits,
thus offering reduced Ohmic losses and efficient coupling to
the exterior radiation. We point out that parallelization of
metacoatings and alternatively metasurfaces might be carried
out by means of auxiliary phase shifters like nanoholes and
nanoantennas. Furthermore, suitable designs for terahertz
and lower frequencies can also benefit from engineered meta-
materials with ultrahigh index of refraction [42–44]. Mid-IR
wavefront shaping can be carried out also using all-dielectric
subwavelength high-index-contrast gratings offering a low-loss
performance [45]. Finally, compact multifocal nanolenses
might be developed following, for instance, the procedure of
Refs. [46,47]. Implemented in a lenslet array, multifunctional
platforms might be conceived for potential applications in sens-
ing and optical trapping, where the light tongue is optically
activated.

Funding. Spanish Ministerio de Economía y
Competitividad (MINECO) (TEC2014-53727-C2-1-R).
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Abstract
We show that a wide-angle converging wave may be transformed into a shape-preserving
accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed
a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in
contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The
concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive
optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a
dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive
index of the metamaterial as it is arranged in controlled orientations. This light shaping process,
besides being of theoretical interest, is expected to open up a wide range of broadband
application possibilities.
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PACS numbers: 42.25.Fx, 42.79.Dj, 61.05.jm, 78.67.Pt

(Some figures may appear in colour only in the online journal)

1. Introduction

Controlling wave fields at the nanoscale has opened up a
vast range of novel phenomena that have been put to use in
applications requiring ultra-compact photonic devices.
Among these phenomena we find subwavelength imaging
[1], optical cloacking [2], surface enhanced spectroscopy
[3], and extraordinary optical transmission [4], to name a
few. All of them are unique in conducting extremely loca-
lized wave fields, becoming evanescent in free space. This
ability to govern a multichannel electromagnetic propaga-
tion within spaces below the wavelength allowed the design
of diffractive optical elements (DOEs) with elementary
scatterers being either optical antennas, plamonic/metallic
[5] or dielectric [6], corrugations [7] or nanoholes [8] with
resolutions near the diffraction limit. Filters for colour
printing [9, 10], polarization converters [11–13], lenses [14–
16], and axicons [17, 18], are some of the optical devices
that have benefited from this remarkable spatial
confinement.

In the majority of these plasmonic devices submitted to
date, the key proposal is the transformation of a plane wave
that, by passing through a flat DOE, becomes a structured
field with a tailored wavefront and polarization state. Notably,
more sophisticated designs with non-planar geometries allow
improved performance for the moulding of electromagnetic
waves [19–22]. Thus it has been possible the focusing of
wave fields with high numerical aperture, which results an
essential factor to achieve a tight location with sizes close to
the diffraction limit. Nevertheless, the control of monochro-
matic aberrations are inherently challenging in the near-field,
limiting the potential applications of these DOEs accordingly.

An alternate route not presented so far, to the knowledge
of the authors, may be found in the short conversion of a
given high-aperture aberration-free focused beam by means of
a DOE. However, if flat DOEs are employed in this case,
inadequate beam shaping might result induced by optical
aberrations [23, 24]. For this reason, a more advantageous
procedure implies the use of diffracting arrangements having
the same cylindrical or spherical symmetry of the impinging
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focused beam, the latter being precedently generated in the
far field.

Here we perform an exhaustive analysis of an optical
method preliminary reported in [25] to shape high-aperture
focal waves into diffraction-free nonparaxial beams with
extreme spatial acceleration. Such Airy beams [26] with
Bessel signature have been recently discussed in the literature,
both from theoretical premises [27–29] and also with
experimental evidences [30, 31]. This should not be under-
stood as a nondiffracting Bessel beam with asymmetric
transverse profile mimicking an Airy function recently ana-
lyzed in [32].

Let us point out that the controversial use of the term
acceleration has its genesis in the paper of Berry and Balazs
[33] where they illustrated the fact that an Airy wave packet,
which is solution to the Schrödinger equation, exhibits a
form-preserving probability density that continually accel-
erates, even though no force acts over the particles. Its optical
analog in terms of time-harmonic beams rather than wave
packets was first discussed in [34] keeping the original
depiction.

In this context we highlight some previous schemes for
generating Airy beams, which are based on the use of sub-
wavelength metallic gratings [35, 36]. Nevertheless, the
resulting nondiffracting beams exhibit moderate acceleration,
greatly limited by their unequivocal paraxiality.

This paper is structured as follows. Since the scattered
fields by the DOE are derived using the Debye diffraction
integral, the latter is introduced in the next section. In
section 3 we give a theoretical introduction to spatially
accelerated beams, with particular emphasis on those exhi-
biting Bessel signature. This analysis will include the
underlying mechanisms enabling the transformation of focal
waves to accelerate beams with incomplete circular trajec-
tories. In section 4 we will present a novel plasmonic
nanoelement for acceleration of cylindrical beams in the
vicinities of the focal region. The broadband response is also
shown in detail. Section 5 analyzes some practical limitations
of our proposals governed by the current nanotechnology, and
we introduce some promising alternatives providing satis-
factory results. Both dissipative effects and non-local effects
are investigated in detail. Finally, the main conclusions of our
study are outlined.

2. The Debye diffraction integral

In this section we will briefly consider the classical problem
of diffraction in relation with a monochromatic converging
wave that is diffracted by an aperture. Our purpose is to
establish some suitable conditions for the transformation of a
cylindrical wave into an accelerating beam. The schematic
arrangement is depicted in figure 1(a). For simplicity, we will
consider two-dimensional waves propagating in the zx plane,
and therefore the magnetic field z x tH( , , ) of a given trans-
verse-magnetic (TM) mode with time-domain frequency ω
can be set as ω−H z x t y( , ) exp( i ) ˆ , ŷ being the unitary vector
pointing along the y-axis. Note that the validity of our

approach is straightforwardly extended to transverse-electric
polarization by applying the duality theorem. Moreover,
although uncommonly, our full-wave electromagnetic analy-
sis is given in terms of the ‘scalar’ magnetic field H r( ) since
TM polarized waves enable to excite surface plasmon polar-
itons (SPPs) in metal–dielectric nanostructures, and thus to
shape a beam using an ultra-flat plasmon-based DOE. In
agreement with the diffraction theory of Debye, the wave field
in the focal region might be estimated by means of the fol-
lowing diffraction integral, namely [37, 38]

∫π
θ θ= −

π

π

−
⎡⎣ ⎤⎦( )H

kR
kR H kr q r( )

2 i
exp(i ) ( ) exp i ˆ · d , (1)S

where = z xr ( , ), R is the radius of the diffracted cylindrical
wave as taken over the reference cylinder (see figure 1(a)),

ω=k c is the wave number, and HS represents the magnetic
field over the same reference cylinder. Finally,

θ θ=q̂ (cos , sin ) is a unit vector pointing from the focus F in
the direction of a given point P on the wavefront.

For the sake of clarity, the scattered wave field θH ( )S ,
which emerges from the ultra-flat DOE of radius R as illu-
strated in figure 1(b), will be expressed by means of a real and
positive term, θA ( ), and a phase only term θwexp[i ( )], giving

θ θ θ=H A w( ) ( ) exp[i ( )]. (2)S

The apodization function θA ( ) takes into account the trun-
cation of the converging field after passing through the dif-
fracting optical element, and θw ( ) denotes deviations of the
wavefront of the converging field from the reference cylinder
representing monochromatic aberrations. In our case, the
designed θw ( ) will be induced by a DOE in order to shape an
aberration-free cylindrical wave. In our numerical simula-
tions, we will consider a super-Gaussian apodization function

Figure 1. (a) Schematic arrangement representing the diffracted
converging wave of focal point F as evaluated from the Debye
diffraction integral (1). The emerging wavefront propagates in the xz
plane and deviates from the reference cylinder by θw ( ). (b) A
focused beam of semi-aperture angle Ω will be diffracted by an
ultra-flat DOE set on the reference cylinder to induce a spatial
acceleration by means of a transferred spatial frequency ε′k sin , that
is also given by m R, where R is the reference cylinder radius (also
DOE radius). Wave localization will be observed along a caustic
curve of radius rm with center at focus F.
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rather than a customary flat-top profile, given by

θ θ Ω= −⎡⎣ ⎤⎦A A( ) exp ( ) , (3)0
6

of semi-aperture angle Ω, enabling to minimize edge effects.
We point out that the limits of integration in equation (1)
makes the Debye diffraction wave fields practically unaltered
for Ω π= and higher values.

Furthermore we may consider a series expansion of θw ( )
in the vicinity of θ = 0, a procedure that is commonly
assumed to be adequate primarily in the paraxial regime. If we
disregard defocusing and higher-order terms of the Taylor
expansion, we finally set θ θ=w m( ) , where we also
neglected a constant term that will not contribute significantly
in the diffraction integral (1). In fact, our DOE will be
engineered to shape the wavefront of a converging field fol-
lowing a simple linear dependence in the coordinate θ.
Importantly, such a phase-only beam shaping will be neces-
sarily performed over wide-angle converging waves, in con-
trast to the well-known method followed by Siviloglou et al
[26]. Otherwise the diffracted field would yield an aberration-
free off-axis focused beam, which is not spatially accelerated.

As a concluding remark, we make a further point of the
validity of our procedure, which is not limited to the near field
in agreement with the legitimacy of equation (1).

We point out that the parameter m governs the curvilinear
trajectory of the focused field around the geometrical focus F,
as depicted in figure 1(b). The converging wave locally car-
ries a transverse spatial frequency given by m R driving a
wavefront tilt with angular deviation ε′ over the reference
cylinder. In terms of optical rays, the resultant caustic curve
will have a radius ε= ′r R sin | |m . As a consequence we may
set =r m k| |m . Further agreement with diffraction patterns
will be seen below within the regime of validity of the Debye
formulation [37].

3. Focal waves with spatial acceleration

In figure 2 we show the field intensity H r| ( ) | 2 for a conver-
ging wave field of different semi-apertures Ω and values for
the parameter m at a wavelength λ = 632.8 nm. The values of
the intensity are normalized to a maximum of unity so that the

Figure 2. Intensity distribution H r| ( ) | 2 derived by the Debye diffraction integral (1) for different semi-apertures Ω and normalized radius m.
White cross indicates the focal point of the converging beam.
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resulting profile becomes independent of the radius R of the
cylindrical beam. We observe that the parameter m deter-
mines the distance from the geometrical focus F where the
beam is localized, leading to a controlled acceleration of the
focused beam. Before the beam spreads out, it takes a circular
trajectory whose radius may be roughly estimated as

=r m k| |m [29]. For instance, such radius for =m 4 yields
=r 403 nm4 , which is clearly subwavelength, however it is

duplicated for =m 8. As a consequence, the curvature
κ = r1 m of the trajectory governing the acceleration of the
beam is inversely proportional to the parameter m. On the
other hand, the length of such incomplete circular trajectory
may be estimated under a geometrical basis. In this approach,
the semi-aperture Ω governs the length Lm of the accelerating-
beam trajectory by means of the simple expression Ω=L rm m

[29].
Figure 3 illustrates the trajectories of different accel-

erating beams whose field intensity were previously shown in
figure 2. Every trajectory is determined by points of max-
imum intensity H r| ( ) | 2 by keeping fixed the polar angle α of
the position vector r. Note that such a procedure differs from
some other established ones where the intensity maximum is
measured at different planes normal to the z-axis [26]. Before
the wave packet is bent near the geometrical focus F, the
intensity maximum of the beam determining its trajectory
follows a linear equation. Subsequent to the accelerating
course in the focal region, the beam restores its straight tra-
jectory, however exhibiting a different slope. In agreement
with the previous geometrical analysis, Ω would determine
the angle between these two linear trajectories inherently
associated with the far field. However, we observe some
discrepancies, especially for the lowest values of the para-
meter m. For instance, the trajectory gyration is 94° (64°) at

=m 8 and Ω π= 2 (Ω π= 4). Another aperture-dependent
effect that is clearly seen in figure 3 is the position of the
trajectory vertex. For the particular case of =m 8 we observe
that the vertex is on the focal plane, =z 0, at μ=x 0.96 m
( μ=x 0.86 m) for Ω π= 2 (Ω π= 4). Finally note that the
incomplete circular trajectory is evident only for high angles
Ω, and that =r m k| |m predicts peak positions at radii slightly
shorter than those observed in figure 3. In summary, the
trajectory gyration decreases and its vertex shifts to the focal
point F as long as the semi-aperture angle Ω decreases. This

is in agreement with the fact that spatial acceleration ceases to
occur for a low-Ω distribution where the beam falls into a
rectangular symmetry [29, 39].

3.1. Bessel wave fields

Let us point out the existence of an analytical solution for the
Debye integral equation (1), in the terms analyzed here,
provided that Ω → ∞. In this case θ π⩽ →A A(| | ) 0, that is,
there is no truncation of the focal field, which in addition has
a plane-wave Fourier expansion with uniform angular dis-
tribution. In practical terms this occurs whenever Ω π> . If
we further assume that the normalized radius m is an integer,
the magnetic field in equation (1) finally yields

π α= − ++H A kR kR m J krr( ) ( i) 2 exp(i i ) ( ), (4)m
mB

1 2
0

where α is the angle of the vector r with respect to the
positive z-axis, and J ( · )m is the Bessel function of order m.
The intensity distribution of these Bessel wave fields with
different order m is shown in figure 2. Let us note that the
phase distribution measured along the circular caustic curve
of radius rm is given by the term α = ±m kl, where l denotes
the spatial coordinate α=l rm , and ± is determined by
σ = m m| |m ; this result indicates that the spatial frequency of
the accelerating beam along its caustic curve is k coinciding
with that of a plane wave in free space [40].

In the previously analyzed cases being Ω π< , where the
circular caustic curve is incomplete, the resultant accelerating
beam resembles a Bessel wave field at least in regions
neighboring such caustic curve. Explicitly, based on the
principle of stationary phase, one might estimate a distribu-
tion of the field α σ π= −( )H A H Ar r( ) 2 ( )m B 0, provided
that ≈ rr| | m [29]. This represents a sector Bessel wave field
centered on the positive (negative) x-axis for >m 0 ( <m 0).
For this reason, this sort of accelerating beams are also coined
incomplete Bessel beams [27].

We point out that the FWHM, measured along the x-axis,
of the high-numerical-aperture (Ω π= 2) focused beam that
is associated with =m 0 shown in figure 2 is equal to
234 nm, which is subwavelength (λ = 632.8 nm) and
approaching the diffraction limit. However, to generate an
accelerating beam the parameter m has to be increased
necessarily. This fact certainly leads to a wider main lobe.
Note that the FWHM of the main peak of this sort of accel-
erating beams is approximately given by the width of the
Bessel wave field driving its incomplete trajectory, which
roughly follows the relation [29]

λ= C mFWHM , (5)1 3

where =C 0.220. This is illustrated in figure 4, where the
asymptote set in solid red line and representing equation (5)
provides accurate results for >m 10. To serve as an example,
the FWHM of the main lobe for the incomplete Bessel wave
field (Ω π= 2) of order =m 30 is equal to 425 nm, however
it drops to 285 nm if =m 8 as depicted in figure 2. The
accelerating beams remain subwavelength for these two
values of m; however according to equation (5) one can
realize that further increments of the parameter m would lead

Figure 3. Trajectories for some of the wave fields whose intensity is
shown in figure 2.
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to beam widths surpassing λ. We finally conclude that gen-
eration of subwavelength accelerating beams is only possible
by using low order Bessel precursors.

4. Subwavelength DOEs for the acceleration of focal
waves

By simple inspection of figure 2, particularly for Ω π= 4,
one can realize that the role of the phase-only term θmexp (i )
appearing in the scattered wave field HS is functionally
identical to the phase term produced by a prism (also a blazed
grating) achieving a focal shift at m k( , 0). Although not
shown in figure 2, this is even more evident in the paraxial
regime, that is for Ω ≪ 1 [29]. Following this principle, an
engineered curvilinear caustic can be set up by the beam
emerging from a dynamic array of elementary DOEs, the
latter enabling to modify the effective refractive index of the
metamaterial and subsequently induce a given linear dephase
of the incident wave field as it is arranged in controlled
orientations. In case that the caustic curve exhibited a circular
symmetry, as in our case, the graded DOE naturally has an
annular shape.

Our purpose is the design of a nanostructured circular
DOE inducing of a dephase with linear variation in the azi-
muthal coordinate θ in a way that a convergent wave may be
transformed into an accelerating beam. Since this transfor-
mation is preferably carried out in regions of reduced size
typically of a few wavelengths, metallic nanoparticles are
excellent candidates demonstrating to mold light below the
wavelength. In addition, such DOE will be set in the vicinities
of the focal region leading to a near-field shaping. For sim-
plicity, we propose an optical system based on multilayer
metal–dielectric stacks [41, 42]. Differently from the ordinary
planar distribution, our nanostructure is arranged following a

circular pattern. We point out that analogous schemes have
been reported for hyperlensing [21, 43].

Let us first reveal a proof of concept of the underlying
beam shaping using graded DOEs with rectangular symmetry.
It is widely known that the periodic array of metallic slits with
nanoscale size optically behaves like an effective uniaxial
crystal [44–46]. When light passes through the metallic slits,
coupled surface plasmons are excited enabling propagation in
semi-transparent effective media exhibiting extreme aniso-
tropy. Under this long-wavelength regime, the dispersion
equation of TM-polarized waves propagating in a multi-
layered nanostructure composed of a metal and a dielectric of
relative electric permittivity ϵm and ϵd and deep-sub-
wavelength width wm and wd, respectively, is given by

ϵ ϵ
+ =⊥

⊥

k k
k , (6)

2 2
2

where ⊥k and k|| are the components of the wave vector
propagating along a perpendicular and parallel direction of
the layers, being the associated unit vectors θ⊥ˆ and θ̂||

respectively. Also the effective dielectric constant

ϵ ϵ θ θ ϵ θ θ= ⊗ + ⊗⊥ ⊥ ⊥¯ ˆ ˆ ˆ ˆ (7)

finally is given by [47]

ϵ ϵ ϵ= + −f f(1 ), (8)m d

ϵ
ϵ ϵ

ϵ ϵ
=

− +⊥
f f(1 )

, (9)m d

m d

where = +f w w w( )m m d is the metal filling factor. As a
result, it can be used to induce a controlled phase delay.

Let us consider a wave field propagating along the
metallic grating ( =⊥k 0), which evolves with a spatial fre-
quency (also known as propagation constant) =k n k|| B , and

ϵ= ⊥nB is the Bloch-mode refractive index. For the sake of
clarity material losses are neglected in section 4 thus ϵm, ϵd , ϵ⊥
and ϵ|| will be real permittivities. The wave field might
experience a linear dephase distribution provided the effective
refractive index

θ θ= +⊥ ⊥( )n n n (10)B 0 1

also varies linearly upon the transverse spatial coordinate θ⊥.
The above assumption is valid for a slowly-varying refractive
index, that is ≪n k| |1 . This effect can be achieved provided
that the metal filling factor also varies upon the transverse
spatial coordinate,

θ
ϵ ϵ θ

θ ϵ ϵ
=

− +

+ −
⊥

⊥

⊥

⎡⎣ ⎤⎦
( )

( )

( )
f

n n

n n ( )
, (11)

m d

d m

0 1
2

0 1
2

as can be seen inserting equation (11) into equation (9). In this
case, the effective permittivity ϵ θ⊥ ⊥( ) changes quadratically
in space and ϵ|| in equation (8) will also vary, as shown in
figure 5. In the latter figure we set ϵ = 1d for the dielectric and
ϵ = −10.77m for the metal (gold at λ = 632.8 nm and
neglecting losses [48]) composing the inhomogeneous
effective-uniaxial medium. In addition, the modal effective

Figure 4. Normalized FWHM of a Bessel wave field (Ω → ∞) as a
function of the normalized radius m. The circles denote results given
from numerical simulations, whereas the solid red line represents
equation (5).
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index nB is set to evolve linearly in θ⊥ with =n 20 and

μ= −n 0.5 m1
1. However, bearing in mind that ⩽ < ∞f f0 ,

this material processing can be achieved for θ μ⩾ −⊥ 2 m.
Note that if =f 0 then ϵ ϵ=⊥ d ; on the other hand

ϵ ϵ ϵ= − −∞f ( )m d m in the limit θ → ∞⊥ (that is ϵ → ∞⊥ ),
which satisfies <∞f 1; in our numerical example

=∞f 0.915.
To illustrate the scattering behaviour of such inhomo-

geneous uniaxial metamaterial, figure 6(a) depicts the trans-
mitted (and reflected) wave field of a collimated beam
impinging on a planar thin film of thickness =d 660 nm
made of such plasmonic crystal with optical parameters given
in figure 5. The numerical simulations were performed with a
commercially-available program (COMSOL Multiphysics)
based on the finite element method (FEM). Furthermore, a
TM-polarized plane wave (λ = 632.8 nm) that is excited by a
surface current is incident onto the left side of the nano-slit
arrangement to prove the homogenized metamaterial. Per-
fectly matched layers were added to simulate electromagnetic
waves that propagate into an unbounded domain. The
dephase induced into the plane wave propagating within the
metamaterial along the parallel direction of the composing

nanolayers is accurately estimated as

θ θ=⊥ ⊥( ) ( )w n kd. (12)B

We observe in figure 6(a) that the normally incident field
undergoes an angular deviation around ε′ = °19 . We also
note an unsatisfactory reflected signal that predominantly
occurs when the optical path length difference n d2 B between
each backscattered beam (of the Airy summation [47]) is λ 2
plus an integer multiple of the wavelength; accordingly the
dephase θ⊥w ( ) of the transmitted optical signal equals π 2
plus an integer multiple of π radians. This happens at four
points in the working range θ μ⩽⊥| | 2 m of our numerical
example.

Note that there exists some limits in the DOE-based film
thickness d for the wave field to emerge from the inhomo-
geneous metamaterial. In particular, the wave fields traveling
inside the thin film gains a transverse spatial frequency that is
given by n kd1 , whose absolute value must be lower than k to
subsequently propagate in free space. This constraint is set as

< −d n| |1
1; in our numerical example d is lower than
μ=−n 2 m1

1 . Under these circumstances, the angle of the
transmitted wave field is accurately estimated as
ε′ = − ( )n dsin 1

1 , which in our numerical example reads
ε′ = °19.3 . The latter is in good agreement with our numer-
ical simulations.

This analysis is carried out in a rectangular geometry, but
also the circular arrangement being of major interest for us is
also shown in figure 6(b). In the latter case, the dyadic per-
mittivity is set as

ϵ
ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ
=

+

+ −

− +
⊥ ⊥

⊥ ⊥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥z x

x z

z x xz

xz x z
¯ ( , )

1 ( )

( )
, (13)

2 2

2 2

2 2

in the Cartesian coordinate system. In figure 6(b) we show the
time-averaged energy density of the wave field accelerated by
the inhomogeneous uniaxial medium of permittivity given by
equation (13) at λ = 632.8 nm. The annular optical element
is designed to convert a converging cylindrical wave into an
accelerating beam with Bessel signature of order =m 8. An
arc-shaped source surface current is set in front of the DOE to
induce the focusing 2D field in the FEM-based simulations.
For that purpose, and assuming that the index variation is
governed by μ= −n 0.5 m1

1 and that the slab width is
=d 660 nm as in previous examples, the radius at the exit

surface (ES) is estimated as μ=R 2.4415 mES . The resultant
incomplete Bessel beam is in good agreement with those
shown in figure 2.

5. Practical implementation

To carry out the dephase process involved in this type of
beam shaping, as discussed in detail in section 3, the thick-
ness of the films comprising the metamaterial necessarily
remains much shorter than the wavelength [45]. In the case of
the stratified metal, in addition, its depth of penetration cannot
be exceeded which is typically a few tens of nanometers in

Figure 5. Spatial variation of the metal filling factor f and
permittivities ϵ⊥ and ϵ|| for a inhomogeneous MD nanostructure of
effective index of refraction θ= + ⊥n n nB 0 1 , where =n 20 and

μ= −n 0.5 m1
1. Here we also consider ϵ = 1d and ϵ = −10.77m .

Figure 6. (a) Real part of the magnetic field H z x( , ) for a plane wave
scattered by our inhomogeneous anisotropic metameterial with
optical parameters given in figure 5. In (b) we represent the time-
averaged energy density for an annular-shaped device with inner
radius μ=R 2.4415 mES .
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the optical range. Otherwise, the long-wavelength approx-
imation unequivocally provides wrong results [49, 50]. In
addition, current technology allows to assemble ultra-thin,
uniformly continuous metallic films of thicknesses of only
5 nm with reduced surface roughness of around 0.2 nm [51].
Nevertheless, lamellar composites including metallic nano-
films typically lead to a loss-enhanced effect [52]. As a
consequence, optimal implementations of our inhomogeneous
uniaxial metamaterial are based on nanostructures of metallic
layers with a thickness close to its penetration depth.

A simple transfer matrix formulation may be used to
achieve an analytical dispersion relation for waves propa-
gating in the metal waveguide array with nanoscale size [47].
Importantly, this approach enables one to integrate the ohmic
losses that inherently appear when using metallic elements in
a metamaterial. Let us first consider the metal–dielectric
multilayered medium in the simpler rectangular geometry.
The phase w x( ) gained by a Bloch mode propagating through
the MD multilayered medium is specified by means of the
modal index of refraction = ( )n k kReB || , where k|| is the
complex propagation constant. The latter is computed from
the dispersion relation applied to TM-polarized waves, which
is derived from the Floquet–Bloch theorem, giving

η η

ϵ κ ϵ κ
ϵ ϵ κ κ

η η

=

+
+⊥ ⊥

⊥ ⊥

( )k pcos cosh( ) cosh( )

2
sinh( ) sinh( ), (14)

m d

m d d m

m d d m
m d

B

2 2 2 2

where kB is the Bloch wavenumber indicating the spatial
frequency along a direction normal to the nanolayers,

= +p w wm d is the local period of the nanostructure, and
η κ= ⊥ wq q q denotes the transverse decay of an on-axis
homogeneous wave measured between the boundaries of
either the metallic ( =q m) or the dielectric ( =q d) layer.
Specifically

κ ϵ= −⊥ k k . (15)q q
2 2

Again, by considering that the incident plane wave impinges
normally to the metallic grating, and thus the Bloch mode also
travels along such a direction, we solved equation (14) for

=k 0B (wave propagation along the slits). Finally, the rela-
tive permittivity of gold including losses is now
ϵ = − +10.77 0.79im at the wavelength of interest,
λ = 632.8 nm [48].

Figure 7(a) shows a contour plot of the modal refractive
index nB for a Bloch wave field propagating along a given
elementary grating with layer widths wm and wd. For

⩽w 30 nmm and ⩽w 100 nmd , no significant index mis-
match is observed for invariant metal filling factor =f w pm ,
particularly for low and moderate f, a fact that is in excellent
agreement with the effective medium approach [46]. Con-
trarily, setting the thickness of gold films unaltered, nB
changes abruptly as the air-loaded interspace wd decreases, as
it is shown in figure 7(b) for =w 25 nmm . This will be of help
to map out a given phase distribution θ⊥w ( ) since it depends
in linear proportion to nB.

The dephase θ⊥w ( ) gained by a Bloch mode is strongly
dependent upon the air gap wd, while here we assume that the
width of Au layers is maintained at the ES, but importantly it
is practically unaltered by fixing the metal filling factor. If the
multilayered nanostructure changes its periodicity but its rate
of metal is preserved, a Bloch mode propagating along the
(non-parallel) interfaces will experience an invariant phase
velocity in its trajectory. This happens for a converging Bloch
mode travelling inside a concentric MD arrangement.

Next we will consider a subwavelength DOE in such a
way that the metallic nanoelements are arranged over a cir-
cular sector. A converging super-Gaussian beam (Ω π= 2 7)
impinges on the circular surface of higher radius, subse-
quently propagating inside the MD DOE for a distance of

=d 660 nm, as depicted in figure 8(a). The metal–dielectric
interfaces are concentric to the focal point of the incident
wave field, attached a X-shaped tag in the figure. At the ES,
the profiled beam is still focused around the focus, which is

Figure 7. (a) Contour plot of the Bloch-mode refractive index nB for
different elementary Au gratings at λ = 632.8 nm . In (b) we
maintain the width of the Au layers fixed, =w 25 nmm , while the
thickness of the slit wd may varies. This case is also labeled in (a)
with dashed lines.

Figure 8. Time-averaged energy density of focal waves accelerated
by means of a concentric graded grating made of gold at
λ = 632.8 nm . The width of gold layers is =w 25 nmm (at the exit
surface) and the slit gap wd ranges from 5 nm to 78 nm (a)
continuously and (b) taking spacesteps higher than 1 nm. The
centered cross determines the location of the focal point.
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located at μ3.6 m. However, a controlled variation of the
width of the slits governing the local periodicity of the array
will induce a selective dephase at different parts of the
impinging wave field. Furthermore, the subwavelength DOE
is designed to stamp a dephase on the converging beam to be
transformed into an accelerating beam of order =m 8 at
λ = 632.8 nm. The width of the metal layers is set as

=w 25 nmm at the ES, and we determine wd to achieve

θ θ= +n kd n kd m( ) (0) , (16)B B

starting from =w 5 nmd . Let us mention that current nano-
fabrication techniques enable values of wd as low as 50 nm
[15, 16], however theoretical studies go well beyond this limit
[53]. Note that increasing wd are found at decreasing angles θ.
In this modelling we neglect additional dephases induced by
the impedance mismatching at the entrance and ESs of the
metallic-slits arrangement, a procedure that is valid as proved
in our numerical simulations and supported by theoretical
studies [54].

In figure 8(a) we plot the time-averaged energy density of
the converging wave transformed into an spatially-accelerated
beam after passing through the designed subwavelength
DOE. We made use of a finite element analysis solver and
commercially available simulation software (COMSOL
Multiphysics). This is in good agreement with the analysis
based on the effective-medium approach given above, and the
numerical simulations shown in figure 6(b). For extremely
thin slits, particularly near the minimum of 5 nm previously
established, ohmic losses manifested in a high absorption
coefficient ( )kIm || lead to limited transmission. In these cases,
in addition, our design procedure may lead to an enhanced
sensitivity when determining the values of wd. In practice,
however, we cannot consider a nanofabrication process with a
limit of resolution below 1 nm. Under such constraints, a new
subwavelength DOE is designed in such a way that the width
wd of the assembled metal waveguides takes integer values (in
nanometers) at the ES. The resultant beam shaping is shown
in figure 8(b). Spurious ripples near the DOE are evident,
however, the main lobe of the accelerated focal wave remains
nearly unchanged. For the sake of clarity, this constraint will
not be considered here on.

As discussed previously, the transverse spatial frequency
gained by the wave field at the DOE ES, governing the
acceleration of the emerging beam, is in direct proportion to
the width d of the transforming metamaterial. From
equations (10) and (16) we infer that the normalized radius of
the transmitted field yields

=m n kdR , (17)1 ES

where the radius of the ES, μ=R 3.6 mES in our numerical
simulations (also μ= −n 0.339 m1

1). One can infer that a
subwavelength DOE longer than =d 660 nm leads to an
enhanced acceleration, and vice versa. In figure 9 we show
the resultant beam shaping when d is varied, which is in good
agreement with our analysis. Importantly, the radius

=r m k| |m of the accelerating beam with Bessel signature
must be shorter than the radius of the ES, which is equivalent

to the constraint < −d n| |1
1 inferred above. In our FEM-based

simulations this means that a value of d higher than
μ=−n 2.95 m1

1 as occurs in figure 9(a) leads to an effect of
total internal reflection at the ES.

6. Broadband response

The designed subwavelength DOE also exhibits a broadband
response. In figure 10 we plot the beam shaping produced at
wavelengths above and below the reference λ = 632.8 nm. In
agreement with equation (17), one can expect that the nor-
malized radius m decreases when shifting to the near infrared,

Figure 9. Accelerating beams generated by the designed subwave-
length DOEs but increasing its thickness: (a) μ=d 3.0 m, (b)

μ=d 1.0 m, and also decreasing it: (c) μ=d 0.4 m, and (d)
μ=d 0.1 m. For simplicity, the circular working window has a

given radius but varying linear scale. The focal point of the
impinging converging wave is set at the window center with a cross-
shaped tag.

Figure 10. Time-averaged energy density of focal waves accelerated
by the subwavelength DOE designed for a working wavelength of
632.8 nm. Particularly, the gold films have a length of 660 nm. The
radiation wavelength is varied from 500 nm to 800 nm .
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that is for decreasing k. In this case, however, the trajectory
radius of the accelerating beam is not necessarily shorter,
since it exclusively depends on the dispersive nature of n| |1 . In
particular, a fast drop of the dispersive (real part of the)
permittivity for gold leads to a marginally-decreasing modal
refractive index nB, and also the value of n| |1 . This minor
effect takes place with a critical increasing of the FWHM of
the focal waves, which is driven by diffraction, as evidences
figure 10(f) at λ = 800 nm. On the contrary, the acceleration
of the converging beam is not produced at shorter wave-
lengths. In this case, nB clearly deviates from its optimal
linear dependence upon θ, producing an spurious defocusing
of the accelerating beam. In addition, the metamaterial opa-
city that is caused by a dominant imaginary part of ϵm pre-
vents from achieving an intense transmitted signal.

For broadband applications in a spectral range below
λ = 632.8 nm we propose the use of silver instead of gold.
Gold nanolayers provide improved chemical stability as
compared to silver nanolayers, but at the cost of higher losses
for the propagating SPPs. Note that at such wavelength,
ϵ = − +18.3 i0.48m for silver [55]. Figure 11 depicts the
time-averaged energy density of focal waves accelerated by a
subwavelength DOE specifically designed for its use with Ag
films of thickness =w 25 nmm at the ES and length

=d 660 nm, at a working wavelength λ = 632.8 nm. At
lower wavelengths, the beam shaping results in a satisfactory
acceleration of the converging beam.

7. Conclusions

We designed a nanostructured DOE to induce a dephase with
linear variation in the azimuthal coordinate in a way that a
convergent wave will accelerate around its geometrical focus
F. Such near-field shaping is carried out only a few wave-
lengths far from this focal point, enabled by multilayer metal–
dielectric stacks. A controlled variation of the assembled
waveguide width governing the local periodicity of the array
will induce a selective dephase at different parts of the
impinging wave field. This proves that an engineered curvi-
linear caustic can be set up by the beam emerging from a
dynamic array of elementary DOEs, the latter modifying the
effective refractive index of the metamaterial and subse-
quently inducing a given linear dephase of the incident wave
field as it is arranged in controlled orientations.

In particular, the subwavelength DOE was designed to
stamp a dephase on the converging beam to be transformed
into an accelerating beam of Bessel signature with order

=m 8 at λ = 632.8 nm. Before the wave packet is bent near
F, the intensity maximum of the beam determining its tra-
jectory follows a linear equation. Subsequent to the accel-
erating course in the focal region, the beam restores its
straight trajectory, however exhibiting a different orientation.
We demonstrated that the generation of near-diffraction-lim-
ited beams accelerating along an incomplete circular caustic
curve is only possible by using low order Bessel precursors.
Furthermore, the trajectory gyration decreases and its vertex
shifts to the focal point F as long as the semi-aperture angle of
the converging wave field decreases. Importantly, total
internal reflection might be observed at the ES of the sub-
wavelength DOE whether its width surpasses −n| |1

1. This is in
good agreement with the analysis we fulfilled based on the
effective-medium approach treating the MD arrangement as
an inhomogeneous uniaxial metamaterial.

This annular DOE also exhibits a broadband response.
When shifting to the near infrared, the trajectory radius of the
accelerating beam is marginally decreasing. This minor effect
takes place with a critical increasing of the FWHM driven by
diffraction. For broadband applications in a spectral range
below λ = 632.8 nm we propose the use of silver instead of
gold. Gold nanolayers provide improved chemical stability as
compared to silver nanolayers, but at the cost of higher losses
for the propagating SPPs. The presented results may bring
about new possibilities for studying self-acceleration in inte-
grated optics, using them to generate new structured plasma
channels, and exploring nonlinear optical processes.
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