ROBÓTICA EDUCATIVA COMO HERRAMIENTA PEDAGÓGICA: DESCRIPCIÓN DE NXT: ELEMENTOS HW Y PROGRAMACIÓN

Junio 2017

Julio Martos Torres

Adrián Suárez Zapata

Daniel García Costa

Pedro A. Martínez Delgado

ROBÓTICA EDUCATIVA COMO HERRAMIENTA **PEDAGÓGICA**

Julio Martos, Daniel García, Pedro A. Martínez y Adrián Suárez

Índice

Bloque III: Robot Lego NXT

- Introducción al NXT
 - a. Procesador.
 - b. Sensores.
 - c. Actuadores.
- 2. Entornos de Programación
 - NXT-G.
 - LabView.
- 3. Bloques de Programación.
 - Paleta común.
 - b. Paleta Avanzada.
- 4. Construcción de módulos.
- 5. Mi primer programa.

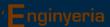
1. Introducción al NXT

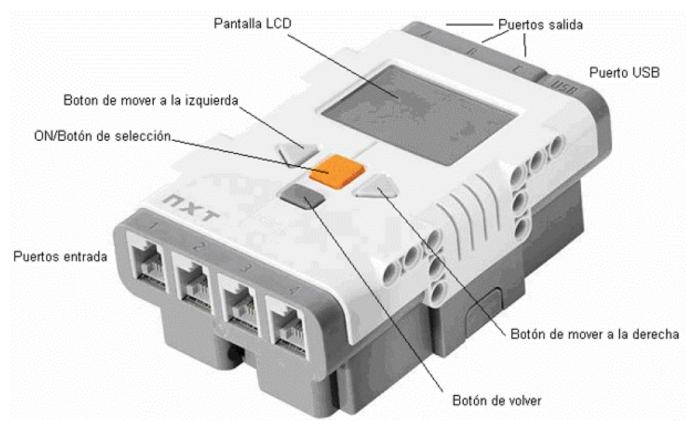
ROBOT LEGO MINDSTORMS NXT

- Es un Robot construido por la marca de juguetes LEGO.
- Se caracteriza porque este robot se puede armar en diversos modelos, además de que es "económico", potente y muy versátil. No es un simple juguete.

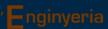
1. Introducción al NXT

ROBOT LEGO MINDSTORMS NXT








1. Introducción al NXT

EL PROCESADOR (BRICK)

1. Introducción al NXT

EL PROCESADOR (BRICK)

- 4 entradas (digital y analógica)
- 3 salidas (soporte para los motores)
- Pantalla LCD Monocromática de 100x64 píxeles
- Altavoz
- Interfaces USB y Bluetooth

1. Introducción al NXT

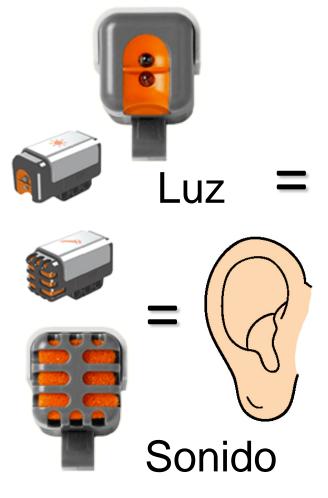
PROCESADOR:

- Atmel 32-bit ARM, AT91SAM7S256
- 256 KB FLASH
- 64 KB RAM
- 48 MHz

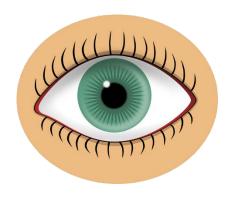
CO-PROCESADOR:

- Atmel 8-bit AVR processor, ATmega48
- 4 KB FLASH
- 512 Byte RAM
- 8 MHz

1. Introducción al NXT

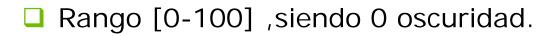

COMUNICACIONES

- BlueCoreTM 4 v2.0 + EDR System
- Soporta el Serial Port Profile (SPP) para emulación de puertos de comunicación.
- USB 2.0 Full speed com port (12 Mbit/s).



1. Introducción al NXT

Ultrasónico

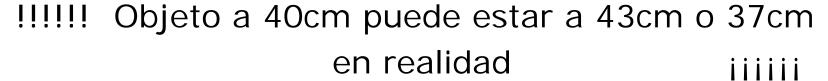


Tacto

1. Introducción al NXT

SENSOR DE LUZ

- Dos modos:
 - a. Detector de luz.
 - b. Detector de luz reflejada.



1. Introducción al NXT

ULTRASONIDOS

- Detecta objetos que este entre un un rango [0-255] centímetros.
- Precisión +/-3cm.
- Funcionamiento igual que un sonar.

1. Introducción al NXT

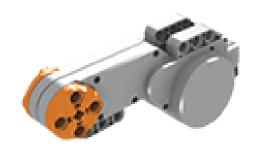
SONIDO

- Detecta "cantidad" de sonido no modulaciones.
- Devuelve una medida de [0-100]%.
- Dos modos:
 - Decibelios: Ancho de banda superior. a.
 - Decibelios Ajustados: Solo Frecuencias que puede escuchar un ser b. humano [20-20000]Hz.

1. Introducción al NXT

TACTO

Devuelve un valor ON-OFF.


1. Introducción al NXT

ACTUADORES

Bombilla

Servomotores

1. Introducción al NXT

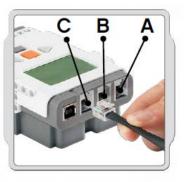
SERVOMOTORES

- Contador de rotaciones.
- Rotación de 360 grados.
- Las posiciones son relativas.
- 🔲 La velocidad máxima es de 200 RPM.

1. Introducción al NXT

OTRAS CARACTERISTICAS

- Utiliza batería recargable.
- Utiliza cables RJ-12 parecidos a los telefónicos (aplanados).
- Algunos fabricantes realizan otros tipos de piezas y sensores.
- Piezas propias.



1. Introducción al NXT

CONEXION DE SENSORES Y MOTORES

Conexión de los motores

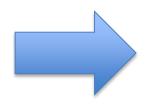
Para conectar un motor al NXT, conecte un extremo de un cable negro al motor. Conecte el otro extremo a uno de los puertos de salida (A, B o C).

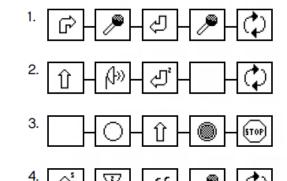
Conexión de los sensores

Para conectar un sensor al NXT, conecte un extremo de un negro al sensor. Conecte el otro extremo puertos de entrada (1, 2, 3 o 4).

1. Introducción al NXT

ROBOT LEGO MINDSTORMS NXT




2. Entornos de Programación.

PROGRAMACION SOBRE BRICK

- Nos permite la programación del NXT sin la necesidad de ningún software externo ni pc.
- La programación se realiza mediante bloques.
- Funcionalidades muy limitadas.

2. Entornos de Programación.

NXT-G: METODOLOGIA

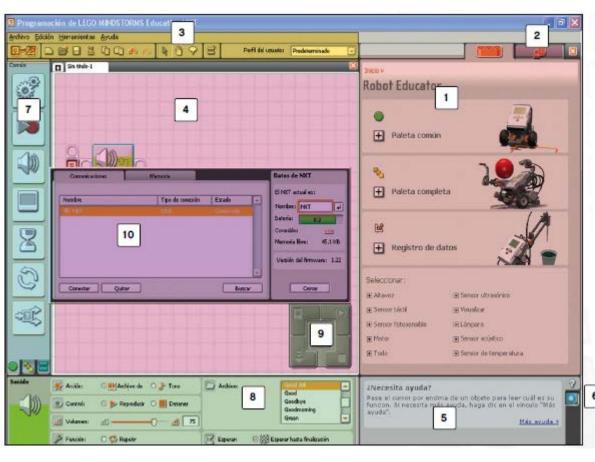
Construcción

Programación

Ejecución

2. Entornos de Programación.

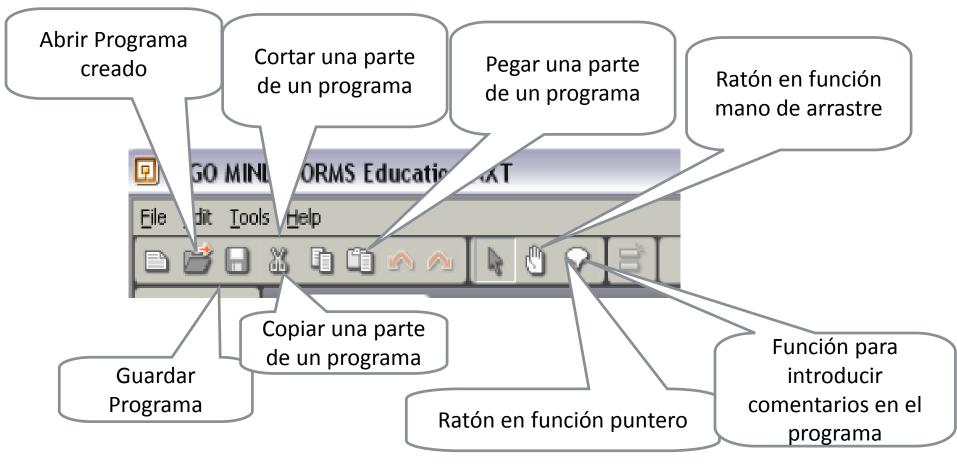
NXT-G: PANTALLA DE INICIO



- 1. Robot educator.
- 2. Portal para conexión a paginas de internet de LEGO.
- 3. Barra de tareas.
- 4. Videos demostrativos.
- 5. Ventana de ayuda.
- Área del mapa de trabajo. 6.
- Iconos de comienzo de nuevo programa o abrir últimos programas realizados.
- 8. Paletas del programa.

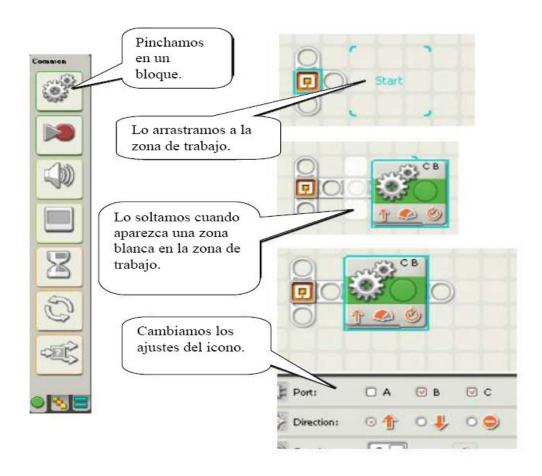
2. Entornos de Programación.

NXT-G: PANTALLA DE PROGRAMACION


- Robot Educator
- Mi Portal
- Barra de herramientas
- Zona de trabajo
- Ventana Ayuda contextual
- Mapa de zona de trabajo
- Paleta de programación
- Panel de configuración
- Controlador.
- Ventana del NXT

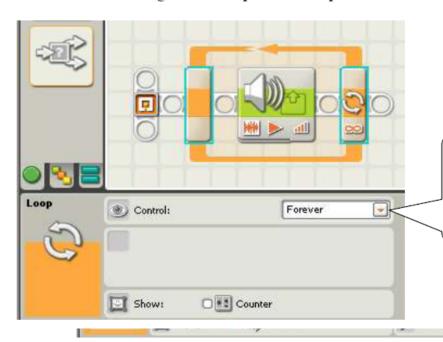
2. Entornos de Programación.

NXT-G: BARRA DE TAREAS



2. Entornos de Programación.

NXT-G: METODO DE PROGRAMACION



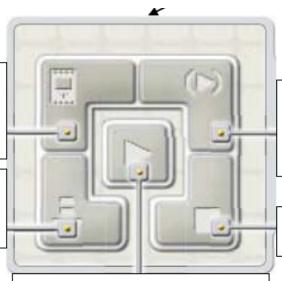
2. Entornos de Programación.

NXT-G: METODO DE PROGRAMACION

ΒΙ ΛΛΙΙΕ ΚΙΛΙΤΛΉ ΛΙΝΤΕΡΡΙΙΡΙΤΛΌ ΝΕΙ 117 \mathbf{BI} BLOQUE LOOP O LAZO.

Con este bloque podemos realizar una determinada accion tantas veces que queramos, podemos repetir la accion siempre, un numero de veces, según un sensor que le indiquemos o bien un tiempo determinado. En la figura vemos que se va a repetir indefinidamente un sonido.

Elegimos si queremos que se repita la acción:


- Indefinidamente.
- Según un sensor.
- Un tiempo determinado.
- Un número de veces que define el ususario.

2. Entornos de Programación.

NXT-G: PROGRAMACION DEL BRICK

Boton "NXT window" nos da acceso a la memoria del NXT v permite realizar cambios en el tipo de conexión asi como borrar o renombrar programas.

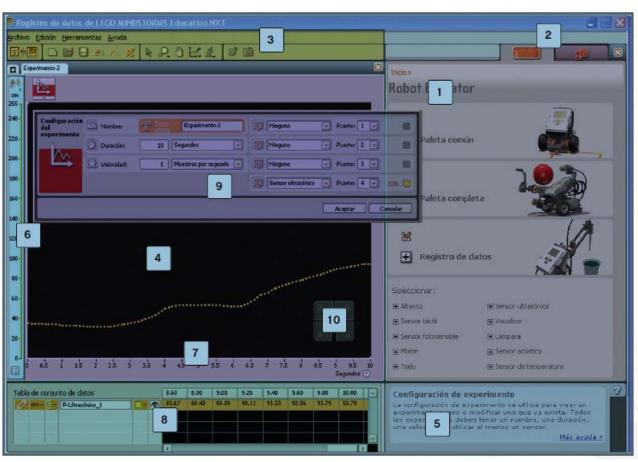
"Download" el Boton con descargamos los progamas al NXT es decir a nuestro robot. Siempre que este conectado.

Boton "Download and run" boton con el que se puede descargar un programa al NXT y ademas se ejecuta automaticamente.

Boton "Download and run selected" permite descargar pequeñas partes de nuestro programa completo y ejecutarlas instantaneamente.

Boton "Stop" detiene la ejecuccion de un programa.

2. Entornos de Programación.


NXT-G: DATA LOGGING

- Nos permite la realización de experimentos en los cuales podemos obtener, representar y estudiar los datos obtenidos mediante los sensores.
- Al igual que la programación se pueden recoger los datos mediante el robot o registrarlos mediante el software que nos proporciona Lego.

2. Entornos de Programación.

NXT 2.0 DATA LOGGING

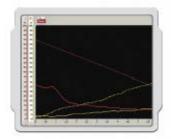
- Educador robot
- Mi portal
- Barra de herramientas
- Gráfico
- Ventana de ayuda
- Eje Y
- Eje X
- Tabla de conjunto de datos
- Configuración del experimento
- Controlador de registro de datos

2. Entornos de Programación.

NXT 2.0 DATA LOGGING

- Educador robot Aquí encontrarás instrucciones de construcción y programación especiales para Registro de datos utilizando tres modelos de registro de datos de NXT.
- Mi portal Desde aquí podrás acceder a www.MINDSTORMSeducation.com y descargar herramientas, material e información.
- La barra de herramientas La barra de herramientas contiene herramientas de predicción, herramientas de análisis y otras herramientas que te ayudarán a analizar en profundidad tus resultados.
- Gráfico El Gráfico es la representación visual del archivo de registro. Crea predicciones, realiza experimentos y analiza tus resultados directamente en el Gráfico.
- Ventana de ayuda Recibe sugerencias y ayuda si lo necesitas, o utiliza la guía para acceder a la extensa biblioteca de ayuda.

- Eje Y El eje y muestra la unidad de medida de un sensor. La unidad de medida varía entre un sensor y otro y puede variar según el país. Puedes crear varios ejes y, de forma que cada sensor tenga su propio eje y en el Gráfico.
- Eje X El eje x siempre muestra la duración de un experimento.
- Tabla de conjunto de datos La tabla de conjunto de datos contiene predicciones y valores de sensor.
- Configuración del experimento Cada experimento tiene un panel de configuración que te permite personalizar el número y tipo de sensores, así como su duración y velocidad de muestreo.
- Controlador de registro de datos El controlador de registro de datos te permite comunicarte con el ladrillo NXT. El botón Enviar te permite mover archivos de registro entre tu NXT y tu ordenador.



2. Entornos de Programación.

HERRAMIENTAS

Herramientas de predicción

Realiza predicciones de lo que ocurrirá al realizar el experimento utilizando las herramientas de predicción. Utiliza el lápiz para trazar una predicción o una fórmula predictiva para crear una línea recta.

Recopilación de datos

Los datos del experimento se recopilan en el ladrillo NXT al hacer clic en Descargar y ejecutar. Los datos se guardan en un archivo de registro y se muestran en el Gráfico y en la Tabla de conjunto de datos.

Herramientas de análisis

Una vez recopilados los datos, analiza puntos sencillos o rangos utilizando las herramientas de análisis. Las herramientas de análisis muestran el mínimo, el máximo y la media. Las herramientas de análisis también te permiten comprobar el ajuste lineal de cualquier conjunto de datos sobre el Gráfico, incluyendo las predicciones.

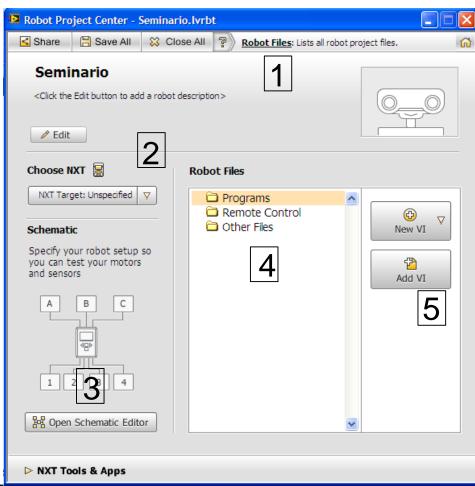
2. Entornos de Programación.

CONFIGURACION

La configuración del experimento se realiza de forma sencilla mediante le siguiente menú.

2. Entornos de Programación.

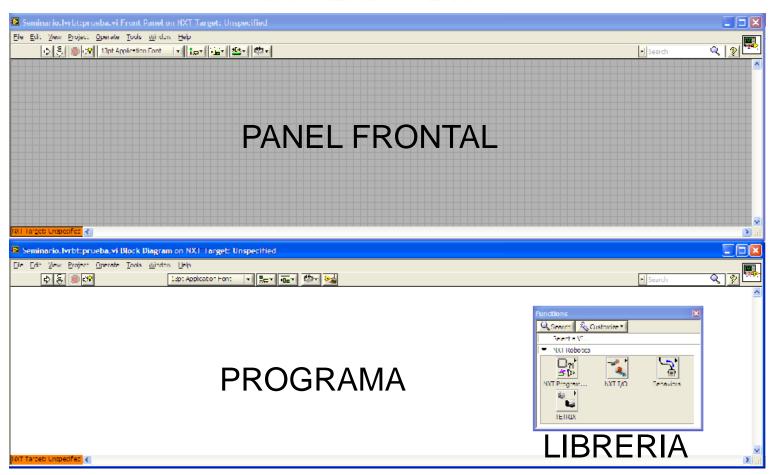
NXT-LABVIEW



Creación de nuevos Proyecto NXT.

2. Entornos de Programación.

NXT-LABVIEW



- Editor Robot.
- 2. Enlazador.
- 3. Esquemático y testeo de sensores y actuadores.
- Explorador de archivos.
- Creación de archivos.

2. Entornos de Programación.

NXT-LABVIEW



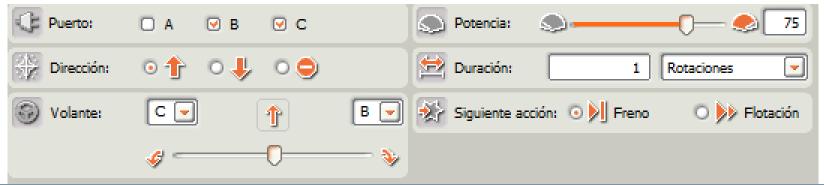
2. Entornos de Programación.

NXT-LABVIEW

3.Bloques de programación.

PALETA COMUN

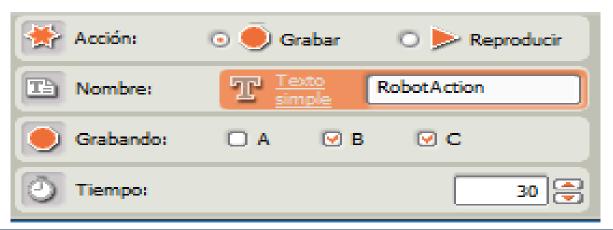
- 🖵 Recoge la gran mayoría de bloques.
- Implementados de forma simplificada.
- Permiten realizar infinidad de programas.



3. Bloques de programación.

MOVER

- ☐ Este bloque se encarga del control de los servomotores.
- La duración puede ser fijada por:
 - a. Grados.
 - b. Rotaciones.
 - c. Segundos.
 - d. Ilimitado



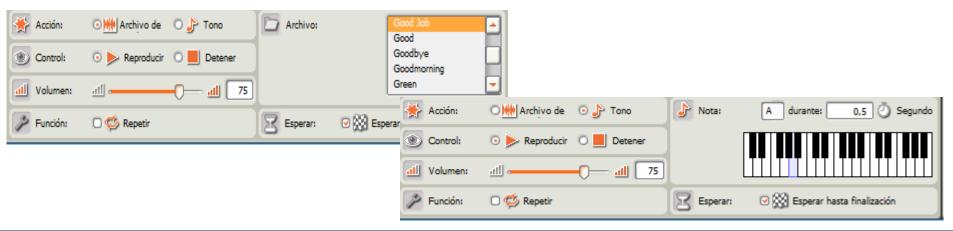
3. Bloques de programación.

GRABAR/REPRODUCIR

☐ Este bloque es capaz de almacenar movimientos y después reproducirlos.

ROBÓTICA EDUCATIVA COMO HERRAMIENTA PEDAGÓGICA

Bloque III: Robot Lego NXT


3. Bloques de programación.

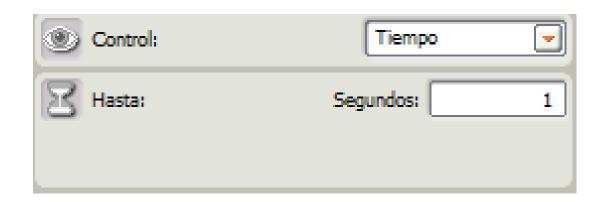
SONIDO

☐ Este bloque nos permite reproducir sonidos Pregrabados o crear propios tonos.

3. Bloques de programación.

VISUALIZAR.

- Este bloque se es capaz de representar o borrar lo visualizado por el display.
- La puede mostrar:
 - a. Imágenes pregrabadas.
 - b. Texto.
 - c. Crear dibujos (líneas, puntos o círculos).



3.Bloques de programación.

ESPERA TIEMPO.

Este bloque para la ejecución del programa un tiempo determinado.

3. Bloques de programación.

ESPERA CONTACTO.

- Este bloque para la ejecución hasta un evento en el sensor de contacto.
- El evento puede ser:
 - a. Presionado.
 - b. Liberado.
 - c. Chocado (presión+ liberación).

3. Bloques de programación.

ESPERA LUZ.

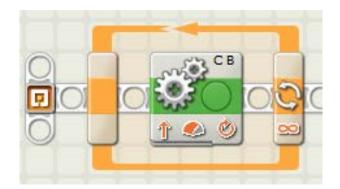
- Este bloque para la ejecución hasta un evento en el sensor de luz.
- Dos modos de funcionamiento:
 - a. Luz reflejada.
 - b. Luz ambiente.

3. Bloques de programación.

ESPERA SONIDO.

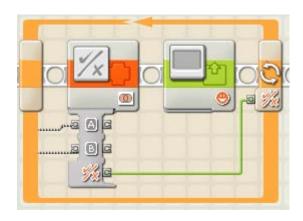
Este bloque para la ejecución hasta un evento en el sensor de luz.

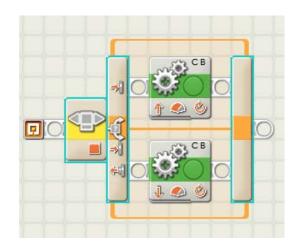
3.Bloques de programación.



ESPERA ULTRSONIDOS.

- Este bloque para la ejecución hasta un evento en el sensor de ultrasonidos.
- Dos modos de funcionamiento:
 - a. Milímetros .
 - b. Pulgadas.


3. Bloques de programación.



BUCLE.

- Este bloque repite todos lo bloques encerrados en el.
- Múltiples configuraciones de repetición:
 - a. Siempre.
 - b. Sensor.
 - c. Repetición.
 - d. Lógica.

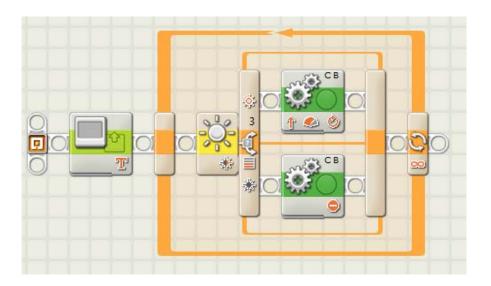
3. Bloques de programación.

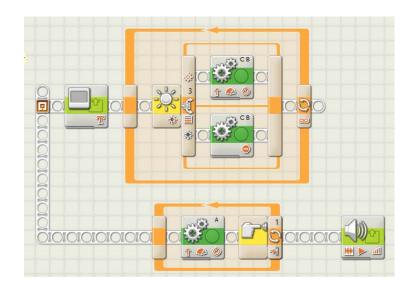
BIFURCACION.

- Este bloque nos permite elegir una ejecución diferente dependiendo de una condición especifica.
- ☐ Múltiples configuraciones de bifurcación:
 - a. Sensor: Luz, contacto, mensaje...etc.
 - b. Valor: Numérico, Lógico y Texto.

3. Bloques de programación.

PROGRAMACION Y PALETA AVANZADA

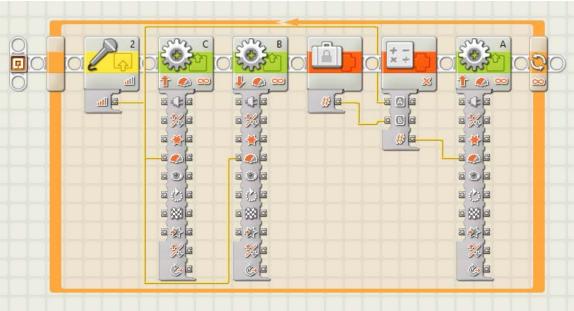

- Permite un mayor control sobre el programa.
- La ejecución puede ser en paralelo.
- Bloques de configuración, calibración, comunicación y calibración y comunicación.
- Bloque variables y constantes.
- Permiten el paso de información entre bloques.


3.Bloques de programación.

PROGRAMACION AVANZADA

P. Lineal

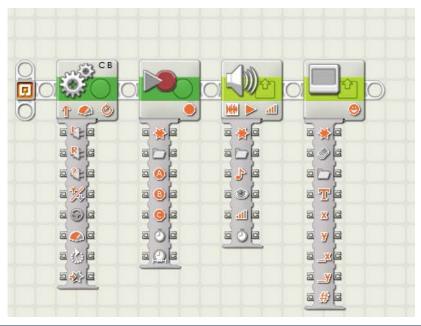
P. Paralelo



3.Bloques de programación.

PASO DE VALORES

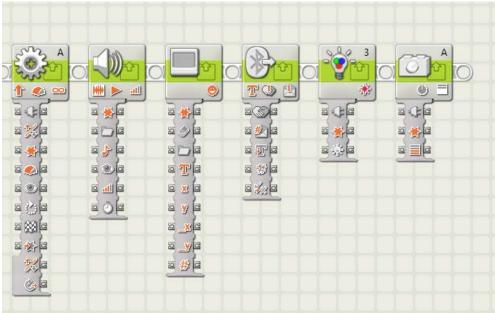
- Pasaremos los valores uniendo mediante cables los bloque de emisor y receptor.
- Si debemos desplegar la pestaña para obtener los puertos de comunicación.



3. Bloques de programación.

PALETA COMUN AVANZADA

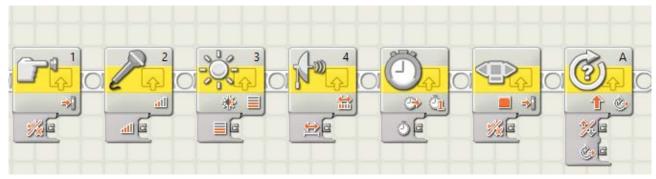
- Desplegaremos las opciones mediante la pestaña de los bloques.
- Tendremos las mismas opciones que en el panel de configuración para pasarle valores o leer el valor actual.

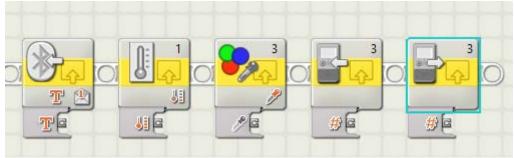


3.Bloques de programación.

PALETA ACCION AVANZADA

- Incluye bloques de comunicación bluetooth, sensor de color y lámpara.
- El bloque motor nos permite un uso de los servos más preciso.

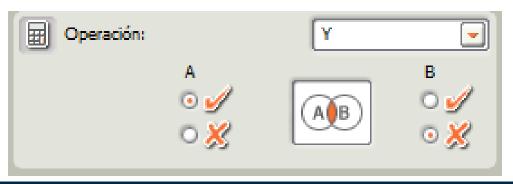




3. Bloques de programación.

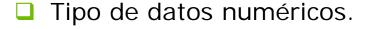
PALETA SENSOR AVANZADA

Nos permite la lectura de cualquier sensor.


3. Bloques de programación.

BLOQUE DATO LOGICO

- Nos permite realizar operaciones lógicas.
 - a. AND
 - b. OR
 - c. OR exclusiva.
 - d. NOT.



3.Bloques de programación.

BLOQUE MATEMATICAS

- Nos permite realizar operaciones numéricas.
 - a. Suma.
 - b. Resta.
 - c. Multiplicación.
 - d. División.
 - e. Valor absoluto.
 - Raíz cuadrada.

3. Bloques de programación.

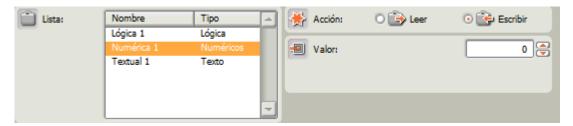
BLOQUE COMPARACION

- Nos permite comparar sus entradas.
 - a. Menor que.
 - b. Mayor que.
 - c. Iguales.
- Devuelve un valor booleano (lógico).

3. Bloques de programación.

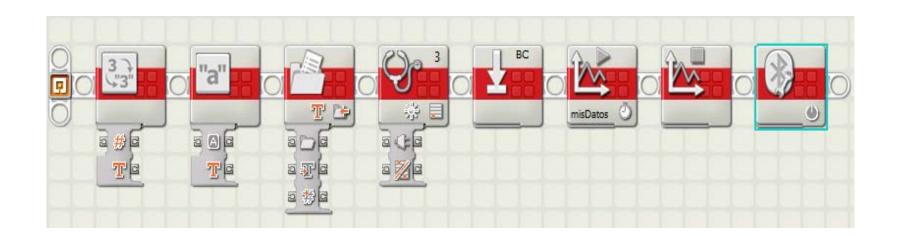
BLOQUE ALEATORIO

Nos devuelve un valor aleatorio entre un intervalo.


3. Bloques de programación.

BLOQUE VARIBLES/CONSTANTES

- Nos permiten la creación de variables o constantes.
- □ Tres tipos:
 - a) Numéricos.
 - b) Texto.
 - c) Lógicos.



3. Bloques de programación.

BLOQUES AVANZADOS

Esta bloques nos permiten desde la calibración de sensores hasta la conversión de datos o incluso la configuración de Bluetooth.

