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Abstract 

In this work a model was developed that allows to understand the behavior of a chirped fiber Bragg grating for the detection 

and characterization of cracks in materials. In addition to the amplitude response, we show that the group delay of the grating 
provides useful information for the characterization of the crack. The position of the crack can be determined thanks to the 
linear chirp of the grating that fixes a correlation between the spatial position and both, the wavelength and the group delay. 
However, our analysis shows that this simple approach has a source of error, which can be overcome if a controllable external 
strain can be applied to the embedded grating, additional to the strain generated by the embedding process. Thus, the width of 
the crack can be also estimated. The effect of the appearance of a crack on the grating generates simple o multiple 
transmission peaks that are analysed considering the behavior of a Fabry-Perot fiber cavity. This simple model was 
experimentally tested and preliminary results were in good agreement with the simulations. 
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1. Introduction 

The interest of the aerospace industries in 

structural health and monitoring systems is 

continuously increasing. Among the techniques 

available in literature those based on Fiber Bragg 

Grating (FBG) sensors are much promising thanks to 

their peculiarities [1], [2] In comparison with the 

traditional mechanical and electrical sensors, the 

optical fiber sensors possess some unique advantages 

such as small size, light weight, immunity to 

electromagnetic interference (EMI) and corrosion, 

embedding capability, and therefore they have been 

employed in monitoring of engineering structures 

worldwide [3]. Bettini et al [1] started from a 

numerical model capable of simulating the spectral 

response of a grating subjected to a generic strain 

profile. While a standard uniform FBG can transduce 

only the average strain on its total length, a chirped 

one is able to provide direct information about the 

strain distribution profile along the grating itself. In 

fact, having a variable grating period, this kind of 

sensors has in principle a one-to-one correspondence 

between reflection spectrum wavelength and position 

on the perturbation [1]. Linear chirped Bragg gratings 

(linear CFBG) have a period that increases 

monotonously, the Bragg wavelength changes 

linearly with the position. Because of this, the 

reflectivity spectrum becomes broad. Under 

convenient conditions, the spectrum wavelengths can 

be related with the position along the grating. Thus, 

embedded CFBG have been proposed for the 

identification of crack location in composites [4], [5] 

and disbonding in composite joints [6]. More 

recently, an experimental study of fatigue damage 

development in composite patch repairs using CFBG 

has been reported [7]. These works based on CFBG 

extract the information from the measurement of the 

reflection spectra assuming the one-to-one 

correspondence between reflection spectrum 

wavelength and position on the perturbation. 

(Reviewer1 - 1) In addition, some advances on 

chirped Bragg gratings in polymer fibers have been 

reported. Chirped fiber Bragg gratings were photo-

inscribed in undoped PMMA polymer optical fiber 

using an UV KrF excimer laser operating at 248 nm. 

The evolution of the reflection spectrum was 

investigated as a function of the applied strain, 

temperature, and pressure, and one of the proposed 
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applications was sensing transverse cracks in 

structural health monitoring [8], [9]. 

Nevertheless, an exhaustive study of the system 

has not yet been carried out. The contribution of the 

work presented here lies in the development of a 

rigorous model that allows a deep understanding of 

how a CFBG behaves when it is altered by the 

appearance of a crack in a material. This allows to 

determine not only the location of the crack but also 

its size. It is shown that, in addition to the 

conventional analysis of the amplitude response of 

the grating, it is possible to perform the 

aforementioned characterization using only the phase 

response i.e., the group delay spectrum of the grating. 

The CFBG is modeled by using the T-matrix method 

[10], [11]. In order to model the development of a 

crack, we assume that a differential strain will appear 

between the uniformly embedded part of the grating 

and the part of the grating that overlaps the crack. In 

addition, we show that if an external and controllable 

strain is applied to the embedded CFBG, then more 

detailed information can be obtained. After our 

rigorous analysis, we are able to provide a simple 

model in terms of an effective Fabry-Perot that 

accounts for most of the results obtained with the 

numerical simulations. This model takes into account 

the penetration of light in a reflecting FBG, which 

defines the effective length of a FBG [12]. Finally, 

some preliminary experimental results are also 

provided. 

2. Device Model 

      A CFBG can be used to detect the appearance of 

cracks in materials (eg, polymers, compounds, 

cement, etc.), which can be part of structures such as 

bridges, buildings, roads, aerospace vehicles, 

automobiles, among others. These cracks can be 
generated during the manufacturing process or 

hardening (setting) of the material, by the action of 

loads applied to it, by aging of the structure or by 

accidental damage. To perform this detection, the 

grating can be embedded or superficially fixed on the 

material. The model proposed here allows the 

detection of cracks transverse to the grating, and in a 

first approximation it is considered that the fissure is 

generated in a certain instant and its size remains 

invariant. Specifically, this paper attempts to 

establish a technique for unambiguously determining 

the position and width of cracks that may appear in 

the material. The basic idea is to assume that, once 

the CFBG is embedded in a given material as for 
example a composite, it is subjected to a differential 

strain between the sections correctly embedded and 

the section that overlaps a crack. We assume that 

some strain () is generated in the material during its 
setting, and that cracks can appear in this process. 

Initially, the embedded CFBG will be subjected to an 

unknown strain, which will be different in the small 

portion of the grating overlapping the crack. 

Afterwards, we will consider also that an additional 

and calibrated strain can be applied to the CFBG, 

modulating the differential strain between the overall 

CFBG and the section overlapping the crack. Fig. 1 

shows the gratings scheme considered in the analysis 
with a crack in z = L/2, where L is the total length of 

the CFBG.  

 

Fig. 1. Scheme of CFBG with a crack, as it is assumed 

in the simulations. 

 

In order to simulate the differential strain in a simple 
way, we assume in our model that the grating portion 

overlapping the crack (G2) is strain free and its 

spectral properties remain unchanged, while the 

portions G1 and G3 will be affected by a uniform 

strain. Given the linear chirp of the CFBG, there is a 

bi-univocal relationship between the z-position and 

the corresponding wavelength variation, i.e. each 

spectral position of the grating corresponds to a 

spatial position z. 

3. Numerical Simulation 

For our numerical simulations, we consider a grating 

linearly chirped (Fig. 2). A defect (simulating a 

crack) is assumed in a given spatial position, for 
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example in the middle of the grating, with different 

widths from 1 to 6 mm. The original grating (without 

strain) has the following parameters: length L = 10 

cm, refractive index amplitude modulation n = 

2.3×10-4, initial period i = 514 nm, final period f = 
515.1 nm, effective refraction index of the mode neff  

equal to 1.5. The CFBG reflection band has the initial 

and final wavelengths i and f equal to 1542.31 nm 
and 1545.31 nm, respectively, which determine a 

linear chirp C = (f - i)/L = 30 pm/mm. Assuming a 
negligible fiber dispersion, the group velocity vg = c/ 
neff determines the nominal group delay in reflection, 

per unit length [(f) - (i)]/L = 2(vg)
-1 = 10 ps/mm. 

Finally, the nominal chromatic dispersion of the 

grating when it is operated in reflection will be [(f) 

- (i)]/( f - i) = 2(C vg)
-1 = 333 ps/nm.  

 

Fig. 2 gives the computed reflectivity and group 

delay spectra for the CFBG, using the Transfer 

Matrix Method [10]. In it, we have included the 

average chromatic dispersion (white dashed line) that 

is obtained by fitting the central part of the plot. The 

slope of the average chromatic dispersion is 342 

ps/nm and the origin  = 0 is at  = 1542.39 nm. 

 

Fig. 2. Computed reflectivity and group delay for the 

initial CFBG. The white dashed line is the average 

chromatic dispersion that fits the numerical values.  

 

 
 

As it will be shown later, when some strain is applied 

to the CFBG (over G1 and G3, because G2 is not 

affected) changes are observed on the reflection 

spectrum and the group delay of this system. We 

assume a standard dependence of the silica refractive 

index (nSilica) with the strain (): nSilica /nSilica = - pe , 
being pe = 0.21 [13]. 

3.1 Spectral Characteristics 

 
Next, we will analyze the changes generated in the 

system due to the application of a strain. To 

understand how the deformation affects the behavior 
of the CFBG, in Fig. 3 the different spectral sections 

of the total grating are shown schematically versus 

wavelength. It is observed that, under a certain strain, 

two portions (G1 and G3, see Fig. 1) move in the 

same direction towards longer wavelengths. 

However, since the strain over G2 is zero, it does not 

shift with strain, but it overlaps with G1. While G1 

and G3 are spectrally displaced by applying an 

external stress on the CFBG, G2 remains unchanged 

at its original spectral position. In addition, a spectral 

window appears between G1 and G3, from the 
absence of the contribution of G2 in the total 

spectrum of the grating (see Fig. 4).  From a spectral 

point of view, a positive longitudinal deformation 

generated on gratings G1 and G3 (G2 is fixed), 

causes the reflectivity spectra of these two portions to 

be shifted to longer wavelengths as it is depicted in 

Fig. 3. The wavelength shift  is proportional to the 

applied strain (), whose origin can be either the 
material in which the CFBG is embedded or some 

external force. The relation between  and  is given 

by [14]: / = (1- pe). Thus, for our calculations we 

have assumed p = 1-pe = 0.79. Each wavelength of 

gratings G1 and G3 is displaced by considering 𝑖 =
 𝑝 . 

The physical deformation of the grating is very small 

and can be neglected. The same happens from the 

spectral point of view, since the strain induces a 

similar shift for all grating portions, maintaining the 

same spectral width (B  B’). Thus, apart from a 
wavelength shift, the slope of wavelength versus z 

position will remain constant, except for the spectral 

window opened by the crack.  
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  Fig. 3. Representation when the CFBG is strained.  

 

Fig. 4 gives the computed reflectivity and group 

delay spectra corresponding to a defect size (G2) of d 

= 1 mm, located at z = 5 cm from the left edge of the 

grating (z = 0), and a strain  = 291 μ. The 
differential strain between the crack and the rest of 

the fiber generates a resonance that gives rise to a 

narrow transmission window and a group delay peak 
whose spectral location is correlated with the spatial 

position of the simulated crack.  

 

 
 

Fig. 4. CFBG with a defect of 1mm: (a) reflection 

spectrum and (b) group delay. The white dashed line is 

the average chromatic dispersion that fits the 

numerical values. 

 

Since the spectrum of the unperturbed grating G2 

is now superimposed with grating G1, some 

interference peaks can be observed on the left of the 

dominant resonance, i.e. the shorter wavelengths. In 

Fig. 4 (b), the average chromatic dispersion obtained 
with the fitting to the numerical results is 342 ps/nm. 

 

In Fig. 5 we compare the reflectivity and group 

delay peaks for the case d =1 mm,  = 291 μ. We 
can observe that are centered at the same wavelength, 

being narrower the group delay peak. The spectral 

width of the reflectivity peak for a crack of 1mm is 

7.0 pm while the corresponding group delay peak 

width is 1.0 pm. Thus, the spectral position of the two 

peaks coincide, but the peak of the group delay will 

provide, in principle, better resolution in determining 

the crack position by a factor 5 to 7. However, we 

will discuss this issue with more detail later in this 
work.  

 

 
 

 

Fig. 5. Reflectivity and group delay peaks for d = 1 

mm and    = 291 μ . 

3.2 Crack Position 

 
Our numerical results show that by measuring the 

spectral position of the resonant peaks with respect to 

the edge of the chirped grating, we can locate the 
position of a crack independently of the existing 

strain. Fig. 6 shows the reflection and group delay 

spectra for defects located at L/3 and 2L/3, both for 

the same strain value (291 ).  We find a good 
correlation between the wavelength of the notch that 

appears in the spectrum and the spatial location of the 
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defect, i.e., the z coordinates of the crack. This is the 

basic idea of using a CFBG. In order to confirm this 

simple relationship between the spectral response and 

the spatial location of the crack, independent of the 

strain, we define  = (p -i), where p and i 
correspond to the wavelengths of the transmission 

peak and the left edge of G1 grating, respectively.  
 

 

Fig. 6. Spectra for 1 mm cracks in different 

positions: L/3 and 2L/3: (a) Reflectivity and (b) group 

delay, both computed for  = 291 s. The white line is 

the average chromatic dispersion. 

 

When a strain is applied, the complete grating 

shifts to longer wavelengths and both values (p and 

i) change, but the difference is determined by the 
spatial position of the crack. It is worthwhile to 

mention that we could take the reference on the right 

edge on grating G3 (d) and define ' as d -p. 
This option could have the advantage of avoiding the 

interference between G2 and the left border of G1 for 

high values of the strain. 

For the analysis of the group delay information (see 

Fig. 6 (b)), we found useful to define what we have 

called the group delay position of the resonance (g). 
This parameter is the group delay value that the 

original CFBG with no strain would have at the 

wavelength where the resonance appears due to the 

presence of the crack. 

In order to make more clear the definition, we include 

in Fig. 6 (b) the white dashed line that corresponds to 

the average group delay, and with dashed horizontal 

lines we point to the intersections of the resonances 

produced by the crack. The intersections define the g 
values of these two cases: 319 ps and 658 ps for 

crack positions at z = L/3 and z = 2L/3, respectively. 
 

Fig. 7 shows the wavelength position (p) and the 

group delay position (g) of the resonance, computed 
for different z position of the crack. We include in 

this plots the values computed for two strains (291 μ 

and 691 μ), in order to show that the results are in 
principle independent of strain, although later we will 

show that this is not exactly true. The relationship 

between the spatial coordinate z and these two 

parameters p and g is approximately linear and 
falls on the straight line defined by the nominal chirp, 

for both strain values. In Fig. 7 (a) the slope of the 

straight line is 1/C (with C = 30 pm/mm, the nominal 

value), and in Fig. 7 (b) the slope of the plotted line is 

vg = 2×108 m/s. Thus, as a preliminary conclusion, we 

could say that in an experiment where the position of 
the crack should have to be determined, the measured 

values obtained for p and g would determine the 
position of the crack regardless of the strain, since we 

can observe in the simulations that the points overlap 

the straight line. In principle, since the group delay 

peak is narrower, this would provide better 

resolution. 

 

However, one can observe some deviations of the 

points obtained with numerical simulations from the 

straight lines that correspond to the nominal values of 

C and vg. These fluctuations are not numerical noise, 

but variations with an important physical meaning 
that one can find out when performing detailed 

simulations as a function of strain. We will discuss 

this in the next section. Moreover, for relatively wide 

cracks i. e., large values of d the transmission spectra 

present several peaks, although there is a single crack 

in the CFBG (see Fig. 8). One can expect that this 
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fact will increase the uncertainty in the spatial 

location of the crack from the spectral information. 

These bunches of peaks are present in previously 

reported experiments (see for example Fig. 13 in [4] 

and Fig. 4 in [7]). In some cases, they are reported as 
somewhat surprising double peaks associated with a 

single crack, and sometimes they are directly 

interpreted as corresponding to several cracks. Again, 

these bunches of peaks generated by a singlewide 

crack will behave in a particular and characteristic 

way when applying an external controllable strain. 

 

  
Fig. 7. Position of the crack (z) versus (a) wavelength 

position (p) and (b) group delay position (g) of the 

resonance. We include the points computed for two 

strains values, 291 μ and 691 μ. 

 

4. Response versus strain 

 
4.1 Determination of crack width 

 

Numerical simulations of reflectivity and group 

delay spectra as a function of strain show up a 

relatively complex behavior of the device. 

 

 

 
 

Fig. 8. Transmission spectra computed for CFBG with 

a crack located at L/2 and a relatively large width of 6 

mm.  

 

Fig. 9 shows the wavelength of the resonant peak 

generated by the crack and its amplitude versus 

strain, for d = 1 mm. If we analyze first the 

wavelength dependence with the strain (Fig. 9a), we 
find that the response has a staircase shape with an 

average slope that matches perfectly the shift of a 

FBG with strain, in good correspondence with the 

value that was considered for p: 0.79. If we now 
analyze the evolution of the peak amplitude versus 

strain (Fig. 9b) we find that the response is periodical 

and the period T (433 μ for d = 1 mm) matches the 
height of the steps observed in Fig. 9a. Before 

analyzing these results in more detail, we found 

necessary to explain the peculiar response of the 

device that we have just reported, in order to 

understand the physical origin of the staircase shaped 

response. In order to introduce a physical description 

of the crack effects, we will consider in a first 

approximation that the undisturbed section of the 
CFBG defines a Fabry-Perot with the anterior and 

posterior gratings (strictly speaking, it would be with 

the spectral end sides of gratings G1 and G3, since 

their Bragg wavelengths do not match).  

The actual spectral response of the grating fragment 

G2 that forms the defect in the original CFBG 

participates in almost nothing and its spectral 

response ends up coming out of the spectrum of 

interest for high strain values. Therefore, what one 

could expect is that gratings G1 and G3 would shift 

linearly as a function of strain and that, in principle 
the peak associated with the crack would follow the 
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shift of G1 and G3. In fact, this is what is observed 

in a large range of strain if we just consider the 

average slope, or if we focus our attention only on 

the peaks with maximum amplitude. The inset in 

Fig. 9a shows the slopes that are obtained for 
different values of d in the lower range of strain 

values. 

 

Fig. 9. (a) Strain versus wavelength of the transmission 

peak; the deepest peak of each cycle is in black. (b) 

Amplitude of the transmission peak versus strain. Both 

plots correspond to the case d = 1 mm. The inset 

depicts the slopes of the first cycle, labeled with the 

width values (d = 1, 2, 4 and 6 mm). 

 

 

 
Fig. 10. Fabry-Perot scheme. 

 

In Fig. 10, we give a scheme of the Fabry-Perot 

defined by the unperturbed section of CFBG (G2), 

where the crack is located and gratings G1 and G3. 

These two gratings are characterized by their 

effective lengths [12] d1 and d3 associated to the light 

penetration in both gratings (d1 + d3 = d0). The total 

effective length of the Fabry-Perot cavity is dT = d + 

d0. It should be noted that a wavelength independent 

effective length might be considered only for CFBG 
segments with negligible chirp, i.e., relatively short 

segments around the section of the CFBG 

overlapping the crack, as it is in our case. 

Changes due to strain on the CFBG generate a local 

differential decrease of the index (n < 0) with 
respect to the effective index of gratings G1 and G3, 

since the effective index increases with strain 

according to the p coefficient (p >0). In other words, 
the defect generated by the crack is deeper as the 

strain is increased, in terms of effective refractive 

index. Thus, the phase difference generated by the 

defect will be proportional to n and d. Since the 
refraction index change is proportional to the applied 

strain, we will have: 

 

 −  𝑑  (1) 

 

This  < 0 causes any Fabry-Perot resonance to shift 

to short wavelengths as   increases in absolute 
value. The spectral window in which the local Fabry-

Perot operates with good visibility is limited by the 

spectral overlap of gratings G1 and G3. Normally, 

only a single resonance appears in the reflectivity 

spectrum. The free spectral range (FSR) of the Fabry-

Perot (0) corresponds to each 2 cycle of . As  
decreases, every resonance shifts towards shorter 

wavelengths and, when it reaches the limit of the 

FSR, then a new resonance appears on the longer 

wavelengths side [15]. This produces each one of the 

steps observed in the simulations. Eventually, if d 

increases and the FSR is sufficiently small, then we 

can observe two or three resonances simultaneously 
in the reflection spectrum of the CFBG (as Fig. 8 

reports). If we define the phase 𝜑 as the angle  

modulo 2 (i.e. the phase 𝜑 is the remainder when 

dividing  by 2), we can write the spectral shift 

(’) due to the change of phase  as: 
 

′ = − 0  


2
 ,      [0, 2 ] 

(2) 

 

The value of 0, the Fabry-Perot Free Spectral 
Range, depends inversely to the effective length (d + 

d0) [12]: 

𝑑 𝑑 𝑑 Fiber

      

𝑑 
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∆𝜆0  
1

(𝑑 + 𝑑0)
 

(3) 

 

Combining equations (1-3), we can write the shift of 

the resonance ' generated by the change of phase 

 in the form:  
 

𝛿𝜆′ = −𝐵
𝜆𝑝 𝑑 𝛿𝜀

(𝑑 + 𝑑0)
 

(4) 

 

where B is a constant that combines the factors of 

proportionality defined in eq. (1) and (3) divided by 

2 and p. In order to account for the overall shift , 
we have to add the shift produced by the strain in the 

CFBG. Thus, we obtain the following expression for 

the normalized slope pd: 

 

𝑝𝑑 =
𝛿𝜆

𝜆𝑝 𝛿𝜀
= 𝑝 − 𝐵

𝑑

(𝑑 + 𝑑0)
 

(5) 

 

In order to test this result, we computed the slope pd 
for different widths d, for the first step, i.e., small 

values of strain, as reported in the inset of Fig. 9 (a) 

(see Table 1). The trace corresponding to d = 5 mm 

was not drawn in the mentioned inset, for clarity of 

the figure. 

 

d [mm] 𝒑𝒅 [𝟏/𝜺] 
1.0 0.4485 

2.0 0.3144 

4.0 0.2075 

5.0 0.1838 

6.0 0.1703 

 

Table 1. Computed pd values for different crack sizes. 

 

In Fig. 11 we plot (p - pd)/d versus 1/(d+d0) (p = 
0.79) and we find a perfect linear dependence by 

taking d0 =1.2 mm, with B = 0.753 and zero y-

intercept, demonstrating that the Fabry-Perot model 

developed in this section appears to be physically 

correct. Equation (5) explains the slope difference 

between the average value p and the actual value pd 
obtained with the simulations. In addition, the model 

explains the staircase shape in terms of the phase 

modulo 2of the defect generated by the crack. 

 
 
Fig. 11. Dependence of the slope deviation with respect 

to p, normalized with d, on (d + d0)
-1

. 

 

Once we have the numerical simulations and a 

physical model, we can propose two approaches to 

determine the width of a crack. We will assume that 

some initial strain exists, produced in the embedding 
process of the CFBG, and, furthermore, we will 

assume that we are able to apply an additional strain 

 to the device in a controllable way. Thus, if we 
can measure the actual value of the slope pd, then d 

can be determined using the calibration of Fig. 11 

that corresponds to eq. (5).  

Alternatively, if the strain period that defines the 

steps, T, can be measured, then the width d of the 
crack can be determined using the calibration 

provided by the numerical simulations and 

summarized in Table 2 and Fig. 12. We see that it is a 

good approximation to consider a linear dependence 

of T with (d+d0)
-1: T   C/(d+d0), C = 786 /mm. 

Finally, using d as a free parameter, one could 

numerically find the best fitting within a given strain 

range provided by the experimental data, by adjusting 
the response depicted in Fig. 9 (a). 

 

𝑻𝜺 [𝝁𝝐] d [mm] 𝟏 𝒅 + 𝒅𝟎⁄  [𝐦𝐦−𝟏] 
355 1 0.4545 

255 2 0.3125 

155 4 0.1923 

109 5 0.1613 

100 6 0.1389 

 

Table 2. Computed T  values for different d values. 
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Fig. 12. Dependence of the strain period with respect to 

effective cavity width. 

 

Similarly, to the amplitude response of the CFBG, we 

can analyze the group delay response. 

We should stress here that the value of the group 
delay in the resonance condition obtained directly 

from the simulations is called gp, while g is the 
group delay at the spectral position of the resonance 

peak, but measured on the curve corresponding to the 

slope of the chirp (see the definition in Fig. 6). Thus, 

Fig. 13 shows the behavior of these parameters 

versus strain, for a crack of d = 1 mm located at the 

center of the CFBG.  

If we analyze g versus strain, we see that the 
response is saw-tooth shaped with an average value 

that is constant. The expected value, according to the 

basic relationship depicted in Fig. 7 (b), would be 

500 ps. We see that the actual value oscillates around 

that value due to the Fabry-Perot effect. This effect 
has the same physical origin as the staircase shape 

described for the amplitude response of the CFBG. 

Regarding Fig. 13 (b), we find a periodic behavior for 

gp versus strain. The period is T, the same that we 
observed in the amplitude response. Around the strain 

value in which the amplitude response is higher, we 

observe the characteristic group delay oscillation of a 

resonance. This strong oscillation helps to perform an 

accurate experimental determination of T and d. 
 

 
Fig. 13. (a) Dependence of group delay position (g) 

versus applied strain. The deepest peak of each cycle is 

in black; the dashed line shows the group delay 

position that one could expect from Fig. 7 (b); the inset 

shows an enlargement of the plot. (b) Group delay 

value at the resonance (gp) versus applied strain. Both 

plots correspond to the case d = 1 mm. 

4.2 Fine determination of crack position 

After the analysis carried out in section 4.1, there are 

two important consequences for the determination of 

crack position using CFBG. First one is the fact that 

the amplitude of both reflectance and group delay 

peaks might be small, depending on the actual value 

of strain, and perhaps could not be detected 

experimentally. Therefore, in some reported 

experiments [4]–[7] they might be missing some 

cracks because of the specific strain that the CFBG 

might be supporting when recording the spectrum. In 

addition, after Fig. 8, we know that for broad cracks 
we may observe two or three peaks in the reflection 

spectrum that are produced by a single crack, as it 
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can be observe clearly in some experiments 

previously reported in [4]–[7], for example.  

At this point, we would like to stress the importance 

of being able to carry out a characterization versus 

applied strain. We can discuss here how the staircase 
response depicted in Fig. 9 (a) limits the precision 

when locating the position of a crack. In section 3.2 

we assumed that the spectral position of the 

resonance was determined directly by the chirp of the 

grating, but after the rigorous simulations we know 

that the response is more complex. If we analyse Fig. 

9 (a) we conclude that the maximum deviation of p 
with respect the average slope determines the 

maximum error, since we assume that the initial 

strain is unknown. Equation (4) gives the value of the 

deviation, and its maximum value corresponds to  

= T / 2. For example, in the case of d =1 mm (T = 

355 , p  1.545m, B = 0.753 and d0 = 1.2 mm) 

we find a maximum deviation of  B p (T/2) 

d/(d+d0) =  90 pm, and according to the chirp of the 

grating, the error in the position z would be  3 mm. 
However, once a first approximation is obtained, 

adjusting the numerical simulations to match the 

experimental dependence with the applied strain, it 

should be possible to refine the location of the crack.  

We can also analyse how precisely we can obtain the 

information on crack position from the measurement 
of the group delay when applying an external strain. 

Fig. 13 summarizes the results that we have obtained. 

As an example we have chosen the case d = 1 mm. 

First, in Fig. 13 (a) we can see that g follows a sort 
of horizontal saw-tooth curve, which average is about 

the g value that we would get from the basic analysis 
carried out in section 3.2 (see Fig. 7 (b)). Second, in 

Fig. 13 (b) we can see that gp has a periodic behavior 
with a period that matches the period of the staircase 

(T) defined in Section 4, T = 355  for d = 1 mm. 
So now again, we can correlate the dependence of the 

group delay versus the applied strain with the Fabry-

Perot effects commented in the previous section.  

From the point of view of determining the crack 

position in a realistic experiment, and assuming that 

the curing process of the material generates an 

unknown strain, the extreme peak values of the 

sawtooth response depicted in Fig. 13 (a) determines 

the error. In this example, the values of g are within 

a deviation of  20 ps with respect the average, and 

according to the group delay of the CFBG (10 
ps/mm), this would correspond to an uncertainty in 

the determination of the spatial position of the crack 

of  2 mm. This value is in good agreement with the 
value obtained when discussing the determination of 

the crack position after the spectral position of the 

resonance. Again, if the measurement of g versus 
applied strain is feasible, then with this extra 

information one could adjust the simulations with the 

experiment and obtain a more accurate determination 
of the spatial location of the crack. 

5. Preliminary experimental verification 

In Fig. 14, we present a scheme of the experimental 

setup employed for a preliminary verification of the 

use of a CFBG for the detection of cracks. In our 

approach, there was no embedded CFBG, but an 

alternative experimental arrangement in which a short 

section of the CFBG is covered with a drop of glue, 

and this gives rise to a differential strain when a 

stress is applied to the fiber.  

The CFBG was recorded in photosensitive SM fiber 

using a doubled Ar laser (244 nm) and a 50 mm 

uniform phase mask. The moving fiber – scanning 
beam approach was used to generate the chirp [16]. 

A segment of photosensitive optical fibre containing 

a 50 mm long CFBG was fixed at two points (A and 

B), one of which (B), was attached to a micrometric 

translation stage in order to apply a known strain.  

The CFBG had a spectral width of 1.105 nm 

(corresponding to a chirp C = 22.1 pm/mm, and a 

chromatic dispersion of 403 ps/nm), the central 

wavelength was 1543.78 nm. The defect was located 

approximately in the centre of the CFBG at z = 25 

mm.  
 

 
 

Fig. 14. Scheme of the experimental setup. The drop of 

glue generates the differential strain, simulating the 

presence of a crack in an embedded CFBG.  
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Fig. 15 (a) shows the experimental spectrum of 

reflectivity and group delay of the CFBG before 

stretching the fiber with the micrometer.  

To measure the group delay of the CFBG, we 

employed the so-called phase shift technique [17], 
using a tunable laser (Photonetics TUNICS-BT) in 

conjunction with a vector voltmeter (Agilent 8508A), 

a signal generator (Agilent 8648A) and an electro-

optic modulator. 

 

 

 
Fig. 15.  Reflectivity (black line) and group delay (gray 

line) of CFBG at its initial condition ( = 0): (a) 

experiment, (b) simulation. 

 

The grating shows a maximum reflectivity of 80%. 
Fig. 15 (b) gives the theoretical values that have been 

computed adjusting the refractive index modulation 

in order to match the experimental reflectivity (n = 

9.3×10-5, i = 514.42nm, f  = 514.77 nm, neff  = 1.5 y 
L = 5 mm). We can see a good agreement with the 

experiment, although the experimental CFBG appears 

to have a reflectivity somewhat smaller at the blue 

part of the spectrum.  

 

Figure 16 shows the spectra of the CFBG when a 

strain of 523  was applied. It is clearly observed 
the generation of the resonances in both the 

amplitude and the group delay spectra. The 

theoretical simulation was computed with the same 

parameters than in Fig. 15 (b). A good match 

between theory and experiment can be observed. 

 

 
 

Fig. 16. Reflectivity (black line) and group delay (gray 

line) at  = 523 : (a) experiment, (b) simulation. 

 
Fig. 17 represents the spatial position (z) versus the 

wavelength difference, i. e., the nominal chirp of the 

grating as it was fabricated, and the 2 experimental 

values obtained after the measurement of the 

amplitude and group delay spectra for the strain 

values 523 and 1300 . In this figure the wavelength 

difference ' is defined from the right border of the 

CFBG (d) to the wavelength position of the 

transmission peak (p): ' = d - p. We observe 

that the experimental values of ' for two strain 
values remain approximately constant, and according 

to the slope determined by the chirp, the spatial 

position of the crack would be 23 mm, matching 

correctly the actual value fixed by the experimental 

arrangement.  
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Fig. 17. Chirp of the grating as it is defined in the 

fabrication process (solid line) and experimental points 

determined by the wavelength difference of the 

transmission peak with respect to the long wavelength 

border of the grating (').  

 

Although we only have experimental measurements 

for 2 values of strain (523 and 1300 ) we have 
proceeded to compare the two experimental points 

with the simulated dependence of the resonance 

wavelength with applied strain, by plotting the strain 

versus wavelength. We can see that the two 

experimental points match perfectly the computed 

response by adjusting the width (d = 1.6 mm). 
Although the nominal value of d was 2 mm, we find a 

better agreement with a slightly smaller value. With 

this adjusted value, we observe as well a good match 

with the actual amplitude of the resonance which is 

high at 523 , but rather small at 1300 Fig. 18.  
 

 
Fig. 18. Wavelength of the transmission peak versus 

strain. The two experimental points are the triangles. 

Simulations performed for a defect d = 1.6 mm.  

6. Conclusions 

The results of the present work demonstrate that the 

use of CFBG for the characterization of cracks is not 

straightforward and it is not possible to perform the 

analysis with a simple correlation between spectral 

position of resonances and nominal chirp of the 
grating. First, we find that a single crack can produce 

several peaks in the grating spectral response and, 

second, we find that as a function of the remaining 

strain the spectral position of the peak changes 

significantly. Our results show that by measuring the 

response versus applied strain one can overtake the 

main limitations, since the slope of the peaks’ shift 

versus strain gives direct information on the crack 

width and enables a precise determination of the 

crack position. In addition, the measurement of the 

group delay versus strain gives redundant information 

that can be used for verification purposes or as an 
alternative to the measurement of transmission or 

reflection spectra. According to our knowledge, 

previously published works do not refer to the 

possibility of measuring crack width, so this is an 

original contribution of the research work presented 

here. Although some experimental results are 

provided, a precise experimental test is still required 

in order to confirm the model with detail. 
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