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Abbreviations and gene descriptions: 
 

HGT: Horizontal Gene Transfer 

HML/HMR: Hidden MAT Left/Hidden MAT Right 

Ho: Homothallic (Homothallic switching endonuclease) 

MAT: Mating Type 

ML: Maximum Likelihood 

ORF: Open Reading Frame 

WGD: Whole Genome Duplication 

 

ATO3: Ammonia Transport Outward gene. Plasma membrane protein, putative 

ammonium transporter; regulation pattern suggests a possible role in export of 

ammonia from the cell; phosphorylated in mitochondria; member of the TC 9.B.33 

YaaH family of putative transporters 

FSY1: Fructose Symporter 1 gene. Plasma membrane fructose/H(+) symporter that 

shows high affinity for fructose and is present in some Saccharomyces strains. 

HXT: Hexose Transporter genes. Gene family that encodes glucose sensors and 

hexoses (mainly glucose and fructose) membrane transporters. 

HO: Site-specific endonuclease; required for gene conversion at the MAT locus 

(homothallic switching) through the generation of a ds DNA break; expression 

restricted to mother cells in late G1 as controlled by Swi4p-Swi6p, Swi5p, and 

Ash1p 
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Definitions: 

 
Allotetraploidy: the status of a cell or an organism having four full sets of 

chromosome complements, two derived from one diploid species, the other two 

from another, different, diploid species. 

 
Assembly: refers to aligning and merging fragments from a longer DNA sequence in 

order to reconstruct the original sequence. This is needed as DNA 

sequencing technology cannot read whole genomes in one go, but rather reads 

small pieces of between 20 and 30000 bases, depending on the technology used. 

 
Biological species concept: defines species as a group of organisms that do or 

potentially could interbreed with one another indefinitely to the exclusion of other 

such groups. 

 
BLAST (Basic Local Alignment Search Tool): software suite with programs for 

searching a sequence against a database in order to find similar sequences, 

freeware developed at the NCBI. 

 

Bootstrap analysis: in phylogenetic analysis, this technique involves creating 

replicate data sets of the same size as the original alignment by randomly 

resampling alignment columns with replacement from the original alignment and 

reconstruction phylogenetic trees for each. The proportion of each clade among all 

the bootstrap replicates can be considered as measure of robustness of the 

monophyly of the taxa subset. 

 

https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/DNA_sequencing
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Clean linages (clean populations): lineages that exhibit the same phylogenetic 

relationship across their entire genomes. 

 

Ecological species concept: defines species as a group of organisms that have a 

distinct ecological niche that distinguishes them from other species. 

 
Horizontal Gene Transfer: the movement of genes from one species to another 

without successful mating. In contrast to bacteria, this process seems to be fairly 

rare in yeast, except those undergoing domestication. 

 

Illumina sequencing: method of sequencing based on reversible dye-terminators 

that enable the identification of single bases as they are introduced into DNA 

strands. It can also be used for whole-genome and region 

sequencing, transcriptome analysis, metagenomics, 

small RNA discovery, methylation profiling, and genome-wide protein-nucleic 

acid interaction analysis. 

 
Introgression: gene flow from one species to another through a process of 

successful mating and backcrossing. 

 

Mapping: method that compares the DNA reads of a sequenced sample to one 

reference sequence to find the corresponding part of that sequence for each read 

in our sequencing data. 

 
ML: Maximum likelihood. A principle of statistical inference which is essentially 

generalization of least-squares to non-normal data, and can be shown to lead to 

optimal estimators, at least for large sample size. Moreover, it is fully automatic  

https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/Transcriptome
https://en.wikipedia.org/wiki/Metagenomics
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Methylation
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/Nucleic_acid
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once a model is specified, and allows computing confidence bands by means of the 

so-called Fisher information. 

 
Mosaic linages (mosaic populations): lineages that exhibit a different phylogenetic 

relationship from other studied lineages. 

 
NCBI: National Center for Biotechnological Information. A web page that houses a 

series of databases relevant to biotechnology and biomedicine and is an important 

resource for bioinformatics tools and services. Major databases 

include GenBank for DNA sequences and PubMed, a bibliographic database for the 

biomedical literature. 

 

NJ: Neighbor-joining. A heuristic method for estimating the minimum evolution 

tree. The principle is to find pairs of operational taxonomic units (OTUs) that 

minimise the total branch length at each stage of clustering of OTUs starting with a 

star-like tree. 

 
Orthology: homology between two genes in different species that coalesce to a 

common ancestral gene without gene duplication or horizontal transmission. 

 
Ohnolog/s: a duplicate gene or paralog pair created by whole genome duplication 

(after Susumu Ohno). 

 
PacBio sequencing: method based on the Single molecule real time (SMRT) 

sequencing commercialized by PacBio in 2011. A single DNA polymerase enzyme is 

affixed at the bottom of a nanophotonic confinement structure called ZMW (zero-

mode waveguide) with a single molecule of DNA as a template. The ZMW is a 

structure that creates an illuminated observation volume that is small enough to  

https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Biomedicine
https://en.wikipedia.org/wiki/GenBank
https://en.wikipedia.org/wiki/PubMed
https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/Photonics
https://en.wikipedia.org/wiki/Zero-mode_waveguide
https://en.wikipedia.org/wiki/Zero-mode_waveguide
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observe only a single nucleotide of DNA being incorporated by DNA polymerase. 

Each of the four DNA bases is attached to one of four different fluorescent dyes. 

When a nucleotide is incorporated by the DNA polymerase, the fluorescent tag is 

cleaved off and diffuses out of the observation area of the ZMW where its 

fluorescence is no longer observable. A detector detects the fluorescent signal of 

the nucleotide incorporation, and the base call is made according to the 

corresponding fluorescence of the dye.  

 
Paralogy: homology between two non-allelic genes of the same genome, derived 

by duplication from a common ancestor.  

 
Phylogenetic species concept: defines species as the smallest group of organisms 

whose genes (all or nearly all) share a common ancestor that excludes all other 

species. 

Reads: short (method of sequencing size dependent) DNA sequences obtained 

from sequencing that often come in (or can be converted into) a file format 

called FASTQ. It is a plain text format, containing the sequence and quality scores 

for every read, where each single read normally occupies four consecutive lines. 

 
Saccharomyces ‘sensu lato’: Saccharomyces in the broad sense; an informal and no 

longer valid term that historically applied to yeasts from several genera, many of 

which are now known to have closer non-Saccharomyces relatives. 

 
Saccharomyces ‘sensu stricto’: Saccharomyces in the strict sense. There are 
currently eight natural species in the Saccharomyces genus.  
 
 
 

https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/FASTQ_format
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Sanger sequencing: method of DNA sequencing first commercialized by Applied 

Biosystems, based on the selective incorporation of chain-

terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. 

 

sp: Abbreviation referred to a non-identified species belonging to an identified 

genus. 

 
spp: Abbreviation referred to all the species included inside a genus. 

 

Subtelomere: Genomic fragment whose proximal boundary (towards the 

centromere) is located in basis of the sudden loss of synteny conservation and 

whose distal boundary (towards the telomere) is demarcated by the telomere-

associated core X and Y’ elements. 

Synteny: the common presence of genes along a given chromosome or 

chromosomal segment. The notion generally also implies the order of those genes. 

Hence, conservation of synteny indicates the conservation of the order of 

homologous genes between two chromosomes or between chromosomal 

segments of different species. 

 
`Unware domestication’: the process of evolution applied to some organisms (e.g. 

Saccharomyces cerevisiae) that underwent highly specialized on the utilization of 

the different environments or ecological niches provided by human activity. This 

evolutionary process is reflected in the genetic characteristics of those organisms. 

 

https://en.wikipedia.org/wiki/Dideoxynucleotide
https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/In_vitro
https://en.wikipedia.org/wiki/DNA_replication
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El estudio de las características moleculares de levaduras de la familia 

ascomicetes ha sido de gran importancia en los últimos años por su aplicación en 

diferentes procesos industriales, sobre todo aquellos relacionados con la 

alimentación y por su uso como organismos modelo de célula eucariota, 

contribuyendo con multitud de estudios que aportan conocimiento básico acerca 

del funcionamiento de diferentes procesos a nivel celular. Dentro de este grupo de 

levaduras, ha sido de gran relevancia la comprensión de los procesos que llevan a 

cabo las especies del género Saccharomyces, directamente implicadas en procesos 

fermentativos de gran valor en la industria alimentaria. Así la levadura 

Saccharomyces cerevisiae es la predominante en las fermentaciones vínicas y en la 

producción de pan y las levaduras Saccharomyces pastorianus y Saccharomyces 

bayanus poseen características diferenciales que las hacen apropiadas en la 

fermentación que da lugar a la producción de cerveza. Otras especies de levadura 

son responsables de las propiedades organolépticas finales de los quesos, como 

Kluyveromyces lactis o el depurado final de los granos de café, que es llevado a 

cabo por especies de Candida, Saccharomyces o Kluyveromyces. También se han 

realizado numerosos estudios sobre cómo estas levaduras han llegado a 

especializarse para dar las características que hoy en día se valoran y pretenden 

mejorar en estas bebidas y alimentos. En este proceso, ha sido clave la 

intervención del hombre ya desde la época Mesopotámica, en la que se encontró la 

jarra de vino más antigua hasta el día de hoy (5400-5000 a. de C.). Se habla de que 

se llevó a cabo una selección inconsciente de las levaduras que mejoraban las 

propiedades finales, por ejemplo seleccionando los vinos de mejor calidad y 

desechando los malos. Esta selección se ha conocido como domesticación y su 

estudio ha sido de gran importancia para saber cómo el genoma de una especie 

que procedería de un ambiente natural, ha podido ser optimizado a lo largo del 

tiempo para adaptarse a un ambiente fermentativo y competir con el resto de 
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especies presentes. La huella del proceso, conocido como “domesticación 

inconsciente”, se ha visto reflejada en diferentes estudios poblacionales que han 

demostrado que las cepas de levaduras especializadas en un tipo de fermentación 

específica están más estrechamente relacionadas entre sí que con las que 

proceden de una misma área geográfica (Liti G. et al 2011 and Sicard D and Legras 

JL, 2011). 

Según sean las condiciones ambientales, en el ciclo de vida de las levaduras 

ascomicetes se puede dar reproducción asexual o sexual. Cuando el medio en el 

que se encuentran es rico en nutrientes y sin ningún tipo de estrés, el crecimiento 

vegetativo se lleva a cabo por reproducción asexual, de forma que se produce una 

división asimétrica en la que se genera una célula hija por gemación a partir de una 

célula progenitora o madre. En condiciones desfavorables, las células haploides 

conjugan con otra célula haploide de sexo contrario para formar una diploide. Para 

que se lleve a cabo la conjugación, las células haploides presentan diferentes tipos 

sexuales que vienen determinados por el gen MAT para el que existen dos tipos 

sexuales o idiomorfos llamados MATa y MATα. A partir del estado diploide (a/α), se 

podrá dar la reproducción sexual mediante una división meiótica que produzca 

esporas resistentes (haploides) que germinarán una vez las condiciones sean 

favorables.   

Según sea el estado predominante, las levaduras se caracterizan por tener 

un ciclo de vida haplo-biontico o diplo-biontico. En las especies de los géneros 

Torulaspora, Zygosaccharomyces o Zygotorulaspora predomina el estado haploide 

mientras que en especies del género Saccharomyces, el ciclo de vida predominante 

es el diplo-bionte o estado diploide. 
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A partir del estado haploide, dos células de distinto sexo pueden conjugar de 

varias formas: si el cruce se produce entre dos células procedentes de productos 

meióticos de diferentes células haploides se denomina amfimixis o cruzamiento 

externo. Por otro lado, el cruce se puede producir dentro de la ascospora entre dos 

células de diferente sexo, lo que se conoce como conjugación intra-tétrada. Otra 

forma de conjugación es la autodiploidización, que implica la fusión de la célula 

madre con la célula hija, lo que genera un genoma homocigoto excepto para el 

locus MAT. Las levaduras capaces de cambiar el tipo sexual se llaman homotálicas 

(término referido a la posibilidad de que un individuo presente ambos sexos). Este 

mecanismo evolucionó dentro de los Saccharomycetes en dos pasos: primero se 

adquirieron los cassetes silenciosos en un ancestro del género Kluyveromyces y 

más tarde se adquirió la endonuclasa Ho antes de la divergencia del género 

Zygosaccharomyces. El cassete y la endonucleasa permiten el cambio de sexo por 

recombinación homóloga.  

Un evento clave en la filogenia de la familia de levaduras 

Saccharomycetaceae fue el que marcó la diferencia entre las levaduras de linajes 

anteriores a dicho evento y las descendientes: la duplicación del genoma en un 

ancestro común a varios géneros de la filogenia, entre ellos el género 

Saccharomyces. Hoy en día se propone que esta duplicación genómica se produjo 

por una hibridación inter-específica que dio como consecuencia la duplicación en la 

dotación cromosómica. Tras este proceso de hibridación, una estabilización del 

genoma sería necesaria para la propagación sexual de esta nueva formación, por lo 

que dos hipótesis se proponen para ello: la primera es que la fusión se produjese 

entre dos células diploides dando lugar a un tetraploide fértil. Una segunda 

hipótesis propondría la formación de un híbrido entre dos células haploides, cuya 

estabilización genómica vendría dada por una subsiguiente autodiploidización para 

finalmente generar una especie tetraploide.  
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Este aumento masivo en el número de copias del conjunto de genes del 

genoma tuvo varias consecuenias inmeditas, que se especula fueron decisivas para 

la dominancia de estas especies en ambientes fermentativos. En primer lugar, se 

produjo una pérdida masiva de genes redundantes, con lo que el genoma se redujo 

drásticamente. Sin embargo, otros muchos genes se mantuvieron duplicados, 

haciendo que su concentración celular aumentase. Se especula que en este 

momento fue cuando las levaduras descendientes de esta duplicación adquirieron 

su metabolismo fermentativo característico. Este metabolismo está basado en el 

denominado efecto Cabtree, que básicamente consiste en que el flujo metabólico 

esta sesgado hacia el metabolismo fermentativo en condiciones de presencia de 

oxígeno (aeróbicas).  

Se hipotetiza que este comportamiento fermentativo apareció a la vez que 

surgió el evento de fructificación en las angiospermas, cuyos frutos eran muy ricos 

en azúcares. A su vez, la duplicación genómica trajo consigo la duplicación y 

mantenimiento de los genes implicados en el transporte de azúcares al interior 

celular y su procesamiento para ser incorporados a la ruta metabólica.  Este 

aumento en el flujo de glucosa y fructosa (azúcares mayoritarios en la 

fermentación) por el propio aumento en el número de permeasas en la membrana 

celular, permitió a estos organismos crecer más rápidamente que a sus 

competidores. A pesar de que la fermentación es una estrategia metabólica mucho 

menos energética que la respiración, ya que produce menos cantidad de ATP 

(adenosina trifosfato), el aumento en biomasa y la elevada concentración final de 

etanol a consecuencia de la fermentación alcohólica, hizo que estos organismos, 

mayoritariamente S. cerevisiae, compitiese de manera tan eficiente con el resto de 

microorganismos presentes en ese ambiente que acabó imponiéndose en las 

fermentaciones.  
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En esta tesis tenemos como objetivo general, el estudio de la evolución y los 

mecanismos implicados en la adquisición de genes relevantes para la 

preponderancia de estos microorganismos en las fermentaciones. Especialmente, 

ha sido de nuestro interés el estudio de los transportadores de azúcares, glucosa y 

fructosa, dada su importancia en la eficiencia de las fermentaciones.  

En especial, hemos puesto más atención a un transportador de fructosa de 

alta afinidad que es específico para el transporte de fructosa y trabaja de forma 

activa, incorporando la fructosa al interior celular mediante el co-transporte de H+. 

Partiendo de trabajos anteriores, ya se conocía que este transportador, cuyo gen 

que lo codifica fue designado como FSY1, se encontraba en las especies S. 

eubayanus, S. uvarum y S. pastorianus, pero no se había descrito en ninguna 

especie más del género Saccharomyces. Varios años después, se descubrió la 

presencia de este gen en la cepa vínica EC1118 perteneciente a la especie S. 

cerevisiae. En ese trabajo, se especuló con la idea de que este gen podría haber 

sido adquirido por transferencia génica horizontal junto a un grupo de genes 

adyacentes, que en conjunto formaban una región subtelomética de genes no 

conocidos antes en S. cerevisiae. Además de esta región, llamada Región C, otras 2 

regiones mas conteniendo genes de nueva adquisición fueron descubiertas en ese 

mismo genoma y en conjunto, las 3 regiones presentaban genes relacionados con 

el metabolismo fermentativo, cuya adquisición se podría relacionar con una 

ventaja evolutiva para esta cepa en estos ambientes. 

En concreto, el estudio de este gen, que se encarga de transportar fructosa cuando 

este azúcar se encuentra en concentraciones bajas en el medio, resulta de gran 

importancia a nivel industrial. Los mostos a partir de los cuales de lleva a cabo la 

fermentación por parte de las levaduras, poseen unas proporciones equimolares 

de glucosa y fructosa. Sin embargo, parece ser que S. cerevisiae tiene una 
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preferencia por consumir la glucosa antes que la fructosa, de forma que esta última 

queda de forma residual al final de las fermentaciones mientras que la glucosa ha 

sido completamente consumida. Esta situación provoca que los vinos que se 

producen resulten excesivamente dulces, ya que la fructosa aporta mas sensación 

dulce que la glucosa, y las cantidades de etanol finalmente producidas no son tan 

altas, de forma que los vinos son propensos a contaminación por bacterias. Este 

hecho estimuló la búsqueda de soluciones a nivel industrial para evitar este efecto 

no deseado de la fructosa residual. Por ello, fue de importancia la identificación de 

levaduras con un llamado carácter “fructofílico”, que ayudase a evitar estas 

paradas en fermentación y de aquí uno de nuestros objetivos en el estudio de este 

transportador.  

En el trabajo de Novo et al. 2009, se propuso que esta región de genes, 

llamada Región C y en la que se encuentró el gen FSY1, fue adquirida en esta cepa 

de S. cerevisiae por transferencia horizontal. A través de un análisis de la sintenía y 

homología de los genes de la Región C, los autores especularon que estos genes 

podrían proceder de una especie desconocida procedente del género 

Saccharomyces.  

Con el objetivo de averiguar cual podría haber sido la especie dadora de este 

gen a S. cerevisiae, llevamos a cabo una búsqueda de dicho transportador en 

diferentes cepas y especies de la familia Saccharomycetaceae. Para ello realizamos 

una primera búsqueda del gen empleando las secuencias disponibles en las bases 

de datos de NCBI y Sanger, de los genomas secuenciados hasta ese momento. 

Paralelamente diseñamos unos oligonucleótidos generales para llevar a cabo la 

amplificación por PCR de este gen, en el mayor número de especies posible. Una 

vez obtenidos los amplificados, obtuvimos las secuencias de los mismos mediante 

amplificación Sanger. Durante la visualización de los cromatogramas procedentes 
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de la secuenciación, observamos que para la cepa CLIB 830T de la especie 

Torulaspora microellipsoides, obtuvimos una representación de dobles picos, lo 

que sugeria que en esta cepa existía una segunda secuencia que estábamos 

amplificando accidentalmente. Finalmente, conseguimos obtener esa segunda 

secuencia y observamos que presentaba alrededor de un 70% de similitud de 

secuencia, por lo que pensábamos que podría tratarse de genes parálogos y no de 

copias alélicas.  

Nuestro primer resultado reflejaba como se distribuía este gen en la 

filogenia de la familia Saccharomycetaceae. Observamos que mientras que la 

mayoría de especies pre-duplicación genómica presentaban este gen en su 

genoma, tan solo uno de los géneros post-duplicación genómica presentaban este 

gen. Concretamente, solo se encontraba en las especies en las que ya se había 

visto: el grupo formado por S. eubayanus, S. uvarum y S. pastorianus en el que 

todas las cepas analizadas presentaban el gen (100%) y en algunas cepas de la 

especie S. cerevisiae, para las cuales se observó que el gen se presentaba en cepas 

mayoritariamente vínicas.  

Un primer análisis filogenético, reveló que esta especie, T. microellipsoides, 

presentaba una posición filogenética no esperada con respecto a la filogenia 

obtenida para la familia Saccharomycetaceae en la que como es de esperar, esta 

especie se encontraba dentro del género Torulaspora. Con ello concluimos que 

esta podría ser la especie responsable de la transferencia de al menos este gen, si 

no la Region C por completo, a algunas cepas de la especie Saccharomyces. 

Posteriormente, en un trabajo realizado en colaboración con el grupo de la Dra. 

Sylvie Dequin, se llevó a cabo la secuenciación de la cepa CLIB 830T de la especie T. 

microellipsoides, con lo que se reveló la presencia de esta Region C que presentaba 

una región adicional de unas 80kb entre el primer y el segundo gen de la región 
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encontrada en S. cerevisiae. En ese mismo trabajo, se realizó una búsqueda de esta 

región en cepas de S. cerevisiae recién secuenciadas. En dos cepas, se encontró 

nuevamente esta región de genes, pero esta era mas similar a aquella encontrada 

en T. microellipsoides, ya que presentaban algunos de los genes vistos intercalados 

en la Region C de esta especie. 

Estos últimos hallazgos hicieron dudar de la dirección de la transferencia de 

esta región. En vista de los resultados previos, nuestra hipótesis de trabajo decía 

que: T. microellipsoides habría sido la especie responsable de donar estos genes a 

aquellas especies del género Saccharomyces. Sin embargo, el hecho de haber 

encontrado estas regiones más parecidas a T. microellipsoides en dos cepas de S. 

cerevisiae y que solo tuviéramos la secuencia genómica de una cepa de T. 

microellipsoides, nos llevó a plantearnos la secuenciación del genoma del resto de 

cepas disponibles de T. microellipsoides con el fin de buscar estas regiones en ellas. 

A partir de los ensamblajes de la secuenciación, pudimos encontrar estas 

regiones en tres de las cuatro cepas secuenciadas, lo que apoyaba que la 

transferencia hubiera sido desde alguna cepa de esta especie hacia aquellas 

especies del género Saccharomyces. 

Tras la secuenciación de los genomas de las restantes cepas de T. 

microellipsoides pudimos obtener todas las secuencias del gen FSY1. 

Sorprendentemente, eran tres de las cuatro cepas las que presentaban una 

secuencia similar a la encontrada en S. cerevisiae a la que llamamos FSY1A. Una 

segunda copia paráloga de FSY1A a la que llamamos FSY1B fue obtenida en todas 

ellas y adicionalmente se encontró otra copia de FSY1B en tres de las cepas, a la 

que llamamos FSY1B2. Una vez obtenidas las secuencias, realizamos un análisis 

filogenético por el método de Máxima verosimilitud (ML) de las mismas. La 

reconstrucción obtenida reflejaba que aquellas secuencias que obtuvimos para las 
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cepas de T. microellipsoides, ocupaban una posición filogenética diferente a la que 

fue establecida para la filogenia de la familia por Kurtzman 2003 , siendo una copia 

de ellas idéntica a la de S. cerevisiae y las otras dos muy próximas a las del grupo de 

S. eubayanus, S. uvarum y S. pastorianus.  

Para comprobar el resultado obtenido con el árbol Maxímo Verosímil, 

llevamos a cabo una comparación de topologías mediante el test de Shimodaira-

Hasewaga. De esta forma, comprobábamos estadísticamente que este árbol 

obtenido era el que mejor que se adecuaba a nuestro alineamiento a pesar de ser 

incongruente con el árbol esperado para la familia Saccharomycetaceae. De esta 

comparación observamos que la mejor topología era la obtenida por ML para 

nuestras secuencias de FSY1. 

Para apoyar la idea de que este gen hubiese sido transferido desde T. 

microellipsoides (una cepa pre-duplicación) a otras especies post-duplicación, 

inspeccionamos la localización cromosómica de este gen en diferentes especies 

cuyo genoma estaba anotado, por lo que la sinténia podía obtenerse. Utilizando 

este análisis, vimos que FSY1 ocupaba una posición cromosómica central en las 

especies pre-duplicación Kluyveromyces lactis y Lachancea kluyvery, L. waltii y L. 

thermotolerans. Proponemos que, en un momento dado, FSY1 pasó a tener una 

posición subtelomética en especies Torlaspora delbrueckii, Zygosaccharomyces 

rouxii. Tras la secuenciación de las cepas de T. microellipsoides, también 

observamos esta misma disposición para todas las copias presentes del gen FSY1 

(FSY1A/FSY1B1/FSY1B2).  

Además del gen FSY1, encontramos un gen ortólogo en las especies del 

género Saccharomyces a otro de los encontrados en la Región C. Este gen era 

ATO3, cuya función ancestral descrita era el transporte de amonio. Tras realizar un 

análisis filogenético con las especies de la familia Saccharomycetaceae, 
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descubrimos que esta copia, que también se encontraba en una región 

subtelomérica, quedaba mas cerca en la filogenia con las secuencias encontradas 

en las cepas de T. microellipsoides para este gen. Con ello, obtuvimos que otros 

genes de esta famosa región, habían sido transferido a estas especies, bien siendo 

en el mismo o en eventos de transferencia diferentes. 

Todos estos resultados realizados con tan solo dos genes y con las copias 

parálogas de los mismos, nos llevaron a observar detenidamente las fiologenias 

obtenidas con las secuencias de todas las cepas de T. microellipsoides disponibles. 

De ellas, extrajimos nueva información de forma que detectamos que, 

probablemente, dos de las cepas de esta especie podrían ser especies hibridas. De 

las mismas reconstrucciones conseguimos inferir cuales podrían ser las posibles 

especies parentales de aquellas. Para poder confirmar nuestras hipótesis, 

realizamos nuevos análisis filogenéticos en los que incrementamos el número de 

genes, obtenidos gracias a la secuenciación de los genomas y nuevamente los 

resultados reforzaban aquello que ya vimos en los análisis previos. Las cepas NRRL 

Y-17058 y CBS 6143, serían dos especies híbridas cuyos genomas estaban 

compuestos por dos subgenomas cuya procedencia estaba probablemente 

identificada: uno de ellos era muy cercano a la cepa CBS 6641 y el otro similar a la 

cepa CBS 6762. 

De los mismos análisis, observamos que una de las cepas propuesta como 

posible parental, la CBS 6762, quedaba en una posición filogenética alejada con 

respecto a las otras cepas de T. microellipsoides. Por ello, hipotetizamos que esta 

cepa podría ser en realidad una especie cercana pero diferente a T. 

microellipsoides. Para reforzar este resultado, llevamos a cabo nuevas 

reconstrucciones filogenéticas añadiendo todas las secuencias de cepas de 

Torulaspora que aparecían en la bibliografía. Con ello determinamos que la cepa 
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CBS 6762 no se parecía mas a ninguna de las otras especies, sino que posiblemente 

se trataba de una nueva especie dentro del grupo de especies no- Saccharomyces 

mas similar a T. microellipsoides. 

Las principales conclusiones obtenidas de esta investigación durante este periodo 

de doctorado son: primero, la descripción de la especie T. microellipsoides como la 

responsable de varios eventos de transferencia génica horizontal a especies del 

género Saccharomyces, lo que supone la transferencia de genes entre levaduras de 

géneros alejados por introgresión y probablemente por algún proceso de 

hibridación genómica. Segundo, el hallazgo de nuevas especies híbridas dentro de 

la especie T. microellipsoides y por tanto, no pertenecientes a los pocos géneros en 

los que ya se habían encontrado, como Saccharomyces o Zygosaccharomyces y de 

una posible nueva especies dentro de la familia Saccharomycetaceae gracias a la 

secuenciación de nuevos genomas. 
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1. Yeast ecology and domestication 

Yeasts are eukaryotic unicellular microorganisms that belong to the kingdom 

Fungi and phylums Ascomycota, Basidiomycota and Deuteromycota (fungi 

imperfecti). Budding yeast, which are the yeasts under study belong to the phylum 

Ascomycota, subphylum Saccharomycotina, class Saccharomycetes (or Hemi-

ascomycetes: hemi-: half; ascus-: sac-containing spores), order Saccharomycetales. 

More than 1,500 species of Saccharomycetales are known (Kurtzman et al. 2011) 

and, according to environmental surveys, it is estimated that large numbers of taxa 

remain to be discovered that will likely double the known number of species. 

Although some species are parasites of animals (including humans, e.g. different 

Candida species) and plants (e.g. Eremothecium gossypii), most hemiascomycete 

yeasts are free-living microorganisms present in nutritionally complex substrates 

rich in simple organic compounds that originate from plants (exudates, flowers, 

decayed fruits and leaves, etc.). They can also be found in association with animals 

(e.g. arthropods) to act as gut and intestinal commensals by providing vitamins and 

enzymes in exchange for efficient habitat and dispersal (Kurtzman and Fell 1998).  

The Saccharomyces cerevisiae species has also become a good model 

eukaryotic organism for its simple and short life cycle, its easy culture and 

manipulation, properties that have favored its use in biochemical and genetic 

studies. In fact S. cerevisiae was the first eukaryotic organism for which the whole 

genome sequence was obtained (Goffeau 1996) and offers an unparalleled 

reference source for studying the basic molecular mechanisms of eukaryotic cells. 

As a result, it has been the subject of pioneering studies in the new ‘-omic’ 

analyses. Sequencing the first S. cerevisiae complete genome revealed the 

presence of 376 duplicated genes in 55 large regions, which led Wolfe and Shields 

1997 to postulate the occurrence of an ancient whole genome duplication (WGD) 
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event that occurred in an ancestor of S. cerevisie after its divergence from K. lactis 

about 100-200 million years ago. At present, genome sequences are available for 

many hemiascomycete yeasts and this information has allowed our understanding 

of several aspects of the evolution of this interesting group of eukaryotic 

microorganisms (Dujon and Louis 2017). 

However, most people know that hemiascomycete yeasts produce CO2 that 

makes bread rise and ferments sugary substrates to alcohol because Pasteur 

recognised the role of yeasts in the production of wine, beer, bread, etc. Some of 

these yeasts, particularly S. cerevisiae, have been responsible for the production of 

different fermented beverages and foods since the first human societies 

developed, and are currently used in industrial and biotechnological processes of 

major economic importance. 

Although S. cerevisiae is the main yeast used in the production of fermented 

foods and beverages, other yeasts also make important contributions (Fleet 2007). 

For example strains of Debaryomyces hansenii, Yarrowia lipolytica and 

Kluyveromyces marxianus play roles in the development of flavour and texture 

during cheese maturation. D. hansenii, Y. lipolytica and some Candida species also 

contribute to the production of meat by products, such as fermented salami, 

sausages and cured hams. Cocoa beans must be fermented to generate the 

precursors of chocolate flavour, and this fermentation is carried out by some 

species of Hanseniaspora, Candida, Issatchenkia and Pichia. Coffee beans go 

through a cleaning process to remove pulp and mucilaginous materials and certain 

strains of Candida, Saccharomyces, Kluyveromyces, Saccharomycopsis, 

Hanseniaspora, Pichia and Arxula have been associated with this process. 

Given its importance in the production of fermented foods and beverages, S. 

cerevisiae studies have focused on it to understand the underlying mechanism that 
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makes this yeast the best fermenter microorganism (Piškur et al. 2006). This, as 

well as other related species, are characterised by their ability to ferment simple 

sugars, mainly mono- and oligo-saccharides, into ethanol and CO2, even when 

oxygen is available for aerobic respiration, the so-called Crabtree effect (Hagman et 

al. 2013).  

Although alcohol fermentation is energetically less efficient than aerobic 

respiration, it provides a selective advantage to these yeasts to out-compete other 

microorganisms: sugar resources are consumed faster, while the ethanol produced 

during fermentation, as well as higher levels of heat and CO2, can be harmful or 

less tolerated by their competitors. Once competitors are overcome, S. cerevisiae 

can then use the accumulated ethanol as a substrate for aerobic respiration. This 

ecological strategy, known as (ethanol) ‘make-accumulate-consume’(Thomson et 

al. 2005; Piškur et al. 2006), has been suggested to possibly appear at the time that 

angiosperms emerge to produce sugar-rich fruits. 

At least three yeast lineages, including S. cerevisiae, Dekkera bruxellensis 

and Schizosaccharomyces pombe, have independently developed the conversion 

from sugars into ethanol. Two hypotheses for this emerging effect move between 

1) the possibility of an early origin in the evolution of Ascomycetes, which could 

later be lost in different groups; 2) a fermentative life-style appeared and was 

selected in different lineages (Hagman et al. 2013).  

After a WGD, an event some genera underwent before the split of 

Saccharomyces and Vanderwaltozyma (see the definition later), novel functions in 

new duplicated genes can be tested by evolution, and it probably happens for 

alcohol dehydrogenase genes and hexose transporter genes (HXT). Based on the 

ability to produce ethanol under aerobic conditions, 40 yeast species can be 

classified as Cabtree-positive or Cabtree-negative (Hagman et al. 2013). The origin 
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of the Cabtree effect was determined according to biomass and ethanol production 

in different species of the Saccharomycetaceae family. It appears to have 

originated before S. cerevisiae separated from the Kluyveromyces lineage, thus all 

the post-WGD genera and the Zygotorulaspora, Torulaspora and Lachancea 

lineages presented this effect which became even more pronounced from pre-

WGD to post-WGD.  

The selective advantages of the ‘make-accumulate-consume’ strategy are 

only evident in sugar-rich environments, including the artificial fermentation 

environments created by humans to produce wine, beer, sake and other alcoholic 

beverages. In this way, S. cerevisiae found a new ecological niche, which it 

successfully occupied, in the crushed grape berries collected by humans to produce 

the first fermented beverages.  

The oldest winemaking evidence is the tartaric acid found in a jar of 

Mesopotamic origin that dated back to 5400-5000 BC. This arqueological discovery 

suggests that wine was mainly drunk and offered to gods during religious 

ceremonies or used as medicine. Wine production started in the Fertile Crescent 

area and expanded along the Mediterranean Sea by Phoenicians and Greeks before 

being taken to the northern limit of vine growth by Romans, and then on from the 

end of the 15th century to the 19th century, it expanded to America, South Africa 

and Australia. Beer was also a popular drink in ancient times from Egypt to 

Mesopotamia. Ale beer was prepared from cooked malt with water, and then these 

mixture was strained free of husks before spontaneous yeast inoculation. Bread 

making evidence has also been found in ancient Egypt, but more information about 

its expansion is less known (Sicard and Legras 2011). 
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The Galatians, a Celtic tribe that colonised Central Anatolia, mediated beer 

expansion from the ancient Middle East to Central and Northern Europe. Beer 

became a popular fermented beverage among Celtic and Germanic tribes since the 

1st century AD. However lager beer, which is fermented at low temperature, was 

an innovation from the end of the Middle Ages in Central Europe (Sicard and Legras 

2011).  

Therefore, it is most interesting to know the molecular mechanisms involved 

in the evolution of this yeast during its adaptation to the new environments 

created by humans, a process commonly known as “unconscious domestication”. 

Numerous evidences of this important process in yeast have been detected 

(Libkind et al. 2011; Sicard and Legras 2011; Almeida et al. 2015; Borneman and 

Pretorius 2015; Marsit and Dequin 2015). 

Since then, wine S. cerevisiae yeasts have been exposed to selective 

pressures due to the fluctuating stresses that occur during wine fermentation, such 

as osmotic stress due to high sugar concentrations (180–300 gL−1), anaerobic 

stress, acid stress, nutrient limitations, ethanol toxicity, etc. (Querol et al. 2003) . As 

a result, wine S. cerevisiae yeasts exhibit differential adaptive traits (Marsit and 

Dequin 2015) and shape a genetically differentiated population (Fay and Benavides 

2005; Legras et al. 2007; Liti et al. 2009; Almeida et al. 2015; Peter et al. 2018).  
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Figure i1. Neighbour-joining tree reconstruction of 651 yeast strains indicating their 

origin. Green shows that the strains from wine and cider clearly constitute a well-

defined group. With less representation, but also clustered by their origin (except for 

bread from Sicilia, Italy) we see rum, bread, rice wine, oak tree, lager beer, ale beer, 

fermented milk, sake and lab strains. Extracted from Sicard and Legras 2011. 
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Numerous yeast species have been isolated in the last twenty years from 

natural and fermentative environments. With S. cerevisiae, only a few strains have 

been found in soil and bark of oak trees, but an enormous number of them have 

been found in wine, beer, sake and other fermented beverages. This fact led to two 

controversial opinions about whether this species was domesticated by humans 

and then arose in nature, or if it was already in nature and then selected in human 

activities (Fay and and Benavides 2005). A comparison of both origin strains 

revealed that while domesticated S. cerevisiae strains present less genome 

variability, natural strains harbour more genetic variability and represent the oldest 

linages. About this result, a more plausible hypothesis refers to a natural origin of 

S. cerevisiae yeast that was then domesticated by humans. Strong selectivity on 

domestication has been shown when S. cerevisiae strains were clustered according 

to their ecological or fermentative niche more than their geographical origin (Sicard 

and Legras 2011). This also suggests independent domestication events for sake, 

wine, beer and palm wine fermentations (Figure i1). It is noteworthy 95% of the 

wine yeast isolated around the world cluster together, which means they all of 

have the same origin.  

Domestication has employed distinct selected strategies that we can 

observe in the yeast genome. First of all, some genes have undergone changes, 

such as SSU1. This gene presents resistance to sulphite, an antiseptic used to clean 

wine containers since the Egyptians until the present day. A translocation between 

chromosome VIII and chromosome XVI in the promoter region of this gene is 

enough for the induction of SSU1 to expulse sulphite from the cytoplasm, by thus 

making a more resistant organism (Pérez-Ortín et al. 2002) . A more complex, but 

frequently selected, strategy consists in the formation of hybrid genomes. The 

most popular example here refers to the formation of a Saccharomyces 

interspecies hybrid between species S. cerevisiae and S. eubayanus called S. 
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pastorianus. This hybrid is typically found in low-temperature lager beer 

fermentation, so the mixing of the two parental strains (S. cerevisiae a good 

fermenter and S. eubayanus is more adapted to low temperature) imposed a major 

advantage that overcame reproductive isolation (Dunn and Sherlock 2008).  

2. Evolution of the yeast reproduction strategy 

Hemiascomycete yeasts, like all fungi, may have asexual and sexual 

reproductive cycles (Figure i2). In yeasts, the commonest mode of vegetative 

growth under nutrient-rich and non-stressful environmental conditions is asexual 

reproduction by budding. A small bud or daughter cell is formed on the parent cell. 

The nucleus of the parent cell splits into a daughter nucleus and migrates into the 

daughter cell. The bud continues to grow until it separates from the parent cell to 

form a new cell. This mitotic division by budding occurs in both the haploid and 

diploid phases of the life cycle.Conjugation or mating in yeasts consists of the 

fusion of two haploid cells of opposite mating types (a and α) to form a diploid 

zygote. These mating types are determined by a single locus MAT with two alleles, 

MATa and MATα. Rather than alleles, they are idiomorphs as they differ in 

sequence, size and gene content terms. In general, under high-stress conditions 

such as nutrient starvation, haploid cells die unless they conjugate to generate a 

diploid cell. Under stressful conditions diploid cells can undergo sporulation by 

entering sexual reproduction (meiosis) and producing four haploid spores (an 

ascospore tetrad), which are dormant and resistant to harsh environmental 

conditions. When returned to a rich medium, ascospores germinate into 

metabolically active haploid cells of two mating types, MATα and MATa, which can 

reproduce asexually by budding or conjugating into diploid cells (Butler et al. 2004). 
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On the basis of their sexual reproduction, hemiascomycete lifecycles can be 

classified into haplobiontic, diplobiontic and haplo-diplobiontic according to the 

predominance the haploid or diploid phases, or to the equal presence of both. In 

yeasts with a haplobiontic life cyle, such as most species of the Torulaspora, 

Zygosaccharomyces and Zygotorulaspora genera, the haploid phase is 

predominant. Under harsh environmental conditions, the haploid cells of the two 

mating types conjugate to form a diploid zygote, which immediately enters meiosis 

to generate resistant haploid ascospores. Under appropriate environmental 

conditions these ascospores will germinate to yield haploid cells, which will grow 

asexually by budding. 

  

Figure i2. Hemiascomycete yeast life cycle. 1. Diploid or haploid yeast asexual 

reproduction by budding. 2. Conjugation or mating of two haploid cells of different 

mating types (a and α) to generate a diploid cell. 3. Sporulation, generation of haploid 

cells by the meiotic division of a diploid cell. Image from 

https://en.wikipedia.org/wiki/Yeast. 

 

https://en.wikipedia.org/wiki/Yeast
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In diplobiontic yeasts, such as Saccharomyces genus species, the diploid 

cycle is predominant. Diploid yeasts reproduce asexually by budding in rich nutrient 

medium. However, if placed in a medium lacking sufficient nitrogen to maintain 

mitosis, diploids can undergo meiosis to produce haploid ascospores. When 

returned to a rich medium, ascospores germinate into metabolically active haploid 

gametes of the two mating types to conjugate and recover the diploid state. 

In species with haploid mating types, e.g. S. cerevisiae, three different 

mating behaviours are possible: outcrossing (amphimixis), intra-tetrad conjugation 

(automixis or auto-fecundation) and autodiploidisation (or haplo-selfing) (Figure 

i3.). Outcrossing is the mating of the haploid cells that derive from the meiotic 

products of unrelated diploid cells. Intra-tetrad conjugation is the mating of the 

haploid cells that derive from the meiotic products of a single cell. 

Autodiploidisation or haplo-selfing involves the conjugation of the haploid cells 

that derive from the mitotic division of the same haploid cell (Knop 2006). 

Autodiploidisation is possible only when one of the haploid cells (mother), which 

derives from a mitotic division by budding, is able to change its mating type and 

conjugate with the other cell (daughter). This mother-daughter mating produces a 

homozygous diploid cell for all genes except for the MAT locus. The yeasts able to 

switch mating type are called homothallic, and those that never had or lost this 

capability are heterothallic. 
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Figure i3. Sexual and asexual reproduction in hemiascomycete yeasts. A diploid yeast 

asexual life cycle is based on growing in size until budding, the time when a daughter 

cell (or bud) emerge to generate a new younger individual from an identical one 

(mother cell). Under special conditions, cells can sporulate by meiosis to generate four 

haploid spores, each with a single MAT idiomorphical type (a or α). While inside the 

ascus, two spores of different sexual types can conjugate to form a new diploid adult. 

After sporulation, each spore can intercross with another haploid from outside the 

tetrad (outcrossing). Otherwise when it grows and starts budding, a diploid adult cell 

can arise from conjugation with the daughter cell. Modified from Tsai et al. 2008. 
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Mating-type genetic structures have appeared or have been lost across 

different yeast lineages (Figure i4B). A single MAT locus is observed in the “basal” 

subgroup of this subphylum, yet a duplicated MAT locus is present in 

Methylotrophs. This second locus is located in the same chromosome, but in a 

subtelomeric position, and consists in a silenced a1a2 MAT locus that can be 

flipped with the α1α2 expressed one to change the sexual type. Hence, these 

species are heterotallic. In contrast across the CTG subgroup, a single MAT locus 

called MTL, is retained that bears either MATa or MATα, but in some species it is 

presented as a mixture of them and does not change the mating type. Finally, a 

two-step evolutionary process is proposed for the current system of the 

Saccharomycetaceae subgroup (refer to Figure i4A). The first event was to acquire 

one α and one a silent cassette or HML (MATα1 and MATα2) and HMR (MATa1 

gene) cassettes. Both are subtelomeric sider non-expressed copies of the MAT 

locus, which are involved in the mating type switch by a homologous 

recombination with the expressed locus. The MATa2 locus is present in some non-

WGD species of the Kluyveromyces, Lachancea and Zygosaccharomyces genera, but 

a posterior loss of this gene, which codifies for a transcription factor is seen after 

WGD. An endonuclease and an endo-nucleotide site were necessary to carry out 

the mate type change. The second event was to acquire the Ho endonuclease 

(derived from a homing endonuclease encoded in an intein) and its endo-

nucleolitic site in MATα1. This site-specific endonuclease promotes the switching of 

mating type by a recombination via a DNA double-strand break and a posterior 

repair with the proper silent cassette. The HO gene present is the Z. rouxii and T. 

delbrueckii species (defined later as the ZT clade), but species of the 

Kluyveromyces, Lachancea and Eremothecium genera are absent (defined later as 

the KLE clade). It is known that in K. lactis, transposases α3 and Kat1 perform this 

activity by changing MATα into MATa and MATa into MATα, respectively. However, 
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due to the independent acquisition of the silent cassettes and the Ho endonuclease 

(Figure i4A), some Saccharomycetaceae species like those from the 

Zygosaccharomyces, Saccharomyces and related genera, possess an efficient 

mating type, while others, like those from the Kluyveromyces and Lachancea 

genera, have an imperfect system that depends on the spontaneous recombination 

of silent cassettes and the MAT locus (Butler et al. 2004; Dujon and Louis 2017). 

  

Figure i4. Saccharomycotina and hemiascomycete reduced phylogenies (not in scale) 

showing the evolution of a mating-type switch system. A: Gain of silent cassettes 

appeared before Kluyveromyces divergence and the HO gene is present in all the 

species that diverged after Z. rouxii. Adapted from Butler et al. 2004; B: Gain or loss of 

MAT locus copies are shown for the different hemiascomycete linages. 

A B 
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3. Hemiascomycete yeast systematics and phylogeny 

Detection, identification and classification of yeasts have greatly 

transformed in the last few decades following the application of gene sequence 

analyses and genome comparisons. The use of phylogenetic analyses of gene 

sequences has led to a major review of yeast systematics, which has resulted in a 

redefinition of nearly all genera. In a recent review, (Kurtzman et al. 2015) authors 

proposed subdividing the Saccharomycotina species into 12 clades (Figure i5). Four 

of them englobe more species than others.  Clade 1 corresponds to the 

Saccharomycetaceae family and includes most yeast of biotechnological interest. 

Some characteristics of this group are that they present well-defined centromeres 

and triplicated MAT loci, but lack the genes for complex I subunits of the 

respiratory chain in their mitochondrial DNA. A single rDNA locus is frequently 

presented and the 35S precursor and the 5S gene define the structure. 

Genome size ranges from 9-14Mb and present a high density of coding 

sequences, which come close to 4500-5900 protein-coding genes, but only a few 

need to be processed by splicing (3-5% of CDS). Clade 6 belongs to the “CTG clade”. 

Long centromeres (  ̴3-4 kb) with no conserved sequence motif can be observed in 

the species of this group, and they also present a single MAT locus. DNA content is 

slightly larger than in Saccharomycetaceae (10-16 Mb), as is also the density of 

protein coding genes (  ̴5600-6400) and spliced sequences (6-7% of CDS). 

Moreover, they present all the subunits of complex I of the respiratory chain. They 

are distinguished from others for the alternative use of the genetic code by using 

CUG for serine instead of leucine or for both serine and leucine. The Methylotrophs 

group is marked as clade 5 and comprises species with a similar genome size to 

those species from the Saccharomycetaceae cluster. Switching the sexual type is 

possible as they present duplicated MAT loci. They share some other signatures 
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with the “CTG clade” as regards similar regional centromeres and compact 

genomes, and they present all the complex I subunits. Finally, clade 9 corresponds 

to the cluster of the “basal linages”, which show wide variability among the species 

inside. Common signatures refer to many protein-coding genes (more than 6000 in 

sequenced genomes), but genome size and spliced genes differ between species. 
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Figure i5. Phylogenetic relationships among the type species of hemiascomycete 

yeast. Genera were determined from a maximum likelihood analysis of the 

concatenated gene sequences for LSU rDNA, SSU rDNA, translation elongation factor-

1α, and RNA polymerase II, subunits B1 and B2. From Kurtzman et al. 2015. 
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The phylogenetic relationships among species of the Saccharomycetaceae 

family, formerly included in four main genera, Kluyveromyces, Torulaspora, 

Saccharomyces and Zygosaccharomyces, were also obtained by Kurtzman 2003, 

who observed that these genera were not monophyletic groups, and hence 

proposed a major review and redefinition of the genera as depicted in Figure i6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure i6. The 

Saccharomycetaceae complex. A 

maximum-parsimony tree derived 

from an alignment of the 

concatenated 18S, 5.8S/ alignable 

ITS, and 26S (three regions) rDNA, 

EF-1α, mitochondrial small-

subunit rDNA and COXII 

nucleotide sequences. Adapted 

from Kurtzman 2003. 
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Accordingly, the former Saccharomyces genus contained the species in the 

Saccharomyces sensu stricto group (S. paradoxus, S. cerevisiae and S. bayanus) and 

the new discovered species. The species included in the older sensu lato group (S. 

martiniae, S. exiguus, S. castellii, S. barnettii, etc.) were transferred to the 

Kazastania and Naumovia genera.  

So this new Saccharomyces genus, described by Kurtzman 2003, included S. 

cerevisiae, its sister species S. paradoxus (only isolated in natural environments) 

and S. bayanus (found in natural environments, and in beer and wine 

fermentations). Three new species, S. cariocanus from Brazilian forest and S. 

kudriavzevii and S. milkatae both isolated from Japan, have been described by 

Naumov et al. 2000. Genetic hybridisation analysis provided species status to these 

isolates because a postzygotic barrier was seen according to low spore viability (0% 

of viable spores, only some of the crosses formed one to four microcolonies), when 

intercrosses were obtained with reference strains from each species. For S. 

cariocanus, a previous work (reference not available but indicated in Naumov et al. 

2000) indicated that the Brazilian strains were genetically related to S. paradoxus. 

In order to clarify if they could be treated as separate species, interbreeding with S. 

paradoxus strains from different populations (European, North American, Far- East 

Asian and Hawaiian strains) and the resulting spores were tested here. As obtained 

before, viability was 0%, which indicates that it was a different species. This 

assignation was based on the biological species concept after establishing that S. 

cariocanus was reproductively isolated. As for the other two species, the currently 

available S.mikatae strains proceed them all from Japan (Borneman and Pretorius 

2015), while the new S. kudriavzevii has been discovered in Europe (Sampaio and 

Gonçalves 2008). “Cryotlerant” strains have been found in the bark of Quercus spp. 

in Portugal that differed from the Japanese population in terms of possessing of an 

active galactose utilisation pathway. Later S. kudriavzevii was also isolated in oak 
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trees from different parts of Spain and, together with the Portuguese ones, a 

European origin was derived for S. cerevisiae by S. kudriavzevii hybrids (Lopes et al. 

2010). In addition S. pastorianus (syn. S. carlbergensis), responsible for lager beer 

fermentation, was  included in the “Saccharomyces complex”, but a few years 

before, some researchers had already demonstrated that it was a hybrid between 

S. cerevisiae and another species related to the ancient S. bayanus species (now S. 

eubayanus). The last incorporation into the genus is S. arboricolus, which is isolated 

from the bark of broadleaf Fagaceae trees from different regions of China (Wang 

and Bai 2008). 

About the S.bayanus species arose considerable controversy with competing 

groups arguing that two varieties of the same species, S. bayanus var. uvarum and 

var. bayanus or two natural species S. bayanus and S. uvarum, were included 

(Nguyen and Gaillardin 1997). The recent discovery of a new species, S. eubayanus, 

from natural environments in Patagonia (Libkind et al. 2011) clarified the status of 

this former S. bayanus species complex, as well as the origin of S. pastorianus. S. 

uvarum is described here as a natural species and S. bayanus a hybrid lineage 

generated by the hybridisation between S. uvarum and S. eubayanus, which is the 

donor of the non-S. cerevisiae portion of the hybrid S. pastorianus (Figura i7). 
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In recent years, a more proper redefinition of Saccharomyces genus has 

appeared, mainly with the progress made in genome sequences in more group 

species. Since then, numerous works have appeared to attempt to clarify the 

inclusion of some species, or if they can be treated as varieties of species, as real 

species or as hybrids of them. Controversy about the S. bayanus sensu stricto 

species arose from the molecular characterisation of this species (Nguyen and 

Gaillardin 1997). PCR amplification and restriction polymorphism of the internal 

transcribed spacer 1, ITS 1 (authors wrongly referred to the second non-transcribed 

spacer) in ribosomal DNA, in addition to DNA karyotyping, showed the existence of 

two different subgroups inside the S. bayanus species. To distinguish them, one 

was called S. bayanus var. uvarum as it was found mainly in wine, and the other S. 

bayanus var. bayanus. The variety characteristic was first proposed because of the 

semisterility of the hybrids between them (Naumov 2000). A short time afterwards, 

one of these varieties was proposed as a new species inside Saccharomyces sensu 

stricto: S. uvarum (Pulvirenti et al. 2006). The main differences with S. bayanus 

were the physiological characteristics described before by Naumov 2000, such as 

Figure i7. The origin of the S. pastorianus and S. bayanus hybrids. Hybrid S. 

pastorianus is composed by the genomes of S. cerevisiae and S. eubayanus while the 

complex hybrid species S. bayanus is mostly composed of S. eubayanus and S. uvarum 

species and some traces of S. cerevisiae.  
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the ability to ferment melibiose, but the inability to grow above 370C, and 

molecular aspects like karyotyping profile and the sequence of NTS2 (non-

transcribed spacer 2) and partial 26S. Nowadays the strains from S. uvarum exist 

from natural environments than from low-temperature industrial fermentations. 

However, only type strain CBS 7001, from an insect found in Spain, is its genome 

sequenced. It is noteworthy that in previous papers, S. bayanus has been 

presented as a distinct species with a fermentation profile in grape juice and an 

electrophoretic karyotype typical of hybrid cultures, which does not sporulate. 

The complete solution for these species came in 2011 when 123 isolates of 

“cryotolerant” Saccharomyces from the Notofagus species from Patagonia were 

identified as strains related to either S. bayanus or S. uvarum (Libkind et al. 2011). 

Each group of strains showed wide intra-spore viability, but hybrids were 

semisterile as seen before (7.3% of viability). Thus postzygotic isolation was enough 

to conclude that they were two different species, but each one was associated with 

different Notofagus tree species. Finally, the genome sequencing of isolated 

individuals showed their purity or hybrid nature. While the group related to S. 

uvarum indeed had a very low degree of divergence (0.52%) to the S. uvarum 

reference strains and also to the type strain, the group that appeared to be related 

to S. bayanus was in fact closely related to the part of the S. pastorianus genome 

non-S. cerevisiae. When the genome of the S. bayanus type strain (CBS 380T) was 

sequenced (Okuno et al. 2016), a hybrid strain was found to be composed (over 

60%) of S. uvarum, and the second group was apparently related to S. bayanus. 

Some traces of the S. cerevisiae genome, mainly the genes involved in maltose and 

maltotriose metabolism, were detected in the type strain. All these conclusions 

were determinant to propose the new pure and ecologically isolated wild species S. 

eubayanus as the non-S. cerevisiae contributor of S. pastorianus and the non-S. 

uvarum/non-S. cerevisiae part of the S. bayanus hybrid species (Libkind et al. 2011).  
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The genes related with the better utilisation of maltose (MAL family), which 

is the most abundant sugar in wort, were found to be horizontally transferred 

from the S. cerevisiae to S. bayanus hybrids, as seen in S. pastorianus. Moreover, 

the overexpression of S. eubayanus allele SUL2 of S. bayanus correlated with an 

improved sulphite production, which is also important in brewing.  

An examination of the expected differences between brewing domesticated 

S. pastorianus and wild S. eubayanus was carried out to reconstruct a model 

(Figure i8) about the formation of human employed hybrids in the brewery 

industry: firstly, the S. eubayanus wild strains would fuse with ale-type brewer S. 

cerevisiae to form allotetraploid hybrids, which would be the S. pastorianus 

ancestors. At this point, the chromosomal translocations between both genomes 

produce some of the characteristics seen in the modern S. pastorianus, such as 

aneuploidy fragments or loss of heterozygosity in some regions where the S. 

cerevisiae genome is visible. The contribution of S. cerevisiae regions to the S. 

bayanus hybrid genomes was possible by mixing S. eubayanus chromosomes, 

which were able to recombine with those of an S. uvarum hybrid content. 

Hypothetically prior to S. bayanus formation, S. pastorianus DNA fragments would 

transform the S. eubayanus strains. Surprisingly, no S. eubayanus strain has been 

isolated in Europe. So it is hypothesised that they had to be imported from 

Patagonia. Here two separate S. eubayanus populations were found, and both exist 

in the industrial S. pastorianus and S. bayanus hybrids from Europe. In addition, an 

admixture of these Patagonian populations is located in North America. 
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The reproductive isolation of the Saccharomyces species arises in nucleotide 

divergence rather than in translocation that prevents spore viability (Hittinger 

2013). Scape of those barriers has been possible for stable interspecies hybrid 

formation (by the polyploidisation of the final genome), whose evolutionary 

selectivity has been reflected in preponderance in wine or beer fermentations. 

Each parental strain contributes with particular and selected genes to bring the 

desired property of such species: the hybrid vigour (Shull 1948).   

Figure i8. A schematic representation of the S. pastorianus and S. bayanus hybrids’ 

parental species composition. S. pastorianus is an interspecies hybrid constituted by 

the parental genomes of S. cerevisiae and S. eubayanus. Genome sequencing has 

shown different quantitative contribution of each parental strains according to the S. 

pastorianus type of fermentation (Saaz-type and Frohberg-type strains). The more 

infringing S. bayanus hybrid is definitively a mixed S. eubayanus and S. uvarum genome 

with strains specific traces of S. cerevisiae, which correspond mainly to subtelomeric 

fragments. Adapted from Libkind et al. 2011. 
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As mentioned before, human yeast “domestication” has imposed important 

hybrid strains for the brewery industry, such as S. pastorianus or S. bayanus. 

Concerning the former, two sublinages have been finally determined by genome 

sequencing and divergence between them might be explained as different 

cryotolerance behaviour (Nakao et al. 2009; Walther et al. 2014): one is Saaz-type 

strains (S. carlbergensis), generally a 2:1 S. eubayanus: S. cerevisiae triploid 

genome, and the perfect tetraploid Frohberg type (Weihenstephan strain 

WS34/70). The shared molecular footprints between these subgroups, such as the 

degree of nucleotide variation, and in S. eubayanus fragments the reciprocal 

translocations between subgenomes, suggest that they differred after common 

ancestral hybridisation (Peris et al. 2014). The S. cerevisiae and S. kudriavzevii 

hybrid species (Sc x Sk) were found in Belgian-style brewing (Hittinger 2013). 

In winemaking, low-temperature fermentation has been dominated by 

hybrid species Sc x Sk and S. bayanus hybrid strains (Borneman and Pretorius 

2015). The complete genome sequencing of the Sc x Sk VIN7 wine strain 

(Borneman et al. 2012) showed a genome of an allotriploid formed by a Sc 

heterozygous diploid and a haploid Sk from Europe. The contributions of the Sk 

subgenome concerned not only cold adaptation, but also the production of 

aromatic compounds. It is noteworthy that, the comparative genomics on Sc x Sk 

hybrids from wine and beer fermentative environments have revealed different 

origins from those interspecies hybrids (Peris et al. 2012), which suggests the 

selectively of pure species properties in only one genome. 

By taking the last reorganisation from the S. eubayanus/uvarum/bayanus 

sequencing project (Libkind et al. 2011), the Saccharomyces genus formed a 

monophyletic group composed of seven natural (some domesticated) pure species 

(Hittinger 2013): S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. 
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arboricola, S. eubayanus and S. uvarum and historically selected industrial yeast 

hybrids S. cerevisiae x S. kudriavzevii, S. bayanus and S. pastorianus (Figure i9). Not 

only in vineyards or breweries, but also in nature, can we find strains of all species 

that have been isolated from particular tree species like Quercus spp. (or 

Notophagus spp. if they were found in the Southern hemisphere) in many tree 

parts, like leaves, bark or exudates, and in soil circumscription (Libkind et al. 2011). 

 

 

 

 

 

 

 

 

 

For its prevalence in oak trees, and overall in oak leaf litter rather than in 

oak bark (Kowallik and Greig 2016), S. paradoxus has been supposed as the natural 

predecessor of S. cerevisiae domesticated yeast. Common properties, such as 

having the same profiles of assimilation and fermentation of organic compounds, 

shared habitat and phylogenetic clade, make them seem very similar species. Some 

known differences about optimal growing temperatures are that S. cerevisiae 

moves closely to 300C, but S. paradoxus accommodates a wide range. Unlike S. 

cerevisiae, which has been found mainly in fermented beverages and discretely in 

wild ones, S. paradoxus is not assumed involved in fermentative processes. The 

former hypothesis of a domesticated S. paradoxus to give rise to S. cerevisiae has 

Figure i9. The currently accepted Saccharomyces genus phylogeny, supported by 

genome sequencing. On the left hand side of the panel we can see the relationship 

among the seven species isolated from natural niches. The interspecies hybrids 

between the genera species are appreciated for their key role in winemaking and 

brewing, and are shown on the right of the figure. Adapted from Hittinger 2013. 
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been rejected as more genomic studies appeared and revealed that differentiated 

populations exist between these species (Liti et al. 2009). 

A very recent work has incorporated a new species into the genus “S. jurei”, 

a sister species of S. mikatae (Figure i10). Two strains have been isolated from a 

1000-metre altitude on oak tree bark and surrounding soil from Saint Auban in 

France, and classified as different species from the other Saccharomyces in genetic 

hybridisation analysis terms (biological species concept) (Naseeb et al. 2017). 

 

 

 

 

 

 

 

 

 

  

Figure i10. The last Saccharomyces phylogeny released. The new species S. jurei, a 

sister species of S. mikatae was recently incorporated to the genus. 
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4. Evolution of the physiological properties of yeasts that derived after 
Whole Genome Duplication (WGD) 

During the evolution of the Saccharomycetaceae family, a historical and 

determinant event was Whole Genome Duplication (WGD), which occurred in an 

ancestor lineage that diverged after the split of the Zygosaccharomyces genus 

(Figure i11A). Among the descendent linages, some species, including those of the 

Saccharomyces genus, went from having 16 chromosomes in a haploid state 

instead of 7 or 8 chromosomes of precedent yeasts lineages. The pre-WGD species 

belonged to the Hanseniaspora, Eremothecium, Kluyveromyces, Lachancea, 

Torulaspora, Zygotorulaspora and Zygosaccharomyces genera. The post-WGD 

components were Vanderwaltozyma, Tetrapisispora, Nakaseomyces, Naumovia, 

Kazachstania and Saccharomyces. Most sensu lato species were included in these 

last groups and were, thus, renamed according to the new ones (Kurtzman 2003). 

In recent years, evidence for WGD has been reported and explanations about the 

ancestor responsible for doubling have been hypothesized (Wolfe 2015; Marcet-

Houben and Gabaldón 2015). The WGD hypothesis was strongly supported by the 

genome sequencing of some pre-WGD species, such as Kluyveromyces waltii (Kellis 

et al. 2004), where a correspondence was found for each region of this yeast to 

two S. cerevisiae regions. Older studies had already proposed a polyploid origin for 

post-WGD yeast based on histone gene loci studies (Smith 1987) by arguing that at 

least three (improbably) isolated duplication events for the core histone gene pairs 

would be necessary to give up them up. The point to elucidate this hypothesis was 

the genome sequencing of S. cerevisiae S288C in the 1990s (Goffeau 1996) from 

which up to 55 blocks of syntenic paralogue genes were detected (Wolfe and 

Shields 1997). Due to the technical consideration made to detect these regions (as 

a minimal of three pair of homologues, BLAST-P scores of ≥200, and the 

conservation of gene order and orientation), the total size of blocks was assumed 
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to be 50% of the genome. The mosaicism in the blocks distribution was explained 

by several reciprocal translocations, which blurred the original chromosomes size 

and, once again, tetraploidy was the supported hypothesis. 

The model described tetraploid formation by the fusion of two diploid 

ancestral yeasts that led to the loss of the majority of the genome to become yet 

again a diploid cell (so the sequence identity and about 85% of duplicates were 

lost), followed by reciprocal translocations, and finally by maintaining the current 

diploid/haploid life styles of Saccharomyces. The question as to whether they were 

from the same or different species was left open. Autopolyploidisation happens 

when two diploid yeast cells from the same species are homologous for the MAT 

locus (α/α or a/a). Employing gene content and the gene order of the genome 

sequenced species, Gordon et al. 2009 showed the reconstruction of an ancient 

yeast genome that they assumed had undergone WGD, which thus suggested a 

model of autopolyploidisation from an eight-chromosome genome species (Figure 

i11B-C).  
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Figure i11. Saccharomycetaceae gene content and order. According to the 

autopolyploidisation hypothesis, an ancestor was inferred from gene content and the 

pre-WGD and post-WGD order (with two tracks of syntenic blocks or double conserved 

synteny (DCS). The reconstructed ancestor was predicted for the phylogeny branch 

before the Vanderwaltozyma genus linage. Two different gene rearrangement 

strategies were followed. In part B of the figure, a single break of synteny is on one 

track of the post-WGD species by arrangement after WGD, which thus infers an 

ancestor is carried out by the non-WGD track and the other track of the post-WGD. If a 

double break of synteny appears (C part of the figure) in the pre-WGD species, it 

therefore infers that it must be done by the two tracks of the post-WGD species. 

Inferring is possible only when a homologous gene appears on both post-WGD tracks 

or at least on one of them and in the pre-WGD track. Adapted from Gordon et al. 2009. 
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The case of allopolyploidisation was attributed to S. pastorianus (previously 

mentioned) as a possible hybrid between S. cerevisiae and S. bayanus, finally 

confirmed by the genome sequencing by Nakao et al. 2009. One possibility was the 

autopolyploidisation of a common ancestor of the post-WGD species.  

In 2015, Marcet-Houben and Gabaldón employed a large-scale phylogenetic 

approach to show that interspecies hybridisation could probably be the underlying 

mechanism that triggered genomic doubling (a way to recovery fertility after hybrid 

formation). As a result, genome rearrangements by reciprocal translocations and 

massive gene losses reduced the genome to a minimal number of ohnologous 

genes (paralogous genes derived from WGD). The reconstruction of the 

evolutionary history for each gene in a given genome or phylome was employed 

for S. cerevisiae using two different strategies. One was for all the genes in the 

genome to include all the paralogous genes, and a second one using only 

ohnologous genes to avoid any bias shown in the whole phylome mainly for 

recently duplicated genes not related to WGD.  

Based on the algorithm that detects duplication nodes (the two daughter 

branches sharing at least one species are defined as nodes), the highest duplication 

density was found in a branch (Figure i12A n3 branch) before the divergence 

between Saccharomyces and a group composed of Kluyveromyces, Lachancea and 

Eremothecium (KLE). Most of the duplications were mapped on this branch for 

both the whole phylome and the ohnologous phylome (Figure i12B) but also a 

second branch (Figure i12A n4 branch) corresponding to the Zygosaccharomyces 

rouxii and Torulaspora delbrueckii group (ZT) managed to accumulate some more 

duplications. Unexpectedly, a few duplications mapped on the expected WGD 

branch (Figure i12B n5 branch). At this point, the interspecies hybridisation 

hypothesis may be supported by performing the same analysis to the known S. 
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cerevisiae-S. eubayanus hybrid S. pastorianus. In this case, a duplication peak was 

mapped on the branch before the divergence of the two parental species, and not 

on the branch of the same species, as expected (Marcet-Houben and Gabaldón 

2015). In the same way, for the S. cerevisiae linage formation, the species close to 

clades KLE and ZT could be the potential parental for interspecies hybridization 

(Figure i12C). In order to know which species could be the contributing ones, the 

authors decided to review all the trees that shaped the S. cerevisiae phylome to 

observe from which clade they came close to (ZT or Parental A and KLE or Parental 

B) and to generate new reduced phylomes to infer phylogenetic affiliations more 

accurately (Figure i12D). 
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  Figure i12. The phylome reconstruction for S. cerevisiae. A S. pombe rooted maximum 

likelihood tree (A) was built from 516 single-copy orthologous genes of the 

Saccharomycotine genome sequenced species. Various nodes were analysed to detect 

accumulation of duplications or duplication peaks (from n1 to n8). This duplication 

density is defined by duplication nodes, which are those nodes where the two daughter 

branches share at least one species. These duplication densities were calculated for all 

the duplicated genes, and also for genes assumed to come from WGD (ohnologuos 

pairs). In both analyses (B), a higher density was obtained for the pre-KLE branch 

(Kluyveromyces, Lachancea and Eremothecium) and the second one was located in the 

ZT clade (formed by Zygosaccharomyces and Torulaspora). Low duplication density was 

observed at the WGD node. Therefore, this suggests that the ancestors of WGD come 

close to these clades. From the results in A and B, a hypothesis of interspecies 

hybridisation between two parental species descending from the pre-KLE peak and 

corresponding to the KLE and ZT clades is resumed in part C of the figure above. 

Hybridisation is assumed to undergo a tetraploid formation to immediately recover 

fertility. In D, the possible topologies were compared to deduce the placement of post-

WGD by taking the whole proteome or ohnologous only. The results of this comparison 

revealed that topology A was predominant for the S. cerevisiae proteins. Adapted from 

Marcet-Houben and Gabaldón 2015. 
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Schematically three different topologies are observed from the inspected 

trees: two are the parental and can come close to ZT or KLE (A or B, respectively) 

and one is a S. cerevisiae seed form a sister group (Figure i12D). The resulting 

analysis indicated that most topologies (60-82%) belonged to topology A, which 

agrees with the current Saccharomycetaceae family tree reconstruction (Figure i6) 

and this high percentage seems due to the possibility of partial or total gene 

conversion between ohnologs. Thus, a related lineage of the ZT clade would be 

involved in hybridisation (Parent A). For clade KLE, only between 4-14% genes were 

found and 14-28% of the genes formed a sister group in topology C. The conclusion 

drawn for Parental B was that it could have diverged before the KLE clade, thus no 

large association was found. Finally, collinearity was tested to ask the question 

about autopolyploidisation or hybridization, but the levels of similarity were too 

high to reject one of the possibilities. 
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In conclusion, the presented model was a very ancient hybridisation 

between two different species. This hybridisation is difficult to detect because of 

the partial or total gene conversion, gene losses or translocations that have blurred 

parental genomes. So a phylogenetic analysis can slightly, but with good support, 

show from which clades these parental species could come close to. For the 

hybridisation event, two possible scenarios have been proposed (Figure i13): in the 

first one, the formation of an allotetraploid by two diploid different species 

happened which, after recombination processes and gene losses, gave rise to a 

genome with the double chromosome dotation. The second scenario implied two 

haploid species to form an allodiploid, and must necessarily be followed by 

autopolyploidisation to acquire a stable sexual cell cycle. The immediate 

consequences of whole genome duplication undergone in some yeast lineages 

concern the amplification over the genes presented in precedent or parental 

genomes. 

  

Figure i13. The two interspecies hybridization hypothesis. Two possible scenarios 

presented to explain the results of the observed peaks. With hypothesis A, two diploid 

species would form an allotetraploid that would undergo genome rearrangements and 

gene losses to finally render a linage with double the chromosomes. According to a 

second hypothesis (B), two haploid cells from different species would fuse and form an 

unstable allodiploid that can reproduce only asexually. Therefore, an additional 

duplication is needed to stabilise this formation, which is favoured by 

autopolyploidisation. Adapted from Marcet-Houben and Gabaldón 2015. 
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As this genome increment is still observed in different degrees for the post-

WGD species (Dujon et al. 2004), an immediate advantage of doubling is assumed 

to result. At least 55 blocks of the duplicated genes were maintained in S. 

cerevisiae, but after WGD many redundant genes were lost. As mentioned in the 

Cabtree effect, fermentative metabolism appears to be temporally related to WGD 

and a characteristic of all post-WGD species. Moreover, sugar signalling, transport 

and first metabolic processing genes are maintained in duplicate in important 

fermenter strains. Based on all these data, a hypothesis about the selective 

advantage that WGD could confer referred to the rapid growth of strains by an 

incremented glycolytic flux as a result of gene dose increases in genes like hexose 

transporters (Conant and Wolfe 2007). From this general hypothesis, three specific 

hypotheses were tested. The first was, after WGD gene loss, the glycolytic enzymes 

concentration raised, to become less diluted enzymes. The consequence of this led 

to the second hypothesis, which suggests that an increase in concentration means 

an increase in the fermentation flux. Finally, the third hypothesis was, once again, 

the result of the second one about the selective advantage of faster fermentation. 

Even in the presence of oxygen, S. cerevisiae prefers to transform glucose into 

ethanol via fermentation, despite this pathway being less efficient in producing ATP 

than respiration. However in the presence of large amounts of glucose, 

fermentation ensures that this species can grow faster than its competitors, and 

also adapts to support high ethanol concentrations, which is inhibitory for the 

majority of the microorganism. 
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The instant effect of increasing dose may not compare with the slow 

mutation accumulation in duplicated genes, from which gene novelties arose 

through sub-functionalisation and neo-functionalisation. Examples of the imposed 

fermentative metabolism are the alcohol dehydrogenase gene and the glucose 

signalling pathway. In the former, ADH1 codifies for the enzyme that produces 

ethanol from acetaldehyde and the product of its WGD paralogue, ADH2, which is 

responsible for converting ethanol by an inverse reaction. Functional divergence is 

presented for the glucose-sensing proteins as SNF3 senses low glucose 

concentrations while RGT2 senses high concentrations. 
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5. From lab strains to industrial strains genome sequencing 

The sequencing of S. cerevisiae laboratory strain S288c by Goffeau 1996 was 

the first eukaryote genome to be released and the largest at that time. They found 

over 5,885 codifying genes along a size of 12 Megabases (Mb) and only 4% of them 

contained introns. As mentioned on previous pages, the complete genome 

sequence revealed the existence of groups of genes that were strikingly similar to 

one another (what they called cluster homology regions), which was the key 

discovery to later hypothesise about possible WGD. 

After this first yeast genome publication, more work on genome sequencing 

was carried out in later years. Genomes were obtained not only from strains from 

laboratories but from other sources. In this way, pathogenic yeast strains, such as 

Candida albicans, were also sequenced in 2004 by Jones et al. 

Inside the Saccharomyces genus, Liti et al. 2009 did genetic variation 

association studies with phenotypical variation. A first sequencing approach, based 

on the Sanger methodology (First-generation sequencing), was run to obtain 

variability by SNP recompilation between S. cerevisiae and S. paradoxus strains of 

different origins. In order to easily analyse this nucleotide variation, monosporic 

strains were used to remove heterozygosity (which makes the analysis 

complicated) and genomes were assembled without having to perform any 

annotation. 

A phylogeny analysis (Figure i14) revealed that S. cerevisiae strains 

presented some homogeneous or clean populations that were equidistant from 

one another, named by their source of isolation or origin as Wine/European, West 

African, Malaysian, Sake and North American. Apart from them, other strains were 

assigned as mosaics as they showed an admixture of the former populations 

because they presented mixed genomes as a result of outbreeding. No defined 
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structure population was found for the tested S. paradoxus strains and they all 

clearly diverged from S. cerevisiae, except for some Hawaiian strains. The ecological 

niches of most were reduced to Quercus spp., so genome variations were due to 

geographical origins and some were reproductively isolated. Moreover, the S. 

cariocanus (previously considered another species of the Saccharomyces genus) 

strains were related to North American strains. These results correlated well with 

the phenotypic variation assays for each species; e.g. inside S. cerevisiae species, 

two groups were differenciated concerning to their growth rate. The S. cerevisiae 

Wine/European lineages and the mosaic strains presented a rapid growth 

compared to the other groups and an advantage in fermentation was suggested for 

them. 

Recently, some strains under study by Liti et al. 2009, have been a whole 

genome sequenced by Second-generation sequencing (2nd generation) Illumina 

system (https://www.illumina.com/) and Third- generation sequencing (3rd 

generation) Pacific Bioscience (Pac-Bio, http://www.pacb.com/), with the latter 

providing some important advantages. Seven S. cerevisiae and five S. paradoxus 

strains of wild and domesticated origins were chosen for deep sequencing (Yue et 

al. 2017). The reliable assembly of producing long fragments was obtained 

(sequences continuously read by the sequencing machine), so complex genome 

regions, like those that carry repetitions or gene duplications, can be resolved. This 

is particularly important for telomeric and subtelomeric regions, for which anterior 

sequencing approaches have not been solved due to the presence of repetitive 

elements. Basically, two elements are observed in a strain-dependent copy number 

on telomeres: the core X and Y’ elements. Albeit only one core X element is located 

close the chromosome end, it could be alone or followed by 1-4 Y’ elements. 

Despite this assumption, new non-canonical chromosome ends were discovered 

thanks to this sequencing technology. In tandem repetitions of the core X element 
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(up to six copies) in either in S. cerevisiae and in S. paradoxus, and surprisingly 

some chromosome ends, carried one copy or more of the Y’ element, but lacked 

the core X element, which is known to be important in genome stability.  

In the same work, a first definition of a subtelomeric region is provided to 

define the chromosomal regions where more gene variability is observed which is 

related to an assumed advantage under some environmental conditions. Since 

then, sequencing did not provide enough resolution to be certain about where a 

subtelomeric region started and ended. Here, and based on a multi-genome 

comparison, it was suggested that “for each subtelomere, we located its proximal 

boundary on the basis of the sudden loss of synteny conservation and demarcated 

its distal boundary by the telomere-associated core X and Y’ elements”. Then by 

refusing the anterior definition of subtelomers that located them in an arbitrary 20-

30 kb from the chromosome ends with no other criteria, this new approach to 

detect them was based on a gene synteny conservation profiles comparison of 

each chromosome end among 12 strains. Resolving subtelomeric regions has 

generated interest because it informs about the variability presented in a specific 

strain, which is related to the environments in which it lives. The genes found in 

these close-to-end zones are involved in response to stress and toxins, the 

metabolism of different compounds, and metal, amino acid and carbohydrate 

transporters (Brown et al. 2010). Concerning this last group, some genes belonging 

to different family genes like those from the HXT, MAL and MEL families, are 

frequently found. This is due mainly to the high frequency of recombination 

favoured by the repetitive elements in the aforementioned telomeres (which 

represents recent paralogy events). Sugar transport is a common function along 

these family genes and depends on the preferred source of carbon, and we can 

found more or less copies inside these groups. Members of the HXT (Hexose 

transporter family) family are involved in the transport and signalling of glucose 
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and fructose (oligosaccharides found in wine fermentations), and at least 20 genes 

have been described in S. cerevisiae (Boles and Hollenberg 1997) of which eight are 

within or close to a subtelomeric position (HXT15, HXT13, HXT12, HXT16, HXT8, 

HXT9, HXT17 and HXT11).  

However, the most important HXT transporters that contribute to glucose 

and fructose ingestion are found in the core region of the chromosomes, a 

secondary transport of different sugars has been found in some subtelomeric 

transporters. For example, HXT13, HXT15, HXT16 and HXT17 transport mannitol 

and sorbitol with moderate affinity, and xylitol transport is mediated by HXT11 and 

HXT15 (Jordan et al. 2016). The transport of maltose and melibiose implies MAL 

and MEL families, respectively. Numerous copies of MAL family genes are found in 

brewing strains because maltose is the predominant sugar in beer. Inside this 

family, three families are differentiated according to their function (Brown et al. 

2010): MALR (regulators), MALT (permeases) and MALS (maltases). From each one, 

there are gene subfamilies which contain duplicated genes in some strains 

(paralogous) that have evolved for a particular substrate specify distinct to 

maltose. One example is in the MALR family, where the MAL63-like clade is 

composed of gene copies that enable growing, not only in maltose, but also in 

other carbon sources, such as maltotriose, turanose, isomaltose, sucrose, 

palatinose and me-alpha-G. Nevertheless, the MAL13-like clade lacks the former 

activities except the one for palatinose as it seems that this copy has evolved to 

process the sugar found in sugarcane and honey.  
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Although it was assumed that wine yeasts genomes would harbour genetic 

content that could explain their adaptation to the fermentative environment since 

2009, only comparative genomic hybridization information in wine yeast was 

available to suspect it. The complete genome sequencing of the S. cerevisiae 

EC1118 wine strain finally revealed particular traits of wine yeast that had never 

been seen before. The most relevant result of the paper by Novo et al. 2009 was 

the discovery of three new gene regions (Figure i15A): Region A (38kb), Region B 

(17kb) and Region C (65kb). They found that the genes that contained these 

regions were involved in winemaking-related functions, such as carbon and 

nitrogen metabolism (Figure i15B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure i14. Populations of S. cerevisiae and S. paradoxus strains of different origins. S. 

bayanus, S. mikatae and S.kudriavzevii are the output species. The trees obtained from 

the SNP differences clearly separate the S. cerevisiae and S. paradoxus populations. The 

S. cerevisiae subpopulations, like that from Sake or Wine European, reflects the idea of 

the heavy weight of domestication by clustering strains into their particular 

fermentation more than their geographical origin. Adapted from Liti et al. 2009. 
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To find out the possible species donor of these three regions, PCR 

amplification was performed among 77 Saccharomycetaceae species. Amplification 

was only obtained only for Region B in the Zygosaccharomyces bailii CBS 680 type 

strain. For Region A and Region C, it was concluded that an unknown species, which 

differed for each region, would be the contributor of the region. A synteny analysis 

concluded that Region C could come from a Saccharomyces species. 

Figure i15 .Discovery of three new genomic regions never seen before in S. cerevisiae, 

found specifically in the S. cerevisiae wine strain EC1118. These two subtelomeric and 

other central regions were rich in the genes related to fermentative processes like 

those involved in sugar transport (HXT13 or FSY1) or metabolism flow (GAL10 or SOR2), 

nitrogen assimilation (PUT3 or ATO3) and other important genes for the cell 

surveillance. Adapted from Novo et al. 2009. 

B 
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6. Particularities of the Saccharomyces species during fermentation and 
their importance in industry 

As described before, the metabolic processes carried out by S. cerevisiae 

during fermentations are settled in an aerobic-fermentative metabolism. Both 

glucose and fructose sugars are present in equal quantities in grape must, and 

could be incorporated by multiple hexose transporters (HXT) that act as passive 

diffusors, but with a higher affinity for glucose. However, preference for glucose is 

presented by wine yeast (known as the glucophylic character of Saccharomyces 

wine yeast), which means that fructose is consumed less during fermentation by 

creating a discrepancy between both saccharides (Berthels et al. 2004). This 

inherent preference could imply a problem for the final wine product because 

fructose could lie residually and then produce excessive sweet wines with the 

additional problem of more final ethanol, which would expose wine to the risk of 

bacterial contamination.  

It has been shown that fructose utilisation is inhibited more severely than 

glucose by high ethanol conditions, and increases in nitrogen-supplied must. It has 

been proposed that the distinction of consuming glucose more than fructose is 

determined mainly by the first sugars fermentation stages. In this way, hexose 

transporters’ affinities and, after being inside the cell, the phosphorylation of sugar 

by hexokinases seems mainly responsible. These sugars consumption differences 

appear as a problem for wineries, so it is important to look forwards for yeasts with 

“fructophilic” behavior. Of all the new genes found in the named Region C of S. 

cerevisiae EC1118, one gene was found that codified for a high-affinity active 

fructose transporter: FSY1. S. cerevisiae possess on their surface a huge number of 

hexoses transporters, which work only by facilitated diffusion, and no active 

transport was  already known in it until the work of Novo et al. 2009 was published. 

Knowledge about FSY1 emerged in 1990 when Rodrigues de Sousa H et al. 
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investigated fructose/H+ symport activity in some strains of the ancient 

Saccharomyces sensu stricto classification. They tested four strains of S. 

pastorianus and five of S. bayanus (currently invalid assignment), and they all 

presented activity for transport. Five S. cerevisiae strains and three strains of S. 

paradoxus did not show this phenotype. In 1994, Tornai-Lehoczki J. et al. redid this 

analysis, but with more strains of those species, and exactly 66 strains were 

isolated from Hungarian wine and beer. As expected from the results of Rodrigues 

de Sousa et al. 1990, S. cerevisiae (50 of the total) and S. paradoxus did not present 

any activity and, as expected, all the tested S. bayanus and S. pastorianus were 

positive. This shows that these authors probably found a physiological trait to 

differentiate Saccharomyces species. In fact FSY1 sequences are employed for 

current S. eubayanus and S. uvarum pure and hybrid species differentiation. The 

first isolation of the FSY1 gene was done from a genomic library construction of S. 

pastorianus PYCC 4457. Activity with fructose was assayed and gene sequence was 

firstly described. It consisted in a high-affinity fructose/H+ symporter (Km=0.2 mM) 

of a 570 amino acids-coding sequence (Rodrigues de Sousa et al. 2004). A 

homology (Figure i16) analysis revealed that it was a transporter with no striking 

similarity with others known from the Major Facilitator Superfamily (Gonçalves et 

al. 2000).  
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Fructose symporter homologous sequences were discovered in other non-

Saccharomyces yeasts. The Kluyveromyces lactis FRT1 gene also presented also 

high affinity to fructose transport (Km=0.16 mM) and was related directly to the 

Figure i16. The Fsy1 and sugar permeases relationships. Dendrogram showing the 

relationships between the permeases of the Major Facilitator Superfamily (MFS) and 

Fsy1 of S. carlbergensis (the S. pastorianus Saaz-type strain), the first sequence 

obtained for this gene. S. cerevisiae hexoses transporters cluster far from that of Fsy1, 

whose amino acidic sequence is similar to S. cerevisiae Itr1, Itr2, YDR387c and Pho84 

and those from other species (Itr1po and Itr2po from S. pombe; GalP from E.coli). 

Adapted from Gonçalves et al. 2000. 
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sequence of S. pastorianus (Diezemann and Boles 2003). Another specific fructose 

transporter was found in Zygossacharomyces bailii (FFZ1) but consisted, in this 

case, in a facilitator protein with Km=80.4 mM, and with specificity for fructose, but 

not for glucose (Pina et al. 2004). Two fructose uptake systems, which formed a 

phylogenetic cluster together with Z. bailli FFZ1, were discovered in 

Zygosaccharomyces rouxii: ZrFFZ1, a high-capacity fructose facilitator (Km=400 mM) 

and ZrFFZ2, a second facilitator that transports both glucose and fructose with 

similar capacity and affinity (Leandro et al. 2011). Interestingly in the grey mold 

Botrytis cinerea which is frequently found in vineyards, a high-affinity fructose 

symporter (Km=1.1 mM) was found. Clustering revealed that it was related to those 

of S. pastorianus and K. lactis (Doehlemann et al. 2005). 

The gene regulation of S. pastorianus PYCC 4457 and S. bayanus PYCC 4565 

FSY1 was analysed. FSY1 expression was higher in the presence of small amounts of 

fructose and was repressed in the cells inoculated in glucose media. Catabolite 

repression by glucose was suggested as the regulator mechanism, as supported by 

the presence of Mig1 (a transcriptional repressor) binding sequences in the FSY1 

promotor. The relative expression of the FSY1-GFP constructions of both strains 

revealed that the S. bayanus transporter was equally repressed at 0.1% of glucose 

as S. pastorianus at 0.5% of the same sugar, with more resistance shown for the 

latter. Finally, the de-repression of the system was carried out by shifting in media 

with low glucose or fructose concentrations, which also induced the expression of 

the system (Rodrigues de Sousa et al. 2004). In contrast, the regulation of K. lactis 

FRT1 was not influenced by catabolite repression (Diezemann and Boles 2003), but 

by a large amount of glucose or fructose, where glucose was more efficient in 

repression.  
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The FSY1 kinetics of found in the EC1118 genome were characterised in 

Galeote et al. 2010. It also presented high affinity for fructose (Km=0.24 mM) and 

regulation showed repression by high glucose or fructose concentrations and by 

high expression on ethanol as a sole carbon source. The phylogenetic 

reconstruction with the other fructose symporter clustered it with the 

monophyletic group formed by S. pastorianus and S. uvarum FSY1 (Figure i17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, a search of FSY1 along the Pezizomycotina and Saccharomycotina 

sub-phyla of Ascomicota resulted in 109 homologous and 10 independent 

sequences, probably the horizontal gene transfer (HGT) of this gene where shown 

between different species (Coelho et al. 2013).

Figure i17 .The Fsy1p and Hxt phylogenetic reconstruction. A ML tree of fungal 

transporters showed two separate cluster, one of those protein sequences of Fsy1 and 

the other formed by the some hexose transporters from the same species. The position 

of S. cerevisiae EC1118 Fsy1 suggests a similar function to the other Saccharomyces 

strains. Adapted from Galeote et al. 2010. 
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The origin of the FSY1 gene and the remaining Region C genes was revealed 

in the work of Marsit et al. 2015 in collaboration with our group thanks to the 

analysis presented in this thesis work. The genome sequencing of Torulaspora 

microellipsoides, a pre-WGD species, showed that this species harboured not only 

the FSY1 gene but a strenght of genes similar to the Region C genes with an 

additional 80 kb of genes between the ARB1 and the PUT3 genes. Besides, two S. 

cerevisiae strains sequenced there one from food and another one from beer 

presented a region of genes more similar to Torulaspora microellipsoides than to 

the Region C found in the EC1118 strain and others. The discovery of this 

introgression denote the relevancy of a pre-WGD species, T. microellipsoides, on its 

contribution to the genome evolution of a S. cerevisiae lineage, a post-WGD 

species. Concerning to the genes that were probably acquired from this species a 

role in adaptation to fermentative environments was suggested. Additionally, an 

interspecific hybridization between two distantly yeast species was proposed to 

explain the introgression event what suggests that this kind of breeding is more 

frequent than it was though. Moreover, the WGD hypothesis presented in Marcet-

Houben and Gabaldón 2015 supports this kind of hybridization.  

In light of the results presented in the Introduction section, T. 

microellipsoides seems to be an important contributor to, at least, S. cerevisiae 

domesticated species, so we decide to carry out a deeper study on this species 

which was poorly studied before and only the genome sequences of the type strain 

was available. In this way, we state the following objectives for this thesis work 

while it is important to remark that new objectives have appeared during the 

arising of the results and they are stated in each chapter: 
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1) Dilucidate the evolutionary history of the FSY1 gene mainly due to 

their importance in the possession of a “fructophilic” behaviour in some 

industrial yeast.  

 

2) Figure out the probably donor species of the FSY1 gene to S. 

cerevisiae wine strains.Once we deduced that T. microellipsoides was 

the possible species responsible of the transference of the complete 

Region C: 

 

3) Clarify the Region C direction of transfer, it means from T. 

microellipsoides to S. cerevisiae or in the other direction by performing 

the genome sequencing of the available T. microellipsoides strains. 

 



 

 
 

 

 

Chapter 1: 

Active fructose symporter and 

ammonia exporter acquisition by 

introgression events in the 

Saccharomyces genus 
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1.1 Abstract: 
 

Acquisition of S. cerevisiae EC1118 Region C was already unrevealed in 

Marsit et al. 2015, in a collaboration with us. Here we pointed out the non-

Saccharomyces species, T. microellipsoides as the donor of this novel region. 

Although all newly discovered genes were probably related to improve wine 

fermentation (Novo et al. 2009), we especially focused on the origin of FSY1: a gene 

that codifies for a fructose/H+ symporter expressed at low fructose concentrations. 

Harbouring it may imply an important industrial trait if the problem of unfinished 

wine fermentations, due to incomplete fructose consumption in some cases, could 

be reduced. S. cerevisiae possess on their surface a huge number of hexoses 

transporters that work by only by facilitated diffusion and no  active sugar 

transport was described until the work of Novo et al. 2009 was published. Previous 

publications have shown that this gene was present in the genome of the cluster 

composed of S. eubayanus, S. uvarum and S. pastorianus but was absent in the 

other Saccharomyces species. Such energy-consuming transport is typically found 

in species with a high respiro/fermentative ratio, which is a characteristic 

metabolism of some non-Saccharomyces yeasts. 

In order to find out the donor species of FSY1 (all Region C) to S. cerevisiae, 

we searched for this transporter in numerous Saccharomyces and non-

Saccharomyces strains along the Saccharomycetaceae complex (C. Kurtzman 2003). 

After retrieving the known FSY1 sequences from databases, we started to amplify 

newly sequences from available species. Sequencing the T. microellipsoides 

amplicon showed that it possessed two divergent copies of this gene in its genome. 

The phylogenetic reconstruction revealed that each homologous copy was related 

to one Saccharomyces species, one to S. cerevisiae and the other one to the S. 
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eubayanus, S. uvarum and S. pastorianus group. Then the topology obtained for 

the tree did not correspond to the topology expected for the yeast family, so we 

tested the significance of this tree topology using a Simodaira-Hasewaga 

comparison. The distribution of the FSY1 gene inside the genome sequenced 

species, and events occurred until its transfer was described to support the 

obtained results. For the FSY1 gene, we proposed two independent gene transfer 

events to each Saccharomyces species. 

The PCR amplification of the Region C genes and posterior genome 

sequencing of T.microellipsoides confirmed the presence of the complete region in 

this species. As with FSY1, we wondered if these genes (or copies of them) could be 

transferred to other Saccharomyces genus species. We performed a blast search 

for yeast sequenced genomes from databases and our lab. As a result, we found a 

homologous copy of the ATO3 gene in five Saccharomyces species and more than 

one copy was detected in some strains thanks to new PacBio technology 

assemblies. The ancestral function described for its homologous YDR384C gene was 

an ammonia transporter to outside of the cell, but a specific function is yet to be 

described. The phylogenetic reconstruction showed a monophyletic cluster 

composed of the new copy found in the Saccharomyces species that diverged first 

from the group of T. microellipsoides and S. cerevisiae Region C-related sequences. 

We hypothesised that if no T. microellipsoides, a close unknown species, could be 

the donor of this gene to these Saccharomyces species. It would probably be an 

ancient transfer as the majority of the species present this gene with a high 

nucleotide divergence from T. microellipsoides.  
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1.2 Results: 
 

1.2.1 Presence or absence of the FSY1 gene in Saccharomycetaceae family: 
the Horizontal Gene Transfer (HGT) hypothesis 
  

S. eubayanus
S. uvarum

WGD 
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The FSY1 gene was searched in the “Saccharomyces yeast complex” to find 

out the donor species of this gene to Saccharomyces cerevisiae strains. The 

complete sequence of this gene (1794 bp) was first obtained from the available 

genomes in databases (see Methodology 1.3.2). From those sequences, we 

designed a pair of general primers that amplified all the species included in this 

yeast family (see Methodology 1.3.3). As the Carboxi and N-terminus of the gene 

were quite variable, amplicon size was reduced to 903 bp (which meant about 50 % 

of the ORF). A screening of 206 strains was performed for this study, but we 

obtained only amplification of 67 of them (Strains Table 1). A schema of the 

positive and negative results is shown in Figure 1.1. 

  

Figure 1.1. The PCR amplification of a 903 bp central fragment of FSY1 in the 

Saccharomycotina complex. The positive and negative amplification is respectively 

shown in the green or red box and the species not included in the analysis were not 

color-squared. The FSY1 gene was present in the majority of the pre-WGD species 

tested for genera Kluyveromyces, Lachancea, Torulaspora, Zygotorulaspora, 

Zygosaccharomyces. However, no amplification resulted from the post-WGD species 

tested from genera Vanderwaltozyma, Tetrapisispora, Nakaseomyces, Naumovia, 

Kazachstania except inside the Saccharomyces genus. The figure is adapted from 

Kurtzman et al., 2003 with the Saccharomyces genus updated according to the current 

classification. The WGD event is denoted with a red arrow. 
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The majority of the pre-WGD genera strains presented this gene in their 

genome, except Torulaspora globose that did not present any amplification. For 

some strains of species Zygosaccharomyces rouxii, Kluyveromyces lactis, Lachancea 

thermotolerans, the complete gene sequence was previously found in databases. 

PCR amplification was obtained in all, or in some, species of the Kluyveromyces, 

Lachancea, Torulaspora, Zygotorulaspora, Zygosaccharomyces genera. Negative 

results were obtained only for three tested species (T. globose, E. gossypii and H. 

uvarum) and some species were not included in the analysis (Figure 1.1). The 

sources of isolation of the 31 positive pre-WGD strains were soil, Quecus spp. trees, 

in symbiosis with Drosophila, and from a fermentative lifestyle.  

Concerning the post-WGD genera, only 16% of the tested strains (26 of the 

162 strains) presented this central sequence of the FSY1 gene (Strains Table 1). No 

amplification was obtained for the Vanderwaltozyma, Tetrapisispora, 

Nakaseomyces, Naumovia and Kazachstania species. Nevertheless, positive results 

were obtained for some Saccharomyces species: inside the S. eubayanus/S. uvarum 

and S. pastorianus clade, 100% of the tested strains presented the gene, but we 

looked for the fructose transporter in S. cerevisiae, only ten of 61 were positive and 

most were wine strains (Strains Table 1). 
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1.2.2 FSY1 phylogeny I: maximum likelihood (ML) tree reconstruction of the 
FSY1 partial gene sequence 
  

4 

2 

3 

1 

T.microellipsoides FSY1B and 
FSY1B2 copies clustering with 
the S. eubayanus, S. 
pastorianus and S. uvarum 
sequences 

T.microellipsoides FSY1A 
clustering with the S. 
cerevisiae sequences 

B. cynerea SAS 56
C. albicans SC 5314

C. dubliniensis CD 36
C. tropicalis MYA 3404

L. elongisporus NRRL Y-B4239
C. parapsilosis CDC 317

D. hansenii CBS 767
M. guilliermondii ATCC 6260

S. stipitis CBS 6054
M. farinosa CBS 7064

K. marxianus CECT 1442
K marxianus KCTC 17555

K. wickerhamii UCD 54210
K. wickerhamii CECT 1966

K. aestuarii ATCC 18862
K. aestuarii CECT 1949

K. dobzhanskii CECT 2284
K. lactis NRRL Y-1140
K. lactis JA 6 

L. kluyveri NRRL Y-1265
L. fermentati CECT 10382

L. thermotolerans AQ 230
L. thermotolerans CBS 6340

Z. rouxii CBS 732
Z. bisporus CECT 11055

Z. bailii CLIB 213 
Z. baillii CECT 11042

Z. mellis CECT 11057
Z. florentinus CECT 11200

Z. mrakii CECT 10529
Z. mrakii CECT 10531

FSY1A Tm CBS 6641
FSY1A Tm NRRL Y-17058
FSY1A Tm CBS 6143
FSY1A Tm CLIB 830T
S cer x S uva x S kud CBS 2834
S cer x S kud W27
S cer x S kud AWRI 1503
S cer x S kud VIN7
S cerevisiae EC1118
S cerevisiae PM
S cerevisiae DBVPG6765

S cerevisiae FCRH
S cerevisiae VRB
S cerevisiae FCRY
S cer x S uva S6U

T. delbrueckii CECT 10039
T. delbrueckii CBS 1146

T. delbrueckii agave
T. franciscae CECT 10680

FSY1B1  Tm CLIB 830T
FSY1B1 Tm CBS 6641 Scaff 32
FSY1B1Tm NRRL Y-17058 42
FSY1B1 Tm CBS 6143 Scaff 53
FSY1B2 Tm CBS 6762 Scaff 58
FSY1B2 Tm NRRL Y-17058 337 
FSY1B2 Tm CBS 6143 Scaff 154

S. eubayanus CBS 12357T
S eubayanus S20

S. pastorianus CECT 1885
S. pastorianus PYCC 4457
S. pastorianus Weisestenphan 34/70
S. pastorianus CECT 1940

S. uvarum ZIM 2113 
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The phylogenetic reconstruction with a central region of the FSY1 gene 

(Figure 1.2) was performed to discover possible donor species. The outgroup 

species seen at the top of the tree were the grey mold Botrytis cinerea and 

Candida, Debaryomyces, Meyerozyma, and other yeast species. The outcome 

reconstruction showed that species Kluyveromyces, Lachancea, 

Zygosaccharomyces and Zygotorulaspora, maintained their phylogenetic position 

inside the yeast family tree. Therefore, the sequence of this gene fragment seems 

well conserved, after differentiating each genus with bootstrap values of 1000. 

When we looked at the Torulaspora species in the resulting tree, we 

immediately see that Torulaspora microellipsoides ocuppies an unexpected 

position compared to the other pre-WGD genera. Given these results, we thought 

that the phylogeny incongruences showed that T. microellipsoides could probably 

be the donor of at least the FSY1 gene, and perhaps of the complete Region C 

(confirmed in Marsit et al. 2015). Before the tree reconstruction, we found that the 

T. microellipsoides species presented more than one sequence for this gene. We 

also found these copies first by the PCR amplification and Sanger sequencing of the 

Figure 1.2. The ML phylogeny obtained with a 903 bp FSY1 sequence of 

Saccharomycetaceae species. Outgroup strains are shown (in red) at the top of the 

tree and clustered from the 0 Species:  name and strains numbers refer to their 

collection or origin precedence. Genera are represented by: 1-Kluyveromyces; 2-

Lachancea; 3-Zygosaccharomyces and 4-Torulaspora. Different tones of green 

highlighted the FSY1 copies found in the Torulaspora microellipsoides strains (FSY1A, 

FSY1B and FSY1B2). A purple key, indicate the group formed by the FSY1A and S. 

cerevisiae sequences, and a blue key denotes that composed of FSY1B/FSY1B2 with the 

other Saccharomyces species. The numbers at nodes correspond to the bootstrap 

values over 1000 bootstrap pseudo-replicates. The scale is given in nucleotide 

substitutions per site. 
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FSY1 central region in the type strain and then by the genome sequencing of the 

available T. microellipsoides strains (see Chapter 2). 

The phylogenetic analysis revealed that one of the FSY1 copies, which we 

called FSY1A, grouped together with those sequences found in some S. cerevisiae 

strains inside Region C with a bootstrap value of 1000. The Zygotorulaspora species 

included in this analysis (Z. mrakii and Z. florentinus) grouped at with this 

monophyletic group the same time.  

Two additional copies of FSY1A were found in T. microellipsoides. The one 

we called FSY1B was in the genome of CLIB830T, NRRL Y-17058, CBS 6143 and CBS 

6641. The other one was probably a recent paralogous copy of FSY1B as it was 

located in a homologous chromosomic region. We named FSY1B2 at this second 

sequence as we first found FSY1B in the type strain. It was present in the NRRL Y-

17058, CBS 6143 and CBS 6762 strains. Details of the chromosomic context of 

FSY1B/FSY1B2 are provided in Supplemental Figure 2 and better discussed in the 

next Chapter. Both sequences clustered with S. eubayanus/S. pastorianus and the 

S. uvarum clade (bootstrap value of 1000). The other Torulaspora species included 

in the phylogeny (T. delbrueckii and T.franciscae) were the closest to this group. 

The immediate conclusion of these analyses was the discovery of what was 

probably donor species of the FSY1 gene, T. microellipsoides. Hence, this species 

was responsible for the transfer to some S. cerevisiae strains, but we accidentally 

found that, probably, another copy of this gene could be transferred to the S. 

eubayanus/S. pastorianus and the S. uvarum clade by the same species. 

When we looked at the nucleotide level of each FSY1 copy in the 

Saccharomyces species (Figure 1.3), we determined that they were quite different 

for FSY1A and FSY1B/FSY1B2. S. cerevisiae FSY1 and its homologous copy FSY1A 

from T. microellipsoides CLIB830T, presented a 100% homology and only a few 
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changes in the other strains (three non-synonymous amino acid changes). 

However, between brewery species, the FSY1 sequences and FSY1B/FSY1B2 

paralogous copies with more nucleotide changes accumulated compared to one 

another (14.8% on average).  

  

Figure 1.3. The nucleotide distance between Saccharomyces and the T. 

microellipsoides FSY1 complete gene sequence. A distance matrix for aligned 1794 bp 

was obtained with the Mega v6.0 software (Tamura et al. 2013). Upper panel: three 

Saccharomyces cerevisiae strains compared with FSY1A from the T. microellipsoides 

strains. Bottom panel: one representative of S. eubayanus/S. pastorianus and S. 

uvarum compared to the FSY1B/FSY1B2 T. microellipsoides sequences. Relevant 

changes in both panels are squared or highlighted in capitals. 

1 2 3 4 5 6 7 8 9 10
1 S. uvarum _CBS_395T
2 S. eubayanus_CBS_12357T 130
3 S. pastorianus_Weisestenphan 34/70 134 20
4 FSY1B_CLIB_830T 268 275 281
5 FSY1B_NRRLY-17058 268 272 278 14
6 FSY1B_CBS_6143 268 272 278 14 0
7 FSY1B_CBS_6641 268 272 278 13 5 5
8 FSY1B2_NRRLY-17058 248 257 261 154 156 156 155
9 FSY1B2_CBS_6143 248 257 261 154 156 156 155 0
10 FSY1B2_CBS_6762 252 265 269 158 160 160 159 36 36

1 2 3 4 5 6 7
1 S. cerevisiae_EC1118
2 S. cerevisiae_CBS_7957 0
3 S. cerevisiae_CLIB_382 0 0
4 FSY1A _CLIB_830T 0 0 0
5 FSY1A _NRRLY-17058 8 8 8 8
6 FSY1A _CBS_6143 8 8 8 8 0
7 FSY1A _CBS_6641 9 9 9 9 3 3
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1.2.3 FSY1 phylogeny II: maximum likelihood (ML) tree reconstruction of an 
FSY1 complete gene sequence  
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Figure 1.4. The ML phylogeny obtained with a 1794 bp the FSY1 complete sequence of 

the Saccharomycetaceae species. S. stipites and B. cynerea are the outgroups. Species’ 

name and strains number refer to a yeast collection or origin. Different tones of green 

highlight the FSY1 copies found in the T. microellipsoides strains. Numbers at nodes 

correspond to the bootstraps values over 1000 bootstrap pseudo-replicates. The scale is 

given in nucleotide substitutions per site. 
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The phylogeny with a complete sequence of the FSY1 gene was carried out 

to gain more support for the previous reconstruction with a partial gene sequence 

(Figure 1.4). However, fewer sequences were used for this study given the 

aforementioned problems.The outgroups species were S. stipites and B. cinerea, 

and the latter had a longer branch length. The pre-WGD genera included in the 

tree, Kluyveromyces, Lachancea and Zygosaccharomyces, maintained their 

expected phylogenetic position, and Z. rouxii was the closest species to group with 

the FSY1 S. cerevisiae/FSY1A T. microellipsoides sequences observed as a 

monophyletic group as in the partial sequence reconstruction. The T. 

microellipsoides FSY1B/FSY1B2 duplicates formed a group with S. uvarum/S. 

eubayanus/S. pastorianus, and T. delbrueckii was the closest species to join this 

group. Despite the observed wide variability in the 5’ and 3’ nucleotide extremes of 

the gene, we obtained similar results using the complete or partial sequence. This 

finding suggests the robustness of our results.  

 
1.2.4 Support of FSY1 introgression by a tree topology comparison 

 

The reconstruction of the FSY1 compiled sequences (Figure 1.2 and 1.4) 

revealed that those from T. microellipsoides and some Saccharomyces species 

ocuppied in an unexpected position compared to their phylogenetic position 

established for the Saccharomycotina complex (Figure i6). As mentioned before, 

this result suggest that probably an introgression of this fructose symporter gene 

could be directed from a T. microellipsoides strain towards some Saccharomyces 

species in two independent gene transfer events. In order to assess if the obtained 

ML phylogeny was statistically acceptable, we followed a method that compares 

different tree topologies and selects which is the best based on likelihood 

calculations (Figure.1.5 Panel A and B.). As explained in the 1.3.5 Methodology 
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section, three hypothetical comparisons with four trees each, were tested to 

statistically support the introgression. In all the comparisons made of both the 

topologies obtained with the partial and complete FSY1 sequence phylogenies, the 

best topology was always that for the FSY1 ML tree. 

  

tree lnL ∆lnL ±SE pKH pSH pRELL
1 (best) -17464.722 0.000 0.000 1.000

2 -18009.193 -544.470 53.120 0.000 0.000 0.000
3 -17738.035 -273.312 28.074 0.000 0.000 0.000
4 -17832.444 -367.722 37.247 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH c-ELW
1 (best) -17838.6 0 0.000 1.000 1.000 1.000

2 -18411.41 -572.81 50.921 0.000 0.000 0.000
3 -18123.43 -284.83 28.087 0.000 0.000 0.000
4 -18395.15 -556.55 30.479 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH pRELL
1 (best) -16758.778 0.000 0.000 0.995

2 -17089.279 -330.501 45.319 0.000 0.000 0.000
3 -16789.650 -30.872 12.442 0.007 0.262 0.005
4 -16893.779 -135.001 22.001 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH c-ELW
1 (best) -17108.180 0.000 0.000 1.000 1.000 0.994

2 -17453.510 -345.330 45.666 0.000 0.000 0.000
3 -17138.680 -30.500 12.268 0.011 0.267 0.006
4 -17248.320 -140.140 22.065 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH pRELL
1 (best) -17436.638 0.000 0.000 0.992

2 -17565.812 -129.174 22.347 0.000 0.000 0.000
3 -17511.895 -75.258 17.362 0.000 0.000 0.000
4 -17465.600 -28.962 12.284 0.009 0.076 0.008

tree lnL ∆lnL ±SE pKH pSH c-ELW
1 (best) -17802.160 0.000 0.000 1.000 1.000 0.984

2 -17934.630 -132.470 22.305 0.000 0.000 0.000
3 -17878.600 -76.440 17.463 0.000 0.000 0.000
4 -17830.520 -28.360 12.136 0.013 0.077 0.016

tree lnL ∆lnL ±SE pKH pSH pRELL
1 (best) -17158.980 0.000 0.000 1.000

2 -17858.095 -699.116 55.179 0.000 0.000 0.000
3 -17588.558 -429.578 31.262 0.000 0.000 0.000
4 -18150.020 -991.040 36.309 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH c-ELW
1 (best) -18306.650 0.000 0.000 1.000 1.000 1.000

2 -19080.210 773.560 55.304 0.000 0.000 0.000
3 -18775.940 469.290 31.752 0.000 0.000 0.000
4 -19363.210 1056.550 38.004 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH pRELL
1 (best) -15744.664 0.000 0.000 1.000

2 -16087.871 -343.206 38.808 0.000 0.000 0.000
3 -15788.053 -43.389 16.092 0.004 0.125 0.000
4 -16054.771 -310.107 35.228 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH c-ELW
1 (best) -16795.430 0.000 0.000 1.000 1.000 1.000

2 -17141.340 345.920 37.969 0.000 0.000 0.000
3 -16844.320 48.890 16.039 0.005 0.085 0.000
4 -17103.770 308.340 34.360 0.000 0.000 0.000

tree lnL ∆lnL ±SE pKH pSH pRELL
1 (best) -17091.680 0.000 0.000 1.000

2 -17154.979 -63.299 17.250 0.000 0.000 0.000
3 -17139.648 -47.968 13.336 0.000 0.001 0.000

tree lnL ∆lnL ±SE pKH pSH c-ELW
1 (best) -18233.260 0.000 0.000 1.000 1.000 1.000

2 -18303.820 70.550 17.607 0.000 0.000 0.000
3 -18287.670 54.400 13.746 0.000 0.000 0.000

PANEL A 

PANEL B 

FSY1A_FSY1B/FSY1B2 

FSY1A_FSY1B/FSY1B2 
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Figure 1.5. Topology comparison through the Shimodaira-Hasewaga test 

implemented in PAML 4.9c. Three different comparisons (FSY1A and FSY1B/FSY1B2; 

only FSY1A and only FSY1B/FSY1B2), including four or three topologies, are shown in 

upper panels A and B. The tested tree topologies were: tree 1 (corresponding to tree A 

on the left): the maximum likelihood (ML) tree obtained by the PhyML software with 

the evolutionary model chosen in jModeltest; tree 2 (corresponding to tree B on the 

left): the Saccharomycetaceae phylogeny from Kurtzman et al., 2003; tree 3:  the ML 

tree forcing the T.microellipsoides sequences to the predicted position for FSY1A; tree 

4: the ML tree forcing the T.microellipsoides sequences to the predicted position for 

FSY1B/FSY1B2. PANEL A: topology testing by taking the FSY1 partial sequence 

reconstruction. PANEL B: topology testing by taking the FSY1 complete sequence tree. 

lnL: ln likelihood, SE: Standard Error, pKH: P-value for the KH normal test (Kishino and 

Hasewaga 1989), pSH: P-value with multiple-comparison correction, pRELL: RELL 

bootstrap proportions (Kishino and Hasegawa 1989) and c-ELW: Expected Likelihood 

Weights (Strimmer and Rambaut 2002). 
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1.2.5 Synteny and position of FSY1 among Saccharomycetaceae phylogeny: a 
proposed model 
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Figure 1.6. Distribution of the FSY1 gene in the “Saccharomyces complex”. On the left, 

we show the chromosome position and the synteny view (extracted partly from YGOB) 

in the Saccharomycetaceae phylogeny. On the right, we draw the hypothetical model 

of transfer from a pre-WGD species to the Saccharomyces species: 1: Movement of 

FSY1 towards the subtelomeric position; 2: FSY1 was lost in all or in some post-WGD 

genera. Its presence in the WGD ancestor is uncertain (symbolised as “?”). If the FSY1 

acquisition in the Saccharomyces genus was done through two independent gene 

transfer events, we hypothesise 3 and 4: 3: acquiring FSY1B (or FSY1B2) by the ancestor 

of S. uvarum, S. eubayanus and S. pastorianus and 4: acquiring FSY1A differently by a 

wine lineage of S. cerevisiae. The arrows inside boxes correspond to the FSY1 gene and 

the longer arrows represent the transfer event. 
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We took the non-Saccharomyces whole genome sequenced species to 

reconstruct the gene context of FSY1 and to propose a model of a possible transfer 

to discuss it (Figure 1.6). As we previously detected T. microellipsoides to be the 

possible donor species, we selected some genera that diverged before. From the 

Kluyveromyces genus, we had the complete sequence of Kluyveromyces lactis and 

the three species from Lachancea: L. thermotolerans, L. waltii and L. kluyveri 

available. Inside these genomes, the FSY1 gene was located at a central position. In 

K. lactis it was surrounded by CYK3 and INO80 and then an inversion of FSY1 and 

CYK3 and ARO2 was observed in L. kluyvery. A translocation may have occurred in 

L. waltii and L. termotolerans at a point before starting FSY1 ORF. In species 

Torulaspora, T. microellipsoides and T. delbrueckii, we observed that FSY1 moved 

from the CIK3/INO80 context to a different chromosome and in a subtelomeric 

position. We draw the chromosomes for each copy that we found, FSY1A and 

FSY1B/FSY1B2, as we cannot deduce the exact ancestral and duplicated copy, but 

we discuss this aspect in the next results section. In Zygosaccharomyces rouxii, we 

also detected this gene at the end of the chromosome. The same genes with the 

same order are arranged in this species, as FSY1 is the only gene that moved from 

its ancestral loci and was implicated in a translocation. When we move up in the 

phylogeny, we start to find the post-WGD genera: Vanderwaltozyma, 

Tetrapisispora, Nakaseomyces, Naumovia and Kazachstania, in whose genomes 

FSY1 was not found. So we show the ancestral gene position, which is split and 

modified as a result of WGD. Inside the Saccharomyces genus, we redraw the FSY1 

gene for the resulting species S. eubayanus and S. uvarum, and for S. cerevisiae 

again in a chromosome terminal position.  

We present a model for the gene transfer that simplifies the first figure, 

where we wish to emphasise that FSY1 moves from a central to a subtelomeric 

position, and firstly in the Torulaspora genus. We later discuss the ancestral and 
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duplicated copy of FSY1, but in any case FSY1A or/and FSY1B/FSY1B2 probably 

moved from the T. microellipsoides to the Saccharomyces species thanks to the 

recombinational properties of rich-in-repeats subtelomeric positions which 

facilitates the interchange of genetic material. We especially wish to remark with 

the broken lined square that the FSY1 from S. cerevisiae was transferred together 

with other genes that also proceed from T. microellipsoides, which is called Region 

C. However, the FSY1 from S. eubayanus is surrounded by its own genes and none 

proceeded from a horizontal gene transfer. 
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1.2.6 ATO3 phylogeny: maximum likelihood (ML) tree reconstruction of an 
ATO3 partial gene sequence 
   

S. uvarum BMV58 YDR384C
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In order to detect any possible new introgressions from T. microellipsoides, 

we searched for the homologous genes of the S. cerevisiae/T. microellipsoides 

Region C genes in the genomes of the Saccharomyces species. Of them all, we only 

detected a copy of the ATO3 gene (whose inferred function is ammonia export). 

We performed a phylogenetic reconstruction with the newfound sequences, 

together with those of Region C and the ancestral gene ATO3 present in the 

Saccharomycetaceae genera (Figure 1.7). It is noteworthy that the size of the 

sequences in the reconstruction went up to 543 bp, but that of a complete 

sequence for the ancestral gene and the new copies was up to 831 bp. This was 

because a codon stop was found in the S. cerevisiae Region C ATO3 gene at the 56 

amino acid position when aligned against the ATO3 gene in T. microellipsoides. 

Thus, the ORF in Region C of S. cerevisiae was shorter than the orthologous 

sequence in other species. By taking the corresponding nucleotide sequence before 

this stop codon, and translating it into amino acids and aligning it against the new 

copies found in the Saccharomyces species, it still conserved some amino acidic 

positions and others were probably lost by a genetic drift (Supplemental Figure 1.3) 

We included E. gossypii and E. cymbalariae as outgroup species. Interestingly inside 

the same chromosome of the T. blattae CBS 6284 strain, we detected two copies of 

the ancestral homologous gene.  

Figure 1.7. The ML phylogeny obtained from a 543 bp ATO3 partial sequence among 

Saccharomycetaceae species. The outgroup species were E. gossypii and E. 

cymbalariae (drawn in red). Species’ name and strains number refer to a yeast 

collection or a source of origin. Different tones of blue highlight the ATO3 copies found 

in the T. microellipsoides strains. The numbers at nodes correspond to the bootstraps 

values over 100 bootstrap pseudo-replicates. The scale is given in nucleotide 

substitutions per site. 
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The new copy was found in the majority of the Saccharomyces species, 

except in S. arboriculus, and no sequence or DNA was available for S. jurei. 

Although S. cariocanus was not included in the new Saccharomyces phylogeny, a 

novel ATO3 sequence was present in strain S. paradoxus UFRJ50816, regarded 

before as S. cariocanus. The new Pacbio technology assemblies from S. cerevisiae 

and S. paradoxus (Yue et al. 2017) allowed us to better resolve subtelomere 

sequences and more than one copy of ATO3 was found in strains S. paradoxus 

UWOPS 919171. Within it, gene copies were located in chromosomes V, XVI and IV 

and two subtelomeric copies in each extreme of chromosome XV. In four additional 

S. paradoxus, the same copy was present and three of them harboured it in 

chromosome XII. Sequences of S. paradoxus were joined to those of S. cerevisiae in 

a monophyletic group. For this species, we obtained from the three strain 

sequences for the tree reconstruction and in one of them that the gene was 

present in chromosome XIV. We included one sequence of a S. mikatae strain and 

four distributed copies of the gene in S. kudriavzevii NBRC 1802 (chromosomes V, a 

second copy in chromosome V, chromosome IX and II). Four S. uvarum strains and 

one S. eubayanus presented each one, one copy of the gene.  

We searched these novel sequences in the genome of the hybrid of S. 

pastorianus, but no results were obtained .In the S. cerevisiae and S. kudriavzevii 

parental genomes from the VIN7 strain, we found an ATO3 gene only in the S. 

kudriavzevii subgenome. The S. cerevisiae origins of the strains where we found 

this new gene were Australia, EEUU and Hawaii. No evidence for a European origin 

was obtained. Moreover, the inferred VIN 7 S. cerevisiae subgenome origin was 

Europe and the closest strains found was EC1118 (Borneman et al. 2012). 
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1.3. Methodology: 
 
1.3.1 The yeast strains used in this chapter 

 

Partial or complete FSY1 gene sequences were obtained from yeast 

databases (Strains Table 1) or by PCR amplification (Strains Table 2). The complete 

sequences of FSY1 Torulaspora microellipsoides strains were extracted from 

genome sequencing in our lab group (see Chapter 2). Yeast cultures were 

performed in YPD media: yeast peptone dextrose broth (YPD) rich media (2% w/v 

yeast extract, 2% w/v peptone and 2% glucose, pH = 6.5). We grew S. cerevisiae 

species at 300C and 190 rpm, and different optimal temperatures were used for 

other Saccharomyces and non-Saccharomyces species. Sequences of ATO3 

homologous genes were obtained from databases and publications, and the 

species used in this work are listed in Strains Table 3. 

 

1.3.2 In silico search for FSY1 and the ATO3 gene 
 

For some strains listed in Strains Table 1, we found complete or partial 

fructose transporter sequences in the databases of the National Center for 

Biotechnology Information, N.C.B.I.,U.S. National Library of Medicine 8600 

Rockville Pike, Bethesda MD, 20894 USA and Welcome Trust Sanger Institute, 

Hinxton, Cambridge,UK. Homologous sequences of ATO3 gene were retrieved from 

N.C.B.I., and from the high-resolution genome sequencing of S. cerevisiae and S. 

paradoxus published by Peter et al. 2018 and Yue et al. 2017. 

  

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.nlm.nih.gov/
http://www.sanger.ac.uk/
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1.3.3 Isolation of yeast genomic DNA, PCR amplification and Sanger 
sequencing 

In order to obtain genomic DNA from the yeast described in Strains Table 2, 

an overnight culture was placed in YPD-rich media at 25-300C and 190 rpm. Then 

genomic DNA was extracted according to the procedure of Querol et al., (1992). A 

pair of general primers was designed for the PCR amplification of a 903-bp central 

region of FSY1 by taking the complete sequences available in databases. No 

complete gene sequence amplification was possible as a sequence of the extremes 

was too variable. PCR amplification was performed among the 

Saccharomycetaceae species by taking FSY1gF: 5’-GAAGGTGGTGGTRTTGGTGT-3’ 

and FSY1gR: 5’-GCRATACCACCGTARAAGCC-3’ and one different forward primer to 

specifically amplify the FSY1 S. cerevisiae sequence inside the hybrid genomes: 

FSY1ECF: 5’GAAGGAGGCGGTRTTGGCGT-3’. We employed Phusion High-Fidelity DNA 

Polymerase (Thermo-Fisher Scientific) with the suggested protocol and PCR 

conditions were as follows: an initial denaturing at 980C for 30s; 30 cycles of 

denaturing at 980C for 10s, annealing at 620C for 30s and an activity step at 720C for 

30s. The programme was completed with a final step at 720C for 5 minutes. The 

obtained fragments were purified with the High Pure PCR Product Purification Kit 

(Roche Molecular Systems). For Sanger sequencing, we labelled samples with 

BigDye Terminator v3.1 Cycle (Thermo-Fisher Scientific) and the next cycling 

programmme was as follows: initial denaturing at 940C for 3 minutes; and 99 cycles 

consisting in: 1) 960C for 10 s, 2) 500C during 5 s, and 3) 600C for 4 minutes. The 

labelled fragments were red with ABI 3730 (Applied Biosystems, Foster City, CA, 

USA).  
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1.3.4 FSY1 and ATO3 phylogenies reconstruction 
 

The obtained sequences for each gene were aligned using the Mega v6.0 

software (Tamura et al., 2008) at their amino acid level. To determine the best 

evolutionary model that fitted our sequences, we employed jModelTest v2.1.7 

(Posada, 2008). Firstly, an alignment of the FSY1 partial sequence from 75 

Saccharomycetaceae strains was tested for an evolutionary model. According to 

the AIC, AICc, BIC and DT criteria, three different models were the best obtained 

ones. After the LRT comparison, the best fitting model was 012212 +I+G+F. A 

second alignment of 28 complete FSY1 sequences (1794 bp) was analysed for 

model selection purposes. In this case, and according to the same criteria, the 

chosen model chose was 012232+I+G+F. The evolutionary model chosen for the 

ATO3 sequences was TIM2+I+G in accordance with all the criteria (AIC, AICc, BIC 

and DT). 

A maximum Likelihood (ML) tree was obtained using the PhyML 3.0 software 

for each alignment (Guindon S et al., 2010). Although the invariant sites (I), gamma 

shape (G) and base frequencies (F) values were always provided with the model, 

estimates of them using eight rate categories were recalculated with PhyML. 

Bootstrap support of 1000 or 100 trees was evaluated.  
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1.3.5 FSY1 tree topology comparison 
 

Having obtained tree reconstructions using the FSY1 complete or partial 

sequence, different tree topologies were compared because the unexpected 

phylogenetic positions resulted for the T. microellipsoides FSY1A and FSY1B/FSY1B2 

copies compared to the established family phylogeny. In order to statistically 

obtain significance for the observed topology, we employed the PAML4.9c 

software (http://abacus.gene.ucl.ac.uk/software/paml.html) to apply the 

Shimodaira-Hasewaga test based on the total likelihood of each topology. Four 

trees were tested by assuming three different sequence comparisons: in the first 

one, both sequences FSY1A and FSY1B were included, and only sequences FSY1A or 

FSY1B were considered in the other two. 

 1.3.6 Reconstruction of the FSY1 chromosome position in pre- and post- 
WGD species 

The synteny arrangement of the pre-WGD and post-WGD species, the 

synteny from the Yeast Gene Order Browser (YGOB) and from other sources 

annotated species as S. eubayanus, or in our group annotated T. microellipsoides 

strains, were explained to reconstruct the position and the genome context of FSY1 

in the Saccharomycetaceae species. The genes adjacent to the fructose transporter 

sequence were inspected from the bottom linages (Kluyveromyces and Lachancea) 

to the Saccharomyces genus to show if the gene was maintained at the same or a 

different chromosome position. We employed the Artemis software to make the 

annotation work. 

 

http://abacus.gene.ucl.ac.uk/software/paml.html
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1.4. Main conclusions: 
 

• In the Saccharomycetaceae family, the homologous sequence of a gene that 
codifies for a fructose/H+ symporter, FSY1, is present in the majority of the pre-
WGD species and is absent in nearly all the post-WGD genera, except in the 
Saccharomyces genus. 

 
• In the T. microellipsoides genome, two subtelomeric copies of FSY1 ORF exist, 

which we named FSY1A and FSY1B. As the phylogenetic analysis revealed that 
each copy was similar to one Saccharomyces species a horizontal gene transfer 
from the former species was suggested. 

 
• Both copies’ nucleotide divergence from S. cerevisiae to their probable donor 

indicated two independent transfer events of transference from T. 
microellipsoides to Saccharomyces species. The introgression in S. cerevisiae 
would be more recent than in S. eubayanus and its related hybrids. 

 
• The topology tree obtained for the FSY1 gene was well supported compared to 

the topologies expected for the phylogeny of the Saccharomyces complex. 
 

• The reconstruction of the FSY1 chromosomic position from the basal genera of 
the Saccharomycetaceae family complex to the genera in the upper part of the 
tree provided much more support to transfer events because this gene was 
present at a subtelomeric position. 
 

• Regarding a within Region C gene ATO3, a homologous copy was found in the 
majority of the Saccharomyces species. The T. microellipsoides species was once 
again suggested as the probable donor.
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2.1. Abstract: 
 

Since T. microellipsoides CLIB 830T genome sequencing, the introgression of 

Region C in some S. cerevisiae strains has been attributed to this species. In this 

chapter it is shown the whole genome sequencing of the four from different 

sources of existing T. microellipsoides isolates, NRRL Y-17058, CBS 6143, CBS 6641 

and CBS 6762 (see Strains Table 2). Then, to confirm that the direction of the 

transfer of this region went from T. microellipsoides to S. cerevisiae and not the 

other way round, this region was searched in the new assembled genomes and 

attempted to reconstruct the chromosomic context of the FSY1B/FSY1B2 genes. An 

analysis of the FSY1 and ATO3 phylogenies was done after we obtained the new 

genome assemblies.  

All the T. microellipsoides strains, except CBS 6762, presented a conserved 

synteny of Region C, which supports the hypothesis of the transfer from this 

species towards a S. cerevisiae wine lineage. The FSY1B/FSY1B2 genes were also 

found at a subtelomeric location and every strain presented one or both copies, 

which suggests that they were also transferred from T. microellipsoides to S. 

eubayanus and the associated hybrids ancestor. The FSY1B/FSY1B2 region showed 

a well-conserved synteny with species Z. rouxii and T. delbrueckii in the core and 

the subtelomeric region of the pertinent chromosomes.  

An analysis of FSY1 and the ATO3 phylogeny revealed that strains NRRLY-

17058 and CBS 6143 presented more than one duplicated gene. The interpretation 

of the ATO3 gene phylogeny was more complicated given its gene redundancy in 

these non-Saccharomyces strains. One of the ATO3 paralogous genes that we 

found in strains NRRL Y-17058 and CBS 6143 was inside a “reduced Region C”, and 

involved DSF1, HXT13, this ATO3 gene duplication, GA10, SOR1 and the FOX2 

genes. 



Chapter 2:Abstract 
 
 

116 
 

When we looked at the FSY1 phylogeny, we observed that for strains NRRL 

Y-17058 and CBS 6143, one copy came close to strains CBS 6641/CLIB 830T and the 

other one to strain CBS 6762. From the resultant tree topology, we suspected that  

they were probably two hybrid species and their likely parental strains were CBS 

6762 and CBS 6641. In order to confirm our hypothesis, we took an alignment of 

1,844 concatenated genes retrieved from de novo genome annotations and 

reconstructed a phylogeny for the species. As a result, two well-differentiated 

groups were drawn by this multi-sequence analysis. We calculated the evolutionary 

divergence between genomes and the inferred subgenomes. With this measure, 

CBS 6762 and one subgenome shared by the two hybrids presented a long 

nucleotide distance compared to other sequences. We concluded that, the CBS 

6762 strain would probably not be a T. microellipsoides species, but a different 

species.  

New Torulaspora species have been discovered in recent years (Saluja et al. 

2012) based on their rDNA, and on other sequenced nuclear and mitochondrial 

genes. To test our hypothesis, which stated that strains CBS 6762 may be a distinct 

Torulaspora species, we decided to perform the 18S/ITS/5.8S and 26S multi-gene 

phylogeny with the type strain of each newly found species. From the resultant 

phylogeny, we observed that this strain presented quite a distant position from the 

other T. microellipsoides strains but, at the same time, its close ancestor was 

shared with them. The greater the isolation of the Torulaspora strains, the more 

sequences we retrieved to refine the phylogenetic analysis about the Torulaspora 

genus. The new analysis gave similar results to those obtained from the type strain 

sequences: while the CBS 6762 strain was not closely related to any Torulaspora 

species, it still formed a monophyletic group with the CBS 6641 and CLIB 830T T. 

microellipsoides strains. 
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In spite of the CLIB 830T genome being sequenced in Marsit et al. 2015, no 

gene annotations existed from it to map our reads against them. We used the 

YGAP approach (Proux-Wéra et al. 2012) for the assembled sequences that we 

obtained to annotate the  CBS 6641 and CBS 6762 genomes. For strains CBS 6143 

and NRRL Y-17058, which we suspected to be hybrid species, we created a set of 

eight pseudo-chromosomes (which is the more or less expected number of 

chromosomes for the species based on karyotype assays) by mapping their reads 

against the scaffolds from the inferred parental strains (CBS 6641 and CBS 6762). 

From the resultant pseudo-chromosomes, we concluded that both hybrid species 

shared a common origin, but we observed some huge genomic differences along 

this reconstruction. Previously, a karyotyping analysis revealed that both strains 

presented a distinct chromosomic band pattern. 

Although genome assembly provided an estimation of genomic DNA 

content, complementary methods were employed to assign a genome size and 

DNA content to each T. microellipsoides strain. We firstly recovered the previous 

karyotyping analysis to obtain the number and size of chromosomal bands. 

Secondly, flow cytometry assays were performed to measure DNA content and 

ploidy.  

With all this work, we obtained the genome sequence, assembly and 

annotation of one T. microellipsoides strain (CBS 6641), one novel Torulaspora 

species (CBS 6762) and two hybrid species (CBS 6143 and NRRL Y-17058). Both 

hybrids shared a common origin, and harbouried one parental genome from T. 

microellipsoides (CBS 6641) and another one from a new Torulaspora species 

before being included in T. microellipsoides (CBS 6762). 
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2.2. Results: 
 

2.2.1 The results Inferred from the FSY1 and ATO3 phylogenies  
 

The phylogenies of these two Region C genes shown in Chapter 1 were 

completed once the genome sequence of all the T. microellipsoides strains was 

obtained. At this point, only the CLIB 830T genome sequence was available, as 

described in Marsit et al. 2015, but the other isolated strains were not already 

genome-sequenced. That work revealed a high probability of T. microellipsoides 

being the species responsible for the Region C transfer. In it, the complete region 

and the conserved distribution of the genes were found, but with changes in ARB1 

ORF with a bigger size and the insertion of a group of genes of approximately 80kb 

between ARB1 and the PUT3 gene.  

A similar partial or extended version to T. microellipsoides of Region C was 

found in the newly sequenced S. cerevisiae strains in Marsit et al. 2015. Two of 

these strains, CLIB 382 and CBS 7957 presented four of the additional genes found 

next to the ARB1 gene in T. microellipsoides: COG1, SDT1, KRE1 and VRG4. 

Therefore, these S. cerevisiae strains presented a more similar composition of the 

Region C genes to T. microelipsoides than to S. cerevisiae EC1118. Therefore, the 

direction of the introgressed region was investigated here because of the presence 

of the extended Region C in two S. cerevisiae strains. Moreover, evidence for 

Region C was confirmed only for one T. microellipsoides strain CLIB 830T.  
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Thus in order to establish the correct Region C transfer direction, the 

genome sequences of the remaining T. microellipsoides strains were obtained. Five 

strains from different origins and sources of isolation existed in the yeast culture 

collections (all of which are available in the CBS culture collection), namely: CLIB 

830T, NRRL Y-17058, CBS 6143, CBS 6641 and CBS 6762. A detailed description of 

these strains is shown in Strains Table 2.  

First of all, the FSY1 paralogous genes (FSY1A and FSY1B) that were already 

found in the type strain were searched together with the complete Region C 

(Supplemental Figure 1). With all the retrieved FSY1B copies, a reconstruction was 

performed (shown in the Supplemental Figure 3). Subtelomeric regions of interest 

were manually annotated using the Artemis software (Carver et al. 2012).  The 

annotation of the genes surrounding the FSY1B copy were extracted and the 

synteny was represented (Supplemental Figure 2).  

The phylogenetic incongruences found for the T. microellipsoides species in 

the FSY1 and ATO3 phylogenies, but not inversely for the Saccharomyces species 

(Figure 2.1), pointed out that the former species was the probable donor of these 

genes by horizontal gene transfer (HGT). Not only were the FSY1 and ATO3 genes 

found in the T. microellipsoides strains, but Region C was also found in four of the 

five strains: CLIB 830T, CBS 6641, NRRL Y-17058 and CBS 6143. As suspected, the 

complete region was absent in the CBS 6762 strain (Supplemental Figure 1). The 

subtelomeric region harbouring the FSY1B1 copy was present in CLIB 830T, CBS 

6641, NRRL Y-17058 and CBS 6143.  

A second FSY1B copy was detected, which we called FSY1B2, in the CBS 

6762, NRRL Y-17058 and CBS 6143 strains (Supplemental Figure 2). In short, the 

detailed analysis of the FSY1 phylogeny revealed relevant information about the T. 

microellipsoides strains.  
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By focusing on this species (Figure 2.1), duplicated sequences in the NRRRL 

Y-17058 and CBS 6143 strains are observed. The FSY1A sequence of these two 

strains joins the same copy of CLIB 830T and CBS 6641. The FSY1B1/FSY1B2 copies 

of the same strains are similar to the copies of the CLIB 830T/CBS 6641 strains and 

the CBS 6762 strains, respectively. From this assignment, it was concluded that it 

was probably found two hybrid strains, NRRRL Y-17058 and CBS 6143, as well as 

the parental species involved in the hybridisation event: CBS 6762 and CBS 6641.  

The phylogeny of the ATO3 gene (Figure 1.7) blurred this aspect because of 

the numerous paralogous sequences found in these species and the absence of 

Region C in CBS 6762. Perhaps the ATO3 gene underwent some evolutionary 

process, and in such a way that copies could recombine among them or fix some 

important changes through selection. Despite the CBS 6762 strain being absent in 

this phylogeny, it was observed that the CBS 6641 sequence was the closest to 

those of the assumed hybrid species. Besides, at least three sequences were 

obtained for NRRRL Y-17058 and the CBS 6143 strain, which supports the 

conclusions drawn from the FSY1 phylogeny. 
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Figure 2.1. Suspected parental and hybrid species from the Region C genes analysis. 

Zoom on the previously presented ML phylogenies. All the FSY1 (in green) and ATO3 

(blue or purple) sequences were obtained after genome assemblies. The probable 

parental (P) and hybrid (H) genomes deduced from these preliminary analyses are 

tagged in the image.  No assignation was made to the ATO3 phylogeny due to its 

complicated interpretation. 
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2.2.2 Distribution of the FSY1 and ATO3 genes in each T. microellipsoides 
strain 

 

The fructose symporter gene distribution of the adjacent genes was first 

known in the S. cerevisiae EC1118 strain (Novo, Bigey, Beyne, Galeote, Gavory, 

Mallet, Cambon, J.-L. Legras, et al. 2009), and later in the T. microellipsoides CLIB 

830T strain and the new sequenced S. cerevisiae strains (Marsit et al. 2015). Now, 

homologous Region C from strains NRRL Y-17058, CBS 6143,CBS 6641 was 

obtained. A similar arrangement and composition of genes to that found in the 

CLIB 830T strain was found. A duplication of the chromosomic core region next to 

Region C was discovered in strains NRRL Y-17058 and CBS 6143. However, the 

corresponding subtelomeric region presented a distinct gene composition, and 

some were Region C paralogous copies. The PUT3, SEO1 and FOT1 copies came 

close to the telomere region together with Y’-elements and a FLO9 homologous 

gene. As in the CLIB 830T Region C, an additional region of approximately 95 kb 

maintained a distance between the PUT3 gene and the ARB1 gene, and the size of 

the latter gene was similar to the paralogous one in the former Region C. In 

addition to search of-interest Region C genes (FSY1 and ATO3), the genome 

assemblies were screened for the remaining Region C genes. Little subregions were 

found in strains NRRL Y-17058 and CBS 6143 (Figure 2.4), where there was a 

duplicated ATO3 gene which presented a substantial number of changes (see ATO3 

tree). This stretch of genes was composed of DSF1, HXT13, ATO3, GAL10, SOR1 and 

FOX2. It was frequently observed that the subtelomeres in these Region C genes 

were enriched and were quite propagated among the T. microellipsoides strains. 

Afterwards the T.microellipsoides Illumina reads were mapped against the S. 

cerevisiae EC1118 Region C as described in the Methodology (Figure 2.3). A similar 

coverage distribution in the NRRL Y-17058, CBS 6143 and CBS 6641 strains was 
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observed on the mapping profiles. For CLIB 830T, one different profile was 

obtained with a read enrichment in the coverage in the telomere region, which was 

probably due to the Y’-elements reads. The coverage obtained for strain CBS 6762 

was irregular with some large and narrow picks, which suggests that no Region C 

and core region next to it were present, which was as expected when blast 

searches were performed.  

A second FSY1 sequence in T. microellipsoides CLIB 830T was discovered 

(similar to S. eubayanus and its derived hybrids), but the genomic context of this 

gene copy was unknown until the genome sequencing of all the available strains 

was done. All these subtelomeric regions were manually annotated (as mentioned 

before) and the result is shown in the Supplemental Figure 2. The copy that we 

named FSY1B1 was found in T. microellipsoides CLIB 830T, NRRL Y-17058, CBS 6143 

and CBS 6641. The second paralogous copy was present in the genomes of NRRL Y-

17058, CBS 6143 and CBS 6762. In the first two strains, FSY1B1 and FSY1B2 lay in 

homologous regions, a result that corroborates the hypothesis stated here that 

these two strains arose from ancestral hybridisation. In CBS 6762, there was only 

one FSY1 gene similar to the FSY1B2 copy, while CBS 6641 and CLIB 830T presented 

two FSY1 genes: one that was nearly identical to Region C and a second gene that 

was a copy of FSY1B1 (see the FSY1 phylogeny).  
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The FSY1 paralogous copies were searched before inside the T. 

microellipsoides genome assemblies, by a Southern blot hybridization approach 

(Figure 2.2) to locate the chromosomic position of each FSY1 duplicated gene. In 

this way, two oligonucleotide probes were designed (see Methodology) and their 

specificity was checked by Sanger sequencing. Both FSY1A and FSY1B1/FSY1B2, 

were detected in different chromosomes, which supported the idea that they were 

paralogous copies, but not gene alleles. The origin of these two copies was 

suspected when the nucleotide divergence between them was calculated. These 

results were after confirmed by the genome sequencing of all the T. 

microellipsoides strains. However, the chromosomes hybridisation revealed a 

secondary result: new copies of the FSY1 gene were interspersed among the 

genome of some T. microellipsoides strains. Thus, the FSY1A copy was detected in 

two different chromosomes of the CLIB 830T strain, but no evidence for this second 

copy was obtained with the Illumina assemblies. Moreover, the absence of the 

FSY1A copy in CBS 6762 was first detected by this approach. Both the FSY1B copies 

found, FSY1B1/FSY1B2, were first detected by genome sequencing and later by the 

Southern blot hybridisation by lowering stringency conditions. The large number of 

FSY1 genes and other Region C genes (also detected by the Southern blot 

hybridization, results not shown) reinforced the notion that this non-

Saccharomyces species would be responsible for spreading out all these genes to 

the Saccharomyces species. 
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Figure 2.2. The FSY1 gene Southern Blot hybridization on the T. microellipsoides 

strains. Upper panel: a PFGE gel containing karyotypes from Saccharomyces and non-

Saccharomyces species. 1: S. cerevisiae S288c, 2: S. cerevisiae EC1118; 3: S. uvarum 

BMV58, 4: T. microellipsoides CLIB 830T, 5: T. microellipsoides NRRL Y-17058, 6: T. 

microellipsoides CBS 6762, 7: T. microellipsoides CBS 6641, 8: T. microellipsoides CBS 

6143 and 9: T. delbrueckii CECT 10039. The S288c and EC1118 S. cerevisiae strains are 

included as the negative and positive control species carrying the FSY1 gene. The T. 

delbrueckii species is included to see probe specificity. Bottom panel: from the left to 

the right, we show the detection of FSY1A and FSY1B/FSY1B2 paralogous genes. The 

orange points indicate the chromosome bands in which the FSY1A copy is detected. 

The purple points denote the bands where FSY1B and FSY1B2 are found. 
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It was noted that the T. microellipsoides regions harboring the FSY1B1 or 

FSY1B2 copies presented a conserved synteny with T. delbrueckii and Z. rouxii along 

the core region. Suddenly however, the synteny was lost in the subtelomeric 

region, and FSY1 was the last syntenic gene included, but the first included in the 

subtelomeric part (based on the definition by Yue et al. 2017 of the core and 

subtelomeric genome zones). From the FSY1B1/FSY1B2 genes towards the 

telomeres, gene composition was extremely variable between species. The same 

degree of synteny conservation was observed for a S. uvarum strain, which was 

took as an example. In this species, the FSY1 gene was found in a different 

chromosome, which thus broke the observed synteny in the non-Saccharomyces 

species. In view of these results, it was proposed here that the fructose symporter 

gene could be lost in chromosome VIII of the S. eubayanus species cluster and it 

could be later recovered by two open possibilities. Firstly, if this gene was present 

in the WGD ancestor and was then lost in all the post-WGD genera except in the 

Saccharomyces genus, then it could jump from chromosome VIII to chromosome 

IV. Alternatively, it would be acquired by introgression from a T. microellipsoides 

strain in the S. eubayanus ancestor.  

Inside the T. microellipsoides strains, subtelomeric gene diversity started 

after three contiguous genes to FSY1B1/FSY1B2: GTT1, SAM4 and SAM3. It is note 

worthy that additional copies of Region C were found with in these gene variable 

extremes. In the FSY1B1-carrying region, an extra copy of DSF1 was located as the 

last assembled gene, while we annotated a similar PUT3 copy from a bacterial 

origin gene in the FSY1B2 containing scaffold, specifically a probable 

amidohydrolase from Acinetobacter baumanni. 
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As previously evidenced in the ATO3 phylogeny, every T. microellipsoides 

isolate presented at least one duplicated gene of that found in Region C, which was 

named “ATO3 RC” in the corresponding phylogeny. The nucleotide similarity 

between paralogous genes was high, so it was suggested here that the duplication 

event of these hypothetical ORFs could have recently arosen in time. The degree of 

similarity can be seen in the tree for the CLIB 830T and CBS 6641 strains.  
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Figure 2.3. The coverage profiles that result from mapping the T. microellipsoides 

reads. Region C from the EC1118 strain (65kb) was employed to map from the 

sequencing reads. The X-axis presents the nucleotide positions of the sequence from the 

ARB1 gene to the telomere. The Y-axis presents the coverage reads that differ in each 

strain because of sequencing quality. 1: CBS 6143, 2: CBS 6641, 3: NRRL Y-17058, 4: CBS 

6762 and 5: CLIB 830T. 

4 

5 

2 

3 

1 



Chapter 2: Results 
 

129 
 

  

Figure 2.4. The reduced Region C found in some T. microellipsoides strains. Strains 

NRRL Y-17058 (upper panel) and CBS 6143 (bottom panel) each presented a little 

region composed of genes before being found in a central part of Region C. From left to 

right, these genes are: DSF1, HXT13, ATO3, GAL10, SOR1 and FOX2. Numbers refer to 

the genomic position of the assembled scaffolds. The  ORFs annotated over number 

positions are in the 5’ to 3’ sense (Watson strand), while the ORFs below the numbers 

are in 3’ to 5’ (Crick strand). Screenshots are captured from the annotations performed 

in the Artemis software. 
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2.2.3 Phylogeny of 1,844 Torulaspora microellipsoides genes 
 

The results obtained first by the FSY1 phylogeny reconstruction suggested 

that two hybrid species probably existed inside the T. microellipsoides species and 

their likely parental species were deduced from the same analysis. To support this 

hypothesis, all the possible numbers of annotated genes were collected after  

genome sequencing to perform a new phylogeny for the species. The Yeast 

Genome Annotation Pipeline for genome annotation (YGAP) was first employed, as 

described in the Methodology. Once genomes were annotated, it was filtered 

1,844 genes that were concatenated to reconstruct the T. microellipsoides 

phylogeny. This number corresponds to the annotated ORFs with no N ambiguities 

(any base) in the nucleotide sequence and with no sequencing errors. For the 

predicted hybrid species, subgenomes A and B were obtained by mapping their 

reads against their parental species inferred from the FSY1 phylogeny. 

The resulting phylogeny (Figure 2.5) shows two clearly distinct groups with a 

similar branch length from their origin (their common ancestor). In the upper part 

of the tree a group is located that includes the CBS 6762 and NRRLY-17058/CBS 

6143 B sequences. A second monophyletic group is composed of the CLIB 830T 

strain and the NRRLY-17058/CBS 6143 A sequences that emerge from the CBS 6641 

strain. Bootstrap values are 100 for each node, which indicates the strong support 

of this reconstruction.  

Therefore, with this analysis it was confirmed what it was deduced before 

for the gene specific trees: two new non-Saccharomyces hybrid species (NRRLY-

17058 and CBS 6143) and, probably, their corresponding parental species (CBS 

6641 and CBS 6762) were definitely found. One of them, CBS 6762, clearly diverged 

from the other T. microellipsoides strains and clustered only with the assumed 
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hybrid subgenomes. From this unexpectedly obtained relationship, it was 

hypothesised that CBS 6762 could be a different undescribed species 

The conclusions about the discovery of the new and the two hybrid species 

obtained were based on the phylogenetic species definition. Sporulation, 

conjugation and spore viability assays would be necessary to confirm the existence 

of different species based on their biological definition. In this way, T. 

microellipsoides under the study strains were sporulated, but despite our ample lab 

experience, the small spore size (between 2-5μM) hampered their isolation. 

Nevertheless, strains were grown in sporulation media (see the Methodology) and 

then were placed under an optical microscopy to see vegetative cells. Photographs 

are shown in Figure 2.6. Ascospore formation was observed for all the strains and 

the asci contained between 1 to 4 spores each. Many images where independent 

cells conjugated were captured except for the CBS 6143 strain. Therefore, it was 

detected that at least two different cells can carry out conjugation inside the same 

strain. So outcrossing, which is the conjugation between haploid cells from 

different species, is likely to occur.   
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Figure 2.5. The neighbour-joining phylogeny depicting the relationships between T. 

microellipsoides species. We included an outgroup species from the same genus, T. 

delbrueckii. Strains NRRL Y-17058 and CBS 6143 are clustered in two monophyletic 

groups because their genome sequence was split into two subgenomes: A and B. 

Support values are presented at each node, and correspond to 100 bootstrap 

replicates. The scale is given in nucleotide substitutions per site. 
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The evolutionary divergence between the T. microellipsoides strains and 

between each inferred subgenome was estimated from the 1,844 concatenated 

gene sequences (Table 1). Lower nucleotide change values corresponded to the 

comparisons made between the same subgenomes of each hybrid species. The 

hybrid subgenomes named A presented a percentage of nucleotide divergence of 

one change in every 100000 nucleotides between them and less divergence was 

seen between the hybrid subgenomes named B (nearly one change in every 

1000000 nucleotides). These minimal values suggest a common origin for both 

hybrids, a result that complements the topology shown in the phylogeny (Table 1). 

Type strain CLIB 830T differed from the CBS 6641 strain and from hybrids sequence 

A by 0.5% while fewer nucleotide changes were observed between CBS 6641 and 

this last hybrid sequences, which was over 0.25%, which meant half one part of the 

CLIB 830T distance. By taking these values, it was confirmed what was before 

observed in FSY1 and the T. microellipsoides phylogeny: probably CBS 6641, but not 

CLIB 830T, could be one of the parental strains, and could contribute with the part 

of the genome named A. Fewer changes ocurred between the CBS 6762 strain and 

the hybrid subgenomes named B than in CLIB 830T, but more took place than in 

CBS 6641 (0.40%), when the comparison of the A-subgenomewas observed. By 

taking these values together with the phylogenetic position observed in the species 

tree, it was concluded that the parental origin of the part B subgenome could be 

attributed to strain CBS 6762 or to a strain close to it.  
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Table 2.1. The measured divergence between the T. microellipsoides genomes 

conducted in Mega v6 (Tamura et al. 2013). The numbers in the box correspond to the 

number of base differences per sequence from among the shown strains. The analysis 

included eight sequences and all the codon positions. All the ambiguous positions were 

removed for each sequence pair. The final dataset had 2785314 positions. Groups of 

sequences were differentiated by colors to better interpret the results (Blue: 

subgenome A and CBS 6641, Purple: subgenome B and CBS 6762; Pink: Outgroup 

species). The T. delbrueckii species is included as the outgroup sequence. 
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  A B 

D C 

Figure 2.6. Photographs obtained by optical microscopy showing T. microellipsoides 

cells after growing for 15 days on YM restrictive culture media. Panel A (NRRL Y-

17058): Two individual cells are conjugating and a “conjugation bridge” between them 

is observed (red arrow). Cells present single spherical ascospores. Panel B (CLIB 830T): 

conjugation events between independent cells and probable asci with a tapered 

protuberance (red arrow) emerging from asci. Panel C (CBS 6641): conjugation 

between two cells with one spherical ascospore each. Panel D (CBS 6762): different 

conjugation events. The spores observed in these strains were small in size and only 

one spore is usually observed. Panel E (CBS 6143): asci showing different spore number 

(from 1 to 4). No conjugation between independent cells was captured. Bars indicate 5 

µM. 



Chapter 2:Results 
 
 

136 
 

2.2.4 Phylogeny of the Torulaspora genus 
 

The type strain sequences of the new Torulaspora species described in the 

bibliography were employed to resolve the genus phylogeny, including our T. 

microellipsoides sequences (Figure 2.7). These species were: T. maleeae, T.globosa, 

T. indica, T. delbrueckii, T. franciscae, T. pretoriensis, T. quercuum and the T. 

microellipsoides CLIB 830T strain. In addition, for the analysis those T. 

microellipsoides strains that seemed to be the parental species of the previously 

identified hybrids were included.  

The aim of this analysis was to support the previously obtained results about 

the phylogenetic relationships among T. microellipsoides species. The same 

phylogenetic reconstruction method as in Saluja et al. 2012 was employed to 

compare the resultant phylogenies. Hence a neighbour-joining tree was 

reconstructed with the same nucleotide sequences used there. Then a multi gene 

alignment of the 26S rDNA gene and the 18S/ITS/5.8S rDNA cluster was performed. 

From the resulting tree, interesting aspects were observed concerning the 

Torulaspora relationships. For the non-T. microellipsoides species, the branch 

length distance between T. globose and T. indica was not significatively long and 

this nucleotide distance was, over 3-7% on average, as assigned in Saluja et al. 

2012. This short distance, together with the absence of spore-spore conjugation 

assays, led to some doubts about these two sequences belonging to two different 

species. A similar situation probably occurs with T. franciscae and T. pretoriensis, 

whose rDNA nucleotide sequences are highly related.  
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When the topology shown for the T. microellipsoides species was inspected, 

a recent common ancestor for strains CBS 6641 and CLIB 830T could be suggested 

from the observed phylogeny, exactly as expected for the results of the FSY1 and 

ATO3 phylogenies. Strain CBS 6762 was easily differentiated from these closely 

related strains by presenting a distant phylogenetic position from them, but 

similarly to that found between T. globose and T. indica. However, T. 

microellipsoides and the CBS 6762 strain formed a monophyletic group with a 

common ancestor species that diverged more quickly compared to the other 

species.  

 

  

Figure 2.7. The Torulaspora genus phylogeny. The neighbour-joining analysis of a 

complete rDNA region that comprised 26S rDNA and the 18S/ITS/5.8S gene and 

intergenic conserved sequences. Bootstrap values are represented in each node over 

100 replicas. The tree is rooted in the Z. rouxii species that belongs to the Torulaspora 

closest genus. The scale is given in nucleotide substitutions per site. 
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Despite a probable new species (CBS 6762) being inferred from the genus 

tree, these analyses were repeated by including the nucleotide sequences of all the 

strains classified as Torulaspora sp. and isolated to date to see if we could find any 

close relationships with the former strain and these new sequences. Strain 

sequences from the genbank database were retrieved, classified either in one of 

the novel Torulaspora species or solely included in the genus (as Torulaspora sp.). 

The 26S rDNA phylogeny (Figure 2.8) was obtained separately from that of 

18S/ITS/5.8S rDNA (Figure 2.9) because some strains presented only one of the 

rDNA sequences. 

The 26S sequences for the five strains identified before as T. microellispoides 

strains were obtained by Sanger sequencing because of the difficulty of assembling 

the rDNA repeated regions. The 26S rDNA genes from CBS 6762 and NRRL Y-17058 

were identical, but the same gene in the other assumed hybrid species was 

identical to CBS 6641. Thus, each hybrid strain inherited one of the rDNA tandem 

repetitions from one different parental strain. The Torulaspora sp. strains included 

in this reconstruction were 13 from a total of 72, which were quite distanced 

(looking at their branch length) from the sequences in which the species level was 

determined. This suggests that some could be addressed as a new species.  

Bootstrap values were generally low, perhaps because these long-branched 

strains were interspersed between the others. Those supporting values were 

frequently located at the ancestral nodes of these unclassified strains. The 

relationships of T. pretoriensis, T. franciscae and T delbrueckii were slightly altered 

compared to the phylogeny obtained for the Torulaspora genus (Figure 2.5). The 

phylogenetic group formed between T. globosa/T. indica and T. maleeae was 

maintained as with T. quercuum and T. microellipsoides. 
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The results obtained for the tree based on 18S/ITS/5.8S rDNA showed that 

the relationships between species were maintained with respect to the tree 

obtained for the Torulaspora genus. Six Torulaspora sp. strains were included in the 

analysis and of them, three showed a long branch distance compared to their 

closest species. One of them, Torulaspora sp. SG5S08, diverged first from the T. 

pretoriensis species group and the other two, Torulaspora sp. EN11S09 and 

Torulaspora sp. EN22S16, presented a long distance from the T. maleeae group. All 

three strains were also included in the 26S rDNA tree, but phylogenetic 

relationships were shared only by Torulaspora sp. EN11S09 and Torulaspora sp. 

EN22S16. Strain Torulaspora sp. SG5S08 was related to T. quercum species in the 

26S rDNA reconstruction instead of being related to T. pretoriensis. 

The 18S/ITS/5.8S rDNA phylogeny was perfomed only with the CLIB 830T, 

CBS 6641 and CBS 6762 T. microellispoides nucleotide sequences obtained from the 

CBS strains databases. The reason for this lies in the fact that duplicated genomes 

of the probable hybrid species hindered the correct assembly of this repeated 

regions. The topology resolved by the group was the expected one, with related 

CLIB 830T and CBS 6641 strains, while strain CBS 6762 remained at a distant 

position.  
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Figure 2.8. Neighbour-joining phylogeny employing the 26S rDNA nucleotide sequences found 

to belong to the Torulaspora genus. Sequences were retrieved from genbank, except for the T. 

microellipsoides sequences obtained by Sanger sequencing. Bootstrap values are represented 

by numbers in each node over 100 replicas. The scale is given in nucleotide substitutions per 

site. 
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Figure 2.9. Neighbour-joining phylogeny obtained by using the 18S/ITS/5.8S rDNA 

sequences of them all as Torulaspora classified strains. Sequences were extracted 

from genbank, except for the T. microellipsoides sequences obtained from the CBS 

yeast culture collection. Bootstrap values are represented by numbers in each node 

over 100 replicas. The scale is given in nucleotide substitutions per site. 
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2.2.5 Pseudo-chromosomes representation of the T. microellipsoides hybrids 
 

Even though the first genome of T. microellipsoides was formerly sequenced 

(that from the CLIB 830T strain), no annotation for it existed. So no available 

reference genome existed against which mappped our reads extracted by the 

genome sequencing of the remaining isolates. A different chromosome pattern for 

each T. microellipsoides strain by the karyotyping analysis was also observed (see 

the Methodology). So, it was impossible to assign the scaffolds obtained from the 

assemblies at any T. microellipsoides chromosome. (Figure 2.9).  

As previously mentioned, an annotation was carried out by YGAP, and the 

CLIB 830T, CBS 6641 and CBS 6762 genomes were annotated by this tool. Then, it 

was took the sequence annotations from the CBS 6641 and CBS 6762 strains to 

map the NRRLY-17058 and CBS 6143 reads against, as we inferred that they were 

probably parental strains from the deduced hybrid species. From mapping, we 

constructed eight in silico pseudo-chromosomes (see the Methodology) for the 

hybrid species to observe the genomes retained from each parental strain and to 

infer their origin.  

The coverage observed after mapping the reads against both inferred 

parental strains (CBS 6641 and CBS 6762) was frequently constant along the 

artificial chromosomes, but in some cases it was seen increasing or decreasing 

coverage (Figure 2.9). Both the NRRL Y-17058 and CBS 6143 strains showed a 

similar mapping coverage on the 2, 5, 6 and 8 pseudo-chromosomes. This 

equivalence could be interpreted as both hybrid species having a common origin, 

and this aspect could also be deduced from the T. microellipsoides phylogeny 

contructed before.  
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Some chromosomic duplications or delections were observed for the other 

pseudo-chromosomes, which means that these hybrid strains diverged from each 

other; e.g. for the reads mapped against ancestral chromosome 1, it was observed 

an equivalent distribution of the reads between both parental sequences for the 

CBS 6143 strains. However for strains NRRL Y-17058, a deletion of the reads 

mapped to CBS 6641 overlapped a duplication of the number of reads mapped 

against the CBS 6762 strain. Hence, a chromosomic fragment belonging to the CBS 

6641 parental strain was probably replaced with its homologous region of CBS 

6762 during the hybridisation event. The inverse situation was found for the other 

altered-in-coverage pseudo-chromosomes, where the reads mapping the CBS 6641 

sequences were duplicated and the reads mapping the CBS 6762 strain showed an 

overlapping deletion. A similar result was obtained for pseudo-chromosome 4 for 

the CBS 6143 and NRRL Y-17058 strain at the same chromosomic position. 

Moreover, strain NRRL Y-17058 presented two duplicated regions that came from 

the CBS 6641 strain in pseudo-chromosomes 3 and 7.  
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Figure 2.10. The pseudo-chromosomes reconstruction of the T. microellipsoides 

hybrid species. From the 26S rDNA T. microellipsoides phylogeny, we concluded that 

the probable parental species that gave way to hybrid strains NRRL Y-17058 and CBS 

6143 were CBS 6641 (in blue) and CBS 6762 (depicted in red). Mapping was done 

against a set of eight artificial chromosomes. A 30% coverage for CBS 6143 and one of 

250% in NRRL Y-17058 were established as the base coverage, and any changes over or 

below these values were taken as duplications or deletions, respectively. 
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2.2.6 Karyotyping composition of the T. microellipsoides strains 
 

Additional analyses to the genome sequencing about, genome size 

composition were attached to corroborate our hypothesis for hybrid genomes. The 

chromosome composition of the T. microellipsoides strains was obtained from a 

PFGE (Pulse Field Gel Electrophoresis) analysis and the exactly size of bands was 

quantified by using Bionumerics v7.6 image software (http://www.applied-

maths.com/news/bionumerics-version-76-released) including two S. cerevisiae 

reference strains: S288c and EC1118 (see the Methodology for details). The output 

measures that this software empoys are shown in Supplemental Figure 5. From two 

sets of samples, including these seven strains each, the sizes of the detected bands 

were obtained. The results were manually inspected to verify if the programme 

ignored any band that was observed in other images. As a good resolution of some 

bands frequently depended on gel electrophoresis, assays were successively 

repeated until we thought that they had all been solved. An example of a PFGE 

image was provided by indicating the bands (the green and red points in the Figure 

2.10) that were found by looking at different images. As previously mentioned, 

employing this software to quantify bands, some were not detected (red dot in the 

bands in Figure 10). 

Nine chromosome bands were counted for the CLIB 803T, CBS 6641 and CBS 

6762 strains. The phylogenetic analysis suggested a common origin for the first two 

strains, but the band sizes between them did not share the same sizes at all. CBS 

6762 was expected to be a distinct species (as deduced from the phylogenies 

shown before). However, its chromosome pattern was quite similar to that seen for 

strain CBS 6641. 

 

http://www.applied-maths.com/news/bionumerics-version-76-released
http://www.applied-maths.com/news/bionumerics-version-76-released
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In NRRL Y-17058 and CBS 6143, 14 and 13 bands were respectively resolved 

from the images. For these two strains, the number of chromosomes increased 

compared to the other T. microellipsoides strains. According to the hypothesis 

stated here it was expected that these strains to probably be two hybrid species 

between CBS 6641 and CBS 6762. Perhaps some duplicated chromosomes could 

have similar sizes after hybridisation, but it was not possible to differentiate if 

some bands corresponded to one chromosome or to a pair of chromosomes. Some 

other chromosomes likely underwent recombinations or insertions/deletions that 

modified their initial size, as it was observed in the pseudo-chromosomes 

representation. The banding pattern of both strains showed differences so, in spite 

of a common origin being suggested by the phylogenetic analysis for these 

probable hybrid species, they diverged from each other to accumulate some of 

these recombinations. This aspect was observed in the karyotype analysis and in 

the pseudo-chromosome reads mapping. 
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    1         2        3        4         5        6         7 

 

1: S. cerevisiae S288c 

2: S. cerevisiae EC1118 

3: T. microellipsoides CLIB 830T 

4: T. microellipsoides NRRL Y-17058 

5: T. microellipsoides CBS 6143 

6: T. microellipsoides CBS 6641 

7: T. microellipsoides CBS 6762 

 

Figure 2.11. The karyotype pattern of the T. microellipsoides species. Two S. cerevisiae 

species (1 and 2) were employed to obtain a band size reference. The green circles 

correspond to the chromosomes detected with the Bionumerics v7.6 image software. 

The red circles show the bands that the programme was unable to detect, but we were 

able to differentiate after several PFGE replicas. 
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2.2.7 Measured ploidy by flow cytometry  
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The genome size of the T. microellipsoides strains was calculated by a flow 

citometry assay. A total of 1x 107 cells were harvested from  the unsynchronised 

YPD cultures grown O/N. Under these conditions, the fluorescence concerning the 

G0/G1 celular cycle phase was more frequently detected than that from the G2/M 

phase, which allowed us to determine the real DNA content. Samples were 

ethanol-fixed and stained with intercalating fluorescent molecule SITOX Green. As 

the of-reference ploidy T. microellipsoides strains were unavailable, we compared 

the fluorescence of our five species with the S. cerevisiae S288c and FY1679 

reference genomes. A similar approach has been employed by Solieri et al. 2008, 

who worked with Z. rouxii strains.  

  

Figure 2.12. The cytometry profiles of the T. microellipsoides strains measured by 

flow cytometry. The fluorescence emitted by an intercalating dye was determined by 

the picks that appeared on the axis of the count of events (y) and FITC-A (x). We 

denoted the G0/G1 cell cycle phase as “n pico”, and the G2/M cell cycle phase as “2n 

pico” or “4n pico”. Box 1 contains the fluorescence spectra of the perfect haploid strain 

S. cerevisiae S288c and Box 2 contains the fluorescence spectra of the perfect diploid 

strain S. cerevisiae FY167. The other boxes contain the fluorescence signal of each T. 

microellipsoides strain. Unsynchronised cell cultures were prepared for the analysis and 

three technical replicates were included. Picks were sometimes reviewed manually to 

make a correct association with the cell cycle phase. The fluorescence median values 

were taken to calculate the genome content from three independent replicas. 
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The profiles obtained for each strain varied from one another (Figure 2.11). 

So in some cases, it was necessary to manually define the amplitude of the 

released picks; e.g. while the profiles of the S. cerevisiae reference strains and the 

CBS 6762, NRRL Y-17058 and CBS 6143 T. microellipsoides strains showed well-

defined picks, CLIB 830T and CBS 6641 presented a more continuous fluorescence 

profile. Those differences were attributed to the limited growth of these species 

compared to those with defined profiles. The cultures grown O/N from one 

isolated colony resulted in a final optical density that was too low for CLIB 830T and 

CBS 6641 compared to the remaining strains. Although the growth rate was not 

assayed, the independent cultures of this species group always gave rise to 

deficient growth for those two strains. From the flow cytometry profiles, it was 

observed that CLIB 830T showed three overlapped picks, which could be defined by 

merely looking at the technical replicas. The haploid content was assigned to the 

less emitting pick and the diploid content to that where fluorescence was 

duplicated versus the former. The pick presented in the middle could involve the 

cells in the S phase of the cell cycle, the DNA duplication phase. This would suggest 

that this process could slow down, at least under our growing conditions. 

However, strain CBS 6641 presented one clear pick, followed by a 

discontinuous area of fluorescence. This behavior could be attributed to a probable 

fast shift to the haploid state of the cell with an non-detectable G2/M phase and a 

long-time prevalence in the G0/G1 phase (which agrees with the deficient growth 

seen in the YPD-rich media at 300C).  
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The fluorescence value of the S288c G0/G1 phase, and those of the FY1679 

G0/G1 and G2/M phases, were included to represent a correlation versus genome 

size. Maximum fitting was obtained (R=1) and strain DNA content was solved from 

the resulting standard curve equation. All these data are shown in Figure 2.13. For 

the T. microellipsoides CLIB 830T, CBS 6641 and CBS 6762 strains, the average 

fluorescence intensity values ranged from 8.98 to 10.90 Mb, while DNA amounts in 

strains NRRL Y-17058 and CBS 6143 doubled these values with 21.71 and 22.79 Mb 

respectively. According to the DNA indices explained in Rodrigues et al. 2003, it was 

calculated two DNA indices corresponding to the relative DNA content of a 

problem strain compared to a reference. When S288c was used as a reference, it 

was observed less DNA content for strains CLIB 830T, CBS 6641 and CBS 6762 than 

for the reference (from 0.72-fold to 0.85-fold), while strains NRRL Y-17058 and CBS 

6143 presented an increased amount of DNA (about 1.6-fold). Compared to the 

CLIB 830T strain, the same content was observed for CBS 6641 and CBS 6762, with 

the latter strain below them, but doubled for strains NRRL Y-17058 and CBS 6143.  

   



Chapter 2:Results 
 
 

152 
 

 

Figure 2.13. The median fluorescence Intensity correlation with genome size. Upper 

panel: the correlation between the mean of the median fluorescence intensity (MFI) 

expressed in arbitrary units (grey numbers) and genome size in Megabases (red 

numbers) is shown for the values corresponding to the haploid, diploid and tetraploid 

contents of reference strains S288c and FY1679. Bottom panel:  a, b the median 

fluorescence values (MFI) of the perfect haploid and diploid strains, S. cerevisiae S288c 

and FY167. The means of the median fluorescence values of three independent replicas 

are indicated for both the G0/G1 and G2/M cell cycle stages. The values in Mb for each 

strain with a unknown genome DNA content were obtained using the equation in the 

upper panel. Standard deviations (SD) are provided for the newly obtained data. 
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2.3. Methodology: 
 

2.3.1 The yeast strains used in this chapter 
 

The T. microellipsoides strains for genome sequencing, flow cytometry, 

sporulation and the additional analysis were requested from the CBS 

(Centraalbureau voor Schimmeltcultures), the NRRL (Agricultural Research Service 

Culture Collection) or the CLIB (Collection de Levures d’Intérêt Biotechnologique) 

yeast strain collections. Strain name, origin and source of isolation are described in 

Strains Table 2. The Torulaspora strains employed for the phylogenetic analysis of 

the rDNA genes were taken from genbank 

(https://www.ncbi.nlm.nih.gov/genbank/?). Accession number, origin and source 

of isolation are indicated in Strains Tables 4 and 5. 

The T.microellipsoides strain cultures were routinely grown in YPD-rich 

media (composition as described in Chapter 1, Methodology). The optimal growing 

temperature for each strain was not exactly determined, but we observed different 

growth rates at 300C. We detected that growing increased at specific temperatures 

for each strain. So, the number of cells was higher for CLIB 830T at 220C, for NRRLY-

17058, CBS 6143 and CBS 6762 at 250C, and for CBS 6641 at 320C. The number of 

cells/mL grown until the exponential phase (O.D.=0.5) at these tested 

temperatures were as follows for each strain: CLIB830T: 3.5x 10 6 cells/mL , NRRL-Y-

17058: 4x 10 6 cells/mL ; CBS 6143; 4.3x 10 6 cells/mL; CBS 6641: 6x 10 6 cells/mL 

and CBS 6762: 3.7x 10 6 cells/mL.  

https://www.ncbi.nlm.nih.gov/genbank/?
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To observe ascii and ascospora formation, we grew T. microellipsoides cells 

in six different restrictive sporulation media: YM (yeast extract/malt extract): 1% 

glucose, 0.3% yeast extract, 0.3% malt extract , 0.5% peptone and 2% agar, 

Gorodkowa: 0.1% glucose, 0.5% sodium Chloride, 1% peptone and 2% agar, Fowell 

(acetate-agar I): 0.5% sodium acetate (tri-hidrate) and 2% agar,pH at 6.5-7, McClary 

(acetate-agar II) 0.1% glucose, 0.18% potassium chloride, 0.82% sodium acetate, 

0.25% yeast extract and 2% agar, Corn Meal Agar: 4.2% corn flour and 2% agar, 

Malt extract-agar: 5% malt extract and 2% agar and acetate-agar IV: 1% potassium 

acetate, 0.125% yeast extract, 0.1% glucose and 2% agar. Ascospores and 

conjugation were observed after 2 weeks on the Corn Meal Agar media and the YM 

media, which was the preferred to sporulate cells. 

 

2.3.2 Genome sequencing of the T. microellipsoides species 

 
The assembly of the Torulaspora microellipsoides type strain CLIB830T 

genome was already available in Marsit S. et al., 2013. The genomic DNA from the 

T. microellipsoides NRRLY-17058 strain was prepared with these Illumina NextSeq 

sequencing libreries: Mate Pair Library Prep Kit v2 and True Seq DNA PCR-free 

sample preparation kit. The sequencing kit that we employed was the NextSeq 

500/550 High Output Kit v2 (500 cycles). The remaining T. microellipsoides strains, 

CBS 6143, CBS 6641 and CBS 6762, were prepared from the same commercial 

libraries and sequenced by the MiSeq Illumina approach with the MiSeq Reagent kit 

v2 (500 cycles) and the MiSeq Reagent kit v3 (600 cycles).  
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De novo assemblies using the Illumina reads were built with different tools. 

To determine the proper k-mer parameter, the Velvet v1.1.06 software (Zerbino 

and Birney, 2008) was employed. A 95-nucleotide k-mer was the best obtained for 

the reads quality. Next, the definitive assembly and scaffolding were obtained with 

Sopra v1.4.6 (Dayarian, Michael and Sengupta 2010). SSPACE v2.0 was used 

(Boetzer et al., 2011) for scaffold enlarging. Finally, the gaps between scaffolds 

were filled by GapFiller v1.11 (Boetzer and Pirovano, 2012). 

The assembly output file describing the total number of scaffolds, N50 and 

the estimated genome size parameter is shown in Supplemental Table 1. The 

annotation of genomes was carried out using the Yeast Genome Annotation 

Pipeline, YGAP, on the website http://wolfe.ucd.ie/annotation/ (Proux-Wéra et al., 

2012). To annotate the hybrid genomes, the assemblies were processed as from 

the post-WGD strains to allow the programme to assign two sequences for an 

ancestral gene instead of one sequence (two pillars). The number of sequences 

annotated in YGOB (http://ygob.ucd.ie/), with a reference in the ancestral genome, 

were: 9167 for CBS 6143, 9046 for NRRL Y-17058, 4613 for CBS 6641 and 4620 for 

CBS 6762.  

  

http://wolfe.ucd.ie/annotation/
http://ygob.ucd.ie/
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The subtelomeric regions of interest were manually annotated because the 

genome references were unavailable in YGOB or in any other resource. We 

employed the Artemis annotation tool (Carver T. et al., 2012) to find all the 

unannotated ORFs, and then trimmed these frames to Methionine as the start 

amino acid and to finally perform blast searches with the blastx searching tool 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearc

h&LINK_LOC=blasthome). The coverage profiles were obtained from the mapping 

of the T. microellipsoides reads by employing the breseq pipeline (Deatherage and 

Barrick 2014). 

 
2.3.3 Representation of the hybrids’ genome structure  
 

As a set of the reference T. microellipsoides chromosomes was not available, 

a pseudo-chromosome reconstruction for the inferred hybrid species was obtained 

by taking the annotation of the predicted parental strains which was subdivided 

into eight ancestral chromosomes (CBS 6641 and CBS 6762). The order of the 

codifying sequences in each pseudo-chromosome followed that of the ancestral 

genome in YGOB (http://ygob.ucd.ie/). Afterwards these sequences were 

concatenated to simulate eight chromosomes whose intergenic regions were 

omitted. The eight pseudo-chromosomes of each predicted parental strain were 

concatenated and the reads  from the potential hybrids (NRRLY-17058 and CBS 

6143) were mapped to those references using Bowtie2 (Langmead and Salzberg, 

2012) with the parameter defined in -local. 

  

http://ygob.ucd.ie/
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2.3.4 The T. microellipsoides and Torulaspora sp. phylogenies 

Four Torulaspora phylogenies are presented in this Chapter. For the T. 

microellipsoides species, 1,844 sequences obtained from annotations were 

employed in a multi gene alignment. Hybrid subgenomes A and B, were classified 

according to the nucleotide distance obtained from each probable parental strain 

(CBS 6641 and CBS 6762).  Then the phylogenetic analysis was performed. 

Reconstruction with the type strains of the Torulaspora species was 

performed with the 26S rDNA sequences retrieved from genbank. The 

corresponding accession numbers are listed in Strains Table 4. An increased 

number of Torulaspora sp. sequences appeared in the databases, so we took 

advantage of this and, we performed two additional reconstructions with the 26S 

and 18S/ITS/5.8S rDNA sequences retrieved from genbank and from the CBS strains 

catalogue. Each phylogeny was obtained by the neighbour-joining method of 

reconstruction to compare our results with that obtained in the publication of 

Saluja et al. 2012. Analyses were conducted with Mega v6 (Tamura et al. 2013). 
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2.3.5 Karyotype analysis and Southern blot hybridisation 
 

For the karyotyping analysis, yeasts were grown for 24 h to reach the 

stationary phase in 50 mL flasks with 10 mL of YPD media at different temperatures 

and 190 rpm. The collected cells were washed with 50 Mm EDTA, pH 8, and 

suspended in CPES buffer (40 mM citric acid, 120 mM Na2HPO4, 20 mM EDTA, 1.2 

M de Sorbitol and 5 mM DTT) with 200µg/mL lyticase. Then 1% agarose dissolved 

in CPE buffer (the same as the CPES without Sorbitol and DTT) was added to 

perform blocks that contained genomic DNA with SeaPlaque Agarose (Lonza). 

These blocks were constructed for S. cerevisiae S288c, S. cerevisiae EC1118 and all 

the T. microellipsoides strains. The agarose blocks were first incubated with CPE 

buffer for 2 h and then with 1mg/mL of Proteinase K in the Solution 3 buffer (10 

mM Tris, 0.45M EDTA and 1% lauryl sulphate, final pH=8) between 2-4 h. A 1% gel 

for the electrophoresis was prepared using SeaKem Gold Agarose (Lonza) and the 

electrophoresis buffer was 0.5% TBE. In the CHEF apparatus, gels were run under 

these conditions: 60 seconds for 12 h and 120 seconds for 14 h with an angle of 

1200 and a speed of 6V/cm.  Chromosomic DNA was stained with EtBr for 1 h. The 

banding patterns of the karyotype images were analyzed by Bionumerics v7.6 

(http://www.applied-maths.com/news/bionumerics-version-76-released). The 

detected band sizes of all the T. microellipsoides isolates were obtained by taking S. 

cerevisiae S2888c and EC1118 as the pattern references.  

  

http://www.applied-maths.com/news/bionumerics-version-76-released
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The Southern blot hybridisation was performed on the former karyotype 

gels. Probes consisted of labelled oligonucleotides that were synthetised using the 

PCR DIG Probe Synthesis Kit (Sigma-Aldrich). The oligonucleotides sequences were 

as follows: FSY1AF: 5’-GTAGCTGAACAAGAAAAGGAG-3’ and FSY1BF: 5’-

GCCGCTGAGCAAGATCAACAG-3’. A common reverse primer sequence was 

employed for PCR amplification: FSY1allR: 5’-GCRATACCACCGTARAAGCC-3’. The 

programme’s probe labelling conditions were as follows: initial denaturing at 950C 

for 2 minutes; 30 cycles comprising these steps: 1) 950C for 30s; 2) 600C for 30s; 3) 

720C for 40s, and a final extension at 720C for 7 minutes. Nylon membranes were 

treated under high-medium stringency conditions to ensure probe specificity. The 

hybridisation buffer composition was: 50% Formamide, 5X SSC, 2% commercial 

blocking solution, 0.1% N-laurylsarcosine and 0.02% SDS. One low-astringency 

wash in 2X SSC /0.1% SDS at RT and a second high-astringency wash in 0.5X 

SSC/0.1% SDS at 680C were carried out. For the supplementary washes, we used 

the DIG Wash and Block Buffer Set (Roche, Mannheim, Germany). A signal was 

revealed using Anti-Digoxigenin-AP, Fab fragments (Sigma-Aldrich) and CDP-Star 

(Sigma-Aldrich). 
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2.3.6 Flow cytometry analysis and genome size content estimation 
 

We complemented the karyotyping analysis with flow cytometry assays to 

estimate the DNA content of each T. microellipsoides strain. To this end, yeast cells 

were inoculated in 15 mL of YPD media and grown O/N until the stationary phase. 

The number of cells collected per assay was 1x107 cells/mL. These cells were 

washed and fixed O/N at 40C with 70% EtOH. After fixing, they were treated O/N 

with a 2mg/mL RNase A solution and the next day they were incubated in a 4.5µL 

and 5mg/mL HCl-Pepsin solution. For fluorescence detection purposes, 50 µL of 

cells were mixed with 1mL of SYTOX Green solution (Thermo-Fisher).  

Once we obtained the fluorescence values, we referred to the 2003 

publication of Rodrigues et al., where the  genome content estimation of Z. bailii 

strains was deduced by taking two S. cerevisiae strains as the DNA reference. 

According to these authors, a direct correlation between fluorescence and DNA 

content can be established. Two DNA indices were calculated from the median 

fluorescence intensity (MFI): the first index normalized the fluorescence values 

against the S. cerevisiae haploid MFI. The second index employed a similar ratio, 

but against the MFI of one tested genome. A correlation was found from our 

fluorescence data and we calculated both DNA indices for the T. microellipsoides 

strains. 
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2.4. Main conclusions  
 

• The genome sequencing of the T. microellipsoides strains revealed that all 

the available isolates presented a conserved Region C among their genomes, 

except strain CBS 6762, which harboured only ARB1, a 95-kb gene region, 

and the SEO1 and FOT1 genes. 

• The genomic fragments harbouring the FSY1B1/FSY1B2 genes were found by 

genome sequencing in all the T. microellipsoides strains, which were located 

in a subtelomeric region. We found a conserved synteny of these genomic 

regions with that found in Z. rouxii and T. delbrueckii  

• The former conclusions suggest that the FSY1B1/FSY1B2 genes were 

ancestral genes that gave rise to the FSY1A paralogous gene, included in 

Region C. 

• The phylogenies obtained for genes FSY1 and ATO3, showed that strains 

NRRL Y-17058 and CBS 6143 presented an increased number of copies of 

both genes. From these reconstructions, we hypothesised that these two 

species could in fact be hybrid species. 

• In these last gene reconstructions, we found out the probable parental 

species of these two inferred hybrid strains. One T. microellipsoides strain 

sequence, fromCBS 6641, was similar to two homologous sequences from 

the two hybrid strains. Another T. microellipsoides strain, CBS 6762, was 

close to the other sequences found on the hybrid genomes. 

• A 1,844 multi gene phylogeny was reconstructed by taking the genome 

annotations of the T. microellipsoides genome sequences. Hybrid genomes 

were annotated based on their deduced parental strains and the resulting 
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• phylogeny supported our conclusions for the hybrid origin of strains NRRL Y-

17058 and CBS 6143 seen in phylogenies FSY1 and ATO3. 

• From the T. microellipsoides phylogeny, we obtained a new result in addition 

to the confirmation of two hybrid species. One of the inferred parental 

strains, CBS 6762, presented a distant phylogenetic position from the T. 

microellipsoides strain, and only was closely related to one subgenome of 

the hybrid strains. So, we have probably found a new putative non- 

Saccharomyces species related to T. microellipsoides. Therefore, an 

interspecies hybribridisation event could be proposed for hybrid formation. 

• A complementary measure of the nucleotide divergence between the strains 

classified as T. microellipsoides showed a long distance for strain CBS 6762 

compared with the other T. microellipsoides, CLIB 830T and CBS 6641. 

However, a shorter distance was observed compared to one subgenome of 

both hybrid strains, which confirmed its parental origin. 

• The parental origin of the hybrid strains could not be confirmed by the 

spore-to-spore conjugation assays run between inferred parental species 

because we failed to isolate the arising spores. However, we observed 

ascospores and a conjugation between the cells from the same strain. Thus 

the conjugation between species would probably be possible to lead to 

interspecific hybridisation. 

• A posterior phylogeny with the Torulaspora genus type strains showed a 

similar position from  strain CBS 6762. Hence, we concluded that it could be 

a new closely related species to T. microellipsoides. 

• From the isolation of the new Torulaspora isolates not classified in any 

species, we performed two phylogenies for the 26S rDNA and the 

18S/ITS/5.8S rDNA regions. The resulting reconstructions gave similar results 
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to the former phylogenies, so CBS 6762 was no more related to other 

Torulaspora strains. 

• A pseudo-chromosomes representation was created for the predicted 

hybrid species by mapping their sequencing reads against the annotated 

scaffolds of the inferred parental strain. Reads were frequently shared out 

between the two parental sequences in both hybrid species for half the 

chromosome set, which suggests a common origin of both NRRL Y-17058 

and CBS 6143. However, some differential duplications and deletions were 

detected in each representation, which suggests that these species diverged 

after the hybridisation event. 

• The karyotiping analysis of the T. microellipsoides strains was firstly 

performed by Southern blot hybridisation, and revealed a different 

chromosome location of the FSY1 copies and other duplications not 

detected by genome sequencing. This analysis also showed a wide variability 

in chromosome composition between the T. microellipsoides strains, with 

differences in number and sizes. By taking the chromosome banding of the 

S. cerevisiae references, we measured the bands presented in each strain. 

These data complemented other assays to obtain the genome size for each 

one. Divergency between hybrid genomes was reflected in the different 

karyotype patterns shown for them and also complemented the pseudo-

chromosomes studies. 

• Flow cytomnetry assays helped us to determine the fold change in genome 

size between the T. microellipsoides strains compared to the S. cerevisiae 

genome references, which confirmed the 2-fold content for the hybrid 

species. The profiles for strains CLIB 830T and CBS6641 showed undefined 

picks, which we attributed to deficient growth under our culture conditions. 
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In this thesis work we paid attention to elucidate the evolutionary 

mechanism concerning the genes that could perform important functions in wine 

fermentations carried out by yeast overall hexose transport. While we undertook 

our research, novelty and unexpected findings appeared, such as the discovery of 

introgression, not previously seen, thanks to deep genome sequencing with 

approaches like PacBio, or the description of hybrid species from a non-

Saccharomyces genus, once again from genome sequencing by the Ilumina system 

in our own group. Finally, these results are becoming more important in our 

research and are the main goals of this thesis. 

Here we describe, together with the obtained results, the connection made with 

others published by researchers, our contributions and our limitations. 
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1. Inferred yeast species donors of novel gene regions to S. cerevisiae 
strains 

Our first result about this first point of the discussion came from 

collaborating with the group directed by Dr. Sylvie Dequin. The genome sequencing 

of the T. microellipsoides CLIB 830T strain confirmed what we already detected in 

our group by first the FSY1 gene reconstruction: a novel Region C (described in 

Novo et al. 2009) was found in that species, arranged with the same distribution, 

at an ending chromosome position and, finally, with as much as 99.5% similarity 

(Marsit et al. 2015). Some particularities in the CLIB 830T Region C were found: we 

observed that the first gene, ARB1, presented a bigger nucleotide sequence than 

that found in the S. cerevisiae strains and this gene was located at 80kb from the 

second gene of Region C, PUT3. 

Some years earlier, the EC1118 novel Region B, the smallest found in this 

strain (17kb), which was located at a central position of the chromosome and a 3-

fold repeat inside the genome, was attributed to a different pre-WGD species, 

Zygosaccharomyces bailli (Galeote et al. 2011). In this case, the percentage of 

similarity between homologous genes was lower than for Region C, at about 95%. 

For the last region found in the EC1118 strain, Region A, no species has been 

assigned. Thus it will probably arise quickly with future genome sequencing 

projects. 
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While the model followed to incorporate Region B was done by forming a 

circular molecule (Galeote et al. 2011), the formation of a first hybrid species to 

acquire Region C was proposed, which involved carrying out subtelomeric 

recombinations (Novo, Bigey, Beyne, Galeote, Gavory, Mallet, Cambon, J.-L. Legras, 

et al. 2009). This last hypothesis agrees with newer theories about an ancestral 

hybridisation by allopolyploidisation, which could give rise to all the species from 

WGD. Thus, some species from the ZT clade (Zygosachharomyces-Torulaspora) 

could be one of the subgenomes of this ancestral hybrid (Marcet-Houben and 

Gabaldón 2015a). 

Moreover, the fact that yeast species cohabit in natural must environments 

with S. cerevisiae is well know, and are commonly called contaminant species 

because their excess could cause wine spoilage. Fleet and Heard 1993 previosly 

mentioned which species grow in the different fermentation stages: Candida, 

Debaryomyces, Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, 

Schizosaccharomyces, Torulaspora and Zygosaccharomyces. It is common 

knownledge that non-Saccharomyces species grow on the first days of 

fermentation to then be displaced by S. cerevisiae. However, some Z. bailii and Z. 

fermentati strains are high ethanol concentration-tolerant, so they dominate on 

the last days of fermentation (Fleet 2003). The FSY1 expression of EC1118 S. 

cerevisiae 3-fold increases in 2% ethanol compared to 0.5% fructose, as seen in 

Galeote et al. 2010. Therefore, the species that harbour this gene, such as 

T.microellipsoides, could grow in the last stages of fermentation, where the 

amounts of fructose and glucose are small and ethanol concentrations are high. 

Regarding these pre-WGD species, two isolates of strains T. microellipsoides and Z. 

rouxii have been found after 8 fermentation days of White Riesling grapes from 

Arkansas (USA), which suggests that these strains could also exist in final 

fermentation stages (Moore et al. 1988). In the thesis work by Esteve-Zarzoso, T. 
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microellipsoides strains were isolated from another white grape variety of natural 

must, Palomino must. This species was isolated from the fermentations of some 

grapes harvested later than others. Therefore perhaps these grapes had a large 

amount of sugar when fermentation took place.  

This makes sense given the source of isolation known for the T. 

microellipsoides strains, as they are isolated from sugar-enriched environments: 

apple juice, lemonade, tea-beer, berries and a sandalwood tree exudate. With this 

information, we wondered if non-Saccharomyces species could play a more or less 

important role in fermentation. From the biotechnological application point of 

view, they have been found to contribute to the final aromatic composition. A 

recopilation of enzymatic reactions produced by non-Saccharomyces wine yeast is 

reviewed in Esteve-Zarzoso et al. 1998. In addition, mixed cultures with 

Saccharomyces/non-Saccharomyces have resulted in an unexpected final chemical 

composition of wines, which implies the possibility of a new wine flavour 

composition (Ciani et al. 2010). 

Over the last few years, the employment of non-Saccharomyces species in 

mixed and sequential fermentations (first innoculating the non-Saccharomyces 

species) has emerged and improves wine quality. This seems relevant for the 

production of new volatile compounds and others of secondary metabolism 

products, and also for lowering alcohol concentration in wines. To this end, T. 

delbrueckii is the mostly widely selected species as it minimises undesired effects in 

final productions, such as acidity. Sequential fermentation using this species has 

been analysed in lychee wines, where the conclusion was that it clearly contributed 

with more alcohols and esters, and also with the retention of terpenoids (Chen and 

Liu 2016). For red wine, the use of T. delbrueckii and also S.pombe sequential and 

mixed cultures with S. cerevisiae has resulted in great aromatic complexity, and 
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also in wine colour stability (Loira et al. 2015). The specific transcriptional 

responses of T. delbrueckii and S. cerevisiae in early co-cultivation stages consisted 

in recognising one another to start outcompeting (Tronchoni et al. 2017). 

Moreover, Dekkera and Brettanomyces species have already been employed in the 

fermentations of sour beers and strains of Wickerhamomyces anomalus and 

Torulaspora delbrueckii, and are now being used for brewing fermentations given 

their fruity esters production and their contribution to lower alcohol 

concentrations (Basso et al. 2016). 

Hybridisation between cohabiting species in fementative environments is 

largely known. Brewing species S. pastorianus and wine strain S. cerevisiae S6U are 

well-known examples in the yeast scientific community. A very interesting work 

about hybridisation between yeasts is that by Marinoni et al. 1999, who generate 

hybrids of Saccharomyces and non-Saccharomyces (ancient sensu lato) and 

observed the karyotype composition of the resulting hybrids. Phylogenetically close 

parental species produced a hybrid that conserved both parental genomes, while 

the more distant ones conserved only one of the subgenomes, but presented some 

traces of the other parental genome. These experiments demostrate that despite 

being rare, hybrids of distant yeast species might happen, and some genetic 

material may be transferred to each other. 

The introgression of gene regions, or horizontal gene transfer, is a well- 

reported event in the bibliography. Here we report the Region C introgression from 

two phylogenetically distant yeasts, but numerous examples of horizontal gene 

transfer to S. cerevisiae and to other yeasts can be found in the bibliography. The 

bacteria or yeasts used as the donor, and the acquisition and maintenance of these 

genes, are because they contribute with an advantage for cells. Tree topologies 

have revealed that the origin of the URA1 gene of the Saccharomycetaceae family 
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(some revised species) lies in Lactobacillales and that the BDS1 gene (which 

codifies for sulphatase) groups with α- proteobacteria. Moreover, from the 

pathway for biotin production identified in S. cerevisiae and composed of six genes, 

two have a bacterial origin (BIO3 and BIO4). It is also known that S. cerevisiae 

clinical strains present patogenic genes  from bacteria; e.g. during the genome 

sequencing of clinical strain S. cerevisiae YJM789 (Wei et al. 2007), the genes from 

pathogenic bacteria, such as E. faecalis and S. enterica, are found. Not only in S. 

cerevisiae, but also in the genome sequencing of other Saccharomycetaceae yeast, 

like Z. rouxii, S. kluyveri, K. waltii, K. thermotolerans, K. lactis and E. gossypii, the 

genes of HGT have shown a bacterial origin (Rolland et al. 2009). 

2. From T. microellipsoides to Saccharomyces genus gene introgressions. 

Although many S. cerevisiae yeast strains were checked for the presence of 

genes from the three novel regions, no other Saccharomyces species were take for 

this search. The prevalence of these genes among S. cerevisiae wine strains was 

quite clear, and can be explained by their possible advantage to grow under 

fermentation conditions. This hypothesis has already been tested in Marsit et al. 

2015, who reported improved of the oligopeptide transport for the EC1118 strain 

as it harbours the FOT genes located in Region C. 

Complete Regions B and C are found only in S. cerevisiae strains (not only 

wine strains) and in non-Saccharomyces species Z. bailli and T. microellipsoides, 

respectively. When we looked at the percentage of similarity in these blocks of 

genes between donors and acceptors, we can speculate that both transfers were 

recent events, perhaps in a common ancestor of one wine lineage and other S. 

cerevisiae lineages. Another possibility is that the acceptor species is the common 

ancestor of all the S. cerevisiae, and then some lineages lose all or part of the 

regions because of their environment specialisation.  
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Since genome sequencing of strain CLIB 830T, Region C was detected in T. 

microellispoides with a few minor modifications. An 80kb insertion of genes was 

between belonging to Region C genes ARB1 and PUT3. When performing the 

genome searching of Region C, in two of the new S. cerevisiae sequences, this 

region was more similar to that of the T. microellipsoides region than to that of the 

two S. cerevisiae strains. These findings made us wonder if the direction of the 

region transfer went from T. microellipsoides to S. cerevisiae or the other way 

round. Then we decided to perform the genome sequencing of all the existing T. 

microellipsoides strains to search for Region C. We found that all the strains from 

different origins except CBS 6762, presented the region, which suggested that the 

direction of gene transfer went from the non-Saccharomyces species to S. 

cerevisiae. 

As mentioned before, one of our first analyses was performed with the FSY1 

gene presented in Region C. This gene codifies for a fructose/H+ transport system, 

which is active at low fructose concentrations, and thus shows high-affinity for this 

sugar. It was interesting for us to know more about the existence of this gene in 

yeast species given its importance in fructose consumption during fermentation. 

We took all the available Saccharomycetaceae strains from our lab collection to 

check the presence of this gene.  

Following this approach, we were able to know which species was the donor 

of the FSY1 gene (or complete Region C). Unexpectedly, we discovered an 

additional diverging sequence in the CLIB 830T T. microellipsoides strain that 

clustered together with those of S. eubayanus, S. pastorianus and S. uvarum. We 

noticed that in nucleotide composition, this sequence (which we called FSY1B) 

differed from that of S. cerevisiae (we called it FSY1A) by 25.5% on average (74.5% 

of homology). This large difference suggested that we had found a paralogous copy 
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of the gene rather than a gene allele. By the Southern blot hybridisation approach, 

we checked that each one was in a different chromosome (although a second band 

of FSY1A appeared in the same chromosome of FSY1B), which confirmed the origin 

of the paralogous duplication. The FSY1B sequence similarity between these 

brewing species and T. microellipsoides CLIB 830T was less than the FSY1A gene 

compared to its homologous sequence in S. cerevisiae, which was about 85% on 

average. We concluded from the obtained data that the differences in the 

homology percentage of both sequences with these T. microellipsoides was 

because both genes were acquired in the different events of the gene transfer 

from this species to these Saccharomyces species. Copy B of this gene was present 

in every tested S. eubayanus strain and derived hybrids, which suggests that the 

transfer could happen in the ancestor of the species. One probable advantage in 

the growth of this species could be assignated to the fructose trasporter, maybe in 

brewing environments. The only presence of copy A of this gene in some S. 

cerevisiae strains, could be also attributed to some advantage in wine fermentation 

or to any other fermentative process because the other two S. cerevisiae strains 

presenting this gene came from food and beer sources. 

From the genome sequencing of the T. microellipsoides isolates, we 

obtained a duplicated copy of FSY1B in some strains. The synteny reconstruction of 

the regions harbouring this pair FSY1B1/FSY1B2 showed a conserved order in 

relation to the synteny in T. delbrueckii and Z.rouxii, which suggests that these 

were the FSY1 ancestral copies, while FSY1 from Region C (FSY1A) probably 

appeared in a posterior gene duplication event and gave rise to this paralogous 

copy. We were also able to explain the absence of these transferred genes in the 

other post-WGD genera as a widespread loss of them in the WGD ancestor due to 

the colonisation of non-wine fermenting environments. This would be the most 

parsimonic explanation. 
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With the ATO3 gene, we detected 90.8% homology on average between the 

Saccharomyces new ATO3 group and those sequences of Region C (Supplemental 

Figure 4). The most remarkable result related to this new copy was that the 

majority of the Saccharomyces species presented it with more than one 

representative strain for each one and, once again, the most probable species 

responsible for the transfer would be Torulaspora microellipsoides. We previously 

concluded that that pre-WGD species was the donor of Region C to S. cerevisiae 

and, despite them sharing the position in the ATO3 phylogeny, we thought that T. 

microellipsoides was probably the donor rather than S. cerevisiae. As a 90.8% 

homology was similar to that of FSY1B/FSY1B2 (85.2%), we hypothesised that the 

former could also be addressed as an ancient introgression, which would at least 

imply the Saccharomyces ancestor. We cannot assert whether the acquisition of 

both genes happened during the same evolutionary event. Perhaps the 

FSY1B/FSY1B2 copy was already present in the common ancestor of the 

Saccharomyces genus and was later lost in nearly all the species, except for the 

ancestor of S. eubayanus. 

Therefore, T. microellipsoides contributed with a greater introgression of 

65kb, and also with the transfer of both FSY1 to S. eubayanus and of ATO3 to the 

Saccharomyces genus, as well as some post-WGD genera. Then this Torulaspora 

genus species would appear to be a great contributor of genetic material.  

Both fructose transporter and ammonia exporter genes were detected in 

more than one copy in a subtelomeric region of the strains under study. 

Subtelomers are zones that come close to chromosome ends rich-in-repetitions 

because they contain sequences of transposable elements (Y’ elements, X elements 

and TG repetitions) that are actually well characterised (Yue et al. 2017). These 

repeats favour the recombination between chromosomes, a molecular mechanism 
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that probably led to not only the increase in the paralogous copies in each strain, 

but also to the introgression of all these genes after the hybrid intermediate had 

formed. As we conclude, the transfer of FSY1B/FSY1B2 and FSY1A occurred during 

different evolutionary events due to their contrasting accumulations of nucleotide 

changes. So it was required for hybridisation events at least. If ATO3 is not acquired 

simultaneously to FSY1B/FSY1B2, then we have to add another hybridisation event.  

As we mentioned in the Introduction, the work of Marcet-Houben and 

Gabaldón 2015 speculates that the hybridisation between two different species 

would lead to the ancestor species of the WGD event. After a profound analysis of 

what they called phylomes, they concluded that the implicated species probably 

belonged to the ZT clade (Zygosaccharomyces and Torulaspora). The results 

presented herein for FSY1B/FSY1B2 and ATO3 could suggest that what we found 

out is a little trace of that ancient WGD, but no conclusions can be reached with 

this hypothesis because having only two genes to study is very risky. 

3. Genome diversity of the T. microellipsoides strains and the discovery of a 
new non-Saccharomyces species 
 

From the genome sequencing of existing T. microellipsodies isolates, we 

found two hybrid species (NRRL Y-17058 and CBS 6143) and we predicted the 

hybrid origins of these strains by inferring the two probable parental species. We 

deduced that strain CBS 6641 could be one of the parents and that a CBS 6762-like 

species would probably be the other parent. We proposed that this last strain could 

be a new putative non-Saccharomyces species related to T. microellipsoides by 

looking at its phylogenetic position and its nucleotide divergence in relation to the 

remaining T. microellipsoides strains. Then we hypothesised that the found hybrid 

species would be the product of interspecific hybridisation between different 

species. 
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In the last 10 years, numerous publications have emerged about the 

discovery of new non-Saccharomyces species and hybrid species from the already 

known pre-WGD genera. They were all found close to the Zygosaccharomyces 

genus and were specifically more related to species Z. rouxii and Z. bailli. James et 

al. 2005, described the existence of three natural hybrids inside the 

Zygosaccharomyces genus by a phylogenetic reconstruction of nuclear and 

mitochondrial genes (ADE2, HIS3 and SOD2). These authors concluded that these 

hybrid species resulted from an interspecific hybridisation, which we observed for 

strains NRRL Y-17058 and CBS 6143. The nuclear DNA from those hybrids appeared 

to originate from Z. rouxii and a novel species related to Z. mellis and Z. rouxii. 

Furthermore, the above-cited identified the NCYC 3042 strain as this novel species, 

whose 26S rDNA sequence was strictly related to Z. rouxii and Z. mellis, and they 

referred to it as Z. pseudorouxii. 

Afterwards, in the work of Solieri et al., 2007, from the two strains included 

in a phylogenetic analysis with other Zygosaccharomyces strains, the authors 

concluded that they had probably found two new putative species, strains ABT 301 

and ABT 601, that were closely related to Z. rouxii. 

Some years later, Suh et al. 2013 classified some strains before being 

included in the Z. bailli species in two different groups, the  Z. parabailli group 

which included 10 strains and was the closely related group to Z. bailli; the Z. 

pseudobailli group, which first diverged from Z. parabailli and included five strains. 
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Therefore, although hybridisation studies have traditionally focused in the 

Saccharomcyces genus, in recent years more information has emerged about the 

existence of non-Saccharomcyes hybrid species of an interspecific origin. Here we 

report new findings on this kind of hybrid species that are isolated from natural 

environments and which we know come from a different species compared to 

previously reported hybrids: Torulaspora microellipsoides. 
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1) T. microellipsoides has been revealed as an important gene 

contributor to the Sacccharomyces genus, being the responsible of 

diverse gene introgressions. 

 

2) Genome analysis of strains classified as T. microellipsoides has shown 

a hugh diversity inside this species. Hybrid and parental species have 

been inferred from phylogenetic analysis and a new species close to T. 

microellipsoides have been proposed. 

 

3) All the T. microellipsoides strains (including CBS 6762) presented 

genes that were classified as genes coming from an introgression, first 

in EC1118, which reforced the idea of the direction of the transference, 

from T. microellipsoides to Saccharomyces species. 
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Supplemental Figure 1 (SF1). The reconstruction of the chromosome harbouring the Region C 

genes in T.microellipsoides species. The T. microellipsoides synteny of these genomic regions 

was obtained from the Artemis manual annotation. The first genes represented from left to 

right are COG1, SDT1, KRE29 and VRG4. These genes were  discovered in S. cerevisiae strains 

CBS 7957 and the CLIB 382, and here we show that all the T. microellipsoides strains also 

present them.  An identical annotation was performed for strains CLIB 830T and CBS 6641 but 

the orthologous genomic region found in strain CBS 6762 presented a different subtelomeric 

gene composition. In this species, Region C was reduced to the FOT1 gene and the following 

annotated ORFs were an Y’ element and a FLO9 homologous gene. With the T. microellipsoides 

hybrid strains, we detected two duplicated genomic regions whose gene content differed from 

a TDEL0C00150 homologous gene to ARB1 gene. One of the regions was similar to that found 

in the CBS 6762 strain, and the other one which harboured Region C was similar to that 

presented in CBS 6641, except for the insertion of three genes (TDEL0D065100, AGP3 and a 

second copy of TDEL0C00150). Genes are represented by arrows that do not show their real 

size. The Region C genes are drawn in purple and the FSY1 gene is highlighted in green. The red 

and blue triangles (colors despite their similar origin) denote the 95kb gene stretch found in 

the T. microellipsoides strains between ARB1 and the PUT3 gene.  

 

Supplemental Table 1 (ST1). Statistic values from the de novo assembling with the Velvet and 

Sopra software. The assembling quality could be measured by looking at the output files from 

the assemblers. The parameters that determine the degree of quality are: the total number of 

obtained scaffolds, the N50 value: this means that half the bases are covered by scaffolds that 

are longer than the N50 value and the estimated genome size. Tm= T. microellipsoides. 

 

Tm strain Total scaffolds N50 Genome size

NRRLY-17058 408 619942 20.186.889 Mb

CBS 6143 615 88607 20.487.845 Mb

CBS 6641 159 258883 10.238.615 Mb

CBS 6762 215 231345 10.294.020 Mb
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Supplemental Figure 4 (SF4). Band size quantification in the T. microellipsoides strains. The 

karyotype image analysis containing the S288c and the EC1118 S. cerevisiae strains and all the 

T. microellipsoides isolates was carried out by Bionumerics v7.6 to estimate the genome size of 

these non-Saccharomyces strains. The resulting bands and their sizes calculated from the S. 

cerevisiae S288c genome reference are observed in the first part of the figure. The reference 

band sizes and the data obtained with the analysis are shown in the second part of the figure. 

Green boxes represent the bands detected by the programme and the sizes estimated, while 

red boxes correspond to those bands that the programme failed to recognize and that we after 

calculated taking the by us accepted band sizes. 

Supplemental Figure 3 (SF3). The nucleotide divergence matrix between the ATO3 genes. A 

distance matrix for the aligned 543 bp was obtained with the Mega v6.0 software (Tamura et 

al. 2013). The nucleotide change of the ATO3 genes found in T. microellipsoides homologous 

Region C and the additional copies distributed along the genome (from 23 to 35 rows and 

columns) were compared to the new ATO3 genes found in the Saccharomyces species (from 1 

to 22 rows and columns). The most important data to be compared are highlighted with a black 

square. 

Supplemental Figure 2 (SF2). The syntenic context of the FSY1B1/FSY1B2 genes. The gene 

composition of the genomic region where the FSY1B1/FSY1B2 gene copies are located is 

shown for the T. microellipsoides strains, T. delbrueckii, Z. rouxii and S. uvarum. The core 

chomosomic and subtelomeric regions are drawn with a green and a yellow background, 

respectively as in Yue et al. 2017. The gene annotation retrieved from YGOB is presented for 

the T. delbrueckii, Z. rouxii and S. uvarum genes, while the T. microellipsoides genes were de 

novo annotated). Genes are represented by arrows that do not show their real size. An orange 

triangle in the T. delbrueckii subtelomeric region is drawn to indicate an rDNA region. Black 

circles denote the end of chromosomes which, for the T. microellipsoides strains, correspond to 
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*Yeast culture collection in Strains Table 1, 2 ,3 ,4 and 5: ATCC= American Type Culture Collection 
(Manassas, EEUU), AWRI= Australian Wine Research Insitute (Glen Osmond, Australia), CBS= 
Centraalbureau voor Schimmeltcultures (Utrecht, the Netherlands), NBRC= Nite Biological Resource 
Center (Tokyo, Japan), NCYC= National Collection of Yeast Cultures (Norwich, United Kingdom), NRRL= 
Agricultural Research Service Culture Collection (Peoria, EEUU), MCYC= Microbiology Collection of 
Yeast Cultures (Polytechnic University of Madrid, Spain), UWOPS= University of Western (Ontario, 
Canada), PYCC= Portuguese Yeast Culture Collection (Caparica, Portugal), DBVPG (University of 
Perugia, Italy), NCAIM= National Collection of Agricultural and Industrial Microorganism (Budapest, 
Hungary), ZIM= Culture Collection of Industrial Microorganism (University of Ljubljana, Slovenia), 
UCD= University of California (Davis, EEUU), UFRJ= Universidade Federal do Rio de Janeiro (Rio de 
Janeiro, Brazil), KCTC= Korean Collection for Type Cultures (JeonGeup, South Korea), CECT= Spanish 
Type Culture Collection (University of Valencia, Spain), CLIB= Collection de Levures d’Intérêt 
Biotechnologique (Jouy-en-Josas, France). The other strain references correspond to the commercial 
name or a personal yeast collection.  
 

Strains Table 1. Yeast strains for which the FSY1 gene was searched in the databases using the 
BLAST algorithm: (CODE: presence: + /absence: -). 

Yeast strains Strain Reference* Source/Country FSY1 

    
Botrytis cinerea SAS 56 Grapevine + 
Candida albicans SC 5314 Clinic + 

Candida dubliniensis CD 36 Clinic + 

Candida lusitaniae ATCC 42720 Clinic - 

Candida parapsilosis CDC 317 Clinic + 

Candida tropicalis MYA-3404 Clinic + 

Debaryomyces hansenii CBS 767 Carlsberg Laboratories + 

Eremothecium gossypii ATCC 10895 Cotton - 

Kluyveromyces aestuarii ATCC 18862 Estuarine mud + 

Kluyveromyces lactis NRRL Y-1140 Cream  (USA) + 

 JA6 Lab strain + 

Kluyveromyces marxianus KCTC 17555 Fermented maize dough (Mexico) + 

Kluyveromyces wickerhamii UCD 54-210 Insect (Drosophila montana) + 

Lachancea kluyveri NRRL Y-12651 Insect (Drosophila pinicola) + 

Lachancea thermotolerans CBS 6340 Preserved plumbs + 

Lodderomyces elongisporus NRRL YB-4239 Orange juice + 
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Meyerozyma guilliermondii 

 
 
 
 
 
ATCC 6260 

 
 
 
 
 
Clinic  

 
 
 
 
 
+ 

Millerozyma farinosa CBS 7064 Sugar (Germany) + 

Nakaseomyces glabrata CBS 138 Clinic - 

Pichia pastoris GS115 Unknown - 

Saccharomyces castellii NRRL Y-12630 Soil - 

Saccharomyces cerevisiae AWRI 1631 Wine (Australia) - 

 EC1118 Wine (France) + 

 JAY291 Bio ethanol production - 

 M22 Clinic - 

 RM11-1a Grapevine - 

 S288c Lab strain - 

 YJM789 Unknown - 

 YPS163 Clinic     - 

 DBVPG 6765 Unknown + 

 SK1 Lab strain - 

 Y55 Lab strain - 

 YPS128 Environment - 

 DBVPG 6044 Africa - 

 DBVPG 1788 Finland - 

 DBVPG 1373 The Netherlands - 

 DBVPG 1853 Ethiopia - 

 BC187 Napa Valley - 

 YPS606 Pennsylvania - 

 L-1374 Chile - 

 L-1528 Chile - 

 Y12 Africa - 

 DBVPG 1106 Australia - 

 UWOPS 83-787.3 Bahamas (USA) - 

 UWOPS 87-2421 Hawaii - 

 K11 Japan - 

 YS4 The Netherlands - 

 YS9 Singapore - 

 322134S Royal Victoria Infirmary - 
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378604X 

 
 
 
 
 
 
Royal Victoria Infirmary 

 
 
 
 
 
 
- 

 273614N Royal Victoria Infirmary - 

 YJM978 Italia - 

 Y9 Japan - 

 UWOPS 03-461.4 grapevine - 

 UWOPS 05-217.3 Malaysia - 

 W303 Lab strain - 

 UWOPS 05-227.2 Malaysia - 

 DBVPG 6040 The Netherlans - 

 YIIc17_E5 France - 

 
YJM981 Italia - 

 
YJM975 Italia - 

 
NCYC 110 West Africa - 

Saccharomyces eubayanus CBS 12357T Cyttaria hariotii (Argentina) + 

Saccharomyces kudriavzevii  NBRC 1802 Decaying leaves (Japan) - 

Saccharomyces mikatae NBRC 1815 Tree bark - 

Saccharomyces paradoxus NRRL Y-17217 Exudates of trees - 

 N-45 Eastern Russia  - 

 UFRJ50816 Brazilian forests - 

 N44 Eastern Russia - 

 N17 Russia - 

 T21.4 United Kingdom - 

 Q59.1 United Kingdom - 

 YPS138 USA - 

 S36.7 United Kingdom - 

 Y7 United Kingdom - 

 Q32.3 United Kingdom - 

 Z1.1 United Kingdom - 

 Q95.3 United Kingdom - 

 DBVPG 4650 Italy - 

 N43 Eastern Russia  - 

 CBS 5829 Floor wasteland - 
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DBVPG 6304 

 
 
 
 
 
USA 

 
 
 
 
 
- 

A4 Canada - 

 A12 Canada - 

 Y6.5 United Kingdom - 

 
Q62.5 United Kingdom - 

Q89.8 United Kingdom - 

 KPN3828 Russia - 

 

 
 
 
CBS 432 

 
 
 
Russia 

 
 
 
- 

 KPN3829 Russia - 

 UFRJ50791 Brazil - 

 NBRC 1804 Japan - 

 CBS 1146 Unknown - 

 
UWOPS 91-917.1 Hawaii - 

Saccharomyces pastorianus Weihenstephan 34/70 Beer + 

 PYCC 4457 Beer + 

Saccharomyces  uvarum  623-6C Insect + 

 CBS 395T Juice of Ribes nigrum (Netherlands) + 

Scheffersomyces stipitis CBS 6054 Bio-ethanol production + 

Torulaspora delbrueckii CBS 1146 Unknown + 

Vanderwaltozyma polyspora DSM 70294 Soil (South Africa) - 

Yarrowia lipolytica CLIB122 Unknown - 

Zygosaccharomyces bailli CLIB 213                                                  Beer (Japan) + 

Zygosaccharomyces rouxii CBS 732 Grape must + 
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Strains Table 2. Yeast strains for which the FSY1 gene was searched by PCR amplification 

(CODE: presence: + /absence: -). ¥ Sc= S. cerevisiae, Su= S. uvarum, Sk= S. kudriavzevii. 

Yeast strains Strain Reference* Source/Country FSY1 

    
Hanseniaspora uvarum CECT 11105 Most (Italy) - 

Kazachstania africanus CECT 1963 Soil (South Africa) - 

Kazachstania barnetii AQ 1449 Unknown - 

Kazachstania exiguus CECT 1206 Unknown - 

Kazachstania humilis AQ 883 Masato (South America) - 

Kazachstania kunashirensis CECT 11346 Soil (Russia) - 

Kazachstania lodderae CECT 1126 Soil (South Africa) - 

Kazachstania martiniae CECT 12692 Grape juice (Spain) - 

Kazachstania rosinii CECT 11357 Soil - 

Kazachstania servazzii CECT 11353 Soil (Finland) - 

Kazachstania sinensis CECT 11332 Death bird (China) - 

Kazachstania spencerorum CECT 11347 Soil (South Africa) - 

Kazachstania transvaalensis CECT 11354 Soil (South Africa) - 

Kazachstania unisporus CECT 10682 Unknown - 

Kluyveromyces aestuarii CECT 1949 Unknown + 

Kluyveromyces dobzhanskii CECT 2284 Oaks (Hungary) + 

Kluyveromyces marxianus CECT 1442 Unknown + 

Kluyveromyces wickerhamii CECT 1946 Drosophila montana (U.S.A.) + 

Lachancea fermentati CECT 10382 Alpechin (Spain) - 

Lachancea thermotolerans AQ 2301 Oaks (Hungary) + 

Nakaseomyces bacillisporus CECT 1979 Quercus emoryi exudate - 

Nakaseomyces delphensis CECT 1954 Dried figs (South Africa) - 

Nakaseomyces glabrata CECT 1448 Clinic - 

Naumovozyma castellii CECT 11356 Soil (Finland) - 

Naumovozyma dairenensis CECT 11345 Dry fruit of Diospyros sp. - 

Saccharomyces arboricolus CBS 10644 Tree bark (China) - 

Saccharomyces cariocanus NCYC 2890 Insects (Brazil) - 

Saccharomyces cerevisiae  IGAL01 Olives (Spain) - 

 
FRCH Wine (France) + 

 
FCRY Wine (France) + 
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VRB 

 
 
 
Wine 

 
 
 

+ 

 
T73 Wine (Spain) - 

 
CBS 2087 Lychee flower (China) - 

 
CBS 8857 Sorghum beer (Western Africa) - 

 
CBS 435 Sake (Japan) - 

 
ZA29 Wine (South Africa) - 

 
ARS Tequila (Mexico) - 

 
GUY Tequila (Mexico) - 

 
ARG7 Wine (Argentina) + 

 
 CECT 1885 Wine (Spain) + 

 
PM Wine + 

 
K1H Wine - 

 
FCha Wine - 

 
PE7 Wine (Spain) - 

 
CBS 7957 Food (Brazil) + 

 
CLIB 382 Super-attenuated beer (Japan) + 

Saccharomyces  eubayanus PE35M Ferment (America) - 

 
TEMOHAYA Agave (Mexico) - 

Saccharomyces kudriavzevii S20 Cider + 

 
CECT 11186 Beer (Denmark) + 

 
CR90 Oak bark (Spain) - 

 
CR85 Oak bark (Spain) - 

Saccharomyces paradoxus CR89 Oak bark (Spain) - 

 
CA111 Oak bark (Spain) - 

 
120M Pulque (Mexico) - 

 
CECT 1939 Trees - 

 
K54 Vineyards (Croatia) - 

 
CBS 5313 Pulque (Mexico) - 

Saccharomyces pastorianus CBS 406 Trees (Holland) - 
Saccharomyces uvarum 115M Pulque (Mexico) - 

 
CECT 1940 Beer (Denmark) + 

 
CECT 12627 Wine (Spain) + 

 
BMV58 Wine (Spain) + 

 
NCAIM 789 Tree exudates (Hungary) + 

 
ZIM 2113 Most (Slovenia) + 

 ¥ Híbrido Sc x Su CBS 2986 Wine (Swiss) + 

¥ Híbrido Sc x Sk CECT 11036 Beer altered + 
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¥ Híbrido Sc x Sk 

 
 
 
 
S6U 

 
 
 
 
Wine 

 
 
 
 

+ 
¥ Híbrido Sc x Sk AWRI 1503 Wine (Australia) + 
¥ Híbrido Sc x Sk AMH Wine (Swiss) - 
¥ Híbrido Sc x Sk W27 Wine (Swiss) + 
¥ Híbrido Sc x Sk x Su SOY3 Wine (Croatia) - 
Tetrapisispora blattae HA1837 Wine (Swiss) - 
Tetrapisispora phaffii CBS 2834 Wine (Swiss) + 
Torulaspora delbrueckii CECT 1964 Insects (Germany) - 
Torulaspora delbrueckii CECT 10646 Soil (South Africa) - 
Torulaspora franciscae AGAVE Agave fermentation (Mexico) + 
Torulaspora globosa CECT 10039 Fraxinus angustNBRClia (Spain) + 
Torulaspora microellipsoides CECT 10680 Soil (Spain) + 
                                                                    CECT 10655 Soil (Caribbean) - 

                                                                    
Zygosaccharomyces bailii 

CLIB830T Apple juice (Germany) + 
NRRLY-17058 Tea-beer (Finland) + 
CBS 6762 Lemonade (Switzerland) + 
CBS 6641 Exudate of Myoporum sp. (U.S.A.) + 

Zygosaccharomyces bisporus CBS 6143 Tea-beer (Finland) + 

Zygosaccharomyces fermentati CECT 11042 Grape must (Italy) + 

Zygosaccharomyces mellis CECT 11055 Tea-beer + 

Zygotorulaspora mrakii CECT 10382 Alpechin (Spain) + 

 
CECT 11057 Honey (USA) + 

Zygotorulaspora florentinus CECT 10531 Alpechin (Spain) + 
Vanderwaltozyma yarrowii CECT 10529 Alpechín (Spain) + 

 
CECT 11200 Sulphated grape most + 

 
CECT 1958 Unknown - 
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Strains Table 3. Yeast strains for which the T. microellipsoides ATO3 gene (present in the  
described Region C) was searched by using sequences obtained either in our lab or databases.  

Yeast strains Strain 
Reference* Source/Country 

   
Candida glabrata CBS 138  Faeces of Man 
Eremothecium cymbalariae DBVPG 7215 Brachynema germari (Iran) 

Eremothecium gossypii ATCC 10895 Cotton 

Kazachstania africanus CBS 2517 Soil (South Africa) 

Kazachstania naganishii CBS 8797 Decaying leaves (Japan) 

Kluyveromyces lactis CLIB 210 Lab strain 

Lachancea thermotolerans CBS 6340 Mirabelle-plum conserve (Russia) 

Lachancea waltii NCYC2644 Exudate of Ilex integra (Japan) 

Lachancea kluyveri CBS 3082 Drosophila pinicola 

Naumovozyma castellii CBS 4309 Soil (Finland) 

Naumovozyma dairenensis CBS 421 Dry fruit of Diospyrus sp. 

Saccharomyces cerevisiae  EC1118 Wine (France) 

 S288c Lab strain 

 CBS 7957 Food (Brazil) 

 CLIB 382 Super-attenuated beer (Japan) 

 AWRI 796 Wine (Australia) 

 RM11-1a Vineyard (USA) 

 K7 Sake(Japan) 

Saccharomyces eubayanus CBS 12357T Cyttaria hariotii (Argentina) 

Saccharomyces kudriavzevii  NBRC 1802 Decaying leaves (Japan) 

Saccharomyces mikatae NBRC 1815 Tree bark 

Saccharomyces paradoxus NRRL Y-17217 Exudates of trees 

 UFRJ50816 Drosophila spp. (Brazil) 

 YPS138 Soil beneath Quercus velutina (U.S.A.) 

 UWOPS91-917.1 Flux of Myoporum sandwichense (Hawaii) 

 N-44 Exudate of Quercus mongolica (Russia) 

 CBS432 Bark of Quercus spp. (Russia) 

Saccharomyces  uvarum BMV58 Wine (Spain) 

 
CECT 12600 Mistela (Spain) 

 
CECT 1969 Juice of Ribes nigrum (Netherlands) 
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NPCC 1290 

 
 
 
 
 
 
 

Traditional fermentation (Argentina) 
Tetrapisispora blattae CBS 6284 Gut of Blatta orientalis 

Tetrapisispora phaffii CBS 4417 Uncultivated urface soil (South Africa) 

Torulaspora delbrueckii CBS 1146 Unknown 

Torulaspora microellipsoides CLIB830T Apple juice (Germany) 

                                                                    

NRRLY-17058 Tea-beer (Finland) 

CBS 6762 Lemonade (Switzerland) 

CBS 6641 Exudate of Myoporum sp. (U.S.A.) 

CBS 6143 Tea-beer (Finland) 

Vanderwaltozyma polyspora DSMZ 70294 Soil (South Africa) 

Zygosaccharomyces bailli CLIB 213                                                  Beer (Japan) 

Zygosaccharomyces rouxii CBS 732 Grape must 
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Strains Table 4. Torulaspora strains for which the 26S rDNA gene was obtained from genebank.  

Accession num. Torulaspora  strains Source/Origin 

 
AB836696.1  

 
Torulaspora sp. DMKU-SV13  

 
soil in vetiver rhizosphere 

AB836684.1  Torulaspora sp. DMKU-SV01 soil in vetiver rhizosphere 
HE574639.1  Torulaspora sp. APSS 805  coal mine soil 
KY109871.1  Torulaspora indica CBS 12408  Coal mine soil, Singareni Collries (India) 
AB499015.1  Torulaspora globosa LY10 soil from forest (Thailand) 
AB499987.1  Torulaspora globosa SSK8 soil from forest (Thailand) 
AB499988.1  Torulaspora globosa SSK9 soil from forest (Thailand) 
AB836685.1  Torulaspora globosa DMKU:SV02 soil in vetiver rhizosphere 
AB836686.1  Torulaspora globosa DMKU:SV03 soil in vetiver rhizosphere 
AB836687.1  Torulaspora globosa DMKU:SV04 soil in vetiver rhizosphere 
AB836689.1  Torulaspora globosa DMKU:SV06 soil in vetiver rhizosphere 
AB836690.1  Torulaspora globosa DMKU:SV07 soil in vetiver rhizosphere 
AB836691.1  Torulaspora globosa DMKU:SV08 soil in vetiver rhizosphere 
AB836692.1  Torulaspora globosa DMKU:SV09 soil in vetiver rhizosphere 
AB836693.1  Torulaspora globosa DMKU:SV10 soil in vetiver rhizosphere 
AB836694.1  Torulaspora globosa DMKU:SV11 soil in vetiver rhizosphere 
AB836695.1  Torulaspora globosa DMKU:SV12 soil in vetiver rhizosphere 
AB836697.1  Torulaspora globosa DMKU:SV14 soil in vetiver rhizosphere 
AB836698.1  Torulaspora globosa DMKU:SV15 soil in vetiver rhizosphere 
AB836712.1  Torulaspora globosa DMKU:SV29 soil in vetiver rhizosphere 
AB836713.1  Torulaspora globosa DMKU:SV30 soil in vetiver rhizosphere 
AB836714.1  Torulaspora globosa  DMKU:SV31 soil in vetiver rhizosphere 
AB836724.1  Torulaspora globosa DMKU:SV41 soil in vetiver rhizosphere 
AB836725.1  Torulaspora globosa DMKU:SV42 soil in vetiver rhizosphere 
AB836727.1  Torulaspora globosa DMKU:SV45 soil in vetiver rhizosphere 
AB836729.1  Torulaspora globosa DMKU:SV47 soil in vetiver rhizosphere 
KJ159059.1  Torulaspora globosa LB376  soil sample (Brazil) 
AB836688.1  Torulaspora globosa DMKU:SV05 soil in vetiver rhizosphere 
JF327428.1  Torulaspora sp. PJ I3  Thailand 
HE575669.1  Torulaspora sp. AP 18  soil 
U72166.1  Torulaspora globosa NRRL Y-12650 soil (West Indies) 
KF300889.1  Torulaspora globosa  CBS 764  soil (West Indies) 
KF300888.1  Torulaspora globosa  CBS 2947  soil (Papua New Guinea) 
HE575668.1  Torulaspora sp. PBA 22  soil 
AB303872.1  Torulaspora maleeae NBRC 103203 mangrove (Thailand) 
AB303871.1  Torulaspora maleeae NBRC 103202 moss (Thailand) 
AB303870.1  Torulaspora maleeae NBRC 103201 moss (Thailand) 
AB303869.1  Torulaspora maleeae NBRC 103200 moss (Thailand) 
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AB500184.1  

Torulaspora sp. SR3  soil from forest (Thailand) 

AB456554.1  Torulaspora sp. WB17 water in mangrove forest (Thailand) 
AB087395.1  Torulaspora maleeae NBRC 11061 leaf, Rhizophora stylosa (Japan) 
AB303868.1  Torulaspora maleeae NBRC 103199 moss (Thailand) 
AB303867.1  Torulaspora maleeae NBRC 103198 moss (Thailand) 
AB303866.1  Torulaspora maleeae NBRC 11062 rhizosphere of mangrove, Bruguiera gymnorrhiza (Japan) 
FJ527215.1  Torulaspora sp. GE3S10  soil (Taiwan) 
FJ527214.1  Torulaspora sp. EN22S16  soil (Taiwan) 
FJ527213.1  Torulaspora sp. EN11S09  soil (Taiwan) 
AB714269.1  Torulaspora sp. KKU-PM21  Thailand 
U72157.1  Torulaspora pretoriensis NRRL Y-17251 soil (South Africa) 
KF300887.1  Torulaspora pretoriensis  CBS 2187  soil (South Africa) 
AB617947.1  Torulaspora pretoriensis  LM045 leaves (Thailand) 
FJ873560.1  Torulaspora pretoriensis GU12S05  soil (Taiwan) 
U73604.1  Torulaspora franciscae NRRL Y-17532 mangrove sediments from east and west coast (India) 
KF300890.1  Torulaspora franciscae  CBS 2926  soil (Spain) 
FJ527110.1  Torulaspora sp. GE1L03  plant (Taiwan) 
KF300892.1  Torulaspora delbrueckii CBS 6991  drink 
KF300893.1  Torulaspora delbrueckii  CBS 133  food (Indonesia) 
KF300891.1  Torulaspora delbrueckii  CBS 2734  missing 
AJ508558.1  Torulaspora delbrueckii CBS 133T food (Indonesia) 
EU289351.1  Torulaspora sp. SG5S08  Taiwan 
FJ888525.1  Torulaspora quercuum XZ-46A   oral cavities of healthy Tibetan volunteers 
FJ888524.1  Torulaspora quercuum  AS 2.3768   Leaf of Quercus sp. (China) 
KJ183053.1  Torulaspora quercuum  YF3  yak milk dreg (Tibet) 
KJ183052.1  Torulaspora quercuum  Y7-4  yak milk dreg (Tibet) 
KJ183051.1  Torulaspora quercuum  Y7-3  yak milk dreg (Tibet) 
HE660063.1  Torulaspora quercuum  ZIM 2412  cheese (Serbia) 
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Strains Table 5. Torulaspora strains for which the 18S/ITS/5.8S rDNA genes were obtained from  
genebank and the CBS yeast culture collection.  

Accession num. Torulaspora  strains Source and Origin 

KX859660.1  Torulaspora delbrueckii  URFM433 cheese (France) 
KX859657.1  Torulaspora delbrueckii  URFM432 cheese (France) 
KX859663.1  Torulaspora delbrueckii  URFM434 cheese (France) 
KX859666.1  Torulaspora delbrueckii  URFM435 cheese (France) 
KX859667.1  Torulaspora delbrueckii  URFM509 cheese (France) 
KX859672.1  Torulaspora delbrueckii  URFM486 cheese (France) 
KX859677.1  Torulaspora delbrueckii  URFM438 cheese (France) 
KX859680.1  Torulaspora delbrueckii  URFM439 cheese (France) 
KX859683.1  Torulaspora delbrueckii  URFM440 cheese (France) 
KX859697.1  Torulaspora delbrueckii  URFM445 cheese (France) 
KX859713.1  Torulaspora delbrueckii  URFM449 cheese (France) 
KX859725.1  Torulaspora delbrueckii  URFM453 cheese (France) 
KX859730.1  Torulaspora delbrueckii  URFM455 cheese (France) 
KX859733.1  Torulaspora delbrueckii  URFM457 cheese (France) 
KX859739.1  Torulaspora delbrueckii  URFM459 cheese (France) 
KX859741.1  Torulaspora delbrueckii  URFM461 cheese (France) 
KX859743.1  Torulaspora delbrueckii  URFM463 cheese (France) 
KX859744.1  Torulaspora delbrueckii  URFM464 cheese (France) 
KX859745.1  Torulaspora delbrueckii  URFM465 cheese (France) 
KX859746.1  Torulaspora delbrueckii  URFM466 cheese (France) 
KX859747.1  Torulaspora delbrueckii  URFM467 cheese (France) 
KX859750.1  Torulaspora delbrueckii  URFM468 cheese (France) 
KX859751.1  Torulaspora delbrueckii  URFM469 cheese (France) 
KX859752.1  Torulaspora delbrueckii  URFM470 cheese (France) 
KX859753.1  Torulaspora delbrueckii  URFM471 cheese (France) 
KX859755.1  Torulaspora delbrueckii  URFM473 cheese (France) 
KX859756.1  Torulaspora delbrueckii  URFM474 cheese (France) 
KX859757.1  Torulaspora delbrueckii  URFM475 cheese (France) 
KX148748.1  Torulaspora sp. NWHC 44736-64-03-01B snake 
KX859687.1  Torulaspora delbrueckii  URFM515 cheese (France) 
FJ153205.1  Torulaspora sp. SG5S08 Taiwan 
KY105669.1  Torulaspora pretoriensis  CBS 2187 soil (South Africa) 
KF300901.1  Torulaspora pretoriensis  CBS 2187 soil (South Africa) 
AY046188.1  Torulaspora pretoriensis  NRRL Y-17251 soil (South Africa) 
HM044873.1  Torulaspora sp. TCJ252 Asia 
KY977702.1  Torulaspora sp.  QFP5Y1 larval gut, Bactrocera tryoni (Australia) 

KX218261.1  Torulaspora pretoriensis  AUMC 10292 mud sample from fresh water canal 
(Egypt) 

KY105667.1  Torulaspora pretoriensis  CBS 2785 soil (South Africa) 
KY105650.1  Torulaspora franciscae  CBS 2926 soil (Spain) 
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KY105672.1  Torulaspora pretoriensis  CBS 11123 Unknown 
KY105668.1  Torulaspora pretoriensis  CBS 11124 Unknown 
KY105670.1  Torulaspora pretoriensis  CBS 11121 Unknown 
KY105671.1  Torulaspora pretoriensis  CBS 11100 Unknown 
KY105651.1  Torulaspora franciscae  CBS 2927 soil (Spain) 

AY046186.1  Torulaspora franciscae NRRL Y-17532 mangrove sediments from east and 
west coast (India) 

KJ706695.1  Torulaspora franciscae  DBMY478 mangrove sediments from east and 
west coast (India) 

KJ707171.1  Torulaspora franciscae  DBMY954 mangrove sediments from east and 
west coast (India) 

KJ706377.1  Torulaspora franciscae  DBMY158 mangrove sediments from east and 
west coast (India) 

FJ153222.1  Torulaspora franciscae  NRRL Y-6686 soil (Spain) 

KJ707013.1  Torulaspora franciscae  DBMY796 mangrove sediments from east and 
west coast (India) 

KJ706536.1  Torulaspora franciscae  DBMY319 mangrove sediments from east and 
west coast (India) 

KJ706854.1  Torulaspora franciscae  DBMY637 mangrove sediments from east and 
west coast (India) 

AB304154.1  Torulaspora maleeae  NBRC 103198 moss (Thailand) 
AB304155.1  Torulaspora maleeae  NBRC 103199 moss (Thailand) 

AB304153.1  Torulaspora maleeae  NBRC 11062 soil, rhizosphere of Bruguiera  
gymnorrhiza (Japan) 

AB304152.1  Torulaspora maleeae  NBRC 11061 leaf (Japan) 
KY105663.1  Torulaspora maleeae  CBS 10694 plant (Japan) 
NR 136949.1  Torulaspora maleeae NBRC 11061 leaf, Rhizophora stylosa (Japan) 
AB304160.1  Torulaspora maleeae  NBRC 103204 moss (Thailand) 
AB304159.1  Torulaspora maleeae NBRC 103203 mangrove (Thailand) 
AB304156.1  Torulaspora maleeae NBRC 103200 moss (Thailand) 
AB304157.1  Torulaspora maleeae NBRC 103201 moss (Thailand) 
AB304158.1  Torulaspora maleeae NBRC 103202 moss (Thailand) 
FJ873436.1  Torulaspora sp. EN11S09 Taiwan 
HM461650.1  Torulaspora sp.  EN22S16  SB100 Taiwan 
KY105658.1  Torulaspora globosa  CBS 5216 soil (Italy) 
KY105653.1  Torulaspora globosa  CBS 2952 soil (South Africa) 
KY105662.1  Torulaspora indica  CBS 12408 Coal mine soil, Singareni Collries (India) 
KY105659.1  Torulaspora globosa  CBS 6638 Unknown 
KY105655.1  Torulaspora globosa  CBS 6636 Unknown 
KY105657.1  Torulaspora globosa  CBS 6637 Unknown 
KY105656.1  Torulaspora globosa  CBS 764 soil (West Indies) 
KY105661.1  Torulaspora globosa  CBS 765 Unknown 
AY046184.1  Torulaspora globosa NRRL Y-12650 soil (West Indies) 
KF300895.1  Torulaspora globosa  CBS 2947 soil (Papua New Guinea) 
KY105652.1  Torulaspora globosa  CBS 5500 mating 
KY105654.1  Torulaspora globosa  CBS 2947 soil (Papua New Guinea) 
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KY105660.1  Torulaspora globosa  CBS 5503 mating 

FJ888525.1  Torulaspora quercuum  XZ-46A  oral cavities of healthy Tibetan 
volunteers 

FJ888524.1  Torulaspora quercuum  AS 2.3768 Leaf of Quercus sp. (China) 
KY105673.1  Torulaspora quercuum  CBS 11403 plant (China) 
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