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Preface

The Standard Model of Particle Physics gives a very precise description of
nature for an overwhelming amount of observables non-trivially related. In the
last years, the LHC has carried out a huge number of measurements looking for
new physics hints with negative results, which indicates that the Standard Model,
proven before to precisely describe all interactions at ∼ 1−100 GeV, remains valid
at least up to the ∼ TeV.

The Standard Model (SM) was built by looking for a self-consistent Quan-
tum Field Theory framework that could accommodate all the experimental in-
formation at the energies explored at that time. Imposing the local symmetry
SU(3)C ×SU(2)L×U(1)Y and some building blocks plus the Spontaneous Sym-
metry Breaking (SSB) generated by the vacuum expectation value of a scalar
boson, was the simplest way to unify weak, electromagnetic and strong interac-
tions in a self-consistent way explaining all the available experimental data with
a relatively small number of free parameters.

In principle, the SM might explain all interactions, except maybe dark mat-
ter, up to the Planck Scale (∼ 1018 GeV), where gravity enters into the game.
However, every time new physics scales had been explored, new patterns, slightly
different than predicted by the simplest possible models, had arisen, which indeed
had helped to understand new aspects about physics at the previously studied
scales. There were no strong reasons to think anything different was going to hap-
pen, since the SM does not give any answer about why in particular those symme-
try realizations and building blocks should be everything we have. Nevertheless,
probably for the first time in the history of physics, all the higher energy predic-
tions have been confirmed and no Beyond the Standard Model (BSM) physics has
been observed apart from the very tiny neutrino masses, which in principle could
be accommodated by extending it without any significant additional changes.

Although this fact is certainly discouraging for new physics searches, as far
as we lack satisfactory explanations of different aspects of the SM, such as why
there should not be more building blocks or the nondemocratic hierarchy of the
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free parameters, one would expect that new physics hints arise at higher energies,
which may help us to improve our understanding of nature.

In order to try to discover new physics very different paths can be taken. One
possibility consists in improving the experimental precision and the theoretical
prediction of the SM for a set of observables larger than the number of free
parameters of the theory. If they are incompatible, the SM does not hold up and
new physics should be incorporated to explain that incompatibility. Sometimes,
one focuses on observables whose theoretical dependence is dominated by one
single parameter, either because the dependence on other parameters is very
small or because they have been very precisely determined with other observables.
Then the comparison becomes a determination of that parameter, which can be
used to test other observables. This is the approach followed in the Chapters 2,
3 and 4.

Another possibility is looking for new physics in specific directions. There are
many BSM models that incorporate more complex new physics scenarios, in prin-
ciple more (or are least not less) theoretically justified than the SM, and which
give different prediction for physics in different observables. One can compare
the SM and BSM predictions and test if they are compatible with experimental
data. Instead, one can also group many different possible directions, with some
assumptions but without choosing a specific model, in order to see which direc-
tions can be ruled out or, at least, constrained with data. This path is taken for
example by the Standard Model Effective Field Theory (SM-EFT) and is useful
to see where new physics is more likely to arise, as well as to test models and
build new ones without violating those constraints. The work in Chapter 5 is
precisely in that direction.

Independently on the new physics at higher energies, the SM is far away from
a simple mathematical algorithm in which one inserts the fundamental inputs and
the desired observable to get an exact theoretical prediction. In fact, depending
on the sector one is studying and on the energies that are involved, many differ-
ent tools have been developed to obtain those predictions with different level of
success. For example, perturbative QCD, extremely successful in making predic-
tions at LHC scales, can not be used at scales of hundreds of MeV. If the SM is
able to give a prediction for it, then it will be with different tools. The highly
nontrivial and very exciting task of looking for those tools and applying them to
understand the complex structure of nature that emerges at different high energy
scales is known as Phenomenology of Particle Physics.

In this work we focus on the phenomenology of hadronic τ decays. Because of
its mass, the τ is the only lepton that can decay into hadrons. On the one hand,
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the decay occurs through the interaction of two weak charged currents mediated
by the W− boson, so it becomes a very nice test of electroweak interactions.

On the other hand, because it emits a neutrino in the decay, a very rich
hadronic continuum energy spectrum, generated unambiguously by the weak
quark current, is observed, which allows to study strong interactions at differ-
ent energy regimes. Then, the set of tools one applies depends on the regime one
wants to study. Unfortunately, the best known description of strong interactions
at some energy regimes is far from been derived from first principles and one
needs extra assumptions more or less justified.

Within the very rich phenomenology of hadronic τ decays, we put our atten-
tion in some of those observables whose theoretical prediction becomes more pre-
cise. Although one can also get some precise predictions for some channel decays
at very low energies by using Chiral Perturbation Theory (ChPT), and extend it
with some extra assumptions through Resonance Chiral Theory (RChT), today
the most precise predictions are reached, apart from the very clean single-hadron
decays, for inclusive tau decays, where one can make use of analytical methods
to relate low-energy experimental data with nearly perturbative QCD through
dispersion relations. Most of this thesis is about the study of those inclusive
observables.

In Chapter 1 we give an introduction to different theoretical common tools
we use along the thesis. The first application is the study of the determination of
physical observables associated to the different moments of the inclusive V − A
non-strange spectral function, which cancels in perturbative QCD and becomes
specially interesting to test non-perturbative methods. Some of them can be
related to Low-Energy Constants (LECs) of ChPT and others to vacuum con-
densates of dimensional operators. This study can be found in Chapter 2, while
we study the determination of the strong coupling using inclusive non-strange tau
decays in Chapter 3. Special attention is given to the different sources of non-
perturbative uncertainties, trying to select the most efficient set of observables to
reduce them. In Chapter 4, we revisit the determination of one of the dominant
matrix elements responsible for direct CP violation ( ε′ε ) in kaons, which through
soft-meson methods can be related to the non-strange V − A spectral function.
Finally in Chapter 5 we make an extensive study about the potential of hadronic
tau decays to obtain new physics constraints in a model independent way.





Chapter 1

Theoretical aspects in hadronic
tau decays

1.1 The Standard Model Lagrangian

In this section we present a brief overview of the basics of the SM [1–4]. For
a more detailed discussion we refer to the many reviews on the SM that can be
found in the literature, for example [5, 6].

The Standard Model Lagrangian is the most general one that is renormalizable
and invariant under local gauge transformations of the symmetry group SU(3)C×
SU(2)L × U(1)Y (which requires 8 + 3 + 1 gauge fields Gaµ, W b

µ and Bµ), given
its building matter blocks that transform as the fundamental or trivial (singlet)
representation of those symmetries. Taking Greek symbols for the color SU(3)C
indices, capitalized letters for the family ones and writing the n-plets in the
SU(2)L in explicit column form, the building matter blocks of the Standard
Model are:

lN =
(
νL
lL

)
N

, eN = lR,N , ϕ =
(
φ(+)

φ(0)

)
,

qαN =
(
uL
dL

)
αN

, dαN = dR,αN , uαN = uR,αN , (1.1)
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where α = 1, 2, 3, N = 1, 2, 3, ϕ is a scalar boson doublet and the rest are
fermions. Their hypercharges are:

Y (lN ) = −1
2 , Y (en) = −1, Y (ϕ) = −1

2 ,

Y (qαN ) = −1
6 , Y (dαN ) = −1

3 , Y (uαN ) = 2
3 . (1.2)

The Lagrangian reads as

L = LF + LB + LS + LY , (1.3)

where:

LF =
∑
N

i(l̄N /D lN + q̄N /D qN + ēN /D eN + d̄N /D dN + ūN /D uN ) , (1.4)

with qN , dN and uN color vectors and D the covariant derivative:

Dµ = I∂µ + igs
λa
2 G

a
µ + ig

σb
2 W

b
µ + ig′Bµ , (1.5)

so that every term couples to a matter building block only if it is in the funda-
mental representation of the associated symmetry and

LB = −1
4G

a
µνG

µν
a −

1
4W

b
µνW

µν
b −

1
4BµνB

µν , (1.6)

where:
Gaµν = ∂µG

a
ν − ∂νGaµ − gsfabcG

µ
bG

ν
c , (1.7)

W b
µν = ∂µW

b
ν − ∂νW b

µ − gεabcW
µ
b W

ν
c , (1.8)

Bµν = ∂µBν − ∂νBµ . (1.9)

The scalar Lagrangian LS reads as:

LS = (Dµϕ)†(Dµϕ)− µ2ϕϕ− 1
2λ(ϕ†ϕ)2 , (1.10)

and finally the Yukawa Lagrangian LY reads as

LY = Y 1
N eN l̄Nϕ+ Y 2

N dN q̄Nϕ+ Y 3
NM uM q̄N ϕ̂+ h.c. , (1.11)
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with ϕ̂ = iσ2ϕ and where we have diagonalized as many Yukawa matrices Y i

as possible by making rotations in the family space, which leaves the rest of the
Lagrangian invariant. Indeed, an extra rotation of u allows to set Y 3

NM as a
unitary times a diagonal matrix without loss of generality, Y 3

NM ≡ Y 3
MV

†
NM .

One last ingredient is needed to build the SM. If in LS µ2 < 0 and λ > 0,
the potential has a degenerate minimum in |〈ϕ〉| = v√

2 ≡
√
−2µ2

λ . In the SM, the
symmetry SU(2)L × U(1)Y is spontaneously broken to U(1)em by choosing

〈ϕ〉 = 1√
2

(
0
v

)
, (1.12)

among them. Parameterizing perturbations from that minimum as

ϕ(x) = 1√
2
e
iσiθi(x)

2

(
0

v +H(x)

)
, (1.13)

one can choose a local SU(2)L gauge transformation for ϕ(x) such that θ(x)
completely disappears from the Lagrangian, so we end up with only a new scalar
boson H(x).

The SU(2)L gauge bosons, necessarily massless before the symmetry breaking,
acquire mass through the covariant derivative of the scalar boson ϕ. The charged
gauge bosons W∓µ ≡

Wµ
1 ±iW

µ
2√

2 are directly in diagonal form while the massless
photon Aµ and the Zµ boson are obtained by diagonalizing the Wµ

3 − Bµ mass
matrix.

The same happens with the fermions, which acquire their masses through the
Yukawa Lagrangian. If we expand the mass part of Eq. (1.11) we have:

LY = 1√
2
v
(
Y 2
N ēLNeRN + Y 1

N d̄LNdRN + Y 3
M V †NM ūLNuRM

)
+ h.c. (1.14)

If we want to write the Lagrangian in term of physical fields, we need an extra
transformation to diagonalize the last mass matrix, uLN → V †NMuLM . The only
contribution which changes under that transformation is the non-diagonal part
of the covariant derivative in iq(1) /Dq(1) (Eq. 1.4).1 This term, together with
the analogous leptonic one, corresponds to the charged current Lagrangian LCC ,

1The fact that the diagonal one is invariant leads directly to the GIM mechanism.
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which becomes central in this thesis, since it is responsible for the τ decay:

LCC = − g√
2
W †µ (VNM ūLNγ

µdLM + ν̄LNγ
µeLN ) + h.c. (1.15)

1.2 The hadronic decay of the tau

The decay of the tau into hadrons involves both terms of Eq. (1.15). The
matrix element is trivial to compute using the Dyson series for the S-matrix
with LCC as the relevant part of the interaction Lagrangian, except for the fact
that the final hadronic states, 〈n|, generated by the quark currents, are not
fundamental particles of the high-energy theory. We end up with a total matrix
element dependent on that nontrivial hadronic part:

Mτ→nντ = −g
2V †uD

2
1

q2 −M2
W

ν̄LγµτL 〈n(pn)|LDuµ (0)|0〉 , (1.16)

with q = pτ − pν , LDuµ = D̄LγµuL and D = d or D = s. Since s ≡ q2 =
m2
τ − 2mτ |pcmν | < m2

τ �M2
w, we can neglect q2 in the propagator to obtain:

Mτ→nντ = g2V †uD
2

1
M2
W

ν̄LγµτL 〈n|LDuµ (0)|0〉 . (1.17)

The same result would have been obtained with the Lagragian of the Fermi-
Theory:

LCC = −2
√

2GF (d̄LNV †NMγµuLM ν̄LNγ
µeLN ) + h.c. , (1.18)

with GF = g2

4
√

2M2
W

, which can be obtained by integrating out the W boson.
The hadronic invariant mass distribution dΓ(s) for a final state 〈nντ | is then

[7]:

dΓ(s) = G2
F |VuD|2Shewm5

τ

4π
ds

m2
τ

(
1− s

m2
τ

)2 {(
1 + 2 s

m2
τ

)
H(1)(q2) +H(0)(q2)

}
,

(1.19)
where Shew represents radiative corrections and H(i) are defined as:

Hµν(q2) = (−gµνq2 + qµqν)H(1)(q2) + qµqνH(0)(q2) , (1.20)
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with

Hµν ≡ (2π)3
∫
dφn δ

4(pn − q) 〈n|LDuµ (0)|0〉 〈0|LDu †ν (0)|n〉 , (1.21)

where φn is the phase space of the n final hadrons and pn its total momentum.

1.2.1 Decay into a single hadron

For one single hadron H− as final state, π− or K−, there is only one possible
Lorentz structure allowed:

〈H−|LDuµ |0〉 = i√
2
pHµ fH . (1.22)

Then:
Hµν = qµqν

1
2δ(s−m

2
H) f2

H . (1.23)

So that we finally get:

Γτ→H−ντ = G2
F |VuD|2f2

HS
h
ewm

3
τ

8π

(
1− m2

H

m2
τ

)2

. (1.24)

1.2.2 Decay into two hadrons

Since there are two final particles in the final hadronic state, H− and H ′0, one
has two possible invariant Lorentz structures for the hadronic matrix element:

〈H−(p)H ′0(p′)|LDuµ |0〉 = CHH′

2

{(
P− − ∆HH′

p+ 2 P+
)µ

FHH
′

V (P+ 2)

+ ∆HH′

P+ 2 P
−µFHH

′
S (P+ 2)

}
, (1.25)

where ∆HH′ = m2
H − m2

H′ , P+ ≡ p + p′ and P− ≡ p − p′. The normalization
coefficients CHH′ are given by [7]:

Cππ =
√

2, CKK̄ = −1, CKπ = 1√
2
,

CπK̄ = −1, CKη8 =
√

3
2 , Cπη′ = −

√
2 . (1.26)
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The Lorentz structure corresponds, respectively, to J = 1 and J = 0, so that
inserting it into Eq. (1.21), one finds:

H(1)(s) = (2π)3C2
HH′

12s2 λ(s,m2,m′2)|FV (s)|2
∫
dφ2 δ

4(s− P+ 2) , (1.27)

and
H(0)(s) = (2π)3C2

HH′

4s2 |FS(s)|2
∫
dφ2 δ

4(s− P+ 2) . (1.28)

Using now that: ∫
dφ2 δ

4(s− P+ 2) = π

2
λ1/2(s,m2,m′2)

(2π)6s
, (1.29)

one has:

dΓτ→H−H′0ντ
ds

= G2
F |V 2

uD|m3
τ

768π3 s3 Shew C
2
HH′

(
1− s

mτ

)2

×
{(

1 + 2 s

mτ

)
λ3/2(s,m2,m′2)|FHH′V (s)|2

+ 3 ∆2
HH′λ

1/2(s,m2,m′2)|FHH′S (s)|2
}
. (1.30)

Obtaining a theoretical value for the form factors FHH′(s) is far from trivial and
it involves non-perturbative methods. At very low energies one can make use of
χPT, but for some channels, for example those involving kaons, even the threshold
sth = (mH +mH′)2 is close to the energies where χPT is not able to give precise
predictions. Then one has to make use of theoretically motivated ansatzes, which
one fits to data. They usually bring extra assumptions that can be relaxed when
they do not fit well the precise experimental data by adding new parameters.
Specially when the counting becomes unclear, this scenario is, unfortunately, far
from the ideal one in which it is possible to make precise predictions from first
principles. Since this problem becomes worse for more complex τ decays, they
are beyond the scope of this thesis.

1.2.3 Inclusive τ decay

The well-defined strangeness of a final hadronic state |n〉 in a tau decay allows
us to identify if it came from the strange current JS = s̄LγµuL, |nS〉, or the non-
strange one JNS = d̄LγµuL, |nNS〉. Summing over all of them in Eq. (1.19), one
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gets the inclusive strange (non-strange) hadronic mass-squared distribution:

dΓS(NS)(s) =G2
F |VuD|2Shewm5

τ

16π
ds

m2
τ

(
1− s

m2
τ

)2

×
{(

1 + 2 s

m2
τ

)
ρ

(1)
V+A,S(NS)(q

2) + ρ
(0)
V+A,S(NS)(q

2)
}
, (1.31)

where ρ
(i)
V+A,S(NS) ≡ 4

∑
S(NS)H

(i). The interesting thing about performing
those sums is that if we define the correlation function of two currents as:

Πµν(q) ≡ i
∫
d4x eiqx 〈0|T [Jµ(x)Jν†(0)] |0〉

= (−gµνq2 + qµqν) Π(1)
J (q2) + qµqν Π(0)

J (q2) , (1.32)

then it can be proven that (see for example Refs. [8, 9]):

ImΠµν(s) = π
∑
n

(2π)3
∫
dφn δ

4(pn − q) 〈n|Jµ|0〉 〈0|J†ν |n〉 , (1.33)

so that:
ρ

(i)
V+A,S(NS) = 1

π
ImΠ(i)

V+A,S(NS)(s) , (1.34)

where the associated current is simply JµV+AS(NS) = s̄(d̄)γµu+ s̄(d̄)γµγ5u.
Using symmetry arguments one can, in the non-strange sector, split final

hadronic states into those ones that can not decay through axial currents, |nV 〉,
and those ones that can not decay through vector ones, |nA〉. Summing over them,
one is able to extract ρ(i)

V (s) = 1
π ImΠ(i)

V (s) and ρ(i)
A (s) = 1

π ImΠ(i)
A (s). Exploiting

our knowledge of Π(i)(s) to make very precise predictions is one of the main topics
of this thesis.

1.3 The Operator Product Expansion

When dealing with non-local interactions, frequently one has to deal with the
product of two operators, Â(x)B̂(y). In principle, singularities when performing
the y → x limit would not allow to translate them into a local interaction. Wil-
son hypothesized [11], and Zimmermann proved [12] within perturbation theory,
that those singularities could be reabsorbed into c-numbers c′i(x, y), so that an
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Operator Product Expansion (OPE) can be defined as:

Â(x)B̂(y) =
∑
i

c′i(x, y)Oi(y) . (1.35)

By dimensional analysis, up to logarithmic corrections, c′i(x, y) = ci

(x−y)dA+dB−dOi
,

where dOi becomes anomalous when quantum corrections are taken into account.
Those operators with lower dimensions will dominate the sum when y becomes
close to x.

1.3.1 Integrating out a heavy field. A simple example of OPE

The OPE is explicitly made when integrating out a heavy field. For the sake
of simplicity let us see this in a very naive example with a light scalar boson φ(x)
with mass m and a heavy one Φ(x) with mass M with the Lagrangian [13,14]:

L = 1
2∂µφ(x)∂µφ(x)+ 1

2∂µΦ(x)∂µΦ(x)− 1
2m

2φ(x)2− 1
2M

2Φ(x)2− 1
2κφ(x)2Φ(x) .

(1.36)
Let us now define J(x) ≡ −1

2φ
2. The generating functional is:

Zi =
∫
d[Φ]d[φ]ei

∫
d4xLfree

φ ei
∫
d4xLfree

Φ +κJ(x)Φ(x) . (1.37)

In order to integrate out the heavy field Φ(x) we have to manipulate the part of
the action that involves it:

SΦ ≡
∫
d4x

(1
2∂µΦ(x)∂µΦ(x)− 1

2M
2Φ(x)2 + κJ(x)Φ(x)

)
=
∫
d4x

[
−1

2Φ(x)(�+M2)Φ(x) + κJ(x)Φ(x)
]
. (1.38)

Let us shift the field Φ(x) = Φ0(x) + Φ′(x) [15], so that the functional form of
Φ0(x) is fixed by imposing that it satisfies the classical equation of motion:

(�+M2)Φ0(x) = κJ(x) . (1.39)

Then, we can rewrite Eq. (1.38) as:

SΦ = −1
2

∫
d4x

[
Φ′(x)[�+M2]Φ′(x)− κJ(x)Φ0(x)

]
. (1.40)
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Using now that the free Feynman propagator,

DF (x) =
∫

d4k

(2π)4
e−ikx

k2 −M2 , (1.41)

satisfies
[�+M2]DF (x) = −δ4(x) , (1.42)

one can rewrite the field Φ0(x) as

Φ0(x) = −
∫
d4xDF (x− y)κJ(y) , (1.43)

which allows us to split the action of Eq. (1.40) into:

S(Φ(x)) = −1
2

∫
d4xΦ′(x)[�+M2]Φ′(x)

− 1
2κ

2
∫
d4x

∫
d4yJ(x)DF (x− y)J(y) , (1.44)

so that we can factorize the first term in the generating functional and integrate
it out. We end up with a non-local action of the form:

Seff =
∫
d4xLfreeφ − κ2

2

∫
d4x

∫
d4yJ(x)DF (x− y)J(y) . (1.45)

In the integrand all the singularities are encoded in the Feynman propagator
term, DF (x− y), so that J(y) is regular when y → x and then we can expand it
by Taylor:

J(y) =
∑
n=0

1
n! (y − x)µ1 ...(y − x)µn∂zµ1 ...∂

z
µnJ(z)|x . (1.46)
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Defining f(k2) ≡ 1
k2−M2 , the effective interaction action becomes:

SIeff = −(−1)nκ
2

2

∫
d4xJ(x)

∫
d4y

·
∫

d4k

(2π)4

∑
n=0

in

n!∂
z
µ1 ...∂

z
µnJ(z)|z=xf(k2)∂µ1

k ....∂µnk eik(x−y)

= −κ
2

2

∫
d4xJ(x)

∫
d4k δ4(k)

∞∑
n=0

in

n! ∂
k
µ1 ...∂

k
µn f(k2) ∂µ1

z ...∂µnz J(z)|z=x

= −
∞∑
n=0

κ2

2
in

n!

∫
d4xJ(x) ∂µ1

k ...∂µnk f(k2)|k=0 ∂
y
µ1 ...∂

y
µnJ(y)|y=x . (1.47)

Every 2n− th term in the sum will receive contribution from the 2n− th term in
the Taylor expansion of f(k2), ∼ n!g

µ1µ2 ...gµn−1µn

Mn , so that the nonlocal interaction
has become a local one which can be obtained from an interaction Lagrangian in
powers of E2

M2 :
L =

∑ ci
ΛDiOi . (1.48)

This method can be extended to integrate out heavy fermions and spin 1
bosons from the Lagrangian [16]. In hadronic tau decays one integrates out
heavy quarks and the W from the Standard Model Lagrangian (indeed we did it
in a less formal version at the level of amplitudes in Section 1.2).

1.3.2 Effective Field Theories as a tool to resum large logarithms

Effective Field Theories (EFT) can be built in the form of Eq. (1.48). Even
in the absence of knowledge about the dynamics of heavier degrees of freedom.
One simply has to write the most general Lagrangian with the light degrees of
freedom at a given energy and then fit the unknown couplings ci to data, which
encode information about the dynamics of heavy particles.

If, as in our toy example, the dynamics of heavy particles is known, one simply
needs to perform the matching either with path integrals or by calculating simple
processes and requiring they should give the same prediction. One may think that
knowing the “full” theory with heavy particles, the only usefulness of using the
EFT is simplicity, but, in fact, this is not true because of quantum corrections.
For example, a naive counting tells us that the short distance radiative corrections
part of Shew in Eq. (1.19) should be Shew ∼ α

π ∼ 0.1%. If one computes it, one gets
around a 2%. The reason is that quantum loops are giving extra logarithms ∼
log M2

W
m2
τ
, which enhance those contributions. In the case of QED, the convergence
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is still very good, but for QCD corrections, where αs(m2
τ )

π ∼ 0.1, this means a
breakdown of perturbation theory.

In order to solve the problem, one makes use of the EFT and, if the heavy
dynamics is known and the matching is performed, makes use of renormalization
group equations to resum them. Let us sketch the procedure. If one computes
quantum corrections to a given operator, it needs to be renormalized:

〈Oi〉B = Zi(ε, µ)〈Oi(µ)〉R . (1.49)

Since the bare operator is scale independent:

(γOi + µ
d

dµ
)〈Oi(µ)〉R = 0 , (1.50)

where, taking α as example of coupling which generates quantum corrections,
and assuming for the sake of simplicity that there is no mixing:2

µ

Zi

dZ

dµ
≡ γOi = γ

(1)
Oi
α

π
+ γ

(2)
Oi

(
α

π

)2
+ ... . (1.51)

Using now that the Lagrangian, invariant under renormalization scale, can be
rewritten in terms of renormalized fields:

L =
∑

ciROiR , (1.52)

one has the RGE for the Wilson coefficients:(
µ
d

dµ
− γOi

)
ciR = 0 . (1.53)

Then, the procedure to get the Wilson coefficients for the EFT is the following:

• Compute the anomalous dimension (from Zi(ε, µ)) at order (n), γ(n)
Oi .

• Compute quantum corrections at order (n− 1) in both theories.

• Performing the matching at a scale µ one gets the Wilson coefficients up to
corrections αnµ logn M2

µ2 . The logical procedure is then to choose µ ∼M .

• If now one computes a process with the EFT involving energies and masses
of order ∼ p, one gets unaccounted corrections of the order αn logn µ2

p2 . One
2The generalization to that case is relatively straightforward. One has to work with matrices

instead of scalars. It can be found for example in [16].
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1 α ln α2 ln2 α3 ln3 ... αn lnn
α α2 ln α3 ln2 ... αn lnn

α2 α3 ln ... αn lnn
α3 ...
... αn

Table 1.1: Sketch of the different orders in perturbation theory with the naive
counting (vertical dashed lines) and the one including EFT plus RGE methods
(horizontal lines).

avoids them using the RGE of Eq. (1.53) to run the Wilson coefficients from
µ ∼M to µ ∼ p, resumming the logarithms for which higher-order γ(n+m)

Oi
are not responsible. The first unaccounted order will be then O(αn) +
O(αn+1 log) + ...O(αm logm−n) + ....

In Table 1.1 we sketch how the counting gets modified.

1.3.3 Operator Product Expansion in the vacuum

Let us recall the two point correlation function of quark currents given by Eq.
(1.32):

Π(q) = i

∫
d4x eiqx 〈0|T [J(x)J†(0)] |0〉 , (1.54)

with Jµ = d̄(s̄)Γu, where Γ is any Lorentz structure and we are omitting Lorentz
indices for the sake of simplicity. In the presence of interactions, as long as
perturbation theory is well-behaved, the product of quark currents is given in
terms of the free ones by the usual Dyson series [17]:

T (J(x)J†(0)) =
∑ in

n!

∫
dz1...dznT (J0(x)J0 †(0)Lint,QCD(z1)...Lint,QCD(zn)) .

(1.55)
The point is that, applying now the Wick theorem in every term of the last
equation, one separates the singular part of them in c-numbers, given by the
contractions of two-point operators, and normal product of operators with regular
behavior when x→ y, so that one can Taylor expand them to get an OPE as in
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Eq. (1.35) [18]:

T (J(x)J†(0)) = c1x
−6 : 1 : +x−2cq̄q(µ) : mq̄q(µ) : +x−2cGG(µ) : GG(µ) : ,

(1.56)
where :: denotes the normal product. Again the dimensionless, at least up to
quantum corrections, Wilson coefficients can only depend on x through logarith-
mic terms. In perturbation theory, when we introduce Eq. (1.56) into Eq. (1.54),
the contribution of the nontrivial operators when contracted with the vacuum is
zero, so it worthless calculating those Wilson coefficients. However, long-distance
effects become important at low energies. The asymptotically free states are
different and the vacuum as a state free from quarks and gluons stops making
sense. Instead one assumes that at energies large enough, perturbative methods
are enough to compute the Wilson coefficients in the same way one does when
other final hadronic states are involved in the initial or final state, and that the
remaining vacuum matrix elements acquire nonzero values, which can be studied
with non-perturbative methods (or by fitting data), as one does with the usual
long-distance hadronic matrix elements [19].

When inserting Eq. (1.56) into Eq. (1.54) and decomposing the final result
in scalar Lorentz structures, Π(i)(Q2 = −q2), one ends up with the OPE of the
correlators [19]:

Πi(Q2 = −q2) =
∑
i,D

ci(µ,Q2)Oi,D(µ)
QD

, (1.57)

which, because of the logarithms appearing in the Wilson coefficients due to
the quantum corrections, is not well defined for Minkowskian momentum (q2 >
0). Notice how the OPE is only a well-behaved expansion for energies Q2 large
enough. The power of the OPE of the correlators will become obvious in the next
chapters when we will relate it to tau data through different dispersion relations.

1.4 Chiral Perturbation Theory as an EFT

1.4.1 Parameterizing the degrees of freedom

One can rewrite the massless QCD Lagrangian for three flavors as:

L = q̄L /DqL + q̄R /DqR + ... , (1.58)

where q = (u, d, s)T , sum over colors is implicit and we have neglected elec-
troweak interactions in the covariant derivative. In the flavor space, the La-
grangian is manifestly invariant under SU(3)L × SU(3)R transformations. Set-
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ting q = (uL, dL, sL, uR, dR, sR)T as a basis of the configurations, the matrix
element of a transformation can be written as [20,21]:

g =
(
L 0
0 R

)
, (1.59)

where L(R)(x) = eiλiθi and λi are the SU(3) generators. Dynamical generation
of a nonzero vacuum expectation value for the quark condensate breaks that
SU(3)L×SU(3)R symmetry into SU(3)V , since 〈0|q̄q|0〉 = 〈0|q̄RqL+ q̄LqR|0〉 6= 0
leaves only invariant those group transformations in which L = R.

Because of the Goldstone Theorem, for every generator of the unbroken sym-
metry, there is an associated Goldstone boson. At energies small enough, they
will be the only degrees of freedom of the theory.

In order to parametrize them we use the CCWZ formalism [22]. If we impose
that a local field configuration is an excitation of the vacuum φV , so that ϕ(x) =
Ξ(x)φV , being Ξ(x) ∈ SU(3)L × SU(3)R, we can rewrite it as:

Ξ(x) =
(

1 0
0 U(x)

)(
V (x) 0

0 V (x)

)
, (1.60)

where the the second matrix is a SU(3)V transformation. Since φV is invariant
under any local SU(3)V (i.e. L = R) transformation, we can choose any arbitrary
V (x) without changing the configuration. In particular we choose V (x) = I, so
that all the possible configurations are parametrized by the local transformation
of the right generators,

U(x) = ei
λjφj(x)

F , (1.61)

where λj is a Gell-Mann matrix and F is a dimensional quantity introduced to
compensate the dimensions of φi.

If now we make a global group transformation g as defined in Eq. (1.59):

ϕ(x)→ gϕ(x) =⇒ Ξ(x)→ g Ξ(x) , (1.62)

in general:

g Ξ(x) =
(

1 0
0 RUL†

)(
L 0
0 L

)
6=
(

1 0
0 U1

)
, (1.63)
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but the point is that we have the freedom of choosing that after the transformation
the matrix Ξ(x) has become instead:

Ξ(x)→ Ξ′(x) = gΞ(x)
(
V (x) 0

0 V (x)

)
, (1.64)

with an arbitrary V (x), because, as we stated before, vacuum and then the con-
figuration (gϕ(x)) is invariant under any local SU(3)V transformation. Choosing
V (x) = L†, the transformed Ξ′(x) is again parametrized by the local transforma-
tion associated to the right generators, becoming a valid parametrization for the
degrees of freedom of the theory:

U(x) = ei
λiφi(x)
F U(x)→ RU(x)L† . (1.65)

The dimensional constant F was introduced so that the fields φ(x) can be iden-
tified as spin 0 bosons.

1.4.2 Building the lowest order Lagrangian

Following the prescription given in the previous section, we want to build the
most general Lagrangian that respects the symmetries for U(x), which parametrizes
the available degrees of freedom at low energies. Imposing that the Lagrangian
should be invariant under SU(3)L × SU(3)R transformations and knowing that
under those transformations U(x) → RU(x)L†, the invariant objects are flavor
traces of objects with so many U(x) as U †(x) terms. On the other hand, because
U(x) is a unitary matrix we need to insert derivatives in order to have nontrivial
terms. For every derivative we insert, we are adding an extra dimension to the
operator. The first term in the EFT will be then the first nontrivial operator
with minimal number of derivatives that respects both the group and Lorentz
symmetries:

L = F 4

4 Tr(∂µU(x)∂µU(x)) . (1.66)

The prefactor becomes fixed by requiring that, when expanding U(x), the ki-
netic term for the Goldstone bosons have the proper normalization. Higher-order
corrections are of the order given by loop corrections, i.e.:

Loop ∼
(

p

4πF

)2
× Tree , (1.67)
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where p represent the energies entering into the process. Then the counting will
be valid as far as p� 4πF . Divergences in those loops will be canceled by renor-
malizing the LECs of higher-order Lagrangians, which, as we saw in the previous
section, encode the short-distance information of the process, in principle obtain-
able with lattice QCD and possible to estimate with analytic approaches such
as RχT, which makes use of some extra assumptions. The alternative consists
in fixing them using data, with the cost of losing some predictive power. Their
natural order will be then the same one as the loop corrections.

1.4.3 Extending the Lagrangian with the use of external fields

The massless QCD Lagrangian does not represent all interactions involving
quarks. We can generalize it to [23,24]:

L = L0
QCD + q̄Lγ

µlµqL + q̄Rγ
µrµqR − q̄(s− iγ5p)q , (1.68)

where lµ, rµ, s, p are the external fields. L is invariant under local transformation
of the symmetry if:

lµ → L lµ L
† + iL ∂µL

† , (1.69)
rµ → R lµR

† + iR ∂µR
† , (1.70)

s+ ip→ R (s+ ip)L† . (1.71)

Now, if we want to incorporate these external fields to the low energy Lagrangian,
we have a very strong constraint. The functional form of the low-energy La-
grangian in terms of the external sources must be the same whether if they break
or not chiral symmetry. If the short-distance Lagrangian is invariant under local
transformations, which happens to be true if and only if those local transfor-
mations are imposed, the low-energy one must be invariant too. Then, only
combinations of the U with the external fields transforming as Eqs. (1.69) (1.70)
and (1.71) invariant under local symmetry transformations are allowed.

Now we can build the most general low-energy Lagrangian. At first order in
p2 and in the external sources we have then [25]:

L = F 2

4 〈DµUD
µU + χU † + Uχ†〉 , (1.72)

where χ ≡ 2B0(s+ ip), being B0 a LEC and Dµ = ∂µU − irµU + iUlµ.
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Now, we explicitly break the symmetry by imposing that the external fields
must reproduce the well-known short-distance SM Lagrangian:

s = diag(mu,md,ms) , (1.73)
rµ = eQAµ + ... , (1.74)
lµ = eQAµ + ... . (1.75)

Expanding and reparametrizing the Goldstone fields so that the mass La-
grangian corresponds with the usual one related to the spin 0 bosons (except for
the small π0 − η8 mixing term), we have:

U(x) = ei
√

2Φ(x)/F , (1.76)

with:

Φ(x) =


π0√

2 + η8√
6 π+ K+

π− − π0√
2 + η8√

6 K0

K− K̄0 −2η8√
6

 , (1.77)

so that squared meson masses become simple linear combinations of the quark
masses times B0. When setting momenta on-shell, one has p2 = M2. Then, the
quark matrix χ should be counted as O(p2). Taking this into account, Eq. (1.72)
represents the most general χPT Lagrangian at order O(p2) including quark mass
corrections.

When computing amplitudes at O(p4), one must calculate loop diagrams
from the O(p2) Lagrangian as well as the tree level amplitudes coming from the
O(p4) one. The most general Lagrangian incorporates 12 Low-Energy Constants
(LECs):

L4 = L1 〈DµU
†DµU〉2 + L2 〈DµU

†DνU〉 〈DµU †DνU〉
+ L3 〈DµU

†DµUDνU
†DνU〉 + L4 〈DµU

†DµU〉 〈U †χ+ χ†U〉

+ L5 〈DµU
†DµU

(
U †χ+ χ†U

)
〉 + L6 〈U †χ+ χ†U〉2

+ L7 〈U †χ− χ†U〉2 + L8 〈χ†Uχ†U + U †χU †χ〉 (1.78)
− iL9 〈FµνR DµUDνU

† + FµνL DµU
†DνU〉 + L10 〈U †FµνR UFLµν〉

+H1 〈FRµνFµνR + FLµνF
µν
L 〉 + H2 〈χ†χ〉 .

where

FµνL = ∂µ`ν − ∂ν`µ − i[`µ, `ν ] , FµνR = ∂µrν − ∂νrµ − i[rµ, rν ]. (1.79)
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Notice that H1 and H2 are unphysical, since they do not contain the Goldstone
boson fields. The counting tells us that the contribution from LECs should be
of the same order than from loops, so that Li(µ) ∼ 1

4(4π)2 . The Lagrangian at
O(p6) was computed in Ref. [26] and contains 94 LECs.

The external fields can also be used to extract direct relations between Green
Functions involving quarks and involving mesons. Since the generating functional
can not depend on the field parametrization:

exp {iZ} =
∫
DqDq̄DGµ exp

{
i

∫
d4xLQCD

}
=

∫
DU exp

{
i

∫
d4xLeff

}
, (1.80)

relations between Green functions in both theories, such as Noether currents, can
be extracted by taking derivatives of the generating functional with respect to the
external fields. For example, by taking derivatives with respect to the external
scalar and pseudoscalar sources we learn that the constant B0 is related to the
quark condensate:

〈0|q̄jqi|0〉 = −f2B0 δ
ij , (1.81)

which means that the larger the parameter which controls the spontaneous chiral
symmetry breaking, the larger the effect of the explicit one at low energies.

A more detailed review of χPT can be found in Ref. [24].



Chapter 2

QCD parameters from the V-A
spectral functions

2.1 Introduction

As we saw in Section 1.2.3, experimental information on the two-point cor-
relation function can be obtained using τ decay data. In this work, we focus on
the non-strange V − A one. Related to the fact that it would be zero if chiral
symmetry remained unbroken at low energies, several cancellations are involved.
In massless perturbative QCD (p-QCD), it is zero at all orders. Corrections due
to the explicit chiral symmetry breaking, known to have worse behaved series [27]
than the purely perturbative one, are suppressed by the very tiny quark masses.
Therefore, the study of this V −A spectral function becomes a unique opportunity
to study non-perturbative QCD without perturbative contaminations [28–43].

A comprehensive phenomenological study of the non-strange V − A spectral
function using the 2005 release of ALEPH τ data [44] was done in Refs. [38–
40]. One of the main motivations of this chapter, based on Ref. [45], consists in
updating that study making use of the updated ALEPH data set [46].

2.1.1 Experimental spectral function

The experimental spectral functions are obtained from the invariant mass
distributions dN

V/A
τ

Nτds
. Using Eq. (1.31):
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ρ
(1)
V (s) = dNV

τ

Nτ

m2
τ

ds

(
1− s

m2
τ

)−2 (
1 + 2s

m2
τ

)−1

12π2|Vud|2BeSew
s > 4m2

π , (2.1)

ρ
(1)
A (s) = dNA

τ

Nτ

m2
τ

ds

(
1− s

m2
τ

)−2 (
1 + 2s

m2
τ

)−1

12π2|Vud|2BeSew
s > 6m2

π , (2.2)

where we have used that ρ(0)
V (s) = 0 and ρ(0)

A (s) = 2f2
πδ(s −m2

π) in an excellent
approximation. The first correction to those expressions comes from π(1300).
Since fπ(1300) is very small [47–50], its numerical role is completely negligible.

Compared to the 2005 ALEPH data set, the new public version of the ALEPH
τ data incorporates an improved unfolding of the measured mass spectra from
detector effects and corrects some problems [51] in the correlations between un-
folded mass bins. The improved unfolding brings an increased statistical uncer-
tainty near the edges of phase space. It has also reduced the number of bins in
the spectral distribution, as a larger bin size has been adopted.

2.1.2 The OPE of the V-A correlators

Because vacuum preserves parity, the two-point correlation function of the
V V − AA ud quark currents is identical to the one with the left-handed and
right-handed quark currents:

Πµν
ud,LR(q) ≡ i

∫
d4x eiqx 〈0|T

(
Lµud(x)Rν†ud(0)

)
|0〉

= (−gµνq2 + qµqν) Π(1)
ud,LR(q2) + qµqν Π(0)

ud,LR(q2) , (2.3)

where Lµud(x) ≡ d̄(x)γµ(1− γ5)u(x) and Rµud(x) ≡ d̄(x)γµ(1 + γ5)u(x). The OPE
of Π(s) ≡ Π(0+1)

ud,LR(s) ≡ Π(0)
ud,LR(s) + Π(1)

ud,LR(s) predicts a strong cancellation for
this correlator compared to the Π(1+0)

ud, V V+AA(s) one. At NLO, Eq. (1.57) can be
written as:

Π(1+0)(Q2 = −q2) =
∑
i

ci(µ,Q2)Oi,D(µ)
QD

=
∑
D

aD/2(µ) + bD/2(µ) ln µ2

Q2

QD
, (2.4)

where in general bD/2 is αs suppressed with respect to aD/2. Because of chiral
symmetry, the correlator is exactly zero in massless p-QCD . If we introduce
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quark mass corrections of order m2n
q

Q2n into the condensate of dimension D = 2n,
this means that the D = 0 contribution vanishes. Indeed quark mass corrections
are completely negligible at the energies we are dealing with (m

2
d

Q2 ∼ 10−5). Again,
because of chiral symmetry, the contribution coming from the gluon condensate
〈αsπ GG〉 also vanishes and the only D = 4 contribution comes from the quark
condensate. The leading contribution should be then [52]:

Q4
[
Πud ,V−A(Q2)

]D=4
= 8

3
αs(Q)
π
〈(mu +md)qq〉 , (2.5)

but is again suppressed by αs
π
mq
Λ . Therefore, if we approximate the dimension-D

contribution by its leading order term aD/2:

Π(Q2 = −q2) =
∑
D

aD/2(µ)
QD

≡
∑
D

OD
QD

, (2.6)

then O4 ≈ 2 ·10−5 GeV4, small enough to be negligible compared to experimental
uncertainties.

The D = 6 contribution is given at NLO by:

[Q6Π(Q2)]D=6 = αs(µ)
{

(2π+A8αs(µ))〈ūλiγµ(1− γ5)d d̄λiγµ(1 + γ5)u〉µ

+ αsA1〈ūγµ(1− γ5)d d̄γµ(1 + γ5)u〉µ
}

+ ln Q
2

µ2 α
2
s

{
B8〈ūλiγµ(1− γ5)d d̄λiγµ(1 + γ5)u〉µ

+B1〈ūγµ(1− γ5)d d̄γµ(1 + γ5)u〉µ
}
, (2.7)

where λi are Gell-Mann matrices in the color space and the Bi are obtained by
expanding the LO anomalous dimension of the condensates and Ai involve a full
NLO calculation and depend on the renormalization prescription (HV or NDR).
They can be found in Ref. [53]. Notice how, at leading order, only the color octet
contributes.

2.1.3 Relating the OPE to experimental data with sum rules

The OPE is defined in the Euclidean axis, q2 < 0. In order to compare
with experimental data, one can try to perform the analytic continuation to the
Minkowskian axis q2 > 0. But it happens that, due to the logarithms of quantum
corrections, the OPE expansion is not well-defined for q2 > 0.
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Figure 2.1: Analytic structure of Π(s).

Instead, one uses that the physical correlators are analytic functions in all the
complex plane, except for a cut in the positive real axis. Apart from the pion
pole, this cut starts at sth = 4m2

π. When integrating along the circuit of Fig. 2.1
that correlator times an arbitrary weight function ω(s) analytic at least in the
same complex region as the correlator except maybe for s = 0, one finds:∫ s0

sth

ds

s0
ω(s) 1

π
Im Π(s) + 1

2πi

∮
|s|=s0

ds

s0
ω(s) Π(s)

= 2 f
2
π

s0
ω(m2

π) + 1
s0

Res[ω(s)Π(s), s = 0] , (2.8)

where we have omitted the (1+0) super-index. In the first term one can introduce
the experimental spectral function and, for large enough values of s0, the OPE of
Π(s) becomes an excellent approximation for the integral along the circumference,
except maybe for the region near the positive real axis [52,54].

2.1.4 Quark-Hadron duality

Introducing the OPE into the previous equation one gets a very powerful rela-
tion between the physical low-energy correlator, described by meson interactions,



Chapter 2. 2.1 Introduction 27

and the high energy one, calculated with the OPE in terms of quarks and gluons:∫ s0

sth

ds

s0
ω(s) 1

π
Im Π(s) + 1

2πi

∮
|s|=s0

ds

s0
ω(s) ΠOPE(s) + δDV[ω(s), s0]

= 2 f
2
π

s0
ω(m2

π) + 1
s0

Res[ω(s)Π(s), s = 0] , (2.9)

where,

δDV[ω(s), s0] ≡ 1
2πi

∮
|s|=s0

ds

s0
ω(s)

[
Π(s)−ΠOPE(s)

]
=
∫ ∞
s0

ds

s0
ω(s) (ρ− ρOPE)(s) , (2.10)

where in the second line we have performed the integral along the circuit of Fig.
2.2 and used that the OPE should be exact at infinite energy. In the same sense
that the origin of the power corrections of the Operator Product Expansion is
associated to corrections due to the tail of the asymptotic perturbative series,
which is believed to behave as e−C/αs(m2

τ ) ∼ Λn
Qn [55], quark-hadron Duality Vio-

lations (DVs) would originate from the tail of the asymptotically divergent OPE
series. Differences between the physical correlators and their OPE aproximants,
which at leading order approximate their analytical structure as series of poles
in the origin, are believed to give terms exponentially suppressed that can be
safely neglected in the Euclidean axis. However, when analytically continued to
the Minkowskian one, they may become oscillatory and then not negligible.∗

The δDV[ω(s), s0] term is then dominated by the region near the Minkowskian
axis. Using ω(s) such that it reduces the contribution of that region, for example
taking:

ω(s0) = ... = ω(n)(s0) = 0 , (2.11)

where the superscript (n) refers to the n-th derivative of the weight, suppresses
DVs significantly. These kind of functions are known as n + 1 pinched weight
functions. Since the effect of power corrections is very suppressed, we will work
in this chapter at leading order in the αs expansion. Recalling Eq. (2.6) this
means:

ΠOPE(Q2 = −q2) =
∑
D

OD
QD

, ρOPE(s) = 0 . (2.12)

∗It is worth to mention that if the hadronic multiplicity is large enough, the convergence
of the OPE prediction to the physical spectrum is observed to occur very fast even in the
Minkowskian axis.
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Figure 2.2: Integrating region for ΠDV (s) to get Eq. (2.10).

In this approximation ρDV (s) ≡ ρ(s)−ρOPE(s) = ρ(s). Using the Cauchy formula
for ω(s) =

(
s
s0

)n
:

1
2πi

∮
|s|=s0

ds

(
s

s0

)n
ΠOPE(s) = (−1)n

O2(n+1)

sn+1
0

, (2.13)

Eq. (2.9) becomes [9]:∫ s0

sth

ds

s0

(
s

s0

)n 1
π

Im Π(s) + (−1)n
O2(n+1)

sn+1
0

+
∫ ∞
s0

ds

s0

(
s

s0

)n
ρDV (s)

= 2 f
2
π

s0

(
m2
π

s0

)n
+ 1
sn+1

0
Res[snΠ(s), s = 0] , (2.14)

DVs are expected to decrease fast when the hadronic multiplicity is increased.
On the one hand, this means that they are smaller for the more inclusive channels.
This can be seen if we compare the local DVs of the vector and axial channels
(Fig. 2.3).∗ They are strongly suppressed in the sum, making the quark-hadron
duality more powerful in the more inclusive V + A channel. On the other hand,
they go fast to zero at higher energies, typically drawing exponentially suppressed
oscillations [56–58]. In this chapter, we use the following parametrization to
estimate uncertainties due to the high energy tail [39, 40,56,58–60]:

ρDV (s > sz) = κ e−γs sin{β(s− sz)} , (2.15)
∗The sensibility of the local spectral function to αs input is negligible compared to experi-

mental uncertainties. Any reasonable αs leads to the plot of Fig. 2.3.
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Figure 2.3: Experimental ρDV for the V and A channel. Notice the strong can-
cellation in the sum. Theoretical uncertainties due to the needed OPE prediction
are suppressed with respect to experimental uncertainties

The four free parameters κ, γ, β and sz will be constrained by imposing well-
known short-distance sum rules as well as a decent agreement with data at high
energies. We are aware that the exact shape, dependent on the subtleties of
every exclusive channel of the hadronic spectrum, is still far from the theoretical
control.

A given parametrization for DVs is giving information on the high-energy
shape of the V − A spectral function and then, constraining the asymptotic
behaviour of its OPE. In order to see that, one simply has to take Eq. (2.14)
with n� 1. Only two terms survive in that limit, giving:

(−1)n
O2(n+1)

sn+1
0

+
∫ ∞
s0

ds

s0

(
s

s0

)n
ρDV (s) = 0 (2.16)

For example, taking O2n = a(−1)nΛ2nΓ(n), which incorporates the naive power
counting as well as the expected Γ-like asymptotic divergence, the equality is
recovered by taking ρDV (s) = ae−

s
Λ2 , which gives a naive intuition about why

DVs should be exponentially suppressed. The parametrization of Eq. (2.15) is
recovered by promoting a and Λ2 to complex numbers, taking the real part and
renaming the constants. The n-dependence of the moments will be similar, but
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modulated by a simple n-oscillating function. Note that the model dependence
of an estimate of a condensate is stronger when we go to higher dimensions.

2.1.5 Different weights different physical parameters

Depending on the moment ω(s) =
(
s
s0

)n
we choose to study, we recover

information about the spectral function in different energy regimes. Taking n =
0, 1 in Eq. (2.14) and using that the condensate contribution O2

s0
and O4

s20
can be

safely neglected: ∫ s0

sth

ds

s0

1
π

Im Π(s) = 2f
2
π

s0
− δDV[1, s0] , (2.17)

∫ s0

sth

ds

s0

s

s0

1
π

Im Π(s) = 2f
2
π

s0

m2
π

s0
− δDV[ s

s0
, s0] , (2.18)

that are finite version of the Weinberg Sum Rules [61]. Sending s0 to infinity,
there are no DVs anymore. If we then multiply both equations respectively by
s0 and s2

0, Eq. (2.17) receives a very tiny contribution from the O2 condensate
and quantum corrections to it, i.e., higher order terms in the αs expansion of the
two-dimensional contribution, make Eq. (2.18) divergent. However, in the chiral
limit (mu = md = 0) there are no dimensional operators below D = 6 [62], so
that: ∫ ∞

sth
ds

1
π

Im Π|mq=0(s) = 2fπ|2mq=0 , (2.19)

∫ ∞
sth

ds s
1
π

Im Π|mq=0(s) = 0 , (2.20)

which are the original WSRs. We will work with the finite (physical) version of
them, i.e., Eqs. (2.17) and (2.18).

For higher values of the power n, Eq. (2.9) gives relations involving the dif-
ferent OPE coefficients:∫ s0

sth

ds

s0

(
s

s0

)n 1
π

Im Π(s) = (−1)n
O2(n+1)

sn+1
0

+ 2f
2
πm

2n
π

sn+1
0

− δDV[
(
s

s0

)n
, s0] (n ≥ 2) . (2.21)
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For negative values of n = −m < 0, the leading OPE does not give any
contribution to the integration along the circumference s = s0, but there is a
non-zero residue at the origin proportional to the (m − 1)th derivative of Π(s)
at s = 0. At low values of s the correlator can be rigorously calculated within
chiral perturbation theory (χPT) [23, 25, 63–65]. At present Π(s) is known to
O(p6) [66], in terms of the so-called chiral low-energy couplings (LECs) that we
can determine through the relations:∫ s0

sth

ds

s0

(
s

s0

)−1 1
π

Im Π(s) = 2 f2
π

m2
π

+ Π(0) − δDV[
(
s

s0

)−1
, s0]

≡ −8Leff
10 − δDV[

(
s

s0

)−1
, s0] , (2.22)

∫ s0

sth

ds

s0

(
s

s0

)−2 1
π

Im Π(s) = 2 f
2
πs0
m4
π

+ Π′(0)s0 − δDV[
(
s

s0

)−2
, s0]

≡ 16Ceff
87 s0 − δDV[

(
s

s0

)−2
, s0] . (2.23)

The explicit expression of the correlator Π(s) at O(p6) in χPT is given in
App. A. The relation between the effective parameters Leff

10 and Ceff
87 and their

χPT counterparts, the LECs L10 and C87, will be discussed in Section 2.5.

2.2 A first estimation of the effective couplings

Using the updated ALEPH spectral function [46], we can determine Leff
10 and

Ceff
87 with Eqs. (2.22) and (2.23). As a first estimate, we neglect the DV terms

and show in Fig. 2.4 the resulting effective couplings, for different values of s0. As
expected and as it was already observed in Ref. [38], the results exhibit a strong
dependence on s0 at low energies, where duality-violation corrections are not
negligible. At larger momentum transfers the curves start to stabilize, indicating
that the violations of duality become smaller. However, especially for Leff

10 , the
curves are not yet horizontal lines at s0 near m2

τ , which implies that duality-
violation effects are still present.

Instead of weights of the form sn, we can try to reduce DV effects using
pinched weight functions [32, 54, 67], which vanish at s = s0 (or in the vicin-
ity) where the OPE breaks down. Following Ref. [38], we employ the WSRs
in Eqs. (2.17) and (2.18) and take ω−1,0(s) =

(
s
s0

)−1
(1 − s/s0) and ω−1(s) =
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Figure 2.4: Leff
10 and Ceff

87 from Eqs. (2.22) and (2.23), neglecting DVs, for different
values of s0.

(
s
s0

)−1
(1 − s/s0)2 for estimating Leff

10 , and ω−2,0(s) =
(
s
s0

)−2
(1 − s2/s2

0) and

ω−2(s) =
(
s
s0

)−2
(1−s/s0)2(1+2s/s0) for estimating Ceff

87 . Again, neglecting the
DV terms, we plot the values of the effective couplings for different s0 in Fig. 2.5.
We observe that using these pinched weights the results converge and become
stable below s = m2

τ . This suggests that DV effects are negligible at s0 ∼ m2
τ ,

when these pinched weight functions are used. Assuming that, we obtain:

Leff
10 = −(6.49± 0.05) · 10−3 , (2.24)

Ceff
87 = (8.40± 0.18) · 10−3 GeV−2 . (2.25)

2.3 Dealing with violations of quark-hadron duality

The stability under changes of s0 of the Leff
10 and Ceff

87 determinations is a
necessary condition for vanishing duality violations. Another necessary condition
we can test are the WSRs. We plot the lhs of Eqs. (2.17) and (2.18) minus the
first term of the respective rhs in Fig. 2.6, together with the associated pinched
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Figure 2.5: Leff
10 and Ceff

87 at different values of s0, using pinched weight functions
and neglecting DVs.

WSR, i.e., Eq. (2.17) - Eq. (2.18). Explicitly:

WSR1(s0) ≡
∫ s0

sth

ds

s0

1
π

Im Π(s)− 2f
2
π

s0
, (2.26)

WSR2(s0) ≡
∫ s0

sth

ds

s0

1
π

Im Π(s)− 2f
2
π

s0

m2
π

s0
, (2.27)

WSRpinched(s0) ≡WSR1(s0)−WSR2(s0) . (2.28)

They predict cancellations with respect to the separate V and A channels, so we
plot them together with the respective V +A. The very strong cancellations are
observed from low energies and no duality violations are observed for the last bins
compared to the experimental uncertainties, specially for the pinched WSRs, as
expected. This is a remarkable result, since DVs are larger in the V −A channel
(see for example Fig. 2.3).

Even when it looks extremely unlikely, the plateau could be accidental and
disappear at slightly higher values of s0 where experimental data are not available,
and the WSRs could be precisely satisfied just by chance. We want to gain more
confidence on our numerical results and perform a reliable estimation of the
uncertainties associated with DVs using Eq. (2.10). The problem is that the
spectral function is experimentally unknown above s = m2

τ .
Fortunately, there are strong theoretical constraints on ρ(s) that originate in

the special chiral-symmetry-breaking properties of Π(s), implying its very fast
fall-off at large momenta. In addition to the two WSRs, the spectral function
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Figure 2.6: Tests of WSRs. Respectively, the first WSR, the second one and the
combination of them which reduce its effects. We show the comparison with the
V +A channel.
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should satisfy the so-called Pion Sum Rule (πSR), which determines the electro-
magnetic pion mass splitting in the chiral limit [68]:

∫ ∞
sth

ds s log
(
s

Λ2

) 1
π

Im Π(s)
∣∣∣∣
mq=0

=
(
m2
π0 −m2

π+

)
em

8π
3α f2

π

∣∣∣
mq=0

. (2.29)

Owing to the second WSR, the πSR does not depend on the arbitrary scale Λ.
The rhs of this equation is well-known in Chiral Perturbation Theory (χPT) and,
within the needed accuracy, we can identify in the lhs the spectral function in
the chiral limit with the physical ρ(s) because mq corrections are tiny.

2.3.1 Parametrization of the spectral function

All the theoretical and phenomenological knowledge we have about Π(s) can
be used to get an estimate of the DV uncertainties. In order to do that, we recall
the ansatz for the spectral function at large values of s of Eq. (2.15):

ρ(s > sz) = κ e−γs sin{β(s− sz)} . (2.30)

We will split the spectral integrations in two parts, using the experimental data in
the lower energy range and the ansatz (2.30) at higher energies. From the ALEPH
data we know that the V − A spectral function has a zero around sz ∼ 2 GeV2,
which is represented in Eq. (2.30) through the sz parameter. We will take this
zero as the separation point between the use of the data and the use of the model.

Our parametrization is compatible with the ALEPH spectral function above
sz. Fitting the parameters given in (2.30) to the ALEPH data in the interval
s ∈ (1.7 GeV2,m2

τ ), we obtain a very good fit with χ2
min/d.o.f. = 8.52/9. In

fact, the fit with the updated ALEPH data looks more reliable compared to the
previous one, where a value of χ2

min/d.o.f.� 1 was obtained [39].
We want to stress that the exact s-dependence of the spectral function in the

high-energy region cannot be derived from first principles. The ansatz (2.30) is
just a convenient parametrization, consistent with present knowledge, that we
are going to use to estimate theoretical uncertainties associated with violations
of quark-hadron duality. Imposing that ρ(s) should satisfy all known theoret-
ical and experimental constraints, the free parameters in the ansatz will allow
us to estimate how much freedom remains for the spectral function shape and,
therefore, to obtain an additional estimate of the associated uncertainty.

There is an inherent systematic error in any work that estimates DV effects,
namely the dependence on the chosen parametrization. The comparison with
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other works that parametrize the data in a different way represents an important
step in this regard.†

2.3.2 Selection of acceptable spectral functions

Following the procedure described in [39], we generate 3 · 106 tuples of the
parameters (κ, γ, β, sz), randomly distributed in a rectangular region large enough
to contain all the possible acceptable tuples. Among all generated tuples, we
select those satisfying the following four physical conditions:

– The tuples must be consistent with the ALEPH data above s = 1.7 GeV2,
i.e., they must be contained within the 90% C.L. region in the fit to the
experimental ALEPH spectral function described before:

χ2 < χ2
min + 7.78 = 16.30 . (2.31)

Although we will only use the ansatz above sz ∼ 2 GeV2, we impose the
compatibility with the data from 1.7 GeV2 to ensure the continuity of the
spectral function in the matching region between the data and the model.

– The tuples must satisfy within the experimental uncertainties up to sz the
first and second WSRs with:∫ sz

0
ds ρ(s)ALEPH +

∫ ∞
sz

ds ρ(s;κ, γ, β, sz) = 17.0 · 10−3 GeV2 , (2.32)

∫ sz

0
ds s ρ(s)ALEPH +

∫ ∞
sz

ds s ρ(s;κ, γ, β, sz) = 0.24 · 10−3 GeV4 , (2.33)

where the right-hand-side errors are omitted as they are negligible compared
to the left-hand-side ones. In the second WSR there are contributions of

† In Refs. [41,43] the exact s-dependence of the resonance-based model (2.30) is assumed to
be true for the V and A distributions separately, above s ∼ 1.55 GeV2, with channel-dependent
parameters. Unfortunately, one must then perform a complex fit involving 9 parameters, in-
cluding a model-dependent determination of the strong coupling, and use the parametrization
near the a1 resonance where it is not expected to work properly. In this way, uncertainties
related to an αs determination from the V and A spectral distributions are introduced in the
analysis of the correlator Π(s), which does not contain any perturbative contribution. As we
will see in the next chapter, the resulting fit is very unstable with a dramatic dependence of the
fitted parameters on the adopted assumptions. Moreover, the LECs and vacuum condensates
are directly extracted from the fitted V and A spectral functions without imposing any further
requirement, as WSRs and πSR are only checked to be satisfied within errors a posteriori, in
contrast with our approach (see next subsection).
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the form O(m2
qαssz), but they are negligible for the values of sz that we

are considering.

– The tuples must satisfy within the experimental uncertainties the πSR:∫ sz

0
ds s log

(
s

1GeV2

)
ρ(s)ALEPH +

∫ ∞
sz

ds s log
(

s

1GeV2

)
ρ(s;κ, γ, β, sz)

= −(10.9± 1.3) · 10−3 GeV4 . (2.34)

The quoted error in the πSR takes into account that quark masses do not
vanish in nature and we are using real data instead of chiral-limit one.
We estimate this uncertainty taking for the pion decay constant the range
f0 = (87± 5) MeV [39], which includes the physical value and its estimated
value in the chiral limit [69]. We also include a small uncertainty coming
from the residual scale dependence of the logarithm, which is proportional
to the second WSR.

We accept only those tuples that fulfill the four conditions. This require-
ment constrains the regions in the parameter space of the ansatz (2.30) that are
compatible with both QCD and the data. From the initial set of 3 · 106 ran-
domly generated tuples we obtain 3716 satisfying our set of minimal conditions.
They represent the possible shapes of the spectral function beyond sz, as shown
in Fig. 2.7. In Fig. 2.8, we plot the statistical distribution of the parameters
(κ, γ, β, sz) for the accepted tuples.

2.4 Determination of physical parameters, including
DV uncertainties

For every selected tuple we have an acceptable spectral function‡ that can
be used to estimate the different physical parameters through the corresponding
spectral integrals. Using Eqs. (2.22), (2.23) and (2.21) (for n = 2, 3) with s0 = sz,
we determine Leff

10 , Ceff
87 , O6 and O8 for each of the 3716 accepted tuples. The

statistical distributions of the calculated parameters are shown in Fig. 2.9 (light
gray).
‡Given by the ALEPH data below sz and by the parametrization (2.30) above that value.
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Figure 2.7: Updated ALEPH V − A spectral function [46] (blue points) and all
the “acceptable” spectral functions (red band above 2.0 GeV2) that follow our
parametrization and satisfy the physical conditions described in the main text.

Figure 2.8: Distributions of the parameters (κ, γ, β, sz) that satisfy the physical
constraints. GeV units are used for dimensionful quantities.
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Figure 2.9: Statistical distribution of Leff
10 , Ceff

87 , O6 andO8 for the tuples accepted,
using sn weights (light gray) and pinched weight (dark gray) functions.

We can reduce both the experimental and the DV uncertainties using the
following pinched weight functions [40]:∫ s0

sth
ds

ρ(s)
s2

(
1− s

s0

)2 (
1 + 2s

s0

)
= 16Ceff

87 − 6 f
2
π

s2
0

+ 4 f
2
πm

2
π

s3
0
− δDV[ω−2, s0] , (2.35)

∫ s0

sth
ds

ρ(s)
s

(
1− s

s0

)2
= −8Leff

10 − 4 f
2
π

s0
+ 2 f

2
πm

2
π

s2
0
− δDV[ω−1, s0] , (2.36)

∫ s0

sth
ds ρ(s) (s− s0)2 = 2f2

πs
2
0 − 4f2

πm
2
π s0 + 2f2

πm
4
π +O6 − δDV[ω2, s0] , (2.37)

∫ s0

sth
ds ρ(s) (s− s0)2 (s+ 2s0) = −6f2

πm
2
πs

2
0 + 4f2

πs
3
0

+ 2f2
πm

6
π −O8 − δDV[ω3, s0] . (2.38)
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Following the same method with these relations, we obtain new distributions of
acceptable physical parameters, which are also shown in Fig. 2.9 (dark gray).
From these new distributions we get:

Leff
10 = (−6.477 + 0.004

− 0.006 ± 0.05) · 10−3 = (−6.48± 0.05) · 10−3 , (2.39)

Ceff
87 = (8.399 + 0.002

− 0.005 ± 0.18) · 10−3 GeV−2

= (8.40± 0.18) · 10−3 GeV−2 , (2.40)

O6 = (−3.6 + 0.5
− 0.4 ± 0.5) · 10−3 GeV6 = (−3.6 + 1.0

− 0.9) · 10−3 GeV6 , (2.41)

O8 = (−1.0± 0.3± 0.2) · 10−2 GeV8 = (−1.0± 0.5) · 10−2 GeV8 .(2.42)

The first errors correspond to DV uncertainties, computed from the dispersion
of the histograms (corresponding to the 68% probability region) and the second
errors are the experimental ones. The final uncertainties are computed from them
assuming conservatively that they are 100% correlated.

We observe how in this approach pinched weight functions also reduce the DV
effects, and that they are negligible for Leff

10 and Ceff
87 at s0 ∼ m2

τ , compared with
the experimental uncertainties. The results obtained for these two LECs are in
perfect agreement with our first determinations in Eqs. (2.24) and (2.25), which
did not include any estimate of DV. The corresponding spectral integrals contain
weight functions with negative powers of s that suppress the contribution from
the upper end of the integration range, making DV negligible even without reduc-
ing them with pinched weight functions. This is no-longer true for the vacuum
condensates O6 and O8, at least at energies where experimental uncertainties are
not so small. The use of pinched weights is essential to suppress the contributions
from the region around s0 in the contour integration. This is clearly reflected in
the strong reduction of uncertainties observed in the two lower panels of Fig. 2.9.

Actually, settingDV = 0 for the double-pinched weight functions in Eqs.(2.37)
and (2.38), one obtains values for O6 and O8 that are perfectly compatible with
our determinations in Eqs. (2.41) and (2.42), although with much larger ex-
perimental uncertainties. This is illustrated in Fig. 2.10, which shows how the
extracted condensates stabilize at large s0, around the right values but with very
large error bars. The implementation of short-distance constraints (WSRs and
πSR), through the procedure described in the previous section, has made possi-
ble to better pin down the spectral function in that region and obtain the more
precise values in Eqs. (2.41) and (2.42).§

§In Chapter 4, some preliminary additional tests of DVs, such as the study of the depen-
dence of the values on the point at which one assumes the parametrization becomes valid, and
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Figure 2.10: Values of the condensatesO6 andO8 at different values of s0 obtained
from Eqs. (2.37) and (2.38) ignoring duality violations. By comparison, the
values errorbars of the results obtained in Eqs. (2.41) and (2.42) are shown.

minor changes in the methods, aimed to reduce the correlation between DV and experimental
uncertainties, are studied for the condensates.
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n -2 -1 0 1 2
Experimental 0.0083 0.00093 0.00064 0.00056 0.00051
Duality -0.00046 -0.00047 -0.00049 -0.00050 -0.0050

Table 2.1: Experimental uncertainties and DV contribution of the tuple with
minimum χ2 for ω(s) =

(
s
s0

)n
and s0 = 2.8 GeV2.

ω(s) 1− x Ceff
87 Leff

10 O6 Rτ V−A
Experimental 0.00013 0.0081 0.0004 0.000069 0.00012
Duality -0.00001 -0.00001 -0.000004 -0.0000055 -0.000019

Table 2.2: Experimental uncertainties and DV contribution at s0 = 2.8 GeV2

of the tuple with minimum χ2 for ω(s) = (1 − s
s0

)2 and double pinched weight
functions used to extract parameters.

Let us perform an additional test of the role of DVs that can be useful for
the next chapter, where experimental uncertainties are lower than perturbative
ones for the different moments, and also for motivating more precise experimental
data, which could allow precise determinations at larger s0. In Tables 2.1 and 2.2,
we compare the experimental uncertainty and the DV contribution of the tuple
of parameters associated with the minimum χ2 (χ2

min = 7.78) from s0 = 2.8 GeV2

for several moments, the last point with an optimal experimental resolution. We
find that the DV contribution is already smaller than experimental uncertainties
for ω(s) =

(
s
s0

)n
when n ≤ 2 and totally negligible when double pinching, in

total agreement with the arguments based on s0−stability.
Our results are in good agreement with those obtained previously in Ref. [40]

with the 2005 ALEPH data set. Thus, the improvements incorporated in the
2014 release of the ALEPH data do not introduce sizable modifications of the
physical outputs. Similar results have been obtained recently in Ref. [43], using
also the 2014 ALEPH data set.

Ref. [43] emphasises the existence of a slight tension with the results obtained
in Ref. [41] with the 1999 OPAL data set [70]. In view of this, we have repeated
our numerical analyses with the OPAL spectral function [70]. As happened with
the 2005 ALEPH data set, the fit of the ansatz (2.30) to the OPAL data in the
interval s ∈ (1.7 GeV2,m2

τ ) has a χ2
min/d.o.f.� 1. Applying the same procedure
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used for ALEPH, we have obtained the following results with the OPAL data:

Leff
10 = (−6.42 +0.10

−0.11) · 10−3 , (2.43)

Ceff
87 = (8.35± 0.29) · 10−3 GeV−2 , (2.44)

O6 = (−5.7 +1.5
−1.7) · 10−3 GeV6 , (2.45)

O8 = (0.0 +0.9
−0.7) · 10−2 GeV8 . (2.46)

Owing to the larger uncertainties of the OPAL data, specially at higher values of
s, the extracted parameters are less precise than those obtained with the ALEPH
data. Nevertheless, comparing Eqs. (2.43)-(2.46) with (2.39)-(2.42), we observe
a good agreement between both sets of results, the differences being only 0.5σ,
0.1σ, 1.1σ and 1.1σ for Leff

10 , Ceff
87 , O6 and O8, respectively. We conclude that the

much larger fluctuations obtained in Refs. [41, 43] between the results extracted
from the two data sets are a consequence of the particular approach adopted in
their DV analyses.¶

Finally, we can use double-pinched weight functions in order to estimate
higher-dimensional condensates:∫ s0

sth
ds ρ(s) (s− s0)2 (s2 + 2s0s+ 3s2

0)

= − 8f2
πm

2
πs

3
0 + 6f2

πs
4
0 + 2f2

πm
8
π +O10 − δDV[ω4, s0] , (2.47)∫ s0

sth
ds ρ(s) (s− s0)2 (s3 + 2s0s

2 + 3s2
0s+ 4s3

0)

= − 10f2
πm

2
πs

4
0 + 8f2

πs
5
0 + 2f2

πm
10
π −O12 − δDV[ω5, s0] , (2.48)∫ s0

sth
ds ρ(s) (s− s0)2 (s4 + 2s0s

3 + 3s2
0s

2 + 4s3
0s+ 5s4

0)

= − 12f2
πm

2
πs

5
0 + 10f2

πs
6
0 + 2f2

πm
12
π +O14 − δDV[ω6, s0] , (2.49)∫ s0

sth
ds ρ(s) (s− s0)2 (s5 + 2s0s

4 + 3s2
0s

3 + 4s3
0s

2 + 5s4
0s+ 6s5

0)

= − 14f2
πm

2
πs

6
0 + 12f2

πs
7
0 + 2f2

πm
14
π −O16 − δDV[ω7, s0] . (2.50)

¶Since DV is not very relevant for the extraction of the LECs, Refs. [41, 43] obtain similar
values for Leff

10 and Ceff
87 with the two data sets. However, sizable differences show up in their

determinations of O6 and O8 where DV is more important.
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103 · Leff
10 103 · Ceff

87 103 · O6 102 · O8 Reference Comments
(GeV−2) (GeV6) (GeV8)

−6.45± 0.06 – −2.3± 0.6 −5.4± 3.3 BPDS’06 [35] ALEPH’05+DV=0
– – −6.8 + 2.0

− 0.8 3.2 + 2.8
− 9.2 ASS’08 [37] ALEPH’05+DV=0

−6.48± 0.06 8.18± 0.14 – – GPP’08 [38] ALEPH’05+DV=0
−6.44± 0.05 8.17± 0.12 −4.4± 0.8 −0.7± 0.5 GPP’10 [39,40] ALEPH’05+DVV−A
−6.45± 0.09 8.47± 0.29 −6.6± 1.1 0.5± 0.5 Boito’12 [41] OPAL’99+DVV/A
−6.50± 0.10 – −5.0± 0.7 −0.9± 0.5 DHSS’15 [42] ALEPH’14+DV=0
−6.45± 0.05 8.38± 0.18 −3.2± 0.9 −1.3± 0.6 Boito’15 [43] ALEPH’14+DVV/A
−6.42 +0.10

−0.11 8.35± 0.29 −5.7 +1.5
−1.7 0.0 +0.9

−0.7 this work OPAL’99+DVV−A
−6.48± 0.05 8.40± 0.18 −3.6 + 1.0

− 0.9 −1.0± 0.5 this work ALEPH’14+DVV−A

Table 2.3: Compilation of recent determinations of the LECs and vacuum con-
densates.

Using these equations with the same method, we obtain from the ALEPH data:

O10 = (5.6± 1.2± 0.8) · 10−2 GeV10 = (5.6± 2.0) · 10−2 GeV10 , (2.51)

O12 = (−0.13 + 0.03
− 0.05 ± 0.02) GeV12 = (−0.13 + 0.05

− 0.07) GeV12 , (2.52)

O14 = (0.24 + 0.11
− 0.05 ± 0.06) GeV14 = (0.24 + 0.17

− 0.11) GeV14 , (2.53)

O16 = (−0.38 + 0.25
− 0.10 ± 0.13) GeV14 = (−0.38 + 0.38

− 0.23) GeV16 . (2.54)

However, the model dependence is stronger for these condensates and our
confidence in the quoted uncertainties weaker.

2.4.1 Comparison with previous works

Our final results for Leff
10 , Ceff

87 , O6 and O8 are compared in Table 2.3 with re-
cent (post-2005) phenomenological determinations of these parameters, obtained
with different data sets [44,46,70] and various DV parametrizations.‖

There is an excellent agreement among the different values quoted for the ef-
fective LECs Leff

10 and Ceff
87 , showing that these determinations are very solid and

do not get affected by DV effects. In fact, as shown in Table 2.3, the precision
has not changed in the last ten years. Nonetheless, the robustness of these deter-
minations has increased significantly thanks to the thorough studies of DV effects
‖A complete list including theoretical estimates [71–73] and previous phenomenological de-

terminations of these quantities (and of higher-dimensional condensates) [29–34,36,44,70,74–79]
can be found in Refs. [9, 40].
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with different approaches. The values obtained from different data sets are also
in good agreement, although one can notice a difference of 1σ between the Ceff

87
from the updated (2014) ALEPH data comparing with the old one (2005).

The different results for O6 and O8 are also in reasonable agreement, within
the quoted uncertainties. A good control of DV effects is more important for
these vacuum condensates. The use of pinched weights allows to sizably reduce
their impact and obtain more reliable determinations. With the ALEPH’14 data
one reaches a 30 % accuracy for O6, but the error remains still large (50 %) for
O8. As commented before, we do not see any significant discrepancy between the
results obtained from the OPAL and ALEPH data samples.

2.5 χPT couplings

The effective couplings Leff
10 and Ceff

87 can be rewritten in terms of O(p4) and
O(p6) couplings of the χPT Lagrangian [38,66]:

Leff
10 ≡ −1

8 Π(0)

= Lr10(µ) + 1
128π2

[
1− log

(
µ2

m2
π

)
+ 1

3 log
(
m2
K

m2
π

)]

− 1
8 (Cr0 + Cr1) (µ)− 2 (2µπ + µK) (Lr9 + 2Lr10)(µ) + G2L(µ, s=0)

+ O(p8) , (2.55)

Ceff
87 ≡ 1

16 Π ′(0)

= Cr87(µ) − 1
64π2f2

π

[
1− log

(
µ2

m2
π

)
+ 1

3 log
(
m2
K

m2
π

)]
Lr9(µ)

+ 1
7680π2

(
1
m2
K

+ 2
m2
π

)
− 1

2 G
′
2L(µ, s=0) + O(p8) , (2.56)

where Π is the pion subtracted correlator, the factors µi = m2
i log(mi/µ)/(16π2f2

π)
originate from one-loop corrections and G2L(µ, s=0) and G′2L(µ, s=0) are two-
loop functions, whose numerical values are given in the App. A. We have also
defined

Cr0 = 32m2
π (C12 − C61 + C80) , (2.57)

Cr1 = 32 (m2
π + 2m2

K) (C13 − C62 + C81) . (2.58)
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To first approximation the effective parameters correspond to the chiral couplings
L10 and C87, which appear at O(p4) and O(p6), respectively, in the χPT expan-
sion. The scale dependence of Lr10(µ) is canceled by the one-loop logarithmic
terms in the second line of Eq. (2.55), which are suppressed by one power of 1/NC

with respect to Lr10(µ), where NC is the number of QCD colors. The remaining
contributions in Eq. (2.55) contain the O(p6) corrections, which unfortunately
introduce other O(p6) and O(p4) chiral couplings (third line). The corrections to
Cr87(µ) in Eq. (2.56) only involve one additional LEC, Lr9(µ), through a one-loop
correction with the O(p4) chiral Lagrangian.

It is convenient to give the following compact numerical form of these equa-
tions to ease their future use:

Leff
10 = Lr10 − 0.00126 + O(p6) , (2.59)

Leff
10 = 1.53Lr10 + 0.263Lr9 − 0.00179− 1

8 (Cr0 + Cr1) + O(p8) , (2.60)

Ceff
87 = Cr87 + 0.296Lr9 + 0.00155 + O(p8) , (2.61)

where we have used µ = Mρ as the reference value for the χPT renormalization
scale. The uncertainties in these numbers are much smaller than those affecting
the different LECs and can therefore be neglected.

Working with O(p4) precision, the determination of Lr10(µ) is straightforward
and we find:

Lr10(Mρ) = −(5.22± 0.05) · 10−3 [O(p4) analysis] . (2.62)

As mentioned before, an O(p6) determination of Lr10 requires to know some
next-to-next-to-leading-order (NNLO) LECs,∗∗ namely those in Cr0,1. This has
motivated some interest in these quantities in the last few years. Here we briefly
review the different approaches.

In the first O(p6) determination of Lr10 [38], Cr0 was extracted from a combi-
nation of phenomenological (Cr61,12) [81–84] and theoretical (Cr80, RχT) [66, 85]
∗∗It also requires Lr9, which we take from Ref. [80]: Lr9(Mρ) = 5.93 (43) · 10−3. Let us notice

that this is the value used also in all other O(p6) extractions of Lr10 from tau data.
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Lr10(Mρ) Cr0(Mρ) Cr1(Mρ) Reference Input
×103 ×103 ×103

-4.06 (39) +0.54 (42) 0 (5) GPP’08 [38] Π(0) + Cpheno/RχT0 + 1/Nc
-3.10 (80) -0.81 (82) 14 (10) Boito’12 [41] Π(0) + Π(s)latt
-3.46 (32) -0.34 (13) 8.1 (3.5) Boyle’14, GMP’14 [84,86] Π(0) + Π(s)latt + ∆Π(0)
-3.50 (17) -0.35 (10) 7.5 (1.5) Boito’15 [43] Π(0) + Π(s)latt + ∆Π(0)

-4.08 (44) +0.21 (34) 0 (5) this work Π(0) + Cpheno/RχT0 + 1/Nc
-4.17 (35) -0.43 (12) -1 (6) this work Π(0) + ∆Π(0) + 1/Nc

Table 2.4: Compilation of recent determinations of the LECs. The determinations
of Leff

10 , i.e. Π(0), are obtained as explained in Table 2.3. 1/Nc refers to Eq. (2.66),
whereas ∆Π(0) refers to the sum rule given in Eq. (2.67). Additional details are
given in the text.

inputs, namely††

Cr61(Mρ) = (1.7± 0.6) · 10−3 GeV−2 [81, 83,84] , (2.63)
Cr12(Mρ) = (0.4± 6.3) · 10−5 GeV−2 [82] , (2.64)
Cr80(Mρ) = (2.1± 0.5) · 10−3 GeV−2 [66, 85] , (2.65)

whereas Cr1 , which was completely unknown at the time, was estimated using

|Cr62 − Cr13 − Cr81| ≤
1
3 |C

r
61 − Cr12 − Cr80| , (2.66)

i.e., a simple educated guess based on the fact that those LECs are suppressed
by a factor 1/NC . Using these numbers and Eq. (2.60), we obtain the results
shown in Table 2.4 (5th row) and Fig. 2.11 (magenta point), which supersede
those found in Ref. [38].
††This value of Cr61 comes from a flavour-breaking finite-energy sum rule involving the corre-

lator Π(0+1)
ud−us,V V (0). The original result [81] has been updated recently [84], finding

32 (m2
K −m2

π)C61 + 1.06Lr10 = 0.00727 (134) .

Since Lr10 appears in this relation only at one loop, i.e. at O(p6), we can use here an O(p4)
determination of Lr10 to extract Cr61. We can indeed see that the Lr10 contribution to the Cr61
error is subdominant. We use the conservative value Lr10 = −0.0052 (17) to extract Cr61.
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An alternative sum rule involving Lr10 and Cr0 was recently derived in Ref. [84]
from an analysis of the flavour-breaking left-right correlator Π(0+1)

ud−us,LR(0), namely‡‡

[
Π(0+1)
ud,LR(0)−Π(0+1)

us,LR(0)
]

LEC
= −0.7218Lr5 + 1.423Lr9 + 2.125Lr10 −

m2
K −m2

π

m2
π

Cr0

= 0.0113 (15) , (2.67)

again at µ = Mρ. Combining this constraint with the sum rule∗ in Eq. (2.60)
and the naive inequality in Eq. (2.66), we obtain the results shown in Table 2.4
(6th row) and Fig. 2.11 (dark blue region). We see that Lr10 is in excellent
agreement with the value obtained using Eqs. (2.63-2.65) and has a smaller
error. Concerning the NNLO LECs, almost the same value is obtained for Cr1 ,
whereas a 1.8 σ tension is present in the Cr0 case.

Another interesting development was performed in Ref. [86], where additional
constraints on Lr10, Cr0 and Cr1 were obtained from lattice simulations of the cor-
relator Π(s) at unphysical meson masses. As shown in Table 2.4, the lattice data
allow for a more accurate determination of the LECs, making unnecessary the
use of the naive guess in Eq. (2.66). However, to derive the lattice constraints one
needs to assume that the O(p6) χPT expansion reproduces well the correlator
at s ∼ −0.25 GeV2, the energy region with smaller lattice uncertainties, which
dominates these constraints. Unfortunately, it was shown in Ref. [41] that O(p6)
χPT does not approximate well enough Π(s) at these energies, taking into ac-
count the low uncertainties we are dealing with, and one needs to incorporate the
so-far unknown O(p8) chiral corrections.

In order to take advantage of the most precise lattice constraint, Ref. [43]
makes the strong assumption that the missing O(p8) chiral contributions are
dominated by mass-independent terms, i.e., Π(s) ≈ ΠχPT

O(p6) + Ds2, so that they
cancel in the lattice-continuum difference ΠχPT

lattice − ΠχPT
physical. It is worth noting

that this is not a good approximation at the previous chiral order, O(p6), since
more than 25% of the O(p6) correction proportional to s comes from known mass-
dependent chiral terms. Therefore, the uncertainties associated with these lattice
constraints seem at present underestimated.
‡‡We use the value obtained in Ref. [84] using 1999 OPAL data for the non-strange part,

0.0113 (15), instead of the more precise value of Ref. [43] from 2014 ALEPH data, 0.0111 (11),
in order to avoid possible correlations with our determination of Leff

10 .
∗We use Lr5(Mρ) = (1.19± 0.25) · 10−3 [87] and, once again, Lr9(Mρ) = 5.93 (43) · 10−3 [80].
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Figure 2.11: Latest determinations of the linear combinations of NNLO LECs
Cr0,1, at µ = Mρ. We follow the same notation as in Table 2.4. The region allowed
by the inequality of Eq. (2.66), inspired by large-Nc arguments, is indicated in
light blue, whereas the light gray area around it (dashed) simply represents a
naive estimate of its error, namely 33%.

Additionally, correlations between the continuum and the lattice sum rules
(e.g. due to Lr9) are not publicly available. It is worth mentioning nonetheless that
if we implement these lattice constraints† (instead of the inequality in Eq. (2.66)),
neglecting such correlations, we reproduce the results of Ref. [43] except for the
uncertainties associated to Lr5 and Lr9, for which the neglected correlations are
likely to be relevant. Such an agreement is not surprising, as our determinations
of the effective coupling Leff

10 were very close.
From Table 2.4 and Fig. 2.11 we see that the determinations obtained with

the lattice constraints are (in most cases) significantly more precise than those
using instead the inequality of Eq. (2.66). The agreement is reasonable (in the
0.5− 1.7σ range depending on the quantity), taking into account that Eq. (2.66)
is nothing but a naive educated guess, while the lattice improvement suffers from
additional uncertainties not yet included in the quoted errors.

The determination of Cr87 from Ceff
87 at O(p6) does not involve any unknown

LEC. The relation (2.56) contains a one-loop correction of size −(3.16 ± 0.13) ·
10−3, which only depends on Lr9(Mρ) and the pion and kaon masses, and small
non-analytic two-loop contributions collected in the term G′2L(Mρ, s = 0) =
†We find that the constraint associated to the third lattice ensemble used in [43] fully domi-

nates the fits.
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−0.28 · 10−3 GeV−2. In spite of its 1/NC suppression, the one-loop correction
is very sizable, decreasing the final value of the O(p6) LEC:

Cr87(Mρ) = (5.10± 0.22) · 10−3 GeV−2 . (2.68)

2.5.1 Previous determinations with other methods

Our phenomenological determinations of Lr10(Mρ) and Cr87(Mρ) from τ decay
data are in good agreement with the large-NC estimates based on lowest-meson
dominance [66,88–92]:

L10 = − F 2
V

4M2
V

+ F 2
A

4M2
A

≈ − 3f2
π

8M2
V

≈ −5.4 · 10−3 ,

C87 = F 2
V

8M4
V

− F 2
A

8M4
A

≈ 7f2
π

32M4
V

≈ 5.3 · 10−3 GeV−2 . (2.69)

They also agree with the C87 determinations based on Pade approximants [72,93],
which are however unable to fix the renormalization-scale dependence that is of
higher-order in 1/NC .

The resonance chiral theory (RχT) Lagrangian [89,90,94,95] was used to ana-
lyze the left-right correlator at NLO in the 1/NC expansion in Ref. [73]. Matching
the effective field theory description with the short-distance QCD behavior, both
LECs are determined, keeping full control of their µ dependence. The predicted
values [73]

Lr10(Mρ) = −(4.4± 0.9) · 10−3 ,

Cr87(Mρ) = (3.6± 1.3) · 10−3 GeV−2 , (2.70)

are in good agreement with our determinations, although they are less precise.
Lattice determinations of the χPT LECs have improved considerably in re-

cent times, although they are still limited to O(p4) accuracy. The most recent
simulations find:

Lr10(Mρ) =
{
−(5.7± 1.1± 0.7) · 10−3 [96] ,
−(5.2± 0.2 + 0.5

− 0.3) · 10−3 [97] . (2.71)

These lattice results are in good agreement with our determinations, but their
accuracy is still far from the phenomenological precision.
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2.6 Conclusions

We have determined the LECs Leff
10 and Ceff

87 , using the recently updated
ALEPH spectral functions [46], with the methods developed in Refs. [38–40].
Our final values, obtained using pinched weight functions with a statistical anal-
ysis that includes possible DV uncertainties, are:

Leff
10 = (−6.48± 0.05) · 10−3 , (2.72)

Ceff
87 = (8.40± 0.18) · 10−3 GeV−2 . (2.73)

These results are in excellent agreement with the values extracted with non-
pinched weights and with those determined neglecting DV in Eqs. (2.24) and
(2.25). Thus, DV does not play any significant role in the determination of
LECs, where the weight functions strongly suppress the high energy region of the
spectral integrations. Our results are in good agreement with the ones obtained
previously with the 2005 release of the ALEPH τ data [40]:

Leff
10 = (−6.44± 0.05) · 10−3 , (2.74)

Ceff
87 = (8.17± 0.12) · 10−3 GeV−2 . (2.75)

The improvements introduced in the 2014 ALEPH data set did not bring major
changes in these parameters. The values in Eqs. (2.72) and (2.73) also agree
with the results obtained recently with the same experimental data but with a
different approach in Ref. [43].

The statistical approach adopted in our analysis allows for a precise deter-
mination of the dimension-6 and 8 terms in the OPE of the left-right correlator
Π(s). We obtain:

O6 = (−3.6 + 1.0
− 0.9) · 10−3 GeV6 , (2.76)

O8 = (−1.0± 0.5) · 10−2 GeV8 , (2.77)

also compatible with the determinations performed in Refs. [40] (with non-updated
ALEPH data) and [43] (with a different approach for estimating DV effects). Us-
ing the same method, some higher-dimensional terms in the OPE have also being
estimated in Eqs. (2.51)-(2.54).

The numerical determination of the effective couplings Leff
10 and Ceff

87 has al-
lowed us to derive the corresponding LECs of the χPT Lagrangian. At O(p6),
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we find

Lr10(Mρ) = −(4.1± 0.4) · 10−3 , (2.78)
Cr87(Mρ) = (5.10± 0.22) · 10−3 GeV−2 . (2.79)

The final value quoted for Lr10(Mρ) takes into account our two different estimates
in Table 2.4, keeping conservatively the individual errors in view of the present
uncertainties induced by the NLO LECs.



Chapter 3

Determination of the QCD
Coupling from ALEPH τ
Decays

3.1 Introduction

In the previous chapter we made a comprehensive study of the phenomenology
of the Π(1+0)

V−A (s) correlator. When studying the separate Π(1+0)
V (s) and Π(1+0)

A (s)
ones, the formalism is basically the same. Eq. (2.8) can be rewritten as:

AωV/A(s0) ≡
∫ s0

sth

ds

s0
ω(s) Im ΠV/A(s) = i

2

∮
|s|=s0

ds

s0
ω(s)ΠV/A(s) , (3.1)

where ω(s) is required to be analytic at least in the same complex region as Π(s)
and sth is the hadronic threshold (sth = m2

π). We have absorbed absorbing the
pion contribution into Im Π(0)

A (s). Then again, for large enough values of s0, the
correlator in the integral along the circumference can be approximated by its
OPE and the differences are called quark-hadron duality violations (DVs). The
big difference with the V −A case is that, as long as s0 is large enough so the OPE
makes sense, the purely perturbative contribution fully dominates the prediction
for any AωV/A. This is specially true for the inclusive ratio:

Rτ = Γ[τ− → ντhadrons]
Γ[τ− → ντe−νe]

, (3.2)

53
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which in the SM, making use of Eq. (1.31), gives

Rτ = 12π |Vud|2Sew

A(ωτ )
V+A − 4πm

2
π

m2
τ

(
1− m2

π

m2
τ

)2
f2
π

m2
τ

 , (3.3)

where:
ωτ (s) =

(
1− s

m2
τ

)2 (
1 + 2 s

m2
τ

)
. (3.4)

Neglecting small logarithmic corrections coming from the D 6= 0 part of the OPE,
which are suppressed by extra powers of αs, the first non-perturbative correction
to Rτ comes from O6. Taking into account that the value of O6V+A should be of
the same order or even smaller than O6V−A, which we obtained before and that
indeed, as we will see in Chapter 4, it can be obtained from the lattice by invoking
relations in the chiral limit (O(p0)), one expects a very small power correction at
the tau mass (1% of Rτ , which roughly translates into a 5% to αs(mτ )).

There are strong reasons to state that DVs are completely negligible for Rτ
compared to experimental or other theoretical uncertainties. First, the kinematic
function ωτ (s) presents a double-pinch suppression thah considerably reduces
DVs, as expected from pure theoretical grounds and checked with V − A data
in the previous chapter. Additionally, using Rτ we are in s0 = m2

τ , a large
enough value to have many hadronic thresholds opened, so that one is far from
the resonance saturation regime and then one expects an optimal quark-hadron
duality. This multiplicity is enhanced by the fact that Rτ is taking the fully
inclusive non-strange V + A spectral function. The expected DV suppression of
V + A with respect to V − A can be checked where data are available (Figure
2.3).

Since this is an important point let us assess a numerical estimate of this
suppression. As we previously studied,

∆Aω,DV
V/A (s0) ≡ 1

2πi

∮
|s|=s0

ds

s0
ω(s)

[
Π(s)−ΠOPE(s)

]
=
∫ ∞
s0

ds

s0
ω(s) (ρ− ρOPE)(s) . (3.5)

Since they are expected (and observed in the region where we have data available)
to go to zero very fast, typically exponentially, DVs are dominated by the region
close to s0 in Eq. (3.5). One natural magnitude to estimate the suppression
of DVs in the V + A channel with respect to the V − A is then, provided the



Chapter 3. 3.1 Introduction 55

Figure 3.1: Experimental axial spectral function compared to the one obtained
just using the vectorial one plus the rough assumption that V+A DVs are 0.

difference 2.8 GeV2 − s0 is large enough:

∆rel ≡
∫ 2.8 GeV2

s0
ds
s0
|ρV+A − ρOPEV+A|(s)∫ 2.8 GeV2

s0
ds
s0
|ρV−A − ρOPEV−A|(s)

. (3.6)

Taking a large interval of s0-values (s0 ∈ (1, 1.7) GeV2), one finds that the ratio
is always ∆rel ≈ 0.2, in total agreement with the expected suppression. Nicely,
one can predict the resonant A spectrum in a decent approximation just using V
data and assuming that DVs in the more inclusive V+A channel are 0. This is
illustrated in Figure 3.1. Notice how this precious model-independent suppres-
sion is lost in any DV study based on a semi-inclusive channel. Theoretically
motivated models able to explain this suppression would be welcomed.

The suppression is rather clear and should be expected, because of the same
theoretical reasons, at larger energies (although certainly not necessarily so large).
Taking into account that different short-distance constraints were already satisfied
in the V − A channel within experimental uncertainties when s0 ∼ m2

τ and that
indeed experimental uncertainties are typically lower than perturbative ones, it
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is very unlikely that the role of DV uncertainties becomes dominant if the high-
energy tail is not very enhanced. Since Rτ , as explained before, indeed efficiently
suppresses it, its numerical role should be completely negligible.

A very naive, but certainly reliable, estimate of the non-perturbative correc-
tion to Rτ is taking O6V+A = 0± |O6V−A| to get:

δNP = 4π2
(
−3O6

m6
τ

− 2O8
m8
τ

)
−16π2m

2
π

m2
τ

(
1− m2

π

m2
τ

)2
f2
π

m2
τ

= −0.002±0.014 , (3.7)

which it is in agreement with the different determinations that can be found in the
literature. A determination of the 4-quark condensate 〈ūλiγµd d̄λiγµu〉µ would
help to considerably reduce uncertainties in δNP , since the other one appearing in
the calculation, the V −A version, can be obtained from the V −A channel or from
the lattice using the relations between vacuum condensates and K → ππ matrix
elements (see Chapter 4). Just to take a reference of the order of magnitude, it is
worth to mention that in the Vacuum Saturation Approximation (VSA) one gets
O6V−A ∼ −0.003 GeV6, in good agreement with the different phenomenological
approaches, while for O6V+A ∼ −0.0007 GeV6.

The predicted value of Rτ is then completely dominated by the perturbative
contribution, which is already known to O(α4

s) [98], and includes renormalization-
group resummations of higher-order logarithm-induced corrections [54, 99]. Due
to the low value of the τ mass scale, αs(m2

τ ) is sizable with a numerical value
around 0.33 [7]. This makes Rτ more sensitive to the strong coupling than higher-
energy observables, even if some of them can be predicted more accurately. Al-
though αs(m2

τ ) has been only determined with a 4% accuracy, evolving it up in
energy with the QCD renormalization-group equations, it implies a 1% precision
on αs(M2

Z) [7, 100], which is a factor of two more accurate than the direct mea-
surement of the strong coupling at the Z peak [101–104]. The excellent agreement
between these two determinations of αs, at very different mass scales, constitutes
a very precise quantitative test of asymptotic freedom [105–107].

Since the strong coupling is not small at µ = mτ , the predicted value of Rτ is
quite sensitive to higher-order perturbative corrections. The induced perturbative
uncertainties are, at present, the main limitation on the potentially achievable ac-
curacy [7,100,108]. Nevertheless, at the current level of O(α4

s) precision, it is also
necessary to analyze carefully the numerical role of the small non-perturbative
contributions beyond the naive analysis. The most precise experimental analysis,
performed with the ALEPH τ decay data [44], bounds non-perturbative effects to
be safely below 1% [46,109,110], in agreement with theoretical expectations [52]
and previous experimental studies [44, 70, 75, 111, 112] which confirmed the pre-
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dicted suppression of this type of contributions. The ALEPH results have been
criticized in recent years in a series of papers [113–115], advocating to pursue a
slightly different type of analysis [60, 116], focused on observables which maxi-
mize the role of non-perturbative effects in order to better study them. However,
these papers adopt an overly conservative attitude when judging previous work
on the subject, while the uncertainties of their own analyses appear to be un-
derestimated. Studying observables which are more sensitive to some types of
non-perturbative contributions is interesting per-se and can help us to better un-
derstand QCD in the strong-coupling regime, but it is not necessarily the best
strategy to perform a clean and accurate measurement of αs.

In this chapter, based on Ref. [117] we attempt a fresh numerical analysis of
the ALEPH data, trying to assess the advantages and disadvantages of different
possible approaches. Ideally, all sound theoretical methods should finally give
similar results, complementing each other so that a combination of them would
allow to maximize the amount and quality of the extracted information. However,
current τ data suffer from strong correlations and large uncertainties, specially in
the highest energy range, which severely limits the potential scope of a realistic
statistical analysis and the maximum number of parameters to be fitted.

A description of the relation between the spectral function and the invariant
mass distribution has been given in Chapter 1. The experimental invariant mass
distribution is not really given in a continuum, but as series of correlated bins,
narrow enough so that any integral with analytic weight functions can be ap-
proximated by rectangles with negligible uncertainties due to the discretization
compared with the experimental uncertainties of the bins themselves. Taking
that into account, the observables studied in this work (Eq. (3.1)) can be written
as:

AωV (s0) = F

s0−
∆s0

2∑
si

∆NV (si)
N

ωi(si, s0)H(s0, si) , (3.8)

AωA(s0) = F

s0−
∆s0

2∑
si

∆NA(si)
N

ωi(si, s0)H(s0, si) ,

+ F
m2
τ

s0

(
1− m2

π

m2
τ

)−2

Bπ ωi(m2
π, s0) , (3.9)
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where Bπ is the branching ratio of the process τ → πντ ,

F ≡
[
12π SEW |Vud|2Be

]−1
, (3.10)

collects all normalization factors,

H(s0, si) = m2
τ

s0

(
1− si

m2
τ

)−2 (
1 + 2si

m2
τ

)−1
(3.11)

and ∆s0 is the bin width of the bin centered at s0 − ∆s0
2 .

In Figure 3.2 we show the updated spectral functions measured by the ALEPH
collaboration [46]. Together with the experimental data points, the figure shows
the naive parton-model expectations (horizontal green lines) and the massless
perturbative QCD predictions, using αs(m2

τ ) = 0.329 (blue lines). This com-
parison shows beautifully, how the data approach the QCD predictions at the
highest available energy bins, without any obvious need for non-perturbative cor-
rections at s = m2

τ . Resonance structures are clearly visible at lower values of
the hadronic invariant mass, specially the prominent ρ(2π) and a1(3π) peaks,
but as s increases the opening of higher-multiplicity hadronic thresholds results
in much smoother inclusive distributions, as expected from quark-hadron duality
considerations [118]. The flattening of the spectral distribution is specially good
in the most inclusive channel, V + A, where perturbative QCD seems to work
even from s ∼ 1.2 GeV2, a surprisingly low value. The onset of the asymptotic
perturbative QCD behavior appears obviously later in the semi-inclusive V and
A distributions, which only starts to flatten at values of s ∼ 2 GeV2.

Unfortunately, the experimental uncertainties on the last two (three in the
axial distribution) experimental bins are very large, precisely in the highest energy
domain where the short-distance QCD methods become more precise.

While most of the theoretical formalism needed for the extraction of the strong
coupling has been presented, we still need to introduce some elements, such as
the perturbative contribution, absent in the previous chapter, and some useful
information about the known vacuum condensates. We present it in Section 3.2.
The standard analysis of the data [52, 54, 119], adopted by the ALEPH Orsay
group [46, 109, 110], is revised in Section 3.3, which performs a complete nu-
merical study and comments on the quality and potential weaknesses of the final
results. Sections 3.4 and 3.5 discuss some possible improvements and their limita-
tions, and analyze the stability of the results, compared with the ones previously
obtained in Section 3.3. In Section 3.6 we follow an alternative strategy, based on
the Borel transform of the spectral distribution, in order to change the weights of
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Figure 3.2: ALEPH spectral functions for the V , A and V +A channels [46].

different contributions/effects. While having its own weaknesses, this approach
provides an additional handle to judge the reliability of the results extracted from
current data.

The approach followed in Refs. [113–115] is critically studied in Section 3.7.
Their results are based on an ad-hoc assumption on the functional form of the
spectral function whose validity is unknown. As we will see, small modifications of
this assumption, even keeping their ansatz and changing only the arbitrary energy
point in which it is supposed to start to be valid, translate into sizable changes in
the fitted value of αs(m2

τ ), which turns out to be strongly model dependent and
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relies in some unjustified assumptions. We will see how, provided their statistical
methods are right, the experimental information about the strong coupling is
contained in a direct fit to the spectral function plus a point, corresponding to
an integral. Once the fit is reasonably good, which can be achieved by fitting the
four model parameters in an interval small enough, we will see how most of the
tests made in those references add as many free parameters as independent data
points in the fits, giving no information on the reliability of the model or of the
αs determination.

One still may argue, as done in Ref. [120], that one can build high-energy
tails associated to values of the strong coupling incompatible with the values we
obtained. We will show how the consequences of setting these a-priori strong
coupling values are unreliable, since one has to introduce both very large di-
mensional corrections, with an artificial hierarchy which breaks the naive OPE
counting from the first condensates, and huge DVs beyond the tau mass, only
previously found in the ρ resonance, contrary to the expected convergence to
quark-hadron duality. We will see how the more one deviates from our αs, the
more one needs a radical breaking on the counting.

The numerical determinations of αs(m2
τ ) obtained with all approaches turn

out to be consistent, within their estimated errors. We compile all of them in
Section 3.8, and conclude giving our final value for the determination of the strong
coupling from τ decay.

3.2 OPE contribution to Aω
V/A(s0)

In this section we show how to calculate the different OPE contributions to
the integral along the circumference of Eq. (3.1), emphasizing the perturbative
part.

3.2.1 Perturbative contribution

The main contribution toAωV/A(s0) comes from the perturbative partAω,P (s0),
which for massless quarks is identical for the vector and the axial-vector correla-
tors, due to chiral symmetry. It can be extracted from the renormalization-scale
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-invariant Adler function [121]:

D(s) ≡ −s dΠP (s)
ds

= 1
4π2

∑
n=0

K̃n(ξ) ans (−ξ2s) , (3.12)

where as(s) ≡ αs(s)/π satisfies the renormalization-group equation:

2 s

as

d as(s)
ds

=
∑
n=1

βn a
n
s (s) . (3.13)

The perturbative coefficients Kn ≡ K̃n(ξ = 1) are known up to n ≤ 4. For
Nf = 3 flavours, one has: K0 = K1 = 1, K2 = 1.63982, KMS

3 = 6.37101 and
KMS

4 = 49.07570 [98, 122–126]. The homogeneous renormalization-group equa-
tion satisfied by the Adler function determines the corresponding scale-dependent
parameters K̃n(ξ) [54, 127]. Although the dependence on the renormalization
scale cancels exactly in the infinite sum, the truncation to a finite perturbative
order leads to a scale dependence from the missing higher-order terms that must
be taken into account when estimating perturbative uncertainties.

Integrating by parts Eq. (3.1), we can rewrite Aω,P (s0) in terms of the Adler
function:

Aω,P (s0) = i

2s0

∮
|s|=s0

ds

s
[W (s)−W (s0)] D(s) , (3.14)

with W (s) ≡
∫ s

0 ds
′ ω(s′). Introducing Eq. (3.12) in Eq. (3.14) and parameteriz-

ing the circumference as s = −s0 e
iϕ, one gets:

Aω,P (s0) = − 1
8π2s0

∑
n=0

K̃n(ξ)
∫ π

−π
dϕ

[
W (−s0e

iϕ)−W (s0)
]
ans (ξ2s0e

iϕ).(3.15)

The contour integral on the right-hand side only depends on as(ξ2s0). The in-
tegration can be performed, either truncating the integrand to a fixed perturba-
tive order in αs(ξ2s0) (fixed-order perturbation theory, FOPT) [52], or solving
exactly the differential β-function equation in the βn>nmax = 0 approximation
(contour-improved perturbation theory, CIPT) [54, 99]. This second procedure
should be preferred, as it sums big corrections arising for large values of |ϕ|, due
to the long running of ans (ξ2s0 e

iϕ) along the contour integration [54]. Taking
nmax = 1, 2, 3, 4, one easily checks that CIPT leads to a fast perturbative conver-
gence for the integrals and the numerical results are stable under changes of the
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renormalization scale [54, 128]. On the other side, the slow convergence of the
FOPT series leads to a much larger renormalization-scale dependence.

Since perturbation theory is known to be at best an asymptotic series, it has
been argued that, in the asymptotic large-n regime, the expected renormalonic
behavior of the Kn coefficients could induce cancellations with the running cor-
rections, which would be missed by CIPT. This happens actually in the large-β1
limit, which however does not approximate well the known Kn coefficients (it
predicts an alternating series) [129–131]. Models of higher-order corrections with
this behavior have been advocated [132, 133], but the results are model depen-
dent [134, 135]. The implications of a renormalonic behavior have been also
studied using an optimal conformal mapping in the Borel plane and properly
implementing the CIPT procedure within the Borel transform. Assuming that
the known fourth-order Adler series is already dominated by the lowest ultra-
violet (u = −1) and infrared (u = 2, 3) renormalons, the conformal mapping
generates a full series of higher-order coefficients which result, after Borel sum-
mation, in a perturbative correction which is numerically close to the naive FOPT
result [136–140].

For a fixed value of αs(m2
τ ), FOPT predicts a slightly larger perturbative con-

tribution to Rτ than CIPT. Therefore, it leads to a smaller fitted value of αs(m2
τ ).

In the absence of a better understanding of higher-order perturbative corrections,
we will perform all our analyses with both procedures. Within a given perturba-
tive approach, either CIPT or FOPT, we will estimate the perturbative uncer-
tainty varying the renormalization scale in the interval ξ2 ∈ (0.5 , 2). Addition-
ally, we will truncate the perturbative series at n = 5, taking K5 = 275±400 [108]
as an educated guess of the maximal range of variation of the unknown fifth-
order contribution. These two sources of theoretical uncertainty will be combined
quadratically.

In order to give a combined determination for the strong coupling, we will
finally average the CIPT and FOPT results. Since the previously estimated per-
turbative uncertainties do not fully account for the difference between these two
prescriptions, we will conservatively assess the final error adding in quadrature
half the difference between the CIPT and FOPT values to the smallest of the
CIPT and FOPT errors. We want to emphasize that the perturbative errors are
at present the largest source of uncertainty in the determination of the strong
coupling from τ decays.
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3.2.2 Non-perturbative contribution

Since OPE corrections are going to be small, we can again safely neglect the
logarithmic dependence on s of the Wilson coefficients (Eq. (2.6)), so that OD,V/A
is an effective s-independent vacuum condensate of dimension D. To simplify
notation, together with the genuine non-perturbative contributions which have
D ≥ 4, the inverse-power corrections of pure perturbative origin, induced by
the finite quark masses, are traditionally included in the sum. It gives tiny
contributions to Rτ smaller than 10−4 [27, 52,127].

The lowest-dimensional vacuum condensate contributions are [52], safely ne-
glecting light quark mass corrections,

O4,V/A = 1
12

[
1− 11

18 as
]
〈asGG〉 +

[
1 + ±36− 23

27 as

]
〈(mu +md) q̄q〉 . (3.16)

The size of the quark condensate is determined by chiral symmetry to be [23,65,
141]

〈(mu +md) q̄q〉 = −m2
πf

2
π ≈ −1.6 · 10−4 GeV4 ≈ −1.6 · 10−5 m4

τ , (3.17)

and, therefore, is not going to be very relevant in our numerical analyses. The
gluon condensate has been analyzed in many works [142], since its first phe-
nomenological estimate in Ref. [19], but unfortunately its numerical size is still
quite uncertain, and indeed there is no strong evidence of a non-zero gluon con-
densate [143]. As a conservative estimate, one can quote the range [52]

〈asGG〉 ≈ (0.02± 0.01) GeV4 ≈ (1.7± 0.8) · 10−4 × (12m4
τ ) , (3.18)

where in the last expression we have included the factor 1/12 in Eq. (3.16) to
better appreciate its possible numerical impact in the τ hadronic width. As we
are going to see next, Rτ is insensitive to the D = 4 OPE contribution [144]
and, given the small numerical size of (3.18), the invariant-mass distribution in
τ decays does not help much in pinning down the gluon condensate.

Inserting Eq. (2.6) in Eq. (3.1), one finally gets the non-perturbative contri-
bution to AωV/A:

Aω,NPV/A (s0) = i

2
∑
D

OD,V/A
∮
|s|=s0

ds

s0

ω(s)
(−s)D/2

= π
∑
D

a−1, D
OD,V/A
s
D/2
0

,

(3.19)
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where a−1, D is the −1 coefficient of the Laurent expansion of ω(s = −s0x)/xD/2:

ω(−s0x) =
∑
n

an,D xn+D/2 . (3.20)

3.3 ALEPH determination of αs(m2
τ)

The determination of Ref. [46] takes s0 = m2
τ , the maximum energy for which

we have data from τ decays, where the OPE is supposed to be a better approxi-
mation. The weight functions chosen in this analysis have the functional form:

ωkl(s) =
(

1− s

m2
τ

)2+k ( s

m2
τ

)l (
1 + 2s

m2
τ

)
, (3.21)

with (k, l) = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)}. All these weights have at least
a double zero at s = s0 = m2

τ , to numerically suppress the contributions to
the contour integral from the region near the positive real axis, so that duality-
violation effects are minimized. The corresponding moments are normalized with
the moment (k, l) = (0, 0), in order to reduce experimental correlations and to
incorporate in the V + A fit the more precise determination of Rτ,V+A with a
universality-improved leptonic branching ratio, subtracting the small contribu-
tion of final states with non-zero strangeness.

From Eq. (3.19), we see that the moments AALEPH

kl,V/A ≡ AωklV/A(m2
τ ) depend on

the following free parameters:

A
ALEPH

00,V/A = A
ALEPH

00,V/A(as,O6V/A,O8V/A) ,

A
ALEPH

10,V/A = A
ALEPH

10,V/A(as, 〈asGG〉,O6V/A,O8V/A,O10V/A) ,

A
ALEPH

11,V/A = A
ALEPH

11,V/A(as, 〈asGG〉,O6V/A,O8V/A,O10V/A,O12V/A) ,

A
ALEPH

12,V/A = A
ALEPH

12,V/A(as,O6V/A,O8V/A,O10V/A,O12V/A,O14V/A) ,

A
ALEPH

13,V/A = A
ALEPH

13,V/A(as,O8V/A,O10V/A,O12V/A,O14V/A,O16V/A) . (3.22)

Since every new moment adds at least one additional unknown parameter to the
previous ones, it seems that no new information is introduced by adding them.
This would not be the case if, as it is assumed in Ref. [46], the contribution of
the condensates of dimension D > 8, AALEPH

kl,V/A

∣∣
D
∼ πOD,V/A/mD

τ , is negligible.
Assuming that, the fit becomes possible and we obtain the results shown in Table
3.1, in good agreement with the ones obtained in Ref. [46].
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Channel αs(m2
τ ) < asGG > O6 O8

(10−3 GeV4) (10−3 GeV6) (10−3 GeV8)
V (FOPT) 0.328 +0.013

−0.007 8 +7
−14 −3.2 +0.8

−0.5 5.0 +0.4
−0.7

V (CIPT) 0.352 +0.013
−0.011 −8 +7

−7 −3.5 +0.3
−0.3 4.9 +0.4

−0.5
A (FOPT) 0.304 +0.010

−0.007 −15 +5
−8 4.4 +0.5

−0.4 −5.8 +0.3
−0.4

A (CIPT) 0.320 +0.011
−0.010 −25 +5

−5 4.3 +0.2
−0.2 −5.8 +0.3

−0.3
V+A (FOPT) 0.319 +0.010

−0.006 −3 +6
−11 1.3 +1.4

−0.8 −0.8 +0.4
−0.7

V+A (CIPT) 0.339 +0.011
−0.009 −16 +5

−5 0.9 +0.3
−0.4 −1.0 +0.5

−0.7

Table 3.1: Fitted parameters from the V , A and V + A spectral
functions, using the ωkl(s) weight functions in Eq. (3.21) with (k, l) =
{(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)}. The results are given for two different treat-
ments of the perturbative contributions, FOPT and CIPT. The quoted uncer-
tainties include experimental and theoretical errors.

Using the five moments in Eq. (3.22), we have fitted four parameters: αs(m2
τ ),

the gluon condensate, O6 and O8. Table 3.1 gives the fitted results, separately for
the V , A and V +A channels. Moreover, all analyses have been done twice, using
the two different treatments of the perturbative QCD series, FOPT and CIPT.
As expected, the values of αs(m2

τ ) obtained with FOPT are systematically lower
than the CIPT results. All fits result in very precise values of the strong coupling,
while rather large errors are obtained for the three vacuum condensates. This
just reflects the high sensitivity of the moments to αs, and the minor numerical
impact of the non-perturbative power corrections at s0 = m2

τ .
As it was already observed in the pioneering experimental determinations of

αs(m2
τ ) [75], there is some tension among the parameters fitted from different

channels, which may indicate underestimated uncertainties, either in the exper-
imental data or from non-perturbative effects not yet included in the analysis,
such as higher-dimensional condensate contributions or unaccounted duality vio-
lations. On pure theoretical grounds [52], one expects the separate V and A cor-
relators to be more sensitive to higher-dimensional OPE corrections than V +A.
On the other hand, the analysis of the V − A two-point function made in the
previous chapter suggests that violations of duality are indeed very efficiently
suppressed in pinched moments.

The uncertainties quoted in Table 3.1 have been estimated as follows. First
we do a direct fit to the data, ignoring theoretical uncertainties, but taking into
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account all experimental errors and correlations. The statistical quality of these
fits, as measured by their χ2/d.o.f., is better when the CIPT approach is used.
The vector channel gives quite satisfactory fits (χ2/d.o.f. = 0.4 and 0.8 for FOPT
and CIPT), while the axial one has a bad χ2/d.o.f. ∼ 4 for both CIPT and FOPT,
being worse in the last case. For V + A one gets χ2/d.o.f. = 2.4 (FOPT) and
1.7 (CIPT). While these χ2 values do not have a real confidence-level meaning
(theoretical errors are not yet included), they do give some indication about
the relative quality of the different fits and their expected sensitivity to missing
contributions. We then repeat all fits varying the renormalization scale and
the fifth-order Adler coefficient within their allowed ranges, ξ2 ∈ (0.5, 2) and
K5 = 275 ± 400, and use the variation of the results to estimate the theoretical
uncertainties. Theoretical and experimental uncertainties are finally combined in
quadrature, giving the final errors indicated in the table. One could instead use
the results of the first fit to estimate the theoretical covariance matrices and then
perform a full χ2 minimization, including theoretical and experimental errors
together. We have checked that both methods give consistent results, but the
first one allows us to better assess the non-linear dependence with ξ2.

Since we have five moments in this fit, we have freedom for fitting also the
D = 10 condensate instead of simply neglecting it. Incorporating O10 in the
global fit, we obtain the results shown in Table 3.2. Obviously, we can no-longer
estimate the fit quality since there are now as many fitted parameters as moments,
but we can still evaluate the statistical errors through the χ2 function. One ob-
serves that introducing a new degree of freedom results in a sizable increase of
the uncertainties of the fitted condensates. This is not a surprise, given the large
correlations present in the data which strongly limit the amount of true informa-
tion that can be extracted. Adding more free parameters, one is just artificially
increasing their possible range of variation by allowing correlated cancellations
among them. However, this also puts a word of caution on the reliability of
the different extracted parameters. Neglecting O10, has an important effect on
the fitted value of O8 which is forced to reabsorb the missing higher-dimensional
contributions.

The strong coupling value turns out to be very stable in all fits. The largest
variation on the fitted αs value occurs in the A channel, the one with the worse
χ2, where the strong coupling increases sizably when allowing for a non-zero
O10 contribution. The most reliable results are the ones from the more inclusive
V +A channel, which has a smaller O6 correction because there is a cancellation
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Channel αs(m2
τ ) < asGG > O6 O8 O10

(10−3 GeV4) (10−3 GeV6) (10−3 GeV8) (10−3 GeV10)
V (FOPT) 0.320 +0.016

−0.014 10 +9
−17 −4 +3

−2 6 +2
−2 −2 +5

−5
V (CIPT) 0.337 +0.020

−0.019 −1 +10
−10 −5 +2

−2 6 +2
−2 −4 +4

−4
A (FOPT) 0.347 +0.022

−0.021 −31 +16
−33 11 +5

−4 −12 +4
−4 15 +9

−9
A (CIPT) 0.373 +0.029

−0.029 −50 +18
−16 10 +3

−3 −11 +3
−3 14 +7

−7
V+A (FOPT) 0.333 +0.013

−0.012 −8 +10
−24 7 +7

−4 −5 +4
−6 12 +12

−9
V+A (CIPT) 0.355 +0.016

−0.015 −23 +10
−8 5 +3

−3 −5± 3 10 +8
−8

Table 3.2: Fitted parameters from the V , A and V + A spectral func-
tions, using the ωkl(s) weight functions in Eq. (3.21) with (k, l) =
{(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)}, but including O10 in the fit. The quoted un-
certainties include experimental and theoretical errors.

between the V and A contributions [52].∗ If we take as reference the V +A value
of Table 3.1 and we add quadratically the difference with the V + A value of
Table 3.2, as a conservative estimate of uncertainties for having neglected the
higher-dimensional condensates, we obtain:

αs(m2
τ )CIPT = 0.339 + 0.019

− 0.017

αs(m2
τ )FOPT = 0.319 + 0.017

− 0.015
−→ αs(m2

τ ) = 0.329 + 0.020
− 0.018 . (3.23)

In order to quote a final value, we have averaged the CIPT and FOPT results,
keeping conservatively the minimum uncertainty and adding quadratically half
their difference as an additional systematic error.

The sensitivity to the D = 4 OPE correction is very low and, comparing
the two tables, one observes a strong correlation with the higher-dimensional
corrections. The fitted central values suggest an unphysical negative value for
the gluon condensate [19] but the uncertainties are too large to be significant.
Applying the same procedure as before, we obtain the averaged value:

〈αsπ GG〉 =
(
−9 + 10
− 11

)
· 10−3 GeV4 , (3.24)

which is consistent with zero and, taking into account the large errors, still com-
patible with the usually quoted range in Eq. (3.18). Repeating the same for δNP
∗In the V +A channel the tables give the fitted values of the sum OD,V +OD,A. The relevant

correction is however the average 1
2 (OD,V +OD,A).
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Channel αs(m2
τ ) < asGG > O6 O8

(10−3 GeV4) (10−3 GeV6) (10−3 GeV8)
V (FOPT) 0.331 +0.012

−0.006 −5 +7
−14 −2.4 +0.9

−0.5 2.4 +0.3
−0.5

V (CIPT) 0.356 +0.012
−0.009 −22 +7

−8 −2.8 +0.2
−0.1 2.1 +0.3

−1.1
A (FOPT) 0.305 +0.009

−0.005 −5 +4
−8 3.9 +0.5

−0.3 −3.2 +0.2
−0.3

A (CIPT) 0.320 +0.010
−0.007 −15 +4

−4 3.8 +0.1
−0.1 −3.3 +0.1

−0.2
V+A (FOPT) 0.319 +0.010

−0.005 −3 +5
−11 1.5 +1.3

−0.7 −0.8 +0.4
−0.8

V+A (CIPT) 0.338 +0.010
−0.008 −16 +5

−5 1.1 +0.2
−0.2 −1.0 +0.4

−1.0

Table 3.3: Fitted parameters from the V , A and V +A spectral functions, using
the same weights as in Table 3.1 but taking away the factor (1 + 2s/m2

τ ). The
quoted uncertainties include experimental and theoretical errors.

one finds:

δFOPTNP = −0.006± 0.016 , (3.25)
δCIPTNP = −0.005± 0.011 . (3.26)

In order to test the stability of these results, we have repeated all fits tak-
ing away from the weight functions the factor (1 + 2s/m2

τ ) in Eq. (3.21). This
eliminates the highest-dimensional condensate contribution to each moment, at
the price of making A00,V/A sensitive to the gluon condensate. Although one
also loses the additional experimental information from the τ lifetime, the new
weights are less sensitive to the higher energy range of the experimental distribu-
tion which, as shown in Figure 3.2, is poorly-defined. The fitted results for αs and
the vacuum condensates, obtained in this way, are shown in Tables 3.3 (taking
O10 = 0) and 3.4 (including O10 in the fit). They are in complete agreement with
the results of the previous fits, given in Tables 3.1 and 3.2. However, all χ2/d.o.f.
turn out now to be smaller than one.

The central values of the fitted parameters are very stable, specially the strong
coupling, and the sensitivity of αs, O4 andO6 to vacuum condensates withD > 10
is indeed negligible. From the results in Tables 3.3 and 3.4, applying the same
procedure as before, we get the averages:

αs(m2
τ )CIPT = 0.338 + 0.014

− 0.012

αs(m2
τ )FOPT = 0.319 + 0.013

− 0.010
−→ αs(m2

τ ) = 0.329 + 0.016
− 0.014 , (3.27)
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Channel αs(m2
τ ) < asGG > O6 O8 O10

(10−3 GeV4) (10−3 GeV6) (10−3 GeV8) (10−3 GeV10)
V (FOPT) 0.318 +0.043

−0.042 10 +46
−48 −5 +7

−7 6 +11
−11 −4 +12

−12
V (CIPT) 0.336 +0.056

−0.055 −1 +54
−54 −5 +7

−7 6 +11
−11 −4 +12

−11
A (FOPT) 0.336 +0.052

−0.051 −39 +62
−67 9 +10

−10 −12 +15
−15 9 +16

−16
A (CIPT) 0.360 +0.064

−0.064 −54 +68
−68 8 +7

−7 −11 +13
−13 8 +13

−13
V+A (FOPT) 0.327 +0.030

−0.029 −13 +35
−39 4 +11

−11 −6 +17
−17 5 +18

−18
V+A (CIPT) 0.348 +0.040

−0.039 −26 +41
−41 3 +9

−9 −5 +16
−16 4 +17

−17

Table 3.4: Fitted parameters from the V , A and V + A spectral functions,
using the same weights as in Table 3.3 and including O10 in the fit. The quoted
uncertainties include experimental and theoretical errors.

〈αsπ GG〉 = (−10 ± 13) · 10−3 GeV4 , (3.28)

and:

δFOPTNP = −0.007± 0.016 , (3.29)
δCIPTNP = −0.005± 0.005 . (3.30)

These numbers are in excellent agreement with the previous determination
in Eqs. (3.23) and (3.24), performed with the ALEPH moments, and the values
obtained for αs(m2

τ ) are even more accurate.

3.4 Optimal moments

The moments ωkl(s) used in the previous analyses were suggested in Ref. [119]
as a way to minimize the large statistical and systematic uncertainties of the ini-
tial LEP data. All of them incorporate the kinematical factor ω00(s), present
in Eq. (3.3), allowing for a direct use of the measured invariant-mass distribu-
tion. This makes unnecessary to reconstruct the spectral functions, dividing
the raw data by ω00(s), which enhances the systematically- and statistically-
limited tail of the s distribution. On the negative side, these moments involve
higher-dimensional condensates and the experimental precision deteriorates with
increasing values of k and/or l. Nowadays, since we have well-determined and
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quite precise spectral functions,† based on the full LEP data sample, it is possible
to investigate whether there are better moments, more suitable for a precise QCD
analysis.

In order to reduce DVs, we could consider the simplest n-pinched weight
functions

ω(n,0)(x) = (1− x)n =
n∑
k=0

(−1)k
(
n
k

)
xk , (3.31)

with x = s/s0. However, the moments generated by these weights get non-
perturbative corrections from all condensates with dimension D ≤ 2(n+ 1). We
would like to become sensitive to the lowest-dimensional condensates without too
much contamination from higher-order terms in the OPE. It is possible to build
a family of weight functions which project on one single condensate contribution,
while still having a zero at x = 1:

ω(1,n)(x) = 1− xn+1 = (1− x)
n∑
k=0

xk . (3.32)

The corresponding moments are only sensitive to O2(n+2). As an intermediate
case, the following weight functions have a double pinch and generate moments
with only two condensate contributions, O2(n+2) and O2(n+3):

ω(2,n)(x) = (1− x)2
n∑
k=0

(k + 1)xk = 1− (n+ 2)xn+1 + (n+ 1)xn+2 . (3.33)

Notice that ω(2,1)(x) = ω00(x), the lowest moment used in the ALEPH-like anal-
ysis.

Since every moment

A
(n,m)
V/A (s0) ≡ Aω

(n,m)

V/A (s0) =
∫ s0

sth

ds

s0
ω(n,m)(s) Im ΠV/A(s) (3.34)

with n = 1 or n = 2 introduces a new condensate correction with respect
A

(n,m−1)
V/A (s0), it is not possible to perform a fully complete fit of αs and some

power corrections only using a few single-pinched or doubly-pinched moments.
Nevertheless, one can still make some approximations and a few consistency tests,
which we attempt next.
†Note, however, that the large uncertainties observed in the higher-energy bins of the spectral

functions in Figure 3.2 originate in the kinematical factor ω00(s) which suppresses the end-point
of the τ decay distribution.
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Moment αs(m2
τ ) Moment αs(m2

τ )
(n,m) FOPT CIPT (n,m) FOPT CIPT
(1,0) 0.315 +0.012

−0.007 0.327 +0.012
−0.009 (2,0) 0.311 +0.015

−0.011 0.314 +0.013
−0.009

(1,1) 0.319 +0.010
−0.006 0.340 +0.011

−0.009 (2,1) 0.311 +0.011
−0.006 0.333 +0.009

−0.007
(1,2) 0.322 +0.010

−0.008 0.343 +0.012
−0.010 (2,2) 0.316 +0.010

−0.005 0.336 +0.011
−0.009

(1,3) 0.324 +0.011
−0.010 0.345 +0.013

−0.011 (2,3) 0.318 +0.010
−0.006 0.339 +0.011

−0.008
(1,4) 0.326 +0.011

−0.011 0.347 +0.013
−0.012 (2,4) 0.319 +0.009

−0.007 0.340 +0.011
−0.009

(1,5) 0.327 +0.015
−0.013 0.348 +0.014

−0.012 (2,5) 0.320 +0.010
−0.008 0.341 +0.011

−0.009

Table 3.5: Values of the strong coupling extracted from a single A(n,m)(s0) mo-
ment of the V +A distribution, at s0 = 2.8 GeV2, neglecting all non-perturbative
corrections.

3.4.1 OPE corrections neglected

Neglecting all OPE corrections, one can directly extract αs(m2
τ ) from a single

A(n,m)(s0) moment. Comparing the values extracted with different choices of
(n,m), one can then assess the size of the neglected contributions. For instance,
A(0,0)(s0) does not get any OPE correction, but it is not protected against duality-
violation effects. On the other extreme, A(2,3)(s0) is well protected by a double
pinch and gets inverse power corrections with D = 10 and 12.

Since we are going to test also some non-pinched weights, we take s0 =
2.8 GeV2 as reference point, so that we avoid the problems associated with the
last two experimental bins. The results of this exercise are shown in Table 3.5, for
all A(n,m)(s0) moments of the V +A distribution with n = 1, 2 and 0 ≤ m ≤ 5. In
all cases, the fitted values are well within the error ranges of our determinations in
Eq. (3.23). Notice the good stability displayed by the results from the moments
(2,m ≥ 2), suggesting that condensates with D > 6 play indeed a very minor
role. A similar behavior is observed in the moments (1,m) which, however, result
in slightly larger values of the strong coupling for all values of the parameter m.

A clean test of the magnitude of DV effects is provided by the A(0,0)(s0)
moment, where OPE corrections are absent. One finds in this case αs(m2

τ )CIPT =
0.352 +0.023

−0.022 and αs(m2
τ )FOPT = 0.333 +0.024

−0.018, in agreement with Eq. (3.23) despite
being a non-protected moment.
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3.4.2 Combined fit to A(n,0)(s0) moments

Using all A(n,0)(s0) moments with n ≤ N , one can determine αs(m2
τ ) and

OD≤2N , neglecting the O2(N+1) contribution to the last moment. The strong
coupling is mostly affected by the non-protected (0, 0) moment, although the
effects of DVs may be reduced by the rest of weight functions, which do have
pinching protection. We show in Table 3.6 the results from global fits to the
(n, 0) moments with 0 ≤ n ≤ 3, taking O8 = 0. Again, the agreement with
Eq. (3.23) is remarkable.

Channel αs(m2
τ ) < asGG > O6

(10−3 GeV4) (10−3 GeV6)
V (FOPT) 0.310 +0.010

−0.005 11 +7
−12 −3.8 +0.9

−0.6
V (CIPT) 0.328 +0.011

−0.007 2 +7
−7 −4.1 +0.4

−0.5
A (FOPT) 0.328 +0.011

−0.007 −28 +9
−20 5.8 +1.3

−0.7
A (CIPT) 0.352 +0.012

−0.008 −41 +8
−7 5.3 +0.4

−0.5
V+A (FOPT) 0.319 +0.010

−0.007 −7 +7
−16 2.0 +2.0

−1.1
V+A (CIPT) 0.340 +0.011

−0.009 −18 +6
−5 1.2 +0.5

−0.8

Table 3.6: Global fit to the A(n,0)(s0) moments with 0 ≤ n ≤ 3, taking O8 = 0.

3.4.3 Combined fit to A(2,m)(m2
τ ) moments

From the moments A(2,m)(m2
τ ) with 1 ≤ m ≤ N , one can determine αs(m2

τ )
and OD≤2(N+1), neglecting the O2(N+2) and O2(N+3) contributions to the last
two moments. In this case, the whole set of selected moments is well protected
from DV effects by a double pinch. The results obtained with N = 5 are shown
in Tables 3.7 and 3.8. The first one is a global fit, assuming O12 = O14 = O16 =
0, while Table 3.8 only assumes O14 = O16 = 0 and has then as many fitted
parameters as moments.

Since the previous tests suggested that the neglected higher-dimensional con-
densates do not play any significant role on the fitted value of the strong coupling,
the results of these fits should be very reliable, specially in the V + A case. Of
course, adding one more parameter to the fit allows for a wider range of varia-
tion, increasing the fitted errors, which explains the differences between the two
tables. The small sensitivity to the vacuum condensates is reflected in their large
statistical uncertainties, specially in Table 3.8. Their fitted values agree with
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Channel αs(m2
τ ) O6 O8 O10

(10−3 GeV6) (10−3 GeV8) (10−3 GeV10)
V (FOPT) 0.315 +0.011

−0.007 −5.2 +0.8
−0.5 6.7 +0.5

−0.7 −4.5 +0.4
−0.3

V (CIPT) 0.334 +0.012
−0.009 −5.3 +0.3

−0.4 6.7 +0.4
−0.4 −4.6 +0.2

−0.3
A (FOPT) 0.318 +0.011

−0.007 6.5 +0.9
−0.5 −7.6 +0.5

−0.4 4.9 +0.4
−0.3

A (CIPT) 0.338 +0.013
−0.012 6.3 +0.3

−0.4 −7.7 +0.4
−0.3 4.8 +0.2

−0.4
V+A (FOPT) 0.317 +0.010

−0.005 1.3 +1.7
−1.0 −0.9 +0.9

−1.4 0.3 +0.8
−0.5

V+A (CIPT) 0.336 +0.011
−0.009 0.9 +0.4

−0.7 −0.9 +0.5
−0.5 0.1 +0.3

−0.7

Table 3.7: Global fit to the A(2,m)(s0) moments with 1 ≤ m ≤ 5, taking O12 =
O14 = O16 = 0.

Channel αs(m2
τ ) O6 O8 O10 O12

(10−3 GeV6) (10−3 GeV8) (10−3 GeV10) (10−3 GeV12)
V (FOPT) 0.318 +0.013

−0.012 −5 +3
−2 6 +3

−4 −3 +5
−5 −2 +5

−5
V (CIPT) 0.336 +0.017

−0.016 −5 +2
−2 6 +3

−3 −4 +4
−4 −1 +4

−4
A (FOPT) 0.339 +0.018

−0.017 11 +4
−3 −15 +5

−5 16 +9
−8 −11 +8

−8
A (CIPT) 0.364 +0.024

−0.022 10 +2
−2 −14 +5

−5 14 +7
−7 −9 +7

−7
V+A (FOPT) 0.329 +0.012

−0.011 6 +6
−4 −9 +7

−9 13 +12
−10 −12 +9

−11
V+A (CIPT) 0.349 +0.016

−0.014 4 +3
−3 −8 +6

−6 10 +8
−8 −10 +8

−8

Table 3.8: Global fit to the A(2,m)(s0) moments with 1 ≤ m ≤ 5, taking O14 =
O16 = 0.

the results quoted in Tables 3.1 and 3.2. On the other side, the determinations
of the strong coupling are quite precise and in excellent agreement with the fits
performed in Section 3.3. Notice the very good stability displayed in Table 3.7,
where similar central values for αs(m2

τ ) are obtained from the V , A and V + A
channels.

Taking again as reference the results from the V + A fits in Table 3.7, and
adding quadratically the differences between the two tables, as a conservative
estimate of the uncertainties from neglected higher-dimensional condensates, we
obtain

αs(m2
τ )CIPT = 0.336 + 0.018

− 0.016

αs(m2
τ )FOPT = 0.317 + 0.015

− 0.013
−→ αs(m2

τ ) = 0.326 + 0.018
− 0.016 , (3.35)
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and

δFOPTNP = −0.006± 0.012 (3.36)
δCIPTNP = −0.005± 0.008 (3.37)

Once more, we get results in perfect agreement with the values of the strong
coupling obtained in Eqs. (3.23) and (3.27). Given the different sensitivity to
higher-dimensional condensates of the moments used in each approach, and the
many tests we have performed showing the negligible numerical impact of higher-
order power corrections, our determination of αs(m2

τ ) appears to be very solid
and much more stable than what one could expect from the quoted uncertainties,
indicating that our error estimates are indeed conservative.

3.5 Including information from the s0 dependence

Given the large relative uncertainties on the small power-suppressed correc-
tions, one would like to find additional inputs to constrain the range of fitted
parameters. One possibility is to look at different values of s0. In Figures 3.3
and 3.4 we plot as a function of s0 the experimental moments A(n,0)(s0), associ-
ated with the simplest n-pinched weight functions in Eq. (3.31), for the V , A and
1
2 (V + A) channels, together with the perturbative part of A(n,0)(s0) predicted
with the value of αs(m2

τ ) given in Eq. (3.23).
Perturbation theory appears to reproduce well the data at large values of

s0 ∼ m2
τ , without any clear need for sizable power corrections, except perhaps

in A(3,0)
V (s0). Notice the excellent agreement obtained for the V + A channel of

A(0,0)(s0), the only moment whose non-perturbative OPE contribution is known
to be negligible. The agreement with perturbation theory extends to quite low
values of s0, even if this is the moment most exposed to DVs, suggesting that
DV uncertainties are indeed within the quoted errors of αs(m2

τ ). The moment
A(1,0)(s0), which can only get corrections from O4, shows above s0 ∼ 2 GeV2 a
surprisingly good agreement with its pure perturbative prediction in all channels
(V , A and V +A). In spite of being only protected by a single pinch factor, the
data points for this moment closely follow the central values predicted by CIPT.
In that energy range both, DVs and D = 4 power corrections, appear to be too
small to become numerically visible within the much larger perturbative uncer-
tainties covering the shaded areas of the figure. The higher moments A(2,0)(s0)
and A(3,0)(s0) are slightly more sensitive to non-perturbative corrections. The
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different curves seem to prefer a power correction with different signs for the V
and A distributions, which cancels to a good extent in V + A. This fits nicely
with the expected O6,V/A contribution. However, in the moment A(2,0)(s0), the
merging of the V , A and V +A curves above s0 ∼ 2.2 GeV2 suggests a very tiny
numerical effect from this source in the high-energy range. Only the moment
A(3,0)(s0) appears to have still some sensitivity to power corrections at s0 ∼ m2

τ .
In order to better assess the dominant perturbative errors, we present in

Figure 3.5, as a function of s0, the perturbative predictions for the doubly-pinched
moments A(2,0)(s0), A(2,1)(s0) and A(2,2)(s0), at different loop approximations
within FOPT (left) and CIPT (right), with the same value of αs(m2

τ ) given above.
Note that the α5

s contribution is just an educated guess estimate, taking for the
fifth-order Adler coefficient the value K5 = 275. For the known perturbative
orders, CIPT seems to present a better convergence. Additionally, we observe a
slightly better perturbative behavior for the two moments which are independent
of the O4 condensate, in agreement with the models considered in Ref. [133].
However, new coefficients of the Adler function would be needed to extract any
reliable conclusions. Moreover, a moment with a better perturbative behavior is
not necessarily the best one to determine the strong coupling, since the sensitivity
of the moments to αs(m2

τ ) plays a crucial role too.
Naively, the pinched moments seem suitable for performing phenomenological

fits. However, as it was already observed long time ago in Ref. [119], a fit of the
s0 dependence turns out to be nearly equivalent to a direct fit of the spectral
function ρ(s0) = 1

π Im Π(s0), a quantity which cannot be described rigorously
with the OPE. This is immediately seen, studying the derivative with respect to
the moment end-point s0. For the simpler n-pinched moments A(n,0)(s0), one
finds

s0
d

ds0
A(n,0)(s0) = δn,0 π ρ(s0) + nA(n−1,0)(s0)− (n+ 1)A(n,0)(s0) . (3.38)

Thus, if we make a fit of consecutive s0 points, we are removing pinchs; i.e., the
only new experimental information we get adding A(n,0)(s0 + ∆s0) to a fit with
A(n,0)(s0) is the same integral with one pinch less. After adding n bins, we are
just testing ρ(s0). A fit with m s0 points of the moment A(n,0)(s0) is going to be
equivalent to a fit with:{

A(n,0)(s0) , A(n−1,0)(s0) , · · · , A(0,0)(s0) , ρ(s0) , ρ(s0 + ∆s0) , ..., ρ(s0 + (m− n− 2)∆s0)
}
.

(3.39)
Thus, we are directly using information about the local structure of the spectral
function.
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Figure 3.3: Dependence on s0 of the experimental moments A(0,0)(s0) and
A(1,0)(s0), associated to the pinched weight functions of Eq. (3.31), together with
their purely perturbative predictions calculated using the strong coupling ob-
tained in the r.h.s. of Eq. (3.23). Data points are shown for the V (red), A
(green) and 1

2 (V +A) (blue) channels.
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Figure 3.4: Dependence on s0 of the experimental moments A(2,0)(s0) and
A(3,0)(s0), associated to the pinched weight functions of Eq. (3.31), together with
their purely perturbative predictions calculated using the strong coupling ob-
tained in the r.h.s. of Eq. (3.23). Data points are shown for the V (red), A
(green) and 1

2 (V +A) (blue) channels.
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Figure 3.5: Dependence on s0 of the perturbative contributions to the mo-
ments A(2,0)(s0), A(2,1)(s0) and A(2,2)(s0), constructed with the doubly-pinched
weight functions in Eq. (3.33), calculated in FOPT (left panels) and CIPT
(right panels) at several loop approximations. The filled areas correspond to
αs(m2

τ ) = 0.329 + 0.020
− 0.018.
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Figure 3.6: Parameters fitted in CIPT with the moment A(2,0)(s0), as a function
of the starting s0 value of the fit, ŝ0.

Not surprisingly, the functional dependence of the moments with s0 manifests
the violations of quark-hadron duality which are obviously present in the phys-
ical hadronic spectrum. Once this is properly understood, an analysis of the s0
dependence can nevertheless provide enlightening information on the relevance
of DVs in different energy regimes. With this caveat in mind, we study next the
doubly-pinched moments A(2,0)(s0), A(2,1)(s0) and A(2,2)(s0), making different
fits with the 9 available bins above s0 = 2 GeV2. In order to avoid too large data
correlations, we will restrict every fit to just one moment A(2,m)(s0), with three
free parameters: αs(m2

τ ), O2(m+2) and O2(m+3).
In Figure 3.6 we plot the values of the three parameters fitted in CIPT with

the moment A(2,0)(s0) (very similar conclusions are obtained with FOPT and for
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Moment Method αs(m2
τ ) Lower-D Condensate Higher-D Condensate

(10−3 GeVD) (10−3 GeVD)
A(2,0)(s0) FOPT 0.331 + 0.013

− 0.018 −9 + 12
− 4 −4 + 3

− 7
A(2,0)(s0) CIPT 0.333 + 0.011

− 0.009 −11 + 7
− 6 0± 1

A(2,1)(s0) FOPT 0.322 + 0.010
− 0.006 3 + 1

− 2 0± 2
A(2,1)(s0) CIPT 0.334 + 0.011

− 0.009 0± 1 2± 2
A(2,2)(s0) FOPT 0.319 + 0.009

− 0.006 −2 + 3
− 2 −1 + 4

− 5
A(2,2)(s0) CIPT 0.334 + 0.011

− 0.009 2± 2 −5± 4

Table 3.9: Fitted results in the V +A channel, using the weight functions of Eq.
(3.33) and ignoring DV effects. The value given for theD = 4 condensate refers to
〈αsπ GG〉. The quoted uncertainties include experimental and perturbative errors.

the other moments) as a function of the starting s0 value of the fit, ŝ0, for the V ,
A and V + A channels. The points with error bars shown at a given value of ŝ0
represent the results of the fit using only the values of the moments at s0 ≥ ŝ0,
i.e., at the bins above ŝ0. Since we need to fit three parameters, four points at
least are needed. Thus, the highest value ŝ0 = 2.6 GeV2 gives the results of a fit
to the last four s0 bins, while for the lowest value ŝ0 = 2.0 GeV2 the nine bins
are included in the fit.

As expected, the figure shows a strong dependence on ŝ0 in the V and A
channels, as well as completely incompatible values for αs(m2

τ ) and 〈αsπ GG〉 in
the lower ŝ0 range, where it has been assumed that the OPE is able to reproduce
the shape of the spectral function. However, when we go to higher values of ŝ0, the
V and A fitted parameters start to converge towards the much more stable V +A
results. The stability of the V +A fit in the whole range of ŝ0 values analyzed is
quite surprising. DV effects are present (we are sensitive to the spectral function
itself) and clearly manifest in the V and A plotted points, but their size seems
to be quite suppressed in the more inclusive V +A distribution. This qualitative
behavior is easily understood looking at the experimental spectral functions in
Fig. 3.2 and observing the flattening of the highest energy points in the V + A
curve, with a clear compensation of the vector and axial-vector departures from
local duality.

Ignoring completely any possible effects from violations of duality, a direct
fit of the V + A moments for the 9 available points above s0 = 2 GeV2 gives
the results shown in Table 3.9. Each horizontal line corresponds to the fit of a
single moment A(2,k)(s0) (k = 0, 1, 2), either with FOPT or CIPT. The fitted
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values are in good agreement with the ones obtained before in Tables 3.1 and
3.2, for the same channel. The sensitivity to the power corrections turns out to
be very bad, being all fitted results compatible with zero. On the other side,
one obtains very stable values for the strong coupling with moderate errors. The
CIPT result is stable with the three moments giving practically the same value
αs(m2

τ )CIPT = 0.335± 0.010, while a weighted average of the three FOPT results
(keeping the smallest error) translates into αs(m2

τ )FOPT = 0.323±0.008. However,
all these fits have a very low quality (χ2

min/d.o.f.), indicating the presence of the
neglected DV effects. Adding then quadratically half of the difference between
the maximum and minimum values of αs(m2

τ ) given in Figure 3.6 for this channel,
as a conservative estimate of DV uncertainties, one obtains:

αs(m2
τ )CIPT = 0.335± 0.014

αs(m2
τ )FOPT = 0.323± 0.012

−→ αs(m2
τ ) = 0.329± 0.013 . (3.40)

Doing the same for the A(2,1)(s0) moment to get δNP , one finds:

δFOPTNP = −0.008± 0.011 , (3.41)
δCIPTNP = −0.004± 0.008 . (3.42)

3.6 An alternative approach

So far, we have been exploring different strategies adopted in previous works,
analyzing their advantages and weaknesses. The standard approach followed in
Section 3.3 appears to be on solid ground, once systematic uncertainties are prop-
erly estimated. Higher-order condensates and violations of duality are neglected,
but the numerical impact of these effects can be shown to be small enough when
appropriate pinched weight functions are used. In particular, the more inclusive
V + A channel provides a very reliable determination of the strong coupling,
given in Eq. (3.23). The stability of this result has been carefully studied in Sec-
tions 3.3 and 3.4, using different weights. In all cases, the fits provided consistent
determinations of αs(m2

τ ), in excellent agreement with (3.23).
The possibility to extract additional information on the higher-dimensional

vacuum condensates from the s0 dependence of the moments was investigated in
Section 3.5. It was shown there that varying s0 turns out to be equivalent to
a fit of the measured hadronic distribution on the physical region (the positive
real axis), where the OPE cannot be applied. Nevertheless, the fits performed
with the V + A spectral function exhibit a quite surprising stability, suggesting
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Figure 3.7: V +A determinations of αs(m2
τ ) from different moments, as function

of s0, fitted ignoring all non-perturbative corrections. The top panels show the
results extracted from A(1,n)(s0) with {n = 0, ..., 6}, while the bottom panels
correspond to A(2,n)(s0) with {n = 0, ..., 5}. FOPT fits are on the left and CIPT
on the right. Only experimental uncertainties have been included.

that higher-order condensates and DV uncertainties are not large in this channel.
Taking the fluctuations with s0 into account to conservatively estimate the theo-
retical uncertainties, we finally obtained a determination of αs(m2

τ ) from the s0
dependence, given in Eq. (3.40). The surprising agreement with (3.23) suggests a
much better behavior of perturbative QCD at low invariant masses than naively
expected. This had been already noticed long time ago in the pioneering analyses
of the s0 dependence performed in Refs. [44, 75,111,145,146].

To better appreciate this fact, we plot in Figure 3.7, as a function of s0,
the results of fits to different AωV+A(s0) moments, ignoring all non-perturbative
effects. The different curves correspond to the weight functions ω(1,n)(x) (top
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panels) and ω(2,n)(x) (bottom panels), defined in Eqs. (3.32) and (3.33), for {n =
0, ..., 6} and {n = 0, ..., 5}, respectively. These pure perturbative determinations
are shown with the two alternative prescriptions for the αs expansion, FOPT
(left) and CIPT (right). The non-perturbative corrections to these 13 different
moments are completely different, carrying a broad variety of inverse powers of
s0:

A
(1,n),NP
V+A (s0) = (−1)n π O2n+4,V+A

sn+2
0

, (3.43)

A
(2,n),NP
V+A (s0) = (−1)n π

{
(n+ 2) O2n+4,V+A

sn+2
0

+ (n+ 1) O2n+6,V+A

sn+3
0

}
.(3.44)

Therefore, one would expect a splitting among the different moments for a given
value of s0 that should increase at lower energies. This is however not seen in the
figure, which exhibits a quite surprising clustering of the different curves with a
very similar dependence on s0. The OPE contributions do not seem to be the
dominant feature behind the slight s0 dependence observed. The small difference
in normalization observed for the A(k,0)(s0) CIPT case (k = 0, 1) seems more
related to perturbative uncertainties. Notice that only the experimental errors
have been shown in the plots.

From this perturbative exercise one could perhaps conclude that we have
been too conservative when worrying about possible uncertainties from higher-
dimensional condensate corrections, because their effects are not manifest in the
V +A analyses, with the current experimental accuracy.

The situation seems to be different for the separate vector and axial-vector
channels, with more resonance structure in their spectral functions which only
flatten at higher values of s, specially in the A case. The fitted results are
less stable and we have already seen in Figure 3.3 a more clear indication of a
sizeable power correction with D = 6, in agreement with theoretical expectations.
Nevertheless, in the higher energy bins the power corrections seem to decrease
very fast, and the fitted results from both channels tend to converge towards the
more stable V +A values.

DVs appear to be more important in the semi-inclusive V and A channels,
except for the higher energy bins. We can try to reduce these effects by adding
an exponencial term to the weight functions. The same kind of weights were used
long time ago in Refs. [19] to extract the so-called SVZ sum rules. We will pay
the prize of enhancing the unknown high-energy condensate contributions. Since



84 Chapter 3. Determination of the QCD Coupling from ALEPH τ Decays

they are smaller for the A(1,n) weights, we will take

ω(1,n)
a (x) =

(
1− xn+1

)
e−ax , (3.45)

which gives an OPE correction

Aω
(1,n)
a ,NP
V/A (s0) = π

∑
D
OD,V/A
s
D/2
0

a
D
2 −1

(D2 −1)!

{
1 + θ(D − 4− 2n) (−1)n

an+1
(D2 −1)!

(D2 −n−2)!

}
,

(3.46)
with θ(z) = 1 for z ≥ 0 and zero otherwise. When a = 0 we recover (3.43).
Notice that the OPE corrections become independent of n when a� 1, since all
moments are equal in that limit.

Owing to the exponential weight factor, all vacuum condensates contribute
to the moments. Therefore, if the non-perturbative uncertainties are dominated
by power corrections, one should expect from Eq. (3.46) that a determination
of the strong coupling neglecting those terms would become immediately more
unstable under variations of s0 than in the a = 0 case, and that the splitting
among moments at a given value of s0 would increase, before they converge in
the limit a→∞.

In Figure 3.8 we show, as function of s0, the determinations of αs(m2
τ ) ex-

tracted from 7 different Aω
(1,n)
a

V/A (s0) moments (n = 0, . . . , 6), neglecting all non-
perturbative corrections. We show the results obtained with CIPT and three
different choices of a = 0, 1, 2. Again, only experimental uncertainties have been
included in the plots.

It is evident from the panels that with a non-zero Borel parameter a one
gets more stable results, and the different moments converge very soon when a
is increased. This indicates that, for these weight functions and for the plotted
ranges of s0 and a, non-perturbative uncertainties are probably more affected
by DV effects than by power corrections. Of course, if one takes a too large,
higher-dimensional condensate corrections will become dominant, and the ex-
tracted values of αs(m2

τ ) will depend strongly on s0. We observe in Figure 3.8
that this is actually starting to happen in the V channel, at a ∼ 2.

In Figure 3.9, we plot the determinations of αs(m2
τ ) at a fixed‡ value of s0 =

2.8 GeV2, as a function of the Borel parameter a. We observe how in the region
where the strong coupling is stable, i.e., dαsda ∼ 0, there is a similar stability range
under variations of s0, for every moment. This reinforces the idea that there exist
‡We take this value as a reference point because it is the largest invariant-mass bin with

enough experimental resolution.
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Figure 3.8: CIPT determinations of αs(m2
τ ) from the moments Aω

(1,n)
a

V/A (s0), as
function of s0, ignoring all non-perturbative corrections and evaluated at a = 0
(top), 1 (middle) and 2 (bottom). The left (right) panels correspond to the vector
(axial-vector) distribution. Only experimental uncertainties have been included.

a range of values of a, large enough to minimize DV effects and not so large to
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Figure 3.9: CIPT seterminations of αs(m2
τ ) from the moments Aω

(1,n)
a

V/A (s0), at
s0 = 2.8 GeV2 and ignoring all non-perturbative corrections, for different values
of the Borel parameter a (V on the left and A on the right). Only experimental
uncertainties are included.

get dominant condensate corrections, so that it is the best region for determining
αs(m2

τ ).
In order to extract a reliable value for the strong coupling, using what we

know, we start by taking as reference the point s0 = 2.8 GeV2. For every moment
and channel (V or A), we only accept values of αs in the stability region of the
Borel transform,§ i.e., those whose central values are within the experimental
errors of the derivative-zero point dαs

da = 0. For every value of a in that region,
we have an αs(m2

τ ) value. Its error is calculated adding quadratically to the
experimental error the perturbative uncertainty, estimated varying K5 and the
scale ξ with the same criteria as above, and the non-perturbative one, calculated
conservatively as the maximum value minus the minimum one in the region s0 ∈
[2, 2.8] GeV2. We choose as the optimal value for every moment the one that gives
the minimum total error. Finally, we take as central value of the 7 moments
the one closest to the average and its error summed quadratically to half the
difference between the maximum and minimum αs(m2

τ ) value (as a second non-
perturbative uncertainty, more related with the neglected vacuum condensates)
§We have checked that results are not really different if we remove this condition. This

happens because the Borel-stable region is very similar to the s0-stable one, for all moments at
every experimental channel, as one would expect if all non-perturbative effects are indeed small
in that Borel region.
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to get a conservative estimate of the total uncertainty. We obtain in this way:

αs(m2
τ )V,CIPT = 0.326 + 0.021

− 0.019 ,

αs(m2
τ )A,CIPT = 0.325 + 0.018

− 0.014 ,

αs(m2
τ )V,FOPT = 0.314 + 0.015

− 0.011 ,

αs(m2
τ )A,FOPT = 0.320 + 0.019

− 0.016 . (3.47)

Thus, we find a very good consistency between the determinations performed in
the vector and axial-vector channels. Taking the average of both experimental
channels and keeping the minimum error, we get finally

αs(m2
τ )CIPT = 0.325 + 0.018

− 0.014

αs(m2
τ )FOPT = 0.317 + 0.015

− 0.011
−→ αs(m2

τ ) = 0.321 + 0.016
− 0.012 . (3.48)

One can play a similar game with the V + A channel. The resulting αs(m2
τ )

determinations are plotted in Figures 3.10 and 3.11, as function of s0 and a, re-
spectively. Since for V + A one observes a slightly different behavior in FOPT
and CIPT, the results of both perturbative approaches are shown in the figures.
Increasing the Borel parameter a does not bring in this case any clear improve-
ment in the stability under s0 (Figure 3.10), because the DV effects are smaller
for V +A. When we reduce the tiny DV effects, the condensate corrections could
become dominant. The different qualitative behavior observed in Figure 3.11
for FOPT and CIPT reflects the difficulties in extracting conclusions with this
method about the tiny non-perturbative corrections in the V +A channel, within
the much larger perturbative uncertainties.

Applying the same method as in the separate vector and axial-vector channels,
in FOPT we can derive from these plots a combined determination of the strong
coupling in a completely straightforward way. A little bit more care has to be
taken in CIPT because of the absence of a derivative-zero point (dαs(m

2
τ )

da = 0) in
Figure 3.11. We can try two different possibilities: either accept only the small
stability region in the separate V and A channels, or apply the method without
imposing that constraint. We find the same result with both procedures. Our
final results from the V +A channel are:

αs(m2
τ )CIPT = 0.328 + 0.014

− 0.013

αs(m2
τ )FOPT = 0.318 + 0.015

− 0.012
−→ αs(m2

τ ) = 0.323 + 0.015
− 0.013 , (3.49)
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Figure 3.10: Determinations of αs(m2
τ ) from the moments Aω

(1,n)
a
V+A (s0), as function

of s0, ignoring all non-perturbative corrections and evaluated at a = 0 (top), 1
(middle) and 2 (bottom). The left (right) panels correspond to FOPT (CIPT).
Only experimental uncertainties have been included.
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Figure 3.11: Determinations of αs(m2
τ ) from the moments Aω

(1,n)
a
V+A (s0), at s0 =

2.8 GeV2 and ignoring all non-perturbative corrections, for different values of
a (FOPT at top and CIPT at bottom). Only experimental uncertainties are
included.
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in good agreement with (3.48).

3.7 Modeling duality violations

In order to study violations of duality, Refs. [113–115] parametrize the dif-
ferences between the physical spectral functions and their OPE approximations
with the following ansatz:

∆ρDV
V/A(s) = e−(δV/A+γV/As) sin (αV/A + βV/As) , s > ŝ0 . (3.50)

Although it is theoretically well motivated, this functional form cannot be de-
rived from first principles, which unavoidably introduces some model dependence
in their analyses. This combination of an oscillatory function with an exponen-
tial damping is assumed to describe the fall-off of DVs at very high energies.
However, nobody really knows from which ŝ0 value it might start to be a valid
approximation.

Having a model for the spectral function, to be fitted to data, one can then
estimate the DV correction to Eq. (3.1) through the identity [39,45,55,59]

∆Aω,DV
V/A (s0) ≡ i

2
∮
|s|=s0

ds
s0
ω(s)

{
ΠV/A (s)−ΠOPE

V/A (s)
}

= −π
∫∞
s0

ds
s0
ω(s) ∆ρDV

V/A(s) .
(3.51)

The strategy adopted in Refs. [113–115] consists in making a global fit to
the s0 dependence of the moments AωV/A(s0), in order to fit αs(m2

τ ), the vacuum
condensates and the eight spectral function parameters in Eq. (3.50), assuming
the ansatz is valid above ŝ0 ∼ 1.55 GeV2. They make a large amount of different
fits and tests in agreement with many observables and with the same values for
the model parameters, which may lead to the conclusion that the model is giving
a very precise prediction of DVs. In this large section, we will start by showing
how most of those tests are consequence of the following:

1. Using an ad-hoc model for the spectral function with 4 parameters fitted
to data, so that necessarily there is agreement with it in some region, as for
any chosen parametrization.

2. Adding data points which gives no information about the relevant param-
eters for the αs extraction, i.e., any other αs would also be in agreement
with those data points.

3. Adding to the original fit a number of independent data points equal to the
number of new theoretical parameters one introduces into the fit, so that
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the new parameters will adapt to the values of the new data points without
new information on αs.

4. Testing agreement between data and theory of observables which are simple
functions of points already fitted, so that provided the original fit is in
agreement (which obviously it is, see point 1), necessarily those observables
are.

We will briefly analyze the consequences of these points and we will see how small
modifications in the ansatz or in the arbitrary threshold ŝ0 lead to a completely
different prediction for the strong coupling, so that one can even tune the model
parameters to extract any αs with the same agreement with data.

Then, one natural worrisome, reflected in Ref. [120] might arise: if using that
approach one can build DV models for getting any αs, does it mean that from tau
data is impossible to extract any reliable αs? Is then our previous study wrong?
We will see, using as example the central fit of Ref. [115], how the consequences of
setting a value of αs(m2

τ ) which differs from our determination needs to introduce
two things:

1. A huge and unreliable DV above the τ mass.

2. Huge condensates, making the OPE divergent series at the τ mass, breaking
the expected naive counting from the first condensates.

Since this scenario is unjustified (in the sense that one can choose parameters so
that it does not happen), we finally argue that this breaking of the counting is
comparable with fine tuning high-order perturbative coefficients, so that one can
land outside from the interval quoted in theoretical uncertainties.

3.7.1 Deconstructing a model-dependent analysis

Let us recall Eq. (3.1) with the modified OPE

AωV/A(s0) ≡
∫ s0

sth

ds

s0
ω(s) Im ΠV/A(s) = i

2

∮
|s|=s0

ds

s0
ω(s)ΠOPE

V/A (s) + ∆Aω,DV
V/A (s0) .

(3.52)
If, following the prescription of Ref. [115], one fits data from a channel with the

five model parameters αs, δV , γV , αV , βV from the s0−dependence of the ω(s) = 1
moment, {AV (s0), s0 ∈ [ŝ0,mτ ]}, obviously there are some ŝ0 for which there is
agreement with data. Without any further theoretical or experimental reason,
just because in the V channel there is a local maximum in the p-value so that
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p ≈ 5%, they assume the model becomes exactly true from ŝ0 = 1.55 GeV2. This
leads to:

αFOPTs (m2
τ ) = 0.298± 0.011 , (3.53)

αCIPTs (m2
τ ) = 0.312± 0.014 . (3.54)

Using the information on the spectral function, we have the experimental AV (s0)
in the interval s0 ∈ [ŝ0,mτ ]. From the definition of AV (s0), it is obvious that this
is the same as fitting AV (ŝ0) plus the experimental spectral function ρV (s) in the
interval (ŝ0,mτ ]. One can reconstruct one set of data points from the other by
using the trivial identity:

s0AV (s0) = π

∫ s0

ŝ0
dsρ(s) + s0AV (ŝ0) . (3.55)

Then, once the original fit, necessarily in good agreement with data in some
interval s0 ∈ [ŝ0,mτ ], presents such agreement for AV (s0), then there is no way
that the spectral function is in disagreement with data in that interval. A test
checking that is then worthless and by no means is a test of the model, as one
may infer from Ref. [115].

The first extension to this fit can be using information from the A spectral
function. If, as done in that work, one chooses again ŝ0 = 1.55 GeV2, the interval
s0 ∈ [ŝ0,mτ ] happens to be small enough to be compatible with the model,
which is not a surprise if one takes into account that one is inserting other 4 free
parameters and experimental uncertainties are larger in this channel. However,
because of these larger uncertainties, no useful information for αs can be extracted
from including the A channel. Basically one gets that any reasonable value of
the strong coupling αs(mτ ) ∼ 0.3±0.1 is compatible with data when introducing
those new free parameters. One might question himself: is there in the A channel
a value of ŝ0 small enough so that one can predict (a model-dependent) αs(mτ )
with similar precision to the previous (model-dependent) αs(mτ ) and with a
similar p-value? Interestingly, there is. This starts happening at ŝ0 = 1.475 GeV2

and a local maximum in the p-value (p = 16%) is found in ŝ0 = 1.3 GeV2, where
one finds αFOPT

s (m2
τ ) = 0.332± 0.011. If data had happened to be less precise in

the V channel, maybe this would have been the final αs value of this approach.
Then, Ref. [115] makes extra fits by adding other weight functions to the

previous one,

{A1(s0), A1−x2(s0), A1−3x2−2x3(s0) ; s0 > ŝ0} , (3.56)
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where x = s
s0
. Making a linear transformation of the data points that, taking into

account correlations, leaves the χ2 invariant, one finds that fitting those points
is mathematically equivalent to fit:

{A1(s0), Ax2(s0), Ax3(s0) ; s0 > ŝ0} . (3.57)

But then, using that:

Ax
2(s0) = 1

s3
0
π

∫ s0

ŝ0
s2ρ(s) +Ax

2(ŝ0) , (3.58)

Ax
3(s0) = 1

s4
0
π

∫ s0

ŝ0
s4ρ(s) +Ax

3(ŝ0) , (3.59)

and that, as we showed before, the spectral function is already fitted¶ when fitting
A1(s0), only two independent data points have been added to the fit, Ax2(ŝ0) and
Ax

3(ŝ0). Since additionally they depend respectively on O6 and O8, which are
added as free parameters to be fitted, at the end one is adding to the original
fit as many independent data points as unknown theoretical parameters, so that
the quality of the fit is going to be necessarily the same and, when marginalizing
over O6 and O8, the χ2 distribution is going to be identical. Adding this fit to
the previous one is then a tautology in the sense that the same result must arise.

Ref. [115] acknowledges that the correlation matrix is singular (which it is
consequence of unnecessarily adding the same data points several times) and in-
stead of trivially fixing the problem (by removing such data points), they obtain
the central value of the theoretical parameters by putting to zero the huge cor-
relation among different moments, which distortions the central value of the fit.
Then they use a method presented in the appendix of Ref. [113], based on some
assumptions, to estimate uncertainties. If it is correct, the result must reduce to
the fit we just explained when removing the double-counted experimental data
points. But then again the fit is the same as the original one and the same result
for the parameters must arise.
¶Explicitly from Eq. (3.55):

ρ(s0) = 1
π

([A1
V (s0)−A1

V (ŝ0)] +A
′1
V (s0)s0) . (3.60)

As far as the binning is prepared to be able to integrate by summing over them, as it is in this
occasion and what it should be preferred so that no model-dependent extra assumptions in the
shape of the spectral function have to be taken, the derivative of A1

V (s0) is nothing else but the
difference A1

V (s0)−A1
V (s0−∆s0)

∆s0
.
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Then the first WSR is shown as additional test, but again it was impossible not
to satisfy it once one acknowledges that any αs is compatible with the A channel
in this model-dependent approach. As we studied in the previous chapter, the
WSR involves the ω(s) = 1 weight function. One has:

AV (s0) = AP (s0;αVs ) + ∆ADVV (s0) , (3.61)
AA(s0) = AP (s0;αAs ) + ∆ADVA (s0) , (3.62)

where AP is the perturbative prediction. When one imposes the strong coupling
to be the same in the A channel than in the V , the first term of the rhs of the
previous equations cancels when taking the difference, leaving necessarily:

AV−A(s0) = ∆ADVV−A(s0) , (3.63)

which is the first WSR. In other words, the only way the first WSR may not
be satisfied in this approach is by obtaining incompatible values for αs in the
separate V and A channels. Since this is impossible because the A channel is
compatible with any αs, this test is satisfied by construction.

The rest of tests consist in plotting moments (or linear combinations of them)
Ax

n(s0) that make use of extra fitted parameters. One has:

Ax
n(s0) = Ax

n(ŝ0;On+1) + π

s0

∫ s0

ŝ0
ds xn ρ(s) . (3.64)

Again once one imposes agreement between Axn(ŝ0;On+1) and data introducing
the free parameter On+1, the agreement to all data points is guaranteed if one has
previously fitted the spectral function in an interval with the 4 model parameters
of ρV plus the 4 model parameters of ρA. Again, these tests are satisfied by any
possible model in some interval.

3.7.2 Performing nontrivial tests of the model

Up to now, the only tool we have to judge the ad-hoc model is the fact that
in some interval, taking appropriate values of 4 free parameters, is in agreement
with data. Unfortunately, it is very far from a definite tool to judge it, since
one can imagine a very large amount of models in agreement with data in some
interval. In order to test the reliability of the strong coupling one obtains with
it, one still can perform some tests:
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n αs(m2
τ ) δ γ α β p-value (% )

0 0.298± 0.010 3.6± 0.5 0.6± 0.3 −2.3± 0.9 4.3± 0.5 5.3
1 0.300± 0.012 3.3± 0.5 1.1± 0.3 −2.2± 1.0 4.2± 0.5 5.7
2 0.302± 0.011 2.9± 0.5 1.6± 0.3 −2.2± 0.9 4.2± 0.5 6.0
4 0.306± 0.013 2.3± 0.5 2.6± 0.3 −1.9± 0.9 4.1± 0.5 6.6
8 0.314± 0.015 1.0± 0.5 4.6± 0.3 −1.5± 1.1 3.9± 0.6 7.7

Table 3.10: Fitted values of αs(m2
τ ), in FOPT, and the spectral function param-

eters, modifying the ansatz (3.50) with a power sn (GeV units).

1. Is the strong coupling αs dependent on the parametrization or, at least, is
the parametrization given by the model the only one reproducing data from
the selected threshold?

2. If we change the arbitrary threshold ŝ0, is the determination of the strong
coupling stable?

3. Is the convergence to the model soft, so that one may predict reasonably
well the spectral function below the selected threshold ŝ0?

Let us start addressing the point 1 by buying just for the moment that ŝ0 =
1.55 GeV2. One may think that the previous model is exceptional because is
able to fit data in the interval (ŝ0,mτ ) with “only” four parameters. Indeed
one can easily find better models, for example multiplying the functional form
(3.50) with a polynomial. We have repeated the exercise multiplying the ansatz
with a simple power sn, to avoid increasing the number of parameters. When
varying the power n, one finds “better models” (higher p-values) of the spectral
function than the default “n = 0” and, dramatically, they provide significantly
higher values of the strong coupling. In Table 3.10 we illustrate a few examples
of this simple exercise, varying n between 0 and 8. One immediately appreciates
the strong correlation between αs(m2

τ ) and the power n. The statistical quality
of the fit improves with growing values of n, while the exponential parameters
δV and γV adapt themselves to compensate the growing of the ansatz spectral
function at high values of s with the net result of a smaller DV correction. As the
fit quality improves, the central value of the fitted αs(m2

τ ) approaches the result
of the ALEPH-like fit in Eq. (3.23). The αs(m2

τ ) value is then clearly model
dependent.
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Figure 3.12: Vector spectral function ρV (s), fitted with the ansatz (3.50) multi-
plied by a power sn, for different values of n = 0, 4, 8, compared with the data
points.

Figure 3.12 compares the measured vector spectral function with the fitted
ansatz for n = 0, 4 and 8. Although all models reproduce well the spectral
function in the fitted region, they deviate very fast from the data below 1.55 GeV2,
exhibiting a clear failure of the assumed ansatz. As the power n increases, the
fit quality slightly improves and the ansatz slowly approaches the data at values
of the invariant mass below the fitted range.

Probably the clearest weakness of the model becomes manifest when the point
2 is addressed. Even if the parametrization given by Eq. (3.50) happened to
exactly reproduce the convergence to the QCD spectral function, we have no clue
about from which ŝ0 value this should be true. This problem might be familiar to
the reader, since it is analogous to the problem of convergence to quark-hadron
duality: for a given observable, from which energy the OPE prediction is able
to reproduce data with a given precision? However, there are two important
differences.
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The first one is that we know things about how the convergence of the OPE
to data should be and we have channels in which this can be explicitly studied
where we have data available and with known short-distance constraints (see the
previous chapter): it is better in the most inclusive channels, it is very fast, typ-
ically exponentially and DVs are very suppressed when inserting pinched weight
functions (which leads to the very strong quantitative arguments presented before
to state that DVs are negligible for certain AωV+A(s0)). This basically means that
predictions based on sum rules neglecting DVs, i.e., neglecting

∫∞
s0

ds
s0
ω(s)ρDV (s)

are going to be dominated by the region very close to s0, so that fluctuations in
those determinations when varying s0 in a conservative range of energies (as done
in the determination of the previous section) gives the order of DV uncertainties,
independently on the exact shape of the unknown tail of the spectral function.
However, we have no clue on how the convergence to the model is supposed to
work. Maybe this approach should implement a model of violations of duality
violations.

The second one is that we know that the OPE must converge to data on QCD
grounds. Not only we cannot say from which energy data is supposed to converge
to the parametrization. We cannot even say if it approximately does it from any
point, because it is not QCD.

Even with all that in mind, one can still change ŝ0 and hope that there is
not a dramatic dependence on it in some interval, so that if we are lucky the
hypothetically “physical” ŝ0 might be at some point of that interval. But not
even that is true. We have performed a fit to the s0 dependence of A(0,0)

V (s0),
above some minimum value ŝ0. The results of this exercise are presented in
Figure 3.13, using FOPT to handle the perturbative series (the same conclusions,
with correspondingly larger values of αs(m2

τ ), are obtained in the CIPT case).
The left panel shows, as a function of ŝ0, the value of αs(m2

τ ) extracted from a
fit to all s0 bins with s0 > ŝ0, while the right panel gives the associated p-values
of the different fits. One immediately notices the very poor statistical quality of
these fits, with very low p-values in all cases. If the model were reliable, it should
work better at higher hadronic invariant masses. However, the p-value becomes
worse when we go to higher values of ŝ0 and significant deviations from the model
are observed. Even worse, the fitted values of αs(m2

τ ) do not present the stability
one should expect. Fluctuations of the order of 1σ are observed, just removing
1 of the ∼ 20 points included in the fit.

Let us finally address the third point. Legitimately, assuming carelessly exact
quark-hadron duality at the tau mass for any moment has been criticized for
a very simple reason. If at lower energies s < m2

τ there is not an exact duality
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Figure 3.13: FOPT determination of αs(m2
τ ) from the s0 dependence of

A
(0,0)
V (s0), fitting all s0 bins with s0 > ŝ0, as function of ŝ0, using the approach

of Ref. [115].

quark-hadron, why is going to be so atm2
τ? Certainly, convergence of the spectral

function to its OPE description must be relatively fast, but it is completely
unnatural to think that is going to be exact from m2

τ , because it did not happen
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Figure 3.14: Comparison between the tuple prediction of Ref. [115], the tuple
associated to αFOPT

s (m2
τ ) = 0.330 and data. Notice how below the explicitly

fitted interval, the deviation is dramatic for both tuples.

before and because mτ is in principle just an arbitrary energy. The claim that
DVs should be small in the V + A channel for most of the weight functions is
based, besides of the theoretical point that the hadronic multiplicity is large at
that energy, on the fact that the spectral function is very well approximated
by its OPE approximant from very low energies. The minimal requirement we
should ask to a model is the same: below the fitted energy region (where we
have used free parameters to ensure agreement to data), is the convergence to
the model soft? In order to answer this question, we plot the model prediction
together with the spectral function. Below the fitted data region one can see
how the model dramatically deviate from data, so that one necessarily has to
unreliably assume that the model is not only exactly but also abruptly valid
from ŝ0 = 1.55 GeV without any reason. One can play with that and assume that
instead is abruptly valid, for example, from ŝ0 = 2 GeV. Then, taking the tuple
(αFOPT

s , δV , γV , αV , βV ) = (0.330, 0.51, 1.88, 0.84, 2.78) one gets agreement with
data in [2 GeV2,mτ ] with a p-value of an 8%, to be compared with the extremely
poor p-value of a 0.6% of the central tuple of the ŝ0 = 1.55 GeV fit of Ref. [115]
in the same interval or (maybe fairer) with the 5% in [1.55 GeV2,mτ ]. If one
ignores the bad convergence of the tuple below the fitted region (Fig. 3.14), why
should the value αFOPT

s = 0.298 should be chosen instead of αFOPT
s = 0.330? By

changing ŝ0 one can build tuples with any possible αs.
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Unfortunately, the conclusion of this section is that the determination of αs
of Ref. [115] is strongly model-dependent and that it fails when some minimal
tests about its reliability are performed. If one ignores those tests as a tool to
evaluate the reliability of the model, indeed any strong coupling can be imposed
a priori in total agreement with data even unreliably assuming that there is some
energy from which the parametrization gives an exact description of nature. It
is enough to choose the appropriate tuple (ŝ0, δV , γV , βV , αV ).

3.7.3 Consequences of building DV models with a priori values
of αs(m2

τ ) deviated from the physical one

In previous sections we have studied different approaches to deal with non
perturbative uncertainties. We have seen how, when fitting different sets of mo-
ments whose DVs are expected to be completely negligible, introducing only those
operators with lower dimensions as free parameters is enough to make the quality
fit optimal, as expected by any OPE expansion ( Λ2n

m2n
τ
) well-behaved at the tau

mass for the first few terms. By adding condensates to the fit and testing stabil-
ity we have added systematic uncertainties. We have obtained for all those fits,
dependent on different neglected dimensional condensates, the same results. We
have also seen how, within uncertainties, the same strong coupling is the only
one it succeeds in precisely predicting many different moments at s0 ≈ m2

τ for
all the different channels in the expected scenario in which DVs (both because of
the increasing hadronic multiplicity near s0 ∼ m2

τ and because of the results of
the study of V − A sum rules) and dimensional condensates are not dominating
uncertainties. We have also seen how the purely perturbative prediction with
our obtained value of αs is able to reproduce in a very large interval the s0 de-
pendence of A1

V+A(s0), the only moment insensitive to condensates, even when
it is specially sensitive to DVs. Independently on the exact shape of the spectral
function, this means that assuming that DVs are going to zero relatively fast, so
that the ρ-like resonance regime has been overpassed (which is clearly observed
in a wide interval below the τ mass), it is basically impossible that they are larger
than the obtained uncertainties, since they cannot be larger than the fluctuations
observed in the region where data are available. The determination of the Section
3.5 is, in fact, nothing else but a way to study this, since at the end a fit to the
energy dependence to a given moment is equivalent to fit the energy dependence
on that moment A1(s0) with only αs. By changing ŝ0, the preferred value of the
strong coupling changes in the same order than the fluctuations of Fig. 3.3. In
an interval generous enough it should give the order of DV uncertainties. Again
the same value for the strong coupling is obtained by this approach.
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The only way of escaping from our quoted uncertainties of the strong cou-
pling is by imposing by hand that systematic uncertainties are larger. The less
unreliable way of doing this would be by arguing that higher-order perturbative
coefficients are only apparently converging to a value before asymptotically di-
verge, but that such a value is not the physical one. Sadly, there is no way to
prove the opposite and one has to rely on the apparently good convergence, good
behavior under the change of scale and good agreement for different moments at
nearly the tau mass and to quote conservative estimates of uncertainties.

The way suggested by Ref. [120] consists in imposing a priori an arbitrary αs,‖
and imposing that the differences between the value we obtained and the a priori
one must be caused by non perturbative effects. The first problem one has to
fix is the large difference between the perturbative prediction obtained with that
αs and data for A1(s0) at all energies in the channel with lower DVs (V + A).
The only non-perturbative way of explaining this difference is by imposing a
large high-energy tail of the difference between the spectral function and its OPE
approximant. The more deviated is the a priori αs from the one obtained in this
work, the more unreliable the high-energy tail must be. For example, for the
value of αs given in Ref. [120], they use the high-energy tail showed in Fig. 3.15.
An artificial and unreliable DV tail, only comparable with the one found in the
ρ resonance, where the energy is so low that the OPE even does not make sense,
is put by hand as compensating effect, so that the moment A1 converges to the
a priori αs in a Heaviside-like way (bottom panel of Fig. 3.15), comparable to
the way data is assumed to converge to the model tuple at ŝ0. Notice how, if
only semi-inclusive V or A data existed, which suffer from larger DVs, imposing
the same a priori αs would have had less unreliable predictions, since it is more
reasonable to assume that DVs can affect a strong coupling determination based
on those separate channels for A1(s0), as we have actually discussed in previous
sections and what leads us to use only αs from the V + A channel for the final
determination.

However, imposing artificial shapes for the spectral function is necessary, but
not enough to justify any strong coupling, because one can build weight func-
tions, such as the one used by ALEPH or the different sets we already used,
which efficiently suppress them. In that case, if one does not want to impose
extra ρ-like resonances at s0 ∼ 2m2

τ , one needs to compensate the poor pertur-
bative predictions one gets with the unphysical αs for the different moments by
compensating with fine-tuned huge condensates values. The larger the deviation
‖In the sense that, as we showed in the previous section, any αs can be imposed a priori with

that approach.
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Figure 3.15: Comparison between the tuple of Ref. [115] and data for the spectral
function and for ∆A1,DV

V/A (s0).

from αs is, the larger the condensates and the more unreliable values one needs
to compensate for those effects.

The scaling of the condensates, which is supposed to resum the asymptotically
divergent high-energy perturbative QCD tail, is naively expected to go in the tau
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mass as OD
mDτ
∼
(

Λ2

m2
τ

)D/2
, where Λ is the QCD scale, Λ ∼ Λnf=3

M̄S
∼ 0.34 GeV [147].

The OPE, however, is expected to be also asymptotically divergent, typically with
a behavior similar to the Γ function, so that one conservatively might expect
instead OD

mDτ
∼
(

Λ2

m2
τ

)D/2
Γ[D2 ]. The few known condensates (〈qq〉, αs

π 〈GG〉 and
O6,V−A) are in agreement with that counting. If the counting is correct, our αs
determination, which has additionally tried to uncover possible deviations from
it with many different tests without any success, is certainly independent on the
high-energy shape of the spectral function (as far as no astonishing deviations
are observed at very high energies, which indeed would put into doubt some of
the QCD grounds).

For example, even the αFOPTs = 0.298 model tuple is already suppressing
DVs at s0 ∼ m2

τ for the moment A1−x2(s0) in the V + A channel, so that the
only non-perturbative way of explaining the discrepancy between data and the
perturbative prediction αFOPTs = 0.298 is by assigning it to O6V+A. The result
is that O6V+A = 0.0155 GeV6, which would mean a complete breaking in the
OPE counting:

O6V+A
O4V+A

∼ 4.7 GeV2, (3.65)

O6V+A
O6V−A

∼ 5 , (3.66)

B6V+A ≡
O6V+A
OV SA6V+A

≈ −26 (B6V−A ≈ 1) . (3.67)

Then, the prediction on Rτ , with completely negligible DVs, is doubly distorted
both for the value of αs and O6 and the only way of compensating it is with an
also huge O8 = 0.046 GeV8, so that O8

3Λ2
MSO6

∼ 9 , which would mean that the
OPE diverges from the first term near the tau mass. While it is impossible to
axiomatically rule out this tuple, the fact that it has nothing special and that
its consequences would mean a breaking of the OPE counting, it is certainly
conservative leaving it at ∼ 2σ from our final value. Modeling DVs, at least how
it has been performed until now, does not seem to be the best approach to reduce
the possible weaknesses in the αs determinations performed in Ref. [46].
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3.8 Summary

We have presented a thorough numerical reanalysis of the αs determination
from τ decay data, using the most recent release of the experimental ALEPH
data [46]. Our main goal has been to achieve a quantitative assessment of the
role of non-perturbative effects, either from inverse-power corrections or violations
of duality. While these corrections are known to be small [7, 52, 100, 108], the
current level of O(α4

s) perturbative precision requires a careful study of this type
of contributions.

In order to be sensitive to non-perturbative effects, one needs to go beyond the
very clean Rτ ratio [52] and investigate moments of the hadronic invariant-mass
distribution in τ decays [119]. Several strategies have been advocated in previous
works, with different advantages and disadvantages. We have investigated all of
them, trying to uncover their potential hidden weaknesses and test the stability of
the obtained results under slight variations of the assumed inputs. Moreover, we
have put forward various novel approaches which allow to study complementary
aspects of the problem.

Perturbative uncertainties from unknown higher-order corrections dominate
the final error of the αs(m2

τ ) determination, being at present the main limitation
on the achievable accuracy [7]. In particular, two different prescriptions to handle
the renormalization-group-improved perturbative series, CIPT and FOPT, lead
to systematic differences on the extracted value of the strong coupling, with
αs(m2

τ ) slightly smaller in the FOPT case. While CIPT resums very efficiently
the known sources of large logarithms [54, 99], the more naive FOPT procedure
has been advocated to approach better the Borel-summed result if the series is
already asymptotic at O(α4

s) [132,136]. In the absence of a better understanding
of the perturbative behavior at higher orders, we have performed all our analyses
with the two prescriptions.

In Table 3.11 we summarize our determinations of αs(m2
τ ), obtained with

different methods from the V + A spectral distribution. The numbers in the
table are representative of the various strategies that we have investigated, and
all of them have been corroborated with additional tests and stability studies of
the final numerical results. Overall, our results exhibit a very consistent pattern,
being the agreement among them much better than what one should expect from
the quoted uncertainties.

Our first determination in Eq. (3.23), using the same moments as in the
standard ALEPH analysis, is in very good agreement with the results of Ref. [46].
We have increased the uncertainties to account for the potential sensitivity to
higher-order inverse-power corrections. However, taking away the (1 + 2s/m2

τ )
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Method & Eq. (#) αs(m2
τ )

CIPT FOPT Average
ALEPH moments (3.23) 0.339 + 0.019

− 0.017 0.319 + 0.017
− 0.015 0.329 + 0.020

− 0.018
Modified ALEPH moments (3.27) 0.338 + 0.014

− 0.012 0.319 + 0.013
− 0.010 0.329 + 0.016

− 0.014
A(2,m) moments (3.35) 0.336 + 0.018

− 0.016 0.317 + 0.015
− 0.013 0.326 + 0.018

− 0.016
s0 dependence (3.40) 0.335± 0.014 0.323± 0.012 0.329± 0.013
Borel transform (3.49) 0.328 + 0.014

− 0.013 0.318 + 0.015
− 0.012 0.323 + 0.015

− 0.013

Table 3.11: Summary of the most reliable determinations of αs(m2
τ ), performed

in the V +A channel.

factor from the ALEPH weights (3.21), we found basically the same results with
smaller errors, as shown in (3.27). This suggests that our error enlargement was
too pessimistic. In any case, it provides a very strong consistency check. Taking
away the (1+2s/m2

τ ) factor, one eliminates the highest-dimensional contribution
to each moment.

In Section 3.4 we have analyzed alternative families of weights to better un-
derstand the potential role of different types of non-perturbative corrections.
The study of optimal moments, which are only sensitive to particular conden-
sate dimensions, brings more light on the numerical size of these effects. From
a combined fit of five different A(2,m) moments (1 ≤ m ≤ 5), we have obtained
the results in Eq. (3.35), in perfect agreement with the previous determinations.
Similar values are obtained from the global fit of A(n,0) moments (0 ≤ n ≤ 3) in
Table 3.6.

Neglecting all non-perturbative effects, one can determine the strong coupling
with a single moment. The comparison among results extracted from different
moments provides then a direct assessment on the missing contributions. While
the moment A(2,m) is sensitive to O2(m+2) and O2(m+3), A(1,m) only gets correc-
tions from O2(m+2). In Table 3.5 we show the values of αs(m2

τ ) extracted from 12
different moments with completely different sensitivity to the neglected inverse
power corrections. The good agreement among them suggest that vacuum con-
densate corrections are very small in the V +A case. Moreover, for all moments
the fitted value of the strong coupling agrees with the more solid determinations
in Table 3.11 which do take non-perturbative effects properly into account.

A different handle to uncover signals of non-perturbative dynamics is pro-
vided by the s0 dependence of the moments. This has been carefully studied
in Section 3.5. Comparing the s0 dependence of a few experimental A(n,0)(s0)
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moments (0 ≤ n ≤ 3) with their values predicted with perturbative QCD, one
finds the results shown in Figure 3.3, where αs(m2

τ ) has been fixed to the value
in Eq. (3.23). In spite of the fact that all non-perturbative contributions have
been neglected, the theoretical curves reproduce well the data at large values of
s0 ∼ m2

τ . In the V + A distribution the agreement extends to surprisingly low
values of s0, specially for n = 0 and 1. In particular, the data appear to closely
follow the CIPT predictions for A(0,0)(s0) and A(1,0)(s0), the moments most ex-
posed to violations of duality. These effects (and O4 in the n = 1 case) appear to
be too small to become visible within the much larger perturbative uncertainties.
The higher moments seem to indicate a more sizable D = 6 contribution, with
opposite signs for the V and A distributions, which cancels to a large extent in
V + A as expected theoretically. The different V , A and V + A curves merge in
the higher s0 range, suggesting a tiny numerical effect at s0 ∼ m2

τ .
In Figure 3.7 we show, as a function of s0, independent determinations of

αs(m2
τ ) extracted from 13 different moments of the V +A distribution, ignoring

all non-perturbative effects. The clear clustering of the different curves is another
strong indication that inverse power corrections are small for V +A.

One can try to fit the strong coupling, together with the appropriate power
corrections, from the s0 dependence of a given moment. However, this is not
really justified because it turns out to be equivalent to a direct fit of the spectral
function, and the OPE does not work in the physical real axis at those energies.
The functional dependence of the moments with s0 should necessarily manifest
the violations of quark-hadron duality which are present in the hadronic spec-
trum. This is seen in Figure 3.6 which shows the fitted parameters from the
moment A(2,0)(s0), as a function of ŝ0, the starting s0 value of the fit. There is
a clear dependence on ŝ0 for the V and A distributions, in the lower ŝ0 range,
which however converges to the more stable V +A results at higher values of ŝ0.
The stability of the extracted V + A values is surprising, but it can be under-
stood looking to the experimental spectral function in Figure 3.2 and observing
the flattening of the V +A curve with increasing values of the hadronic invariant
mass, which manifests an evident compensation of the vector and axial-vector
departures from local duality.

Ignoring DV effects, but including in the uncertainties the variations with
ŝ0, one gets from the V + A data in Figure 3.2 the values of αs(m2

τ ) given in
Eq. (3.40). The agreement with the other determinations looks very good, which
provides a good consistency test of the negligible role of DV effects in the results
quoted in Eqs. (3.23), (3.27) and (3.35).
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An alternative approach, based on Borel weights, has been explored in Sec-
tion 3.6. It has been shown there that the exponential suppression of the weights
allows to find stability regions in both s0 and the Borel parameter a, where it is
possible to extract clean determinations of the strong coupling from the separate
vector and axial-vector distributions, in very good agreement with the V + A
results shown in Table 3.11. Applying the same method in the combined V + A
channel one gets the results in Eq. (3.49).

In Section 3.7 we have followed the strategy advocated in Refs. [113–115],
modeling DVs through a functional ansatz with several parameters which are di-
rectly fitted to the physical spectral functions. While we are able to reproduce
the numerical results of Ref. [115], they turn out to be quite unstable and have
a bad statistical quality, so that systematic uncertainties appear to be underes-
timated in that work. Making small changes in the assumed functional form of
the ansatz one finds very significant fluctuations in the fitted value of αs(m2

τ ),
which is highly correlated with the model parameters. One easily finds models of
the spectral function giving the central values for the strong coupling shown in
Table 3.11, and with much better statistical quality (χ2, p-value) than the model
assumed in Ref. [115]. Therefore, this determination is model dependent.

Our final conclusion is that the results quoted in Table 3.11 are very solid
(except perhaps the one from the s0 dependence). The overall agreement among
determinations extracted under very different assumptions clearly shows their
reliability and even indicates that our uncertainties are probably too conservative.
In order to quote combined values, we can make a naive average, but taking into
account that the uncertainties are fully correlated. We find:

αs(m2
τ )CIPT = 0.335± 0.013 ,

αs(m2
τ )FOPT = 0.320± 0.012 .

(3.68)

The same results are obtained irrespective or whether one includes or not in the
average the determination from the s0 dependence of the moments in Eq. (3.40),
exhibiting a very good numerical stability. Averaging the CIPT and FOPT “av-
erages” in Table 3.11, we quote as our final determination of the strong coupling

αs(m2
τ ) = 0.328± 0.013 . (3.69)

These results agree with the value of the strong coupling extracted from Rτ in
Ref. [7].
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After evolution up to the scale MZ , the strong coupling decreases to

α
(nf=5)
s (M2

Z) = 0.1197± 0.0015 , (3.70)

in excellent agreement with the direct measurement at the Z peak from the Z
hadronic width, αs(M2

Z) = 0.1197± 0.0028 [102]. The comparison of these two
determinations provides a beautiful test of the predicted QCD running; i.e. a
very significant experimental verification of asymptotic freedom:

α
(nf=5)
s (M2

Z)
∣∣∣
τ
− α

(nf=5)
s (M2

Z)
∣∣∣
Z

= 0.0000± 0.0015τ ± 0.0028Z . (3.71)

The agreement is also very good with the recent and very precise determination
from the lattice [148]:

α
(nf=5)
s (M2

Z)
∣∣∣
latt

= 0.1185± 0.0008 . (3.72)

It is also worth it to remark that some approaches, such as Deep Inelastic Scat-
tering [149] and specially Soft-Collinear Effective Theory (SCET), prefer lower
values for αs. For example, Ref. [150] finds:

α
(nf=5)
s (M2

Z)
∣∣∣
SCET

= 0.1123± 0.0015 . (3.73)

Improvements on the determination of αs(m2
τ ) from τ decay data would

require high-precision measurements of the spectral functions, specially in the
higher kinematically-allowed energy bins. Both higher statistics and a good con-
trol of experimental systematics are needed, which could be possible at the forth-
coming Belle-II experiment. On the theoretical side, one needs an improved
understanding of higher-order perturbative corrections.



Chapter 4

Relations between K → ππ
matrix elements and vacuum
condensates

4.1 Introduction

In Chapter 2 we performed a phenomenological study of Π(1+0)
V V−AA(s) using

the ALEPH spectral functions. Exploiting dispersive relations and short-distance
constraints, we were able to obtain LECs of χPT and some effective condensates.
In Ref. [151] it was shown that two vacuum matrix elements can be related to
the following two K → ππ ones at O(p0):

〈Q7〉µ ≡ 〈(ππ)I=2|Q7|K0〉µ

= 〈(ππ)I=2|s̄aΓµLda(ūbΓ
R
µub −

1
2 d̄bΓ

R
µ db −

1
2 s̄bΓ

R
µ sb)|K0〉µ , (4.1)

〈Q8〉µ ≡ 〈(ππ)I=2|Q8|K0〉µ

= 〈(ππ)I=2|s̄aΓµLdb(ūbΓ
R
µua −

1
2 d̄bΓ

R
µ da −

1
2 s̄bΓ

R
µ sa)|K0〉µ , (4.2)

109
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with ΓR(L)
µ ≡ γµ(1 ± γ5) and a and b color indices. Invoking the soft-meson

theorem, one has:

lim
k,p,q→0

〈(ππ)I=2|Q7|K0〉 = − 2
F 3 〈O1〉µ , (4.3)

lim
k,p,q→0

〈(ππ)I=2|Q8|K0〉 = − 2
F 3

(1
2〈O8〉µ + 1

Nc
〈O1〉µ

)
, (4.4)

where k, p and q are the momenta of the particles and

O1 ≡
1
2 d̄ΓLµu ūΓµRd , (4.5)

O8 ≡
1
2 d̄ΓLµλiu ūΓµRλid , (4.6)

where λi are SU(3) Gell-Mann color matrices.
As it was shown in [53,74,151], making use that one can rewrite Eq. (2.7) in

terms of 〈O1〉µ and 〈O8〉µ as:

[Q6ΠV−A(Q2)]D=6 = 2αs(µ)
{

(2π +A8αs(µ))〈O8〉µ + αsA1〈O1〉µ
}

+ 2α2
s ln Q

2

µ2

{
B8(µ2)〈O8〉µ +B1〈O1〉µ

}
, (4.7)

those relations can be used to extract 〈(ππ)I=2|Q7|K〉 and 〈(ππ)I=2|Q8|K〉 in the
chiral limit (O(p0)) from the V − A spectral function

(
ρV−A(s) ≡ Im ΠV−A(s)

π

)
coming from τ -decay data. At that time, only preliminary ALEPH spectral
functions were known. Since then, the final ALEPH spectral functions [44], later
updated with some improvements [46,109], were published. As we did in Chapter
2, in this work we use the updated experimental non-strange V−A spectral
function of Ref. [46]. These updates and further development of techniques to
assess DV uncertainties [39,40,43,45,55,56,59,67,152] motivate a fresh numerical
analysis. We present some preliminary results in this chapter of an ongoing
collaboration in this direction [153].

Since, to the best of our knowledge, no explicit proof of the relations of
matrix elements given in Eqs. (4.3) and (4.4) can be found in the literature,
we present a simplified derivation of it in App. B. In Chapter 2 (Eq. (2.9)),
generic polynomial sum rules were derived at LO in αs. Since one of the 4-quark
vacuum condensates above only enters in τ data at NLO, we derive in Section 4.2
the generic polynomial sum rules at NLO, where one needs to take into account
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the logarithmic corrections in the OPE. We also show why we avoid using other
sum rules only defined in the chiral limit.

In Section 4.3, we find that, when trying to obtain vacuum matrix elements,
the current precision of τ data enforces us to use sum rules at LO in αs, so
that we only have access to one of the two vacuum condensates. Fortunately,
the contribution of the other vacuum condensates to 〈Q8〉µ will be argued to be
small. We perform a careful phenomenological re-analysis of the D = 6 effective
condensate, with some additional tests and small changes with respect to Chapter
2 aimed to improved its determination. We obtain self-consistent values from
different approaches, which translates into a derivation of 〈Q8〉µ.

Alternatively, in the same sense that our knowledge of the D = 2 and D = 4
contributions to ΠOPE

V−A allow us to considerably reduce both experimental and
DV uncertainties in the extraction of different physical parameters, we can use
the determination of 〈Q7〉µ and 〈Q8〉µ from the lattice to obtain the D = 6
contribution at NLO in αs, which translates into a further reduction of them.
We apply it for the determination of fπ and 〈O8〉µ in Section 4.4.

4.2 Polynomial Sum Rules

Taking Eq. (2.9) with an arbitrary weight function of the form ω (s ≡ s0x) =∑∞
n=0 cnx

n:∫ s0

sth

ds

s0
ω(s) Im Π(s)− i

2

∮
|s|=s0

ds

s0

(
s

s0

)n
Π(s) = 2πf

2
π

s0
ω(m2

π) . (4.8)

Recalling the NLO version of the OPE, i.e., Eq. (2.4):

Π(1+0)(Q2 = −q2) =
∑

p=D/2

ap(µ) + bp(µ) ln Q2

µ2

Q2p

=
∑
p

1
(s0)p

aMp (µ, s0) + bp(µ) ln Q2

s0(
Q2

s0

)p , (4.9)

where bp is αs-suppressed with respect to ap and:∗

aMp (µ, s0) = ap(µ) + bp(µ) ln
(
s0
µ2

)
. (4.10)

∗Notice that at leading order ap reduces to O2p as defined in Chapter 2.
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Introducing it into Eq. (4.8):∫ s0

sth

ds

s0
ω(s) Im Π(s) = 2πf

2
π

s0
ω(m2

π)− π
∞∑
n=0

∞∑
p=1

1
(−s0)p cnd

(n)
p

−
∫ ∞
s0

ds

s0
ω(s) Im ∆DV (s) , (4.11)

with ω(s) =
∑
n cnx

n,

d(n)
p =

{
aMp if p = n+ 1
bp

n−p+1 if p 6= n+ 1
, (4.12)

and ∆DV ≡ Π(s)−ΠOPE(s). Explicitly, for the first moments one obtains:∫ s0

sth

ds

s0
Im Π(s) = 2πf

2
π

s0
+ π

(
− b3

2s3
0

+ b4
3s4

0
− b5

4s5
0

+ ...

)
−
∫ ∞
s0

ds

s0
Im ∆DV (s) , (4.13)∫ s0

sth

ds

s0

s

s0
Im Π(s) = 2πf

2
πm

2
π

s2
0

+ π

(
− b3
s3

0
+ b4

2s4
0
− b5

3s5
0

+ ...

)
−
∫ ∞
s0

ds

s0

s

s0
Im ∆DV (s) , (4.14)∫ s0

sth

ds

s0

(
s

s0

)2
Im Π(s) = 2πf

2
πm

4
π

s3
0

+ π

(
aM3
s3

0
+ b4
s4

0
− b5

2s5
0

+ ...

)

−
∫ ∞
s0

ds

s0

(
s

s0

)2
Im ∆DV (s) , (4.15)∫ s0

sth

ds

s0

(
s

s0

)3
Im Π(s) = 2πf

2
πm

6
π

s3
0
− π

(
aM4
s4

0
+ b3
s3

0
− b5
s5

0
+ ...

)

−
∫ ∞
s0

ds

s0

(
s

s0

)3
Im ∆DV (s) . (4.16)

There are other sum rules, such as the pion sum rule [68], which are defined
in the chiral limit and usually involve integration up to infinity. In order to get
precise enough information for this study, one needs to approximate Im Π(s) ≈
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Im Πmq=0.† The effect of mq in the physical spectrum must be certainly small
given the small values of mu and md. However, V−A sum rules involve strong
cancellations themselves and then those effects may become non-negligible.

As an example to illustrate this, let us compare the physical and the chiral
version of ω(2,0)(s) ≡

(
1− s

s0

)2
at LO, which is one of the key weight functions

in this work:∫ s0

sth

ds

s0

(
1− s

s0

)2
Im Π(s) = 2πf

2
π

s0
− 4πf

2
πm

2
π

s2
0

+ 2πf
2
πm

4
π

s3
0

+ π
a3
s3

0
+ δω

(2,0)
DV (s0) ,

(4.17)

∫ s0

sth

ds

s0

(
1− s

s0

)2
Im Πmq=0(s) = 2πF

2

s0
+ π

a0
3
s3

0
+ δω

(2,0), 0
DV (s0) . (4.18)

where the 0 tag denotes the values of the constant in the chiral limit. In order
to have sensibility for obtaining a3 at s0 ∼ 2 GeV2, one needs a precision of
π |a3|
s30
∼ 0.0015. In fact, the experimental resolution is good enough. However,

the difference between both equation is dominated by:‡∫ s0

sth

ds

s0

(
1− s

s0

)2
(Im Π(s)− Im Πmq=0(s)) ≈ 2πf

2
π − F 2

s0
. (4.19)

Taking fπ ∼ 92 MeV and F ∼ 87 MeV one obtains for s0 = 2 GeV2, that the
uncertainty due to taking Im Π(s) ≈ Im Πmq=0(s) is 2π f

2
π−F 2

s0
∼ 0.0028, much

larger than any other source of uncertainty and a 200% of the value of a3.
Since this may also happen if we include in the determination sum rules only

valid in the chiral limit, we opt for not using them.
†A comprehensive study trying to assess these differences for some exclusive channels can be

found in Ref. [154]. However, this method is far from giving chiral spectral functions with the
precision we need.
‡The possibility of a systematic cancellation between δω

(2,0)
DV (s0)−δω

(2,0), 0
DV (s0) and fπ−F can

be discarded when one observes that this problem is dramatically enhanced with an increasing
s0, while DVs go to zero fast.
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Figure 4.1: lhs of equation (4.20) as a function of s0.

4.3 Determination of 〈(ππ)I=2|Q8|K0〉

4.3.1 Connecting a3(s0) with 〈(ππ)I=2|Q8|K0〉s0
The limitations of the current sensitivity of τ data to D = 6 contributions

enforce us to work at LO in αs. In order to illustrate this, we plot in Figure 4.1
the lhs of Eq. (4.11) for ω(s) =

(
1− s

s0

)
. Even if we only consider αs corrections

for the D = 6 contribution, , i.e., bn>3 = 0, one obtains:

A1−x(s0) ≡
∫ s0

sth

ds

s0

(
1− s

s0

)
Im Π(s)

= π
b3
2s3

0
−
∫ ∞
s0

ds

s0

(
1− s

s0

)
Im ∆DV (s) + 2πf

2
π

s2
0

(
1− m2

π

s0

)
. (4.20)

Clearly this weight function is optimal to get b3: it does not contain any
other ai and it sets ω(s0) = 0, so it reduces DV uncertainties and experimental
ones from the high-energy region. However, at s0 = m2

τ , where DVs may be
suppressed enough, uncertainties are too large to get any information about b3.
Instead, working at LO we can use that equation as a constraint to improve our
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sensitivity to a3. Eq. (4.10) determines the scale of our determination: µ ∼ s0.
Otherwise, large logarithmic corrections of that equation would break the LO
counting aM3 (µ) = a3(µ)(1 +O(αs)). At leading order we have from Eq. (2.7):

aM3 (µ) = a3(µ) = 4π〈αsO8〉µ . (4.21)

Taking into account the large value of the NLO corrections coming from A8 in
Eq. (4.21), we assign a 25% of uncertainty to the final 〈Q8〉µ. We also assume
that, within the large uncertainties we have,∗ the vacuum condensate is equal to
its chiral version, so that we can use the relations of Eqs. (4.1) and (4.2). In order
to extract 〈Q8〉µ, we still would need 〈O1〉µ. However we have strong reasons to
neglect its contribution to 〈Q8〉µ. In the large-Nc limit 〈Q7〉µ

〈Q8〉µ = 0 at order O(p0).
In the Vacuum Saturation Approximation (VSA), one has 〈Q7〉µ

〈Q8〉µ = 1
Nc

[53]. This
suppression is supported by the different phenomenological and lattice analysis
(for example see [53, 155, 156]), which points out to a suppression of 〈Q7〉µ with
respect to 〈Q8〉µ beyond the naive 1

3 . Combining Q7
Q8
≤ 1

Nc
with Eqs. (4.3) and

(4.4) one obtains:

|〈Q8〉〈O1〉µ
µ | ≤ |〈Q8〉

〈O8〉µ
µ |
N2
c

1
1− 1

N2
c

, (4.22)

where 〈Q8〉
〈O1〉µ
µ and 〈Q8〉

〈O8〉µ
µ are respectively the contributions of 〈O1〉µ and

〈O8〉µ to 〈Q8〉µ in Eq. (4.4). We use this inequality to make a preliminary
estimate of systematic uncertainty associated to neglecting 〈O1〉µ. At LO in αs,
and neglecting it, the value of 〈Q8〉µ in the chiral limit is given by:

lim
p,q,k=0

〈(ππ)I=2|Q8|K0〉µ = − a3(µ)
4παs(µ)F 3 . (4.23)

Since our determination with τ decays is made at different scales µ = √s0 ∼ mτ ,
there are not large logarithms involved and we can take a3 as a constant (NLO
uncertainties in αs are already taken into account).

The determination of a3 becomes equivalent to the one of O6 of Chapter 2. In
the following subsection we revisit it, introducing some extra tests and trying to
implement some improvements. In order to compare with determinations made
with other methods at other scales, both for a3(µ) and 〈Q8〉µ, one has to take
into account that ours is made at µ = mτ and then to use the full running to
compare with other scales.
∗As we already did in Chapter 2 we take conservatively F = 0.087± 0.005 GeV.
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Figure 4.2: Reescaled version of the moment associated to ω(s = s0x) = x2, so
that at s0 large enough converges to a3(s0).

4.3.2 Determination of a3 using pinched-weight functions

Naively, one could try to estimate a3 by directly using the LO version (bi = 0)
of Eq. (4.15) hoping that at energies large enough DVs are negligible. This should
reflect in a plateau at high energies when making the trivial reescaling of that
equation, so that it converges to a3 for large enough values of s0. However, when
we plot it in Figure 4.2 we observe that both experimental uncertainties and
DVs are huge. This is because the factor x2 (x ≡ s

s0
) of the weight function is

enhancing both the contribution of the high-energy part of the spectral function,
where the worst experimental data is available, and its higher energy tail, which
gives large DV uncertainties (see Eq. (4.11)).

Fortunately we can use the pinching technique (as we actually did in Chap-
ter 2) to reduce both uncertainties. One takes ω(s) such that ω(s0) = ... =
ω(n−1)(s0) = 0, so that for example ω(s0x) = 1 − x is a pinch weight function
and ω(s0x) = (1− x)2 a double-pinched one. Using those weights we obtain the
values of a3(s0) of Fig. (4.3), to be compared with Fig. (4.2). Experimental
uncertainties are clearly reduced and a plateau has arisen. One still may argue,
by taking an artificial shape for the high-energy tail of the spectral function, that
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Figure 4.3: Pinched weight functions as a function of s0 reescaled so that at s0
large enough converge to a3(s0).

this plateau might be temporary. However, since there is an increasing hadronic
multiplicity at s0 ∼ m2

τ , DVs should go to zero very fast when increasing energies
and this scenario becomes very unlikely. Together with the fact that at large
energies both pinched weight functions give the same value of a3, it is a reason-
able assumption to state that DVs are relatively small for large s0 when doubly
pinching.

Taking that into account, we take as central value the last one within the
experimental error bars of the following ones, i.e., s0 = 2.2 GeV2 and as estimate
of DVs its difference with the last one with an acceptable experimental resolution,
i.e., s0 = 2.8 GeV2. We obtain:

a3 = (−2.8± 0.5exp ± 0.7DV) · 10−3 GeV3 = (−2.8± 0.9) · 10−3 GeV3 . (4.24)
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4.3.3 Determination of a3 modeling DVs

An alternative approach to estimate DVs consists in trying to guess how it is
the spectral function† above the region where data is available. In order to do
that, a parametrization is unavoidable and, then, some model-dependence arises.
We try to relax that model-dependence by allowing data not to obey extrictly the
model but imposing they must obey WSRs (Eqs. (4.13) and (4.14) with bi = 0).
The ansatz we use is [39,40,56–58,60].

ρ(s) = 1
π
κe−γs sin (β(s− sz)) s > ŝ0 . (4.25)

Following the procedure of Chapter 2, we generate random tuples of parameters
(κ, γ, β, sz), so that every one of them represent a possible spectral function
above a threshold ŝ0. If we perform a fit with ALEPH data, we find that there
are no significant deviations (p-value above a 5%) from this specific model below
ŝ0 = 1.25 GeV2. However, the model is only motivated as an approximation
at higher energies, where the hadronic multiplicity is also higher. Again, as in
Chapter 2, we accept tuples only in the 90% C.L. (χ2 < χ2

min+7.78). Doing that,
we try to relax the model dependence by allowing small deviations of data from
it.

In Chapter 2 we imposed here for the tuples the short-distance constraints,
i.e., the WSRs. However, experimental uncertainties due to those constraints
in the tuples happen to be correlated in a nontrivial way with the experimental
uncertainty in the final parameters (they are different moments of the spectral
function). In order to avoid that, we perform, for every accepted spectral func-
tion, a combined fit of Eqs. (4.13), (4.14), (4.15) to extract a3. Then we only
accept those spectral functions that are compatible with the WSRs, selecting
only the ones whose p-value in the combined fit are larger than a 5%. Then, for
every accepted spectral function, we have an a3 value. The DV uncertainty is
estimated as the width of the remaining distribution. We plot the distribution
for ŝ0 = 1.7 GeV2 in Fig. 4.4.

As we argued in the previous chapter, one minimal requirement that should
be imposed is independence on the chosen ŝ0 for a large enough range, since
its choice is somehow arbitrary. We have repeated our procedure for different
thresholds with the results of Table 4.1. The agreement is acceptable. We choose
ŝ0 = 1.7 GeV2 as our optimal threshold, large enough to have some hadronic
multiplicity and small enough to be able to constrain the space of parameters.
†At LO in αs, ρ(s) = ρDV (s).
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Figure 4.4: Distribution for a3 obtained with the tuples procedure.

ŝ0(GeV2) 1.25 1.4 1.55 1.7 1.9
a3(10−3GeV6) −5.3 +0.7

−0.5 −5.1 +0.7
−0.5 −5.3 +0.5

−0.3 −3.7 +1.3
−0.9 −3.8 +1.8

−1.0

Table 4.1: Value of a3 obtained with our tuple procedure for different ŝ0.

We obtain:
a3 = (−3.7 +1.3

−0.9 DVs ± 0.1exp) · 10−3 GeV2 . (4.26)

However, notice that, even in the case that the ansatz were exactly true from
some threshold ŝ0, one could find that the “physical” ŝ0 is larger and then that the
“physical” spectral function could be not well approximated by the parameters we
obtained. Actually, assuming small DVs with double pinch could be giving more
accurate results than assuming the model with the parameters we have obtained.
This motivates averaging both of them. Fortunately, in this case both methods
are in good agreement. Our final value, taking conservatively the quadratic sum
of the lowest uncertainty and half of the difference between central values, is:

a3 = (−3.1± 1.0) · 10−3 GeV6 . (4.27)

This is also in total agreement with the previous determination made in Chapter
2 and the determination of Ref. [43] with a different procedure.
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4.3.4 Final value for 〈(ππ)I=2|Q8|K0〉 and comparison with large-
Nc limit

Inserting the value of Eq. (4.27) into Eq. (4.23):

〈(ππ)I=2|Q8|K0〉2 GeV = (1.14 ± 0.37a3 ± 0.29pert ± 0.14〈O1〉µ) GeV3

= (1.14 ± 0.49) GeV3 , (4.28)

where the running from m2
τ to s0 = 2 GeV (〈Q〉2GeV2 ≈ 1.05〈Q〉mτ ) has been

safely neglected.‡
We can compare with the value one obtains in the large-Nc limit. Applying

Fierz transformations one obtains:

Q8 = −12
∑
i

ei q̄PLd s̄PRq = −12
∑
i

eiL2iRi3 , (4.29)

where PL(R) = 1∓γ5
2 and Lij(Rij) ≡ q̄jPL(R)qi. Using that in the large-Nc limit

the product of two color-singlet quark currents factorizes at the hadron level
into two current matrix elements and that at first order in χPT, Lij(Rij) =
−F 2

2 B0U(U †), the relevant contribution is:

QNc8 = −i3
√

2B2
0FK

0π+π− , (4.30)

therefore:

Ai→f (〈π+π−|S − I|K0〉) = 3
√

2B2
0F (2π4) δ4(pf − pi) . (4.31)

Using that the matrix element is defined such that Ai→f = −i(2π4) δ4(pf −
pi)Mi→f :

〈π+π−|Q8|K0〉Nc = 3i
√

2B2
0F , (4.32)

〈π0π0|Q8|K0〉Nc = 0 . (4.33)

Therefore, using Eq. (B.12) one obtains the leading contribution in the large-Nc

limit:

〈(ππ)I=2|Q8|K0〉Nc2 GeV = 2FB2
0 = 2

M4
K0
F

(md +ms)2 = 1.1 GeV3 , (4.34)

‡Since from mτ to 2 GeV there are no large logarithms involve, they are fully accounted by
perturbative uncertainties and indeed resuming them is not justified.
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in total agreement with Eq. (4.28).

4.4 Obtaining a3 from the lattice to get further con-
straints

Instead of using data to extract K → ππ matrix elements, one may choose to
use existing lattice determinations of K → (ππ)I=2 matrix elements to get the
D = 6 contribution of ΠOPE(s). From [156], one has in the Naive Dimensional
Regularization (NDR) M̄S for 4 active flavors in the large-Nc limit:

〈Q7〉3 GeV = 0.36± 0.03 , (4.35)
〈Q8〉3 GeV = 1.6± 0.1 . (4.36)

In order to get the Qi at s0 we use the 10 × 10 QCD and QED running matrix
for the Wilson coefficients at NLO. Running to µ = mc, performing the matching
to Nf = 3 and running to µ = √s0, one has, except for the small mixing with
other operators, 〈Q7〉µ and 〈Q8〉µ at s0. One obtains for s0 = m2

τ :(
〈Q7〉mτ
〈Q8〉mτ

)
=
(

1.03 −0.077
0.000 0.798

)(
〈Q7〉3 GeV
〈Q8〉3 GeV

)
, (4.37)

which translates into:§

a3(m2
τ ) = −(4.2± 1.0mq=0 ± 0.8F ± 0.3latt) · 10−3 GeV6

= −(4.2± 1.3) · 10−3 GeV6 , (4.38)
b3(m2

τ ) = −(1.2± 0.3) · 10−4 GeV6 , (4.39)

where we have included an extra 25% uncertainty in order to take into account
corrections to the chiral limit (O(p2)). Notice the good agreement with Eq.
(4.27). As we observed above, double pinching reduces both experimental and
DV uncertainties. Given that a3 is suppressed by six power of energy, the de-
termination from the lattice is enough to make its uncertainties smaller than the
experimental ones. Eq. (4.17) becomes then a powerful constraint that can be
used to test the different aspects of QCD involved. For example, one can use
that equation to get fπ. In Figure 4.5 we plot the rescaled version of Eq. (4.17),
so that

√
2fπ(s0) converges to

√
2fπ when DVs are negligible.

§Notice how the knowledge of both 〈Q7〉µ and 〈Q8〉µ allow to get 〈O1〉µ and 〈O8〉µ. Then
the full D = 6 contribution of the OPE at NLO in αs.
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Figure 4.5: Equation (4.17) rescaled so that at s0 large enough converge to fπ.
By comparison we show the PDG value and the one obtained from lattice [69].

The stable plateau is a clear sign of vanishing DVs at mτ , as we expected for
this moment. Indeed, if one estimates DV uncertainties as the contribution of
the tuple associated to the minimum χ2 of the model (performing the fit from
sth = 1.7 GeV2) one obtains that it is one order of magnitude below experimental
uncertainties at s0 ∼ m2

τ .¶ Taking that into account, we obtain:
√

2fπ = (131.58± 0.90exp ± 0.42chiral ± 0.30F ± 0.11latt)MeV
= (131.6± 1.0) MeV . (4.40)

Since the short-distance constraint on a3 involves the weight function ω(x) =
x2, it is giving information on the high-energy region of the spectral function.
Because of it, the other determination that may get benefited from this additional
constraint is the D = 8 condensate a4 (equivalent to 〈O8〉µ from Chapter 2).
Now we can use the triple pinch ω(x) = (1 − x)3 to try to further reduce DV
uncertainties. We display it in Figure 4.6, to be compared with the bottom panel
of Figure 2.10. Uncertainties are still large but a softer s0 dependence, compatible
with a plateau, is observed. If we assume that DVs are negligible for this channel
at s0 = 2 GeV2, we get:

a4 = −(0.5± 0.6) · 10−2 GeV8 , (4.41)
¶Similar results arise when changing the threshold or taking the minimum from other models,

such as the one from Ref. [43].
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Figure 4.6: Pinched weight functions as a function of s0 reescaled so that at s0
large enough converge to a3.

where the uncertainty is dominated by the value of a3. Alternatively we can
play with our conservative tuple procedure‖ using a3(s0) from the lattice and
impossing Eq. (4.15) to get for sth = 1.7 GeV2 the distribution of Fig. 4.7, we
obtain:

a4 = −(0.9+0.7
−0.4) · 10−2 GeV8 . (4.42)

Averaging and taking the lower uncertainty summed quadratically to the differ-
ence of central values one has:

a4 = −(0.7± 0.6) · 10−2 GeV8 . (4.43)

4.5 Conclusions

In this work we have made a phenomenological analysis of the relations be-
tween the D = 6 operators appearing in the OPE of the ΠV−A(s) correlator and
K → (ππ)I=2 matrix elements. We directly connect the 〈Q8〉µ contribution with
the effective D = 6 condensate a3. Using tau data we get a3 with a careful study
‖Corrections to the finite version of the WSRs due to b3 (Eqs. (4.13) and (4.14)) are taken into

account. The difference ρDV (s)− ρ(s) also receives a contribution from b3, but it is numerically
negligible.
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Figure 4.7: Distribution for a4 obtained with the tuples procedure.

of DVs, which preliminarily gives in the chiral limit:

〈(ππ)I=2|Q8|K0〉2GeV = (1.14± 0.41a3 ± 0.29pert ± 0.14〈O1〉µ) GeV3

= (1.14 ± 0.49) GeV3 , (4.44)

in good agreement with other works that use similar methods and also with other
lattice determinations.

On the other hand, taking 〈Q7〉µ and 〈Q8〉µ from the lattice, one can invoke
the same relations to get the full leading D = 6 contribution of the V-A correlator
at NLO in the chiral limit. Using the very good knowledge on the short distance
behaviour of that correlator, one can define dispersion relations to make very
precise physics predictions involving QCD data dominated by the complex ∼ 1
GeV region. For example we have obtained fπ with a precision of a 0.8%:

√
2fπ = (131.6± 1.0) MeV . (4.45)

Finally, we also obtain a value of:

a4 = −(0.7± 0.6) · 10−2 GeV8 , (4.46)
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for the D = 8 condensate, in good agreement with our previous determination,
but more robust.





Chapter 5

Hadronic tau decays as new
physics probes

5.1 Introduction

In previous chapters we have explored some of the most powerful QCD meth-
ods in hadronic tau decays to obtain precise and competitive predictions for
different physical parameters. A natural question then arises. Assuming there
is new physics at high energies, is it possible that hadronic tau decays might be
affected by it?

If the answer were not, we could take our results as determinations of phys-
ical parameters free from contaminations from potential BSM physics, so that
eventually they can be used as inputs to study other observables sensitive to
them.

If it is so, we can take the physical parameters we need for the SM prediction
of tau observables from other sources not affected by new physics effects, such as
the lattice, and then compare to experiment. Since we know that there is good
agreement between SM predictions and data in the tau sector, this comparison
would translate into constraints.

At first sight one could be tempted not to look for new physics in the elec-
troweak sector at hadronic tau decays. Since naively one is working at E ∼ GeV
scales, one may think that new physics entering at a scale ∼ Λ is suppressed by
a factor ∼ 1 GeV2

Λ2 , so that it is completely worthless to look for new physics at
E ∼ 1 GeV. This argument is indeed correct when studying for example the pro-
cess e−e+ → qq̄ at invariant mass q2 ∼ 1 GeV2, where, with the current precision,
one is completely unable to see even the correction coming from the Z boson

127
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propagator, so obviously one is also unable to uncover new physics either weakly
coupled at similar scales or at higher energy scales. However, the weak nature
of the τ decays makes them suppressed by two powers of the vev v, so that a
prediction with a relative uncertainty r is typically sensitive to scales Λ ∼ (r−

1
2 v).

As we will see, in a general enough framework such as the Standard Model as
Effective Field Theory (SM-EFT), hadronic tau decays are able to set competi-
tive bounds in some Wilson Coefficients, which means that indeed they become
a practically unexplored new physics probe.

This Chapter is about an ongoing work. The final results will be presented in
forthcoming publications [157]. In this regard, the results given in this chapter
should be understood as preliminary. In Section 5.2 we present the most general
extension of the Fermi Lagrangian for the process τ → nντ , where n is a hadronic
state, that one can build with some minimal assumptions. We also show how the
couplings we obtained can be related with the (slightly less general) SM-EFT
ones [158,159].

In Section 5.3 we make a study of the different exclusive non-strange channels.
The main limitation of these channels is basically the same one as for making
precise physics within the SM framework. The theoretical description of QCD
form factors, which encode the non-perturbative hadron dynamics of strong in-
teractions, is far from being controlled theoretically. However, some powerful
constraints can be obtained for some channels. We study the single hadron de-
cay, the only one traditionally used as a new physics probe. For the non-strange
decay, its hadron dynamics is encoded in a single unknown constant, fπ, which
can be obtained from the lattice. Then, we briefly analyze the study of Ref. [160],
which was able to obtain a powerful constraint to new physics from the ηπ chan-
nel, and finally we analyze the two-pion channel. Even when there is a not very
well known form factor involved, one is able to relate it to the one appearing
in the process e+e− → ππ invoking isospin relations. Owing to the impressive
experimental precision of this channel, this link provides a very powerful tool to
constrain new physics.

In Section 5.4, we study the potential of inclusive tau decays. Relations
between QCD spectral functions and invariant mass distributions get modified
by new physics effects in a way that depends on the new physics couplings [9,161].
Using the inclusive methods previously studied, one can get several constraints
in this sector.

Combining information coming from all the relations, we are able to constrain
all the couplings. We give the results of that combination in Section 5.5, where
we also perform the matching with the SM-EFT. Hadronic tau decays allow us
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to get unique low-energy bounds, complementing the information coming from
other Electroweak Precision Observables (EWPO) [162]. Additionally, one can
compare these bounds with the ones that can obtain from LHC data, which is
very sensitive to four-fermion operators.

In section 5.6, we take a look at the strange part. Because of the poorest
theoretical knowledge of the exclusive channels and the worse experimental reso-
lution, we are not able to find bounds for all the couplings, but we find two new
physics constraints.

5.2 Theoretical framework

The part of the Effective Fermi Lagrangian responsible for the process τ →
ντn, arising when integrating out the heavy degrees of freedom of the SM (see
Chapter 1) can be generalized to the most general six-dimensional one by only
assuming that the low-energy degrees of freedom correspond to the known SM
particles and that the most general Lorentz invariant Lagrangian is [158,159]:∗

Leff = −GFVud√
2

[(
1 + εdτL

)
τ̄ γµ(1− γ5)ντ · ūγµ(1− γ5)d

+εdτR τ̄ γµ(1− γ5)ντ ūγµ(1 + γ5)d

+ τ̄(1− γ5)ντ · ū
[
εdτS − εdτP γ5

]
d

+εdτT τ̄σµν(1− γ5)ντ · ūσµν(1− γ5)d
]

+ h.c. (5.1)

Five new couplings εdτi have arisen and in the following section we are constraining
them assuming that they are small, so that for different observables we can define
a Taylor expansion on those εdτi and keep the linear terms. This is not a strong
assumption, since alternative solutions to the dominance of the V − A currents
were ruled out many years ago. Doing that, one can generalize Eq. (1.19). If
we define HAB(s) as the trivial generalization of Eq. (1.21) for the currents
V (A)µ = d̄γµ(γµγ5)u, S = d̄u, P = d̄γ5u and Tµν = d̄σµνu, with the Lorentz
∗We focus here on the non-strange decays. The most general Lagrangian appearing for

strange decays is functionally the same. One simply has to make the change d→ s.
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decomposition defined as:

Hµν
AA(V V )(q) = [qµqν − gµνq2]H(1)

AA(V V )(q
2) + qµqνH

(0)
AA(V V )(q

2) , (5.2)

Hµ
V S(AP )(q) = qµHV S(AP )(q2) , (5.3)

Hµνρ
V T (q) = i[qρgµν − qνgµρ]HV T (q2) , (5.4)

one has

dΓ(s) = G2
F |VuD|2Shewm5

τ

16π
ds

m2
τ

(
1− s

m2
τ

)2

×
{

(1 + 2εdτL + 2εdτR )
[(

1 + 2 s

m2
τ

)
H

(1)
V V (q2) +H

(0)
V V (q2)

]

+ (1 + 2εdτL − 2εdτR )
[(

1 + 2 s

m2
τ

)
H

(1)
AA(q2) +H

(0)
AA(q2)

]
+ 2εdτS

HV S(q2)
Shewmτ

− 2εdτP
HAP (q2)
Shewmτ

+ 12εdτT
HV T (q2)
Shewmτ

}
, (5.5)

where εdτi refers to the real part.†
Due to the conservation of vector and axial currents, trivial relations between

H
(0)
V V (AA)(q

2) and HV S(AP )(q2) can be obtained. In order to see that, let us take
the derivative of

(2π)4δ4(q − pn)〈n(pn)|Jµ(0)|0〉 =
∫
d4x e−iqx〈n(pn)|Jµ(x)|0〉 , (5.6)

where Jµ(x) = eiP̂ xJ(0)e−iP̂ x is an vector or an axial current, so that

0 =
∫
d4x (−iqµe−iqx〈n(pn)|Jµ(x)|0〉+ e−iqx〈n(pn)|∂µJµ(x)|0〉)

= (2π)4δ4(q − pn) (−iqµ〈n(pn)|Jµ(0)|0〉+ 〈n(pn)|∂µJµ(0)|0〉) . (5.7)
†Small corrections, coming from the imaginary part of εdτT , might arise in some exclusive

channels. However, we take into account that those contributions are zero or negligibly small
for the ones we are studying. Owing to Eqs. (5.11) and (5.12) derived below, HV S and HAP
are reals and there is no contribution from Im εdτS or Im εdτP at O(ε).
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Since the the octet vector and axial currents do not present any anomaly,
their divergences can be calculated using the classical equation of motion:

∂µAµ = i(mu +md)P ,
∂µVµ = i(md −mu)S . (5.8)

so that introducing them into Eq. (5.7) one obtains the well-known relations
among hadronic matrix elements

〈n(pn)|P |0〉 = 1
mu +md

pnµ〈n(pn)|Aµ|0〉 , (5.9)

〈n(pn)|S|0〉 = 1
md −mu

pnµ〈n(pn)|V µ|0〉 , (5.10)

Multiplying Hµν
V V (AA) by qµqν and applying those identities, one obtains

s2H
(0)
AA = s(md +mu)HAP , (5.11)

s2H
(0)
V V = s(md −mu)HV S , (5.12)

from which Eq. (5.5) becomes

dΓ(s) = G2
F |VuD|2Shewm5

τ

16π
ds

m2
τ

(
1− s

m2
τ

)2

·
{

(1 + 2εL + 2εR)
[(

1 + 2 s

m2
τ

)
H

(1)
V V (q2) +

(
1 + 2εS

s

(md −mu)Shewmτ

)
H

(0)
V V (q2)

]

+(1 + 2εL − 2εR)
[(

1 + 2 s

m2
τ

)
H

(1)
AA(q2) +

(
1− 2εP

s

(md +mu)Shewmτ

)
H

(0)
AA(q2)

]

+ 12εdτT
HV T (q2)
Shewmτ

}
. (5.13)

In order to compare with other observables still in a model-independent way,
we can use our knowledge on the dynamics of particle physics beyond the Fermi
Theory. The SM is known to give a precise prediction of the high-energy dynam-
ics. Assuming that no new particles arise at energies E . v, so that the scale
of new physics Λ satisfies Λ � v, one can integrate them out at the SM scale
leaving an Effective Lagrangian in terms of the SM particles dominated by the
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lowest dimensions.‡ In the same way that one can build the χPT Lagrangian
just by building the most general Lagrangian with the Goldstone bosons allowed
by the chiral symmetry up to a given dimension without any extra assumptions
about the dynamics of strong interactions at higher energies, one can build the
most general one with the SM particles and symmetries up to a given dimen-
sion, so that one is generalizing the SM in a model-independent way. This is the
philosophy of the SM-EFT, which also assumes that the spontaneous symmetry
breaking is linearly realized. The first dimension that gives a non-zero extension
to the SM prediction for our process is the D = 6 one. Let us fix the notation by
writing the Lagrangian as:

L6 =
∑
n

ŵ(n)
Qn
Λ2 =

∑
n

w(n)
Qn
v2 , (5.14)

so that w(n) ≡ v2

Λ2 ŵ(n) ∼ v2

Λ2 are flavor matrices of couplings. We work in the
Warsaw Basis [163]. There are two different ways in which those operators can
give a contribution to the couplings of Eq. (5.1) when integrating out the rest of
heavy particles of the SM:

• Modifying one of the vertex Wτντ or Wq̄q′, so that when integrating out
the W , the new GF is not g2

2
√

2M2
W

anymore. They must contain the two
fermions and the W , which must enter through non-diagonal parts of the
covariant derivative§. Inspecting the operators of the Warsaw basis, it is
clear that only operators which close the remaining dimensions with two
Higgs, which after the SSB become vevs, can give a contribution. They are

Q(3)
ϕl = ϕ†i

↔
DI
µ ϕ l̄pγ

µlr , (5.15)

Q(3)
ϕq = ϕ†i

↔
DI
µ ϕ q̄pγ

µqr , (5.16)

Qϕud = i(ϕ̃†Dµϕ)(ūpγµdr) , (5.17)

with DI
µ defined in Ref. [163].

‡One can still think in BSM physics created by light particles (e.g. M ∼ 10 GeV) weakly
coupled to standard ones. In this case, one could integrate them out to obtain the Lagrangian
of Eq. (5.1), so that the generalized Fermi Theory is still true but not the SM-EFT. In this
sense, the generalized Fermi Theory is more general.
§Operators with the antisymmetric tensor Wµν , which contains a partial derivative, do not

generate any contribution of dimension six when integrating the W out.
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• Introducing operators that contain all the initial and final fields. They are
simply the operators which contain the four-fermion fields of the process:

Q(3)
lq = l̄pγµτ

I lr q̄sγ
µτ Iqt , (5.18)

Qledq = l̄jper d̄sq
j
t , (5.19)

Q(1)
lequ = l̄jp erεjk q̄

k
sut , (5.20)

Q(3)
lequ = l̄jpσµνer εjk q̄

k
sσ

µνut . (5.21)

After the SSB, we are enforced to diagonalize the quark mass matrices, for
example by redefining uL → V †uL, which breaks the U(3)5 flavor symmetry
introducing matrix elements with other quark families involved. Performing the
matching with the Lagrangian of Eq. (5.1) one finally obtains [164]:

V11 · εdτL = V11 [w(3)
ϕl ]ττ + [w(3)

ϕq V ]11 − [w(3)
lq V ]ττ11 , (5.22)

V11 · εdτR = 1
2[wϕud]11 , (5.23)

V11 · εdτS/P = −1
2[w†lequ V ± w

†
ledq]ττ11 , (5.24)

V11 · εdτT = −1
2[(w(3)

`equ)† V ]ττ11 . (5.25)

5.3 Exclusive decays

In this section we analyze the potential of the different decay channels when
looking for new physics. The same difficulties commented in Section 1.2 when
analyzing the problem of predictability concerning exclusive channels due to un-
known form factors are present here, which limits the amount of channels that
can be used to test potential New Physics. At the level of precision we work,
only single and two hadrons decays are found to be competitive.¶

5.3.1 One-pion decay

The only single-hadron decay mediated by a non-strange current is the one-
pion decay. Because of its pseudoscalar nature, it cannot decay through vector or
¶Invoking CVC and isospin symmetry, the only form factor involving the SM process τ →

π−π0ηντ can be related to the one appearing to e+e−, giving a predictive power of 5−10% [165],
which, in principle, is below the precision we obtain from other channels.
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scalar current. Then using Eq. (5.13), the generalization of Eq. (1.24) is trivial:

Γ(τ → πντ ) = G2
F |Vud|2m3

τf
2
π

8π

(
(1 + 2εdτL + 2εdτR )− 2m2

π

mτ (md +mu)ε
dτ
P

)
· (1 + δ

(π)
RC) , (5.26)

where δ(π)
RC refers to short and long distance radiative corrections. Now, in order

to extract constraints for the new physics couplings we need precise inputs for
G2
F |Vud|2 and fπ either unaffected by new physics couplings or affected by them

in a known way. In the case of G2
F |Vud|2 one can obtain the couplings from

interactions involving the first family only [166], so that:

G2
F |Vud|2 = G̃2

F |Ṽud|2
(
1− 2εdeL − 2εdeR

)
, (5.27)

where now G̃2
F |Ṽud|2 can be obtained from first family experiments very precisely

and fπ can be extracted from the lattice without NP contaminations [69]:
√

2fπ = 0.1302± 0.0008 . (5.28)

Finally, the small radiative corrections can be obtained by trivially combining
δRτ/π from Ref. [167] with the radiative correction to the muonic pion decay of
Ref. [168]. One obtains:

δ
(π)
RC = 0.0192± 0.0025 . (5.29)

Putting everything together, one finds:

εdτL − εdeL − εdτR − εdeR −
m2
π

mτ (mu +md)
εP = −(1.5± 6.7) · 10−3 . (5.30)

The uncertainty is dominated by fπ, so that future improvements coming from
the lattice would improve this constraint.

5.3.2 Two-hadron decay

For the two-hadron decay, one has to compute HV T (s), which involves one
additional matrix element:

〈P−P 0|d̄σµνu|0〉 = −i(pµ−pν0 − pν−p
µ
0 )FPP ′T . (5.31)
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One has:
HV T (s) = (FT (s)F ∗V (s))CPP ′λ3/2(s,m− 2

P m2
P )

48π2s2 , (5.32)

from which Eq. (1.30) generalizes to:‖

dΓτ→H−H′0ντ
ds

= G2
F |V 2

uD|m3
τ

768π3s3 ShewC
2
HH′

(
1− s

mτ

)2
λ3/2(s,m2,m′2)

· (1 + 2εdτL + 2εdτR )
{(

1 + 2 s

m2
τ

)
|FHH′V (s)|2

+
(

1 + 2εdτS
s

(md −mu)mτShew

) 3∆2
HH′

λ(s,m2,m′2) |F
HH′
S (s)|2

+ 12εdτT s
CHH′mτShew

F ∗T (s)FV (s)
}
. (5.33)

Notice how the quark mass suppression of the spin-0 part due to the ∆HH′ =
m2
H −m2

H′ ∼ B0mq is not there in general for the nonstandard εdτS current.

5.3.2.1 τ → π−ηντ

Sensitivity to New Physics in this channel has been studied in Ref. [160]. In
the SM, the process is forbidden by G-parity, i.e., it cannot be formed through
strong interactions in the isospin limit (FS(0) ∼ FV (0) ∼

√
3

4
md−mu

4ms ∼ 10−2).
This suppression is confirmed by the different experiments, which still have not
observed this process and which have set upper limits very close to the ones
expected by different SM studies. A quick inspection of Eq. (5.33) allows one
to check that the order of magnitude of the SM vector and scalar contribution
should be similar since, naively substituting s → MR ∼ GeV, 3∆2

ηπ

λ(s,m2,m′2) ∼
16B2

0m
2
s

3M4
R
∼ 0.3.∗∗ The large enhancement of the εdτS part, 2 M2

R
(md−mu)mτ ∼ 5 · 102

pushes the theoretical expectation far above the current experimental limits on
the Branching Ratio, except if εdτS is very small.†† Using results from the analysis
‖We are neglecting the small phase shift of FT (s) with respect to FV (s). Including it one

would obtain Re(εdτT FT (s)F ∗V (s)), where εdτT would refer to the complex coupling, not to the real
part of it.
∗∗More careful studies (see for example Table 1 of Ref. [169]) suggest that indeed the scalar

contribution to the BR is slightly larger.
††Notice how as far as the channel is not discovered and the dominance of the SM part is

confirmed, in any careful analysis, as in the one made in Ref. [160], the εdτ 2
S part should be

included, because it is going to be dominant.
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in Ref. [160] and adding theory errors in a very conservative way [169], we find:

εdτS = −(6± 15) · 10−3 . (5.34)

5.3.2.2 τ → π−π0ντ

The very small difference between the pion masses allows one to neglect the
scalar contribution even with the enhancement of the nonstandard current. In
order to have sensitivity to new physics, we need a very precise and reliable
theoretical prediction for the vector form factor from first principles. Even when
such a description is not available at the level of precision we need, we can make
use of the isospin relation between the vector form factor and the one appearing
in the process e+e− → π+π−, unaffected by potential new physics at electroweak
scales (see discussion above). Explicitly one finds:

σ(s) =
α2

0πλ
3/2(s,m2

π+ ,m2
π−)

3s4 |F π+π−
V (s)|2

=
α2

0πλ
3/2(s,m2

π0 ,m2
π−)

3s4 |FV (s)|2RIB(s) . (5.35)

where F π+π−
V (s) is the vector form factor appearing in e+e− → π+π− process

and RIB absorbs isospin breaking effects.∗
The only extra form factor is the tensor one and, since it enters suppressed by

new physics, too much precision is not needed for setting bounds on the associated
coupling. We assume:

FT (s) = FT (0)FV (s) , (5.36)

which is exact in the elastic region [171], holds in the dominant ρ resonance re-
gion. We find the same relation making use of RχT, generalized to include tensor
sources [172, 173], we find at first order (see App. C). We work in that approxi-
mation taking the normalization from the lattice FT (0) ≈ 2

√
2 0.663 GeV−1 [174],

∗Indeed RIB also absorbs other small effects arising in the τ−e+e− comparison such as FSR.
See for example Ref. [170].
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so that one has:†

dΓτ→π−π0ντ

ds
= G2

F |V 2
uD|m3

τ

384π3s3 Shew

(
1− s

m2
τ

)2
λ3/2(s,m2,m′2)

· |F ππV (s)|2
(

1 + 2 s

mτ

){
(1 + 2εdτL + 2εdτR ) + 6

√
2sFT (0)(

1 + 2 s
m2
τ

)
mτ

εdτT

}

≡ dΓ̃
ds

{
(1 + 2εd(τ−e)

L + 2εd(τ−e)
R ) + 6

√
2sFT (0)(

1 + 2 s
m2
τ

)
mτ

εdτT

}
, (5.37)

where dΓ̃
ds is now a function of G̃F Ṽud, defined in Eq. (5.27).

Now we can take advantage of the comparison made in Ref. [176] between the
e+e− and τ SM prediction of the contribution of ππ to g − 2,

ahad/LOµ ≡ 1
4π3

∫ m2
τ

4m2
π

dsK(s)σ(s) , (5.38)

with σ(s) defined in Eq. (5.35) and

K(s) =
∫ 1

0
dx

x2(1− x)
x2 + s

m2
µ

(1− x) . (5.39)

Introducing electron-positron data, Ref. [176] gets, in 10−10 units, ahad/LOµ [ππ, e+e−] =
507.1± 2.6, while introducing the form factor FV (s) of Eq. (5.37) with ε = 0 and
no new physics effects in GF and Vud they obtain ahad/LOµ [ππ, τ ]SM = 516.2±3.6,
while taking them into account one finds:

ahad/LOµ [ππ, e+e−] = ahad/LOµ [ππ, τ ]SM

(
1− 2εd(τ−e)

L − 2εd(τ−e)
R

−εdτT
6
√

2FT (0)mτ
∫ ds

s
dΓ
dsK(s) s

m2
τ

(
1− s

m2
τ

)−2 (
1 + 2 s

m2
τ

)−2

∫ ds
s
dΓ
dsK(s)

(
1− s

m2
τ

)−2 (
1 + 2 s

m2
τ

)−1

)
,

(5.40)

where we have safely neglected the small isospin corrections RIB(s) in the εdτT
integral. Using publicly available τ → ππντ data from ALEPH for that integral
†Useful angular and kinematic distributions including NP effects were recently derived in

Ref. [175].
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and the numbers given above we obtain:

εdτL −εdeL +εdτR −εdeR +1.66 εdτT =0.0089(44) . (5.41)

5.4 Inclusive decays

5.4.1 Relating the experimental invariant mass distributions to
the QCD spectral functions in the SM-EFT framework

When summing over all possible decay channels, HAB(s) from Eq. (5.13)
become spectral functions ρAB(s) of two-point correlation functions, which can
be computed at large energies at the quark-gluon level. Even when, exactly in the
same way as in the SM, this OPE description does not work in the low-momenta
Minkowskian region where data live, one can define dispersion relations to relate
observables, now potentially affected by new physics contaminations, to precise
QCD predictions.

The same separation between the V and A spectral functions as in the SM
can still be made in this framework. Again, one can separate the hadronic states
in nV,A such that

〈nV |JA|0〉 = 0 , (5.42)
〈nA|JV |0〉 = 0 , (5.43)

so that 〈n| = {〈nV |, 〈nA|}. The sum over all possible nV (nA) states in Eq.
(5.13) cancels the matrix elements containing axial (vector) currents, HAI(HV I),
and it is the same as the sum over all possible channels n for the ones con-
taining vectorial (axial) ones. Consequently, one can make the substitution∑
HAI(HV I)→ ρV I(ρAI) to obtain, from Eq. (5.13),

dNV
τ

Nτds
≡ τ expτ

dΓV
ds

=
12π|Vud|2B′e

(
1− s

m2
τ

)2

m2
τ

·
[
Sew

(
1 + 2s

m2
τ

)
(1 + 2εdτL+R) Im Π(1+0)

V V (s)

− 2s
m2
τ

Sew

(
1 + 2εdτL+R + εdτS

mτ

Shew(mu −md)

)
Im Π(0)

V V (s)

+ 12εdτT
Im ΠV T (s)
mτShew

]
, (5.44)
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dNA
τ

Nτds
≡ τ expτ

dΓA
ds

=
12π|Vud|2B′e Sew

(
1− s

m2
τ

)2

m2
τ

·
[(

1 + 2s
m2
τ

)
(1 + 2εdτL−R) Im Π(1+0)

AA (s)

− 2s
m2
τ

(
1 + 2εdτL−R + εdτP

mτ

Shew(mu +md)

)
Im Π(0)

AA(s)
]
, (5.45)

where τ expτ is the experimental mean lifetime of the τ , B′e must be understood
not as the experimental branching ratio τ → eντνe, but as:

B′e = G2
F τ

exp
τ

192π3 m5
τ

(
1 + 3

5
m2
τ

M2
W

)(
1 + α(mτ )

2π

(25
4 − π

2
))

. (5.46)

Notice how using the same inputs for GF and |Vud| than in the exclusive study,
the new physics contamination is the same:

B′e|Vud|2 = B̃e|Ṽud|2(1− 2εdeL − 2εdeR ) , (5.47)

where B̃e is the expression obtained using G̃F in Eq. (5.46).
As we explained in Chapter 2, the contribution from the spin-0 part of the

spectral functions to the continuum is negligible. Taking this into account, one
obtains the experimental effective spectral functions Im ΠN(1)

V (s) in terms of the
QCD ones:‡

Im ΠN(1)
V (s) ≡ dNτ,V

Nτds

m2
τ

12π|Ṽud|2B̃eSew

(
1− s

m2
τ

)−2 (
1 + 2s

m2
τ

)−1

= (1 + 2ετ−eL+R) Im Π(1)
V V (s) + 12εdτT

(
1 + 2s

m2
τ

)−1 Im ΠV T

mτ
(s) , (5.48)

Im ΠN(1)
A (s) = dNτ,A

Nτds

m2
τ

12π|Ṽud|2B̃eSew

(
1− s

m2
τ

)−2 (
1 + 2s

m2
τ

)−1

= (1 + 2ετ−eL−R) Im Π(1)
AA(s) . (5.49)

‡From now on, we will safely take Shew ≈ 1 for the ε prefactors.
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where:

ετ−eL+R ≡ ε
dτ
L + εdτR − εdeL − εdeR , (5.50)

ετ−eL−R ≡ ε
dτ
L − εdτR − εdeL − εdeR . (5.51)

5.4.2 Obtaining Sum Rules

Let us recall the relation obtained exploiting the analyticity of the QCD V
and A correlators of Eq. (3.52):

∫ s0

sth

ds

s0

(
s

s0

)n
Im Π(1+0)

V±A ± 2πf
2
π

s0

(
m2
π

s0

)n

− i

2

∮
|s|=s0

ds

s0

(
s

s0

)n
Π(1+0),OPE
V±A − δ(n)

DV, V±A(s0) = 0 . (5.52)

Inserting the experimental spectral functions, we obtain:∫ s0

sth

ds

s0

(
s

s0

)n
Im ΠN(1+0)

V±A ± 2πf
2
π

s0

(
m2
π

s0

)n
− i

2

∮
|s|=s0

ds

s0

(
s

s0

)n
Π(1+0),OPE
V±A

− δ(n)
DV, V±A(s0) = 2(ετ−eL+R ± ε

τ−e
L−R)

∫ s0

0

ds

s0

(
s

s0

)n
Im ΠN(1+0)

V (s)

∓ 4πf
2
π

s0

(
m2
π

s0

)n
ετ−eL−R + 12εdτT

∫ s0

sth

ds

s0

(
s

s0

)n (
1 + 2s

m2
τ

)−1 Im ΠV T

mτ
(s) , (5.53)

where we have safely taken in the rhs,∫ s0

0

ds

s0

(
s

s0

)n
Im Π(1+0)

V (s) ≈
∫ s0

0

ds

s0

(
s

s0

)n
Im Π(1+0)

A (s) . (5.54)

5.4.2.1 Computation of the ΠV T integral

We can make use of the analytic properties of the ΠV T (s) correlator as well
as its OPE to estimate its contribution. We can rewrite:

2i
∫ s0

0

ds

s0

(
s

s0

)n Im ΠV T (s)
s+ s0

2a
+
∮
|s|=s0

ds

s0

(
s

s0

)n ΠV T (s)
s+ s0

2a
= 2πi

(−2a)n
ΠV T (− s0

2a)
s0

,

(5.55)
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where a ≡ s0
m2
τ
> 1

2 .
∗ The OPE of ΠV T (s) should be a good approximation in both

the second integral and the rhs of Eq. (5.55) as far as a . 1. In the Euclidean
axis it is given, up to αs and higher dimensional contributions, by [177]:

ΠOPE
V T (Q2) ≈ − 2

Q2 〈0|q̄q|0〉+ Nc

8π2 m̂ ln(Q2) . (5.56)

Using its analytic continuation in the integral one obtains∮
ds

s0

(
s

s0

)n ΠOPE
V T (s)
s+ s0

2a
= 2πi

(−2a)nΠOPE
V T

(
− s0

2a

)
+
∮
NP

ds

s0

(
s

s0

)n ΠOPE
V T (s)
s+ s0

2a
,

(5.57)
where

∮
NP is the integral along the circumference taken out the residual parts

due to the pole in − s0
2a , which exactly cancels with the rhs of Eq. (5.55).† The

isospin conserving part of the mass correction gives:∮
NP

ds

s0

(
s

s0

)n ΠOPE
V T,m̂(s)
s+ s0

2a

im̂Nc

4πs0(−2a)n

=
[
n∑
k=1

(
n

k

)
(−1)k

k
[(1 + 2a)k − 1] + ln(1 + 2a)

]
, (5.58)

and the quark condensate contribution:

∮
NP

ds

s0

(
s

s0

)n ΠOPE
V T,〈q̄q〉(s)
s+ s0

2a
= 8πi
m2
τs0
〈0|q̄q|0〉s0δn,0 , (5.59)

where we have chosen µ2 = s0. We finally have:∫ s0

sth

ds

s0

(
s

s0

)n (
1 + 2s

m2
τ

)−1 Im ΠV T

mτ
(s) = imτ

4

∮
|s|=s0NP

ds

s0

ΠOPE
V T (s)
s+ s0

2a

= − mτm̂Nc

16πs0(−2a)n

[
n∑
k=1

(
n

k

)
(−1)k

k
[(1 + 2a)k − 1] + ln(1 + 2a)

]

− 2πδn,0
〈0|q̄q|0〉s0
s0mτ

. (5.60)

∗Otherwise the pole would be outside from the integral region.
†Notice that, because of this cancellation, the same result arises if one takes a < 1

2 .
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It can be easily checked that the quark mass correction is ∼ 10−4, so that it can
be safely neglected. Before taking it into account one should worry even about
the αs corrections to 〈0|q̄q|0〉 [178] and corrections from higher dimensions.

5.4.2.2 Computation of the ΠV±A integral

For the purely perturbative part, we follow the same procedure as in Chapters
2 and 3. Details on the calculation have been extensively discussed in those
chapters. The only difference is that instead of using data to obtain the strong
coupling, we take αs(M2

Z) = 0.1182 ± 0.0012 from the lattice [179], which should
be free from new physics effects.

For the non-perturbative part of the OPE, we work, with the exception of
the improvement made in Section 5.4.4, at leading order in αs. Thus, OD is
independent on Q2. Its contribution is:

A
OPE (n)
V±A (s0) ≡ i

2

∮
|s|=s0

ds

s0

(
s

s0

)n
ΠOPE
V±A(s) = −

πO2(n+1)
(−s0)n+1 . (5.61)

Since in principle they are unknown and we do not want to take any value
potentially contaminated with new physics effects, we will take conservatively
(see discussion of Chapters 2 and 3):

O2n ∼ (0± 0.42nΓ(n)) GeV2n . (5.62)

5.4.2.3 Putting everything together

Recalling Eq. (5.53), but inserting the results of the previous sections, one
has:∫ s0

sth

ds

s0

(
s

s0

)n
Im ΠN(1+0)

V±A ± 2πf
2
π

s0

(
m2
π

s0

)n
− 2A(n)

p (s0) +
πO2(n+1)
(−s0)n+1 − δ

(n)
DV, V±A(s0)

= 24π δn,0 εdτT
|〈0|q̄q|0〉s0 |
s0mτ

∓ 4πf
2
π

s0

(
m2
π

s0

)n
ετ−eL−R

+ 2(ετ−eL+R ± ε
τ−e
L−R)

∫ s0

sth

ds

s0

(
s

s0

)n
Im ΠN(1)

V (s) , (5.63)

where A(n)
p (s0) refers to the purely perturbative contribution given in Eq. (3.15)

with ω(s) =
(
s
s0

)n
for the V +A channel and must be put to zero for the V −A

one.
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We safely approximate the integrals in the rhs of the equation as s0−independent.
For example for n = 0 one obtains:∫ s0

sth

ds

s0
Im ΠN(1)

V (s) ≈ 0.095± 0.004 . (5.64)

On the other hand the prefactor that comes with εdτT gives [180]:

24π |〈0|q̄q|0〉s0 |
m3
τ

= 0.220± 0.051± 0.022 = 0.22± 0.05 . (5.65)

The first uncertainty is associated to 〈0|q̄q|0〉s0 and the second one to higher
orders in αs.

Finally, taking into account that 2π f2
π

m2
τ

= 0.0169, the pion mass correction of
the rhs is negligible and the contribution of that term has the same s0-dependence
as the εdτT term.

5.4.3 Numerical Analysis

In order to obtain constraints one need to estimate the lhs of Eq. (5.63) at
some s0, lhs(s0). We do it in this section for both, the V + A and the V − A
channels, using data from the ALEPH collaboration [46]. In order to avoid new
physics contaminations, we take fπ from the lattice [69].

5.4.3.1 V+A

In the V + A channel we have chosen the integral of the spectral function,
whose associated weight function is:

ω(s) = 1 , (5.66)

and Rτ , whose associated weight is:

ωτ (s) =
(

1− s

m2
τ

)2 (
1 + 2 s

m2
τ

)
. (5.67)

The former is especially interesting because is free from uncertainties coming
from dimensional condensates. Even if DVs are enhanced for this weight (as we
discussed in previous chapters), the smaller DVs observed in the V + A channel
where data is available allows us to constraint them reliably.
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On the other hand, Rτ is especially interesting because, as we discussed in
Chapter 3, its DV effects are completely negligible and because the first dimen-
sional correction is suppressed by six powers of the mass of the τ .

We choose not to introduce data points based on additional weight functions
because we do not find possible to disentangle among non-perturbative and new
physics effects in more complex fits without extra assumptions. The same argu-
ment can be applied for the V −A channel.

Integral of the spectral function.- We plot in Figure 5.1 the lhs of the Eq.
(5.63) for n = 0 ignoring all uncertainties but the experimental ones.

We take as reference point the last one with experimental uncertainty not
too large, i.e., s0 = 2.8 GeV2. Estimating DVs is not trivial. Usually the OPE
prediction is s0−independent and one can estimate DV uncertainties looking at
the size of its typically damped oscillatory behavior. Now, because of the εdτi
terms, we have to make a more aggressive statement and to say that there is not
a cancellation between the s0-dependence due to the ε terms and the one coming
from DVs,∗ so that the last ones are at most of the size of these fluctuations.

Taking the difference between the maximum and the minimum in the s0 ∈
(1.5, 2.8) GeV2 interval as estimates of DVs one obtains for the lhs of Eq. (5.63)
(ω(s) = 1):

lhs(2.8 GeV2) = (2.90± 1.96exp ± 1.82DVs ± 0.84αs ± 0.72CIFOPT ± 0.54pert) · 10−3

= (2.9± 2.9) · 10−3 , (5.68)

Rτ .- From the fit of the HFLAV collaboration [181]:†

BV+A = 0.6185± 0.0010 , (5.69)
Bπ = 0.10810± 0.00053 , (5.70)

where BV+A is the experimental branching ratio of τ to non-strange hadronic
states plus ντ and Bπ the one to πντ . One can obtain the experimental value of
∗This is partially justified by the fact that the s0−dependence of the εdτ terms is monotonous

in contrast with the fluctuating behavior expected and observed due to DVs.
†Notice that the fit of that collaboration is made by summing over hadronic channels. Lep-

tonic decays, which would potentially contaminate the results with new physics effects in a
nontrivial way, are not used to reduce uncertainties in that fit.
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Figure 5.1: lhs of Eq. (5.63) for n = 0 and V + A ignoring all uncertainties but
the experimental ones.

the moment associated to the total decay ratio:∫ m2
τ

sth

ds

m2
τ

(
1− s

s0

)2 (
1 + 2s

m2
τ

)
Im ΠN(1+0)

V±A = 0.07861± 0.00022 . (5.71)

As we discussed in Chapter 3, DVs are very suppressed in this channel. Neglecting
them for the lhs of Eq. (5.63) with ωτ as defined in Eq. (5.67), one finds:

lhs(m2
τ ) = (0.7± 2.5OPE ± 0.7CIFOPT ± 0.6αs ± 0.4pert ± 0.2exp) · 10−3

= (0.7± 2.6) · 10−3 . (5.72)

5.4.3.2 V-A

In the V − A channel DVs are larger, so the best theoretical predictions,
which directly translate into better new physics constraints, come from those
observables that reduce them. Fortunately, we have a better knowledge of the
first condensates of its OPE. Since theD = 2 andD = 4 condensates are known to
be numerically negligible, one has full knowledge, except for tiny αs corrections,
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of the power correction of Eq. (5.63) for n = 0 and n = 1. When setting the
εdτi = 0, one recovers the WSRs studied in Chapters 2 and 4. We take the
combination of both WSRs that is known to efficiently reduce DV uncertainties
by making use of a pinch weight function, as defined in the previous chapters:

ω(1,0)(s) ≡
(

1− s

s0

)
, (5.73)

and a combination of them with the moment ω(s) = s2 that sets a double pinch
to further reduce them:

ω(2,0)(s) ≡
(

1− s

s0

)2
, (5.74)

but paying the price of introducing dependence on the D = 6 condensate.

ω(1,0)(s).- Due to the reduced DVs associated to ω(1,0)(s), one can hope that
at s ∼ 2.8 GeV2 DVs are negligible. We plot the s0-dependence of the lhs of Eq.
(5.63) associated to that weight function in Fig. 5.2.

The plateau could be a sign of DVs going to zero. However, the s0−dependence
of the ε prefactors make again this argument weaker. One could have DV effects
that accidentally cancel with the ones coming from the ε prefactors. If somehow
aggressively we assume DV are smaller than experimental uncertainties for this
moment, one obtains for the lhs of Eq. (5.63) with ω(1,0)(s):

lhs(2.8 GeV2) = (0.19± 0.46) · 10−3 . (5.75)

Instead, we opt, much more conservatively, for adding as estimate of DV
uncertainties the difference with the value of the lhs of Eq. (5.63) in s0 = 2 GeV2,
which translates into

lhs(2.8 GeV2) = (0.19± 1.89DVs ± 0.46exp) · 10−3 = (0.2± 1.9) · 10−3 . (5.76)

ω(2,0)(s).- Given the very small DVs of this channel, the O6 uncertainty fully
dominates. The SM version of this moment was already studied in previous
chapters (see for example Eq. (4.17)). One obtains:

lhs(m2
τ ) = −(0.1± 0.8O6 ± 0.3exp) · 10−3 = −(0.1± 0.9) · 10−3 . (5.77)
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Figure 5.2: lhs of Eq. (5.63) for ω(1,0)(s) and V − A ignoring all uncertainties
but the experimental ones.

5.4.3.3 Constraints

Summarizing, we have 4 constraints whose uncertainties are very weakly cor-
related:

0.190(8) ετ−eL+R + 0.152(8) ετ−eL−R + 0.25(5) εdτT = (2.9± 2.9) · 10−3 , (5.78)
0.096(4) ετ−eL+R + 0.062(4) ετ−eL−R + 0.22(5) εdτT = (0.7± 2.6) · 10−3 , (5.79)
0.096(4) ετ−eL+R − 0.058(4) ετ−eL−R + 0.25(5) εdτT = (0.2± 1.9) · 10−3 , (5.80)
0.066(4) ετ−eL+R − 0.032(4) ετ−eL−R + 0.22(5) εdτT = −(0.1± 0.9) · 10−3 . (5.81)

5.4.4 Exploiting lattice determinations of K → ππ to improve the
last NP constraint

We can take advantage of the study made in the previous chapter when we
used determinations of 〈Q8〉µ and 〈Q7〉µ coming from the lattice to obtain the
D = 6 contribution of the OPE of the V − A correlator at NLO in αs. Instead
of using the weight ω(2,0)(s) to obtain a very precise value of fπ, as we did in
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Chapter 4, we can take it again from the lattice.‡ In Figure 5.3 we plot the lhs
of Eq. (5.63) as a function of s0.

Again, there is not an ultimate reason to state that DVs are completely neg-
ligible. However, typical oscillatory behavior associated to them is not seen at
large energies and different model fits within the SM to the spectral function
predict they can be neglected. Indeed, one would need a very artificial shape
to make them noticeable. Taking into account that the hadronic multiplicity at
s0 ∼ m2

τ is large, the convergence of the spectral function to the OPE prediction
should be fast and this scenario becomes very unlikely.

So, finally one obtains:

0.066(4) ετ−eL+R − 0.032(4) ετ−eL−R + 0.22(5) εdτT
= (0.34± 0.23exp ± 0.20f latt

π
± 0.10mq=0 ± 0.08Fmq=0 ± 0.03Qlatt

i
) · 10−3

= (0.34± 0.34) · 10−3 , (5.82)

which supersedes Eq. (5.81).

5.5 Combined results

Combining the preliminary results coming from both the exclusive and inclu-
sive constraints, one obtains at µ = 2 GeV:

ετL−εeL+ετR−εeR
ετR
ετS
ετP
ετT

 =


1.0± 1.5
0.2± 1.6
−0.6± 1.5
0.6± 1.4
−0.06± 0.75

× 10−2 , (5.83)

with

ρ =


1 0.93 0 −0.67 −0.97

1 0 −0.86 −0.96
1 0 0

1 0.73
1

 . (5.84)

Now one can run from µ = 2 GeV to MZ [164] and then perform the matching
with the SM-EFT using Eq. (5.25). In the VCKM = 1 limit for the New Physics
‡Correlations are taken into account in the combined fit.
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Figure 5.3: lhs of Eq. (5.63) for ω(2,0)(s), as defined in Eq. (5.74), as a function
of s0 ignoring all uncertainties but the experimental ones.

terms, we have four SM-EFT operators which have not been constrained be-
fore. Combining these constraints with the existing ones from other Electroweak
Precision Observables (EWPO) [162] one finds

[w(3)
lq , wlequ, wledq, w

(3)
lequ]ττ11

= (1.2± 2.9,−0.3± 1.1, 1.0± 1.1,−0.6± 1.4)× 10−2 , (5.85)

after marginalizing, which are not only very strong but also unique low-energy
bounds. Additionally, a competitive value, comparable with the one obtained
with neutron beta decays [182], is obtained for wϕud. Including hadronic tau
decays in the global fit of Ref. [162] one finds

wϕud = −(0.5 ± 1.1)× 10−2. (5.86)

On the other hand, one can compare with the sensitivity to those operators
in LHC observables. In order to do that, one has to assume that there are no
new degrees of freedom not only at scales around the vev, but also at the scales
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Figure 5.4: Transverse mass distribution obtained in Ref. [183] for the process
pp→ τν.

involved in the process. In this sense, it is less general. Since one is exploring
energies larger than the Higgs mass, the EFT counting gets slightly modified and
those operators that enter the process as E2 are enhanced compared to those
entering as v2. Even with poorer experimental precision, that enhancement makes
the LHC able to set more powerful constraints for some of those operators.

In order to illustrate that, in Tab. 5.1 we show our results based on a re-
cast of the transverse mass mT distribution of τν events in

√
s = 13 TeV

LHC collisions recently measured by ATLAS [183]. The impact of the Wil-
son coefficients on the dσ(pp→τν)

dmT
cross section (Fig. 5.4) is estimated using the

Madgraph [184]/Pythia 8 [185]/Delphes [186] simulation chain. The SM predic-
tions is taken from [183], and their quoted uncertainties in each bin are treated
as independent nuisance parameters.

We find that the LHC bounds are comparable for the chirality-violating op-
erators to those from hadronic tau decays. However, a word of caution should
be put for these constraints. They do not interfere with the SM and thus they,
enter into the calculation at the same level as D = 8 operators. In this sense,
these results are not model-independent.
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Coefficient ATLAS τν Hadronic τ decays
[w(3)
`q ]ττ11 [0.0, 1.6] [−12.7, 0.2]

[w`equ]ττ11 [−5.6, 5.6] [−9.7, 4.4]
[w`edq]ττ11 [−5.6, 5.6] [−3.6, 10.5]
[w(3)
`equ]ττ11 [−3.3, 3.3] [−12.6,−0.5]

Table 5.1: 95% CL intervals (in 10−3 units) for the Wilson coefficients at µ =
1 TeV that yield quadratically enhanced corrections to the high-energy tail of
τν production at the LHC. To obtain these results we assume only one Wilson
coefficient is present at a time.

On the other hand, for the chirality-conserving coefficient [w(3)
`q ]ττ11 the LHC

bounds are one order of magnitude stronger thanks to the fact that the corre-
sponding operator interferes with the SM qq̄′ → τν amplitude, which makes this
bound model independent. We observe an O(2σ) preference for a non-zero value
of [w(3)

`q ]ττ11 due to a small excess over the SM prediction observed by ATLAS in
several bins of the mT distribution.

[w(3)
`q ]ττ11 is constrained by the LHC at an O(10−3) level, and similar conclu-

sions can be drawn with regard to [w(3)
`q ]ee11 [158,187]. Then hadronic tau decays

effectively become a new probe of the vertex correction ετL − εeL ≈ [w(3)
ϕl ]ττ−ee,

complementing the information from previous low-energy EWPO [162]. Previ-
ously, EWPO displayed an O(2σ) preference for a non-zero [w(3)

ϕl ]ττ−ee, which
came from the lepton flavor universality violation observed in W → `ν decays in
LEP2 [188,189]. Including the input from hadronic tau decays reduces both the
uncertainty and the best fit value:

[w(3)
ϕl ]ττ−ee = 0.0150± 0.0085, (5.87)

but the disagreement with the SM remains at ∼ 2σ, due to the tension in the ππ
channel (Eq. 5.41).
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5.6 An exploratory study of the potential of the strange
sector

The formalism of the strange sector is exactly the same with the change d→ s.
Unfortunately, less precise data and limitations in the QCD knowledge makes, in
principle, not possible to obtain constraints for all the ε.

5.6.1 One-kaon decay

The most powerful constraint comes from the one kaon decay. Applying the
same procedure as in the pion decay one has:

εsτL − εseL − εsτR − εseR −
m2
K

mτ (mu +ms)
εsτP = −(5.1± 10.0) · 10−3 , (5.88)

where uncertainties are dominated by the experimental ones.

5.6.2 Inclusive constraint

Unfortunately the separation of channels in V and A ones using symmetry
considerations is not possible in the strange sector. In principle one can only
relate the experimental data to spectral functions through the total normalized
invariant mass distribution,

dNV+A
τ

Nτds
= 12π|Vus|2Be Sew

(
1− s

m2
τ

)2
·
[(

1 + 2s
m2
τ

)
(1 + 2εsτL+R) Im Π(1+0)

V V (s)

− 2s
m2
τ

(
1 + 2εsτL+R − εsτS

mτ

ms −mu

)
Im Π(0)

V V (s) + 12εsτT
Im ΠV T (s)

m2
τ

+
(

1 + 2s
m2
τ

)
(1 + 2εsτL−R) Im Π(1+0)

AA (s)

− 2s
m2
τ

(
1 + 2εsτL−R + εsτP

mτ

mu +ms

)
Im Π(0)

AA(s)
]
, (5.89)

where now Πi(s) are referred to the currents with the strange quark. Because of
the Cabibbo suppression (|Vus|2), experimental uncertainties are typically larger
in this sector. In fact, the only inclusive observable available to us is the total
strange cross section. Integrating the previous distribution, and then using the
analyticity of the correlators to equate the integral of the spectral function to i

2
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times the integral along the complex circumference, one has:

Bs
3B′e|Vus|2Sew

= 2πi
∮

ds

m2
τ

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
Π(1+0)
V V+AA(s)

− 2πi
∮

ds

m2
τ

(
1− s

m2
τ

)2 ( 2s
m2
τ

)
Π(0)
V V+AA(s)

+ 2πi(εsτL+R + εsτL−R)
∮

ds

m2
τ

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
Π(1+0)
V V+AA(s)

− 2πi εsτP
mτ

mu +ms

∮
ds

m2
τ

(
1− s

m2
τ

)2 ( 2s
m2
τ

)
Π(0)
AA(s)

+ 2πi εsτS
mτ

ms −mu

∮
ds

m2
τ

(
1− s

m2
τ

)2 ( 2s
m2
τ

)
Π(0)
V V (s)

+ 24πiεsτT
∮

ds

m2
τ

(
1− s

m2
τ

)2 ΠV T (s)
mτ

≡ 1 + δP + δms + δOPED>2 + δL

+ αL(εsτL+R + εsτL−R) + αP ε
sτ
P + αT ε

sτ
T . (5.90)

where B′e is defined as in the non-strange discussion.
Since we do not need so much precision for the αi coefficients, we have made

several approximations. We have used that the vectorial and axial L+T (= (0+1))
contributions are very close. This is because they are strongly dominated by
the perturbative contribution, which respects chiral symmetry. We have also
safely neglected the tiny term proportional to εsτL+R and εsτL−R coming from the
longitudinal part (= (0)) of the correlators.

At this stage, we can use again the OPE of the correlator along the circumfer-
ence to make a theoretical prediction of the different integrals. Since the different
integrals associated to the total cross section are doubly pinched, i.e., contain a
kinematic function proportional to

(
1− s

m2
τ

)2
, DVs are very suppressed and the

OPE becomes very precise.
In previous works [48, 190–193], |Vus|2 has been extracted comparing Rτ, s

whichRτ, ns, which allows one to remove perturbative uncertainties and some non-
perturbative ones. Since we do not want contaminations from BSM contributions
coming from the non-strange sector, we will directly compare Rτ, s with the QCD
predicted value.§ Nevertheless, we will take advantage of some of the results
§In fact, given the bounds we obtained for the non-strange constraints, it may be worth it

doing the study in the traditional way. We will explore this possibility in the near future.
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found in those references in order to obtain some of the contributions needed.
Typically a contribution i is given in the form:

δRiτ ≡
Riτ,ns
|Vud|2

−
Riτ,s
|Vus|2

= 3Sew(δins − δis) , (5.91)

so that, since we have already calculated the non-strange contributions, we can
just take

δis = δins −
δRiτ
3Sew

. (5.92)

In the following sections we detail how to extract values for the different terms.

5.6.2.1 Experimental values

Taking the following numerical inputs [166,181,194]:

B̃e = 0.17778± 0.00031 , (5.93)
|Ṽus| = 0.22408± 0.00087 , (5.94)
Bs = 0.02909± 0.00048 , (5.95)
Sew = 1.0201± 0.0003 , (5.96)

one obtains

BS
3B′e|Vus|2Sew

= (1.065± 0.019)(1 + 2εseR + 2εseL ) . (5.97)

We will reabsorb the εseL+R into the εsτL+R as we did in the non strange analysis
(this can be done here because, as we mentioned above, we are neglecting the very
suppressed new physics εsτL+R and εsτL−R contribution coming from the longitudinal
part).

5.6.2.2 L+T integral

The dominant contribution by far is the perturbative one. This calculation is
identical to the one already made in the non-strange sector. We obtain:

δP = 2πi
∮

ds

m2
τ

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
Π(1+0)
V V+AA(s)− 1

= 0.1916± 0.009FO−CI ± 0.007αs ± 0.005pert = 0.192± 0.012 . (5.98)
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The perturbative series associated to the strange mass are not very well be-
haved. Taking δRmsτ from [192]:

δRmsτ = (9.3± 3.4)m2
s . (5.99)

Since quark masses mu and md are negligible, one can neglect δmsns (see Eq.
5.92) to obtain:

δms = − δRmsτ
SewNc

= −0.0266± 0.0097 . (5.100)

Repeating the same argument as in the non-strange sector we obtain:

δOPED>2 = 0± 12π2 Γ(3) Λ6

m6
τ

= 0.000± 0.031 . (5.101)

This uncertainty will be the dominant one.

5.6.2.3 Longitudinal contribution

Here we recall Eq. (5.92) for the longitudinal case:

δL = δL, ns −
δRLτ
3Sew

. (5.102)

As we argued in the non strange analysis, Π(0)
ns (s) is fully dominated by the pion

pole:

Π(0)
ns (s) = − 2f2

π

s−m2
π

, (5.103)

so that

δL, ns = δπL = −8π2 f
2
π

m2
τ

2m2
π

m2
τ

(
1− m2

π

m2
τ

)2

= −(0.00258± 0.0003) . (5.104)

The calculation within QCD of δRLτ [191] contains a 30% of uncertainty. A more
phenomenological approach to extract δRLτ is done in the same reference and
allows for a much better precision. Let us see how possible new physics effects in
that analysis are probably small. The point is that δRLτ is going to be dominated
by the kaon pole:

δL = δKL + δremL , (5.105)
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where:¶

δKL = −8π2 f
2
K

m2
τ

2m2
K

m2
τ

(
1− m2

K

m2
τ

)2

= −(0.0396± 0.0005) . (5.106)

δrem was obtained in Ref. [191] by calculating the contribution coming from the
scalar spectral function and K(1460), K(1800) in different fits. Since they give
δRLτ = 0.1544± 0.0003, one has:

δrem = (−0.0134± 0.0012)(1 + aiεi) , (5.107)

assuming that εi are not strongly enhanced,‖ new physics corrections can be
neglected and then:

δL = −0.0530± 0.0012 . (5.108)

5.6.2.4 εsτL , εsτP , εsτS and εsτT parts

We do not need too much precision for the α coefficients. For αL, we can take
conservatively the average between Eq. (5.97) and Eq. (5.98):

αL ≡
∮

ds

m2
τ

(
1− s

m2
τ

)2 (
1 + 2s

m2
τ

)
Π(1+0)
V V+AA(s) = 1.13± 0.06 . (5.109)

The mτ
ms

enhancement makes the εP and εS part not negligible. Using the
results of Ref. [48], one has:

αP = mτ

mu +ms
δVL = −0.79± 0.02 , (5.110)

αS = − mτ

ms −mu
δAL = +0.17± 0.02 . (5.111)

In order to estimate this part we can make use of the OPE of the VT correlator
[177]. The correlator was computed for light quark masses. In principle the
expression would be the same, changing md → ms. The problem is that the
¶Probably Ref. [192] took an experimental value for fK , which could bring NP contaminations

to δRLτ , but since we know there is an excellent agreement with the lattice value and the
uncertainty due to fK in Eq. (5.106) is completely negligible, they can be neglected. Exactly
the same argument can be applied with fπ in Eq. (5.104).
‖This might not be totally safe for the decay constants of the strange resonances, because

they are using similar sum rules to fit them (new physics might compete with the very small
corrections which they represent). However, it would be enough that the order of magnitude of
fK(1460) is correct. We assume that.
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computation was made in the isospin limit mu = md, so that we are missing mass
contributions of the same order (ms − mu) than the ones taken into account.
Fortunately, the mass contribution does not dominate. Using Eq. (5.60), we
obtain:

αT = 2.6± 0.4 , (5.112)

where we have used as estimates of uncertainties associated to ms corrections
|αT,(ms−mu)| . |αT,(ms+mu)| = 0.17.

5.6.2.5 Putting everything together

We obtain:

−0.042± 0.039 = (1.13± 0.06)(εsτ−seL+R + εsτ−seL−R ) + (2.6± 0.4)εsτT
− (0.79± 0.02)εsτP + (0.17± 0.02)εsτS , (5.113)

where uncertainties are dominated by our conservative estimate of the power
corrections.





Conclusions

In this thesis, we have focused on the phenomenology of some of the more
predictive approaches involving hadronic tau decays. Inclusive observables have
played a central role.

We have started with an updated study of the inclusive V −A spectral func-
tions. They provide a window to study non-perturbative physics. We have used
well-known dispersion relations, which allow us to extract information from the
resonance spectrum with a description where the degrees of freedom are quarks
and gluons, to obtain some updated values for low-energy constants and vacuum
condensates. We have made a careful estimate of Duality Violations, concluding
that they are not dominating uncertainties at s0 ∼ m2

τ for most of the weight
functions and that pinch weight functions efficiently reduce them. However, they
have a significant role for the determination of the vacuum condensates, both
because their associated weight functions are especially sensitive to Duality Vio-
lations and because experimental resolution enforce a determination of them at
lower energies. Working at O(p6) we have obtained:

Lr10(Mρ) = −(4.1± 0.4) · 10−3 , C87(Mρ) = (5.10± 0.22) GeV−2 . (5.114)

Then, we have made a comprehensive analysis of the strong coupling determi-
nation from hadronic tau decays. Different approaches, aimed to deal with the
non-perturbative contributions, have been studied. The cleanest determination
comes from the inclusive non-strange V + A spectral function, where all the ap-
proaches and tests, which make use of different assumptions, are in very good
agreement. We quote our final number as:

αs(m2
τ ) = 0.328± 0.013 , (5.115)

which translates, after running from µ2 = m2
τ to µ2 = M2

Z , into

αs(Mz) = 0.1197± 0.015 , (5.116)
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in excellent agreement with the global average [195].
In the chiral limit, there are known relations between K → ππ matrix el-

ements and vacuum condensates. The latter can be found in the D = 6 con-
tribution of the OPE of the correlator ΠV−A(s). We have made a preliminary
updated study of the phenomenological implications of those relations. Using
hadronic tau-decay data, we have obtained an updated value for 〈Q8〉µ in the
chiral limit. We have explored the possibility of taking 〈Q7〉µ and 〈Q8〉µ from the
lattice to use it as a new short-distance constraint in the tau sector. This allows,
for example, for a determination of fπ with a precision below the per-cent level
without making use of information on τ → πντ data.

Finally, we have performed a novel and preliminary analysis on the potential
of hadronic tau decays to constrain new physics in a model-independent fashion,
using the Standard Model Effective Field Theory framework. Combining both
inclusive and exclusive observables, we have been able to find bounds on all the
couplings involved, typically with a precision below the percent level. Some of
them give not only stringent, but also unique low-energy bounds. Combining
with LHC data, one can obtain bounds on two W vertex corrections, which
are competitive or even more stringent than previous bounds coming from other
precise EWPO.

Improved data sets, which could come from collaborations as Belle-2, would
translate into improved determinations of the parameters obtained with the dif-
ferent tools we have used. Since we are close to their limit of applicability, it is
not easy to quantify the reach of that improvement. If a very fast convergence to
quark-hadron duality near the tau mass, where current experimental uncertain-
ties are too large, happened to be observed, there would be a significant reduction
of systematic uncertainties.

The strong coupling has been obtained at the tau mass, where the convergence
of the perturbative series is slow and where we may be close to the asymptotic re-
gion. An improvement in the knowledge of higher-order perturbative corrections
would significantly help to reduce perturbative uncertainties. Efforts made in
rigorous calculations of higher-loops coefficients and in methods aimed to resum
the whole series could shed some light on tau-based determinations of αs.

Finally, some improvements are expected in the phenomenological study of
the new physics sensitivity of hadronic tau decays. First, improvement in the
lattice input for fπ would translate into a better one-pion constraint. On the
other hand, a more careful analysis of the two-pion constraint, where one could
directly study the invariant mass distribution, or of the inclusive strange ones,
could improve the bounds of hadronic tau decays on new physics couplings.



Appendix A

Low-energy expansion of the
left-right correlation function

At low energies, the correlator Π(s) can be expanded in powers of momenta
over the chiral symmetry-breaking scale. The series expansion has been calculated
to O(p6) in χPT [25,64,66]:

Π(s) = 2f2
π

s−m2
π

− 8Lr10 − 8Bππ
V (s)− 4BKK

V (s)

+ 16Cr87 s − 32m2
π (Cr61 − Cr12 − Cr80)

− 32 (m2
π + 2m2

K) (Cr62 − Cr13 − Cr81)

+ 16
(

(2µπ + µK)(Lr9 + 2Lr10)−
[
2Bππ

V (s) +BKK
V (s)

]
Lr9

s

f2
π

)
− 8G2L(s) , (A.1)

where

Bii
V (s) ≡ − 1

192π2

(
σ2
i

[
σi log

(
σi − 1
σi + 1

)
+ 2

]
− log

(
m2
i

µ2

)
− 1

3

)
, (A.2)

σi =

√
1− 4m2

i

s
, (A.3)

µi ≡ m2
i log(mi/µ)/(16π2f2

π) , (A.4)
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and G2L(s) is the two-loop contribution. The analytic expression of G2L(s) is too
large to be given here, even in the s→ 0 limit; it can be extracted from Ref. [66].
For µ = Mρ, the numerical values for its contribution and its derivative at s = 0
are [9]:

G2L(0) = −0.53 · 10−3 , (A.5)

G′2L(0) = −0.28 · 10−3 GeV−2 . (A.6)



Appendix B

Relation between matrix
elements in the chiral limit

Effective Lagrangians, built with total generality for the low-energy degrees
of freedom by imposing that the chiral symmetry transformations properties are
the same as the known short-distance version of it, can be used as a tool to relate
matrix elements between meson states at first order in χPT (O(p0)). Playing
with that one can successfully relate (see [196]) K → ππ matrix elements to
K → π. However, in order to relate matrix elements among mesons and vacuum
condensates, one has, to the best of our knowledge, to invoke the soft-meson
theorem [197,198] in order to remove at least the last meson.

B.1 The soft-meson theorem

We follow here the derivation of Ref. [198] with our convention for γ5 (PL =
1−γ5

2 ) and trivially extending it from SU(2) to SU(3). The theorem states that,

lim
q→0
〈φk(q)β| O(0) |α〉 = i

F
〈β| [Qk5,O(0)] |α〉 , (B.1)

where φk, k = 1, ..., 8 are the Goldstone bosons, usually parametrized as U(x) =
ei
λaφa(x)

F , Qk5 is the associated chiral charge Qk5 = q̄ λk2 γ5q and α and β are generic
states.

The starting point of the proof is the LSZ reduction formula,

〈φk(q)β| O(0) |α〉 = −i
∫
d4x eiqx(q2 −m2

φ) 〈β|T (φk(x)O(0)) |α〉 |q2=m2
φ
. (B.2)
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Now, using that at lowest (non-trivial) order in χPT

∂µA
µk(x) = −Fm2

φφ
k(x) , (B.3)

one obtains

〈φk(q)β| O(0) |α〉 = i lim
q2→m2

φ

q2 −m2
φ

Fm2
φ

∫
d4x eiqx 〈β|T (∂µAµk(x)O(0)) |α〉 .

(B.4)
Expanding the T-product in terms of the Heaviside function and integrating by
parts one gets

〈φk(q)β| O(0) |α〉 = i lim
q2→m2

φ

q2 −m2
φ

Fm2
φ

∫
d4x eiqx[〈β| ∂µT (Aµk(x)O(0)) |α〉

− δ(x0) 〈β| [A0k(x),O(0)] |α〉] .
(B.5)

Integrating by parts again the first term and defining Āµ(x) ≡ Aµk(x)x0=0

〈φk(q)β| O(0) |α〉 = i lim
q2→m2

φ

q2 −m2
φ

Fm2
φ

(−iqµ
∫
d4x eiqx 〈β|T (Aµk(x)O) |α〉︸ ︷︷ ︸

Rkµ(q)

− 〈β| [
∫
d3x e−i~q·~xĀ0k(x),O(0)] |α〉) ≡ i lim

q2→m2
φ

F (q) . (B.6)

Assuming now that F (q) admit a Taylor expansion so that

F (q) = F (0) + F ′(0) q
2

Λ2
χ

+ ... , (B.7)

then it is obvious that

〈φk(q)β| O(0) |α〉 ≈ i(F (0) + F ′(0)
m2
φ

Λ2
χ

+ ...) = iF (0) +O(
m2
φ

Λ2
χ

) = i lim
q→0

F (q) .

(B.8)
If, additionally, one assumes Rµk(q) does not have any singularities in 0 and
performs the limit, one finally recovers Eq. (B.1).
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B.2 Application of the soft meson limit to our matrix
elements

Applying it iteratively to O(0) = Qabcd defined as:

Qabcd ≡ s̄aΓµLdb(ūcΓ
R
µud −

1
2 d̄cΓ

R
µ dd −

1
2 s̄cΓ

R
µ sd) , (B.9)

where we a, b, c and d denote color indices and ΓR(L)
µ ≡ γµ(1± γ5), one gets:∗

lim
p,q,k→0

〈φa(p)φb(q)|Qabcd|φc(k)〉 = i

F 3 〈0|
[[
Qa5, [Qb5, Qabcd]

]
, Qc5

]
|0〉 . (B.10)

Rewriting 〈(ππ)I=2| and |K0〉 in terms of the Goldstones:

〈ππ|I=2 =
√

2i
3 (〈π0π0| − 〈π+π−|)

=
√

2i
3 (〈φ3φ3| −

1√
2
〈φ1φ1| −

1√
2
〈φ2φ2|) , (B.11)

|K0〉 = 1√
2
|φ6〉+ i|φ7〉 , (B.12)

and rearranging Qabcd as the sum of products of SU(3) octet flavor currents
J i µ abL JRj µ cd where J

i µ ab
L = q̄a

λi
2 ΓµL(R)qb, so that one can use the trivial commuta-

tion relations:
[Qi5, J

j µ ab
L(R) ] = ∓if ijkJk µ abL(R) , (B.13)

one gets a relation of the form:

lim
k,p,q→0

〈(ππ)I=2|Qabcd|K0〉 = 1
F 3

∑
i,j

cij〈0| q̄aΓLµ
λi
2 qb q̄cΓ

µ
R

λj
2 qd|0〉 , (B.14)

where the exact unphysical cij one obtains depend on the ordering followed when
the commutation relations are applied.
∗Notice one can obtain different expressions by applying the commutation relations in a

different ordering. However, at the order the equality is valid (O(p0)) one can use that vacuum
is SU(3)V invariant to trivially relate vacuum condensates (only SU(3)V singlets survive) and
check that the different expressions are indeed equivalent.
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B.3 Equivalences among vacuum condensates in the
chiral limit

The possible four-quark operators whose SU(3)V structure is 8(∈ 3̄⊗3)⊗8(∈
3̄ ⊗ 3) can be written in two different orthonormal basis vectors connected by a
unitary basis [199], the reducible 8 ⊗ 8 one, which can be parametrized by the
Gell-Mann matrices as in Eq. (B.14) and which more generically and symbolically
would be, for a general 8⊗ 8 operator with some fixed Dirac and color structure:

~C =
8∑

i=1,j=1
Cij

λi

2
~⊗λ

j

2 , (B.15)

and the decomposition in irreducible ones, whose basis ~Ii is made of orthonormal
states of 27⊕ 10⊕ 10∗ ⊕ 81 ⊕ 82 ⊕ 1. The 64× 64 change of basis matrix can be
obtained from isoscalar form factors plus Clebsch-Gordan coefficients of Ref. [199].
Indeed the singlet part is obviously:

~IS = 1
2
√

2
∑
i

λi

2
~⊗λ

i

2 , (B.16)

from which the projection of an operator ~C to the singlet is just:

CS = ~C · ~IS = 1
2
√

2
∑
i

Cii , (B.17)

but when contracting with vacuum only the singlet survive:

〈0|~C|0〉 = 〈0|
∑

Ci~Ii|0〉 =
∑
Cii

2
√

2
〈0|~IS |0〉 , (B.18)

so that for a different operator ~B with the same color a, b, c, d and Dirac Γ1⊗Γ2
structure:

〈0| ~B|0〉 =
∑
Bii∑
Cii
〈0|~C|0〉. (B.19)
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B.4 Applying the equivalences to get the final matrix
elements relations

Independently on the ordering, one gets in Eq. (B.14)
∑
cii = −2, so that

using Eq. (B.19) one can rewrite Eq. (B.14) as:

lim
k,p,q→0

〈(ππ)I=2|Qabcd|K0〉 = − 1
F 3

0
(d̄aΓLµub ūcΓ

µ
Rdd) . (B.20)

Multiplying by δabδcd one gets:

lim
k,p,q→0

〈(ππ)I=2|Q7|K0〉 = − 1
F 3

0
(d̄aΓLµua ūbΓ

µ
Rdb) ≡ −

2
F 3

0
〈O1〉µ . (B.21)

Multiplying instead by δacδbd = 1
2λ

i
abλ

i
cd + 1

Nc
δabδcd:

lim
k,p,q→0

〈(ππ)I=2|Q8|K0〉 = − 1
F 3

0
(1
2 d̄λ

iΓLµu ūλiΓ
µ
Rd+ 1

Nc
d̄ΓLµu ūΓµRd)

≡ − 2
F 3

0
(1
2〈O8〉µ + 1

Nc
〈O1〉µ) . (B.22)





Appendix C

The tensor form factor
involved in τ → ππντ in RχT

The tensor form factor we want to get is given by (Eq. 5.31):

〈π−π0|d̄σµνu|0〉 = −i(pµ−pν0 − pν−p
µ
0 )F ππT (s) , (C.1)

where s ≡ p2
n ≡ (p− + p0)2.

In order to translate the current to the level of pions, we could use χPT.
However, we know that it is not valid in the resonance region. Instead, a far
better approximation of it is given (as it can be explicitly checked for the vector
form factor [200]) by Resonance Chiral Theory (RχT) [95]. In this framework,
one adds resonances R to the χPT Lagrangian whose transformation is given
under local SU(3)L × SU(3)R symmetry as

R→ hRh† , (C.2)

where h(x) is the compensating V transformation. Then RχT assumes, sup-
ported by phenomenology, that, for a normalization scale µ ∼Mρ, the low-energy
constants of χPT at O(p4) are fully dominated by the contribution of those reso-
nances when integrating them out. Since inserting spurions associated to tensor
sources give no contribution to χPT at O(p2) owing to the counting made in
Ref [201], the leading contribution in RχT comes from the generalization of the
formalism of that reference in the presence of resonances [172].
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C.1 Obtaining the long-distance version of the quark-
tensor current

Fortunately, when introducing the tensor external fields in the short-distance
Lagrangian [201]:

L = L0
QCD + q̄σµν t̄µνq + other sources , (C.3)

one can only construct chiral low-energy Lagrangians involving tensor fields with
the following building blocks [201]:

tµν± = u†tµνu† ± ut†µν u , (C.4)

with tµν = PµνλρL t̄λρ, so that tµν± transform as tµν± → htµν± h
† (u2 = U).

The most general Lagrangian in the presence of vector resonances and ten-
sor sources which can contribute to the process τ → ππντ at the lowest order,
following the counting of Ref. [201], is then [172]:

L = CT 〈Vµνtµν+ 〉 , (C.5)

where CT is a low-energy constant, in principle unknown.
Now that we have the short and long-distance Lagrangian, we can compute

the current at the lowest order by making use that at that order the functional
derivative of the action with respect the external tensor field must be the same
in both frameworks:

d̄σµνu = δS

δt̄µν21
= CTV

12
µν = CTρ

†
µν . (C.6)

C.2 Computing the tensor form factor

Now we have all ingredients we needed. Inserting the current in the presence
of interactions (needed for the ρ→ ππ part), one has

(2π)4δ4(q − pn)〈π−π0|d̄σµνu|0〉 =
∫
d4x e−iqx〈π−π0|CTρ†µν(x)ei

∫
d4xLI |0〉 .

(C.7)
The relevant part of the interaction Lagrangian for the ρ→ ππ decay reads:

LI = i
GV
F 2 (∂µπ0∂νπ

+ − ∂νπ0∂µπ
+)ρ−µν , (C.8)
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from which

(2π)4δ4(q − pn)〈π−π0|d̄σµνu|0〉

= −CTGV
F 2

∫
d4x d4y

· e−iqx〈π−π0|ρ†µν(x)(∂απ0(y)∂βπ+(y)− ∂απ+(y)∂βπ0(y))ρ−αβ(y)|0〉

= CTGV
F 2

∫
d4x d4y ei(−qx+pny)(p0

αp
−
β − p

−
αp

0
β)

· iM−2
ρ

∫
d4k

(2π)4
e−ik(x−y)

M2
ρ − k2 [gµαgνβ(M2

ρ − k2) + gµαkνkβ − gµβkνkα − (µ↔ ν)]

= iCTGV
M2
ρF

2 (2π)4δ4(q − pn) 1
M2
ρ − k2 (p0αp−β − p−αpoβ)

· [gµαgνβ(M2
ρ − k2) + gµαkνkβ − gµβkνkα − (µ↔ ν)]

= (2π)4δ4(q − pn) iCTGV
M2
ρF

2
1

M2
ρ − q2 2M2

ρ (pµ0pν− − pν0p
µ
−) , (C.9)

where in the second equality we have inserted the spin 1 propagator as defined
in Ref. [95]. Then, we get:

FT (s) = 2CTGV
F 2

1
M2
ρ − s

= 2CTGV
F 2M2

ρ

FV (s) = FT (0)FV (s) . (C.10)

C.3 Computation in pure χPT and comparison be-
tween LECs integrating out the ρ.

Even when we do not need it, because all we need is taking FT (0) ≈
2
√

2 0.663 GeV−1 from the lattice [174], we can compute FT (0) in pure χPT in
terms of χPT LECs. Here the Lagrangian is directly given in Ref. [201]. One
gets, for the relevant part of the process:

d̄σµνu = δS

δtµν †21
+ δS

δtµν21
= − i

√
2Λ2
F 2 (∂µπ0∂νπ

+ − ∂µπ+∂νπ
0) + ... , (C.11)

from which:
FχPT
T =

√
2Λ2
F 2 , (C.12)
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which is in agreement with the calculation made in Ref. [160]. Then, integrating
out the ρ, one has:

CT =
M2
ρ

2GV
√

2Λ2
. (C.13)

The lattice determination of Ref. [174] can then be re-interpreted as a determi-
nation of Λ2,

Λ2 = F 2
√

2
FT (0) ≈ 11 MeV , (C.14)

and then, of |CT |:
|CT | ≈ 280 . (C.15)



Resumen de la Tesis

Introducción

En esta tesis hemos realizado un estudio exhaustivo de observables asociados
a desintegraciones hadrónicas de taus que permiten estudios de alta precisión,
no sólo en lo referido a la precisión experimental sino también en cuanto a la
capacidad de la teoría para predecir los resultados de dichos experimentos.

El Modelo Estándar de Física de Partículas

Dado el rotundo éxito del Modelo Estándar de Física de Partículas a la hora
de dar una descripción muy precisa de todos los observables de altas energías
estudiados hasta la fecha, dicho modelo es el mejor marco teórico posible como
punto de partida para el estudio de dichas desintegraciones.

El formalismo matemático del Modelo Estándar es la Teoría Cuántica de
Campos, que es el más exitoso hasta la fecha a la hora de describir una física
de altas energías descrita por partículas relativistas, fermiones y bosones, que
pueden dar lugar a otras cuando interaccionan localmente.

El Modelo Estándar fue formulado en un intento de acomodar en dicho forma-
lismo, de la forma más simple posible, toda la información de los datos experimen-
tales a las energías exploradas en la época. Se exige que el Lagrangiano del Uni-
verso, que podría considerarse como el punto de partida desde el cual uno asume
que subyace todo lo demás, debe respetar cierta simetría local, SU(3)C×SU(2)L×
U(1)Y , y que dicha simetría queda espontáneamente rota a SU(3)C × U(1)em a
través de un mecanismo en el que se elige un valor particular entre aquellos
que minimizan el potencial de un campo bosónico escalar. La masa del resto
de partículas son consecuencia de la interacción de las mismas con dicho campo
escalar. Las partículas del Modelo Estándar son:
• Bosones Gauge. En el formalismo de Teoría Cuántica de Campos nece-

sariamente aparecen como consecuencia de imponer invariancia bajo las
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distintas simetrías locales. Así, los gluones son los bosones asociados a
las interacciones fuertes (SU(3)C) y los fotones y bosones W− y Z a las
electrodébiles (SU(2)L × U(1)Y ).

• Leptones. Son los bloques de materia fermiónica que no interaccionan (lo-
calmente) a través de interacciones fuertes. Se trata de los electrones y
neutrinos electrónicos más dos copias idénticas más pesadas, muones y taus
junto con sus correspondientes neutrinos.

• Quarks. Son los bloques de materia fermiónica que sí interaccionan local-
mente a través de interacciones fuertes. Como consecuencia, la dinámica
subyacente resulta ser mucho más compleja. A bajas energías, como aque-
llas en las que nos movemos en nuestro día a día, no pueden viajar libre-
mente (confinamiento de color), sino que forman partículas más complejas.
De nuevo, los podemos agrupar en tres parejas, conocidas como familias.
En el Modelo Estándar, dichas familias van a poder interaccionar entre ellas
a través de la matriz de Cabibbo-Kobayashi-Maskawa (CKM).

• Bosones Escalares. Se trata de otro de los tipos de partículas permiti-
dos por Teoría Cuántica de Campos. Sólo interaccionan a través de inte-
racciones electrodébiles. Empleando una determinada transformación local
de la simetría asociada tras la rotura espontánea de la simetría, sólo una
nueva partícula física sobrevive: el bosón de Higgs.

Además, cada partícula tiene asociada una antipartícula, idéntica pero con cargas
opuestas. El Lagrangiano del Modelo Estándar no es más que el más genérico
(renormalizable) posible dados esos bloques de materia y dichas simetrías. Una
vez fijados con datos experimentales los parámetros libres de la teoría, que son
las masas de las partículas, los elementos de la matriz CKM y los acoplamientos
fuerte (αs) y electrodébil (e), su éxito ha ido más allá de predecir correctamente
medidas experimentales cada vez más precisas a las energías en el que éste fue
formulado. Todas las medidas realizadas hasta la fecha a energías notablemente
mayores, llegando hasta el LHC, están también en buen acuerdo con sus predic-
ciones teóricas, que incluían la aparición de nuevas partículas, como el bosón de
Higgs, que aún no habían sido descubiertas.

Motivación

El éxito sin precedentes del Modelo Estándar a la hora de describir las medidas
experimentales del LHC no deja de ser sorprendente. Hasta ahora cada vez que
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se habían explorado nuevas escalas, se había descubierto nueva física que no
quedaba completamente descrita por los modelos previos. De hecho, dicha nueva
física había arrojado luz sobre las diferentes incógnitas abiertas por las teorías
previas.

El Modelo Estándar podría dar una descripción precisa de la naturaleza, salvo
por la materia oscura, hasta escalas cercanas a la longitud de Planck, donde se
conoce que la gravedad, no descrita por el mismo, es relevante. Sin embargo,
desde un punto de vista puramente teórico no tenemos ninguna razón funda-
mental para pensar que exactamente las simetrías y los bloques de materia que
gobiernan las escalas a las que el Modelo Estándar fue construido, describan to-
das las escalas mayores. Precisamente ese hecho motiva seguir buscando nueva
física que nos permita seguir entendiendo, asumiendo que no es fruto del azar,
por qué los bloques de materia siguen esos patrones con esas simetrías.

Para tratar de vislumbrar dicha nueva física, uno puede tomar varios caminos.
Uno de ellos consiste en mejorar la precisión experimental y las predicciones
teóricas del Modelo Estándar para una serie de observables que dependan de los
mismos parámetros teóricos desconocidos. En el caso en el que se encontrara
que los valores experimentales que se obtienen para dichos parámetros teóricos
en distintos experimentos son incompatibles, habría que concluir que el Modelo
Estándar no es capaz de ofrecer una descripción correcta de dichos procesos,
lo que nos forzaría a introducir nueva física. Las extracciones de parámetros
realizadas en los capítulos 2, 3 y 4 pueden utilizarse para dichas comparativas.

Por otro lado, uno puede buscar nueva física utilizando modelos concretos. En
su lugar, en el capítulo 5 realizamos un análisis en el marco del Modelo Estándar
como Teoría de Campos Efectiva, que agrupa muchos de ellos.

Independientemente de la estructura de nueva física a muy altas energías,
el Modelo Estándar no es un simple algoritmo en el que uno introduce valores
numéricos para los distintos parámetros teóricos desconocidos y recibe una pre-
dicción teórica exacta para el observable que uno desee. En ese sentido, el Modelo
Estándar actúa como un marco teórico desde el que se pueden desarrollar dife-
rentes herramientas para entender la física de un proceso. La fenomenología del
Modelo Estándar no es más que el desarrollo y la aplicación de dichas herramien-
tas para entender la compleja dinámica que emerge de dicho modelo a las distintas
energías.

En este trabajo nos hemos centrado en la desintegración hadrónica del tau.
El tau es el único leptón lo suficientemente pesado como para desintegrarse en
hadrones, que son las partículas que forman los quarks cuando confinan. El tau
se desintegra emitiendo un neutrino tauónico y un bosón W “off shell” que rápi-
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damente decae a quarks que hadronizan. Las energías son lo suficientemente
bajas como para que dicha desintegración quede precisamente descrita por una
interacción local efectiva entre una corriente débil leptónica y una de quarks,
conocida como Teoría de Fermi. Esto permite un estudio exhaustivo tanto de
las interacciones electrodébiles responsables de dicha desintegración como de las
fuertes, responsables de la producción de un contínuo hadrónico∗ a través de la
corriente de quarks, en un régimen de energía no perturbativo en el que realizar
predicciones precisas resulta ser un desafío. En esta tesis hemos estudiado al-
gunos de los observables cuya predicción teórica es más precisa con las técnicas
disponibles en la actualidad, junto con las consecuencias fenomenológicas de la
comparación de las mismas con los datos experimentales.

Metodología

La naturaleza electrodébil de la desintegración del tau a hadrones permite
un cálculo perturbativo de la distribución diferencial de dicha desintegración,
salvo por elementos de matrices hadrónicos producidos a través de la corriente de
quarks. A bajas energías, dichos elementos pueden ser rigurosamente calculados
en la teoría efectiva que da una descripción precisa de las interacciones fuertes a
bajas energías, la Teoría Quiral de Perturbaciones.

La Teoría Quiral de Perturbaciones es una expansión en potencias de momen-
tos, masas de mesones, los hadrones más ligeros, y otras fuentes externas (como
los fotones o los bosones W y Z) que explota la simetría (aproximada) de sabor
(SU(3)L×SU(3)R) formada por los tres quarks ligeros (u, d y s). Dicha simetría
aproximada se rompe espontáneamente a SU(3)V a través del condensado de
quarks, cuya existencia es consecuencia de un vacío a bajas energías que ya no
puede entenderse como un vacío sin quarks ni gluones. La rotura espontánea de
la simetría aproximada da lugar a 8 mesones ligeros (su masa distinta de cero
es el resultado de la rotura explícita de simetría debida a que las masas de los
quarks no son exactamente 0, haciendo que la simetría sea sólo aproximada), que
son las únicas partículas que interaccionan directamente a través de interacciones
fuertes a bajas energías.

Ésto permite dar una descripción precisa, por ejemplo, de la desintegración
del tau al pion, el más ligero de los mesones. Sin embargo, dicha teoría funciona
peor y acaba dejando de ser válida cuando nos vamos a energías mayores o cuando
exigimos una precisión demasiado alta. En dichos casos podemos utilizar alguna
∗El neutrino puede llevarse una fracción arbitraria de la energía inicial del tau, de modo que

la restante irá al estado hadrónico final.
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extensión de la misma con algunas asunciones extra, como puede ser la Teoría
Quiral de Resonancias. Sin embargo, dicha teoría está lejos de dar una descripción
teórica a la precisión experimental actual basada en primeros principios y libre
de ambigüedades.

Probablemente los métodos con mayor capacidad predictiva desarrollados
hasta la fecha en el sector son los métodos dispersivos, que utilizan propiedades
conocidas de objetos matemáticos de la teoría para establecer relaciones entre
diversas cantidades. Con ellos, uno puede dar una descripción muy precisa de
observables inclusivos, es decir, de sumas sobre distintos canales de desintegración
hadrónicos. El punto de partida consiste en la relación directa existente entre la
probabilidad de desintegración a determinadas sumas de hadrones a una energía
dada con las partes imaginarias de funciones de correlación entre corrientes de
quarks.

Dichas funciones de correlación pueden calcularse a energías lo suficientemente
altas en términos de quarks y gluones a través de la Expansión en Producto de
Operadores. En dicha expansión, uno separa las contribuciones a distancias cor-
tas, calculables mediante métodos puramente perturbativos y contribuciones de
largas distancias, que quedan en función de condensados de operadores de quarks
y gluones en el vacío. Un sencillo análisis dimensional nos enseña que aquellos
condensados de dimensión más baja van a dominar la contribución teórica de
los observables. Mientras sean distintos de 0 y la expansión esté bien definida,
la contribución puramente perturbativa (asociada al operador identidad) será la
dominante.

Sin embargo, dicha expansión está definida en el eje Euclídeo para energías
altas y su extensión analítica no funciona en el eje Minkowskiano, especialmente a
las energías relevantes en el espectro hadrónico. No obstante, utilizando la cono-
cida estructura analítica de dichas funciones de correlación, uno puede obtener
relaciones dispersivas entre las integrales experimentales sobre dicho espectro e
integrales a lo largo de la circunferencia compleja, donde las energías son lo sufi-
cientemente altas como para que la expansión en términos de quarks y hadrones
funcione, salvo por pequeñas correcciones conocidas como violaciones de duali-
dad quark-hadrón. Dichas violaciones serán menores a mayores energías, para
los canales más inclusivos y para aquellos observables que minimicen las con-
tribuciones de las integrales cercanas al eje Minkowskiano. Las integrales expe-
rimentales han sido calculadas utilizando los datos obtenidos por la colaboración
ALEPH, asociada a un detector del colisionador LEP con el mismo nombre. Afor-
tunadamente, dicha colaboración ha hecho públicas las distribuciones de masa in-
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variante, junto con las matrices de correlación, para las diferentes distribuciones
inclusivas utilizadas en esta tesis.

Relaciones de dispersión quirales

En el primer estudio fenomenológico de esta tesis, hemos realizado un estudio
actualizado de las relaciones de dispersión asociadas a los correladores (1+0) no
extraños vectorial menos axial. Dado que la contribución perturbativa cancela a
todos los órdenes en teoría de perturbaciones en el límite quiral (masas de quarks
nulas) y que las correcciones de masa son despreciables, la primera contribución
de su Expansión en Producto de Operadores es la de dimensión 6. Este hecho
permite obtener rigurosamente las relaciones conocidas como reglas de suma de
Weinberg. Incluso cuando a nivel de quarks uno no puede describir el espectro
experimental de resonancias, sabemos el valor de dos integrales con diferentes
pesos de dicho espectro, salvo por correcciones logarítmicas muy pequeñas y por
violaciones de dualidad.

Introduciendo relaciones de dispersión con integrales pesadas por funciones
con singularidades en el origen, uno puede obtener información sobre el correlador
y sus derivadas a energía 0. Por otro lado, introduciendo en las integrales pesos
más sensibles a la parte de alta energía del espectro, se accede a los condensados
dimensionales del correlador estudiado. Sin embargo, las violaciones de dualidad
quark-hadrón son especialmente importantes en estas últimas relaciones y las
incertidumbres asociadas a las mismas han de ser tenidas en cuenta. Ésto puede
comprobarse observando que la dependendencia en el límite superior de la integral
involucrando datos experimentales no es la predicha por la Expansión en Producto
de Operadores al nivel de precisión necesario para obtener los condensados.

Aunando el potencial de las relaciones dispersivas conocidas con todo lo que
sabemos sobre violaciones de dualidad, se realiza un análisis minucioso a la hora
de minimizar y estimar su rol. Para ello, nos apoyamos en una parametrización
que incorpora alguno de los aspectos conocidos de dichas violaciones, teniendo
en cuenta que no es esperable que dicha parametrización ofrezca una descripción
exacta de las mismas. Se ha obtenido

Leff
10 = (−6.48± 0.05) · 10−3 , (C.16)

Ceff
87 = (8.40± 0.18) · 10−3 GeV−2 , (C.17)

O6 = (−3.6 + 1.0
− 0.9) · 10−3 GeV6 , (C.18)

O8 = (−1.0± 0.5) · 10−2 GeV8 , (C.19)
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donde Leff
10 y Ceff

87 están trivialmente relacionados con el correlador y su derivada
en el origen. Su definición está relacionada con los acoplamientos que describen
dicho correlador en Teoría Quiral de Perturbaciones. En efecto, nos encontramos
en la región de validez de dicha teoría y, por tanto, hemos podido combinar los
cálculos existentes con el resultado anterior para obtener un valor válido hasta
O(p6) de dichos acoplamientos:

Lr10(Mρ) = −(4.1± 0.4) · 10−3 , (C.20)
Cr87(Mρ) = (5.10± 0.22) · 10−3 GeV−2 . (C.21)

Encontramos que dichos resultados están en buen acuerdo con otras determina-
ciones.

Determinación de la constante de acoplamiento fuerte

Uno de los parámetros libres del Modelo Estándar de Física de Partículas
es la constante de acoplamiento fuerte. Es bien sabido que el valor de dicho
acoplamiento depende de la energía tratada. Afortunadamente, dicha dependen-
cia puede calcularse en teoría de perturbaciones y, por tanto, una vez conocida a
una energía puede conocerse a todas (al menos mientras teoría de perturbaciones
sea válida). Mientras que a bajas energías dicho acoplamiento diverge, de modo
que la región de confinamiento de color aparece más allá de la Cromodinámica
Cuántica (teoría de interacciones fuertes) perturbativa, a muy altas energías se
da el fenómeno de libertad asintótica, de modo que a infinita energía los quarks
pueden viajar como estados libres.

En este estudio, abordamos la determinación dispersiva de la constante de
acoplamiento fuerte a través de desintegraciones hadrónicas de taus, que permite
la determinación de dicha constante a la escala energética de dicha partícula.
En este caso, uno trabaja con el correlador V + A. La contribución puramente
perturbativa, la cual domina la predicción teórica de la Expansión en Producto
de Operadores, es conocida a 4 loops. La alta sensibilidad de la misma a una
constante de acoplamiento fuerte cuyo valor se acerca al límite de validez de
teoría de perturbaciones, permite una determinación muy precisa, que puede
compararse a otras determinaciones a otras escalas, ofreciendo una comprobación
experimental de la dependencia en energía predicha por el Modelo Estándar.

Al nivel de precisión actual, se hace necesario un estudio exhaustivo de la
contribución no perturbativa, el cual es posible gracias a las distribuciones in-
variantes de masas obtenidas por la colaboración ALEPH. En este trabajo se
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ha realizado un análisis crítico de las diferentes determinaciones que se pueden
encontrar en la literatura, explorando sus posibles debilidades, realizando tests
para comprobar su solidez e implementando nuevos procedimientos para inten-
tar reducir dichas debilidades. Diferentes procedimientos y comprobaciones han
dado lugar a valores en total acuerdo para la constante de acoplamiento fuerte.
Los diversos observables estudiados se han encontrado compatibles con una dua-
lidad quark-hadrón que para los canales más inclusivos funcionan en muy buena
aproximación desde energías menores que la asociada a la masa del tau y con un
contaje no divergente en los primeros términos de la Expansión en Producto de
Operadores. El valor final obtenido es:

αs(m2
τ ) = 0.328± 0.013 , (C.22)

que se traduce, a la escala de la masa del Z, típicamente utilizada para comparar
con otras determinaciones, en:

αs(Mz) = 0.1197± 0.015 . (C.23)

Dicha determinación está en total acuerdo con el valor obtenido en el ajuste global
del PDG.

Relaciones entre elementos de matriz en el límite quiral

En el límite quiral, pueden obtenerse dos relaciones entre elementos de matriz
asociados a la desintegración de kaones a dos piones a través de los llamados
pingüinos electrodébiles, uno de los posibles modos de desintegración de dicho
proceso, y los condensados de cuatro quarks que aparecen en la Expansión en
Producto de Operadores del correlador V −A.

En esta tesis se ha utilizado la actualización de las funciones espectrales de
ALEPH anteriormente mencionadas para realizar un estudio preliminar de las
consecuencias fenomenológicas de dichas relaciones. En primer lugar, se puede
obtener, empleando datos experimentales de desintegraciones hadrónicas, uno de
los elementos de matriz más relevantes a la hora de estudiar violación de CP ( ε′ε )
en desintegraciones no leptónicas de kaones:

〈(ππ)I=2|Q8|K0〉2 GeV = (1.14 ± 0.49) GeV3 . (C.24)

Ciertas aproximaciones en los pasos intermedios, como la extrapolación de las
relaciones más allá del límite quiral, limitan la precisión de dicha predicción.
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Dado que hoy en día, mediante simulaciones en redes discretizadas, se pueden
obtener valores precisos para los elementos de matriz kaónicos, hemos explorado
la posibilidad de tomar el camino inverso. Utilizando dichas relaciones, tenemos
acceso a la contribución dominante (dimensión 6) de la Expansión en Producto
de Operadores del correlador V −A. Definiendo relaciones de dispersión que ex-
plotan el conocimiento del correlador a cortas distancias salvo por correcciones de
dimensión 8, uno puede obtener valores precisos de otras constantes que aparecen
en dichas relaciones de dispersión, como la constante de desintegración del pion:

√
2fπ = (131.6± 1.0) MeV , (C.25)

donde comprobamos que las relaciones de dispersión son capaces de dar pre-
dicciones muy precisas para observables cuyas contribuciones están dominadas
por las resonancias ρ y a1, de modo que no pueden ser descritos ni por teoría de
perturbaciones a nivel de quarks ni por Teoría Quiral de Perturbaciones. Adi-
cionalmente, hemos obtenido para el condensado de dimensión 8,

a4 = −(0.7± 0.6) · 10−2 GeV8 . (C.26)

Nueva física en desintegraciones hadrónicas de taus

Dada la alta precisión que es capaz de ofrecer el sector de desintegraciones
hadrónicas de taus, resulta natural preguntarse si las determinaciones anteriores
pueden verse afectadas por nueva física o incluso si pueden dar pistas sobre hacia
dónde no buscarla, dado el buen acuerdo con el resto de determinaciones.

Si, como se espera, la escala de nueva física se encuentra a escalas mucho ma-
yores que la masa del Higgs, la sensibilidad de los observables a una determinada
escala está suprimida por dos potencias de dicha escala. Sin embargo, la alta
precisión alcanzada en los datos experimentales y en la descripción teórica de los
mismos, unida a la supresión del proceso en el Modelo Estándar, que sólo ocurre a
través de la interacción de corrientes electrodébiles, hacen de las desintegraciones
hadrónicas de taus una interesante ventana a posible nueva física.

Empleando la extensión del Lagrangiano efectivo más general posible de di-
mensión 6 que da cuenta de la desintegración del tau a hadrones, se pueden estu-
diar observables tanto exclusivos como inclusivos en función de nuevos acoplamien-
tos, de forma independiente de modelo. Se ha realizado un estudio exhaustivo,
que se encuentra en estado preliminar, del potencial de los mismos.

En el caso exclusivo, la principal limitación existente en la mayoría de canales
es la incertidumbre teórica debida a los elementos de matriz hadrónicos. Para las
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desintegraciones a un mesón, dependientes de un único parámetro que puede
obtenerse de simulaciones en redes discretizadas y, tras tener en cuenta co-
rrecciones radiativas, se obtienen, como es bien conocido, fuertes restricciones
a nueva física. También se han encontrado fuertes restricciones para desintegra-
ciones a dos hadrones. El canal τ → ηπντ está suprimido en el Modelo Estándar,
lo cual permite obtener una restricción a nueva física interesante. Hemos utilizado
los valores obtenidos en un análisis reciente. Para el canal τ → ππντ , hemos em-
pleado como factor de forma vectorial de referencia (insensible a correcciones de
nueva física) el obtenido en el proceso e+e− → ππ que, salvo por pequeñas co-
rrecciones de isospín, es idéntico al obtenible de τ → ππντ . Esta comparativa da
como resultado una fuerte restricción a nueva física.

Para los canales inclusivos se han empleado dos integrales en el caso del canal
V + A y otras dos en el V − A, asignando de forma conservadora incertidum-
bres para los efectos no perturbativos. Aunque las violaciones de dualidad son
notablemente menores en el canal V +A, el mejor conocimiento de la Expansión
en Producto de Operadores en el V − A hace que ambos canales tengan una
sensibilidad a nueva física similar. De hecho, La restricción inclusiva más fuerte
proviene del mismo momento que nos permitió obtener un valor de la constante
de desintegración del pion. En este caso, tomamos el valor de dicha constante, al
igual que el elemento de matriz de kaon a dos piones, de simulaciones en redes
discretizadas.

Combinando las diferentes restricciones, hemos obtenido de forma preliminar
para los diferentes acoplamientos que parametrizan la física más allá del modelo
estándar: 

ετL−εeL+ετR−εeR
ετR
ετS
ετP
ετT

 =


1.0± 1.5
0.2± 1.6
−0.6± 1.5
0.6± 1.4
−0.06± 0.75

× 10−2 . (C.27)

Se ha comparado en el marco del Modelo Estándar como Teoría de Campos
Efectiva con otras restricciones provenientes de otros observables electrodébiles
de precisión y con observables en el LHC y se ha comprobado que en dicho marco
general, estas restricciones son competitivas y complementarias a las demás.
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Conclusiones

Los desintegraciones hadrónicas de taus constituyen una ventana para el es-
tudio de interacciones electrodébiles y fuertes. En esta tesis se ha realizado un
análisis fenomenológico de algunas de las aplicaciones de dichas desintegraciones
con mayor capacidad predictiva.

Los métodos dispersivos asociados a observables inclusivos proveen a día de
hoy algunas de las herramientas más potentes a la hora de obtener predicciones
teóricas y juegan un papel central en el desarrollo de ésta tesis. En primer lugar,
se han aplicado para realizar un cuidadoso análisis de la física no perturbativa que
gobierna la física del correlador quiral. Gracias a ello, se han obtenido, entre otros
resultados, dos constantes de bajas energías de Teoría Quiral de Perturbaciones:

Lr10(Mρ) = −(4.1± 0.4) · 10−3 , (C.28)
Cr87(Mρ) = (5.10± 0.22) · 10−3 GeV−2 . (C.29)

El estudio de la constante de acoplamiento fuerte a partir de los datos inclusivos
no extraños ha sido la siguiente aplicación de los métodos dispersivos. Tras un
cuidadoso análisis de las incertidumbres no perturbativas, uno obtiene

αs(m2
τ ) = 0.328± 0.013 . (C.30)

Explotando relaciones en el límite quiral entre elementos de matrices de kaon a
dos piones y condensados de cuatro quarks que aparecen en el correlador quiral, se
pueden obtener medidas de los primeros utilizando datos de desintegraciones de
taus. Alternativamente, se puede mejorar la determinación de otros parámetros
obtenibles con taus empleando resultados de simulaciones en redes discretizadas
para los valores de los elementos de matrices de kaon a dos piones para mejorar
nuestro conocimiento sobre dicho correlador. Ambos procedimientos han sido es-
tudiados y se ha obtenido una determinación puramente inclusiva de la constante
de desintegración del pion con una precisión mayor que un 1%.

Por último, se ha realizado un análisis sobre la sensibilidad de las desintegra-
ciones hadrónicas de taus a diferentes observables tanto exclusivos como inclu-
sivos, en el marco del Modelo Estándar como Teoría Efectiva, el cual extiende el
modelo estándar bajo ciertas asunciones de una manera independiente del mo-
delo. Se han obtenido una serie de restricciones a nueva física complementarias
con restricciones provenientes de observables de bajas energías y de observables
provenientes del LHC.
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Sin lugar a dudas, una mejora de los datos experimentales utilizados, que po-
dría venir de colaboraciones experimentales como Belle-2, supondría una mejora
en la determinación de los diferentes parámetros. Dado que estamos cerca del
límite de aplicabilidad de dichas relaciones dispersivas, cuantificar esa mejora
de forma creíble no es trivial. Las incertidumbres sistemáticas, dominantes en
muchos de los observables estudiados, podrían disminuir si se confirmara que
en la zona cercana a la masa del tau, que actualmente presenta grandes incer-
tidumbres experimentales, hay una disminución quantitativa de las violaciones
de quark-hadrón. Por supuesto, mejoras de éstos métodos dispersivos desde un
punto de vista teórico, serían también bienvenidas.

Dada la lenta convergencia de las series perturbativas a la masa del tau,
donde nos acercamos al límite de aplicabilidad de teoría de perturbaciones, un
cálculo de los siguientes órdenes desconocidos en teoría de perturbaciones, así
como el desarrollo de métodos de resumación de las series perturbativas libres de
ambigüedades, podrían suponer una mejora en la determinación de la constante
fuerte basada en desintegraciones de taus.

Mientras tanto, pequeñas mejoras en algunos de los estudios fenomenológicos
pueden ser estudiadas. Por ejemplo, en el estudio de nueva física, se puede
plantear para un futuro un estudio más exhaustivo de algunos de los canales
exclusivos, como el canal a dos piones (en el que posiblemente una comparativa
directa de las distribuciones energéticas dé lugar a mejores restricciones), las
restricciones provenientes del espectro extraño e incluso posibles aplicaciones a
modelos específicos de nueva física.
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