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Resum

En aquesta tesi estudiem diferents aspectes relatius als operadors de ’analisi
temps-freqiiencia. Tot operador lineal i continu A : S — S’ es pot escriure
com un operador integral

(Af,9) = (K,g® [),

on K € §éselnuclii f,g € S, o també com un operador integral de Fourier
(de fet, pseudodiferencial [Gro01, Teorema 14.3.5]). Diferents condicions
sobre el nucli o el simbol i la fase (en el cas dels operadors integrals de
Fourier) permetran estendre 'operador a diversos espais de funcions o dis-
tribucions.

El nostre objectiu és emprar tecniques de ’analisi temps-freqliencia per a
estudiar ’acotacié i/o compacitat d’operadors integrals de Fourier, opera-
dors integrals o multiplicadors unimodulars entre espais de modulaci6 o de
Lebesgue. També estudiem multiplicadors en espais de Hilbert separables.
Tot seguit detallem el contingut de la memoria.

En el primer capitol introduim la notacié i els espais, aixi com les seues
propietats, emprats al llarg de la memoria. En la primera seccié introduim
els espais de successions ponderats.

Definicié 1. Donats I © J conjunts numerables d’indexs, una successio de
- o . . , .

nombres positius m = (mw)(m)E]XJ 11 < p,q < oo, considerem [’espai de

successions (01(I x J) consistent en aquelles successions v = (i) G jyerxT

VII
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tals que

1
gy 1
P q
]| o = |2 jmi ;| <
T = xmmm Q.

jeJ \iel
Als casos p = 00 0 g = 00, l'anterior norma es modifica de la manera usual,
per exemple

q

q
lallea = [ 3 (supm,jmi,ﬂ)

jeJ '€
També presentem alguns operadors entre ells.

Definicié 2. Donada una successié a = (a; ;)@ jjerxs de nombres com-
plexos, denotem com D, l'operador diagonal

. IxJ IxJ _
Da :C —C y L = (xi,j)(i,j)elxj = (ai,jxi,j)(i,j)elxj-

Definicié 3. Siga v € A, per a un reticle A en RN, Uoperador translacié
T, : CA — CA es defineiz com

T, (xA)AeA = (wA*’Y)AEA :

I algunes de les propietats dels operadors diagonal i de translacié sobre
els espais de successions.

En la segona seccié del primer capitol presentem alguns espais de fun-
cions. Comencem amb la definicié dels espais de Lebesgue ponderats amb
normes mixtes.

Definicié 4. Siguen 1 < p,q < 0o, i m una funcié pes en R2%. Aleshores
Uespai ponderat amb normes mixtes, L (R??), consisteix en totes les fun-
cions mesurables Lebesgue f tals que

1712z = ( L[, |f<x,y>m<z,y>\pdx)gdy); <ox.

Als casos en qué p = 00 0 ¢ = 00, la p-norma corresponent es reemplacada
pel suprem essencial.
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Després introduim la definicié de la transformada de Fourier.

Definicié 5. La transformada de Fourier d’una funcid f € L'(R?) es de-
fineix com

Ffw) = fw):= [ flx)e ™" “da
R4
on x-w=aw és el producte escalar en RY.
Presentem també la definicié de la transformada temps-curt de Fourier.

Definicié 6. La transformada temps-curt de Fourier (STFT), V,f, d'una
funcié f € L*(RY) respecte a una finestra g € L*(R?)\ {0} es defineiz com

VoS (@.€) = (. MeTog) = | e )y =) dy

és a dir, la transformada de Fourier de fT,g.

Donat que l’espai de les distribucions temperades, S’(R?), és 1'espai
dual de la classe de Schwartz, S(R?), i que la definicié de la transformada
temps-curt de Fourier esta basada en el producte escalar, aquesta es pot
estendre f € &', agafant g € S. En aquest cas sabem que Vj f és una funcié
continua. D’aquesta manera podem considerar la definicié dels espais de
modulacié ponderats.

Definicié 7. Siga una finestra no nula g € S(R?), un pes m vs-moderat,
§>0,11<p,q < o0, lespai de modulacio Mﬁ{q(Rd) consisteix en totes les
distribucions temperades f € S'(R%) tals que V,f € Ly (R??), és a dir,

1
2 a
P
I Fllaggn = IIngHLI:,;q=</Rd ([, Wt ma,wypa) dw) <o,

amb els canvis usuals quan p = 0o 0 ¢ = 0. Si p = q escrivim MPp,(R?)
en lloc de MEP(RY). Aleshores M5 (RY) és un espai de Banach, i la seua
definicio és independent de la finestra g escollida.
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En aquesta subseccié mostrem les propietats d’aquests espais que ne-
cessitarem al llarg de la memoria. També definim els espais de Wiener.

Definicié 8. Siguen Bi i By espais de Banach, sent B un espai de fun-
cions mesurables. Fizem g € C(RY) \ {0}. L’espai d’amalgames de
Wiener W (By, By) amb component local By i component global By es de-
fineix com ’espai de totes les funcions f que localment pertanyen a By tals
que fp, € Ba, fp,(x) = ||fTwg||B,- W(B1, B2) és un espai de Banach dotat
amb la norma

1 llw(B1,82) = [1fB: B2 = M Tzgl 31 B2

I algunes de les propietats dels espais de Modulacié i de Wiener.

En la segiient subseccié introduim els frames de Gabor. Fixem una
funcié g € L2(RY) i un reticle A = aZ¢ x BZ%, per a a, 8 > 0. La familia
de funcions G(g,A) = {m7(A\)g: A€ A}, on w(A1,A2)g = My, Th,9(t), es
anomenada sistema de Gabor i diem que és un frame de Gabor si existeixen
constants A, B > 0 tals que

AIFIZ< DKL m(Ng* < BIIFI3,  per atot f e L*(RY).
AEA

En I'altima seccié del primer capitol, introduim la condicié GRS per als
pesos. Diem que v satisfa la condicié GRS (Gelfand-Raikov-Shilov [GRS57])
quan,

lim v(nz)"/" =1  per a tot z € R?,
n—oo

I veiem que es poden definir espais de modulaci6 amb pesos complint
aquesta condicié si remplacem la classe de Schwartz per espais de tipus
Gelfand-Shilov.

Definicié 9. Siguen s,r > 0. Una funcid f € S(R?) pertany a un espai
tipus Gelfand-Shilov S5(R?) si existeizen constants A, B > 0 tals que

|z20° f(z)] < A BBl (81, per a tot a, B € N%.
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Al segon capitol treballem amb multiplicadors incondicionalment con-
vergents. Un multiplicador sobre un espai de Hilbert separable H és un
operador fitat

0
Mpow: H—H, fr ) my(f,0,) Py,

n=1

on ® = (&), i ¥ = (V,), sén successions en H i m = (my,), és una
successié d’escalars anomenada simbol. Un multiplicador és incondicional-
ment convergent si la serie anterior convergeix incondicionalment per a cada
f € H. Aquests multiplicadors sén una generalitzacié dels Multiplicadors
de Gabor,
My f = 3 ma (£, 7(N)g) 7(\h.

AEA
El quals estan inspirats en el desenvolupament en termes d’un frame de
Gabor d’una funcio,

f=(f,m(Ng) m(A\)h.

A€A
En aquest cas h es una finestra dual de g.

En la situacié en que ® = (®,), 1 ¥ = (¥,), soén successions Bessel
en H im € (> l'operador M,, 3 v és anomenat multiplicador de Bessel.
Recordem que ¥ = (V¥,,), s’anomenat successié de Bessel si existeix una
constant B > 0 tal que

DI < BfI
n=1

per a cada f € H. En [Bal07] es prova que tot multiplicador de Bessel és
incondicionalment convergent. Balazs i Stoeva, [SB13b], donen exemples
de successions que no son Bessel i simbols que no estan fitats que defineixen
multiplicadors incondicionalment convergents. No obstant aixo, tots els ex-
emples sén obtinguts de multiplicadors Bessel després d’algun truc. De fet,
Balazs i Stoeva conjecturen, en [SB13a], que qualsevol multiplicador in-
condicionalment convergent es pot escriure com un multiplicador de Bessel
amb simbol constant.
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Conjectura 10. [SB13a, Conjecture 1] Siga
Mm7¢.7\y H—~H

un multiplicador incondicionalment convergent, aleshores existeizen succes-
sions escalars (ap)n i (bn)n tals que

My = G, - by,

(an®n), @ (bn¥n),

son successions de Bessel en H.

En [SB13a] s’obtenen diverses classes de multiplicadors per als quals la
conjectura és certa. Ells proven que aquesta és la situacié dels multipli-
cadors de la forma M, ¢ & [SB13a, Proposition 4.2] i també per a multipli-
cadors amb la propietat de que la successié (|my| - || || - [|¥n]]),, és fitada
inferiorment per una constant estrictament positiva, [SB13a, Proposition
1.1].

Per a comengar considerem el cas en que m, = 11 ¥, = g per a cada
n € N. Aleshores la conjectura té una resposta positiva si, i només si, per
a tota successié incondicionalment sumable (®,), en un espai de Hilbert
separable H, podem trobar (ay,), € 2 tal que (ﬁq)”)” és una successié
de Bessel en H. En conseqiiencia, ’objectiu principal del segon capitol és
analitzar 'estructura de les successions incondicionalment sumables en un
espai de Hilbert separable. Primer mostrem una reformulacié del nostre
cas particular.

Lema 11. Els segiients enunciats son equivalents:

(a) Cada successio incondicionalment sumable (®y,), en H es pot escriure
com D, = apfn, on (an)n €02 i (fn),, €s una successio de Bessel en
H.

(b) Cada operador fitat T : co — H es pot factoritzar com
T =AoD,,
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on Dy : ¢g — 0% és un operador diagonal i A : 0> — H és un operador

fitat.

Després introduim una reformulacié de la conjectura de Balazs i Stoeva,
en termes similars a la reformulacié en el nostre cas en particular.

Proposicié 12. Assumim que la série Y (f, V) P, convergeix incondi-
cionalment per a tota f € H. Aleshores, els segiients enunciats son equiva-
lents:

(a) Existeix (cp)n tal que {, ¥y}, i {é@n}n son successions de Bessel
en H.

(b) L’operador bilineal continu
T:cox H — H
(@, f) — > an (f,0,) @,

admet una factoritzacio
T=BoD

on B : 0> — H és un operador fitat i
D:cyx H— 02
és un operador bilineal continu tal que per a cada f € H,
D(-, f):cog — £
és un operador diagonal.
(c) Existeizen dos operadors fitats
A:H— 0 iB: (> H

tals que per a cada o € ¢y loperador T, € L(H), definit per To(f) =
Yonan (f,Vy) @y, es pot factoritzar com

T,=BoD,oA.
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Emprant la reformulacié del nostre cas particular arribem a un resultat
que es pot veure com una millora del Teorema d’Orlicz, [DJT95, Teorema
1.11] o [Heill, Teorema 3.16], que afirma que cada successié incondicional-
ment sumable en un espai de Hilbert és absolutament 2-sumable. Aquest
és el resultat principal del segon capitol.

Teorema 13. Cada successio incondicionalment sumable (®y,),, en un espai
de Hilbert separable H es pot expressar com @, = Gpfn, on (an)n € 2
(fn),, €s una successio de Bessel en H.

Aquest teorema ens déna una resposta positiva a la conjectura de Balazs
i Stoeva quan (V,,), és una successi6é constant. A continuacié considerem
una situacié més general.

Corol-lari 14. Siga M, & v un multiplicador incondicionalment conver-
gent 1 assumim que 0 no és un punt d’acumulacio debil de la successio

<H$n“> . Aleshores, existeizen successions escalars (ay)n i (bn)n tals que
" n

My = A - by @ a més (anPy),, © (bp¥y), son successions de Bessel en H.

En aquest corol-lari la condici6 sobre la successié (V,,), es pot reem-
placar per una condicié similar en (®,,),. El resultat segiient mostra que la
conjectura establerta per Balazs i Stoeva en [SB13a] és certa sota la hipotesi
més forta de la convergencia absoluta de la serie.

Teorema 15. Siga M, o v tal que per a cada f € H, la serie

n=1

convergeix absolutament en H. Aleshores existeizen successions escalars

(an)n @ (bn)n tals que My = ap - by, @ a més (by¥y,),, i (an®y),, s0n succes-
stons de Bessel en H.

Quan la convergencia absoluta es reemplaca per la convergencia in-
condicional en 'espai S?(H) dels operadors de Hilbert-Schmidt obtenim el
segiient resultat.
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Teorema 16. Siga By la bola unitat tancada de H dotada amb la topologia
debil i assumim que la série

0
Z mp¥, @ ®,
n=1

convergeiz incondicionalment en S?(H). Aleshores, per a cada mesura de
probabilitat de tipus Borel ju sobre By ezisteizen successions escalars (an)n
i (bn)n tals que my, = an - by, (an¥y,), €s una successio de Bessel en H i
(ju(bn®r)), €s una successid de Bessel en L*(By, pt). En particular

D o) * < 00

n=1
per a p-quasi tota f € By.
I arribem al ultim resultat del segon capitol.

Teorema 17. Siga (X, ) un espai de mesura finita i H C L*(X, ) un
espai de Hilbert admetent un nucli de reproduccié K (x,vy). Fizem v(z)™1 =

| K (z,-)|. Assumim que la série
oo
> mp U, @ @,
n=1

convergeiz incondicionalment en S?(H). Aleshores existeizen successions
escalars (an)n t (by)n tals que m, = ay - by, (ap,Vy,), €s una successio de
Bessel en H i (b,®,,), és una successié de Bessel en L2(X, ).

Els resultats presentats en aquest capitol estan continguts en [FGP17b]
i [FGP17a].

L’objectiu del tercer capitol és estudiar la compacitat dels operadors
integrals de Fourier quan actuen sobre espais de modulacié ponderats. La
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fitacié i propietats de classes de Schatten d’aquests operadors ha sigut estu-
diada per alguns autors sota diferents suposicions per a la fase i el simbol.
Veure per exemple [RS06, CR14, Bisl1l, Bou97, CNR(09a, CNR10b, RS06,
CT07, CT09, TCG10]. No obstant aixd no es coneixien caracteritzacions
de la compacitat. El nostre enfocament de I’estudi de la compacitat segueix
el punt de vista de [CNR10b], és a dir, els nostres resultats depenen de la
representacié matricial del FIO respecte a un frame de Gabor.

L’operador integral de Fourier, FIO, T amb simbol o € L>(R??) i fase
real ® sobre R?¢ es pot definir formalment per

Tfa) = [ (o) fon)dn.

La férmula anterior defineix un operador continu de S(R?) a S’'(R9). La fase
®(x,n) és tame, el que significa que és diferenciable sobre R?? i compleix
les estimacions

029(2)| < Cay,  a| > 2,2 € R,

i la condicié de no degeneracié
| det 837,] ®(z,n)| >6>0, (x,n) € R
El sfmbol ¢ sobre R2¢ compleix
0% (2)| < Cy, ave. z € R¥, |a| < 2N (1)

per a N € N fixada. Aci 07 denota la derivada distribucional. Quan
®(z,m) = xn recuperem els operadors pseudodifferencials en la forma de
Kohn-Nirenberg.

Els frames permeten relacionar operadors amb matrius de la segiient
manera.

Definicié 18. La matriu de Gabor associada a un operador lineal i continu
T : S(RY) — S'(R?) es defineix com

M(T) = ((T(x(N)g), 7(1)9)) (ux)eAxA -
Si T és un FIO amb simbol o i fase ® escrivim M (o, ®) en lloc de M(T).
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Teorema 19. Siga T : S(RY) — S'(RY) un operador lineal i continu i
G(g, M) un frame de Gabor amb g € S(R?). Aleshores:

(1) Per a1 < p,q < oo, T pot ser estés de manera unica com un oper-
ador fitat de MEI(RY) a MEI(RY) si, @ només si, M(T) defineiz un
operador fitat de (1 (A) a £01(A).

(2) Per al<p,q<oo, T pot ser estés com un operador debil-+ continu
de MEI(RY) a MEI(RY) si, @ només si, M(T) defineiz un operador
debil-+ continu de €01 (A) a (H1(A).

(3) Siga 1 < p,q< oo iassumim queT : MEI(RY) — MEI(RY) és debil-+
continu. Aleshores T : MEI(RY) — MEI(RY) es compacte si, i només
si, M(T) : 1 (A) — €51 (A) ho és.

El resultat clau en [CNR10b] mostra que la representacié matricial d’un
FIO respecte a un frame de Gabor G(g,A) amb g € S(R?) esta ben orga-
nitzada. De fet, per a una fase tame ® i un simbol ¢ complint la condicié
(1) existeix una constant Cy > 0 tal que

[(Tr(N)g, m(1)9)] < Cn(x(A) — p) ™2, (2)

per a cada A, € A on x és la transformacié canonica de la fase ®. Com
usualment, (z) és una abreviacié de (1+|z|2)'/2. L’aplicaci6 (z,€) = x(y,7)
és bilipschitz y : R?* — R2? i ve definida a partir del sistema

{y = V,®(z,n),
£ =V, P(z,n).

L’estimacié (2) és una extensié del resultat previ de Grochenig [Gro06]
respecte a la quasi-diagonalitzacié del PSDOs. Veure també [GR08]. La
condici6 (1) sobre el simbol es pot relaxar a o € Mg, (R2?) per a alguna
so > 2d. De fet, si G(g,A) és un frame de Parseval, aleshores I'estimacié (2)
també es manté, com provaren en [CGN12],

[(Tr(A)g, m(w)g)| < C{x(A) — )=, peratot A, u € A. (3)
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Nosaltres emprem aquesta estimacié per a estudiar la compacitat dels FIOs
quan actuen sobre espais de modulacié ponderats. Comencem definint un
espal de matrius.

Definicié 20. Siga v un pes submultiplicatiu sobre R*? i assumim que
v A — A satisfa

M = sup card 9~ ({\}) < o0.
AEA

Definim C, ,(A) com el conjunt de totes les matrius A = (a777/)77’€/\ tals
que

IAlle, ., = Y v(¥) - sup |aypyya] < oo
= AEA

L’estimacié (3) ens permet arribar al segiient resultat.

Proposicié 21. Siga T un FIO tal que la seua fase ® siga tame i o €
Mﬁ%vso (R24), 5o > 2d. Aleshores, per a tota 0 < s < sog — 2d tenim

M(o,®) € Cy, 1/ (A).
on X' : A — A es una versié discretitzada de la transformacid canonica x.

Les matrius que pertanyen a aquest espai tenen certes propietats.

Proposicié 22. Siga m = (my)xen una successio v-moderada positiva,
A= (aAW/)Wy,EA € Cpyp(A) i1 < p < oo donat. Aleshores A: (P (A) —

mow
. (A) és un operador fitat, que també és deébil-+ continu.

Teorema 23. Siguen A = (avﬁl),w,e[\ € Cpyp(A) i1 < p < oo donats.

Aleshores, A : €fno¢(A) — (0, (N) és un operador compacte si, i només si

a” = (@pa)1y0) yep € C0(A)  per a tot v € A.

Aquestes propietats ens duen a caracteritzar la compacitat dels nostres
operadors.
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Teorema 24. Siga T un FIO tal que la seua fase P es tame i o € M%USO(RM),
sg > 2d. Aleshores, per a tota 0 < s < so — 2d, les segiients condicions son
equivalents

(1) T : L*(RY) — L%(R%) és un operador compacte.

(2) T : MEo (R — ME(R?) és un operador compacte per a alguna
1 <p<ooipera algun pes vs-moderat m.

(3) T : Mboy (R — MPE,(RY) és un operador compacte per a tota 1 <
p < o0 1 per a tot pes vs-moderat m.

(4) (Tr(N)g, (X' (A) + 1)g)) 5 € co(A) per a tota pu € A.
En particular deduim que la compacitat no depen de p o m.

Teorema 25. Siga T un FIO tal que la seua fase ® es tame i o € %USO(]RM),
siga 0 < s < sg—2d. Si o € MO(R??), aleshores T : MPp,o, (R?) — ME,(RY)
és un operador compacte per 1 < p < 0o i per a cada pes vs-moderat m.

També veiem que I'invers del resultat anterior és cert en el cas particular
de les fases quadratiques.

Definicié 26. La aplicacid ® : R?* — R es diu fase quadratica si
1 1
®(z,n) = JAz -z + Br-n+ 5000+ -z — o1,

on xg,m0 € R, A, B, C sén matrius reals simétriques i B no és degenerada.

Teorema 27. Siga T un FIO amb fase quadratica ® i o € M73,,, (R2) 4
siga 0 < s < sg — 2d. Aleshores els segiients enunciats son equivalents:

(1) o € MO(R?9).

(2) T : Mboy (RY) — MPE,(RY) és un operador compacte per a tota 1 <
p < o0 1 per a cada pes vs-moderat m.
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FEls operadors que hem considerat fins ara no tenen per que ser fitats
en espais de modulacié amb normes mixtes, com es mostra en [CNR10b].
Per superar aquest obstacle, Cordero, Nicola i Rodino van introduir una
condicid extra en la fase.

sup |V, ®(z,n) — Va®(2',n)| < . (4)

!
x'

Teorema 28. Siga T un FIO tal que la seua fase ® és tame i satisfa la
condicio (4), i o € Mg, (R21) amb 0 < s < so — 2d. Aleshores, T :
MEE(RY) — MEI(R?) és un operador fitat per a totes 1 < p,q < 0o i per
a tot pes vg-moderat m.

Baix aquesta condici6 extra els resultats de compacitat es poden esten-
dre a espais de modulacié amb normes mixtes.

Teorema 29. Siga T un FIO tal que la seua fase ® €és tame i satisfa
la condicid (4), i o € [9vsg (R21) amb 0 < s < so — 2d. Les segiients
afirmacions son equivalents:

(1) T : L*(RY) — L2(R%) es un operador compacte.

(2) T : MRS (RY) — MEI(RT) és un operador compacte per a alguns
1 <p,q <ooipera algun pes vs-moderat m.

(3) T : Mpa (RY) — MEY(RY) és un operador compacte per a tots 1 <
p,q < 00 i per a tot pes vs-moderat m.

Com a conseqiiéncia recuperem i millorem alguns resultats per a PSDOs
obtinguts en [FG06, FG07, FG10].

Teorema 30. Siga o € Mﬁ%’&g (R?%) donada. Aleshores les segiients afir-
macions son equivalent:

(1) Ly : L*(R?) — L?(R%) es compacte.

(2) Ly : MEYRY) — MEYR?) es compacte per a totes p, q € [1,00] i tot
pes vs-moderat m.
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(3) Ly : MEYRY) — MEYRY) es compacte per algun p, q € [1,00] i
algun pes vs-moderat m.

(4) o € MO(R??),

En I'iltima seccié d’aquest capitol veiem que tota aquesta argumentacioé
es pot aplicar en l'estudi dels FIOs sobre espais de modulacié amb pesos
GRS, imposant estimacions similars en la fase i el simbol.

Alguns dels resultats presentats en aquest capitol estan continguts en
[FGP18].

L’objectiu del quart capitol és buscar condicions per a que l'operador
integral,

Af(z) = y K(z,y)f(y)dy, (5)

amb nucli

Ko = [ @m0, ©

siga fitat sobre alguns espais de Lebesgue. Aquest operador integral es pot
veure com un FIO de tipus II,

Trrpof(x) = /R?d efzm(Qp(y’u)*u'x)U(y, u) f(y)dy du,

amb p(y,u) = B(|u)u-yio(y,u) = ®(u). Es interessant trobar estimacions
del tipus

sup/ |K(z,y)| dx < oo, (7)
yERd Rd

ja que aquesta estimacié implica que 'operador corresponent A és fitat
sobre L'(R%). A la funcié ®(u) se li demana un bon decaiment a l'infinit,
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pero pot no ser diferenciable a l'origen v = 0. Un exemple tipic ve donat
per funcions radials
|u

P = O ey

(8)
amb un m gran i real.

La fase 3(r) és una funci6 real i diferenciable en (0, +00) pero pot tindre
una singularitat de tipus Holder en lorigen. Com a exemple simplificat
podem considerar el cas

Br)y=a+br7, 0<r<l1, (9)

per algunes a,b € R, v € (0,1). Quan r — 400, assumim que 3(r)
s’aproxima a una constant.
Com a cas basic suposem §(r) = a, r > 0, és una funcié constant. En
aquest cas,
K(z,y) = F®(ay — )

i la estimaci6 (7) s’obté si, i només si, ® € FL'(R?), i.e. ® té transformada
de Fourier en L'(R?).

Al cas model anterior, (9), §(r) aproxima una constant en ambdds casos,
quan r — 07 i quan r — 400 i és diferenciable entre ells, aleshores es
pot conjecturar que una estimacié a través de la transformada de Fourier
es manté també en aquest cas. Pero, no és el cas, fins i tot per a fases
diferenciables:

Proposicié 31. En dimensio d = 1, per a qualsevol 1 < p < 2, considerem
la funcid pes
vm(y) = L+ y)"™, yeR,

amb m € R tal que

Siga € C*((0,+00)) tal que
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s’estén com un difeomorfisme diferenciable no lineal R — R que satisfa
P(u) =u, |uf>1.

(per tant, B(|lu]) = 1, per a |u| > 1). Siga ® € C°(R), ®(u) = 1 per a
lu| < 1.

Aleshores l'operador A en (5) no es pot estendre com un operador fitat
de LY, (R) a LP(R).

Aleshores 'estimacié ponderada,

[ K@ wlde S 0+l (10)

no es compleix per a s < 1/2.

Aix0o sembla sorprenent, perd es pot considerar una manifestacié del
fenomen Beurling-Helson [BH53, CNR10a, L0O94, Oko09, RSTT11], que,
en termes generals, estableix que 'operador de canvi de variable f — fo
no és fitat en FL'(R?) a no ser que 1 : R — R? siga una aplicaci6 afi. De
fet I'operador A en (5) amb nucli K (z,y) en (6) es pot escriure com

Af = F 1o« f_l(ff o®), amb @(u):= F(|u|)u.

Per tant, és interesant analitzar el creixement en (10). Comencem amb la
continuitat en els espais L' ponderats per a 'operador A en (5), en aquest
cas tindrem una perdua de decalment. Aquesta es pot provar a través d’una
estimaci6 de tipus Schur per al nucli K.

Teorema 32. Considerem funcions ® € M'(R%) i B : (0,400) — R. A
més, assumim que per algun exponent v € (—1,1], amb £ = |d/2| + 1,

0°B(lul)ul < Calul 1, pera 0# Jul <1, |o| <4,
on Co >0, 1

0°B(lul)ul < Cq, pera |uf =1, 2 <la| <2,
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amb C!, > 0. Aleshores el nucli d’integracié en (6) satisfa
[ K@ lds < O+ )0,
R4

per a una constant C' > 0 independent de y.

Aquest resultat en el model simplificat anterior seria: Suposem 3(r) com
en (9) per a 0 <r <1, amb vy € (—1,1] i asumim que 8 té, com a molt,
creizement lineal quan r — 4o00. Siga ® com en (8), amb m > (d+ 1)/2.
Aleshores (10) se satisfa amb s =d/(y+1).

Corol-lari 33. Considerem funcions ® € M'(RY) i B : (0,400) — R. A
més, siga ¢ = |d/2| + 1, assumim que la funcic B(|u|) s’estén com una
funcié C?* en R? i satisfa

10°B(Ju)u| < Co, peraueR? i 2<|al <20

Aleshores, el nucli d’integracié en (4.1.2) satisfa

/ K (2, y)ldz < C(1+ |y}
]Rd

Aquest resultat en el model simplificat anterior seria: Suposem que
@(u) == B(|u|)u s’estén com a una funcié diferenciable en RY, amb, com
a molt, creizement quadratic a linfinit. Siga ® com en (8), amb m >
(d+1)/2. Aleshores (4.1.6) se satisfa per a s = d/2.

Si la fase esta traslladada per una constant ’estimacié es manté.

Corol-lari 34. Considerem funcions ® € M'(R?) i B : (0,+00) — R.
Assumim que per a alguna v € (—=1,1] 1 a € R,

f=p-a
satisfa, amb ¢ = |d/2] + 1,

0 Bul)u| < Calul L pera ful <1, Ja] <1,
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per a Co >0, @

806(’U|)U’ < C(/;w per a |’U,‘ > ]_7 2 < |Oé| < 2l,
amb C!, > 0. Aleshores el nucli d’integracié en (6) satisfa
/ |K (2, y)|de < C(1 + |y))¥OFD),

R4

per a una constant C' > 0, independent de la variable y.

Corol-lari 35. Assumim les hipotesis del Corol-lari 84 i considerem la
funcio pes
v(y) = (14 [y O

Aleshores 'operador integral A en (5) amb nucli K en (6) és fitat de L} (RY)
a L'(RY).

Una pregunta natural després d’aquests resultats seria si es poden trobar
resultats similars de continuitat en L?(R?), amb les hipotesis anteriors. En
la segiient proposicié veiem que no és el cas.

Proposicié 36. Siga d = 1. Euxisteix un operador A com en (5), amb [ i
® complint les hipotesis del Corol-lari 34, que no és fitat en L*(R?).

Per ultim arribem a hipotesis adients sobre les funcions ® i 8 de manera
que es garantisca la continuitat en L? de I'operador A.

Teorema 37. Considerem ® € L>®°(R%) N LY(RY). Siga B : (0,00) — R
complint les segiients hipotesis:

(i) B € CH((0,00));
(ii) Existeiz 6 > 0 tal que B(r) > 6, per a tot r > 0;
(i1i) Existeizen By, B > 0, tals que

B; < di(ﬂ(r)r) < By, peratot r> 0.
r

Aleshores loperador integral A amb nucli K en (6) és fitat en L?>(R?).
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Nota 38. Fl resultat anterior també funciona si canviem la funcié B per
—pB. Per tant, baix les hipotesis del Teorema 37 amb les hipotesis (ii) i (ii7)
reemplacades per:

(ii)” Ezisteiz 6 < 0 tal que 5(r) <6, per a tot r > 0;

(i1i)’ Existeizen By, Ba < 0, tals que

B < di(ﬁ(T)T) < By, per atot r > 0.
r

Aleshores loperador integral A amb nucli K en (6) és fitat en L*(R?).

Aquest resultat en el model simplificat anterior seria: Suposem ((r)
com en (4.1.5) per a 0 <r <1, amb v > 0. Siga ® € C*(R?) amb suport
en |u| < 1. Aleshores, si a(a + (v + 1)b) > 0 l'operador A en (5), (6) és
fitat en L%(R?).

Els resultats presentats en aquest capitol estan continguts en [CNP18].

L daltim capitol esta dedicat a I'estudi dels multiplicadors unimodulars
de Fourier. Els multiplicadors unimodulars de Fourier estan formalment
definits a través de la seglient expressié

O fa) = [ st (e) ag,
Rd
on 4 és una funcié amb valors reals.

Els multiplicadors unimodulars de Fourier representen un dels principals
camps de recerca en ’analisi harmonica. Les connexions amb altres bran-
ques de matematica pura i aplicada sén incontables (combinatoria, EDPs,
processament de senyals, calcul funcional, etc.).

El prototip ve donat per la fase u(&) = |€]2. Es de gran interés l'estudi
de la continuitat d’aquests operadors sobre diferents espais. Mentre que
aquests operadors representen transformacions unitaries en L?(R%), la seua
continuitat en LP(R?) per a p # 2 falla, en general. Per aixo recentment,
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diversos treballs han abordat el problema de la continuitat en altres espais
de funcions. Entre aquests, els espais més convenients han resultat ser els
espais de modulacié MP9(R?), 1 < p,q < oo, ampliament utilitzats en
analisi de temp-freqiiéncia [Fei83, Gro01].

Ara, En [BGORO7] es va provar que el propagador de Schrodinger
(u(€) = |€|? en (5.1.1)) és fitat en MP4(RY) — MP4(R?), per a tot 1 <
p,q < o0o. Aquest resultat motiva I'estudi de la continuitat de multipli-
cadors unimodulars de Fourier més generals sobre espais de modulacié.
Breument, per a fases no fitades (suficientment derivables) les propietats
que juguen un rol clau sén:

Creizement i oscil-lacions de les segones derivades 07, |7y| = 2.

Per a posar els nostres resultats en context recordem tres resultats previs
basics.

(a) Sense creizement, oscil-lacions suaus [BGORO7, Theorem 11]. Su-
posem que

OO <C, pera €€ RY, 2< |y <2(|d/2] +1).

Aleshores €#P) : MPa(RY) — MPIR?Y) és fitada per a tota 1 <
P,q < 00.

Aquest resultat generalitza el cas del propagador de Schrodinger, on les
segones derivades de p son de fet constants.

(b) Sense creizement, oscil-lacions suaus [CT09, Lemma 2.2]. Suposem
que
Ny e M>YRY),  pera |y =2
Aleshores €(P) : MP4(RY) — MPI(RY) és fitat per a tota 1 < p,q <

Q.

Aquest lema proporciona un resultat parcial, pero clau, des del qual es
pot deduir que el simbol o(¢) = €& pertany a l’espai de les amalgames
de Wiener, W(FL', L>). Observeu que el resultat (b) millora el de (a),
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a causa de la inclusi6 C9TH(R?) < M1 (R?) ([Gro01, Theorem 14.5.3]).
Notem també que M1 (R%) C L>°(R?), aleshores les segones derivades de

i no creixen a 'infinit, perd poden oscil-lar, com cos |£]|%, amb 0 < o < 1
(cf. [BGORO7, Corollary 15]).

(c) Creizement a Uinfinit, oscil-lacions suaus [MNRT09, Theorem 1.1].
Siga o > 2, i suposem que

D) < CO°2 pera 2< 4] < |d/2) +3.

Aleshores e(P) : MPY(RY) — MP(R?) és fitat per a tota 1 < p,q <
00 id>dla—2)1/p—1/2|.

Act MPYRY) = Mf&')“ on (1® ())(z,w) = (w)®, que és un espai
ponderat en la freqtiencia.

En [BGORO07, Lemma 8] es va provar que Poperador e*(P) és fitat en
tot Mp’q(Rd) per a tota 1 < p,q < oo si el seu simbol e pertany a
I'espai d’amalgames de Wiener W (FL', L®)(R?) [Fei8la], la seua norma
es defineix com

D)

I fllwFrr,zooy = sup [lg(- — ) fll 7z
zcRd

on g € S(R?) \ {0} és una finestra arbitraria. Aco suggereix buscar condi-
cions sobre u(&) en termes d’aquest espai. El nostre primer resultat en
aquesta direccio és el segiient.

Teorema 39. (Sense creivement, oscil-lacions fortes). Siga p € C?(R?),
una funcid real, que satisfa

(&) € W(FL', L®)(RY),  pera |y =2.

Aleshores
D) pPa(RY) — MPI(RT)

és fitat per a tota 1 < p,q < oo.
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Observem que MY (R?Y) ¢ W(FL', L>®)(R?) c L*(R?) aleshores
aquest resultat millora el resultat anterior (b). Aci les segones derivades
de p1 encara estan fitades, perd poden oscil-lar, com cos |¢|? (cf. [BGORO7,
Theorem 14]). Aquest resultat esta inspirat per [CT09, Lemma 2.2]. Mal-
grat aixo, el nostre resultat principal s’ocupa de la possibilitat de segones
derivades no fitades, com es mostra en el segiient teorema.

Teorema 40. (Creizement a linfinit, oscil-lacions fortes). Siga o > 2.
Siga p € C*(RY), una funcid real tal que

(€)* 0 (&) € W(FL', L®)(RY),  pera |y =2.

Aleshores,
e D) MPYRY) — MPI(RY)

és fitat per a tota 1 < p,q < o0 i

62d(a—2)‘1—1‘.
p 2

La fita superior per ¢ coincideix amb la de (c), i també amb els exemples
a [BGORO7, Teorema 16|, on es van considerar fins i tot oscil-lacions més
fortes, perd només per a casos model.

El Teorema 39 és, per descomptat, un cas particular del Teorema 40 i
s’utilitzara com a pas en la demostracié d’aquest.

Els resultats presentats en aquest capitol estan continguts en [NPT18].






Abstract

In this thesis, we study different aspects of operators related to time-
frequency analysis. Every linear and continuous operator from the Schwartz
class into its dual, the space of tempered distributions, can be written as an
integral operator with kernel K, or also as an integral Fourier operator (in
fact, pseudodifferential [Gré01, Theorem 14.3.5]). Different conditions on
the kernel or the symbol and the phase (in the FIOs case) allow to extend
the operator to various spaces of functions and distributions. Below we
detail the contents of the memory.

At the first chapter we introduce the notation, the definitions of some
spaces and the preliminary results that will be used throughout the thesis.
The second chapter is devoted to the study of uncondicional multipliers.
The main result, an improvement of Orlicz’s theorem, shows that every un-
conditionally summable sequence in a Hilbert space can be factorized as the
product of a square summable scalar sequence and a Bessel sequence. Some
consequences on the representation of unconditionally convergent multipli-
ers are obtained. The aim of the third chapter is to investigate compactness
for Fourier integral operators when acting on weighted modulation spaces,
using the matrix representation of Fourier integral operators with respect
to a Gabor frame. As a consequence, we recover and improve some known
results on compactness of pseudodifferential operators. At the fourth chap-
ter we study conditions for the boundedness of Fourier integral operators
with Holder-continuous phase on Lebesgue spaces. We prove boundedness
in L' with a precise loss of decay depending on the Holder exponent, and
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we show by counterexamples that a loss occurs even in the case of smooth
phases. The continuity in L? is studied as well by providing sufficient con-
ditions and relevant counterexamples. At the last chapter we find some
conditions for continuity of unimodular Fourier multipliers on modulation
spaces. We find some results assuming that the second derivatives of the
phase are bounded or, more generally, that its second derivatives belong
to a particular Wiener amalgam space, in particular, its second derivatives
could have strong oscillations at infinity.
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Introduction

In this thesis, we study different aspects of operators related to time-
frequency analysis. Every linear and continuous operator A : § — &’
can be written as an integral operator

(Af,9) = (K,g® [),

where K € &’ is the kernel and f,g € S, or also as an integral Fourier
operator (in fact, pseudodifferential [Gro01, Theorem 14.3.5]). Different
conditions on the kernel or the symbol and the phase (in the case of Fourier
integral operators) allow to extend the operator to various spaces of func-
tions and distributions.

Our aim is to use time-frequency analysis techniques to study bound-
edness and /or compactness of Fourier integral operators, integral operators
or unimodular multipliers on modulation or Lebesgue spaces. We study
multipliers on separable Hilbert spaces too.

Below we detail the contents of the memory.

In the first chapter we introduce the notation and we recall the defi-
nitions of some spaces and preliminary results that will be used in the thesis.

The second chapter is devoted to the study of uncondicional multipliers.

3



4 INTRODUCTION

A multiplier on a separable Hilbert space H is a bounded operator

0o
Mm,@,q/:H_)Hy f= Zmn <fa\I/n>(I)na

n=1

where ® = (®,),, and ¥ = (¥,,), are sequences in H and m = (my), is
a scalar sequence called the symbol. The multiplier is said to be uncondi-
tionally convergent if the above series converges unconditionally for every
f € H. In the case that ® = (®,,),, and ¥ = (V¥,,),, are Bessel sequences in
H and m € £°° the operator M,, v is called a Bessel multiplier. Bessel
multipliers were introduced and studied by Balazs [Bal07] as a general-
ization of the Gabor multipliers considered by Feichtinger and Nowak in
[FNO03]. Balazs proved, in [Bal07], that each Bessel multiplier is uncondi-
tionally convergent. Balazs and Stoeva conjectured in [SB13a] that every
unconditionally convergent multiplier can be written as a Bessel multiplier
with constant symbol by shifting weights. More precisely,

Conjecture 1. [SB13a, Conjecture 1] Let
Mm@’\p H—~>H

be an unconditionally convergent multiplier, then there exist scalar sequences

(an)n and (by)y such that

My = G, - by,

and such that
(an®yp),, and (b,¥,),

are Bessel sequences in H.

In the second chapter new situations where the conjecture of Balazs and
Stoeva is still true will be presented.

The aim of the third chapter is to investigate compactness for Fourier
integral operators, FIOs, when acting on weighted modulation spaces. Our
results strongly depend on the matrix representation of a FIO with respect
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to a Gabor frame, since our approach to the study of the compactness of the

FIOs follows the point of view of Cordero, Nicola and Rodino in [CNR10b].
For a function f on R? the Fourier integral operator, or FIO, T with

symbol o € L>®(R??) and real phase ® on R?? can be formally defined by

Tf() = [ ol fon)dn.

The above formula defines a continuous operator from S(R?) into S'(R%).
The phase ®(z,7) is tame, which means that it is smooth on R?? and fulfills
the estimates

090(2)] < Car o] > 2,2 € R¥,

and the nondegeneracy condition

| det 8%7,] ®(z,n)|>6>0, (x,n) R

The symbol ¢ on R?? satisfies
0% (2)| < Cq, ave. z € R¥, |a| < 2N

for a fixed N € N. Here 02 denotes the distributional derivative.

When ®(x,n) = xn we recover the pseudodifferential operators (PS-
DOs) in the Kohn-Nirenberg form. Frames allow to represent operators in
terms of matrices. The matrix representation of a FIO with respect to a
Gabor frame G(g, A) with g € S(R?) is well organized, this is the key result
of Cordero, Nicola and Rodino in [CNR10b]. We will use a decay estimate
to discuss the compactness of the FIOs when acting on weighted modula-
tion spaces. More precisely, we prove that the FIO is compact when acting
on some modulation space of the form Mp,(R?) if and only if the sequences

(e (Mg, (X (V) + 1)9) e

converge to zero for all 4 € A, where Y’ denotes a discrete version of the
canonical transformation y defined through the system

{y = an’(xvn),
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As was shown in [CNR10b], the operators we are considering may fail to
be bounded on mixed modulation spaces. To overcome this obstacle, an
extra condition on the phase was introduced in [CNR10b]. Under this
additional condition, the compactness results are extended to weighted
mixed modulation spaces. As a consequence, we recover and improve
some compactness results for PSDOs obtained by Fernandez and Galbis
in [FG06, FGO07, FG10]. In the last section we see that the obtained results
can be applied on Fourier integral operators on modulation spaces with
GRS-weights, under similar estimates in the phase and the symbol.

In the fourth chapter we study conditions for the boundedness of the
integral operator,
Af(z) = g K(z,y)f(y)dy,
with kernel
K(z,y) :/ @(u)e*%i(ﬁ(\UI)U-yfu-x)du‘
Rd

on some Lebesgue spaces, where §(r) is real-valued and the function ®(u)
has a good decay at infinity but could be not smooth at the origin u = 0.
This integral operator can be seen as a FIO of type II,

Tit @) = [ 20000y, () dy du,

It is interesting to find estimates of the type

sup/ | K (z,y)|dx < oc.
yeRd R4

This estimate implies a continuity property for the corresponding operator
between weighted L' spaces.

Therefore, the next natural question is whether under the same assump-
tions similar continuity estimates hold in L?(R¢). This is not the case, but
different sufficient conditions are given for the L?-continuity.
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In the last chapter we find some conditions for continuity of unimod-
ular Fourier multipliers on modulation spaces. The unimodular Fourier
multipliers are formally defined by

D) f(z) = / e2mie € in(e) £(¢) de,

R4

with real-valued p. These operators can be seen as a PSDO,
Tfa) = [ (e, fn)dn,
with symbol o(z,n) = () or as a FIO
Tf(a) = [ e Daten) fin

with phase ®(z,71) = z-n+ 5= (1) and constant symbol. Fourier multipliers
represent one of the main research fields in harmonic analysis, where a
number of challenging problems remains open [Ste93].

The function p(€) = |£|? gives us the prototype phase. In that case the
operator D) is the propagator for the free Schrodinger equation. Hence it
is of great interest to study the continuity of such operators on several func-
tions spaces arising in PDEs. Such operators represent unitary transforma-
tions of L%(R?), but their continuity on LP(R?) for p # 2 may fail. Hence
recently a number of works addressed the problem of the continuity in other
function spaces. From these spaces, the more convenient spaces turned out
to be the modulation spaces MP(R%), 1 < p,q < oo, widely used in time-
frequency analysis [Fei83, Gro01]. This is so because Bényi, Grochenig,
Okoudjou and Rogers proved, in [BGOROT], that the Schrodinger propa-
gator (hence p(€) = |¢|? in (5.1.1)) is bounded MP4(R%) — MP4(R?), for
every 1 < p,q < oo. This result motivates the study of the continuity of
more general unimodular Fourier multipliers on modulation spaces, which
is what we study in the last chapter.
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Chapter 1

Preliminaries

In this chapter we introduce the notation, definitions, some spaces and
preliminary results that will be used through all the thesis. The chapter is
divided in 2 sections with the aim of giving an overview of the necessary pre-
liminary results. Section 1.1 is devoted to the definition of sequence spaces
as well as to some properties of them. In Section 1.2 we introduce some
function spaces, particularly modulation spaces with polynomial weights
and Wiener amalgam spaces. In Subsection 1.2.3 we describe how Gabor
frames relate certain function spaces to sequence spaces. Finally, we intro-
duce the definition of modulation spaces with GRS-weights and we apply
Gabor frames to them.

1.1 Sequence spaces

Definition 1.1.1. Given I and J countable sets of indices, a sequence of
positive numbers m = (mm)(i’j)dx] and 1 < p,q < 0o, we consider the
sequence space U (I x J) consisting of those sequences x = (i) j)erxJ
such that

9\
2l = [ > <Z !wz‘,jmz‘,j\p> < o0.

jeJ \iel
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In the case that p = oo or q = oo, the previous norm is modified in the
usual way, for instance, if p = 0o,

q
el o= | 3 (suym,jmi,ﬂ)

jed 1€
If p = q we have the weighted (P-spaces.

Note that it is not necessary to indicate the order of addition given that
the sums are unconditionally convergent. Recall that if p; < ps and ¢1 < ¢
then (P19 (I x J) C (P222(] x J).

Throughout the thesis we denote by é%ﬂ([ x J), the closed subspace of
U Y(I x J) consisting of those sequences x € £5,?(I x J) such that

liienll |xi7jmi,j = 0,
for every j € J. We denote E&O(I x J) analogously.

It turns out that fod (I x J) (resp. /5 (I x J)) coincides with the closure
in ny (I x J) (vesp. £0;°(I x J)) of the set of those sequences with finitely
many non zero coordinates, denoted CU*7),

Also, (5°(I x J) coincides with the Banach space com(I x J) of all
sequences T = (l'i,j)(i,j)e IxJ whose product with m converges to 0.

All these spaces, /;1(I x J), are Banach spaces for p, q € [1,00] U {0}.

When p, g € [1,00) U {0}, the dual of £0;Y(I x J) can be identified with
Ei’q/(l x J), where p’ and ¢’ are the conjugate exponents of p and ¢. As

ugnual, we agree that the conjugate exponent of 0 is 1. The duality is given
by

g%q(f X J) X g’i’q/(l X .]) — C, (x,y) =Ty = Z T4 Yij-
m (i,j)eIxJ

Definition 1.1.2. Given a sequence a = (ai7j)(i7j)€IXJ of complex numbers,
we denote by D, the diagonal operator

L IxJ IxJ . _
D, :C — C7 = (@i5) i j)erxg = (@i jTig) G, j)erxd
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Proposition 1.1.3. The diagonal operator D, is bounded on ¢5;7(I x J)
if, and only if, a € (>°(I x J) and

[ Dall = [lalloc
for all p, g € [1,00] U {0} and every m.
Proposition 1.1.4. The diagonal operator D, is a compact operator on
(I x J) if, and only if, a € co(I x J).

The result follows from the fact that the elements of each a € ¢o(I x J)
are the || - ||oo-limit of the difference between the operator D, and its finite
sections.

A set of the form A = AZY, with A an invertible N x N matrix, is
called a lattice on RY. We observe that v + A = A, whenever v € A. If T
and J are lattices in R? and R’ respectively, we write A := I x .J, which is
a lattice in RN (N =d + /).

Definition 1.1.5. Let v € A, for a lattice A in RY, the translation
operator T, : CA — CA is defined by
Ty (xx3)ren = (Ba—y)ren -

Let us introduce two concepts needed for the last result of the section.
A function v : A — (0,00) is said to be a submultiplicative weight
if it is symmetric on each coordinate and

v(r+k) <o(r)v(k), for all r,k € A.

Given a submultiplicative weight v, a sequence of positive numbers m =
(my)~en is v-moderate, with constant C,,, if

Moyt < Crymav(y'), for all v, € A.
If m is v-moderate, then 1/m is also v-moderate.

Proposition 1.1.6. Given m = (my),ea, v-moderate with constant Cp,,
the translation operator T is bounded on € (A) for every v € A, and

175 < Crv(7),
for all p, q € [1,00] U{0}.
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1.2 Function spaces

Definition 1.2.1. Let 1 < p,q < oo, and let m be a weight function on R?.
Then the weighted mized-norm spaces Lh;!(R??) consist of all Lebesgue
measurable functions f such that

1fll ey == </Rd (/Rd If(:r,y)m(m,y)\pdm>gdy>; < oo.

In the case that p = 0o or q = 00, the corresponding p-norm is replaced by
the essential supremum.

Let 1 < p,q¢ < oo, and m be a weight function on R??, the dual of
LHY(R?) can be identified with L7 (R??), where %4—1% =1and %—i—% =1.

The space L%(R?) is a Hilbert space with the inner product
(r9) = [ sy
R4

We consider its extension to the pairs <Lfﬁq, in ’q/> with the same notation,
«7»'

Definition 1.2.2. The Fourier transform of a function f € L*(R?) is
defined as

N

Ffw) = flw):= y fla)e 2@ dy
where x - w = zw is the scalar product on R,

Once introduced the Fourier transform it is time to remember that its
inverse is F ! = ZF, where Zf(z) = f(—x).

Definition 1.2.3. The Schwartz class, S(R?), consists of all C*-functions
f on R% such that

sup | D%z’ f(x)| < oo,

zER4

for all a, g € Zi.
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At this point it is necessary to recall that the Fourier transform is an
isomorphism on S(R?), in order to carry out the following argumentations.

Definition 1.2.4. The elements in the dual space of the Schwartz class
S'(RY) are called tempered distributions.

Also, we consider the extension of the inner product on L2(R%), (-,-),
to the pair (S(R?),S'(R%)). And by duality the Fourier transform can be
extended to S'(R%) as follows

(F(£), F() = {f.¢) for f € S(RY) and ¢ € S'(RY).
Definition 1.2.5. For 1 < p < oo, the FLP spaces are defined by

FLP(RY) := {f € S (RY) : Ih € LP(RY), Fh = f},
they are Banach spaces equipped with the norm

Hf”]-‘Lp = HhHLp, with fh:f

1.2.1 Modulation spaces with polynomial weights

We start this section introducing the necessary elements for the incoming
definitions.

A function v : RV — (0, 00) is said to be a submultiplicative weight
if it is continuous, even on each coordinate and

v(r+k) <v(r)v(k).

A map m : RV — (0, 00) is said to be v-moderate, with constant C,y,,
when

m(r + k) < Cpym(r)v(k)

for every r, k € RN. If m is v-moderate, then 1/m is also v-moderate.
The polynomial weights are the submultiplicative weights of the form

vs(r) = (1) = (1+|r[})2, s> 0.
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We consider the translation operator and the modulation operator
defined by

Tof(t) := f(t —x) and Mef(t) := *™S f(t).
We denote (&, z) f := M¢T, f(t). Also, we have the next relations
F(Tof) = M_oFf, F(Mcf) =TeFf and MeT, = e*™ T, M.

Definition 1.2.6. The short-time Fourier transform (STFT), V,f,
of a function f € L*(R?) with respect to the window g € L*(R?) \ {0} is
defined by

Vol (@.€) = (f. MeTo) = [ 5 )y =) dy

i.e. the Fourier transform of fT.g.

As the previous definition relies on the scalar product, it can be ex-
tended to tempered distributions f € §'(R?) taking the window g € S(R?).
When f € §'(RY) and g € S(R?), V, f is continuous.

Definition 1.2.7. Given a non-zero window g € S(R?), a vs-moderate
weight m, s > 0, and 1 < p,q < 0o, the modulation space M (R?)
consists of all tempered distributions f € S'(RY) such that V, f € Lh(R?*?),
that is,

1
4 a
p
1 Fllaggn = ||ng”L§’,;q:< L (L wstarpmepa) dw> <o,

with the usual changes when p = oo or ¢ = co. If p = q we write ME,(R?)
instead of MEF(R?). Moreover, M5 (RY) is a Banach space whose defini-

tion is independent of the window g (See e.q.[Gré01, Proposition 11.5.2]).

Recall that if m is vg-moderate, 1 <p; <ps < ocand 1 < ¢ < g < ©

then M} (RY) C MEVT(RY) € ME?»%2(RY) C Mf;v(ﬂead).
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It is well known that S(R?) is dense in M54 (R9), for 1 < p,q < co. The
closure of S(RY) in M2 (R) is denoted Mpy?(RY) and MEZ°(R?) is defined
similarly. In particular, the closure of S(RY) in M>(R?) is denoted by
MO(R?) and consists of those tempered distributions whose STFT vanishes
at infinity.

MP(R?) is invariant under the Fourier transform.

For p, ¢ € [1,00) U {0} the dual of M}?(R%) can be identified with

Mf;;?zl (RY), under the pairing

)= [ [ Vol @) Vb (o),

where p’ and ¢’ are the conjugate exponents of p and ¢. As usual, we agree
that the conjugate exponent of 0 is 1.

In particular, we recall that M?2(RY) = L2(R?), [Gr601, Proposition
11.3.1].

The notation A < B means A < ¢B for a suitable constant ¢ > 0 de-
pending only on the dimension d and Lebesgue exponents p,q, ..., arising
in the context, whereas A < B means A < B and B < A.

We have defined the modulation spaces, now let us see some properties.
First of all, from [Gré01, Theorem 11.3.5] we infer the following result.

Proposition 1.2.8. For 1 < p,q < oo, MP4(R?) is invariant under time-
frequency shifts, with

[ TeMuf|[arpa = || £l aava-

Proposition 1.2.9. [KS11, Corollary 1.2] Let k € R. Then we have

WHELRY) — MYR") if k > d. Conversely, if W*I(R?) — MY(R"), then
kE>d.
Here WF1(R?) is the Sobolev space defined by

WhELRY) = {u e LY(RY) : D € LY(R?Y) for all o« € N : |af < k:} .
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Definition 1.2.10. We consider the dilation operator defined by
Upf(2) i= f(Az), A#0.

The Fourier transform acts as F(Uyf)(z) = (%)d (FHE).

Now, to see the behaviour of the dilation operator on modulation spaces,
we need to introduce some indices. For (1/p,1/q) € [0,1] x [0, 1], we define
the subsets

I s max(1/p,1/p') <1/q, I : min(1/p,1/p') = 1/q,
Ir: max(1/q,1/2) < 1/p/, I3 : min(1/q,1/2) > 1/p/,
I3 : max(1/q,1/2) <1/p, I3 : min(1/q,1/2) > 1/p,

as shown in Figure 1.1.

1/QA I/QA
1 1
I

I3 I3

1/2 1/2
I I3
Iy
0 1/2 1 1/p 0 1/2 1 1/p
0< [N <1 Al >1

Figure 1.1: The index sets

We introduce the indices:
—~1/p it (1/p,1/q) € I,
mp,g) =< 1/q—1 it (1/p,1/q) € 13,
—2/p+1/q if (1/p,1/q) € I3,
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and
—1/p it (1/p,1/q) € I,
p2(p,q) = 1/q—1 it (1/p,1/q) € Ia,
—2/p+1/q if (1/p,1/q) € Is.

Here is the main result about the behaviour of the dilation operator in
modulation spaces.

Theorem 1.2.11. [ST07, Theorem 3.1] Let 1 < p,q < 00, and XA # 0.
(i) We have

1O llarra < N PO fllagna, for all |\l 21, for all f € MPI(R?).
Conwversely, if there exists o € R such that
1Usfllazea S [N Fllagza, for all [\l =1, for all f € MPI(R?),

then o > duq(p,q).
(ii) We have

U fllarra S [N®2@D| fllagna, for all 0 < [N <1, for all f € MPI(RY).
Conversely, if there exists B € R such that

1O fllagra S NP (1 fllagra, for all 0 < [N <1, for all f € MPA(RY),
then 8 < dua(p, q).

1.2.2 Wiener spaces

In this section we recall the definition and some properties of Wiener amal-
gam spaces. We denote by CS°(R?) the space of smooth functions with
compact support.
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Definition 1.2.12. Let By and By be Banach spaces, Bi consisting of
measurable functions. We fix g € C(RY) \ {0}. The Wiener amal-
gam space W (By, By) with local component By and global component Ba
is defined as the space of all functions f locally in By such that fp, € Ba,
B, (z) = ||fTzg|lB,- W(B1, B2) is a Banach space endowed with the norm

||f||W(Bl,B2) = ||fB1||B2 = ||||fT:Eg||B1HBQ'

Moreover, different choices of g € Cgo(Rd) generate the same space and
yield equivalent norms. The Wiener spaces mainly used in this work are:

o W(L>®,P)(R%), 1 < p < oo, being A a lattice of R?, consists of those
continuous functions f such that

I fllw(c,ery = (Z (SUP{’Txf(y)\}> )” < 0. (1.2.1)

zeA \VER?

The definition is independent of the lattice A.

o W(FLP,L9)(R?), 1 < p,q < oo,

[ fllwFre,Lay = I/ Tegll Frell Lo

- ( L[, |f-1(fog)<y)|pdy>gdm) " e

Proposition 1.2.13. [CN08a, Proposition 2.2] For 1 < p,q < oo, the

Fourier transform maps F : W(FLP, L9)(RY) — W (FL9, LP)(R?) continu-
ously and it is an isomorphism when p = q.

The relationship between modulation and Wiener amalgam spaces is
expressed by the following result.

Proposition 1.2.14. [CN08a, Proposition 2.4] The Fourier transform es-
tablishes an isomorphism F: MP4(RY) =W (FLP, L9)(RY), for 1<p,q<oo.
In fact, MP(R?) = W (FLP, LP)(R?), with equivalent norms.
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The dilatation operator acts on the Wiener spaces as indicated in the
following Lemma.

Lemma 1.2.15. ([CN08a, Corollary 3.2]) Let 1 < p,q < oco. Then, for
every f € W(FLP,L9)(R?),

O llw Fre.pay S A=Y fllw (rropay  for all [A] >1
and
NUMfllwFrrpeoy S W fllwrprpey  forall 0 < |\ <1

Proposition 1.2.16. [CN08a, Proposition 2.5] For every 1 < p,q < oo we
have

| fullwzre,.Lay S W llwFer,pooylullwFre,Lq),
for all f € W(FL', L>®) and w € W(FLP, L?).If p = q, we have

[fullae S W fllwFrorpee)llullare-

Wiener amalgam spaces are invariant with respect to modulation and
translation operators too [Gr601, Theorem 11.3.5 |.

Proposition 1.2.17. For 1 < p,q < oo, W(FLP,L9)(R?) is invariant
under time-frequency shifts, with

HTzMufHW(J-‘LP,LfI) = HfHW(]-'LP,Lq)-

1.2.3 Gabor frames

In this subsection we see how Gabor frames relate modulation spaces to
sequence spaces. We fix a function g € L2(R?) and a lattice A = aZ? x 374,
for a, > 0. The family G(g,A) = {m(N)g: X € A}, where m(A1, \2)g =
My, Ty, g(t), is called a Gabor system and it is said to be a Gabor frame
if there exist constants A, B > 0 such that

AlfIE < D 1FmN9) P < BIIfI3,  for all fe LARY).
AEA
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If A= B =1, then the Gabor frame is said to be a Parseval frame.
Associated to the Gabor frame G(g, A) we consider the analysis operator

Cy: L*(RY) = (), [ (£ m(N)9)ren »

and its adjoint Dy = Cg, which is the synthesis operator

Dy: 2(A) = LP(RY), (c)yen = Y exm(Ng.
AEA
Then S, = D, o C, is a bounded and invertible operator on L?(R%) called
frame operator. The canonical dual window of g is defined as h =
Sg_lg. It turns out that G(h, A) is also a Gabor frame and

Dg o Ch = Dh o Cg = IdLQ(Rd).
If the Gabor frame is a Parseval frame then Sg = Id;Ray and h = g.

In the case that G(g, A) is a Gabor frame and g € S(R?) then, as proved
by Janssen (see [Jan95] or [Gré0l1, 13.5.4]), also h = S;1(g) € S(R%).
Grochenig and Leinert [GLO04, 4.5] showed the existence of Parseval frames
G(g,A) with g € S(R?). Therefore we can reformulate some known results

in the following way.

Theorem 1.2.18. Let g € S(RY). Then, for every polynomially moderate
weight m and for every 1 < p,q < oo,

Cy: MPA(RY) — (2:9(A) and D, : 29 (A) — MEY(R?)
are bounded operators, weak®-continuous, and being h = Sg_ Yg),
Dg o Ch = Dh o Cg = IdMﬁgq(Rd)‘

Here D, is the transposed map of Cj : Mf;’g; (R%) — ﬁ’f//z;(/\). Forp=1
or ¢ =1 we take p’ =0 or ¢’ = 0 respectively.

If ¢ = (cn)yep and 1 < p,g < oo then Dy(c) = Y cp exm(A)g. In the
limit cases p = co or ¢ = oo the series in the right hand side converges to
Dy(c) in the weak*-topology. See for instance [FG97] or [Gro01, Chapter
12).
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1.2.4 Modulation spaces with GRS-weights

Let us now see the definition of modulation spaces with GRS weights and
how the Gabor frames act on them. We start introducing the so-called
Gelfand-Shilov type spaces, introduced in [GS68].

Definition 1.2.19. Let s,7 > 0 be given. A function f € S(R?) is in the
Gelfand-Shilov type space S:(R?) if there exist constants A, B > 0 such
that

|220° f(z)] < A BPL ) (8Y)°, for all a, B € N

The space S2(R?) is nontrivial if and only if r +s > 1, or r +s = 1 and

r,s > 0. If 51 < sy and r1 < 1o, then S51(R?) C S52(RY) densely. So the

smallest nontrivial space with r = s is provided by Sl1 g The action of the

Fourier transform on S2(R?) interchanges the indices s and r, as explained
in the following theorem.

Theorem 1.2.20. For f € S(RY) we have f € S(RY) if and only if
f € S(RY).

Therefore for 7 = s the spaces S%(R?) are invariant under the action of
the Fourier transform.
From now on, v denotes a non-negative funtion on R?¢ satisfying the fol-
lowing properties:

(i) v is continuous, v(0) = 1, and v is even in each coordinate,
v(tz1, £29, ..., £29q) = v(21, 22, ..., 224),
(ii) v is submultiplicative,
v(w+ z) <v(w)v(z), w,zeR™,
(iii) v satisfies the GRS-condition (Gelfand-Raikov-Shilov [GRS57]),

lim v(nz)/" =1, for all z € R%,
n—oo
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We call a weight satisfying properties (i)-(iii) admissible weight. Ev-
ery weight of the form v(z) = e’ (1 + |z|)%log" (e + |2|) for parameters
a,7,s > 0,0 <b <1 is admissible.

From [FGT15], we have the following observation concerning submulti-
plicative weights satisfying the GRS-condition.

Proposition 1.2.21. [FGT15, Proposition 1] Let v be a submultiplicative
weight on R2%. Then the following conditions are equivalent:

(1) v satisfies the GRS-condition,
(2) v satisfies v(z) < el*l, for every e >0 .

We say that m is in the class of v-moderate weights M,,, if m is a posi-
tive, even in each coordinate and continuous function on R2? that satisfies

m(z +y) < Cu(z)m(y) for all z,y € R
Now, we can define the modulation space ME? in the following way.

Definition 1.2.22. Let m € M, where v is an admissible weight, and g a

non-zero window function in Sll//g(Rd). For1 <p,q < oo, the modulation

space MEY(R?) consists of all tempered ultra-distributions f € (Sll//g)’(Rd)
such that Vy f € LyY(R?*). The norm on MEY is

1/q

qa/p
||f||M$q<Rd>:=\|ng|rW(R2d>=(/Rd(/wrwf<x,w>m<x,w>|pdx) dw> ,

with the usual modifications when p = oo or ¢ = oco. We remark that

the definition of M5 (RY) is independent of the choice of the window g €

Sllfzz(Rd)\O, and different g gives rise to equivalent norms (See e.g. [Tof12,

Proposition 1.11]).
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For p, ¢ € [1,00) U {0} the dual of M%?(RY) can be identified with
M%7 (R?), under the pairing

m

)= [ [ Vol @) Vb (o),

where p’ and ¢’ are the conjugate exponents of p and ¢. As usual, we agree
that the conjugate exponent of 0 is 1.

In fact, M!(R?), where v is an admissible weight, is dense in M} (R?),
for 1 < p,q < oo and m € M,, [CPRT05]. Also, we have the next rela-
tionship between modulation spaces and Gelfand-Shilov type spaces from
[Cor07, Corollary 3.4].

Theorem 1.2.23. Let m € M,, where v is an admissible weight, then

Sll//g(Rd) is dense in MEI(RY), for 1 < p,q < co.

In particular, since M} is weak*-dense in M} (R?) for p or ¢ equal to oo,

we have 511;22 (RY) is weak*-dense in Mp(R?), when p or q are equal to oco.

The closure of 511;22 (RY) in My29(RY) is denoted MY (R?) and MEL(RY) is
defined similarly.
We recall the following theorem for a Gabor frame G(g, A), with a lattice

A = aZ® x BZ2, from [Gré07, Theorem 6.11].

Theorem 1.2.24. Assume that g € M} (R?) for some admissible weight v
and that G(g, \) is a Gabor frame for L>(R?). Then the following properties
hold for all m € M,,:

(i) h=5;"(g) € M}.

(ii) If f € MEA(RY), then the frame expansions

f=Y (frNg)r(Nh = (f,m(Ah)w(N)g

AEA AEA

converge in norm in MY (R?) for 1 < p,q < oo and weak* when p or
q are equal to oco.
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(iii) Norm equivalence,

[z = (A g aeallezys-



Chapter 2

Unconditionally convergent
multipliers

2.1 Introduction

Let G(g,A) be a Gabor frame and h a dual window. Then every function
f € L?(R?) can be expressed as

f=> (f.7(N)g) T(A)h.
AEA
Now, let m € £ be given. The series
> ma(f, (N g) T(A)h,
AEA

can be interpreted as a filtered version of f. This series inspires the defini-
tion of Gabor multipliers

Mmf = Z my <f7 W(A)g> W(A)h7

A€A

where h and g are not necessarily dual windows. Gabor multipliers are
discrete versions of time-frequency localization operators introduced by

25
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Daubechies [Dau88]. Gabor multipliers are useful tools in the analysis
of pseudo-differential operators, [Gréll], and Fourier integral operators,
[CGN12]. Also, they are applied in the study of multi-window spectro-
grams [BB00, AGR16], which can be used for spectral estimation. Due
to their discrete nature, multipliers are more akin to the implementations
required in acoustics [BLED10].

As a more general version of Gabor multipliers we introduce the oper-
ators called multipliers. A multiplier on a separable Hilbert space H is a
bounded operator

o0
Mupow: H—=H, frs ) mpy (f,0y) Dy, (2.1.1)

n=1

where ® = (®,,),, and ¥ = (V,,), are sequences in H and m = (my,), is a
scalar sequence called the symbol.

The multiplier is said to be unconditionally convergent if the above
series, (2.1.1), converges unconditionally for every f € H. For any (un-
conditionally convergent) multiplier M, ¢ v its adjoint Mm v.o is also a
(unconditionally convergent) multiplier.

Observe that each bounded operator 7" on H can be expressed as a
multiplier: if (u,),, is an orthonormal basis, we can take ®,, = T'up, ¥,, = up,
(alternatively ®,, = up, ¥,, = T™u,) and m, = 1 for each n € N.

In the case that ® = (®,), and ¥ = (V,,), are Bessel sequences in H
and m € £°° the operator M,, ¢ v is called a Bessel multiplier. Recall
that ¥ = (¥,,), is called a Bessel sequence if there is a constant B > 0
such that

STl wP < BIAIP,
n=1

for every f € H. It turns out that (¥,), is a Bessel sequence if and only if
there exists a bounded operator T : £> — H such that T(e,) = ¥,,, where
(en),, denote the canonical unit vectors of ¢2 ([Chr03, Theorem 3.2.3]).

Bessel multipliers were introduced and studied in a systematic way by
Balazs [Bal07] as a generalization of the Gabor multipliers considered in
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[FNO03]. In [Bal07] it is proved that each Bessel multiplier is unconditionally
convergent. Balazs and Stoeva [SB13b] provide examples of non-Bessel
sequences and non-bounded symbols defining unconditionally convergent
multipliers. However all the examples are obtained from a Bessel multiplier
after some trick. In fact, Balazs and Stoeva conjecture in [SB13a] that every
unconditionally convergent multiplier can be written as a Bessel multiplier
with constant symbol by shifting weights. More precisely,

Conjecture 2.1.1. [SB13a, Conjecture 1] Let
Mm’cp’\p H—>H

be an unconditionally convergent multiplier, then there exist scalar sequences
(an)n and (by)y such that

and
(an®y),, and (bnV,),

are Bessel sequences in H.

Several classes of multipliers for which the conjecture is true are ob-
tained in [SB13a]. For instance, they proved that this is the case for multi-
pliers of the form M,, ¢ o [SB13a, Proposition 4.2] and also for multipliers
with the property that the sequence (|my,|-||®y]| - |[¥x]]),, is bounded be-
low by a strictly positive constant [SB13a, Proposition 1.1].

In this chapter new situations where the conjecture of Balazs and Stoeva
is still true will be presented. These new situations are different in spirit to
the ones considered in [SB13a]. To start we consider a particular situation:
for the case that m, = 1 and V¥,, = g for every n € N, the conjecture
has a positive answer if and only if for every unconditionally summable
sequence (®,), in a separable Hilbert space H we may find (ay,), € £2
such that (iq)”)” is a Bessel sequence in H. Then, the main aim of the
present chapter is to analyze the structure of unconditionally summable
sequences in a separable Hilbert space. Our results cannot be considered
as improvements of those in [SB13a] nor can be obtained with the same



28 CHAPTER 2. UNCONDITIONALLY CONVERGENT MULTIPLIERS

techniques, they cover a completely different situation since in the cases we
consider the sequence (|my,| - ||®y|| - [|¥nl|),, converges to zero.

2.2 Auxiliary results

We need some definitions and auxiliary relationships to argue our results
presented in the next section. From now on by an operator between Banach
spaces we mean a bounded and linear operator.

Definition 2.2.1. Let 1 < p < oo and let T : X — Y be an operator
between Banach spaces. We say that T is p-summing if there is a constant
C >0 such that

1

m P m %
(Z HT%Hp) < C'sup <Z ’<$*7$i>’p> 12" € Bx+ ¢,
i=1 ;

=1

for every m € N and every {z;}1*; C X. The collection of all p-summing
operators from X toY is denoted by I1,(X,Y).

Definition 2.2.2. We say that an operator T' : X — Y between Banach
spaces is a p-integral operator (1 < p < oo) if there are a probability
measure p on a domain 0 and (bounded linear) operators A : LP(Q, u) —
Y* and B : X — L>®(Q, u) giving rise to the commutative diagram

T ky

X Y Y
E g
L2(€, 1) N LP(S2, ).

As usual, i, : L®(Q, p) — LP(Q, p) is the formal identity, and ky : Y —
Y** is the canonical isometric embedding. The collection of all p-integral
operators from X toY is denoted by Z,(X,Y).
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Definition 2.2.3. As in [PP6Y9], let E,F be complex Banach spaces, we
denote by N,,(E, F) the set of all operators T : E — F which can be written

in the form
o0

Tu = Z(u, ul Yoy, (2.2.1)

n=1

with

=

1
<Z ||u§l||p> < oo and sup <Z| Up,y ¥ ) < 00 (2.2.2)
n=1

[[o"[|<1

when 1 < p < oo and with the additional requirement |u,|| — 0, n —
00, in the case p = co. The elements in Np(E,F) are called p-nuclear
operators. It is a Banach space equipped with the norm

1 1
o] ) o] 'Y
= inf <Z Hu’an> sup <Z<Un, v’}p/> ,
n=1

<t \p=1

where the infimum is taken over all the pairs ({ul,}n,{vn}n) which satisfy
(2.2.1) and (2.2.2).

Forp =1, the space N1(E, F) coincides with the space of nuclear operators
of E into F, which are the ones where the series Y -, u;, is absolutely
convergent and {v,}>2 , is bounded.

We first need a particular case of [DJT95, Theorem 3.7].

Theorem 2.2.4. Let H a Hilbert space, then every operator T : cg — H
18 2-summing.

Theorem 2.2.5. [DJT95, Corollary 5.9/ The 2-summing and 2-integral
operators are the same.

Theorem 2.2.6. [Per69, Theorem 5] If E has a strongly separable dual
E', then, for 1 < p < oo, the set of p-nuclears operators is the same that
the set of p-integral operators with equality of the corresponding norms.
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Theorem 2.2.7. [Jar81, Theorem 19.7.4]

(a) For every (an)n € P, the diagonal operator Dy : £ — (P, for 1 <
p < 00, is p-nuclear. Moreover, the operator Dg : £° — cg s also
p-nuclear.

(b) An operator S : E — F' is p-nuclear if, and only if, there are (an), €
P, Aec LUP,F) and B € L(E, ) such that S = Ao Dgo B.

Definition 2.2.8. A Hilbert-Schmidt operator is a bounded operator
A Hy — Hs, with Hy and Hy being Hilbert spaces, such that its Hilbert-
Schmidt norm is finite,

1A Fs = Te(A*4) = Y [|Aei?
i€l
where || - || is the norm of Ha, {e; : i € I} is an orthonormal basis of

Hy, and Tr is the trace of a nonnegative self-adjoint operator. The set of
Hilbert-Schmidt operators is denoted by S*(Hy, Ha).

Theorem 2.2.9. [DJT95, Theorem 5.30] Let Hy and Hs be Hilbert spaces.
If1 < p < o0, then T,(Hy, Hy) = N,(Hy, Ha) = S?(Hy, H) isomorphically,
and even isometrically if p = 2.

2.3 Results

Now we present some results concerning unconditionally summable series,
and their impact on unconditionally convergent multipliers.

We use the fact that a series > 2 | ,, in a Banach space X is uncondi-
tionally convergent if and only if there exists a compact operator T : cg — X
with the property that T'(e,) = x,, where (e,),, denote the canonical unit
vectors of ¢y (see for instance [DJT95, 1.9]). We recall that, in the case that
X = H is a Hilbert space, every bounded operator T': cg — H is compact.
In fact, the closed unit ball B of H is weakly compact, the transposed map
T* : H — (' is a bounded operator and weak and norm convergence of se-
quences in ¢! coincide ([DJT95, Theorem 1.7]). Therefore T* is a compact
operator and so is 7.
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From the previous considerations we conclude that a series > > |z, in
a Hilbert space H is unconditionally convergent if and only if there exists
a bounded operator T : ¢y — H with the property that T'(e,) = z,. An
important consequence is the fact that the unconditional convergence of
Y02 | Ty is equivalent to

(0.9}
Z |{(zn,g)| < oo forall g € H.

n=1

This is so because if the last condition is satisfied then, by closed graph
theorem, S : H — ¢*, S(g) := ((xn,g)),, , defines a bounded operator and
T = S* : {>* — H satisfies T'(ey,) = x,.

For a fixed sequence a@ = (ay,), we consider the diagonal operator
Do (z) = (an),,, defined in Definition 1.1.2. If o € £2 then D, : £ — (2
is a bounded operator, while D, : > — ¢? is a bounded operator if and
only if o € £*° (Proposition 1.1.3). In particular, this is the case if a € ¢y.

Lemma 2.3.1. The following statements are equivalent:

(a) Every unconditionally summable sequence (®,,), in H can be written

as ®,, = ay, fn, where (an), € €2 and (fn),, is a Bessel sequence in H.

(b) Every bounded operator T : co — H can be factorized as
T=AoD,

where Dy, : co — 02 is a diagonal operator and A : 0> — H is a
bounded operator.

Proof. (a) = (b). If T : ¢co — H is bounded then (®,), = (T(eyn)),, is
unconditionally summable ([DJT95, Theorem 1.9]), hence T'(e,) = an fn,
where o = (), € €2 and (f,),, is a Bessel sequence in H. Therefore (fy),,
defines a bounded operator A : (2 — H, A(B) =", Bnfn, and T = Ao D,.

(b) = (a). Let (®,),, be an unconditionally summable sequence in H.
Then there is a bounded operator T' : ¢g — H such that T'(e,) = ®,, and, by
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hypothesis, it can be factorized as T = Ao D, where o € £ and A : (> — H
is a bounded operator. Then (fy,), := (A(ey)),, is a Bessel sequence in H
and clearly ®,, = A (apeyn) = anfn. O

Now we establish a reformulation of the conjecture by Balazs and Sto-
eva. As a consequence, having a positive answer is equivalent to proving
a bilinear version of statement (b) in Lemma 2.3.1. We will use that a
sequence of scalars a = (), belongs to £2 if and only if (v, 3,)n € €2 for

every (/Bn)n € Cp.

Proposition 2.3.2. Assume that the series ), (f, ¥,) ®, converges un-
conditionally for all f € H. Then, the following statements are equivalent:

(a) There exists (cn)n such that {¢,¥,}, and {éq)”}” are Bessel se-
quences in H.

(b) The continuous bilinear operator

T: ¢cogxH — H
(a7f) — Zan<f7\1/n>q)n

admits a factorization

T=BoD
where
B:* - H
18 a bounded operator and
D:coyx H— (2

is a continuous bilinear operator such that for every f € H,
D(-, f) :cog — £

18 a diagonal operator.
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(¢) There exist two bounded operators
A:H—(* and B: > > H

such that for every o € ¢ the operator T, € L(H), defined by To(f) =
Yo (f, V) Oy, can be factorized as

T, =BoD,oA.

Proof. Without loss of generality we assume that ¥,, # 0 and ®,, # 0 for
each n.
(a) = (b) Since {¢, ¥}, and {é@n}n are Bessel sequences,

1
B: (> - H, B(e,) =—%,

Cn
and
D:cox H—= 0 D(a,f) = (an{f,cn¥,))
are well defined and continuous and T'= B o D.
(b) = (¢) We observe that T,, = T'(«a,-), hence T, = B o D(«,-). The
fact that D(-, f) : co — £? is a diagonal operator implies that D(a, f) =
(B (f))n, with (Bn(f))n € £2. Thus, the map

ATH =6 f = (Ba(f)n

n

is well defined. As, for every n € N, one has
Bn(f) = D(en, fn = (D(en, f); en),
then, A is linear and, by the closed graph theorem, continuous. Clearly,
T,=BoD,oA.

(c) = (a) We write A(f) € 2 as A(f) = (A(f)n)n. We take a = e, and
f=Y,. Then, T,,(¥,) = (¥,, ¥,) ®,, and by our assumption

To (V) = B(A(Yy)nen) = A(Wy)nBlen),
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hence
A
B(ep) = n-
Defining é = IJ"(\I@J';, the boundedness of B implies that (é@n)n is a

Bessel sequence in H.
Now, with o = e, and f € H we have that T,,(f) = (f, ¥») ®,, and

also
To(f) = BA(f)nen) = A(f)uBlen) = A(f)n—,.

Cn

therefore,

A(f)n = cn (fi ¥n) = (fin¥n),

that is,
A(f) = ((fvén\lln»n-

Since A : H — (2 is bounded, we conclude that {¢, ¥, }, is a Bessel sequence
in H.
]

We recall that any bounded operator B : co — £*°, B(ej) = (b;) , has

the property that b’ := (b;) € ¢! for every i € N and
J

IB]| = sup [[b°]] -
7

The next result can be viewed as an improvement of Orlicz’s Theorem
(see for instance [DJT95, Theorem 1.11] or [Heill, Theorem 3.16]),which
says that every unconditionally summable sequence in a Hilbert space is
absolutely 2-summable. It is the main result of the chapter.

Theorem 2.3.3. Every unconditionally summable sequence (y,),, in a sep-
arable Hilbert space H can be expressed as ®, = @y, fn, where (ay), € £
and (fn),, is a Bessel sequence in H.
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Proof. By Lemma 2.3.1 it is enough to show that every bounded operator
T : ¢co — H can be factorized as T = Ao D,, where « € ¢> and A : (> - H
is a bounded operator. According to Theorem 2.2.4 and Theorem 2.2.5, T'
is a 2-integral operator, hence it is 2-nuclear (Theorem 2.2.6). Therefore
there are bounded operators B : ¢g — ¢, S : {> — H and )\ € £? such that
T = S o Dy o B, by Theorem 2.2.7. To finish it suffices to find a € £? and
a bounded operator A on 2 such that Dy o B= Ao D,, since then

T=A0D,,

with A = S o A.

As Dy o B = Dy o (t71B) for each t > 0, without loss of generality we
can assume ||B|| = 1. We denote B(e;) = (b;) and b’ := (b;) €t We
i J

define o = () such that

[e.@]
=D Il - [0
i=1

Then
o0 o0 ]
D el =D I 6 e < A7, (2.3.1)
k=1 i=1

hence a € £2. Next, we consider

1 .
= — (\bL)., keN.
fk o ( ) k)z
Since [} |* < |bt |, the inequality (2.3.1) implies that fi € ¢2. To finish the
proof, we have to show that there is a bounded operator A on 2 such that

A(er) = fr, that is, (fy), is a Bessel sequence in ¢2. To this end, we fix
B = (Br)r € 72 and v = (1)K € £2. Then,

N N [e's)
> 1B (fios) Z Z 5%l 6]
k=1 k=1 j:l
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for all N € N. As \, v € (2,

[NIES
[ I

SOl v < [DSNEBE] D] 1
j=1 j=1 =1

[SIE

0 .
= lagl - [ DIl 163
j=1

Moreover

ZZI%IZ ' ZI%I2 17 < [l117-

k=1 j=1 j=1

This means that

N

0 .
> il 1 S
=1

keN

Hence,

[N

S B e <Y 1Bl [ Dol bl ] < oo
k=1 k=1 j=1

Since this holds for every 8 € £2 we conclude that

> 1)
k=1

for every v € £2. Now, the closed graph theorem gives the conclusion. [J

Theorem 2.3.3 gives a positive answer to the conjecture of Balazs and
Stoeva when (¥,,),, is a constant sequence. Next we consider a more general
situation.
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Corollary 2.3.4. Let M,, v be an unconditionally convergent multiplier

and assume that 0 is not a weak accumulation point of the sequence (”g—zv

Then there exist scalar sequences (ay)n and (by)y, such that my, = a, - by,

and (an®y,), and (b,V,,), are Bessel sequences in H.

n n

Proof. In fact, our hypothesis implies the existence of finitely many ele-
ments f1,..., fx € H with the property that

v,
fka>‘ 2 ]-a
< [0

for every n € N. Since M,, v is an unconditionally convergent multiplier

we have

n=1

for every f,g € H. Consequently

0o K oo
Dm0l 1@y g} <0 mn] - [(Fr ©ad| - [(®, 9)| < 00,
n=1 k=1n=1

for every g € H. It follows that the series Y > | my||¥,||®, is uncondi-
tionally convergent and we can apply Theorem 2.3.3 to find a sequence

(by)n € ¢? such that (%H\IJTLH(IM) is a Bessel sequence. Since also
n n

(bnni—"v is a Bessel sequence, the conclusion follows. O
ni/n

By Orlicz’s Theorem, in the case that (V,,), is constant, the uncondi-
[e.e]
tional convergence of the series Z my (f, V) @, implies that

n=1

o
D (mal - @] - 1Wa)? < cc.

n=1
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In particular, the sequence (my,-||®y||-[|¥,]]), converges to zero and [SB13a,
Proposition 1.1] cannot be applied. Obviously, in Corollary 2.3.4, the con-
dition on the sequence (¥,), can be replaced by a similar condition on
(®),)n- The following result shows that the conjecture stated by Balazs and
Stoeva in [SB13a] holds under the stronger hypothesis of absolute conver-
gence of the series. The proof depends on Theorem 2.3.3 and it does not
follow from the results in [SB13a).

Theorem 2.3.5. Let M, v be such that for each f € H, the series

> i (f, ) By,
n=1

converges absolutely in H. Then there exist scalar sequences (an)n and (by)n
such that my, = ay, - by, and (b,¥,), and (a,P,), are Bessel sequences in

H.

n n

Proof. Replacing (my,),, and (®y,),, by (mn,||®xl]),, and (®,,/||®y]|),, we may
assume that ||®,|| = 1 for every n € N. The condition (m,, (f, ¥,,)), € ¢!
for every f € H implies that the sequence (m,V,), is unconditionally
summable in H, therefore by Theorem 2.3.3, there is (c,), € £2 such that
(T::q/n)n is a Bessel sequence. As (¢,®,)

conclude. O

,, is also a Bessel sequence, we

As a consequence of the previous result, we prove the following result
for Hilbert-Schmidt operators on H, S?(H). As usual £(H) denotes the
space of all continuous operators on H.

Proposition 2.3.6. If the series Y .- | my (f, ¥,) ®,, converges absolutely
for every f in H, then, the series

oo
> ma¥, ©
n=1

converges unconditionally in the Hilbert space S*(H) of Hilbert-Schmidt
operators on H.



2.3. RESULTS 39

Proof. Without loss of generality we may assume that m,, = ||®,|| = 1. As

the series
> I

converges for every f € H, then the map
S H =L [ (%)
is bounded, and its adjoint
T=58:1c— H, Tle)=19,

is bounded too, then (¥,,), =(T'(ey)),, is unconditionally summable,[DJT95,
Theorem 1.9]. By Theorem 2.3.3, there is (o) € ¢2 such that {iklln} is a
Bessel sequence in H. Therefore

M F =3 o {f, 8

can be factorized as B o D, o A, where

and )
B:(> = H, B(z) = v
s (:E) ;xnan n

are bounded, hence it is a 2-nuclear operator (Theorem 2.2.7). By Theorem
2.2.9, M* is a Hilbert-Schmidt operator, consequently

Mf = Zmn<fa \Ijn>q)n
n=1

is also a Hilbert-Schmidt operator.
Using the same arguments, we see that for each (\,) € ¢y, the operator

Fe Y (f00) Ay,
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is also a Hilbert-Schmidt operator. Hence the correspondence

U:ide Y A (5 0) Py

is well defined and linear from cg into S?(H). It is continuous when S?(H),
being a subspace of L(H), is endowed with the strong operator topology.
The closed graph theorem gives that the map above is continuous when we
consider on S%(H) the Hilbert-Schmidt norm. Since

Y U, 00,
n

converges unconditionally in S?(H). O

then

Let By denote the closed unit ball of H endowed with the weak topology
and p a probability Borel measure on Bpy. Then we have the canonical
continuous inclusion

Ju: H — L*(By, 1), ju(f) (9) == (f,9)-

Theorem 2.3.7. Let By denote the closed unit ball of H endowed with the
weak topology and assume that the series

i mp¥, ® &,
n=1

converges unconditionally in S?(H). Then, for every probability Borel mea-
sure  on By there exist scalar sequences (ap)n, (bn)n such that m, =
an - bp, (an¥y), is a Bessel sequence in H and (ju(bn®y)), is a Bessel
sequence in L?>(By, p). In particular

Z |(f, bnq)n>|2 < o0
n=1

for p-almost every f € By.
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Proof. According to Theorem 2.3.3 there is (), € £? such that

is a Bessel sequence in S2(H). In particular, for some constant C' > 0,
o
n=1
for every f,g € By. We now consider

/ (g, @) dpa().
By

After integrating in (2.3.2) we obtain that (a,¥;)
Moreover, for b, = ’Z—: we have

Z/ (f bn®)? dulf Za < o0,

from where the conclusion follows. O

2

o S0 (g, @) | < CIFI - gl (2.3.2)

mn

Qp

2 ._
a, =

., is a Bessel sequence.

In the previous theorem we proved that the unconditional convergence
of 2%, m, ¥, P, in S?(H) gives a positive answer to the conjecture in a
Hilbert space H continuously containing H. Under the additional hypoth-
esis that H is a subspace of L?(X,u) for some finite measure, on which
evaluations are continuous, we can find a closer relation between H and H.

Definition 2.3.8. Let X be an arbitrary set and H a Hilbert space of real-
valued functions on X. The evaluation functional over the Hilbert space of
functions H is a linear functional that evaluates each function at a point x,

Ly: f— f(x) forall f e H.
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We say that H is a reproducing kernel Hilbert space if, for all z in X,
L, is a bounded functional, that is, can be represented by the inner product
of f with a function K, in H,

f(x) = L:Jc(f) = <fa Kz>

Since K, is itself a function in H, it holds that for every y in X there
exist a Ky € H such that

K. (y) = <Kya Ky).

This allows us to define the reproducing kernel of H as a function K :
XxX—>Rby
K(‘T’y) = <Ky7 Kx)

If H C L?(X,pu) is a Hilbert space admitting a reproducing kernel
K(z,y), then,

f@) = [ 1K@ i), 2eX.

Theorem 2.3.9. Let (X, p) be a finite measure space and H C L*(X, )
a Hilbert space admitting a reproducing kernel K(xz,y). We put v(x) =
| K (z,-)|| =L, If the series

[e.o]
> ml, @ ¢,
n=1

converges unconditionally in S*(H). Then there exist scalar sequences (ap )y,
and (by)pn, such that my, = ay, - by, (a,Vy,), is a Bessel sequence in H and

(bn®y),, is a Bessel sequence in L2(X, ).

n

Proof. By Theorem 2.3.3, there is (ay, ), € 2 such that

(m”\lfn ® <I>n>
o, "
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is a Bessel sequence in S?(H). In particular, for some constant C' > 0,

o0

(g, Pn > < CIfI? - llgl?

for every f,g € H. For g = v(z) - K(z,-), we obtain

>

n=1

2
< |12, (233)

D <f7 \Iln> U(x)q)n('r)

Qg

since v(x) - || K (x,-)|| = 1.
We now consider

[0(z) - ®u(2)* du(x).

After integrating in (2.3.3) we obtain that (a,¥y), is a Bessel sequence in
H, hence in L?(X, u). Moreover, for b, = e and f € L3(X, 1) we have
that

< Sl ([ @@ ) - ([ oaenk i)
n=1
which shows that (b,®,,),, is a Bessel sequence in L2(X, p). O

2.4 Conclusion

In this chapter we have proved that every unconditionally summable se-
quence in a separable Hilbert space can be expressed as the product of a
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sequence of £2 and a Bessel sequence. Then, we have improved the classical
Orlicz’s Theorem and we have obtained some new situations where the con-
jecture of Balazs and Stoeva is still true. Our results cannot be considered
as improvements of those in [SB13a] nor can be obtained with the same
techniques. These results are included in [FGP17b] and [FGP17a].



Chapter 3

Compactness of Fourier
integral operators

3.1 Introduction

The aim of this chapter is to investigate compactness for Fourier inte-
gral operators (FIOs) when acting on weighted modulation spaces. The
boundedness and Schatten class properties of FIOs have been studied by
several authors under various assumptions on the phase and the symbol.
See for instance [RS06, CR14, Bisll, Bou97, CNR09a, CNR10b, RS06,
CT07, CT09, TCG10]. However no characterization seems to be known of
those FIOs which are compact. Our approach to the study of the compact-
ness of the FIOs follows the point of view of [CNR10b], which means that
our results strongly depend on the matrix representation of a FIO with
respect to a Gabor frame.

For a function f on R? the Fourier integral operator, FIO, T with
symbol o € L>®(R??) and real phase ® on R?? can be formally defined by

Tfa) = [ (o) fondn

The above formula defines a continuous operator from S(R?) into &' (R%).

45
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The phase ®(x,7) is tame. That it is, ®(x,7) is smooth on R?? and satisfies
the estimates
090 (2)| < Cq,  |a| > 2,2 € R¥, (3.1.1)

and the nondegeneracy condition

| det (927,] ®(z,n)| >8>0, (z,7)cR* (3.1.2)

For the symbol ¢ on R??,
10%0(2)| < Cy, ae. z€ R, |a| <2N (3.1.3)

holds, for a fixed N € N. Here 0% denotes the distributional derivative.
When ®(z,n) = an we recover the pseudodifferential operators (PSDOs)
in the Kohn-Nirenberg form.

Frames permit to represent operators in terms of matrices, the key result
in [CNR10b] shows that the matrix representation of a FIO with respect to
a Gabor frame G(g, A) with g € S(R?) is well organized. In fact, for a tame
phase function ® and a symbol o satisfying condition (3.1.3) there exists a
constant C'y > 0 such that

(Tr(N)g, m(1)g)] < Cn(x(A) — )™, (3.1.4)

for every A, u € A. Here (z) is an abbreviation for (1+|z|?)1/2, and x is the
canonical transformation of the phase ®. We recall that the canonical
transformation, (z,€&) = x(y,n), is a bilipschitz map x : R?? — R?4 defined
through the system
{y = V’VI(I)(xa 77)7
£ =V, P(z,n).

The estimate (3.1.4) is an extension of previous results of Grochenig
[Gro06] concerning almost diagonalization of PSDOs. See also [GRO8]. The
condition (3.1.3) on the symbol can be relaxed. In fact, if G(g, A) is a Parse-
val frame then the estimate (3.1.4) also holds under the weaker assumption
that o belongs to an appropriate modulation space (see [CGN12]).
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We will use the decay estimate (3.1.4) to discuss the compactness of
the FIOs when acting on weighted modulation spaces. More precisely, we
prove that the FIO is compact when acting on some modulation space of
the form M}, (R?) if and only if the sequences

(T (Mg, 7(X'(N) + 1)9)) yen

converge to zero for all u € A, where x’/ denotes a discrete version of the
canonical transformation . This is the content of Theorem 3.3.13. In par-
ticular, it follows that compactness does not depend neither on p nor on
m. To achieve our goal we need to focus our attention on a class of ma-
trices A = (CL’W')%W’ cA with the property that the decay of the coefficient
a .~ is determined by the distance of (v,7’) to the graph of v = x(7'). We
characterize when such a matrix defines a compact operator when acting
on weighted ¢P spaces of sequences. For a quadratic phase ® we completely
characterize in Theorem 3.3.17 the symbols o satisfying condition (3.1.3)
for which the corresponding FIO is compact. The operators we are consid-
ering may fail to be bounded on mixed modulation spaces as was shown
in [CNR10b]. To overcome this obstacle, an extra condition on the phase
was introduced in [CNR10b]. Under this additional condition, the com-
pactness results are extended to weighted mixed modulation spaces. As a
consequence, we recover and improve some compactness results for PSDOs
obtained in [FG06, FG07, FG10]. In the last section we see that all this
argumentation can be aplied to Fourier integral operators on modulation
spaces with GRS-weights, under similar conditions in the phase and the
symbol.

3.2 Matrix representation of operators

Cordero, Nicola and Rodino [CNR10b| obtained a result on almost diago-
nalization for FIOs with respect to a Gabor frame which permitted to study
boundedness of Fourier integral operators (FIOs) on weighted modulation
spaces. Our aim is to use the almost diagonalization technique to study the
compactness of FIOs. To this end we need to establish a clear relationship
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between operators acting on modulation spaces and operators acting on
appropriate sequence spaces.

From now on we assume that G(g, A) is a Gabor frame and g € S(R?).
Then h = S;1(g) € SR and Dy 0 Cy = Do Cy = Id e (pay for all
p,q € [1,00] and for every v-moderate weight m. The (topological) identities
S'(RY) = U{Mf/vs s > 0} and S(RY) = N{M2 : s > 0} permit to
conclude that

Cy, Ch : S(RY) — s(A)

and

Cy, Cp = S'(RY) — §'(A)

are topological isomorphisms into their ranges, where s(A) is the space of
rapidly decreasing sequences,

s(A) = {c €l®(A): lim cyA\*=0, forallac Zi} ,

[A| =00

and s'(A), its dual space, is endowed with the inductive topology. Moreover,
every f € S(R?) admits a decomposition

f=Y (fimNhm(N)g,

A€A

where the series converges in S(R?). Let T : S(RY) — S’(R?) be a continu-
ous and linear operator. For every f € S(RY), T'f admits a decomposition

T(f)=T (ZU?W(A)’ZM(/\M) =D (f 7T (x(A)g).

AEA
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Then,

_ <Z(Ch(f>))\<T (m(N)g) ﬂr(u)g>) ;
HEA

A€A

which inspires the following definition.

Definition 3.2.1. The Gabor matrix associated to a continuous and lin-
ear operator T : S(RY) — S"(R?) is defined as

M(T) = ((T(w(N)g), 7(1)9)) (ux)eaxA -
If T is a FIO with symbol o and phase ® we write M (o, ®) instead of M (T).

And from the definition we have the next expression for every f € S(R%),
Co(T(f)) = <Z(Ch(f)>/\<T (m(N)g) ,Tr(u)g>>
HEA

_ (Z M(T),J7,\(C'h(f))>\> = M(T)(Cu(f))
HEA

Theorem 3.2.2. Let T : S(RY) — S'(RY) be a continuous and linear
operator and G(g,A) a Gabor frame with g € S(R?). Then

(1) For1<p,q<oo, T can be (uniquely) extended as a bounded operator
from MER?) into MEL(RY) if and only if M(T) defines a bounded
operator from (1 (A) into £p;L(A).
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(2) For1<p,q<oo, T can be extended as a weak* continuous operator
from MEI(RY) into MEI(RY) if and only if M(T) defines a weak*
continuous operator from £l (A) into £h;L(A).

(3) Let 1< p,q < oo and assume that T : M5 (RY) — MEY(RY) is weak*
continuous. Then T : MEI(RY) — MEL(R?) is compact if and only if
M(T) : £51(A) — 1 (A) is compact.

Proof. Let h be the canonical dual window of g. Then we have
CyoT =M(T)oCy on S(RY).

Clearly, M(T) defines a continuous operator from the range Cj,(S(R%)),
which is a closed subspace of s(A), into s'(A). We now check that M (T')
defines a continuous operator from C®), the space of finite complex se-
quences, into s'(A), when CW is endowed with the topology inherited by
s(A). To this end, we fix z € C™) and observe that Dy(z) € S(R?), hence
M(T) o CpoDy(x) =CyoT o Dy(x). That is,

(M(T)(Cp 0 Dy) (@) = (T (Dy()) , m(n)g) = Y (T (m(A)g),m(n)g) - 2x-
AEA

Consequently, for every finite sequence x we have
M(T)(x) = M(T)(Cp o Dy)(x).

Therefore, M(T) is continuous on CY) when this space is considered as a
subspace of s(A). By density, M (T') defines a continuous operator from the
space s(A) into s'(A),

M(T)

M(T) : s(A) 2% S(RY) L 0 (SRY) 225 §/(4).

Then we have

T =DpoM(T)oC), on SR (3.2.1)



3.3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS 51

and
M(T)=M(T)oCpoDyg=Cyg0T oD, on s(A). (3.2.2)

Let us now assume that, for 1 < p,q < oo, M(T) : {0 1(A) — HL(A)
is bounded. From the continuity of Cj, : M5 (RY) — ¢5(A) and Dy, :
PA(A) — MEA(RY), we deduce that Do M (T)oC), : MEL(RT) — MEI(RY)
is a bounded extension of T'. The uniqueness follows from the facts that
S(R?) is dense in ME(RY).

Conversely, let us assume that T can be extended as a bounded operator
T : MEIRY) — MEI(R?), for 1 < p,q < co. Then, from the continuity
of Cy : MEY(RY) — (H7(A) and Dy : £5(A) — MEI(RY), we deduce that
CyoT oDy : th1(A) — (1(A) is a bounded extension of M (T). The
uniqueness follows from the facts that s(A) is dense in /5;Y(A). And we
have (1).

To prove (2) we use the same arguments, changing the continuity of 7'
and M(T) by the weak*-continuity, and the fact that S(R?) is weak* dense
in MEY(R?) and s(A) is weak* dense in £h;7(A) for 1 < p,q < oo.

To finish we prove (3). Recall that the compact operators are a closed
ideal in the algebra of the bounded operators. As S(R?) is weak* dense
in MEY(R?) and s(A) is weak* dense in £;I(A), for 1 < p,q < oo, from
(3.2.1), (3.2.2) and the weak*-continuity of T : M5 (RY) — MEZ(R?), for
1 < p,q < oo, we deduce that T = Dy 0 M(T) o Cy, : ME(RY) — MEL(R?)
is compact if and only if M(T') = CjoT oDy : £ (A) — 51 (A) is compact,

O

In the applications to the FIOs we will always consider m; = moy and
meo = m. In the special case of PSDOs we will have m; = mo = m.

3.3 Compactness of Fourier integral operators

3.3.1 Fourier integral operators on M7

Our aim is to discuss compactness properties for a FIO T whose phase is
tame and with symbol o € Mg, (R%9) for some sy > 2d. Through this
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section we use a fixed lattice A = aZ? x BZ% and a fixed Parseval frame
G(g,A) with g € S(R?). As proved in [CGN12], we have the following

estimate
(T (N)g, m(1)g)| < C{x(A) — )=, forall A, € A. (3.3.1)

And as in [CGN12], observe that any symbol satisfying condition (3.1.3)
belongs to M{g,, -

The estimate (3.3.1) together with the results of Subsection 3.2 suggest
that we should consider operators on sequence spaces defined in terms of
a matrix A = (CL%V’)%MGA’ where the distance of (v,7’) to the graph of
v = x(7') determines the decay of the coefficient a, .. As we cannot
assure that x(A\) € A, for A € A, we replace the canonical transformation
x by an appropriate discrete version X’ : A — A, defined as follows. We fix
a symmetric relatively compact fundamental domain @ of A and, for every
A € A, decompose any

x(A) =ra+ X' (),

where x'(\) € A and r) € Q. Since y !

L > 0 such that x'(\) = x/(u) implies

is Lipschitz continuous there is

a:= Qigg Jull > [[x(A) = x()]| = LA = pl]-
Hence
XTTEX WY ={peA: X(w)=xXN}

is contained in B (/\, %) N A, which is a finite set whose cardinal does not
depend on A. This suggests the condition imposed in the following defini-
tion.

Definition 3.3.1. Let v be a submultiplicative weight on R?* and assume
that 1 : A — A satisfies

= sup 4 car -1 0.
M_Aeﬁ{ d(e™({A})} <
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AEA such that

We define Cy (M) as the set of all matrices A = (ay,y)
”AHCU,IL, = ZU(V) - sup ’al/)()\)—&—'y,)\l < 00.
~EeA AEA

Proposition 3.3.2. Let T be a FIO whose phase ® is tame and o €
Mig,., (R24), so > 2d. Then, for every 0 < s < so — 2d we have

M(O’, ‘I’) S Cvijl.
Proof. We put a,, y = (T'm(\)g, 7(1)g). We have to show that
sz sup |y (30| < 00
YEA

According to [CGN12, Theorem 3.3],

{Tr(N)g, (1)g)| < CON) = )™ = Clusy (x(A) = )~

for some constant C'. Since there is ry € @ such that x(A) = x'(\) + 7y, we
obtain

a4y 2l = (T (N)g, 7(xX'(A) +7)9)]
< Clogy(x(N) = X' () =)~
_ C < Cvsy (7)) < CR
Vs (T‘/\ - 7) Vs (7) Vs (7)’

where R = max{vs,(r) : r € Q}. Finally, using that 2d < sg — s,

sz(’)/) ) iuﬁ ’ax’ A+, A‘ < CRZ

yEA = GA

Us

(7)

< 00

O]

The following almost diagonal map will play an important role when
discussing compactness properties of operators defined in terms of matrices
in CU57¢.
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Definition 3.3.3. Let ) : A — A be as in Definition 3.3.1 and a € CM.
Then
Dy :CY —CA

is defined by D, (x) =y where

0 if & v

Yy = .
! Z axry i vy eP(A)
Y=y

In particular, Dq y(€y) = ayey(y). Moreover, Dqy ((C(A)) cCW,

The transposed map
Dzw :CW - ¢,
is given by
(Do (@)a = (Do (@) 1) = (3, ax0e501)) = ary(n)-

In fact, DZ , can be extended as a map from C* into itself. In the case that
a is the constant sequence equal 1 the map D,y is denoted by I,. Then,
for an arbitrary a € C* we have

Da,w = Izﬁ e} Da.
When 9 is the identity, D, 4 is just the diagonal operator D,.

Lemma 3.3.4. Let

M = sup {card (¢ ({A\}))} < occ.
AEA

Then, there is a partition A = U]]Vil A; such that 1 is injective when re-
stricted to each A;.
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Proof. For all u € A, we know that there exist, at most, A1, Ag, ..., Apr € A
such that 1 = 1()\;). We put each \; € A, from this action we know that ¢
is injective in each A;. Each A; C A, then U]Ai1 A CA IEA €A () €A,
then there exist j € {1,2,..,m} such that A € A;, then A C Ujj\il A

O

Let m = (m))xea be a positive sequence. For any ¢ : A — A as in
Definition 3.3.1 we denote by m o 1) the sequence

mot = (Myn)y\ep -

Proposition 3.3.5. Let ¢ : A — A be as in Definition 3.5.1, a = (ax)xea
a sequence of complex numbers, m = (my)xea a positive sequence and
p € [1,00]. The following conditions are equivalent:

(1) Dy is continuous on €%(A).
(2) Dygyp is continuous from Efnow(A) to . (A).
(3) a € >(A).

Proof. Tt suffices to show the equivalence between conditions (2) and (3).
Let us assume that condition (2) is satisfied. As Dy (ex) = axey(y) then

ex
D,
v <m1/)()\) )

== ‘G/)\‘,

\Wmﬂ4
o,

from where we get (3).

To check that (3) implies (2) let us first assume that a € £>°(A) and the
restriction of ¢ to the support of a, that is {\ € A such that a) # 0}, is
injective. Then

1Des@lles, = larzamyoyller = laeaale . < lall el .



56 CHAPTER 3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS

In the case that condition (3) is satisfied but 1 is not injective on the
support of a we apply Lemma 3.3.4 and decompose

M
=30
j=1
in such a way that the support of a’ is contained in A;. Then
M
Da,’l/) = Z Dajﬂ/’
j=1

is continuous from €an¢ (A) to £5,(A) and

M
oo, < 3l < Mlal].
j=1

||Da,¢

Hence (3) implies (2) is proved. O

Remark 3.3.6. The same argument shows that condition (3) in Propo-
sition 3.3.5 is equivalent to being Dqy a bounded operator from comoy(N)
into com(N).

In particular, Iy, : &/~ (A) — €5, (A) is continuous. We observe that, if

motp
p # g, the map I, does not need to be bounded on spaces /,?(A), as can
be seen in the following example.

Example 3.3.7. Let ¢ : Z x Z+— Z x Z, given by ¢ (i,5) = (j,1). Then Iy
is not bounded on (> (Z x 7).

Proof. Let (x; ;)i jezxz € (*>Y(Z x 7), we calculate Iy((xi )i jezxz),

Iy((wij)agezxz) =Tp | D migeis | = D> @il (eiy)
(4,9)EZXZ (4,J)EZXZ

- Z LijCo(ing) = Z ijesi = (T5)(i.5)ezxz-

(4,J)EZXZ (4,)ELXZ
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We consider the sequence (z; ;)i jezxz, Where

1
T+ 12bl

we have
? N
) |- I
j% (;Mﬁ) J% (; (li] + 12041 )
21 P : 2\ 3
2(; ||+) ﬁ ) _;(‘ |1 % ‘+1 )

1
2)2
2 1 4
T\ 2 7
<4|2— = — < 00,

B (6) V3

that is (2 )i jezxz € £21(Z x Z), let us prove that I, ((x; )i jezxz) does
not belong to (*>Y(Z x 7).

1 2 §
- ) <22 |y
JEZ

JEN

| (22|

N

1
@ ’ (il+ 1)

> (ZI(Lp((xi,j)z‘,jemz))i,j2) =y (Z\ﬂﬁmiIQ)

JEZL €L JEZ €L
1 1
> (Zlomml) S (Sles )
% (Elororl ) - (Slorel 7
1 1
_ZO12 :”y—21'< 1jim
p=AUC R Rt Ul + D\ 120

Hence Iw((xi,j)i,jEZXZ) ¢ €2’1(Z X Z) O
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Proposition 3.3.8. Let m = (my)xea be a v-moderate positive sequence,
A= (a%'y/)’y,'y’EA € Cpp(A) and 1 < p < oo be given. Then A: L (A) —
. (A) is a bounded operator, which is also weak* continuous.

Proof. 1t is easier to deal with the transposed map, so we first consider
by = ay~ and claim that B = (b'm')%v’ cA defines a bounded operator

B: (% (A) — B‘iow(A) for every 1 < ¢ < co. We should remark here that

the class Cy,(A) does not need to be closed under transposition. Instead
we have

- sup |b .
76Z%v(v) sup b2 p(0)4y] < 00

Using that for every A € A one has A = ¢ () + A, and the inequality

My

1 < Cp———v(7), (3.3.2)
Mo (A)+y
we may write
Z oAy y| = Z ‘b%w(k)ﬂxw()\)ﬂ‘
vyEA veEA
Mhap(N)
< D [ Tu ey | Cm————0(v)
% ? ! My (N)+y
1 1
A\ |Zyp(n) 1| q4°
< Chnmypay | Y (0(7) Sup [by y(2)441)7 > ()
JeA A JeA Map(N)+y
< 00.

Therefore we conclude that
B: (% (A) —CA

is a well-defined operator.
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To prove that Bx € Eqiow(A) it is enough to check that

> I(Ba)yual < 00
AEA

for every y € (7 . Here ¢ is the usual conjugate exponent, for ¢ = 1 we

mo”
consider ¢’ = oo. To this end we denote ¢(v) = v(7) supy |b>\,w(>\)+v} . Using
again the inequality (3.3.2) we obtain

Y ABx Ll <D0 baamwal = Y Y bruy e Te+Yacal

AEA AEA vEA AEA yEA

<Cn D awya] v() Lw &l lyal ()
M3+

AEA vEA v
‘xzﬁ +7‘
<Cm ) oy 7\y|m
2000 2y e

< MCplzlles - lyll,e -1 4lle, .
m mo

where M is the constant in Definition 3.3.1. Moreover,

||B=T\|eq ST ” <1{Z| (Bz) )\y>\|}

AEA

< sup {Mcmuxugq,uyueq/ -HArcv,w}
||y|| <1 m moy

mow

< MG, - 1Al

and B : 0% (A) — E(iw(A) is a bounded operator for every 1 < g < oc.

In fact, B also defines a bounded operator from ¢, 1 to ¢, 1 o+ In fact,
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B : E‘%O — E‘;:w is continuous, B ((C(A)) C E%ow C €, 1oy and Co, L is the

closure of C) on (. Consequently, for every 1 < p < oo, the transposed

map defines a bounded operator A = B*: & | (A) — £7,(A) which is also
weak* continuous. 0

Proposition 3.3.9. Let m = (my)xen @ v-moderate positive sequence,
A= (a%’Y')v,v’eA € Cyyp(A) and 1 < p < oo be given. Then

A= Z(Tv © Do)
yEA

where a7 1= (aw(A)ﬂ,A))\eA- The series converges absolutely in the operator
norm.

Proof. Since m is v-moderate with constant C,,, by Proposition 1.1.6, we
have

1Ty 6, (A) = £, (M) < Crv ()

Also

1Dar 2 67,0 (A) = B, ()] < M 5P [ayny ]

where M is the constant in the Definition 3.3.1. Hence

Z HT’Y ° D!ﬂﬂl}” <M Z Cmv(’y) sup ’aw('y)—&-)\,)\’ < 0.
vyEA vyeEA A€A

Consequently
S = Z(T’Y © D )

vyEA

defines a bounded operator from fgmp(A) into /5,(A). With a similar argu-
ment we can decompose the transposed map in terms of operators Dfﬂﬂ/) =
I é} o Dgv, from where we conclude that S is also weak* continuous. More-
over, A and S coincide on {e) : A € A}, from where the result follows. In
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fact,

<S(€)\), <Z Qap(N) 4+, A Ep(N) 4y €u> <Z ag \Et, €u>

YEA teA

= <A(6>\), eu> .
O]

The following abstract result will be useful to obtain necessary condi-
tions for the compactness of FIOs.

Proposition 3.3.10. Let E = G’ and F = R’ be dual Banach spaces
and T : E — F be a compact operator, such that T'(R) C G. If {x;}ier

is a sequence that converges to x in the weak® topology, o(E,G), then,
{(T'(z;)) }ier converges to T(x).

Proof. We first check that {z;}icr is a bounded sequence in E. In fact,
{zi}ier is a bounded sequence in o(F,G). If we consider the sequence of
linear operators {(x;, ) }icr, then for every g € G, {(z;, g) }ics is a bounded
sequence. By Banach-Steinhaus’s Theorem, we obtain that {(x;,)}ier is
uniformly bounded and we conclude that {z;};cs is a bounded sequence in
E. We assume that {T'(z;)}ier does not converge to T'(z) in norm. Then
there are € > 0 and a sequence of indices (i), C I such that, for every
k,
1T (i) = T(x)]| > e

Since T is a compact operator, there exists a subsequence {T'(z;,,)}; con-
verging to some y € F. Since {z;,,}; o(E, G)-converges to x we conclude
that {T'(z;,,)}: o(F, R)-converges to T'(x). Since the norm convergence im-
plies the o(F, R)-convergence in F',we finally obtain that y = T'(x). Conse-
quently, {T'(x;,,)}+ converges to T'(x) in norm, which is a contradiction. [

Theorem 3.3.11. Let A = (a%wl)vv,eA € Cpy(A) and 1 < p < oo be
given. Then, A : Kﬁmﬁ(A) — 5,(A) is a compact operator if and only if

a) = (aw(/\H%)\))\eA € co(A)  forall vy € A.
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Proof. If a¥ € cy(A) for every v € A, then Dyv o = Iy 0 Dgv is compact for
each v € A. Hence, we can apply Propositions 3.3.8 and 3.3.9 to conclude
that A is a compact operator.

Let us now assume that A is compact. Let

6A> C P (A)
<mwM e ¥

let us see that it converges to zero in the weak* topology. Take an element
of the pre-dual of ﬂfmw(/\), z €, (A), being p’ the conjugate exponent

mo

(for p =1 we consider p’ = 0). In particular, we know that for every ¢ > 0
there exists M € N such that, if |A| > M,

T

<e.

My (X)

Then,
1

My (X)

<e.

<€,\,1’>

T

(acer™)
My (X)

. ex . * P
Since (mwm)AeA converges to zero in the weak™ topology of Emow(A), we

MMhp(X)

can apply Proposition 3.3.10 to conclude that (A (m;?(x))))\ N converges
€

to 0. Now, we fix v € A and use that

s
———ap)yal < ||4
myy T M)

Since m is v-moderate we obtain

O () ‘

)

ex
‘%WMMSQWWWA< >Ww

My (X)

which finishes the proof. O



3.3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS 63

We will apply Theorem 3.3.11 to the study of compactness of FIOs
Tf(a) = [ | eDate, )y
R4

whose phase is tame and with symbol o € Mﬁ%vso (RQd), so > 2d. As usual,

X is the canonical transformation of the symbol ® and x' : A — A is its
discrete version.

Theorem 3.3.12. Let T be a FIO whose phase ® is tame and o €
Mﬁ%vso (R??), sg > 2d. The following conditions are equivalent:

(1) T : L*>(RY) — L%(R%) is a compact operator.
(2) M(o,®): (2(A) — (?(A) is compact.

(3) (Tw(N)g, 7(xX'(A) + 1)9))5 € co(A) for every pu € A.

Proof. Since Myg, (R24) ¢ M>>1(R??) we can apply [CNR10b, Theorem

6.1] to obtain that T : L?(R%) — L?*(R%) is a bounded operator. From
Theorem 3.2.2 we get the equivalence of conditions (1) and (2). Now it
suffices to apply Proposition 3.3.2 and Theorem 3.3.11 to conclude. O

We observe that, for any positive and vs-moderate weight m,

o () = Loy (D)

mOX
with equivalent norms and that m o x is vs-moderate whenever m is.

Theorem 3.3.13. Let T be a FIO whose phase ® is tame and o €
Mloévso (R??), sqg > 2d. Then, for every 0 < s < sog — 2d, the following
conditions are equivalent:

(1) T : L*>(RY) — L2(R%) is a compact operator.

(2) T : Mboy (RY) — MPE(RY) is a compact operator for some 1 < p < 00
and for some vs-moderate weight m.
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(3) T : Mboy (RY) — MPE(RY) is a compact operator for every 1 < p < 0o
and for every vs-moderate weight m.

Proof. From [CGN12, Corollary 5.5] and Propositions 3.3.2 and 3.3.8 we
have that

T:MP,_ (RY) — MP(RY) and M(o,®) : /7

mox moy’

(A) = £, (A)

are bounded operators for every 1 < p < oo and for every vs-moderate
weight m. It suffices to show (2) = (3). According to Theorems 3.2.2 and
3.3.11, condition (2) is equivalent to the fact that

(Tr(N)g, 7(X'(A) + 1)g)) , € co(N),

for every pu € A and this condition does not depend on p nor on m. O

We next discuss the case p = occ.

Theorem 3.3.14. Let T be a FIO whose phase ® is tame and o €
Mf@%vso (R24) and let 0 < s < sg — 2d and m a vs-moderate weight. Then

(1) T admits a unique extension as a bounded operator
T: My, (RY) = M3 (RY),
which is also weak”-continuous.
(2) T: M,%OOX(Rd) — MS(RY) is compact if and only if
(T (N)g, m(X'(A) + 1)9)) 5 € co(A),
for every u € A.

Proof. (1) We know that T = Cgo M (o, ®)oC; is bounded on S(R?), which
is weak*-dense in M2°(RY) for all m, a vs-moderate weight. Then T admits
a unique extension,

Tome, (RY) Sy oo (A) MO oo py 57 proordy,

moy mox
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where S = Cj : Mll/m

weak*-continuous, then T' is weak*-continuous. As the extension is unique
we denote it as T'.

(RY) — 0 /m(A). In fact, all the involved maps are

(2) By Theorem 3.2.2, T is compact if and only if M(o, ®) : €59, —

mox

£2°(A) is compact. Now it suffices to apply Theorem 3.3.11. O

For the proof of the next result we recall that the canonical transfor-
mation (x, &) = x(y,n) is defined through the system

{y = an)(%'ﬁ)a
£ =V, P(z,n).

Theorem 3.3.15. Let T be a FIO whose phase ® is tame and o €
M3, (R%) and let 0 < s < so—2d. If o € MO(R??) then T : Mp,o, (RY) —
MPE(R?) is a compact operator for every 1 < p < oo and for every vs-
moderate weight m.

Proof. 1t suffices to show that M (o, ®), » goes to zero as |(u, \)| goes to
infinity. To this end we first recall the relation between the Gabor matrix
of T and the STFT of 0. We denote A = (A1, \2), 1 = (11, p2) € R??. From
[CNR10b, (39)] we have

|M (o, (I)),u,/\’ =[(Tr(N)g,m(1)g)| = ’V‘IIM,AQU(ZNN)L (3.3.3)

where

Z()\ly)\2)7(/1417#2) = (/"Lla )\27 (/’LZ - v$©(ﬂlv A?))v ()\1 - vn(P(lu’lv )\2)))5

‘Il(ﬂl,)\z)(w) = €2Tri(1>27(“1a/\2)(w)§ ®§

and Py (
that is,

u1,)2) denotes the reminder of order two of the Taylor series of @,

(e}

1
w
<I>2,(m,>\2)(w) =2 Z /0 (1 —=1)0“®((p1, A2) + tw)dta,

|a|=2
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with (p1, A2), w € R??. By [CNR10b, 6.1] we obtain that
D ={U, 5 (11, X2) € 22}
is a relatively compact set in S(R??). Since o € MO (R??),
S(R?1) — Co(R?Y), W Vo
is a continuous map, hence
D ={Vy,, 0 (n,X) € 22"} = {Vyo : ¥ € D}

is a relatively compact set in Co(R??). Consequently, for every ¢ > 0, there
exists a finite set A with the property that for every (i1, A2) € Z2? there is
(11, A2) € A such that

€
Zséllgid |V\I/(H~17/T2)O'(Z) — Vq;(#lM)a(z)\ < 7

We take M, > 0 so that

£
max  sup |Vq;(l7 A~)a(z:)| <3
(1, 22)€A |2]>Me vz

Now take z € R4 with |z| > M.. Then

e €
o(z)|+ ]V\p(ﬁ}g)a(z)\ < -+ -<g,

Vo a2 < Vg, 0,,0(2) = 22

Y52

for every (u1,\2) € Z??. We conclude that |V
to zero as |zy ,| goes to infinity.

sx, O (2a)| goes uniformly

Finally, we check that M (o, ®), , goes to zero as | (A, 11)| goes to infinity.
We can distinguish two cases:

® ju1 or A goes to infinity. Then also |z ,| goes to infinity.



3.3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS 67

e Neither pg nor Ay goes to infinity. We can assume that there exist
C > 0such that [(u1, A2)| < C, from where it follows that V,®(u1, A2)
and V,®(u1, A2) are bounded. As |(A, i)| goes to infinity then us or
A1 goes to infinity. From the fact that V,®(u1, A2) and V,® (1, A2)
are bounded, we conclude that |z) ,| goes to infinity.

From (3.3.3) we deduce that the Gabor matrix M (o, ®)y , goes to 0 as
|(A, )| goes to infinity and the proof is complete. O

We now prove that the converse is true in the particular case of quadratic
phases.

Definition 3.3.16. The map ® : R?* — R is said to be a quadratic phase
if
1 1
d(x,n) :§Aaz-x+Bas'77+§C'n-n+770':L’—xg-n

where xg,m9 € R, A, B,C are symmetric real matrices and B is non de-
generate.

Theorem 3.3.17. Let T be a FIO with quadratic phase ® and o €
Mﬁ%vso (R??) and let 0 < s < sg — 2d. Then the following statements are
equivalent:

(1) o € MO(R%).

(2) T : MBoy (RY) — MPE(RY) is a compact operator for every 1 < p < 0o
and for every vs-moderate weight m.

Proof. We need to check that (2) = (1). We use the same notation as in
the proof of Theorem 3.3.15. Since the phase ® is quadratic then all its
second partial derivatives are constant. Hence

D2.(0,0) (W) = P (1 2o) (W) and W, 3,y (w) = ¥ g0y (w) = ¥(w)
for every (u1, A2) € R%¢. Consequently

(Tr(N)g, (1) g)| = [V .00 (2] (3.3.4)
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We now proceed in several steps.

We first prove that

(T7(N)g, T(1)9)) 5 pen € co(A x A). (3.3.5)

As M(o,®) € C,, 4 we have

Z Us(’)/) *sup ’M(O—v (I))x’()\)+’y,>\| < 0.
~eA AEA

In particular

lim sup|M(o, ®),. =0.
M—><><>A£| ( )x (A)+’y,>\|

So, for every € > 0 there exist vy € (0, 00) such that for every A,y € A with
17l > 0,

£ > [M(0,2)} a4 = [TTN)g, 7N + 7))l (3.3.6)

Since T' is a compact operator we can apply Theorems 3.3.12 and 3.3.13 to
get
(M(o, @) yr(x)43,0) 5 € co(A)

for every v € A. That is, for every € > 0 there exist A\, € (0,00) with the
property that A € A and |A| > A, imply

e > [M(0,®)} ()44 = KTT(N)g, 7(X'(N) +7)9)]. (3.3.7)

We now consider \g = max|,j<,,{Ay}. We will check that [(A, u)| > Ao +
Yo + max|y <y, X' (A)| 4+ 1 implies

e > |M(o, )} | = {T7(N)g, m(1)g)|-

Given (A, i), there is v € A such that u = x'(\) +v. If |y| > v we are
done by (3.3.6). If |y| < 70 but |[A| > Ao > Ay then we are done by (3.3.7).
To finish we discuss the case || < 7 and |A| < Ag. We have

Ao +70 + max XN +1 <1 w)] = A+ X )] + [
0
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Since |A| < Ag and |y| < o we deduce

max |[x'(7)] +1 < |xX'(\)
[v]<Xo

)

which is a contradiction because |A\| < Ag. Consequently

e > |M(o,®)} | = {T7(N)g, 7(1)g)]

whenever (A, p)| > Xo 470 + max|y<x, [X'(A)] + 1 and statement (3.3.5)
holds.

Secondly, we check that G(z,w) = (I'm(z)g,m(w)g) goes to zero as
|(z,w)| goes to infinity on R*!. We have

m(u)g =Y (w(u)g, m(v)g)m(v)g. (3.3.8)

veEA

As g € S(R?) € M'(R?), using the local properties of the STFT [Gré01,
12.1.11], we have V,g € W(L>, ¢1)(R??). Using the norm of this space
(1.2.1) we have, for every relatively compact subset K C R?? there is B > 0
such that

> sup [Vog(v +u)| < Bllgllas e

veA ueK

In particular, we take K a symmetric and relatively compact fundamental
domain of A and define

a(v) = sup [Vog(v + u)| = sup [(w(—u)g, 7(v)g)|-
ueK ueK

Then o € ¢*(A). Given z,w € R?*? we can decompose z = p + u and
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w=\+u, with y,\ € A and u,v € K. From (3.3.8) we obtain
(Tn(2)g, m(w)g)| = (T7(p+u)g, 7(X + u')g)|

= (T (p)m(u)g, 7(A\)m(u)g)|

< (T A+ v)g, (A + V)g)||[(x(w)g, m(v)g) || (x(u)g, m(+/)g)]

v,v'eA
< Y (Tr(p+v)g, (A + V) g)la()a)
v,V €N
< > (Tr(u+v)g.m(A+)g)la@)a)
vl |<M
+ Y [(Tr(p+v)g.m(A+V)g)law)a)
[v|>Mp'eA
+ > [(Trlp+v)gm(A+V)g)|a(w)a() (3.3.9)
v|<M,|V'|\>M

for every M > 0. Let € > 0 be given, take A = supy ,ep [(T'7(N)g, 7(11)g)|,
and find M > 0 such that

e
E alv) < ————.
) 3Al|al|g

lv|>M

For every u, A € A we have

Yo (Tr(u+v)g.w(h+1)g)law)av)

[v|>Mv'eA
<A <A - 3.3.10
Z Z ) = 3A||OL|| ||Oé”gl = 3 ( )
v|>M v'EA

and

Y. Tt v)g.a(h+V)g)law)al) <

lv|<M,|v'| =M

(3.3.11)

w| ™
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As ((T'm(X)g, m(1t)g))a,uen converges to 0, we can find N € N such that

3

sup (TN g, 79| < 5
Il N A peA 3llex]]
Z 1V, 7“6 gl

Finally, for any z,w € R?? satisfying ||+ |w| > N +2M +2-sup,¢c¢ |ul,
we obtain |u| + |\ > N +2M (z = p+u and w = X\ + o/, with gy, A €A
and u,u’ € C) and |p + v| + | + V| > N whenever |v|, |v/| < M. Then

Y Tr(u+v)g.w(h+)g)law)av)

vl <M
< sup {[(Tr(p+v)g, 7\ +)g)l} D alw) Y a)
],/ <M lv|<M v/ |<M
e 3
< 3[alE, Y a) Y a@)< 5 (3312)
& yl<M || <M

Using (3.3.9), (3.3.10), (3.3.11) and (3.3.12) we obtain

(Tr(2)g, (g < 5 +5+ 5 <e

The proof that |(T'7(2)g, m(w)g)| € Co(R49) is complete.
We can now finish the proof that o € M°(R??). We recall that
[{Tw(N)g, m(1)g)] = [Vwo(zr,)

for every A, u € R?? and consider Vyo(a, b, ¢, 1) with (a,b,c,1) € R, There
are unique e, f € R? such that

(0‘7 b7 C? l) = (a7 b7€ - Vm(b(a? b)’ f - VTI(I)(CL’ b)) = Zf,b,a,e-

Then |Vgo(a,b,c,l)| = |G(f,b,a,e)|.If |(a,b,c,1)| goes to infinity we have
two possibilities:

e a or b goes to infinity. Then |(f, b, a, e)| goes to infinity.
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e Neither a nor b goes to infinity. We can assume that there is A >0 such
that |(a,b)| < A, from where it follows that V,®(a,b) and V,®(a,b)
are bounded. As |(a,b,e — V,®(a,b), f — V,®(a,b))| goes to infinity
and a, b, V,;®(a,b), V,®(a,b) are bounded, we conclude that either e
or f goes to infinity. Hence |(f,b, a,e)| goes to infinity.

Since |(T'm(2)g, m(w)g)| € Co(R*) we can use (3.3.4) to conclude that
o€ MO(R2. O

Now we consider a FIO, T : S — &', with symbol o € L>®(R??) and
real phase ® on R??,

Tfa@) = [ (o) fondn

Let us calculate the transposed map 7% : S — &',

(0. T*f) = (Tg, ) = /

R4

7@ ([ 0 oo gla)an) da

2m®@n) 5 (o 1) F(2)g(n)dwdn

627Ti'1>(a:,77)0_(x’ 7]) m (/

Rd

eZ“iyng(y)dy> dadn)

2d

g(y)ezwi@(m,n)—ynlg(x,77) (x)dxzdndy

3d

9(y) ( / e~ 2mil®@m)—vilg(z,n) f (w)dwdn> dy.
d R2d

I
— T

From that we usually refer to the FIOs seen so far as FIOs of type
I, T1¢ 5, and their adjoints are called FIOs of type II, Tj; ¢5. For a
function f on R the FIO of type II, with symbol 7 € L>(R??) and phase
® on R?? can be formally defined by

Tf(x)=Tre f(z)= /R y e~ 2ml®m=anlr(y 1) f(y)dydn.
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Proposition 3.3.18. Let 177 ¢ » be a FIO of type II whose phase ® satisfy
conditions (3.1.1) and (3.1.2) and symbol 7 € M2, (R??) and let 0 < s <
c—2d. If 7 € MO(R??) then Tyr0, : MEL(RY) — Mpo, (R?) is a compact
operator for every 1 < p < oo and for every vs-moderate weight m.

Proof. If 7 € M°(R??), then 7 € MO(R??). Then Ty o7 : Mhoy(RY) —
MP,(R?) is a compact operator for every 1 < p < oo and for every v,-
moderate weight m by Theorem 3.3.15. Particularly Ty ¢ 7 : M?, (RY) —

mox
M% (R9) is a compact operator for every 1 < ¢ < oo, 1% + % =1, and for
every vs-moderate weight m . Thereby Ty ¢, : ME(RY) — MPbo, (R?) is a
compact operator for every 1 < p < oo and for every vs-moderate weight
m. O

3.3.2 FIOs on MP1

The FIOs we are considering may fail to be bounded on mixed modulation
spaces as was shown in [CNR10b]. The example was a FIO with phase

O(x,n) =an+ g, whose canonical transformation is x(y,n) = (y,y + 7).
We consider the case d =1 and A = Z x Z, Let a € (>Y(Z x 7),

Iy(a) = I Z AynCyn | = Z aynly (eyn)

(y,mELXZL (ym)ELXZ
= E Ay nCx(ym) = E : Ay nC(y,y+n)
(y,m€ELXZL (ym)ELXZ

= Z ay)\—ye(y}\):(ay«\—y)(y«\)erZ-
(y,\)EZXZ

Now, as in Exemple 3.3.7, we consider

1
Qyp=——""7
1 (yl + 12
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a € (*1(Z x Z), but we see that I(a) ¢ (*'(Z x Z),

N

1
2

Do @)l ) | =D Do 1U@)yal? | | =D U (@)an
y=A

ANEZ y€EZ AEZ AEZ

1 1
=2 [ | é ' (N+ 1>‘ -

ANEZ
That is, I, (62’1) is not contained in ¢%1.

To overcome this obstacle, an extra condition on the phase was intro-
duced by Cordero, Nicola and Rodino in [CNR10b], namely

sup !qu)(x,n) - qu)(:lc',n)’ < 0. (3.3.13)

/
T,

If x = (x1,x2) is the corresponding canonical transformation, condition
(3.3.13) implies that

x2(y,m) = Va@(x1(y,n),n) = V22(0,n) + aly,n),

a(y,n) being a bounded function.

From now on, G(g,A) is a Parseval frame with ¢ € S(R?), A; = aZ?,
Ay = BZ% and A = A1 x As. If Q denotes a symmetric relatively compact
fundamental domain of the lattice A then, there are K C Ao, finite, and a
unique decomposition

X1(A1,A2) = 711(A1, A2) + 1 (A1, A2),

x2(A1, A2) = 12(A1, A2) + ¥2(X2) + a(A1, A2),
for all (A1,A2) € A, where (r1(A1,A2),m2(A1,A2)) € @, ¥1(A1,A2) € Ay,
Pa(A2) € Az and a(A1,A2) € K. Moreover, from conditions (3.1.1) and
(3.1.2) it follows that the map

R? — RY, 5 V,0(0,7),
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is a bilipschitz global diffeomorphism, which implies that

sup card 15 ' ({\a2}) < oo.
Ao€Ao

This motivates the following definition.

Definition 3.3.19. Let 17[) : A1 XA2 — A1 XAQ, LZJ(Z,]) = (2/}1(2,]),11)2(2,])),
be as in Definition 3.3.1, that is, 1 satisfies

sup {card ("' ({A}))} < .
AEA

We say that ¢ is admissible if there exist a map s : Ay — As as in
Definition 3.3.1 and a finite set K C Ay such that

¢2(27]) - ¢2(J) + CL(ivj)v fOT all (Zaj)
where a(i,7) € K.

The discrete version Y’ : A — A of the canonical transformation asso-
ciated to a phase function satisfying conditions (3.1.1),(3.1.2), (3.3.13) is
admissible. From now on, given 1 admissible, to simplify the notation, we
will write o (7) instead of ¥a(5).

Given an admissible ¥ : A1 X As — Ay X Ag, let C be the cardinal of the
finite set K and M > 0 be such that for each (i, j) € Ay x Ag, v~ 1({(4,4)})
has at most M elements and 1)y 1({j}) has at most M elements for every
Jj € As.

Lemma 3.3.20. Let ¢ be admissible, and My = C - M. For each j € As,
we define 15 1 Ai — A1, as (i) := ¢1(4,7). Then, for each i € Ay the
set 1/11_;({2}) has at most M, elements.

Proof. We fix j € Ay and iy € Aq. If Y1(4,5) = ¥1(ip,j) then (i, j) =
(¥1(20,4),v2(j) + a(i,j)) can take C different values. Hence, there are only
C' - M possibilities for 1. O
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We start by analyzing the action of the basic operators D, ,, on weighted
sequence spaces with mixed norm £;!. Since Dy = Iy o Dy, we will study
the continuity of I, on these spaces. To this aim, we consider the transposed
map Jy := 1 fb’ with ¢ admissible. We recall that for every A € A,

Jyp(x) = (Ty(r))A-

Proposition 3.3.21. Let ¢ be admissible, m = (m; ;) jjen @ positive
sequence and p,q € [1,00) U {0}. Then, Jy is continuous from €hl(A) to
Ot (D).

Proof. Let x € £5,(A) and put y = - m and v = (i,5). Then

Wil < Z \ywl(z’a),wz(j)%\v

keAs
hence
1 1
p p
P
Z lpapl” | < Z Z |y¢1(z‘,j),w2(j)+k\
SN keAo i€
1
P
p
<MY Yoty ]
keAo leAy
Consequently
1 1
9\ A%

Z Z Y i) P < Z Z M, Z Yoo ) k|
%

JENy \i€A; JjEA2 feN

<C|M Z M, Z lye.nlP

h€As Leh

I
= OMM] |y

p:q»
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where we have applied triangular inequality for the norms in ¢f and ¢4, and
the facts that, for each j € Ag, 12(j) can be repeated at most M times and
Y1(4,7) = ¢1,5(2) can be repeated at most M; times (Lemma 3.3.20).

As Jy maps finite supported sequences into finite supported sequences,
the cases p = 0 or ¢ = 0 follow immediately. ]

For a € £°°(A) we obtain, from the decomposition D, = pr o D, the
estimate

1
|Das = 22, () = BN < CM MY - [la]c.

mo

Proposition 3.3.22. Let A = (a,)
and 1 < p,q < oo be given. Then,

yen € Cop(N), with ¢ admissible

(1) A defines a bounded operator A : €710 (A) — (7 (A), which is also
weak® continuous.

(2) A= Z(T7 0 Dy ) where a” := (ay(xn)44,2)aer- The convergence of
YEA
the series is absolute.

Proof. 1t is easier to deal with the transposed map, so we first consider
by, = ay ~ and claim that B = (b%,y/) defines a bounded operator

B : YA) — Epiqod}

D, q en[ll, 0. Thé?l the case that p = 0 or ¢ = 0 can be obtained as in the
proof of Proposition 3.3.8.
As H9(A) € €% (A), by Proposition 3.3.8, we obtain that

v EA
(A), for all p,q € [1,00] U {0}. We will assume that

B:RI(A) —Ch
is a well-defined operator. To prove that Bz € £ ¢(A) it is enough to
check that "

S [(B), 9| < o0

yEA
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for every y € Eﬁ;’oql;)(A). We proceed as in Proposition 3.3.8. We denote

B(A) = v(A) sup,, {b%w(v)Jr A| - We obtain, using that translations are isome-
tries on the spaces #P9,

S [Bo),u| <O D60 D S iy

~eA XEA ~eA m¢(7) A

<Cm Y 6N - | Jyla Hzm HszM

A€A

(2) follows as in Proposition 3.3.8 once continuities and the estimates
for the norms of the operators Dy~ are obtained. ]

The characterization of compactness obtained in Theorem 3.3.11 ex-
tends to mixed spaces when 1 is admissible.

Proposition 3.3.23. Let A = (a,w) yen € Cop(A), ¥ admissible and
1 <p,q <oo be given. Then, A deﬁnes a compact operator

AP0 (A) — (PI(A)

mow

if and only if a” = (aw(XH%)\)/\eA € co(A)  for ally € A.

The next result extends [CNR10b, Theorem 5.2] to weighted modulation
spaces and also includes the cases p = co or ¢ = o0

Theorem 3.3.24. Let T be a FIO whose phase ® is tame and satisfies
condition (3.8.13), and o € MT3,,, (R2%) with 0 < s < sg — 2d. Then,

T : MEL (RY) — MEYRY) is a bounded operator for every 1 < p,q < o0
and for every vs-moderate weight m.

Proof. Let G(g,A) be a Gabor frame with g € S(R?). From [CGN12, Corol-
lary 5.5] we have that

T : M?*(RY) — M?(RY)
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is a bounded operator. And from Propositions 3.3.2 and 3.3.22

M(o,®) : £5:2,(A) — £39(A)
is a bounded operator for every 1 < p,q < oo and for every vs,-moderate
weight m. Then, by Theorem 3.2.2, ,

T : MBI (RY) — MPI(RY)

is bounded for every 1 < p,q < oo and for every vg-moderate weight m.

O

Theorem 3.3.25. Let T be a FIO whose phase ® is tame and satisfies
condition (3.5.13), and o € Mg, (R24) with 0 < s < sg — 2d. and m
a vs-moderate weight. Then T admits a unique extension as a bounded
operator

T: MP4 (RY) — MPY(RY),

mox

for 1 <p,q < o0 and p or q equal to co, which is also weak®-continuous.

Proof. We know that T' = Cy o M (0, ®) o Cj is bounded on S(RY), which
is weak*-dense in M%?(R%), for 1 < p,q < 0o and p or ¢ equal to oo and
for all vs-moderate weight m. Then T admits a unique extension,

0D, () S MEIRY),

m

T MPa (RY) 22 pa (A)

moy moy
where S = C : Mf}’;f; (]le) oy Kf;’g;(A). In fact, all the involved maps are
weak*-continuous, then T is weak*-continuous. As the extension is unique
we denote it by T O

Theorem 3.3.26. Let T be a FIO whose phase ® is tame and satisfies
condition (3.3.13), and o € Mig,., (R24) with 0 < s < so—2d. The following
conditions are equivalent:

(1) T : L?(RY) — L2(RY) is a compact operator.



80 CHAPTER 3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS

(2) T : MEL (RY) — MEI(R?) is a compact operator for some 1 < p,q <
oo and for some vg-moderate weight m.

(8) T : MEL (RY) — MEA(R?) is a compact operator for every 1 < p,q <
oo and for every vs-moderate weight m.

Proof. Let G(g,A) be a Gabor frame with g € S(R?). From previous The-
orems we have that
T: MPI — MPA

mox

is a (weak*-)continuous operator. We fix 1 < p, ¢ < oo and m. By Theorem
3.2.2,
T : MP4 (RY) — MPA(RY)

mox

is compact if, and only if,

Mo, ®) : 635, /(A) — £37(A)
is a compact operator. By Propositions 3.3.2 and 3.3.23, this is exactly the
case when

((T"T(A)ga W(X,()‘) + M)g>))\€1\ = (M(U7 cI))x’(A)-i—u,/\))\eA € ¢ (A),

for all ;4 € A. This condition does not depend on p, g or m. O

3.3.3 PSDOs on M2

Now, we are going to consider compactness of pseudodifferential opera-
tors in Kohn-Nirenberg form. They are a particular case of FIOs when
®(x,y) = = -y, and hence x(y,n) = (y,n). If A is a regular lattice with
symmetric relatively compact fundamental domain ), the map Y’ is the
identity, therefore it is admissible. The class of matrices C, ,+ is denoted

by C, = Cy(A) and consists of all matrices A = (a%y)7 ren Such that

IAlle, =" v(y) - sup ax y4al < oo.
JeA AeA
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According to [Gro06, Lemma 3.5], C, is an algebra. Since the weight v is
symmetric, it follows that

D (%) suplarpal = D> v(7) - sup lagpanl-
= AeA = AeA

This means that A € C, if and only if A* € C,. Each A € C, defines a
bounded operator
A PA(A) — PI(A),

for p,q € [1,00] U {0} and each v-moderate sequence m. The compactness
of the map is independent on p, ¢ and m. This allows us to improve results
obtained in [FG07] and [FG10].

We recall the definitions of Wigner distribution, Weyl pseudodifferential
operator and pseudodifferential operator in Kohn-Nirenberg form.

Definition 3.3.27. The Wigner distribution of f, g € L*>(R?) is defined
as

W90 = [ fat Dol - e

2
If f,g € S(RY), then W (f, g) € S(RY).

Definition 3.3.28. Given o € S'(R??) its Weyl transform or Weyl pseudo-
differential operator is the operator L, : S(RY) — S'(RY) defined by

<L0(f)vg> = <O’,W(g,f)>7
for f, g € S(RY).

Definition 3.3.29. Given 7 € S'(R%), the operator K, : S(RY) — S'(R%)
defined by

K, :—/ (2, w) f(w)e2™ ¥ dw
R4

for f, € S(RY), is called pseudodifferential operator in Kohn-Nirenberg
form.
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We recall that every operator from S(R?) into S’(R?) can be represented
as a pseudodifferential operator L, with Weyl symbol ¢ and as a pseudo-
differential operator in Kohn-Nirenberg form with symbol 7. We refer to
[Gro01, Chapter 14] where the relation between o and 7 is established. In
particular, for s > 0, o € Mﬁ;ﬁs (R24) if and only if 7 € Mfg@ﬁs (R2d). For
convenience, we state the results for Weyl pseudodifferential operators.

Theorem 3.3.30. Let o € Mﬁ%’vls (R24) be given. Then the following state-
ments are equivalent:

(1) Ly : L*(R%) — L2(R%) is compact.

(2) Ly : ME(RY) — MEY(RY) is compact for all p, q € [1,00] and every
vg-moderate weight m.

(3) Ly : MEIRY) — MEYRY) is compact for some p, q¢ € [1,00] and
some vg-moderate weight m.

(4) o € MO(R?9).

Proof. Let G(g,A) be a Gabor frame with ¢ € S(R?) and A = aZ? x pZ?
for o, B > 0. Then, according to [Gré06, Theorem 3.2],

M (o) := (Lom(M)g, m(1)9)) (uryeaxa € Cos (D).

Moreover, it follows from (3.2.1) and (3.2.2) that L, : M5 (RY) — MEY(RY)
is compact if and only if M(o) : £31(A) — %(A) is compact. Now, the
equivalences among (1), (2) and (3) follow from Theorem 3.3.23. Finally,
since Mﬁ%’; (R24) ¢ M°>1(R??) we can apply [FG07, Theorem 4.6] to ob-
tain that condition (1) is equivalent to condition (4). O

Alternatively we could argue as follows. According to Theorem 3.3.23,
M (o) : £55(A) — £1(A) is a compact operator if and only if

(Lom(N)g, (A + 11)g)) xen € co(A) (3.3.14)
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for every u € A. By [Gr606, 3.1],
Qo
[{Lom(N)g, 7(A + p)g)| = |Vao (A + 5,5 (w))|

where ® = W(g,9) and j : R — R?? is the map j(¢,w) = (w, —£).
This permits to prove that condition (3.3.14) is equivalent to the fact that
o € MO(R2d).

We want to finish with some comments regarding localization operators
(see for instance [FG06, FG10] and the references therein). Localization
operators are defined by means of

1
(¢, )

f=LL,f = /R y F(z,w)V,f(z,w)M,Typdrdw.

We may write
(L f 1) = (F,VyhV, f).

The compact localization operators on Lz(Rd) were characterized in
[FG06] in terms of the behaviour of the STFT of their symbols. The con-
dition there obtained also gives compactness for the localization opera-
tors when acting on weighted modulation spaces of Hilbert type M?2 (R%)
([FG10, 5.6]). However, the reverse implication, that is, compactness on
some an(Rd) implies compactness on L2, could not be proved with the
methods used there.

Moreover LD = L, with o = F « W (¢, ). By [FG10, 5.2], if F €

M (R?d) and ¢, 1 € S(R?), then F W (1, ¢) € Mf;’(lvoj,l)(RQd) for every

v, and thus, the localization operator Lf;w is continuous from Mﬁ{q(Rd)
into itself. Since every localization operator can be described as a PSDO
in Weyl form, Theorem 3.3.30 permits to conclude that the compactness of
the localization operator on a modulation class M}, (R?) does not depend
on p nor m.

Corollary 3.3.31. Let F € M>®(R??) and ¢, p € S(RY) be given. The
following statements are equivalent:
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(1) Liw : L2(R?) — L?(RY) is compact.

(2) Lf;’@ s MEYRY) — MEA(RY) is compact for every 1 < p,q < 0o and
each m v-moderated.

(3) Lf;’@ : MEYRY) — MEA(RY) is compact for some 1 < p,q < oo and
some m v-moderated.

Recall that, by [FG06, Proposition 3.6] [FG10, Proposition 2.3], Li o I8
compact for every pair 1, 0 € S(R?) if, and only if, there exist g € S(R%)
such that

lim sup |VyF(z,y)| =0
[zl=00 |y|<R

for every R > 0.

3.4 Fourier integral operators on Modulation spaces
with GRS-weights

In this section we work with admissible weights v, introduced in Subsection
1.2.4. Recall that this means that the GRS-condition holds.
3.4.1 Matrix representation

Let us see that the matrix representation that we have seen can be extended,
with some particularities, to modulation spaces with GRS-weights. Let
g € M}, then h = S;(g9) € M, by [Gré07, Theorem 6.11] and [Gr306,
Theorem 2.2]. Also, we have

Theorem 3.4.1. Let g € M}, with v admissible. Then, for every v-
moderate weight m and for every 1 < p,q < oo,

Cy MPA(RY) — P9(A) and Dy : tB9(A) — MP4(R?)
are bounded operators, weak™ continuous, and

Dg o Ch - Dh OCg = IdMTIQerI(Rd).
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Here D, is the transposed map of Cj : Mf;’g: (RY) — Eﬁ’//’frz (A). Forp=1

or ¢ =1 we take p’ = 0 or ¢’ = 0 respectively.
Definition 3.4.2. The Gabor matrix associated to a continuous and linear
operator T : M}(RY) — M$°(RY) is defined as
M(T) = ((T(w(N)g) T(1)9)) (u xyeaxA -
If T is a FIO with symbol o and phase ® we write M (o, ®) instead of M (T).

Theorem 3.4.3. Let T': M} (R%) — M$°(R?) be a continuous and linear

operator and G(g, A) a Gabor frame with g € M. Then, for all v-moderate
weights m; and me, we have

(1) For 1 < p,q < oo, T can be (uniquely) extended as a bounded op-
erator from MBI (R?) into MEZ(R?) if and only if M(T) defines a
bounded operator from 5,7 (A) into £;1(A).

(2) For 1 <p,q < oo, T can be extended as a weak® continuous operator
from MBI (RY) into MEI(R?) if and only if M(T) defines a weak*
continuous operator from ¢ (A) into /5% (A).

(3) Let 1 < p,q < oo and assume that T : MEI(RY) — MEZ(R?) is weak*
continuous. Then T : M54 (RY) — MEI(RY) is compact if and only if
M(T) : (55 (A) — 1 (A) is compact.

Proof. Let h be the canonical dual window of g. Then we have
CyoT =M(T)oC, on MHR?).
We fix © € C™) and observe that D,(z) € M} (R?), hence M(T) o Cj, o
Dy(x) = CyoT o Dy(x). That is,

(M(T)(Ch o Dyg)(@)) = (T (Dyg(@)) ,w(p)g) = D (T (m(N)g) . 7(1)g) - xx.
AEA

Consequently, for every finite sequence z we have

M(T)(z) = M(T)(Ch o Dy)(x).
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First, if 7 : MEZ(RY) — MEI(RY) defines a (weak®) continuous opera-
tor, then

M(T) = M(T) o CyoDy=CyoToDy: LI(RY) — 4(RY)  (3.4.1)

defines a (weak®) continuous operator.

Conversely, if M(T) : 51 (R?) — ¢5,2(R?) defines a (weak*) continuous
operator. Dy o M(T)o Cj, =T : MBEI(RY) — MEI(R?) defines a (weak™)
continuous operator. We know

T=DpoM(T)oCl,=T on MNR?), (3.4.2)

which is (weak*-)dense in MZ?. Then T = T = Dj, o M(T) o Cj, :
MEIRY) — MEI(RY) defines a (weak*) continuous operator.

To finish we prove (3). From the hypothesis we deduce that the iden-
tities (3.4.2) and (3.4.1) hold on M5 (R?) and £5;%(A) respectively and by
the fact that compact operators are an ideal in the algebra of continuous
operators the conclusion follows. O

3.4.2 Fourier integral operators on M7

Let T be a Fourier integral operator, with symbol ¢ and phase ® on R?¢,
formally defined as

Tfa) = [ (o) fondn.

We consider, as in [CNR15a], a smooth phase ®(z,7) on R?? satisfying the

estimates
10°®| < Cl¥l(al), aeN |a| >2,2eR¥, (3.4.3)

for some C' > 0, as well as the nondegeneracy condition
| det 837,](1)(.%,77)] >6>0, (z,n)ecR¥ (3.4.4)
The symbol ¢ on R?? satisfies

0% (2)| < Cll(al), aeN? ze R, (3.4.5)
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for some C > 0. The first two conditions of the phase allow us, as before, to
consider the same canonical transformation denoted by x : R2¢ — R?¢, We
replace the canonical transformation y by an appropriate discrete version
X' : A — A, defined as before, and with the same properties.

We adapt the result [CNR15a, Theorem 3.3] to our conditions on the
phase and the symbol, which gives us control over the behaviour of the
matrix in a new situation.

Theorem 3.4.4. Suppose the phase & and symbol o satisfy (3.4.3)-(3.4.5)

1/2(]Rd). Then there exists € > 0 such that

above. Assume g € 51/2

(T (m(N)g), m(1)g)| S exp(—elp — x(N)]), (3.4.6)
for A\, u € R,
From this Theorem we deduce the next result.

Proposition 3.4.5. Suppose the phase ® and symbol o satisfy (3.4.3)-

(3.4.5) above. Assume that g € Sllg(Rd) and that v satisfies the GRS-
condition. Then we have

]\4'(0'7 (I)) S Cv,x’~
Proof. We need to prove that

Z v(7y) sup [M (0, @) (a)44,0) | < 00
S5 e

As v satisfies the GRS-condition, then v(y) < el for every € > 0 and
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every v € A. Using the bound of (3.4.6),
D w(y)sup [M (0, ®) (v (a4 | = D () sup (T(w(N)g), (X' (N) +7)9)]

i e Th el
<S> v(y) supfexp(—e[x'(\) + v — x(M)}
AEA
yEA
< Z sup{exp —ely| +¢€lral)}
YyeEA
€
< Y exn (Sl) Crexp(—eh))
yEA
S exp (—%Iv\) < o0.
yEA

O]

All the results proved about the matrix and its behaviour on sequence
spaces are valid here, since we have not assumed any condition on the
weight v, except for the submultiplicativity.

Theorem 3.4.6. Let T" be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5). Then, T : Mbo,(R?) — MPE,(R?) is a continuous operator
for every 1 < p < oo and for every v-moderate weight m, where v satisfies
the GRS-condition.

Proof. Let G(g,A) be a Gabor frame with g € S
[CNR10b, Theorem 4.1] we have that

T : M*(RY) — M*(R?)

1/2

1/Q(Rd) C M}. From

is a bounded operator. And from Propositions 3.4.5 and 3.3.8
M(o, @) : £y, (A) = £, (A)

moy’
is a bounded operator for every 1 < p < oo and for every v-moderate weight
m. We observe that, for any positive and v-moderate weight m,

Crox (A) = £7,0,(8)

mox mox’
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with equivalent norms and that m o y is v-moderate whenever m is. Then,
by Theorem 3.4.3,
T:MP, (RY) — MP (R

mox

is bounded for every 1 < p < oo and for every v-moderate weight m. O

Theorem 3.4.7. Let T" be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5). Then, the following conditions are equivalent:

(1) T : L?(RY) — L?(RY) is a compact operator.

(2) T : Moy (RY) — MP,(R?) is a compact operator for some 1 < p <
oo and for some v-moderate weight m, where v satisfies the GRS-
condition.

(3) T : Moy (RY) — ME,(RY) is a compact operator for every 1 < p <
oo and for every v-moderate weight m, where v satisfies the GRS-
condition.

(4) (T(N)g, 7' (N) + 1)g)) € co(A) for every € A.

Proof. Let G(g,A) be a Gabor frame with g € Sll//;

orem 3.4.6 we have that

(R%) € M}. From The-

T:MP . — MP

moy

is a bounded operator. And from Propositions 3.4.5 and 3.3.11

M(o,®) : £

mox’

(A) = 6,(A)

is a compact operator for each 1 < p < oo and for each v-moderate weight
m if, and only if,

(<T7T()\)g7 ﬂ—(X,()\> + /’L)g>))\eA = (M(O', q))X/(/\)'H/«,)\))\EA € CO(A)7
for all 4 € A. Then, by Theorem 3.4.3,

T:MP_ (RY) — MP (R

mox
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is compact for each 1 < p < oo and for each v-moderate weight m if and
only if

((TW(A)Q, W(X/()‘) + M)g>))\€1\ = (M(U7 (I))x’()\)+u7/\))\€/\ € CO(A)a

for all u € A. O

We next discuss the case p = oo.

Theorem 3.4.8. Let T be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5) and m a v-moderate weight, where v satisfies the GRS-
condition. Then

(1) T admits a unique extension as a bounded operator

T: M2, (RY) — M°(RY)

mOX
which is also weak™-continuous.

(2) T: My2, (RT) — My2(RY) is compact if and only if

(Tr(N) g, 7(X'(N) + 1)g)) , € co(A)
for every u € A.

Proof. (1) In fact, we consider the composition

. o0 dy © 00 M(o,®) 0 S* 00 (md
T : Mgy, (RY) =% Lo, (A) ——= £;7(A) == M7 (RY),

moy

where S = Cj : Mll/m(Rd) — 0 /m(A). We observe that all the involved

. . 1/2 . .
maps are weak*-continuous. Since Sl//2 (R9) is weak*-dense in M,%OOX(Rd)
the extension is unique.

(2) By Theorem 3.4.3, T is compact if and only if M (o, ®) : €55, —

moyx

£2°(A) is compact. Now it suffices to apply Theorem 3.3.11. O
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Theorem 3.4.9. Let T" be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5). If 0 € M°(R%) then T : M}, (RY) — ME,(R?) is a compact
operator for every 1 < p < oo and for every v-moderate weight m, where v
satisfies the GRS-condition.

Proof. From Theorem 3.3.15, if 0 € M°(R??) then T : L?(RY) — L?(RY) is
a compact operator. Then, by Theorem 3.4.7, T : M}, (RY) — MPE,(R?) is
a compact operator for every 1 < p < oo and for every v-moderate weight
m, where v is admissible. ]

We now see that the converse is true in the particular case of quadratic
phases, Definition 3.3.16.

Theorem 3.4.10. Let T be a FIO whose quadratic phase ® and symbol
o satisfy (3.4.3)-(3.4.5). Then the following statements are equivalent:

(1) o € MO(R%),

(2) T : MPoy (RY) — MPE,(RY) is a compact operator for every 1 < p < 0o
and for every vg-moderate weight m.

Proof. From Theorem 3.3.17, 0 € M°(R2?) if, and only if, T : L?(R?) —
L%(RY) is a compact operator. Then, by Theorem 3.4.7, T : Mp,o, (R%) —
MPE,(R?) is a compact operator for every 1 < p < oo and for every v-
moderate weight m, where v satisfies the GRS-condition. O

3.4.3 Fourier Integral Operators on M2

In the same way as before, we need to add an extra condition to consider
the case M[?, namely

sup |Vo®(z,n) — Vo@(z',n)| < oc. (3.4.7)

/
T',T,m

And it gives us the same properties on x = (x1,x2) and X' = (x},x5). In
this situation also the results proved about the matrix and its behaviour
on norm-mixed sequence spaces are valid.



92 CHAPTER 3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS

Theorem 3.4.11. Let T" be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5) and (3.4.7). Then, T : MEd (RY) — MEI(RY) is a continu-
ous operator for every 1 < p,q < oo and for every v-moderate weight m,
where v satisfies the GRS-condition.

Proof. Let G(g,A) be a Gabor frame with g € Sll//;(Rd) C M} From
[CNR10b, Theorem 4.1] we have that

T : L*(RY) — L*(RY)
is a bounded operator. And from Propositions 3.4.5 and 3.3.22

M(o,®) : (22 ,(A) — (P9(A)

moy’
is a bounded operator for every 1 < p,q < oo and for every v-moderate
weight m. We observe that, for any positive and v-moderate weight m,

8 (A) =79 ,(A)

mox mox’
with equivalent norms and that m o x is v-moderate whenever m is v-
moderate. Then, by Theorem 3.4.3,
T: MP4 (Rd) — Mﬁ;q(]Rd)

mox
is bounded for every 1 < p,q < oo and for every v-moderate weight m. [

Theorem 3.4.12. Let T be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5) and (3.4.7). Then T admits a unique extension as a bounded
operator

T : MP2 (RY) — MPA(RY),

mox

for 1 <p,q < oo and p or q equal to co, which is also weak®-continuous.

Proof. We know that T'= C, o0 M (0, ®) o C} is bounded on M} (R9), which
is weak*-dense in M%Y(R?), for 1 < p,q < oo and p or g equal to co and
for all vs-moderate weight m. Then T admits a unique extension,

OB, o) s MEARY,

m

TP (RY) C2 gra ()

moyx moy
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where S = C : Mf;’g; (RY) — E{l’,/’g;(A). In fact, all the involved maps are

weak*-continuous, then T is weak*-continuous. As the extension is unique
we denote it as T'.

O

Theorem 3.4.13. Let T" be a FIO whose phase ® and symbol o satisfy
(3.4.3)-(3.4.5) and (3.4.7). The following conditions are equivalent:

(1) T: L*(R?) — L%(RY) is a compact operator.
(2) T : MEL, (RY) — MEA(R?) is a compact operator for some 1 < p,q <

oo and for some v-moderate weight m, where v satisfies the GRS-
condition.

(3) T : MEZL, (RY) — MEA(R?) is a compact operator for every 1 < p,q <
oo and for every v-moderate weight m, where v satisfies the GRS-
condition.

Proof. Let G(g,A) be a Gabor frame with g € S
orem 3.4.11 and 3.4.12 we have that

. Y20 p,q
T:MES, — ME

1/2

1/ (RY) € M}. From The-

is a bounded operator. And from Propositions 3.4.5 and 3.3.23
M(o,®) : 27 (A) — (P9(A)

moy’
is a compact operator for each 1 < p, ¢ < oo and for each v-moderate weight
m if, and only if,
(<T7T()\)g7 W(X/()\) + :u)g>))\eA = (M(Ua q))xl()\)+u,)\)>\€/\ € CO(A)7
for all 4 € A. Then, by Theorem 3.4.3,
T MP4 (]Rd) — Mﬁ;q(Rd)

mOX
is compact for each 1 < p,q < oo and for each v-moderate weight m if and
only if
(<T7T()‘)gv F(X/(A) + N)g>))\€/\ = (M(Ja (I))x’(/\)—l—u,)\)/\eA € Co(A),
for all p € A. O
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3.5 Conclusion

Summarizing, we have seen that the boundedness and compactness of
Fourier integral operators on M};? do not depend on p,q or m. We have
found sufficient conditions, in some cases also necessary, for the compact-
ness of these operators. These results improve some known results about
pseudodifferential operators and localization operators. Some results of this
chapter are included in [FGP18].



Chapter 4

Fourier integral operator
with Holder-continuous
phase

4.1 Introduction

The aim of this chapter is to find conditions for the boundedness of the
integral operator,

Af(z) = y K(z,y)f(y)dy, (4.1.1)

with (collision) kernel
K(z,y) = / & (u)e= 2Ny ) gy, (41.2)
Rd

on some Lebesgue spaces, where the function ®(u) has a good decay at
infinity but might not be smooth at the origin v = 0 and S(r) is real-
valued. This integral operator can be seen as a FIO of type II,

Tit @) = [ 200y 0) )y

95



CHAPTER 4. FOURIER INTEGRAL OPERATOR WITH
96 HOLDER-CONTINUOUS PHASE

defined in Chapter 3, with ¢(y,u) = S(Ju|)u - y and o(y,u) = ®(u).
This operator appears in the study of the Boltzmann equation, hence
it is interesting to find estimates of the type

sup/ | K (z,y)|dx < oo, (4.1.3)
yeRd R4

[AL17] (related references are provided by [AL10, BD98, MMO06]). The
estimate (4.1.3) would imply the boundedness of the corresponding operator
A on L'Y(R?). A typical example for the function ®(u), which has a good
decay at infinity but might not be smooth at the origin u = 0, is given by
radial functions H
u
O(u) = a5 [u?)m (4.1.4)
with large real m.
The phase B(r) is real-valued and smooth on (0,+00) but could have
a Holder type singularity at the origin. As an example the following over-
simplified model can be considered

B(r)=a+0br", 0<r<1, (4.1.5)

for some a,b € R, v € (0,1). Asr — +oo, S(r) is assumed to approach a
constant.

As a basic case suppose 3(r) = a, r > 0, is a constant function. Rapid
granular flows are described by the Boltzmann equation and S(r) = a
corresponds to the case of inelastic interactions with constant restitution
coefficient. Indeed, the loss of mechanical energy due to collisions is char-
acterized by the restitution coefficient 8 which quantifies the loss of relative
normal velocity of a pair of colliding particles after the collision with respect
to the impact velocity. Now, when 3(r) = a is constant,

K(z,y) = F®(ay — x)

and the estimate (4.1.3) holds if and only if ® € FL'(RY), i.e. ® has Fourier
transform in L' (R%). The major part of the research, at the physical as well



4.1. INTRODUCTION 97

as at the mathematical levels, has been devoted to this particular case of a
constant restitution coefficient. However, as described in [BP04, AL10], a
more relevant description of granular gases should involve a variable resti-
tution coefficient 5(r).

In the model case above 3(r) approaches a constant both as r — 0T
and 7 — +oo and is smooth in between, so that one could conjecture that
the same estimate holds in that case. Now, this is not the case, even for
smooth phases: we prove in Proposition 4.3.1 that, in dimension d = 1,
if o(u) := B(Ju|)u is any nonlinear smooth diffeomorphism R — R with
@(u) = u (hence S(Jul) =1) for |u| > 1, and ® € C§°(R), =1 on [-1,1],
then the weighted estimate

L K@ wlde < 0+l (4.1.6)

does not hold for s < 1/2.

This looks surprising at first glance, but it can be regarded as a manifes-
tation of the Beurling-Helson phenomenon [BH53, CNR10a, LO94, Oko09,
RSTT11], which, roughly speaking, states that the change-of-variable oper-
ator f + fo1) is not bounded on FL'(R?) except for the case 1 : R? — R?
is an affine mapping. Indeed if we consider a function f € S(R?),

A = [ Kaafay= [ [ oe= o)

Rd

_ / 27r1ux (/ f 271'1,8(\u| Uydy) du
Rd

= /Rd@(u)e%‘“'mff(ﬂ(WDu)du: FHe)FF(B(|ul)w)] (x),

and the operator A in (4.1.1) with kernel K(z,y) in (4.1.2) can be written
as
Af =F o« F Y Ffop), with @(u):= B(|u|)u.

Now, one is interested in the precise growth in (4.1.6). Let us summarize
here the main results of the chapter in the special case of our oversimplified
model above.
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Theorem 4.3.2: Suppose (r) as in (4.1.5) for 0 < r < 1, with v €
(—1,1] and assume ( has at most linear growth as r — +oco. Let ® be as
in (4.1.4), with m > (d+1)/2. Then (4.1.6) holds with s =d/(y+1).

As expected, the growth in (4.1.6) is therefore the weakest one when
v = 1, being s = d/2 in that case. The same growth occurs for smooth
phases, as the following result shows.

Theorem 4.3.3: Suppose that p(u) := S(|u|)u extends to a smooth func-
tion on R%, with an at most quadratic growth at infinity. Let ® be as in
(4.1.4), with m > (d+ 1)/2. Then (4.1.6) holds with s = d/2.

Notice that the estimate (4.1.6) implies a continuity property for the
corresponding operator between weighted L' spaces, precisely qujs — L,
where vs(z) = (1 4 |z])*.

A natural question is therefore whether similar continuity estimates hold
without a loss of decay at least in L?(R¢), under the above assumptions.
We show in Proposition 4.4.1 that, again, this is not the case. Sufficient
conditions are instead given in Theorem 4.4.2 below. Here is a simplified
version of Theorem 4.4.2 (and subsequent remark).

e Suppose B(r) as in (4.1.5) for 0 < r <1, withy > 0. Let ® € C*(R?)
supported in |u| < 1. Then, if a(a+ (y+1)b) > 0 the operator A in (4.1.1)
is bounded in L*(RY).

Actually the results below are stated for 8 and ® in classes of functions
with minimal regularity and are inspired by the models above. It turns
out that, in all the results it is sufficient to take ® in the so-called Segal
algebra M!(R?) [Fei81b, Fei89, Fei06]. Roughly speaking, a function ® €
L>®(R9) belongs to M'(RY) = W (FL', L') (Proposition 1.2.14) if locally
has the regularity of a function in FL'(R%) (in particular is continuous) and
globally it decays as a function in L' (R%), but no differentiability conditions
are required. We have M'(R?) — LY(R?) N FL'(R?). To compare this
space with the usual Sobolev spaces we observe that W*1(RY) ¢ M!(RY)
for k > d + 1 (Proposition 1.2.9) but functions in M (RY) do not need to
have any derivatives. For example, the functions ® in (4.1.4) are in M (R%)
if m > (d+1)/2 (see Example 4.4.4). It is important to observe that
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the very weak assumption ® € M'(R?) prevents us to use classical tools
such as stationary phase estimates; instead we use techniques and function
spaces from time-frequency analysis. Recently, such function spaces and
more general time-frequency analysis have been successfully applied in the
study of partial differential equations with rough data by a large number
of authors, see, e.g., [CNO8b, RWZ16, STW11, WHO07] and the references
therein. We also refer to the papers [CNR10a, CR14] and the references
therein for the problem of the continuity in LP(R%), 1 < p < oo, and
from the Hardy space to L'(R?), of general Fourier integral operators of
Hoérmander’s type (i.e. arising from the study of hyperbolic equations).
The Fourier integral operators of Hormander’s type are Fourier integral
operators of type I, defined in Chapter 3, with the symbol, o(y, u) belonging
to some Hormander’s symbol class.

In short the chapter is organized as follows.

In Section 4.2 we briefly recall the main properties and preliminary
results we need in the sequel.

In Section 4.3 we study the L'-continuity for the integral operators
in (4.1.1) having phases with Holder-type singularity at the origin. The
boundedness is attained at the cost of a loss of decay. Such a loss is un-
avoidable, as testified by an example in dimension d = 1 (cf. Proposition
4.3.1).

In Section 4.4 we study the L2-continuity properties of A in (4.1.1). Un-
der the same assumptions of the L'-boundedness results we provide a coun-
terexample even in this framework (cf. Proposition 4.4.1). We then show
conditions on the phase of the operators which guarantee L?-boundedness
without loss of decay.

4.2 Auxiliary results

In the sequel we list issues preparing for our later argumentation. To study
the properties of our phase function, we shall rely on the following results.

Lemma 4.2.1. (/[MNR" 09, Lemma 5.2]) Let € > 0. Suppose u is a real-
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valued function of class CL%/2+1 on R4\ {0} satisfying
10%u(u)] < Cafule! (12.1)

for |a| < [d/2] + 1. Then F~'[ne'*] € LY(R?) for each n € S(R?) with
compact support. The norm of ne* in FLY(R?) is indeed controlled by a
constant depending only on d, n and the constants Cy, in (4.2.1).

Lemma 4.2.2. ([BGORO07, Theorem 5]) For d > 1, let | = |d/2] + 1.
Assume that p is 21 times continuously differentiable function on R% and
10%u|[ e < Cu, for 2 < |a| < 21, and some constants C. Then e €
W(FL', L) (R%).

The norm of e in W (FL', L>)(R?) is indeed controlled by a constant
depending only on d, and the above constants Cl,.

Lemma 4.2.3. ([CNR15b, Proposition 2.5]) Let h € C*°(R?\ {0}) be pos-
itively homogeneous of degree v > 0, i.e., h(Ax) = A"h(x) for z # 0, A > 0.
Consider x € C(R?) and set f = hx. Then, for 1 € S(R?), there exists a
constant C > 0 such that

Vi f(z,u)] < C+|u)™""%, for every x,u € R

In order to exhibit the counterexample anticipated in the introduction
we make use of a result proved in [CNR10a, Proposition 6.1] which can be
stated as follows.

Proposition 4.2.4. Let ¢ : R — R be any nonlinear smooth diffeomor-
phism satisfying
P(u) =u, for |u| > 1,
and let ® € C*(RY), ® =1 on [-1,1]%
For2 <p<oo, m<d(1/2—1/p), the so-called type I FIO Ty, 5,

Trpof(x) = /egﬂi“”(x’“)a(x, u)f(u) du,

having phase o(x,u) = Zzzl o(ug)zk, and symbol o(x,u) = (z)™P(u),
does not extend to a bounded operator on LP(R?).
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Note that the phase described in this result satisfies the conditions im-
posed in Chapter 3. However the symbol is not bounded, hence the condi-
tion imposed in Chapter 3 are not satisfied.

4.3 Continuity in L! with loss of decay

We consider the integral operator A formally defined in (4.1.1) with kernel
K(z,y) as in (4.1.2). We assume ® € M'(RY) and 3 : (0,00) — R is a
smooth function. Then, the kernel K is well-defined for every z,y € R
Indeed, since M'(R?) — L'(R?), the integral in (4.1.2) is absolutely con-
vergent. Inserting the kernel expression (4.1.2) in the operator A, defined
in (4.1.1), and using the absolute convergence of the integrals we can apply
Fubini’s Theorem and infer

Af(z) = /R e () () dy do (4.3.1)

for f € L'(RY).

That is, the operator A can be written as a Fourier integral operator of
type II. We recall that a FIO of type II with phase ¢ and symbol ¢ has
the general form

Titpaf@) = [ 000ty f)dydn (132)

hence
A=Tires, with o(y,u) = B(|lu))u -y and o(y,u) = ®(u). (4.3.3)

FIO’s of type II are the formal adjoints of FIO’s of type I, as we saw in
Chapter 3.

In general we do not expect that the integral operator A in (4.1.1) with
kernel K in (4.1.2) is continuous on LP(R?), 1 < p < oo, p # 2. Actually,
we expect a loss of decay, as witnessed by the following example.
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Proposition 4.3.1. In dimension d = 1, for any 1 < p < 2, consider the
weight function

vm(y) = L+ )™, y R,

with m € R such that

1 1
Let B € C*((0,+00)) such that
G(u) = B(Jul)u

extends to a nonlinear smooth diffeomorphism R — R satisfying
P(u) =u, |ul =1

(hence, B(|u|) =1, for |u| > 1). Let ® € C§°(R), ®(u) =1 for |u|] < 1.
Then the operator A in (4.3.1) does not extend to a bounded operator
from LY (R) to LP(R).

Proof. Step 1: Rephrasing the thesis. Since vy, (y) = (1 + |y|)™ is a weight
equivalent to wp, (y) == (y)™ = (1 +y?)™/?, we can work with w,, in place
of vy,. Since A can be written as a type II Fourier integral operator, the
continuity of A from L  (R) to LP(R) is equivalent to the continuity from
L%, (R) to LP(R) of the operator Ty, in (4.3.2) with ¢(y,u) = ¢(u)y
and symbol o(y,u) = ®(u), with ¢ and ¢ as in the statement.

Step 2: From type II FIOs to type I FIOs. By duality, the continuity of
Tr1,p,0 is equivalent to the boundedness of the adjoint (T77,.6)* = T74.0s
from LP(R) to L%, (R), for 2 < p < cc.

Step 3: Results for type I FIOs. The continuity of T7 ,, from LP(R)
to L,_,. (R) is equivalent to the boundedness of the operator w_,, 17, » on
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LP(R). Now, observe that

()T o f(2) = (@) / 271650 (g ) () du
/ 2@ (13" (1 ) Flu) du
[ i, fu) dui= 11,0
with 6 (2, u) = (2) "o (z,u) = ()" (u).

Now the type I FIO Tj 5 is not bounded on LP, 2 < p < oo, by
Proposition 4.2.4. ]

Continuity in weighted L' spaces, i.e. with a loss of decay, for the op-
erator A in (4.3.1) can be proved by a Schur-type estimate for the kernel
K. The following result addresses such estimates and Corollary 4.3.5 the
corresponding continuity result.

Theorem 4.3.2. Consider functions ® € M*(R?) and § : (0,+oc) — R.
Moreover, assume that for some exponent v € (—1,1], with £ = |d/2] + 1,

0°B(Jul)ul < Colul™71 for 0#|ul <1, Jaf <4, (4.3.4)
where Cy, > 0, and
|0%B(|u|)u| < CL, for |u| >1, 2 <lo| <2¢, (4.3.5)

with C!, > 0. Then the integral kernel in (4.1.2) satisfies
I @iz < c+ e, (4.3.6)

for a suitable constant C' > 0 independent of y.

Proof. We study the cases |y| < 1 and |y| > 1 separately. First we assume
that |y| > 1. To see the estimation, we prove that

. 27r1ﬁ(| |1/(W‘+1)) |y|1/1(w+1) Y c W(]—'Ll’ LOO)(Rd)
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For that, we consider a function x € C§°, such that x(u) =1 when |u| < %
and x(u) = 0 when |u| > 1. We want to see that:

o |u| u .
. 2 ﬂ(‘y‘l/(wl)) ly|t/ (v +1) Y ) X(U) c W(le,LOO)(Rd) (4_3_7)

and

—omi jul u
e ‘6<m1/ “f+1>) WY (1~ x(w)) € W(FLY, L®)(RY)  (4.3.8)

To prove (4.3.7) we use Lemma 4.2.1. It is sufficient to verify that the
phase

- |ul u
satisfies the estimation
|0°By(u)| < Cofur o

for |u| < 1, since the function in (4.3.7) is zero when |u| > 1. Using the
hypothesis (4.3.4),
10°B(|Julyul < CaluP 171,

for |u| <1, we have

o 21Cq |ul il — O |y F1=lal
0%By(u)| < 176D <‘y|1/(w+1)) -yl = Calul (4.3.9)

for [u|/(|y]"/*D) < 1,1e. Ju < |y//OFD. Then, we can apply the Lemma
4.2.1 and we have (4.3.7).

To prove (4.3.8) we use Lemma 4.2.2. It is sufficient to verify that the
phase satisfies the estimation

|0%By(u)| < Ca
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for lul > 1 and 2 < |a] < 20 If 1 < Ju| < |y/"/OFD the last estimation
follows from (4.3.9). On the other hand, if |u| > [y|Y/0+D, we use the
hypothesis (4.3.5),

0°B(|Jul)ul < C,
for [u| > 1 and 2 < |a| < 2¢. Then, for |u| > |y|"/O+1D),

2T

1
reren Y

y[Tel D76 =

|0°By(u)| < CF, =4 C'a

for 2 < |a| < 24, given that |y| > 1 and v < 1. Then, we can apply Lemma
4.2.2 and we have (4.3.8).
Now from (4.3.7) and (4.3.8), we deduce

Coia(lul T
. 27r16<‘y‘1/(7+1)) |y /(v +D) Y c W(]_—LI’LOO)(Rd),

where its norm in W (FL!, L=)(R%) depends only on d, x, C, and C,.
Then, by Lemma 1.2.16, we have

Hef%wum)u-y

‘ W(FL,L>)

_omi Jul w
. 2”‘/3(@,1/(%1)) GG Y

S (1 o0y

W(FL',L>)

- i \u\ u )
S (1 + ’y‘)d/(v-&-l) e 2ﬂ1ﬂ(w|1/(7+1)> /(D) Y

W (FLY,L®)
< (1 [y) oD

Now, as ® € M'(R?%), we have that ®(u)e~#IuDuy ¢ M1, Also, we have
that

K(z,y) = F 1 |@(u)e Blulwy) (4),
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Then, by Proposition 1.2.16 for p =1,

Lt

/d |K (z,y)|dx = H]—“*1 {cb(u)e*iﬁﬂul)u'y”
) < H@(u)e—w(\ulw

- H@(u)e—iﬂﬁulw ‘
FL

o~ 2miB(ul)uy

i
< [[@] a2

W(FL',L>) )
< @] an C' (1 + [y YO < C(1 + [y]) >+,

for some C > 0.
In the case |y| < 1, we argue as above without the factor 1/|y|"/(+1)
and we obtain the same estimates. We start proving that

6727riﬁ(|u\)u-y c W(J,—;LI’LOO)(RCI)

For that, we consider a function x € C§°, such that x(u) = 1 when |u| < 1

and x(u) = 0 when |u| > 1. We want to see that:
e~ 2mB(uluy .y (y) € W(FLY, L) (R?) (4.3.10)

and
e—27riﬁ(|u\)u-y . (1 - X(U)) c W(]:Ll, LOO)(Rd) (4311)

To prove (4.3.10) we use Lemma 4.2.1. It is sufficient to verify that the
phase

By(u) =273 (lul)u -y
satisfies the estimate

0°By(u)| < Calu"*! 1

for |u| < 1, since the function in (4.3.10) is zero when |u| > 1. Using the
hypothesis (4.3.4),
10°B(Jul)u| < Calul 1714,

for |u] <1, we have

0By (w)] < 21Cq (lul) 71 Jy| < Colu+171e, (4.3.12)
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as ly| <1, for |u] < 1. Then, we can apply the Lemma 4.2.1 and we have
(4.3.10).

To prove (4.3.11) we use Lemma 4.2.2. It is sufficient to verify that the
phase satisfies the estimation
09By(u)| < Co

for [u| > % and 2 < |a| < 20. If £ < |u| < 1 the last estimation follows from
(4.3.12). On the other hand, if |u| > 1, we use the hypothesis (4.3.5),

|0°B(lul)ul < Cq,
for |u| > 1 and 2 < |a| < 2¢. Then,
0% By(u)] < Co2mly| < C'a

for 2 < |a] < 24, given that |y| < 1. Then, we can apply Lemma 4.2.2 and
we have (4.3.11).
Now from (4.3.10) and (4.3.11), we deduce

e~ 2mib(uluwy ¢ W (FLY, L) (RY),

where its norm in W (FL!, L>)(R?) depends only on d, x, C, and C’,.
Now, as ® € M'(R%), we have that ®(u)e~#uDwy ¢ M1 Also, we have
that

K(w,y) = F* [@(u)e 0] (2).

Then, by Proposition 1.2.16 for p = 1,
/ K (2, y)lde = ||F " [@(u)e#hes]|
Rd I

_ Hcp(u)e*iﬂﬂu\)u-y ’le < Hzp(u)emw)u-y

‘e—%iﬁ(lul)wy

o
< ||

W (FLL,Lo)
< |[@[ynC" < C(A +|y])7+,

for some C > 0.
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In the previous result the weakest growth is reached when v = 1, the ex-
ponent in (4.3.6) in that case being d/2. That growth is the same obtained
even for smooth phases, as proved in the following result, and cannot be
further reduced, as shown in Proposition 4.3.1.

Corollary 4.3.3. Consider functions ® € M*(R?) and 3 : (0, +o0) — R.
Moreover, setting ¢ = |d/2] +1, assume that the function B(|u|) extends to
a C* function on RY and satisfies

10°B(|lu|)u| < Cw, forueR? and 2 <|a| < 2. (4.3.13)
Then, the integral kernel in (4.1.2) satisfies

d
2

LK@ plds < c+ .

Proof. The proof uses the same arguments used in Theorem 4.3.2. We split
into the cases |y| > 1 and |y| < 1. We study first |y| > 1 and prove that

[l

e—ZWiﬁ(W)W@/ c W(]_-LI’LOO)(RCZ)’ (4.3.14)

and its norm does not depend on y, that is, the set
—2 'B(—'“‘ )—“ :
{e TN Wy > 1

is a bounded set in W (FL', L>). Using Lemma 4.2.2, the problem is
reduced to verify that the rescaled phase

u

| o
B =25 () i

satisfies the estimate

10°B,(u)| < C,, forallucR?and 2 <|a| <2/
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By the hypothesis (4.3.13),

27 1
o < e — =
|0%By(u)| < Oa‘y||a\/2 lyl = Cq |y’(‘a|_2)/2 < Cas
since |a] > 2 and |y| > 1; this gives (4.3.14).
Then, by Lemma 1.2.15, we have
6727‘&/3(';&'/2) |y|7f/2 Y

He_zmqu\)u-y < (14 |y)¥2

’W(]—'Ll,L‘X’)
W (FL,L>)
S (L4 [y))¥2.

As & € MY(R?), we have that ®(u)ePIuDwy ¢ MI(R?). Moreover, we
can write

K(z,y) = F! [@(u)e*iﬂﬂu\)u'y} ().
Hence,

/Rd K (z,y)|d = Hf—l [@(u)e—iﬁﬂul)w”

< Hq)(u)e—iB(IU\)u-y

P H(I)(U)e_iﬁ(\ul)u.y

-

< || @||ap1 |[e 2B U uy

‘Ml ‘W(]—'Ll,LOO)

for some C' > 0.
The case |y| < 1 is obtained with the same pattern above, without the
dilation factor |y[7% We prove that

e~ 2mib(uluy ¢ yr(FLY, L) (RY) (4.3.15)

uniformly with respect to y. Using Lemma 4.2.2, the problem is reduced
to verify that the phase

By(u) := 27 (lul)u-y
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satisfies the estimate
10°B,(u)| < C,, forallucR?and 2 < |a| <2/
By the hypothesis (4.3.13),
0°By(u)| < Ca2rly| < C,

since |a| > 2 and |y| < 1; this gives (4.3.15).
As ® € M1 (RY), we have that ®(u)e #BuDwy ¢ pr1(RY). Moreover, we
can write
K(z,y)=F! [cb(u)e—iﬁ“u\w} (z).

Hence,

/R K ()l = [ [@(u)e o]

< H@(u)e—iﬂ(\UI)u-y

o H‘I’(u)e—iﬁ(lunu.y

‘le
o~ 2miB(ul)u-y

Sl

’W(]—"Ll,L‘X’)
<O <C+y)?,
for some C > 0. O

Corollary 4.3.4. Consider functions ® € M*(R?) and f3 : (0, +o0) — R.
Assume that for some v € (—1,1] and a € R,

B:=8-a (4.3.16)
satisfies, with £ = |d/2| + 1,

o B(lulyu] < Calul ™17 for Ju] <1, Ja] <4,

for some Cy, > 0, and

0°B(ul)u| < Clh for ul =1, 2 <a] <24,

with C!, > 0. Then the integral kernel in (4.1.2) satisfies

[ Gl < 0+ o, (4.3.17)
R4

for a suitable constant C > 0, independent of the variable y.
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Proof. By the proof of Theorem 4.3.2 we know that
6727rig(|u|)u-y e W(.FLl, LOO)(RCI)

with B
—2miB(julyu-y ’ <1 d/(v+1).
e WL, L) S L+ 1yl)

By (4.3.16),

6—27r1,8(\u\)u-y — g 2miauy 6—27r1,8(\u\)u-y — Miaye—27rlﬁ(|u|)u~y.

Using the invariance property of W (FL', L>°)(R%) with respect to time-
frequency shifts in (1.2.17):

He—zwwuunwy

_ H M_gye2miB(ubuy

‘W(]—‘Ll,LOO) ’W(]—'Ll,LOO)

_ He—zwiﬁuunwy

)W(]—'Ll,LOO)
< (14 [y,

This concludes the proof. ]

We finish this section by using the previous results for the integral kernel
K(x,%) to obtain the L!'-boundedness for the corresponding operator A.
The cost is a loss of decay, as explained below.

Corollary 4.3.5. Assume the hypotheses of Corollary 4.3.4 and consider
the weight function

v(y) = L+ [y)¥O*Y.

Then the integral operator A in (4.3.1) with kernel K in (4.1.2) is bounded
from LL(R?) into L' (RY).

Proof. By Corollary 4.3.4, we know that the kernel K(z,y) satisfies the
estimate in (4.3.17). Let f € L}(RY); using Fubini’s Theorem and the
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estimate in (4.3.17),

IAf@le = [ Jar@lae= [ 1] KGormi

< [ | k@l |dydx—/ 0l ([, iz ) dy

< [ U@ICa + )0 Vdy = Ol

dx

as desired. O

Note that in this proposition d/(y + 1) > d/2 > 1/2, while in the
Proposition 4.3.1 the index m < 1/2.

4.4 Continuity in L?

A natural question is whether the assumptions of Corollary 4.3.4, that give
continuity of the operator A on L'(R?) with a loss of decay, guarantee at
least continuity of A on L?(R?) without any loss. The answer is negative
even in dimension d = 1, as shown by the following result.

Proposition 4.4.1. Let d = 1. There exists an operator A as in (4.3.1),
with B and ® satisfying the assumptions of Corollary 4.3.4, that is not
bounded on L*(R).

Proof. Let h(r) be a function such that ®(u) = h(|u|) € C§°(R), and h(0) #
0. Fory € (0,1), set B(u) = u”. Finally, take x € C§°(R) such that x(u) =1

when u € supp(®), and consider the function S(u) = x(u)B(u). Let A be
the operator with integral kernel

K(a?,y):/Rh(|u|)e—27ri(ﬁ~(u|)u~y—u~$)du:/Rh(|u|)e—27ri(ﬁ(u|)u.y_u.x)du‘

We now show that A is not bounded on L?(R).
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For f € S(R),

0) = [ Ky = [ [ nuhe 200 fg)dudy
/ ‘u| 2miu-x (/ f —27iB(|u|)u- ydy> du

= /Rh(\UI)GQ’”“'“”ff(B(!u)U)du = F 7 () Ff(B(|ulyu)] (z).

Then, by Parseval’s Theorem,

1AfIZ = \h(U\)ff(ﬁ(\UI)U)\3=/}R!h(\UI)\QIff(ﬂ(lu!)U)Ide-

We perform the change of variable

urtt u>0
U = = Tu = ) -
a=pudu=Pu={ ) 420
so that )
aﬁ’ u e b
u= 1
_(_ﬂ)’y ', U ;
and du = ﬁ|a|ﬁ_1dﬂ. In this way, we obtain
IAF1I3 2/ |P([ul)[PIF F(B(ul)u) P du
a5 ] ) P £ ) P
T 144 +'y

Now, the last expression is controlled by C|/f||3,, for a suitable constant
C > 0 and for every f € S(R), if and only if

i T R([ii| )| € LO(R).

But, this fails since —y/(147) < 0 and |h(Ju|)| > 6 > 0 in a neighborhood
1
of 0, notice that h(|a|™+7) has compact support. O
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We now look for suitable assumptions on the functions ® and S which
guarantee L’-continuity of the operator A. A successful choice is shown
below.

Theorem 4.4.2. Consider ® € L>®(R%) N L'(RY). Let 3 : (0,00) — R
satisfy the following assumptions:

(i) B € C1((0, ).

(ii) There exists 6 > 0 such that B(r) > 9, for all r > 0.

(iii) There exist By, Ba > 0, such that

d
B < df(ﬂ(r)r) < By, forall r > 0.
T

Then the integral operator A with kernel K in (4.1.2) is bounded on L*(R%).

Proof. We first observe that, since ® € L'(R%), the integral defining the
kernel K (z, ) is absolutely convergent and K is well-defined. Let f € S(R?),
using Fubini’s Theorem, we can write

Af@) = [ Kaafay= [ [ oe 0 f)duy

— /Rd (I)(u)627riu-x (/Rd f(y)e—Qwi6(|u|)u-ydy> du
= [ 2@ F (Bl = F @00 F L) 2.
Then, by Parseval’s Theorem,
IAFI3 = 1@ (uw)Ff(B(luhu)ll = /Rd | (w)|?| Ff(B(|ul)u) *du.

Changing to polar coordinates u = 76, with » > 0 and § € S%!, we have
du = r*1drdf and

lA7Il5 = /R () 21 £ (Bl ) P
- /ooo /S @ (r0)|*|F £ (B(r)ro) *r"~dbdr.
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Observe that the function ¢(r) := [(r)r is strictly increasing by assumption
(7i7). Performing the change of variable 7 = ¢(r), as r € (0, 00), there exists
an a > 0 such that ¢((0,4+00)) = (a,00) C (0,00). Moreover, ¢(r) has an
inverse p~!(7) = r such that

Byt < C;f:(@—l(f)) < Byt forall 7 > 0.

Further, by assumption (i),

Then we can write,

|!Af|y2—/ / (r0)|2| Ff(B(r)ro)|*riLdodr
/ / PO F f(70)* (¢~ (f))d’lj( ~H(7))dbdF
§d=1 T

~1(f d—1
< s;lg){@(so_l( Ol (“””) $(¢-1(f))} x

1 d—1 -
< [T [ Eneopettaa < el (5) B AR

This gives ||Af||2 < C||f]|2, for every f € S(R?). By a density argument
we obtain the claim for every f € L?(R%). O

Remark 4.4.3. The previous proof still works if we change the function 3
with — 3. Hence, under the assumptions of Theorem 4.4.2 with assumptions
(i) and (iii) replaced by:

(ii)” There exists 6 < 0 such that B(r) < 0, for all r > 0.

(i1i)’ There exist By, Ba < 0, such that

B; < dir(ﬁ(r)r) < By, forall r > 0;

the integral operator A with kernel K in (4.1.2) is bounded on L*(R?).
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We now exhibit a class of examples of functions ® € M'(R?), hence
fulfilling the assumptions of Theorem 4.3.2 and related corollaries, as well
as those of Theorem 4.4.2, which are of special interest in the study of
Boltzmann equation, cf. [AL10].

Example 4.4.4. Consider the function

d+1
[l for m > i

N RO ;

Then ® € M'(R?) (Observe that ®(u) = h(|u|), in this situation,).

Proof. We consider a function y € C$°(R?), such that y(u) = 1 when
|u| <1/2 and x(u) = 0 when |u| > 1. We write

®(u) = ®(u)x(u) + P(u)(1 - x(u))

and show that
®(u)x(u) € MY (RY) (4.4.1)
and
®(u)(1 — x(u) € MYRY). (4.4.2)
To prove (4.4.1), we choose another cut-off function ¥ € C$°(R?) such
that

X(u) =1 for u € suppy;

then Y-y = x. Consider now the function h(u)=|u|, which is in C**(R%\ {0})
and positively homogeneous of degree 1 and set f = hx. Lemma 4.2.3 gives,
for ¢ € S(RY),

Vi f (2,€)] < C(1+ €)=+

hence, by (1.2.2),

ulx)llw o Loy = 1 fllwrrr, ey = M f Tl 7o [ oo
INFUTN il e = MV f Gy ) 2

= sup [ Var(e,old€ <o,

z€R4
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that is |u|x € W(FL', L=)(R%). Since
X(u)

Tt Py © S(RY) € MY(RY).

we can write

e M'(R,

D () () = (o) - (, ‘)

(1 Jul?)™

Vol (@.6) = (1. MeTg) = [ &5 f(y)aly =) dy.

i.e. the Fourier transform of fT,g.

Finally, to show (4.4.2), we observe that ®(u)(1—x(u))= 0 for |u| < 1/2,
hence the singularity at the origin is removed and ®(u)(1—x(u)) € Wk1(R?)
for all k € N, provided that 2m — 1 > d. We then choose k& > d and apply
the inclusion relations between the Potential Sobolev space W*1!(R?) and
the Feichtinger’s algebra M'(R?) in Lemma 1.2.9, which gives (4.4.2). [

4.5 Conclusion

Summing up, we have found results about boundedness of a particular type
of Fourier integral operators with Holder continuous phase. We have seen
that the sufficient conditions for boundedness on L' do not work for L2.
So we looked for some other sufficient conditions for boundedness on L?2.
These results are included in [CNP18].
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Chapter 5

Unimodular Fourier
multipliers

5.1 Introduction

The aim of this chapter is to look for conditions for continuity of unimod-
ular Fourier multipliers on modulation spaces. The unimodular Fourier
multipliers are formally defined by

(D) () / (2R € in(E) () de, (5.1.1)

R4

with real-valued p. These operators can be seen as a PSDO,
Tfa) = [ o) fmdn
with symbol o(z,1) = € or as a FIO
Tf(a) = [ e Daten) fin

with phase ®(z,n) =2 -n+ %u(n) and constant symbol. Fourier multi-
pliers represent one of the main research fields in harmonic analysis, where

119
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a number of challenging problems remains open [Ste93]. The connections
with other branches of pure and applied mathematics are uncountable (com-
binatorics, PDEs, signal processing, functional calculus, etc.).

The prototype is given by u(£) = |£]?, which satisfies the hypothesis in
Chapter 3. In that case the operator (D) is the propagator for the free
Schrédinger equation, and similarly for other constant coefficient equations.
Hence it is of great interest to study the continuity of such operators on
several functions spaces arising in PDEs. Whereas such operators represent
unitary transformations of L?(R?), their continuity on LP(R?) for p # 2 in
general fails. Recently a number of works addressed the problem of the
continuity in other function spaces. Among those, the more convenient
spaces, at least in the case of the Schrédinger model, turned out to be the
modulation spaces MP4(R%), 1 < p,q < oo, widely used in time-frequency
analysis [Fei83, Gro01]. The basic reason is that the Schrédinger propagator
is sparse with respect to Gabor frames [CNRO9b].

It is known (see e.g. [Tof04, Proposition 1.5] and [BGORO07]) that the
Schrodinger propagator (u(€) = [€]? in (5.1.1)) is bounded MP4(R?) —
MP4(RY), for every 1 < p,q < oo. This result motivated the study of the
continuity of more general unimodular Fourier multipliers on modulation
spaces. The recent bibliography in this connection is quite large; see e.g.
[BGORO0O7, BO09, CFS12, CFSZ13, CT09, CN09, CS14, DDS13, GWZ17,
KKI14, MNR 09, Sonl4, ZCFG16, ZCFG15, ZCG14]. In short, it turns
out that, for unbounded (smooth enough) phases, the properties which play
a key role are:

Growth and oscillations of the second derivatives 0", |y| = 2.
To put our results in context, let us just recall three basic facts.
(a) No growth, mild oscillations [BGORO0T7, Theorem 11]. Suppose that
O7u(E)| < C, for £ €RY, 2 < y| < 2(|d/2] + 1),

Then (D) . MPa(RY) — MP9(R?) is bounded for every 1 < p,q <
00.
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This result generalizes the case of the Schrodinger propagator, where the
second derivatives of u are in fact constants.

(b) No growth, mild oscillations [CT09, Lemma 2.2]. Suppose that
O pe M RY),  for |y = 2.

Then D) . MPa(RY) — MP9(RY) is bounded for every 1 < p,q <
00.

Actually, [CT09, Lemma 2.2] provides a partial but key result in this con-
nection, from which it is easy to deduce that the symbol o(§) = i€ is then
in the Wiener amalgam space W (FL!, L>), which is sufficient to conclude
(see also [Bou97, CT07, TCG10]). The result in (b) is also a particular case
of [CNR15¢, Theorem 2.3].

Observe that the result in (b) improves that in (a), because of the
embedding C(R?) — M°>1(RY) ([Gro01, Theorem 14.5.3]). We also
notice that M1 (RY) c L>*(R?), so that here the second derivatives of
u do not grow at infinity, but they could oscillate, say, as cos|{|%, with
0 < a <1 (cf.  BGORO07, Corollary 15]).

(c) Growth at infinity, mild oscillations [MNRT09, Theorem 1.1]. Let
o > 2, and suppose that

7l < C€)* 2, for 2 < |y] < [d/2] +3.

Then (D) : MP9(RY) — MP9(RY) is bounded for every 1 < p,q <
oo and 6 > d(a—2)|1/p—1/2|.

Here MPI(RY) = Mfé?(-)‘s’ where (1® (-)%)(z,w) = (w)?, that is a modu-
lation space weighted in frequency, so that we have in fact a loss of deriva-
tives, which is proved to be sharp.

Now, it was proved in [BGORO07, Lemma 8] that, more generally, the
operator ¢*(P) is bounded on all MP4(R?) for every 1 < p,q < oo if
its symbol e*(€) belongs to the Wiener amalgam space W (FL', L®)(R%)
[Fei8la], whose norm is defined as

||f||W(]—'L1,L°°) = sup [|g(- — @) fllFr
xER4
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where g € S(RY) \ {0} is an arbitrary window. This suggests to look at
conditions on u(&) in terms of this space, rather than modulation spaces.
Here is our first result in this direction.

Theorem 5.2.4. (No growth, strong oscillations). Let yu € C?*(R%), real-
valued, satisfying

Ou(§) € W(FLLLZ®)(RY)  for 7| =2.

Then
D) pPa(RY) — MPA(RY)

s bounded for every 1 < p,q < 0.

Observe that M°'(RY) ¢ W(FL', L®)(R?) c L>®(R?) so that this
result improves that in (b) above. Here the second derivatives of y are still
bounded, but they are allowed to oscillate, say, as cos [¢[? (cf. [BGORO7,
Theorem 14]). This result is strongly inspired by [CT09, Lemma 2.2] and
in fact the proof is similar. However, our main result deals with the case of
possibly unbounded second derivatives, as stated in the following theorem.

Theorem 5.3.7. (Growth at infinity, strong oscillations). Let o > 2. Let
p € C%(RY), real-valued and such that

(€0 u() € W(FL L™®)(R?)  for |y = 2.

Then
D) MPIRY) — MPI(RY)
1 bounded for every 1 < p,q < oo and
1 1
52d(a—2)‘—‘.
p 2
The above threshold for ¢ agrees with that in (c), and also with the
examples in [BGORO07, Theorem 16], where even stronger oscillations were
considered, but only for model cases.
Theorem 5.2.4 is of course a particular case of Theorem 5.3.7 and will
be used as a step in the proof of the latter.
In short the chapter is organized as follows. Section 5.2 is devoted to
the proof of Theorem 5.2.4, whereas in Section 5.3 we prove Theorem 5.3.7.
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5.2 No growth, strong oscillations

This section is devoted to the proof of Theorem 5.2.4. We begin with a pre-
liminary result which is strongly inspired by [CT09, Lemmas 2.1 and 2.2],
where a similar investigation is carried on in the framework of modulation
spaces (as opposite to the Wiener amalgam spaces considered here).

Lemma 5.2.1. Let f € W(FL', L®)(R?) and x € C°(B), where B is an
open ball with center at the origin. Let

1
Geo () = x (& — 20) /0 (1= 8)f(t(x — o) + 20) d.

for some oy € R?,
Then gz, € W(FL', L®)(R%), and for some constant C independent of
xg and f we have

9o llw(Frt 200y < Cllfllw (Lt ooy

Proof. Using Lemma 1.2.15, Proposition 1.2.16 and Proposition 1.2.17 we
have

1
P Hw — o) [ (1= 070G~ 20) + xo>dtH
0 W (FLY,L>)

’/01(1 O ftr 4 (1 — t)xo)dtH

S lx(z — 930)||W(7L1,Loo) L1
W (FLY,Lo®

1
< (@ = 20l s oo /0 (1= 1) 17+ (1= )20) [y prs oo
1
— Ixlhwro o) /0 (1= )£ )y (g oo

1
S Ilhwironimy | (1= flrp o

S A llw @z ey -
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Lemma 5.2.2. Assume that B C R™ is an open ball, u € C*(R?) is real-
valued and satisfies 07 € W(FLY, L>®)(R?) for all multi-indices ~ with
|v| = 2 and that f € MY(RY) NE'(B). Then fe'* € MY (RY) and for some
constants C, C" which only depend on d and the radius of the ball B we have

Lfellar < Cllfllrexp (€7D 107 wllwrrr 1= )
[v|=2

Proof. We may assume that B is the unit ball centered at the origin. By
Taylor expansion it follows that p = 11 + 19, where

1
01(o) = u(0) + (Va).2), vale) = 3 2 [ (1= D uayara.

[v|=2

Since modulations do not affect the modulation space norms we have

£ arr = [l fllar-

Furthermore, if y € C§°(RY) satisfies x(z) = 1 on B, then it follows from
the previous lemma that, for some constant C7 > 0,

Ix¥2llw(Fr Loy < C1 Z 107 ullw (Frr,o0)-
Iv|=2
Hence, by Proposition 1.2.16, for some Cs > 1 we have

[e.9]

; (ixv2)"
HelwaHW(]-'Ll,LOO) = Z l
n=0 W (FLY,L>)
o -1
Cy
< Z% nl ”X¢2||TI/LI/(IL1,L°°)
n=

< exp (Collxtllw (i im))

< exp (0102 ZQ ”mMHW(ILl,Lw))'
N=
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Using Proposition 1.2.16 again, this gives

£ = [ fe X2l S I F [ €2 |l (rrr zoey

< Clflan exp (€ 3 10 ullwirr i) )

|v[=2
O

We recall a known result (see e.g. [BGORO07, Lemma 8]), needed in the
proof of Theorem 5.2.4.

Lemma 5.2.3. Let 0 € W(FL, L*>®°). Then,
o(D) : MP? — NP1
is bounded, for every 1 < p,q < oco.

Proof. We can write (D) = FtoA,oF, where A, f(£) = (&) f(£). Using
Proposition 1.2.16 we have
HAafHW(]-'LP,Lq) = HUfHW(]—'LP,Lq)

S llollwEer,peoy 1 fllwFre,La),

so that A, : W(FLP,L?) — W(FLP,L9) is bounded, for every 1 < p,q <
oo. Hence, since the Fourier transform establishes an isomorphism F :
MP1 — W(FLP,L1), we see that o(D) : MP4 — MP4 is bounded too. [

Let us now prove the Theorem 5.2.4.

Theorem 5.2.4. (No growth, strong oscillations). Let u € C?(R%), real-
valued, satisfying

(&) € W(FL', L®)(RY)  for || =2.

Then
D) pPa(RY) — MPI(RY)

s bounded for every 1 < p,q < oo.
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Proof. Let us first show that e*(®) € W(FL', L>°). We know that there
exists x € C§°(RY) (cf. [Fei8la, Fei83]) such that

1€ v (Lt 1oy = sup {||Ix(z—k)e# | z11} = sup {[|[x(z—k)e* P |[yn},
kezd keZd

where the last equivalence follows from the fact that for functions supported
in a ball the FL! and M' norms are equivalent, with constants depending
only on the radius of the ball.

Hence, using Lemma 5.2.2 we can continue our estimate as

< sup {Cx( —K)lap exp (© > 18 illw e 1)) }

= Clixlagr exp (€S2 107 wllwrrr 1) )

[y1=2
Hence ¢#(®) ¢ W(FL', L) and by Lemma 5.2.3 we deduce that
D) . prpa _y ppa

is bounded, for every 1 < p,q < oo. ]

5.3 Growth at infinity, strong oscillations

In this section we prove Theorem 5.3.7. To this end we begin with the
following auxiliary results.

Lemma 5.3.1. Let a > 2. Let u(€) be a real-valued C? function, satisfying
(€)* 0w e W(FLY, LX) (RY) for |y| = 2.
Then,
(i) (€)= € W(FL', L®)(RY),

(ii) (€)1~ € W(FL, L) (RY) for |7] = 1.



5.3. GROWTH AT INFINITY, STRONG OSCILLATIONS 127

Proof. To prove (i), consider a Taylor expansion

u(E) = j(0) + (Vpu(0),&) + 3 ,f, /0 (1= )0 p(te)dt ™.

[v|=2

(€)= u(€) = p(0)(€)~® + (Viu(0), £)(€)
2 [ Y Y gy~
=3 2 [a-orueons o, o

Iv|=2

where
p(0)(€)~ € W(FLL, L=)(RY), (Vp(0),6)(6)~" € W(FL', L=)(R?),

because o« > 2. Here we used the fact that the functions ({)™® and
(€)™ are bounded together with their derivatives of every order, so
that they belong to M°!(RY) ([Gr601, Theorem 14.5.3]) and hence to
W(FL', L*®)(R?) as well.

Let us show that the last amount in (5.3.1) belongs to W (FL!, L>=)(R%)
too. We have

1
< /0 (1 =807 1) ()™ |y ooy

1
/0 (1= )07 u(t6)dee (€)

W (FL1,L>)

1
= [ 0= 00 e e ) 4 ey e
1
S [ 0= 0@ o 1 £y ey ey

Using Proposition 1.2.16 and Corollary 1.2.15 we can continue the above
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estimate as

1
S [ =007t |96 s 1o €40 D pi 1o

1
S /O (1= 6)(6) >t |07 ()™ |y 1, ooy 1676 i rrr, 1)

S Hm“(gx@g_aHW(ILl,Loo) HEWQ_QHW(ILI,L(”) :

This concludes the proof of (i) because, arguing as above, we have £7(¢)72 €
Mt ¢ W(FLY, L®), whereas 07u(£)(£)?~% € W(FL', L*) by assump-
tion.

To prove (ii), consider the Taylor expansion of 07y, for |y| =1

e =0+ Y [ ot
|8]=1
so that
1) = u(0) ()1 + Y / O p(t€)dt € ()
|Bl=1

Now 97 u(0)(€)1=* € W(FL', L*), because a > 2, and arguing as above

1
/ O p(t€)dt 7€)1
0 W (FL!,L>)
1
/ OB (1€ (1) (1) ~FHde €9 (€)1
0 W (FL!,L)
B 2—a /3
S Ha7+ HENE) W (FL!,L>) H§ HW(?LI,LOO)7

where ¢7(¢)~1 € MY(RY) ¢ W(FL', L>)(R?) because |3| = 1, and
moreover 9 78 (€) (£)2 € W(FL', L*®)(R%) by assumption, because
[y + B8l =2. O
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Here is the basic complex interpolation result (see e.g. [Fei8la, Fei83,
FG89] and [WHO07, Theorem 2.3] for a direct proof).

Proposition 5.3.2. Let 0 < 6 < 1, pj,q; € [1,00] and §; € R, j =1,2.
Set

1 1-6 0 1 1—-6 0
g +—, —-= + —, (5:(1—9)51+052.
p b1 D2 q q1 q2

Then
(M (R, ME (RY) g = MPI(RY).

We observe that, by complex interpolation of weighted modulation
spaces it suffices to prove the conclusion of Theorem 5.3.7 when (p,q) is
one of the four vertices of the interpolation square, (1,1), (1,00), (o0, 1),
(00, 00), with § = d(a — 2)/2, as well as for the points (2,1), (2,00) with
0 = 0. To this end, we reduce matters to the case of unweighted modulation
spaces by means of the following lemma.

Lemma 5.3.3. A multiplier o(D) is bounded from MP?(R?) to MP4(R?)
if and only if the multiplier o(D)(D)™? is bounded on MP9(R?).

Proof. We know e.g. from [Tof04, Theorem 2.2, Corollary 2.3] that (D)’

defines an isomorphism MP?(R?) — MP%(R?) for every s,t € R, so that
the conclusion is immediate. O

Therefore we may work with the operator
Tf(a) = [ i) feyde.
Rd

We have to prove that T is bounded on MU, AfLoo pfoosl  Afooe for

5= M, and on M?! and M2 for § = 0.



130 CHAPTER 5. UNIMODULAR FOURIER MULTIPLIERS

5.3.1 Boundedness on M"! and M>! for § = @

To prove this boundedness we need the following lemma (cf. [TCG10,
Proposition 1.4] and [CNR09a, ST07]).

Lemma 5.3.4. Let x be a smooth function supported on BO_1 < €] < By
for some By > 0. Then, for 1 <p < oo,

oo
D Ix@7D) fllagrr < Cllfllagrr-
j=1
Proof. We will use the following characterization of the M?4 norm, [Tri83]:
let € C5°(R?) be such that ¢(£) >0, Y, 74 0(E—m) =1, for all £ € R%
Then
g\
1 llima = (D IetD =m)flg,)
meZd
Hence it turns out

Y Ix@ID) flama =Y D (D = m)x(277D) f| s

J=1 =1 mezd
= 3" 3 llp(D = m)x(277D)f|l1»

meZd j=1
=3 Y Ix@TD)p(D — m) f| -

meZd j=1

Now, the number of indices j > 1 for which supp x(277-)Nsupp ¢(-—m) # 0
is finite for every m, and even uniformly bounded with respect to m. Hence
the last expression is

<) sup|[x(277D)p(D — m) f| o
mezd 7=>1

Since the operators x(277/D) are uniformly bounded on LP we can continue
the estimate as

< S @ = m) flle = 1 llagmr.

mecZd
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O

Consider now a Littlewood-Paley decomposition of the frequency do-
main. Namely, fix a smooth function g such that 1(§) = 1 for [£] < 1 and

ho(€) = 0 for [¢] > 2. Set (&) = vho(€) — 1o(2€). Then ¢(§) = $(277€)

for j > 1 is supported where 277! < |¢] < 29+, We can write

T=7+% 10 (5.3.2)
j=1

where TU) is the Fourier multiplier with symbol o;(€) := €&, (€)(€)~°,
Jj=0.
Now, T© is bounded on M for every 1 < p,q < 0o as a consequence
of Lemma 5.2.3, because o9 € M C W(FL', L) by Lemma 5.2.2.
Consider now the above sum over j > 1. Let

)\j = 270‘77%,
and consider the operators T defined by
TOf(z) = (U TDUN) f(z) = (TDU, f)(N; ')
- /R TN My (€)(6) 7 (U, FN(E)dS
_ /Rd e?ﬂi/\;leeiu(é)wj (g) <§> —6]6()\;1§>)\;dd§

= [ e (6 (€) F€)de.
Then we also have the next relationship,
TU) = UAJ.T@UAJ__I. (5.3.3)
Let x;(&) = x(279¢) with x € C§°(R?) supported where 1 < |¢] < 4

and x(£) = 1 on the support of ¢, so that x;(§{) = 1 on the support of ;.
We can therefore write

70 () = / 2 DGOy (N2 €) (\;€) 0 F(£)de,

R4
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hence o
7Y = A;B;, (5.3.4)

where )
Aj == el(Xju)(AjD), Bj = ¢]()\jD) <)\jD>_6.

Taking into account that 1;(\;€) is supported on 2971 < |);¢] < 29F1
for a € Z‘fr we have C, > 0 such that,

|0%(15(NE))] < Ca,  for 271 < [AjE| < 27,
|0%(¢j(A\;€))] =0,  in other case.
And on the support of 1;(\;€) we have \j|¢| < 27. As § = d(a — 2)/2, we

. . d .
have the following estimate for v € Z:

0 (O NE ) =| T (”)aawj(xjg))aﬂ(wsrﬁ)

o
a+B=y

< ¥ (1)erwooniwne )
a+B=y

< ¥ (Deato £ e)
at+p=y

< Q—d(az_Q)j, for all v € Zi.

Then, by the classical boundedness results of pseudodifferential oper-
ators on modulation spaces (see e.g. [Gro01, Theorems 14.5.2, 14.5.2]) we
have

_d(a—2) .
1Bjl|mpa—smea $27 27, (5.3.5)
for every 1 < p,q < oo.
Let us now prove that

A || apa—sagma <1, (5.3.6)

for all j > 1 and for every 1 < p,q < oc.
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Using Theorem 5.2.4 it is sufficient to check that

107D (MmNl (Frr Loy S 1,

for |y] = 2 and all j > 1 (actually we are using the fact that the operator
norm of the multiplier in Theorem 5.2.4 is bounded when 97y, || = 2,
belong to a bounded subset of W (FL!, L>)).

For |y| = 2, we have

I (N O (AE)] = 207 [x; 1) (A;€),

and by Leibniz’ formula it is enough to prove that

MO ) pllwFrr pey S 1 lv| =2 (5.3.7)
MN07x;0° pllw (Frrz0ey S 1 v =18]=1 (5.3.8)
>\32'||ijﬂ||W(fL1,Loo) Sl v =2. (5.3.9)

First, let us prove (5.3.7). Using Lemma 5.3.1 (i), Proposition 1.2.16 and
the embeddings CH1(RY) «— M>(RY) — W(FL', L>)(RY) ([Gré0l,
Theorem 14.5.3]) we can estimate
A?H(ij)MHW(le,LOO S )\2H< &)~ CZMHW(JTLl,Loo)H<f>am><j||W(JTL1,L<>0)
SN D 1071 x|

B<d+1

On the other hand,

1%

Lo (©)]l = |3 (5) 0" (€) 07, (€)

v<pg
< Z (B) “lg=ih A=yl | (grHB=vy ) (279 ¢)
1%
v<p
<B>2(a WDig=2i < 9ila=2),
v

<
IN
™
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because on the support of x;, |¢] < 2/ and |y + 8 — v| > 2. Thus
>\?|’(37Xj)ﬂ||W(fL1,Loo) S /\?2j(a_2) =1L
Now, let us prove (5.3.8). Using Lemma 5.3.1 (ii) and arguing as above
we write
>\J2' HijaﬁMHW(kaLoo) N )\? H@l*aaBMHW(le,LOO) | <§>a71ij ||W(]-'L1,L°°)

SAY 10°1E) o x|
B<d+1

On the other hand,

71 (O]l S (5) ()1 W= B ] (18- (2-3)

v

<5> gla—1-v)ig—j < gila-2),

<
IA
@

N

1%

IA
™

v

because now |y + 8 —v| > 1. Thus
N107x;0% pllw (oo ) S AFOTP =1
Finally, let us prove (5.3.9), using the hypothesis
(©*"07u(e) € W(FLY, L®)(RT)
for |y| = 2, we have
N0 mllw (zrr ey S AFIE* ™0 ullw (i 1oy I4€) X5 llw (it Loe)

A 10°1E X ]lee
B<d+1

Moreover, arguing as above

10°[(£)™ Ol < Z( > yo2-lvlg=ilB—vl [ 9B-vy)(2-ig)

<Z< >2<a 2-ul)jg0 < 9ila—2).

v<pB
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Thus A

N0 pllw (ot poey S AZ200072) = 1.
Hence, the estimate (5.3.6) is proved. And by (5.3.4), (5.3.5) and (5.3.6)
we have

d(a

oy _d(a=2) .
17O lama = 1438 f e S 252 fllagna, (5:.10)

for every 1 < p,q < oo.
We recall the decomposition (5.3.3)
70 — UA].TU)U/\;L

Now, combine the estimate from TU), (5.3.10), with those for the dilation
operator, given in Theorem 1.2.11. For p = 1,00 and ¢ = 1 they read

d(a—2)

U Fllara S 277 | g,

1O Fllagsen S 1 lareer,

and
101 fllarea S 1 Fllarrs

d(a—2)
U =1 Fllppoon S 277
J

I Fllagoon -

Therefore we obtain, for p = 1, oo,

d(a—2) d(a—2)

||T(j)f”MPJ§Q_ 5 127 3 j||f||Mp71:HfHMP’1'

Finally, to sum these last estimates over j > 1 we take advantage of
the fact we are working with functions which are localized in shells of the
frequency domain. Precisely, let x as before, namely a smooth function
satisfying x(§) =1 for 1/2 < |¢] <2 and x(§) =0 for [¢| < 1/4 and |£] > 4
(so that yi = 9). With x;(&) = x(277¢) and p = 1,00 we have

ITD f s = 1TV (x @7 D))l S X277 D) fllagos
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so that Lemma 5.3.4 gives us

ZT(j)f < Z 1T fllagon S I Fllgoa-

j>1 el 321

5.3.2 Boundedness on M and M>> for § = d(a272)

To prove this we first establish the following lemma (cf. [CNR09a, ST07]).
Lemma 5.3.5. For k>0, let f, € S(RY) satisfy supp foC Bs(0) and
supp fy € {€ € RT: 2V < g <2} k> 1

Then, if the sequence f, is bounded in MP>°(R?) for some 1 < p < oo, the
series > peo fx converges in MP>°(R?) and

> I
k=0

Proof. Let © € R%, we define K, C N such that k € K, if, and only if,
fr(z) # 0. For the properties of each fi, K, has, at most, 3 elements for
each € R%. Then, since the sequence f;, is bounded,

Y (@) =D ful) < oo
k=0

keK,

S sup || il areoe.
MP>© 20

And the convergence of the series > 72 fi in MP>°(R%) is proved. We now
prove the desired estimate.
Choose a window function g with supp § C By /5(0). We can write

Vo(fi) (2,€) = (fi * M_s) (€).
Hence, supp Vy(fo) C Bs/2(0) C By2(0), and

supp V,(fr) € {(x,€) € R?: 2F=1 971 < |¢] < oF+l 1 o7 1)
C{(z,) e R*: 2572 < g <27,
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for k > 1. Hence, for each &, there are at most four nonzero terms in the
sum > 72 o [|Ve(f) (-, €)|lLe. Using this fact we obtain
< sup > Vy(fi) (5 €)1

>k > Vo)
k=0 k=0 Ipeo  SERT

< 4dsup sup [|Vy(fi) (-, E)lr = 4sup [[Vo(fe)[|Lroe
k>0 ¢cRd k>0

o0

~
—~

MPyoo

= sup || fi [ agp.oe.
k>0

O]

We now consider the same decomposition as above, namely (5.3.2), and
the operators 7U) in (5.3.3), j > 1. From (5.3.10) for ¢ = oo we have the
following estimate:

d(a—2) .
Z | fllagpoe.

We then combine this estimate with those for the dilation operator which
here read

ITD £ agpoe < 27

U, Fllariee S 2423 £l pr1,00,

d(a—2) .
1U; fllageoce S 2772 || fllagoece,

and
d(a

_d(a=2) .
10551 fllarnee S 2772 llasnee,
10l < 1 Fllagoee.

Therefore we obtain, for p = 1, oo,

d(a

—2) . d(a—2)
2 J927 2

TG fllppoe < 27 N llagroe = 11 lagmoe-

We finally conclude by applying Lemma 5.3.5: for p = 1, 0o,

[o@)
SSTOf| S sup T fllame S 1S agme.
ot j>1

MPp,oo
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5.3.3 Boundedness on M?%*! and M?** for § =0

Indeed, we will prove boundedness on M?9 for every 1 < ¢ < oo and 6 = 0.
This is a special case of the following result.

Proposition 5.3.6. Any Fourier multiplier T with symbol o € L is
bounded on M>9 for every 1 < q < co.

Proof. The desired result follows at once from the estimate

lo(D)fll2 < lloflzee [ £l 2,

for f € L?, and the fact that the Fourier multipliers which are bounded on
L? are the same that the Fourier multipliers which are bounded on M?%9,

[FNO06, Theorem 17 (3)].
We provide a direct proof for the benefit of the reader. Namely

1T larea = ||| M5+ (o)

L(E

La

_ / 2mia (€05 (e — y)o(y) f(y)dy

L:% Lg

where we used Parseval’s formula. In particular, this computation with
o =1 gives ||f|lyze = ||||fT§§]HL2HLg, so we deduce at once the desired

estimate
1T fllarza S llollooe | fllazza-

5.3.4 Boundedness from M!(R?) to MP4(R?)

Finally, by complex interpolation, Proposition 5.3.2, and Lemma 5.3.3 we
conclude the main result of the chapter.
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Theorem 5.3.7. Let a > 2. Let u € C%(RY), real-valued and such that
(€)*70u(€) € W(FL, LX)(R)  for |y =2.

Then
D) MPYRY) — MPRY)

is bounded for every 1 < p,q < oo and

1 1
52d(a—2)‘—‘.

p 2
Proof. From the Subsections 5.3.1, 5.3.2 and 5.3.3, and Lemma 5.3.3, we
have the boundedness of

D) MPURY) — MPY(RY)

when the set (p,q,0) is equal to (1,1,d(a — 2)/2), (1,00,d(ax — 2)/2),
(00, 1,d(a — 2)/2), (00,00,d(cax —2)/2) or (2,q,0), with 1 < ¢ < co. From
Proposition 5.3.2, complex interpolation, we deduce the boundedness when
the set (p,q,0) is equal to (1,q,d(a —2)/2), (c0,q,d(a —2)/2) or (2,4,0),
with 1 < ¢ < .

Now we set a pair (p,q), with 1 < g < oo and 1 < p < 0o, the extreme
cases are proved. If 1 < p <2, there exist § € (0,1) such that

1 1-6 ¢
p 1 2
Moreover,
1 1 6 1 1 6 1-96
p 2 2 2 2 2 2

Then by Proposition 5.3.2 (complex interpolation) we have the boundedness
for (p,q,0), where

(1-0)d(a—2)

0= 2

+00:d(a—2)(1;€):d(a—2) (1—1).
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1-6 6

If 2 < p < o0, there exist 6 € (0, 1) such that
1 j—
p 2 00

Moreover,
1 1 1 6 1 0

2 p 2 2 + 2 2
Then by Proposition 5.3.2, complex interpolation, we have the boundedness
for (p,q,9), where

Od(o — 2
5—(1—g4 =2
2
Then, we have that
D) MPYRY) — MP(RY)
is bounded for every 1 < p,q < oo and
1 1
5:d(a2)“.
p 2

P
have || fllape S | fllape. Then

Let dp = d(a — 2) ‘l — %‘ and § > dp. Let f € My C Mg, and we

in(D
& Of| S laapa S 1l

We can conclude that
ein(D) :Mf’q(Rd) N Mp,q(Rd)
is bounded for every 1 < p,¢q < oo and
1 1
52d(a—2)‘—‘.
p 2
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5.4 Conclusion

In conclusion, we have found results about boundedness of unimodular
Fourier multipliers on modulation spaces, when the partial derivatives of
its phase, or some expression relative to the partial derivatives of its phase,
belongs to W (FL!', L>®)(R?). These results are included in [NPT18].
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