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estado alĺı desde el principio, sino porque estaréis hasta el final. Da igual si
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Resum

En aquesta tesi estudiem diferents aspectes relatius als operadors de l’anàlisi
temps-freqüència. Tot operador lineal i continu A : S → S ′ es pot escriure
com un operador integral

〈Af, g〉 = 〈K, g ⊗ f〉,

on K ∈ S ′ és el nucli i f, g ∈ S, o també com un operador integral de Fourier
(de fet, pseudodiferencial [Grö01, Teorema 14.3.5]). Diferents condicions
sobre el nucli o el śımbol i la fase (en el cas dels operadors integrals de
Fourier) permetràn estendre l’operador a diversos espais de funcions o dis-
tribucions.
El nostre objectiu és emprar tècniques de l’anàlisi temps-freqüència per a
estudiar l’acotació i/o compacitat d’operadors integrals de Fourier, opera-
dors integrals o multiplicadors unimodulars entre espais de modulació o de
Lebesgue. També estudiem multiplicadors en espais de Hilbert separables.
Tot seguit detallem el contingut de la memòria.

En el primer caṕıtol introdüım la notació i els espais, aix́ı com les seues
propietats, emprats al llarg de la memòria. En la primera secció introdüım
els espais de successions ponderats.

Definició 1. Donats I i J conjunts numerables d’́ındexs, una successió de
nombres positius m = (mi,j)(i,j)∈I×J i 1 ≤ p, q < ∞, considerem l’espai de

successions `p,qm (I × J) consistent en aquelles successions x = (xi,j)(i,j)∈I×J

VII
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tals que

‖x‖`p,qm :=


∑

j∈J

(∑

i∈I
|xi,jmi,j |p

) q
p




1
q

<∞.

Als casos p =∞ o q =∞, l’anterior norma es modifica de la manera usual,
per exemple

‖x‖`∞,qm
:=


∑

j∈J

(
sup
i∈I
|xi,jmi,j |

)q



1
q

.

També presentem alguns operadors entre ells.

Definició 2. Donada una successió a = (ai,j)(i,j)∈I×J de nombres com-
plexos, denotem com Da l’operador diagonal

Da : CI×J → CI×J , x = (xi,j)(i,j)∈I×J 7→ (ai,jxi,j)(i,j)∈I×J .

Definició 3. Siga γ ∈ Λ, per a un reticle Λ en RN , l’operador translació
Tγ : CΛ → CΛ es defineix com

Tγ (xλ)λ∈Λ = (xλ−γ)λ∈Λ .

I algunes de les propietats dels operadors diagonal i de translació sobre
els espais de successions.

En la segona secció del primer caṕıtol presentem alguns espais de fun-
cions. Comencem amb la definició dels espais de Lebesgue ponderats amb
normes mixtes.

Definició 4. Siguen 1 ≤ p, q < ∞, i m una funció pes en R2d. Aleshores
l’espai ponderat amb normes mixtes, Lp,qm (R2d), consisteix en totes les fun-
cions mesurables Lebesgue f tals que

‖f‖Lp,qm :=

(∫

Rd

(∫

Rd
|f(x, y)m(x, y)|p dx

) q
p

dy

) 1
q

<∞.

Als casos en què p =∞ o q =∞, la p-norma corresponent es reemplaçada
pel suprem essencial.
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Després introdüım la definició de la transformada de Fourier.

Definició 5. La transformada de Fourier d’una funció f ∈ L1(Rd) es de-
fineix com

Ff(ω) = f̂(ω) :=

∫

Rd
f(x)e−2πix·ωdx

on x · ω = xω és el producte escalar en Rd.

Presentem també la definició de la transformada temps-curt de Fourier.

Definició 6. La transformada temps-curt de Fourier (STFT), Vgf , d’una
funció f ∈ L2(Rd) respecte a una finestra g ∈ L2(Rd) \ {0} es defineix com

Vgf(x, ξ) := 〈f,MξTxg〉 =

∫

Rd
e−2πiξyf(y)g(y − x) dy,

és a dir, la transformada de Fourier de fTxg.

Donat que l’espai de les distribucions temperades, S ′(Rd), és l’espai
dual de la classe de Schwartz, S(Rd), i que la definició de la transformada
temps-curt de Fourier està basada en el producte escalar, aquesta es pot
estendre f ∈ S ′, agafant g ∈ S. En aquest cas sabem que Vgf és una funció
continua. D’aquesta manera podem considerar la definició dels espais de
modulació ponderats.

Definició 7. Siga una finestra no nula g ∈ S(Rd), un pes m vs-moderat,
s > 0, i 1 ≤ p, q ≤ ∞, l’espai de modulació Mp,q

m (Rd) consisteix en totes les
distribucions temperades f ∈ S ′(Rd) tals que Vgf ∈ Lp,qm (R2d), és a dir,

‖f‖Mp,q
m

:= ‖Vgf‖Lp,qm =

(∫

Rd

(∫

Rd
|Vgf(x, ω)|pm(x, ω)pdx

) q
p

dω

) 1
q

<∞,

amb els canvis usuals quan p = ∞ o q = ∞. Si p = q escrivim Mp
m(Rd)

en lloc de Mp,p
m (Rd). Aleshores Mp,q

m (Rd) és un espai de Banach, i la seua
definició és independent de la finestra g escollida.



X RESUM

En aquesta subsecció mostrem les propietats d’aquests espais que ne-
cessitarem al llarg de la memòria. També definim els espais de Wiener.

Definició 8. Siguen B1 i B2 espais de Banach, sent B1 un espai de fun-
cions mesurables. Fixem g ∈ C∞0 (Rd) \ {0}. L’espai d’amalgames de
Wiener W (B1, B2) amb component local B1 i component global B2 es de-
fineix com l’espai de totes les funcions f que localment pertanyen a B1 tals
que fB1 ∈ B2, fB1(x) = ‖fTxg‖B1. W (B1, B2) és un espai de Banach dotat
amb la norma

‖f‖W (B1,B2) := ‖fB1‖B2 = ‖‖fTxg‖B1‖B2 .

I algunes de les propietats dels espais de Modulació i de Wiener.

En la següent subsecció introdüım els frames de Gabor. Fixem una
funció g ∈ L2(Rd) i un reticle Λ = αZd × βZd, per a α, β > 0. La famı́lia
de funcions G(g,Λ) = {π(λ)g : λ ∈ Λ}, on π(λ1, λ2)g = Mλ1Tλ2g(t), es
anomenada sistema de Gabor i diem que és un frame de Gabor si existeixen
constants A,B > 0 tals que

A‖f‖22 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖22, per a tot f ∈ L2(Rd).

En l’última secció del primer caṕıtol, introdüım la condició GRS per als
pesos. Diem que v satisfà la condició GRS (Gelfand-Raikov-Shilov [GRS57])
quan,

lim
n→∞

v(nz)1/n = 1 per a tot z ∈ R2d.

I veiem que es poden definir espais de modulació amb pesos complint
aquesta condició si remplaçem la classe de Schwartz per espais de tipus
Gelfand-Shilov.

Definició 9. Siguen s, r ≥ 0. Una funció f ∈ S(Rd) pertany a un espai
tipus Gelfand-Shilov Ssr(Rd) si existeixen constants A,B > 0 tals que

|xα∂βf(x)| . A|α|B|β|(α!)r(β!)s, per a tot α, β ∈ Nd.
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Al segon caṕıtol treballem amb multiplicadors incondicionalment con-
vergents. Un multiplicador sobre un espai de Hilbert separable H és un
operador fitat

Mm,Φ,Ψ : H → H, f 7→
∞∑

n=1

mn 〈f,Ψn〉Φn,

on Φ = (Φn)n i Ψ = (Ψn)n són successions en H i m = (mn)n és una
successió d’escalars anomenada śımbol. Un multiplicador és incondicional-
ment convergent si la sèrie anterior convergeix incondicionalment per a cada
f ∈ H. Aquests multiplicadors són una generalització dels Multiplicadors
de Gabor,

Mmf =
∑

λ∈Λ

mλ 〈f, π(λ)g〉π(λ)h.

El quals estan inspirats en el desenvolupament en termes d’un frame de
Gabor d’una funció,

f =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)h.

En aquest cas h es una finestra dual de g.
En la situació en què Φ = (Φn)n i Ψ = (Ψn)n són successions Bessel

en H i m ∈ `∞ l’operador Mm,Φ,Ψ és anomenat multiplicador de Bessel.
Recordem que Ψ = (Ψn)n s’anomenat successió de Bessel si existeix una
constant B > 0 tal que

∞∑

n=1

|〈f,Ψn〉|2 ≤ B‖f‖2

per a cada f ∈ H. En [Bal07] es prova que tot multiplicador de Bessel és
incondicionalment convergent. Balazs i Stoeva, [SB13b], donen exemples
de successions que no son Bessel i śımbols que no estan fitats que defineixen
multiplicadors incondicionalment convergents. No obstant això, tots els ex-
emples són obtinguts de multiplicadors Bessel després d’algun truc. De fet,
Balazs i Stoeva conjecturen, en [SB13a], que qualsevol multiplicador in-
condicionalment convergent es pot escriure com un multiplicador de Bessel
amb śımbol constant.
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Conjectura 10. [SB13a, Conjecture 1] Siga

Mm,Φ,Ψ : H → H

un multiplicador incondicionalment convergent, aleshores existeixen succes-
sions escalars (an)n i (bn)n tals que

mn = an · bn
i

(anΦn)n i (bnΨn)n

són successions de Bessel en H.

En [SB13a] s’obtenen diverses classes de multiplicadors per als quals la
conjectura és certa. Ells proven que aquesta és la situació dels multipli-
cadors de la forma Mm,Φ,Φ [SB13a, Proposition 4.2] i també per a multipli-
cadors amb la propietat de que la successió (|mn| · ||Φn|| · ||Ψn||)n és fitada
inferiorment per una constant estrictament positiva, [SB13a, Proposition
1.1].

Per a començar considerem el cas en què mn = 1 i Ψn = g per a cada
n ∈ N. Aleshores la conjectura té una resposta positiva si, i només si, per
a tota successió incondicionalment sumable (Φn)n en un espai de Hilbert
separable H, podem trobar (αn)n ∈ `2 tal que ( 1

αn
Φn)n és una successió

de Bessel en H. En conseqüència, l’objectiu principal del segon caṕıtol és
analitzar l’estructura de les successions incondicionalment sumables en un
espai de Hilbert separable. Primer mostrem una reformulació del nostre
cas particular.

Lema 11. Els següents enunciats són equivalents:

(a) Cada successió incondicionalment sumable (Φn)n en H es pot escriure
com Φn = αnfn, on (αn)n ∈ `2 i (fn)n és una successió de Bessel en
H.

(b) Cada operador fitat T : c0 → H es pot factoritzar com

T = A ◦Dα,
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on Dα : c0 → `2 és un operador diagonal i A : `2 → H és un operador
fitat.

Després introdüım una reformulació de la conjectura de Balazs i Stoeva,
en termes similars a la reformulació en el nostre cas en particular.

Proposició 12. Assumim que la sèrie
∑

n 〈f,Ψn〉Φn convergeix incondi-
cionalment per a tota f ∈ H. Aleshores, els següents enunciats són equiva-
lents:

(a) Existeix (cn)n tal que {cnΨn}n i { 1
cn

Φn}n són successions de Bessel
en H.

(b) L’operador bilineal continu

T :c0 ×H −→ H

(α, f) 7−→
∑

n

αn 〈f,Ψn〉Φn

admet una factorització
T = B ◦D

on B : `2 → H és un operador fitat i

D : c0 ×H → `2

és un operador bilineal continu tal que per a cada f ∈ H,

D(·, f) : c0 → `2

és un operador diagonal.

(c) Existeixen dos operadors fitats

A : H → `2 i B : `2 → H

tals que per a cada α ∈ c0 l’operador Tα ∈ L(H), definit per Tα(f) =∑
n αn 〈f,Ψn〉Φn, es pot factoritzar com

Tα = B ◦Dα ◦A.
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Emprant la reformulació del nostre cas particular arribem a un resultat
que es pot veure com una millora del Teorema d’Orlicz, [DJT95, Teorema
1.11] o [Hei11, Teorema 3.16], que afirma que cada successió incondicional-
ment sumable en un espai de Hilbert és absolutament 2-sumable. Aquest
és el resultat principal del segon caṕıtol.

Teorema 13. Cada successió incondicionalment sumable (Φn)n en un espai
de Hilbert separable H es pot expressar com Φn = anfn, on (an)n ∈ `2 i
(fn)n és una successió de Bessel en H.

Aquest teorema ens dóna una resposta positiva a la conjectura de Balazs
i Stoeva quan (Ψn)n és una successió constant. A continuació considerem
una situació més general.

Corol·lari 14. Siga Mm,Φ,Ψ un multiplicador incondicionalment conver-
gent i assumim que 0 no és un punt d’acumulació dèbil de la successió(

Ψn
‖Ψn‖

)
n
. Aleshores, existeixen successions escalars (an)n i (bn)n tals que

mn = an · bn i a més (anΦn)n i (bnΨn)n són successions de Bessel en H.

En aquest corol·lari la condició sobre la successió (Ψn)n es pot reem-
plaçar per una condició similar en (Φn)n. El resultat següent mostra que la
conjectura establerta per Balazs i Stoeva en [SB13a] és certa sota la hipòtesi
més forta de la convergència absoluta de la sèrie.

Teorema 15. Siga Mm,Φ,Ψ tal que per a cada f ∈ H, la sèrie

∞∑

n=1

mn 〈f,Ψn〉Φn

convergeix absolutament en H. Aleshores existeixen successions escalars
(an)n i (bn)n tals que mn = an · bn, i a més (bnΨn)n i (anΦn)n són succes-
sions de Bessel en H.

Quan la convergència absoluta es reemplaça per la convergència in-
condicional en l’espai S2(H) dels operadors de Hilbert-Schmidt obtenim el
següent resultat.
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Teorema 16. Siga BH la bola unitat tancada de H dotada amb la topologia
dèbil i assumim que la sèrie

∞∑

n=1

mnΨn ⊗ Φn

convergeix incondicionalment en S2(H). Aleshores, per a cada mesura de
probabilitat de tipus Borel µ sobre BH existeixen successions escalars (an)n
i (bn)n tals que mn = an · bn, (anΨn)n és una successió de Bessel en H i
(jµ(bnΦn))n és una successió de Bessel en L2(BH , µ). En particular

∞∑

n=1

|〈f, bnΦn〉|2 <∞

per a µ-quasi tota f ∈ BH .

I arribem al últim resultat del segon caṕıtol.

Teorema 17. Siga (X,µ) un espai de mesura finita i H ⊂ L2(X,µ) un
espai de Hilbert admetent un nucli de reproducció K(x, y). Fixem v(x)−1 :=
‖K(x, ·)‖. Assumim que la sèrie

∞∑

n=1

mnΨn ⊗ Φn

convergeix incondicionalment en S2(H). Aleshores existeixen successions
escalars (an)n i (bn)n tals que mn = an · bn, (anΨn)n és una successió de
Bessel en H i (bnΦn)n és una successió de Bessel en L2

v(X,µ).

Els resultats presentats en aquest caṕıtol estan continguts en [FGP17b]
i [FGP17a].

L’objectiu del tercer caṕıtol és estudiar la compacitat dels operadors
integrals de Fourier quan actuen sobre espais de modulació ponderats. La
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fitació i propietats de classes de Schatten d’aquests operadors ha sigut estu-
diada per alguns autors sota diferents suposicions per a la fase i el śımbol.
Veure per exemple [RS06, CR14, Bis11, Bou97, CNR09a, CNR10b, RS06,
CT07, CT09, TCG10]. No obstant això no es coneixien caracteritzacions
de la compacitat. El nostre enfocament de l’estudi de la compacitat segueix
el punt de vista de [CNR10b], és a dir, els nostres resultats depenen de la
representació matricial del FIO respecte a un frame de Gabor.

L’operador integral de Fourier, FIO, T amb śımbol σ ∈ L∞(R2d) i fase
real Φ sobre R2d es pot definir formalment per

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη.

La fórmula anterior defineix un operador continu de S(Rd) a S ′(Rd). La fase
Φ(x, η) és tame, el que significa que és diferenciable sobre R2d i compleix
les estimacions

|∂αz Φ(z)| ≤ Cα, |α| ≥ 2, z ∈ R2d,

i la condició de no degeneració

|det ∂2
x,η Φ(x, η)| ≥ δ > 0, (x, η) ∈ R2d.

El śımbol σ sobre R2d compleix

|∂αz σ(z)| ≤ Cα, a.e. z ∈ R2d, |α| ≤ 2N (1)

per a N ∈ N fixada. Aćı ∂αz denota la derivada distribucional. Quan
Φ(x, η) = xη recuperem els operadors pseudodifferencials en la forma de
Kohn-Nirenberg.

Els frames permeten relacionar operadors amb matrius de la següent
manera.

Definició 18. La matriu de Gabor associada a un operador lineal i continu
T : S(Rd)→ S ′(Rd) es defineix com

M(T ) = (〈T (π(λ)g), π(µ)g〉)(µ,λ)∈Λ×Λ .

Si T és un FIO amb śımbol σ i fase Φ escrivim M(σ,Φ) en lloc de M(T ).



RESUM XVII

Teorema 19. Siga T : S(Rd) → S ′(Rd) un operador lineal i continu i
G(g,Λ) un frame de Gabor amb g ∈ S(Rd). Aleshores:

(1) Per a 1 ≤ p, q < ∞, T pot ser estés de manera única com un oper-
ador fitat de Mp,q

m1(Rd) a Mp,q
m2(Rd) si, i només si, M(T ) defineix un

operador fitat de `p,qm1(Λ) a `p,qm2(Λ).

(2) Per a 1 ≤ p, q ≤ ∞, T pot ser estés com un operador dèbil-∗ continu
de Mp,q

m1(Rd) a Mp,q
m2(Rd) si, i només si, M(T ) defineix un operador

dèbil-∗ continu de `p,qm1(Λ) a `p,qm2(Λ).

(3) Siga 1 ≤ p, q ≤ ∞ i assumim que T : Mp,q
m1(Rd)→Mp,q

m2(Rd) és dèbil-∗
continu. Aleshores T : Mp,q

m1(Rd)→Mp,q
m2(Rd) es compacte si, i només

si, M(T ) : `p,qm1(Λ)→ `p,qm2(Λ) ho és.

El resultat clau en [CNR10b] mostra que la representació matricial d’un
FIO respecte a un frame de Gabor G(g,Λ) amb g ∈ S(Rd) està ben orga-
nitzada. De fet, per a una fase tame Φ i un śımbol σ complint la condició
(1) existeix una constant CN > 0 tal que

|〈Tπ(λ)g, π(µ)g〉| ≤ CN 〈χ(λ)− µ〉−2N , (2)

per a cada λ, µ ∈ Λ on χ és la transformació canònica de la fase Φ. Com
usualment, 〈z〉 és una abreviació de (1+|z|2)1/2. L’aplicació (x, ξ) = χ(y, η)
és bilipschitz χ : R2d → R2d i ve definida a partir del sistema

{
y = ∇ηΦ(x, η),
ξ = ∇xΦ(x, η).

L’estimació (2) és una extensió del resultat previ de Gröchenig [Grö06]
respecte a la quasi-diagonalització del PSDOs. Veure també [GR08]. La
condició (1) sobre el śımbol es pot relaxar a σ ∈M∞1⊗vs0 (R2d) per a alguna

s0 > 2d. De fet, si G(g,Λ) és un frame de Parseval, aleshores l’estimació (2)
també es manté, com provaren en [CGN12],

|〈Tπ(λ)g, π(µ)g〉| ≤ C〈χ(λ)− µ〉−s0 , per a tot λ, µ ∈ Λ. (3)
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Nosaltres emprem aquesta estimació per a estudiar la compacitat dels FIOs
quan actuen sobre espais de modulació ponderats. Comencem definint un
espai de matrius.

Definició 20. Siga v un pes submultiplicatiu sobre R2d i assumim que
ψ : Λ→ Λ satisfà

M = sup
λ∈Λ

card ψ−1 ({λ}) <∞.

Definim Cv,ψ(Λ) com el conjunt de totes les matrius A =
(
aγ,γ′

)
γ,γ′∈Λ

tals
que

‖A‖Cv,ψ =
∑

γ∈Λ

v(γ) · sup
λ∈Λ

∣∣aψ(λ)+γ,λ

∣∣ <∞.

L’estimació (3) ens permet arribar al següent resultat.

Proposició 21. Siga T un FIO tal que la seua fase Φ siga tame i σ ∈
M∞1⊗vs0 (R2d), s0 > 2d. Aleshores, per a tota 0 ≤ s < s0 − 2d tenim

M(σ,Φ) ∈ Cvs,χ′(Λ).

on χ′ : Λ→ Λ es una versió discretitzada de la transformació canònica χ.

Les matrius que pertanyen a aquest espai tenen certes propietats.

Proposició 22. Siga m = (mλ)λ∈Λ una successió v-moderada positiva,
A =

(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ) i 1 ≤ p ≤ ∞ donat. Aleshores A : `pm◦ψ(Λ) →
`pm(Λ) és un operador fitat, que també és dèbil-∗ continu.

Teorema 23. Siguen A =
(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ) i 1 ≤ p ≤ ∞ donats.

Aleshores, A : `pm◦ψ(Λ)→ `pm(Λ) és un operador compacte si, i només si

aγ :=
(
aψ(λ)+γ,λ

)
λ∈Λ
∈ c0(Λ) per a tot γ ∈ Λ.

Aquestes propietats ens duen a caracteritzar la compacitat dels nostres
operadors.
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Teorema 24. Siga T un FIO tal que la seua fase Φes tame i σ∈M∞1⊗vs0(R
2d),

s0 > 2d. Aleshores, per a tota 0 ≤ s < s0 − 2d, les següents condicions són
equivalents

(1) T : L2(Rd)→ L2(Rd) és un operador compacte.

(2) T : Mp
m◦χ(Rd) → Mp

m(Rd) és un operador compacte per a alguna
1 ≤ p <∞ i per a algun pes vs-moderat m.

(3) T : Mp
m◦χ(Rd) → Mp

m(Rd) és un operador compacte per a tota 1 ≤
p <∞ i per a tot pes vs-moderat m.

(4) (〈Tπ(λ)g, π(χ′(λ) + µ)g〉)λ ∈ c0(Λ) per a tota µ ∈ Λ.

En particular dedüım que la compacitat no depèn de p o m.

Teorema 25. Siga T un FIO tal que la seua fase Φes tame i σ∈M∞1⊗vs0(R
2d),

siga 0 ≤ s < s0− 2d. Si σ ∈M0(R2d), aleshores T : Mp
m◦χ(Rd)→Mp

m(Rd)
és un operador compacte per 1 ≤ p ≤ ∞ i per a cada pes vs-moderat m.

També veiem que l’invers del resultat anterior és cert en el cas particular
de les fases quadràtiques.

Definició 26. La aplicació Φ : R2d → R es diu fase quadràtica si

Φ(x, η) =
1

2
Ax · x+Bx · η +

1

2
Cη · η + η0 · x− x0 · η,

on x0, η0 ∈ Rd, A,B,C són matrius reals simètriques i B no és degenerada.

Teorema 27. Siga T un FIO amb fase quadràtica Φ i σ ∈ M∞1⊗vs0 (R2d) i
siga 0 ≤ s < s0 − 2d. Aleshores els següents enunciats són equivalents:

(1) σ ∈M0(R2d).

(2) T : Mp
m◦χ(Rd) → Mp

m(Rd) és un operador compacte per a tota 1 ≤
p ≤ ∞ i per a cada pes vs-moderat m.
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Els operadors que hem considerat fins ara no tenen per què ser fitats
en espais de modulació amb normes mixtes, com es mostra en [CNR10b].
Per superar aquest obstacle, Cordero, Nicola i Rodino van introduir una
condició extra en la fase.

sup
x′,x,η

∣∣∇xΦ(x, η)−∇xΦ(x′, η)
∣∣ <∞. (4)

Teorema 28. Siga T un FIO tal que la seua fase Φ és tame i satisfà la
condició (4), i σ ∈ M∞1⊗vs0 (R2d) amb 0 ≤ s < s0 − 2d. Aleshores, T :

Mp,q
m◦χ(Rd)→ Mp,q

m (Rd) és un operador fitat per a totes 1 ≤ p, q <∞ i per
a tot pes vs-moderat m.

Baix aquesta condició extra els resultats de compacitat es poden esten-
dre a espais de modulació amb normes mixtes.

Teorema 29. Siga T un FIO tal que la seua fase Φ és tame i satisfà
la condició (4), i σ ∈ M∞1⊗vs0 (R2d) amb 0 ≤ s < s0 − 2d. Les següents
afirmacions són equivalents:

(1) T : L2(Rd)→ L2(Rd) es un operador compacte.

(2) T : Mp,q
m◦χ(Rd) → Mp,q

m (Rd) és un operador compacte per a alguns
1 ≤ p, q ≤ ∞ i per a algun pes vs-moderat m.

(3) T : Mp,q
m◦χ(Rd) → Mp,q

m (Rd) és un operador compacte per a tots 1 ≤
p, q ≤ ∞ i per a tot pes vs-moderat m.

Com a conseqüència recuperem i millorem alguns resultats per a PSDOs
obtinguts en [FG06, FG07, FG10].

Teorema 30. Siga σ ∈ M∞,11⊗vs(R
2d) donada. Aleshores les següents afir-

macions són equivalent:

(1) Lσ : L2(Rd)→ L2(Rd) es compacte.

(2) Lσ : Mp,q
m (Rd)→Mp,q

m (Rd) es compacte per a totes p, q ∈ [1,∞] i tot
pes vs-moderat m.
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(3) Lσ : Mp,q
m (Rd) → Mp,q

m (Rd) es compacte per algun p, q ∈ [1,∞] i
algun pes vs-moderat m.

(4) σ ∈M0(R2d).

En l’última secció d’aquest caṕıtol veiem que tota aquesta argumentació
es pot aplicar en l’estudi dels FIOs sobre espais de modulació amb pesos
GRS, imposant estimacions similars en la fase i el śımbol.

Alguns dels resultats presentats en aquest caṕıtol estan continguts en
[FGP18].

L’objectiu del quart caṕıtol és buscar condicions per a que l’operador
integral,

Af(x) =

∫

Rd
K(x, y)f(y)dy, (5)

amb nucli

K(x, y) =

∫

Rd
Φ(u)e−2πi(β(|u|)u·y−u·x)du, (6)

siga fitat sobre alguns espais de Lebesgue. Aquest operador integral es pot
veure com un FIO de tipus II,

TII,ϕ,σf(x) =

∫

R2d

e−2πi(ϕ(y,u)−u·x)σ(y, u)f(y)dy du,

amb ϕ(y, u) = β(|u|)u·y i σ(y, u) = Φ(u). És interessant trobar estimacions
del tipus

sup
y∈Rd

∫

Rd
|K(x, y)| dx <∞, (7)

ja que aquesta estimació implica que l’operador corresponent A és fitat
sobre L1(Rd). A la funció Φ(u) se li demana un bon decäıment a l’infinit,
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però pot no ser diferenciable a l’origen u = 0. Un exemple t́ıpic ve donat
per funcions radials

Φ(u) =
|u|

(1 + |u|2)m
(8)

amb un m gran i real.

La fase β(r) és una funció real i diferenciable en (0,+∞) però pot tindre
una singularitat de tipus Hölder en l’origen. Com a exemple simplificat
podem considerar el cas

β(r) = a+ brγ , 0 < r ≤ 1, (9)

per algunes a, b ∈ R, γ ∈ (0, 1). Quan r → +∞, assumim que β(r)
s’aproxima a una constant.

Com a cas bàsic suposem β(r) = a, r > 0, és una funció constant. En
aquest cas,

K(x, y) = FΦ(ay − x)

i la estimació (7) s’obté si, i només si, Φ ∈ FL1(Rd), i.e. Φ té transformada
de Fourier en L1(Rd).

Al cas model anterior, (9), β(r) aproxima una constant en ambdós casos,
quan r → 0+ i quan r → +∞ i és diferenciable entre ells, aleshores es
pot conjecturar que una estimació a través de la transformada de Fourier
es manté també en aquest cas. Però, no és el cas, fins i tot per a fases
diferenciables:

Proposició 31. En dimensió d = 1, per a qualsevol 1 ≤ p ≤ 2, considerem
la funció pes

vm(y) = (1 + |y|)m, y ∈ R,

amb m ∈ R tal que

m <
1

p
− 1

2
.

Siga β ∈ C∞((0,+∞)) tal que

ϕ̃(u) = β(|u|)u
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s’estén com un difeomorfisme diferenciable no lineal R→ R que satisfà

ϕ̃(u) = u, |u| ≥ 1.

(per tant, β(|u|) = 1, per a |u| ≥ 1). Siga Φ ∈ C∞0 (R), Φ(u) = 1 per a
|u| ≤ 1.

Aleshores l’operador A en (5) no es pot estendre com un operador fitat
de Lpvm(R) a Lp(R).

Aleshores l’estimació ponderada

∫

Rd
|K(x, y)| dx . (1 + |y|)s (10)

no es compleix per a s < 1/2.

Això sembla sorprenent, però es pot considerar una manifestació del
fenomen Beurling-Helson [BH53, CNR10a, LO94, Oko09, RSTT11], que,
en termes generals, estableix que l’operador de canvi de variable f 7→ f ◦ψ
no és fitat en FL1(Rd) a no ser que ψ : Rd → Rd siga una aplicació af́ı. De
fet l’operador A en (5) amb nucli K(x, y) en (6) es pot escriure com

Af = F−1Φ ∗ F−1(Ff ◦ ϕ̃), amb ϕ̃(u) := β(|u|)u.

Per tant, és interesant analitzar el creixement en (10). Comencem amb la
continüıtat en els espais L1 ponderats per a l’operador A en (5), en aquest
cas tindrem una pèrdua de decäıment. Aquesta es pot provar a través d’una
estimació de tipus Schur per al nucli K.

Teorema 32. Considerem funcions Φ ∈ M1(Rd) i β : (0,+∞) → R. A
més, assumim que per algun exponent γ ∈ (−1, 1], amb ` = bd/2c+ 1,

|∂αβ(|u|)u| ≤ Cα|u|γ+1−|α|, per a 0 6= |u| ≤ 1, |α| ≤ `,

on Cα > 0, i

|∂αβ(|u|)u| ≤ C ′α, per a |u| ≥ 1, 2 ≤ |α| ≤ 2`,
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amb C ′α > 0. Aleshores el nucli d’integració en (6) satisfà

∫

Rd
|K(x, y)|dx ≤ C(1 + |y|)d/(γ+1),

per a una constant C > 0 independent de y.

Aquest resultat en el model simplificat anterior seria: Suposem β(r) com
en (9) per a 0 < r ≤ 1, amb γ ∈ (−1, 1] i asumim que β té, com a molt,
creixement lineal quan r → +∞. Siga Φ com en (8), amb m > (d + 1)/2.
Aleshores (10) se satisfà amb s = d/(γ + 1).

Corol·lari 33. Considerem funcions Φ ∈ M1(Rd) i β : (0,+∞) → R. A
més, siga ` = bd/2c + 1, assumim que la funció β(|u|) s’estén com una
funció C2` en Rd i satisfà

|∂αβ(|u|)u| ≤ Cα, per a u ∈ Rd i 2 ≤ |α| ≤ 2`.

Aleshores, el nucli d’integració en (4.1.2) satisfà

∫

Rd
|K(x, y)|dx ≤ C(1 + |y|) d2 .

Aquest resultat en el model simplificat anterior seria: Suposem que
ϕ̃(u) := β(|u|)u s’estén com a una funció diferenciable en Rd, amb, com
a molt, creixement quadràtic a l’infinit. Siga Φ com en (8), amb m >
(d+ 1)/2. Aleshores (4.1.6) se satisfà per a s = d/2.

Si la fase està traslladada per una constant l’estimació es manté.

Corol·lari 34. Considerem funcions Φ ∈ M1(Rd) i β : (0,+∞) → R.
Assumim que per a alguna γ ∈ (−1, 1] i a ∈ R,

β̃ := β − a

satisfà, amb ` = bd/2c+ 1,

∣∣∣∂αβ̃(|u|)u
∣∣∣ ≤ Cα|u|γ+1−|α|, per a |u| ≤ 1, |α| ≤ `,
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per a Cα > 0, i
∣∣∣∂αβ̃(|u|)u

∣∣∣ ≤ C ′α, per a |u| ≥ 1, 2 ≤ |α| ≤ 2l,

amb C ′α > 0. Aleshores el nucli d’integració en (6) satisfà

∫

Rd
|K(x, y)|dx ≤ C(1 + |y|)d/(γ+1),

per a una constant C > 0, independent de la variable y.

Corol·lari 35. Assumim les hipòtesis del Corol·lari 34 i considerem la
funció pes

v(y) = (1 + |y|)d/(γ+1).

Aleshores l’operador integral A en (5) amb nucli K en (6) és fitat de L1
v(Rd)

a L1(Rd).

Una pregunta natural després d’aquests resultats seria si es poden trobar
resultats similars de continüıtat en L2(Rd), amb les hipòtesis anteriors. En
la següent proposició veiem que no és el cas.

Proposició 36. Siga d = 1. Existeix un operador A com en (5), amb β i
Φ complint les hipòtesis del Corol·lari 34, que no és fitat en L2(Rd).

Per últim arribem a hipòtesis adients sobre les funcions Φ i β de manera
que es garantisca la continüıtat en L2 de l’operador A.

Teorema 37. Considerem Φ ∈ L∞(Rd) ∩ L1(Rd). Siga β : (0,∞) → R
complint les següents hipòtesis:
(i) β ∈ C1((0,∞));
(ii) Existeix δ > 0 tal que β(r) ≥ δ, per a tot r > 0;
(iii) Existeixen B1, B2 > 0, tals que

B1 ≤
d

dr
(β(r)r) ≤ B2, per a tot r > 0.

Aleshores l’operador integral A amb nucli K en (6) és fitat en L2(Rd).
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Nota 38. El resultat anterior també funciona si canviem la funció β per
−β. Per tant, baix les hipòtesis del Teorema 37 amb les hipòtesis (ii) i (iii)
reemplaçades per:
(ii)’ Existeix δ < 0 tal que β(r) ≤ δ, per a tot r > 0;
(iii)’ Existeixen B1, B2 < 0, tals que

B1 ≤
d

dr
(β(r)r) ≤ B2, per a tot r > 0.

Aleshores l’operador integral A amb nucli K en (6) és fitat en L2(Rd).

Aquest resultat en el model simplificat anterior seria: Suposem β(r)
com en (4.1.5) per a 0 < r ≤ 1, amb γ > 0. Siga Φ ∈ C∞(Rd) amb suport
en |u| ≤ 1. Aleshores, si a(a + (γ + 1)b) > 0 l’operador A en (5), (6) és
fitat en L2(Rd).

Els resultats presentats en aquest caṕıtol estan continguts en [CNP18].

L’últim caṕıtol està dedicat a l’estudi dels multiplicadors unimodulars
de Fourier. Els multiplicadors unimodulars de Fourier estan formalment
definits a través de la següent expressió

eiµ(D)f(x) :=

∫

Rd
e2πixξeiµ(ξ)f̂(ξ) dξ,

on µ és una funció amb valors reals.
Els multiplicadors unimodulars de Fourier representen un dels principals

camps de recerca en l’anàlisi harmònica. Les connexions amb altres bran-
ques de matemàtica pura i aplicada són incontables (combinatòria, EDPs,
processament de senyals, càlcul funcional, etc.).

El prototip ve donat per la fase µ(ξ) = |ξ|2. És de gran interés l’estudi
de la continüıtat d’aquests operadors sobre diferents espais. Mentre que
aquests operadors representen transformacions unitàries en L2(Rd), la seua
continüıtat en Lp(Rd) per a p 6= 2 falla, en general. Per això recentment,
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diversos treballs han abordat el problema de la continüıtat en altres espais
de funcions. Entre aquests, els espais més convenients han resultat ser els
espais de modulació Mp,q(Rd), 1 ≤ p, q ≤ ∞, àmpliament utilitzats en
anàlisi de temp-freqüència [Fei83, Grö01].

Ara, En [BGOR07] es va provar que el propagador de Schrödinger
(µ(ξ) = |ξ|2 en (5.1.1)) és fitat en Mp,q(Rd) → Mp,q(Rd), per a tot 1 ≤
p, q ≤ ∞. Aquest resultat motiva l’estudi de la continüıtat de multipli-
cadors unimodulars de Fourier més generals sobre espais de modulació.
Breument, per a fases no fitades (suficientment derivables) les propietats
que juguen un rol clau són:

Creixement i oscil·lacions de les segones derivades ∂γµ, |γ| = 2.

Per a posar els nostres resultats en context recordem tres resultats previs
bàsics.

(a) Sense creixement, oscil·lacions suaus [BGOR07, Theorem 11]. Su-
posem que

|∂γµ(ξ)| ≤ C, per a ξ ∈ Rd, 2 ≤ |γ| ≤ 2(bd/2c+ 1).

Aleshores eiµ(D) : Mp,q(Rd) → Mp,q(Rd) és fitada per a tota 1 ≤
p, q ≤ ∞.

Aquest resultat generalitza el cas del propagador de Schrödinger, on les
segones derivades de µ són de fet constants.

(b) Sense creixement, oscil·lacions suaus [CT09, Lemma 2.2]. Suposem
que

∂γµ ∈M∞,1(Rd), per a |γ| = 2.

Aleshores eiµ(D) : Mp,q(Rd)→Mp,q(Rd) és fitat per a tota 1 ≤ p, q ≤
∞.

Aquest lema proporciona un resultat parcial, però clau, des del qual es
pot deduir que el śımbol σ(ξ) = eiµ(ξ) pertany a l’espai de les amalgames
de Wiener, W (FL1, L∞). Observeu que el resultat (b) millora el de (a),



XXVIII RESUM

a causa de la inclusió Cd+1(Rd) ↪→ M∞,1(Rd) ([Grö01, Theorem 14.5.3]).
Notem també que M∞,1(Rd) ⊂ L∞(Rd), aleshores les segones derivades de
µ no creixen a l’infinit, però poden oscil·lar, com cos |ξ|α, amb 0 < α ≤ 1
(cf. [BGOR07, Corollary 15]).

(c) Creixement a l’infinit, oscil·lacions suaus [MNR+09, Theorem 1.1].
Siga α ≥ 2, i suposem que

|∂γµ(ξ)| ≤ C〈ξ〉α−2, per a 2 ≤ |γ| ≤ bd/2c+ 3.

Aleshores eiµ(D) : Mp,q
δ (Rd)→Mp,q(Rd) és fitat per a tota 1 ≤ p, q ≤

∞ i δ ≥ d(α− 2)|1/p− 1/2|.

Aćı Mp,q
δ (Rd) = Mp,q

1⊗〈·〉δ , on (1 ⊗ 〈·〉δ)(x, ω) = 〈ω〉δ, que és un espai

ponderat en la freqüència.

En [BGOR07, Lemma 8] es va provar que l’operador eiµ(D) és fitat en
tot Mp,q(Rd) per a tota 1 ≤ p, q ≤ ∞ si el seu śımbol eiµ(ξ) pertany a
l’espai d’amalgames de Wiener W (FL1, L∞)(Rd) [Fei81a], la seua norma
es defineix com

‖f‖W (FL1,L∞) = sup
x∈Rd

‖g(· − x)f‖FL1

on g ∈ S(Rd) \ {0} és una finestra arbitraria. Açò suggereix buscar condi-
cions sobre µ(ξ) en termes d’aquest espai. El nostre primer resultat en
aquesta direcció és el següent.

Teorema 39. (Sense creixement, oscil·lacions fortes). Siga µ ∈ C2(Rd),
una funció real, que satisfà

∂γµ(ξ) ∈W (FL1, L∞)(Rd), per a |γ| = 2.

Aleshores

eiµ(D) : Mp,q(Rd)→Mp,q(Rd)

és fitat per a tota 1 ≤ p, q ≤ ∞.
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Observem que M∞,1(Rd) ⊂ W (FL1, L∞)(Rd) ⊂ L∞(Rd) aleshores
aquest resultat millora el resultat anterior (b). Aćı les segones derivades
de µ encara estan fitades, però poden oscil·lar, com cos |ξ|2 (cf. [BGOR07,
Theorem 14]). Aquest resultat està inspirat per [CT09, Lemma 2.2]. Mal-
grat això, el nostre resultat principal s’ocupa de la possibilitat de segones
derivades no fitades, com es mostra en el següent teorema.

Teorema 40. (Creixement a l’infinit, oscil·lacions fortes). Siga α ≥ 2.
Siga µ ∈ C2(Rd), una funció real tal que

〈ξ〉2−α∂γµ(ξ) ∈W (FL1, L∞)(Rd), per a |γ| = 2.

Aleshores,
eiµ(D) : Mp,q

δ (Rd)→Mp,q(Rd)

és fitat per a tota 1 ≤ p, q ≤ ∞ i

δ ≥ d(α− 2)

∣∣∣∣
1

p
− 1

2

∣∣∣∣ .

La fita superior per δ coincideix amb la de (c), i també amb els exemples
a [BGOR07, Teorema 16], on es van considerar fins i tot oscil·lacions més
fortes, però només per a casos model.

El Teorema 39 és, per descomptat, un cas particular del Teorema 40 i
s’utilitzarà com a pas en la demostració d’aquest.

Els resultats presentats en aquest caṕıtol estan continguts en [NPT18].





Abstract

In this thesis, we study different aspects of operators related to time-
frequency analysis. Every linear and continuous operator from the Schwartz
class into its dual, the space of tempered distributions, can be written as an
integral operator with kernel K, or also as an integral Fourier operator (in
fact, pseudodifferential [Grö01, Theorem 14.3.5]). Different conditions on
the kernel or the symbol and the phase (in the FIOs case) allow to extend
the operator to various spaces of functions and distributions. Below we
detail the contents of the memory.

At the first chapter we introduce the notation, the definitions of some
spaces and the preliminary results that will be used throughout the thesis.
The second chapter is devoted to the study of uncondicional multipliers.
The main result, an improvement of Orlicz’s theorem, shows that every un-
conditionally summable sequence in a Hilbert space can be factorized as the
product of a square summable scalar sequence and a Bessel sequence. Some
consequences on the representation of unconditionally convergent multipli-
ers are obtained. The aim of the third chapter is to investigate compactness
for Fourier integral operators when acting on weighted modulation spaces,
using the matrix representation of Fourier integral operators with respect
to a Gabor frame. As a consequence, we recover and improve some known
results on compactness of pseudodifferential operators. At the fourth chap-
ter we study conditions for the boundedness of Fourier integral operators
with Hölder-continuous phase on Lebesgue spaces. We prove boundedness
in L1 with a precise loss of decay depending on the Hölder exponent, and
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we show by counterexamples that a loss occurs even in the case of smooth
phases. The continuity in L2 is studied as well by providing sufficient con-
ditions and relevant counterexamples. At the last chapter we find some
conditions for continuity of unimodular Fourier multipliers on modulation
spaces. We find some results assuming that the second derivatives of the
phase are bounded or, more generally, that its second derivatives belong
to a particular Wiener amalgam space, in particular, its second derivatives
could have strong oscillations at infinity.
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Introduction

In this thesis, we study different aspects of operators related to time-
frequency analysis. Every linear and continuous operator A : S → S ′
can be written as an integral operator

〈Af, g〉 = 〈K, g ⊗ f〉,

where K ∈ S ′ is the kernel and f, g ∈ S, or also as an integral Fourier
operator (in fact, pseudodifferential [Grö01, Theorem 14.3.5]). Different
conditions on the kernel or the symbol and the phase (in the case of Fourier
integral operators) allow to extend the operator to various spaces of func-
tions and distributions.

Our aim is to use time-frequency analysis techniques to study bound-
edness and/or compactness of Fourier integral operators, integral operators
or unimodular multipliers on modulation or Lebesgue spaces. We study
multipliers on separable Hilbert spaces too.

Below we detail the contents of the memory.

In the first chapter we introduce the notation and we recall the defi-
nitions of some spaces and preliminary results that will be used in the thesis.

The second chapter is devoted to the study of uncondicional multipliers.
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4 INTRODUCTION

A multiplier on a separable Hilbert space H is a bounded operator

Mm,Φ,Ψ : H → H, f 7→
∞∑

n=1

mn 〈f,Ψn〉Φn,

where Φ = (Φn)n and Ψ = (Ψn)n are sequences in H and m = (mn)n is
a scalar sequence called the symbol. The multiplier is said to be uncondi-
tionally convergent if the above series converges unconditionally for every
f ∈ H. In the case that Φ = (Φn)n and Ψ = (Ψn)n are Bessel sequences in
H and m ∈ `∞ the operator Mm,Φ,Ψ is called a Bessel multiplier. Bessel
multipliers were introduced and studied by Balazs [Bal07] as a general-
ization of the Gabor multipliers considered by Feichtinger and Nowak in
[FN03]. Balazs proved, in [Bal07], that each Bessel multiplier is uncondi-
tionally convergent. Balazs and Stoeva conjectured in [SB13a] that every
unconditionally convergent multiplier can be written as a Bessel multiplier
with constant symbol by shifting weights. More precisely,

Conjecture 1. [SB13a, Conjecture 1] Let

Mm,Φ,Ψ : H → H

be an unconditionally convergent multiplier, then there exist scalar sequences
(an)n and (bn)n such that

mn = an · bn
and such that

(anΦn)n and (bnΨn)n

are Bessel sequences in H.

In the second chapter new situations where the conjecture of Balazs and
Stoeva is still true will be presented.

The aim of the third chapter is to investigate compactness for Fourier
integral operators, FIOs, when acting on weighted modulation spaces. Our
results strongly depend on the matrix representation of a FIO with respect
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to a Gabor frame, since our approach to the study of the compactness of the
FIOs follows the point of view of Cordero, Nicola and Rodino in [CNR10b].

For a function f on Rd the Fourier integral operator, or FIO, T with
symbol σ ∈ L∞(R2d) and real phase Φ on R2d can be formally defined by

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη.

The above formula defines a continuous operator from S(Rd) into S ′(Rd).
The phase Φ(x, η) is tame, which means that it is smooth on R2d and fulfills
the estimates

|∂αz Φ(z)| ≤ Cα, |α| ≥ 2, z ∈ R2d,

and the nondegeneracy condition

|det ∂2
x,η Φ(x, η)| ≥ δ > 0, (x, η) ∈ R2d.

The symbol σ on R2d satisfies

|∂αz σ(z)| ≤ Cα, a.e. z ∈ R2d, |α| ≤ 2N

for a fixed N ∈ N. Here ∂αz denotes the distributional derivative.

When Φ(x, η) = xη we recover the pseudodifferential operators (PS-
DOs) in the Kohn-Nirenberg form. Frames allow to represent operators in
terms of matrices. The matrix representation of a FIO with respect to a
Gabor frame G(g,Λ) with g ∈ S(Rd) is well organized, this is the key result
of Cordero, Nicola and Rodino in [CNR10b]. We will use a decay estimate
to discuss the compactness of the FIOs when acting on weighted modula-
tion spaces. More precisely, we prove that the FIO is compact when acting
on some modulation space of the form Mp

m(Rd) if and only if the sequences
(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

converge to zero for all µ ∈ Λ, where χ′ denotes a discrete version of the
canonical transformation χ defined through the system

{
y = ∇ηΦ(x, η),
ξ = ∇xΦ(x, η).
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As was shown in [CNR10b], the operators we are considering may fail to
be bounded on mixed modulation spaces. To overcome this obstacle, an
extra condition on the phase was introduced in [CNR10b]. Under this
additional condition, the compactness results are extended to weighted
mixed modulation spaces. As a consequence, we recover and improve
some compactness results for PSDOs obtained by Fernández and Galbis
in [FG06, FG07, FG10]. In the last section we see that the obtained results
can be applied on Fourier integral operators on modulation spaces with
GRS-weights, under similar estimates in the phase and the symbol.

In the fourth chapter we study conditions for the boundedness of the
integral operator,

Af(x) =

∫

Rd
K(x, y)f(y)dy,

with kernel

K(x, y) =

∫

Rd
Φ(u)e−2πi(β(|u|)u·y−u·x)du.

on some Lebesgue spaces, where β(r) is real-valued and the function Φ(u)
has a good decay at infinity but could be not smooth at the origin u = 0.
This integral operator can be seen as a FIO of type II,

TII,ϕ,σf(x) =

∫

R2d

e−2πi(ϕ(y,u)−u·x)σ(y, u)f(y)dy du,

It is interesting to find estimates of the type

sup
y∈Rd

∫

Rd
|K(x, y)| dx <∞.

This estimate implies a continuity property for the corresponding operator
between weighted L1 spaces.

Therefore, the next natural question is whether under the same assump-
tions similar continuity estimates hold in L2(Rd). This is not the case, but
different sufficient conditions are given for the L2-continuity.
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In the last chapter we find some conditions for continuity of unimod-
ular Fourier multipliers on modulation spaces. The unimodular Fourier
multipliers are formally defined by

eiµ(D)f(x) :=

∫

Rd
e2πix·ξeiµ(ξ)f̂(ξ) dξ,

with real-valued µ. These operators can be seen as a PSDO,

Tf(x) =

∫

Rd
e2πix·ησ(x, η)f̂(η)dη,

with symbol σ(x, η) = eiµ(η), or as a FIO

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη,

with phase Φ(x, η) = x·η+ 1
2πµ(η) and constant symbol. Fourier multipliers

represent one of the main research fields in harmonic analysis, where a
number of challenging problems remains open [Ste93].

The function µ(ξ) = |ξ|2 gives us the prototype phase. In that case the
operator eiµ(D) is the propagator for the free Schrödinger equation. Hence it
is of great interest to study the continuity of such operators on several func-
tions spaces arising in PDEs. Such operators represent unitary transforma-
tions of L2(Rd), but their continuity on Lp(Rd) for p 6= 2 may fail. Hence
recently a number of works addressed the problem of the continuity in other
function spaces. From these spaces, the more convenient spaces turned out
to be the modulation spaces Mp,q(Rd), 1 ≤ p, q ≤ ∞, widely used in time-
frequency analysis [Fei83, Grö01]. This is so because Bényi, Gröchenig,
Okoudjou and Rogers proved, in [BGOR07], that the Schrödinger propa-
gator (hence µ(ξ) = |ξ|2 in (5.1.1)) is bounded Mp,q(Rd) → Mp,q(Rd), for
every 1 ≤ p, q ≤ ∞. This result motivates the study of the continuity of
more general unimodular Fourier multipliers on modulation spaces, which
is what we study in the last chapter.
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Chapter 1

Preliminaries

In this chapter we introduce the notation, definitions, some spaces and
preliminary results that will be used through all the thesis. The chapter is
divided in 2 sections with the aim of giving an overview of the necessary pre-
liminary results. Section 1.1 is devoted to the definition of sequence spaces
as well as to some properties of them. In Section 1.2 we introduce some
function spaces, particularly modulation spaces with polynomial weights
and Wiener amalgam spaces. In Subsection 1.2.3 we describe how Gabor
frames relate certain function spaces to sequence spaces. Finally, we intro-
duce the definition of modulation spaces with GRS-weights and we apply
Gabor frames to them.

1.1 Sequence spaces

Definition 1.1.1. Given I and J countable sets of indices, a sequence of
positive numbers m = (mi,j)(i,j)∈I×J and 1 ≤ p, q < ∞, we consider the

sequence space `p,qm (I × J) consisting of those sequences x = (xi,j)(i,j)∈I×J
such that

‖x‖`p,qm :=


∑

j∈J

(∑

i∈I
|xi,jmi,j |p

) q
p




1
q

<∞.

9
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In the case that p = ∞ or q = ∞, the previous norm is modified in the
usual way, for instance, if p =∞,

‖x‖`∞,qm
:=


∑

j∈J

(
sup
i∈I
|xi,jmi,j |

)q



1
q

.

If p = q we have the weighted `p-spaces.

Note that it is not necessary to indicate the order of addition given that
the sums are unconditionally convergent. Recall that if p1 ≤ p2 and q1 ≤ q2

then `p1,q1(I × J) ⊆ `p2,q2(I × J).
Throughout the thesis we denote by `0,qm (I × J), the closed subspace of

`∞,qm (I × J) consisting of those sequences x ∈ `∞,qm (I × J) such that

lim
i∈I
|xi,jmi,j | = 0,

for every j ∈ J . We denote `p,0m (I × J) analogously.
It turns out that `0,qm (I×J) (resp. `p,0m (I×J)) coincides with the closure

in `∞,qm (I×J) (resp. `p,∞m (I×J)) of the set of those sequences with finitely
many non zero coordinates, denoted C(I×J).

Also, `0,0m (I × J) coincides with the Banach space c0,m(I × J) of all
sequences x = (xi,j)(i,j)∈I×J whose product with m converges to 0.

All these spaces, `p,qm (I × J), are Banach spaces for p, q ∈ [1,∞] ∪ {0}.
When p, q ∈ [1,∞) ∪ {0}, the dual of `p,qm (I × J) can be identified with

`p
′,q′
1
m

(I × J), where p′ and q′ are the conjugate exponents of p and q. As

usual, we agree that the conjugate exponent of 0 is 1. The duality is given
by

`p,qm (I × J)× `p′,q′1
m

(I × J)→ C, (x, y) 7→ x · y =
∑

(i,j)∈I×J
xi,jyi,j .

Definition 1.1.2. Given a sequence a = (ai,j)(i,j)∈I×J of complex numbers,
we denote by Da the diagonal operator

Da : CI×J → CI×J , x = (xi,j)(i,j)∈I×J 7→ (ai,jxi,j)(i,j)∈I×J .
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Proposition 1.1.3. The diagonal operator Da is bounded on `p,qm (I × J)
if, and only if, a ∈ `∞(I × J) and

‖Da‖ = ‖a‖∞
for all p, q ∈ [1,∞] ∪ {0} and every m.

Proposition 1.1.4. The diagonal operator Da is a compact operator on
`p,qm (I × J) if, and only if, a ∈ c0(I × J).

The result follows from the fact that the elements of each a ∈ c0(I × J)
are the ‖ · ‖∞-limit of the difference between the operator Da and its finite
sections.

A set of the form Λ = AZN , with A an invertible N × N matrix, is
called a lattice on RN . We observe that γ + Λ = Λ, whenever γ ∈ Λ. If I
and J are lattices in Rd and R` respectively, we write Λ := I × J, which is
a lattice in RN (N = d+ `).

Definition 1.1.5. Let γ ∈ Λ, for a lattice Λ in RN , the translation
operator Tγ : CΛ → CΛ is defined by

Tγ (xλ)λ∈Λ = (xλ−γ)λ∈Λ .

Let us introduce two concepts needed for the last result of the section.
A function v : Λ → (0,∞) is said to be a submultiplicative weight

if it is symmetric on each coordinate and

v(r + k) ≤ v(r)v(k), for all r, k ∈ Λ.

Given a submultiplicative weight v, a sequence of positive numbers m =
(mγ)γ∈Λ is v-moderate, with constant Cm, if

mγ+γ′ ≤ Cmmγv(γ′), for all γ, γ′ ∈ Λ.

If m is v-moderate, then 1/m is also v-moderate.

Proposition 1.1.6. Given m = (mγ)γ∈Λ, v-moderate with constant Cm,
the translation operator Tγ is bounded on `p,qm (Λ) for every γ ∈ Λ, and

‖Tγ‖ ≤ Cmv(γ),

for all p, q ∈ [1,∞] ∪ {0}.
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1.2 Function spaces

Definition 1.2.1. Let 1 ≤ p, q <∞, and let m be a weight function on R2d.
Then the weighted mixed-norm spaces Lp,qm (R2d) consist of all Lebesgue
measurable functions f such that

‖f‖Lp,qm :=

(∫

Rd

(∫

Rd
|f(x, y)m(x, y)|p dx

) q
p

dy

) 1
q

<∞.

In the case that p =∞ or q =∞, the corresponding p-norm is replaced by
the essential supremum.

Let 1 ≤ p, q ≤ ∞, and m be a weight function on R2d, the dual of

Lp,qm (R2d) can be identified with Lp
′,q′
1
m

(R2d), where 1
p+ 1

p′ = 1 and 1
q + 1

q′ = 1.

The space L2(Rd) is a Hilbert space with the inner product

〈f, g〉 =

∫

Rd
f(x)g(x)dx.

We consider its extension to the pairs

(
Lp,qm , Lp

′,q′
1
m

)
with the same notation,

〈·, ·〉.
Definition 1.2.2. The Fourier transform of a function f ∈ L1(Rd) is
defined as

Ff(ω) = f̂(ω) :=

∫

Rd
f(x)e−2πix·ωdx

where x · ω = xω is the scalar product on Rd.

Once introduced the Fourier transform it is time to remember that its
inverse is F−1 = IF , where If(x) = f(−x).

Definition 1.2.3. The Schwartz class, S(Rd), consists of all C∞-functions
f on Rd such that

sup
x∈Rd

|Dαxβf(x)| <∞,

for all α, β ∈ Zd+.



1.2. FUNCTION SPACES 13

At this point it is necessary to recall that the Fourier transform is an
isomorphism on S(Rd), in order to carry out the following argumentations.

Definition 1.2.4. The elements in the dual space of the Schwartz class
S ′(Rd) are called tempered distributions.

Also, we consider the extension of the inner product on L2(Rd), 〈·, ·〉,
to the pair (S(Rd),S ′(Rd)). And by duality the Fourier transform can be
extended to S ′(Rd) as follows

〈F(f),F(ϕ)〉 = 〈f, ϕ〉 for f ∈ S(Rd) and ϕ ∈ S ′(Rd).

Definition 1.2.5. For 1 ≤ p ≤ ∞, the FLp spaces are defined by

FLp(Rd) := {f ∈ S ′(Rd) : ∃h ∈ Lp(Rd), Fh = f},

they are Banach spaces equipped with the norm

‖f‖FLp := ‖h‖Lp , with Fh = f.

1.2.1 Modulation spaces with polynomial weights

We start this section introducing the necessary elements for the incoming
definitions.

A function v : RN → (0,∞) is said to be a submultiplicative weight
if it is continuous, even on each coordinate and

v(r + k) ≤ v(r)v(k).

A map m : RN → (0,∞) is said to be v-moderate, with constant Cm,
when

m(r + k) ≤ Cmm(r)v(k)

for every r, k ∈ RN . If m is v-moderate, then 1/m is also v-moderate.
The polynomial weights are the submultiplicative weights of the form

vs(r) = 〈r〉s = (1 + |r|2)
s
2 , s > 0.
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We consider the translation operator and the modulation operator
defined by

Txf(t) := f(t− x) and Mξf(t) := e2πiξtf(t).

We denote π(ξ, x)f := MξTxf(t). Also, we have the next relations

F(Txf) = M−xFf, F(Mξf) = TξFf and MξTx = e2πixξTxMξ.

Definition 1.2.6. The short-time Fourier transform (STFT), Vgf ,
of a function f ∈ L2(Rd) with respect to the window g ∈ L2(Rd) \ {0} is
defined by

Vgf(x, ξ) := 〈f,MξTxg〉 =

∫

Rd
e−2πiξyf(y)g(y − x) dy,

i.e. the Fourier transform of fTxg.

As the previous definition relies on the scalar product, it can be ex-
tended to tempered distributions f ∈ S ′(Rd) taking the window g ∈ S(Rd).
When f ∈ S ′(Rd) and g ∈ S(Rd), Vgf is continuous.

Definition 1.2.7. Given a non-zero window g ∈ S(Rd), a vs-moderate
weight m, s > 0, and 1 ≤ p, q ≤ ∞, the modulation space Mp,q

m (Rd)
consists of all tempered distributions f ∈ S ′(Rd) such that Vgf ∈ Lp,qm (R2d),
that is,

‖f‖Mp,q
m

:= ‖Vgf‖Lp,qm =

(∫

Rd

(∫

Rd
|Vgf(x, ω)|pm(x, ω)pdx

) q
p

dω

) 1
q

<∞,

with the usual changes when p = ∞ or q = ∞. If p = q we write Mp
m(Rd)

instead of Mp,p
m (Rd). Moreover, Mp,q

m (Rd) is a Banach space whose defini-
tion is independent of the window g (See e.g.[Grö01, Proposition 11.3.2]).

Recall that if m is vs-moderate, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞
then M1

v (Rd) ⊆Mp1,q1
m (Rd) ⊆Mp2,q2

m (Rd) ⊆M∞1/v(Rd).
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It is well known that S(Rd) is dense in Mp,q
m (Rd), for 1 ≤ p, q <∞. The

closure of S(Rd) in M∞,qm (Rd) is denoted M0,q
m (Rd) and Mp,0

m (Rd) is defined
similarly. In particular, the closure of S(Rd) in M∞(Rd) is denoted by
M0(Rd) and consists of those tempered distributions whose STFT vanishes
at infinity.

Mp(Rd) is invariant under the Fourier transform.

For p, q ∈ [1,∞) ∪ {0} the dual of Mp,q
m (Rd) can be identified with

Mp′,q′

1/m (Rd), under the pairing

〈f, h〉 =

∫ ∫

R2d

Vgf(x, ω)Vgh(x, ω)d(x, ω),

where p′ and q′ are the conjugate exponents of p and q. As usual, we agree
that the conjugate exponent of 0 is 1.

In particular, we recall that M2(Rd) = L2(Rd), [Grö01, Proposition
11.3.1].

The notation A . B means A ≤ cB for a suitable constant c > 0 de-
pending only on the dimension d and Lebesgue exponents p, q, . . . , arising
in the context, whereas A � B means A . B and B . A.

We have defined the modulation spaces, now let us see some properties.
First of all, from [Grö01, Theorem 11.3.5] we infer the following result.

Proposition 1.2.8. For 1 ≤ p, q ≤ ∞, Mp,q(Rd) is invariant under time-
frequency shifts, with

‖TxMuf‖Mp,q = ‖f‖Mp,q .

Proposition 1.2.9. [KS11, Corollary 1.2] Let k ∈ R. Then we have

W k,1(Rd) ↪→ M1(Rn) if k > d. Conversely, if W k,1(Rd) ↪→ M1(Rn), then
k ≥ d .
Here W k,1(Rd) is the Sobolev space defined by

W k,1(Rd) :=
{
u ∈ L1(Rd) : Dαu ∈ L1(Rd) for all α ∈ Nd : |α| 6 k

}
.
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Definition 1.2.10. We consider the dilation operator defined by

Uλf(x) := f(λx), λ 6= 0.

The Fourier transform acts as F(Uλf)(x) =
(

1
λ

)d
(Ff)(xλ).

Now, to see the behaviour of the dilation operator on modulation spaces,
we need to introduce some indices. For (1/p, 1/q) ∈ [0, 1]× [0, 1], we define
the subsets

I1 : max(1/p, 1/p′) ≤ 1/q, I∗1 : min(1/p, 1/p′) ≥ 1/q,

I2 : max(1/q, 1/2) ≤ 1/p′, I∗2 : min(1/q, 1/2) ≥ 1/p′,

I3 : max(1/q, 1/2) ≤ 1/p, I∗3 : min(1/q, 1/2) ≥ 1/p,

as shown in Figure 1.1.

METAPLECTIC REPRESENTATION AND APPLICATIONS 11

Proposition 3.1 generalizes [31, Lemma 3.1], that can be recaptured by choosing
the matrix A = λI, λ > 0.

Corollary 3.2. Let 1 ≤ p, q ≤ ∞ and A ∈ GL(d, R). Then, for every f ∈
W (FLp, Lq)(Rd),

(20) ∥fA∥W (FLp,Lq) ! | det A|(1/p−1/q−1)(det(I + A∗A))1/2∥f∥W (FLp,Lq).

Proof. It follows immediately from the relation between Wiener amalgam spaces

and modulation spaces given by W (FLp, Lq) = FMp,q and by the relation (̂fA) =

| detA|−1(f̂)(A∗)−1 .

In what follows we give a more precise result about the behaviour of the operator
norm ∥DA∥Mp,q→Mp,q in terms of A, when A is a symmetric matrix, extending the
diagonal case A = λI, λ > 0 treated in [31]. We shall use the set and index
terminology of the paper above. Namely, for 1 ≤ p ≤ ∞, let p′ be the conjugate
exponent of p (1/p+1/p′ = 1). For (1/p, 1/q) ∈ [0, 1]× [0, 1], we define the subsets

I1 = max(1/p, 1/p′) ≤ 1/q, I∗
1 = min(1/p, 1/p′) ≥ 1/q,

I2 = max(1/q, 1/2) ≤ 1/p′, I∗
2 = min(1/q, 1/2) ≥ 1/p′,

I3 = max(1/q, 1/2) ≤ 1/p, I∗
3 = min(1/q, 1/2) ≥ 1/p,

as shown in Figure 1:

0 1/2 1 1/p 0 1/2 1 1/p

1/2

1

1/q

1/2

1

1/q

I1

I2 I3
I∗
1

0 < |λ| ≤ 1 |λ| ≥ 1

Figure 1. The index sets.

I2
∗I3

∗

Figure 1.1: The index sets

We introduce the indices:

µ1(p, q) =





−1/p if (1/p, 1/q) ∈ I∗1 ,
1/q − 1 if (1/p, 1/q) ∈ I∗2 ,
−2/p+ 1/q if (1/p, 1/q) ∈ I∗3 ,
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and

µ2(p, q) =





−1/p if (1/p, 1/q) ∈ I1,

1/q − 1 if (1/p, 1/q) ∈ I2,

−2/p+ 1/q if (1/p, 1/q) ∈ I3.

Here is the main result about the behaviour of the dilation operator in
modulation spaces.

Theorem 1.2.11. [ST07, Theorem 3.1] Let 1 ≤ p, q ≤ ∞, and λ 6= 0.

(i) We have

‖Uλf‖Mp,q . |λ|dµ1(p,q)‖f‖Mp,q , for all |λ| ≥ 1, for all f ∈Mp,q(Rd).

Conversely, if there exists α ∈ R such that

‖Uλf‖Mp,q . |λ|α‖f‖Mp,q , for all |λ| ≥ 1, for all f ∈Mp,q(Rd),

then α ≥ dµ1(p, q).

(ii) We have

‖Uλf‖Mp,q . |λ|dµ2(p,q)‖f‖Mp,q , for all 0 < |λ| ≤ 1, for all f ∈Mp,q(Rd).

Conversely, if there exists β ∈ R such that

‖Uλf‖Mp,q . |λ|β‖f‖Mp,q , for all 0 < |λ| ≤ 1, for all f ∈Mp,q(Rd),

then β ≤ dµ2(p, q).

1.2.2 Wiener spaces

In this section we recall the definition and some properties of Wiener amal-
gam spaces. We denote by C∞0 (Rd) the space of smooth functions with
compact support.
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Definition 1.2.12. Let B1 and B2 be Banach spaces, B1 consisting of
measurable functions. We fix g ∈ C∞0 (Rd) \ {0}. The Wiener amal-
gam space W (B1, B2) with local component B1 and global component B2

is defined as the space of all functions f locally in B1 such that fB1 ∈ B2,
fB1(x) = ‖fTxg‖B1. W (B1, B2) is a Banach space endowed with the norm

‖f‖W (B1,B2) := ‖fB1‖B2 = ‖‖fTxg‖B1‖B2 .

Moreover, different choices of g ∈ C∞0 (Rd) generate the same space and
yield equivalent norms. The Wiener spaces mainly used in this work are:

• W (L∞, `p)(Rd), 1 ≤ p <∞, being Λ a lattice of Rd, consists of those
continuous functions f such that

‖f‖W (C,`p) =

(∑

x∈Λ

(
sup
y∈Rd
{|Txf(y)|}

)p) 1
p

<∞. (1.2.1)

The definition is independent of the lattice Λ.

• W (FLp, Lq)(Rd), 1 ≤ p, q ≤ ∞,

‖f‖W (FLp,Lq) = ‖‖fTxg‖FLp‖Lq

=

(∫

Rd

(∫

Rd
|F−1(fTxg)(y)|pdy

) q
p

dx

) 1
q

. (1.2.2)

Proposition 1.2.13. [CN08a, Proposition 2.2] For 1 ≤ p, q ≤ ∞, the
Fourier transform maps F : W (FLp, Lq)(Rd)→W (FLq, Lp)(Rd) continu-
ously and it is an isomorphism when p = q.

The relationship between modulation and Wiener amalgam spaces is
expressed by the following result.

Proposition 1.2.14. [CN08a, Proposition 2.4] The Fourier transform es-
tablishes an isomorphism F :Mp,q(Rd)→W (FLp, Lq)(Rd), for 1≤p, q≤∞.
In fact, Mp(Rd) = W (FLp, Lp)(Rd), with equivalent norms.
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The dilatation operator acts on the Wiener spaces as indicated in the
following Lemma.

Lemma 1.2.15. ([CN08a, Corollary 3.2]) Let 1 ≤ p, q ≤ ∞. Then, for
every f ∈W (FLp, Lq)(Rd),

‖Uλf‖W (FLp,Lq) . λd/p−d/q‖f‖W (FLp,Lq) for all |λ| ≥ 1

and

‖Uλf‖W (FL1,L∞) . ‖f‖W (FL1,L∞) for all 0 < |λ| ≤ 1.

Proposition 1.2.16. [CN08a, Proposition 2.5] For every 1 ≤ p, q ≤ ∞ we
have

‖fu‖W (FLp,Lq) . ‖f‖W (FL1,L∞)‖u‖W (FLp,Lq),

for all f ∈W (FL1, L∞) and u ∈W (FLp, Lq).If p = q, we have

‖fu‖Mp . ‖f‖W (FL1,L∞)‖u‖Mp .

Wiener amalgam spaces are invariant with respect to modulation and
translation operators too [Grö01, Theorem 11.3.5 ].

Proposition 1.2.17. For 1 ≤ p, q ≤ ∞, W (FLp, Lq)(Rd) is invariant
under time-frequency shifts, with

‖TxMuf‖W (FLp,Lq) = ‖f‖W (FLp,Lq).

1.2.3 Gabor frames

In this subsection we see how Gabor frames relate modulation spaces to
sequence spaces. We fix a function g ∈ L2(Rd) and a lattice Λ = αZd×βZd,
for α, β > 0. The family G(g,Λ) = {π(λ)g : λ ∈ Λ}, where π(λ1, λ2)g =
Mλ1Tλ2g(t), is called a Gabor system and it is said to be a Gabor frame
if there exist constants A,B > 0 such that

A‖f‖22 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖22, for all f ∈ L2(Rd).
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If A = B = 1, then the Gabor frame is said to be a Parseval frame.
Associated to the Gabor frame G(g,Λ) we consider the analysis operator

Cg : L2(Rd)→ `2(Λ), f 7→ (〈f, π(λ)g〉)λ∈Λ ,

and its adjoint Dg = C∗g , which is the synthesis operator

Dg : `2(Λ)→ L2(Rd), (cλ)λ∈Λ 7→
∑

λ∈Λ

cλπ(λ)g.

Then Sg = Dg ◦ Cg is a bounded and invertible operator on L2(Rd) called
frame operator. The canonical dual window of g is defined as h =
S−1
g g. It turns out that G(h,Λ) is also a Gabor frame and

Dg ◦ Ch = Dh ◦ Cg = IdL2(Rd).

If the Gabor frame is a Parseval frame then Sg = IdL2(Rd) and h = g.

In the case that G(g,Λ) is a Gabor frame and g ∈ S(Rd) then, as proved
by Janssen (see [Jan95] or [Grö01, 13.5.4]), also h = S−1

g (g) ∈ S(Rd).
Gröchenig and Leinert [GL04, 4.5] showed the existence of Parseval frames
G(g,Λ) with g ∈ S(Rd). Therefore we can reformulate some known results
in the following way.

Theorem 1.2.18. Let g ∈ S(Rd). Then, for every polynomially moderate
weight m and for every 1 ≤ p, q ≤ ∞,

Cg : Mp,q
m (Rd)→ `p,qm (Λ) and Dg : `p,qm (Λ)→Mp,q

m (Rd)

are bounded operators, weak∗-continuous, and being h = S−1
g (g),

Dg ◦ Ch = Dh ◦ Cg = IdMp,q
m (Rd).

Here Dg is the transposed map of Cg : Mp′,q′

1/m (Rd)→ `p
′,q′

1/m(Λ). For p = 1

or q = 1 we take p′ = 0 or q′ = 0 respectively.

If c = (cλ)λ∈Λ and 1 ≤ p, q < ∞ then Dg(c) =
∑

λ∈Λ cλπ(λ)g. In the
limit cases p = ∞ or q = ∞ the series in the right hand side converges to
Dg(c) in the weak∗-topology. See for instance [FG97] or [Grö01, Chapter
12].
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1.2.4 Modulation spaces with GRS-weights

Let us now see the definition of modulation spaces with GRS weights and
how the Gabor frames act on them. We start introducing the so-called
Gelfand-Shilov type spaces, introduced in [GS68].

Definition 1.2.19. Let s, r ≥ 0 be given. A function f ∈ S(Rd) is in the
Gelfand-Shilov type space Ssr(Rd) if there exist constants A,B > 0 such
that

|xα∂βf(x)| . A|α|B|β|(α!)r(β!)s, for all α, β ∈ Nd.

The space Ssr(Rd) is nontrivial if and only if r+ s > 1, or r+ s = 1 and
r, s > 0. If s1 ≤ s2 and r1 ≤ r2, then Ss1r1 (Rd) ⊆ Ss2r2 (Rd) densely. So the

smallest nontrivial space with r = s is provided by S
1/2
1/2 . The action of the

Fourier transform on Ssr(Rd) interchanges the indices s and r, as explained
in the following theorem.

Theorem 1.2.20. For f ∈ S(Rd) we have f ∈ Ssr(Rd) if and only if
f̂ ∈ Srs(Rd).

Therefore for r = s the spaces Sss(Rd) are invariant under the action of
the Fourier transform.
From now on, v denotes a non-negative funtion on R2d satisfying the fol-
lowing properties:

(i) v is continuous, v(0) = 1, and v is even in each coordinate,

v(±z1,±z2, ...,±z2d) = v(z1, z2, ..., z2d),

(ii) v is submultiplicative,

v(w + z) ≤ v(w)v(z), w, z ∈ R2d,

(iii) v satisfies the GRS-condition (Gelfand-Raikov-Shilov [GRS57]),

lim
n→∞

v(nz)1/n = 1, for all z ∈ R2d.



22 CHAPTER 1. PRELIMINARIES

We call a weight satisfying properties (i)-(iii) admissible weight. Ev-

ery weight of the form v(z) = ea|z|
b
(1 + |z|)slogr(e + |z|) for parameters

a, r, s ≥ 0, 0 ≤ b < 1 is admissible.

From [FGT15], we have the following observation concerning submulti-
plicative weights satisfying the GRS-condition.

Proposition 1.2.21. [FGT15, Proposition 1] Let v be a submultiplicative
weight on R2d. Then the following conditions are equivalent:

(1) v satisfies the GRS-condition,

(2) v satisfies v(x) . eε|x|, for every ε > 0 .

We say that m is in the class of v-moderate weightsMv, if m is a posi-
tive, even in each coordinate and continuous function on R2d that satisfies

m(x+ y) ≤ Cv(x)m(y) for all x, y ∈ R2d.

Now, we can define the modulation space Mp,q
m in the following way.

Definition 1.2.22. Let m ∈Mv, where v is an admissible weight, and g a

non-zero window function in S
1/2
1/2(Rd). For 1 ≤ p, q ≤ ∞, the modulation

space Mp,q
m (Rd) consists of all tempered ultra-distributions f ∈ (S

1/2
1/2)′(Rd)

such that Vgf ∈ Lp,qm (R2d). The norm on Mp,q
m is

‖f‖Mp,q
m (Rd) :=‖Vgf‖Lp,qm (R2d) =

(∫

Rd

(∫

Rd
|Vgf(x, ω)m(x, ω)|pdx

)q/p
dω

)1/q

,

with the usual modifications when p = ∞ or q = ∞. We remark that
the definition of Mp,q

m (Rd) is independent of the choice of the window g ∈
S

1/2
1/2(Rd)\0, and different g gives rise to equivalent norms (See e.g. [Tof12,

Proposition 1.11]).
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For p, q ∈ [1,∞) ∪ {0} the dual of Mp,q
m (Rd) can be identified with

Mp′,q′
1
m

(Rd), under the pairing

〈f, h〉 =

∫ ∫

R2d

Vgf(x, ω)Vgh(x, ω)d(x, ω),

where p′ and q′ are the conjugate exponents of p and q. As usual, we agree
that the conjugate exponent of 0 is 1.

In fact, M1
v (Rd), where v is an admissible weight, is dense in Mp,q

m (Rd),
for 1 ≤ p, q < ∞ and m ∈ Mv, [CPRT05]. Also, we have the next rela-
tionship between modulation spaces and Gelfand-Shilov type spaces from
[Cor07, Corollary 3.4].

Theorem 1.2.23. Let m ∈ Mv, where v is an admissible weight, then

S
1/2
1/2(Rd) is dense in Mp,q

m (Rd), for 1 ≤ p, q <∞.

In particular, since M1
v is weak∗-dense in Mp,q

m (Rd) for p or q equal to∞,

we have S
1/2
1/2(Rd) is weak∗-dense in Mp,q

m (Rd), when p or q are equal to ∞.

The closure of S
1/2
1/2(Rd) in M∞,qm (Rd) is denoted M0,q

m (Rd) and Mp,0
m (Rd) is

defined similarly.
We recall the following theorem for a Gabor frame G(g,Λ), with a lattice

Λ = αZd × βZd, from [Grö07, Theorem 6.11].

Theorem 1.2.24. Assume that g ∈M1
v (Rd) for some admissible weight v

and that G(g,Λ) is a Gabor frame for L2(Rd). Then the following properties
hold for all m ∈Mv:

(i) h = S−1
g (g) ∈M1

v .

(ii) If f ∈Mp,q
m (Rd), then the frame expansions

f =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)h =
∑

λ∈Λ

〈f, π(λ)h〉π(λ)g

converge in norm in Mp,q
m (Rd) for 1 ≤ p, q <∞ and weak∗ when p or

q are equal to ∞.
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(iii) Norm equivalence,

‖f‖Mp,q
m
� ‖〈f, π(λ)g〉λ∈Λ‖`p,qm .



Chapter 2

Unconditionally convergent
multipliers

2.1 Introduction

Let G(g,Λ) be a Gabor frame and h a dual window. Then every function
f ∈ L2(Rd) can be expressed as

f =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)h.

Now, let m ∈ `∞ be given. The series
∑

λ∈Λ

mλ 〈f, π(λ)g〉π(λ)h,

can be interpreted as a filtered version of f . This series inspires the defini-
tion of Gabor multipliers

Mmf :=
∑

λ∈Λ

mλ 〈f, π(λ)g〉π(λ)h,

where h and g are not necessarily dual windows. Gabor multipliers are
discrete versions of time-frequency localization operators introduced by

25
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Daubechies [Dau88]. Gabor multipliers are useful tools in the analysis
of pseudo-differential operators, [Grö11], and Fourier integral operators,
[CGN12]. Also, they are applied in the study of multi-window spectro-
grams [BB00, AGR16], which can be used for spectral estimation. Due
to their discrete nature, multipliers are more akin to the implementations
required in acoustics [BLED10].

As a more general version of Gabor multipliers we introduce the oper-
ators called multipliers. A multiplier on a separable Hilbert space H is a
bounded operator

Mm,Φ,Ψ : H → H, f 7→
∞∑

n=1

mn 〈f,Ψn〉Φn, (2.1.1)

where Φ = (Φn)n and Ψ = (Ψn)n are sequences in H and m = (mn)n is a
scalar sequence called the symbol.

The multiplier is said to be unconditionally convergent if the above
series, (2.1.1), converges unconditionally for every f ∈ H. For any (un-
conditionally convergent) multiplier Mm,Φ,Ψ its adjoint Mm,Ψ,Φ is also a
(unconditionally convergent) multiplier.

Observe that each bounded operator T on H can be expressed as a
multiplier: if (un)n is an orthonormal basis, we can take Φn = Tun,Ψn = un
(alternatively Φn = un, Ψn = T ∗un) and mn = 1 for each n ∈ N.

In the case that Φ = (Φn)n and Ψ = (Ψn)n are Bessel sequences in H
and m ∈ `∞ the operator Mm,Φ,Ψ is called a Bessel multiplier. Recall
that Ψ = (Ψn)n is called a Bessel sequence if there is a constant B > 0
such that ∞∑

n=1

|〈f,Ψn〉|2 ≤ B‖f‖2,

for every f ∈ H. It turns out that (Ψn)n is a Bessel sequence if and only if
there exists a bounded operator T : `2 → H such that T (en) = Ψn, where
(en)n denote the canonical unit vectors of `2 ([Chr03, Theorem 3.2.3]).

Bessel multipliers were introduced and studied in a systematic way by
Balazs [Bal07] as a generalization of the Gabor multipliers considered in
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[FN03]. In [Bal07] it is proved that each Bessel multiplier is unconditionally
convergent. Balazs and Stoeva [SB13b] provide examples of non-Bessel
sequences and non-bounded symbols defining unconditionally convergent
multipliers. However all the examples are obtained from a Bessel multiplier
after some trick. In fact, Balazs and Stoeva conjecture in [SB13a] that every
unconditionally convergent multiplier can be written as a Bessel multiplier
with constant symbol by shifting weights. More precisely,

Conjecture 2.1.1. [SB13a, Conjecture 1] Let

Mm,Φ,Ψ : H → H

be an unconditionally convergent multiplier, then there exist scalar sequences
(an)n and (bn)n such that

mn = an · bn
and

(anΦn)n and (bnΨn)n

are Bessel sequences in H.

Several classes of multipliers for which the conjecture is true are ob-
tained in [SB13a]. For instance, they proved that this is the case for multi-
pliers of the form Mm,Φ,Φ [SB13a, Proposition 4.2] and also for multipliers
with the property that the sequence (|mn| · ||Φn|| · ||Ψn||)n is bounded be-
low by a strictly positive constant [SB13a, Proposition 1.1].

In this chapter new situations where the conjecture of Balazs and Stoeva
is still true will be presented. These new situations are different in spirit to
the ones considered in [SB13a]. To start we consider a particular situation:
for the case that mn = 1 and Ψn = g for every n ∈ N, the conjecture
has a positive answer if and only if for every unconditionally summable
sequence (Φn)n in a separable Hilbert space H we may find (αn)n ∈ `2

such that ( 1
αn

Φn)n is a Bessel sequence in H. Then, the main aim of the
present chapter is to analyze the structure of unconditionally summable
sequences in a separable Hilbert space. Our results cannot be considered
as improvements of those in [SB13a] nor can be obtained with the same
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techniques, they cover a completely different situation since in the cases we
consider the sequence (|mn| · ||Φn|| · ||Ψn||)n converges to zero.

2.2 Auxiliary results

We need some definitions and auxiliary relationships to argue our results
presented in the next section. From now on by an operator between Banach
spaces we mean a bounded and linear operator.

Definition 2.2.1. Let 1 ≤ p < ∞ and let T : X → Y be an operator
between Banach spaces. We say that T is p-summing if there is a constant
C ≥ 0 such that

(
m∑

i=1

‖Txi‖p
) 1

p

≤ C sup





(
m∑

i=1

|〈x∗, xi〉|p
) 1

p

: x∗ ∈ BX∗



 ,

for every m ∈ N and every {xi}mi=1 ⊆ X. The collection of all p-summing
operators from X to Y is denoted by Πp(X,Y ).

Definition 2.2.2. We say that an operator T : X → Y between Banach
spaces is a p-integral operator (1 ≤ p ≤ ∞) if there are a probability
measure µ on a domain Ω and (bounded linear) operators A : Lp(Ω, µ) →
Y ∗∗ and B : X → L∞(Ω, µ) giving rise to the commutative diagram

X
T //

B
��

Y
kY // Y ∗∗

L∞(Ω, µ)
ip // Lp(Ω, µ).

A

OO

As usual, ip : L∞(Ω, µ) → Lp(Ω, µ) is the formal identity, and kY : Y →
Y ∗∗ is the canonical isometric embedding. The collection of all p-integral
operators from X to Y is denoted by Ip(X,Y ).
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Definition 2.2.3. As in [PP69], let E,F be complex Banach spaces, we
denote by Np(E,F ) the set of all operators T : E → F which can be written
in the form

Tu =
∞∑

n=1

〈u, u′n〉vn (2.2.1)

with

( ∞∑

n=1

‖u′n‖p
) 1

p

<∞ and sup
‖v′‖≤1

( ∞∑

n=1

|〈vn, v′〉|p
′
) 1

p′

<∞ (2.2.2)

when 1 ≤ p < ∞ and with the additional requirement ‖u′n‖ → 0, n →
∞, in the case p = ∞. The elements in Np(E,F ) are called p-nuclear
operators. It is a Banach space equipped with the norm

Np(T ) = inf

( ∞∑

n=1

‖u′n‖p
) 1

p

sup
‖v′‖≤1

( ∞∑

n=1

〈vn, v′〉p
′
) 1

p′

,

where the infimum is taken over all the pairs ({u′n}n, {vn}n) which satisfy
(2.2.1) and (2.2.2).
For p = 1, the space N1(E,F ) coincides with the space of nuclear operators
of E into F , which are the ones where the series

∑∞
n=1 u

′
n is absolutely

convergent and {vn}∞n=1 is bounded.

We first need a particular case of [DJT95, Theorem 3.7].

Theorem 2.2.4. Let H a Hilbert space, then every operator T : c0 → H
is 2-summing.

Theorem 2.2.5. [DJT95, Corollary 5.9] The 2-summing and 2-integral
operators are the same.

Theorem 2.2.6. [Per69, Theorem 5] If E has a strongly separable dual
E′, then, for 1 ≤ p < ∞, the set of p-nuclears operators is the same that
the set of p-integral operators with equality of the corresponding norms.
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Theorem 2.2.7. [Jar81, Theorem 19.7.4]

(a) For every (an)n ∈ `p, the diagonal operator Da : `∞ → `p, for 1 ≤
p < ∞, is p-nuclear. Moreover, the operator Da : `∞ → c0 is also
p-nuclear.

(b) An operator S : E → F is p-nuclear if, and only if, there are (an)n ∈
`p, A ∈ L(`p, F ) and B ∈ L(E, `∞) such that S = A ◦Da ◦B.

Definition 2.2.8. A Hilbert-Schmidt operator is a bounded operator
A : H1 → H2, with H1 and H2 being Hilbert spaces, such that its Hilbert-
Schmidt norm is finite,

‖A‖2HS = Tr(A∗A) :=
∑

i∈I
‖Aei‖2

where ‖ · ‖ is the norm of H2, {ei : i ∈ I} is an orthonormal basis of
H1, and Tr is the trace of a nonnegative self-adjoint operator. The set of
Hilbert-Schmidt operators is denoted by S2(H1, H2).

Theorem 2.2.9. [DJT95, Theorem 5.30] Let H1 and H2 be Hilbert spaces.
If 1 < p <∞, then Ip(H1, H2) = Np(H1, H2) = S2(H1, H2) isomorphically,
and even isometrically if p = 2.

2.3 Results

Now we present some results concerning unconditionally summable series,
and their impact on unconditionally convergent multipliers.

We use the fact that a series
∑∞

n=1 xn in a Banach space X is uncondi-
tionally convergent if and only if there exists a compact operator T : c0 → X
with the property that T (en) = xn, where (en)n denote the canonical unit
vectors of c0 (see for instance [DJT95, 1.9]). We recall that, in the case that
X =H is a Hilbert space, every bounded operator T : c0→H is compact.
In fact, the closed unit ball B of H is weakly compact, the transposed map
T ∗ : H → `1 is a bounded operator and weak and norm convergence of se-
quences in `1 coincide ([DJT95, Theorem 1.7]). Therefore T ∗ is a compact
operator and so is T.
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From the previous considerations we conclude that a series
∑∞

n=1 xn in
a Hilbert space H is unconditionally convergent if and only if there exists
a bounded operator T : c0 → H with the property that T (en) = xn. An
important consequence is the fact that the unconditional convergence of∑∞

n=1 xn is equivalent to

∞∑

n=1

|〈xn, g〉| <∞ for all g ∈ H.

This is so because if the last condition is satisfied then, by closed graph
theorem, S : H → `1, S(g) := (〈xn, g〉)n , defines a bounded operator and
T = S∗ : `∞ → H satisfies T (en) = xn.

For a fixed sequence α = (αn)n we consider the diagonal operator
Dα(x) = (αnxn)n, defined in Definition 1.1.2. If α ∈ `2 then Dα : `∞ → `2

is a bounded operator, while Dα : `2 → `2 is a bounded operator if and
only if α ∈ `∞ (Proposition 1.1.3). In particular, this is the case if α ∈ c0.

Lemma 2.3.1. The following statements are equivalent:

(a) Every unconditionally summable sequence (Φn)n in H can be written
as Φn = αnfn, where (αn)n ∈ `2 and (fn)n is a Bessel sequence in H.

(b) Every bounded operator T : c0 → H can be factorized as

T = A ◦Dα

where Dα : c0 → `2 is a diagonal operator and A : `2 → H is a
bounded operator.

Proof. (a) ⇒ (b). If T : c0 → H is bounded then (Φn)n = (T (en))n is
unconditionally summable ([DJT95, Theorem 1.9]), hence T (en) = αnfn,
where α = (αn)n ∈ `2 and (fn)n is a Bessel sequence in H. Therefore (fn)n
defines a bounded operator A : `2 → H, A(β) =

∑
n βnfn, and T = A◦Dα.

(b) ⇒ (a). Let (Φn)n be an unconditionally summable sequence in H.
Then there is a bounded operator T : c0 → H such that T (en) = Φn and, by
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hypothesis, it can be factorized as T = A◦Dα where α ∈ `2 and A : `2 → H
is a bounded operator. Then (fn)n := (A(en))n is a Bessel sequence in H
and clearly Φn = A (αnen) = αnfn.

Now we establish a reformulation of the conjecture by Balazs and Sto-
eva. As a consequence, having a positive answer is equivalent to proving
a bilinear version of statement (b) in Lemma 2.3.1. We will use that a
sequence of scalars α = (αn)n belongs to `2 if and only if (αnβn)n ∈ `2 for
every (βn)n ∈ c0.

Proposition 2.3.2. Assume that the series
∑

n 〈f,Ψn〉Φn converges un-
conditionally for all f ∈ H. Then, the following statements are equivalent:

(a) There exists (cn)n such that {cnΨn}n and { 1
cn

Φn}n are Bessel se-
quences in H.

(b) The continuous bilinear operator

T : c0 ×H −→ H

(α, f) 7−→
∑

n

αn 〈f,Ψn〉Φn

admits a factorization

T = B ◦D
where

B : `2 → H

is a bounded operator and

D : c0 ×H → `2

is a continuous bilinear operator such that for every f ∈ H,

D(·, f) : c0 → `2

is a diagonal operator.
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(c) There exist two bounded operators

A : H → `2 and B : `2 → H

such that for every α ∈ c0 the operator Tα ∈ L(H), defined by Tα(f) =∑
n αn 〈f,Ψn〉Φn, can be factorized as

Tα = B ◦Dα ◦A.

Proof. Without loss of generality we assume that Ψn 6= 0 and Φn 6= 0 for
each n.

(a)⇒ (b) Since {cnΨn}n and { 1
cn

Φn}n are Bessel sequences,

B : `2 → H, B(en) =
1

cn
Φn

and
D : c0 ×H → `2, D(α, f) = (αn 〈f, cnΨn〉)n

are well defined and continuous and T = B ◦D.
(b) ⇒ (c) We observe that Tα = T (α, ·), hence Tα = B ◦ D(α, ·). The

fact that D(·, f) : c0 → `2 is a diagonal operator implies that D(α, f) =
(αnβn(f))n, with (βn(f))n ∈ `2. Thus, the map

A : H → `2, f 7→ (βn(f))n

is well defined. As, for every n ∈ N, one has

βn(f) = D(en, f)n = 〈D(en, f), en〉,

then, A is linear and, by the closed graph theorem, continuous. Clearly,

Tα = B ◦Dα ◦A.

(c)⇒ (a) We write A(f) ∈ `2 as A(f) = (A(f)n)n. We take α = en and
f = Ψn. Then, Tα(Ψn) = 〈Ψn,Ψn〉Φn, and by our assumption

Tα(Ψn) = B(A(Ψn)nen) = A(Ψn)nB(en),
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hence

B(en) =
‖Ψn‖2
A(Ψn)n

Φn.

Defining 1
cn

:= ‖Ψn‖2
A(Ψn)n

, the boundedness of B implies that ( 1
cn

Φn)n is a
Bessel sequence in H.

Now, with α = en and f ∈ H we have that Tα(f) = 〈f,Ψn〉Φn, and
also

Tα(f) = B(A(f)nen) = A(f)nB(en) = A(f)n
1

cn
Φn,

therefore,

A(f)n = cn 〈f,Ψn〉 = 〈f, cnΨn〉 ,

that is,

A(f) = (〈f, cnΨn〉)n.

SinceA : H → `2 is bounded, we conclude that {cnΨn}n is a Bessel sequence
in H.

We recall that any bounded operator B : c0 → `∞, B(ej) =
(
bij

)
i
, has

the property that bi :=
(
bij

)
j
∈ `1 for every i ∈ N and

‖B‖ = sup
i
‖bi‖`1 .

The next result can be viewed as an improvement of Orlicz’s Theorem
(see for instance [DJT95, Theorem 1.11] or [Hei11, Theorem 3.16]),which
says that every unconditionally summable sequence in a Hilbert space is
absolutely 2-summable. It is the main result of the chapter.

Theorem 2.3.3. Every unconditionally summable sequence (Φn)n in a sep-
arable Hilbert space H can be expressed as Φn = anfn, where (an)n ∈ `2

and (fn)n is a Bessel sequence in H.
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Proof. By Lemma 2.3.1 it is enough to show that every bounded operator
T : c0 → H can be factorized as T = A ◦Dα, where α ∈ `2 and A : `2 → H
is a bounded operator. According to Theorem 2.2.4 and Theorem 2.2.5, T
is a 2-integral operator, hence it is 2-nuclear (Theorem 2.2.6). Therefore
there are bounded operators B : c0 → `∞, S : `2 → H and λ ∈ `2 such that
T = S ◦Dλ ◦ B, by Theorem 2.2.7. To finish it suffices to find α ∈ `2 and
a bounded operator Ã on `2 such that Dλ ◦B = Ã ◦Dα, since then

T = A ◦Dα,

with A = S ◦ Ã.
As Dλ ◦B = Dtλ ◦ (t−1B) for each t > 0, without loss of generality we

can assume ‖B‖ = 1. We denote B(ej) =
(
bij

)
i

and bi :=
(
bij

)
j
∈ `1. We

define α = (αk)k such that

|αk|2 :=
∞∑

i=1

|λi|2 · |bik|.

Then ∞∑

k=1

|αk|2 =
∞∑

i=1

|λi|2 · ‖bi‖`1 ≤ ‖λ‖2`2 , (2.3.1)

hence α ∈ `2. Next, we consider

fk :=
1

αk

(
λib

i
k

)
i
, k ∈ N.

Since |bik|2 ≤ |bik|, the inequality (2.3.1) implies that fk ∈ `2. To finish the
proof, we have to show that there is a bounded operator Ã on `2 such that
Ã(ek) = fk, that is, (fk)k is a Bessel sequence in `2. To this end, we fix
β = (βk)k ∈ `2 and γ = (γk)k ∈ `2. Then,

N∑

k=1

|βk 〈fk, γ〉| ≤
N∑

k=1

|βk|
|αk|

∞∑

j=1

|λjγj | · |bjk|,



36 CHAPTER 2. UNCONDITIONALLY CONVERGENT MULTIPLIERS

for all N ∈ N. As λ, γ ∈ `2,

∞∑

j=1

|λjγj | · |bjk| ≤



∞∑

j=1

|λj |2 · |bjk|




1
2

·



∞∑

j=1

|γj |2 · |bjk|




1
2

= |αk| ·



∞∑

j=1

|γj |2 · |bjk|




1
2

.

Moreover
∞∑

k=1

∞∑

j=1

|γj |2 · |bjk| =
∞∑

j=1

|γj |2 · ‖bj‖`1 ≤ ‖γ‖2`2 .

This means that 




∞∑

j=1

|γj |2 · |bjk|




1
2



k∈N

∈ `2.

Hence,

∞∑

k=1

|βk 〈fk, γ〉| ≤
∞∑

k=1

|βk| ·



∞∑

j=1

|γj |2 · |bjk|




1
2

<∞.

Since this holds for every β ∈ `2 we conclude that

∞∑

k=1

|〈fk, γ〉|2 <∞,

for every γ ∈ `2. Now, the closed graph theorem gives the conclusion.

Theorem 2.3.3 gives a positive answer to the conjecture of Balazs and
Stoeva when (Ψn)n is a constant sequence. Next we consider a more general
situation.
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Corollary 2.3.4. Let Mm,Φ,Ψ be an unconditionally convergent multiplier

and assume that 0 is not a weak accumulation point of the sequence
(

Ψn
‖Ψn‖

)
n
.

Then there exist scalar sequences (an)n and (bn)n such that mn = an · bn
and (anΦn)n and (bnΨn)n are Bessel sequences in H.

Proof. In fact, our hypothesis implies the existence of finitely many ele-
ments f1, . . . , fK ∈ H with the property that

K∑

k=1

∣∣∣∣
〈
fk,

Ψn

‖Ψn‖

〉∣∣∣∣ ≥ 1,

for every n ∈ N. Since Mm,Φ,Ψ is an unconditionally convergent multiplier
we have

∞∑

n=1

|mn| · |〈f,Ψn〉| · |〈Φn, g〉| <∞,

for every f, g ∈ H. Consequently

∞∑

n=1

|mn| · ‖Ψn‖ · |〈Φn, g〉| ≤
K∑

k=1

∞∑

n=1

|mn| · |〈fk,Ψn〉| · |〈Φn, g〉| <∞,

for every g ∈ H. It follows that the series
∑∞

n=1mn‖Ψn‖Φn is uncondi-
tionally convergent and we can apply Theorem 2.3.3 to find a sequence

(bn)n ∈ `2 such that
(
mn
bn
‖Ψn‖Φn

)
n

is a Bessel sequence. Since also
(
bn

Ψn
‖Ψn‖

)
n

is a Bessel sequence, the conclusion follows.

By Orlicz’s Theorem, in the case that (Ψn)n is constant, the uncondi-

tional convergence of the series

∞∑

n=1

mn 〈f,Ψn〉Φn implies that

∞∑

n=1

(|mn| · ‖Φn‖ · ‖Ψn‖)2 <∞.
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In particular, the sequence (mn ·‖Φn‖·‖Ψn‖)n converges to zero and [SB13a,
Proposition 1.1] cannot be applied. Obviously, in Corollary 2.3.4, the con-
dition on the sequence (Ψn)n can be replaced by a similar condition on
(Φn)n. The following result shows that the conjecture stated by Balazs and
Stoeva in [SB13a] holds under the stronger hypothesis of absolute conver-
gence of the series. The proof depends on Theorem 2.3.3 and it does not
follow from the results in [SB13a].

Theorem 2.3.5. Let Mm,Φ,Ψ be such that for each f ∈ H, the series

∞∑

n=1

mn 〈f,Ψn〉Φn

converges absolutely in H. Then there exist scalar sequences (an)n and (bn)n
such that mn = an · bn, and (bnΨn)n and (anΦn)n are Bessel sequences in
H.

Proof. Replacing (mn)n and (Φn)n by (mn||Φn||)n and (Φn/||Φn||)n we may
assume that ||Φn|| = 1 for every n ∈ N. The condition (mn 〈f,Ψn〉)n ∈ `1
for every f ∈ H implies that the sequence (mnΨn)n is unconditionally
summable in H, therefore by Theorem 2.3.3, there is (cn)n ∈ `2 such that(
mn
cn

Ψn

)
n

is a Bessel sequence. As (cnΦn)n is also a Bessel sequence, we

conclude.

As a consequence of the previous result, we prove the following result
for Hilbert-Schmidt operators on H, S2(H). As usual L(H) denotes the
space of all continuous operators on H.

Proposition 2.3.6. If the series
∑∞

n=1mn 〈f,Ψn〉Φn converges absolutely
for every f in H, then, the series

∞∑

n=1

mnΨn ⊗ Φn

converges unconditionally in the Hilbert space S2(H) of Hilbert-Schmidt
operators on H.
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Proof. Without loss of generality we may assume that mn = ‖Φn‖ = 1. As
the series ∑

n

| 〈f,Ψn〉 |

converges for every f ∈ H, then the map

S : H → `1, f 7→ (〈f,Ψn〉)n

is bounded, and its adjoint

T = S∗ : c0 → H ′, T (en) = Ψn

is bounded too, then (Ψn)n=(T (en))n is unconditionally summable,[DJT95,
Theorem 1.9]. By Theorem 2.3.3, there is (αn) ∈ `2 such that { 1

αn
Ψn} is a

Bessel sequence in H. Therefore

M∗f =
∑

n

1

αn
Ψnαn 〈f,Φn〉

can be factorized as B ◦Dα ◦A, where

A : H → `∞, A(f) = (〈f,Φn〉)n
and

B : `2 → H, B(x) =
∑

n

xn
1

αn
Ψn

are bounded, hence it is a 2-nuclear operator (Theorem 2.2.7). By Theorem
2.2.9, M∗ is a Hilbert-Schmidt operator, consequently

Mf =
∞∑

n=1

mn〈f,Ψn〉Φn

is also a Hilbert-Schmidt operator.
Using the same arguments, we see that for each (λn) ∈ c0, the operator

f 7→
∑

n

〈f,Ψn〉λnΦn,
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is also a Hilbert-Schmidt operator. Hence the correspondence

U : λ 7→
∑

n

λn 〈·,Ψn〉Φn

is well defined and linear from c0 into S2(H). It is continuous when S2(H),
being a subspace of L(H), is endowed with the strong operator topology.
The closed graph theorem gives that the map above is continuous when we
consider on S2(H) the Hilbert-Schmidt norm. Since

U(en) = 〈·,Ψn〉Φn = Ψn ⊗ Φn,

then ∑

n

Ψn ⊗ Φn

converges unconditionally in S2(H).

Let BH denote the closed unit ball ofH endowed with the weak topology
and µ a probability Borel measure on BH . Then we have the canonical
continuous inclusion

jµ : H → L2(BH , µ), jµ(f) (g) := 〈f, g〉 .

Theorem 2.3.7. Let BH denote the closed unit ball of H endowed with the
weak topology and assume that the series

∞∑

n=1

mnΨn ⊗ Φn

converges unconditionally in S2(H). Then, for every probability Borel mea-
sure µ on BH there exist scalar sequences (an)n, (bn)n such that mn =
an · bn, (anΨn)n is a Bessel sequence in H and (jµ(bnΦn))n is a Bessel
sequence in L2(BH , µ). In particular

∞∑

n=1

|〈f, bnΦn〉|2 <∞

for µ-almost every f ∈ BH .
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Proof. According to Theorem 2.3.3 there is (αn)n ∈ `2 such that

(
mn

αn
Ψn ⊗ Φn

)

n

is a Bessel sequence in S2(H). In particular, for some constant C > 0,

∞∑

n=1

∣∣∣∣
mn

αn
〈f,Ψn〉 〈g,Φn〉

∣∣∣∣
2

≤ C‖f‖2 · ‖g‖2 (2.3.2)

for every f, g ∈ BH . We now consider

a2
n :=

∣∣∣∣
mn

αn

∣∣∣∣
2 ∫

BH

|〈g,Φn〉|2 dµ(g).

After integrating in (2.3.2) we obtain that (anΨn)n is a Bessel sequence.
Moreover, for bn = mn

an
we have

∞∑

n=1

∫

BH

|〈f, bnΦn〉|2 dµ(f) =
∞∑

n=1

α2
n <∞,

from where the conclusion follows.

In the previous theorem we proved that the unconditional convergence
of
∑∞

n=1mnΨn⊗Φn in S2(H) gives a positive answer to the conjecture in a
Hilbert space H̃ continuously containing H. Under the additional hypoth-
esis that H is a subspace of L2(X,µ) for some finite measure, on which
evaluations are continuous, we can find a closer relation between H and H̃.

Definition 2.3.8. Let X be an arbitrary set and H a Hilbert space of real-
valued functions on X. The evaluation functional over the Hilbert space of
functions H is a linear functional that evaluates each function at a point x,

Lx : f 7→ f(x) for all f ∈ H.
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We say that H is a reproducing kernel Hilbert space if, for all x in X,
Lx is a bounded functional, that is, can be represented by the inner product
of f with a function Kx in H,

f(x) = Lx(f) = 〈f, Kx〉.

Since Kx is itself a function in H, it holds that for every y in X there
exist a Ky ∈ H such that

Kx(y) = 〈Ky, Kx〉.

This allows us to define the reproducing kernel of H as a function K :
X ×X → R by

K(x, y) = 〈Ky, Kx〉.

If H ⊂ L2(X,µ) is a Hilbert space admitting a reproducing kernel
K(x, y), then,

f(x) =

∫

X
f(y)K(x, y)dµ(y), x ∈ X.

Theorem 2.3.9. Let (X,µ) be a finite measure space and H ⊂ L2(X,µ)
a Hilbert space admitting a reproducing kernel K(x, y). We put v(x) :=
‖K(x, ·)‖−1. If the series

∞∑

n=1

mnΨn ⊗ Φn

converges unconditionally in S2(H). Then there exist scalar sequences (an)n
and (bn)n such that mn = an · bn, (anΨn)n is a Bessel sequence in H and
(bnΦn)n is a Bessel sequence in L2

v(X,µ).

Proof. By Theorem 2.3.3, there is (αn)n ∈ `2 such that

(
mn

αn
Ψn ⊗ Φn

)

n
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is a Bessel sequence in S2(H). In particular, for some constant C > 0,

∞∑

n=1

∣∣∣∣
mn

αn
〈f,Ψn〉 〈g,Φn〉

∣∣∣∣
2

≤ C‖f‖2 · ‖g‖2

for every f, g ∈ H. For g = v(x) ·K(x, ·), we obtain

∞∑

n=1

∣∣∣∣
mn

αn
〈f,Ψn〉 v(x)Φn(x)

∣∣∣∣
2

≤ C‖f‖2, (2.3.3)

since v(x) · ‖K(x, ·)‖ = 1.
We now consider

a2
n :=

∣∣∣∣
mn

αn

∣∣∣∣
2 ∫

X
|v(x) · Φn(x)|2 dµ(x).

After integrating in (2.3.3) we obtain that (anΨn)n is a Bessel sequence in
H, hence in L2(X,µ). Moreover, for bn = mn

an
and f ∈ L2

v(X,µ) we have
that

∞∑

n=1

∣∣∣∣
∫

X
f(x)bnΦn(x) · v(x)2 dµ(x)

∣∣∣∣
2

≤
∞∑

n=1

|bn|2
(∫

X
|f(x)v(x)|2 dµ(x)

)
·
(∫

X
|Φn(x)v(x)|2 dµ(x)

)

≤ ‖f‖2L2
v
·
∞∑

n=1

α2
n,

which shows that (bnΦn)n is a Bessel sequence in L2
v(X,µ).

2.4 Conclusion

In this chapter we have proved that every unconditionally summable se-
quence in a separable Hilbert space can be expressed as the product of a
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sequence of `2 and a Bessel sequence. Then, we have improved the classical
Orlicz’s Theorem and we have obtained some new situations where the con-
jecture of Balazs and Stoeva is still true. Our results cannot be considered
as improvements of those in [SB13a] nor can be obtained with the same
techniques. These results are included in [FGP17b] and [FGP17a].



Chapter 3

Compactness of Fourier
integral operators

3.1 Introduction

The aim of this chapter is to investigate compactness for Fourier inte-
gral operators (FIOs) when acting on weighted modulation spaces. The
boundedness and Schatten class properties of FIOs have been studied by
several authors under various assumptions on the phase and the symbol.
See for instance [RS06, CR14, Bis11, Bou97, CNR09a, CNR10b, RS06,
CT07, CT09, TCG10]. However no characterization seems to be known of
those FIOs which are compact. Our approach to the study of the compact-
ness of the FIOs follows the point of view of [CNR10b], which means that
our results strongly depend on the matrix representation of a FIO with
respect to a Gabor frame.

For a function f on Rd the Fourier integral operator, FIO, T with
symbol σ ∈ L∞(R2d) and real phase Φ on R2d can be formally defined by

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη.

The above formula defines a continuous operator from S(Rd) into S ′(Rd).

45
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The phase Φ(x, η) is tame. That it is, Φ(x, η) is smooth on R2d and satisfies
the estimates

|∂αz Φ(z)| ≤ Cα, |α| ≥ 2, z ∈ R2d, (3.1.1)

and the nondegeneracy condition

|det ∂2
x,η Φ(x, η)| ≥ δ > 0, (x, η) ∈ R2d. (3.1.2)

For the symbol σ on R2d,

|∂αz σ(z)| ≤ Cα, a.e. z ∈ R2d, |α| ≤ 2N (3.1.3)

holds, for a fixed N ∈ N. Here ∂αz denotes the distributional derivative.
When Φ(x, η) = xη we recover the pseudodifferential operators (PSDOs)
in the Kohn-Nirenberg form.

Frames permit to represent operators in terms of matrices, the key result
in [CNR10b] shows that the matrix representation of a FIO with respect to
a Gabor frame G(g,Λ) with g ∈ S(Rd) is well organized. In fact, for a tame
phase function Φ and a symbol σ satisfying condition (3.1.3) there exists a
constant CN > 0 such that

|〈Tπ(λ)g, π(µ)g〉| ≤ CN 〈χ(λ)− µ〉−2N , (3.1.4)

for every λ, µ ∈ Λ. Here 〈z〉 is an abbreviation for (1+ |z|2)1/2, and χ is the
canonical transformation of the phase Φ. We recall that the canonical
transformation, (x, ξ) = χ(y, η), is a bilipschitz map χ : R2d → R2d defined
through the system {

y = ∇ηΦ(x, η),
ξ = ∇xΦ(x, η).

The estimate (3.1.4) is an extension of previous results of Gröchenig
[Grö06] concerning almost diagonalization of PSDOs. See also [GR08]. The
condition (3.1.3) on the symbol can be relaxed. In fact, if G(g,Λ) is a Parse-
val frame then the estimate (3.1.4) also holds under the weaker assumption
that σ belongs to an appropriate modulation space (see [CGN12]).
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We will use the decay estimate (3.1.4) to discuss the compactness of
the FIOs when acting on weighted modulation spaces. More precisely, we
prove that the FIO is compact when acting on some modulation space of
the form Mp

m(Rd) if and only if the sequences

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

converge to zero for all µ ∈ Λ, where χ′ denotes a discrete version of the
canonical transformation χ. This is the content of Theorem 3.3.13. In par-
ticular, it follows that compactness does not depend neither on p nor on
m. To achieve our goal we need to focus our attention on a class of ma-
trices A =

(
aγ,γ′

)
γ,γ′∈Λ

with the property that the decay of the coefficient

aγ,γ′ is determined by the distance of (γ, γ′) to the graph of γ = χ(γ′). We
characterize when such a matrix defines a compact operator when acting
on weighted `p spaces of sequences. For a quadratic phase Φ we completely
characterize in Theorem 3.3.17 the symbols σ satisfying condition (3.1.3)
for which the corresponding FIO is compact. The operators we are consid-
ering may fail to be bounded on mixed modulation spaces as was shown
in [CNR10b]. To overcome this obstacle, an extra condition on the phase
was introduced in [CNR10b]. Under this additional condition, the com-
pactness results are extended to weighted mixed modulation spaces. As a
consequence, we recover and improve some compactness results for PSDOs
obtained in [FG06, FG07, FG10]. In the last section we see that all this
argumentation can be aplied to Fourier integral operators on modulation
spaces with GRS-weights, under similar conditions in the phase and the
symbol.

3.2 Matrix representation of operators

Cordero, Nicola and Rodino [CNR10b] obtained a result on almost diago-
nalization for FIOs with respect to a Gabor frame which permitted to study
boundedness of Fourier integral operators (FIOs) on weighted modulation
spaces. Our aim is to use the almost diagonalization technique to study the
compactness of FIOs. To this end we need to establish a clear relationship
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between operators acting on modulation spaces and operators acting on
appropriate sequence spaces.

From now on we assume that G(g,Λ) is a Gabor frame and g ∈ S(Rd).
Then h = S−1

g (g) ∈ S(Rd) and Dg ◦ Ch = Dh ◦ Cg = IdMp,q
m (Rd) for all

p, q ∈ [1,∞] and for every v-moderate weightm. The (topological) identities
S ′(Rd) =

⋃{M2
1/vs

: s > 0} and S(Rd) =
⋂{M2

vs : s > 0} permit to
conclude that

Cg, Ch : S(Rd)→ s(Λ)

and

Cg, Ch : S ′(Rd)→ s′(Λ)

are topological isomorphisms into their ranges, where s(Λ) is the space of
rapidly decreasing sequences,

s(Λ) :=

{
c ∈ `∞(Λ) : lim

|λ|→∞
cλλ

α = 0, for all α ∈ Zd+
}
,

and s′(Λ), its dual space, is endowed with the inductive topology. Moreover,
every f ∈ S(Rd) admits a decomposition

f =
∑

λ∈Λ

〈f, π(λ)h〉π(λ)g,

where the series converges in S(Rd). Let T : S(Rd)→ S ′(Rd) be a continu-
ous and linear operator. For every f ∈ S(Rd), Tf admits a decomposition

T (f) = T

(∑

λ∈Λ

〈f, π(λ)h〉π(λ)g

)
=
∑

λ∈Λ

〈f, π(λ)h〉T (π(λ)g) .
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Then,

Cg(T (f)) = (〈T (f), π(µ)g〉)µ∈Λ =

(
〈
∑

λ∈Λ

〈f, π(λ)h〉T (π(λ)g) , π(µ)g〉
)

µ∈Λ

=

(∑

λ∈Λ

〈f, π(λ)h〉〈T (π(λ)g) , π(µ)g〉
)

µ∈Λ

=

(∑

λ∈Λ

(Ch(f))λ〈T (π(λ)g) , π(µ)g〉
)

µ∈Λ

,

which inspires the following definition.

Definition 3.2.1. The Gabor matrix associated to a continuous and lin-
ear operator T : S(Rd)→ S ′(Rd) is defined as

M(T ) = (〈T (π(λ)g), π(µ)g〉)(µ,λ)∈Λ×Λ .

If T is a FIO with symbol σ and phase Φ we write M(σ,Φ) instead of M(T ).

And from the definition we have the next expression for every f ∈S(Rd),

Cg(T (f)) =

(∑

λ∈Λ

(Ch(f))λ〈T (π(λ)g) , π(µ)g〉
)

µ∈Λ

=

(∑

λ∈Λ

M(T )µ,λ(Ch(f))λ

)

µ∈Λ

= M(T )(Ch(f))

Theorem 3.2.2. Let T : S(Rd) → S ′(Rd) be a continuous and linear
operator and G(g,Λ) a Gabor frame with g ∈ S(Rd). Then

(1) For 1 ≤ p, q <∞, T can be (uniquely) extended as a bounded operator
from Mp,q

m1(Rd) into Mp,q
m2(Rd) if and only if M(T ) defines a bounded

operator from `p,qm1(Λ) into `p,qm2(Λ).
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(2) For 1 ≤ p, q ≤ ∞, T can be extended as a weak∗ continuous operator
from Mp,q

m1(Rd) into Mp,q
m2(Rd) if and only if M(T ) defines a weak∗

continuous operator from `p,qm1(Λ) into `p,qm2(Λ).

(3) Let 1 ≤ p, q ≤ ∞ and assume that T : Mp,q
m1(Rd)→Mp,q

m2(Rd) is weak∗

continuous. Then T : Mp,q
m1(Rd)→Mp,q

m2(Rd) is compact if and only if
M(T ) : `p,qm1(Λ)→ `p,qm2(Λ) is compact.

Proof. Let h be the canonical dual window of g. Then we have

Cg ◦ T = M(T ) ◦ Ch on S(Rd).

Clearly, M(T ) defines a continuous operator from the range Ch(S(Rd)),
which is a closed subspace of s(Λ), into s′(Λ). We now check that M(T )
defines a continuous operator from C(Λ), the space of finite complex se-
quences, into s′(Λ), when C(Λ) is endowed with the topology inherited by
s(Λ). To this end, we fix x ∈ C(Λ) and observe that Dg(x) ∈ S(Rd), hence
M(T ) ◦ Ch ◦Dg(x) = Cg ◦ T ◦Dg(x). That is,

(M(T )(Ch ◦Dg)(x))µ = 〈T (Dg(x)) , π(µ)g〉 =
∑

λ∈Λ

〈T (π(λ)g) , π(µ)g〉 · xλ.

Consequently, for every finite sequence x we have

M(T )(x) = M(T )(Ch ◦Dg)(x).

Therefore, M(T ) is continuous on C(Λ) when this space is considered as a
subspace of s(Λ). By density, M(T ) defines a continuous operator from the
space s(Λ) into s′(Λ),

M(T ) : s(Λ)
Dg−−→ S(Rd) Ch−−→ Ch(S(Rd)) M(T )−−−→ s′(Λ).

Then we have

T = Dh ◦M(T ) ◦ Ch on S(Rd) (3.2.1)



3.3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS 51

and

M(T ) = M(T ) ◦ Ch ◦Dg = Cg ◦ T ◦Dg on s(Λ). (3.2.2)

Let us now assume that, for 1 ≤ p, q < ∞, M(T ) : `p,qm1(Λ) → `p,qm2(Λ)
is bounded. From the continuity of Ch : Mp,q

m (Rd) → `p,qm (Λ) and Dh :
`p,qm (Λ)→Mp,q

m (Rd), we deduce that Dh◦M(T )◦Ch : Mp,q
m1(Rd)→Mp,q

m2(Rd)
is a bounded extension of T . The uniqueness follows from the facts that
S(Rd) is dense in Mp,q

m (Rd).
Conversely, let us assume that T can be extended as a bounded operator

T : Mp,q
m1(Rd) → Mp,q

m2(Rd), for 1 ≤ p, q < ∞. Then, from the continuity
of Cg : Mp,q

m (Rd) → `p,qm (Λ) and Dg : `p,qm (Λ) → Mp,q
m (Rd), we deduce that

Cg ◦ T ◦ Dg : `p,qm1(Λ) → `p,qm2(Λ) is a bounded extension of M(T ). The
uniqueness follows from the facts that s(Λ) is dense in `p,qm (Λ). And we
have (1).

To prove (2) we use the same arguments, changing the continuity of T
and M(T ) by the weak∗-continuity, and the fact that S(Rd) is weak∗ dense
in Mp,q

m (Rd) and s(Λ) is weak∗ dense in `p,qm (Λ) for 1 ≤ p, q ≤ ∞.
To finish we prove (3). Recall that the compact operators are a closed

ideal in the algebra of the bounded operators. As S(Rd) is weak∗ dense
in Mp,q

m (Rd) and s(Λ) is weak∗ dense in `p,qm (Λ), for 1 ≤ p, q ≤ ∞, from
(3.2.1), (3.2.2) and the weak∗-continuity of T : Mp,q

m1(Rd) → Mp,q
m2(Rd), for

1 ≤ p, q ≤ ∞, we deduce that T = Dh ◦M(T ) ◦Ch : Mp,q
m1(Rd)→Mp,q

m2(Rd)
is compact if and only if M(T ) = Cg ◦T ◦Dg : `p,qm1(Λ)→ `p,qm2(Λ) is compact,

In the applications to the FIOs we will always consider m1 = m ◦χ and
m2 = m. In the special case of PSDOs we will have m1 = m2 = m.

3.3 Compactness of Fourier integral operators

3.3.1 Fourier integral operators on Mp
m

Our aim is to discuss compactness properties for a FIO T whose phase is
tame and with symbol σ ∈ M∞1⊗vs0 (R2d) for some s0 > 2d. Through this
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section we use a fixed lattice Λ = αZd × βZd and a fixed Parseval frame
G(g,Λ) with g ∈ S(Rd). As proved in [CGN12], we have the following
estimate

|〈Tπ(λ)g, π(µ)g〉| ≤ C〈χ(λ)− µ〉−s0 , for all λ, µ ∈ Λ. (3.3.1)

And as in [CGN12], observe that any symbol satisfying condition (3.1.3)
belongs to M∞1⊗v2N .

The estimate (3.3.1) together with the results of Subsection 3.2 suggest
that we should consider operators on sequence spaces defined in terms of
a matrix A =

(
aγ,γ′

)
γ,γ′∈Λ

, where the distance of (γ, γ′) to the graph of

γ = χ(γ′) determines the decay of the coefficient aγ,γ′ . As we cannot
assure that χ(λ) ∈ Λ, for λ ∈ Λ, we replace the canonical transformation
χ by an appropriate discrete version χ′ : Λ→ Λ, defined as follows. We fix
a symmetric relatively compact fundamental domain Q of Λ and, for every
λ ∈ Λ, decompose any

χ(λ) = rλ + χ′(λ),

where χ′(λ) ∈ Λ and rλ ∈ Q. Since χ−1 is Lipschitz continuous there is
L > 0 such that χ′(λ) = χ′(µ) implies

a := 2 sup
u∈Q
‖u‖ ≥ ‖χ(λ)− χ(µ)‖ ≥ L‖λ− µ‖.

Hence

χ′−1
(
{χ′(λ)}

)
=
{
µ ∈ Λ : χ′(µ) = χ′(λ)

}

is contained in B
(
λ, aL

)
∩ Λ, which is a finite set whose cardinal does not

depend on λ. This suggests the condition imposed in the following defini-
tion.

Definition 3.3.1. Let v be a submultiplicative weight on R2d and assume
that ψ : Λ→ Λ satisfies

M = sup
λ∈Λ

{
card

(
ψ−1 ({λ})

)}
<∞.
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We define Cv,ψ(Λ) as the set of all matrices A =
(
aγ,γ′

)
γ,γ′∈Λ

such that

‖A‖Cv,ψ :=
∑

γ∈Λ

v(γ) · sup
λ∈Λ

∣∣aψ(λ)+γ,λ

∣∣ <∞.

Proposition 3.3.2. Let T be a FIO whose phase Φ is tame and σ ∈
M∞1⊗vs0 (R2d), s0 > 2d. Then, for every 0 ≤ s < s0 − 2d we have

M(σ,Φ) ∈ Cvs,χ′ .

Proof. We put aµ,λ = 〈Tπ(λ)g, π(µ)g〉. We have to show that

∑

γ∈Λ

vs(γ) · sup
λ∈Λ

∣∣aχ′(λ)+γ,λ

∣∣ <∞.

According to [CGN12, Theorem 3.3],

|〈Tπ(λ)g, π(µ)g〉| ≤ C〈χ(λ)− µ〉−s0 = C(vs0(χ(λ)− µ))−1

for some constant C. Since there is rλ ∈ Q such that χ(λ) = χ′(λ) + rλ, we
obtain

|aχ′(λ)+γ,λ| = |〈Tπ(λ)g, π(χ′(λ) + γ)g〉|
≤ C(vs0(χ(λ)− χ′(λ)− γ))−1

=
C

vs0(rλ − γ)
≤ Cvs0(rλ)

vs0(γ)
≤ CR

vs0(γ)
,

where R = max{vs0(r) : r ∈ Q}. Finally, using that 2d < s0 − s,
∑

γ∈Λ

vs(γ) · sup
λ∈Λ

∣∣aχ′(λ)+γ,λ

∣∣ ≤ CR
∑

γ∈Λ

vs(γ)

vs0(γ)
<∞.

The following almost diagonal map will play an important role when
discussing compactness properties of operators defined in terms of matrices
in Cvs,ψ.
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Definition 3.3.3. Let ψ : Λ → Λ be as in Definition 3.3.1 and a ∈ CΛ.
Then

Da,ψ : CΛ → CΛ

is defined by Da,ψ(x) = y where

yγ =





0 if γ /∈ ψ(Λ)

∑

ψ(λ)=γ

aλxλ if γ ∈ ψ(Λ)

In particular, Da,ψ(eγ) = aγeψ(γ). Moreover, Da,ψ

(
C(Λ)

)
⊂ C(Λ).

The transposed map

Dt
a,ψ : C(Λ) → C(Λ),

is given by

(Dt
a,ψ(x))λ =

(
Dt
a,ψ(x), eλ

)
=
(
x, aλeψ(λ)

)
= aλxψ(λ).

In fact, Dt
a,ψ can be extended as a map from CΛ into itself. In the case that

a is the constant sequence equal 1 the map Da,ψ is denoted by Iψ. Then,
for an arbitrary a ∈ CΛ we have

Da,ψ = Iψ ◦Da.

When ψ is the identity, Da,ψ is just the diagonal operator Da.

Lemma 3.3.4. Let

M = sup
λ∈Λ

{
card

(
ψ−1 ({λ})

)}
<∞.

Then, there is a partition Λ =
⋃M
j=1 Λj such that ψ is injective when re-

stricted to each Λj .
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Proof. For all µ ∈ Λ, we know that there exist, at most, λ1, λ2, ..., λM ∈ Λ
such that µ = ψ(λj). We put each λj ∈ Λj , from this action we know that ψ

is injective in each Λj . Each Λi ⊆ Λ, then
⋃M
j=1 Λj ⊆ Λ. If λ ∈ Λ, ψ(λ) ∈ Λ,

then there exist j ∈ {1, 2, ..,m} such that λ ∈ Λj , then Λ ⊆ ⋃M
j=1 Λj

Let m = (mλ)λ∈Λ be a positive sequence. For any ψ : Λ → Λ as in
Definition 3.3.1 we denote by m ◦ ψ the sequence

m ◦ ψ =
(
mψ(λ)

)
λ∈Λ

.

Proposition 3.3.5. Let ψ : Λ→ Λ be as in Definition 3.3.1, a = (aλ)λ∈Λ

a sequence of complex numbers, m = (mλ)λ∈Λ a positive sequence and
p ∈ [1,∞]. The following conditions are equivalent:

(1) Da,ψ is continuous on `2(Λ).

(2) Da,ψ is continuous from `pm◦ψ(Λ) to `pm(Λ).

(3) a ∈ `∞(Λ).

Proof. It suffices to show the equivalence between conditions (2) and (3).
Let us assume that condition (2) is satisfied. As Da,ψ(eλ) = aλeψ(λ) then

‖Da,ψ‖ ≥
∥∥∥∥Da,ψ

(
eλ

mψ(λ)

)∥∥∥∥
`pm

= |aλ|,

from where we get (3).

To check that (3) implies (2) let us first assume that a ∈ `∞(Λ) and the
restriction of ψ to the support of a, that is {λ ∈ Λ such that aλ 6= 0}, is
injective. Then

‖Da,ψ(x)‖`pm = ‖(aλxλmψ(λ))λ‖`p = ‖(aλxλ)λ‖`pm◦ψ ≤ ‖a‖`∞‖x‖`pm◦ψ .
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In the case that condition (3) is satisfied but ψ is not injective on the
support of a we apply Lemma 3.3.4 and decompose

a =

M∑

j=1

aj ,

in such a way that the support of aj is contained in Λj . Then

Da,ψ =
M∑

j=1

Daj ,ψ

is continuous from `pm◦ψ(Λ) to `pm(Λ) and

‖Da,ψ‖`pm◦ψ→`pm ≤
M∑

j=1

‖aj‖`∞ ≤M‖a‖`∞ .

Hence (3) implies (2) is proved.

Remark 3.3.6. The same argument shows that condition (3) in Propo-
sition 3.3.5 is equivalent to being Da,ψ a bounded operator from c0,m◦ψ(λ)
into c0,m(λ).

In particular, Iψ : `pm◦ψ(Λ)→ `pm(Λ) is continuous. We observe that, if

p 6= q, the map Iψ does not need to be bounded on spaces `p,qm (Λ), as can
be seen in the following example.

Example 3.3.7. Let ψ : Z×Z 7→ Z×Z, given by ψ(i, j) = (j, i). Then Iψ
is not bounded on `2,1(Z× Z).

Proof. Let (xi,j)i,j∈Z×Z ∈ `2,1(Z× Z), we calculate Iψ((xi,j)i,j∈Z×Z),

Iψ((xi,j)(i,j)∈Z×Z) = Iψ


 ∑

(i,j)∈Z×Z
xi,jei,j


 =

∑

(i,j)∈Z×Z
xi,jIψ (ei,j)

=
∑

(i,j)∈Z×Z
xi,jeψ(i,j) =

∑

(i,j)∈Z×Z
xi,jej,i = (xj,i)(i,j)∈Z×Z.
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We consider the sequence (xi,j)i,j∈Z×Z, where

xi,j =
1

(|i|+ 1)2|j|
,

we have

∑

j∈Z

∣∣∣∣∣∣

(∑

i∈Z
|xi,j |2

) 1
2

∣∣∣∣∣∣
=
∑

j∈Z

(∑

i∈Z

∣∣∣∣
1

(|i|+ 1)2|j|

∣∣∣∣
2
) 1

2

=
∑

j∈Z

(∑

i∈Z

∣∣∣∣
1

(|i|+ 1)

∣∣∣∣
2 ∣∣∣∣

1

2|j|

∣∣∣∣
2
) 1

2

=
∑

j∈Z

(∣∣∣∣
1

2|j|

∣∣∣∣
2∑

i∈Z

∣∣∣∣
1

(|i|+ 1)

∣∣∣∣
2
) 1

2

=
∑

j∈Z

∣∣∣∣
1

2|j|

∣∣∣∣

(∑

i∈Z

∣∣∣∣
1

(|i|+ 1)

∣∣∣∣
2
) 1

2

≤ 2
∑

j∈N

∣∣∣∣
1

2j

∣∣∣∣

(
2
∑

i∈N

∣∣∣∣
1

(i+ 1)

∣∣∣∣
2
) 1

2

≤ 4

(
2
π2

6

) 1
2

=
4π√

3
<∞,

that is (xi,j)i,j∈Z×Z ∈ `2,1(Z × Z), let us prove that Iψ((xi,j)i,j∈Z×Z) does
not belong to `2,1(Z× Z).

∑

j∈Z

∣∣∣∣∣∣

(∑

i∈Z
| (Iψ((xi,j)i,j∈Z×Z))i,j |2

) 1
2

∣∣∣∣∣∣
=
∑

j∈Z

∣∣∣∣∣∣

(∑

i∈Z
|xj,i|2

) 1
2

∣∣∣∣∣∣

=
∑

j∈Z

(∑

i∈Z

∣∣∣∣
1

(|j|+ 1)2|i|

∣∣∣∣
2
) 1

2

=
∑

j∈Z

(∑

i∈Z

∣∣∣∣
1

(|j|+ 1)

∣∣∣∣
2 ∣∣∣∣

1

2|i|

∣∣∣∣
2
) 1

2

=
∑

j∈Z

(∣∣∣∣
1

(|j|+ 1)

∣∣∣∣
2∑

i∈Z

∣∣∣∣
1

2|i|

∣∣∣∣
2
) 1

2

=
∑

j∈Z

∣∣∣∣
1

(|j|+ 1)

∣∣∣∣

(∑

i∈Z

∣∣∣∣
1

2|i|

∣∣∣∣
2
) 1

2

=∞.

Hence Iψ((xi,j)i,j∈Z×Z) /∈ `2,1(Z× Z).
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Proposition 3.3.8. Let m = (mλ)λ∈Λ be a v-moderate positive sequence,
A =

(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ) and 1 ≤ p ≤ ∞ be given. Then A : `pm◦ψ(Λ)→
`pm(Λ) is a bounded operator, which is also weak∗ continuous.

Proof. It is easier to deal with the transposed map, so we first consider
bγ,γ′ = aγ′,γ and claim that B =

(
bγ,γ′

)
γ,γ′∈Λ

defines a bounded operator

B : `q1
m

(Λ) → `q1
m
◦ψ(Λ) for every 1 ≤ q ≤ ∞. We should remark here that

the class Cv,ψ(Λ) does not need to be closed under transposition. Instead
we have ∑

γ∈Λ

v(γ) · sup
λ∈Λ

∣∣bλ,ψ(λ)+γ

∣∣ <∞.

Using that for every λ ∈ Λ one has Λ = ψ(λ) + Λ, and the inequality

1 ≤ Cm
mψ(λ)

mψ(λ)+γ
v(γ), (3.3.2)

we may write

∑

γ∈Λ

|bλ,γxγ | =
∑

γ∈Λ

∣∣bλ,ψ(λ)+γxψ(λ)+γ

∣∣

≤
∑

γ∈Λ

∣∣bλ,ψ(λ)+γxψ(λ)+γ

∣∣Cm
mψ(λ)

mψ(λ)+γ
v(γ)

≤Cmmψ(λ)


∑

γ∈Λ

(v(γ) sup
λ
|bλ,ψ(λ)+γ |)q

′




1
q′

∑

γ∈Λ

( |xψ(λ)+γ |
mψ(λ)+γ

)q



1
q

<∞.

Therefore we conclude that

B : `q1
m

(Λ)→ CΛ

is a well-defined operator.
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To prove that Bx ∈ `q1
m
◦ψ(Λ) it is enough to check that

∑

λ∈Λ

|(Bx)λ yλ| <∞

for every y ∈ `q′m◦ψ. Here q′ is the usual conjugate exponent, for q = 1 we

consider q′ =∞. To this end we denote φ(γ) = v(γ) supλ
∣∣bλ,ψ(λ)+γ

∣∣ . Using
again the inequality (3.3.2) we obtain

∑

λ∈Λ

|(Bx)λ yλ| ≤
∑

λ∈Λ

∑

γ∈Λ

|bλ,γxγyλ| =
∑

λ∈Λ

∑

γ∈Λ

∣∣bλ,ψ(λ)+γxψ(λ)+γyλ∈Λ

∣∣

≤ Cm
∑

λ∈Λ

∑

γ∈Λ

∣∣bλ,ψ(λ)+γ

∣∣ v(γ)

∣∣xψ(λ)+γ

∣∣
mψ(λ)+γ

|yλ|mψ(λ)

≤ Cm
∑

γ∈Λ

φ(γ)
∑

λ∈Λ

∣∣xψ(λ)+γ

∣∣
mψ(λ)+γ

|yλ|mψ(λ)

≤MCm‖x‖`q1
m

· ‖y‖
`q
′
m◦ψ
· ‖A‖Cv,ψ ,

where M is the constant in Definition 3.3.1. Moreover,

‖Bx‖`q1
m ◦ψ

(Λ) = sup
‖y‖

`
q′
m◦ψ
≤1

{∑

λ∈Λ

|(Bx)λ yλ|
}

≤ sup
‖y‖

`
q′
m◦ψ
≤1

{
MCm‖x‖`q1

m

· ‖y‖
`q
′
m◦ψ
· ‖A‖Cv,ψ

}

≤MCm‖x‖`q1
m

· ‖A‖Cv,ψ ,

and B : `q1
m

(Λ) → `q1
m
◦ψ(Λ) is a bounded operator for every 1 ≤ q ≤ ∞.

In fact, B also defines a bounded operator from c0, 1
m

to c0, 1
m
◦ψ. In fact,



60 CHAPTER 3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS

B : `∞1
m

→ `∞1
m
◦ψ is continuous, B

(
C(Λ)

)
⊂ `11

m
◦ψ ⊂ c0, 1

m
◦ψ and c0, 1

m
is the

closure of C(Λ) on `∞1
m

. Consequently, for every 1 ≤ p ≤ ∞, the transposed

map defines a bounded operator A = Bt : `pm◦ψ(Λ) → `pm(Λ) which is also
weak∗ continuous.

Proposition 3.3.9. Let m = (mλ)λ∈Λ a v-moderate positive sequence,
A =

(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ) and 1 ≤ p ≤ ∞ be given. Then

A =
∑

γ∈Λ

(Tγ ◦Daγ ,ψ)

where aγ := (aψ(λ)+γ,λ)λ∈Λ. The series converges absolutely in the operator
norm.

Proof. Since m is v-moderate with constant Cm, by Proposition 1.1.6, we
have

‖Tγ : `pm(Λ)→ `pm(Λ)‖ ≤ Cmv(γ).

Also

‖Daγ ,ψ : `pm◦ψ(Λ)→ `pm(Λ)‖ ≤M sup
λ

∣∣aψ(λ)+γ,λ

∣∣ ,

where M is the constant in the Definition 3.3.1. Hence

∑

γ∈Λ

‖Tγ ◦Daγ ,ψ‖ ≤M
∑

γ∈Λ

Cmv(γ) sup
λ∈Λ
|aψ(γ)+λ,λ| <∞.

Consequently

S :=
∑

γ∈Λ

(Tγ ◦Daγ ,ψ)

defines a bounded operator from `pm◦ψ(Λ) into `pm(Λ). With a similar argu-

ment we can decompose the transposed map in terms of operators Dt
aγ ,ψ =

Itψ ◦Daγ , from where we conclude that S is also weak∗ continuous. More-
over, A and S coincide on {eλ : λ ∈ Λ}, from where the result follows. In
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fact,

〈S(eλ), eµ〉 =

〈∑

γ∈Λ

aψ(λ)+γ,λeψ(λ)+γ , eµ

〉
=

〈∑

t∈Λ

at,λet, eµ

〉

= 〈A(eλ), eµ〉 .

The following abstract result will be useful to obtain necessary condi-
tions for the compactness of FIOs.

Proposition 3.3.10. Let E = G′ and F = R′ be dual Banach spaces
and T : E → F be a compact operator, such that T t(R) ⊆ G. If {xi}i∈I
is a sequence that converges to x in the weak∗ topology, σ(E,G), then,
{(T (xi))}i∈I converges to T (x).

Proof. We first check that {xi}i∈I is a bounded sequence in E. In fact,
{xi}i∈I is a bounded sequence in σ(E,G). If we consider the sequence of
linear operators {〈xi, ·〉}i∈I , then for every g ∈ G, {〈xi, g〉}i∈I is a bounded
sequence. By Banach-Steinhaus’s Theorem, we obtain that {〈xi, ·〉}i∈I is
uniformly bounded and we conclude that {xi}i∈I is a bounded sequence in
E. We assume that {T (xi)}i∈I does not converge to T (x) in norm. Then
there are ε > 0 and a sequence of indices (ik)

∞
k=1 ⊂ I such that, for every

k,
‖T (xik)− T (x)‖ > ε.

Since T is a compact operator, there exists a subsequence {T (xikt)}t con-
verging to some y ∈ F. Since {xikt}t σ(E,G)-converges to x we conclude
that {T (xikt)}t σ(F,R)-converges to T (x). Since the norm convergence im-
plies the σ(F,R)-convergence in F ,we finally obtain that y = T (x). Conse-
quently, {T (xikt)}t converges to T (x) in norm, which is a contradiction.

Theorem 3.3.11. Let A =
(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ) and 1 ≤ p ≤ ∞ be

given. Then, A : `pm◦ψ(Λ)→ `pm(Λ) is a compact operator if and only if

aγ :=
(
aψ(λ)+γ,λ

)
λ∈Λ
∈ c0(Λ) for all γ ∈ Λ.
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Proof. If aγ ∈ c0(Λ) for every γ ∈ Λ, then Daγ ,ψ = Iψ ◦Daγ is compact for
each γ ∈ Λ. Hence, we can apply Propositions 3.3.8 and 3.3.9 to conclude
that A is a compact operator.

Let us now assume that A is compact. Let

(
eλ

mψ(λ)

)

λ∈Λ

⊆ `pm◦ψ(Λ),

let us see that it converges to zero in the weak∗ topology. Take an element

of the pre-dual of `pm◦ψ(Λ), x ∈ `p′1
m◦ψ

(Λ), being p′ the conjugate exponent

(for p = 1 we consider p′ = 0). In particular, we know that for every ε > 0
there exists M ∈ N such that, if |λ| ≥M ,

∣∣∣∣
xλ

mψ(λ)

∣∣∣∣ < ε.

Then, ∣∣∣∣
〈

eλ
mψ(λ)

, x

〉∣∣∣∣ =

∣∣∣∣〈eλ, x〉
1

mψ(λ)

∣∣∣∣ =

∣∣∣∣xλ
1

mψ(λ)

∣∣∣∣ < ε.

Since
(

eλ
mψ(λ)

)
λ∈Λ

converges to zero in the weak∗ topology of `pm◦ψ(Λ), we

can apply Proposition 3.3.10 to conclude that
(
A
(

eλ
mψ(λ)

))
λ∈Λ

converges

to 0. Now, we fix γ ∈ Λ and use that

mψ(λ)+γ

mψ(λ)
|aψ(λ)+γ,λ| ≤

∥∥∥∥A
(

eλ
mψ(λ)

)∥∥∥∥
`pm(Λ)

.

Since m is v-moderate we obtain

∣∣aψ(λ)+γ,λ

∣∣ ≤ Cmv(γ)

∥∥∥∥A
(

eλ
mψ(λ)

)∥∥∥∥
`pm(Λ)

,

which finishes the proof.
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We will apply Theorem 3.3.11 to the study of compactness of FIOs

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη

whose phase is tame and with symbol σ ∈M∞1⊗vs0 (R2d), s0 > 2d. As usual,

χ is the canonical transformation of the symbol Φ and χ′ : Λ → Λ is its
discrete version.

Theorem 3.3.12. Let T be a FIO whose phase Φ is tame and σ ∈
M∞1⊗vs0 (R2d), s0 > 2d. The following conditions are equivalent:

(1) T : L2(Rd)→ L2(Rd) is a compact operator.

(2) M(σ,Φ) : `2(Λ)→ `2(Λ) is compact.

(3) (〈Tπ(λ)g, π(χ′(λ) + µ)g〉)λ ∈ c0(Λ) for every µ ∈ Λ.

Proof. Since M∞1⊗vs0 (R2d) ⊂ M∞,1(R2d) we can apply [CNR10b, Theorem

6.1] to obtain that T : L2(Rd) → L2(Rd) is a bounded operator. From
Theorem 3.2.2 we get the equivalence of conditions (1) and (2). Now it
suffices to apply Proposition 3.3.2 and Theorem 3.3.11 to conclude.

We observe that, for any positive and vs-moderate weight m,

`pm◦χ(Λ) = `pm◦χ′(Λ)

with equivalent norms and that m ◦ χ is vs-moderate whenever m is.

Theorem 3.3.13. Let T be a FIO whose phase Φ is tame and σ ∈
M∞1⊗vs0 (R2d), s0 > 2d. Then, for every 0 ≤ s < s0 − 2d, the following
conditions are equivalent:

(1) T : L2(Rd)→ L2(Rd) is a compact operator.

(2) T : Mp
m◦χ(Rd)→Mp

m(Rd) is a compact operator for some 1 ≤ p <∞
and for some vs-moderate weight m.
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(3) T : Mp
m◦χ(Rd)→Mp

m(Rd) is a compact operator for every 1 ≤ p <∞
and for every vs-moderate weight m.

Proof. From [CGN12, Corollary 5.5] and Propositions 3.3.2 and 3.3.8 we
have that

T : Mp
m◦χ(Rd)→Mp

m(Rd) and M(σ,Φ) : `pm◦χ′(Λ)→ `pm(Λ)

are bounded operators for every 1 ≤ p < ∞ and for every vs-moderate
weight m. It suffices to show (2) ⇒ (3). According to Theorems 3.2.2 and
3.3.11, condition (2) is equivalent to the fact that

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ
∈ c0(Λ),

for every µ ∈ Λ and this condition does not depend on p nor on m.

We next discuss the case p =∞.

Theorem 3.3.14. Let T be a FIO whose phase Φ is tame and σ ∈
M∞1⊗vs0 (R2d) and let 0 ≤ s < s0 − 2d and m a vs-moderate weight. Then

(1) T admits a unique extension as a bounded operator

T : M∞m◦χ(Rd)→M∞m (Rd),

which is also weak∗-continuous.

(2) T : M∞m◦χ(Rd)→M∞m (Rd) is compact if and only if

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ
∈ c0(Λ),

for every µ ∈ Λ.

Proof. (1) We know that T = Cg ◦M(σ,Φ)◦C∗g is bounded on S(Rd), which

is weak∗-dense in M∞m (Rd) for all m, a vs-moderate weight. Then T admits
a unique extension,

T̃ : M∞m◦χ(Rd)
Cg−→ `∞m◦χ(Λ)

M(σ,Φ)−−−−−→ `∞m (Λ)
S∗−→M∞m (Rd),
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where S = Cg : M1
1/m(Rd) → `11/m(Λ). In fact, all the involved maps are

weak∗-continuous, then T̃ is weak∗-continuous. As the extension is unique
we denote it as T .

(2) By Theorem 3.2.2, T is compact if and only if M(σ,Φ) : `∞m◦χ →
`∞m (Λ) is compact. Now it suffices to apply Theorem 3.3.11.

For the proof of the next result we recall that the canonical transfor-
mation (x, ξ) = χ(y, η) is defined through the system

{
y = ∇ηΦ(x, η),
ξ = ∇xΦ(x, η).

Theorem 3.3.15. Let T be a FIO whose phase Φ is tame and σ ∈
M∞1⊗vs0 (R2d) and let 0 ≤ s < s0−2d. If σ ∈M0(R2d) then T : Mp

m◦χ(Rd)→
Mp
m(Rd) is a compact operator for every 1 ≤ p ≤ ∞ and for every vs-

moderate weight m.

Proof. It suffices to show that M(σ,Φ)µ,λ goes to zero as |(µ, λ)| goes to
infinity. To this end we first recall the relation between the Gabor matrix
of T and the STFT of σ. We denote λ = (λ1, λ2), µ = (µ1, µ2) ∈ R2d. From
[CNR10b, (39)] we have

|M(σ,Φ)µ,λ| = |〈Tπ(λ)g, π(µ)g〉| = |VΨµ1,λ2
σ(zλ,µ)|, (3.3.3)

where

z(λ1,λ2),(µ1,µ2) = (µ1, λ2, (µ2 −∇xΦ(µ1, λ2)), (λ1 −∇ηΦ(µ1, λ2))),

Ψ(µ1,λ2)(w) = e2πiΦ2,(µ1,λ2)
(w)g ⊗ ĝ

and Φ2,(µ1,λ2) denotes the reminder of order two of the Taylor series of Φ,
that is,

Φ2,(µ1,λ2)(w) = 2
∑

|α|=2

∫ 1

0
(1− t)∂αΦ((µ1, λ2) + tw)dt

wα

α!
,
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with (µ1, λ2), w ∈ R2d. By [CNR10b, 6.1] we obtain that

D = {Ψ(µ1,λ2) : (µ1, λ2) ∈ Z2d}

is a relatively compact set in S(R2d). Since σ ∈M0(R2d),

S(R2d)→ C0(R2d), Ψ 7→ VΨσ

is a continuous map, hence

D̃ = {VΨ(µ1,λ2)
σ : (µ1, λ2) ∈ Z2d} = {VΨσ : Ψ ∈ D}

is a relatively compact set in C0(R2d). Consequently, for every ε > 0, there
exists a finite set A with the property that for every (µ1, λ2) ∈ Z2d there is

(µ̃1, λ̃2) ∈ A such that

sup
z∈R4d

|VΨ
(µ̃1,λ̃2)

σ(z)− VΨ(µ1,λ2)
σ(z)| < ε

2
.

We take Mε > 0 so that

max
(µ̃1,λ̃2)∈A

sup
|z|>Mε

|VΨ
(µ̃1,λ̃2)

σ(z)| < ε

2
.

Now take z ∈ R4d with |z| > Mε. Then

|VΨ(µ1,λ2)
σ(z)| ≤ |VΨ(µ1,λ2)

σ(z)− VΨ
(µ̃1,λ̃2)

σ(z)|+ |VΨ
(µ̃1,λ̃2)

σ(z)|< ε

2
+
ε

2
<ε,

for every (µ1, λ2) ∈ Z2d. We conclude that |VΨµ1,λ2
σ(zλ,µ)| goes uniformly

to zero as |zλ,µ| goes to infinity.

Finally, we check that M(σ,Φ)λ,µ goes to zero as |(λ, µ)| goes to infinity.
We can distinguish two cases:

• µ1 or λ2 goes to infinity. Then also |zλ,µ| goes to infinity.
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• Neither µ1 nor λ2 goes to infinity. We can assume that there exist
C > 0 such that |(µ1, λ2)| ≤ C, from where it follows that∇xΦ(µ1, λ2)
and ∇ηΦ(µ1, λ2) are bounded. As |(λ, µ)| goes to infinity then µ2 or
λ1 goes to infinity. From the fact that ∇xΦ(µ1, λ2) and ∇ηΦ(µ1, λ2)
are bounded, we conclude that |zλ,µ| goes to infinity.

From (3.3.3) we deduce that the Gabor matrix M(σ,Φ)λ,µ goes to 0 as
|(λ, µ)| goes to infinity and the proof is complete.

We now prove that the converse is true in the particular case of quadratic
phases.

Definition 3.3.16. The map Φ : R2d → R is said to be a quadratic phase
if

Φ(x, η) =
1

2
Ax · x+Bx · η +

1

2
Cη · η + η0 · x− x0 · η

where x0, η0 ∈ Rd, A,B,C are symmetric real matrices and B is non de-
generate.

Theorem 3.3.17. Let T be a FIO with quadratic phase Φ and σ ∈
M∞1⊗vs0 (R2d) and let 0 ≤ s < s0 − 2d. Then the following statements are
equivalent:

(1) σ ∈M0(R2d).

(2) T : Mp
m◦χ(Rd)→Mp

m(Rd) is a compact operator for every 1 ≤ p ≤ ∞
and for every vs-moderate weight m.

Proof. We need to check that (2) ⇒ (1). We use the same notation as in
the proof of Theorem 3.3.15. Since the phase Φ is quadratic then all its
second partial derivatives are constant. Hence

Φ2,(0,0)(w) = Φ2,(µ1,λ2)(w) and Ψ(µ1,λ2)(w) = Ψ(0,0)(w) = Ψ(w)

for every (µ1, λ2) ∈ R2d. Consequently

|〈Tπ(λ)g, π(µ)g〉| = |VΨ(0,0)
σ(zλ,µ)|. (3.3.4)
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We now proceed in several steps.

We first prove that

(〈Tπ(λ)g, π(µ)g〉)λ,µ∈Λ ∈ c0(Λ× Λ). (3.3.5)

As M(σ,Φ) ∈ Cvs,ψ we have

∑

γ∈Λ

vs(γ) · sup
λ∈Λ
|M(σ,Φ)χ′(λ)+γ,λ| <∞.

In particular
lim
|γ|→∞

sup
λ∈Λ
|M(σ,Φ)χ′(λ)+γ,λ| = 0.

So, for every ε > 0 there exist γ0 ∈ (0,∞) such that for every λ, γ ∈ Λ with
|γ| ≥ γ0,

ε > |M(σ,Φ)tλ,χ′(λ)+γ | = |〈Tπ(λ)g, π(χ′(λ) + γ)g〉|. (3.3.6)

Since T is a compact operator we can apply Theorems 3.3.12 and 3.3.13 to
get (

M(σ,Φ)χ′(λ)+γ,λ

)
λ
∈ c0(Λ)

for every γ ∈ Λ. That is, for every ε > 0 there exist λγ ∈ (0,∞) with the
property that λ ∈ Λ and |λ| ≥ λγ imply

ε > |M(σ,Φ)tλ,χ′(λ)+γ | = |〈Tπ(λ)g, π(χ′(λ) + γ)g〉|. (3.3.7)

We now consider λ0 = max|γ|≤γ0{λγ}. We will check that |(λ, µ)| ≥ λ0 +
γ0 + max|λ|<λ0 |χ′(λ)|+ 1 implies

ε > |M(σ,Φ)tλ,µ| = |〈Tπ(λ)g, π(µ)g〉|.

Given (λ, µ), there is γ ∈ Λ such that µ = χ′(λ) + γ. If |γ| ≥ γ0 we are
done by (3.3.6). If |γ| < γ0 but |λ| ≥ λ0 ≥ λγ then we are done by (3.3.7).
To finish we discuss the case |γ| < γ0 and |λ| < λ0. We have

λ0 + γ0 + max
|γ|<λ0

∣∣χ′(γ)
∣∣+ 1 ≤ |(λ, µ)| = |λ|+ |χ′(λ)|+ |γ|.
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Since |λ| < λ0 and |γ| < γ0 we deduce

max
|γ|<λ0

∣∣χ′(γ)
∣∣+ 1 ≤

∣∣χ′(λ)
∣∣ ,

which is a contradiction because |λ| < λ0. Consequently

ε > |M(σ,Φ)tλ,µ| = |〈Tπ(λ)g, π(µ)g〉|

whenever |(λ, µ)| ≥ λ0 + γ0 + max|λ|<λ0 |χ′(λ)| + 1 and statement (3.3.5)
holds.

Secondly, we check that G(z, w) = 〈Tπ(z)g, π(w)g〉 goes to zero as
|(z, w)| goes to infinity on R4d. We have

π(u)g =
∑

ν∈Λ

〈π(u)g, π(ν)g〉π(ν)g. (3.3.8)

As g ∈ S(Rd) ⊆ M1(Rd), using the local properties of the STFT [Grö01,
12.1.11], we have Vgg ∈ W (L∞, `1)(R2d). Using the norm of this space
(1.2.1) we have, for every relatively compact subset K ⊂ R2d there is B > 0
such that

∑

ν∈Λ

sup
u∈K
|Vgg(ν + u)| ≤ B‖g‖M1(Rd).

In particular, we take K a symmetric and relatively compact fundamental
domain of Λ and define

α(ν) = sup
u∈K
|Vgg(ν + u)| = sup

u∈K
|〈π(−u)g, π(ν)g〉|.

Then α ∈ `1(Λ). Given z, w ∈ R2d we can decompose z = µ + u and
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w = λ+ u′, with µ, λ ∈ Λ and u, u′ ∈ K. From (3.3.8) we obtain

|〈Tπ(z)g, π(w)g〉| = |〈Tπ(µ+ u)g, π(λ+ u′)g〉|
= |〈Tπ(µ)π(u)g, π(λ)π(u′)g〉|
≤
∑

ν,ν′∈Λ

|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉||〈π(u)g, π(ν)g〉||〈π(u′)g, π(ν ′)g〉|

≤
∑

ν,ν′∈Λ

|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′)

≤
∑

|ν|,|ν′|<M
|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′)

+
∑

|ν|≥M,ν′∈Λ

|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′)

+
∑

|ν|<M,|ν′|≥M
|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′) (3.3.9)

for every M > 0. Let ε > 0 be given, take A = supλ,µ∈Λ |〈Tπ(λ)g, π(µ)g〉|,
and find M > 0 such that

∑

|ν|>M
α(ν) <

ε

3A‖α‖`1
.

For every µ, λ ∈ Λ we have

∑

|ν|≥M,ν′∈Λ

|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′)

≤ A
∑

|ν|≥M
α(ν)

∑

ν′∈Λ

α(ν ′) ≤ A ε

3A‖α‖`1
‖α‖`1 ≤

ε

3
(3.3.10)

and

∑

|ν|<M,|ν′|≥M
|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′) ≤ ε

3
. (3.3.11)
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As (〈Tπ(λ)g, π(µ)g〉)λ,µ∈Λ converges to 0, we can find N ∈ N such that

sup
|λ|+|µ|≥N,λ,µ∈Λ

|〈Tπ(λ)g, π(µ)g〉| < ε

3‖α‖2
`1
.

Finally, for any z, w ∈ R2d satisfying |z|+ |w| > N+2M+2 ·supu∈C |u|,
we obtain |µ| + |λ| > N + 2M (z = µ + u and w = λ + u′, with µ, λ ∈Λ
and u, u′ ∈ C) and |µ+ ν|+ |λ+ ν ′| > N whenever |ν|, |ν ′| < M . Then

∑

|ν|,|ν′|<M
|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|α(ν)α(ν ′)

≤ sup
|ν|,|ν′|<M

{|〈Tπ(µ+ ν)g, π(λ+ ν ′)g〉|}
∑

|ν|<M
α(ν)

∑

|ν′|<M
α(ν ′)

≤ ε

3‖α‖2
`1

∑

|ν|<M
α(ν)

∑

|ν′|<M
α(ν ′) ≤ ε

3
. (3.3.12)

Using (3.3.9), (3.3.10), (3.3.11) and (3.3.12) we obtain

|〈Tπ(z)g, π(w)g〉| ≤ ε

3
+
ε

3
+
ε

3
≤ ε.

The proof that |〈Tπ(z)g, π(w)g〉| ∈ C0(R4d) is complete.

We can now finish the proof that σ ∈M0(R2d). We recall that

|〈Tπ(λ)g, π(µ)g〉| = |VΨσ(zλ,µ)|

for every λ, µ ∈ R2d and consider VΨσ(a, b, c, l) with (a, b, c, l) ∈ R4d. There
are unique e, f ∈ Rd such that

(a, b, c, l) = (a, b, e−∇xΦ(a, b), f −∇ηΦ(a, b)) = zf,b,a,e.

Then |VΨσ(a, b, c, l)| = |G(f, b, a, e)| . If |(a, b, c, l)| goes to infinity we have
two possibilities:

• a or b goes to infinity. Then |(f, b, a, e)| goes to infinity.
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• Neither a nor b goes to infinity. We can assume that there is A>0 such
that |(a, b)| ≤ A, from where it follows that ∇xΦ(a, b) and ∇ηΦ(a, b)
are bounded. As |(a, b, e−∇xΦ(a, b), f −∇ηΦ(a, b))| goes to infinity
and a, b,∇xΦ(a, b),∇ηΦ(a, b) are bounded, we conclude that either e
or f goes to infinity. Hence |(f, b, a, e)| goes to infinity.

Since |〈Tπ(z)g, π(w)g〉| ∈ C0(R4d) we can use (3.3.4) to conclude that
σ ∈ M0(R2d).

Now we consider a FIO, T : S → S ′, with symbol σ ∈ L∞(R2d) and
real phase Φ on R2d,

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη.

Let us calculate the transposed map T ∗ : S → S ′,

〈g, T ∗f〉 = 〈Tg, f〉 =

∫

Rd
f(x)

(∫

Rd
e2πiΦ(x,η)σ(x, η) ĝ(η)dη

)
dx

=

∫

R2d

e2πiΦ(x,η)σ(x, η) f(x)ĝ(η)dxdη

=

∫

R2d

e2πiΦ(x,η)σ(x, η) f(x)

(∫

Rd
e−2πiyηg(y)dy

)
dxdη

=

∫

R3d

g(y)e2πi[Φ(x,η)−yη]σ(x, η) f(x)dxdηdy

=

∫

Rd
g(y)

(∫

R2d

e−2πi[Φ(x,η)−yη]σ(x, η)f(x)dxdη

)
dy.

From that we usually refer to the FIOs seen so far as FIOs of type
I, TI,Φ,σ, and their adjoints are called FIOs of type II, TII,Φ,σ. For a
function f on Rd the FIO of type II, with symbol τ ∈ L∞(R2d) and phase
Φ on R2d can be formally defined by

Tf(x) = TII,Φ,τf(x) =

∫

R2d

e−2πi[Φ(y,η)−xη]τ(y, η)f(y)dydη.
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Proposition 3.3.18. Let TII,Φ,τ be a FIO of type II whose phase Φ satisfy
conditions (3.1.1) and (3.1.2) and symbol τ ∈ M∞1⊗vc(R2d) and let 0 ≤ s <
c − 2d. If τ ∈ M0(R2d) then TII,Φ,τ : Mp

m(Rd) → Mp
m◦χ(Rd) is a compact

operator for every 1 ≤ p ≤ ∞ and for every vs-moderate weight m.

Proof. If τ ∈ M0(R2d), then τ ∈ M0(R2d). Then TI,Φ,τ : Mp
m◦χ(Rd) →

Mp
m(Rd) is a compact operator for every 1 ≤ p ≤ ∞ and for every vs-

moderate weight m by Theorem 3.3.15. Particularly TI,Φ,τ : M q
1

m◦χ
(Rd) →

M q
1
m

(Rd) is a compact operator for every 1 ≤ q ≤ ∞, 1
p + 1

q = 1, and for

every vs-moderate weight m . Thereby TII,Φ,τ : Mp
m(Rd)→Mp

m◦χ(Rd) is a
compact operator for every 1 ≤ p ≤ ∞ and for every vs-moderate weight
m.

3.3.2 FIOs on Mp,q
m

The FIOs we are considering may fail to be bounded on mixed modulation
spaces as was shown in [CNR10b]. The example was a FIO with phase

Φ(x, η) = xη + |x|2
2 , whose canonical transformation is χ(y, η) = (y, y + η).

We consider the case d = 1 and Λ = Z× Z, Let a ∈ `2,1(Z× Z),

Iχ(a) = Iχ


 ∑

(y,η)∈Z×Z
ay,ηey,η


 =

∑

(y,η)∈Z×Z
ay,ηIχ (ey,η)

=
∑

(y,η)∈Z×Z
ay,ηeχ(y,η) =

∑

(y,η)∈Z×Z
ay,ηe(y,y+η)

=
∑

(y,λ)∈Z×Z
ay,λ−ye(y,λ) = (ay,λ−y)(y,λ)∈Z×Z.

Now, as in Exemple 3.3.7, we consider

ay,η =
1

(|y|+ 1)2|η|
,
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a ∈ `2,1(Z× Z), but we see that Iχ(a) /∈ `2,1(Z× Z),

∑

λ∈Z

∣∣∣∣∣∣∣


∑

y∈Z
|(Iχ(a))y,λ|2




1
2

∣∣∣∣∣∣∣
≥
∑

λ∈Z

∣∣∣∣∣∣∣


∑

y=λ

|(Iχ(a))y,λ|2



1
2

∣∣∣∣∣∣∣
=
∑

λ∈Z
|(Iχ(a))λ,λ|

=
∑

λ∈Z

∣∣∣∣
1

(|λ|+ 1)2|λ−λ|

∣∣∣∣ =
∑

λ∈Z

∣∣∣∣
1

(|λ|+ 1)

∣∣∣∣ =∞.

That is, Iχ
(
`2,1
)

is not contained in `2,1.
To overcome this obstacle, an extra condition on the phase was intro-

duced by Cordero, Nicola and Rodino in [CNR10b], namely

sup
x′,x,η

∣∣∇xΦ(x, η)−∇xΦ(x′, η)
∣∣ <∞. (3.3.13)

If χ = (χ1, χ2) is the corresponding canonical transformation, condition
(3.3.13) implies that

χ2(y, η) = ∇xΦ(χ1(y, η), η) = ∇xΦ(0, η) + a(y, η),

a(y, η) being a bounded function.
From now on, G(g,Λ) is a Parseval frame with g ∈ S(Rd), Λ1 = αZd,
Λ2 = βZd and Λ = Λ1 × Λ2. If Q denotes a symmetric relatively compact
fundamental domain of the lattice Λ then, there are K ⊆ Λ2, finite, and a
unique decomposition

χ1(λ1, λ2) = r1(λ1, λ2) + ψ1(λ1, λ2),

χ2(λ1, λ2) = r2(λ1, λ2) + ψ2(λ2) + a(λ1, λ2),

for all (λ1, λ2) ∈ Λ, where (r1(λ1, λ2), r2(λ1, λ2)) ∈ Q, ψ1(λ1, λ2) ∈ Λ1,
ψ2(λ2) ∈ Λ2 and a(λ1, λ2) ∈ K. Moreover, from conditions (3.1.1) and
(3.1.2) it follows that the map

Rd → Rd, η 7→ ∇xΦ(0, η),
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is a bilipschitz global diffeomorphism, which implies that

sup
λ2∈Λ2

card ψ−1
2 ({λ2}) <∞.

This motivates the following definition.

Definition 3.3.19. Let ψ : Λ1×Λ2 → Λ1×Λ2, ψ(i, j) = (ψ1(i, j), ψ2(i, j)),
be as in Definition 3.3.1, that is, ψ satisfies

sup
λ∈Λ

{
card

(
ψ−1 ({λ})

)}
<∞.

We say that ψ is admissible if there exist a map ψ̃2 : Λ2 → Λ2 as in
Definition 3.3.1 and a finite set K ⊂ Λ2 such that

ψ2(i, j) = ψ̃2(j) + a(i, j), for all (i, j)

where a(i, j) ∈ K.

The discrete version χ′ : Λ → Λ of the canonical transformation asso-
ciated to a phase function satisfying conditions (3.1.1),(3.1.2), (3.3.13) is
admissible. From now on, given ψ admissible, to simplify the notation, we
will write ψ2(j) instead of ψ̃2(j).

Given an admissible ψ : Λ1×Λ2 → Λ1×Λ2, let C be the cardinal of the
finite set K and M > 0 be such that for each (i, j) ∈ Λ1×Λ2, ψ

−1({(i, j)})
has at most M elements and ψ−1

2 ({j}) has at most M elements for every
j ∈ Λ2.

Lemma 3.3.20. Let ψ be admissible, and M1 = C ·M. For each j ∈ Λ2,
we define ψ1,j : Λ1 → Λ1, as ψ1,j(i) := ψ1(i, j). Then, for each i ∈ Λ1 the
set ψ−1

1,j ({i}) has at most M1 elements.

Proof. We fix j ∈ Λ2 and i0 ∈ Λ1. If ψ1(i, j) = ψ1(i0, j) then ψ(i, j) =
(ψ1(i0, j), ψ2(j) + a(i, j)) can take C different values. Hence, there are only
C ·M possibilities for i.
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We start by analyzing the action of the basic operators Da,ψ on weighted
sequence spaces with mixed norm `p,qm . Since Da,ψ = Iψ ◦Da, we will study
the continuity of Iψ on these spaces. To this aim, we consider the transposed
map Jψ := Itψ, with ψ admissible. We recall that for every λ ∈ Λ,

Jψ(x) = (xψ(λ))λ.

Proposition 3.3.21. Let ψ be admissible, m = (mi,j)(i,j)∈Λ a positive
sequence and p, q ∈ [1,∞] ∪ {0}. Then, Jψ is continuous from `p,qm (Λ) to
`p,qm◦ψ(Λ).

Proof. Let x ∈ `p,qm (Λ) and put y = x ·m and γ = (i, j). Then

|yψ(i,j)| ≤
∑

k∈Λ2

∣∣yψ1(i,j),ψ2(j)+k

∣∣ ,

hence

∑

i∈Λ1

|yψ(i,j)|p



1
p

≤
∑

k∈Λ2


∑

i∈Λ1

∣∣yψ1(i,j),ψ2(j)+k

∣∣p



1
p

≤
∑

k∈Λ2


M1

∑

`∈Λ1

∣∣y`,ψ2(j)+k

∣∣p



1
p

.

Consequently



∑

j∈Λ2


∑

i∈Λ1

|yψ(i,j)|p



q
p




1
q

≤
∑

k



∑

j∈Λ2


M1

∑

`∈Λ1

∣∣y`,ψ2(j)+k

∣∣p



q
p




1
q

≤ C


M

∑

h∈Λ2


M1

∑

`∈Λ1

|y`,h|p



q
p




1
q

= CM
1
qM

1
p

1 ‖y‖p,q,
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where we have applied triangular inequality for the norms in `p and `q, and
the facts that, for each j ∈ Λ2, ψ2(j) can be repeated at most M times and
ψ1(i, j) = ψ1,j(i) can be repeated at most M1 times (Lemma 3.3.20).

As Jψ maps finite supported sequences into finite supported sequences,
the cases p = 0 or q = 0 follow immediately.

For a ∈ `∞(Λ) we obtain, from the decomposition Da,ψ = J tψ ◦Da, the
estimate

‖Da,ψ : `p,qm◦ψ(Λ)→ `p,qm (Λ)‖ ≤ CM
1
qM

1
p

1 · ‖a‖∞.

Proposition 3.3.22. Let A =
(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ), with ψ admissible
and 1 ≤ p, q ≤ ∞ be given. Then,

(1) A defines a bounded operator A : `p,qm◦ψ(Λ) → `p,qm (Λ), which is also
weak∗ continuous.

(2) A =
∑

γ∈Λ

(Tγ ◦Daγ ,ψ) where aγ := (aψ(λ)+γ,λ)λ∈Λ. The convergence of

the series is absolute.

Proof. It is easier to deal with the transposed map, so we first consider
bγ,γ′ = aγ′,γ and claim that B =

(
bγ,γ′

)
γ,γ′∈Λ

defines a bounded operator

B : `p,q1
m

(Λ) → `p,q1
m
◦ψ(Λ), for all p, q ∈ [1,∞] ∪ {0}. We will assume that

p, q ∈ [1,∞]. Then the case that p = 0 or q = 0 can be obtained as in the
proof of Proposition 3.3.8.

As `p,q1
m

(Λ) ⊂ `∞1
m

(Λ), by Proposition 3.3.8, we obtain that

B : `p,q1
m

(Λ)→ CΛ

is a well-defined operator. To prove that Bx ∈ `p,q1
m
◦ψ(Λ) it is enough to

check that ∑

γ∈Λ

∣∣∣(Bx)γ yγ

∣∣∣ <∞
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for every y ∈ `p
′,q′
m◦ψ(Λ). We proceed as in Proposition 3.3.8. We denote

φ(λ) = v(λ) supγ
∣∣bγ,ψ(γ)+λ

∣∣ . We obtain, using that translations are isome-
tries on the spaces `p,q,

∑

γ∈Λ

∣∣∣(Bx)γ yγ

∣∣∣ ≤ Cm
∑

λ∈Λ

φ(λ)
∑

γ∈Λ

xψ(γ)+λ

mψ(γ)+λ
|yγ |mψ(γ)

≤ Cm
∑

λ∈Λ

φ(λ) · ‖Jψ(x)‖`p,q1
m ◦ψ
· ‖y‖

`p
′,q′
m◦ψ

.

(2) follows as in Proposition 3.3.8 once continuities and the estimates
for the norms of the operators Daγ ,ψ are obtained.

The characterization of compactness obtained in Theorem 3.3.11 ex-
tends to mixed spaces when ψ is admissible.

Proposition 3.3.23. Let A =
(
aγ,γ′

)
γ,γ′∈Λ

∈ Cv,ψ(Λ), ψ admissible and
1 ≤ p, q ≤ ∞ be given. Then, A defines a compact operator

A : `p,qm◦ψ(Λ)→ `p,qm (Λ)

if and only if aγ :=
(
aψ(λ)+γ,λ

)
λ∈Λ
∈ c0(Λ) for all γ ∈ Λ.

The next result extends [CNR10b, Theorem 5.2] to weighted modulation
spaces and also includes the cases p =∞ or q =∞.

Theorem 3.3.24. Let T be a FIO whose phase Φ is tame and satisfies
condition (3.3.13), and σ ∈ M∞1⊗vs0 (R2d) with 0 ≤ s < s0 − 2d. Then,

T : Mp,q
m◦χ(Rd) → Mp,q

m (Rd) is a bounded operator for every 1 ≤ p, q < ∞
and for every vs-moderate weight m.

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S(Rd). From [CGN12, Corol-
lary 5.5] we have that

T : M2(Rd)→M2(Rd)
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is a bounded operator. And from Propositions 3.3.2 and 3.3.22

M(σ,Φ) : `p,qm◦ψ(Λ)→ `p,qm (Λ)

is a bounded operator for every 1 ≤ p, q < ∞ and for every vs-moderate
weight m. Then, by Theorem 3.2.2, ,

T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd)

is bounded for every 1 ≤ p, q <∞ and for every vs-moderate weight m.

Theorem 3.3.25. Let T be a FIO whose phase Φ is tame and satisfies
condition (3.3.13), and σ ∈ M∞1⊗vs0 (R2d) with 0 ≤ s < s0 − 2d. and m
a vs-moderate weight. Then T admits a unique extension as a bounded
operator

T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd),

for 1 ≤ p, q ≤ ∞ and p or q equal to ∞, which is also weak∗-continuous.

Proof. We know that T = Cg ◦M(σ,Φ) ◦ C∗g is bounded on S(Rd), which

is weak∗-dense in Mp,q
m (Rd), for 1 ≤ p, q ≤ ∞ and p or q equal to ∞ and

for all vs-moderate weight m. Then T admits a unique extension,

T̃ : Mp,q
m◦χ(Rd)

Cg−→ `p,qm◦χ(Λ)
M(σ,Φ)−−−−−→ `p,qm (Λ)

S∗−→Mp,q
m (Rd),

where S = Cg : Mp′,q′

1/m (Rd) → `p
′,q′

1/m(Λ). In fact, all the involved maps are

weak∗-continuous, then T̃ is weak∗-continuous. As the extension is unique
we denote it by T .

Theorem 3.3.26. Let T be a FIO whose phase Φ is tame and satisfies
condition (3.3.13), and σ ∈M∞1⊗vs0 (R2d) with 0 ≤ s < s0−2d. The following
conditions are equivalent:

(1) T : L2(Rd)→ L2(Rd) is a compact operator.



80 CHAPTER 3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS

(2) T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd) is a compact operator for some 1 ≤ p, q ≤
∞ and for some vs-moderate weight m.

(3) T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd) is a compact operator for every 1 ≤ p, q ≤
∞ and for every vs-moderate weight m.

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S(Rd). From previous The-
orems we have that

T : Mp,q
m◦χ →Mp,q

m

is a (weak∗-)continuous operator. We fix 1 ≤ p, q ≤ ∞ and m. By Theorem
3.2.2,

T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd)

is compact if, and only if,

M(σ,Φ) : `p,qm◦χ′(Λ)→ `p,qm (Λ)

is a compact operator. By Propositions 3.3.2 and 3.3.23, this is exactly the
case when

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

=
(
M(σ,Φ)χ′(λ)+µ,λ

)
λ∈Λ
∈ c0(Λ),

for all µ ∈ Λ. This condition does not depend on p, q or m.

3.3.3 PSDOs on Mp,q
m

Now, we are going to consider compactness of pseudodifferential opera-
tors in Kohn-Nirenberg form. They are a particular case of FIOs when
Φ(x, y) = x · y, and hence χ(y, η) = (y, η). If Λ is a regular lattice with
symmetric relatively compact fundamental domain Q, the map χ′ is the
identity, therefore it is admissible. The class of matrices Cv,χ′ is denoted
by Cv = Cv(Λ) and consists of all matrices A =

(
aγ,γ′

)
γ,γ′∈Λ

such that

‖A‖Cv =
∑

γ∈Λ

v(γ) · sup
λ∈Λ
|aλ,γ+λ| <∞.
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According to [Grö06, Lemma 3.5], Cv is an algebra. Since the weight v is
symmetric, it follows that

∑

γ∈Λ

v(γ) · sup
λ∈Λ
|aλ,γ+λ| =

∑

γ∈Λ

v(γ) · sup
λ∈Λ
|aγ+λ,λ| .

This means that A ∈ Cv if and only if At ∈ Cv. Each A ∈ Cv defines a
bounded operator

A : `p,qm (Λ)→ `p,qm (Λ),

for p, q ∈ [1,∞] ∪ {0} and each v-moderate sequence m. The compactness
of the map is independent on p, q and m. This allows us to improve results
obtained in [FG07] and [FG10].

We recall the definitions of Wigner distribution, Weyl pseudodifferential
operator and pseudodifferential operator in Kohn-Nirenberg form.

Definition 3.3.27. The Wigner distribution of f, g ∈ L2(Rd) is defined
as

W (f, g)(x, ω) =

∫

Rd
f(x+

t

2
)g(x− t

2
)e−2iπtωdt.

If f, g ∈ S(Rd), then W (f, g) ∈ S(Rd).

Definition 3.3.28. Given σ ∈ S ′(R2d) its Weyl transform or Weyl pseudo-
differential operator is the operator Lσ : S(Rd)→ S ′(Rd) defined by

〈Lσ(f), g〉 = 〈σ,W (g, f)〉,

for f, g ∈ S(Rd).

Definition 3.3.29. Given τ ∈ S ′(R2d), the operator Kτ : S(Rd)→ S ′(Rd)
defined by

Kτ :=

∫

Rd
τ(x, ω)f̂(ω)e2πix·ωdω

for f,∈ S(Rd), is called pseudodifferential operator in Kohn-Nirenberg
form.
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We recall that every operator from S(Rd) into S ′(Rd) can be represented
as a pseudodifferential operator Lσ with Weyl symbol σ and as a pseudo-
differential operator in Kohn-Nirenberg form with symbol τ. We refer to
[Grö01, Chapter 14] where the relation between σ and τ is established. In
particular, for s ≥ 0, σ ∈ M∞,11⊗vs(R

2d) if and only if τ ∈ M∞,11⊗vs(R
2d). For

convenience, we state the results for Weyl pseudodifferential operators.

Theorem 3.3.30. Let σ ∈M∞,11⊗vs(R
2d) be given. Then the following state-

ments are equivalent:

(1) Lσ : L2(Rd)→ L2(Rd) is compact.

(2) Lσ : Mp,q
m (Rd)→Mp,q

m (Rd) is compact for all p, q ∈ [1,∞] and every
vs-moderate weight m.

(3) Lσ : Mp,q
m (Rd) → Mp,q

m (Rd) is compact for some p, q ∈ [1,∞] and
some vs-moderate weight m.

(4) σ ∈M0(R2d).

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S(Rd) and Λ = αZd × βZd
for α, β > 0. Then, according to [Grö06, Theorem 3.2],

M(σ) := (〈Lσπ(λ)g, π(µ)g〉)(µ,λ)∈Λ×Λ ∈ Cvs(Λ).

Moreover, it follows from (3.2.1) and (3.2.2) that Lσ : Mp,q
m (Rd)→Mp,q

m (Rd)
is compact if and only if M(σ) : `p,qm (Λ) → `p,qm (Λ) is compact. Now, the
equivalences among (1), (2) and (3) follow from Theorem 3.3.23. Finally,
since M∞,11⊗vs(R

2d) ⊂ M∞,1(R2d) we can apply [FG07, Theorem 4.6] to ob-
tain that condition (1) is equivalent to condition (4).

Alternatively we could argue as follows. According to Theorem 3.3.23,
M(σ) : `p,qm (Λ)→ `p,qm (Λ) is a compact operator if and only if

(〈Lσπ(λ)g, π(λ+ µ)g〉)λ∈Λ ∈ c0(Λ) (3.3.14)
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for every µ ∈ Λ. By [Grö06, 3.1],

|〈Lσπ(λ)g, π(λ+ µ)g〉| =
∣∣∣VΦσ(λ+

µ

2
, j(µ))

∣∣∣ ,

where Φ = W (g, g) and j : R2d → R2d is the map j(ξ, ω) = (ω,−ξ).
This permits to prove that condition (3.3.14) is equivalent to the fact that
σ ∈M0(R2d).

We want to finish with some comments regarding localization operators
(see for instance [FG06, FG10] and the references therein). Localization
operators are defined by means of

f → LFϕ,ψf :=
1

〈ϕ,ψ〉

∫

R2d

F (x, ω)Vϕf(x, ω)MωTxψdxdω.

We may write

〈LFϕ,ψf, h〉 = 〈F, VψhVϕf〉.

The compact localization operators on L2(Rd) were characterized in
[FG06] in terms of the behaviour of the STFT of their symbols. The con-
dition there obtained also gives compactness for the localization opera-
tors when acting on weighted modulation spaces of Hilbert type M2

m(Rd)
([FG10, 5.6]). However, the reverse implication, that is, compactness on
some M2

m(Rd) implies compactness on L2, could not be proved with the
methods used there.

Moreover LFϕ,ψ = Lσ with σ = F ∗ W (ψ,ϕ). By [FG10, 5.2], if F ∈
M∞(R2d) and ϕ, ψ ∈ S(Rd), then F ∗W (ψ,ϕ) ∈M∞,1

1⊗(v◦j−1)
(R2d) for every

v, and thus, the localization operator LFϕ,ψ is continuous from Mp,q
m (Rd)

into itself. Since every localization operator can be described as a PSDO
in Weyl form, Theorem 3.3.30 permits to conclude that the compactness of
the localization operator on a modulation class Mp

m(Rd) does not depend
on p nor m.

Corollary 3.3.31. Let F ∈ M∞(R2d) and ψ,ϕ ∈ S(Rd) be given. The
following statements are equivalent:
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(1) LFψ,ϕ : L2(Rd)→ L2(Rd) is compact.

(2) LFψ,ϕ : Mp,q
m (Rd) → Mp,q

m (Rd) is compact for every 1 ≤ p, q < ∞ and
each m v-moderated.

(3) LFψ,ϕ : Mp,q
m (Rd) → Mp,q

m (Rd) is compact for some 1 ≤ p, q < ∞ and
some m v-moderated.

Recall that, by [FG06, Proposition 3.6] [FG10, Proposition 2.3], LFψ,ϕ is

compact for every pair ψ,ϕ ∈ S(Rd) if, and only if, there exist g ∈ S(Rd)
such that

lim
|x|→∞

sup
|y|≤R

|VgF (x, y)| = 0

for every R > 0.

3.4 Fourier integral operators on Modulation spaces
with GRS-weights

In this section we work with admissible weights v, introduced in Subsection
1.2.4. Recall that this means that the GRS-condition holds.

3.4.1 Matrix representation

Let us see that the matrix representation that we have seen can be extended,
with some particularities, to modulation spaces with GRS-weights. Let
g ∈ M1

v , then h = S−1
g (g) ∈ M1

v by [Grö07, Theorem 6.11] and [Grö06,
Theorem 2.2]. Also, we have

Theorem 3.4.1. Let g ∈ M1
v , with v admissible. Then, for every v-

moderate weight m and for every 1 ≤ p, q ≤ ∞,

Cg : Mp,q
m (Rd)→ `p,qm (Λ) and Dg : `p,qm (Λ)→Mp,q

m (Rd)

are bounded operators, weak∗ continuous, and

Dg ◦ Ch = Dh ◦ Cg = IdMp,q
m (Rd).



3.4. FOURIER INTEGRAL OPERATORS ON MODULATION SPACES
WITH GRS-WEIGHTS 85

Here Dg is the transposed map of Cg : Mp′,q′

1/m (Rd)→ `p
′,q′

1/m(Λ). For p = 1

or q = 1 we take p′ = 0 or q′ = 0 respectively.

Definition 3.4.2. The Gabor matrix associated to a continuous and linear
operator T : M1

v (Rd)→M∞1
v

(Rd) is defined as

M(T ) = (〈T (π(λ)g), π(µ)g〉)(µ,λ)∈Λ×Λ .

If T is a FIO with symbol σ and phase Φ we write M(σ,Φ) instead of M(T ).

Theorem 3.4.3. Let T : M1
v (Rd) → M∞1

v

(Rd) be a continuous and linear

operator and G(g,Λ) a Gabor frame with g ∈M1
v . Then, for all v-moderate

weights m1 and m2, we have

(1) For 1 ≤ p, q < ∞, T can be (uniquely) extended as a bounded op-
erator from Mp,q

m1(Rd) into Mp,q
m2(Rd) if and only if M(T ) defines a

bounded operator from `p,qm1(Λ) into `p,qm2(Λ).

(2) For 1 ≤ p, q ≤ ∞, T can be extended as a weak∗ continuous operator
from Mp,q

m1(Rd) into Mp,q
m2(Rd) if and only if M(T ) defines a weak∗

continuous operator from `p,qm1(Λ) into `p,qm2(Λ).

(3) Let 1 ≤ p, q ≤ ∞ and assume that T : Mp,q
m1(Rd)→Mp,q

m2(Rd) is weak∗

continuous. Then T : Mp,q
m1(Rd)→Mp,q

m2(Rd) is compact if and only if
M(T ) : `p,qm1(Λ)→ `p,qm2(Λ) is compact.

Proof. Let h be the canonical dual window of g. Then we have

Cg ◦ T = M(T ) ◦ Ch on M1
v (Rd).

We fix x ∈ C(Λ) and observe that Dg(x) ∈M1
v (Rd), hence M(T ) ◦ Ch ◦

Dg(x) = Cg ◦ T ◦Dg(x). That is,

(M(T )(Ch ◦Dg)(x))µ = 〈T (Dg(x)) , π(µ)g〉 =
∑

λ∈Λ

〈T (π(λ)g) , π(µ)g〉 · xλ.

Consequently, for every finite sequence x we have

M(T )(x) = M(T )(Ch ◦Dg)(x).
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First, if T : Mp,q
m1(Rd) → Mp,q

m2(Rd) defines a (weak∗) continuous opera-
tor, then

M(T ) = M(T ) ◦ Ch ◦Dg = Cg ◦ T ◦Dg : `p,qm1
(Rd)→ `p,qm2

(Rd) (3.4.1)

defines a (weak∗) continuous operator.
Conversely, if M(T ) : `p,qm1(Rd)→ `p,qm2(Rd) defines a (weak∗) continuous

operator. Dh ◦M(T ) ◦ Ch = T̃ : Mp,q
m1(Rd) → Mp,q

m2(Rd) defines a (weak∗)
continuous operator. We know

T = Dh ◦M(T ) ◦ Ch = T̃ on M1
v (Rd), (3.4.2)

which is (weak∗-)dense in Mp,q
m1 . Then T = T̃ = Dh ◦ M(T ) ◦ Ch :

Mp,q
m1(Rd)→Mp,q

m2(Rd) defines a (weak∗) continuous operator.
To finish we prove (3). From the hypothesis we deduce that the iden-

tities (3.4.2) and (3.4.1) hold on Mp,q
m1(Rd) and `p,qm1(Λ) respectively and by

the fact that compact operators are an ideal in the algebra of continuous
operators the conclusion follows.

3.4.2 Fourier integral operators on Mp
m

Let T be a Fourier integral operator, with symbol σ and phase Φ on R2d,
formally defined as

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη.

We consider, as in [CNR15a], a smooth phase Φ(x, η) on R2d satisfying the
estimates

|∂αΦ| . C |α|(α!), α ∈ N2d, |α| ≥ 2, z ∈ R2d, (3.4.3)

for some C > 0, as well as the nondegeneracy condition

|det ∂2
x,ηΦ(x, η)| ≥ δ > 0, (x, η) ∈ R2d. (3.4.4)

The symbol σ on R2d satisfies

|∂ασ(z)| . C |α|(α!), α ∈ N2d, z ∈ R2d, (3.4.5)
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for some C > 0. The first two conditions of the phase allow us, as before, to
consider the same canonical transformation denoted by χ : R2d → R2d. We
replace the canonical transformation χ by an appropriate discrete version
χ′ : Λ→ Λ, defined as before, and with the same properties.

We adapt the result [CNR15a, Theorem 3.3] to our conditions on the
phase and the symbol, which gives us control over the behaviour of the
matrix in a new situation.

Theorem 3.4.4. Suppose the phase Φ and symbol σ satisfy (3.4.3)-(3.4.5)

above. Assume g ∈ S1/2
1/2(Rd). Then there exists ε > 0 such that

|〈T (π(λ)g), π(µ)g〉| . exp(−ε|µ− χ(λ)|), (3.4.6)

for λ, µ ∈ R2d.

From this Theorem we deduce the next result.

Proposition 3.4.5. Suppose the phase Φ and symbol σ satisfy (3.4.3)-

(3.4.5) above. Assume that g ∈ S
1/2
1/2(Rd) and that v satisfies the GRS-

condition. Then we have

M(σ,Φ) ∈ Cv,χ′ .

Proof. We need to prove that

∑

γ∈Λ

v(γ) sup
λ∈Λ
|M(σ,Φ)(χ′(λ)+γ,λ)| <∞

As v satisfies the GRS-condition, then v(γ) . eε|γ|, for every ε > 0 and



88 CHAPTER 3. COMPACTNESS OF FOURIER INTEGRAL OPERATORS

every γ ∈ Λ. Using the bound of (3.4.6),
∑

γ∈Λ

v(γ) sup
λ∈Λ
|M(σ,Φ)(χ′(λ)+γ,λ)| =

∑

γ∈Λ

v(γ) sup
λ∈Λ
|〈T (π(λ)g), π(χ′(λ) + γ)g〉|

.
∑

γ∈Λ

v(γ) sup
λ∈Λ
{exp(−ε|χ′(λ) + γ − χ(λ)|)}

.
∑

γ∈Λ

v(γ) sup
λ∈Λ
{exp(−ε|γ|+ ε|rλ|)}

.
∑

γ∈Λ

exp
(ε

2
|γ|
)
C1 exp(−ε|γ|)}

.
∑

γ∈Λ

exp
(
−ε

2
|γ|
)
<∞.

All the results proved about the matrix and its behaviour on sequence
spaces are valid here, since we have not assumed any condition on the
weight v, except for the submultiplicativity.

Theorem 3.4.6. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5). Then, T : Mp

m◦χ(Rd) → Mp
m(Rd) is a continuous operator

for every 1 ≤ p <∞ and for every v-moderate weight m, where v satisfies
the GRS-condition.

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S1/2
1/2 (Rd) ⊆ M1

v . From

[CNR10b, Theorem 4.1] we have that

T : M2(Rd)→M2(Rd)

is a bounded operator. And from Propositions 3.4.5 and 3.3.8

M(σ,Φ) : `pm◦χ′(Λ)→ `pm(Λ)

is a bounded operator for every 1 ≤ p <∞ and for every v-moderate weight
m. We observe that, for any positive and v-moderate weight m,

`pm◦χ(Λ) = `pm◦χ′(Λ)
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with equivalent norms and that m ◦χ is v-moderate whenever m is. Then,
by Theorem 3.4.3,

T : Mp
m◦χ(Rd)→Mp

m(Rd)

is bounded for every 1 ≤ p <∞ and for every v-moderate weight m.

Theorem 3.4.7. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5). Then, the following conditions are equivalent:

(1) T : L2(Rd)→ L2(Rd) is a compact operator.

(2) T : Mp
m◦χ(Rd) → Mp

m(Rd) is a compact operator for some 1 ≤ p <
∞ and for some v-moderate weight m, where v satisfies the GRS-
condition.

(3) T : Mp
m◦χ(Rd) → Mp

m(Rd) is a compact operator for every 1 ≤ p <
∞ and for every v-moderate weight m, where v satisfies the GRS-
condition.

(4) (〈Tπ(λ)g, π(χ′(λ) + µ)g〉)λ ∈ c0(Λ) for every µ ∈ Λ.

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S1/2
1/2 (Rd) ⊆M1

v . From The-
orem 3.4.6 we have that

T : Mp
m◦χ →Mp

m

is a bounded operator. And from Propositions 3.4.5 and 3.3.11

M(σ,Φ) : `pm◦χ′(Λ)→ `pm(Λ)

is a compact operator for each 1 ≤ p <∞ and for each v-moderate weight
m if, and only if,

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

=
(
M(σ,Φ)χ′(λ)+µ,λ

)
λ∈Λ
∈ c0(Λ),

for all µ ∈ Λ. Then, by Theorem 3.4.3,

T : Mp
m◦χ(Rd)→Mp

m(Rd)
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is compact for each 1 ≤ p < ∞ and for each v-moderate weight m if and
only if

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

=
(
M(σ,Φ)χ′(λ)+µ,λ

)
λ∈Λ
∈ c0(Λ),

for all µ ∈ Λ.

We next discuss the case p =∞.

Theorem 3.4.8. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5) and m a v-moderate weight, where v satisfies the GRS-
condition. Then

(1) T admits a unique extension as a bounded operator

T : M∞m◦χ(Rd)→M∞m (Rd)

which is also weak∗-continuous.

(2) T : M∞m◦χ(Rd)→M∞m (Rd) is compact if and only if

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ
∈ c0(Λ)

for every µ ∈ Λ.

Proof. (1) In fact, we consider the composition

T : M∞m◦χ(Rd)
Cg−→ `∞m◦χ(Λ)

M(σ,Φ)−−−−−→ `∞m (Λ)
S∗−→M∞m (Rd),

where S = Cg : M1
1/m(Rd) → `11/m(Λ). We observe that all the involved

maps are weak∗-continuous. Since S
1/2
1/2(Rd) is weak∗-dense in M∞m◦χ(Rd)

the extension is unique.

(2) By Theorem 3.4.3, T is compact if and only if M(σ,Φ) : `∞m◦χ →
`∞m (Λ) is compact. Now it suffices to apply Theorem 3.3.11.
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Theorem 3.4.9. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5). If σ ∈M0(R2d) then T : Mp

m◦χ(Rd)→Mp
m(Rd) is a compact

operator for every 1 ≤ p ≤ ∞ and for every v-moderate weight m, where v
satisfies the GRS-condition.

Proof. From Theorem 3.3.15, if σ ∈M0(R2d) then T : L2(Rd)→ L2(Rd) is
a compact operator. Then, by Theorem 3.4.7, T : Mp

m◦χ(Rd)→Mp
m(Rd) is

a compact operator for every 1 ≤ p ≤ ∞ and for every v-moderate weight
m, where v is admissible.

We now see that the converse is true in the particular case of quadratic
phases, Definition 3.3.16.

Theorem 3.4.10. Let T be a FIO whose quadratic phase Φ and symbol
σ satisfy (3.4.3)-(3.4.5). Then the following statements are equivalent:

(1) σ ∈M0(R2d).

(2) T : Mp
m◦χ(Rd)→Mp

m(Rd) is a compact operator for every 1 ≤ p ≤ ∞
and for every vs-moderate weight m.

Proof. From Theorem 3.3.17, σ ∈ M0(R2d) if, and only if, T : L2(Rd) →
L2(Rd) is a compact operator. Then, by Theorem 3.4.7, T : Mp

m◦χ(Rd) →
Mp
m(Rd) is a compact operator for every 1 ≤ p ≤ ∞ and for every v-

moderate weight m, where v satisfies the GRS-condition.

3.4.3 Fourier Integral Operators on Mp,q
m

In the same way as before, we need to add an extra condition to consider
the case Mp,q

m , namely

sup
x′,x,η

∣∣∇xΦ(x, η)−∇xΦ(x′, η)
∣∣ <∞. (3.4.7)

And it gives us the same properties on χ = (χ1, χ2) and χ′ = (χ′1, χ
′
2). In

this situation also the results proved about the matrix and its behaviour
on norm-mixed sequence spaces are valid.
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Theorem 3.4.11. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5) and (3.4.7). Then, T : Mp,q

m◦χ(Rd) → Mp,q
m (Rd) is a continu-

ous operator for every 1 ≤ p, q < ∞ and for every v-moderate weight m,
where v satisfies the GRS-condition.

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S1/2
1/2 (Rd) ⊆ M1

v . From

[CNR10b, Theorem 4.1] we have that

T : L2(Rd)→ L2(Rd)

is a bounded operator. And from Propositions 3.4.5 and 3.3.22

M(σ,Φ) : `p,qm◦χ′(Λ)→ `p,qm (Λ)

is a bounded operator for every 1 ≤ p, q < ∞ and for every v-moderate
weight m. We observe that, for any positive and v-moderate weight m,

`p,qm◦χ(Λ) = `p,qm◦χ′(Λ)

with equivalent norms and that m ◦ χ is v-moderate whenever m is v-
moderate. Then, by Theorem 3.4.3,

T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd)

is bounded for every 1 ≤ p, q <∞ and for every v-moderate weight m.

Theorem 3.4.12. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5) and (3.4.7). Then T admits a unique extension as a bounded
operator

T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd),

for 1 ≤ p, q ≤ ∞ and p or q equal to ∞, which is also weak∗-continuous.

Proof. We know that T = Cg ◦M(σ,Φ) ◦C∗g is bounded on M1
v (Rd), which

is weak∗-dense in Mp,q
m (Rd), for 1 ≤ p, q ≤ ∞ and p or q equal to ∞ and

for all vs-moderate weight m. Then T admits a unique extension,

T̃ : Mp,q
m◦χ(Rd)

Cg−→ `p,qm◦χ(Λ)
M(σ,Φ)−−−−−→ `p,qm (Λ)

S∗−→Mp,q
m (Rd),
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where S = Cg : Mp′,q′

1/m (Rd) → `p
′,q′

1/m(Λ). In fact, all the involved maps are

weak∗-continuous, then T̃ is weak∗-continuous. As the extension is unique
we denote it as T .

Theorem 3.4.13. Let T be a FIO whose phase Φ and symbol σ satisfy
(3.4.3)-(3.4.5) and (3.4.7). The following conditions are equivalent:

(1) T : L2(Rd)→ L2(Rd) is a compact operator.

(2) T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd) is a compact operator for some 1 ≤ p, q ≤
∞ and for some v-moderate weight m, where v satisfies the GRS-
condition.

(3) T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd) is a compact operator for every 1 ≤ p, q ≤
∞ and for every v-moderate weight m, where v satisfies the GRS-
condition.

Proof. Let G(g,Λ) be a Gabor frame with g ∈ S1/2
1/2 (Rd) ⊆M1

v . From The-
orem 3.4.11 and 3.4.12 we have that

T : Mp,q
m◦χ →Mp,q

m

is a bounded operator. And from Propositions 3.4.5 and 3.3.23

M(σ,Φ) : `p,qm◦χ′(Λ)→ `p,qm (Λ)

is a compact operator for each 1 ≤ p, q <∞ and for each v-moderate weight
m if, and only if,

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

=
(
M(σ,Φ)χ′(λ)+µ,λ

)
λ∈Λ
∈ c0(Λ),

for all µ ∈ Λ. Then, by Theorem 3.4.3,

T : Mp,q
m◦χ(Rd)→Mp,q

m (Rd)

is compact for each 1 ≤ p, q <∞ and for each v-moderate weight m if and
only if

(
〈Tπ(λ)g, π(χ′(λ) + µ)g〉

)
λ∈Λ

=
(
M(σ,Φ)χ′(λ)+µ,λ

)
λ∈Λ
∈ c0(Λ),

for all µ ∈ Λ.
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3.5 Conclusion

Summarizing, we have seen that the boundedness and compactness of
Fourier integral operators on Mp,q

m do not depend on p, q or m. We have
found sufficient conditions, in some cases also necessary, for the compact-
ness of these operators. These results improve some known results about
pseudodifferential operators and localization operators. Some results of this
chapter are included in [FGP18].



Chapter 4

Fourier integral operator
with Hölder-continuous
phase

4.1 Introduction

The aim of this chapter is to find conditions for the boundedness of the
integral operator,

Af(x) =

∫

Rd
K(x, y)f(y)dy, (4.1.1)

with (collision) kernel

K(x, y) =

∫

Rd
Φ(u)e−2πi(β(|u|)u·y−u·x)du. (4.1.2)

on some Lebesgue spaces, where the function Φ(u) has a good decay at
infinity but might not be smooth at the origin u = 0 and β(r) is real-
valued. This integral operator can be seen as a FIO of type II,

TII,ϕ,σf(x) =

∫

R2d

e−2πi(ϕ(y,u)−u·x)σ(y, u)f(y)dy du,

95
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defined in Chapter 3, with ϕ(y, u) = β(|u|)u · y and σ(y, u) = Φ(u).
This operator appears in the study of the Boltzmann equation, hence

it is interesting to find estimates of the type

sup
y∈Rd

∫

Rd
|K(x, y)| dx <∞, (4.1.3)

[AL17] (related references are provided by [AL10, BD98, MM06]). The
estimate (4.1.3) would imply the boundedness of the corresponding operator
A on L1(Rd). A typical example for the function Φ(u), which has a good
decay at infinity but might not be smooth at the origin u = 0, is given by
radial functions

Φ(u) =
|u|

(1 + |u|2)m
(4.1.4)

with large real m.
The phase β(r) is real-valued and smooth on (0,+∞) but could have

a Hölder type singularity at the origin. As an example the following over-
simplified model can be considered

β(r) = a+ brγ , 0 < r ≤ 1, (4.1.5)

for some a, b ∈ R, γ ∈ (0, 1). As r → +∞, β(r) is assumed to approach a
constant.

As a basic case suppose β(r) = a, r > 0, is a constant function. Rapid
granular flows are described by the Boltzmann equation and β(r) = a
corresponds to the case of inelastic interactions with constant restitution
coefficient. Indeed, the loss of mechanical energy due to collisions is char-
acterized by the restitution coefficient β which quantifies the loss of relative
normal velocity of a pair of colliding particles after the collision with respect
to the impact velocity. Now, when β(r) = a is constant,

K(x, y) = FΦ(ay − x)

and the estimate (4.1.3) holds if and only if Φ ∈ FL1(Rd), i.e. Φ has Fourier
transform in L1(Rd). The major part of the research, at the physical as well
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as at the mathematical levels, has been devoted to this particular case of a
constant restitution coefficient. However, as described in [BP04, AL10], a
more relevant description of granular gases should involve a variable resti-
tution coefficient β(r).

In the model case above β(r) approaches a constant both as r → 0+

and r → +∞ and is smooth in between, so that one could conjecture that
the same estimate holds in that case. Now, this is not the case, even for
smooth phases: we prove in Proposition 4.3.1 that, in dimension d = 1,
if ϕ̃(u) := β(|u|)u is any nonlinear smooth diffeomorphism R → R with
ϕ̃(u) = u (hence β(|u|) = 1) for |u| ≥ 1, and Φ ∈ C∞0 (R), Φ ≡ 1 on [−1, 1],
then the weighted estimate

∫

Rd
|K(x, y)| dx . (1 + |y|)s (4.1.6)

does not hold for s < 1/2.
This looks surprising at first glance, but it can be regarded as a manifes-

tation of the Beurling-Helson phenomenon [BH53, CNR10a, LO94, Oko09,
RSTT11], which, roughly speaking, states that the change-of-variable oper-
ator f 7→ f ◦ψ is not bounded on FL1(Rd) except for the case ψ : Rd → Rd
is an affine mapping. Indeed if we consider a function f ∈ S(Rd),

Af(x) =

∫

Rd
K(x, y)f(y)dy =

∫

Rd

∫

Rd
Φ(u)e−2πi(β(|u|)u·y−u·x)duf(y)dy

=

∫

Rd
Φ(u)e2πiu·x

(∫

Rd
f(y)e−2πiβ(|u|)u·ydy

)
du

=

∫

Rd
Φ(u)e2πiu·xFf(β(|u|)u)du = F−1 [Φ(u)Ff(β(|u|)u)] (x),

and the operator A in (4.1.1) with kernel K(x, y) in (4.1.2) can be written
as

Af = F−1Φ ∗ F−1(Ff ◦ ϕ̃), with ϕ̃(u) := β(|u|)u.
Now, one is interested in the precise growth in (4.1.6). Let us summarize
here the main results of the chapter in the special case of our oversimplified
model above.
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Theorem 4.3.2: Suppose β(r) as in (4.1.5) for 0 < r ≤ 1, with γ ∈
(−1, 1] and assume β has at most linear growth as r → +∞. Let Φ be as
in (4.1.4), with m > (d+ 1)/2. Then (4.1.6) holds with s = d/(γ + 1).

As expected, the growth in (4.1.6) is therefore the weakest one when
γ = 1, being s = d/2 in that case. The same growth occurs for smooth
phases, as the following result shows.

Theorem 4.3.3: Suppose that ϕ̃(u) := β(|u|)u extends to a smooth func-
tion on Rd, with an at most quadratic growth at infinity. Let Φ be as in
(4.1.4), with m > (d+ 1)/2. Then (4.1.6) holds with s = d/2.

Notice that the estimate (4.1.6) implies a continuity property for the
corresponding operator between weighted L1 spaces, precisely L1

vs → L1,
where vs(x) = (1 + |x|)s.

A natural question is therefore whether similar continuity estimates hold
without a loss of decay at least in L2(Rd), under the above assumptions.
We show in Proposition 4.4.1 that, again, this is not the case. Sufficient
conditions are instead given in Theorem 4.4.2 below. Here is a simplified
version of Theorem 4.4.2 (and subsequent remark).

• Suppose β(r) as in (4.1.5) for 0 < r ≤ 1, with γ > 0. Let Φ ∈ C∞(Rd)
supported in |u| ≤ 1. Then, if a(a+ (γ+ 1)b) > 0 the operator A in (4.1.1)
is bounded in L2(Rd).

Actually the results below are stated for β and Φ in classes of functions
with minimal regularity and are inspired by the models above. It turns
out that, in all the results it is sufficient to take Φ in the so-called Segal
algebra M1(Rd) [Fei81b, Fei89, Fei06]. Roughly speaking, a function Φ ∈
L∞(Rd) belongs to M1(Rd) = W (FL1, L1) (Proposition 1.2.14) if locally
has the regularity of a function in FL1(Rd) (in particular is continuous) and
globally it decays as a function in L1(Rd), but no differentiability conditions
are required. We have M1(Rd) ↪→ L1(Rd) ∩ FL1(Rd). To compare this
space with the usual Sobolev spaces we observe that W k,1(Rd) ⊂ M1(Rd)
for k ≥ d + 1 (Proposition 1.2.9) but functions in M1(Rd) do not need to
have any derivatives. For example, the functions Φ in (4.1.4) are in M1(Rd)
if m > (d + 1)/2 (see Example 4.4.4). It is important to observe that
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the very weak assumption Φ ∈ M1(Rd) prevents us to use classical tools
such as stationary phase estimates; instead we use techniques and function
spaces from time-frequency analysis. Recently, such function spaces and
more general time-frequency analysis have been successfully applied in the
study of partial differential equations with rough data by a large number
of authors, see, e.g., [CN08b, RWZ16, STW11, WH07] and the references
therein. We also refer to the papers [CNR10a, CR14] and the references
therein for the problem of the continuity in Lp(Rd), 1 < p < ∞, and
from the Hardy space to L1(Rd), of general Fourier integral operators of
Hörmander’s type (i.e. arising from the study of hyperbolic equations).
The Fourier integral operators of Hörmander’s type are Fourier integral
operators of type I, defined in Chapter 3, with the symbol, σ(y, u) belonging
to some Hörmander’s symbol class.

In short the chapter is organized as follows.

In Section 4.2 we briefly recall the main properties and preliminary
results we need in the sequel.

In Section 4.3 we study the L1-continuity for the integral operators
in (4.1.1) having phases with Hölder-type singularity at the origin. The
boundedness is attained at the cost of a loss of decay. Such a loss is un-
avoidable, as testified by an example in dimension d = 1 (cf. Proposition
4.3.1).

In Section 4.4 we study the L2-continuity properties of A in (4.1.1). Un-
der the same assumptions of the L1-boundedness results we provide a coun-
terexample even in this framework (cf. Proposition 4.4.1). We then show
conditions on the phase of the operators which guarantee L2-boundedness
without loss of decay.

4.2 Auxiliary results

In the sequel we list issues preparing for our later argumentation. To study
the properties of our phase function, we shall rely on the following results.

Lemma 4.2.1. ([MNR+09, Lemma 3.2]) Let ε > 0. Suppose µ is a real-
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valued function of class Cbd/2c+1 on Rd \ {0} satisfying

|∂αµ(u)| ≤ Cα|u|ε−|α| (4.2.1)

for |α| ≤ bd/2c + 1. Then F−1[ηeiµ] ∈ L1(Rd) for each η ∈ S(Rd) with
compact support. The norm of ηeiµ in FL1(Rd) is indeed controlled by a
constant depending only on d, η and the constants Cα in (4.2.1).

Lemma 4.2.2. ([BGOR07, Theorem 5]) For d ≥ 1, let l = bd/2c + 1.
Assume that µ is 2l times continuously differentiable function on Rd and
‖∂αµ‖L∞ ≤ Cα, for 2 ≤ |α| ≤ 2l, and some constants Cα. Then eiµ ∈
W (FL1, L∞)(Rd).

The norm of eiµ in W (FL1, L∞)(Rd) is indeed controlled by a constant
depending only on d, and the above constants Cα.

Lemma 4.2.3. ([CNR15b, Proposition 2.5]) Let h ∈ C∞(Rd \ {0}) be pos-
itively homogeneous of degree r > 0, i.e., h(λx) = λrh(x) for x 6= 0, λ > 0.
Consider χ ∈ C∞0 (Rd) and set f = hχ. Then, for ψ ∈ S(Rd), there exists a
constant C > 0 such that

|Vψf(x, u)| ≤ C(1 + |u|)−r−d, for every x, u ∈ Rd.

In order to exhibit the counterexample anticipated in the introduction
we make use of a result proved in [CNR10a, Proposition 6.1] which can be
stated as follows.

Proposition 4.2.4. Let ϕ̃ : R → R be any nonlinear smooth diffeomor-
phism satisfying

ϕ̃(u) = u, for |u| ≥ 1,

and let Φ ∈ C∞0 (Rd), Φ ≡ 1 on [−1, 1]d.
For 2 ≤ p ≤ ∞, m < d(1/2− 1/p), the so-called type I FIO TI,ϕ,σ,

TI,ϕ,σf(x) =

∫
e2πiϕ(x,u)σ(x, u)f̂(u) du,

having phase ϕ(x, u) =
∑d

k=1 ϕ̃(uk)xk, and symbol σ(x, u) = 〈x〉mΦ(u),
does not extend to a bounded operator on Lp(Rd).
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Note that the phase described in this result satisfies the conditions im-
posed in Chapter 3. However the symbol is not bounded, hence the condi-
tion imposed in Chapter 3 are not satisfied.

4.3 Continuity in L1 with loss of decay

We consider the integral operator A formally defined in (4.1.1) with kernel
K(x, y) as in (4.1.2). We assume Φ ∈ M1(Rd) and β : (0,∞) → R is a
smooth function. Then, the kernel K is well-defined for every x, y ∈ Rd.
Indeed, since M1(Rd) ↪→ L1(Rd), the integral in (4.1.2) is absolutely con-
vergent. Inserting the kernel expression (4.1.2) in the operator A, defined
in (4.1.1), and using the absolute convergence of the integrals we can apply
Fubini’s Theorem and infer

Af(x) =

∫

R2d

e−2πi(β(|u|)u·y−x·u)Φ(u)f(y) dy du. (4.3.1)

for f ∈ L1(Rd).
That is, the operator A can be written as a Fourier integral operator of

type II. We recall that a FIO of type II with phase ϕ and symbol σ has
the general form

TII,ϕ,σf(x) =

∫

R2d

e−2πi(ϕ(y,u)−x·u)σ(y, u)f(y)dy du (4.3.2)

hence

A = TII,ϕ,σ, with ϕ(y, u) = β(|u|)u · y and σ(y, u) = Φ(u). (4.3.3)

FIO’s of type II are the formal adjoints of FIO’s of type I, as we saw in
Chapter 3.

In general we do not expect that the integral operator A in (4.1.1) with
kernel K in (4.1.2) is continuous on Lp(Rd), 1 ≤ p ≤ ∞, p 6= 2. Actually,
we expect a loss of decay, as witnessed by the following example.
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Proposition 4.3.1. In dimension d = 1, for any 1 ≤ p ≤ 2, consider the
weight function

vm(y) = (1 + |y|)m, y ∈ R,

with m ∈ R such that

m <
1

p
− 1

2
.

Let β ∈ C∞((0,+∞)) such that

ϕ̃(u) = β(|u|)u

extends to a nonlinear smooth diffeomorphism R→ R satisfying

ϕ̃(u) = u, |u| ≥ 1

(hence, β(|u|) = 1, for |u| ≥ 1). Let Φ ∈ C∞0 (R), Φ(u) = 1 for |u| ≤ 1.

Then the operator A in (4.3.1) does not extend to a bounded operator
from Lpvm(R) to Lp(R).

Proof. Step 1: Rephrasing the thesis. Since vm(y) = (1 + |y|)m is a weight
equivalent to wm(y) := 〈y〉m = (1 + y2)m/2, we can work with wm in place
of vm. Since A can be written as a type II Fourier integral operator, the
continuity of A from Lpvm(R) to Lp(R) is equivalent to the continuity from
Lpwm(R) to Lp(R) of the operator TII,ϕ,σ in (4.3.2) with ϕ(y, u) = ϕ̃(u)y
and symbol σ(y, u) = Φ(u), with ϕ̃ and Φ as in the statement.

Step 2: From type II FIOs to type I FIOs. By duality, the continuity of
TII,ϕ,σ is equivalent to the boundedness of the adjoint (TII,ϕ,σ)∗ = TI,ϕ,σ,
from Lp(R) to Lpw−m(R), for 2 ≤ p ≤ ∞.

Step 3: Results for type I FIOs. The continuity of TI,ϕ,σ from Lp(R)
to Lpw−m(R) is equivalent to the boundedness of the operator w−mTI,ϕ,σ on
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Lp(R). Now, observe that

〈x〉−mTI,ϕ,σf(x) = 〈x〉−m
∫
e2πiϕ(x,u)σ(x, u)f̂(u) du

=

∫
e2πiϕ(x,u)〈x〉−mσ(x, u)f̂(u) du

=

∫
e2πiϕ(x,u)σ̃(x, u)f̂(u) du := TI,ϕ,σ̃

with σ̃(x, u) = 〈x〉−mσ(x, u) = 〈x〉−mΦ(u).
Now the type I FIO TI,ϕ,σ̃ is not bounded on Lp, 2 ≤ p ≤ ∞, by

Proposition 4.2.4.

Continuity in weighted L1 spaces, i.e. with a loss of decay, for the op-
erator A in (4.3.1) can be proved by a Schur-type estimate for the kernel
K. The following result addresses such estimates and Corollary 4.3.5 the
corresponding continuity result.

Theorem 4.3.2. Consider functions Φ ∈ M1(Rd) and β : (0,+∞) → R.
Moreover, assume that for some exponent γ ∈ (−1, 1], with ` = bd/2c+ 1,

|∂αβ(|u|)u| ≤ Cα|u|γ+1−|α|, for 0 6= |u| ≤ 1, |α| ≤ `, (4.3.4)

where Cα > 0, and

|∂αβ(|u|)u| ≤ C ′α, for |u| ≥ 1, 2 ≤ |α| ≤ 2`, (4.3.5)

with C ′α > 0. Then the integral kernel in (4.1.2) satisfies
∫

Rd
|K(x, y)|dx ≤ C(1 + |y|)d/(γ+1), (4.3.6)

for a suitable constant C > 0 independent of y.

Proof. We study the cases |y| < 1 and |y| ≥ 1 separately. First we assume
that |y| ≥ 1. To see the estimation, we prove that

e
−2πiβ

(
|u|

|y|1/(γ+1)

)
u

|y|1/(γ+1)
·y
∈W (FL1, L∞)(Rd)
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For that, we consider a function χ ∈ C∞0 , such that χ(u) = 1 when |u| ≤ 1
2

and χ(u) = 0 when |u| ≥ 1. We want to see that:

e
−2πiβ

(
|u|

|y|1/(γ+1)

)
u

|y|1/(γ+1)
·y
· χ(u) ∈W (FL1, L∞)(Rd) (4.3.7)

and

e
−2πiβ

(
|u|

|y|1/(γ+1)

)
u

|y|1/(γ+1)
·y
· (1− χ(u)) ∈W (FL1, L∞)(Rd) (4.3.8)

To prove (4.3.7) we use Lemma 4.2.1. It is sufficient to verify that the
phase

By(u) := 2πβ

( |u|
|y|1/(γ+1)

)
u

|y|1/(γ+1)
· y

satisfies the estimation

|∂αBy(u)| ≤ Cα|u|γ+1−|α|

for |u| ≤ 1, since the function in (4.3.7) is zero when |u| > 1. Using the
hypothesis (4.3.4),

|∂αβ(|u|)u| ≤ Cα|u|γ+1−|α|,

for |u| ≤ 1, we have

|∂αBy(u)| ≤ 2πCα

|y||α|/(γ+1)

( |u|
|y|1/(γ+1)

)γ+1−|α|
· |y| = C̃α|u|γ+1−|α| (4.3.9)

for |u|/(|y|1/(γ+1)) ≤ 1, i.e. |u| ≤ |y|1/(γ+1). Then, we can apply the Lemma
4.2.1 and we have (4.3.7).

To prove (4.3.8) we use Lemma 4.2.2. It is sufficient to verify that the
phase satisfies the estimation

|∂αBy(u)| ≤ Cα
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for |u| ≥ 1
2 and 2 ≤ |α| ≤ 2`. If 1

2 ≤ |u| ≤ |y|1/(γ+1) the last estimation

follows from (4.3.9). On the other hand, if |u| ≥ |y|1/(γ+1), we use the
hypothesis (4.3.5),

|∂αβ(|u|)u| ≤ C ′α,

for |u| ≥ 1 and 2 ≤ |α| ≤ 2`. Then, for |u| ≥ |y|1/(γ+1),

|∂αBy(u)| ≤ C ′α
2π

|y||α|/(γ+1)
· |y| = C̃ ′α

1

|y|(|α|−γ−1)/(γ+1)
≤ C̃ ′α

for 2 ≤ |α| ≤ 2`, given that |y| ≥ 1 and γ ≤ 1. Then, we can apply Lemma
4.2.2 and we have (4.3.8).

Now from (4.3.7) and (4.3.8), we deduce

e
−2πiβ

(
|u|

|y|1/(γ+1)

)
u

|y|1/(γ+1)
·y
∈W (FL1, L∞)(Rd),

where its norm in W (FL1, L∞)(Rd) depends only on d, χ, Cα and C ′α.
Then, by Lemma 1.2.16, we have

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

. (1 + |y|2/(γ+1))d/2

∥∥∥∥∥e
−2πiβ

(
|u|

|y|1/(γ+1)

)
u

|y|1/(γ+1)
·y
∥∥∥∥∥
W (FL1,L∞)

. (1 + |y|)d/(γ+1)

∥∥∥∥∥e
−2πiβ

(
|u|

|y|1/(γ+1)

)
u

|y|1/(γ+1)
·y
∥∥∥∥∥
W (FL1,L∞)

. (1 + |y|)d/(γ+1)

Now, as Φ ∈ M1(Rd), we have that Φ(u)e−iβ(|u|)u·y ∈ M1. Also, we have
that

K(x, y) = F−1
[
Φ(u)e−iβ(|u|)u·y

]
(x).



106
CHAPTER 4. FOURIER INTEGRAL OPERATOR WITH
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Then, by Proposition 1.2.16 for p = 1,
∫

Rd
|K(x, y)|dx =

∥∥∥F−1
[
Φ(u)e−iβ(|u|)u·y

]∥∥∥
L1

=
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
FL1

.
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
M1

≤ ‖Φ‖M1

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

≤ ‖Φ‖M1C ′(1 + |y|)d/(γ+1) ≤ C(1 + |y|)
d
γ+1 ,

for some C > 0.
In the case |y| < 1, we argue as above without the factor 1/|y|1/(γ+1)

and we obtain the same estimates. We start proving that

e−2πiβ(|u|)u·y ∈W (FL1, L∞)(Rd)

For that, we consider a function χ ∈ C∞0 , such that χ(u) = 1 when |u| ≤ 1
2

and χ(u) = 0 when |u| ≥ 1. We want to see that:

e−2πiβ(|u|)u·y · χ(u) ∈W (FL1, L∞)(Rd) (4.3.10)

and
e−2πiβ(|u|)u·y · (1− χ(u)) ∈W (FL1, L∞)(Rd) (4.3.11)

To prove (4.3.10) we use Lemma 4.2.1. It is sufficient to verify that the
phase

By(u) := 2πβ (|u|)u · y
satisfies the estimate

|∂αBy(u)| ≤ Cα|u|γ+1−|α|

for |u| ≤ 1, since the function in (4.3.10) is zero when |u| > 1. Using the
hypothesis (4.3.4),

|∂αβ(|u|)u| ≤ Cα|u|γ+1−|α|,

for |u| ≤ 1, we have

|∂αBy(u)| ≤ 2πCα (|u|)γ+1−|α| · |y| ≤ C̃α|u|γ+1−|α|, (4.3.12)
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as |y| < 1, for |u| ≤ 1. Then, we can apply the Lemma 4.2.1 and we have
(4.3.10).

To prove (4.3.11) we use Lemma 4.2.2. It is sufficient to verify that the
phase satisfies the estimation

|∂αBy(u)| ≤ Cα
for |u| ≥ 1

2 and 2 ≤ |α| ≤ 2`. If 1
2 ≤ |u| ≤ 1 the last estimation follows from

(4.3.12). On the other hand, if |u| ≥ 1, we use the hypothesis (4.3.5),

|∂αβ(|u|)u| ≤ C ′α,
for |u| ≥ 1 and 2 ≤ |α| ≤ 2`. Then,

|∂αBy(u)| ≤ C ′α2π|y| ≤ C̃ ′α
for 2 ≤ |α| ≤ 2`, given that |y| < 1. Then, we can apply Lemma 4.2.2 and
we have (4.3.11).

Now from (4.3.10) and (4.3.11), we deduce

e−2πiβ(|u|)u·y ∈W (FL1, L∞)(Rd),

where its norm in W (FL1, L∞)(Rd) depends only on d, χ, Cα and C ′α.
Now, as Φ ∈ M1(Rd), we have that Φ(u)e−iβ(|u|)u·y ∈ M1. Also, we have
that

K(x, y) = F−1
[
Φ(u)e−iβ(|u|)u·y

]
(x).

Then, by Proposition 1.2.16 for p = 1,
∫

Rd
|K(x, y)|dx =

∥∥∥F−1
[
Φ(u)e−iβ(|u|)u·y

]∥∥∥
L1

=
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
FL1

.
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
M1

≤ ‖Φ‖M1

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

≤ ‖Φ‖M1C ′ ≤ C(1 + |y|)
d
γ+1 ,

for some C > 0.
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In the previous result the weakest growth is reached when γ = 1, the ex-
ponent in (4.3.6) in that case being d/2. That growth is the same obtained
even for smooth phases, as proved in the following result, and cannot be
further reduced, as shown in Proposition 4.3.1.

Corollary 4.3.3. Consider functions Φ ∈ M1(Rd) and β : (0,+∞) → R.
Moreover, setting ` = bd/2c+ 1, assume that the function β(|u|) extends to
a C2` function on Rd and satisfies

|∂αβ(|u|)u| ≤ Cα, for u ∈ Rd and 2 ≤ |α| ≤ 2`. (4.3.13)

Then, the integral kernel in (4.1.2) satisfies

∫

Rd
|K(x, y)|dx ≤ C(1 + |y|) d2 .

Proof. The proof uses the same arguments used in Theorem 4.3.2. We split
into the cases |y| ≥ 1 and |y| < 1. We study first |y| ≥ 1 and prove that

e
−2πiβ

(
|u|
|y|1/2

)
u

|y|1/2
·y
∈W (FL1, L∞)(Rd), (4.3.14)

and its norm does not depend on y, that is, the set

{
e
−2πiβ

(
|u|
|y|1/2

)
u

|y|1/2
·y

: |y| ≥ 1

}

is a bounded set in W (FL1, L∞). Using Lemma 4.2.2, the problem is
reduced to verify that the rescaled phase

By(u) := 2πβ

( |u|
|y|1/2

)
u

|y|1/2 · y

satisfies the estimate

|∂αBy(u)| ≤ Cα, for all u ∈ Rd and 2 ≤ |α| ≤ 2`.
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By the hypothesis (4.3.13),

|∂αBy(u)| ≤ Cα
2π

|y||α|/2 · |y| = C ′α
1

|y|(|α|−2)/2
≤ C ′′α,

since |α| ≥ 2 and |y| ≥ 1; this gives (4.3.14).

Then, by Lemma 1.2.15, we have

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

. (1 + |y|)d/2
∥∥∥∥∥e
−2πiβ

(
|u|
|y|1/2

)
u

|y|1/2
·y
∥∥∥∥∥
W (FL1,L∞)

. (1 + |y|)d/2.

As Φ ∈ M1(Rd), we have that Φ(u)e−iβ(|u|)u·y ∈ M1(Rd). Moreover, we
can write

K(x, y) = F−1
[
Φ(u)e−iβ(|u|)u·y

]
(x).

Hence,

∫

Rd
|K(x, y)|dx =

∥∥∥F−1
[
Φ(u)e−iβ(|u|)u·y

]∥∥∥
L1

=
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
FL1

.
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
M1

. ‖Φ‖M1

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

≤ C(1 + |y|) d2 ,

for some C > 0.

The case |y| < 1 is obtained with the same pattern above, without the

dilation factor |y|− 1
2 . We prove that

e−2πiβ(|u|)u·y ∈W (FL1, L∞)(Rd) (4.3.15)

uniformly with respect to y. Using Lemma 4.2.2, the problem is reduced
to verify that the phase

By(u) := 2πβ (|u|)u · y
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satisfies the estimate

|∂αBy(u)| ≤ Cα, for all u ∈ Rd and 2 ≤ |α| ≤ 2`.

By the hypothesis (4.3.13),

|∂αBy(u)| ≤ Cα2π|y| ≤ C ′α
since |α| ≥ 2 and |y| < 1; this gives (4.3.15).

As Φ ∈M1(Rd), we have that Φ(u)e−iβ(|u|)u·y ∈M1(Rd). Moreover, we
can write

K(x, y) = F−1
[
Φ(u)e−iβ(|u|)u·y

]
(x).

Hence,
∫

Rd
|K(x, y)|dx =

∥∥∥F−1
[
Φ(u)e−iβ(|u|)u·y

]∥∥∥
L1

=
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
FL1

.
∥∥∥Φ(u)e−iβ(|u|)u·y

∥∥∥
M1

. ‖Φ‖M1

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

≤ C ≤ C(1 + |y|) d2 ,
for some C > 0.

Corollary 4.3.4. Consider functions Φ ∈ M1(Rd) and β : (0,+∞) → R.
Assume that for some γ ∈ (−1, 1] and a ∈ R,

β̃ := β − a (4.3.16)

satisfies, with ` = bd/2c+ 1,
∣∣∣∂αβ̃(|u|)u

∣∣∣ ≤ Cα|u|γ+1−|α|, for |u| ≤ 1, |α| ≤ `,

for some Cα > 0, and
∣∣∣∂αβ̃(|u|)u

∣∣∣ ≤ C ′α, for |u| ≥ 1, 2 ≤ |α| ≤ 2`,

with C ′α > 0. Then the integral kernel in (4.1.2) satisfies
∫

Rd
|K(x, y)|dx ≤ C(1 + |y|)d/(γ+1), (4.3.17)

for a suitable constant C > 0, independent of the variable y.
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Proof. By the proof of Theorem 4.3.2 we know that

e−2πiβ̃(|u|)u·y ∈W (FL1, L∞)(Rd)

with ∥∥∥e−2πiβ̃(|u|)u·y
∥∥∥
W (FL1,L∞)

. (1 + |y|)d/(γ+1).

By (4.3.16),

e−2πiβ(|u|)u·y = e−2πiau·y · e−2πiβ̃(|u|)u·y = M−aye−2πiβ̃(|u|)u·y.

Using the invariance property of W (FL1, L∞)(Rd) with respect to time-
frequency shifts in (1.2.17):

∥∥∥e−2πiβ(|u|)u·y
∥∥∥
W (FL1,L∞)

=
∥∥∥M−aye−2πiβ̃(|u|)u·y

∥∥∥
W (FL1,L∞)

�
∥∥∥e−2πiβ̃(|u|)u·y

∥∥∥
W (FL1,L∞)

≤ C(1 + |y|)d/(γ+1).

This concludes the proof.

We finish this section by using the previous results for the integral kernel
K(x, y) to obtain the L1-boundedness for the corresponding operator A.
The cost is a loss of decay, as explained below.

Corollary 4.3.5. Assume the hypotheses of Corollary 4.3.4 and consider
the weight function

v(y) = (1 + |y|)d/(γ+1).

Then the integral operator A in (4.3.1) with kernel K in (4.1.2) is bounded
from L1

v(Rd) into L1(Rd).

Proof. By Corollary 4.3.4, we know that the kernel K(x, y) satisfies the
estimate in (4.3.17). Let f ∈ L1

v(Rd); using Fubini’s Theorem and the
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estimate in (4.3.17),

‖Af(x)‖L1 =

∫

Rd
|Af(x)|dx =

∫

Rd

∣∣∣∣
∫

Rd
K(x, y)f(y)dy

∣∣∣∣ dx

≤
∫

Rd

∫

Rd
|K(x, y)||f(y)|dydx =

∫

Rd
|f(y)|

(∫

Rd
|K(x, y)|dx

)
dy

≤
∫

Rd
|f(y)|C(1 + |y|)d/(γ+1)dy = C‖f‖L1

v
,

as desired.

Note that in this proposition d/(γ + 1) ≥ d/2 ≥ 1/2, while in the
Proposition 4.3.1 the index m < 1/2.

4.4 Continuity in L2

A natural question is whether the assumptions of Corollary 4.3.4, that give
continuity of the operator A on L1(Rd) with a loss of decay, guarantee at
least continuity of A on L2(Rd) without any loss. The answer is negative
even in dimension d = 1, as shown by the following result.

Proposition 4.4.1. Let d = 1. There exists an operator A as in (4.3.1),
with β and Φ satisfying the assumptions of Corollary 4.3.4, that is not
bounded on L2(R).

Proof. Let h(r) be a function such that Φ(u) = h(|u|) ∈ C∞0 (R), and h(0) 6=
0. For γ ∈ (0, 1), set β(u) = uγ . Finally, take χ ∈ C∞0 (R) such that χ(u) = 1
when u ∈ supp(Φ), and consider the function β̃(u) = χ(u)β(u). Let A be
the operator with integral kernel

K(x, y) =

∫

R
h(|u|)e−2πi(β̃(|u|)u·y−u·x)du =

∫

R
h(|u|)e−2πi(β(|u|)u·y−u·x)du.

We now show that A is not bounded on L2(R).
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For f ∈ S(R),

Af(x) =

∫

R
K(x, y)f(y)dy =

∫

R

∫

R
h(|u|)e−2πi(β(|u|)u·y−u·x)f(y)dudy

=

∫

R
h(|u|)e2πiu·x

(∫

R
f(y)e−2πiβ(|u|)u·ydy

)
du

=

∫

R
h(|u|)e2πiu·xFf(β(|u|)u)du = F−1 [h(|u|)Ff(β(|u|)u)] (x).

Then, by Parseval’s Theorem,

‖Af‖22 = ‖h(|u|)Ff(β(|u|)u)‖22 =

∫

R
|h(|u|)|2|Ff(β(|u|)u)|2dx.

We perform the change of variable

ũ = β(|u|)u = |u|γu =

{
uγ+1, u ≥ 0,
−|u|γ+1, u < 0,

so that

u =

{
ũ

1
γ+1 , ũ ≥ 0,

−(−ũ)
1

γ+1 , ũ < 0,

and du = 1
1+γ |ũ|

1
1+γ
−1
dũ. In this way, we obtain

‖Af‖22 =

∫

R
|h(|u|)|2|Ff(β(|u|)u)|2du

=
1

1 + γ

∫

R
|ũ|

1
1+γ
−1|h(|ũ|

1
1+γ )|2|Ff(ũ)|2dũ.

Now, the last expression is controlled by C‖f‖2L2 , for a suitable constant
C > 0 and for every f ∈ S(R), if and only if

|ũ|−
γ

1+γ |h(|ũ|
1

1+γ )|2 ∈ L∞(R).

But, this fails since −γ/(1 + γ) < 0 and |h(|u|)| ≥ δ > 0 in a neighborhood

of 0, notice that h(|ũ|
1

1+γ ) has compact support.
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We now look for suitable assumptions on the functions Φ and β which
guarantee L2-continuity of the operator A. A successful choice is shown
below.

Theorem 4.4.2. Consider Φ ∈ L∞(Rd) ∩ L1(Rd). Let β : (0,∞) → R
satisfy the following assumptions:
(i) β ∈ C1((0,∞)).
(ii) There exists δ > 0 such that β(r) ≥ δ, for all r > 0.
(iii) There exist B1, B2 > 0, such that

B1 ≤
d

dr
(β(r)r) ≤ B2, for all r > 0.

Then the integral operator A with kernel K in (4.1.2) is bounded on L2(Rd).

Proof. We first observe that, since Φ ∈ L1(Rd), the integral defining the
kernelK(x, y) is absolutely convergent andK is well-defined. Let f ∈S(Rd),
using Fubini’s Theorem, we can write

Af(x) =

∫

Rd
K(x, y)f(y)dy =

∫

Rd

∫

Rd
Φ(u)e−2πi(β(|u|)u·y−u·x)f(y)dudy

=

∫

Rd
Φ(u)e2πiu·x

(∫

Rd
f(y)e−2πiβ(|u|)u·ydy

)
du

=

∫

Rd
Φ(u)e2πiu·xFf(β(|u|)u)du = F−1 [Φ(u)Ff(β(|u|)u)] (x).

Then, by Parseval’s Theorem,

‖Af‖22 = ‖Φ(u)Ff(β(|u|)u)‖22 =

∫

Rd
|Φ(u)|2|Ff(β(|u|)u)|2du.

Changing to polar coordinates u = rθ, with r > 0 and θ ∈ Sd−1, we have
du = rd−1drdθ and

‖Af‖22 =

∫

Rd
|Φ(u)|2|Ff(β(|u|)u)|2du

=

∫ ∞

0

∫

Sd−1

|Φ(rθ)|2|Ff(β(r)rθ)|2rd−1dθdr.
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Observe that the function ϕ(r) := β(r)r is strictly increasing by assumption
(iii). Performing the change of variable r̃ = ϕ(r), as r ∈ (0,∞), there exists
an a ≥ 0 such that ϕ((0,+∞)) = (a,∞) ⊆ (0,∞). Moreover, ϕ(r) has an
inverse ϕ−1(r̃) = r such that

B−1
2 ≤ d

dr̃
(ϕ−1(r̃)) ≤ B−1

1 for all r̃ > 0.

Further, by assumption (ii),

1

δ
≥ 1

β(r)
=

r

β(r)r
=
ϕ−1(r̃)

r̃
.

Then we can write,

‖Af‖22 =

∫ ∞

0

∫

Sd−1

|Φ(rθ)|2|Ff(β(r)rθ)|2rd−1dθdr

≤
∫ ∞

0

∫

Sd−1

|Φ(ϕ−1(r̃)θ)|2|Ff(r̃θ)|2(ϕ−1(r̃))d−1 d

dr̃
(ϕ−1(r̃))dθdr̃

≤ sup
r̃,θ

{
|Φ(ϕ−1(r̃)θ)|2

(
ϕ−1(r̃)

r̃

)d−1
d

dr̃
(ϕ−1(r̃))

}
×

×
∫ ∞

0

∫

Sd−1

|Ff(r̃θ)|2(r̃)d−1dθdr̃ ≤ ‖Φ‖2∞
(

1

δ

)d−1

B−1
1 ‖f‖22.

This gives ‖Af‖2 ≤ C‖f‖2, for every f ∈ S(Rd). By a density argument
we obtain the claim for every f ∈ L2(Rd).

Remark 4.4.3. The previous proof still works if we change the function β
with −β. Hence, under the assumptions of Theorem 4.4.2 with assumptions
(ii) and (iii) replaced by:
(ii)’ There exists δ < 0 such that β(r) ≤ δ, for all r > 0.
(iii)’ There exist B1, B2 < 0, such that

B1 ≤
d

dr
(β(r)r) ≤ B2, for all r > 0;

the integral operator A with kernel K in (4.1.2) is bounded on L2(Rd).
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We now exhibit a class of examples of functions Φ ∈ M1(Rd), hence
fulfilling the assumptions of Theorem 4.3.2 and related corollaries, as well
as those of Theorem 4.4.2, which are of special interest in the study of
Boltzmann equation, cf. [AL10].

Example 4.4.4. Consider the function

Φ(u) =
|u|

(1 + |u|2)m
, for m >

d+ 1

2
.

Then Φ ∈M1(Rd) (Observe that Φ(u) = h(|u|), in this situation).

Proof. We consider a function χ ∈ C∞0 (Rd), such that χ(u) = 1 when
|u| ≤ 1/2 and χ(u) = 0 when |u| ≥ 1. We write

Φ(u) = Φ(u)χ(u) + Φ(u)(1− χ(u))

and show that
Φ(u)χ(u) ∈M1(Rd) (4.4.1)

and
Φ(u)(1− χ(u)) ∈M1(Rd). (4.4.2)

To prove (4.4.1), we choose another cut-off function χ̃ ∈ C∞0 (Rd) such
that

χ̃(u) = 1 for u ∈ suppχ;

then χ̃·χ = χ. Consider now the function h(u)= |u|, which is in C∞(Rd\{0})
and positively homogeneous of degree 1 and set f = hχ. Lemma 4.2.3 gives,
for ψ ∈ S(Rd),

|Vψf(x, ξ)| ≤ C(1 + |ξ|)−(d+1)

hence, by (1.2.2),

‖|u|χ(u)‖W (FL1,L∞) = ‖f‖W (FL1,L∞) = ‖‖fTxψ‖FL1‖L∞
=
∥∥∥∥F(fTxψ)

∥∥
L1

∥∥
L∞

= ‖‖Vψf(x, ·)‖L1‖L∞

= sup
x∈Rd

∫

Rd
|Vψf(x, ξ)|dξ <∞,
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that is |u|χ ∈W (FL1, L∞)(Rd). Since

χ̃(u)

(1 + |u|2)m
∈ S(Rd) ⊆M1(Rd).

we can write

Φ(u)χ(u) = |u|χ(u) · χ̃(u)

(1 + |u|2)m
∈M1(Rd),

Vgf(x, ξ) = 〈f,MξTxg〉 =

∫

Rd
e−2πiξyf(y)g(y − x) dy,

i.e. the Fourier transform of fTxg.
Finally, to show (4.4.2), we observe that Φ(u)(1−χ(u))= 0 for |u|≤ 1/2,

hence the singularity at the origin is removed and Φ(u)(1−χ(u)) ∈W k,1(Rd)
for all k ∈ N, provided that 2m− 1 > d. We then choose k > d and apply
the inclusion relations between the Potential Sobolev space W k,1(Rd) and
the Feichtinger’s algebra M1(Rd) in Lemma 1.2.9, which gives (4.4.2).

4.5 Conclusion

Summing up, we have found results about boundedness of a particular type
of Fourier integral operators with Hölder continuous phase. We have seen
that the sufficient conditions for boundedness on L1 do not work for L2.
So we looked for some other sufficient conditions for boundedness on L2.
These results are included in [CNP18].
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Chapter 5

Unimodular Fourier
multipliers

5.1 Introduction

The aim of this chapter is to look for conditions for continuity of unimod-
ular Fourier multipliers on modulation spaces. The unimodular Fourier
multipliers are formally defined by

eiµ(D)f(x) :=

∫

Rd
e2πix·ξeiµ(ξ)f̂(ξ) dξ, (5.1.1)

with real-valued µ. These operators can be seen as a PSDO,

Tf(x) =

∫

Rd
e2πix·ησ(x, η)f̂(η)dη,

with symbol σ(x, η) = eiµ(η), or as a FIO

Tf(x) =

∫

Rd
e2πiΦ(x,η)σ(x, η)f̂(η)dη,

with phase Φ(x, η) = x · η + 1
2πµ(η) and constant symbol. Fourier multi-

pliers represent one of the main research fields in harmonic analysis, where

119
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a number of challenging problems remains open [Ste93]. The connections
with other branches of pure and applied mathematics are uncountable (com-
binatorics, PDEs, signal processing, functional calculus, etc.).

The prototype is given by µ(ξ) = |ξ|2, which satisfies the hypothesis in
Chapter 3. In that case the operator eiµ(D) is the propagator for the free
Schrödinger equation, and similarly for other constant coefficient equations.
Hence it is of great interest to study the continuity of such operators on
several functions spaces arising in PDEs. Whereas such operators represent
unitary transformations of L2(Rd), their continuity on Lp(Rd) for p 6= 2 in
general fails. Recently a number of works addressed the problem of the
continuity in other function spaces. Among those, the more convenient
spaces, at least in the case of the Schrödinger model, turned out to be the
modulation spaces Mp,q(Rd), 1 ≤ p, q ≤ ∞, widely used in time-frequency
analysis [Fei83, Grö01]. The basic reason is that the Schrödinger propagator
is sparse with respect to Gabor frames [CNR09b].

It is known (see e.g. [Tof04, Proposition 1.5] and [BGOR07]) that the
Schrödinger propagator (µ(ξ) = |ξ|2 in (5.1.1)) is bounded Mp,q(Rd) →
Mp,q(Rd), for every 1 ≤ p, q ≤ ∞. This result motivated the study of the
continuity of more general unimodular Fourier multipliers on modulation
spaces. The recent bibliography in this connection is quite large; see e.g.
[BGOR07, BO09, CFS12, CFSZ13, CT09, CN09, CS14, DDS13, GWZ17,
KKI14, MNR+09, Son14, ZCFG16, ZCFG15, ZCG14]. In short, it turns
out that, for unbounded (smooth enough) phases, the properties which play
a key role are:

Growth and oscillations of the second derivatives ∂γµ, |γ| = 2.

To put our results in context, let us just recall three basic facts.

(a) No growth, mild oscillations [BGOR07, Theorem 11]. Suppose that

|∂γµ(ξ)| ≤ C, for ξ ∈ Rd, 2 ≤ |γ| ≤ 2(bd/2c+ 1).

Then eiµ(D) : Mp,q(Rd) → Mp,q(Rd) is bounded for every 1 ≤ p, q ≤
∞.
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This result generalizes the case of the Schrödinger propagator, where the
second derivatives of µ are in fact constants.

(b) No growth, mild oscillations [CT09, Lemma 2.2]. Suppose that

∂γµ ∈M∞,1(Rd), for |γ| = 2.

Then eiµ(D) : Mp,q(Rd) → Mp,q(Rd) is bounded for every 1 ≤ p, q ≤
∞.

Actually, [CT09, Lemma 2.2] provides a partial but key result in this con-
nection, from which it is easy to deduce that the symbol σ(ξ) = eiµ(ξ) is then
in the Wiener amalgam space W (FL1, L∞), which is sufficient to conclude
(see also [Bou97, CT07, TCG10]). The result in (b) is also a particular case
of [CNR15c, Theorem 2.3].

Observe that the result in (b) improves that in (a), because of the
embedding Cd+1(Rd) ↪→ M∞,1(Rd) ([Grö01, Theorem 14.5.3]). We also
notice that M∞,1(Rd) ⊂ L∞(Rd), so that here the second derivatives of
µ do not grow at infinity, but they could oscillate, say, as cos |ξ|α, with
0 < α ≤ 1 (cf. [BGOR07, Corollary 15]).

(c) Growth at infinity, mild oscillations [MNR+09, Theorem 1.1]. Let
α ≥ 2, and suppose that

|∂γµ(ξ)| ≤ C〈ξ〉α−2, for 2 ≤ |γ| ≤ bd/2c+ 3.

Then eiµ(D) : Mp,q
δ (Rd) → Mp,q(Rd) is bounded for every 1 ≤ p, q ≤

∞ and δ ≥ d(α− 2)|1/p− 1/2|.
Here Mp,q

δ (Rd) = Mp,q
1⊗〈·〉δ , where (1⊗〈·〉δ)(x, ω) = 〈ω〉δ, that is a modu-

lation space weighted in frequency, so that we have in fact a loss of deriva-
tives, which is proved to be sharp.

Now, it was proved in [BGOR07, Lemma 8] that, more generally, the
operator eiµ(D) is bounded on all Mp,q(Rd) for every 1 ≤ p, q ≤ ∞ if
its symbol eiµ(ξ) belongs to the Wiener amalgam space W (FL1, L∞)(Rd)
[Fei81a], whose norm is defined as

‖f‖W (FL1,L∞) = sup
x∈Rd

‖g(· − x)f‖FL1
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where g ∈ S(Rd) \ {0} is an arbitrary window. This suggests to look at
conditions on µ(ξ) in terms of this space, rather than modulation spaces.
Here is our first result in this direction.

Theorem 5.2.4. (No growth, strong oscillations). Let µ ∈ C2(Rd), real-
valued, satisfying

∂γµ(ξ) ∈W (FL1, L∞)(Rd) for |γ| = 2.

Then
eiµ(D) : Mp,q(Rd)→Mp,q(Rd)

is bounded for every 1 ≤ p, q ≤ ∞.

Observe that M∞,1(Rd) ⊂ W (FL1, L∞)(Rd) ⊂ L∞(Rd) so that this
result improves that in (b) above. Here the second derivatives of µ are still
bounded, but they are allowed to oscillate, say, as cos |ξ|2 (cf. [BGOR07,
Theorem 14]). This result is strongly inspired by [CT09, Lemma 2.2] and
in fact the proof is similar. However, our main result deals with the case of
possibly unbounded second derivatives, as stated in the following theorem.

Theorem 5.3.7. (Growth at infinity, strong oscillations). Let α ≥ 2. Let
µ ∈ C2(Rd), real-valued and such that

〈ξ〉2−α∂γµ(ξ) ∈W (FL1, L∞)(Rd) for |γ| = 2.

Then
eiµ(D) : Mp,q

δ (Rd)→Mp,q(Rd)
is bounded for every 1 ≤ p, q ≤ ∞ and

δ ≥ d(α− 2)

∣∣∣∣
1

p
− 1

2

∣∣∣∣ .

The above threshold for δ agrees with that in (c), and also with the
examples in [BGOR07, Theorem 16], where even stronger oscillations were
considered, but only for model cases.

Theorem 5.2.4 is of course a particular case of Theorem 5.3.7 and will
be used as a step in the proof of the latter.

In short the chapter is organized as follows. Section 5.2 is devoted to
the proof of Theorem 5.2.4, whereas in Section 5.3 we prove Theorem 5.3.7.
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5.2 No growth, strong oscillations

This section is devoted to the proof of Theorem 5.2.4. We begin with a pre-
liminary result which is strongly inspired by [CT09, Lemmas 2.1 and 2.2],
where a similar investigation is carried on in the framework of modulation
spaces (as opposite to the Wiener amalgam spaces considered here).

Lemma 5.2.1. Let f ∈W (FL1, L∞)(Rd) and χ ∈ C∞0 (B), where B is an
open ball with center at the origin. Let

gx0(x) = χ(x− x0)

∫ 1

0
(1− t)f(t(x− x0) + x0) dt,

for some x0 ∈ Rd.
Then gx0 ∈W (FL1, L∞)(Rd), and for some constant C independent of

x0 and f we have

‖gx0‖W (FL1,L∞) ≤ C‖f‖W (FL1,L∞).

Proof. Using Lemma 1.2.15, Proposition 1.2.16 and Proposition 1.2.17 we
have

‖gx0‖W (FL1,L∞) =

∥∥∥∥χ(x− x0)

∫ 1

0
(1− t)f(t(x− x0) + x0)dt

∥∥∥∥
W (FL1,L∞)

. ‖χ(x− x0)‖W (FL1,L∞)

∥∥∥∥
∫ 1

0
(1− t)f(tx+ (1− t)x0)dt

∥∥∥∥
W (FL1,L∞)

≤ ‖χ(x− x0)‖W (FL1,L∞)

∫ 1

0
(1− t) ‖f(tx+ (1− t)x0)‖W (FL1,L∞) dt

= ‖χ‖W (FL1,L∞)

∫ 1

0
(1− t) ‖f(tx)‖W (FL1,L∞) dt

. ‖χ‖W (FL1,L∞)

∫ 1

0
(1− t) ‖f‖W (FL1,L∞) dt

. ‖f‖W (FL1,L∞) .
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Lemma 5.2.2. Assume that B ⊂ Rn is an open ball, µ ∈ C2(Rd) is real-
valued and satisfies ∂γµ ∈ W (FL1, L∞)(Rd) for all multi-indices γ with
|γ| = 2 and that f ∈ M1(Rd) ∩ E ′(B). Then feiµ ∈ M1(Rd) and for some
constants C,C ′ which only depend on d and the radius of the ball B we have

‖feiµ‖M1 ≤ C‖f‖M1 exp
(
C ′
∑

|γ|=2

‖∂γµ‖W (FL1,L∞)

)
.

Proof. We may assume that B is the unit ball centered at the origin. By
Taylor expansion it follows that µ = ψ1 + ψ2, where

ψ1(x) = µ(0) + 〈∇µ(0), x〉, ψ2(x) =
∑

|γ|=2

2

γ!

∫ 1

0
(1− t)∂γµ(tx)dt xγ .

Since modulations do not affect the modulation space norms we have

‖feiψ1‖M1 = ‖f‖M1 .

Furthermore, if χ ∈ C∞0 (Rd) satisfies χ(x) = 1 on B, then it follows from
the previous lemma that, for some constant C1 > 0,

‖χψ2‖W (FL1,L∞) ≤ C1

∑

|γ|=2

‖∂γµ‖W (FL1,L∞).

Hence, by Proposition 1.2.16, for some C2 ≥ 1 we have

‖eiχψ2‖W (FL1,L∞) =

∥∥∥∥∥
∞∑

n=0

(iχψ2)n

n!

∥∥∥∥∥
W (FL1,L∞)

≤
∞∑

n=0

Cn−1
2

n!
‖χψ2‖nW (FL1,L∞)

≤ exp
(
C2‖χψ2‖W (FL1,L∞)

)

≤ exp
(
C1C2

∑

|γ|=2

‖∂γµ‖W (FL1,L∞)

)
.
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Using Proposition 1.2.16 again, this gives

‖feiµ‖M1 = ‖feiψ1eiχψ2‖M1 . ‖feiψ1‖M1‖eiχψ2‖W (FL1,L∞)

≤ C‖f‖M1 exp
(
C ′
∑

|γ|=2

‖∂γµ‖W (FL1,L∞)

)
.

We recall a known result (see e.g. [BGOR07, Lemma 8]), needed in the
proof of Theorem 5.2.4.

Lemma 5.2.3. Let σ ∈W (FL1, L∞). Then,

σ(D) : Mp,q →Mp,q

is bounded, for every 1 ≤ p, q ≤ ∞.

Proof. We can write σ(D) = F−1◦Aσ◦F , where Aσf(ξ) = σ(ξ)f(ξ). Using
Proposition 1.2.16 we have

‖Aσf‖W (FLp,Lq) = ‖σf‖W (FLp,Lq)
. ‖σ‖W (FL1,L∞)‖f‖W (FLp,Lq),

so that Aσ : W (FLp, Lq) → W (FLp, Lq) is bounded, for every 1 ≤ p, q ≤
∞. Hence, since the Fourier transform establishes an isomorphism F :
Mp,q →W (FLp, Lq), we see that σ(D) : Mp,q →Mp,q is bounded too.

Let us now prove the Theorem 5.2.4.

Theorem 5.2.4. (No growth, strong oscillations). Let µ ∈ C2(Rd), real-
valued, satisfying

∂γµ(ξ) ∈W (FL1, L∞)(Rd) for |γ| = 2.

Then
eiµ(D) : Mp,q(Rd)→Mp,q(Rd)

is bounded for every 1 ≤ p, q ≤ ∞.
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Proof. Let us first show that eiµ(x) ∈ W (FL1, L∞). We know that there
exists χ ∈ C∞0 (Rd) (cf. [Fei81a, Fei83]) such that

‖eiµ(x)‖W (FL1,L∞) = sup
k∈Zd
{‖χ(x−k)eiµ(x)‖FL1} � sup

k∈Zd
{‖χ(x−k)eiµ(x)‖M1},

where the last equivalence follows from the fact that for functions supported
in a ball the FL1 and M1 norms are equivalent, with constants depending
only on the radius of the ball.

Hence, using Lemma 5.2.2 we can continue our estimate as

≤ sup
k∈Zd

{
C ′‖χ(x− k)‖M1 exp

(
C
∑

|γ|=2

‖∂γµ‖W (FL1,L∞)

)}

= C‖χ‖M1 exp
(
C ′
∑

|γ|=2

‖∂γµ‖W (FL1,L∞)

)
.

Hence eiµ(x) ∈W (FL1, L∞) and by Lemma 5.2.3 we deduce that

eiµ(D) : Mp,q →Mp,q

is bounded, for every 1 ≤ p, q ≤ ∞.

5.3 Growth at infinity, strong oscillations

In this section we prove Theorem 5.3.7. To this end we begin with the
following auxiliary results.

Lemma 5.3.1. Let α ≥ 2. Let µ(ξ) be a real-valued C2 function, satisfying

〈ξ〉2−α∂γµ ∈W (FL1, L∞)(Rd) for |γ| = 2.

Then,

(i) 〈ξ〉−αµ ∈W (FL1, L∞)(Rd),

(ii) 〈ξ〉1−α∂γµ ∈W (FL1, L∞)(Rd) for |γ| = 1.
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Proof. To prove (i), consider a Taylor expansion

µ(ξ) = µ(0) + 〈∇µ(0), ξ〉+
∑

|γ|=2

2

γ!

∫ 1

0
(1− t)∂γµ(tξ)dt ξγ .

Hence

〈ξ〉−αµ(ξ) = µ(0)〈ξ〉−α + 〈∇µ(0), ξ〉〈ξ〉−α

+
∑

|γ|=2

2

γ!

∫ 1

0
(1− t)∂γµ(tξ)dt ξγ〈ξ〉−α, (5.3.1)

where

µ(0)〈ξ〉−α ∈W (FL1, L∞)(Rd), 〈∇µ(0), ξ〉〈ξ〉−α ∈W (FL1, L∞)(Rd),

because α ≥ 2. Here we used the fact that the functions 〈ξ〉−α and
ξj〈ξ〉−α are bounded together with their derivatives of every order, so
that they belong to M∞,1(Rd) ([Grö01, Theorem 14.5.3]) and hence to
W (FL1, L∞)(Rd) as well.

Let us show that the last amount in (5.3.1) belongs to W (FL1, L∞)(Rd)
too. We have

∥∥∥∥
∫ 1

0
(1− t)∂γµ(tξ)dtξγ〈ξ〉−α

∥∥∥∥
W (FL1,L∞)

≤
∫ 1

0

∥∥(1− t)∂γµ(tξ)ξγ〈ξ〉−α
∥∥
W (FL1,L∞)

dt

=

∫ 1

0

∥∥(1− t)∂γµ(tξ)〈tξ〉2−α〈tξ〉−2+α ξγ〈ξ〉−α
∥∥
W (FL1,L∞)

dt

.
∫ 1

0

∥∥(1− t)〈t〉−2+α∂γµ(tξ)〈tξ〉2−α ξγ〈ξ〉−α〈ξ〉−2+α
∥∥
W (FL1,L∞)

dt.

Using Proposition 1.2.16 and Corollary 1.2.15 we can continue the above
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estimate as

.
∫ 1

0
(1− t)〈t〉−2+αdt

∥∥∂γµ(tξ)〈tξ〉2−α
∥∥
W (FL1,L∞)

∥∥ξγ〈ξ〉−2
∥∥
W (FL1,L∞)

.
∫ 1

0
(1− t)〈t〉−2+αdt

∥∥∂γµ(ξ)〈ξ〉2−α
∥∥
W (FL1,L∞)

∥∥ξγ〈ξ〉−2
∥∥
W (FL1,L∞)

.
∥∥∂γµ(ξ)〈ξ〉2−α

∥∥
W (FL1,L∞)

∥∥ξγ〈ξ〉−2
∥∥
W (FL1,L∞)

.

This concludes the proof of (i) because, arguing as above, we have ξγ〈ξ〉−2 ∈
M∞,1 ⊂ W (FL1, L∞), whereas ∂γµ(ξ)〈ξ〉2−α ∈ W (FL1, L∞) by assump-
tion.

To prove (ii), consider the Taylor expansion of ∂γµ, for |γ| = 1

∂γµ(ξ) = ∂γµ(0) +
∑

|β|=1

∫ 1

0
∂γ+βµ(tξ)dt ξβ,

so that

〈ξ〉1−α∂γµ(ξ) = ∂γµ(0)〈ξ〉1−α +
∑

|β|=1

∫ 1

0
∂γ+βµ(tξ)dt ξβ〈ξ〉1−α.

Now ∂γµ(0)〈ξ〉1−α ∈W (FL1, L∞), because α ≥ 2, and arguing as above

∥∥∥∥
∫ 1

0
∂γ+βµ(tξ)dt ξβ〈ξ〉1−α

∥∥∥∥
W (FL1,L∞)

=

∥∥∥∥
∫ 1

0
∂γ+βµ(tξ)〈tξ〉2−α〈tξ〉−2+αdt ξβ〈ξ〉1−α

∥∥∥∥
W (FL1,L∞)

.
∥∥∥∂γ+βµ(ξ)〈ξ〉2−α

∥∥∥
W (FL1,L∞)

∥∥∥ξβ〈ξ〉−1
∥∥∥
W (FL1,L∞)

,

where ξβ〈ξ〉−1 ∈ M∞,1(Rd) ⊂ W (FL1, L∞)(Rd) because |β| = 1, and
moreover ∂ γ+βµ(ξ) 〈ξ〉2−α ∈ W (FL1, L∞)(Rd) by assumption, because
|γ + β| = 2.
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Here is the basic complex interpolation result (see e.g. [Fei81a, Fei83,
FG89] and [WH07, Theorem 2.3] for a direct proof).

Proposition 5.3.2. Let 0 < θ < 1, pj , qj ∈ [1,∞] and δj ∈ R, j = 1, 2.
Set

1

p
=

1− θ
p1

+
θ

p2
,

1

q
=

1− θ
q1

+
θ

q2
, δ = (1− θ)δ1 + θδ2.

Then

(Mp1,q1
δ1

(Rd),Mp2,q2
δ2

(Rd))[θ] = Mp,q
δ (Rd).

We observe that, by complex interpolation of weighted modulation
spaces it suffices to prove the conclusion of Theorem 5.3.7 when (p, q) is
one of the four vertices of the interpolation square, (1, 1), (1,∞), (∞, 1),
(∞,∞), with δ = d(α − 2)/2, as well as for the points (2, 1), (2,∞) with
δ = 0. To this end, we reduce matters to the case of unweighted modulation
spaces by means of the following lemma.

Lemma 5.3.3. A multiplier σ(D) is bounded from Mp,q
δ (Rd) to Mp,q(Rd)

if and only if the multiplier σ(D)〈D〉−δ is bounded on Mp,q(Rd).

Proof. We know e.g. from [Tof04, Theorem 2.2, Corollary 2.3] that 〈D〉t
defines an isomorphism Mp,q

s (Rd) → Mp,q
s−t(Rd) for every s, t ∈ R, so that

the conclusion is immediate.

Therefore we may work with the operator

Tf(x) =

∫

Rd
e2πix·ξeiµ(ξ)〈ξ〉−δf̂(ξ)dξ.

We have to prove that T is bounded on M1,1, M1,∞, M∞,1, M∞,∞ for
δ = d(α−2)

2 , and on M2,1 and M2,∞ for δ = 0.
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5.3.1 Boundedness on M1,1 and M∞,1 for δ = d(α−2)
2

To prove this boundedness we need the following lemma (cf. [TCG10,
Proposition 1.4] and [CNR09a, ST07]).

Lemma 5.3.4. Let χ be a smooth function supported on B−1
0 ≤ |ξ| ≤ B0

for some B0 > 0. Then, for 1 ≤ p ≤ ∞,
∞∑

j=1

‖χ(2−jD)f‖Mp,1 ≤ C‖f‖Mp,1 .

Proof. We will use the following characterization of the Mp,q norm, [Tri83]:
let ϕ ∈ C∞0 (Rd) be such that ϕ(ξ) ≥ 0,

∑
m∈Zd ϕ(ξ−m) = 1, for all ξ ∈ Rd.

Then

‖f‖Mp,q �
( ∑

m∈Zd
‖ϕ(D −m)f‖qLp

)1/q
.

Hence it turns out
∞∑

j=1

‖χ(2−jD)f‖Mp,1 �
∞∑

j=1

∑

m∈Zd
‖ϕ(D −m)χ(2−jD)f‖Lp

=
∑

m∈Zd

∞∑

j=1

‖ϕ(D −m)χ(2−jD)f‖Lp

=
∑

m∈Zd

∞∑

j=1

‖χ(2−jD)ϕ(D −m)f‖Lp .

Now, the number of indices j ≥ 1 for which suppχ(2−j ·)∩suppϕ(·−m) 6= 0
is finite for every m, and even uniformly bounded with respect to m. Hence
the last expression is

.
∑

m∈Zd
sup
j≥1
‖χ(2−jD)ϕ(D −m)f‖Lp .

Since the operators χ(2−jD) are uniformly bounded on Lp we can continue
the estimate as

.
∑

m∈Zd
‖ϕ(D −m)f‖Lp � ‖f‖Mp,1 .



5.3. GROWTH AT INFINITY, STRONG OSCILLATIONS 131

Consider now a Littlewood-Paley decomposition of the frequency do-
main. Namely, fix a smooth function ψ0 such that ψ0(ξ) = 1 for |ξ| ≤ 1 and
ψ0(ξ) = 0 for |ξ| ≥ 2. Set ψ(ξ) = ψ0(ξ) − ψ0(2ξ). Then ψj(ξ) := ψ(2−jξ)
for j ≥ 1 is supported where 2j−1 ≤ |ξ| ≤ 2j+1. We can write

T = T (0) +

∞∑

j=1

T (j) (5.3.2)

where T (j) is the Fourier multiplier with symbol σj(ξ) := eiµ(ξ)ψj(ξ)〈ξ〉−δ,
j ≥ 0.

Now, T (0) is bounded on Mp,q for every 1 ≤ p, q ≤ ∞ as a consequence
of Lemma 5.2.3, because σ0 ∈M1 ⊂W (FL1, L∞) by Lemma 5.2.2.

Consider now the above sum over j ≥ 1. Let

λj = 2−
α−2
2
j ,

and consider the operators T̃ (j) defined by

T̃ (j)f(x) = (Uλ−1
j
T (j)Uλj )f(x) = (T (j)Uλjf)(λ−1

j x)

=

∫

Rd
e2πiλ−1

j xξeiµ(ξ)ψj(ξ)〈ξ〉−δ(Uλjf )̂(ξ)dξ

=

∫

Rd
e2πiλ−1

j xξeiµ(ξ)ψj(ξ)〈ξ〉−δf̂(λ−1
j ξ)λ−dj dξ

=

∫

Rd
e2πixξeiµ(λjξ)ψj(λjξ)〈λjξ〉−δf̂(ξ)dξ.

Then we also have the next relationship,

T (j) = Uλj T̃
(j)Uλ−1

j
. (5.3.3)

Let χj(ξ) := χ(2−jξ) with χ ∈ C∞0 (Rd) supported where 1
4 ≤ |ξ| ≤ 4

and χ(ξ) = 1 on the support of ψ, so that χj(ξ) = 1 on the support of ψj .
We can therefore write

T̃ (j)f(x) =

∫

Rd
e2πixξeiχj(λjξ)µ(λjξ)ψj(λjξ)〈λjξ〉−δf̂(ξ)dξ,
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hence
T̃ (j) = AjBj , (5.3.4)

where
Aj = ei(χjµ)(λjD), Bj = ψj(λjD)〈λjD〉−δ.

Taking into account that ψj(λjξ) is supported on 2j−1 ≤ |λjξ| ≤ 2j+1,
for α ∈ Zd+ we have Cα ≥ 0 such that,

{
|∂α(ψj(λjξ))| ≤ Cα, for 2j−1 ≤ |λjξ| ≤ 2j+1,

|∂α(ψj(λjξ))| = 0, in other case.

And on the support of ψj(λjξ) we have λj |ξ| � 2j . As δ = d(α − 2)/2, we
have the following estimate for γ ∈ Zd+:

|∂γ(ψj(λjξ)〈λjξ〉−δ)| =

∣∣∣∣∣∣
∑

α+β=γ

(
γ

α

)
∂α(ψj(λjξ))∂

β(〈λjξ〉−δ)

∣∣∣∣∣∣

≤
∑

α+β=γ

(
γ

α

)
|∂α(ψj(λjξ))| (〈λjξ〉−δ−β)

≤
∑

α+β=γ

(
γ

α

)
Cα(〈λjξ〉−δ) . (〈λjξ〉−δ)

. 2−
d(α−2)

2
j , for all γ ∈ Zd+.

Then, by the classical boundedness results of pseudodifferential oper-
ators on modulation spaces (see e.g. [Grö01, Theorems 14.5.2, 14.5.2]) we
have

‖Bj‖Mp,q→Mp,q . 2−
d(α−2)

2
j , (5.3.5)

for every 1 ≤ p, q ≤ ∞.
Let us now prove that

‖Aj‖Mp,q→Mp,q . 1, (5.3.6)

for all j ≥ 1 and for every 1 ≤ p, q ≤ ∞.
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Using Theorem 5.2.4 it is sufficient to check that

‖∂γ [χj(λjξ)µ(λjξ)]‖W (FL1,L∞) . 1,

for |γ| = 2 and all j ≥ 1 (actually we are using the fact that the operator
norm of the multiplier in Theorem 5.2.4 is bounded when ∂γµ, |γ| = 2,
belong to a bounded subset of W (FL1, L∞)).

For |γ| = 2, we have

∂γ [χj(λjξ)µ(λjξ)] = λ2
j∂

γ [χjµ](λjξ),

and by Leibniz’ formula it is enough to prove that

λ2
j‖(∂γχj)µ‖W (FL1,L∞) . 1 |γ| = 2 (5.3.7)

λ2
j‖∂γχj∂βµ‖W (FL1,L∞) . 1 |γ| = |β| = 1 (5.3.8)

λ2
j‖χj∂γµ‖W (FL1,L∞) . 1 |γ| = 2. (5.3.9)

First, let us prove (5.3.7). Using Lemma 5.3.1 (i), Proposition 1.2.16 and
the embeddings Cd+1(Rd) ↪→ M∞,1(Rd) ↪→ W (FL1, L∞)(Rd) ([Grö01,
Theorem 14.5.3]) we can estimate

λ2
j‖(∂γχj)µ‖W (FL1,L∞) . λ2

j‖〈ξ〉−αµ‖W (FL1,L∞)‖〈ξ〉α∂γχj‖W (FL1,L∞)

. λ2
j

∑

β≤d+1

‖∂β[〈ξ〉α∂γχj ]‖L∞ .

On the other hand,

|∂β[〈ξ〉α∂γχj(ξ)]| =

∣∣∣∣∣∣
∑

ν≤β

(
β

ν

)
∂ν〈ξ〉α∂γ+β−νχj(ξ)

∣∣∣∣∣∣

.
∑

ν≤β

(
β

ν

)
〈ξ〉α−|ν|2−j|γ+β−ν|

∣∣∣(∂γ+β−νχ)(2−jξ)
∣∣∣

.
∑

ν≤β

(
β

ν

)
2(α−|ν|)j2−2j . 2j(α−2),
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because on the support of χj , |ξ| � 2j and |γ + β − ν| ≥ 2. Thus

λ2
j‖(∂γχj)µ‖W (FL1,L∞) . λ2

j2
j(α−2) = 1.

Now, let us prove (5.3.8). Using Lemma 5.3.1 (ii) and arguing as above
we write

λ2
j‖∂γχj∂βµ‖W (FL1,L∞).λ2

j‖〈ξ〉1−α∂βµ‖W (FL1,L∞)‖〈ξ〉α−1∂γχj‖W (FL1,L∞)

. λ2
j

∑

β≤d+1

‖∂β[〈ξ〉α−1∂γχj ]‖L∞ .

On the other hand,

|∂β[〈ξ〉α−1∂γχj(ξ)]| .
∑

ν≤β

(
β

ν

)
〈ξ〉α−1−|ν|2−j|γ+β−ν|

∣∣∣(∂γ+β−νχ)(2−jξ)
∣∣∣

.
∑

ν≤β

(
β

ν

)
2(α−1−|ν|)j2−j . 2j(α−2),

because now |γ + β − ν| ≥ 1. Thus

λ2
j‖∂γχj∂βµ‖W (FL1,L∞) . λ2

j2
j(α−2) = 1.

Finally, let us prove (5.3.9), using the hypothesis

〈ξ〉2−α∂γµ(ξ) ∈W (FL1, L∞)(Rd)

for |γ| = 2, we have

λ2
j‖χj∂γµ‖W (FL1,L∞) . λ2

j‖〈ξ〉2−α∂γµ‖W (FL1,L∞)‖〈ξ〉α−2χj‖W (FL1,L∞)

. λ2
j

∑

β≤d+1

‖∂β[〈ξ〉α−2χj ]‖L∞ .

Moreover, arguing as above

|∂β[〈ξ〉α−2χj(ξ)]| .
∑

ν≤β

(
β

ν

)
〈ξ〉α−2−|ν|2−j|β−ν|

∣∣∣(∂β−νχ)(2−jξ)
∣∣∣

.
∑

ν≤β

(
β

ν

)
2(α−2−|ν|)j20 . 2j(α−2).
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Thus
λ2
j‖χj∂γµ‖W (FL1,L∞) . λ2

j2
j(α−2) = 1.

Hence, the estimate (5.3.6) is proved. And by (5.3.4), (5.3.5) and (5.3.6)
we have

‖T̃ (j)f‖Mp,q = ‖AjBjf‖Mp,q . 2−
d(α−2)

2
j‖f‖Mp,q , (5.3.10)

for every 1 ≤ p, q ≤ ∞.

We recall the decomposition (5.3.3)

T (j) = Uλj T̃
(j)Uλ−1

j
.

Now, combine the estimate from T̃ (j), (5.3.10), with those for the dilation
operator, given in Theorem 1.2.11. For p = 1,∞ and q = 1 they read

‖Uλjf‖M1,1 . 2
d(α−2)

2
j‖f‖M1,1 ,

‖Uλjf‖M∞,1 . ‖f‖M∞,1 ,
and

‖Uλ−1
j
f‖M1,1 . ‖f‖M1,1 ,

‖Uλ−1
j
f‖M∞,1 . 2

d(α−2)
2

j‖f‖M∞,1 .

Therefore we obtain, for p = 1,∞,

‖T (j)f‖Mp,1 . 2−
d(α−2)

2
j2

d(α−2)
2

j‖f‖Mp,1 = ‖f‖Mp,1 .

Finally, to sum these last estimates over j ≥ 1 we take advantage of
the fact we are working with functions which are localized in shells of the
frequency domain. Precisely, let χ as before, namely a smooth function
satisfying χ(ξ) = 1 for 1/2 ≤ |ξ| ≤ 2 and χ(ξ) = 0 for |ξ| ≤ 1/4 and |ξ| ≥ 4
(so that χψ = ψ). With χj(ξ) = χ(2−jξ) and p = 1,∞ we have

‖T (j)f‖Mp,1 = ‖T (j)(χ(2−jD)f)‖Mp,1 . ‖χ(2−jD)f‖Mp,1 ,
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so that Lemma 5.3.4 gives us
∥∥∥∥∥∥
∑

j≥1

T (j)f

∥∥∥∥∥∥
Mp,1

≤
∑

j≥1

‖T (j)f‖Mp,1 . ‖f‖Mp,1 .

5.3.2 Boundedness on M1,∞ and M∞,∞ for δ = d(α−2)
2

To prove this we first establish the following lemma (cf. [CNR09a, ST07]).

Lemma 5.3.5. For k ≥ 0, let fk ∈ S(Rd) satisfy supp f̂0 ⊂ B2(0) and

supp f̂k ⊂ {ξ ∈ Rd : 2k−1 ≤ |ξ| ≤ 2k+1}, k ≥ 1.

Then, if the sequence fk is bounded in Mp,∞(Rd) for some 1 ≤ p ≤ ∞, the
series

∑∞
k=0 fk converges in Mp,∞(Rd) and

∥∥∥∥∥
∞∑

k=0

fk

∥∥∥∥∥
Mp,∞

. sup
k≥0
‖fk‖Mp,∞ .

Proof. Let x ∈ Rd, we define Kx ⊆ N such that k ∈ Kx if, and only if,
fk(x) 6= 0. For the properties of each fk, Kx has, at most, 3 elements for
each x ∈ Rd. Then, since the sequence fk is bounded,

∞∑

k=0

fk(x) =
∑

k∈Kx
fk(x) <∞.

And the convergence of the series
∑∞

k=0 fk in Mp,∞(Rd) is proved. We now
prove the desired estimate.

Choose a window function g with supp ĝ ⊂ B1/2(0). We can write

Vg(fk)(x, ξ) = (f̂k ∗M−xĝ)(ξ).

Hence, suppVg(f0) ⊂ B5/2(0) ⊂ B22(0), and

suppVg(fk) ⊂ {(x, ξ) ∈ R2d : 2k−1 − 2−1 ≤ |ξ| ≤ 2k+1 + 2−1}
⊂ {(x, ξ) ∈ R2d : 2k−2 ≤ |ξ| ≤ 2k+2},
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for k ≥ 1. Hence, for each ξ, there are at most four nonzero terms in the
sum

∑∞
k=0 ‖Vg(fk)(·, ξ)‖Lp . Using this fact we obtain
∥∥∥∥∥
∞∑

k=0

fk

∥∥∥∥∥
Mp,∞

�
∥∥∥∥∥
∞∑

k=0

Vg(fk)

∥∥∥∥∥
Lp,∞

≤ sup
ξ∈Rd

∞∑

k=0

‖Vg(fk)(·, ξ)‖Lp

≤ 4 sup
k≥0

sup
ξ∈Rd
‖Vg(fk)(·, ξ)‖Lp = 4 sup

k≥0
‖Vg(fk)‖Lp,∞

� sup
k≥0
‖fk‖Mp,∞ .

We now consider the same decomposition as above, namely (5.3.2), and
the operators T̃ (j) in (5.3.3), j ≥ 1. From (5.3.10) for q = ∞ we have the
following estimate:

‖T̃ (j)f‖Mp,∞ ≤ 2−
d(α−2)

2
j‖f‖Mp,∞ .

We then combine this estimate with those for the dilation operator which
here read

‖Uλjf‖M1,∞ . 2d(α−2)j‖f‖M1,∞ ,

‖Uλjf‖M∞,∞ . 2
d(α−2)

2
j‖f‖M∞,∞ ,

and
‖Uλ−1

j
f‖M1,∞ . 2−

d(α−2)
2

j‖f‖M1,∞ ,

‖Uλ−1
j
f‖M∞,∞ . ‖f‖M∞,∞ .

Therefore we obtain, for p = 1,∞,

‖T (j)f‖Mp,∞ . 2−
d(α−2)

2
j2

d(α−2)
2

j‖f‖Mp,∞ = ‖f‖Mp,∞ .

We finally conclude by applying Lemma 5.3.5: for p = 1,∞,
∥∥∥∥∥∥

∞∑

j=1

T (j)f

∥∥∥∥∥∥
Mp,∞

. sup
j≥1
‖T (j)f‖Mp,∞ . ‖f‖Mp,∞ .
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5.3.3 Boundedness on M2,1 and M2,∞ for δ = 0

Indeed, we will prove boundedness on M2,q for every 1 ≤ q ≤ ∞ and δ = 0.
This is a special case of the following result.

Proposition 5.3.6. Any Fourier multiplier T with symbol σ ∈ L∞ is
bounded on M2,q for every 1 ≤ q ≤ ∞.

Proof. The desired result follows at once from the estimate

‖σ(D)f‖L2 ≤ ‖σ‖L∞‖f‖L2 ,

for f ∈ L2, and the fact that the Fourier multipliers which are bounded on
L2 are the same that the Fourier multipliers which are bounded on M2,q,
[FN06, Theorem 17 (3)].

We provide a direct proof for the benefit of the reader. Namely

‖Tf‖M2,q =

∥∥∥∥
∥∥∥Mxĝ ∗

(
σf̂
)∥∥∥

L2
x

∥∥∥∥
Lq

=

∥∥∥∥∥

∥∥∥∥
∫
e2πix(ξ−y)ĝ(ξ − y)σ(y)f̂(y)dy

∥∥∥∥
L2
x

∥∥∥∥∥
Lqξ

=
∥∥∥
∥∥∥σf̂Tξ ĝ

∥∥∥
L2

∥∥∥
Lqξ

,

where we used Parseval’s formula. In particular, this computation with
σ ≡ 1 gives ‖f‖M2,q = ‖‖f̂Tξ ĝ‖L2‖Lqξ , so we deduce at once the desired

estimate

‖Tf‖M2,q . ‖σ‖L∞‖f‖M2,q .

5.3.4 Boundedness from Mp,q
δ (Rd) to Mp,q(Rd)

Finally, by complex interpolation, Proposition 5.3.2, and Lemma 5.3.3 we
conclude the main result of the chapter.
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Theorem 5.3.7. Let α ≥ 2. Let µ ∈ C2(Rd), real-valued and such that

〈ξ〉2−α∂γµ(ξ) ∈W (FL1, L∞)(Rd) for |γ| = 2.

Then

eiµ(D) : Mp,q
δ (Rd)→Mp,q(Rd)

is bounded for every 1 ≤ p, q ≤ ∞ and

δ ≥ d(α− 2)

∣∣∣∣
1

p
− 1

2

∣∣∣∣ .

Proof. From the Subsections 5.3.1, 5.3.2 and 5.3.3, and Lemma 5.3.3, we
have the boundedness of

eiµ(D) : Mp,q
δ (Rd)→Mp,q(Rd)

when the set (p, q, δ) is equal to (1, 1, d(α − 2)/2), (1,∞, d(α − 2)/2),
(∞, 1, d(α− 2)/2), (∞,∞, d(α− 2)/2) or (2, q, 0), with 1 ≤ q ≤ ∞. From
Proposition 5.3.2, complex interpolation, we deduce the boundedness when
the set (p, q, δ) is equal to (1, q, d(α − 2)/2), (∞, q, d(α − 2)/2) or (2, q, 0),
with 1 ≤ q ≤ ∞.

Now we set a pair (p, q), with 1 ≤ q ≤ ∞ and 1 < p <∞, the extreme
cases are proved. If 1 < p ≤ 2, there exist θ ∈ (0, 1) such that

1

p
=

1− θ
1

+
θ

2
.

Moreover,
1

p
− 1

2
= 1− θ

2
− 1

2
=

1

2
− θ

2
=

1− θ
2

Then by Proposition 5.3.2 (complex interpolation) we have the boundedness
for (p, q, δ), where

δ =
(1− θ)d(α− 2)

2
+ θ0 = d(α− 2)

(1− θ)
2

= d(α− 2)

(
1

p
− 1

2

)
.
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If 2 ≤ p <∞, there exist θ ∈ (0, 1) such that

1

p
=

1− θ
2

+
θ

∞ .

Moreover,
1

2
− 1

p
= −1

2
+
θ

2
+

1

2
=
θ

2

Then by Proposition 5.3.2, complex interpolation, we have the boundedness
for (p, q, δ), where

δ = (1− θ)0 +
θd(α− 2)

2
= d(α− 2)

θ

2
= d(α− 2)

(
1

2
− 1

p

)
.

Then, we have that

eiµ(D) : Mp,q
δ (Rd)→Mp,q(Rd)

is bounded for every 1 ≤ p, q ≤ ∞ and

δ = d(α− 2)

∣∣∣∣
1

p
− 1

2

∣∣∣∣ .

Let δ0 = d(α − 2)
∣∣∣1p − 1

2

∣∣∣ and δ ≥ δ0. Let f ∈ Mp,q
δ ⊆ Mp,q

δ0
, and we

have ‖f‖Mp,q
δ0

. ‖f‖Mp,q
δ

. Then

∥∥∥eiµ(D)f
∥∥∥
Mp,q

. ‖f‖Mp,q
δ0

. ‖f‖Mp,q
δ
.

We can conclude that

eiµ(D) : Mp,q
δ (Rd)→Mp,q(Rd)

is bounded for every 1 ≤ p, q ≤ ∞ and

δ ≥ d(α− 2)

∣∣∣∣
1

p
− 1

2

∣∣∣∣ .
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5.4 Conclusion

In conclusion, we have found results about boundedness of unimodular
Fourier multipliers on modulation spaces, when the partial derivatives of
its phase, or some expression relative to the partial derivatives of its phase,
belongs to W (FL1, L∞)(Rd). These results are included in [NPT18].
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[MM06] Stéphane Mischler and Clément Mouhot, Cooling process for
inelastic Boltzmann equations for hard spheres. II. Self-similar
solutions and tail behavior, J. Stat. Phys. 124 (2006), no. 2-4,
703–746.

[MNR+09] Akihiko Miyachi, Fabio Nicola, Silvia Rivetti, Anita Tabacco,
and Naohito Tomita, Estimates for unimodular Fourier mul-
tipliers on modulation spaces, Proc. Amer. Math. Soc. 137
(2009), no. 11, 3869–3883.

[NPT18] Fabio Nicola, Eva Primo, and Anita Tabacco, Highly oscilla-
tory unimodular Fourier multipliers on modulation spaces, J.
Pseudo-Differ. Oper. Appl. (2018).

[Oko09] Kasso A. Okoudjou, A Beurling-Helson type theorem for mod-
ulation spaces, J. Funct. Spaces Appl. 7 (2009), no. 1, 33–41.

[Per69] Arne Persson, On some properties of p-nuclear and p-integral
operators, Studia Math. 33 (1969), 213–222.



BIBLIOGRAPHY 151

[PP69] Arne Persson and Albrecht Pietsch, p-nukleare une p-integrale
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