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Non-scanning, single-shot, 3D integral microscopy with optical sectioning is presented. The

method is based on the combination of Fourier-mode integral microscopy with a 3D deconvolution

technique. Specifically, the refocused volume provided by a regular back-projection algorithm is

3D deconvolved with a synthetic 3D impulse response function that takes into account the number

and positions of the elemental images. The use of this hybrid technique provides a stack of

true-color depth-refocused images with significant gain of optical sectioning. The stack can be used,

among other applications, to inspect inside the thick microscope specimen, to calculate collections of

perspective views with fine angular resolution and extended full parallax, and also to display 3D

images in an integral monitor. The method here presented is validated with both simulation and exper-

imental data. VC 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5049755

Integral imaging (InI) has been shown as a powerful

technique when it comes to the display and reconstruction of

the information contained in 3D scenes. Based on a principle

proposed by Lippmann1 in 1908, InI has been increasingly

used and proved for many different applications, from

standard photography2,3 and 3D display4–9 to biomedical

research.10,11 InI is based on the capture, either sequentially

or after a single-shot, of different perspectives of a 3D scene.

The combination of the several views in one picture breaks

with the convention of photography, where a 3D scene is

recorded in a 2D sensor in such a way that all the angular

information is lost. There are mainly two approaches for cap-

turing an integral image: by using a micro-lens array (MLA)

or by using a set of cameras placed at different positions.

The latter can be implemented by means of a single-camera

that sequentially captures the different perspectives of a

scene.12 In both, the raw data are a collection of 2D images,

known as elemental images (EIs). This information can be

used for performing a plane by plane refocusing of the

scene.13–15 There are several approaches for performing this

task. The most common method of refocusing consists in

properly shifting and summing the EIs.16

The ability to carry out this depth reconstruction has

been widely exploited in macroscopic imaging and, with a

minor impact, in microscopy.17–20 One of the limitations of

the technique, which we address in this paper, is the lack of

optical sectioning in the images provided by standard recon-

struction methods. In the past, optical sectioning has been

achieved by means of computational methods for coherent

imaging in Optical Scanning Holography,21–26 including the

use of a Wiener-like filter for removing the out-of-focus

information. In this manuscript, we take advantage of the

information provided by Fourier Integral Imaging (FIMic)27

in order to describe a computational method that provides

optical sectioning. To this aim, we first consider a recent

reconstruction method which consists of generating a set of

2D periodic impulse responses that are sequentially used for

2D deconvolving the integral image by means of a Wiener-

like filter.28 Now, in this paper, we extend the concept in

order to create a 3D impulse response that can be combined

with the acquisition of multi-perspective images in Fourier

integral microscopy to generate a 3D real-color reconstruc-

tion of the sample by means of a single-shot. The approach

is based on a two-step post-processing algorithm: First, from

the raw data, a conventional integral image refocusing algo-

rithm is applied to the capture to generate a 3D stack.

Let us consider a FIMic.29 In this setup, different per-

spectives or elemental images of a microscopic sample are

acquired directly after a single shot. A scheme of this micro-

scope is shown in Fig. 1.

If we assume that the system is set in such a way that

the diffraction Airy disk in each elemental image is equal to

or smaller than the pixel size, we can neglect any influence

FIG. 1. Scheme of a FIMic. A MLA is placed at the aperture stop of the

microscope objective (MO) to capture directly a collection of perspective

views of a 3D sample.
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of diffraction effects onto the structure of captured elemental

images. In such case, the irradiance distribution captured by

the sensor can be expressed as28

Iðx;zÞ ¼ 1

M2
O

x

M
;

z

M2

� �
�2 hðx; zÞ; (1)

with �2 being the 2D convolution operation and M the lat-

eral magnification provided by the microscope. Considering

a squared lens matrix, the impulse response function (IRF)

of the whole system is given by

hðx; zÞ ¼
X
mx

X
my

dðx�mpðzÞÞ; (2)

where d refers to the Dirac delta function, p is the period of

the IRF, and the vector m ¼ (mx, my) denotes the microlens

index in both transverse directions. This vector is defined

from the center of the central lens to the center of each lens

so m allows negative values. Note that, in Eq. (1), we assume

an object of compact support which is captured by all the

lenses.

A plane-by-plane reconstruction can be done with this

setup, considering the shape of the impulse response func-

tion. Based on this, a plane-by-plane reconstruction can be

made by deconvolving the InI with a set of computed IRFs

with different periods. This type of reconstruction is

completely equivalent to the conventional method, in which

the elemental images are superimposed and added in order to

back propagate the lightfield. However, it provides a signifi-

cantly different background for understanding the InI method

as an inverse problem.

We can make use of this concept for proposing a 3D

reconstruction method. The plane-by-plane reconstruction

from the EIs can be considered as a compilation of 2D refo-

cused images into a 3D stack and can be expressed as

Istackðx;zÞ ¼
XQ=2

z¼�Q=2

O
x

M
;

z

M2

� �
�3 hdef ðx; zÞ; (3)

with Q being the number of reconstructed planes. In the

above expression, hdef ðx; zÞ has the contribution of out-of-

focus planes to every reconstructed plane.28 As it can be

seen from Eq. (3), every reconstructed plane has the contri-

bution of the rest of defocused planes.

The 3D stack can be calculated by any backpropagation

algorithm. However, for computational optimization, it is

worth using the 2D deconvolution method as the function

hrecðx; zÞ can be stored in memory. Then, the 3D deconvolu-

tion between the 3D stack and the computed 3D IRF is

calculated. This can be done by using several methods, but

for the sake of simplicity, we use the Wiener-like filter for

the 3D deconvolution

~I3Dðu;wÞ ¼
~Istackðu;wÞ ~h

�
recðu;wÞ

j~hrecðu;wÞj2 þ w2
; (4)

where the symbol � denotes the 3D Fourier transform opera-

tion, and (u, w) are the 3D spatial frequency coordinates,

and w refers to the Wiener parameter.30 Note that this

operation strongly depends on the value selected for the

Wiener parameter. For obtaining optimal results, this value

must be w2 ¼ 1=SNRðuÞ.
By making the 3D inverse Fourier transform of Eq. (3),

we recover the 3D deconvolved integral imaging

reconstruction

I3Dðx; zÞ ¼ F�1 ~I3Dðu;wÞ
� �

; (5)

where F�1 denotes the inverse Fourier transform operation.

For proving the 3D reconstruction method, we first

simulated a two object 3D scene. The scene consists of a red

circle placed in front of a green square. The square is partially

occluded by the circle. In order to graphically display this

concept, a scheme of the proposed reconstruction method can

be seen in Fig. 2. In this figure, the reconstruction space of a

cross-section is illustrated in a transverse direction in which

the capture was done with three lenses (note that the capture

scheme for this reconstruction is the same as the one illus-

trated in Fig. 1). As shown, the IRF in that plane can be

understood as three lines crossing in the center of the recon-

struction space. On the other hand, the simulated integral

image is shown in Fig. 3(a). The integral image is composed

of 3� 3 EIs. The 2D deconvolution algorithm28 is applied to

FIG. 2. (top) Scheme of a cross-section of the 3D reconstruction space in a

transverse direction in which three lenses captured the views of the scene.

(bottom) Representation of the axial IRF corresponding to the cross-

sectional plane.

FIG. 3. (a) Simulation of an EI matrix in which a red circle and a green

square are separated in depth. (b) and (c) Orthogonal views of the conven-

tional reconstruction used in integral imaging systems. (d) and (e)

Orthogonal views reconstructed by using the proposed method.
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the EI matrix in order to generate a 3D stack. The synthetic

impulse responses used for creating the stack were stored in

memory in order to have the 3D impulse of the reconstructed

space. Both stacks, the one obtained by the conventional

back-propagating reconstruction and the other resulting from

the 3D deconvolution, are rendered in a 3D projection of the

intensity. A conventional tool of the ImajeJ software was

used for this task. In Figs. 3(b) and 3(c) and Figs. 3(d) and

3(e), we show two views of the render obtained by using the

3D stack and by using the 3D deconvolution method, respec-

tively. As it can be seen, in the 3D deconvolved space, most

of the light coming from out-of-focus planes is removed

while preserving the light coming from the object.

Note that the method can be applied to an image with

more than 3� 3 elemental images. However, one of the sim-

plest cases which is a 3� 3 EI matrix provides an optimum

3D reconstruction, optimizing the use of computer memory

and computing time.

To validate our method through experimental data, we

built a Fourier-plane integral microscope27 as the one shown

in the scheme of Fig. 1, in which a lens array is placed in the

Fourier plane. We use an infinite-corrected 20�, NA¼ 0.4

microscope objective, a MLA composed of lenses of

6.48 mm of focal length and 1 mm of pitch, and a relay sys-

tem with 2� magnification to image the aperture stop of the

microscope objective into the lens matrix. Since the lens

matrix divides the aperture stop in 3 subapertures in the

transverse direction, the effective NA of the elemental

images is reduced by a factor of 3. On the other hand, the

depth of field is approximately 3 times larger than the one

from the microscope objective, which is convenient for thick

samples and to maximize the number of planes that can be

reconstructed. Finally, we used a color CMOS camera with

1260� 980 pixels of 6.9 lm of size.

With this setup, we captured a bright-field image (with-

out sample) as a calibration image. The reconstruction algo-

rithm required this image for detecting the center of the

lenses in order to perform a proper reconstruction. Since the

lenses were arranged in a hexagonal geometry, we computed

the impulse response function by defining the unitary vectors

of each lens with respect to the central lens, which is equiva-

lent of measuring the direction of the vector m in Eq. (2).

The IRF can be calculated by using these vectors to build the

lines that pass through the center of the reconstructed space

FIG. 4. 3D IRF computed from the integral image. (a) X-Y projection and

(b) X-Z projection of the IRF. Multimedia views: https://doi.org/10.1063/

1.5049755.1; https://doi.org/10.1063/1.5049755.2

FIG. 5. Raw data of a fluorescent dyed cotton fiber sample obtained with the

experimental setup.

FIG. 6. Different focused planes obtained by (a) the conventional recon-

struction method and (b) the proposed method. Multimedia views: https://

doi.org/10.1063/1.5049755.3; https://doi.org/10.1063/1.5049755.4

FIG. 7. (a) 3D render of the conventional reconstruction stack. (b)

Reconstruction provided by the proposed method. Multimedia views:

https://doi.org/10.1063/1.5049755.5; https://doi.org/10.1063/1.5049755.6
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that uniquely define the propagation in the mentioned recon-

structed space (see Fig. 4, Multimedia view).

After that, we used a microscopic sample consisting of

fluorescent dyed cotton fibers. In Fig. 5, we show the collec-

tion of EIs captured with our Fourier-integral microscope.

From the perspective views registered in the camera sensor,

we obtained different focal planes of the 3D sample by

applying the conventional reconstruction algorithm. The

reconstructions are shown in Fig. 6(a). In Fig. 6(b), we show

the same depth planes as the ones of Fig. 6(a) after the appli-

cation of our proposed method. Note that in that case, the

out-of-focus planes do not contribute to the final recon-

structed image (Multimedia views).

This optical sectioning capability can also be visualized

by the 3D projection of intensity, as we can see in Fig. 7(a)

for the conventional reconstruction and Fig. 7(b) for the pro-

posed 3D deconvolution algorithm (Multimedia views).

Finally, we performed a second experiment with a Hi-

resolution negative USAF test target. In Fig. 8(a), we can see

the test reconstructed from the conventional algorithm. In

Multimedia view, the Y-Z projection of the reconstruction is

shown. In a similar way, we can see from Fig. 8(b) the orthog-

onal views obtained with our 3D deconvolution method (see

Multimedia view).

Summarizing, non-scanning, single-shot 3D integral

microscopy with optical sectioning has been presented. The

method is based on a 3D deconvolution between the impulse

response function of the 3D imaging system and the image

volume reconstructed by any regular back-projection

method. To produce the impulse response function, the rela-

tive positions of the elemental images over the sensor area is

only needed input. With the 3D position dependent imaging

response, a conventional Wiener-like filter for the 3D decon-

volution is applied to the low contrast image volume pro-

duced by a regular back-projection method. The result is a

high contrast 3D volume of true-color stacked images that

exhibit a removal of the light from the out-of-focus planes.

Because of the non-scanning and single shot features of this

approach, it has potential applications in video-rate 3D

reconstruction of 3D microscopic samples.
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