VNIVERSITAT
DGVALENCIA

FACULTAT DE MATEMATIQUES
DEPARTAMENT DE MATEMATIQUES

A reduction theorem for the
generalised Rhodes’ Type 11
Conjecture

TESI DOCTORAL PERTANYENT AL PROGRAMA DE
DOCTORAT EN MATEMATIQUES

PRESENTADA PER VICENTE PEREZ I CALABUIG
DIRIGIDA PER ADOLFO BALLESTER I BOLINCHES

SETEMBRE 2018






A la meua familia






Agraiments

Aquesta tesi és fruit del treball realitzat durant aquests anys i que ha es-
tat dirigit per Adolfo Ballester Bolinches. Estic molt orgullés d’haver tingut
I'oportunitat de ser alumne seu, ja que per a mi ha sigut una gran font
continua d’aprenentatge. En els aspectes académics, agralsc la seua entrega,
professionalitat i dedicacié modélica per proporcionar-me la millor guia pos-
sible. Talment, han sigut innumerables les converses i experiéncies viscudes
junts que m’han ajudat a créixer com a persona. Aixi, junt amb Fran, Elena,
Carmen i Reyes agraisc tota ’estima que m’han dedicat per fer-me sentir
com a casa.

A més a més, a 'equip d’investigacié del meu director he pogut comptar
amb l’ajuda del professor Ramon Esteban Romero, qui s’ha mostrat sem-
pre atent, siga per discutir aspectes i problemes de la matematica, com per
ajudar-me a desenvolupar-me a la vida del Departament. Acompanyats per
Ramon, també han participat en els seminaris organitzats per Adolfo (en or-
dre alfabétic): Sergio Camp Mora, Enric Cosme Llopez, Paz Jiménez Seral,
Hangyang Meng, Mari Carmen Pedraza Aguilera i Francesca Spagnuolo,
amb els qui he pogut compartir la nostra dedicacié per les matematiques.
A Quique i Francesca, també els estic agrait per totes les experiéncies i els
moments de distensié que hem viscut com a companys de doctorat. Per altra
banda, en aquests seminaris moltes vegades han estat invitats els professors
John Cossey, Jean Eric Pin i Karl Auinger, als qui també reconec les seues
aportacions i consell.

He de regraciar, també, el professor Jorge Almeida, per la seua invitacié
al Centro de Matematica Universidade do Porto. La seua dedicacié personal i
hospitalitat durant les meues estades a la Universidade do Porto va propiciar
un gran avang en la confecci6 d’aquesta tesi. A Porto vaig poder gaudir de
I'oportunitat de participar en els diversos seminaris organitzats, aixi com el
curs de doctorat impartit pel professor Pedro Silva. A més, la participacié
en els congressos internacionals de Porto i Lisboa va significar un major
apropament al coneixement del moén de la teoria de semigrups.

D’altra banda, Napols és per a mi una ciutat molt important en aquest



vi AGRAIMENTS

procés de formacié. Aconsellat pel meu director, vaig tindre I'oportunitat de
cursar un any académic dins del programa Erasmus a la Universita degli Studi
di Napoli Federico II. Alli vaig poder aprendre una nova visi6 algebraica de
la ma de les classes impartides pel professor Francesco de Giovanni. A més,
després he tingut 'oportunitat de formar part de les activitats, congressos i
encontres realitzats per 'equip d’investigacié liderat per Francesco de Gio-
vanni. Junt amb ell, les professores Carmen Musella i Maria De Falco, han
fet que les seues invitacions a Italia hagen sigut molt agradables i fructiferes.
Al meu curs d’Erasmus també vaig tindre 'oportunitat de conéixer als meus
companys Marco Trombetti i Mattia Brescia amb els qui he compartit grans
moments junts.

Tot i aix0, la major part de la meua vida académica s’ha donat a Valéncia,
havent cursat gran part de la Llicenciatura a la Universitat de Valéncia, aixi
com el Master a la Universitat de Valéncia junt amb la Universitat Politécnica
de Valéncia. A tots els professors que he tingut, moltes gracies per les seues
llicons que han anat definint la meua formacié en matematiques.

Finalment, m’agradaria agrair a aquelles institucions que han donat un
suport economic a la meua formacié. Per una banda, al periode de Llicen-
ciatura i Master, les beques de manutencié per part del Col-legi Major San
Juan de Ribera de Burjassot, d’introducci6 a la investigacio JAE-pre per part
del CSIC, d’estudis a l’estranger del Programa Erasmus i de col-laboracié en
departaments universitaris. D’altra banda, durant el doctorat, el programa
“Atraccio de Talent” de la Universitat de Valéncia m’ha proporcionat un con-
tracte predoctoral durant 4 anys, junt amb una ajuda per a Estades Curtes.

Agraiments personals

He cregut necessari reservar un apartat als agraiments més personals a
totes aquelles persones que m’han acompanyat i transmés la seua estima
durant aquests anys.

Em resulta molt complicat deixar per escrit un agraiment als meus pares.
El seu permanent amor constituix la base sobre la qual em sustente com a
persona. A ells els dec el consell i la guia permanent. A la meua germana
no sé si podré tornar-li tot allo que m’aporta. L’amor fraternal que sentim
I'un per l'altre és dels misteris que més em fascinen. En definitiva, gracies
per poder comptar amb la seguretat de trobar el benestar amb vosaltres.

[’amor que m’han transmés a casa és extensible a cadascun dels membres
de la meua familia. Seure a la taula junts, fer i rebre visites familiars per
compartir les nostres vivéncies séon de les coses que més m’omplin.

La meua segona casa ha estat el Col-legi Major San Juan de Ribera durant
els meus anys de Llicenciatura i Master. Agraisc als directors José Vicente



vil

Puig i José Santiago Pons perqué procuraren crear un ambient de fraternitat
al Col-legi i que basant-se amb els ideals de I’humanisme cristia, poguérem
desenvolupar-nos a nivell intel-lectual, tant en I’ambit académic com espiri-
tual. Son innumerables les converses, experiéncies, rialles i anécdotes que he
compartit amb cadascun dels col-legials amb els qui he viscut. Degut a ells i
I’estima que m’han demostrat, he pogut créixer i enriquir-me com a persona.
Igualment, agraisc a Pilar, Asun, Mari, Amparo i Oleg, perqué amb la seua
dedicaci6 la nostra estada al Col-legi fora el més agradable possible.

Gracies a Angel David Martinez? (el meu “pare” al Col-legi, qui ha estat
sempre disposat a ajudar-me i ha sigut model per I'estima de les matema-
tiques), Inaki Cuevas, Robert Albero, Marc Coronado i José Alfonso Soto,
per la seua acollida al Col-legi; aixi com, a Alvaro Romera i Damian Alvarez,
qui s6n com uns segons germans d’una “Generacién de Oro”, amb els qui
he viscut tants moments i experiéncies junts, resumides en: “amistad, carino
y una mente afilada para reir”; gracies a Enrique Iranzo, amb qui sempre
quedara un moment més d’ “allontanamento al iDon”; i també a Marcos Car-
reres, Angel Sanchis, Héctor Ruiz, Sergio Benavent, Sergio Martin i Fernando
Molinero, per tants moments compartits.

A més a més, he pogut comptar amb "amistat i suport durant tot el meu
periode universitari de: Montse Tortosa, Jordi Hernandez, Andreu Jiménez,
Valentin Navalon, David Zorio, Fernando Messano i Francesco Ruggiero.

També m’han sigut molt ttils els consells i ajuda prestada pel meu
paisa, el professor Josep Guia; aixi, com la disposicioé de la professora Alma
D’Aniello en la seua acollida a Napols. Per altra banda, la meua formacié i
afici6 per la musica m’ha brindat 'oportunitat de participar en I’Orfed Uni-
versitari de Valéncia, on he gaudit amb tots els meus companys de la nostra
afici6 comu per la musica sota la batuta de Francesc Valldecabres. Igualment,
I’afici6 per la misica m’ha regalat 'oportunitat de compartir moments molt
divertits amb David Alonso, Javi Molina, Mathies Munoz i David Ortega.

Finalment, sempre és un gust tornar al poble i poder disfrutar d’una
estona tocant la tuba a la Societat Musical “la Pau” de Beneixama o fer-se
una cerveseta amb I’Escuadron Feroz (els meus amics de tota la vida del
poble).

A tots ells: Gracies! jGracias! Grazie! Obrigado! Thank you! ¥






Contents

v
1__Introduccidl 1
2__Introductionl 7
3 Preliminaries| 11
[3.1 Basic results on semigroups . . . .. ... .. ... ... ... 11
[3.2 A very elementary proot ot Graham’s Theorem|. . . . . . . .. 16
[3.3  Kernels of semigroups|. . . . . . . ... ... L. 19
[4 On the computability of the generalised kernel: a reduction |
[_theoreml 23
[4.1 Inverse semigroups and projections| . . . . .. ... ... ... 25
[4.2  'T'he semigroup of projections of a Brandt semigroup|. . . . . . 30
4.3 Quotients . . . . . . . .. ... 36
(4.4 Key Lemmas| . ... ... ... ... ... ... ... 45
M5 Mainresultl . . ... ... 49
[5  Applications| 51
[>.1 Abelian kernel of an inverse semigroup| . . . . ... ... ... 51

[5.2  On the computability of the §-kernel for extension closed va-

[ rieties: a conjecturel . . . . . . .. ... L.

1X






Chapter 1

Introduccid

L’estudi formal dels semigrups s’inicia a principis del segle XX amb els
treballs de Suschkevich, Rees, Green, Lyapin, Clifford i Preston, entre altres.
De fet, és durant la segona meitat del segle passat quan I’estudi dels semigrups
guanya gran rellevancia a causa de I'aparici6 de la teoria d’automats que, junt
amb l'aportacio del treball seminal de Kleene, suposa el comengament d’una
estreta relacié entre ambdues teories. Aixi, d’aquesta unié van naixer fortes
implicacions en la teoria de la computacié i llenguatges informals: com la
concepcid de circuits, la compilacié de llenguatges de programacio6 o la cerca
de cadenes de caracters. Per altra banda, també cal destacar 'impuls que
atorgaren els treballs d’Eilenberg o Schiitzenberger al desenvolupament de la
logica, I'algebra o la topologia mitjancant la teoria de semigrups.

Com en tota teoria algebraica, els principals resultats sobre els quals es
construix aquesta son aquells que intenten caracteritzar i descriure la propia
estructura algebraica. D’aquesta manera, és clar que un major coneixement
de lestructura permet aprofundir en la teoria, derivant-se aixi, aplicacions a
altres teories. En aquest sentit, un dels pilars en la teoria de semigrups i auto-
mats és el Teorema de Krohn-Rhodes, i.e. tot semigrup finit S es descompon
en un producte orlat de grups, cadascun d’ells divisor de S, i en un nombre
finit de semigrups aperiodics (és a dir, semigrups amb subgrups maximals
trivials). Aixi, segons aquest teorema, qualsevol resultat concernent a la de-
scomposicié de maquines seqiiencials amb un nombre finit d’estats pot ser
traslladat a un teorema sobre descomposicié en producte orlat de semigrups
finits; i viceversa, qualsevol descomposicié en producte orlat de semigrups té
la seua corresponent interpretacioé en termes de factoritzacions de maquines
seqiiencials amb un nombre finit d’estats.

El minim nombre de grups apareixent en la descomposicié de Krohn-
Rhodes s’anomena la complezitat d’un semigrup finit. Ara bé, tot i que és
ben conegut que existixen semigrups finits de complexitat arbitraria, no es
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coneix l'existéncia d’un algoritme per calcular tal complexitat d'un semigrup
en general. De fet, provar 'existéncia de tal algoritme és un dels problemes
oberts més importants en la teoria de semigrups finits, la recerca de la qual
ha portat al desenvolupament d’una gran quantitat de ferramentes i idees de
gran interés fora de la teoria de semigrups finits.

Pel que fa a les aportacions a la resoluci6 del problema, en els treballs de
Rhodes i Tilson [28] o Rhodes i Steinberg [27], s’han obtingut resultats relle-
vants proporcionant fites superiors i inferiors a la complexitat d’un semigrup
finit. En particular, en el treball seminal de Rhodes i Tilson es presenta un
meétode per obtenir una fita inferior de la complexitat d’un semigrup finit en
termes de la longitud maximal d’una cadena de subsemigrups, la qual esta
formada pel que anomenen subsemigrups de Tipus I i de Tipus II. Aquesta
longitud maximal resulta ser la complexitat per als casos en qué el semigrup
finit és invers o completament regular; no obstant aixo, un contraexemple
per a un semigrup finit en general es construi en [26].

Es en aquest punt quan entra en joc la nocié de nucli d’un semigrup finit.
A T’article de Rhodes i Tilson citat anteriorment, trobem definit el nucli d’un
semigrup finit com el major subsemigrup de Tipus II dins d’aquest. De man-
era analoga, també es pot veure com el conjunt d’elements relacionats amb
la identitat, sota ’acci6 de qualsevol morfisme relacional entre el semigrup
i un grup finit qualsevol. El nucli d’un semigrup finit juga un paper clau en
el problema de la complexitat d’un semigrup finit, és per aixo que la seua
computabilitat tindria importants conseqiiéncies en la seua resolucié. De fet,
un dels resultats més rellevants del treball de Rhodes i Tilson és la descripcio
dels elements regulars del nucli d’'un semigrup finit. Aquest resultat porta
Rhodes a formular la seua famosa conjectura, originariament anomenada
Type II Conjecture: el nucli d'un semigrup finit és el subsemigrup tancat per
conjugaci6é més menut que conté els idempotents (en particular, el nucli d’un
semigrup finit és computable).

Aquesta conjectura atragué I'atencié d’un gran nombre d’especialistes en
teoria de semigrups al voltant de 20 anys fins que fou resolta. La primera
solucid, deguda a Ash en [3], usa técniques algebraiques i métodes de combi-
natoria; mentre que quasi al mateix temps, una altra solucié independent fou
obtinguda per Ribes i Zalesskil en [29], basant-se en uns treballs anteriors
de Pin [22] i Pin i Reutenauer [24] per aplicar métodes profinits. Aquestes
solucions de la conjectura de Rhodes aportaren una gran quantitat de noves
idees a la teoria de semigrups. Simultaniament, experts d’altres arees de la
Matematica, com teoria de models (vid. [9] o [16]), s'interessaren per les
noves técniques que s’hi usaren. Els treballs de Margolis [21] i Henckell, Mar-
golis, Pin i Rhodes [15], escrits poc després de la prova d’Ash de la Type II
Conjecture, contenen informacio sobre el context historic i les conseqiiéncies



d’aquesta prova.

Com tot problema amb resolucié no immediata, no sols un gran nombre
de conseqiiéncies van ser obtingudes, sin6 que, a més a més, altres problemes
oberts en sorgiren de nou. Tenint en compte que la nocié de nucli d’un semi-
grup finit ve associada a la varietat de tots els grups finits (per varietat de
grups, s’entén una formaci6é de grups tancada per subgrups), un problema
particularment estudiat és saber qué ocorre quan generalitzem la definicié de
nucli. Donada una varietat de grups § qualsevol, direm que el §F-nucli Kz(5)
d’un semigrup finit S és el conjunt d’elements relacionats amb la identitat
sota l’acci6 de qualsevol morfisme relacional entre S'i un grup de la varietat §.

En aquest context i degut a la interdisciplinarietat de la soluci6é de la
Type IT Conjecture per part de Ribes i Zalesskii, on técniques de teoria de
grafs i topologia profinita entren en joc, els segiients problemes es plantejaren
implicitament en el treball de Margolis [21]. Per a una varietat de grups §
donada:

1. Decidir la computabilitat del §-nucli d’un semigrup finit (generalitzacio
de la Type IT Conjecture de Rhodes).

2. Decidir la computabilitat de la clausura d’un subgrup finitament ge-
nerat del grup lliure en la topologia pro-§.

3. Provar una versi6 general del teorema de Ribes i Zalesskii en la topolo-
gia pro-§.

Aquests problemes han sigut resolts per a la varietat de p-grups en [30].
De fet, el problema 3 ha sigut resolt per a varietats extensibles i localment
extensibles en [30] i [5], respectivament. A més, com a conseqiiéncia d’aquests
resultats, tenim que els Problemes 1 i 2 sén equivalents per a aquest tipus
de varietats (vid. [30], [5] i [20]). En particular, la solucié al Problema 2
per a la varietat dels grups resolubles resulta particularment rellevant, ja
que suposaria un gran avang en la teoria de semigrups finits i en la teoria de
complexitat computacional (vid. [10] i [31], per a més informaci6). Finalment,
el Problema 1 ha sigut resolt per a la varietat de grups abelians en [11],
qualsevol varietat de grups abelians decidible en [32] i la varietat dels grups
nilpotents en [2].

Com que la generalitzacié de la Type II Conjecture de Rhodes és per a
qualsevol varietat de grups, és natural esperar que existisca algun argument
que la puga provar; tanmateix, no s’ha pogut trobar cap indici de com tal
prova poguera ser. Aleshores, 'estratégia a seguir en aquests casos és reduir
el problema a algun tipus de semigrups especial. De fet, en els casos en queé la
varietat § és extensible, a partir d’un teorema de Ribes i Zaleskil es pot inferir
que el §-kernel és computable si els seus elements regulars sén computables.

Segons aquest plantejament, Steinberg en [33] prova un teorema de reduc-
ci6 per a la computabilitat dels elements regulars del §-nucli d'un semigrup
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finit. Segons aquest resultat, els elements regulars del §-nucli son computa-
bles si, i només si, el F-nucli d’'un semigrup invers finit és computable. Malu-
radament, aquest teorema esta lluny de solucionar la generalitzacié de la
conjectura de Rhodes per a varietats extensibles [4] i, per tant, es requerixen
noves idees i técniques.

El principal resultat d’aquesta tesi pretén anar un pas més enlla i acon-
seguir una aproximacié decisiva cap a la verificacio de la generalitzacié de la
conjectura de Rhodes per a varietats extensibles. Aixi, com a resultat prin-
cipal s’afirma el segiient: el §-nucli d’un semigrup invers finit és computable
si, 1 només si, el §-nucli d'un semigrup invers finit amb tots els seus subgrups
maximals en § és computable. Queda recollit en el segiient teorema:

Teorema A Siga § una varietat de grups. Les segiients afirmacions son
equivalents:

1. Els elements requlars del F-nucli d’un semigrup finit son computables.
2. El §-nucli de tot semigrup invers finit és computable.

3. El§-nucli de tot semigrup invers finit amb els subgrups mazimals en §
és computable.

El Teorema A és conseqiiéncia d’un resultat més general:

Teorema B Siga § una varietat de grups. Aleshores, les segiients afirma-
ctons son equivalents:

1. Els elements regulars del F-nucle d’un semigrup finit son computables.

2. K5(S)NJ és computable per a tot semigrup invers finit S i tota J -classe
J de S.

3. Kz(S) N J és computable per a tot semigrup invers finit S amb zero i
amb una unica J-classe 0-minimal tal que S, € §, per a tot idempotent

e € E(9).

Com a nota del meétode de prova del resultat principal, caldria remarcar
que s’ha adoptat un enfocament estructural classic del problema amb gran
eéxit. El punt de partida es troba en el treball seminal de Rhodes i Tilson [2§],
de manera que s’ha procurat desenvolupar aquesta tesi des d’un punt de vista
“pur” de la teoria de semigrups finits. Probablement, es podria donar un al-
tre enfocament fent s dels anomenats grafs de Schiitzenberger o els grafs



inevitables d’Ash, donant lloc aixi a proves més geométriques de les equiv-
aléncies dalt mostrades. No obstant aixo, s’ha preferit un també anomenat
“classic enfocament” perqué resulta ser més transparent i autocontingut al
nostre entendre.

La tesi queda organitzada com seguix. Al Capitol 3| es pretén recollir els
resultats basics que es fan servir en semigrups i nuclis. Encara que alguns
d’ells poden ser ben coneguts pels experts en teoria de semigrups, probable-
ment hi podem trobar-ne de nous. Al Capitol[d] el principal resultat d’aquesta
tesi ve presentat, aixi com un desenvolupament dels conceptes fonamentals
que s’usen a la prova d’aquest. En particular, apareix la nocié de projeccié
d’un element en una 7-classe O-minimal d’un semigrup invers. Sobre aquesta
noci6é vénen construits el concepte de par minimal (Seccid , el semigrup
de projeccions d’'un semigrup de Brandt (Seccio i un tipus especial de
quocients (Secci6 . Aixi, es pot apreciar com els pars minimals i els quo-
cients serviran com a nexes d’uni6 d’una cadena de reduccions mostrada a
la Secci6 [4.4] La prova del principal resultat d’aquesta tesi es fonamenta en
aquesta cadena de reduccions, com es pot observar a la Secci6 [4.5 Finalment,
el Capitol 5| esta dedicat a les aplicacions del Teorema principal.






Chapter 2

Introduction

The formal study of semigroups began in the early 20th century with
the works of Suschkevich, Rees, Green, Lyapin, Clifford and Preston among
others. In fact, during the second half of the past century, the study of finite
semigroups has been of particular importance because of its close relation
to theoretical computer science, which is based on the natural link between
finite semigroups and finite automata via the syntactic monoid.

One of the milestones in the theory of semigroups and automata is the
Krohn-Rhodes Theorem [19]. It states that every finite semigroup S divides
a wreath product of finite simple groups, each of them divisor of S, and finite
aperiodic semigroups, i. e. semigroups with trivial maximal subgroups. As a
consequence, any result about decomposition of machines can be translated
into a theorem about wreath product decompositions of finite semigroups and
any wreath product decomposition of finite semigroups has a corresponding
interpretation in terms of factorizations of finite state machines.

The smallest number of groups in any Kohn-Rhodes decomposition is
called the (group) complexity of the semigroup. It is well-known that there
are semigroups of arbitrary complexity. Nevertheless, there is no obvious
way to compute the complexity of a finite semigroup in general. In fact, this
decidability is one of the most important open problems in finite semigroup
theory and the search for the solution has led to the development of many
tools and ideas that are useful in finite semigroup theory and of independent
interest.

However, some upper bounds and ever more precise lower bounds for com-
plexity have been obtained. For the last ones, in 1972, Rhodes and Tilson
presented in his seminal paper [28] a method to obtain a lower bound for the
complexity of a semigroup, which was given by means of taking the maximal
length of a chain of subsemigroups alternating what they called type I and
type II subsemigroups and containing a non-aperiodic type I subsemigroup.

7
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Indeed, this number was proved to be the complexity for inverse semigroups
and complete regular semigroups, but a counterexample for a general semi-
group was constructed in [20].

At this point, the notion of the kernel of a semigroup came on the scene. It
was introduced by Rhodes and Tilson in the aforesaid paper as the maximal
type II subsemigroup of a given semigroup (also as the set of elements related
to the identity under every relational morphism between the semigroup and
a group), and its computability would have important consequences in the
solution of the complexity problem. In fact, one of the main results in Rhodes
and Tilsons’s paper is a description of the regular elements of the kernel of
a semigroup. That result led to the Rhodes’ conjecture, originally called the
“Type II Conjecture” the kernel of a semigroup is the smallest subsemigroup
containing the idempotents and closed under weak conjugation. In particular,
the kernel of a semigroup is computable.

This conjecture attracted the attention of many semigroup theorists dur-
ing about two decades before being solved. Its first solution, given by Ash in
[3], used algebraic and combinatorial methods. Almost at the same time, an
independent solution was given by Ribes and Zalesskil in [29]. Their proof
used profinite methods and it is based on works of Pin [22] and Pin and
Reutenauer [24]. The solution of the Type II Conjecture brought many new
ideas into semigroup theory, and also attracted the attention of researchers
of another areas of Mathematics, such as Model Theory (see [9] or [16]).
The papers by Margolis [21] and by Henckell, Margolis, Pin and Rhodes [15],
written soon after Ash’s proof, contain some of the history and consequences
of the Type II Conjecture and extensive literature on the theme.

Like many problems with a no immediate solution, once they are solved,
not only a great number of consequences spring from their solution, but also
new questions related with them can be set out (see [2I]). A first natural
step is to extend the definition of kernel of a semigroup to an arbitrary
variety of finite groups §: the F-kernel Kz(S) of a finite semigroup S is
the subsemigroup of S consisting of all elements of S such that relate to
the identity under every relational morphism of S with a group in §. The
generalised kernels of finite semigroups are precisely the kernels associated
to varieties of finite groups, i.e, subgroup-closed formations of finite groups.

In this context, due to the interdisciplinary nature of the proof of the
“Type II Theorem” by Ribes and Zalesskii, where profinite topology and
graph theory was involved, the following problems were implicitly put forward
in [21]:

1. Decide the computability of the §-kernel of a finite semigroup, for a
given variety § (generalised Rhodes’ Type II Conjecture).

2. Decide the computability of the closure of a finitely generated subgroup



of the free group in the pro-§ topology, for a given variety §.

3. A general version in the pro-§ topology of the Ribes and Zalesskii’s
theorem, for a given variety §.

These problems have been solved for the variety of p-groups [30]. In fact,
Problem 3 has been solved for extension closed varieties and locally extensible
varieties in [30] and [5], respectively. As a consequence of that, Problems 1
and 2 are equivalent for these varieties (see [30], [5] and [20]). In this context,
the solution of the Problem 2 for the variety of finite soluble groups is of
particular importance, since it would have interesting consequences in finite
semigroup theory and computational complexity (see [10] and [31]). More-
over, Problem 1 has been solved for the abelian group variety [11], for any
variety of abelian groups which has decidable membership problem and gen-
erates the abelian group variety [32] and for the variety of nilpotent groups
2.

Since generalised Rhodes’ Type II Conjecture is completely general, it is
natural to hope that some argument might exist that would prove it, but up
to now no one seems to have an inkling of how such a proof might proceed.
Failing that, one could try to reduce the problem to a question about some
restricted class of finite semigroups. Indeed, in the important case where § is
extension closed, a theorem of Ribes and Zalesskii [30] allows us to conclude
that the §-kernel is computable if its regular elements are computable. In this
context, Steinberg [33] proved a reduction theorem for the computability of
the regular elements of the §-kernel of a finite semigroup. He showed that
the membership problem for such elements is decidable if, and only if, it is
decidable for inverse semigroups.

Unfortunately, Steinberg’s reduction theorem is far from solving the gen-
eralised Rhodes’ Type IT Conjecture for extension closed varieties [4], and
therefore new ideas and techniques are required.

The main result of this thesis is meant to provide a decisive step towards
verifying the generalised Rhodes’ Type II Conjecture for extension closed
varieties.

We prove that the §-kernel of every finite inverse semigroup is computable
if, and only if, the §-kernel of every finite inverse semigroup with all maximal
subgroups in § is computable. Thus, our principal result is contained in the
following theorem.

Theorem A. Let § be a variety of groups. The following statements are
pairwise equivalent:

1. The regular elements of the §-kernel of a finite semigroup are com-
putable.



10 CHAPTER 2. INTRODUCTION

2. The §-kernel of every finite inverse semigroup is computable.

3. The §-kernel of every finite inverse semigroup whose all mazimal sub-
groups are in § 1s computable.

Theorem [A]is a consequence of a more general result.

Theorem B. Let § be a variety of groups. Then the following statements
are pairwise equivalent:

1. The reqular elements of the F-kernel of every semigroup are computable.

2. K5(S) N J is computable for every inverse semigroup S and every [J -
class J of S.

3. Kz(S) N J is computable for every inverse semigroup S with zero with

a unique 0-minimal J-class J such that S, € §, for each e € E(S).

We make one remark on our method of proof. We have adopted here a
classical structural approach with great success. It has the seminal paper of
Rhodes and Tilson [28] as a point of departure. In fact, the emphasis through-
out it is unashamedly on what might be called 'pure’ semigroup theory. It
probably might be possible to use an alternative approach using Schiitzen-
berger graphs or Ash inevitable graphs leading to a geometric proof of our
equivalences in Theorems[A]and [B] However, we are much in favour to use the
so-called classical approach because it is more transparent and self-contained.

All semigroups and groups considered in this paper are finite.

The thesis is organised as follows. Chapter [3| of the thesis is intended to
collect the basic results on semigroups and kernels. A certain amount of what
is here should be considered folklore, although probably some bits are new.
Chapter [4] presents our main result and develops the fundamental concepts
which are used in the proof of it: we present the notion of projection onto
a O0-minimal J-class of an inverse semigroup, and on those foundations is
then built a fairly natural edifice, consisting of minimal pairs (Section ,
the semigroup of projections of a Brandt semigroup (Section , and some
sort of quotients (Section . Minimal pairs and quotients are the links in
a chain of reductions that are shown in Section [£.4l Our chain of reductions
is the basis of the proof of the main result that is presented in Section
Finally, Chapter [5|is referred to the applications of our main result.



Chapter 3

Preliminaries

In this section, we collect some definitions and specific notation that are
needed in our main results. For further details, background and undefined
notation, see [1], [8], [23], [27].

3.1 Basic results on semigroups

Recall that a semigroup is a set S that is closed under an associative
binary operation. The common term for a semigroup with an identity element
is a monoid. In many instances, it is more convenient to work with a monoid
than with a semigroup. It is thus sometimes to speak of the semigroup with
identity adjoined S!. Like rings, but unlike a group, a semigroup may have a
zero element, and may moreover be useful to adjoin a zero to a semigroup, in
much the same way we can adjoin an identity. The corresponding semigroup
is denoted by S°.

The identity and zero elements are both examples of an important class
of elements within a semigroup S, namely idempotents, that is, elements
e € S such ¢ = e. For a subset X of S, denote by E(X) the subset of all
idempotents of S contained in X.

If X and Y are subset of a semigroup S, we denote by (X) the sub-
semigroup generated by X and XY = {zy : 2z € X,y € Y}. In particular, if
X ={z}orY = {y}, we simply write XY = 2Y and XY = Xy respectively.

Note that ideals in semigroups are defined in much the same way as in
rings. A non-empty subset I of a semigroup S is said to be a left (right) ideal
of Sif ST C I (IS CS).If I is both a left and a right ideal of S, we say that
I is an ideal of S. In this case, the set S/I = (S\ I)" is a semigroup with the
products not falling in S\ I are zero. This notion of ideal leads naturally to
the consideration of Green’s relations and preorders [14] that are extremely

11
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important in the structural study of semigroups:

s <g t if, and only if, S's C S't, s Rt if, and only if, S's = S't
s <, t if, and only if, sS* C ¢S, s Lt if, and only if, sS! = tS!
s <7t if, and only if, J; C J;, s J t if, and only if, S'sS1=51tS!

s <y tif, and only if, s <gt As <pt, sHtif, and only if, sRt AsLt.

If K is one of the Green’s relations in a semigroup S, then the equivalence
classes of the relation I are the KC-classes. In particular, we shall use the
notation K for the respective K-class of an element s of S. At the same
time, we can observe that each preorder associated with IC define a partial
order between the K-classes of S: K, <x K, if, and only if, s <) t. Thus, if
0 € S, {0} is the minimal KC-class of S. We say that a J-class is 0-minimal
if J is minimal between the non-zero J-classes of S.

Moreover, if T' is a subsemigroup of S we can consider the relation K in
T, which shall be denoted by KCr to avoid confusion with K defined in S.

A subsemigroup L of a semigroup S is called a subgroup of S if L under
the operation of S is a group. In this case, the identity e of H is an idempo-
tent of S and L is contained in the group of the units of the subsemigroup
eSe. It is well-known that this last subgroup corresponds to the H-class of
e, H,, so that it is the mazimal subgroup of S having e as an identity ele-
ment (see |23, Proposition 1.13|, for example). For every idempotent e of a
semigroup, we shall denote by S, the maximal subgroup of S at e, which is
a more convenient notation than H., when maximal subgroups in different
subsemigroups containing the same idempotent are considered.

The notion of regularity is also important in the theory of semigroups.
It was introduced by Green in the later sections of his paper [14]: an ele-
ment x of a semigroup S is called regular if x € xSx. The semigroup S is
called regular if every element is regular. This is a notion that had been in-
troduced for rings by von Neumann. He developed regular rings as a tool for
his study of lattices, particularly complemented modular lattices, which were
then thought to provide a suitable abstract framework for certain aspects of
quantum mechanics. Concerning regular semigroups, Green proved that such
semigroup may be characterised as a semigroup in which each element is -
related to at least one idempotent. In general, we say that a IC-class is reqular
if it contains an idempotent, where K is one of the Green’s relations.

We say that two elements s,t of a semigroup are inverse elements if
sts = s and tst = t. A semigroup S is said to be inverse if every element has
just one inverse element. Inverse semigroups are central in semigroup theory
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and they form one of the most studied class of semigroups. It may be that
the success of the theory of inverse semigroups stems from the fact that they
are very close to groups in many of their properties. Nevertheless, inverse
semigroups are not generalisations for generalisation’s sake, but they arose
in response to certain mathematical demands: for example, to describe some
invariants in differential geometry, and they are closely related to semigroups
of injective partial transformations.

If X is a subset of an inverse semigroup S we denote X ' = {z71 : 2z €

X},

Now, let us introduce some basic well-known results concerning the con-
cepts defined up to now.

Lemma 1. Let s,t elements of a semigroup S. Then st <7 s and st <7 t.
Lemma 2 (see [12]). Let S be a semigroup (not necessarily finite). Then:
1. If S is regular, then (E(S)) is a reqular subsemigroup of S.

2. If T is a reqular subsemigroup of S. Then, Ky = Ks N (T x T'), where
K=LorR.

Lemma 3. 1. A subsemigroup T of an inverse semigroup S is an inverse
subsemigroup if a € T implies a=' € T.

2. If s,t are elements of an inverse semigroup S, we have that (s™1)™' = s
and (st)™! =t71s7h

3. S is an inverse semigroup if, and only if, S is reqular and its idempo-
tents commute. As a consequence, if S is an inverse semigroup, E(S)
is a subsemigroup of S.

Another keystone for the development of semigroup theory was the no-
tion of a semigroup to be 0-simple, introduced by Rees in [25]: a semigroup
S is said to be 0-simple if S? # 0 and 0 is the only proper ideal of S, or
equivalently, if SzS = § for all 0 # x € S. In this paper, he went on to
derive a semigroup analogue of the Artin-Wedderburn Theorem for semisim-
ple rings and algebras. His result is now known, appropriately enough, as
the Rees Theorem, or, occasionally, as the Rees-Sushkevich Theorem, since
it subsumes an earlier result of Sushkevich. This theorem was semigroup the-
ory’s first major structure theorem. The main ingredient of this result is the
notion of Rees matriz semigroup which is defined in the following way: let
A, B be non-empty finite sets and let G be a group. A Rees matriz C' is a
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map C : B x A — G°. We say that the Rees matrix is reqular if every row
and every column has a non-zero entry. Then, the Rees matriz semigroup
with sandwich matrix C' is the semigroup M°(G, A, B, C') with underlying
set (A x G x B)U {0} and the operation: 0 - (a, g,b) = (a,g,b) - 0 = 0, and

(0.0.b)- (d-d.¥) — {(a,gcw, @)g,b) i Clba) €G,
0, if C'(b,a’) =0,
for all a,a’ € A, b,/ € B, g € G.
It is known that the Rees matrix semigroup with sandwich matrix C' is
a regular semigroup if, and only if, C' is a regular matrix, and in this case
MO(G, A, B,C) is a 0-simple semigroup.
The Rees theorem [25] may now be stated:

Theorem 4. FEvery reqular Rees matrix semigroup is a 0-simple semigroup.
Conversely, every 0-simple semigroup S is isomorphic to a reqular Rees ma-
triz semigroup M°(G, A, B,C), where G is isomorphic to the mazimal sub-
groups S, for all e # 0.

In the case when a 0-simple semigroup S is also an inverse semigroup,
then S is isomorphic to a Rees matrix semigroup of the form M°(G, A, A, I,,),
where n = |A|. Such semigroups are called Brandt semigroups, which come
from the notion of a groupoid, a structure of a binary system in which prod-
ucts are not always defined. Groupoids where introduced by Brandt in 1927
[7] and generalise the notion of group in several equivalent ways, having ap-
plications in topology and manifold theory (see |8, Chapter 3.3|, for more
information).

The following lemma is elementary.

Lemma 5. The following statements hold:

and only if, j = i'. Moreover, (i,g,7)"' = (4,97%,14).

2. E(JO) = {0} U {(Z, 1,2) NS A} and S(i,l,i) = (JO)(i717Z‘) = (Z, G, Z)
3. For everys € S and v € J°, sx,xs € J°.

Graham [I3] published an influential contribution to the structural study
of a O-simple semigroup. He showed how to apply graph theory to obtain
a description of the idempotent-generated subsemigroup of a 0-simple semi-

group.



3.1. BASIC RESULTS ON SEMIGROUPS 15

Theorem 6. Let S be a 0-simple semigroup. Then there exists an isomor-
phism:
VS — MYG,A,B,C)

from S to a Rees matriz semigroup M°(G, A, B,C') such that:

o The matrix C is the direct sum of the n matrices Cy,...,C, as shown
below:
Al A2 e An
B, /Cy 0 -+ 0
B, 0 Cy --- 0
B, \0 o --- C,

e Each matriz C; : B; x A; — G° is reqular and:

(E(S)) = MG, 4, B;, )
i=1
where G; is the subgroup of G generated by all non-zero entries of C;,
fori=1,...,n.

Graham'’s result was republished ten years after by Howie (see [18]) and
Houghton (see [17]). This last author added topological techniques and coho-
mology that have had a strong influence in the proof of the theorem presented
in [27]. In the following subsection, we present a very elementary proof of that
result.

We bring the section to a close with the following constructions:
Construction 1: Let J be a regular J-class of a semigroup S. Then, J° is
a semigroup with the operation:

{w ifabe J

0 otherwise

for all a,b € J,and 0-a = a-0 = 0 for all @ € J. It holds that J° is a
0-simple semigroup and then J° = M%G, A, B,C), where G = (J%), = S,
for every e € E(J). In the case when S is an inverse semigroup, J° is a Brandt
semigroup and then isomorphic to M°(G, A, A, T,,), where n = |A| (see [8,
Chapter 3|, for example).

If J is a O-minimal J-class of a semigroup with zero S, by Lemma
Js <7 Js = Jy for all s;t € J. Hence, Jy = Js = J;, for every s,t € J with
st # 0. Consequently, J° is a subsemigroup of S.



16 CHAPTER 3. PRELIMINARIES

Construction 2: Let J = J, be a J-class of a semigroup S with zero. Set
X;={teS:s<st} By Lemmal[l S\ X, is an ideal of S. Therefore
Sy:=8/(S\ X;) = (X,)?is a semigroup with zero. Note that if S is inverse,
then S is inverse as well.

Recall that the product in S is defined by:

{st, if st € Sy,
st =

0, otherwise.

Let 0 # a,b € S;. Assume that a <7, b. Then, there exist z,y € S* such
that @ = xby. By Lemma , z,y € S} and so a <gs, b. This shows that

relation J coincide in both semigroups, so that J is the unique 0-minimal
J-class of S;.

3.2 A very elementary proof of Graham’s The-
orem

In this subsection, S will denote a 0-simple semigroup and T = (E(S)).

Our concern here is in applying basic results on regularity to the method
used by Rees to prove his isomorphism theorem. This will lead us to a new
proof of Graham’s Theorem.

The next two lemmas proved in [25] and their corollaries are absolutely
essential in our approach.

Key Lemma 1. [25 Lemmas 2.61, 2.62, 2.63| For each pair of non-zero
idempotents e and f of S, eSf is non-zero and there exist 0 # x € eSf and
0 #y e fSe such that vy = e and yr = f.

Key Lemma 2. [25 Lemma 2.7| Let e, f € E(S) \ {0}. The sets eS and
fS have either no non-zero elements in common or are identical. Similarly
for the sets Se and Sf and, consequently, for the sets eSf and €'Sf’.

Corollary 7. Let 0 # ef € T with e,f € E(S). Then eRypef Ly f. In
particular, e T f Tr(ef).

Proof. Since S is regular, T is regular by Lemma [2 Then, there exists 0 #
a € T such that (ef)a(ef) = ef and 0 # (ef)a =: ¢ is idempotent. Hence,
gS = (ef)S C eS and, by Key Lemma 2, gS = (ef)S = €S, i.e. eR(ef).
Now, we can apply Lemma [2| to conclude e Rref.

Analogously, we have (ef) Ly f and therefore e T f Tr(ef). ]
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Corollary 8. Assume that 0 # ey---e, € T for some e; € E(S), 1 <i <.
Then ey Tr...Tre. Tr(er---e.).

Now, we split the proof into the following steps.

Step 1. Let (Jr)ey,---,(J1)e, be the non-zero J-classes in 7. Since T is
regular, we may assume that ey, ..., e, € E(S). For each k € {1,...,n}, we

write:
k 0
TW = (Jr)? CT

e

Corollary |8 ensures us that 7*) is a 0-simple subsemigroup of T, for each
1<k <n.

Step 2. Since S is regular, we have that:
S = UriSlj where 7;,1; € E(S)\ {0}, i=1,....m, j=1,....1

irj
Moreover, by Key Lemma 2, we can choose the idempotents r;,[; such that
ry =l; = ey, and r;S1; NrySly = 0 if, and only if, either ¢ # i’ or j # j', for
every 1 < i,7/ <m and every 1 < j,j <.
Set A:={1,...,m} and B :={1,...,l}. For each 1 < k < n, we define:

Ay ={icA:r;Jrer}, Br:={j€B:l;Trex}.

Then {Ag}}_,, {Br}r_, are partitions of A and B, respectively.

Step 3. Let k € {1,...,n}. Applying Key Lemma 1 we have:

i) There exist non-zero elements x1; € e;Sey, xx € erSep, such that
T1pTr1 = €1 and zp1 21, = €. Hence:

o1 e1Ser —  epSeg or1: exSer, —  e1Se; (3.1)
S = Tp1STik S = T1kSTk1 '

are isomorphisms.

ii) Since T™ is O-simple, for all i € Ay, j € By, there exist non-zero
elements p;, € riT("’)ek, Qrj € ekT(k)lj, such that

0 # z1kqrj € e1Sl;, 0 # PixTr1 € 1iSey

Then, for all + € A and 5 € B, we define:

0 # pi1 := paTr1 € 13Sey if i € Ay,
0 # qij == x1,qi; € e1Sl; if j € By,
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Conclusion. According to Rees’” Theorem, the maximal subgroups S,, for
all 0 # e € E(9), are all isomorphic. Let G° := ¢;Se; = (S,,)? and consider
the Rees (B x A)-matrix given by:

. jeEBieA
0 otherwise

C(],Z) — {QI]pzl II q15Pi1 7& 0

The proof of Theorem 2.93 in [25] gives us an isomorphism
Y: S — MY G,A,B,C)

Moreover, by Corollary (7, if j € By and ¢ € Ay and k # K/, it follows
that [;r; = 0. Therefore C(j,7) = 0 and then

A Ay oo A,
B /cy 0 -+ 0
B 0o Cy -+ 0
B, \0 o - C,

This proves the first statement of the theorem.

Fix k € {1,...,n}. Then, by (3.1)), ¢k is an isomorphism between ej,Sey,
and e;Sey such that ¢gi(qrjDix) = qujpa, for all @ € Ay, j € By, and ¢
restricted to T, e(,f ) defines an isomorphism between Te(,f ) and a subgroup Hy
of G. Since T™ is 0-simple and py, € r;T®e;, and qrj € ekT(k)lj, for each
i € Ag and j € By, we can follow the proof of Theorem 2.93 in [25] to
conclude that the restriction of 1 to T®) defines an isomorphism between
T® and MO(Hy, Ay, By, Cy,), where Cj, is defined by:

Cr(g,1) := | € B,i€ A
k() 0 otherwise J kot ¥

~ {Spkl(q_kjpik> if rjpar. # 0

It is clear that gx;p;, # 0 if, and only if, ¢1;pi1 # 0. Therefore Cr = Ch.

Since T' = {J;_,(T*) and ¢(T"*) is isomorphic to M°(Hy, Ag, Bk, Cy), we
have that ¢)(T") can be described as | J,_, M°(Hy, Ay, By, Cy.).

Moreover, (i,g,7) € M°(Hy, Ag, By, Cy) is a non-zero idempotent if, and
only if, Ci(j,i) # 0 and g = Cy(j,7)"'. Since every element of T") is a
product of idempotents, it follows that Hy = ({0 # Cy(j,4) : j € By,i €
Arl).

The second statement of Graham’s result now holds and the proof of the
theorem is complete.
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3.3 Kernels of semigroups

The purpose of this section is to introduce the notion of the generalised
kernel of a semigroup. It is defined in terms of relational morphisms and
varieties of groups.

Relational morphisms between semigroups were first introduced by J.
Rhodes and B. Tilson in the mid-1970s. This very important notion, which
can be seen as a generalisation of homomorphism of semigroups, is considered
as one of the key tools when comparing semigroups, growing out of the basic
ideas of decomposition theory. If you present a semigroup S as homomorphic
image f: C'— S of a semigroup C of a wreath product AT, then the inverse
image of f followed by the projection to 7" is a relational morphism from S
to T'. Conversely, given a relational morphism, one wants to know how to
complete it to a wreath product division.

Then, a relational morphism 7: S —+T between two semigroups S and
T is a map from S into P(T), the set of subsets of T, such that 7(s1) # () and
7(81)7(s2) C 7(5152), for all s1,s5 € S. If 7 is a relational morphism between
monoids a third condition is required: 1 € 7(1).

A relational morphism 7: S —+T' is said to be surjective if for every t €
T, there exists s € S such that t € 7(s). Given 71: S—+T and 7o: T —+U
two relational morphisms, we can define:

(r20m)(s) = | J{m(t) : t € Ti(s)}, for every s € S.

Then 15 071y: S —+U is again a relational morphism between S and U.

Given a relational morphism between a semigroup S and a group G,
7: S+ G, we can consider the set 771(1) := {s € S : 1 € 7(s)}, which is
clearly a subsemigroup of S called the kernel of 7. In particular, for every
e € E(S), e € 771(1) because 7(e) is a subgroup of G.

Moreover, if S is an inverse semigroup and s € S, then 7(s)7(s™!)
7(ss71). Hence |7(s)| < |7(ss71)]. On the other hand, we have 7(ss™1)7(s)
7(ss71s) = 7(s) and then |7(ss71)| < |7(s)]. Thus, we have 1 € 7(s)7(s7!)
7(ss71) and therefore, there exists z € 7(s) such that 7! € 7(s71).

1NN

This leads to the following Proposition which shows the behaviour of the
images of a unique 0-minimal [J-class of an inverse semigroup S under a
relational morphism between S and a group G.

Proposition 9. Let S be an inverse semigroup with a unique 0-minimal
J-class J, such that J° = M°(G,A, A\, I,) < S. Let H be a group and
7: S—+ H be a relational morphism. Then, the following properties hold:



20 CHAPTER 3. PRELIMINARIES

1. For everyi € A, 7(i,1,i) = K; < H E|
2. Given (i,g,j) € J, for every x € 7(i,g,7), 7(i,9,5) = Kz = v K;.

3. For every s,t € J, |7(s)| = |7(t)| and 7(s)7(t) = 7(st), in case that
st # 0.

Proof. Having into account Lemma [5], the proof comes easily. 1. Clear, from
the fact that we know that relational morphisms between a semigroup and a
group send idempotents to subgroups.

2. Let (i,g,j) € J. Since S is an inverse semigroup we know that there
exists z € 7(i,g,7) such that 2= € 7(j,971,4).

Let z € 7(i,g,7). We have that (i,1,7)(¢,9,7) = (,9,7) and therefore:

Kix C 7(i,1,i)7(i,9,7) € 7(i,9,7)

Similarly we get that K;z C 7(i,g,j) and then K;z = K;x C 7(i,9, 7).
On the other hand, let y € 7(i, g, j). Then

yz"t e r(i,g,5)m(j, 97" i) C 7(i, 1,i) = K;

i.e. y € K;z = K;xz. Hence, we can conclude that 7(i,g,j) = K;x.

Analogously, since (¢, g, 7) = (4,9,7)(4, 1, j), we can also prove that v K; =
7(,9,J)-

3. First, we claim that for every ¢, j € A, K, and K are conjugate. In fact,
by 2, 7(i,1,j) = K;xz = zKj, for every x € 7(i,1, 7). Therefore, K¥ = K;
for every x € 7(i, 1, ).

Then, again by 2, we can ensure that the image under 7 of every element
in J has the same cardinality. On the other hand, since 7 is a relational
morphism, 7(s)7(t) C 7(st), for every s,t € J. Moreover, if st # 0, we have
that |7(s)| < |7(s)7(t)] < |7(st)] = |7(s)| and then |7(s)7(t)| = |7(st)], i.e.
T(s)T(t) = 7(st).

O

From now on, we shall be interested in relational morphisms into groups
in a variety.

Recall that a formation is a class of groups § which is closed under taking
epimorphic images and subdirect products. A formation which is closed under
taking subgroups is called variety (or sometimes pseudovariety).

'For the sake of clarity, given an element of a Rees matrix semigroup (i,g,7) €
MO (G, A, B,C), we denote its image under a relational morphism 7(i,g,j) instead of

7((,9,4))
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Given a non-empty formation §, each group G has a smallest normal
subgroup whose quotient belongs to §; this is called the §-residual of G and
it is denoted by GS. Clearly, G¥ is a characteristic subgroup of G and it is
the intersection of all normal subgroups N of G such that G/N € § (see [6]
Section 2.2] for further details).

Let § be a variety of groups. We consider the intersection Kz(S) of the
kernels of all relational morphisms 7: S —+ G, between S and every group
G € §; K5(5) is a subsemigroup of S called the §-kernel of S. The case when
§ = &, the variety of all groups, the &-kernel of S is just called the kernel
of S.

It is clear that if TV is a subsemigroup of S, then Kg(W) is a subsemigroup

In order to compute the §-kernel of a semigroup .5, it is enough to consider
only surjective relational morphisms since § is subgroup-closed. In addition,
if S'is a group, and 7: S —+ H is a surjective relational morphism between
S and H € §, it follows that 7(1) is a normal subgroup of H and if z € S,
then y7(1) = 7(x) for all y € 7(x). Hence the map 7: S — H/7(1) € 5,
given by 7(z) = 7(x) is a group homomorphism. These observations allow us
to confirm that the §-kernel actually generalises the notion of §-residual.

Proposition 10 (|11, Proposition 9.6]). If G is a group and § is a variety,
then K3(G) = GS.

The above proposition does not hold for formations in general, as the
following example shows.

Example 11. Let § be the formation generated by As, the alternating group
of degree 5. Then the §-residual of the cyclic group G of order 2 generated
by £ is GG. However, there exists a non-trivial relational morphism between
G and Ajs: if a € A5 with order 2, let us define 7: G —» A5 taking 7(§) = a
and 7(1) = 1. Hence, K3(G) = {1}.

In the sequel, we consider only varieties of groups when we study §-kernels
of semigroups. Finally, we bring the section to a close by presenting the
following results relating §-kernels and §-residuals of the maximal subgroups
of a semigroup.

Proposition 12. Let S be a semigroup and let § be a variety of groups.
Then, for every e € E(S), (Se)¥ is a subgroup of (Kz(S))e.

Proof. Let e € E(S). Since S, < S, we have that Kz(S,) < Kz(.5). Since
(S.)? is a subgroup of K3(S,) and e is the identity element of (S,)¥, it follows
that (S.)%¥ < (Kz(9))e. O
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Corollary 13. Let S be an inverse semigroup and let § be a variety of groups.
Suppose that Kz(S) = E(S). Then S, € §, for every e € E(S).

Proof. Let S be an inverse semigroup, and e € E(S). By Lemma [3| E(S)
is a subsemigroup of S. Thus (E(S)). = {e}. By Proposition |12, (S.)¥ is
contained in (Kz(S5)). = (E(S)). = {e}. Hence, S. € 5. O



Chapter 4

On the computability of the
generalised kernel: a reduction
theorem

The kernel of a semigroup was introduced by Rhodes aiming to treat
questions related to the group-complexity of a semigroup, which is one of the
most important open problems in semigroup theory. However, its definition
is clearly non constructive and so the study of the computability of the kernel
naturally arises. This problem, presented in the seminal paper of Rhodes and
Tilson [28], had attracted the attention of many researchers during almost
20 years.

The notion of weak conjugacy is crucial here. We say that a pair of ele-
ments (s,t) of a semigroup S forms a pair of weak conjugay if either sts = s
or tst = t. Then, a subsemigroup K < S is said to be closed under weak
conjugacy if sKt,tKs C K, for every pair of conjugacy (s,1).

Rhodes and Tilson characterised the regular elements of the kernel of a
semigroup S' as the regular elements of the smallest subsemigroup of S closed
under weak conjugation. This result led Rhodes to conjecture that the ker-
nel of a semigroup should be the smallest subsemigroup closed under weak
conjugation. The conjecture, called ‘Type II Conjecture”, remained open for
about 20 years, was solved independently by Ash in [3] and Ribes and Za-
lesskii in [29] after the translation of the problem into profinite topology by
Pin and Reutenauer [24].

The aim of this chapter is to present a contribution to the solution of the
computability of the §-kernel from an structural approach. If § is a variety,
the §-kernel Kz () of a semigroup S is computable if, and only if, Kz(S)N.J
is computable, for every J-class J of S. Hence, in the sequel, we shall be
concerned about the computability of Kz(S)NJ. In this context, the following

23
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theorem of Steinberg [33] is the most optimal result so far.

Theorem 14. Let § be a variety of groups. We can compute the regular ele-

ments of Kz(5) for every semigroup S if, and only if, Kg(S)NJ is computable
for every inverse semigroup S and every J-class J of S.

The following proposition allows us to conclude that it is enough to con-
sider inverse semigroups with zero with a unique O-minimal 7-class in order
to compute the §-kernel. It was proved by Rhodes and Tilson in 28] for the
variety of all groups, and it still holds for a general variety of groups §.

Proposition 15 (|28, Fact 2.17]). Let I be an ideal of S. Then:

Kz(S/I)\ {0} = K5(S) N (S\ ).
Hence, applying Proposition [15], we get that the membership problem for
Kz(S) N J can be reduced to semigroups S where J is the unique 0-minimal
J-class.

Lemma 16. Let S be a semigroup with zero and let J be a J-class of S.
Then:
Kz(S)NnJ =Kz(S;)NJ.
Proof. Consider the ideal S\ X, where J = J; and X; ={t € S :s <s t}.
Then S; = S/(S\ X,). By Proposition
K5(87) \ {0} = K5(S) N (S\ (S\ X)) = Kz(5) N X,

In particular, since J C X, we have that Kz(S,) N J = Kz(S)N J.
[

According to the construction at the end of Section[3.1} S; is a semigroup
with zero and J is the unique 0-minimal 7-class of S;. Hence we have:

Corollary 17. Let § be a variety of groups. Then, Kz(S) N J is computable
for every inverse semigroup S and every [J-class J of S if, and only if,
K;z(S) N J is computable for every inverse semigroup S with zero having a
unique 0-minimal J-class J.

Finally, we can state our reduction theorem:

Theorem C. Let § be a variety of groups. Then the following statements
are pairwise equivalent:

1. The reqular elements of the §-kernel of every semigroup are computable.

2. K3z(S) N J is computable for every inverse semigroup S and every [J -
class J of S.

3. Kz(S) N J is computable for every inverse semigroup S with zero with

a unique 0-minimal J-class J such that S, € §, for each e € E(S).
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4.1 Inverse semigroups and projections

Before proving our main result, we must deal with some structural facts
concerning inverse semigroups and formalise some notation and terminology.

Throughout the section, S will be an inverse semigroup with zero and J
will be a 0-minimal J-class of S. In this case, J° is a Brandt subsemigroup
of S which is isomorphic to a regular Rees matrix semigroup of the form
MO(G, A A, 1)), where S, = (J%), = G, for every e € E(J) (see [8]). In fact,
without loss of generality we can assume that J° = M°(G, A, A, I).

Statement 3 of Lemma [5]is telling us that S acts on J° by left and right
multiplication. The following concepts arise naturally from these actions (see
28]).

If s € S, we consider the sets:

agi={i €A (4,1,0)s 0}, wy:={jeA:s(j,1,j) %0},
Es :={(i,1,0)s : i € as}.

Note that if i € ay, then 0 # (i,1,i)s = (i, g,j), for some 7', j € A and
g € G. Therefore, we get:

0+# (i,1,i)s = (4,1,1) (z,l,z s) (i,1,4) (7', g, 7).

Thus # = i. Moreover, 0 # (1,0, )(7:1.4) = (i1, 1s(j, 1,7). Then s(j.1,7)
0 and j € w;. Slmllarly, it (¢, q,5") =s(4,1,9), then we get 7/ = j and:

o L 0)9)( 1) = (9. 1.d) = (.9.9)
(3, 1,5) (3’1’J>‘{ (,1,0)(s(. 1, 0)) = (i, 1.0)( ¢'-3)

Hence, ' =i and s(j,1,7) = (i,9,7) = (i,1,4)s.
Consider the maps:

ls T Qg = Wg, Ys:as — G

defined by, 15(i) = 7 and v4(i) = g if, and only if, (i,1,i)s = (i,9,7) =
s(7,1,7). Then 14 is a bijection and ¢;'(j) = i if, and only if, s(j,1,7) =
(1,7s(1),7) = (i, 1,4)s.

Moreover, E; := {(i,1,4)s : 1 € as} = {(4,7s(2), 15(2)) : 1 € s}

Note that ag = wg = Eg =

Moreover, for every i, € A, we have:
1, ifie€ ay 1, if j € wy
0, otherwise.

(4.1)

IEsﬂ@}G,A)!:{ : !ESO(A,G,j)|:{

0, otherwise
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Definition 18. The set E, is called the set of projections of s onto J°.
Let us now investigate these projections in more detail.

Proposition 19. The following statements hold:

1. If s = (i,g,j) € J, then as = {i}, ws = {j}, ts(i) = 7, 7s(i) = g and
Es :{(ngvj)}

2. For every s,t € S, ag = {i € s : 15(i) € au} = 17 (ws Naw). Moreover,
Lst(1) = te(es(7)) and s (i) = 75 (i) ve(es(9)), for every i € ag.
3. For every s,t € S,
Eg = {1, 7st(7), 1st(2)) 1 i € e} = E By \{0}.
If (2, 75t(), Lt (1)) € Egt, then
(1, Y5t (), st(1)) = (4, 75(0), 1(0) ) (1), 72 (25 (2)), 1a(e5(2)))

is the unique decomposition of (i,7s(i),ts(1)) as a product of an ele-
ment in E; and an element of E;.

4. For all s € S, a1 = w, and w1 = a,. Moreover, 1,1 = 17" and

Yo-1(3) = vs(0)71, for each j = 15(i) € ag-1. As a consequence, Eg-1 =
(Es)~

5. If 0 # e € E(S), then ae = we, (i) = ida, and (i) = 1, for every
i € . Hence, B, = {(i,1,1) : i € a,}.

6. For every s,t € S, Ey, = E, if, and only if, ay = oy, ws = wy, s = 1
and s = Y.

Proof. 1 is clear.
2 and 3. Let s,t € S and suppose i € ag. Then, (4,1,7)(st) # 0 and
therefore, i € a; because (i, 1,4)s # 0. Thus, we see:

(i7 1, i)(St) = ((27 L, i)S)t = (i, 75(i>’ Ls@))t = (i775<i>’ Ls(i»(%(i)? 1, Ls(i))t

ie. (1s(i),1,05(7))t # 0 and ¢5(i) € ay. On the other hand, suppose that
ts(1) € ay, for some i € ag. Then:
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Hence, we conclude oy = {i € ay : 14(i) € ay}. Moreover, we have shown
Lst(z) - Lt<Ls( )) and 'yst( ) - ’ys(i)’yt(Ls( ) for every (S At Consequently

B = {6, 750(0) (i) 1 € s} = { (i, 7(D) 0 (D)), 1e(25(4))) 24 € st}

Now, for every i € ag, we can write:

(i, 75t (2), Lt (2)) = (8 s (D)7e(es(0)) ¢ (Ls(l)))
= (ia’ys(i)aLs(Z))( ( )a’yt( )a

ie. Eg C EgE;\{0}. On the other hand, let x = (i,75(4),¢s(i)) € Es and
y = (I/,%(7), (") € Eq, such that 0 # 2y € EgE;. Then, (4(i) = 7, i.e.
L€ Qgty Y = (%(Dv%ﬁ(bs( )) Lt(LS< )) and then:

wy = (1, 75(0), 1s(2)) (66 (0), e (e (0)), 1e(e5(2))) = (2, 750 (4), L (4)).-

As a consequence, we conclude Eg; = Eg E; \{0} and for every i € ay:

(6, st (1), st (1)) = (875 (0), £(0)) (2 (2), 2 (es(0)), 20 (e5(0)))

is the unique decomposition of (7,7(7), ts(7)) as a product of an element in
E, and an element of E;.
4. Let s € S. For every i € A, we have that:

0# (6,1,)s 0 ((i,1,i)s) " = s ((,1,)) " = s7(i, 1,4).

Therefore, a,—1 = w, and wy—1 = a. Moreover, for each j € a1 = w,, we
have that «;*(j) = ¢ if, and only if, s(j,1,5) = (i,7s(7), ). Then, for each
j € Q-1 = Wyg!

(s 1@ 8) = (G, 1,0)) ™ = (s Lo )s ™" = (v (), 11 (5):

Hence, ts-1(j) = t;'(j) for each j € a,1 and v,-1(j) = ~s(i)~!, where
i = 1s-1(j) € a,. As a consequence, E,-1 = (E,) L.

5. Let 0 # e € E(S) such that > = ee = e. Then, applying Statement 2,
we have that a, = ae. = ;! (ae Nw,). Hence, a, C w, and so a, = w,,
because |ae| = |wel-

Since e! = e, we can apply Statement 4 to conclude that ;! = .
Hence ¢, = id,,. On the other hand, since ee = e, Statement 2 implies that
Ve(#) = Yee () = Ye()7e(te(i)) = 7e(2)?, 1.e 7e(i) = 1, for every i € a.

6. It is obvious from the definition of oy, ws, ¢, vs and E,. O

Let p: S — P be the map defined by p(s) = E;, where P is the set of all
projections of S onto J°. The following example shows that p is not bijective
in general.
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Example 20. Let S = {0, ey, e2} be the meet-semilattice such that 0 < e; <
es. Then (S, A) is an inverse semigroup, and Jy <7 Je, <7 Je,. In particular,

Je, is the unique 0-minimal J-class of S. Since 0 # e; Aes = e3 A e = e,
we have that E., = {e;} = E,,.

The bijectivity of p implies the O-minimality of J as the following propo-
sition shows.

Proposition 21. If p is bijective, then J is the unique 0-minimal J-class

of S.

Proof. Assume, arguing by contradiction, that S has two different 0-minimal
J-classes of S, say J and J'. Let 2’ € J'. By Lemma [l 2’z = 0, for every
x € J. Hence, ap = w,y = By = & = Eg, contrary to assumption.

m

The above example shows the converse of the Proposition [21] does not
hold.

Definition 22. We say that (S,J) is a minimal pair if J is the unique
O-minimal J-class of S and p is a bijective map.

The set of all idempotents of a minimal pair is easily described.

Proposition 23. Let (S, J) be a minimal pair. Then:
E(S)={seS:E,={(:,1,i) :i € as}}.

Proof. Let s € E(S). Applying Proposition [19| we have that E; = {(¢,1,4) :
i € as}.
On the other hand, suppose that s € S is such that E; = {(4,1,7) :
i € a,}. Then E; E; \{0} = E,. By Proposition [19 E; = E; and therefore,
ss = s because (5, J) is a minimal pair. Thus, s € E(S).
]

To underline the point that inverse semigroups with a unique O-minimal
J-class are interesting in our context, we close with a somewhat substantial
result. It shows that the relational morphisms between these semigroups and
groups can be nicely characterised.

Lemma 24. Assume that J is the unique 0-minimal J-class of S. Let H
be a group and let 7: S —+ H be a relational morphism. Then, the following
assertions hold:

1. For every s,t € J with 0 # st, 7(s)7(t) = 7(st).
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2. For every s € S, 7(s) C(W{7(i,g9,7): (i,9,7) € Es}.
Conversely, let T: J — P(H) be a map satisfying the following conditions:
1. 7(s)7(t) = 7(st), for every s,t € J with 0 # st,

2. @4 (Wr(i,9,7) : (i,9,7) € Eg}, for every 0 £ s € S and 7(0) = H.

Then the map 7: S — P(H) defined by 7(0) = H and 7(s) = ({7(i,9,7) :
(i,9,7) € Eg}, for every 0 # s € S, is a relational morphism between S
and H.

Proof. Let s = (i,9,7) and t = (¢, ¢',5') € J with 0 # st € J. Then, by
Lemma [p| j = ¢ and st = (i,9¢/,j'). Since 7 is a relational morphism, it
follows that |7(s)| < |7(st)|. On the other hand, we see that

(st)t™" = (4,99, 50" (¢) 7, 7) = (4,9,7) = (4, 9,5) = s

and then 7(st)7(t7!) C 7(s). Therefore |7(st)| < |7(s)| and |7(s)| = |7(st)|.
Hence 7(s)7(t) = 7(st).

Let 0 # s € S and (7,9,7) € Es. Then (i,9,7) = (¢,1,4)s, for some i € a.
Since (i,1,7) € E(S) and 1 € 7(7,1,4), we have that

7(s) C{1}7(s) C 7(3,1,i)7(s) C T((i, 1, z)s) =17(i,9,7).

Hence, for every 0 # s € s, 7(s) C ({7(4,9,7) : (i,9,7) € Es}.
Conversely, suppose that 7: J — P(H) is a map satisfying:

1. 7(s)7(t) = 7(st), for every s,t € J with 0 # st.

2. @4 (H7(i,9,7)/(i,9,5) € Es}, for every 0 # s € S and 7(0) = H.

We show that the map 7: S — P(H) defined as 7(0) = H and 7(s) =
{7(i,9,7)/(i,9,7) € Es}, for every 0 # s € S, is a relational morphism
between S and H. Let s,t € S and suppose that 0 # st (if either s =0, ¢ =0
or st = 0, then it is clear that 7(s)7(¢) C 7(st)). Let h € 7(s), b’ € 7(t). Then,
h € 7(i,qg,j) for every (i,g9,7) € Eg, and b’ € 7(i', ¢, j') for every (¢/,¢',7') €
E;. By Proposition [19 Ey; = (E, E;) \ {0}. Hence if (i, ¢",j") € Eq, there
exist (i",¢9,7) € Es, (4,9,7") € E; such that (i",¢",7") = (", 9,7)(4,9,7").
Therefore

hh/ S T(illagaj)T(j7g/7j//> g T((iﬂagaj)(ja g/aj//)) = T(illagllaj”)'

Consequently, 7(s)7(t) C 7(st).
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4.2 The semigroup of projections of a Brandt
semigroup

Let B be a Brandt semigroup with zero. We shall construct an inverse
semigroup with zero U g with a unique 0-minimal [7-class .J such that J° = B
and (U, J) is a minimal pair. The importance of the semigroup U g lies in its
universality: if (7, J;) is a minimal pair and J? is isomorphic to B, then T is
isomorphic to quotient of an inverse subsemigroup V of U g containing J°.

Assume that B = M°(G, A, A, I,). We say that a subset E of B\ {0} is
a projection subset of B if E satisfies the following properties:

{(i,9.7) e E:geG,je A} =|EN(,G,A)| <1, foreachie A. (4.2)
{(i,g,j) e E:geG,ie A} =|EN(A,G,j)| <1, foreachje A. (4.3)

The set of all projections subsets of B is denoted by £p.

This definition is motivated by property of the sets E, introduced in
Section[4.1] In fact, these sets are projection subsets of the Brandt semigroup
JO considered there.

The basic properties of the projection sets are contained in the following:

Proposition 25. 1. IfE € g, then E7! € &p.
2. If E,E' € Ep, then EE'\{0} € &p.
3. For every (i.9,5) € B, {(i,g.)} € Es.

Proof. 1. By Lemmalg} E™ = {(i,9,5) "' = (j,g7',4) : (i,9,5) € E}. Then,
we have that E~! satisfies and if, and only if, E satisfies and
(E3).

2. If either E = @ or E' = & we are done. Otherwise, let (4, g, 7), (1,4, ') €
EE'\{0}. Then, by Lemma [5| we have that:

(7/797]) = (ivglajl)(jbg??j)a with (iaglajl) € E and (j17927j) € E,
(i,9',3") = (4,61, 1) (41> 95, 5),  with (i, 9, 7;) € E and (53, g5, §) € E/

Since E, E' € gBa we get (iagl7j1) = (ng,l?]{) € Eand (jlag%j) = (]17.957]) €
E/' ThuS’ (Z7g7j> = (Z-7g/7j,)'

A similar argument establishes that if (i, g,7), (¢, ¢’,j) € EE'\{0}, then
(i,9,7) = (i', 4, 7). Consequently, EE'\{0} is a projection subset of B, as
required.

The Statement 3 is clear.
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Assume that &g = {@ = Eo, Eq, ..., E, }. Let Up := {0 = up, u, ..., upy }
be any set that is naturally bijective with £5. Write E,, := E,, for each
0 <n<ngp.

Let w,,u, € Ug. We define the product of u, and u,  as the element
upr € Upg such that B, E, , \ {0} = E, .

With this product Uz becomes a semigroup in which uy = 0 is a zero
element and E; = @. It will be called the semigroup of projections of the
Brandt semigroup B.

Note that for every u,v € Up, v = v if, and only if, E, = E,. Moreover,
if (i,g,j) € B\ {0}, then {(i,9,7)} € Ep. In this case, u := (i,9,j) € Up
and E, = {(i,9,7)}. In Up the product of two elements u := (i, g,j) and
= (z g,7") is the same as the product (i,g,7)(7,g,j') in B. Hence B can

be regarded as a subsemigroup of Up.

In an inverse semigroup S, we have a particularly useful way of looking
at the projections E; by means of the maps ay,ws, ts,vs (see Section .
Our next aim here is to find analogues of these maps in the semigroup U .

For each u € U we define:

Ay =i €N |E,N (1,G,AN)| =1}, @, :={j €N |E.N (AG,5)] =1},
(1) Qy — Oy Jut @y — G,
ru(i) = j and 7,(i) = g & E. N (i,G, A) = (i,9,5) = E. N (A, G, j).

Clearly, 7, is a bijection between &, and @,. Note that g, wy, Eg = @,
and E, = {(4,7.(1), 7,(7)) : i € &y} for all 0 # u € Up. In particular, E, is
completely determined by the maps @, W, ly, Y, for every u € Up.

We are now ready to begin the process of proving that g is an inverse
semigroup with zero and a unique O0-minimal J-class J such that J° = B.
Our next result, which is the analogous version of Proposition |19} contains
the key ingredients of the proof.

Proposition 26. 1. For every u € B\ {0}, E, = {u}.

2. For everyu,v € Up, Gy = (Lu) Y@uNay), Wy = 1y (@,Nay). Moreover,
L (1) = To(Tu(7)) and Fuo(4) = Fu (1) 70 (u (7)), f07’ every i € Quy-

3. Let 0 # u € E(Up). Then, &, = Wy, by = ids,, Ju(i) = 1, for every
1 € Qy. In particular:

Ey = {(i,1,1) i € an}.

Conversely, if u € Up and E, = {(i,1,i) : i € &}, then u € E(Up).
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4. Let u,v € Up such that wJ v. Then, |E,| = |E,|.

Proof. The Statement 1 is clear.

2. Let u,v € Up and suppose i € a,,. Then, there exists g € G, j € A,
such that (i, g,7) € By, = E,E, \ {0}. Therefore, (i, g,7) = (i, 91, 1) (i2, g2, j)
with (i,91,51) € Eu, (i2,92,5) € E, and j; = iy. Thus 4, = ¢; and j; =
1y(1) € Wy My, with 7,(71) = 7 and 7,(j1) = Ju(2u(2)) = g2. Then, 7,,(i) =
J= ZU(ZU(i)) and f_yuv(l) =9=0192 = ’7u(l)'7v(zu(z))

On the other hand, if ¢ € w, N @,, then there exists iy, € a,, and j € w,,
such that 7,(i;) = i and 7,(i) = j. Thus, (i1,9,(i1),1) € Eu, (i,7.(7),5) € E,

so that (i1, ¥, (i1)%(1), 7) € E.E,\{0} = Ey,. Therefore, i; = (z,) (i) € G,
buo(in) = J = tu(tu(in)) and Fuo(i1) = Fu(i1)70(1) = Fu(ir)7o(u(i1)). Hence,
for every u,v € Up, we have:

Qypy = (Zu)_l(a)u N @v)y Wyp = Zv((z}u N dv);

luw (1) = 0y(2, (7)), (1) = Yu ()Y (2u(2)), for every i € auy,.

3. Let 0 # u € E(Up). Then, uu = u and vy = (1) " (0n N @) = Q.
Thus, @, C &, and then &, = w,. Moreover, &, = lyy, = 1y, 0 Ly, 1.€. L, = idg,,
so that 7,(1) = V(i) = ()Y (2u(1)) = (F.(2))?, for all i € a,. Hence
Yu(i) = 1, for all i € &,. On the other hand, it is easy to check that if u € Up
with &, = @, b, = ids, and 7,(:1) = 1, for all i € &, then E, E, \ {0} = E,.
Therefore, uu = v and u € E(Up). Hence, we conclude:

EUp) ={u€elp: a, = @y, by = ids,, V(i) =1, for all i € a,(i)} =
={uelp:E,={(i,1,7) i € ay}}.
4. Certainly |ay| = |E,|, for all u € Up. Now, let u,v € Up such that

uJ v. Then, there exist wy, wy, wi, w) € Up such that u = wyvwy and v =
wiuwh. Applying Statement 2, we have:

Ay = Qyyows g Qi vy Qy = O‘w/lvw/2 g O‘w/lv‘

Then, |E,| = |au| < |Gw,o] < |@| = |E,|. The proof that |E,| < |E,| proceeds
just in the same way. O]

Lemma 27. Up is an inverse semigroup with zero and J = B\ {0} = {u €
Up : |Ey| = 1} is the unique 0-minimal J-class of Ug.

Proof. We already know Up is a semigroup with a zero. Now, suppose that
v € Up i1s an inverse of an element u € Up. Then wvu = v and vuv = v.
Applying Proposition to Quou = @, and auy, = a,, we conclude that
Ay C ayy € @y, and a, C ay,y C a,,. Thus, ay, = @y, @y, = @, and then:

Ay = Oy = (1) N0y N @), Ay = Ay = (1) 1@y Nay).
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Hence w, C @, and @, C a,. Since |a,| = |w,| and |&,| = |w,], it follows
that &, = @, and @, = &,.
Note that uv € E(U B) Thus, by Proposition we have that ids,, =

lup = LpOly, 1. Iy = (I,) 7L Thus, 1 = 9, (1) = (i )%(Lu( ), e 3y (2,(2)) =
Yu(2) 71, for all i € ay,(i). Therefore:

We have shown that every element of /5 has at most one inverse.

On the other hand, let 0 7é u € Up. By Proposition [25] there exists
v € Up such that E, = (E,)~%. Then, a, = @y, @, = ay, &, = ()" and
Yo (2 (7)) = 7u (i), for every 7,(i) € @,. Thus, we have:

(
w)” (Wuﬂav)—( )
wo(Qu) = ida,, () = 4
Vu

aw = (L,
()% (i) = Yu()Vu(i) ™ =1, foralli € Quy = au.

Wu) = Qu,  Lyy = Ly © by = Udg,,,

'Yuv( ) =
By Proposition 26, uv € E(Ug). Therefore:

Thus, Eypw = E,, and then wou = u. Similarly, E,,, = E,.

Hence, if 0 # u € Up, and v € Up satisfies E, = (E,)~!, then v is the
unique inverse of u. Consequently, Uz is an inverse semigroup.

We prove now that Up has a unique 0-minimal J-class J, and J° = B.
By Proposition 26, we have that the sets of projections of all elements in a
J-class have the same cardinality. Moreover, B = {u € Up : |E,| = 1} U{0}.
Write J 1= {u € Up : |E,| = 1}. Then, if (i,g,5), (7', ¢',5") € J, it follows
that (i,9,7) = (¢,1,7)(, ¢, 4')(§’,1,4). Therefore J is a O-minimal J-class
of Z/{B.

Assume that 0 # J' is a J-class of U g such that J' = J, for some s € Up.
Then |E,| > 1. Let i € &,. Then:

s = (6n) " (@610 N as) = (Te) (i} Nas) = (ae) " ({i}) = {i}
since (i,1,i) € E(J) C E(Up). Therefore, if v = (i,1,i)s € Up, then |E,| =
|&,| = 1. Hence v € Jand so J, =J <7 J, = J'.

O
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At this point, it is reasonable to ask whether the maps «a,, wy, ty, V. de-
fined in Section are exactly the maps a,,, Wy, ly, Yu- The following result
provides an affirmative answer.

Proposition 28. For every u € Up, we have:
Qy = Qyy,, Wy = Wy, by = Ly, fVu = Yu, Eu - Eu .
E

Moreover, for every u,v € Up, u = v if, and only if,
As a consequence, (Up, B) is a minimal pair.

Proof. First, we claim that for every u € U g and for every i € A, (i,1,i)u # 0
if, and only if, i € &, and in this case, (i,1,7)u = (i, Y, (2), 2u(7)).

By Proposition {26 we see @ # & 1,yu = (Ii,1,) " ({i} N @) if, and only
if, ¢ € a,. Moreover, in this case &1, = {4}, so that:

iy (1) = Lt (1) = (@), V(i) = Y10 ()7u(i) = 19.(0).

Hence E; 1.4y, = {(i,7u(i), 2.(2))} and therefore (4,1, i)u = (4,%,(i), 2u (7))
Let u € Up. We may assume that u # 0. Then:

ay={ieA:(i,1,0)u#0}={icAN:ica,}=a,,
tali) = 4, yuli) = g if, and only if, 0 # (i, 1,8)u = (i,g.5) = (i, 3u(1), 7u(3))

Hence, q, = v, by = tuy Yo = Yu, Wu = bu(@y) = ty(w,) = w,, and

Eu = {(6,70(1), 7a(1)) 1 7 € @} = {(i, (i), ta(i)) : i € v} = By .
L]

Our next aim is to prove that U p contains a quotient of every inverse
semigroup with a unique O-minimal J-class J isomorphic to B.

A preliminary lemma, which shows that the property of being minimal
pair is inherited by inverse subsemigroups of Uz containing B, is useful.

Lemma 29. Let V C Up be an inverse subsemigroup such that B C V.
Then, B is the unique 0-minimal J-class of V' and (V, J) is also a minimal
pair.

Proof. Let v,v" € V such that v Jy v/, where Jy is the J-relation in V.
Then v Jy, v'. By Proposition , |E,| = |E,/|. Hence the sets of projections
of all elements in a Jy-class of V' have the same cardinality.

On the other hand, J ;== {v € V : |E,| =1} ={u € U : |E,| = 1} =
B\ {0} and J is a Jy-class of V. A similar argument to those used in the
proof of Lemma [27] establishes that J is the unique 0-minimal Jy-class of
V. Moreover, since V' < Up, we have that |E, | = | E, |, for every v,v" € V.
Hence (V,J) is a minimal pair.

[
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Lemma 30. Let S be an inverse semigroup with zero with a unique O-minimal
J-class J. Let Up the semigroup of projections of B = J°. Then, there exists
a homomorphism v: S — Up such that

o U(S) =V CUp is an inverse subsemigroup of Up.
e U(J") =B CV and v, = idpo.

e (V,J) is a minimal pair, where J = J°\ {0} is the unique 0-minimal
J-class of Up. In particular, E, = Ey), for every s € S.

Proof. Let u: S — Up be the map given by:
u(s) =u < E; =E, € &g, for every s € S.

We shall show that v is a homomorphism. Let s,s" € S. By Proposition
19, Esv = EsEy \{0}. Suppose that u(s) = u and u(s') = «'. Then B,y =
E.Ew \{0} = E;Ey \{0} = E,y. Hence, u(s)u(s’) = v’ = u(ss’).

Therefore V := u(S) is a subsemigroup of U . Let u € u(S). Then there
exists s € S such that E; = E,. By Proposition [19] it follows that E,-1 =
(Es)~™' = (E,)"!. Now, the proof of Lemma [27| and Proposition [26] allow us
to conclude that E,~1 = (E,)~!. Thus, u(s™!) = v~! and then, u™t € u(S).
By Lemma [3] V' is an inverse subsemigroup of Up.

Now, recall that B can be seen as a subsemigroup of both S and Up.
Then, for every x € J = B\ {0}, we can write (E,)g, if x is regarded as an
element of S, and (E, )y, if = is regarded as an element in Up. If x € J, then
(E;)s = {z} by Proposition[19 On the other hand, applying Proposition
and Proposition 28] we have that (E, )y, = {z}. In addition, u(0) = 0. Hence,
we can write E, = (E,)s = (E;)u, = {z}, for every € J, so that we can
conclude that u(B) = B and v|z = idp.

Finally, (V, J) satisfies the hypothesis of Lemma 29} Therefore, (V,J) is
a minimal pair.

]
At this point it is worth pausing to give a nice application of Lemma [30]

Assume that J is the unique O-minimal [J-class of an inverse semigroup
S. From the set of projections of S onto J° arises one naturally equivalence
relation ~ on S: s ~ t if, and only if, E;, = E;. We show that ~ is in fact
a congruence in S. Suppose that E, = E; and Ey; = Ey. Then a, = ay,
Qg = Qu, Lg = Ly, Ly = Ly, Vs = Y and 7¢ = Y. By Proposition
st = Qgryr, Wst = Wyryry bsg = Ly and Y = Ygrpr, 80 that Eg = Egy.
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Consider the homomorphism v: S — u(S) < U jo defined in Lemma
Then, for every s,t € S, one can see that u(s) = u(¢) if, and only if, E; = E;,
ie. s ~ t. Hence, S/ ~= S/keru = u(S5). Since (u(5),J) is a minimal pair
by Lemma we conclude that S/~ is an inverse semigroup with zero with
a unique O-minimal J-class J, such that (S/~,J) is a minimal pair.

Note that if p; is the natural epimorphism from S onto S/~ then kerv =
ker p;. py is called the right Shiitzenberger representation of S on J (|27,
Definition 4.6.28]).

We summarise these observations in a corollary as follows.

Corollary 31. Let S be an inverse semigroup with zero with a O-minimal J -
class J. There exists a quotient X of S such that X is an inverse semigroup
with zero having a unique 0-minimal J -class J and (X, J) is a minimal pair.

We round this section off with a couple of results about §-kernels and
minimal pairs. We shall have occasion to make use of them in the next sec-
tions.

Lemma 32. Let (S,J) be a minimal pair. Consider K = |J{(S.)¥ : e €
E(S)}. Then Es C K5(S) N J, for every s € K.

Proof. Let s € K and let e € E(S) such that s € (S.)¥. By Proposition
S € Kg(S)
Now, let z € E;. Then there exists an idempotent e € E(J) such that
x = es. Therefore, for every relational morphism 7: S —+ F with F' € §,
we have that 1 = 1-1 € 7(e)7(s) C 7(es) = 7(x). Hence z € Kg(S5) N J.
Therefore E; C Kz(S) N J.
[l

Lemma 33. Let (S,J) be a minimal pair. Let K = [J{(S.)® : e € E(S)}.
Assume that Es C E(J), for every s € K. Then, S. € § for every e € E(S).

Proof. Assume that J° = M°(G, A, A 1}). Let e € E(S) and s € (S,)5.
Since Eg C E(J), it follows that E; = {(4,1,7) : i € as}. By Proposition
s € E(S) and so s = e. Hence (S.)¥ = {e}, for every e € E(S), as we
wanted. ]

4.3 Quotients

A subsemigroup K of an inverse semigroup S is closed under conjugation
if sKs™! s7'Ks are contained in K, for every s € S.
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If § is a variety of groups, then K3(S) is closed under conjugation. Let
s € Sand k € Kz(9). If 71 S—+G €§ is a relational morphism, there
exists € 7(s) such that x=! € 7(s7') and therefore 1 = z -1 27! €
7(s)7(k)7(s71) C 7(sks™!). Hence 1 € 7(sks™!). Similarly, 1 € 7(s™'ks).

The intersection of any family of subsemigroups of S which are closed
under conjugation is closed under conjugation as well. In particular, given a
subset T of S, there exists a subsemigroup 7°¢ of S satifsying the following
properties:

1. T* is closed under conjugation.
2. T CTe.

3. R is a subsemigroup of S closed under conjugation and 7" C R, then
T C R.

In particular, if 7' C Kz(5), then 7¢ C Kz(95).

In this section, (S,J) will be a minimal pair, J* = M°(G, A, A, I,), and
K will be a subsemigroup of S such that K is closed under conjugation and
E(J°) C K C J°.

Note that J° is in fact closed under conjugation by the 0-minimality of
J. Therefore, for every subset T' C J°, we have that 7¢ C J°.

Lemma 34. 1. There exists a normal subgroup N of G such that (i, G, )N
K = (i,N,i), for every i € A. We say that N = Nk is the normal
subgroup of G associated with K.

2. There exists an equivalence relation R on A defined by the rulei,j € A,
iR j if, and only if, (i,G,j) N K # @, for all i,j € A. In this case,
there exists g € G, such that (i,G,j)NK = (i,gN,j); R = Rk will be
called the equivalence relation associated with K.

Proof. Let i € A and write e; = (i, 1,). By Lemmalf] we have S, = (J°)., =

(i,G,1). Since K C J° then K., = (JY)., N K is a subgroup of (J°).,. In

particular, there exists a subgroup N; of G such that K., = (i,G,i) N K =

(i, N;,i). Let g € G. Then (i,h?,4) = (i,9',4)(i,h,i)(i,9,7) € K, because

(i,97%,4) = (i,9,7) 7" and K is closed under conjugation. Hence, N; < G.
On the other hand, let i # ¢’ € A. Then, we see that

(', N;, i) = (',1,9)(i, Ny, i) (i, 1,7), (i, Ny, i) = (i,1,7) (¢, Ny, ') (@', 1,1)

are both contained in K, because (i,1,7) = (i/,1,i)~!. Thus, N; = Ny.
Hence, we conclude that for every i € A, there exists N < (G, such that
K n(i,G,i) = (i, N,i). This proves Statement 1.
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Now, we can define on A the following relation:
iR j if, and only if, (i,G,j) N K # &, for every i,j € A.

Clearly, R is an equivalence relation, because (i,1,7) € K for every ¢ €
A, and if (i,9,j) € K then (j,g7%i) = (i,9,5)"" € K. In addition, if
(i,9,7), (', ¢',i") € K then (i,9q',i") € K.

Suppose that iRj and (i,g9,7) € (i,G,j) N K. Since (j,N,j7) C K,
(4,9,7)(J,N,7) = (i,gN,j) € K N (i,G,j). Now, suppose that (i,q',7) €
(i,G,7) N K. Then, (j,(¢)7',i) € K and

(i,9N,§) (4. (¢") i) = (i,gN(¢') "', i) € KN (i, G, i) = (i, N, ).

Thus, gN(¢)"' = N and then gN = ¢’N. Hence, we can conclude that
(1,G,j) N K = (i,gN, j).
O

Remark 35. Suppose that:

(i,G,i) N K ={(i,1,7)}, for every i € A,
(1,G))NK # 0 & i=j,

i.e. the normal subgroup associated with K is the trivial one and the equiva-
lence relation associated with K is the identity relation. If (i, ¢g,7) € K, then
j =1 and g = 1. Therefore K = E(J).

Let Nx and Rg be the normal subgroup and the equivalence relation
associated with K. Let G = G/Nk be the quotient group and let A =
ARg = {%1, . ,%,\} with 7; = li1] Ry, for some i; € A, for every 1 <[ < A,
be the quotient set of A by Rx.

Let 1 <1 < A. Then, by Lemma for every i, i’ € i, there exists §iy € G
such that (i, G,i") N K = (i, g, i'). Moreover:

e Forevery i,i' € iy, ((i,G,#)NK) " = ((i,da, 1)) = (7,35, ). Since
(', §;.},4)| = |Nk| = | (i, G, i) N K|, we have that ;' = Gi.

e For every i,i,i" € i, ((1,G,i") N K)((i',G,i") N K) = (3, Gigr Garir, ").
Since |(i7§ii’§i’i”7i”)| = |NK| = |(2, G,i//) N K‘, we have that gii’gi’i” =
Gii'-

e In particular, for every i € El, Gii = I1=Ned.
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Then, we can consider the set Xy = {9@ eG:i,i' €y, withl1<[< A}
and we call it a set of representatives of G associated with Ry.

Let s € S and consider the sets a,,ws; € A, the bijection ¢ty between ay
and w,, the map 7, from a, to G and the set E, of projections of s onto J°
defined in Section Denote by &, := a5 /R and &5 := ws/R) the set of
all equivalence classes of the elements of o and w;, respectively.

In the sequel, we use the above notation, terminology and properties
without any further reference.

Lemma 36. 1. 15 tnduces a bijection iy from &g into ws.

2. There exists a map 7s: Qg — G, defined by ’ys(gl) = iiVs(1)Gu. ()i » for
some i € g with 14(i) € iy such that

Es = {(;’ ’75(%)7[5(2)) : ; € @s}

is a projection subset of the Brandt semigroup JO = MG, A A I).
In particular, oy = 0s = E; = @ if, and only if, s = 0.

Proof. Given 1,1’ € ay such that i R i’ R i;, we have that:
sH(i,G, i) N K)s = s(i,1,4)(i, gul,z NG 1, s =
( (0,790 D G, ) (@7 (17), 16()) =
= ( ( ) /78( ) gzz”ys( ) s( )) CKN (%(D?Gv Ls(i/))v

e 15(1) Ry ts(i") Ry iy, for some 1 <" < A\. Moreover:

—~1

|(s(2), 75 (1) Girvs (@), 0s(i'))] = [Nk | = [K N (25(2), G, 05(i"))]

so that we have:

—~—1 —_~

(6s(2), Gy 1s(i) N K = (65(8),75(8) - Girvs (1), 15(7)).
Hence:
Gua(i)es (i) = gi_l,lbs(i)gilms(i’) =7s(1)  Girvs(7') = 7s(7) ﬁﬁilflm'%(i’)- (4.4)

By Proposition [19) t,-1 = «;1. Therefore if (i) R 15(i') Riy for some
1<Vl <\ then it Ri' Ri; for some 1 <1 < A\
We define 7: a, — @ by:

ZS(EI) =iy < there exists i € o, N7; and 1s(i) € iy
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According to the above discussion, I, is a bijective map. This proves
Statement 1. )
Define 74: ay — G by:

F(01) = G0 (1) iy » Where 0,(i1) = iy and i € 7y, for every i € .

Then 7, is well-defined by . Moreover, it is a routine matter to prove
that 5 ) ) ) )

Eg = {(i, %5 (ir), Ts(ir)) : i1 € as}
is a projection subset of the Brandt semigroup J°.

In particular, since (S, J) is a minimal pair, recall that oy, = w, = E; = @
if, and only if, s = 0. As a consequence, we also have that &, = @0, = E, = &
if, and only if, s = 0.

m

The following lemma introduces an important semigroup associated with
(S, J, K).

Lemma 37. There exists a minimal pair (Sk, j) with JO = Mo(é, AA, I3),
Sk CUj0 and a map ¢r: S — Ujo such that:

1. Sk is the inverse subsemigroup of U 5o generated by ¢k (S).

2. For each <Z7g7]) € J: ¢K(Zaga]) = (%lagiliggjilmgl’% where 1 S gl; ] € :Zl/?
for some 1 < 1,I' < X\ As a consequence, ¢ (J°) = J° and ¢ (K) =
E(JY).

3. If u = ¢k (s), for some s € S, then E, = ¢ (Ey).

Proof. 1. Let B = M°(G, A, A, I;) and consider the semigroup Up of pro-
jections of B. We define a map ¢x: S —> Up as follows:

¢r(s)=uelUp & E, = {(%l,%(gz),zs(gz)) 4 € Gs) = E,, for every s € S.

It is easy to check that ¢ (s)™' = ¢x(s7'). Therefore, Sk = (¢ (S))
is the smallest inverse subsemigroup of Up containing ¢ (S). This proves
Statement 1.

2. Consider a set of representatives Xg of G associated with Ryx. Let
s=(i,g,§) € J with i € i; and j € 4y, for some 1 < 1,1’ < \. Then,

—_~—

as = {u}, ()= GiriVs (1) Gus(iyiy = Jiri9Tjiy i5(i)) = ip.

Therefore, B, = {(i, §:,i3ji, . i)} and then ¢ (s) = (iz, §ii33ji, » iv)-
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To verify that ¢x(J°) = J°, notice first that if u = (i, §,2¢) € J, we can
take s = (i, g,1) € J and then, by the above paragraph, ¢ (s) = w. Thus,
J C ¢ (J). Moreover, the above paragraph also implies that ¢x(J) C J. B
definition of ¢, ¢x(s) = 0 if, and only if, E, = & and then, by Lemma
if, and only if, s = 0. Therefore, we conclude ¢x(J°) = J°.

To prove that ¢ (K) = E(J%), let s = (4,9, 7) € K. Then, by Lemma
iR jRi; for some 1 <1< Xand § = §;. Thus, &, = {i;} = s, iy = ids, and
Ys(i1) = Gi9G5i, = GiriGij Gy = iy = 1. Then, ¢r(s) = (u, 1,4) € E(B). Let
(1, 1,7;) € E(B) for some 1 <1 < A. Then ¢« ((4;,1,4;)) = (i, 1,4;). Note that
¢ (0) = 0 with 0 € E(J°) C K. Hence, we conclude that ¢x(K) = E(J°).

Hence, Sk is an inverse subsemigroup of Up such that B = ¢ (J°) C
Sk C Up. Thus, applying Lemma we conclude that (Sk, J ) is a minimal
pair.

3. By definition of ¢, we know that E, = E, = {(El,’ys(gl), (1)) s 1y €
(st

Now, let i, € @&,. For every i € 4, N a, we have that Ls(i) € Zs(gl) = iy,
for some 1 < I' < A\ Then, ¢x(i,vs(i),s(1)) = (i, §,7(z;)), where § =

7

—_—~—

gili’}i (i)gu(i)il/ = ’N)/s(gl) Thus7 ¢K(i7’ys(i)7 LS(Z)) = (glaﬁs(%l)a ZS<.1))7 for every

1€ 14 N og. ~
Hence, we can conclude that ¢k (Es) = E; = E,,. O

The minimal pair (Sk,J) constructed in Lemma [37] will be called the
(K, ¢ )-quotient of (S, J), where ¢y is the map defined in the proof of that
result.

We cannot in general assert that ¢ is a homomorphism. The importance
of ¢k lies in the following results:

Corollary 38. Let (Sk,J) be the (K, ¢ )-quotient of (S, J). Then, for every
s,t € J, we have that ¢k (s) = ¢k (t) if, and only if, s = xty with z,y € K.

Proof. Consider a set of representatives Xy of G associated with R-.

Assume that s = (4,9,7),t = (¢,¢',7") € J and ¢k (s) = ¢k(t). Then
E, = E,. Hence, by Lemma [36] &, = d; = {i;} and &, = @& = {iy}, where
i,i" € 14y and § = 15(4), ' = 1,(i') € iy, for some 1 < 1,1’ < \. Moreover:

—_~—

~ g o
~ ~ i1 Ys\2) g N = (i i
Fs(#) = 7 (3) = {91 7/(\/.)911'“(’) 94i99;,,j

g’ili/,yt(ll>gi:/lu(i/) - gili'glgij/‘ljl-

e I pouy | B B Py (e r_
Thus, 9i99:,5 = 9ui'9 G, and therefore, ¢’ = 9,1 961199, 59y 3" Then, ¢ =
g;}/gilz’ggfﬂ;gil,j/n, for some n € Ng. Hence, we can write:

(i/a glvj/) = (il> gl;l/a il)(ha Giis Z)(Z> ga])(ja gz_l,lja il’)(il/a gil/j/na j/>7
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where:
€T = (i,7gijillail)(ilagili7i) S (Zlagzjzl/gzllvl) = (i,7§i’iai) g K
y = (J, gij,-,iz')(ilugil/j'n,j/) € (4, GipiGipi» ) = (4, G35, 3") € K.
Conversely, suppose that s = (i,¢,7),t = (¢, ¢',j’) € J and there exist
x,y € K with s = zty. Then, x = (i,¢91,7) € (i,G, /)N K, y = (5, 92,]) €
(J',G,j) N K and g = g19'g>. Thus, i R7' R4 and jR j'Riy, for some 1 <
[, l’ < \. Then &, = &; = {zl} and LS(’Ll) = Lt(ll) = 4. Moreover:
T e <i7§ii’7i/> = (i7§iil§ili’7i/) =T = (iagiilgizi'nla Z/)
Yy € (j,>£~lj'j>j) = (j/>§j’il/§il/j7j) =Yy= (j/7gj’il/gil/jn2aj)
for some ny,ny € N. Then, g1 = gii,giyin1, g2 = Gjri, gipjn2 and therefore:
e S Wy U LR Y I
Vs(i) = 9ivs (D930, 0) = 90199,5 = 9ii 919 9293,; =
= Gii(Gins 90i)9 (G5, 5:9i03) Girs = Girir T Gy 50 =
= Gir (i )gzl,lbt( n = &t(gl)

Hence, E; = Et = {(gz,%(%z),gz')}y and ¢K(5) = ¢K(t)‘
]

Corollary 39. Let (Sk,J) be the (K, ¢x)-quotient of (S,J). The following
assertions hold:

1. Suppose that for some x € J, dx(x) = yy' € J° with y,y' € J°. Then,
there exist x1, 2 € J such that x = x12, ¢x(v1) =y and ¢k (z)) =y

2. Suppose that z,y € J and 0 # xy € J. Then, ¢x(xy) = dx(z)dK(y).

Proof. Consider a set of representatives Xy of G associated with R .
1. Letx-(zgj)EJWIchEZl,j—Lx()EZl/ and g = 7,(7). Then,
by Lemma [36, &, = {1}, & = iv, 7u(it) = §iiG751, and By = { (i1, 32 (i), iv) }.

Thus ¢ (z) = (i1, T (ua), iv)-
Suppose that ¢ () = yy' with y,y’ € J°. Then B4, (o) = E, E, \{0} and

therefore, applying Proposition |19| to the minimal pair (Sk, J ) we have:

y= (glﬁy(zl)7by(;l))’ y = (Ly(gl)a'Yy’(Ly(gl))aLy’(by(gl))%

with 7,(1) = ny(El)’Yy’(Ly(%l)) and ¢, (i) = Ly’(by(%l)) = ir.
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Assume that ¢,(1;) = i € A. Since ¢ (J) = J°, there exist (iy, g1, i),
(@7, g2, iy) € J such that ¢x(ir, g1,97) = y and ¢k (i, go,ir) = y', where
G1 = Yy(4) and Go = vy (4y(71)). Thus:

9192 = () vy (ty(11)) = 3o (01) = GiriG951, = G = Gii 51923,

and then, g = g;ilglgggj’illln, for some n € N.
Consider

T = (Z g17117 . )(ilaglyil”)(il’H 17il"> = (i>giizv il)y(il”v 1a Z.l”)
xll (Zl”a L, Zl”)<il”7 92, il’)(illv g]_zll,nvj) = (il”’ L, il”):y/(il” gj_zll,naj) 7

with (7, gig i), (i 9534 4), (ivr, 1,ivr) € K. By Corollary B§| ¢xc(21) =y and
Or (7)) =y
2. Suppose that =z = (i,9,7),y = (i',¢',j') € J such that 0 # xy € J.
Then j = 4" and zy = (i,9¢',5') € J. Assume that i R, j = i’ Riy and
j' Riyp. By Lemma , we have that &, = {4}, &, = {ir}, and:
L) = v, e () = Gi§5, 0+

Zy(il’) = %l”; ’S/y(lrl/) gll’l g gzl”]/’
ny(%l) == %l”a :)/xy (€l> - gizigg gil,,j"

Then:
Zzy(gl) = %l” = Zy(zﬂc(zl))a
Yoy (1) = §ai03' G5y g0 = GiG0, 0G0 Gy ye = T (1) (2 (12)).
Hence:
Oxc () = (i, % (1), (@), dx(y) = (i, Yy (), 7y (i)
O (2y) = (i1, Yay (1), Ly (i0)).
Consequently, ¢ (zy) = ¢x(2) DK (y).

O

Corollary 40. Let (SK, J) be the (K, gbK) -quotient of (S,J). Then, for all
u, v € U o, we have ¢ (Euy) NJ C (5 (Eu) N JI) (05 (E,) N J).

Proof. Let x € ¢%' (Ey) N J then ¢ (z) € Ey,. Since E,, = (E,E,) \ {0},
by Proposition [19] there exist a unique y € E, and a unique y' € E, such
that ¢x(x) = yy'. Applying Corollary there exist x1,z) € J such that
z17) = x and with ¢ (7)) = y and ¢k (z}) = y'. Thus, 7; € ¢ (E,) N J,
7} € o (E,) N J and = € ¢ (E,) %' (E,), as required. O
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We are now ready to establish some properties of the relational morphisms
between S and groups in a variety § in the case where K is contained in the
S$-kernel. They turn out to be crucial in the next section.

Corollary 41. Let § be a variety. Let (Sk,J) be the (K, ¢x)-quotient of
(S,J) and 7: S—+F a relational morphism with F' € §. If K C Kg(9),
then the following statements hold.

1. If s,t € J and ¢ (s) = ¢k(t), then 7(s) = 7(t).

2. Let 0 # s € S such that 0 # u = ¢x(s) € Ujo. Then 7(s) C 7(x), for
all v € ¢7 (E,) N J.

3. For every 0 #u € Sk, ({7(x) : 2 € ¢ (E,)NJ} # @.

Proof. 1. Let s,t € J such that ¢x(s) = ¢ (t). Then, by Corollary [38] there
exist x,y € K such that s = xty. Since 7 is a relational morphism and
K C K3(S)n J, it follows that 1 € 7(x) N 7(y). Hence

7(s) = r(aty) 2 T(2)7(t)7(y) 2 7(1).
Similarly, t = 2’sy’ with 2/,y’ € K. Then, 1 € 7(z') N 7(y’) and:
7(t) = 7(¢'sy’) 2 T(2)r(s)7(y') 2 7(s).

Hence, 7(s) = 7(¢).

2. Assume that 0 # s € S and 0 # u = ¢k (s) € U . Let z € ¢ (E,)NJ.
Then, ¢x(z) € E,. Now, by Lemma , ok (Es) = E, so that there exists
y € Eg such that ¢x(y) = ¢x(x). Applying Statement 1, we have that
7(y) = 7(z). Moreover, by Lemma 24 7(s) C 7(y) = 7(z).

3. Let 0 # u € Sk. Since Sk = (¢x(59)), it follows that u = uy - - - u,, with
u, = ¢k (s,) € Uj for some s, € S, for every 1 < r < p. By Corollary ,

O (Bu) N T = 05 (Buy,) N T C (0 (Buy) N T) - (0 (Eu,) N ).

Let * € ¢x (E,) N J. Then, = z,---x,, for some z, € ¢5 (E,,) N J,
1 <r < p. According to Statement 2, we have that 7(s,) C 7(z,), for every
1 <r < p. Thus:

T(x) = 7(21---wp) 2 7(w1) - 7(xp) 27(81) - 7(s,) # 2.

Hence, for every = € ¢ (E,) N J, 7(s1) -+ 7(s,) C 7(x). Consequently:

N{r(z) : 2 € 651 (E.) N T} # 2.
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If Ri is the identity relation, that is, i R j if, and only if, i = j, then
many complications in the foregoing account disappear. In particular, ¢ is
a homomorphism and Sk = ¢k () is actually a quotient semigroup of S.

Lemma 42. Suppose that the relation Ry associated with K is the identity
relation. Then ¢x is a homomorphism and Sk = ¢k (9).

Proof. Since Ry is the identity relation, then A = A/R = A. By Lemma
, s = a5, Wy = ws and Iy = L5, for every s € S. Moreover, 7,(i) =
GiiYs () Guy (iyes(i) = Vs(1). If s € S, then ¢ (s) = u if, and only if:

—~—

Eu = {0, 7(7), tu(2)) 10 € ay} = {(4,75(2), t5(2) 17 € as}.

Therefore ¢ (s) = w if, and only if, ay; = a,, ws = wy, ts = ¢, and
Yu(7) = 75(7), for every i € o = au,.

We show now that ¢ is a homomorphism. Let s,t € S, ¢k (s) = u and
¢x(t) = v. By Proposition [19}

g = 1, (ws Nay) = 1, (we Naw) = Qe

and then wy = (ws N ay) = ty(wy N @) = wyy. In particular, for every
1€ Qg = Quyyt

st (1) = 14(e5(1)) = o (u(d)) = tu(2),

—_—~ —~—

Yot (1) = Y5 (8) Ve (15 (4)) = Yul@) Vo (Lu (7))

Hence, ¢ (st) = uv = ¢k (s)dr(t). Then, by Lemma 37, Sk = (¢x(S)) =
O (S)-
[

4.4 Key Lemmas

In this section two lemmas that turn out to be crucial in the proof of
Theorem [B| are proved. The first one reduces the computability of the F-
kernel associated with a variety of groups § to minimal pairs. The second
one reduces the computability of the §-kernel of a minimal pair to the com-
putability of the §-kernel of some of its quotients.

Lemma 43. Let § be a variety of groups. Then, for every inverse semigroup
S with zero and a unique 0-minimal J-class J,_Kg(;?) N J is computable if,
and only if, for every minimal pair (S, J), Kz(S) N J is computable.
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Proof. Only the sufficiency of the condition is in doubt.

Suppose that for every minimal pair (S, .J), one can decide membership
in Kz(S) N J. Let S be an inverse semigroup S with zero with a unique
O0-minimal J-class J. By Lemma , there exist a minimal pair (V,J) and
an epimorphism v: S — V, such that E; = E,), for every s € S, and
U|Jo = idjo.

We prove that Kz(S)NJ = Kz(V) N J. Let s € Kz(S) N J and let
7: V —+ F be a relational morphism with F' € §. Then, 7: S -+ F', given
by 7(w) = 7(u(w)), is a relational morphism because is a composition of
relational morphisms. Since s € Kz(S) N J, we have 1 € 7(s) and then
1 € 7(u(s)). Consequently, s € Kz(V') and so s € Kz(V) N J.

On the other hand, let so € Kz(V) N J. Let 7: S -+ F be a relational
morphism with F' € §. Let 7: J — P(F) be the map given by 7(s) = 7(s),
for every s € J. Since S is an inverse semigroup with zero with a unique
O0-minimal [J-class, we can apply Lemma [24] to 7 to conclude that

T(s)7(t) = 7(s)7(t) = 7(st) = 7(st), for every s,t € J with st # 0.

Moreover, for every v € V| if u(s) = v for some s € S, we have

@ #7(s) [ {r(i.g.4) : (i,9.5) €E} =
= ({7, 9.5) : (i,9,4) € By = By}

Then 7 satisfies properties 1 and 2 of Lemma [24] Thus, we can define the
relational morphism 7: V —+ F' | given by 7(0) = F and 7(v) = ({7 (4, 9,7) :
(i,9,7) € E,}. In particular, 1 € 7(sg) = 7(so). Therefore sy € Kz(S) N J.

Consequently, we have that K5(S) N J = Kz(V) N J. Since Kz(V) N J is
computable, it follows that K5(S) N J is computable, as required.

[

Lemma 44. Let § be a variety of groups. Let (S, J) be a minimal pair and
let KCJ%a subsemigroup closed under conjugation such that E(J°) C K C
K3(S). Let (Sk, J) be the (K, ¢k )-quotient of (S,J). Then

K3(S)NJ = ¢! (Kz(Sx)NJ) N .
In particular, Kz(S) N J is computable if, and only if, Kz(Sk) N J is com-
putable.

Proof. Let sy € Kg(S) N J. We shall show that ¢ (so) € Kz(Sk) N J. Since
sg € J, then ¢ (sg) € J by Lemma . Let 7: Sk —+ F be a relational
morphism with F' € §.
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We consider the map 7: J — P(F), given by 7(s) = 7(¢x(s)), for ev-
ery s € J. We prove that 7 satisfies the conditions of the second part of
Lemma 24 On one hand, if s1,s9 € J and 0 # sys9 € J, then, applying
Corollar, it follows that 0 # ¢ (s152) = K (s1)PK(s2) € J. Since T is a
relational morphism, we can apply the first part of Lemma [24] to conclude

that 7(¢x ($1))7(dK(s2)) = T(PK(s152)). Then
T(51)7(s2) = T(dr(51))7(DK (52)) = T(dK (5182)) = T(5152).

On the other hand, let 0 # s € S such that 0 # u = ¢k (s) and let (4, ¢, 7)
E;. Then, ¢x(i,9,j) € E, and therefore 7(u) C 7(¢k(i,g,7)) = 7(i,9,7).
Thus, it holds:

@ #7(u) C({7(i.9.) : (i.g.4) € E}.

Then, by Lemma, the map 7: S —+ F' defined by 7(s) = ({7 (¢x(i,9,7)) :
(i,9,7) € Eg}, for every 0 # s € S, and 7(0) = F' is a relational morphism.

Since so € Kz(S)NJ, 1 € 7(s9) = 7(¢dx(s0)). We conclude that ¢x(sg) €
K3(9). . .

Now, let sg € ¢ (Kz(Sk) N J) NJ. Then ¢ (so) € Kz(Sk) N J. There-
fore, it remains to prove that sy € Kz(S). Consider an arbitrary relational
morphism 7: S -+ F | with F' € §. By Corollary , there exists a map
7: Sk — P(F) given by:

T(u) = ﬂ{T(a:) cx € ¢ (By)NJ} # @, forevery 0 #u € Sg, 7(0) = F.

In addition, if ¢x(z) = ¢x(2') = y then 7(z) = 7(z'), for every x,y € J.
Thus, if y € J° then:

¢[}1(Ey) NJ={xeJ:og(r) =y}

Therefore, 7(y) = 7(z), for some =z € J with ¢x(z) = y. In particular,
T(¢x(s0)) = 7(s0)-

Let u,v € Sk. If either u = 0, v = 0 or uv = 0, then it is clear that
T(s)7(v) C 7(uv), since 7(0) = F. Suppose that uv # 0 and let h € 7(u) and
h' € 7(v). By Lemma {40, %" (Eu,) N J C (9% (E.) N J)(¢% (E,) N J). Hence
if ¥ € ¢ (Eup) N J, there exist 7, € ¢ (E,) N J and x5 € ¢ (E,) N J such
that © = x125, and then:

7(x) = 7(x179) 2 T(21)7(22) D WA,

Therefore, hh' € N{7(z) : 2 € ¢x (Ew)} = 7(uwv). Consequently, 7 is a
relational morphism.
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Since ¢x(s0) € Kz(Sk) N J, it follows that 1 € 7(so) = 7(¢x (so)). Hence
sp € Kz(5), as required.
[l

As a nice corollary to Lemma [44] we have the following description of the
§-kernel of a Brandt semigroup.

Corollary 45. Let § be a variety of groups. Let S = M°(G, A, A, I,) be a
Brandt semigroup. Then:

K3(9) = |, G%,4) u{0}.

IS
In particular, Kz(S) is computable.

Proof. Since S is a Brandt semigroup and J = S\ {0}, then (S,J) is a
minimal pair. Let K := (J;c,(¢,G%,4) U {0} € J° = S. Clearly, K is an
inverse subsemigroup of J° = S such that E(J°) = E(S) = {(,1,i) : i €
AYU{0} C K. If s=(i,9,7) € S, we have that

s Ks = (j,g7",0) (i, G%,) (4, 9, §) U{0} = (j, (G%), j) U{0} =

because G¥ <G. Thus K is closed under conjugation. Note that that S =
(i, G, 1), for every i € A. Hence

K ={0}u (U(i,Gg,i)> = {0} U (U(S(i,lﬂ.))g> .

€A iEA

By Proposition [12, K C Kz(S) N J°.

Note that G and R = id are, respectively, the normal subgroup and
the equivalence relation associated with K. Hence, if (Sk, J) is the (K, ¢x)-
quotient of (S, J) we can apply Lemma , to conclude that Sk = ¢k (S5) =
o (J%) = J° is a subsemigroup of C U 50, where JO = MO(G/GB, A, A, T).
Thus, Sk is a Brandt semigroup. In addition, Lemma [42] also implies that
b1c(K) = B(J%) = B(Si) and ¢ (B(J")) = o (B(Sx)) = K.

Now, we prove that K5(Sk) = E(Sk) by defining a relational morphism
7: Sk -3 F with FF € § and 771(1) = E(Sk).

Let p be a prime such that C, = (a) € § with o(a) = p. Then

_ 5 1A
F=G/G°xCyx --- xC, €.
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Let 7: Sk — P(F') be the map given by:

gGS.1,...,1,a”t1,...,1,a,1,...,1), ifi#j
7(i,9G%, j) = ( i J ) o, T(0)=F
(gGg,l,...,l), ifie=

One can easily check that 7 is a relational morphism and

1) ={0}u{(i,g,j) :i=jand g € G5} = {0} U {(5,G®,i) : i € A} =
= B(Sk).

By Lemma {44}

Kz(S)\ {0} = K3(5) N J = ¢ (Kz(Sg) N J) N J =
= ¢ (K5(Sk) \ {0}) N J = ¢ (E(Sk) \ {0}) = K \ {0}

Consequently, K3(Sk) = K = U, (4, G%,7) U {0}.

4.5 Main result

The equivalence between 1 and 2 is just Theorem

It is clear that 2 implies 3. Hence the circle of implications will be complete
if we prove that 3 implies 2.

Suppose that Kz(S)N.J is computable for every inverse semigroup S with
zero and a unique 0-minimal J-class .J with S, € §, for each e € E(S). We
show that for every inverse semigroup S with zero K3(S) N J is computable
for every J-class J of S.

Applying Corollary [17and Lemma[43] it is enough to prove that Kz(S)N.J
is computable, for every minimal pair (S, J).

Let (S, J) be a minimal pair. Then, we can define the following sequence
{(Sm, Jm) }men of minimal pairs:

L] (Sl, J1> = (S, J)
o (Spit, Jmi1) :i= (K, ¢k, )-quotient of (S,,, J,,), where K, = Lt and

= |J {Es:se(Sa)fpufo}

e€E(Sm)
Let m € N. Then e € (S,,) C Ly, for every e € E(J,,,). Thus, E(J?) C
L,,. Moreover, by Lemma, , L,, C K3(S,,). Therefore, K,, = (L,,)¢ C J°,
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satisfies that E(J2) C K,,, € Kg(S) N J9.. Hence, applying Lemma [44] we
have:

K5(Sm) N Jny = ¢;11<KS(Sm+1) N Jrng1) O .

Suppose that J°, = M®(G,, Any A, In,,)- Let Ny, and R,,, be the normal
subgroup of G,, and the equivalence relation on A,, associated with K,
respectively. Then G,,.1 = G, /N, and Ay = Ay /Ry, In particular,
|Grpi] < |G| and [Ay, 1] < [Agl.

Since G and |A;| are finite, there exists my € N such that |A, 1| =
|Amo| and |Gpgi1] = |G- In particular, R,,, = id and N,,, = {1}. Thus,
according to Remark [35] K,,, = E(J,,,) and then L,,, = E(J;,)-

Then, for every e € E(S,,,) and every s € ((Sy,)e)®, it follows that
E; C E(Jy,). Applying Lemma [33] we have that (S,,). € §, for every
e € E(Sy,). Thus, by hypothesis, Kz(Sy,,) N Jim, is computable.

If my = 1 we are done. Otherwise, applying Lemma 44 mo — 1 times, we
have:

K3(S)NJ =Kz(S1) Ny = ¢ (Kg(S2) NJo) N Ty =
= ¢f1(¢51(K3(53) NJs) N Jz) NJ=...=
= ¢I1(¢51( o ( ;n%)—l(Kg(Smo) N ']mo) N Jmofl) n.. ) N Jz) N J1

and then, K3z(S) N J is computable.



Chapter 5

Applications

The aim of this chapter is to present some applications of our main result.

5.1 Abelian kernel of an inverse semigroup

In this section, we obtain a nice description of the abelian kernel of an
inverse semigroup.

The problem of computing the 2Ab-kernel of a semigroup was first solved
by M. Delgado in [I1]]. Then, it was also solved by Steinberg in [32], where the
§-kernel was also computed for any variety of abelian groups with decidable
membership. Both solutions describe an algorithm which decides whether a
given element of a semigroup S belongs to the 2b-kernel or not.

We use a completely different approach. In fact, we are able to describe
the abelian kernel of every inverse semigroup. In addition, given an inverse
semigroup S we also describe how to construct an abelian group and a rela-
tional morphism 7 such that 77(1) = Ky (9).

Given an inverse semigroup S and J a J-class of S, Lemma [16|ensures us
that Kgp(S) N J = Kgp(Sy) N J, where S; is an inverse semigroup with J as
a unique 0-minimal J-class. Then, by Lemma [30] and Lemma [43] there exist
a minimal pair (V,.J) and an epimorphism v: S; — V/, such that E; = E,,)
and Kgp(Sy) NJ = Kgp(V) N J. Finally, the proof of Theorem [B| holds that
there exists a series of minimal pairs (S;, J;)1<i<ns1 and maps @;, 1 <i < n:

Y1 ©2 [2)
S]_ > SQ . e - ) n+1

such that (V,J) = (S1, 1), (Sn+1, Jnt1) is @ minimal pair with all maximal

o1
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subgroups abelian and

Kap(V) N J = Koo (S1) N 1 = ¢7 ' (Kaw(S2) N o) N Ty =
=1 (03 Ka(Ss) N )N )Ny =... =
= ¢1_1(¢2_1( e ((b;l(K%(SnH) N Jpg1) N Jn) n.. ) N J2) nJp.

Moreover, the maps ¢; are given constructively by the proof of Lemma [37]
As a consequence, it is enough to give a description of Ky, (S) N J, for every
minimal pair (S,.J) with all maximal subgroups abelian.

We start with the following proposition which describes the relational
morphisms between minimal pairs and abelian groups.

Proposition 46. Let (S,J) be a minimal pair with J° = M°(G, A, A, 1y).
Let 7: S —» A, with A € Ab. Then, it follows:

1. For every i,j € A, 7(i,1,i) = 7(j,1,7) =0 H < A. Then, for every
(i,9,7) € J, 7(i,9,7) = Hx, for each x € 7(i,qg,j).

2. For every element s € S, it holds 7(i,q,7) = 7(', ¢, j"), for each pair
(i7g7j)7 (i,7g/7j,) S Es~

3. There exists a relational morphism 7: S - A/H having |7(s)| = 1,
for every 0 # s, and 7Y (H)NJ =7710) N J.

Proof. Without loss of generality we can suppose that A = {1,..., A}. Since
A is an abelian group, we will use additive notation for the operation in A.

1. On one hand, we know that 7(1,1,1) =1 H < A, but since A is an
abelian group, H < A. Then, according to the Proposition [0} 7(i,1,7) =
7(1,1,1) = H, for every i € A. As a consequence, for every (i,g,j) € J,
7(i,9,7) = Hz, for each z € 7(i, g, 7).

2. Now, let s € S and let (i,g,j), (¢, ¢, j') € E;. By Lemma [24] we know
that 7(s) C 7(i,9,7)N7(7', ¢, 7'). But then, we get that @ # 7(s) C HzNHy,
where x € 7(i,¢9,7) andy € 7(¢, ¢, j'). Hence, Hx = Hy and then 7(i, g, j) =
(.9, 7").

3. Let 0 # s € S. By the previous assertions, we know that there exists
xs € A such that 7(i,q,j) = 7(7, ¢, j') = Hxs, for every (i,9,7), (i, ¢, j') €
Es. Then, we can define 7(s) := Hzs € A/H and 7(0) = A/H. Therefore,
for every 0 # s, |7(s)| = 1.

Now, let us check that 7 is a relational morphism. Suppose that 0 #
s,t € S are such that st # 0. Then, E;; # @ and by Proposition there
exist (i,9,7) € Es, (4,4',7") € E; such that (i,94',7) = (i,9,7)(J,¢',7) € Eg.
Therefore, applying Lemma [24] to 7, we have that 7(i,g,j) + 7(j,¢',7i) =
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7(1,9¢',7") and then 7(s) + 7(t) = 7(st). On the other hand, it is clear that
if either s = 0, ¢t = 0 or st = 0, then we have that 7(s)7(t) C 7(st). Hence,
we can conclude that 7 is a relational morphism. Moreover, it follows that
for every (i,9,7j) € J, Eug,j) = {(4,9,7)} and then

H=7(i,9,5) ©7(i,9,7) =H < 0€7(i,9, ),
le. 7Y H)NJ=7710)NJ. O

As a consequence, for every minimal pair (S, J), there exists a relational
morphism 7: S -+ A € Ab such that 771(1)NJ = Ky (S)NJ, and |7(s)] = 1
and 7(s) = 7(i,g,7), for every 0 # s € S and (i, 9,j) € Es.

Theorem 47. Let (S,J) be a minimal pair with all mazimal subgroups
abelian and J® = M°(G, A, A, I}). Let X = {x; : i € A} the alphabet and the
infinite abelian group Fup, x @ G, where Fy, x is the free abelian group over
X. Then

Kao(S) N J ={(i,9,j) : (—zi +x5,9) € N},
where N = (N; : 0 #£ s € S) QF, x & G with

NS = {(_‘Z‘Z +x]79) - (_xi’ +xj’7g/) : <i7g7j)7 (7:/79/“7’/) € ES}7
for every 0 #£s € S.

Proof. First, we use additive notation for the operation in G.

Without loss of generality we can suppose that A = {0,1,...,n} for a
certain n € N. Then, X = {z; : 0 < i < n} and we set A := F, x ® G, a
finite generated abelian group.

For each 0 # s € S'\ J, we set

Ns = {(_mz +xjag) - (_mi’ + xj’vg,) : <i7g7j)a (i/aglaj/> S Es}7

and consider the normal subgroup N := (N, : 0 # s € S) < A. Then, A/N is
a finitely generated abelian group and therefore, by the fundamental theorem
of finitely generated abelian groups, we can write

A=A/N=((n+N)@ O Ym+N)® {21 + N) D+ B (20w + N)),

where y, € A and (y, + N) = Z, for every 1 <k <m; z € Aand (z+ N) =
Zple;, with p; prime and ¢, € N, for every 1 <1 < m/.
As a consequence, for every (i,g,7) € J, we can write

(—zi+x5,9) + N = (biy1 + ... + by + 0121 + ...+ 0, 200) + N,
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with by, ... by, by, b € Zo Write g(igj) = |bi] + ... + |bu| and ng :=
max{e; g : (4,9,7) € J}. Consider N := (noy1, ..., noYm) ® N < A. Then

B=A/N={(p+N) @ ®Yn+N)® {21+ Ny @D (20w + N)).

Note that (y, + N) & Z,,, for every 1 < k < n, and (2 + N) = Ly, for
every 1 <[ < m. In particular, B € 21b is a finite abelian group.

Moreover, by the choice of ng, it follows that for every (i,g,j) € J,
(—z; + zj,9) € N if, and only if, (—z; + zj,9) € N. Next we prove that
Kop(S)NJ ={(4,9,7) : (—z; +xj,9) € N}. )

Let 7: J — P(B), given by 7(i,9,7) = (—z; + zj,9) + N, for every
(i,9,7) € J. Note that if 0 # (i,9,7)(4,9,7") = (i,g + ¢,7'), for some
(4,9,7), (4, g',i') € J, then

T(iag +g,7i,) - (_:L‘z +l‘ilvg+g,) + N - (_'TZ +x]ag) + (_"L‘] +xi’ag,) + N
:T(i7g7j> +T(jvg/77;/)'

On the other hand, for every s € S and every (i,9,7), (i, ¢',5") € Es:
7(i,9,)) = (~zi + 75,9) + N = (—2y +25,9) + N =1({, ¢, j),
because (—z; + i1, 9) — (—xy + xj,g') € N < N. As a consequence,
o # ﬂ{T(iﬂJ) 1 (1,9, J) € Es} = 7(do, go. Jo), for each (io, g0, jo) € Es.
Therefore, applying Lemma we have that 7p: S —+ B defined as

TO(S) - ﬂ{7(27g7]) : (Zagaj) S ES} = T(’i07907j0)7 fOI' eaCh (iOaQOajO) S ES7
and 75(0) = B, is a relational morphism satisfying

7—071(1> nJ= {<Zagaj) €J: (—Irl-xj,g) c N} =
={(i,9,5) € J : (—xi + xj,9) € N}.

Hence, Koy (S) N J C {(i,g9,5) € J : (—z; +z5,9) € N}.

On the other hand, we know that there exists a relational morphism
7: S—s B € Ab such that 771(1) N J = Kgu(S) N J. According to Propo-
sition [46] we can suppose that |7(s)] = 1 and 7(s) = 7(i,g,7), for every
0#seSand(i,g,7) € 7(s).

Then, we can define a map f: X — B given by f(x¢) = 0 and f(z;) =
7(0,0,4) € B, for every 1 < i < n. Therefore, by the universal property
of free abelian groups, there exists a unique homomorphism ¢: F,x — B
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which extends f. On the other hand, we can also consider the map ¢: G — B
given by ¢(g) = 7(0,¢,0) € B, which is a homomorphism because we know
that 7(0,¢9,0) + 7(0,¢',0) = 7(0,9 + ¢, 0), by Lemma 24}

Let ¢: A — B the homomorphism defined by ¢(w, g) = o(w) + ¢(g), for
every (w,g) € A. Therefore, A/ker¢ = ¢(A) < B € 2b and let us denote
: ¢(A) — A/ ker ¢ such isomorphism between both groups.

Note that for every 0 # s € S, 7(s) = 7(i, g, 7), for each (i,g,j) € Es and
then

T(i,9,7) :7"((2',0,0)(0,9, (0,0, 7 ) (7,0,0) +7(0,9,0) + 7(0,0,7) =
= —o(z;) + 9(yg )+¢(%)=¢( zi + 35, 9) € 9(A),

i.e. 7(s) € ¢(A) < B, for every 0 # s € S. Hence, we can suppose without
loss of generality that 7(0) = ¢(A) = B = A/ker ¢. In addition, note that
0 = 7(i,9,7) if, and only if, (—z; + x;,g) € ker ¢. Therefore, 771(0) N J =
{(i,9,7) : (—z; + xj,9) € ker ¢}.

Now, let 0 # s € S and let (7,9,7),(i,¢,j') € Es. Then, by definition of
7, 7(i,9,7) = 7(¥', ¢',j') and according to the previous paragraph, ¢(—z; +
zj,9) = ¢(—zy+xy, g). Thus, (—x;+z,, 9)—(—zxy+2xj,¢") € ker ¢. Therefore,
N, C ker ¢, for every 0 # s € S, so that N < ker ¢.

Hence, we can conclude that

{(i,9,7) - (=wi+xj,9) € N} ©{(i,9,7) - (=i + xj,9) € ker ¢} =
=7 1) NJ=Kg(S) N J,

and the other inclusion is proved.

]

5.2 On the computability of the §-kernel for
extension closed varieties: a conjecture

The aim of this section is to discuss about a conjecture on the computa-
bility of the §-kernel for extension closed varieties.

Recall that the case when § = & E], the variety of all soluble groups, is
of particular importance as we have mentioned in Chapter [3] Rhodes and
Steinberg in their seminar work [27] define a semigroup to be soluble if all of
its maximal subgroups are soluble. Hence, as a consequence of Theorem
we can ensure that the problem of determine the computability of the soluble

1Usually, soluble kernel is used to refer to the G-kernel
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kernel of a semigroup can be reduced to determine the computability of the
soluble kernel of a soluble inverse semigroup.

On the other hand, our main theorem allows a general approach to the
problem from an structural point of view. In fact, having in mind that we
can see §-kernels as a generalisation of §-residuals, one can expect that in
the case that § is extension closed, the §-kernel of an inverse semigroup with
all maximal subgroups in § can be reduce to the idempotents.

Obviously, it is not true if § = &, the variety of all p-groups, as we can
see in the following example:

Example 48. Let A be the alphabet of two letters A = {a,b} and F4 be
the free group over A. Take H := (ab* a*b) < F4. According to [20], we can
consider S = M(H), the inverse semigroup of transformations of the partial
inverse automaton associated with H. Then, for every prime p, we have that
applying the method described in this paper to compute the pro-p closure of
a finitely generated subgroup of a free group, we can see that H is p-dense
in F4 and therefore, it is possible to conclude that Kg, (S) # E(S).

As a consequence, one needs to impose some additional condition on
the extension closed variety §. Note that the proof of Theorem [47] strongly
depends on the fact that the variety of abelian groups contain infinitely many
cyclic groups of prime order. Our investigations allow us to conclude that for
a general extension closed variety §, this condition is essential to prove that
the §-kernel of an inverse semigroup with maximal subgroups in § coincides
with the idempotents subsemigroup. Note that the variety of soluble groups
satisfies this condition, while the variety of p-groups does not satisfy it, for
every prime p. Hence, we can state the following:

Conjecture: Let § be an extension closed variety having infinitely many
cyclic groups of order prime and let S be an inverse semigroup with all
maximal subgroups in §. Then, K3(S) = E(S5).

According to our main result it is enough to check the conjecture for
minimal pairs (S, J) with all maximal subgroups in § and J° aperiodic.

Theorem 49. Let § be an extension closed variety of groups. The following
statements are equivalent:

1. Kz(S) N J = E(J), for every minimal pair (S,J), with all mazimal
subgroups in §

2. Kz(S)nJ = E(j),_for every minimal pair (S,J), with all mazimal
subgroups in § and J° is aperiodic,
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Proof. Only the 2 implies 1 is in doubt.

Suppose that Kz(S) N J = E(J) for every minimal pair (S,.J), with all
maximal subgroups in § and J° is aperiodic .

Let (S, J) be a minimal pair with J° = M%(G, A, A, I) and all maximal
subgroups in §. We can assume without loss of generality that A = {1,..., A}.
Then, we can consider the aperiodic Brandt semigroup B = M°(1, A, A, 1)
and the semigroup U of projections.

Recall that U p has a unique 0-minimal J-class, J := B\ {0}, such that
UB, J ) is a minimal pair. Moreover, since B is aperiodic, for every u € Up,
(i) = 1, for each i € . Therefore, we can assert that for every u,v € Up,
u = v if, and only if, a,, = o, w, = w, and ¢, = ¢,,. In particular, for every
u € Up, u ! is such that a,-1 = wy,, Wy-1 = o, and 1,1 = %

On the other hand, we can observe that both Brandt semigroups, B and
J have the same set of indices. As a consequence, we can define the following
map between minimal pairs, ¢: S — Upg, given by

o(s) = u if, and only if, a, = ay, w, =ws € A and ¢, = ¢,

for every s € S. In fact, ¢ is a homomorphism because for every s,t € S, if
u = p(s) and v = p(t), then according to Proposition

Qg = Lgl(wsﬂat) = l’;l(wuma’u) = auv; Wst = Lt(l’s(aSt)) = [”U<LU(O[UU>> = Wy
and
Lst(1) = 14(15(2)) = 1y (0u(2)) = (i), for every i € as = au,.

Therefore, go( t) = uv = @(s)¢(t). Moreover, by definition of ¢, it is clear
that p(s)™! = p(s71) and for every (i,1,5) € J, v(i,g9,7) = (i,1,7), for all
g € G. Thus, ¢(5) is an inverse subsemigroup of U and B C ¢(S). Hence,
applying Lemma [29 . we conclude that (¢(S),.J) is a minimal pair.

Then, we have that J° = B is aperiodic and according to [23, Theorem
5.8], we have that ¢(S5) has every maximal subgroup in §. Therefore, by
hypothesis, Kz(¢(S5))NJ = E(J) and then, there exists a relational morphism
710 @(S)—+ A; € F such that 7, (1) N J = E(J).

Now, we can consider 75: S —o+ Ay the relational morphism given by the
composition 7(s) := 11(p(s)), for every s € S. Note that, by definition of ¢,
¢~ Y(J) = J. Therefore, we have that

i NJ={seJ:1en(p(s))} =9 (r ()NJ)=¢ ' (E()).

But E(J ) = {(i,1,7) : i € A}. Hence, o H(E(J)) = {(i,g9,9) : i € A, g €
Gy=n'1)NJ.
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According to Proposition @, we have that 75(i,1,7) = H; < A, for every
i € A. Moreover, since 7, (1) N J = {(i,g,i) : i € A, g € G}, we can also
conclude that (i, ¢g,1) = H;, for every g € G.

Then, let us fix H := 7»(1,1,1) < A;. Again, by Proposition EL we have
that for every g € G and every i € A, (1,9,1) = 12(1,9,1)72(1,1,7) =
H7y(1,1,4). Moreover, it also ensures us that 75(1,1,4) = Hz, for every
x € 7(1,1,4). Therefore, we can take z1 := 1 € 75(1,1,1) and x; € 75(1,1,1),
for every 2 < i < A, so that 75(1,1,7) = Hux;, for every 1 < i < A. Then, for
every g € G, it holds 75(1, g,7) = 72(1, g, 1)72(1,1,i) = H(Hz;) = Hax;.

Let i # i' € A. Then, we know that there exists x € 75(1,1,4) such that
r7! € 1(i,1,1). Moreover, applying Proposition |§|7 we have that Hx; = Hx.
Then, we claim that Hz;y # Hx;. In fact, if Hx = Hx; = Hxy, then there
exists h € H such that 27 'hzy = 1. But then, by Proposition @ it follows

leax'Hay = (x7 H)(Hry) = (i, 1, 1)1p(1,1,4') = 7(3, 1,4'),

which is a contradiction because 1 € (i, 1,4') if, and only if, i = 7.
Hence, we can consider the set of right cosets of H,

H\A,:={H = Hxy,...,Hz\,Hz) 1, Hx,},

and the set Q = {1,...,n}, where |A; : H| = n. We know that A; acts on
Qasi-x =14 if, and only if, Hx;x = Hxy, for every i,i" € Q. Moreover, for
every (i,g,i') € J, applying Proposition [9 we have that

TQ(iagai,) = TQ(iugu 1>7—2<17g/ai/> - xi_lH‘ri/

and therefore, i - x = 4', for all x € 7»(i, g,7").

Now, let s € S. By Lemma24] 7(s) C ({m(i,9.7) : (i,9,j) € Es}. Recall
that Eg = {(¢,7s(7),¢s5(7)) : i € as}. Therefore, by the above paragraph, we
have that i - x = 15(7), for every x € 7»(s) and every i € «.

Consider Ay := G g A1 € §, with the product defined as

((917 te 7gn)7 $) ((glla ce 79;)7 .’L'/) = ((glgix7 s ?gng;x% Z'LE,),

for every ((917 s 7gn)7x)7 ((9/17 s 7941)7:5/) S A2-
Then, we can construct the map 73: S — P(As) given by 73(0) := A, and

i =7s(1) € G, iti € aq
73(8) == {((91, . 7971)71’) : gz c a( ) otherwise * € 7'2(5)}.

Next, we show that 73 is a relational morphism. Let s,¢ € S such that
s # 0 # t and st # 0 (otherwise, it is clear that 73(s)73(t) C 73(st) because
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75(0) = As). Take (g1, . gn), %) € 75(s) and (g}, . g}), ) € 75(t). Then,
we have seen that

((917 S 7gn)7 "E) ((9/17 SR ag;z)7 .l’,) = ((glgi-xv s 7gng:m:)7 .I':L‘/).

Let us call ¢/ := g;gi..., for every 1 < i < n. Suppose that i € ag; then, by
Proposition[L9] we know that i € s, t5(i) € ayNws and v (i) = s (1) 72 (s(4)).
On the other hand, since x € 7»(s), we have seen that ¢ - x = 14(¢). Therefore

gg/ = 0i%ix = P)/S(Z)gLs(z) = 73(0”}%(%(2)) = P)/st(z)

Moreover, since 7y is a relational morphism, zz’ € 75(s)7(t) C 72(st). Hence,
we can conclude that

((gi’,...,gg),xx’) = ((gl,...,gn),x) ((gi,...,g;),:c') € 73(st).

As a consequence, 13: S -+ Ay € § is a relational morphism. We would
finish the proof if we proved that 75 (1) N J = E(J).

One inclusion is clear. For the other inclusion, let s = (ig, go, jo) € 7'3_1@].
By definition of 73, we have that 75(ig) = 1, i.e. go = 1, and also that 1 € 75(s).
Since 7, (1) NJ = {(i,9,i) : i € A, g € G}, we can conclude that iy = jy and
therefore, s = (ig, 1,149) € E(J).

]






Bibliography

1]

2l

13l

4]

J. Almeida. Finite semigroups and universal algebra, volume 3. World
Scientific, 1994.

J. Almeida, M. H. Shahzamanian, and B. Steinberg. The pro-nilpotent
group topology on a free group. J. Algebra, 480:332-345, 2017.

C. J. Ash. Inevitable graphs: a proof of the type II conjecture and some
related decision procedures. Int. J. Algebra Comput., 1(01):127-146,
1991.

K. Auinger and B. Steinberg. The geometry of profinite graphs with
applications to free groups and finite monoids. Trans. Amer. Math.
Soc., 356(2):805-851, 2004.

K. Auinger and B. Steinberg. A constructive version of the Ribes-
Zalesskil product theorem. Math. Z., 250(2):287-297, 2005.

A. Ballester-Bolinches and L. M. Ezquerro. Classes of Finite Groups,
volume 584 of Mathematics and its Applications. Springer, New York,
2006.

H. Brandt. Uber eine verallgemeinerung des gruppenbegriffes. Mathe-
matische Annalen, 96(1):360-366, 1927.

A. H. Clifford and G. B. Preston. The algebraic theory of semigroups,
vol. I. Amer. Math. Soc., Providence, RI, USA, 1961.

T. Coulbois. Free product, profinite topology and finitely generated
subgroups. Int. J. Algebra Comput., 11(2):171-184, 2001.

T. Coulbois, M. Sapir, and P. Weil. A note on the continuous extensions

of injective morphisms between free groups to relatively free profinite
groups. Publ. Mat., 47(2):477-487, 2003.

61



62

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

22]

23]

BIBLIOGRAPHY

M. Delgado. Abelian pointlikes of a semigroup. Semigroup Forum,
56:339-361, 1998.

W. Eberhart, C. Williams, and L. Kinch. Idempotent-generated regular
semigroups. J. Austral. Math. Soc. Ser. A, 15:27-34, 1973.

R. L. Graham. On finite O-simple semigroups and graph theory. Math.
Sist. Theory, 2:325-339, 1968.

J. A. Green. On the structure of semigroups. Ann. Math., 54(1):163-172,
1951.

K. Henckell, S. W. Margolis, J.-E. Pin, and J. Rhodes. Ash’s type II
theorem, profinite topology and Mal’cev products. Part I. Int. J. Algebra
Comput., 1(4):411-436, 1991.

B. Herwig and D. Lascar. Extending partial automorphisms and the
profinite topology on free groups. Trans. Amer. Math. Soc., 352(5):1985—
2021, 2000.

C. H. Houghton. Completely 0-simple semigroups and their associated
graphs and groups. Semigroup Forum, 14(1):41-67, 1977.

J. M. Howie. Idempotents in completely 0-simple semigroups. Glasgow
Math. J., 19(2):109-113, 1978.

K. Krohn and J. Rhodes. Algebraic theory of machines. I. prime de-
composition theorem for finite semigroups and machines. Trans. Amer.
Math. Soc., 116:450-464, 1965.

S. Margolis, M. Sapir, and P. Weil. Closed subgroups in pro-V topolo-
gies and the extension problem for inverse automata. Int. J. Algebra
Comput., 11(4):405-445, 2001.

S. W. Margolis. Consequences of Ash’s proof of the Rhodes type II
conjecture. In Monash Conference on Semigroup Theory (Melbourne,
1990), pages 180-205. World Sci. Publ., River Edge, NJ, 1991.

J-E. Pin. A topological approach to a conjecture of Rhodes. Bull.
Austral. Math. Soc., 38:421-431, 1988.

J.-E. Pin. Mathematical foundations of automata theory. http://www.
liafa. jussieu.fr/~ jep/PDF/MPRI/MPRI.pdf, January 2015.


http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

BIBLIOGRAPHY 63

[24]

[25]

[26]

[27]

28]

29]

[30]

[31]

32|

33]

J.-E. Pin and C. Reutenauer. A conjecture on the Hall topology for the
free group. Bull. London Math. Soc., 23:356-362, 1991.

D. Rees. On semi-groups. Math. Proc. Cambridge Philos. Soc., 36:387—
400, 1940.

J. Rhodes. Kernel systems: A global study of homomorphisms on finite
semigroups. Journal of Algebra, 49:1-45, 1977.

J. Rhodes and B. Steinberg. The g-theory of finite semigroups. Springer
Monographs in Mathematics. Springer, New York, 2009.

J. Rhodes and B. R. Tilson. Improved lower bounds for the complexity
of finite semigroups. J. Pure Appl. Algebra, 2(1):13-71, 1972.

L. Ribes and P. A. Zalesskii. On the profinite topology on a free group.
Bull. London Math. Soc., 25(1):37-43, 1993.

L. Ribes and P. A. Zalesskii. The pro-p topology of a free group and
algorithmic problems in semigroups. Int. J. Algebra Comput., 4(03):359—
374, 1994.

B. Steinberg. http://mathoverflow.net/questions/156761/computing-
the-pro-solvable-closure-of-a-finitely-generated-subgroup-of-a-free-gr.

B. Steinberg. Monoid kernels and profinite topologies on the free abelian
group. Bull. Austral. Math. Soc., 60(03):391-402, 1999.

B. Steinberg. Inevitable graphs and profinite topologies: some solutions
to algorithmic problems in monoid and automata theory, stemming from
group theory. Int. J. Algebra Comput., 11(01):25-71, 2001.



	Agraïments
	Introducció
	Introduction
	Preliminaries
	Basic results on semigroups
	A very elementary proof of Graham's Theorem
	Kernels of semigroups

	On the computability of the generalised kernel: a reduction theorem
	Inverse semigroups and projections
	The semigroup of projections of a Brandt semigroup
	Quotients
	Key Lemmas
	Main result

	Applications
	Abelian kernel of an inverse semigroup
	On the computability of the F-kernel for extension closed varieties: a conjecture


