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RESUM 

La reproducció assistida en l’àmbit veterinari 

En l’actualitat, la majoria de les espècies d’interès ramader es reprodueixen utilitzant alguna 

tècnica de reproducció assistida, sent la inseminació artificial (IA) la més utilitzada. La pràctica de 

la IA implica les següents etapes: recol·lecció del semen, avaluació del a qualitat seminal, dilució, 

transport (amb refrigeració o congelació) i inseminació.  

La recol·lecció del semen es pot realitzar per masturbació (rabosa), vagina artificial (bou), electró-

ejaculació (quan altres mètodes no són factibles), manipulació digital (caiman), derivació 

del vas deferens (alpaca) o recuperació epididimària (particularment d’animals d’alt valor 

que presenten problemes de ejaculació o al poc temps post-mortem ). 

L’anàlisi tradicional de la qualitat seminal inclou l’avaluació de la concentració i la mobilitat (total i 

progressiva), paràmetres en els que es basa el càlcul del nombre de dosis que es pot produir a 

partir d’un ejaculat concret. Aquesta valoració es realitza, habitualment, utilitzant l’aproximació del 

5% més pròxim, el que significa que per tal d’assegurar la utilitat de les dosis es sol acudir a un 

excés de cèl·lules, el que redunda en una deficient productivitat. Val a dir que amb l’ús de la 

tecnològica CASA (computer assisted semen analysis, veure més endavant), s’ha afegit el càlcul 

de la cinètica, i encara, de la morfometria com a nous paràmetres més sensibles i reproduïbles. 

La dilució del semen és un element clau i ha comportat a la definició de medis de dilució específics 

tant respecte de la espècie com del sistema de preservació escollit. A la fi l’objectiu és el 

manteniment de la qualitat espermàtica durant el major temps possible, el que es tradueix en una 

major distància potencial de transport. Òbviament, la millor de les solucions és la criopreservació 

(temps il·limitat, si més no teòricament), encara que la refrigeració resulta més pràctica quan la 

vàlua genètica dels individus no justifica la inversió requerida per a la criopreservació. 

Finalment, la inseminació implica el desenvolupament de cànules de inseminació adequades a 

cada espècie. 

La IA ha facilitat la disseminació ràpida i universal del material genètic a partir d’un nombre 

relativament menor (encara que assegurant la necessària i desitjable biodiversitat) de sementals. 

Potser, l’espècie on més evident s’ha fet aquest fenomen ha estat la porcina, on de cada ejaculat 

s’obtenen entre 10 i 20 dosis de inseminació. 
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Com s’ha esmentat anteriorment, la introducció (quan no la substitució) de sistemes automatitzats 

d’avaluació espermàtica basats en sistemes CASA va suposar una revolució en el conjunt del 

procés productiu. Ara bé, val a dir que aquesta tecnologia ha estat generalment implantada sense 

una anàlisi crítica de les seus limitacions i dependències en diversos factors metodològics, el que, 

com es comentarà més endavant, constitueix un dels eixos vertebradors de la present Tesi 

Doctoral. 

En qualsevol cas, els sistemes CASA permeten l’anàlisi d’una gran quantitat de cèl·lules en un 

temps molt curt, aportant també una considerable bateria de dades quantitatives sobre la cinètica 

o la morfometria espermatozoide a espermatozoide, amb la qual cosa és possible optimitzar la

quantitat i la fiabilitat de les dosis seminals produïdes. 

Finalment s’ha de fer menció de la importància dels sistemes CASA en la definició de programes 

de Control de Qualitat en el procés de producció de dosis d’inseminació. 

L’analítica Seminal 

Recentment, el nostre grup de recerca ha participat en l’edició y publicació de dos números 

especials de les revistes Asian Journal of Andrology (Vol. 16, número 6 de 2016) i Reproduction 

Fertility and Development (Vol. 30, número 6 de 2018) en els que se ha posat al dia el 

coneixement general sobre el significat de l’anàlisi seminal en allò referent a la 

morfologia/morfometria i a la mobilitat/cinemàtica dels espermatozoides en una gran varietat 

d’espècies. Alguns dels treballs constitutius de la present Tesi Doctoral han format part dels 

esmentats números especials. 

Com a resum, val a dir que, una vegada esgotat el significat de la valoració subjectiva de la 

qualitat seminal, el present i el futur passa per l’ús de les tècniques CASA, i no ja aquelles que han 

estat sent utilitzades en les darreres èpoques sinó en altres que marquen el camí futur, com és el 

cas de la refent a la valoració de la mobilitat amb l’ús de microscòpia làser, en un treball també 

presentat pel nostre grup. 

Un element que ha quedat perfectament establert en el conjunt de treballs publicats suposa un 

canvi substantiu de paradigma conceptual respecte de què és un ejaculat. Val a dir que fins temps 

recents es va considerar que la considerable població (milions i milions) d’espermatozoides estava 

format per cèl·lules ―equivalents‖ amb un objectiu comú: ser el que finalment fecundés l’oòcit. La 

comprovació del fet que el conjunt d’espermatozoides s’agrupa en subpoblacions ben definides, 

en quant a les seus característiques cinètiques i/o morfomètriques obre el camí cap a una visió 
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més cooperativa.  A un nivell col·loquial e podria dir que s’ha passat de pensar en una marató a 

pensar en un joc d’equip. Endemés, s’ha vist que la distribució sub poblacional és diferent entre 

diferents individus, el que sembla indicar diferents estratègies que es poden entendre dins d’un 

altre paradigma, qual és el de la competència espermàtica entre diferents ejaculats. És cert que 

encara no coneguem el paper de les diferents subpoblacions o, dit d’altra forma, que no 

coneguem l’esport que es juga. Però el futur haurà d’anar en eixa direcció. Els treballs que 

composen aquesta Tesi Doctoral intenten aportar un nou esglaó en aquest sentit. 

Objectius generals 

L’eix vertebrador de la present Tesi Doctoral omplir el buit detectat en la literatura respecte de 

l’optimització dels protocols d’avaluació espermàtica. Tan sols en el cas de l’espècie humana, s’ha 

fet un esforç en aquest sentit el que s’ha traduït en l’elaboració de successius manuals per part de 

la OMS (Organització Mundial de la Salut). De tota manera, fins i tot, en el cas humà coexisteixen 

protocols alternatius reconeguts per altres organitzacions internacionals. 

Centrant-nos-en la tecnologia CASA, per tal d’obtindre dades quantitatives fiables cal definir 

protocols òptims per a l’avaluació de cada paràmetre seminal que asseguren la consistència i 

universalitat de l’aplicació dels resultats. Ara bé, hem constatat que aquesta mena de treball 

d’estandardització dels protocols encara no s’ha realitzat d’una forma integrativa, la qual cosa 

configurarà el primer objectiu general de la present Tesi Doctoral. Tres són els aspectes 

fonamentals a considerar en el procés d’optimització que es proposa per a l’ús dels sistemes 

CASA: el tipus i la profunditat de les càmeres de recompte, el medi de dilució i la freqüència de 

captura de les imatges. En aquest darrer aspecte, la nova disposició de tecnologia de vídeo a 

preus assumibles ha mostrat que el increment en la susdita freqüència implica una variació molt 

significativa en algun dels paràmetres cinètics. Els aspectes tècnics relatius a l’estudi de la 

morfometria espermàtica no s’inclouen en la present Tesi Doctoral, per quant constitueixen 

l’objectiu d’altra Tesi Doctoral en marxa en el nostre grup de recerca. 

El segon objectiu general es centra en l’estudi de l’estructura subpoblacional en diferent 

espècies i condicions, així de com influencien en la mateixa les diferents condicions tècniques i 

operatives avaluades. 

Objectius específics 

1. Comparar diferents aproximacions estadístiques per a l’avaluació de la morfometria

espermàtica del bou amb la finalitat de definir el mètode més útil i precís i d’aplicar-lo a
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l’avaluació de diferents ejaculats i mostres rere congelació i descongelació del mateix 

individu. 

2. Determinar l’efecte de la freqüència de captura de imatges sobre l’avaluació dels 

paràmetres cinemàtics en els espermatozoides de porc i de la seua importància en la 

correcta determinació de la estructura de subpoblacions d’acord a la cinètica.

3. Determinar l’efecte del temps de captura en l’avaluació de la mobilitat i la cinètica en 

semen de porc per tal d’optimitzar el protocol d’anàlisi de les mostres.

4. Col·laborar en la definició i l’establiment del coneixement del significat de la morfometria 

espermàtica amb l’ús de la tecnologia CASA-Morph. Aquest objectiu es va completar sent 

un dels Editors Invitats del número especial corresponent de la revista Asian Journal of 

Andrology de 2016, abans esmentat.

5. Analitzar, en semen de bou, la distribució espermàtica diferencial i les característiques de 

mobilitat i cinètica a llarg de tres càmeres comercials de recompte (CellVu®, Leja® i 

Makler®), així com l’efecte de dos medis comercials de dilució (Biladyl® i Andromed®), amb 

la finalitat d’optimitzar l’ús dels sistemes CASA-Morph.

6. Avaluar la mobilitat i la cinètica, mitjançant un sistema CASA-Mot, en diferents races de 

gos (Canis familiaris), per tal de definir si la perllongada selecció artificial en aquesta 

espècie ha conduït a un significant procés de diferenciació gamètica entre races.

7. Caracteritzar la cinemàtica i la morfometria espermàtica del caiman (Caiman crocodilus 

fuscus) i determinar l’existència de subpoblacions al si del ejaculat.

Metodologia 

Mostres 

La procedència de les mostres va ser: 

Bou (Bos taurus), de la raça Holstein: Xenética fontao S.A. (42º58’ N, 7º34’ O), Lugo, Espanya 

(Objectius 1 i 5). 

Porc (Sus scrofa), de la raça Pietrain i de les seus línies genètiques derivades: Semen Cardona, 

S.L. (41°54’ N, 1°43’, E), Cardona, Barcelona, Espanya (Objectiu 2) i Mejoramiento Porcino S.L.

(10°05’ N, 84°06’, W), San José de la Montaña, Costa Rica (Objectiu 3). 

Gos (Canis familiaris), de diverses races: Reprovalcan and Clínica Veterinaria Sangüeso (39°29’ 

N, 0°22’, W), València, Espanya (Objectiu 6). 
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Caiman (Caiman crocodilus fuscus): Scientific Ecotourism Project (EcoTEC), at the School of 

Agronomy, at Costa Rica Institute of Technology (10°21’ N, 84°30’, W), San Carlos Campus, 

Alajuela, Costa Rica (Objectiu 7). 

Recollida i processament de les mostres 

En el cas dels experiments amb semen de bou, les mostres es van obtindré amb l’ús d’una vagina 

artificial en les condicions habituals per a la recollida amb finalitat d’elaboració de dosis seminals 

comercials. El volum inicial, entre 5 i 10 mL, es va mesurar amb un tub cònic graduat (0.1 mL) i la 

mobilitat global es determinà ficant 20 µL de semen fresc en un portaobjectes pre-escalfat a 37ºC. 

Les mostres es diluïren a una concentració final de 100x106, preparant-se les corresponents 

palletes per a la seua congelació. Per tal d’assegurar, en la mesura del possible, la formació de 

sub-mostres representatives i evitar imprecisions, les mostres s’homogeneïtzaren sensiblement 

i es distribuïren en palletes de 0,25 mL, utilitzant una màquina automàtica d’emplenament i

segellat i foren immediatament congelades emprant un congelador programable amb una 

corba de refredament: 4°C a -10°C a -5°C/min; -10°C a -100°C a -40°C/min; -110°C a -140°C a 

-20°C/min i, llavors, immersió en nitrogen líquid. De cada mostra es descongelaren en un bany

d’aigua a 37ºC durant 30s, buidant-se el contingut de les palletes en un tub eppendorf a la mateixa 

temperatura. 

En els experiments realitzats en porc en Costa Rica les mostres s’obtingueren a primera hora del 

matí, una vegada a la setmana, utilitzant el mètode mà enguantada ―gloved-hand‖ i

s’introduïren immediatament en un bany a 38ºC. Es consideraren les fraccions riques en 

espermatozoides, diluïdes en el medi Androstar Plus®. En aquells fets a València, s’utilitzaren 

dosis seminals comercials de l’empresa Semen Cardona que es transportaren fins el laboratori 

a 17ºC, tal i com son distribuïdes a les granges de mares. Una vegada en el laboratori, les 

mostres s’homogeneïtzaren intensament, agafant-se 1mL que es diposità en un tub eppendorf 

i es mantingueren a 37ºC durant 30 min abans del seu ús. 

Pel que fa al treballs amb diverses races de gos les mostres s’obtingueren per estimulació 

manual, dipositant-se l’ejaculat en vasos de recollida estèrils. Les mostres es diluïren a una 

concentració final <50 x 106 espermatozoides/mL amb el medi CaniPlus Chill abans del seu 

anàlisi. Les races considerades foren: Staffordshire Bull Terrier, Labrador Retriever, Mastí 

Español, Ratoner Valencià Dog, Buldog Anglés i Chihuahua. 

Finalment, en el cas del caiman la col·lecció seminal es realitzà sense anestèsia, rere 

immobilització de l’animal i per estimulació manual durant l’època reproductiva natural (febrer-
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Juny). L’ejaculat (de poc volum) es recollí en un tub eppendorf i es diluí per a la seua estabilització 

amb medi DPBS. 

Anàlisi de les variables espermàtiques 

En tots els casos s’utilitzaren sistemes CASA de la marca ISASv1®, encara que en diferents 

condicions de hardware i software, com s’especifica més endavant. 

Els paràmetres obtinguts amb el sistema CASA-Mot foren: velocitat lineal (VSL), velocitat curvilínia 

(VCL), velocitat mitja ponderada (VAP), amplitud del desplaçament lateral del cap (ALH) i 

freqüència de batuda de la cua (BCF), així com els índex de mobilitat (LIN, STR i WOB). 

Endemés, quan es considerà rellevant, es valorà la mobilitat total i la mobilitat progressiva. 

Pel que fa a les mesures morfomètriques, les cèl·lules es seleccionaren aleatòriament, evitant 

aquelles sobreposades a altres cèl·lules o a detritus del fons. S’analitzaren els següents 

paràmetres del cap de l’espermatozoide: àrea, perímetre, longitud, amplària, àrea corresponent a 

l’acrosoma (en aquelles espècies on es fa visible), elongació, el·lipticitat, rugositat i regularitat. 

Endemés, en algunes espècies es varen incloure les següents mesures de la peça intermitja: 

àrea, amplària, distància i angle de la inserció. 

En el primer treball en bou, que versà en morfometria, s’utilitzà un microscopi Olympus BH-2 amb 

un objectiu de camp clar de 100x i un foto ocular de 3,3x, acoblat a una càmera digital Basler 

A312 de 768x576x8 bits amb 256 nivells de gris i una resolució, tant horitzontal com vertical de 

0,08 µm/píxel. En el segon treball en aquesta espècie, ara sobre mobilitat, el microscopi utilitzat va 

ser un Nikon Eclipse E600 amb una platina termostatizdada a 37ºC i un objectiu de contrast de 

fase negatiu de 10x i una càmera digital de vídeo Proiser 782M amb una resolució en els dos 

eixos de 0,84 µm/píxel. El ―setting‖ utilitzat amb el sistema CASA-Mot ISAS®v1 va capturar a una 

freqüència de 30 imatges per segon, amb una grandària de partícula de 14-80 µm2 i una 

connectivitat de 14 µm. S’avaluà l’efecte de l’ús de tres càmeres de recompte (Leja®, CellVu®, 

Makler®) i dos medis de dilució, Andromed® i Biladyl®. 

Als dos estudis amb mostres de porc, s’utilitzaren càmeres de recompte d’un sol ús ISAS®D4C20, 

prèviament escalfades a 37ºC, que es carregaren per capil·laritat amb 3 µL de mostra. El 

microscopi utilitzat fou el UOP/Proiser UB203, calefactat a 37ºC i amb una vídeo-càmera 

Proiser 782M amb una resolució de 0,84 µm/píxel. 

Aquesta mateixa configuració es va utilitzar en el cas del treball realitzat en caiman. 
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A l’últim, en el cas del treball amb races de gos, les mostres es van mantindre al llarg dels 

experiments a una temperatura de 24ºC i, utilitzant en mateix hardware abans esmentat, es van 

realitzar les captures a una freqüència de 25 imatges per segon. 

Anàlisi estadística 

Les dades obtingudes dels diferents experiments es testaren, en primer lloc, per a la seua 

normalitat i homoscedasticitat utilitzant els test de Shapiro-Wilks i Levene, respectivament. Així 

mateix, es va realitzar els corresponents gràfics de distribució per a la seua valoració visual. Quan 

no es va observar la normalitat, es va realitzar la transformació de l’arrel quadrat de l’arcsinus 

abans de la realització dels corresponents estudis d’ANOVA de mesures repetides. Quan es 

mostraren diferències significatives, el test a posterior per tal de definir les possibles diferències 

entre grups va ser el de Bonferroni. 

Quan les variables, fins i tot després de la seua transformació, no seguiren una distribució normal, 

es va procedir a la realització de tests no paramètrics, el Kruskal-Wallis en una primera etapa i, en 

cas d’observar diferències, el Test-U de Mann-Whitnay per a comprar entre els diferents grups 

experimentals.  

Per a tots els tests les diferències amb una P<0,05 es consideraren com a estadísticament 

significatives. 

L’anàlisi discriminant s’utilitzà en el treball de gos per tal d’avaluar el poder predictiu de 

classificació de les diferents races en funció dels paràmetres cinemàtics corresponents. L’execució 

de l’anàlisi discriminant canònic generà una sèrie de funcions ortogonals de forma que la 

implicació de cada raça en la variable canònica fora el més diferent possible per la maximització 

de la variància inter-classe al mateix temps que minimitzava la variància intra-classe. 

En referència als procediments de clústers, es realitzaren per tal de determinar la presència de 

subpoblacions espermàtiques a partir dels conjunts de dades tant de cinemàtica com de 

morfometria. Totes les dades s’estandarditzaren de forma prèvia per tal d’evitar la possible 

influència d’escala. L’anàlisi de clústers es va efectuar en dues etapes, sent la primera la 

corresponent a la realització de l’anàlisi de component principals (CP), de forma que cada CP es 

va contrapesar amb les seues variàncies, conegudes com a ―eigenvectors‖. La valoració final va 

considerar el nombre menor de CPs que retingueren el màxim possible de la variància original. 

Aquestes CPs foren utilitzades en la segona etapa de l’anàlisi, que es definiren tot seguint el criteri 

de Kaiser i emprant per a la definició final la rotació del mètode varimax amb la normalització de 
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Kaiser. La segona etapa va seguir l’anàlisi no jeràrquica pel mètode de k-means i utilitzant 

les distàncies d’Euclides a partir de les variables quantitatives rere l’estandardització de les 

mateixes dades, de forma que els centres dels clústers foren els valors mitjans de les 

observacions assignades a cada clúster. En aquesta darrera etapa, per tal de determinar el 

nombre òptim de clústers, els centroides finals se clusteritzaren jeràrquicament emprant el 

mètode de Ward. A continuació s’aplicaren els test D’ANOVA i de 2 per avaluar les diferències 

en les distribucions de les observacions (espermatozoides individuals) en les diferents 

etapes i subpoblacions (percentatges d’espermatozoides assignats a cada subpoblació). A 

continuació s’aplicà el model lineal generalitzat (GLM) per determinar els efectes de les etapes, 

així com la seua variació, sobre la distribució relativa de freqüències dels espermatozoides en 

l’interior de les subpoblacions. Aquest darrer procediment se utilitzà també per tal 

d’avaluar la influència dels paràmetres cinemàtics o morfomètrics en la definició de les 

diferents subpoblacions. Les diferències entre valors mitjans entre subpoblacions s’analitzaren 

pel tes de Bonferroni. 

Els resultats s’expressaren com a la mitja  l’error estàndard de la mitja (SEM) i la significació es 

considerà a partir de P<0.05. totes les dades s’analitzaren utilitzant el software InfoStat (v. 2008) 

per a Windows, paquet IBM SPSS, versió 23.0. 

Resultats i valoració 

En el primer treball (capítol IV), l’aproximació ―clàssica‖, basada en l’ANOVA, va mostrar-se 

insuficient per a la correcta definició de la realitat present en la població total d’espermatozoides, 

no convenientment representada per tendències centrals, encara que va posar de 

manifest diferències entre animals, ejaculats i palletes. L’anàlisi de CP mostrà que el 

conjunt de les variables morfomètriques analitzades s’agruparen en una CP relativa a la 

grandària una segona CP relacionada amb la forma del cap de l’espermatozoide. L’anàlisi 

subpoblacional evidencià la presència de quatre subpoblacions referides a caps grans, 

xicotets, curts i estrets que representaren el 31, 27, 24 i 18% del total de la població, 

respectivament. La distribució de subpoblacions va ser diferent entre animals i ejaculats, 

encara que no sempre entre palletes. Aquesta nova aproximació que considera al conjunt dels 

espermatozoides de una mostra dividit en diferents subpoblacions funcionals en funció de 

paràmetres quantificables generats per sistemes CASA-Morph obre una nova visió de la funció 

espermàtica. 

En el segon treball, en porc (capítol V), es va posar de manifest que la freqüència de captura 

d’imatges va afectar sensiblement els paràmetres cinemàtics, sent la VCL la variable més 
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sensible. Tots els paràmetres mostraren diferències entre animals. L’estudi de correlació no lineal 

va mostrar una corba asimptòtica amb un punt de saturació per a la VCL de 212 imatges per 

segon, mostrant-se com el paràmetre més sensible. En referència a la valoració de la mobilitat 

total i la progressiva 50 i 100 imatges per segon foren suficients, respectivament. L’anàlisi de 

components principals va oferir tres CPs (velocitat, progressivitat i oscil·lació), que es mostraren 

independents de la freqüència de captura utilitzada. Finalment, les cèl·lules s’agruparen en quatre 

subpoblacions que si variaren, tant en la seua cinètica com en la seua distribució, segons la 

freqüència de captura. Fins al present les càmeres de vídeo presentaven limitacions en la 

capacitat de incrementar la freqüència de captura el que ha tingut un efecte negatiu en la validesa 

dels resultats. 

En el tercer treball (capítol VI), es va observar, en mostres de porc, que tant la mobilitat total com 

la progressiva no es veien afectades per la duració del vídeo analitzat, mentre que tenia un efecte 

significatiu tant respecte de les velocitats com dels índex, però no en l’ALH o la BCF. Tots els 

paràmetres mostraren diferències entre animals. Els resultats demostraren doncs que la valoració 

de la cinètica espermàtica es veu afectada pel temps d’anàlisi el que es va posar de manifest amb 

l’anàlisi de clústers que va mostrar el fet que una durada curta de la gravació pot sobreestimar el 

percentatge de cèl·lules ràpides no-progressives. Així doncs, es recomana analitzar al menys mig 

segon per a l’avaluació de la mobilitat i dos segons per a la cinètica. 

En el quart treball (capítol VII) posarem de manifest que l’acrònim CASA (Computer Assisted 

Semen Analysis) per sí mateix resulta insuficient, donat que l’anàlisi pot referir-se a diferents 

aspectes de la funcionalitat espermàtica, com ara la concentració, mobilitat/cinètica, 

morfologia/mofometría, Fragmentació del DNA... o combinacions dels mateixos. Com a 

conseqüència proposarem una nova terminologia, basada en l’ús del terme CASA per a referir-

nos-en a la tecnologia, seguit de l’abreviació corresponent que indique l’aspecte estudiat, com ara 

CASA-Conc (per a concentració), CASA-Mot (per a la mobilitat, tot incloent-hi la cinètica) o CASA-

Morph (per a la morfologia i morfometria). 

En el cinquè treball (capítol VIII) s’avaluà l’efecte del tipus de càmera i del medi de dilució en la 

valoració cinemàtica de mostres descongelades de bou. En les càmeres emplenades per 

capil·laritat (Leja i CellVu) s’analitzaren nou posicions, considerant les àrees central i lateral 

(sumant els dos laterals), així com l’eix longitudinal. En el cas de la càmera Makler (de forma 

circular) s’analitzaren també nou camps però no es va poder establir una variació direccional. 

Independentment del medi de dilució (Biladyl o Andromed), hi hagué variacions en les 

característiques de mobilitat entre les diferents càmeres, indicant que l’eix longitudinal introdueix 
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variacions en els valors obtinguts. Així mateix va haver un efecte del medi de cultiu. Aquests 

resultats indiquen la necessitat de realitzar un mostreig representatiu (cosa infreqüent fins al 

present) i definir protocols adients a cada espècie i condició per al correcte ús de la tecnologia 

CASA-Mot. 

El sisè treball (capítol IX) va evidenciar que els paràmetres cinemàtics estudiats mostrares 

diferències entre les diverses races de gos. Els espermatozoides amb major velocitat foren els 

corresponents als Stafforshire Bull Terriers i els de menor al Chihuahua. El coeficient de variació 

intra-mascle fou major que el inter-mascle per a totes les races, sent el Stafforshire Bull Terrier el 

que mostrà els valors menors. L’anàlisi discriminant mostrà una elevada capacitat de predicció de 

la raça a la que pertanyien els espermatozoides. L’anàlisi de clústers mostrà una classificació 

jeràrquica prou coincident a la referida a filogènies basades en marcadors genètics. Futurs treballs 

sobre espermatozoides de gos hauran de tindre present les diferències entre races, de forma que 

els resultat no poden ser transferits d’una a l’altra. Els resultats obtinguts indiquen que el gos 

potser considerat un bon model en biologia evolutiva per a examinar canvis en diversos 

paràmetres reproductius associats a processos de selecció. 

Finalment, en el setè treball (capítol X), relatiu a mostres de semen de Caiman crocodilus fuscus, 

tant la mobilitat total i progressiva es mostraren constant entre diferents individus, però si hagué 

diferències significatives respecte dels paràmetres de morfometria i cinètica (tant velocitats com 

índex). L’anàlisi de CPs va agrupar les variables en quatre components, relatives a la 

progressivitat, la velocitat, l’oscil·lació i la grandària del cap de l’espermatozoide. Es van obtindre 

quatre subpoblacions corresponents a les cèl·lules xicotetes de velocitat mitjana i no progressiva, 

grandària mitja lents no progressius, grans mitjos progressius i xicotets ràpids progressius. La 

distribució de subpoblacions varià entre animals el que pot presentar relacions ambla fertilitat. 

Conclusions 

La present Tesi Doctoral ha analitzat l’aplicació de la tecnologia CASA i de l’anàlisi estadística 

multivariant per tal d’optimitzar l’avaluació seminal en espècies domèstiques i salvatges. Les 

conclusions a que s’ha arribat són: 

1. Si més no, en el cas del boví, les aproximacions tradicionals per a l’estudi de la morfometria 

espermàtica, basades en l’ANOVA, no son suficientment satisfactòries per definir les 

subpoblacions espermàtiques, el que fa necessari l’ús de l’estadística multivariant basada 

en l’anàlisi de components principals. Les diferències observades en l’estructura
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subpoblacional de diferents palletes del mateix animal posen en dubte l’anterior idea que la 

susdita estructura era característica de cada animal, el que indica que també pot estar 

relacionada amb respostes fisiològiques en resposta al medi ambient. 

2. Assumint la BCF i la VCL com els paràmetres més sensitius a la modificació de la

freqüència de captura, es recomana capturar el més proper a 225 imatges per segon per a

l’avaluació cinemàtica del semen de porc. Per contra, si l’objectiu és mesurar la mobilitat

total 50 imatges per segon són suficients i en el cas de la mobilitat progressiva caldrien

150. Qualsevol treball futur ha de tindre present aquest resultats tant en els camps de la

recerca com de la producció. 

3. Es recomana capturar seqüències de dos segons per a l’estudi cinètic de mostres de porc,

sent suficient l’anàlisi de mig segon per avaluar les mobilitats total i progressiva.

4. Suggerim la següent terminologia per tal d’evitar confusions respecte de la tecnologia

CASA: l’ús genèric del terme CASA per referir-se a la tecnologia en sí mateixa, que es

seguirà de l’abreviatura que indique l’anàlisi específic a que cada sistema es refereix. Per

exemple CASA-Mot (per a la mobilitat, incloent-hi la cinètica) i CASA-Morph (per a la

morfologia, incloent-hi la morfometria), que són els dos sistemes utilitzats en la present

Tesi Doctoral.

5. Si més no, en el cas del boví, l’ús de diferents càmeres de recompte i de medis de dilució

causen canvis significatius en l’estimació de la cinètica espermàtica. Així mateix és

necessari tindre en compte l’àrea de recompte dins la càmera perquè hi ha diferències,

particularment respecte de l’eix de desplaçament vertical.

6. En base a les diferències significatives observades en les característiques cinemàtiques

entre diferents races de gos posa en evidència l’error que ha suposat la repetida

generalització del concepte ―gos‖, barrejant races incontroladament. Les races de gos

poden constituir un model molt útil per examinar la diversitat de respostes en estudis

reproductius així com per a la millor comprensió de diversos aspectes de la biologia

reproductiva de la femella que podrien estar influenciats per l’evolució de les

característiques espermàtiques.

7. L’avaluació de la qualitat seminal resulta molt important en els programes de conservació

d’espècies, com hem posat de manifest en el cas del caiman. Els resultats obtinguts en la

present Tesi Doctoral poden contribuir al desenvolupament de protocols fiables respecte

de l’anàlisi seminal d’espècies de rèptils que poden ser usats per a la determinació del seu

potencial reproductiu. L’avaluació espermàtica basada en tecnologia CASA pot facilitar

estudis de fisiologia espermàtica i de preservació d’aquestes espècies.
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1.1 Male fertility 

1.1.1 Sperm production 

The testis is an ovoid gland that produces spermatozoa that leave the testes from the bottom and are 

stored near the top of the testicle and secretes steroid hormones (Amann, 1986). Sperm cells are 

produced only within the seminiferous tubules of the testes. Sperm production occurs along the 

entire length of these densely packed tubes within the testes. All of the separate sperm producing 

tubes, however, eventually converge into a single collection tube in the center (rete testes) of the 

testicle (Knox, 2003). 

The process of reproduction is initiated and regulated by hormones at the level of the brain (Fig. 1). 

The hypothalamus serves as both a neural and endocrine (hormonal) organ and is located near the 

base of the brain. The release of anterior pituitary hormones is regulated by hypothalamic hormones 

(releasing [GnRH Gonadotropin Releasing Hormone] or inhibitory), which are synthesized in the cell 

bodies of neurons. In response to neural activity, the hypothalamic hormones are released from the 

nerve endings into the hypophyseal portal blood and are then carried down to the anterior pituitary or 

Adenohypophysis (Hong, Payne, & Jane, 2016). 

Fig. 1. Hormones control sperm production in a negative feedback system. Image adapted from 

https://opentextbc.ca/biology/chapter/24-4-hormonal-control-of-human-reproduction/ 

The GnRH is essential because it is responsible for inducing the release of FSH (Follicle Stimulating 

Hormone) and LH (Luteinizing Hormone) from the Adenohypophysis, which is located just below the 

hypothalamus. In males, FSH is required for spermatogenesis, and LH stimulates testosterone 

secretion by Leydig cells (ElSayed & Bhimji, 2018). 
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The process of meiosis (Fig. 2) reduces by half the somatic or diploid number of chromosomes (2n, 

where n equals the number of pairs of chromosomes), including the two sex chromosomes. In de 

male case, the male has an XY complement of chromosomes, and his spermatozoa can carry either 

the X or the Y chromosome.  In spermatogenesis, the meiotic prophase is the same as in oogenesis, 

but after that, it differs in several respects. It does not begin until around the time of puberty, but once 

it has started, it then continues in an uninterrupted manner throughout adult life (Lawrence, Fowler, & 

Novakofski, 2012). 

Fig. 2. During spermatogenesis, four sperm cells are produced from each primary spermatocyte. 
Spermatogenesis begins when the 2n (diploid) spermatogonium undergoes mitosis. The spermatogonia 
undergo meiosis I, producing haploid (1n) secondary spermatocytes, and meiosis II, producing spermatids. 
Differentiation of the spermatids results in mature sperm. By courtesy of Encyclopædia Britannica, Inc., 
copyright 2013; used with permission. 

Seminiferous tubule
Tranverse section 



35 | Application of CASA technology and multivariate analysis to optimize the semen evaluation in domestic and wild species 

1.1.2 Epididymal factors to sperm maturation and storage 

The epididymal function is vital for the fertility of male mammals because their sperm is infertile when 

they leave the testes and only acquire the ability to fertilize an ovum during passage through the 

epididymides. It is relevant that the epididymides accumulate and store sperm as it, depending upon 

species, it takes 0.5–2 days for the testes to produce the number of sperm in a normal ejaculate 

(Jones, 1999; Jones, Dacheux, Nixon, & Ecroyd, 2007). The success of sperm storage in the 

epididymis is so high which makes that fertile sperm can survive in an isolated epididymis for several 

days at 4 °C (Dacheux et al., 2009).  

Although all mammals have an initial segment of the epididymis with distinctive characteristics, there 

is variation between species in the structure and length of the different segments, suggesting some 

variation in post-testicular sperm maturation and storage (Jones, 2002). Due to the variations in 

epididymides between species, it is considered that there must be variations between species in the 

changes in protein composition throughout the epididymis (Dacheux, Gatti, & Dacheux, 2003) 

and probably indicating the relative significance of sperm maturation and storage between species.

1.1.3 Fertility evaluation 

It was well established that seminal characteristics are related to the fertility of the samples (Flowers, 

2009). However, fertility is multifactorial, and several factors including season could influence the 

outcome, the number of sperm, the timing of copula before ovulation, and the individual sire's 

seminal plasma profile (Flowers, 2009; Vesseur, Kemp, & Den Hartog, 1996), and if that was not 

enough it must be considered the female effect. 

Furthermore, functional and structural sperm parameters such as motility, kinematic, viability, 

acrosome and DNA integrity, mitochondrial function, morphology, and morphometrics (Gillan, Evans, 

& Maxwell, 2005) may be associated with fertility process.  

Concerning seasonal effect, boar or bull is not usually considered a seasonal breeder, can also 

occur seasonal variations of semen quality (Ibănescu et al., 2018). Variations of sperm parameters 

between summer and winter months have been partially attributed to related changes of scrotal 

thermoregulation and heat dissipation mechanisms (Menegassi et al., 2015). 
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1.2 Assisted reproduction in animal species 

Reproduction within animal farms is usually by artificial insemination (AI), reflecting the importance of 

this procedure that has increased and developed globally after its introduction in the first half of the 

20th century (Amann & Waberski, 2014; Hansen, 2014). Regarding males, the AI implies the 

following steps: semen collecting, assessment, dilution and frozen-thawed, and insemination.  

The collection can be performed by using an artificial vagina (Barszcz, Wiesetek, Wasowicz, & 

Kupczynska, 2012), masturbation (Knox, 2016) and after electro-ejaculation (Palmer, Amundson, 

Brito, Waldner, & Barth, 2004). The sperm motility (total, progressive), kinetics, and concentration are 

the principal variables assessed at the AI centers or farms to calculate AI doses. For dilution of 

the samples species, specific extenders must be defined both for refrigeration or cryopreservation 

of the samples (Foote, 2002). In the case of cryopreservation specific protocols for 

frozen-thawed, including vitrification, must be defined for each species (Sieme & Oldenhof, 

2015; Yeste, 2016). Finally, the insemination requires the development of specific catheters 

(Hernández-Caravaca et al., 2017). 

The AI facilitates the rapid dissemination of genetic material from a small number of genetically 

superior sires to a large number of females of the population (Vishwanath & Shannon, 1997), is the 

most important technique to facilitate the genetic improvement of animals (Howley, Donoghue, & 

Heanue, 2012). 

Besides, the AI reduces the need for studs in the farms and improve the accuracy of 

reproductive records (Funk, 2006). For instance, in swine, the rate of genetic progress can 

be dramatically increased with AI. Semen could be collected from top sires and use by mating 10 

to 20 females with a single boar ejaculate (Johnson, Weitze, Fiser, & Maxwell, 2000). With 

advancements in the development of longer-term extenders, the ability to spread the doses 

transport distances increased a lot allowing the rapid adoption of AI around the globe (Knox, 2016). 

1.2.1 Seminal doses production 

The primary objective is to obtain the higher number of doses from each ejaculate (or pool, 

depending on species) having enough good number of spermatozoa to assure the pregnancy of the 

inseminate female (Tsakmakidis, Lymberopoulos, & Khalifa, 2010). Traditionally, the semen 

evaluation (see below for details) was performed using the 5 % approximation by a 

subjective approach, what suppose a much loss of precision and reliability. The typical way to 

overpass these limitations as to put more cells than that needed (Soler et al., 2017). 
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 The introduction of computer-assisted semen analysis (CASA) technology has revolutionized the 

semen evaluation process for seminal doses production and the quality control planned for marketing 

or research (Amann & Waberski, 2014; Didion, 2008; Feitsma, Broekhuijse, & Gadella, 2011), 

however this evaluation could be affected by several factors (Kathiravan, Kalatharan, Karthikeya, 

Rengarajan, & Kadirvel, 2011). The computers have the capabilities for rapid counts of hundreds of 

sperm in seconds being able to analyze motility, kinematics, morphometrics, and concentration and 

subsequently for optimized the number and reliability of the final produced seminal doses. 

The success of AI in animals is also related to the ability of farm staff to detect estrus, their skills 

during actual insemination, as well as semen quality (Holt, Holt, Moore, Reed, & Curnock, 1997). 

When semen parameters are sub-optimal as volume, sperm number, motility or sperm morphology, 

conception rates can be affected (Flowers, 1997). In this context, several authors have demonstrated 

the correlations among some semen parameters, including those evaluated using CASA systems 

and fertility indices (Budworth, Amann, & Chapman, 1988; Hirai et al., 2001; Hirano et al., 2001; 

McPherson, Nielsen, & Chenoweth, 2014; Sutkeviciene, Andersson, Zilinskas, & Andersson, 2005). 

Finally, the introduction of Quality Control Programs during all the process for the production of AI 

doses is needed, and the use of CASA technology makes it easy, reproducible, and reliable (Gadea, 

2005). These programs have been successful for many years and have been important for assuring 

successful results in AI around the world (Maes, López Rodríguez, Alfonso, Rijsselaere, Vyt, & Van 

Soom, 2011).  

1.3 Semen analysis 

Microscopic sperm motility observation started a soon as the 1600s (Sztein, Takeo, & Nakagata, 

2018), and motility is remaining as the most used parameter for semen quality evaluation in AI 

centers (Lenz, Kjelland, VonderHaar, Swannack, & Moreno, 2011). The evaluation of sperm motility 

provides relevant information on the energy status of mammalian sperm (Quintero-Moreno, Rigau, & 

Rodríguez-Gil, 2004; Roldan, 1998). Furthermore, the motility function has played an essential role 

once spermatozoa reach the utero-tubal junction, which contains mucus (Jansen, 1978; Jansen & 

Bajpai, 1982) and has served as a barrier to sperm with poor motility (Mortimer, 1997).  

Motility evaluation has presented a degree of subjectivity, due to a visual estimation of the 

percentage of total motile spermatozoa, which have reduced its potential as a fertility marker 

(Walker, Winet, & Freund, 1982). Subjective estimation of motility is affected by different factors as 

technician effect  (Gallego, Herranz-Jusdado, Rozenfeld, Pérez, & Asturiano, 2018; Rijsselaere et 

al., 2005; Rijsselaere, Van Soom, Maes, & Kruif, 2003; Verstegen, Iguer-Ouada, & Onclin, 2002).  
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As it was pointed out before, the typical approaches are using a 5% approximation of motility, and a 

classification of 1 to 5 (slowest-to-fastest) speed of progression (SOP) score to characterize overall 

motility of a semen sample and to assess sperm quality. This approach is lacking the precision that is 

required for accurate motility estimation (Zhao et al., 2004).  

On the other hand, sperm morphology is also considered an important part of the semen analysis 

reflecting the genetics of the spermatozoa (Murphy, Fahey, Shafat, & Fair, 2013; Thurston, Watson, 

Mileham, & Holt, 2001). Sperm cells with abnormal morphology have been associated with low 

fertility rates (Barth, Bowman, Bo, & Mapletoft, 1992; Chandler, Painter, Adkison, Memon, & Hoyt, 

1988; Jasko, Lein, & Foote, 1990b). However, subjective estimates of sperm morphology imply lack 

of precision, repeatability, and accuracy (Hidalgo, Rodríguez, & Dorado, 2006). Besides, in species 

as ram the number of obvious morphological abnormal cells is meager (Sancho, Pérez-Sánchez, 

Tablado, de Monserrat, & Soler, 1998). Moreover, most of the morphological observation techniques 

imply high time consuming (Soler et al., 2005). All these limitations have conducted to the fact that 

sperm morphology is no commonly evaluated during seminal doses production and, if it is, limited to 

the evaluation of cytoplasmic droplets or too obvious teratozoospermic samples (Thundathil, Palasz, 

Barth, & Mapletoft, 2001; Zou & Yang, 2000). 

All these limitations were the basis for the advent of the CASA technology at the beginning of the 

80’s of the last century (Bompart et al., 2018; Yániz, Silvestre, Santolaria, & Soler, 2018). 

1.4 Computer Assisted Semen Analysis (CASA) systems 

As it was indicated before, CASA technology has been commercially available since mid-1980s and 

provide a more objective sperm characteristics evaluation (Holt, Cummins, & Soler, 2018; Soler, 

Cooper, Valverde, & Yániz, 2016). The main components of a CASA system include a microscope 

equipped with a heated stage and negative phase contrast optical device with an attached video 

camera. The signal of the camera is arriving at a computer which has specific software for different 

kind of analysis (Fig. 3) 

The measurement of sperm motility and kinematics has been a target of semen research for over 25 

years (look the special number of Reproduction Fertility and Development (RFD) 30(6), 2018 for a 

thorough review of state of the art). CASA-Mot systems offer a big battery of motility parameters in 

addition to the general motility evaluation. During this time it was showed that these parameters are 

sensitive to several hardware and software parameters, as well as the variability of semen samples 

(Bompart et al., 2018; Castellini, Dal Bosco, Ruggeri, & Collodel, 2011; Yeste, Bonet, Rodríguez-Gil, 

& Rivera Del Álamo, 2018). 
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Fig. 3. Views of a 2018 CASA system. CASA, computer-assisted semen analysis. Image provided by C. Soler. 

In parallel to the development of CASA-Mot systems, CASA-Morph commercial systems were 

designed to reduce the subjectivity of sperm morphology assessment (Yániz, Soler, & Santolaria, 

2015). Even no in the same volume that kinematics studies, morphometry has also been 

widely considered in the last few years (Yániz et al., 2015), (look also the special number of 

the Asian Journal of Andrology (AJA) 18(6), 2016 for complete review of the state of the 

art). When morphometric instead morphological criteria were used the predictive ability of 

morphological aspects of sperm quality was highly increased (Soler et al., 2005). 

In general, the CASA parameters enable the comparison of results, both inside the laboratory and 

between laboratories, and makes it possible to detect quantitative differences in seminal parameters. 

These facilities apply to studies analyzing different experimental or productive situations (Palacín, 

Vicente-Fiel, Santolaria, & Yániz, 2013) and to find differences between males or treatments and 

interactions inside one experiment (Verstegen et al., 2002).  

Moreover, the capacity of CASA for generating large datasets comprising motility data from 

thousands of spermatozoa has been overlooked in use favor of the summary statistics provided by 

the software, which do not show the intrinsic variability of the semen sample (Martínez-Pastor, 

Tizado, Garde, Anel, & de Paz, 2011). The first step in the evaluation of CASA datasets is a data 

outlier evaluation (Martínez-Pastor et al., 2011) as it will be developed in the following sections. 
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1.5 Technical conditions and limitations of CASA technology 

Although CASA systems have demonstrated to be more accurate than traditional methods 

(Broekhuijse, Šoštarić, Feitsma, & Gadella, 2011; Didion, 2008; Krause, 1995), errors in the 

automatic detection of sperm tracks and silhouettes can occur (Amann & Waberski, 2014; 

Broekhuijse et al., 2011; Simonik et al., 2015). The final results can be influenced by many unrelated 

to the semen samples factors (Ehlers, Behr, Bollwein, Beyerbach, & Waberski, 2011), such as 

dilution of semen sample, time elapsed since ejaculation until examination, sample temperature, 

counting chamber type used (Del Gallego et al., 2017; Bompart et al., 2018) and location inside the 

camera (Nöthling & dos Santos, 2012), number of analyzed fields (Broekhuijse et al., 2011), 

recording frame rate (Castellini et al., 2011; Wilson-Leedy & Ingermann, 2007), staining technique for 

morphological evaluation (Soler et al., 2005), and type of CASA system used (Jasko et al., 1990a; 

Boryshpolets et al., 2013).  

Attention must be devoted to the counting chamber used. Different types of counting chambers can 

be used on the CASA-Mot systems that differ widely of volume inside the chamber, depth, shape 

and loading modality (for revision look (Bompart et al., 2018)). Some studies have shown that 

counting chamber used for the semen analysis had a significant effect on sperm kinetics in cattle 

(Gloria et al., 2013), goat (Del Gallego et al., 2017), human (Peng, Zou, & Li, 2015), ram (Palacín et 

al., 2013), and stallion (Hoogewijs et al., 2012). 

Another significant factor is related to the CASA system design. Although most of them are based on 

similar principles, they differ regarding optics, hardware and software characteristics, particularly in 

that referred to the algorithms used for sperm segmentation, identification and trajectory 

reconstruction and silhouette identification (Kraemer et al., 1998; Yániz et al., 2017). The CASA 

systems differ in their grayscale bit-depth, frame rate (Wilson-Leedy & Ingermann, 2007), number of 

consecutive frames analyzed, grayscale thresholding method, image segmentation method to 

determine the pixel coordinates of the sperm, head versus midpiece tracking, and strategies for 

handling collisions between spermatozoa (Shi, Nascimento, Berns, & Botvinick, 2006), as well as to 

define the different morphological components of the cell (Yániz, Capistrós, Vicente-Fiel, Hidalgo, & 

Santolaria, 2016). 

Furthermore, CASA systems can provide high accuracy and repeatability (Davis, Rothmann, & 

Overstreet, 1992; Farrell, Trouern-Trend, Foote, & Douglas-Hamilton, 1995). Standardization of 

equipment used in the process can further influence results (Verstegen et al., 2002), along with the 

training level or expertise of the technician (Comhaire, Huysse, Hinting, Vermeulen, & Schoonjans, 
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1992; Ehlers et al., 2011; Holt, Watson, Curry, & Holt, 1994), the technical settings (Mortimer, Aitken, 

Mortimer, & Pacey, 1995; Rijsselaere et al., 2003), the type of software (Tejerina, Buranaamnuay, 

Saravia, Wallgren, & Rodriguez-Martinez, 2008) and the type of chamber used for analysis (Gloria et 

al., 2013; Hoogewijs et al., 2012; Kraemer et al., 1998; Lenz et al., 2011; Tomlinson, Turner, Powell, 

& Sakkas, 2001).  

In general, the effect of the different technical settings was found as showing high relevance for the 

kinematics (Contri, Valorz, Faustini, Wegher, & Carluccio, 2010) and morphometrics (Yániz et al., 

2015) evaluation. All these factors claim for well-defined inclusive protocols for the standardization of 

results output, being one of the central objectives of the present work. 

1.6 CASA parameters 

1.6.1 Motility and kinematic parameters 

Most of the CASA-Mot systems plot the movement of a sperm head centroid creating a trajectory 

and analyzing the kinematic parameters of the resulting track. Sperm kinetics include measuring the 

distance between each head point for a given sperm during the acquisition period. Sperm motion 

parameters are mainly composed of three values on sperm motion velocity, three on velocity ratio 

and two reflecting sperm wobble characteristics. The main parameters are: curvilinear velocity (VCL, 

µm·s-1) is measured by summing the distance between the sperm head centroid positions frame by 

frame, divided by the elapsed time; the straight line velocity, (VSL, µm·s-1) is the distance between 

the first and last points of the sperm track, divided by the elapsed time; the average path velocity 

(VAP, µm·s-1) is the average path length, determined by smoothing the sperm head position in a 

running average (what algorithm change among CASA-Mot brands), divided by the elapsed time; 

linearity (LIN, %) measures the level of linear progression and is calculated as the ratio VSL/VCL in 

percent; the straightness (STR, %) is the ratio VSL/VAP in percent and is a measure of track 

compactness; the wobble (WOB, %) refers to the oscillation of the actual path about the average 

path and is expressed as ratio VAP/VCL in percentage; the amplitude of lateral head displacement, 

(ALH, µm) is the amplitude of the approximately sinusoidal oscillation of the sperm head about the 

track (can be considered as the maximum or the mean value along the track); the beat-cross 

frequency (BCF, Hz) is the frequency with which the sperm head crosses the average path line 

during acquisition (Kay & Robertson, 1998) (Fig. 4). 
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Fig. 4. Kinematic parameters as presented by the ISAS
®
v1CASA system. The red line shows curvilinear 

velocity (VCL), the blue line shows straight line velocity (VSL) and the green line shows average path velocity 

(VAP). STR, straightness (= VSL/VAP*100); LIN, linearity (= VSL/VCL*100); WOB, wobble (= VAP/VCL*100); 

ALH, amplitude of lateral head displacement; BCF, beat-cross frequency (Soler et al., 2018).  

As it was mentioned previously, some variables as sample concentration and dilution, the frame rate 

(Castellini et al., 2011; Morris, Coutts, & Robertson, 1996), the frequency of image acquisition 

(Acosta & Kruger, 1996), algorithm for the reconstruction of the trajectories (Morris et al., 1996), the 

number of fields analyzed, and counting chamber used can affect motility results in semen evaluation 

even with the same CASA device (Rijsselaere et al., 2003, Bompart et al., 2018).  

Maybe the FR is the key factor, and it was conditioned for a long time by the available video-

cameras.  At the begging of the technology as low as 16 or 25 frames per second (fps) were used, 

but in the recent times it is more frequent, particularly for human samples an acquisition frequency 

rate of 50–60 Hz is having been recommended (Morris et al., 1996). However, when cells display 

high speed and low linearity, such as the hyperactivated sperm, an increased frame rate is 

recommended (Mortimer & Swan, 1999). Recent works of our group are indicating that for most of 

the species this remains wholly inadequate being necessary higher FR for assuring the veracity of 

the measurements (unpublished results), being one of the objectives of the present Thesis in the 

studied species. 
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1.6.2 Morphometry 

Most published studies on sperm morphometry have been focused mainly on the sperm heads, 

although some of them have also measured other parts of the sperm cell structure, such as the 

nucleus, acrosome, midpiece or the whole flagellum (tail, including the midpiece) (Yániz et al., 2015). 

Different parameters have been used to describe the morphometry of sperm heads, but the most 

commonly accepted are: primary parameters that provide information on sperm head dimensions, 

and usually include length (L, µm), width (W, µm), area (A, µm2), and perimeter (P, µm), and derived 

parameters as approximations to head shape using a series of mathematical formulae, including, 

among others, Ellipticity = L/W, Rugosity (also known as roughness) = 4πA/P2, Elongation (lack of 

roundness) = (L − W)/(L + W), and Regularity = πLW/4A (Fig. 5). To some authors, ellipticity and 

elongation provide redundant information as they describe the same phenomenon: the ratio between 

sperm head lengthening and widening (Sánchez, Bastir, & Roldan, 2013), but, in general, the 

multivariate mathematical analysis includes both as significant (Vásquez, Soler, Camps, Valverde, & 

García-Molina, 2016). 

 

Fig. 5. Morphometric sperm-head parameters. The length (L, along with the major axis), width (W, along with 

the shortest axis), area (A) and perimeter (P) of the head are self-evident. Shape parameters are mathematical 

combinations following the correspondent expressions (Soler et al., 2005). 

Morphometric results may be influenced by factors intrinsic and extrinsic to the male. Intrinsic factors 

may include genetic or environmental factors, age and sexual maturity, and sampling frequency. 

Nevertheless, the most important factor is the introduction of artifacts as a consequence of the 
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staining technique. In one or another way this process implies the dehydration of the cells what is 

introducing a sensitive change in the final observed morphology (Soler & Cooper, 2016; Yániz et al., 

2015). However, also, the fixation of the samples using chemical fixatives introduces dramatic 

changes in the final cell morphometry (Sancho et al., 1998; Soler et al., 2000). To solve this 

handicap a new technique was proposed (Soler, García-Molina, Contell, Silvestre, & Sancho, 2015; 

Soler et al., 2016) to observe and analyze the sperm morphometry on cells in suspension without 

staining, named Trumorph, that was used in part in the present Thesis. 

In all the studied species individual differences in sperm head morphometry were observed (see 

Yániz et al., 2015b and the special number of AJA 18(6), 2016). Differences in sperm morphometry 

have also been described between different related species (Soler et al., 2014), subspecies (Beletti, 

Costa, & Viana, 2005) and breeds (Martí, Aparicio, & García-Herreros, 2011; Saravia et al., 2007). 

Extrinsic factors may include those related to the influence of environment on the donor (Immler, 

Pryke, Birkhead, & Griffith, 2010; Yániz et al., 2015). 

1.7 Sperm subpopulation concept  

The spermatozoon is a dynamic cell, and their biochemicals process modify the sperm physiology 

throughout maturation, ejaculation, transport in the female genital tract and fertilization (Chamberland 

et al., 2001). These physiological changes relate flagellar beating, thus spermatozoa show different 

swimming patterns in the epididymis, seminal plasma, cervical mucus and oviduct (Hamamah & 

Gatti, 1998; Tash & Bracho, 1998). Sperm samples are heterogeneous, implying that spermatozoa 

with different motility values coexist in the same ejaculate (Chantler, Abraham-Peskir, & Roberts, 

2004; Katz & Davis, 1987; Katz, Erickson, & Nathanson, 1979; Neill & Olds-Clarke, 1987). Also, the 

morphology is heterogeneous in different levels depending on the species, being the human one of 

the most heterogenous inside mammals (Yániz et al., 2015).  

The historical view conceived the ejaculate as a conjunct of ―equivalent‖ cells competing for arrival to 

the oocyte (like in a marathon). However, this conceptual approach is in contradiction with the 

observed heterogeneity. To solve this, with the arrival of the XXI century, and using the quantitative 

sperm parameters obtained with CASA technology and multivariate analysis, the paradigm is 

changing to a subpopulation approach (Quintero-Moreno, Miró, Rigau, & Rodríguez-Gil, 2003; Valle 

et al., 2013).  As indicated previously, the specials numbers of AJA 18(6), 2016 and RFD 30(6), 

2018, define the stat of the art from morphometry and kinematic parameters. 



45 | Application of CASA technology and multivariate analysis to optimize the semen evaluation in domestic and wild species 

Nowadays, we can consider well defined the sperm subpopulation structure in all the studied 

species, but the real biological significance remains to be defined. The present Thesis had the 

increase our knowledge about this as the second general aim. 

1.7.1 Principal components analysis  

Principal component analysis (PCA) is a multivariate technique that is being used for the dimension-

reducing CASA data (Caldeira et al., 2018; Dorado, Molina, Muñoz-Serrano, & Hidalgo, 2010; 

Maroto-Morales et al., 2016; Martínez-Pastor et al., 2011; Ramón & Martínez-Pastor, 2018; Soler et 

al., 2017). In brief, PCA replaces the variables in a multivariate data set by an uncorrelated set of 

derived variables (linear combinations of the initial variables) called principal components (Fig. 6). 

This enables the selection and use of only the principal components conveying most of the total 

variance, thus reducing the number of variables or variable selection. Also, the conceptual weight of 

the new variables, that integrate some coherent individual ones increases the significance of the 

derived results (Ramió et al., 2008).  

 

Fig. 6. A: Principal Components Analysis chooses the first PCA axis as that line that goes through the centroid, 
but also minimizes the square of the distance of each point to that line. Equivalently, the line goes through the 
maximum variation in the data. The second PCA axis also must go through the centroid and goes through the 
maximum variation in the data, but with a certain constraint: It must be completely uncorrelated (i.e., at right 
angles, or "orthogonal") to PCA axis 1. B: Consider an extreme case, (lower right), where your data all lie in 
one direction. Although two features represent the data, we can reduce the dimension of the dataset to one 
using a single linear combination of the features (as given by the first principal component). Image adapted 
from https://onlinecourses.science.psu.edu/stat857/node/154/ 

B 

A 
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1.7.2 Clustering methods 

There are two different approaches to multivariate analysis for classification: the discriminant and 

cluster analysis. The first one is based on an a priori classification based on canonical subjects of 

well-predefined classes (male/female) while the second one is just looking for the intrinsic 

mathematical distances among the considered variables to define a conjunct of classes, being 

needed to a posteriori definition of their meaning (Kaufman & Rousseeuw, 2005; Spencer, 2013). 

Cluster analysis is a technique for multivariate statistical data analysis that allows unsupervised 

grouping of observations into subsets (called clusters) so that observations in the same cluster are 

similar depending on a given criterion (Everitt, Landau, Leese, & Stahl, 2011; Kaufman & 

Rousseeuw, 1990; Xu, Wunsch, Xu, Wunsch, & Wunsch, 2005). ―Unsupervised‖ implies that there is 

not an a priori grouped dataset to guide the grouping. Therefore, cluster analysis is suited to resolve 

the heterogeneity of sperm motility data in discrete subpopulations, helping to take advantage of the 

information contained in CASA datasets (Martínez-Pastor et al., 2011). 

The cluster analysis aims to divide the observations into homogeneous and distinct groups. The 

objective of cluster analysis is to assign observations to groups ("clusters") so that observations 

within each group are similar to one another concerning variables or attributes of interest, and the 

groups themselves stand apart from one another (Everitt et al., 2011). Cluster analysis involves 

several formulating problems as the selection of distance measure, clustering procedure, number of 

clusters, and the interpretation of the profile clusters and the assessment of the clustering validation.  

The datasets are must first explore before the clustering process. Testing that should be made as to 

lack of fit for normal distribution, skewness, outliers, extreme values, data ―noise,‖ a weak clustering 

structure, and multicollinearity among different variables (Spencer, 2013). Nevertheless, we must 

take into account that datasets are expected to bear non-normal distribution and skewed variables. 

Thus, the presence of such features should not be automatically taken as a sign of incorrect data 

(Martínez-Pastor et al., 2011). 

Datasets should be examined for extreme or unreliable data, which could profoundly affect clustering 

results (Martínez-Pastor et al., 2011). Nevertheless, it is often difficult to determine if an event is a 

real outlier or a real value belonging to an underrepresented cluster. Typical clustering methods to 

outliers as the k-means method, that tend to group outliers in a few clusters can be used to remove 

them. Moreover, some clustering methods can deal with noise or outliers as the model-based 

clustering (Fraley & Raftery, 2002). The CASA systems provide a high number of kinematic variables 

that can be redundant. It is because many variables convey similar information as the velocities VCL, 
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VAP, and VSL, whereas other are derived as linearity (LIN) is the VSL/VCL ratio. Therefore, it is 

desirable to reduce the number of variables before running the clustering algorithm, for reducing both 

dimensionality and redundancy. Moreover, not all variables contribute equally in the cluster structure, 

and an incorrect variable selection could result in inaccurate clustering (Steinley & Brusco, 2008). A 

Pearson correlation analysis enables to determine subsets of highly correlated variables, suggesting 

redundant ones. 

Clustering procedures in cluster analysis may be a hierarchical, or non-hierarchical procedure 

(Kaufman & Rousseeuw, 2005; Spencer, 2013). In the partitional or non-hierarchical methods, the 

final number of clusters (k) is decided by the user before carrying out the cluster running. Then, the 

algorithm begins assigning the observations to the k clusters, iteratively recalculating cluster 

membership, and seeking for the optimal partitioning of the data. The k-means algorithm was the 

most used in this kind of method, but it has some drawbacks, as sensitiveness to outliers and data-

noise (Kaufman & Rousseeuw, 1990). 

On the other hand, hierarchical clustering methods are based on multiple-step procedure, that can 

mainly be categorized into agglomerative (bottom-up) and divisive (top-down) procedures (Castro, 

Coates, & Nowak, 2004; Leonard & Droege, 2008; Wang et al., 2015) (Fig. 7). In agglomerative 

procedures, each sample is initially assumed to be a cluster. The two nearest clusters (based on a 

distance measure) are then merged at a time. This merger continues until all the samples are 

clustered into one group. Consequently, a tree-like structure, known as a dendrogram, is yielded. As 

an alternative, if the number of clusters is provided, the process of amalgamation of clusters can be 

terminated when the desired number of clusters is obtained. The first step of an agglomerative 

procedure considers all the possible mergers of two samples, which requires n(n − 1)/2 combinations 

(where n depicts the number of samples) (Sharma, López, & Tsunoda, 2017). Among the 

agglomerative algorithms, Average linkage (UPGMA) or Ward's averaging method may be more 

appropriate for clustering CASA systems data (Martínez-Pastor et al., 2011). 
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Fig. 7. Example of agglomerative and divisive hierarchical clustering. Adapted from (Everitt et al., 2011). 

Following this, divisive procedures perform clustering in an opposite way than agglomerative 

methods. They begin by considering a group (having all samples) and divide it into two groups at 

each stage until all the groups comprise of only a single sample (Duda, Hart, & Stork, 2001). In the 

first step of a divisive procedure, all the partitions of a sample set are considered, which amounts to 

2n  −  1 − 1 combinations. This number of combinations grows exponentially and practically makes 

divisive clustering a difficult procedure to implement. In hierarchical classifications, each sub cluster 

can be formed from one larger cluster split into two, or the union of two smaller clusters. Thus, 

divisive procedures, which start with the entire dataset, are in general considered safer than 

agglomerative methods (Kaufman & Rousseeuw, 2005). Therefore, the accuracy of a divisive 

procedure is usually higher than that of an agglomerative procedure (Roux, 2015). However, the high 

computational demand (O(2n)~O(n 5)) of divisive procedures has severely restricted their usage 

(Roux, 1991). The number of bipartitions is O(n2); therefore, the complexity of one divisive step is 

O(n4). As the construction of the full binary hierarchy needs n – 1 steps, the overall complexity of the 

proposed divisive algorithms is O(n5) (Roux, 2015). This involves a heavy computer task. This has 

made the divisive procedure has not been generally used for hierarchical clustering, remaining 

largely ignored in the literature (Sharma et al., 2017). 

As a result, clustering analysis allows to distribute the observations (spermatozoa) in clusters 

(subpopulations). The samples can be characterized by calculating the respective average values of 

the CASA parameters as the median or confidence intervals. The frequencies of each subpopulation 

within males or treatments can be estimated, obtaining in this way different subpopulation patterns 

(Martínez-Pastor et al., 2011). These population frequencies can be used for carrying out further 

statistical analyses, for example, regression, that can be used to relate subpopulations to other 

sperm features (Quintero-Moreno, Rigau, & Rodríguez-Gil, 2007).  
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1.7.3 Sperm subpopulation structure 

It is needed to remember that the primary requirement for subpopulation analysis is that the CASA 

systems provide accurate data. The optimization of new methodological approaches, we were 

commented previously, makes necessary reconsideration of the former work developed on this topic. 

The combination of clearly acquired image-sequences and sophisticated image processing allows 

obtaining reliable kinematic and morphometric sperm parameters, resulting in improved datasets, 

making possible to better define real and significant subpopulation structures species by species 

(Martínez-Pastor et al., 2011). 

Even with the previous technological analysis limitations, many studies have explored the use of 

cluster analysis to identify subpopulation patterns in sperm samples. Several works have considered 

kinematics data (Ortega-Ferrusola et al., 2009; Soler, García, Contell, Segervall, & Sancho, 2014;  

Yániz et al., 2018; Yániz, Palacín, Vicente-Fiel, Sánchez-Nadal, & Santolaria, 2015), morphometric 

(Aggarwal et al., 2007; Álvarez et al., 2008; Esteso et al., 2009) or a combination of both (Soler et al., 

2017; Vásquez et al., 2016). 

In reference to motility, each subpopulation may be characterized accordingly to its average 

kinematic variables. For example, a subpopulation with high-velocity values and high linearity could 

be defined as ―fast, linear,‖ whereas another could be defined as ―slow, non-linear‖ (Martínez-Pastor 

et al., 2011). Then, the frequencies of these subpopulations can be calculated, and variations in 

these frequencies can be associated to individual variations among ejaculates and males (Núñez-

Martínez, Moran, & Peña, 2006), to sperm freezability (Martinez-Pastor et al., 2005), or to sperm 

fertility (Quintero-Moreno et al., 2003). 

Independently on the species, different works have indicated that kinematic subpopulation structure 

was composed of three or four subpopulations. The presence of a ―fast and linear‖ subpopulation 

has been proposed as a good indicator of sample quality, whereas a predominant ―slow and non-

linear‖ subpopulation would be a marker of poor quality (Martínez-Pastor et al., 2011). In any case, 

the final structure is animal dependent, and it means different animals present different 

subpopulation structure (Soler et al., 2017).  

Regarding morphology, the general picture is similar to that of motility. In human two (Vásquez et al., 

2016) or three (Santolaria et al., 2016; Yániz et al., 2016) morphometric subpopulations were 

observed. In other species a different number of subpopulations indicated species-specific 

subpopulations structures, being three for puma (Cucho et al., 2016) and rooster (García-Herreros, 

2016), four for a cat (Gutiérrez-Reinoso & García-Herreros, 2016) and five for guinea fowl (García-
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Herreros, 2016). Following that observed regarding motility, each animal inside the same species 

showed a different subpopulation frequency what can be a consequence of its genetics and 

physiology. 

In the best of our knowledge, only one previous work, on fox semen, comprises the combination of 

kinematic and morphometric data for defining an integrative subpopulation structure study. Three 

subpopulations were observed when only kinematic or morphometric were considered, and four alter 

combining both databases (Soler et al., 2017). This kind of integrative work must be applied in the 

future, including other parameters (DNA fragmentation, viability and membrane stability) to obtain a 

better comprehension of what the ejaculate is. 

As a corollary, we can indicate that the principal meaning of subpopulation structure analysis is to 

understand sperm biology better. Nevertheless, until now we have just established the conceptual 

basis, the future must be devoted to looking for the biological basis on the frame of sperm 

competition, movement along the female track, environmental effects and, in the end, fertility 

determination.
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General objectives 

The approach advocated in this thesis is based on the fact that there is a gap of information 

regarding optimization of semen analysis protocols. Only for human samples there is a general 

agreement about the protocol to use as it was expressed in the different editions of the WHO manual 

for semen analysis. However, even in this case, alternative protocols are recognized by different 

international organizations.  

Centered on CASA technology, as it was indicated in the previous introduction, to obtain a reliable 

quantitative data it is needed to define protocols assuring the consistency and universal application 

of the results. However, this standardization has never been done following an integrative point of 

view, what composes the first general objective of the present Thesis. There are three main 

aspects to consider when optimizing automated semen analyses by CASA-Mot technology, namely 

the type and depth of the counting chamber, the dilution media and the frame rate of image 

acquisition. The problem that now arises is that high frame rate values bring significant changes in 

the value of some sperm kinetic parameters and this must now be considered. The technical aspects 

relatives to morphometric analysis were not included in the present Thesis, is the central objective of 

other of the Thesis work that is being developed in our research team. 

The second general objective of the present Thesis was to study sperm subpopulations structure 

in different species, and how different technical and operative settings can influence them.  

Specific objectives 

The specific objectives of this study were: 

1. Compare different statistical approaches for the evaluation of bull sperm morphometry, 

with the aim of defining the most useful and precise method and apply it to evaluate 

different ejaculates and post-thawed straws from the same individual.

2. Determine the effect of the frame rate in evaluating kinematic parameters in boar 

spermatozoa and its importance in the correct determination of sperm motility 

subpopulation structure.

3. Determine the effect of the video capture length in evaluating motility and kinematic 

parameters in boar sperm for the optimization of the analysis protocol.
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4. Collaborate in the definition and establishment of the knowledge about sperm 

morphometry by using CASA technology. 

5. Analyse the differential sperm distribution and motility characteristics in bulls along the 

counting area in three different commercial counting chambers (CellVu®, Leja® and 

Makler®) and the effect of two different commercial dilution media (Biladyl® and 

Andromed®) on this distribution, with a view to optimizing the use of currently available 

CASA-Mot technology.

6. Assess sperm motility with a commercial CASA-Mot system in a different dog (Canis 

familiaris, L.) breeds, and to analyze whether prolonged artificial selection carried out 

within the species has led to a significant gamete differentiation process between breeds.

7. Characterize sperm kinematic and morphometric parameters in Caiman crocodilus fuscus 

semen samples and to determine the existence of sperm subpopulations.
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3.1 Fieldwork 

Fieldwork was conducted in the following areas: Xenética Fontao S.A. (42°58’ N, 7°34’, W) Lugo, 

Spain; at the Semen Cardona, S.L. (41°54’ N, 1°43’, E), Cardona, Barcelona, Spain; Reprovalcan 

and Clínica Veterinaria Sangüeso (39°29’ N, 0°22’, W), Valencia, Spain; Mejoramiento Porcino 

S.A., in the Northwest of Costa Rica, San José de la Montaña (10°05’ N, 84°06’, W), Heredia,

Costa Rica, and in the Scientific Ecotourism Project (EcoTEC, 10°21’ N, 84°30’, W), Alajuela, 

Costa Rica, at the School of Agronomy, at Costa Rica Institute of Technology, San Carlos 

Campus, during the season (started in January until the end of June 2015 in Costa Rica, while in 

Spain during 2016 and 2017. The domestic species used in this thesis were cattle (Bos taurus), 

mainly Holstein bulls that regularly employed in artificial insemination under a regime of collection 

of two ejaculates per week; swine (Sus scrofa), where the breed utilized was Pietrain and their 

genetic lines; dog (Canis familiaris, L) coming from six breeds with an evident pedigree and 

genuinely representative of their breeds: Staffordshire Bull Terrier, Labrador Retriever, Spanish 

Mastiff, Valencian Rat Hunting Dog, British Bulldog, and Chihuahua. The wild species used in this 

thesis was brown caiman (Caiman crocodilus fuscus) from four sexually mature male alligators 

used as semen donors by digital manipulation without sedation.  

3.2 Semen collection and processing 

In the cattle experiments, within 5 to 10 min of semen collection using an artificial vagina, samples 

were assessed for volume in a conical tube graduated at 0.1 mL and gross motility determined by 

placing 20 µL of fresh semen on a pre-warmed slide at 37 ºC. The refrigerated samples were 

packaged in 0.25 mL straws (IMV Technologies, L´Aigle, France) with an automatic filling and 

sealing machine (MRS 1, IMV Technologies) and were immediately frozen by using a 

programmable freezer (Digitcool 5300, IMV, Technologies) with the following curve: 4 °C to -10 °C 

at -5 °C/min; -10 °C to -100 °C at -40 °C/min; -110 °C to -140 °C at -20 °C/min, and then plunged 

into liquid nitrogen for storage. Two straws per sample were thawed in a water bath at 37 °C for 30 

s, and then the contents of the straws were emptied in a test tube kept at the same temperature in 

a dry bath. In order to collect uniform sperm subsamples and avoid inaccuracies, the semen was 

mixed gently before collecting aliquots for further analyses. Ejaculates were processed with a 

commercial egg yolk extender (Biladyl®) and the other with a soy lecithin-based extender 

(Andromed®), both from Minitube GmbH, (Tiefenbach, Germany). 

From boar experiments at Costa Rica, semen samples were collected in the morning, once per 

week, using the ―gloved-hand‖ technique (Hancock & Hovell, 1959) and immediately placed in a 
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water bath at 38 °C at the farm laboratory. In all cases, the sperm-rich fractions were collected, 

diluted with a commercial extender (Androstar Plus®; Minitube). The boar experiment in Spain 

eighteen seminal commercial doses were used. Samples were transported to the lab. in the same 

refrigerated conditions (17 °C) used for commercial distribution. Upon arrival in the lab. The 

samples were mixed, and 1mL placed in an Eppendorf tube and maintained at 37 °C for 30 min 

before use. 

In dog experiment, manual stimulation was used to collect semen samples into sterile sample cups 

(Soler et al., 2017). Since a high sperm concentration can have a confounding effect on sperm 

velocity and linearity (Günzel-Apel, Günther, Terhaer, & Bader, 1993; Rijsselaere et al., 2003) all 

samples with >50 x 106 sperm/mL were diluted with CaniPlus Chill® sperm extender (Minitub 

Ibérica S.L., Tarragona Spain) before motility analyses. 

In the assessment from brown caiman, semen collection was conducted by digital manipulation as 

previously described by (Johnston et al., 2014). A gloved hand was introduced into cloaca to gently 

exteriorize the phallus; once the phallus was exteriorized the fore and index fingers were used to 

gently massage – stroke the terminal portions of the vas deferens immediately cranial to the 

urodeum. In mating season (February – June), an erection response to manual stimulation typically 

presented in less than five minutes. Following massage semen flowed down the sulcus of the 

phallus and carefully lavaged into a collection vessel. Small volumes of ejaculate (e.g. 1.0 mL) 

were recovered in to a 1.5 mL Eppendorf® microtube (Sigma-Aldrich, St. Louis, MO, USA) aided by 

a micropipette fitted with a 10-100 μL pipette tip. Semen was lavaged from the sulcus with 

approximately 100 μL of buffered Dulbecco’s phosphate-buffered saline (DPBS, pH = 6.8, Sigma-

Aldrich Inc.). 

3.3 Assessment of sperm variables 

In the first cattle experiments (see chapter IV), microscope slides were analyzed for sperm head 

morphometry by the ISAS®v1 (Integrated Semen Analysis System, Proiser R+D, Paterna, Spain). 

The equipment comprised a microscope (Olympus BH 2; Tokyo, Japan) equipped with a 100x 

bright field objective and a 3.3x photo‑ocular. A video digital camera (A312, Basler, Ahrensburg, 

Germany) was mounted on the microscope to capture the images and transmit them to the 

computer. The array size of the video frame grabber was 768 × 576 × 8 bit, providing digitized 

images of 442368 pixels and 256 gray levels. Resolution of images was 0.08 µm per pixel in both 

the horizontal and vertical axes. In other cattle (see paper VIII) experiment, samples were analyzed 

for kinematics by the CASA-Mot system ISAS®v1 (Integrated Semen Analysis System, Proiser 
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R+D, S.L., Paterna, Spain). The equipment consisted of a microscope (Nikon Eclipse E600; Tokyo, 

Japan) equipped with a heated stage set at 38 °C and a 10x negative phase-contrast objective. A 

video digital camera (Proiser 782M) was mounted on the microscope to capture images and 

transmit them to a computer. The array size of the video frame grabber was 768 x 576 x 8 bits and 

256 grey levels. Resolution of images was 0.84 µm per pixel in both the horizontal and vertical 

axes. The frame rate used was 30 fps, capture time one second, with the tail detection facility 

activated for ignoring non-sperm particles, with particle area between 14-80 μm2 and connectivity 

of 14 μm. After dilution, each sample was analyzed using three different chambers: Leja® 4 

chambers (L4; 20-μm depth; prod. code SC-20-01-04-B; Leja®, IMV technologies, L’Aigle, France), 

CellVu® sperm counting chamber (CVD; 20-μm depth; prod. code DRM-600; Millennium Sciences, 

Inc., NY, EEUU), and Makler® counting chamber (10-μm depth; Sefi-Medical Instrument, Haifa, 

Israel). 

In the boar experiments (chapter V and VI), for analysis of motility, kinetics and concentration, 

ISAS®D4C20 disposable counting chambers (Proiser R+D) were used after being pre-warmed to 

37°C. After thorough mixing of the samples, a volume of 3 μL was distributed along the counting 

chamber tracks by capillarity, filling them. Analyses were conducted with the CASA-Mot system 

ISAS®v1 (Proiser R+D). The video-cameras were Proiser HS640m (Proiser R+D), with a frame 

rate of 200 fps and a final resolution of 640 x 478 pixels and Proiser 782m (Proiser R+D) with a 

frame rate of 50 fps and a final resolution of 746 x 578 pixels. The cameras were attached to a 

microscope UB203 (UOP/Proiser R+D) with a 1x eyepiece and a 10x negative-phase contrast 

objective (AN 0.25) with a resolution images of 0.84 μm/pixel on both axes, and an integrated 

heated stage maintained at 37 ± 0.5°C. The same technical conditions were used for brown 

caiman experiment (chapter X), except analysis temperature that it was 25 ± 0.5 °C.  

In dog experiment (chapter IX), throughout the process, the samples were kept at 24 ºC using a 

PC-12T (Proiser R+D) heating system. Kinematic analyses were carried out using the ISAS®v1 

CASA-mot system (Proiser R+D). The video camera employed was a Proiser 782 m attached to a 

microscope UB203 (UOP/Proiser) and equipped with a 10x negative phase contrast objective. 

Resolution of analyzed images was 0.84 μm/pixel on both axes. Samples were captured at 25 fps 

following the set-up of the manufacturer for dog semen. 

3.4 Sperm motility and kinematic analyses 

The CASA-Mot parameters considered in the study were: straight line velocity (VSL, µm·s-1), 

corresponding to the straight line from the beginning to the end of the track; curvilinear velocity 
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(VCL, µm·s-1), measured over the actual point-to-point track followed by the cell; average path 

velocity (VAP, µm·s-1), the average velocity over the smoothed cell path. Other parameters of 

oscillation were amplitude of lateral head displacement (ALH, μm), defined as the maximum of the 

measured width of the head oscillation as the sperm cells swim; beat-cross frequency (BCF, Hz), 

defined as the frequency with which the actual track crossed the smoothed track in either direction. 

Furthermore, motility (%), the percentage of the total motile cells; and progressive motility (%), 

corresponding to spermatozoa swimming forward quickly in a straight line. Three progression 

ratios, expressed as percentages, were calculated from the velocity measurements described 

above: linearity of forwarding progression (LIN=VSL/VCL·100), straightness (STR=VSL/VAP·100), 

and wobble (WOB=VAP/VCL·100). 

3.5 Sperm morphometry measurements 

Sperm heads were captured randomly in different fields, rejecting only those that overlapped with 

background particles or other cells that interfered with subsequent image processing. Initial 

erroneous definition of the sperm head boundary was corrected by varying the analysis factor of 

the system. When it was not possible to obtain a correct boundary, the sperm head was deleted 

from the analysis. Following the criteria of (Boersma, Braun, & Stolla, 1999) at least sixty sperm 

heads were measured on each slide for four primary parameters of head size (length [L, μm], width 

[W, μm], area [A, μm2], and perimeter [P, μm]) and four derived dimensionless parameters of head 

shape (ellipticity [L/W], rugosity [4πA/P2], elongation [(L − W)/ (L + W)], and regularity [πLW/4A]). 

Data from each sperm cell were saved in an Excel® (Microsoft Corporation, Redmond, 

Washington, USA) -compatible database by the software for further analysis. 

3.6 Statistical analysis 

The data obtained from the analysis of all sperm parameters were first tested for normality and 

homoscedasticity by using Shapiro-Wilks and Levene tests. A normal probability plot was used to 

check for a normal distribution. In trying to obtain a normal distribution, data were transformed 

using arcsine square root (arcsin √x) before a repeated measures ANOVA was conducted. Even 

after arcsine transformation, the kinematic variables of the sperm were not normally distributed, as 

determined by the Shapiro-Wilks test. The kinematics sperm variables did not satisfy the normality 

requirement for parametric analysis of variance. Therefore, non-parametric analyses were 

performed with a Kruskal–Wallis test. When statistically significant differences were detected using 

this test, the non-parametric Mann–Whitney U-test, was used to compare pairs of values directly.  
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Discriminant analyses were performed to test the predictive power of using combined sperm 

kinematic parameters to classify dog breeds correctly. Canonical discriminant analysis creates 

multiple orthogonal functions that are formed so that in each breed implications on the resulting 

canonical variable are as different as possible due to maximizing between-class variance and at 

the same time minimizing within-class variance.  

Clustering procedures were performed to identify sperm subpopulations from the set of motility 

data. All the kinematic and morphometric parameters were standardized in order to avoid any 

scale influence. The first step was to perform a principal component analysis (PCA) of these data 

(each variable was weighed with their variances extracted for that principal component, known as 

eigenvectors) was performed to derive a small number of linear combinations that retained the 

information in the original variables as much as possible. The number of principal components 

(PC) used in the next step of the analysis was determined using the Kaiser criterion, namely 

selecting only those with an eigenvalue (variance extracted of each PC) >1 (Spencer, 2013). As a 

rotation method, the varimax method with Kaiser normalization was used (Kaiser, 1958). The 

second step was to perform a non-hierarchical analysis using the k-means model that uses 

Euclidean distances from the quantitative variables after standardization of these data, so the 

cluster centers were the means of the observations assigned to each cluster (Kaufman & 

Rousseeuw, 1990). The multivariate k-means cluster analysis was conducted to classify the 

spermatozoa into a reduced number of subpopulations (clusters) according to their kinematic and 

morphometric parameters. In the final step, to determine the optimal number of clusters, the final 

centroids were clustered hierarchically using the Ward method (Murtagh & Legendre, 2014). Thus, 

every cluster provided a final cluster formed by the spermatozoa linked to its centroids. ANOVA 

and χ2-test procedures were applied to evaluate statistical differences in the distributions of 

observations within the steps and subpopulations (percentages of spermatozoa assigned to each 

cluster), and then a generalized linear model (GLM) procedure was used to determine the effects 

of the steps, as well as their variation, on the relative distribution frequency of spermatozoa within 

subpopulations. The GLM procedure was also used to evaluate the influence on the mean 

kinematic and morphometric parameters defining the different sperm subpopulations. Differences 

between means were then analyzed by Bonferroni test. Results are presented as the mean ± 

standard error of the mean (SEM). Statistical significance was considered at P< 0.05. All data were 

analyzed using InfoStat Software (v. 2008) for Windows, IBM SPSS package, version 23.0 for 

Windows (SPSS Inc., Chicago, IL, USA).  
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that it is not easy to discriminate subjectively between similar forms. 
This fact explains the great coefficients of variation of both intra- and 
inter-observer, reducing the feasibility of the obtained results.9 In 
heteromorphic sperm species, different efforts have been made to define 
morphology with universal morphological classifications (bull,10–12 
cat,13 human,14 llama,15 and stallion16–18).

The development of CASA-Morph  (Computer-Assisted Semen 
Analysis for Morphology) technology for the study of sperm 
morphometrical has opened new possibilities for the morphology 
evaluation of spermatozoa.19,20 In the beginning, this technique was used 
with low-power statistics to perform comparisons following ANOVA, 
assuming a normal distribution of data or some nonparametric analysis 
in more accurate work.21–23 Since then, multivariate analysis has been 
introduced for the simultaneous consideration of all the parameters, 
including their relationships.24 During recent decades, new efforts 
have been made to define the best analytical approaches by using 
subpopulation analysis25 and morphological sperm subpopulation 
structure, based on morphometric data, which has been observed in a 
great variety of species: dogs,26,27 boars,28,29 bulls,30,31 foxes,32 humans,33,34 

INTRODUCTION
The appropriate characterization of male fertility is of highest 
importance because a bad selection of dairy sires will compromise 
animal production planning for long periods. The way to evaluate the 
fertility potential of a male is semen quality evaluation, which is the 
principal tool for the calculation of sperm doses needed for artificial 
insemination in most farm animals.

Traditionally, the most commonly used seminal parameter was 
sperm motility,1 while morphology analysis had a secondary place 
because it takes much more time, the definition of universal and clear 
patterns of normal morphology is highly complex, and the process lacks 
precision.2–4 Nevertheless, morphological characteristics are genetically 
defined, making its analysis reliable and informative on the genetic 
quality of the ejaculate.5 Obviously, one sample without motility will 
not be able to fertilize, but motility is affected by many environmental 
factors,6 while morphology is more related to spermatogenesis and 
epididymal sperm maturation processes.7,8

Despite the presence of extreme forms (perfectly round or greatly 
elongated heads), the principal problem of morphological analysis is 
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Sperm quality is evaluated for the calculation of sperm dosage in artificial reproductive programs. The most common parameter 
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llamas,15  marmosets,35 pumas,36 rabbits,37 rams,38–40 red deer,41 and 
stallions.42

The purpose of the present work was to compare different 
approaches for the evaluation of bull sperm morphometry for the 
establishment of the most useful and precise method. Moreover, the 
effect of animal, ejaculate, and straw on both morphometric parameters 
and subpopulation structure was analyzed.

MATERIALS AND METHODS
Semen collection and processing
Semen was collected, during spring, from 28 Holstein bulls by 
artificial vagina, under an extraction program of two ejaculates per 
week. Animals were housed in Xenética Fontao S.A.  (Lugo, Spain) 
installations. For the study, five ejaculates from each animal and two 
straws from each ejaculate were used, for a total of 280 samples.

Within 5 to 10 min of collection, the semen samples were assessed 
for volume by conical tube graduated at 0.1  ml, gross motility by 
placing 20 µl fresh semen on a prewarmed slide at 37°C, concentration 
by a bovine photometer Accucell  (IMV, L’Aigle, France) at 530  nm 
wavelength, and sperm viability by flow cytometry with SYBR 14 and 
PI from a commercially available Live/Dead Sperm Viability Kit (Life 
Technologies, Carlsbad, CA, USA).

The raw semen was diluted with a commercial egg yolk 
extender  (Optidyl®  -IMV, L’Aigle, France) to a final live sperm 
concentration of 25 × 106 cells/straw. Diluted semen was cooled slowly 
to 4°C at a linear rate of −0.3°C min–1 in a refrigerator. After cooling 
of semen, equilibration occurred over 4–5 h at the same temperature.

The semen was then packaged in 0.25 ml straws, which were sealed 
via automatic filling and sealing machine (MRS 1, IMV Technologies, 
L’Aigle, France) and frozen by a programmable freezer, Digitcool 
5300 (IMV, L’Aigle, France) with the following curve: 4°C to −10°C 
at 5°C min−1, −10°C to −100°C at 40°C min−1, −110°C to −140°C at 
20°C min−1, and then plunged into liquid nitrogen for storage. All 
samples were coded in such a way that the technician who performed 
the morphometric analysis could not deduce the number of the bull, 
the number of the ejaculate, or which ejaculate belonged to a particular 
bull.

Sample preparation for morphometric analysis
The semen straws were sent by courier to Proiser R+D, S.L. (Paterna, 
Spain) in a Dry shipper 3.0  (ST Reproduction Technologies LLC, 
Navasota, TX, USA). Duplicate samples for morphometric analysis 
were prepared from two straws per frozen ejaculate. After being thawed 
at 37°C for 30 s in a water bath, 150 µl per straw was diluted with 450 µl 
emCare (Bodinco, Alkmaar, The Netherlands). After being mixed, 5 µl 
of each sample was spread on a glass slide and subsequently air-dried.

The slides were stained by using the Diff-Quik kit  (Medion 
Diagnostics, Düdingen, Switzerland), following the instructions of 
the manufacturer. All the slides were identified and then permanently 
sealed with Eukitt mounting medium  (Kindler & Co, Freiburg, 
Germany) under a cover slip and analyzed in a double-blind scheme.

Computerized morphometric analysis
Microscope slides were analyzed for sperm head morphometry by the 
ISAS® v1 (Integrated Semen Analysis System, Proiser R+D, Paterna, 
Spain). The equipment comprised a microscope  (Olympus BH-2; 
Tokyo, Japan) equipped with a 100× bright-field objective and a 
3.3 × photo-ocular. A video digital camera (A312, Basler, Ahrensburg, 
Germany) was mounted on the microscope to capture the images 
and transmit them to the computer. The array size of the video frame 
grabber was 768 × 576 × 8 bit, providing digitized images of 442368 

pixels and 256 gray levels. Resolution of images was 0.08 µm per pixel 
in both the horizontal and vertical axes.

Sperm heads were captured randomly in different fields, rejecting 
only those that overlapped with background particles or other cells 
that interfered with subsequent image processing. Initial erroneous 
definition of the sperm head boundary was corrected by varying the 
analysis factor of the system. When it was not possible to obtain a 
correct boundary, the sperm head was deleted from the analysis.

Following the criteria of Boersma et  al.,43 at least sixty sperm 
heads were measured on each slide for four primary parameters 
of head size  (length  [L, µm], width  [W, µm], area  [A, µm2], and 
perimeter  [P, µm]) and four derived dimensionless parameters of 
head shape (ellipticity [L/W], rugosity [4πA/P2], elongation [(L − W)/
(L + W)], and regularity [πLW/4A]). Data from each individual sperm 
cell were saved in an Excel®  (Microsoft Corporation, Redmond, 
Washington, USA)-compatible database by the software for further 
analysis.

Statistical analysis
The data obtained from the analysis of all sperm parameters were first 
tested for normality and homoscedasticity by using Shapiro–Wilk 
and Kolmogorov–Smirnov tests, respectively. To evaluate the classical 
statistical analysis approach, repeated measures ANOVA was 
performed, assuming normal distribution and homogeneity 
of variances, following the classical approach to the problem. 
Nevertheless, as morphometric sperm variables did not satisfy the 
normality requirements, nonparametric Kruskal–Wallis test was 
performed followed by the Mann–Whitney paired U-test when 
significant differences were found. The statistical model used was: 
(xijk = µ + Ai + Ej + Sk + εijkl), where: xijk = measured sperm morphometry 
variable, µ = overall mean of variable x, Ai = effect of animal, Ej = effect 
of ejaculate, Sk = effect of straw, and εijkl = residual.

Multivariate analysis of variance  (MANOVA), based on Wilk’s 
lambda criterion, was performed.44 The test used ejaculate and straw 
as within-bull factors. The multivariate linear model was: (yij = µ + αi 
+ bj + eijk,… i = 1,…, a; j = 1,…, b,) where µ is the overall mean, αi
is the additive effect of the level i of factor ejaculate, bj is the additive
effect of the level j of factor, and eijk is the residual.

Clustering procedures were performed to identify sperm 
subpopulations from the complete set of morphometric data.45 The 
first step was to perform a principal component analysis  (PCA). 
To select the number of principal components that should be used 
in the next step of analysis, the criterion of selecting only those 
with an eigenvalue  (variance extracted for that particular principal 
component) >1 (Kaiser criterion) was followed. The second step was to 
perform a two-step cluster procedure with the sperm-derived indices 
obtained after the PCA. All the sperm morphometric measurements 
within each ejaculate and straw were clustered by shape and size 
parameters using a nonhierarchical clustering procedure  (k-means 
model and Euclidean distance). This classifies the spermatozoa of the 
data set into a small number of subpopulations according to their head 
dimensions, as has been described previously.29 This analysis allowed 
the identification of sperm subpopulations and the detection of outliers.

The effects of clusters within and between treatments for the 
measurements of morphometric parameters were analyzed by the 
generalized linear model. The influence of each ejaculate within bulls 
on the relative distribution frequency of spermatozoa belonging to 
each subpopulation was analyzed by Chi-square and Mantel–Haenszel 
Chi-square tests. After characterizing sperm subpopulations, ANOVA 
was performed to explore the relationships between the proportions of 
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each sperm subpopulation in the sample. The results are presented as 
mean ± standard deviation (s.d.). Statistical significance was considered 
as P < 0.05. All data were analyzed using InfoStat Software (v. 2008) 
for Windows.46

RESULTS
Traditional analysis
Here, we present a resume of the obtained results. After performing 
ANOVA analysis  (assuming normality and homogeneity of the 
samples) for each independent morphometric variable, there were 
statistically significant differences  (P  <  0.05) between 12  (Length), 
14 (Width and Regularity), 16 (Ellipticity, Rugosity, and Elongation), 
and 17  (Area and Perimeter) animals from the total number of 28 
animals studied. Following the criterion to evaluate the most useful 
parameter to differentiate between animals, Perimeter and Area should 
be considered.

Looking for differences between ejaculates from the same animal, 
only in one case, there were no differences between the five ejaculates 
observed. In the other animals, most of the parameters showed 
differences in at least two of the ejaculates. The most sensitive parameter 
able to distinguish the ejaculates was the Area, showing differences 
between all the ejaculates in two animals and between four ejaculates 
in 11 animals. The less informative parameter was Regularity, with 11 
animals not showing differences between ejaculates.

Regarding the differences between straws for one ejaculate, only 
four animals showed no differences for any straw in the five ejaculates, 
while for the remaining animals, differences between straws in at 
least one of the ejaculates were recorded. In this case, the parameter 
with more differences was Rugosity, showing variation in 16 animals, 
followed by Area in 11 animals.

The analysis by MANOVA of all the variables showed significant 
differences between all the animals. Only in one animal (the same as 
that after ANOVA), differences between ejaculates were not observed, 
while the remainder showed differences between three (five animals), 
four  (thirteen animals), or even between the five ejaculates  (nine 
animals). In reference to straws, only eight animals presented no 
differences between straws.

Principal component analysis and subpopulation structure analysis
The PC analysis produced two components, explaining 75.6% of the 
variance. PC1 was represented by Length, Area, and Perimeter, and 
called the “size” component; PC2 referred to Width, and negatively, 
Ellipticity and Elongation, called the “elongation” component (Table 1).

The analysis of subpopulations revealed four well-defined 
groupings (Figure 1). The characteristics of SP1 showed the lowest size, 
named “small,” comprised 27.3% of the total cells; SP2 comprised low 
Length with high Rugosity, named “short” cells, and represented 24.1%; 
SP3 included the cells with higher Area, named “big” cells, being 31.0%; 
and SP4 was characterized by high Length, Ellipticity, and Elongation, 
and were named “narrow” cells with a 17.7% of the total (Table 2).

The distribution of subpopulations among animals showed 
differences after Chi-square analysis. In 18 animals, one of the 
subpopulations was clearly the most representative: SP1 in five, SP2 in 
four, SP3 in five, and SP4 in two; in nine animals, two subpopulations 
presented equivalent values and only one animal  showed a 
similar distribution between three subpopulations  (SP2, SP3, and 
SP4) (Table 3).

Among ejaculates, there were differences in some subpopulations 
in all animals except one; another showed differences only for SP1, 
four for two subpopulations, fifteen for three, and seven for all the 

subpopulations. The most variable subpopulations were SP1 and 
SP3 (different among ejaculates for 25 animals), followed by SP2 (for 19 
animals), and SP4 (only for 13). Different ejaculates showing different 
patterns among them were common, but in some cases, there was no 
difference between ejaculates (Figure 2).

Regarding the differences of subpopulation distributions between 
straws of the same ejaculate, four animals showed no differences, five 
differed in only one subpopulation, ten in two, six in three, and three 

Table 1: Eigenvalues of each parameter in both PCs for bull sperm 
head morphometry found in frozen‑thawed samples

PC1 (size) PC2 (elongation)

0.53*

0.27 0.56*

0.45* 0.33

0.44*

0.31

0.31

Head length

Head width

Head area

Head perimeter

Ellipticity

Rugosity

Elongation

Regularity

Explained variation (%) 42.90

−0.53*

0.11

−0.53*

−0.05

32.70

Figure 1: Distribution of subpopulations according to their PC values.

*Expresses the more important variable in each PC. Only eigenvalues >0.3 are presented.
PCs: principal components

Table 2: Mean values (±s.d.) of each morphometric parameter 
corresponding to different SPs from frozen/thawed bull spermatozoa

Variable SP1 SP2 SP3 SP4

n/% 4791/27.28 4233/24.10 5440/30.97 3100/17.65

Head length (µm) 8.54±0.35 8.39±0.32 9.16±0.29 9.40±0.46

Head width (µm) 4.37±0.18 4.75±0.19 4.90±0.18 4.52±0.20

Head area (µm2) 32.46±2.14 34.40±2.05 38.31±1.97 36.23±2.44

Head perimeter (µm) 24.33±0.89 24.36±0.83 26.07±0.88 26.34±1.46

Ellipticity 1.96±0.09 1.77±0.08 1.87±0.08 2.08±0.14

0.69±0.04 0.73±0.03 0.71±0.03 0.66±0.05

0.32±0.02 0.28±0.02 0.30±0.02 0.35±0.02

Rugosity

Elongation

Regularity 0.90±0.03 0.91±0.03 0.92±0.03 0.92±0.03

SPs: subpopulations; s.d.: standard deviation
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speed of water exchanges across the plasmalemma, which could be 
the origin of different subpopulations of sperm morphology.26 In any 
case, the sampling processes of smearing and air drying the samples 
for morphology assessment cause high osmotic stress and membrane 
damage that can overlap any inherent morphological details in the 
morphometry analysis. In trying to solve this problem, the use of a 
new technique for morphological analysis, based on the observation 
of cells directly on seminal plasma, has been proposed.54–56

In the present work, we have not studied the effect of 
cryopreservation as such centering the work on frozen samples 
and comparing different statistical methods for the comparison of 
morphometric characteristics of spermatozoa. The traditional concept 
of a sperm population in an ejaculate was to look for “normal cells,” 
those with supposed high-fertility potential. It assumed a more or less 
unimodal morphological distribution, and so statistical calculations 
were based on ANOVA (frequently without previous normality and 
homogeneity analysis) or, in the best case, after this analysis using 
nonparametric tests such as the Kruskal–Wallis.57 This approach has 
several limitations: (i) each variable is considered independently; (ii) it 
assumes a uniformity in the population that is not real in heteromorphic 
species, as the bull; (iii) it cannot be applied to complicated studies such 
as the present one with a high number of animals, five ejaculates per 
animal and two straws per ejaculate, as the presentation of the results 
requires too many tables or graphs.

In the present study, many partial differences were found by 
following this approach in all the comparisons (individuals, ejaculates, 
and straws). The use of the MANOVA improved some of the previous 
limitations because all the variables are considered in a multivariate 
way. This approach is much better because the morphometric data 
for each cell are considered simultaneously, increasing the statistical 
power and reducing the data to work with. Nevertheless, the idea of a 
homogeneous sperm population remains inherent in this approach.

It has also been used as a new approach to a nonhomogeneous 
population in species, in which different morphologies have previously 
been described, following multivariate discriminant analysis.15 The 
major limitation of this a priori approach is that it is based on subjective 
classification, even if it is mathematically categorized and provides a 
mathematical classification matrix to be used for subsequent analysis. 
The subjectivity is limited to the definition of the canonical cells defined 
for the matrix calculation.

During the last decade, a posteriori subpopulation structure based 
on principal components and cluster analysis has been introduced. This 
is the best approximation to the real sperm population in an ejaculate. 
In a previous attempt, traditional statistics and the new approach to 
subpopulation structure in stallion were compared.42 In future, this kind 
of work is needed to translate the former results to the new approach 
to include all the background data.

Taking kinematic data into consideration, four sperm 
subpopulations were established in Asturiana de los Valles bulls,58 
suggesting that the presence of four subpopulations could be a common 
feature of bovine ejaculates. In these studies, differences between 
animals were only related to the subpopulation with highest velocity 
and progressiveness, even after cryopreservation.58

Sperm morphometric subpopulation structure in the bull has also 
been described.45 In that study, with nuclear fluorescence staining, three 
PC and four subpopulations were observed. Different animals showed 
clearly different subpopulations, but only one ejaculate from each bull 
was analyzed.45 Here, we have also found four subpopulations defined 
by two PCs. Another work has provided evidence of three bull sperm 
morphometric subpopulations, but these were from mixed data from 

Table 3: Percentage of cells assigned to each SP per animal

Animal SP1 SP2 SP3 SP4

1 22.50 2.32 28.75 46.43*

2 3.88 4.35 58.39* 33.39

3 40.00* 20.34 18.47 21.19

4 21.78 55.17* 21.14 1.91

5 44.28* 35.95 15.36 4.41

6 18.84 9.89 52.75* 18.52

7 38.52 37.29 17.72 6.47

8 34.72 40.57* 19.70 5.01

9 12.06 3.65 36.19 48.10*

10 23.13 32.57 36.64 7.65

11 26.68 17.94 36.51 18.88

12 26.92 26.38 29.74 16.96

13 14.29 10.05 50.71* 24.96

14 18.71 5.16 39.68 36.45

15 36.38 2.87 25.45 35.30

16 32.01 19.97 32.33 15.69

17 43.56* 19.63 20.25 16.56

18 39.22 45.80* 9.94 5.04

19 34.72 21.04 33.64 10.60

20 23.26 50.95* 23.89 1.90

21 18.66 25.68 44.69* 10.96

22 30.07 22.55 32.84 14.54

23 44.26* 27.05 14.43 14.26

24 15.36 10.08 44.64* 29.92

25 15.41 23.56 38.22 22.81

26 42.70* 16.21 20.55 20.55

27 25.70 31.91 35.68 6.71

28 15.89 51.82* 28.81 3.48

*The most relevant SP in each animal. SP: subpopulation

in four. The most variable subpopulation was SP3, followed by SP1, 
SP4, and SP2, the latter being the less variable one.

DISCUSSION
The relationship between sperm head morphometry and fertility in 
the bull is clearly established, indicating that bulls with high fertility 
produce more elongated and tapered spermatozoa47,48  (perhaps our 
SP1, see below). In addition, some of the differences observed in 
sperm nuclear shape could be related to the various levels of chromatin 
stability.49,50

Cryopreservation is a common technique in some species including 
the bull, but considerable variation in post-thaw semen viability 
exists.51 Independent of sperm quality before freezing, the semen 
of certain individuals will consistently freeze/thaw badly, resulting 
in poor motility, disrupted acrosomal and plasma membrane,52 and 
thus reduced fertilizing ability, indicating the existence of variation in 
membrane properties and their response to freeze-thawing between 
animals. Recent studies suggest that there is a genetic basis for 
variation in post-thaw semen quality.53 Previous work has analyzed 
the morphometric characteristics of bull spermatozoa before and 
after cryopreservation, observing that the results of raw semen differ 
from that obtained post-thawing, indicating that the cryopreservation 
process can affect the different types of cells in different ways or modify 
their previous morphology.30

Osmotic stress is related to differences in osmolality across the 
plasma membrane, its hydraulic conductivity, and also the cell’s volume 
and surface area. It is likely that subtle differences among spermatozoa 
in shape and volume or area are responsible for differences in the 
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five Holstein and five Brahman bulls, not taking into consideration the 
possible inter-breeding variations.30 Mixing different breeds is common 
in other species, such as the dog, but it has been demonstrated that 
different breeds have different sperm subpopulations, so more work 
is needed on the evaluation of these results.27

Most of the subpopulation studies have shown different distribution 
between animals, indicating that endogenous factors  (genetic, 
physiological, etc.) are involved.35 The combination of the genetic and 
physiological status of an individual must be translated into different 
gamete strategies that reflect the sperm competition context in a 
particular species.59

In a variety of species, a subpopulation structure based on both 
kinematic and morphometric parameters has been established,60 and 
the differences between animals were considered to be an individual 
animal strategy. In this work, we have analyzed, for the first time, the 
sperm morphometry of different ejaculates from the same animal. If the 
strategy was based on an individual’s genetics, the differences between 
ejaculates should be insignificant or do not exist, but we have found 
clear differences among ejaculates. In the same direction, mid-piece 
length is different between bull breeds and also between ejaculates 
of the same bull.61 This may indicate that the idea of a subpopulation 
strategy being just related to the animal strategy on the basis of 
genetic characters is incorrect or incomplete. More work is needed to 
understand the real meaning of these results, but we can hypothesize 
that a combination of genetics and physiological status must be 
responsible for the final subpopulation strategy of an individual.

As the ejaculate content reflects the sperm reserves available in 
the distal cauda epididymis at that time, variations in sperm quality 
in any ejaculate are likely to reflect the balance between distal caudal 

emptying (depending on the frequency of copulation or program of 
semen collection), caudal filling from the proximal cauda (depending 
on the extent of prior sperm depletion), and mixing of the spermatozoa 
during seminal emission before ejaculation. In addition, variations in 
the accessory gland fluid composition could have an effect on the final 
sperm morphometry.

The result obtained on the differences in sperm subpopulations 
between straws can be related to the fact that the ejaculate is not 
homogeneous and it is not possible to take reproducible aliquots, even 
with thorough mixing before removing a portion. The differences could 
also be explained by each straw being produced at different times from 
semen dilution. Either way this needs more study, perhaps by increasing 
the number of analyzed cells per sample, because if confirmed, these 
results could have consequences for reproductive success.

CONCLUSIONS
The former approaches to the study of sperm morphometry based 
on the differences analysis  (ANOVA or MANOVA) are not good 
enough to define the true sperm populations, and it is necessary to 
use multivariate statistics based on principal component analysis to 
define subpopulations structure. Differences among ejaculates from 
the same animal challenge the former idea that the subpopulation 
structure is an individual characteristic, it could be also related to a 
physiological response to changes in the environment, even if based 
on the genetic basis.
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Figure 2: Distribution of subpopulations (SP) per ejaculate in some representative animals. SP1 (black), SP2 (dark gray), SP3 (light gray), and SP4 (white) 
bars. Animal 1 presents differences for subpopulations SP1, 3 and 4; Animal 3 for SP1 and 3, but the first three ejaculates present equivalent number of 
cells for each SP; Animal 5 for SP1 and 3, but the distribution of SP in each ejaculate was different; Animal 9 for SP1, 2 and 3; Animal 16 for SP3 and 4; 
and Animal 25 showed no differences among ejaculates.
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1  | INTRODUC TION

Potential boar fertility is assessed by semen analysis. Sperm motility 
is the most widely used indicator of semen quality and is the key pa‐
rameter that is used for acceptance or rejection of ejaculates for ar‐
tificial insemination in farms. In assessing sperm motility, significant 
correlations with fertility have been reported for bovine (Budworth, 

Amann, & Chapman, 1988), equine (Samper, Hellander, & Crabo, 
1991), ovine (Santolaria et al., 2015), rabbit (Lavara, Mocé, Lavara, 
Viudes	de	Castro,	&	Vicente,	2005)	and	swine	(Broekhuijse,	Šoštarić,	
Feitsma, & Gadella, 2012a) spermatozoa.

The development of the swine industry by artificial insemina‐
tion (AI) has brought improvements in the quantitative analysis of 
the quality of spermatozoa produced by boars to predict the fertility 
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Contents
Motility is the most widely used indicator of sperm quality. Computer‐Assisted 
Semen Analysis (CASA) allows the objective evaluation of sperm motility parameters. 
CASA technology is a common tool to predict semen doses in farm animal reproduc‐
tion. The kinds of video cameras used until now for image acquisition have presented 
limited frame rates (FR), which have a negative influence on the quality of the ob‐
tained data. The aim of the present work was to define the optimal frame rate for a 
correct evaluation of boar sperm motility and its subpopulation structure. Eighteen 
ejaculates from nine mature boars of the Pietrain breed were used. Using the ISAS®v1 
CASA‐Mot system, with a video camera working up to 200 Hz, six FRs (25, 50, 75, 
100, 150 and 200 fps) were compared. ISAS®D4C20 counting chambers, warmed to 
37°C, were used. FR affected all the kinematic parameters, with curvilinear velocity 
(VCL) and BCF the most sensitive ones. All the parameters showed differences 
among animals. Non‐linear correlation showed the asymptotic level for VCL at 212 
fps, being the highest FR for all the parameters. For future studies based just on pro‐
gressive motility, almost 100 fps FR for 0.5 s must be used, while when kinematics 
must be considered, almost 212 fps for one‐second should be analysed. Three prin‐
cipal components were obtained (velocity, progressivity and oscillation), being similar 
at 50 and 200 fps. Cells were grouped in four subpopulations but with different kin‐
ematic and cellular distribution at both FRs.

K E Y W O R D S

CASA‐Mot, computer‐assisted semen analysis, frame rate, pig, sperm motility, subpopulations
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potential of seminal doses (Waberski, Petrunkina, & Töpfer‐Petersen, 
2008). Subjective analysis, based on technician experience or “man‐
ual” estimation motility methods, has shown a high variance in re‐
sults. To address this problem, from the 1980s, Computer‐Assisted 
Semen Analysis (CASA) technology was developed to improve ac‐
curacy and precision on semen analysis (Bompart et al., 2018; Gil 
et al., 2009; Tardif, Laforest, Cormier, & Bailey, 1999). Currently, 
more than twelve different CASA systems brands are available for 
semen motility evaluation in laboratories and AI centres (Amann & 
Waberski, 2014); therefore, it is necessary to update the standard‐
ization of the methods for the objective evaluation of sperm quality 
(Amann & Katz, 2004; Gil et al., 2009; Verstegen, Iguer‐Ouada, & 
Onclin, 2002).

The result of motility analysis by CASA technology (CASA‐
Mot; Soler, García, Contell, Segervall, & Sancho, 2014) is asso‐
ciated with software and hardware capabilities, in addition to 
biological variation associated with sperm samples within animals 
and the process of seminal dose elaboration. The evaluation of 
semen motility and other kinetic parameters such as curvilin‐
ear, straight line and average path velocities is an essential part 
of sperm quality evaluation in livestock species (Amann & Katz, 
2004). From the beginning of CASA‐Mot technology develop‐
ment, it has been pointed out that one of the more determining 
parameters is the frequency of image acquisition (Morris, Coutts, 
& Robertson, 1996). At the beginning of CASA‐Mot system use, 
the most common frame rates were 25/30 frames per second 
(fps), reflecting European or US standards. This limitation was 
basically related to the kind of applicable video cameras, but 
image capture technology is being improved very fast and much 
more efficient cameras are affordable now. The problem that 
now arises is that high fps values bring significant changes in the 
value of some sperm kinetic parameters and this must now be 
considered (Bompart et al., 2018; Castellini, Dal Bosco, Ruggeri, 
& Collodel, 2011; Mortimer & Swan, 1999).

Another aspect is that the correct determination of sperm 
tracks results in a fundamental shift in the determination of mo‐
tility and morphology subpopulation structure. The fact that an 
ejaculate is constituted of different subpopulations of spermato‐
zoa has been well established in a great variety of species (boar 
(Abaigar, Holt, Harrison, & del Barrio, 1999; Flores et al., 2008; 
Holt, Holt, & Moore, 1996; Soler et al., 2018), bull (Valverde et al., 
2016; Yániz et al., 2018), donkey (Flores et al., 2008), eel (Gallego 
et al., 2015), fox (Soler et al., 2014, 2017), gazelle (Abaigar et al., 
1999), goat (Vázquez et al., 2015), ram (Luna et al., 2015), stallion 
(Ortega‐Ferrusola et al., 2009), human (Vásquez, Soler, Camps, 
Valverde, & García‐Molina, 2016; Yániz et al., 2016), salmon 
(Caldeira et al., 2018)), but most of these studies were not de‐
signed for considering the effect of the FR.

The aim of this study was to determine the effect of the frame 
rate in evaluating kinematic parameters in boar spermatozoa and its 
importance in the correct determination of sperm motility subpop‐
ulation structure.

2  | MATERIAL S AND METHODS

2.1 | Animals

Eighteen commercial seminal doses, obtained from nine healthy 
boars of the Pietrain breed, 2–3 years old, were used. These animals 
were housed in climate‐controlled buildings (Semen Cardona, S.L., 
Cardona, Barcelona, Spain), without any requirement of approval 
from the animal research review board of the University of Valencia. 
Boars were fed a standard boar adjusted diet (2.3 kg/d) and provided 
with water ad libitum.

Samples were transported to the laboratory in the same refrig‐
erated conditions (17°C) used for commercial distribution. Upon 
arrival in the laboratory, the samples were mixed and 1 ml placed 
in an Eppendorf tube and maintained at 37°C for 30 min before 
use.

2.2 | Assessment of sperm variables

For the analysis of motility, kinetics and concentration, 
ISAS®D4C20 disposable counting chambers (Proiser R+D, S.L., 
Paterna, Spain) were used after being pre‐warmed to 37°C. 
After thorough mixing of the samples, a volume of 3 μl was dis‐
tributed along the counting chamber tracks by capillarity, fill‐
ing them. Analyses were conducted with the CASA‐Mot system 
ISAS®v1 (Proiser R+D). The video camera was Proiser HS640m 
(Proiser R+D), with a frame rate of 200 fps and a final resolution 
of 640 × 478 pixels. The camera was attached to a microscope 
UB203 (UOP/Proiser R+D) with a 1× eyepiece and a 10× negative‐
phase contrast objective (AN 0.25) and an integrated heated stage 
maintained at 37 ± 0.5°C.

2.3 | Kinematic analysis

Analyses were performed in seven microscope fields on a total of 
at least 600 cells per sample. The CASA‐Mot parameters consid‐
ered in the study were as follows: straight line velocity (VSL, μ/ms), 
corresponding to the straight line from the beginning to the end of 
the track; curvilinear velocity (VCL, μm/s), measured over the actual 
point‐to‐point track followed by the cell; average path velocity (VAP, 
μm/s), the average velocity over the smoothed cell path; amplitude of 
lateral head displacement (ALH, μm), defined as the maximum of the 
measured width of the head oscillation as the sperm cells swim; beat 
cross‐frequency (BCF, Hz), defined as the frequency with which the 
actual track crossed the smoothed track in either direction; motility 
(%), the percentage of the total motile cells; and progressive motil‐
ity (%), corresponding to spermatozoa swimming forward quickly 
in	 a	 straight	 line,	 (STR	 ≥45%;	 VAP	 ≥25	μm/s). Three progression 
ratios, expressed as percentages, were calculated from the veloc‐
ity measurements described above: linearity of forward progression 
(LIN = VSL/VCL·100), straightness (STR = VSL/VAP·100) and wobble 
(WOB = VAP/VCL·100).
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2.4 | Experimental design

Eighteen ejaculates (two ejaculates for each boar) and three repli‐
cates by ejaculate were analysed. All semen samples were recorded 
at 200 fps frame rate (FR) for 1 s. This video was segmented into 
25, 50, 75, 100 and 150 FR videos. The command used was as fol‐
lows: [echo off: set fps = 25, 50, 75, 100, 150: for %%i in (.\*.avi) do (set 
fname=%%˜ni) & call: encodeVideo; goto eof :encodeVideo: ffmpeg.
exe ‐i %fname%.avi ‐r %fps% ‐c libx264 ‐preset slow ‐qp 0 “%fname%_
(%fps%fps).avi”; goto eof].

2.5 | Statistical analysis

These data obtained from the analysis of all sperm parameters were 
first tested for normality and homoscedasticity by using Shapiro–
Wilks and Kolmogorov–Smirnov tests. A normal probability plot was 
used to check for a normal distribution. In trying to obtain a nor‐
mal distribution, data were transformed using arcsine square root 
(arcsin	√x) before repeated‐measures ANOVA was run. Even after 
arcsine transformation, the kinematics variables of the sperm were 
not normally distributed, as determined by the Shapiro–Wilks test. 
The kinematics sperm variables did not satisfy the normality require‐
ment for a parametric analysis of variance. Therefore, non‐para‐
metric analyses were performed with a Kruskal–Wallis test. When 
statistically significant differences were detected using this test, the 
non‐parametric Mann–Whitney U‐test was used to compare pairs of 
values directly. The statistical model used was as follows: 

Xij=�+Ai+�ij

 where xij = Measured sperm kinematic variable; μ = Overall mean of 
variable x; Ai = Effect of group; εij = Residual.

For correlation and regression analyses, the effects of FR were 
tested in an exponential model, in the form y = β × α	 exp	 (−β/x), 

where y is VCL and x is FR, a is the asymptotic level, b is the rate 
of increase to the asymptote, exp is the base of natural logarithms. 
The biological significance of the equation is that the asymptotic val‐
ues (a) represent the maximum achievable when the FR is above the 
threshold level. The threshold level is conventionally calculated as 
the FR needed to obtain 95% of the maximum value. The rate of the 
approach to the asymptote represents the dependence of the curve 
on the FR; that is, a high value of b indicates high growth of VCL as 
FR increases and vice versa.

Clustering procedures were performed to identify sperm sub‐
populations from the complete set of motility data. The first step 
was to perform a principal component analysis (PCA). The number 
of principal components (PCs) that should be used in the next step 
of the analysis was determined from the Kaiser criterion, namely se‐
lecting only those with an eigenvalue (variance extracted for that 
PC) >1. The second step was to perform a two‐step cluster proce‐
dure with the sperm‐derived indices obtained after the PCA. All 
sperm cells within a FR of 50 and 200 fps were clustered by using a 
non‐hierarchical clustering procedure (k‐means model and Euclidean 
distance). This analysis enabled the identification of sperm subpopu‐
lations and the detection of outliers.

The results are presented as mean ± standard deviation (SD). 
Statistical significance was considered at p < 0.05. All data were an‐
alysed with IBM SPSS package, version 23.0 for Windows (SPSS Inc., 
Chicago, IL, USA).

3  | RESULTS

The frame rate had no effect (p > 0.05) on the total sperm motility, 
and progressive motility was different only at 150 and 200 fps in 
reference to the lower FRs (Table 1). Regarding the kinematic pa‐
rameters, only VSL was shown to be quite independent of the FR, 

TA B L E  1   Effect of frame rate (FR) on boar sperm motility and kinematic measurements (means ± SD, n = 14,653, percentage variation 
with respect to 25 fps in brackets

FR (fps)

25 50 75 100 150 200

TMOT (%) 90.5 ± 4.3 90.8 ± 4.5 (0.3) 90.6 ± 4.4 (0.1) 90.2	±	4.2	(−0.3) 88.4	±	4.7	(−2.4) 89.5	±	5.1	(−1.1)

PMOT (%) 82.4 ± 6.3a 83.8 ± 5.7a (1.7) 84.2 ± 4.8a (2.1) 82.8 ± 5.8a (0.5) 79.1 ± 4.4b	(−4.1) 78.6 ± 5.9b	(−4.7)

VCL (μm/s) 67.9 ± 22.6a 87.8 ± 33.6b (32.7) 114.2 ± 44.9c (41.5) 137.8 ± 52.2d (51.3) 162.0 ± 54.2e (58.9) 187.9 ± 63.0f (63.9)

VSL (μm/s) 60.8 ± 23.0a 66.9 ± 31.3b (9.2) 68.0 ± 31.8b (10.6) 66.1 ± 31.4b (8.0) 66.5 ± 30.0b (8.6) 67.3 ± 31.4b (9.7)

VAP (μm/s) 64.1 ± 23.0a 76.1 ± 30.3b (15.8) 81.3 ± 31.5c (21.2) 83.4 ± 32.5d (23.1) 91.5 ± 33.4e (30.0) 98.9 ± 37.2f (35.2)

LIN (%) 88.0 ± 16.0a 76.0 ± 19. b	(−15.6) 60.14 ± 16.3c	(−46.4) 47.0 ± 14.0d	(−87.2) 41.2 ± 12.2e	(−113.6) 35.2 ± 11.3f	(−149.8)

STR (%) 93.2 ± 12.1a 86.4 ± 16.1b	(−7.9) 82.1 ± 16.2c	(−13.5) 78.1 ± 16.2d	(−19.3) 72.4 ± 16.4e	(−28.7) 67.0 ± 16.0f	(−39.1)

WOB (%) 93.2 ± 9.2a 86.1 ± 12.1b	(−8.3) 72.2 ± 12.0c	(−29.1) 60.2 ± 11.1d	(−54.8) 56.4 ± 9.1e	(−65.3) 52.2 ± 9.1f	(−78.6)

ALH (μm) 1.53 ± 0.39a 1.51 ± 0.45a	(−1.3) 1.63 ± 0.46b (6.1) 1.64 ± 0.56b (6.7) 1.68 ± 0.52b (8.9) 1.58 ± 0.43ab (3.2)

BCF (Hz) 7.9 ± 2.9a 15.5 ± 5.9b (49.1) 26.8 ± 10.2c (70.6) 33.9 ± 13.6d (76.8) 37.4 ± 16.8e (78.9) 37.2 ± 16.9e (78.8)

Notes. TMOT: total motility (%); PMOT: progressive motility (%); VCL: curvilinear velocity (μm/s); VSL: straight line velocity (μm/s); VAP: average path 
velocity (μm/s); LIN: linearity of forward progression (%); STR: straightness (%); WOB: wobble (%); ALH: amplitude of lateral head displacement (μm); 
BCF: beat cross‐frequency (Hz); FR: frame rate; SD: standard deviation.
a–fDifferent superscripts indicate significant differences among frame rates. p < 0.05.
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being different only for the results obtained at 25 fps, with all the 
other values of the FR not showing differences among them. Both 
VCL and VAP increased with all FR, arriving at an increment from 25 
to 200 fps of 176.8% and 53.9%, respectively. The three indices of 
motility (LIN, STR and WOB) decreased with increasing FR, with LIN 
being the most affected. Finally, ALH showed no significant differ‐
ences and BCF increased the most between 25 and 200 fps arriving 
at 374.2% (Table 1). These results were very similar when the analy‐
sis was done animal‐by‐animal (Figure 1 for VCL as an example).

The regression model showed that the most sensitive parame‐
ter to FR was VCL (Figure 2), with an alpha value of 212.20, while 
the other parameters presented a value of alpha lower than 100 
(Table 2).

Principal component analysis showed three PCs (named veloc‐
ity, progressivity and oscillation) that were similar at 50 and 200 Hz, 
but some interesting differences were observed. The weight of ALH 
and BCF was much higher at 200 Hz, being included in the first PC, 
indicating that they are much better determined at high FR (Table 3).

When compared the results obtained with 50 and 200 fps, four 
subpopulations were present at both FRs, namely, Rapid progres‐
sive, Medium non‐progressive, Medium progressive and Slow slight 
progressive. The number of tracks included in the SP1 was similar 
at both FRs, but the other subpopulations varied in their number 
with the FR. As was noted above, most kinematic values were much 
higher at 200 fps in each equivalent subpopulation (Table 4).

4  | DISCUSSION

Currently, most porcine artificial insemination centres evaluate 
sperm motility by using CASA‐Mot systems (Kime et al., 2001; 
Verstegen et al., 2002). Each commercial system CASA‐Mot has its 
individual design and manufacturing standards that must be consid‐
ered before its routine use. The CASA system provides an objective 
and repeatable assessment of the number of motile sperm cells in 

a sample, as well as for measuring several kinematic variables. This 
can allow determination of the “poorer” samples or the samples with 
poor sperm motility but can also be a useful technique in predicting 
the most desirable boars for AI based on sperm motility and kinetic 
variables.

Several authors have indicated that the results are dependent on 
the set‐up of the system used, such as the field of observation loca‐
tion (Nöthling & dos Santos, 2012), frame rate of recordings (Wilson‐
Leedy & Ingermann, 2007), the kind and depth of the counting 
chamber used, the volume of the drop and other factors (Bompart 
et al., 2018; Soler et al., 2018).

The possible bias of the results depending on these elements and 
intrinsic factors makes it necessary to define well the protocol used 
in each case, optimizing all the components of the analytical process 
for analysis in a correct manner to obtain real sperm kinetic values 
(Björndahl, 2011; Bompart et al., 2018; Palacios et al., 2012; Simonik 
et al., 2015; Verstegen et al., 2002).

Until recently, the CASA‐Mot frame rate used was limited by 
hardware restrictions from 16 to 60 Hz (Contri, Valorz, Faustini, 
Wegher, & Carluccio, 2010; Holt, O’Brien, & Abaigar, 2007). 
Nevertheless, as has been previously indicated, the rate at which 
images are captured and the length of video recording both affect 
the distance that a spermatozoon might move between successive 
frames (Mortimer, Serres, Mortimer, & Jouannet, 1988). This has a 
direct effect on the estimated trajectory for each sperm cell, devia‐
tions from the recorded path of a spermatozoon’s centroid over suc‐
cessive frames, and other output values for sperm motion (Amann & 
Waberski, 2014).

Mortimer and Swan (Mortimer & Swan, 1999) have shown that 
by using a low FR (<50 fps), it is not possible to obtain some char‐
acteristics of the trajectory that occur at intervals shorter than the 
time elapsed between images. As a result, the information of the 
“real” trajectory is not obtained, leading to inaccuracies in the kine‐
matic evaluation (Bompart et al., 2018).

Here, a new camera of higher image capture frequency that al‐
lowed analysis of the effect of frame rate on sperm kinematic re‐
sults was used. Logically, the total motility was not affected by the 

F I G U R E  1   Effect of frame rate (fps) on curvilinear velocity 
(VLC, μm/s) for boars 1–9

F I G U R E  2   Effect of frame rate on boar spermatozoa 
curvilinear velocity (VLC, μm/s)
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increase in the FR. The percentage of progressivity (LIN) decreased 
at the highest FR (200 fps) because of the increment of VCL and VAP 
regarding VSL. This implies that a new definition is needed when 
higher speed cameras are used in the calculation of seminal dose 
sizes.

Regarding the sperm kinematic parameters, VSL was not 
changed from 50 Hz in accordance with Mortimer et al. (1988), who 
observed that VSL was not affected by video frame rates of 25, 30 
and 60 fps. On the other hand, VCL and VAP showed a statistically 
significant increase, rising to more than 175% higher than the values 
corresponding to 25 and 200 fps. These results confirm and extend 
the observations of previous work dealing with the effect of FR on 
sperm kinematics in different species (carp (Ravinder, Nasaruddin, 
Majumdar, & Shivaji, 1997); dog (Rijsselaere, Van Soom, Maes, & de 
Kruif, 2004); eel (Gallego et al., 2013); human (Morris et al., 1996; 
Mortimer et al., 1988)). Only one study had been designed in a simi‐
lar way as the present, obtaining the asymptotic points of 128, 153, 

253 and 302 fps for human, bull, ram and rabbit spermatozoa, re‐
spectively (Castellini et al., 2011). In comparison, the results for boar 
showed and intermediate value (212 fps, indicating that their mo‐
tility pattern is not so variable or spermatozoa not so fast as other 
mammalian species).

The indices LIN, STR and WOB showed a clear decrease with in‐
creasing FR, as a consequence of the constancy of VSL and that VCL 
increased much more than VAP. This knowledge implies that a new 
definition of progressivity will be needed when high FR are used.

The lateral head displacement, measured by the ALH, was not 
significantly changed from 50 Hz, indeed a slight increase was main‐
tained at higher FRs. This result was different from that obtained 
previously showing a reduction in ALH at higher FRs, because, in that 
paper, greater sampling frequency reduced the distance of sperm 
head deviation from the average path (Kraemer, Fillion, Martin‐Pont, 
& Auger, 1998; Zhu, Pacey, Barrett, & Cooke, 1994). That each study 
was done with a different commercial CASA‐Mot system should 

α SE β SE ρα,β

Kinematic estimated values at 
different fps

50 100 200 250

VCL 212.2 1.4 39.2 0.6 0.86 96.9 143.4 174.4 181.4

VSL 68.3 0.5 1.8 0.4 0.80 65.9 67.1 67.7 67.8

VAP 98.6 0.6 11.6 0.4 0.81 78.2 87.8 93.1 94.1

LIN 39.8 0.2 0.2 0.83 61.2 49.4 44.3 43.4

STR 69.9 0.2 0.2 0.81 82.0 75.7 72.7 72.1

WOB 54.3 0.2 0.1 0.82 73.5 63.1 58.5 57.7

ALH 51.6 0.1 0.2 0.80 50.0 50.8 51.2 51.3

BCF 50.4 0.4

−21.5

−8.0

−15.1

1.5

49.0 0.8 0.87 18.9 30.9 39.5 41.5

VCL: curvilinear velocity (μm/s); VSL: straight line velocity (μm/s); VAP: average path velocity (μm/s); 
LIN: linearity of forward progression (%); STR: straightness (%); WOB: wobble (%); ALH: amplitude of 
lateral head displacement (μm); BCF: beat cross‐frequency (Hz); SE: standard error.
p < 0.05.

TA B L E  2   Asymptotic level (α), rate of 
increase (β), correlation α/β (ρα,β), and
estimate (up to a frame rate of 250 fps) of 
boar sperm kinematic variables needed to 
obtain the threshold level (95% of the 
maximum)

TA B L E  3   Eigenvectors of principal components (PCs) for boar sperm kinetic parameters in boars at 50 and 200 frames per second

Principal componenta/b

50 fps 200 fps

Velocity Progressivity Oscillation Velocity Progressivity Oscillation

VCL 0.960 0.987

VSL 0.826 0.499 0.755 0.566

VAP 0.978 0.904 0.384

LIN 0.924 0.844 0.517

STR 0.971 0.992

WOB 0.490 0.961

ALH 0.671 0.970

BCF 0.477 0.792 0.302

Variance explained% 41.6 29.9

−0.337

−0.705

0.574

0.626

17.3 49.7 26.2 18.7

Total variance explained = 88.8% for 50 fps; 94.6%. for 200 fps.
VCL: curvilinear velocity; VSL: straight line velocity; VAP: average path velocity; LIN: linearity of forward progression; STR: straightness; WOB: wobble; 
ALH: amplitude of lateral head displacement; BCF: beat cross‐frequency.
aExpresses the more important variables in each PC. Only eigenvectors >0.4 are presented. bRotated component matrix.
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be considered, and that ALH was the most sensitive parameter to 
manufacturer‐specific algorithms should be noted (Boryshpolets, 
Kowalski, Dietrich, Dzyuba, & Ciereszko, 2013).

The most changed parameter was BCF (total increase of 374%) 
because the sensitivity to the changes in the direction of the head 
movement (a consequence of tail beat) was dramatically increased. 
This result is in agreement with previous work (Sellés, Gadea, Romar, 
Matás, & Ruiz, 2003) showing that variations are more consider‐
able at low FR. This variable is associated with the frequency of 
head sperm oscillations about the average path. The most accurate 
prediction of this parameter can probably be estimated in sper‐
matozoa whose progression is similar to or equivalent to that of a 
sinusoidal wave (Davis, Niswander, & Katz, 1992; Davis, Rothmann, 
& Overstreet, 1992). Furthermore, significant increases in BCF at 
higher FR suggest that a more accurate analysis of this variable is 
provided at higher video frames.

Previously, the whole population of spermatozoa in an ejaculate 
has been considered; as it was described by a normal distribution 
model, spermatozoa were considered as equivalent, with the same 
chances of being “selected” for fertilization. Nevertheless, by con‐
sidering the quantitative data obtained from CASA systems, dif‐
ferent authors have proposed that the actual distribution of sperm 
cells is not uniform, not normally distributed but structured in well‐
defined subpopulations, (Amann & Hammerstedt, 1993; Caldeira 

et al., 2018; Gallego et al., 2015; Hirai et al., 2001; Soler et al., 2017; 
Thurston, Watson, Mileham, & Holt, 2001; Valverde et al., 2016; 
Vásquez et al., 2016; Yániz et al., 2016, 2018). Even today, in the 
boar, a relationship between these subpopulations and the fertilizing 
capacity of the ejaculates has been established (Abaigar et al., 1999; 
Holt et al., 1996; Vyt et al., 2008).

Unfortunately, all the studies developed until now have been 
done with FRs commonly lower than that defined in the present 
work. We have observed that, even maintaining the subpopulation 
structure 50 and 200 fps capture frequencies introduced sensitive 
variations, both in the PC analysis and its subsequent subpopulation 
values.

In previous papers done at 25 fps, only three subpopulations 
were observed with kinematic values lower than here, what is logi‐
cal at this low FR (Quintero‐Moreno, Rigau, & Rodríguez‐Gil, 2004), 
while with the same FR, other groups also find four subpopulations, 
equivalent to those observed here (Flores et al., 2008; Ramió et al., 
2008). In addition to the different FR, the different algorithms used 
for different CASA‐Mot brands implies that kinematic values for 
each	subpopulation	can	vary	even	at	the	same	FR	(Ibănescu,	Leiding,	
& Bollwein, 2018). At 60 fps, four subpopulations have also been ob‐
served but with higher values than those corresponding to 50 fps in 
the present study. In any case, it is necessary to indicate that no ref‐
erence to boar breed was indicated in previous works dealing with 

TA B L E  4   Boar sperm subpopulations for kinematic parameters at 50 and 200 fps

Parameter/Subpopulation Rapid progressive Medium non‐progressive Medium progressive
Slow slight 
progressive

50 fps

VCL 125.8 ± 1.1a 91.6 ± 1.9b 79.8 ± 0.8c 58.9 ± 1.3d

VSL 96.2 ± 1.0a 33.2 ± 1.8b 69.2 ± 0.7c 36.9 ± 1.3b

VAP 104.1 ± 1.0a 75.2 ± 1.8b 74.8 ± 0.7b 43.3 ± 1.3c

LIN 76.2 ± 0.5a 34.4 ± 0.9b 86.1 ± 0.4c 62.2 ± 0.7d

STR 91.4 ± 0.4a 42.2 ± 0.7b 91.6 ± 0.3a 83.4 ± 0.5c

WOB 82.7 ± 0.4a 79.0 ± 0.7b 93.5 ± 0.3c 73.5 ± 0.5d

ALH 2.0 ± 0.01a 1.7 ± 0.02b 1.3 ± 0.01c 1.4 ± 0.02d

BCF 21.5 ± 0.2a 15.0 ± 0.4b 13.6 ± 0.1c 13.3 ± 0.3c

n 481 156 987 317

200 fps

VCL 285.0 ± 2.1a 188.9 ± 2.4b 171.3 ± 1.4c 144.1 ± 1.8d

VSL 108.5 ± 1.0a 37.6 ± 1.2b 73.5 ± 0.7c 43.1 ± 0.8d

VAP 146.7 ± 1.3a 99.9 ± 1.5b 100.1 ± 0.8b 61.3 ± 1.1c

LIN 38.0 ± 0.4a 19.1 ± 0.4b 42.9 ± 0.2c 29.2 ± 0.3d

STR 73.4 ± 0.5a 36.2 ± 0.6b 73.4 ± 0.3a 68.7 ± 0.4c

WOB 51.6 ± 0.3a 51.9 ± 0.4a 58.4 ± 0.2b 41.9 ± 0.3c

ALH 2.1 ± 0.01a 1.6 ± 0.01b 1.5 ± 0.01c 1.3 ± 0.01d

BCF 57.0 ± 0.7a 33.9 ± 0.8b 37.9 ± 0.4c 23.3 ± 0.5d

n 391 296 928 559

VCL: curvilinear velocity (μm/s); VSL: straight line velocity (μm/s); VAP: average path velocity (μm/s); LIN: linearity of forward progression (%); STR: 
straightness (%); WOB: wobble (%); ALH: amplitude of lateral head displacement (μm); BCF: beat cross‐frequency (Hz).
a–dWithin row, different superscripts indicate significant differences among sperm subpopulations. p < 0.05.
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this	 topic	 (Bucci	et	al.,	2018;	 Ibănescu	et	al.,	2018)	which	can	 limit	
possible comparisons between results.

Therefore, a future revision of the subpopulation structure spe‐
cies‐by‐species at an adequate FR in each case will need to be devel‐
oped. This, added with the individual variation, indicates that future 
work must be done to optimize the production of seminal doses for 
artificial	 insemination	programmes	 (Broekhuijse,	Šoštarić,	Feitsma,	
& Gadella, 2012b; Didion, 2008).

As a conclusion and taking BCF and VCL as the most sensitive 
parameters to FR, it is recommended to use a capture frequency 
as close as possible to 225 fps in the evaluation of boar ejaculates 
for the study of their kinetics, while it can be considered enough at 
50 fps for the evaluation of general motility, and 150 fps progressive 
motility of the samples. Any future work must be developed on the 
basis of these results, both in the research and in the production 
fields.
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Abstract 

Computer Assisted Semen Analysis (CASA) technology is being a common tool in the seminal 

analysis for seminal doses production in farm animals. The aim of the present work was to define 

the optimal capturing time for a correct evaluation of boar sperm motility. Six sexually mature boars 

from the Topigs Lines, were used as semen donors. ISAS®v1 CASA-Mot system was used with an 

image acquisition rate of 50 Hz for two seconds capturing. Obtained video frames were fragmented 

into four segments corresponding to 0.5, 1.0, 1.5 and 2.0 s. ISAS®D4C20 counting chambers, 

warmed at 37 °C were used. Total and progressive motility were not affected by capture time. 

Capture time had a significant effect on velocity and indexes values (P< 0.05) but not on lateral 

head displacement (ALH) and beat cross frequency (BCF). All the parameters showed animal 

differences. The results demonstrate that sperm motility is affected by the video recording time 

length (P< 0.05). This effect is evident both in motility parameters and in single cell kinetics, 

studied by cluster analysis that showed a short time of video recording can to overestimate the 

percentage of rapid non-progressive cells in a subpopulation (P< 0.05). Studies based just on 

motility can use one-half second, while when kinematics must to be considered two seconds must 

be analyzed. 

Keywords: computer-assisted semen analysis, CASA-Mot, sperm motility, swine, reproduction 
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Introduction 

Semen analysis is the test for fertility potential evaluation of an animal. When sperm motility was 

evaluated, significant correlations with fertility have been reported for bovine (Budworth et al., 

1988), equine (Samper et al., 1991), rabbit (Lavara et al., 2005) and swine (Tardif et al., 1999; 

Didion, 2008; Broekhuijse et al., 2012b). 

Traditional subjective analysis based on technician experience have shown a high degree of 

variation in the final results independent of the species (Knuth et al., 1989; Amman and Waberski, 

2014; Gallego et al., 2018). To overpass this problem, from the 80’ years of past century Computer 

Assisted Semen Analysis (CASA) technology was developed to improve accuracy and precision on 

semen analysis. However, the result of the motility analysis using CASA-Mot technology is 

associated with software and hardware capabilities, in addition with other biological variation 

sources as semen samples within animal (Bompart et al., 2018). The development of the swine 

industry by artificial insemination (AI) have led to improvements on quantitative analysis of boar 

semen samples to predict the fertility potential of seminal doses. Even the number of using CASA 

systems in continuously increased in AI centers, it is necessary to update the standardization of 

the methods for the objective evaluation of sperm quality (Verstegen et al., 2002; Amann and Katz, 

2004). 

CASA systems determine several sperm parameters, mainly by detecting and analyzing the sperm 

head positions in successive frames by video images (Davis and Katz, 1993). In some works, in 

other species as dog (Rijsselaere et al., 2003) or human (Owen and Katz, 1993), a lower frame 

rate affected the curvilinear path that occur over shorter intervals than the elapsed time between 

two consequent frames (i.e. 1/30 or 1/60 s; Owen and Katz, 1993). Consequently, the sperm cell’s 

actual trajectory may be lost, resulting in significant errors for various semen motility characteristics 

(Owen and Katz, 1993). 

In consequence, the aim of this study was to determine the effect of the video capture length in 

evaluating motility and kinematic parameters in boar sperm for the optimization of the analysis 

protocol. 

Materials and Methods 

Animals 

The experiment was conducted at a commercial swine farm (Mejoramiento Porcino S.A., Heredia, 

Costa Rica) during 2015 in the Northwest of Costa Rica (San José de la Montaña, 10°3'0'' N, 

84°7'0'' W, Barva, Heredia, Costa Rica, Central America) following the laws and regulations 
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controlling experiments on live animals in Costa Rica and without any requirement of approval from 

the animal research committee of the Costa Rica Institute of Technology. Six sexually mature and 

healthy boars from the Topigs Lines, 2-3 years of age and known fertility, were used as semen 

donors in this study. Breeding boars were housed individually in well-ventilated pens with average 

temperature range of 16-22 °C, during the time of the experiment. Animals were feed with the 

standard breeder mixture containing maize, soybean meal, mineral mixture and common salt, as 

ingredients to fulfill the nutrient requirements (Nutrient Requirements of Swine, 1998), and 

provided with water ad libitum. 

Collection and examination of semen 

Semen samples were collected in the morning, once per week, using the ―gloved-hand‖ technique 

(Hancock and Hovell, 1959) and immediately placed in a water bath at 38 °C at the farm laboratory. 

In all cases, the sperm-rich fractions were collected, diluted with a commercial extender (Androstar 

Plus®; Minitube, GmbH, Tiefenbach, Germany). Samples from each ejaculate were evaluated for 

subjective motility, morphology and concentration parameters (Spermacue, Minitube International, 

Costa Rica) following established protocols (Martín Rillo et al., 1996), and only ejaculates with at 

least 85% motile spermatozoa, 90% morphologically normal spermatozoa and greater than 10×109 

total spermatozoa per ejaculate were used. Immediately after collection, semen was diluted in the 

appropriate medium (BTS, Minitube, Mejoramiento Porcino S.A., Heredia, Costa Rica) and dilution 

ratio to result in a concentration of approximately 30x106 sperm/mL.  

Assessment of sperm variables 

For the analysis of motility, kinetics and concentration, ISAS®D4C20 disposable counting 

chambers (Proiser R+D, S.L., Paterna, Spain) were used after pre-warmed at 37 °C. After 

homogenization of the samples, a volume of 3 µL was distributed along the counting chamber race 

by capillarity to fill them completely. Analyses were conducted using the CASA-Mot system 

ISAS®v1 (Proiser R+D S.L., Paterna, Spain). The video-camera used was a Proiser 782m (Proiser 

R+D). Frame rate used was 50 Hz, with a final resolution of the images of 746x578 pixels. The 

camera was attached to a microscope UB203 (UOP/Proiser R+D) with an eyepiece 1x and a 10x 

negative phase contrast objective (AN 0.25) and an integrated heated stage maintained at a 

constant temperature of 37±0.5 °C. 

Kinematic analysis 

The CASA-Mot parameters included in the study were: straight line velocity (VSL, μm/s), 

corresponding to the straight line from the beginning to the end of the track; curvilinear velocity 
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(VCL, μm/s), measured over the actual point-to-point track followed by the cell; average path 

velocity (VAP, μm/s), the average velocity over the smoothed cell path; amplitude of lateral head 

displacement (ALH, μm), defined as the maximum of the measured width of the head oscillation as 

the sperm cells swam; beat-cross frequency (BCF, Hz), defined as the frequency with which the 

actual track crossed the smoothed track in either direction; motility (%), the percentage of the total 

motile cells; and progressive motility (%), corresponding with spermatozoa swimming forward 

quickly in a straight line, (STR ≥45%; VAP ≥25 μm/s). Three progression ratios, expressed as 

percentages, were calculated from the velocity measurements described above: linearity of forward 

progression (LIN = VSL/VCL *100), straightness (STR = VSL/VAP *100), and wobble (WOB = 

VAP/VCL *100). 

Experimental design 

To assess the influence of video recording time, twelve ejaculates (two ejaculates of each boar) 

and six replicates by ejaculate were analyzed at image acquisition rate of 50 Hz and the capture 

time was two seconds. Subsequently, the video frames were fragmented into four segments 

corresponding to 0.5 s, 1.0 s, 1.5 s, and 2.0 s; according with: [@echo off: for %%i in (\ * avi) do 

(set fname = %% ~ ni) & call: divideVideo: goto eof]. 

Statistical analyses  

The data obtained from the analysis of all sperm parameters were first tested for normality and 

homoscedasticity using Shapiro-Wilks and Kolmogorov-Smirnov tests. Q–Q plots were used to 

check for departures from the normal distribution. Trying to adjust to a normal distribution, data 

were transformed using arcsine square root (arcsin √x) before repeated measures ANOVA was 

run. Even after arcsine transformation, the kinematics variables of the sperm were not normally 

distributed, as determined by the Shapiro-Wilks test. The kinematics sperm variables did not 

satisfy the normality requirement for a parametric analysis of variance. Therefore, non-parametric 

analyses were performed using a Kruskal–Wallis test. When statistically significant differences 

were detected using this test, the non-parametric Mann–Whitney U-test was used to compare pairs 

of values directly. 

Clustering procedures were performed to identify sperm subpopulations from the set of motility 

data. The first step was to perform a principal component analysis (PCA). The number of principal 

components (PC) that should be used in the next step of the analysis was determined using the 

Kaiser criterion, namely selecting only those with an eigenvalue (variance extracted of each PC) 

>1. Furthermore, was found the factorial analysis feasibility, using Bartlett's sphericity test to test

the null hypothesis that the correlation matrix is an identity matrix and the KMO index (Kaiser-
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Meyer-Olkin), which determines the calculation of the correlations between two variables once the 

influence that the remaining variables have on them has been eliminated (Spencer, 2013). The 

second step was to perform a two-step cluster procedure with the sperm-derived indices obtained 

after the PCA. All sperm cells within each generation and time after activation were clustered using 

a non-hierarchical clustering procedure (k-means model and Euclidean distance). This analysis 

enabled the identification of sperm subpopulations and the detection of outliers. 

The effects of clusters between treatments for measuring motility parameters were analysed using 

the Kruskal–Wallis test, followed by the Mann–Whitney paired non-parametric U-test when 

significant differences were found. In total, 103 306 cells were analysed. The results are presented 

as mean ± standard deviation (SD). Statistical significance was considered at P< 0.05. All data 

were analyzed using IBM SPSS package, version 23.0 for Windows (SPSS Inc., Chicago, IL, 

USA).  

Results 

Considering all the cells, total and progressive motility as well as ALH and BCF were not affected 

for the capturing time while the other kinematic parameters were affected in different degree 

(P<0.05). The highest increase was found for VCL with a total difference between the time of 0.5 s 

and 2.0 s of 12.4 %, followed by VAP with a difference between these two times of 10.8 %. VSL 

showed significant differences between times even the highest difference implies only a 6.2 % of 

between the values corresponding to 0.5 s and 1.5 s, what we consider no presenting biological 

significance. Therefore, the derived parameters LIN and STR presented a considerable decrease 

between values observed at 0.5 s and 2.0 s of 17.2 % and 13.1 %, respectively. About WOB, the 

decrease was no so high, even being significant (Table 1). 

The kinematic results boar by boar for VCL, VAP and ALH presented a similar pattern with 

significant increase regarding capture time. It was observed a decrease in the values of VSL, LIN 

and STR. WOB and BCF, indicating that these parameters are less influenced by the time of 

capture, and not showing differences in some of the animals (data not shown). 

The principal component analysis generated three principal components with a total variance 

explained of 92.0 %, that were used for subsequent cluster analysis (Table 2). The cluster analysis 

showed three sperm subpopulations. These subpopulations showed different kinetics 

characteristics that allowed to identify them as: 1) rapid progressive; 2) rapid non- progressive; 3) 

slow non- progressive. All kinematic parameters showed significant differences between sperm 

subpopulations cluster (Table 3). Sperm cells were assigned to the different clusters and significant 
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differences in the percentages of spermatozoa belonging to each subpopulation were found 

between the video recording times length (Table 4). 

Discussion 

Currently, different livestock species farms and artificial insemination centers evaluate sperm 

motility by using CASA-Mot systems (Kime et al., 2001; Verstegen et al. 2002). Several authors 

have indicated that the results are dependent on the settings of the system used, such as the field 

of observation location (Nothling and dos Santos, 2012), frame rate of recordings (Wilson-Leedy 

and Ingermann, 2007), the kind and depth of the counting chamber used, the volume of the drop 

and other factors (Bompart et al., 2018; Soler et al., 2018). 

The possible bias on the results depending on these factors makes necessary to well define the 

protocol used in each case, optimizing all the components of the analysis process to analyze in a 

correct way for obtaining the real sperm kinematics values (Verstegen et al., 2002; Björndahl, 

2011; Palacios et al., 2012; Simonik et al., 2015; Bompart et al., 2018). 

First to consider the results obtained the present study it is convenient to make a comment about 

the statistics used in the present work. It is too much common to overpass the not normal 

distribution of data by some mathematical transformation, as arcsine square root used here, if it 

converts the data distribution in a normal one, without any more analysis. We have observed that 

even after this kind of transformation, the distribution remains being not normal and for this another 

statistical no based on normal distribution model approach must be used. 

Until recent time, the frame rate to be used was limited by hardware constrictions from 16 to 60 Hz 

(Holt et al., 2007; Contri et al., 2010). Nevertheless, as it was previously indicated, the rate at 

which images are captured and the duration of image affect the distance that a spermatozoon 

might move between successive frames (Mortimer et al., 1988). This has a direct effect on the 

estimated trajectory for each sperm cell, deviations from the recorded path of a spermatozoon’s 

centroid over successive frames, and other output values for sperm motion (Amann and Waberski, 

2014).  

Using a low frame rate (lower than 50 Hz) is not possible to obtain some characteristics of the 

trajectory that occur at intervals shorter than the time elapsed between images (Mortimer and 

Swan, 1999). As a result, the information of the "real" trajectory is not obtained leading to 

inaccuracies in the kinematic characteristics evaluation (Bompart et al., 2018).  

The percentage of total motile and progressive spermatozoa was not affected by the video 

recording time. Regarding kinematics variables, the VSL, LIN, STR, and WOB decreased with the 
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increase in the capturing time, while the rest of the variables increased. The highest variation was 

observed for LIN, STR and VCL, and the lowest for VSL.  

When analyzing the effect of the number of images (at the same frame rate, more time implies 

more analyzed images) on sperm kinetics, it was relevant that the increase in the amount of 

available information for the analysis of the spermatic trajectory allows to a more precise 

reconstruction.  These results imply that it is needed to define conveniently the video time length to 

guarantee equivalent results, even by using the same commercial CASA-Mot system. (Holt et al., 

1994). Even more, capture time has much more importance when real sperm trajectories are 

irregular than regular.  

The lateral head displacement, measured by the ALH, was not significant changed, even a slight 

increase was maintained with higher times video recording. This result was similar with that 

obtained previously showing an increase of ALH at higher video time length because in that papers 

greater sampling frequency reduces the distance of sperm head deviation from the average path 

(Zhu et al., 1994; Kraemer et al., 1998). It is needed to consider that each work was done with 

different commercial CASA-Mot systems and that ALH is the most sensible parameter to 

manufacturer specific algorithms (Boryshpolets et al., 2013). 

The beat-cross frequency was not significant changed because the sensitivity to the changes in the 

direction of the head movement (consequence of tail beat) was dramatically unimproved. This 

variable is associated with the frequency of head sperm oscillations about the average path. The 

most accurate prediction of this parameter can probably be estimated in spermatozoa whose 

progression is like or equivalent to a sinusoidal wave (Davis et al., 1992 a, b). Furthermore, no 

significant increases in BCF suggest that the more accurate sperm analysis of this variable can be 

better at higher video frames. 

In the past, the whole population of spermatozoa in an ejaculate was considered being distributed 

following a normal distribution function, it means they were considered as equivalents looking for 

the same objective: to be the ―selected‖ for fertilization. Nevertheless, in the recent years 

considering the quantitative data obtained with CASA technology, different authors proposed that 

the actual distribution of sperm cells is not uniform neither normal, but structured in well-defined 

subpopulations (Amman and Hammerstedt, 1993; Hirai et al., 2001; Thurston et al., 2001; Soler et 

al., 2014; Valverde et al., 2016; Vásquez et al., 2016; Yániz et al., 2016; Soler et al., 2017; 

Caldeira et al., 2018; Yániz et al., 2018). Even more, almost in boar, it was established a 

relationship between these subpopulations and the fertilizing capacity of the ejaculates (Holt et al., 

1996; Abaigar et al., 1999; Vyt et al., 2008). 
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To better understand the spermatozoa kinetic depending upon the times of video recording length, 

we performed cluster analysis using kinematics parameters of single sperm cells (Abaigar et al., 

1999). Based on cluster analysis, sperm were classified into four clusters, with the following 

characteristics: one included sperm cells with low VSL, VAP and linearity and was considered as 

―slow non-progressive‖; the second showed high velocity and highly linear cells (high VSL, LIN and 

STR) and was considered ―rapid progressive‖; and the third showed high velocities (VCL, VSL and 

VAP) but low linearity and was defined as ―rapid non-progressive‖. The effects of video recording 

length on the proportions of each sperm subpopulation were significative, as those a longer video 

time recording length showed a significant increase in the percentage of slow non-progressive 

cells, which was accompanied by a decrease in the percentage of ―rapid non-progressive‖ cells. In 

addition, the percentage of ―rapid progressive‖ cells, was not significantly different at the video 

recording times length. If we consider ―rapid non-progressive‖ sperm cells as hyperactivated-like 

(Schmidt and Kamp, 2004), this could provide a proof of the effect of video recording time length. 

Therefore, take two seconds of video recording length may prevent to overestimate number of 

―rapid non-progressive‖ cells. 

In conclusion and taking the VCL as the most sensible parameter it is recommended to use a 

capture for two seconds in the evaluation of boar ejaculates for the study of their kinetics, while it 

can be considered enough with one-half second for the evaluation of general motility and 

progressive motility of the samples. 
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Table 1. Boar sperm motility and kinematics at four video-recording time lengths (CASA-Mot, mean 
± SD, change regarding lowest time in percentage, n=139 473) 

 Time video recording (s) 

 0.5 1.0 1.5 2.0 

TMOT (%) 70.5±13.3 69.7±13.5 (-1.2) 70.3±12.8 (-0.3) 69.5±13.5 (-1.4) 

PMOT (%) 67.5±12.5 66.8±12.6 (-1.1) 67.3±11.9 (-0.3) 66.7±12.3 (-1.2) 

VCL (µms-1) 81.2±21.5a 86.9±32.5b (7.4) 88.0±33.7c (8.4) 91.2±35.2d (12.4) 

VSL (µms-1) 42.1±16.3a 41.4±22.9b (-1.7) 39.4±23.8c (-6.4) 40.3±26.c (-4.1) 

VAP (µms-1) 48.4±14.3a 51.3±21.6b (6.0) 51.4±22.2b (6.2) 53.63±23.9c (10.8) 

LIN (%) 52.1± 6.2a 47.2±17.0b (-9.4) 44.1±18.2c (-15.5) 43.1±19.3d (-17.2) 

STR (%) 85.8±16.1a 77.5±20.1b (-9.6) 73.0±22.1c (-14.8) 71.0±24.0d (-13.1) 

WOB (%) 60.9±12.4a 59.1±12.1b (-2.9) 58.1±12.2c (-4.5) 57.2±11.9d (-5.9) 

ALH (µm) 1.62±0.42 1.77±0.48 (8.5) 1.81±0.49 (10.5) 1.85± 049 (12.4) 

BCF (Hz) 16.5±6.0 17.1±6.9 (5.5) 17.6±7.0 (6.2) 18.1±7.0 (8.9) 

 
SD: standard deviation; TMOT: total motility; PMOT: progressive motility; VCL: curvilinear velocity (µms

-1
); VSL: 

straight line velocity (µms
-1

); VAP: average path velocity (µms
-1

); LIN: linearity of forward progression (%); STR: 
straightness (%); WOB: wobble (%); ALH: amplitude of lateral head displacement (µm); BCF: beat-cross frequency 
(Hz).

 
In brackets is indicated the percentage of variation regarding time 0.5 s. 

a-d 
Within rows, values with different 

superscripts letters indicates significant differences between recording times. P <0.05.
 

 

Table 2. Eigenvectors of principal components (PCs) for boar sperm kinetics parameters at two 
second of video-recording time 

 

 

 

 

 

 

 
 
 

Total variance explained = 91.3%. 
*
Expresses the more important variables in each 

PC. Only eigenvectors > 0.4 are presented. 
a 

Rotated component matrix, rotation 
method: Varimax with Kaiser normalization. VCL: curvilinear velocity (µms

-1
); VSL:  

straight line velocity (µms
-1

); VAP: average path velocity (µms
-1

); LIN: linearity of 
forward progression (%); STR: straightness (%); WOB: wobble (%); ALH: amplitude 
of lateral head displacement (µm); BCF: beat-cross frequency (Hz). 

  

Principal component*/a PC1 PC2 PC3 

VCL 0.962    

VAP 0.867   

ALH 0.857   

BCF 0.750   

STR  0.981  

LIN  0.822 0.553 

VSL 0.656 0.663  

WOB   0.933 

Variance explained (%) 52.8 29.6 8.9 
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Table 3. Boar sperm subpopulations for kinetics parameters (mean±SD) at two second of video-
recording time 

Parameter/Subpopulation 
Rapid progressive slow non- progressive Rapid non- 

progressive 

Number of cells 46 309 19 947 37 050 

VCL 69.6±23.6a 83.9±25.7b 109.2±28.2c 

VSL 41.5±19.6a 20.0±12.4b 50.9±22.5c 

VAP 46.8±19.3a 46.1±18.0b 58.9±21.4c 

LIN 57.4±13.6a 23.2±11.2b 45.4±13.0c 

STR 86.0±10.8a 42.0±16.2b 83.9±12.4c 

WOB 65.9±10.5a 54.2±10.7b 53.0±10.2c 

ALH 1.42±0.30a 1.87±0.41b 2.11±0.41c 

BCF 15.8±6.78a 16.4±6.58b 19.1±6.24c 

 
SD: standard deviation; VCL: curvilinear velocity (µms

-1
); VSL: straight line velocity (µms

-1
); VAP: average path velocity 

(µms
-1

); LIN: linearity of forward progression (%); STR: straightness (%); WOB: wobble (%); ALH: amplitude of lateral 
head displacement (µm); BCF: beat-cross frequency (Hz). 

a-c 
Within rows, values with different superscripts letters 

indicates significant differences between sperm subpopulations.
 
P <0.05. 

 

Table 4. Subpopulation distribution of spermatozoa in percentage depending on video time 
recording length 

Time (s)/Subpopulation Rapid 

progressive 

Rapid non- 

progressive 

slow non- 

progressive 

0.5 42.9 44.1a 13.0a 

1.0 42.7 39.2a 18.1a 

1.5 43.6 34.0b 22.4b 

2.0 43.0 34.3b 22.7b 

 
Each row indicates the percentage of spermatozoa belonging to the different cluster 
(sum of percentage for each time = 100). Different superscripts indicate significant 
differences within column regarding to times, chi square (χ²) test, P <0.05. 



 

  



CHAPTER VII: AFTERWORD 

TO SPERM MORPHOMETRICS 

TODAY AND TOMORROW 

SPECIAL ISSUE IN ASIAN 

JOURNAL OF ANDROLOGY 
 

 

 

 



 

 

 

 

 



 

CHAPTER VII: 
 
 
Afterword to Sperm morphometrics today and tomorrow 

special issue in Asian Journal of Andrology 
 
 
 

Carles Soler 1,2, Trevor G Cooper 3, Anthony Valverde 4, Jesús L Yániz 4 

  
 
 
 
 
1 Department of Functional Biology and Physical Anthropology, University of València, 46100 
Burjassot, Spain 
2 Department of R+D, Proiser R+D, Science Park, University of València, 46980 Paterna, Spain  
3 Tuen Mun, New Territories, Hong Kong SAR, China 
4 Department of Animal Production and Food Science, Higher Polytechnic School of Huesca, 
University of Zaragoza, Ctra. Cuarte S/N 22071 Huesca, Spain. 
  
 
 
 
 
 
 
 
 
 
Asian Journal of Andrology (2016) 18, 895–897; doi: 10.4103/1008-682X.188451; published online: 

September 30, 2016 



 



113 | Application of CASA technology and multivariate analysis to optimize the semen evaluation in domestic and wild species 
 

 
 

 

 
 

 

Asian Journal of Andrology (2016) 18, 895–897 
© 2016 AJA, SIMM & SJTU. All rights reserved 1008-682X

www.asiaandro.com; www.ajandrology.com

difference. The fact that only one spermatozoon is enough to achieve 
a pregnancy has delayed spermatology research in human. On the 
other hand, the high variability of human infertility cases may make it 
seem an unattractive investment whereas the opposite is the case: the 
papers presented here show that investment in the equipment, and the 
researchers, to correlate clinical data with the morphometric results, 
would generate a range of observations on sperm subpopulations in 
fertile and infertile men that could explain currently unexplained 
causes of infertility.

THE SIGNIFICANCE OF THE MORPHOMETRIC ANALYSIS OF 
SPERM CELLS
The application of principal component  (PC) and discriminant 
analysis to reveal subpopulations of spermatozoa is a powerful tool 
to evaluate raw semen and processed sperm cell suspensions, but not 
many clinicians are aware of the technique. As described in several 
papers here, PC analysis is a multivariate statistical method that 
reduces the number of variables used in subsequent calculations used 
to describe the data. By integrating the original variables according 
to their coherence in a database into a new complex mathematical 
variable, clearly defined homogeneous subpopulations of spermatozoa 
can be defined. In support of the theory above, the papers presented 
here showed that most of the variance from up to 13 morphometric 
variables could be explained by only two or three PCs: two in bulls,16 
adolescent humans,8 adult human sperm head DNA,9 domestic cats,10 
puma,11 roosters, and guinea fowls12 and three PCs in adult human 
split ejaculate samples.7

From these PCs, discriminant analysis was used to generate clearly 
separable homogeneous subpopulations of morphological forms. Here, 
the number of subpopulations ranged from two to five: two (for the X-/
Y-bearing bovine sperm heads,15 for large+elongated/small+elongated 
sperm heads in human adolescents8), three (for large+round/elongated/
small spermatozoa in human sperm heads in split ejaculate fractions,7 
for elongated+intermediate/large+high acrosome/short+small sperm 
heads in the puma,11 for small, wide and slightly elliptical/average size, 
long, narrow and very elliptical/very large, wide and elliptical sperm 
heads in the rooster12), four  (for large/high medium/low medium/
small in human sperm head DNA,9 for small/short/large/narrow sperm 
heads in the bull,14 for shape-related sperm heads in both normo- and 
terato-zoospermic cats10) to five (for very small, wide, very short and 
slightly elliptical/small, very short, very wide and slightly elliptical/
very large, very wide, short and slightly elliptical/average size, very 
long, very narrow and very elliptical/average size, long, narrow and 
elliptical sperm heads in the guinea fowl12).

These awkward, convoluted, and very subjective descriptions 
of the nature of the sperm clusters generated by this technique 
highlight very well the difficulty in getting agreement (be it intra- or 
inter-laboratory, national or international) between observers on the 
definitions of normal sperm morphology, let alone abnormal forms. In 
contrast, the ability not only to detect, but also unambiguously define, 
subpopulations of spermatozoa by objective measurements derived 
from CASA-Morph is an important advance in morphological analysis. 
From this first step, advantage has to be taken of this knowledge for 
diagnosis of infertility, or promotion of reproductive performance 
in conservation biology, animal husbandry, or in the clinic. In other 
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Carles Soler1,2, Trevor G Cooper3, Anthony Valverde4, 
Jesús L Yániz4

Asian Journal of Andrology (2016) 18, 895–897; doi: 10.4103/1008-
682X.188451; published online: 30 September 2016

The problems associated with the subjective assessment of human 
sperm morphology have been well aired in another Asian Journal of 
Andrology Special Issue1 that marked the publication of the 5th edition 
of the WHO Semen analysis manual, and contrary views have 
subsequently been presented.2 However, the vagaries of the eye-brain 
system in assessing whether a sperm head is large or small can be 
eliminated by objective assessment where definitive structures are 
defined by their dimensions. These can then be classified automatically 
into as many categories as the data permit, conventionally on the basis 
of preset upper and lower limits, but also by more comprehensive 
analysis as discussed here.

This Special Issue on computer-aided sperm morphology 
assessment comprises four reviews (on sperm transport in mammals,3 
the current status of sperm morphometry in mammals4 and birds,5 
and the relevant statistical methods to assess the morphometric 
results6); three clinical research papers  (on sperm subpopulations 
in split ejaculates from adult men with normozoospermia7 and in 
ejaculates from adolescents with or without varicocoele,8 including 
the use of computer-assisted sperm analysis in assessing sperm 
nuclear DNA fragmentation9); and six veterinary research papers 
on sperm populations in the epididymis (in normozoospermic and 
teratozoospermic domestic cats10) and in ejaculated spermatozoa (from 
an endangered puma species,11 roosters and guinea fowls,12 rams, bulls 
and boars,13 and on cryopreserved bovine semen14).

Although most of these studies examined the dimensions of 
the sperm head on air-dried, fixed, and stained cells, others have 
taken advantage of the objective method to determine the extent of 
organelle-specific fluorescent dye binding. DNA-binding dyes were 
used to examine sperm nuclear morphology in fixed smears of split 
human ejaculate fractions,7 and together with chromosome-specific 
probes to determine the morphometrics of X-  and Y-bearing 
bovine spermatozoa.15 A combination of a nuclear dye with a 
fluorescent dye specific for the acrosome-specific dye permitted the 
simultaneous assessment of the whole head as well as its nuclear 
and acrosomal components.13 These are novel approaches that 
should lead to rapid descriptive and diagnostic advances in both 
veterinary and clinical fields.

That there were more submissions from the veterinary than clinical 
field probably indicates the financial importance given to improving 
sperm diagnosis and selection in commercial industries. In fact, from 
the scientific point of view, much more work on sperm morphology 
and morphometry significance has been developed on other animal 
species than the human. The irruption of ICSI could also explain this 
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words, subpopulations generated by this method could, and in future 
should, replace the previous approach of an artificial “a priori” 
classification of spermatozoa based on subjective evaluations. For 
example, in future, a new named and objective subpopulation, based 
on three PCs (e.g., SP2), could replace the subjective term “small.” This 
paper opens the door to an integrated and holistic approach to sperm 
function. Until now, all the sperm parameters have been evaluated 
independently, diminishing the global power prediction. The more 
integrated the different interactive variables become, the better the 
evaluation of semen quality will be.

The significance of the different numbers of sperm populations in 
the species examined and seminal fractions obtained in remains to be 
followed up by studies investigating whether the presence or extent 
of certain sperm populations is associated with indicators of fertility 
or infertility. For example, if the changes in sperm populations upon 
maturation in the cat epididymis10 are indicative of the epididymal 
maturation process, aberrant populations in the ejaculate could 
be indicative of epididymal malfunction in endangered feline 
species; the rapid and automated assessment of human sperm DNA 
damage9 could be useful in optimizing selection methods that enrich 
populations in the less damaged cells required for ART; likewise, it 
would be interesting to find out whether differences in bovine sperm 
subpopulations between bulls, ejaculates and thawed straws16 are 
present in the native semen or introduced by the cryopreservation 
protocol, and to use these subpopulations to monitor the development 
of methods to select the sperm subpopulation (of elongated and tapered 
spermatozoa) previously associated with fertility for AI.

THE FUTURE
New techniques of sperm morphometry have recently been developed, 
e.g.,  for the analysis of sperm nuclear morphology by the use of
fluorescent stains, providing additional information on cell function,16,17

as presented here,13 and similar developments with new dyes are
to be expected. The effect of preparative interventions on the final
morphology and morphometry of sperm cells is well documented,18–23

but eliminating the problem is a better option than attempting to take 
into account the preparative artifacts produced in the cells examined.

In this regard, the novel Trumorph® method dispenses altogether 
with air-drying, fixation, and staining, together with their artifacts, and 
involves the direct morphological examination of living, immobilized 
cells in raw semen.24,25 Rapid, automated morphometric evaluation 
of such cells will provide the first approach to real-time analysis of 
sperm morphology that could precede the selection and removal 
of an unadulterated sperm cell, or spermatozoa, for ART. Perhaps 
observations could be extended to three dimensions in scanning 
confocal microscopy.

A NOTE ON CASA TERMINOLOGY
In preparing this Special Issue, it became apparent that the conventional 
CASA terminology was inadequate to describe the different uses to 
which the technology is now being put. In the papers initially submitted 
to this Special Issue, authors used several acronyms to describe the 
method they were using, including CASMA (Computer-Aided Sperm 
Morphology Analysis), CASMA-F  (when fluorescent dyes were 
assessed) and ASMA (Automated Sperm Morphology Analysis). With 
these terms, neither the nature of the automation (with ASMA) nor the 
morphology examined (with CASMA-F) is clear from the abbreviation. 
In this Special Issue, for example, for spatulate spermatozoa, the sperm 
head itself, its acrosome, or its nucleus can each be analyzed by the 
system,13 and filiform spermatozoa permit additional values on the 

length of the head and tail.5 Thus, a change in terminology to one 
that indicates which sperm feature the system is measuring is needed.

The acronym CASA itself  (computer-aided/assisted sperm 
analysis) is uninformative since the analysis could refer to any aspect 
of spermatozoa: their concentration, motility, kinematic parameters or 
morphology, or combinations of these. Indeed, the early papers used 
this blanket term to cover them all although the term CASA today is 
generally used in association with sperm kinematics.26 For this use, 
the acronym would be more informative by the simple addition of M 
for motility (CASMA), but this letter could also be taken to stand for 
morphology. Using K for kinematics (CASKA) would be an alternative 
although not signifying that the percentage of moving cells is also 
recorded.

Any abbreviation must be informative, not only as to whether 
motility or morphology is being assessed, but also for the latter which 
organelles  (whole head, acrosome, nucleus, midpiece, tail), sperm 
status (DNA fragmentation) or other features, are being analyzed. We 
suggest the following hyphenated compound terminology: the generic 
use of CASA for any kind of sperm computer-aided sperm analysis, 
followed by an abbreviation indicating the analysis performed, 
i.e.,  CASA-Conc  (for concentration), CASA-Mot  (for motility,
including kinematics), CASA-Morph  (for morphology, including
morphometry), and CASA-DNA (when DNA is being studied). These 
could be extended if necessary to indicate when fluorescent dyes are
used for morphology (CASA-Morph-F) or when DNA fragmentation 
is being assessed (CASA-DNAf).

In the revised manuscripts presented in this Special Issue, all 
authors agreed to use this terminology in their papers, and we hope 
others will also find it more informative and useful both for the authors 
and the readers.
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Summary 

The evaluation of sperm motion is crucial for processing of seminal doses for artificial insemination. 

Here the combined effect on sperm motility of the type, capture area of three counting chambers, 

together with the type of diluent employed, was analysed. Ejaculates from thirteen Holstein bulls 

were used for sperm kinematic analysis with the ISASv1 CASA-Mot system, using two capillary 

loaded counting chambers (Leja® and CellVu®) and one drop displacement chamber (Makler®). 

Nine fixed positions were analysed per chamber type, considering central and lateral and three 

longitudinal fields. Independent of the diluent used, differences were found between the three 

chambers. Independently on the extender, no differences in x-axis were observed with CellVu®, 

while using Leja®, some parameters showed lower values in the centre than in lateral areas. In 

both counting chambers the lowest values were observed in the distal area. Results obtained with 

the two diluents were highly different with a very low correlation between them. In conclusion, the 

capture area inside the chambers leads to significant changes in sperm kinematic parameters and 

different dilution media introduce considerable differences in the motility patterns. It is necessary to 

optimize sampling methods and specific set-ups to be used with CASA-Mot technology. 

Keywords: bull sperm kinematics, counting chamber, sampling, CASA-Mot system  
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1. INTRODUCTION 

 Cattle are a fundamental resource in human economy, basically because of their use for 

milk and meat products. This has led to an intensive artificial selection throughout human history to 

obtain high quality animals in order to meet different purposes (Felius et al., 2014). Currently, cattle 

breeding involves the use of various forms of assisted reproductive techniques (ART) (Velazquez, 

2018). The use of cryopreserved seminal doses for artificial insemination is, right now, the most 

widely used ART in this and other species (Correa, Pace, & Zavos, 1997; Waberski, Petrunika, & 

Töpfer-Petersen, 2008; Lyashenko, 2015). Other, more sophisticated techniques, such as 

intracytoplasmatic sperm injection (ICSI) or embryo selection, are also used although to a lesser 

extent (Skrzyszowska et al., 2002; Ohlweiler et al., 2013). 

 The accurate evaluation of semen quality is fundamental to maximize the efficient use of 

seminal doses. However, even today, subjective semen analysis is commonly performed in many 

bull stud farms, which reduces the number of doses produced. In this context it is not an 

uncommon practice to make approximations to the closest 5% value when analysing both sperm 

concentration and sperm motility (Naib et al., 2011). The progressive introduction of computer 

assisted semen analysis (CASA) systems in the production lines has considerably improved the 

processing of semen samples, offering higher consistency in results (Vyt et al., 2004; Broekhuijse 

et al., 2011; Yániz et al., 2018). In any case, the correct use of CASA technology must be 

associated with optimized protocols to provide valuable and reliable information for the final 

calculations in dose production (Amman & Waberski, 2014; Bompart et al., 2018; Yeste et al., 

2018). There are three main aspects to consider when optimizing automated semen analyses, 

namely the type and depth of the counting chamber (Soler et al., 2012; Gloria et al., 2013; del 

Gallego et al., 2017), the dilution media (Awad, 2011; Büyükleblebici et al., 2014) and the frame 

rate of image acquisition (Castellini et al., 2011; Valverde et al., 2018). 

 The aim of the present work was to analyse the differential sperm distribution and motility 

characteristics within the capture area in three different commercial counting chambers (CellVu®, 

Leja® and Makler®) and the effect of two different commercial dilution media (Biladyl® and 

Andromed®) on this distribution, with a view to optimizing the use of currently available CASA-Mot 

technology. 

2. MATERIAL AND METHODS 

2.1. Semen collection and processing 

This study was performed on Holstein bulls (n=13, 1.5–7 years old), regularly employed in 

artificial insemination (AI) under a regime in which two ejaculates collected per week. Animals were 
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housed in Xenética Fontao AI Centre, S.A. (Lugo, Spain), following all European Union regulations 

for animal husbandry. 

Within 5 to 10 min of semen collection by artificial vagina, samples were assessed for 

volume in a conical tube graduated in 0.1 mL subdivisions and gross motility determined by placing 

20 µL of fresh semen on a pre-warmed slide at 37 ºC, using a cover-slide of 20x20 mm. All 

ejaculates were split into two aliquots, one processed with a commercial egg yolk extender 

(Biladyl®, referred to as BLD) and the other with a soy lecithin-based extender (Andromed®, 

referred to as ADM), both from Minitube GmbH, (Tiefenbach, Germany). The semen aliquots were 

diluted in a two-step procedure when using the BLD extender, and in one step when the ADM 

extender was used, to a final concentration of about 100 × 106 spermatozoa/mL, using as a 

reference value that estimated during gross motility analysis. After dilution samples were slowly 

cooled to 4°C at a linear rate of –0.3°C min–1 in a refrigerator and maintained at this temperature 

during 4-5 h for equilibration. 

The refrigerated samples were packaged in 0.25 mL straws (IMV Technologies, L´Aigle, 

France) with an automatic straw filling and sealing machine (MRS1, IMV Technologies) and they 

were immediately frozen by using a programmable freezer (Digitcool 5300, IMV, L´Aigle, France) 

with the following curve: 4°C to -10°C at -5°C/min; -10°C to -100°C at -40°C/min; -110°C to -140°C 

at -20°C/min, and then plunged into liquid nitrogen for storage.  

For the assessment of motility, two straws per sample were thawed in a water bath at 37°C 

for 30 s and then the contents of the straws were emptied in a test tube kept at the same 

temperature in a dry bath. In order to collect uniform sperm subsamples and avoid inaccuracies the 

semen was mixed gently before collecting aliquots for further analyses. 

2.2. Sperm motility evaluation 

Samples were analysed for kinematics by using the CASA-Mot system ISAS®v1 (Integrated 

Semen Analysis System, Proiser R+D, S.L., Paterna, Spain). The equipment consisted of a 

microscope (Nikon Eclipse E600; Tokyo, Japan) equipped with a heated stage set at 38°C and a 

10× negative phase-contrast objective. A video digital camera (Proiser 782M) was mounted on the 

microscope to capture images and transmit them to a computer. The array size of the video frame 

grabber was 768x576x8 bits and 256 grey levels. Resolution of images was 0.84 µm per pixel in 

both the horizontal and vertical axes. The frame rate used was 30 fps, capture time one second, 

with the tail detection facility activated for ignoring non-sperm particles, with a particle area 

between 14-80 µm2 and a connectivity value of 14 µm. 
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Sperm parameters analysed were concentration and total motility (%), whereas the kinematic 

parameters were average path velocity (VAP, µm/s), straight-line velocity (VSL, µm/s), curvilinear 

velocity (VCL, µm/s), amplitude of lateral head displacement (ALH, µm), beat/cross frequency 

(BCF, Hz,), wobble (WOB, %), straightness (STR, %) and linearity (LIN, %).  

After dilution, each sample was analysed in three different chambers: Leja® 4 chamber (L4; 

20-µm depth; prod. code SC-20-01-04-B; Leja®, IMV technologies, L’Aigle, France), CellVu® sperm

counting chamber (CVD; 20-µm depth; prod. code DRM-600; Millennium Sciences, Inc., NY, 

EEUU), and Makler® counting chamber (10-µm depth; Sefi-Medical Instrument, Haifa, Israel). All 

chambers were prewarmed at 38°C, and each was loaded with the amount of diluted semen and 

using the loading procedures recommended by the manufacturer. Each slide was maintained on 

the heated stage of the microscope for 30 s before analysis to prevent possible passive movement 

of liquid in the chamber. Nine fields were captured for each analysis of the samples and all the 

assessments were completed within 2 min. All the captures followed the same pattern, recording 

the position in the microscope stage (Fig. 1). The order of analysis among counting chambers was 

randomised.  

2.3. Statistical analyses 

Data were examined for normality of distribution, homogeneity of variance and analysed 

using the general linear model (GLM) repeated-measures procedure to determine if there were 

differences among mean values of the 3 counting chambers and the 2 extenders for each 

kinematic variable, which were tested independently. Mathematically, the model may be expressed 

as follows: Yijklm = µ + Ai + Cj + Ek + Pl + CE (jk) + εijkl. Here, Yijklm is the ―m‖th value of individual `i' 

measured with counting chamber `j', on the extender ―k‖ and the (xi,yi) position ―l‖; ―µ‖ is the overall 

mean, ―Ai‖ is a random effect describing variation between individuals, ―Cj‖ is a fixed effect of 

counting chamber, ―Ek‖ is a fixed effect of the extender, ―Pl‖ is a fixed effect of the xi,yi position on 

counting chamber area describing variation between xi,yi positions, ―CE(jk)‖ is a interaction effect 

between counting chamber-extender, and ―εijkl‖ is the residual variation. If differences were 

detected among factors for each kinematic variable, Bonferroni post-hoc tests were used to 

determine the pairwise directional differences between counting chambers and extenders. Results 

are reported as the mean ± the standard error of the mean (SEM). Data were considered to differ 

at P < 0.05 (i.e., Type I error was set at α = 0.05). Pearson correlation was calculated for VCL 

values between diluents for counting chamber and between counting chambers for dilution media. 

All statistical analyses were performed using IBM SPSS package, version 23.0 for Windows (SPSS 

Inc., Chicago, IL, USA). 
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3. RESULTS 

 Although the total sperm count in each bull sperm straw was, in theory, 25 x 106 

spermatozoa, we found departures from this expected value when different chambers were used to 

estimate concentration of straws after thawing. The actual concentration was significantly higher 

with the CellVu® chamber and lower with the Makler® one. Total sperm motility was significantly 

higher with the Makler® chamber and lower with the CellVu®, whereas the Leja® showed no 

differences with regards to the other two chambers (Table 1). When comparing the fields positions 

inside the chambers (for Leja® and CellVu®), concentration and total motility showed no differences 

between positions, both in vertical and horizontal axis.  

 All the kinematic parameters were significantly lower, but with higher coefficient of variation 

(CV), when the BLD diluent was used, independently of the counting chamber used (Table 2). After 

dilution with the ADM diluent, the highest values for VCL and BCF and the lowest for LIN and WOB 

were observed when using the Makler® chamber, indicating an increment in the oscillatory 

movement with regards to the chambers loaded by capillarity. Other parameters showed no 

differences between counting chambers (Table 2). The use of BLD introduced much more 

variability in the three counting chambers. In this case, the highest VCL was observed with the 

Leja®, while all the other parameters were higher in the Makler® and lower in the CellVu® chambers 

(Table 2). The effect of the interaction extender x counting chamber was significant for all 

kinematic parameters (P < 0.05) except for ALH (P > 0.05). 

 Regarding the location for the analysis in the chambers loaded by capillarity (Fig. 1), 

independently of the dilution medium used, CellVu® showed no differences between lateral and 

central areas, even though all the values were slightly higher in the lateral than in the central 

positions. Most of the kinematic parameters (VCL, VSL, VAP, LIN, WOB and BCF for ADM, and 

VCL, VSL, VAP for BLD) were significantly higher in the area closest to the site of drop deposition 

and lower in the place far away from where the drop was placed. In the case of BLD, BCF was 

higher in the central position than in both the proximal and the distal ones (Tables 3 and 4, Fig. 2). 

 Similar results were obtained regarding central and lateral positions when the Leja® 

chamber was used. Nevertheless, when the ADM diluent was employed, VAP was significantly 

higher in the central position, whereas when using BLD diluent, VCL and ALH were higher in the 

central position and WOB was higher in the lateral one. Concerning the direction in which the drop 

progresses, highest values for VCL, VSL and VAP were observed in the proximal area with the 

lowest values in the distal one. For LIN and STR the highest values were found in the central area 

and the lowest ones in the proximal area. A different pattern was observed with BDL diluent, with 
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which the highest values for VCL, VSL, VAP, LIN, WOB and BCF were observed in the proximal 

areas and the lowest in the distal ones. Only STR had the highest values in the central area and 

the lowest ones in the distal area (Tables 5 and 6, Fig. 2). 

 Correlation values for VCL when assessed using different counting chambers were higher 

for the use of ADM diluent (0.99-0.96) than with BLD diluent (0.82-0.73). The highest correlation 

values were observed between the Leja® and the Makler® chambers (Fig. 3). Values of VCL 

correlated poorly between two diluents (0.23-0.10), independently of the counting chamber used 

(Fig. 4). 

4. DISCUSSION 

 Although fertility is multifactorial and involves not only male effects, but others related to 

females, such as oocyte quality, oviductal environment, or time of insemination/fertilization, among 

others (Utt, 2016), the correct evaluation of seminal characteristics is the first essential step in the 

preparation of seminal doses for ART (Broekhuijse et al., 2012; Amann and Wabersky, 2014). Two 

basic parameters have been considered as the best indicators of semen fertility, concentration and 

motility of spermatozoa. For a long time, the most popular technique for sperm counting involved 

the use of a haemocytometer (Eliasson, 1971). The improved Neubauer chamber has been 

accepted as the gold standard for the estimation of sperm concentration (Tomlinson et al., 2001; 

World Health Organization, WHO, 2010). On the other hand, it is still common to use wet 

preparations, placing sperm suspensions between a slide and a coverslip, for the assessment of 

motility (Gloria et al., 2013; Del Gallego et al., 2017). The introduction of the Makler® chamber 

resulted in the opportunity for faster sperm counting (Makler, 1978), even if there are discrepancies 

about its reliability (Matson et al., 1999; Cardona-Maya, Berdugo, & Cadavid, 2008; Bompart et al., 

2018), which has led WHO to recommend the use of the hemocytometer for the estimation of 

sperm counts (WHO, 2010).  

 The subjective analysis of motility in semen samples generates considerable variability in 

results (Naib et al., 2012), which has been largely overcome by the development of CASA 

technology during the 1980’s (see Yániz, Soler & Santolaria, 2015, Soler, et al., 2016, Bompart et 

al., 2018, Gallagher, Smith & Kirkman-Brown, 2018, and Yániz et al., 2018, for reviews of CASA 

history). CASA systems afford high accuracy, repeatability and large amounts of quantitative data 

but, nonetheless, they require a strict setting to achieve reliable and comparable results 

(Verstegen, Iguer-Ouada, & Onclin, 2002; Contri et al., 2010). The effect of repeated collection fom 

the same animal on semen quality has been well documented in previous work and is not 

considered here (Valverde et al., 2016). 
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 Regarding the evaluation of sperm quality, two of the main factors affecting concentration, 

motility and kinematic parameters are the counting chamber and the dilution media used. With 

regards to counting chambers, there are two main physical principles that are relevant for their use, 

capillarity (CellVu® and Leja®, in the present study) and drop displacement (Makler®, as used here) 

(Bompart et al., 2018). Another factor, particularly important in chambers loaded by capillarity, is 

related to the shape of the counting area, because some of them can introduce turbulence in the 

fluid, due to their design, as in the case of the Leja® chamber (Bompart et al., 2018). In addition, 

chambers vary in their depths, being 10 µm (Makler®) or 20 µm (CellVu® and Leja®), with greater 

depths being unavailable because of the optical limitations of microscopes. Both aspects, loading 

principle and depth, can thus affect the final results of motility analysis, including some of the 

differences we have found here (Gloria et al., 2013; Del Gallego et al., 2017; Bompart et al., 2018). 

 Concerning concentration, in a previous work on bull semen using a different CASA 

system, no differences were observed between the three chambers used (Gloria et al., 2013). This 

is in contrast with the differences observed here and in other previous studies (Hansen et al., 2006; 

Bailey et al., 2007; Hoogewijs, et al., 2012), that can be attributable to the dissimilar sampling 

areas considered in the different studies. 

 With regards to total motility, other studies in diverse CASA systems agree with our results, 

showing higher motility with the Makler® chamber than with the Leja® slides (Contri et al., 2010; 

Lenz et al., 2011; Gloria et al., 2013). Furthermore, other studies in goat (Del Gallego et al., 2017), 

human (Soler et al., 2012), ram (Palacín et al., 2013), and stallion (Hoogewijs et al., 2012) 

spermatozoa, based on different CASA-Mot systems and counting chambers, showed that the 

motility and kinematic parameters observed in capillary chambers presented lower values than 

those observed in their drop displacement counterparts. These results appear to indicate that the 

drop distribution principle is more important than species differences, or the actual brand of the 

counting chambers or the CASA-Mot system. In this sense it is possible that loading by capillarity 

disrupts in some way sperm motility as a consequence of the resultant fluid flow, because capillary 

action may damage the sperm tail and thus affect sperm movement (Lenz et al., 2011; Palacín et 

al., 2013) and vitality (Gloria et al., 2013) in comparison with drop displacement counting chambers 

(Hoogewijs et al, 2012; del Gallego et al., 2017). Nevertheless, the highly significant regression of 

VCL values observed here between capillary and droplet displacement chambers suggests that a 

possible toxic effect of the adhesive or the paint used for the serigraphy of the chambers is not a 

likely explanation for the differences in kinematic parameters as was previously proposed (Gloria et 

al., 2013). Furthermore, it was interesting that different depths of the counting chambers (10 µm for 

Makler®, and 20 µm for Leja® and CellVu®) showed high correlation for VCL values, which is not in 
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agreement with results obtained with the use of a 3D lensless microscopy and CASA-Mot for boar 

semen (Soler et al., 2018). 

 It is necessary to point out that most of the earlier work developed on potential effects of 

counting chambers has not considered the area in which counts were performed. In the work of 

Gloria et al. (2013), only the centre and the edges of the Leja® chamber were taken into 

consideration, but what exactly these positions refer to is not clear. Another study using slides and 

coverslips, and analysing sperm motility along the equatorial area of the preparation with another 

CASA system, showed differences just in the fields close to the border, but not in the other 

sampling areas (Nöthling and dos Santos, 2012). In a study considering differences in ram sperm 

motility between central and peripheral areas, when a slide and a coverslip were used, revealed 

higher values in the central area for total and progressive motility, VCL and VAP (Palacín et al., 

2013). In the present work, the coordinates of the microscope stage were well defined and used 

repeatedly to obtain a strict sampling model for analyses, revealing no differences in motility and 

kinematics between the edge and the centre but showing variation along the length of the chamber 

capture area. The highest values were obtained close to the place where the drop was deposited 

and the lowest at the end of the fluid movement, which cannot be completely explained by 

Poiseuille flow and the consequent Segre-Silderberg effect (Kuster, 2005) or by the possible effect 

of surface tension on the perimeter of the coverslip (Lenz et al., 2011), thus requiring alternative 

explanations. When counting chamber design allowed a defined linear sampling, some species 

showed no motility differences along the counting area (human, Soler et al., 2012), but others 

agreed with the results observed here (goat, Del Gallego et al., 2017; fox, Soler et al., 2014), 

indicating that these differences are species-specific and require a biological explanation. 

 Regarding the effect of diluents on sperm kinematics, previous studies have shown that the 

increase in the percentage of egg yolk in the diluent elevates the viscosity inducing a decrease in 

sperm velocity and progressive motility (Hirai et al., 1997; Aires et al., 2003). Our results agree with 

these observations because the use of Byladil (egg-based medium) showed lower velocity and 

linearity than when Andromed (lecithin-based medium) was used. In an apparent contradiction, it 

has been reported that VCL is higher with the use of egg yolk (Tryladil) than with egg yolk-free 

media (TCM-199 and Ham’s F10), but these results were obtained using a different bull breed 

(Raseona et al., 2017).  

 In conclusion, under the conditions used in the present work, the use of different counting 

chambers leads to significant changes in estimation of sperm kinematic parameters. In addition, 

the use of different dilution media introduces differences in the motility patterns. All these results 

indicate the necessity of repeatable and representative sampling and to define specific set-ups to 
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be used with CASA-Mot technology when different counting chambers or dilution media are used 

for obtaining reliable results in the calculation of seminal doses for artificial insemination programs. 
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Table 1. Effect of sperm counting chamber on total motility and concentration of bull sperm as 
assessed by computer assisted semen analysis (mean ± SD).   

 CellVu® Leja® Makler® 

Total motility (%) 60.1±14.9a 62.2±14.2ab 67.1±14.1b 

Concentration (x106) 30.6±7.3a 26.9±5.7ab 21.3±7.2b 

ab
Values with different superscripts differ significantly within row (P < 0.05). 

 

Table 2. Effect of semen diluent and three sperm counting chambers on kinematic parameters of 
bull sperm as assessed by computer assisted semen analysis (mean ± SD).  

 Andromed  Biladyl 

 CellVu® Leja® Makler® CellVu® Leja® Makler® 

n 3862 4269 4079 4073 4032 3963 

VCL 105.8±41.7ab 103.8±43.5b 107.2±39.2a 92.6±40.9b* 101.0±42.1a* 98.8±39.2a* 

VSL 52.3±24.9 51.6±26.3 51.3±22.9 43.3±25.6b* 49.2±25.7a* 50.4±24.6a 

VAP 62.8±23.5 62.6±25.6 62.7±21.6 55.0±24.6b* 60.6±24.5a* 61.6±23.6a* 

LIN 49.7±18.6ab 50.0±19.0a 48.8±18.0b 46.1±19.8c* 48.9±19.2b* 51.8±20.3a* 

STR 80.0±20.8 79.4±21.0 79.6±20.5 74.2±23.3c* 77.6±21.8b* 79.1±20.5a 

WOB 60.7±12.8b 61.4±12.9a 59.8±12.2c 60.2±13.2c* 61.2±13.0b 63.6±14.2a* 

ALH 3.5±1.4a 3.3±1.4b 3.5±1.3a 3.4±1.5b* 3.5±1.5a* 3.3±1.4b* 

BCF 13.1±5.5b 13.8±5.4a 14.0±5.3a 10.8±5.1c* 11.7±5.1b* 12.3±5.1a* 

 

abc
Values with different superscripts differ significantly within row and sperm diluent; *Indicates differences between 

diluents for chamber (P < 0.05). VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, 
LIN = linearity, STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross 
frequency. 
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Table 3. Mean (±SD) values for the kinematic sperm motility variables from Holstein bulls on planar 
(xi, yi) coordinates of the CellVu® chamber when using Andromed® diluent. 

 Xi coordinate Yi coordinate 

 1 2 1 2 3 

n 2367 1495 1324 1387 1151 

VCL 106.0±42.1 105.2±41.1 109.0±43.3a 106.1±40.7a 101.7±40.8b 

VSL 52.5±24.7 51.5±25.1 56.1±27.0a 52.1±23.7b 47.8±23.1c 

VAP 62.9±23.5 62.4±23.6 66.9±25.6a 62.5±22.3b 58.5±21.8c 

LIN 49.9±18.2 49.3±19.1 51.2±18.4a 49.8±18.7a 47.8±18.6b 

STR 80.4±20.1 79.3±21.9 80.2±20.6 80.5±20.9 78.8±21.0 

WOB 60.8±12.7 60.5±13.0 62.4±12.3a 60.3±13.1b 59.1±13.0b 

ALH 3.5±1.4 3.4±1.3 3.4±1.3 3.5±1.4 3.5±1.5 

BCF 12.9±5.6 13.2±5.5 13.5±5.6a 13.2±5.5a 12.6±5.3b 

 

abc
Values with different superscripts differ significantly within row and Xi or Yi coordinates (P < 0.05; values are 

mean ± SE). VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, LIN = linearity, 
STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross frequency. 

 

Table 4. Mean (±SD) values for the kinematic sperm motility variables from Holstein bulls on planar 
(xi, yi) coordinates of the CellVu® chamber when using Biladyl® diluent. 

 Xi coordinate Yi coordinate 

 1 2 1 2 3 

n 2639 1434 1331 1547 1195 

VCL 93.5±40.8 92.5±41.3 94.4±42.6a 94.1±39.6a 90.5±40.6b 

VSL 44.0±25.7 43.1±25.5 44.5±27.0a 44.3±25.1a 41.9±24.5b 

VAP 55.5±24.5 54.7±24.7 56.4±26.2a 55.9±23.8a 53.1±23.8b 

LIN 46.5±20.1 46.1±19.5 46.1±20.3 46.7±19.9 46.0±19.2 

STR 74.7±23.3 74.6±23.3 73.9±23.3 75.3±23.6 74.6±22.9 

WOB 60.3±13.3 59.9±13.0 60.3±13.5 60.2±13.1 59.8±12.9 

ALH 3.4±1.5 3.4±1.4 3.4±1.5 3.4±1.4 3.4±1.5 

BCF 10.8±5.1 10.7±5.1 10.7±5.0b 11.0±5.1a 10.4±5.2b 

 

ab
Values with different superscripts differ significantly within row and Xi or Yi coordinates (P < 0.05; values are 

mean ± SE). VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, LIN = linearity, 
STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross frequency. 
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Table 5. Mean (±SD) values for the kinematic sperm motility variables from Holstein bulls on planar 
(xi, yi) coordinates of a Leja® chamber when using Andromed® diluent. 

 Xi coordinate Yi coordinate 

 1 2 1 2 3 

n 2680 1589 1842 1317 1110 

VCL 104.0±43.5 102.5±43.5 107.3±43.9a 104.8±44.0a 97.6±41.7b 

VSL 52.1±26.3 50.7±26.3 53.2±28.3a 52.5±24.6a 48.4±24.7b 

VAP 61.3±25.4b 63.1±25.7a 65.7±27.4a 62.9±24.0b 58.0±23.7c 

LIN 50.6±19.1 49.8±19.0 49.2±19.6b 51.5±18.5a 49.9±18.8ab 

STR 79.5±21.0 79.9±20.9 77.6±21.9b 81.3±19.7a 80.2±20.8a 

WOB 61.0±13.0 61.8±12.7 61.6±12.9 61.9±12.8 60.7±13.1 

ALH 3.3±1.4 3.3±1.3 3.4±1.3 3.4±1.5 3.3±1.4 

BCF 13.7±5.4 13.9±5.2 13.7±5.3 14.0±5.4 13.6±5.5 

 

ab
Values with different superscripts differ significantly within row and Xi or Yi coordinates (P < 0.05; values are 

mean ± SE). VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, LIN = linearity, 
STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross frequency. 

 

Table 6. Mean (±SD) values for the kinematic sperm motility variables from Holstein bulls on planar 
(xi, yi) coordinates of a Leja® chamber when using Biladyl® diluent. 

 Xi coordinate Yi coordinate 

 1 2 1 2 3 

n 2651 1381 1427 1347 1258 

VCL 100.1±42.0b 102.2±42.2a 104.2±43.8a 99.8±41.7b 99.5±40.3b 

VSL 49.1±25.9 48.9±25.4 51.4±27.7a 48.9±24.7b 46.5±24.5c 

VAP 60.9±24.5 60.2±24.3 63.0±25.9a 59.9±23.9b 58.6±23.2b 

LIN 49.0±19.3 48.2±18.9 49.4±19.8a 49.3±18.2a 47.2±19.5b 

STR 77.5±21.9 77.2±21.5 77.8±22.3a 78.3±20.4a 76.0±22.6b 

WOB 61.4±13.2a 60.7±12.8b 61.6±13.2a 61.4±12.6a 60.3±13.3b 

ALH 3.5±1.5b 3.6±1.5a 3.5±1.5 3.5±1.5 3.6±1.5 

BCF 11.8±5.1 11.6±5.2 12.1±5.3a 11.8±5.0a 11.3±5.1b 

 

ab
Values with different superscripts differ significantly within row and Xi or Yi coordinates (P < 0.05; values are 

mean ± SE). VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, LIN = linearity, 
STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross frequency. 
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Figure 1. Microscope stage micrometric positions analysed in each of the counting chambers used in 
this study. Left column for each counting chamber indicates the x-position and the right the left-
position of the stage. A total of nine fields were analysed per sample, named in the tables 1 for lateral 
and 2 for central x-positions and 1, 2, and 3 for proximal, central and distal regarding the drop 
deposition for the y-positions. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2. Kinematic parameters along a longitudinal distribution in the counting chambers loaded by 

capillarity. 
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Figure 3. Correlation and regression analysis of VCL values between chambers. Upper row 
corresponds to Biladyl medium, lower row to Andromed 
 

 

 

 

 

 

 

Figure 4. Correlation and regression analysis of VCL values between media (Biladyl and Andromed) 
in the different counting chambers. 
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Abstract 

Dogs have undergone an intensive artificial selection process ever since the beginning of their 

relationship with humans. As a consequence, a wide variety of well-defined breeds exist today. 

Due to the enormous variation in dog phenotypes and the unlikely chance of gene exchange 

between them, the question arises as to whether they could still be regarded as a single species 

or, perhaps, they could be considered as different taxa that possess different reproductive traits. 

The aim of this study was therefore to characterise some male reproductive traits, focusing on 

kinematic characteristics of dog spermatozoa from several breeds. Thirty-seven dogs from the 

following breeds were used:  Staffordshire Bull Terrier, Labrador Retriever, Spanish Mastiff, 

Valencian Rat Hunting Dog, British Bulldog and Chihuahua. Samples were obtained via manual 

stimulation and diluted to a final concentration of 50 million/mL, and they were subsequently 

analysed using the Computer Assisted Sperm Analysis (CASA-Mot) ISAS v1 system. Eight 

kinematic parameters were evaluated automatically. All parameters showed significant differences 

among breeds and among individuals within each breed. The fastest sperm cells were those of 

Staffordshire Bull Terriers and the slowest were recorded in Chihuahuas. The intra-male coefficient 

of variation (CV) was higher than the inter-male one for all breeds with the Staffordshire Bull Terrier 

showing the lowest values. When taking into consideration the cells by animal and breed, 

discriminant analyses showed a high capability to predict the breed source. Cluster analyses 

showed a hierarchical classification very close to that obtained after phylogenetic studies using 

genome markers. In conclusion, future work on dog spermatozoa should bear in mind major 

differences between breeds and that results cannot be extrapolated from one to another. Because 

sperm characteristics are associated to breed diversity, dogs could represent a good model to 

examine changes in reproductive parameters associated to selection processes.  

 

Keywords: dog breeds, CASA-Mot, sperm kinematics, evolution, artificial insemination 
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1. Introduction 

The dog is one of the oldest domestic mammals and is the only carnivore species belonging to 

the Canidae family that has become completely domesticated from wild wolves (Vilà et al., 1997) 

once (Europe: (Leonard et al., 2002; Thalmann et al., 2013); Asia: (Savolainen, Zhang, Luo, 

Lundeberg, & Leitner, 2002) or twice (Frantz et al., 2016) during human history. Due to a great 

intensity of artificial selection, the species has given rise to a wide variety of breeds. However, and 

despite their wide differences, from the Chihuahua to the Great Dane, they are still regarded as the 

same species (vonHoldt et al., 2010). The species is one of the basic units of biological 

classification and a taxonomic rank. However, the issue of what is a species is controversial 

because its understanding varies with the biological definition used (Mallet, 2007; Soler, Sancho, et 

al., 2014). In any case, and based on the major differences observed between breeds, the 

question arises as to whether it is still possible when examining phenotypic traits to consider them 

as a unity within the concept of ―dog species‖, or if it is necessary to differentiate clearly between 

breeds when undertaking studies of this species. 

Comparative analyses in a phylogenetic framework have identified important selective forces 

that could explain differences in reproductive traits, including sperm form and function. One 

important selective force is sperm competition (a form of post-copulatory sexual selection) that is 

known to have greatly influenced morphology of spermatozoa and performance of the sperm cells 

(Gomendio & Roldan, 2008; Soler, Cooper, Valverde, & Yániz, 2016; Tourmente, Gomendio, & 

Roldan, 2011). It is not clear whether this selective force has had a major impact in the evolution of 

dog reproductive traits; neither relative testes mass nor sperm dimensions appear to be under the 

influence of sperm competition (Iossa, Soulsbury, Baker, & Harris, 2008). Differences in sperm 

traits may also appear as a result of strong selection in the female tract, because sperm have to 

overcome several barriers to reach the site of fertilization. In dogs, in particular, there is potentially 

a big-time gap between mating and fertilization and spermatozoa have to survive many days in the 

female tract while maintaining their ability to move and retain their fertilizing capacity. Alternatively, 

differences in sperm traits may arise as a result of drift after the onset of reproductive barriers, with 

the potential for a subsequent appearance of incompatibilities in gametes. In any case, sperm 

traits, especially morphology, show considerable variation between species and it is usually 

possible to distinguish species based on this phenotypic trait (Liana & Witaliński, 2005). 

The environment in which fertilisation occurs could vary between breeds as it occurs between 

species. Increased sperm swimming speed is often associated with higher sperm competition to 
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reach the site of fertilisation when the sperm of more than one male coexists in the female tract, as 

occurs in birds (Lüpold, Calhim, Immler, & Birkhead, 2009), some fishes (Fitzpatrick et al., 2009) 

and mammals (Tourmente et al., 2011). Other studies have suggested associations between body 

mass and sperm size, so that the bigger the animal the smaller its spermatozoa (Cummins & 

Woodall, 1985; Soler, Sancho, et al., 2014). However, this was not observed in the case of dog 

breeds (Soler et al., 2017b). 

Quantitative motility and kinematic sperm analysis rely on the use of CASA-Mot (Computer 

Assisted Semen Analysis) systems which allow for the collection of a great number of parameters 

to be used for appropriate statistical analysis (Bompart et al., 2018; Schäfer-Somi & Aurich, 2007; 

Yániz, Silvestre, Santolaria, & Soler, 2018). In the present study various characteristics based on 

sperm motility and kinematics were compared among six dog breeds: Staffordshire Bull Terrier, 

Labrador Retriever, Spanish Mastiff, Valencian Rat Hunting Dog, British Bulldog and Chihuahua. 

These breeds were chosen for this study based on their considerable phenotypic variability 

amongst them and also because they represent the major phylogenetic lines (vonHoldt et al., 

2010). This diversity in breed characteristics could reveal differences in sperm performance that 

could be the result of selection processes.  

The aim of this study was to assess sperm motility with a commercial CASA-Mot system in 

different dog (Canis familiaris, L.) breeds to analyse whether prolonged artificial selection carried 

out within the species has led to a significant gamete differentiation process between breeds. 

2. Materials and Methods 

2.1 Collection and preparation of samples 

Samples were obtained from 37 Canis familiaris, L. individuals encompassing seven 

Staffordshire Bull Terrier, five Labrador Retriever, eight Spanish Mastiff, seven Valencian Rat 

Hunting Dog, four British Bulldog and six Chihuahua. Sampling and analysis were carried out at 

the Reprovalcan and Clínica Veterinaria Sangüeso veterinary clinics, located in Valencia (Spain). 

Only animals with a clear pedigree and truly representative of their breeds were included in the 

study. All the samples were obtained for routine artificial insemination (AI) programs and the 

requirement of approval from the animal research review board of the University of Valencia was 

not required. 
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Manual stimulation was used to collect semen samples into sterile sample cups (Soler et al. 

2017). Since a high sperm concentration can have a confounding effect on sperm velocity and 

linearity (Günzel-Apel, Günther, Terhaer, & Bader, 1993; Rijsselaere, Van Soom, Maes, & Kruif, 

2003) all samples with >50 x 106 sperm/mL were diluted with CaniPlus Chill® sperm extender 

(Minitub Ibérica S.L., Tarragona Spain) before motility analyses. Throughout the process the 

samples were kept at 24 ºC using a PC-12T (Proiser R+D, S.L., Paterna, Spain) heating system. 

2.2 Kinematic analysis of breed and individual differences 

ISAS®D4C20 counting chambers (Proiser R+D, S.L.) were used to analyze motility, kinematics and 

concentration. The chamber comprises four "strips", each with seven printed squares and with a 

constant depth of 20 µm between slide and coverslip. A sample volume of 3 µL was distributed 

along the strip by capillarity. For a homogeneous sampling method, one field was captured in the 

centre of each printed square, numbered from 1 to 7, where 1 was the closest to where the sample 

was deposited and 7 the one at the opposite end (Del Gallego et al., 2017; Soler et al., 2012). The 

design of the counting chambers allows for immediate analysis since no drift takes place. Possible 

dissimilarities along the counted fields were evaluated. Kinematic analyses were carried out using 

the ISAS®v1 CASA-mot system (Proiser R+D, S.L.). The video camera employed was a Proiser 

782 m attached to a microscope UB203 (UOP/Proiser) and equipped with a 10x negative phase 

contrast objective. Resolution of analysed images was 0.84 μm/pixel on both axes. Samples were 

captured at 25 fps following the set-up of the manufacturer for dog semen. 

Only tracks corresponding to cells present in all 25 images were used for calculations. This 

allows for standardisation of kinematic calculations since incomplete tracks can introduce bias. A 

total of 84,647 sperm cells were analyzed. Kinematic parameters (VCL: curvilinear velocity, VSL: 

linear velocity, VAP: average path velocity, LIN: linearity, STR: straightness, WOB: wobble, ALH: 

lateral head displacement and BCF: beat cross frequency; see (Bompart et al., 2018) for 

definitions) were calculated automatically by the CASA-Mot system.  

2.3 Statistical analysis 

The normality of distributions and variance homogeneities were assessed using Kolmogorov-

Smirnov and Levene tests, respectively. ANOVA was used with normal distributions. When 

distribution was not normal Kruskal-Wallis was employed to make comparisons among animals 

within and between breeds. After the Kruskal-Wallis test, a posteriori Bonferroni test was used to 

compare between counting chamber fields. 
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Discriminant analyses were performed to test the predictive power of using combined sperm 

kinematic parameters to classify dog breeds correctly. Canonical discriminant analysis creates 

multiple orthogonal functions that are formed so that in each breed implications on the resulting 

canonical variable are as different as possible due to maximising between-class variance and at 

the same time minimising within-class variance. In this way, maximum separation is achieved 

between classes. The Box’s M test of equality of covariance matrices was performed for variables 

grouped by breeds. As a result, the covariance matrices of the dependent variables were not equal 

across the groups. Thus, one discriminant function was created, from which the canonical variable 

was obtained for each spermatozoon. Such new variables were calculated considering all 

kinematic parameters while optimising the capacity for correct classification. Canonical 

discriminant analysis establishes a discriminant criterion, or a canonical variable value that makes 

it possible to separate the sperm cells into six breeds, Staffordshire Bull Terrier, Labrador 

Retriever, Spanish Mastiff, Valencian Rat Hunting Dog, British Bulldog and Chihuahua. Canonical 

structure coefficients were assessed in order to determine which kinematic parameter was most 

important to distinguishing breeds. These measures indicate the correlation between the kinematic 

parameters and the canonical variable. When the absolute magnitude of the coefficient is large, 

either the feature is very important in the formation of the discriminant function, or this feature is 

probably reasonable for the separation of the six breeds. The number of functions is equal to the 

number of groups and take the form (Spencer, 2013):  

Ki = ci0 + ci1 X1 + ci2 X2 + … + cik Xk 

Ki: classification functions, i = 1, 2, …, g 

Cij: coefficients of classification functions (weights); i = 1, 2, …, g; j = 0, 1, …, k 

Xj: discriminant variables taken into consideration in the discriminant functions, j = 1, …, k 

After obtaining the discriminant function, error and posterior error were calculated. Simple error 

corresponds to the percentage of sperm cells that was correctly classified by using the canonical 

variables. Posterior error was calculated by cross-validation. Finally, hierarchical clustering by 

Euclidean distance matrix was carried out to define breed relations from kinematic variables. All 

statistical analyses were carried out using SPSS 23 (SPSS Inc., Chicago, IL, USA). Differences 

were considered significant when P<0.05. 

3. Results 

3.1 Effect of counting zone in the ISAS®D4C20 chamber 

Even though some differences between analyzed fields were observed, no trend was found, 
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indicating that these variations were occurring at random (data not shown). In any case, this 

reinforces the benefit of analyzing all seven proposed fields in the chamber to achieve a stable and 

representative result which is not affected by sampling. 

3.2 Kinematic differences among breeds and among individuals within breed  

Most of the parameters showed significant differences among all the breeds, with the highest 

velocities (VCL, VSL, VAP) and BCF found in Staffordshire Bull Terrier, the highest indexes (LIN, 

STR and WOB) observed in the British Bulldog and the highest ALH seen in the Labrador 

Retriever and Spanish Mastiff. The lowest values for all parameters were obtained in the 

Chihuahua (Table 1). 

In all breeds equivalent significant differences between animals were observed for all the kinetic 

variables analyzed (data not shown). Assessing male variations within breeds revealed that VCL 

and WOB exhibited the highest degree of difference, while STR, VSL and BCF showed the lowest. 

In general terms, intra-male CV was higher than inter-male CV, with the Staffordshire Bull Terrier 

showing the lowest values (both intra- and inter-male), and the Valencian Rat Hunting Dog and the 

Chihuahua revealing high intra-male CVs. The Spanish Mastiff and the British Bulldog showed the 

highest values for inter-male CV (Table 2). 

3.3. Multivariate classification matrix 

A classification matrix was obtained taking into account breeds and animals (Table 3) and was 

applied to the total population of spermatozoa (84,647 cells), obtaining a global correct 

classification of 95.7%. The best classified corresponded to Labrador Retriever and Spanish 

Mastiff (99.95% and 99.4%, respectively), whilst Staffordshire Bull Terrier and Valencian Rat 

Hunting Dog were the worst ones (94.4% and 91.9%, respectively, Table 4). 

 3.4. Hierarchical classification of breeds 

Cluster analysis was done to obtain the hierarchical classification of breeds (Fig. 1). The 

Chihuahua breed was separated into an independent branch of the hierarchical tree, followed by 

British Bulldog in the next step. The third level separated Staffordshire Bull Terrier, the fourth step 

separated Valencian Rat Hunting Dog, with Spanish Mastiff and Labrador Retriever being the 

closest breeds. Distances between cluster steps were very similar in all cases (Fig. 1). 
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4. Discussion 

The results of this study revealed clear differences between dog breeds in sperm kinematic 

parameters and also intra- and inter-male variations in these parameters that were different among 

breeds. Discriminant analyses were able to distinguish breeds according to their sperm swimming 

parameters. The diversity identified in dog swimming patterns underscores the different 

evolutionary history of dog breeds that have undergone a long process of artificial selection and 

also highlights the need to bear such differences in mind when using dogs as models for 

reproductive studies or monitor the impact of environmental factors. 

In our attempt to characterize dog sperm kinematics, we first examined whether there were 

variations due to the characteristics of the chambers used to capture information for sperm motility 

analyses. We observed that there were different motility distributions along the counting chambers 

employed. This distribution seems to be species dependent, being almost non-existent (i.e., 

homogeneous) in some species (human, (Soler et al., 2012)) whereas there is a trend for skewed 

distribution in others (fox, (Soler, García, Contell, Segervall, & Sancho, 2014)). Each of the various 

reusable and disposable counting chambers currently available have shown a different kind of 

distribution stability which needs to be taken into account when assessing motility data (Bompart et 

al., 2018; Del Gallego et al., 2017). For this reason, all the scored fields were included in our 

analyses to reduce the random effect related to non-homogeneous distribution. 

Discriminant analyses showed a very good classification of cell tracks according to breed, 

indicating that the characteristics of sperm movement are breed-dependent. In addition, cluster 

analyses grouped dog breeds with a close agreement to that seen in phylogenetic analyses based 

on a genome-wide characterization (vonHoldt et al., 2010). Chihuahua was the breed that split first 

from the other breeds and the British Bulldog, which has been under heavy selective pressure and 

requires assisted reproduction to breed, showed a big cladistics distance from the rest. It is likely 

that these distances between breeds are the product of the selective pressures and the time they 

have been under selection for desired traits, and it is possible that differences in gamete biology 

may, at least in part, respond to differences in changes taking place in their reproductive biology 

during evolution of the different breeds. 

Previous studies have identified associations between sperm form or morphometrics and 

performance, with a now well-established association between form and dimensions of several 

sperm components with sperm velocity, both at the interspecific and at the intraspecific levels 

(Gomendio & Roldan, 2008; Malo et al., 2006; Tourmente et al., 2011). In particular, associations 

between sperm head dimensions and swimming parameters has been recorded in birds and 
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mammals (Humphries, Evans, & Simmons, 2008; Lüpold et al., 2009; Malo et al., 2006). In a 

previous study, we examined dimensions of the sperm head from different dog breeds (Soler et al., 

2017b) and a preliminary comparison between them and those of the present study suggest a 

trend for a positive link between spermatozoa, with bigger sperm heads exhibiting higher velocities. 

This apparent association requires further examination using a larger number of animals and 

breeds. 

Dogs, which have undergone an intense artificial selection by humans, show dramatic 

differences in phenotype among breeds, including sperm traits such as sperm kinematic 

parameters, as revealed in this study. This observation has two major implications. On the one 

hand, there is the question of whether the phenotypic sperm parameters found in these breeds can 

be regarded as representative of one and the same species. The issue then is what, if anything, is 

a dog? There are many studies which have reported parameters of dog semen but taking this as 

representative of the species could be misleading if a clear appreciation of breed or inter-male 

variability is not made explicit in each study, leading to a serious bias in the final results (Soler et 

al., 2017b). It is thus necessary to identify which is the relative weight of the various breeds 

considered in each study and, ideally, studies should be carried out on defined breeds if they are 

to offer reliable and repeatable conclusions. There is the additional issue of whether dogs should 

still be regarded as a single species. Clearly, some breeds cannot mate (e.g., the extremes 

represented by the Chihuahua and the Great Dane) and this, which implies a lack of gene flow, 

may be sufficient to argue for species splitting, according to some species concepts (Mallet, 2007; 

Mayr, 1942; Soler, Sancho, et al., 2014). Thus, although dogs descend from a common ancestor, 

the grey wolf, from which they diverged about 12,000-14,000 years ago (Vilà, 2000; vonHoldt et al., 

2010) they have been subjected to artificial selection within isolated populations ever since 

humans engaged in a selection process for the most appropriate features, resulting in the wide 

variety of breeds existing today. 

Another implication relates to the observation that species differences usually involve 

differences in male gametes, to such an extent that sperm morphology can be used in many 

occasions for taxonomic purposes and for species identity. And, following from this, is the 

question about what has driven such enormous diversity in male gametes. There are significant 

variations in both morphometric (Roldan, Gomendio, & Vitullo, 1992; Soler et al., 2017a; Soler, 

Sancho, et al., 2014; Tourmente et al., 2011) and kinematics parameters of spermatozoa 

(Fitzpatrick et al., 2009; Tourmente et al., 2011). In recent decades, sperm characteristics have 

been successfully used for taxonomic studies in many animal groups including annelids 



Chapter IX: Dog sperm swimming parameters analysed by the CASA-Mot system reveal major breed differences | 154 

(Ferraguti & Erséus, 1999; Ferraguti, Erséus, Kaygorodova, & Martin, 1999), insects (Dias, 

Oliveira, & Lino-Neto, 2013; Jamieson, 1987), crustacean (Jamieson, 1991b), arachnids (Liana & 

Witaliński, 2005), amphibian (Selmi, Brizzi, & Bigliardi, 1997), fishes (Jamieson, 1991a), birds 

(Jamieson, 2007) and mammals (Roldan et al., 1992; Soler et al., 2017b; Soler, Sancho, et al., 

2014). However, it should be borne in mind that similarities have been found in sperm swimming 

kinematic patterns between distantly-related organisms, which could not be explained solely by 

phylogenetic relationships (Guasto, Burton, Zimmer, Hosoi, & Stocker, 2013). Regarding the 

possible mechanisms that have given rise to differences in sperm traits (such as kinematics) 

between species and breeds, it has been argued that post copulatory sexual selection may have 

had a major role. Therefore, one major selective force leading to evolutionary changes in 

spermatozoa is sperm competition, a process in which sperm from rival males compete to gain 

fertilizations (Engqvist, 2012; Gage et al., 2004; Tourmente et al., 2011). Another crucial 

evolutionary force is selection of sperm in the female tract (Eberhard, 1996) through which 

females may exert skews on the sperm that reach the site of fertilization and interact with the 

female gametes, based on either spatial or temporal factors, or both (Almiñana et al., 2014; 

Anderson, Dixson, & Dixson, 2006; Dixson & Anderson, 2001; Gomendio & Roldan, 1993; Malo 

et al., 2005). Sperm traits that have been found to evolve under the influence of post copulatory 

sexual selection include sperm numbers, viability motility and morphology (Donoghue, 

Sonstegard, King, Smith, & Burt, 1999; Gage et al., 2004; Holt et al., 1989; Jamieson, 2007; 

Malo et al., 2006). Overall, selection pressures have thus resulted in major evolution of male and 

female reproductive traits (Dixson, 1998; Dixson & Anderson, 2004). Interestingly, we observed a 

trend for males from larger breeds (hence, with longer female tracts) to have higher values of 

kinematic parameters, which suggests some adaptations of motility patterns to selection in the 

female tract. This deserves future investigation to clarify the possible associations between 

female tract biology and evolution of sperm traits. In any case, it is not yet clear whether dog 

breeds have evolved under these selective pressures, particularly since artificially selected dogs 

may have had few opportunities to engage in sperm competition. Nevertheless, there is the 

possibility that selection in the female tract may have had a more important role in evolution, 

particularly if the long interval between mating and ovulation is taken into account, and which 

could have given rise to the need for dog sperm to develop the ability to survive for long periods 

of time with males evolving several adaptations in form and function of spermatozoa. This could 

have also led to the development of divergence in dog sperm kinematics and, in addition, to 

evolution of different bioenergetic strategies, because the latter is essential to ensure cell 

viability, and the maintenance of fertilizing capacity (Palomo et al., 2003; Tourmente, Villar-
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Moya, Varea-Sánchez, et al., 2015; Tourmente, Villar-Moya, Rial, & Roldan, 2015). 

In conclusion, based on the major differences observed between breeds in sperm kinematic 

traits, which agree with diversity in other sperm traits already described, it may be advisable to 

refrain from a generalization for dogs when carrying out reproductive studies in this species 

(Hewitt, Leahy, Sheldon, & England, 2001; Peña, Barrio, Quintela, & Herradón, 1998; Sánchez-

Calabuig et al., 2017). On the other hand, dog breeds could constitute a very useful model to 

examine a diversity of responses in reproductive studies, including the effect of environmental 

contaminants on sperm traits (Lea et al., 2016) and also to understand different aspects of female 

reproductive biology that may influence the evolution of sperm traits, as carried out in other taxa 

focusing on intra- and interspecific comparisons (Anderson et al., 2006; Roldan et al., 1992; Soler, 

García, et al., 2014). 
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Table 1. Sperm kinematic parameters (mean ± SD) in different dog breeds. 

 SBT LR SM VRH BB CHI 

VCL 158.4 ± 54.4a 150.1 ± 48.4b 130.3 ± 50.0c 124.7 ± 50.0d 93.9 ±42 .1e 81.5 ± 53.5f 

VSL 66.2 ± 34.7a 57.0 ± 33.1b 49.8 ± 31.9c 47.4 ± 32.0d 53.0 ± 35.9e 27.5 ±26.4f 

VAP 95.1 ± 31.8a 83.7 ± 29.9b 76.6 ± 32.4c 66.7 ± 30.1d 67.3 ± 35.1d 44.0 ± 29.9e 

LIN 41.9 ± 18.4a 37.1 ± 18.1b 37.3 ± 18.4c 36.5 ± 19.1c 51.5± 24.3d 30.7 ± 16.1e 

STR 67.0 ± 23.4a 64.4 ± 24.2b 61.9 ± 24.0c 65.8 ± 26.1d 71.9 ± 26.4e 55.6 ± 23.7f 

WOB 61.1 ± 11.5a 55.9 ± 11.4b 58.5 ± 11.5c 53.3 ± 12.5d 68.8 ± 14.2e 53.7 ± 10.8f 

ALH 3.6 ± 1.2a 3.7 ± 1.2b 3.7 ± 1.4b 3.1 ± 1.1c 3.3 ± 1.3d 2.8 ± 1.2e 

BCF 18.3 ± 5.9a 16.3 ± 5.5b 14.5 ± 6.7c 14.5 ± 6.0c 10.3 ± 4.5d 9.5 ± 6.2e 

 
SBT: Staffordshire Bull Terrier; LR: Labrador Retriever; SM: Spanish Mastiff; VRH: Valencian Rat Hunting; BB: British 
Bulldog; CHI: Chihuahua. VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, 
LIN = linearity, STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross 
frequency. Different superscripts mean significant statistical differences among breeds, P<0.05 

 

Table 2. Intra- and inter-male coefficients of variation in sperm kinematic parameters for different 
dog breed. 

 SBT LR SM VRH BB CHI 

 Intra Inter Intra Inter Intra Inter Intra Inter Intra Inter Intra Inter 

VCL 31.9 15.6 32.8 21.3 31.1 32.6 38.6 18.5 43.4 24.2 45.5 16.7 

VSL 51.5 7.7 56.3 12.6 59.5 18.5 68.4 12.9 64.6 20.6 65.2 31.3 

VAP 32.0 14.9 34.6 18.3 37.7 33.7 44.9 18.1 46.2 26.5 45.2 24.9 

LIN 42.7 6.6 45.2 8.0 47.9 8.4 50.9 7.9 47.7 27.5 45.1 18.5 

STR 34.9 5.2 37.4 5.5 37.9 7.4 38.6 9.3 36.5 35.6 34.1 28.0 

WOB 16.7 10.4 17.7 17.9 18.9 15.2 22.0 12.3 22.3 21.0 19.3 10.8 

ALH 31.7 11.2 32.2 16.7 33.4 25.1 34.6 11.4 38.7 13.2 41.0 10.9 

BCF 31.7 12.9 32.5 17.5 35.7 22.0 41.8 16.5 45.9 24.5 47.4 20.1 

 
SBT: Staffordshire Bull Terrier; LR: Labrador Retriever; SM: Spanish Mastiff; VRH: Valencian Rat Hunting; BB: British 
Bulldog; CHI: Chihuahua. VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, 
LIN = linearity, STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross 
frequency. 
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Table 3. Fisher’s linear discriminant functions of the matrix classifications from breed dog kinematic 
parameters. 

 SBT LR SM VRH BB CHI 

VCL 0.750 0.813 0.704 0.792 0.620 0.670 

VSL 0.347 0.290 0.312 0.293 0.370 0.395 

VAP -1.431 -1.286 -1.341 -1.342 -1.494 -1.495 

LIN -3.785 -3.896 -3.795 -3.829 -3.490 -3.809 

STR 1.860 1.960 1.891 1.937 1.706 1853 

WOB 4.210 4.015 4.116 4.031 4.250 4.267 

ALH -3.921 -9.170 -3.829 -7.623 2.365 -0.791 

BCF 0.490 0.643 0.555 0.601 0.288 0.420 

Constant -146.523 -316.286 -176.694 -242.855 -113.883 -120.920 

 
SBT: Staffordshire Bull Terrier; LR: Labrador Retriever; SM: Spanish Mastiff; VRH: Valencian Rat Hunting; BB: British 
Bulldog; CHI: Chihuahua. VCL = curvilinear velocity, VSL = straight line velocity, VAP = average path velocity, 
LIN = linearity, STR = straightness, WOB = wobble, ALH = amplitude of lateral head displacement, BCF = beat cross 
frequency. 

 

Table 4. Percentage of spermatozoa of the reference population by breed assigned to each breed 
after discriminant analysis 

 
The 95.7% of the reference animal by breed respectively, was classified correctly. SBT: Staffordshire Bull Terrier; LR: 
Labrador Retriever; SM: Spanish Mastiff; VRH: Valencian Rat Hunting; BB: British Bulldog; CHI: Chihuahua.  

 

Breed SBT LR SM VRH BB CHI Total 

SBT 94.4 0.0 1.4 0.0 0.0 4.2 17024 

LR 0.0 99.95 0.0 0.05 0.0 0.0 10596 

SM 0.1 0.0 99.4 0.5 0.0 0.0 151236 

VRH 0.0 8.0 0.1 91.9 0.0 0.0 28058 

BB 0.0 0.0 0.0 0.0 98.1 1.9 2650 

CHI 0.5 0.0 0.0 0.0 1.7 97.8 11193 
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Figure 1. Hierarchical classification of dog breeds after cluster analysis. 
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Abstract 

Background: The development of analytical methods for the evaluation of crocodilian semen is an 

important component for the assessment of male breeding soundness and the development of 

assisted breeding technology in this taxon. Computer Assisted Semen Analysis (CASA) technology 

is becoming an increasingly common tool in the seminal analysis for animals but there has been no 

application of this technique to reptilian spermatozoa.  

Objective: The aim of this study was to analyze sperm kinematic and morphometric parameters in 

Caiman crocodilus fuscus semen samples and to determine the existence of sperm subpopulations.  

Materials and methods: Four ejaculates from four sexually mature captive alligators in were used 

for this study. Integrated Semen Analyses Systems (ISAS®v1) CASA-Mot and CASA-Morph 

system was used with an image acquisition rate of 50 Hz for two seconds of capture. ISAS®D4C20 

counting chambers were used and sperm were incubated at 25 °C for analysis. Results: Total and 

progressive motility were not affected (P >0.05) by animal effect. There was a significant animal 

effect with respect to sperm morphometry, motility velocity and indexes values including linearity 

(LIN) and straightness (STR) (P< 0.05). Principal components (PCs) analysis showed that the 

variables were grouped into four components: PC1, related to progressivity, PC2 to velocity, PC3 to 

oscillation and PC4 to sperm head size. Subpopulation (SP) structure analysis showed four groups, 

namely, small medium non-progressive (SP1), medium size slow non-progressive (SP2), big 

medium progressive (SP3), and small rapid progressive (SP4), representing 23.0%, 52.0%, 9.7%, 

and 15.3% of the total population, respectively.  

Discussion: The distributions of each sperm subpopulation varied between animals potentially 

representing a relationship with fertilization ability.  

Conclusion: This study represents the first computer-assisted semen analysis of Crocodylia 

spermatozoa. Our findings demonstrate the importance of continuing development of reliable 

protocols regarding the standardization of computer-based semen analyses in reptilian species. 

Keywords: andrology, caiman, crocodilia, sperm analysis, reptile reproduction 
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Introduction 

The Caiman crocodilus fuscus (Cope 1868), originally known as Caiman crocodilus 

chiapasius (Linnaeus, 1758) or Alligator (Jacare) chiapasius (Bocourt 1876) and colloquially known 

as the ―Guajipal‖ or Brown Spectacled Caiman, belongs to the order Crocodylia, Family 

Alligatoridae and the Class Reptilia (Huchzermeyer, 2003; Martin, 2008). Species distribution has 

been cited as occurring mainly in the Pacific from Oaxaca, Mexico, to Guayaquil, Ecuador 

(Carvajal et al., 2005) and in the Atlantic from Yucatan peninsula (Charruau et al., 2015) to the 

northwest of Venezuela (Goombridge, 1982; Meden, 1983, 1981). The Caiman crocodilus is found 

in Appendix II of (CITES, 2017) (Convention on International Trade in Endangered Species of Wild 

Fauna and Flora), where it is listed as lower risk (LR) or least concern (LC). 

Knowledge of the reproduction of the caiman is a key element for understanding their 

conservation and in the development of captive breeding expertise for other closely related 

endangered species of Crocodylia. To this end, there has been recent interest in the development 

of assisted breeding technology of captive crocodiles for both production and endangered species 

propagation (Johnston et al., 2014a), including refinement of a semen collection protocols and 

characterization of seminal parameters (Fitri et al., 2018; Johnston et al., 2014b; Romero-

Solórzano et al., 2010). There have also been studies determining sperm physio-chemo diluent 

requirements (Johnston et al., 2014c), the assessment of sperm DNA quality (Gosálvez et al., 

2016; Johnston et al., 2015) and preliminary attempts of sperm cryopreservation (Johnston et al., 

2017); all examining the spermatozoa of the salt water crocodile (Crocodylus porosus). 

Assessment of sperm motility and morphometric is now commonly performed by means of 

computer assisted semen analysis (CASA) technologies that allow for objective and accurate 

assessment of sperm parameters such as kinematics (Gallagher et al., 2018; van der Horst et al., 

2018; Yániz et al., 2018), morphometry (Maroto-Morales et al., 2016; Soler et al., 2016; Valverde 

et al., 2016; Yániz et al., 2016) and DNA fragmentation (Sadeghi et al., 2016). CASA systems 

provide information based on values of thousands of individual sperm tracks of the sample (Amann 

and Waberski, 2014). CASA analysis also allows identification of motile subpopulations of 

spermatozoa that show characteristic kinematic and morphometric patterns, but the biological 

meaning of these different sperm subpopulations and their interactions is not always clear. Studies 

of sperm subpopulations studies have been conducted for bovine (Valverde et al., 2016; Yániz et 

al., 2018), ovine (Yániz et al., 2015), swine (Gil et al., 2009; Valverde et al., 2018), feline 
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(Gutiérrez-Reinoso and García-Herreros, 2016), poultry (García-Herreros, 2016), salmon (Caldeira 

et al., 2018), fox (Soler et al., 2014, 2017) and primate species (Valle et al., 2013), but there are 

currently no descriptions documenting reptile spermatozoa. 

Knowledge of the sperm kinematic and morphometric subpopulation structure will not only 

increase our understanding of male crocodilian breeding soundness and assisted breeding 

technology, but also help to quantify and further characterize reptile sperm metabolism and 

physiology, such as capacitation (Nixon et al., 2016). Consequently, the aim of this study was to 

analyze kinematic sperm and morphometric parameters using CASA and to determine the 

existence of sperm subpopulations in Caiman crocodilus fuscus. 

Materials and methods 

Study site 

This study was conducted as part of the crocodile management and exhibition facilities 

associated with the Scientific Ecotourism Project (EcoTEC) based in the School of Agronomy, 

Costa Rica Institute of Technology, San Carlos Campus, Alajuela, Costa Rica (10°21’52’’ N, 

84°30’31’ W). The facility is located at an altitude of 170 m above sea level, in a tropical wet forest 

with a basal altitudinal floor, in accordance with Holdridge life zones system (Holdridge, 1967). 

According to the data recorded at the closest whether station (069567, St Clara, University 

Campus), the crocodile facility has annual minimum and maximum temperature of 21.7 °C and 

30.7 °C respectively and a relative humidity of 88.5 %, with the rainfall rate of 3321.1 mm per year.  

Animal husbandry 

The experiment was conducted following the laws and regulations controlling experiments 

on live animals in Costa Rica and without any requirement of approval from the animal research 

committee of the Costa Rica Institute of Technology. Nevertheless, this study was conducted with 

the approval of the National System of Conservation Areas (SINAC-Costa Rica) and Arenal Huetar 

Norte Conservation Area (ACAHN) Scientific Purposes Permit (SINAC-ACAHN-SCH-818-18). Four 

sexually mature healthy male caimans were used as semen donors in this study. The animals were 

housed together with 11 females in the same pond. All caimans were estimated to between 14 and 

16 years of age. The EcoTEC crocodile facility has been designed to allow the animals to be 

housed in conditions that mimic their natural habitat, in which they have access to natural and 

artificial fresh-water ponds, native vegetation, shaded areas and sunbathing and shelter. They are 
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feed with pieces of lean meat (pork, chicken, beef - which can be fed on the bone in larger adults) 

and which is supplemented with additional calcium at 1.9 to 2.4 % dry-matter basis. 

 

Timing of semen collection 

 From observations of caiman behavior at the EcoTEC crocodile facility since 2008, it was 

concluded that the C. c. fuscus show courtship and mating behavior from February to June, the 

females deposit eggs and incubate during June to September and subsequently lay eggs from 

September to December (Castro-Morales, Personal Observations). In the present experiment, 

sexually mature specimens were used, with weights between 12.0 and 14.2 kg and lengths 

between 72 and 77 cm (Castro-Morales, Personal Observations).  

 

Animal restraint  

The semen collection procedure was carried out and restrained caiman without the need for 

sedation or drugs for immobilization. Briefly, this included the removal of the animal from the fresh-

water pond and using a 13 mm diameter rope that was secured around the upper jaw of the animal 

(Fig. 1A). A moistened cotton cloth was then placed directly over the animal's eyes (Fig. 1B) before 

two expert handlers physically restrained the animal (Fig. 1C), while another secured the top and 

bottom jaw with vinyl tape (Fig. 1D). The front and hind legs were then carefully tied caudal to the 

shoulders and pelvis of the animal to prevent possible injury to semen collector and caiman (Fig. 

1E). All animal restraint procedures were conducted without incident. 

 

Semen collection and processing 

Semen collection was conducted by digital manipulation (Fig. 1F) as previously described 

by (Johnston et al., 2014b). A gloved hand was introduced into cloaca to gently exteriorize the 

phallus; once the phallus was exteriorized the fore and index fingers were used to gently massage 

– stroke the terminal portions of the vas deferens immediately cranial to the urodeum. In mating 

season (February – June), an erection response to manual stimulation typically presented in less 

than five minutes. Following massage semen flowed down the sulcus of the phallus and carefully 

lavaged into a collection vessel. Small volumes of ejaculate (e.g. 1.0 mL) were recovered in to a 

1.5 mL Eppendorf® microtube (Sigma-Aldrich, St. Louis, MO, USA) aided by a micropipette fitted 

with a 10-100 μL pipette tip. Semen was lavaged from the sulcus with approximately 100 μL of 

buffered Dulbecco’s phosphate-buffered saline (DPBS, pH = 6.8, Sigma-Aldrich, Inc.). The total 

time handling the animal for semen collection typically did not exceed 30 minutes. All semen 

collection procedures were conducted without incident. 
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Assessment of sperm parameters 

The pH of undiluted semen was determined using narrow range pH paper strips (±0.3-0.4 

pH unit; Sigma-Aldrich, Inc.). For the analysis of motility and kinetic parameters, ISAS®D4C20 

disposable counting chambers (Proiser R+D, S.L., Paterna, Spain) were used after being pre-

warmed to 25 °C. After a thorough mixing of the semen samples, 3 µL of diluted semen was 

dispensed along the counting chamber tracks by capillarity. A further dilution 1:10 in DPBS 

extender was used for motility and kinematic assessment before loaded the sperm in the counting 

chamber. Analyses were conducted with the CASA-Mot system ISAS®v1 (Integrated Semen 

Analysis System, Proiser R+D, Paterna, Spain). The video-camera was a Proiser 782M (Proiser 

R+D), with a frame rate of 50 fps and a final resolution of 768 x 576 pixels. The camera was 

attached to a microscope UB203 (UOP/Proiser R+D) with a 1X eyepiece and a 10X negative-

phase contrast objective (AN 0.25) and an integrated heated stage maintained at 25 ± 0.5 °C. 

Sperm concentration (x109 mL-1) was estimated using a CASA-Mot system after accounting for the 

initial dilution of the semen sample. 

 

The morphology of live spermatozoa was observed using the Trumorph device (Proiser 

R+D) that briefly, increases the temperature of the sample to 45 ºC for stopping motility and 

applies a light pressure of 6 kP for extending the volume of the sample (2 µL) in a conventional 

slide and 22x22 mm cover slide. The depth between slide and coverslide is of ∼6 µm and the 

spermatozoa are restricted in movement so as to expose their flat upper surface parallel with the 

coverslip (Soler et al., 2015). Morphological observations were conducted with the UB203 

microscope using 40x negative phase contrast. 

 

CASA analyses were performed over seven microscope fields on a total of at least 600 

cells per sample (Video 1; see supplementary material). A mean of the seven fields was used for 

statistical analyses. CASA-Mot parameters assessed in this study included straight line velocity 

(VSL, µm·s-1) corresponding to the straight line from the beginning to the end of the track; 

curvilinear velocity (VCL, µm·s-1) - measured over the actual point-to-point track followed by the 

cell; average path velocity (VAP, µm·s-1) - the average velocity over the smoothed cell path; 

amplitude of lateral head displacement (ALH, µm) - defined as the maximum of the measured 

width of the head oscillation as the sperm cells swim, beat-cross frequency (BCF, Hz) - defined as 

the frequency with which the actual track crossed the smoothed track in either direction, motility 

(%) - the percentage of the total motile cells and progressive motility (%) - corresponding to 

spermatozoa swimming rapidly forward in a straight line (assessed as straightness index  ≥45%; 
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VAP ≥25 µm·s-1). Three progression ratios, expressed as percentages, were calculated from the 

velocity measurements described above: linearity of forward progression (LIN = VSL/VCL·100), 

straightness (STR = VSL/VAP·100), and wobble (WOB = VAP/VCL·100). 

Computerized morphometric analysis 

For morphometric analysis, semen smears were prepared, and slides stained using the 

Diff‑Quik kit (Medion Diagnostics, Dudingen, Switzerland), following the instructions of the 

manufacturer. All the slides were identified and then permanently sealed with Eukitt mounting 

medium (Kindler & Co, Freiburg, Germany) under a cover slip and analyzed in a double‑blind 

scheme. Microscope slides were analyzed for sperm head morphometry by the CASA-Morph 

system ISAS®v1. The equipment comprised a microscope (UOP200i/Proiser Valencia, Spain) 

equipped with a 40X bright‑ field objective (AN 0.7). A video camera (Proiser 782M, Valencia, 

Spain) was mounted on the microscope to capture the images and transmit them to the computer. 

The array size of the video frame grabber was 768 × 576 × 8 bit, providing digitized images of 

442368 pixels and 256 gray levels. Resolution of images was 0.21 μm/pixel in both the horizontal 

and vertical axes. Sperm heads were captured randomly in different fields, rejecting only those that 

overlapped with background particles or other cells that interfered with subsequent image 

processing. Initial erroneous definition of the sperm head boundary was corrected by varying the 

analysis factor of the setup of the CASA-Morph system. Following the criteria of (Boersma et al., 

1999) at least one hundred sperm heads were measured on each slide for two primary parameters 

of head size (area [A, μm2] and perimeter [P, μm]).  

Statistical analysis 

The data obtained from the analysis of all sperm parameters were first tested for normality 

and homoscedasticity by using Shapiro-Wilks and Levene tests. A normal probability plot was used 

to check for a normal distribution. The kinematics sperm variables did not satisfy the normality 

requirement for a parametric analysis of variance. Therefore, non-parametric analyses were 

performed with a Kruskal–Wallis test. When statistically significant differences were detected using 

this test, the non-parametric Mann–Whitney U-test was used to compare pairs of values directly.  

Clustering procedures were performed to identify sperm subpopulations from the set of 

motility data. All the kinematic (VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF) and morphometric 
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(area-head, perimeter-head) parameters were standardized in order to avoid any scale influence. 

The first step was to perform a principal component analysis (PCA) of these data (each variable 

was weighed with their variances extracted for that principal component, known as eigenvectors) to 

derive a small number of linear combinations (PCs) that still retained information from the original 

variables as much as possible. The number of principal components (PC) used in the next step of 

the analysis was determined using the Kaiser criterion, namely selecting only those with an 

eigenvalue (variance extracted of each PC) >1. Furthermore, Bartlett's sphericity test and the KMO 

index (Kaiser-Meyer-Olkin) were conducted (Spencer, 2013). As a rotation method, the varimax 

method with Kaiser normalization was used (Kaiser, 1958); the rotation is a procedure to help in 

the interpretation of the importance of each principal factor in the factorial weight matrix (Everitt & 

Hothorn, 2011). The second step was to perform a non-hierarchical analysis using the k-means 

model that uses Euclidean distances from the quantitative variables after standardization of these 

data, so the cluster centers were the means of the observations assigned to each cluster (Kaufman 

& Rousseeuw, 1990). The multivariate k-means cluster analysis was conducted to classify the 

spermatozoa into a reduced number of subpopulations (clusters) according to their kinematic and 

morphometric parameters. In the final step, to determine the optimal number of clusters, the final 

centroids were clustered hierarchically using the Ward method (Murtagh & Legendre, 2014). Thus, 

every cluster provided a final cluster formed by the spermatozoa linked to its centroids. ANOVA 

and χ2-test procedures were applied to evaluate statistical differences in the distributions of 

observations (individual spermatozoa) within the steps and subpopulations (percentages of 

spermatozoa assigned to each cluster), and then a generalized linear model (GLM) procedure was 

used to determine the effects of the steps, as well as their variation, on the relative distribution 

frequency of spermatozoa within subpopulations. The GLM procedure was also used to evaluate 

the influence on the mean kinematic and morphometric parameters defining the different sperm 

subpopulations (i.e. the cluster centers). Differences between means were then analysed by the 

Bonferroni test. Results are presented as mean ± standard error of the mean (SEM). Statistical 

significance was considered at P< 0.05. All data were analyzed using IBM SPSS package, version 

23.0 for Windows (SPSS Inc., Chicago, IL, USA).  

 

Results  

 

There was no animal effect (P >0.05) with respect to the total sperm motility (%) and/or 

progressive motility (%). The range of least squares mean (LSM) for total and progressive motility 

was 45.86 ± 4.17 - 53.0 ± 4.50 and 21.71 ± 3.25 - 25.71 ± 3.26, respectively (Fig. 2). The mean (± 
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SE) sperm concentration (x109 mL-1) of the samples was 3.80 ± 0.4 with a range of 1.3 - 6.6. Mean 

(± SE) pH of the samples was 6.4 ± 0.1. The kinematic parameters corresponding to the whole 

analysed spermatozoa population are shown in the Table 1. The majority of the kinematic 

parameters showed differences between animals, with VCL, VAP, LIN, STR and ALH being the 

most variable. Only the WOB values were not significantly different between animals (Table 2). 

 

Normal sperm morphologies in alive cells, using the Trumorph technique, showed the 

typical filiform head and a tail that was approximate three times as long (Fig. 3). The area of the 

sperm head was significantly different among animals but there was difference in the perimeter of 

the sperm heads between caiman (Table 2). 

 

Principal component analysis showed four PCs (named progressivity (PC1), velocity (PC2), 

oscillation (PC3) and head size (PC4) with a total variance explained of 86.85 %. These results 

indicated that sperm kinematics have stronger influence on the total variance than that of size 

(Table 3). The subsequent cluster analysis rendered four subpopulations. The kinetic and 

morphometric values corresponding to each subpopulation which were characterised as: small 

medium non-progressive (SP1), medium size slow non-progressive (SP2), big medium progressive 

(SP3) and small rapid progressive (SP4) (Table 4, Fig. 4). The distribution of subpopulations was 

significantly different between animals, with the medium size slow non-progressive spermatozoa 

being the most frequent in two of the animals (Table 5).  

 

Discussion 

 Following the same principals used for breeding soundness in mammalian species 

(Valverde et al., 2018, 2016; Soler et al., 2017), it follows that a better understanding of caiman 

male reproductive physiology will consequently lead to improvements in their reproductive 

management both in wild and in captivity. While previous studies of sub-therian vertebrate species 

(fowl - Froman et al., 1999; turtle - Gist et al., 2000 and snake - Tourmente et al., 2011) have all 

revealed that sperm movement speed is directly correlated with fertilization success, this current 

study represents the first computer assisted sperm assessment in a crocodilian species. 

 The mean total motility reported in this study (49.6 ± 10.7%) was similar to that reported 

previously after post-mortem epididymal recovery (Larsen et al., 1982; 1992). Depending on the 

study and recovery technique, the motility described for Crocodylus porosus was also in the same 

range or slightly lower (Fitri et al., 2018): 45.0 ± 17.56 %, (Johnston et al., 2014c): 63.4 ± 3.2%; 

both after sedation; (Johnston et al., 2014b): 50.7 ± 4.2 %, after digital massage). Sperm motility 
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can be important in competition for fertilization (Birkhead et al., 1999). A raised sperm motility 

could be favored under situations of sperm competition, lower motility could be presented in 

species with sperm storage (Gist et al., 2000). In ectotherms, female body temperature has the 

potential to adjust sperm motility after mating (Uller et al., 2010). In turtles there are increase of the 

sperm motility at low temperatures thus suggesting that local adaptation of sperm motility in 

relation to the environment temperature during the timing of copulation (Gist et al., 2000). In the 

case of Leopard tortoise the total motility showed a high degree of variability ranging from 10 to 

80%, what indicate a possible adaptation to the sperm motility under situations of sperm 

competition (Gist et al., 2000; Zimmerman & Mitchell, 2017) as also could be related to collection 

success or technique. Motility and kinematic parameters have been reported in other reptiles 

including corn snakes (Fahrig et al., 2007), lizards (Aranha et al., 2008; Blengini et al., 2014; López 

Juri et al., 2018), green iguanas (Zimmerman et al., 2013), turtles (Gist et al., 2000), black and 

white tegu lizard (Tupinambis merianae) (Young et al., 2017) but the number of frames per second 

used in some works were lowest (30 fps; Gist et al., 2000). 

 

The CASA systems typically provides an objective and repeatable assessment of the 

proportion of motile sperm cells in a sample, as well quantification of kinematic and morphometric 

variables (Amann & Waberski, 2014; Bompart et al., 2018). Such differentiation not only allows 

identification of the semen samples with poor sperm motility but may also be a useful technique in 

selecting the most desirable males for artificial insemination programs or assessing sperm 

preservation and storage protocols (e.g. cryopreservation or capacitation activation). Data afforded 

by CASA technology, particularly when it is based on kinematic and morphometric parameters, 

demonstrated their significance along the last 30 years in many species in the fields of research, 

seminal doses production and conservation programmes (Cucho et al., 2016; Soler et al., 2005; 

Waberski et al., 2008).  

 

The curvilinear velocity (VCL) (54.16 ± 0.48 µm·s-1) reported in this study for the Caiman 

was similar to that documented for the Boa constrictor (58.97 µm·s-1; Tourmente et al., 2007), 

whereas  straight-line velocity (VSL) in the Boa constrictor (50.22 µm·s-1) was significantly higher 

than that for the Caiman of (14.15 ± 0.21 µm·s-1). The high motility percentage exhibited by the 

snake could be an adaptation to sperm competition pressures (Snook, 2005; Tourmente et al., 

2007) or collection techniques or sperm dilution.  For B. constrictor spermatozoa, Tourmente et al. 

(2007) also reported the linearity of forward progression (LIN) as being 80% which was 
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substantially higher than that found in the Caiman (28%), despite the analyses being carried out at 

the same temperature (25 °C). 

 

Normal sperm cells of C. c fuscus possess a filiform nucleus and intact acrosome with a  

small midpiece (Fig. 2) and are similar to those observed in the spectacled caiman (Caiman 

crocodilus; Assumpção et al. (2017) and in the crocodile by Jamieson et al. (1997),  Gribbins et 

al. (2011) and Johnston et al. (2014b). Assumpção et al. (2017) reported spectacled caiman 

spermatozoa to have a head length of 20.09 ± 0.85 μm, a midpiece length of 2.40 ± 0.16 μm and 

tail (principal + end piece) of 58.49 ± 0.29 μm for a total mean length of 80.98 ± 1.29 μm. In our 

study, the CASA-Morph system used only is able to reports morphometric values of head area 

and head perimeter with range of 4.95-6.50 ± 0.11 μm2 and 14.82-15.15 ±0.19 μm respectively. 

Even more, it is necessary to evaluate that the measurements doing after Diff-Quik staining 

implies the introduction of some level of artifacts. This fact is common for all the species (Soler et 

al., 2016), but particularly important in crocodilian sperm which do not contain cysteine in the 

protamine, having a special tendency to decondense when the smears are dried (Cummins, 

1980). The use of Trumorph technique showed the real morphology of the caiman sperm 

morphology, but, unfortunately, no CASA-Morph system is now available for the measurement of 

this image source.  

 

While most studies of sperm motility typically describe parameters for whole sperm 

population in the ejaculate (normal distribution model), the increasing use of the CASA analytical 

systems has encouraged and promoted the concept of reporting and identifying sperm 

subpopulations, (Amann & Hammerstedt, 1993; Caldeira et al., 2018; Gallego et al., 2015; Hirai et 

al., 2001; Soler et al., 2017; 2014; Thurston et al., 2001; Valverde et al., 2016; Vásquez et al., 

2016; Yániz et al., 2016; 2018). Based on cluster analysis, caiman sperm cells in this study were 

classified into four clusters with the following characteristics: sperm cells moderate velocities (VSL 

and VAP) but low linearity and was defined as SP1 or ―medium non-progressive‖; the second 

showed low VSL, VAP and linearity and was considered as SP2 or ―slow non-progressive‖; the 

third showed moderate velocities and high linearity (LIN, STR) and designated as SP3 or ―medium 

progressive‖; finally, the last one was related with high velocity and highly linear cells (high VSL, 

LIN and STR) and was considered SP4 or ―rapid progressive‖ subpopulation. Subpopulations with 

higher head area sperm were SP2 and SP3 while the smaller sperm cells were distributed into SP1 

and SP4. These observations prompt the question as to whether reptilian sperm cell size, more 

specifically head area, may be associated with progressivity? Furthermore, sperm head size 
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should be attributed to differences in chromatin (Gosálvez et al., 2016). The animal effect on the 

proportions of each sperm subpopulation were very apparent and provide the basis of future 

studies to explore the relevance of these sub-populations to their fertilization potential. Future 

studies will explore the use of CASA based systems to identify sperm abnormalities in crocodilian 

ejaculates. 

Conclusion 

The evaluation of seminal quality constitutes a critical parameter in species conservation so 

that the results of this work will contribute to the development of reliable protocols regarding the 

standardization of computer-based semen analyses in reptilian species with respect to the 

establishment of kinematic and morphometric parameter values that can be used to evaluate the 

reproductive potential of the crocodilian populations and allow more objective measures of semen 

evaluation. CASA based systems of crocodilian sperm assessment will also facilitate studies of 

sperm physiology and preservation. There are currently, extremely limited studies documenting 

crocodilian reproduction so that the techniques described in this study provide a basis for the 

standardization of reptilian sperm parameters.  
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Table 1. Sperm kinematics (mean ± SEM) parameters found in four ejaculates of four Brown 
Caiman (C. c. fuscus) 

Male Mean ± SEM SD Min Max Q1 Q3 Skewness Kurtosis 

VCL 54.16±0.48 25.43 10.50 226.40 37.20 66.80 1.38 3.70 

VSL 14.15±0.21 11.31 0.90 79.50 6.20 18.90 1.53 2.47 

VAP 23.64±0.22 11.44 4.60 79.60 15.30 29.50 1.11 1.25 

LIN 27.90±0.35 18.61 0.70 98.10 13.60 38.40 0.90 0.40 

STR 57.29±0.52 27.48 2.10 100.0 35.60 80.50 -0.08 -1.06

WOB 46.11±0.30 15.79 9.10 100.0 34.70 55.70 0.60 0.14 

ALH 2.58±0.02 1.16 0.40 9.00 1.80 3.10 1.11 2.21 

BCF 4.40±0.05 2.53 0.00 15.30 2.50 6.00 0.56 0.26 

Number of cells = 3 136. VCL = curvilinear velocity (µm·s
-1

); VSL = straight line velocity (µm·s
-1

); VAP = average path
velocity (µm·s

-1
); LIN = linearity of forward progression (%); STR = straightness (%); WOB = wobble (%); ALH =

amplitude of lateral head displacement (µm); BCF = beat-cross frequency (Hz); SEM = standard error of the mean. SD: 
standard deviation; Min-Max = minimum and maximum values. Q1: lower quartile; Q3: upper quartile.  

Table 2. Sperm kinematics and morphometric (mean ± SEM) parameters in alligator (C. c. fuscus) 
(n = 4). 

Male 1 2 3 4 

VCL 50.02±0.95a 54.99±1.03bc 57.25±0.88c 52.95±0.98b 

VSL 12.48±0.42a 14.07±0.46b 15.24±0.39b 14.02±0.44b 

VAP 22.23±0.43a 23.80±0.46b 25.11±0.40c 22.54±0.44a 

LIN 26.01±0.70a 26.69±0.76ab 28.23±0.65bc 29.41±0.72c 

STR 52.99±1.04a 55.38±1.12ab 57.07±0.96b 61.03±1.08c 

WOB 46.28±0.60a 44.60±0.65a 46.09±0.55a 46.20±0.62a 

ALH 2.15±0.04a 2.69±0.05bc 2.81±0.04c 2.62±0.04b 

BCF 4.49±0.09a 4.43±0.10a 4.41±0.09a 4.13±0.10b 

Head area (μm2) 6.03±0.12a 6.50±0.11b 4.95±0.11c 4.99±0.11c 

Head perimeter (μm) 15.15±0.19a 14.87±0.19a 15.07±0.19a 14.82±0.19a 

VCL = curvilinear velocity (µm·s
-1

); VSL = straight line velocity (µm·s
-1

); VAP = average path velocity (µm·s
-1

); LIN =
linearity of forward progression (%); STR = straightness (%); WOB = wobble (%); ALH = amplitude of lateral head 
displacement (µm); BCF = beat-cross frequency (Hz); SEM = standard error of the mean. 

a-d 
Different superscripts

within row indicate significant differences among subpopulations.
 
P< 0.05. 
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Table 3. Eigenvectors of principal components (PCs) for alligator (C. c. fuscus) sperm kinematic 
and morphometric parameters  

Principal component*/a PC1 PC2 PC3 PC4 

VCL   0.911  
VSL 0.815 0.466   
VAP  0.815 0.435  
LIN 0.930    
STR 0.949    
WOB 0.418 0.761   

ALH   0.889  

BCF  0.744   

Head perimeter    0.940 
Head area    0.888 

Variance explained (%) 27.18 22.43 20.18 17.06 
 

Total variance explained = 86.85%. 
*
Expresses the more important 

variables in each PC. Only eigenvectors > 0.4 are presented. 
a 

Rotated 
component matrix. VCL: curvilinear velocity; VSL: straight line velocity; 
VAP: average path velocity; LIN: linearity of forward progression; STR: 
straightness; WOB: wobble; ALH: amplitude of lateral head 
displacement; BCF: beat-cross frequency.  

 

Table 4. Sperm subpopulations for kinematic and morphometric parameters (means ± SEM) in 
alligator (C. c. fuscus) (n = 4) 

 SP1 SP2 SP3 SP4 

n/% 720/23.0 1 632/52.0 304/9.7 480/15.3 

VCL 75.28±1.35a 38.59±0.90b 45.81±2.08c 59.27±1.65d 

VSL 10.26±0.76a 7.53±0.51b 13.80±1.18a 28.39±0.94c 

VAP 26.55±0.80a 15.84±0.53b 23.53±1.23a 42.36±0.98c 

LIN 13.50±1.48a 19.98±0.98b 30.91±2.28c 49.98±1.81d 

STR 38.23±2.252a 47.15±1.68b 55.93±3.88bc 68.89±3.09c 

WOB 36.08±1.26a 41.86±0.84b 51.57±1.94c 72.32±1.54d 

ALH 3.15±0.08a 1.54±0.05b 1.97±0.12c 1.85±0.10c 

BCF 4.16±0.23a 4.07±0.15a 4.42±0.35a 7.35±0.28b 

Head area (μm2) 4.81±0.10a 5.69±0.07b 8.06±0.16c 4.96±0.13a 

Head perimeter (μm) 14.76±0.15a 14.55±0.10a 18.67±0.23b 14.39±0.18a 

 
VCL = curvilinear velocity (µm·s

-1
); VSL = straight line velocity (µm·s

-1
); VAP = average path velocity (µm·s

-1
); LIN 

= linearity of forward progression (%); STR = straightness (%); WOB = wobble (%); ALH = amplitude of lateral 
head displacement (µm); BCF = beat-cross frequency (Hz); SEM = standard error of the mean. 

a-d 
Different 

superscripts within row indicate significant differences among subpopulations.
 
P< 0.05. 
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Table 5. Subpopulation distribution of alligator spermatozoa (C. c. fuscus) in percentage depending 
on animal 

Alligator/Subpopulation Medium non-

progressive 

Slow non-

progressive 

Medium 

progressive 

Rapid 

progressive 

1 1.7 88.8* 8.4 1.1 

2 2.3 74.2* 17.3* 6.2 

3 57.5* 26.3 6.1 10.1 

4 33.0* 17.0 7.0 43.0* 

 
Each row indicates the percentage of spermatozoa belonging to the different cluster (sum of percentage for each 
animal = 100). 

*
 indicate significant difference within column regarding to animal, chi square (χ²) test, P <0.05. 

 

 

 

Figure 1. Caiman restraint by removal of the animal from the fresh-water pond (A). Moistened cotton 
cloth was then placed directly over the animal's eyes (B). Two expert handlers physically restrained 
the animal (C). Secure the top and bottom jaw with vinyl tape (D). Front and hind legs were then tied 
caudal to the shoulders and pelvis of the animal (E). Sperm collection by manipulation and digital 
massage of the penis and ductus deferens, introducing a gloved hand in the opening cloaca (F). (C. 
c. fuscus). 
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Figure 2. Normal alligator (C. c. fuscus) spermatozoa captured with Trumorph® system. 
Scale bar — 10 μm. 

Figure 3. Boxplot (25th/75th percentiles, -: median; ┴ ┬: Minimum and maximum values considering 
three standard deviation) graphics of Caiman crocodilus fuscus total and progressive (STR >45%) 
motility.   
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Figure 4. Representative trajectories by subpopulation of alligator sperm (C. c. fuscus) analyzed with 
ISAS®v1 CASA-Mot system. a: small medium non-progressive (SP1); b: medium size, slow non-
progressive (SP2); c: big medium progressive (SP3); d: small rapid progressive (SP4). Lines: Blue = 
VSL; Red = VCL; Green = VAP. VCL = curvilinear velocity (µm·s-1); VSL = straight line velocity 
(µm·s-1); VAP = average path velocity (µm·s-1). SP: subpopulation. 
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Results and general discussion 

In the first work (chapter IV), the "classical" statistical approach, based on variance analysis 

(revealing differences between animals, ejaculates, and straws), principal component (PC) analysis 

showed that the variables were grouped into PC1, related to size, and PC2 to shape. Subpopulation 

structure analysis showed four groups, namely, big, small, short, and narrow from their dominant 

characteristics, representing 31.0 %, 27.3 %, 24.1 %, and 17.7 % of the total population, 

respectively. The distributions varied between animals and ejaculates, but between straws, there 

were no differences in only four animals. This modern approach of considering an ejaculate sperm 

population as divided into subpopulations reflecting quantifiable parameters generated by CASA-

Morph systems technology opens a new view on sperm function.  

The second work (chapter V), showed that FR affected all the kinematic parameters, with curvilinear 

velocity (VCL) and BCF the most sensitive ones. All the parameters showed differences among 

animals. Non‐linear correlation showed the asymptotic level for VCL at 212 fps, being the highest FR 

for all the parameters. For future studies based just on progressive motility, almost 100 fps FR for 0.5 

s must be used, while when kinematics must be considered, almost 212 fps for one‐second should 

be analyzed. Three principal components were obtained (velocity, progressivity, and oscillation), 

being similar at 50 and 200 fps. Cells were grouped in four subpopulations but with different 

kinematic and cellular distribution at both FRs. The kinds of video cameras used until now for image 

acquisition have presented limited frame rates (FR), which have a negative influence on the quality 

of the obtained data.  

In the third work (chapter VI), total and progressive motility were not affected by capture time. 

Capture time had a significant effect on velocity and indexes values (P< 0.05) but not on lateral head 

displacement (ALH) and beat cross frequency (BCF). All the parameters showed animal differences. 

The results demonstrate that sperm motility is affected by the video recording time length (P< 0.05). 

This effect is evident both in motility parameters and in single cell kinetics, studied by cluster analysis 

that showed a short time of video recording can to overestimate the percentage of rapid non-

progressive cells in a subpopulation (P< 0.05). Studies based just on motility can use a one-half 

second, while when kinematics must be considered two seconds must be analyzed. 
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The fourth work (chapter VII), indicated that acronym CASA itself (computer-aided/assisted sperm 

analysis) is uninformative since the analysis could refer to any aspect of spermatozoa: their 

concentration, motility, kinematic parameters or morphology, or combinations of these. We suggest 

the following hyphenated compound terminology: the generic use of CASA for any sperm computer-

aided sperm analysis, followed by an abbreviation indicating the analysis performed, i.e., CASA-

Conc (for concentration), CASA-Mot (for motility, including kinematics) and CASA-Morph (for 

morphology, including morphometry).  

 

In the fifth work (chapter VIII), nine fixed positions were analyzed per camera type, considering 

central and lateral (summing both sides) and three longitudinal fields. Independently on the diluent 

used, differences were found between the three chambers and inside capillary loaded. Results 

obtained with the two diluents were significantly different with a very low correlation between them. In 

conclusion, the counting area inside the chambers leads to significant changes in sperm kinematic 

parameters and different dilution media introduce considerable differences in the motility patterns. 

Thus, it is necessary to define representative sampling methods and to define specific set-ups to be 

used with CASA-Mot technology. 

 

The sixth work (chapter IX), showed that all kinematic parameters showed significant differences 

among breeds and individuals within each breed. The fastest sperm cells were those of Staffordshire 

Bull Terriers, and the slowest sperm cells were associated with Chihuahuas. The intra-male 

coefficient of variation (CV) was higher than the inter-male one for all breeds with the Staffordshire 

Bull Terrier showing the lowest values. When taking into consideration the cells by animal and breed, 

discriminant analyses showed a high capability to predict the breed source. Cluster analyses showed 

a hierarchical classification very close to that obtained after phylogenetic studies using genome 

markers. In conclusion, future work on dog spermatozoa should bear in mind significant differences 

between breeds and that results cannot be extrapolated from one to another. Because sperm 

characteristics are associated to breed diversity, dogs could represent a good model to examine 

changes in reproductive parameters associated with selection processes.   

 

Finally, in our seventh work (chapter X), in Caiman crocodilus fuscus semen samples, total and 

progressive motility were not affected (P >0.05) by the animal effect. There was a significant animal 

effect concerning sperm morphometry, motility velocity, and indexes values including linearity (LIN) 

and straightness (STR) (P< 0.05). Principal components (PCs) analysis showed that the variables 

were grouped into four components: PC1, related to progressivity, PC2 to velocity, PC3 to oscillation 
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and PC4 to sperm head size. Subpopulation (SP) structure analysis showed four groups, namely, 

small medium non-progressive (SP1), medium size slow non-progressive (SP2), big medium 

progressive (SP3), and small rapid progressive (SP4), representing 23.0 %, 52.0 %, 9.7 %, and 15.3 

% of the total population, respectively. The distributions of each sperm subpopulation varied between 

animals potentially representing a relationship with fertilization ability. This study represents the first 

computer-assisted semen analysis of Crocodylia spermatozoa. Our findings demonstrate the 

importance of continuing development of reliable protocols regarding the standardization of 

computer-based semen analyses in reptilian species. 
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Conclusions 

The present Ph.D. Thesis analyzed the application of CASA technology and multivariate analysis to 

optimize the semen evaluation in domestics and wild species. The following section summarizes the 

main findings and conclusions.  

1. At least in the case of bull species, the former approaches for sperm morphometry 

study, based on the ANOVA, are not good enough to define the true sperm 

subpopulations, being necessary the use multivariate statistics based on the 

principal component analysis. Differences among post-thawed ejaculates from the same 

animal challenge the former idea that the subpopulation structure is an individual 

characteristic, indicating that can also be related to a physiological response to the 

environment.

2. Taking BCF and VCL as the most sensitive parameters to FR, it is recommended to use 

a capture frequency as close as possible to 225 fps in the evaluation of boar ejaculates for 

the study of their kinematics, while it can be considered enough at 50 fps for the 

assessment of general motility, and 150 fps progressive motility of the samples. Any 

future work must be developed from these results, both in the research and in the 

production fields.

3. It is recommended to use capture for two seconds in the evaluation of boar ejaculates for 

the study of their kinetics, while it can be considered enough with a one-half second 

for the assessment of general motility and progressive motility of the samples.

4. We suggested the following hyphenated compound terminology: the generic use of CASA 

for any sperm computer-aided sperm analysis, followed by an abbreviation indicating 

the analysis performed, i.e., CASA-Mot (for motility, including kinematics) and CASA-

Morph (for morphology, including morphometry).

5. At least in the case of bull samples, the use of both different counting chambers and 

dilution media leads to significant changes in the estimation of sperm kinematic parameters. 

Attention regarding the selected area inside the counting chamber must be done.
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6. Based on the significant differences observed between breeds in kinematic sperm traits, it 

may be advisable to refrain from a generalization for dogs when carrying out reproductive 

studies in this species. The dog breeds could constitute a handy model to examine a diversity 

of responses in reproductive studies and also to understand different aspects of female 

reproductive biology that may influence the evolution of sperm traits.  

 
7. The evaluation of semen quality constitutes a critical parameter in species conservation as it 

was shown in work with caiman. Results can contribute to the development of reliable 

protocols regarding semen analyses in reptilian species that can be used to evaluate the 

reproductive potential. Crocodilian CASA based sperm assessment will also facilitate studies 

of sperm physiology and preservation.  
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