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Summary 

Species distribution models (SDMs) are numerical tools that combine observations of 

species occurrence or abundance with environmental estimates. The aim of these 

tools is to gain ecological and evolutionary insights and to predict distributions across 

landscapes, sometimes requiring extrapolation in space and time. 

During the last years, decision support tools for species selection in Spain have been 

based on species distribution models (also called ecological niche models), that 

estimate the probability of occurrence of the species as a function of environmental 

predictors (e.g., climate, soil). The choice of the statistical method may have a 

dramatic effect on model performance; therefore comparisons of methods have 

received much interest in the last decades. 

Modelling patterns of the presence/absence of species using local environmental 

factors has been a growing problem in Ecology in the last few years. This kind of 

modelling has been extensively used to address several issues, including the 

identification of essential fauna habitats in order to classify and manage conservation 

areas, and predicting the response of species to environmental features. Different 

approaches and methodologies have been proposed in this perspective during this 

time, most of them based in regression models from a classical perspective.  

Several projects have focused on comparing these different methods. Most of these 

applications consist of explanatory models that seek to assess the relationship 

between environmental variables. Moreover, the theory of these methods is based on 

the fact that the observations are independent, while spatial autocorrelation is 

common in georeferenced ecological data. Spatial autocorrelation should be taken 

into account in the species distribution models, even if the data were collected 

through a standardized sampling scheme, since the observations are often close and 

subject to similar environmental features. In addition observer error, gaps in the 

sampling, missing data, and spatial mobility of the species can also affect the models. 

As the statistical understanding of applied scientists increases and new techniques 

deliver larger, more complicated data sets, applied statisticians are faced with 

increasingly complex models. Naturally, as the complexity of these models increase, 

it becomes harder and harder to perform inference. Appropriately, a great deal of 
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effort has been expended on constructing numerical methods for performing 

approximate Bayesian inference. Undoubtedly, the most popular family of 

approximate inference methods in Bayesian statistics is the class of Markov Chain 

Monte Carlo (MCMC) methods. These methods, which exploded into popularity in 

the mid 1980’s and have remained at the forefront of Bayesian statistics ever since, 

with the basic framework being extended to cope with increasingly more complex 

problems. 

Hierarchical Bayesian models have traditionally relied on MCMC simulation 

techniques, which are computationally expensive and technically challenging, 

consequently limiting their use. However, a new statistical approach is now readily 

available, namely integrated nested Laplace approximations (INLA) via the R-INLA 

package. INLA methodology and its powerful application to modelling complex 

datasets has recently been introduced to a wider nontechnical audience. As opposed 

to MCMC simulations, INLA uses an approximation for inference and hence avoids 

the intense computational demands, convergence, and mixing problems sometimes 

encountered by MCMC algorithms. It can only be used for Gaussian models but this 

includes the class of models which we consider here for species distribution. 

Moreover, R-INLA can be compiled with the stochastic partial differential equations 

(SPDE) approach which through a discretisation of a continuous Gaussian field can 

cope efficiently with variables characterised by a complex spatial structure. This is 

the case of environmental inventories, since environmentalists or field workers start 

the inventory to target particular species, resulting in clustered spatial patterns and 

large regions without any values. Together, these new statistical methods and their 

implementation in R allow scientists to fit complex spatio-temporal models 

considerably faster and more reliably. 

This Thesis presents species distribution models through different approaches, 

showing an evolution from classical models applied during the last years as MaxEnt, 

MARS or GAM, most of them based in regression models, to state-of-the-art 

methods currently used in several disciplines such as epidemiology or public health 

(INLA).  
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1 Introduction 

1.1 Motivation 

Understanding spatio-temporal dynamics of species is one of the main issues in many 

research areas (Martínez-Minaya et al. 2018). Species distribution models (SDM) 

commonly used in Ecology consist of numerical tools that combine observations of 

species occurrence or abundance with environmental covariates. They are used to 

gain ecological and evolutionary insights and to predict distributions across 

landscapes, sometimes requiring extrapolation in space and time (Elith & Leathwick, 

2009). In SDM, the following steps are usually taken: (1) locations of occurrence of a 

species (or other phenomenon) are compiled; (2) values of environmental predictor 

variables (such as climate) at these locations are extracted from spatial databases; (3) 

the environmental values are used to fit a model to estimate similarity to the sites of 

occurrence, or another measure such as abundance of the species; (4) the model is 

used to predict the variable of interest across the study region (and perhaps for a 

future or past climate) (Hijmans & Ellith, 2015).  

Modelling patterns of the presence/absence of the species using local environmental 

factors has been a growing problem in Ecology in the last few years (Chakraborty et 

al. 2010). This kind of modelling has been extensively used to address several issues, 

including the identification of essential fauna habitats in order to classify and manage 

conservation areas (Pressey et al. 2007), and predicting the response of species to 

environmental features (Midgley and Thuiller 2007; Loarie et al. 2008). Different 

approaches and methodologies have been proposed in this perspective (see for 

instance Guisan and Thuiller 2005; Hijman and Graham 2006; Wisz et al. 2008), with 

generalized linear and additive models (GLM and GAM) (Guisan et al. 2002), 

species envelope models such as BIOCLIM (Busby 1991) and the multivariate 

adaptive regression splines (MARS) (Leathwick et al. 2005) being some of the most 

commonly used (Muñoz et al. 2013). 

Even though the limits of SDM for climate change impact assessments on complex 

ecological systems, it has been identified that species distribution models are 
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conceptually well suited for simpler practical tasks: for instance in leading climate 

change adaptation strategies that involve habitat restoration or species selection for 

reforestation or forest management (Gray & Hamann, 2011, 2013; Hamann & 

Aitken, 2013; Schelhaas et al., 2015). For such management applications, the main 

task is to match source and target ambient. However, it is uncertain whether 

subsequent long-term forest growth and forest health are well described by species 

distribution models that may be used to guide initial decisions on species choice for a 

general geographic region (Maaten et al., 2016). 

Currently the statistical understanding of applied scientists is increasing and new 

techniques can cope with larger, more complex data sets, so applied statisticians are 

faced with the need to specify sophisticated models. Logically, as the complexity of 

these models increase, it becomes harder to perform inference. The Bayesian 

approach is particularly appropriate as it is flexible and can deal with complex 

models, for instance including hierarchical structure or including missing data. 

Undoubtedly, the most popular family of approximate inference methods in Bayesian 

statistics is the class of Markov Chain Monte Carlo (MCMC) methods. These 

methods, which exploded into popularity in the mid 1980s have remained at the 

forefront of Bayesian statistics ever since, with the basic framework being extended 

to cope with increasingly more complex problems (Simpson et al. 2011). 

Hierarchical models can simplify complex interactions by allowing parameters to 

vary at more than one level via the introduction of random effects. The expected 

value of the response is then expressed conditional on these random effects 

(Cosandey-Godin et al. 2014). The advantages of using hierarchical Bayesian models 

emerge more so as complexity increases, when, for example, spatio-temporal 

variability needs to be modelled explicitly (Cressie et al. 2009). The Bayesian 

framework also offers the advantage of providing full inference, such that model 

parameters and uncertainty can be quantified, which has great use in applied 

conservation (Wade 2000; Wintle et al. 2003). 

Hierarchical Bayesian models have traditionally relied on MCMC simulation 

techniques, which are computationally expensive and technically challenging, 

consequently limiting their use. However, a new statistical approach is now readily 

available, namely integrated nested Laplace approximations (INLA) via the R-INLA 

package (http://www.r-inla.org) (Cosandey-Godin et al. 2014). INLA methodology 
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and its powerful application to modelling complex datasets has recently been 

introduced to a wider nontechnical audience (Illian et al. 2013). As opposed to 

MCMC simulations, INLA uses an approximation for inference and hence avoids the 

intense computational demands, convergence, and mixing problems sometimes 

encountered by MCMC algorithms (Rue and Martino 2007). It can only be used for 

Gaussian models but this includes the class of models which we consider here for 

species distribution. Moreover, R-INLA can be compiled with the stochastic partial 

differential equations (SPDE) approach (Lindgren et al. 2011) which trough a 

discretisation of a continuous Gaussian field can cope efficiently with variables 

characterised by a complex spatial structure. This is the case of environmental 

inventories, since environmentalists or field workers start the inventory to target 

particular species, resulting in clustered spatial patterns and large regions without any 

values. Together, these new statistical methods and their implementation in R allow 

scientists to fit complex spatio-temporal models considerably faster and more reliably 

(Rue et al. 2009). 

Some of the latest species distribution models only use the presences of the species in 

the modelling process. Other methods use presence/absence data or pseudo-absences. 

Logistic regression is the traditional approach to analysing presence/absence data 

(Hijmans & Ellith, 2015). Currently the statistical understanding of applied scientists 

is increasing and new techniques can cope with larger, more complex data sets, so 

applied statisticians are faced with the need to specify sophisticated statistical 

models. Logically, as the complexity of these models increase, it becomes harder to 

perform inference. The Bayesian approach is particularly appropriate as it is flexible 

and can deal with complex models, for instance naturally accounting for a 

hierarchical structure which could characterize the data or allowing for missing data 

imputation. Undoubtedly, the most popular family of approximate inference methods 

in Bayesian statistics is the class of Markov Chain Monte Carlo (MCMC) methods. 

These methods, which exploded into popularity in the mid-1980s have remained at 

the forefront of Bayesian statistics ever since, with the basic framework being 

extended to cope with increasingly more complex problems (Simpson et al. 2011). 

1.2 Objectives 

The aim of this thesis is to approach spatial distribution of different groups from 

different perspectives in order to analyse the different approaches to this problem. 
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This work is a trip from the classical approach, commonly used by ecologists, to 

more complex solutions, already applied in several disciplines. 

We are focused in applying advanced modelling techniques in order to understand 

species distribution and species behaviour and the relationships between them and 

environmental factors and have used first the most common models applied in 

ecology to move then to more advanced and complex perspectives. 

The aim of the first project is twofold. We present and explain, from a mathematical 

point of view, several common tools designed for species distribution modeling. We 

are going to be focused on how these tools develop models based on regressions, and 

explore the advantages and disadvantages of each model. Then, we are going to 

compare these models and decide which is the most accurate according to easily 

understood indicators. 

During the second paper we are going to be focused in to build a spatial model to 

predict the spatial distribution of several species characterised by a low level of 

presences, which leads to data sparsity. We will use real data on five species of 

amphibians obtained from inventories developed in Las Tablas de Daimiel National 

Park (TDNP-Spain) in 2011-2012 supported with environmental variables. Our 

approach is to specify a Bayesian hierarchical geostatistical modelling framework 

accounting for spatial dependency. 

Finally, during the third project, the aim is to build spatial and spatio-temporal 

models to predict the distribution of four different species present in the Spanish 

Forest Inventory. We want to compare the different models and show how 

accounting for dependencies in We will generate distribution models for each 

species. We will specify a Bayesian hierarchical geostatistical modelling framework 

accounting for spatial dependency. 

1.3 Data 

We can define two data sources according to the projects generated during the PhD. 

For the first and the third project we have used data from the National Forest 

Inventory of Spain and for the second project data from a Herpetological inventory 
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developed in the Tablas de Daimiel National Park. We can define the dataset used 

and analysed as follow. 

The main data used during the projects dedicated to Forest Inventories were obtained 

from the Spanish Ministerio de Agricultura, Pesca y Alimentacion. Some of them 

(data from IV Inventory) were requested as for the moment are not available due to 

the inventory was not finished. 

For the first paper published, “Development and Comparison of Species Distribution 

Models for Forest Inventories” (de Rivera and López-Quílez, 2017), we have 

analysed data from the II Spanish National Forest Inventory. Dataset comprises a 

systematic grid with 91,889 plots. From the data available, we have analysed 

presence and absence of 17 forest trees species. 

Also, we have analysed 10 climatic predictors commonly used in tree species 

autecology in Spain (Alonso et al., 2010): mean summer rainfall, mean annual 

rainfall, mean summer temperature, mean annual temperature, mean of maximum 

temperatures of the warmest month, mean of minimum temperatures of the coldest 

month, mean annual potential evapotranspiration, mean annual water surplus, and 

mean annual water deficit. All these data was obtained from the climatic data grids 

by applying the models for climatic estimation produced by Sánchez Palomares et al. 

1999 to the Shuttle Radar Topography Mission (STRM) 3-arc-second (≈ 90 m) 

elevation dataset (Farr et al. 2009). These models interpolate monthly climate data 

from weather stations using latitude, longitude, and elevation as independent 

variables. Finally, we have used the European Soil Database (Panagos et al. 2012) to 

allocate each plot to a parent material class (calcareous or siliceous). The distribution 

of calcareous parent materials is a really useful predictor of plant species distribution 

in Mediterranean ecosystems (Gastón et al., 2009). 

For the second project, titled “Species Distribution Modelling through Bayesian 

hierarchical approach” (de Rivera et al, 2017), was obtained directly from the 

inventory. Dr. Martin Sanz developed the inventory capturing data of 

presence/absence of the species and also the ambient where the point was captured. 

Coordinates were obtained from GPS points captured during the inventory. 
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The data set come from an inventory developed in Las Tablas de Daimiel National 

Park during 2011 and 2012, comprising 234 sample points with coordinates. Each 

sample point has the presence or absence of each species, elevation in meters and 

information about the ambient (categorical variable with the following categories: 

Salt marsh, Reed bed, Islands, areas of Typha latifolia, Cladium mariscus and free of 

vegetation). 

For the third project, titled “Assessing the spatial and spatio-temporal distribution of 

forest species via Bayesian hierarchical modelling” (de Rivera et al, 2017), we have 

analysed data from the II, III and IV Spanish National Forest Inventory. In this case 

we have analysed only data from the province of Galicia, and only four species  

In this case we have analysed the environmental variables from Herrera et. al. (2012 

and 2016) and are those typically considered in this type of studies: mean annual 

temperature, mean of maximum temperatures of the warmest month, mean of 

minimum temperatures of the coldest month and mean annual rainfall. We also 

considered the distribution of calcareous parent materials is a useful predictor of 

plant species distribution in our study area (Gastón et al., 2009). We used the 

European Soil Database (Van Liedekerke et al., 2006) to allocate each plot to a 

parent material class (calcareous or siliceous). 

1.4 Software 

As we have commented previously, we have approached the species distribution 

model problem from several approaches. 

The main software used was R statistical software and some packages/extensions. 

Moreover, during the first project we have worked with several software in order to 

understand and evaluate different aspects of species distribution models. 

During the first project, model selection was based on ease of working with each 

model and the possibility of repeating each process with the same characteristics 

using the species studied. We therefore constructed the models with one of the most 

widely used models (MaxEnt), and others based on simple software developed by 

Saldorf System (CART and MARS); finally we built an additive model using R 

software. 
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1.5 Papers 

The projects developed have been presented in different international meetings and 

divulgated in different international journals. 

“Development and Comparison of Species Distribution Models for Forest 

Inventories” (de Rivera and López-Quílez, 2017), focused on model comparison 

using the most common species distribution models and comparing these against an 

additive model with thin plate splines was presented and published on June 2017, on 

the International Journal of Geo-Information, 6 (6), 176. 

“Assessing the spatial and spatio-temporal distribution of forest species via Bayesian 

hierarchical modelling”. (de Rivera et al, 2018a), is an approach to species 

distribution models from a Bayesian perspective. Using reptiles and amphibians data 

we have analysed the spatial distribution using environmental variables. This project 

was presented during the Autumn Meeting on Latent Gaussian Models (2015) in 

Trondheim (Norway) and published on Theoretical Ecology, pp.1-11. In press. 

Finally, “Assessing the spatial and spatio-temporal distribution of forest species via 

Bayesian hierarchical modelling” (de Rivera et al, 2018b). In this case, results were 

presented during the Statistical Ecology Research Fest (2016) in Canterbury (United 

Kingdom) and published on Forests, 9(9), p.573. 
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2 Methodology 

The steps followed during this research were from the application of known 

techniques applied in population’s research to more complex approaches used 

successfully in other disciplines.  

We are going to summarise the different methods used. This summary is going to be 

a first approach that is going to be properly explained in the different papers attached. 

Below are the ways used to approach the problem, from frequentist to the final goal, 

the spatio-temporal model. 

2.1 Usual Species Distribution Models 

a) MaxEnt (maximum entropy) (Elith et al., 2006, Phillips et al. 2008) 

MaxEnt is an artificial intelligence method based on the statistical principle of 

maximum entropy. Models are limited by the value of the variables used to develop 

the problem. For example, the expected value (mean value predicted by the model) of 

each independent variable must match its empirical average (mean value observed 

when sampling with an independent variable occurrence data item). 

MaxEnt obtains the maximum entropy probability of distribution, in other words, the 

distribution nearest to the uniform distribution, with all the conditions. 

MaxEnt is based on the following points: a) the presence of a species is represented 

by a likelihood function on a set of points in the study zone. The likelihood function 

gives a positive value everywhere so that the sum is the unity; b) building a model of 

the function with a group of constraints obtained from empirical data of presence; c) 

the restrictions are expressed as a simple function of known environmental variables; 

d) in the MaxEnt method, the average forces of each function of each variable are 

close to the actual average of the variable zones of presence; e) of the possible 

options available, a specific combination of features is selected to minimize the 

entropy function (measured by the Shannon index). The entropy function allows 

optimal selection of variables and functions based on their significance, and 

eliminates restrictions that do not provide the model with significance. 
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b) MARS (multivariate adaptive regression splines) 

MARS is a statistical method developed by (Friedman, 1991). It involves designing 

flexible models in which the data are adjusted to partial regressions. When models 

are nonlinear, they are approximated by partial linear regression, where the grade of 

the equation changes from one step to another, establishing a node between the end 

of one linear regression and the beginning of the next.  

A node indicates the end of one partial regression and the beginning of another. 

Between two consecutive nodes, logically the model is defined by a linear regression. 

The nodes are selected with the aid of a search procedure that generates a stepper 

algorithm. The model generated is overfitted, so the less relevant nodes are 

subsequently removed using a statistical approach known as generalized cross 

validation. Finally, we only considered the most significant nodes. 

c) CART (classification and regression trees) 

This method was established by Breiman et al. (1984) and generates binary trees 

(parent nodes are divided into two child nodes) by iterative partitions, in a process 

that can be repeated to attempt to turn each child node into a parent node. The 

algorithm searches for the optimal cutoff values among all the independent variables 

to obtain an optimal set of binary divisions, so as to minimize the variance within 

each node and maximize it between different nodes; it is therefore possible that some 

variables will be unused. Once the tree that best classifies the cases has been 

identified, with no limits on complexity, the algorithm 'prunes' or simplifies to avoid 

overfitting of the data. The result is a tree that establishes yes/no questions. 

Depending on the kind of dependent variable can be two types of trees: regression 

(continuous dependent variable) and classification (discrete variable). 

The most important advantages of classification and/or regression trees are 

(Schiattino & Silva, 2008): a) structured knowledge is obtained in the form of 

classification rules or the values of a variable interval. This knowledge is easy to 

interpret, and in simple language characterizes the classes or values of a variable 

interval; b) as it is a nonparametric analysis (distribution free procedure), it requires 

no distributional assumptions to validate probability; c) it allows working with all 

types of predictor variables: binary, nominal, ordinal and interval or ratio; d) it allows 

unknown values for the predictor variables in the individuals, both in the construction 
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phase and in the tree prediction; e) in the case of classification probability, it can be 

set to a priori classes; f) the observations can be weighed using an ad-hoc variable. 

2.2 Generalized additive model with thin plate splines 

a) Model structure 

A generalized additive model is a generalized linear model in which the linear 

predictor be determined by linearly on unidentified smooth expressions of some 

variables, and interest focuses on inference about these smooth expressions. Additive 

models were originally built by (Schiattino & Silva, 2008) to combine properties of 

linear models with additive models. 

A smoother is an instrument for summarizing the tendency of a dependent variable as 

an expression of one or more independent variable. It generates an estimate of the 

tendency that is less mutable than Y itself; therefore the name ‘smoother’. 

The most significant characteristic of a smoother is its non-parametric nature, so the 

smooth function is also known as non-parametric function. Its biggest difference 

from the Generalized Linear Model is that it does not undertake an inflexible form 

for the function’s dependence on variables. It allows an approach with the addition of 

expressions (expressions that have separated input estimates), not just with one 

indefinite expression only. For this reason it is the building block of the generalized 

additive model algorithm (Liu, 2008) 

Testing the different types of splines reveals that the best model helped with the AIC 

value is the Additive model with thin plate regression splines. The thin plate spline is 

the two-dimensional equivalent of the cubic spline in one dimension. It is the 

essential resolution to the biharmonic equation. 

Assumed a dataset of points, a weighted mixture of thin plate splines concentrated 

about each point gives the interpolation expression that passes through the points 

precisely while reducing the so-called ‘bending energy.’ Bending energy is defined 

here as the integral over R2 of the squares of the second derivatives. Regularization 

should be used to decrease the necessity that the interpolant pass through the data 

points exactly. 
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The designation of ‘thin plate spline’ is a physical analogy referring to the flexible of 

a thin sheet of metal. In the physical situation, the deflection is in the z direction, at 

right angle to the plane. In order to apply this impression to the problem of 

coordinate conversion, the lifting of the plate is interpreted as a dislocation of the x or 

y coordinates within the plane (Donato & Belongie, 2002) 

These splines are short rank isotropic smoothers of any number of variables. The 

splines are isotropic because any variation of the covariate co-ordinate system will 

not modify the output of smoothing. The low rank means that they have rarer 

coefficients than there are data to smooth. They are the default smooth for ‘s’ terms 

due to there is a clear logic in which they are the ideal smoother of any given basis 

measurement/rank (Wood, 2003). 

In this case, as we are building the model with R we used the mgcv package (Wood 

2000, 2003, 2004, 2006, 2011) to construct the additive model. 

b) Model comparison 

The area under the receiver operating characteristic (ROC) function (AUC) is taken 

to be an important index because it provides a single measure of overall accuracy that 

is independent upon a particular threshold (Deleo, 1995). If the objective is to rank 

the classifiers, comparisons using ROC plots are more robust since they are not 

dependent of the values in a confusion matrix (Fielding & Bell, 1997). An ROC 

graph is a method for visualizing, establishing, and selecting classifiers based on their 

presentation. ROC curve analysis was developed during World War II as a tool in 

signal processing, and is now used in many branches of science. Standard references 

for ROC curve analysis are (Fielding & Bell, 1997; Metz, 1978; Hanley & McNeil, 

1982; Murphy & Winkler, 1992; Pearce & Ferrier, 2000; Marzban, 2004). 

Although ROC graphs are conceptually simple, their application in research contexts 

gives rise to some complexities that are not obvious and their practical use entails 

some common misconceptions and pitfalls (Fawcett, 2005). 

ROC graphs are two-dimensional graphs where the true positive rate is presented on 

the Y axis and the false positive rate is presented on the X axis. An ROC graph 

represents relative adjustments between profits (true positives) and expenses (false 
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positives). Figure 2 shows the area under two ROC curves, A and B. Classifier A has 

a greater area and, therefore, better average performance. 

Finally, it is probable for a low-AUC classifier to perform better in a specific region 

of the ROC space than a high-AUC classifier. Figure 2 shows an example of this: 

classifier B is generally worse than A, except at an fp rate > 0.6 where B has an 

insignificant advantage. However, in practice the AUC performs very well and is 

often used when a general measure of predictiveness is desired. 

In order to analyse suitability of the different models we have used the ROCR 

package (Sing et al. 2012) to obtain the validations, and AUC values and graphics.  

 

2.3 Geostatistical model 

In several fields of research, researchers analyse data geographically referenced. 

These data are called spatial data and we can identify three areas: lattice data, point-

reference (or geostatistical data) and spatial point patterns (Blangiardo and Cameletti 

2015; Giraldo, 2002). 

Area or Lattice data: locations belong to a discrete set and are selected by the 

researcher. These can be regular or irregularly spaced. Usually area is typically 

irregular and based on administrative boundaries and the second one is regular (grid). 

In these cases we are interested in mapping an outcome over the area analysed. 

Spatial Point Patterns: locations belong to a set that can be discrete or continuous and 

their selection does not depend on the researcher. For example, we might be 

interested in the locations of trees of a species in a forest. 

Geostatistical data: locations come from a continuous set and are selected according 

to the researcher's judgment. In this case we are looking in predicting the outcome at 

unobserved locations. 
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These models can be specified in a Bayesian framework extending the concept of 

hierarchical structure, letting us to account for connexions based on distance or 

relationships between neighbours. 

a) Model structure 

Spatial data are defined as realisations of a stochastic process indexed by space:  

𝑌(𝑠)   ≡   {𝑦(𝑠),  𝑠 𝜖 𝐷} 

where D is a (fixed) subset of R
d
 (here we consider d = 2). The actual data can be 

then represented by a collection of observations y = {y(s1), ..., y(sn)}, where the set 

(s1, ..., sn) indicates the spatial units where the measurements are taken. Depending on 

D being a continuous surface or a countable collection of d-dimensional spatial units, 

the problem can be specified as a spatially continuous or discrete random process, 

respectively (Gelfand et al., 2010). In our case, we can consider a collection of data 

points with presence/absence obtained from the inventory and the sampled points are 

the set (s1, ..., sn) of n points; ys is the presence of each specie in each point and it is 

specified as  

𝑦𝑠~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑠) 

where πs is the probability of the species being present.  

Then on the logit(πs) a linear model is specified including the different covariates, xms 

(Temperatures, precipitation, soil and elevation) and a spatial field ξs  

logit (𝜋𝑠) = 𝑏0 + ∑ 𝛽𝑚

𝑀

𝑚=1

𝑥𝑚𝑠 + 𝜉𝑠 

where a discretely indexed spatial random process (see Lindgren et al. 2011) is 

included to approximate the continuous process. The key idea of the SPDE approach 

consists in defining the continuously indexed Mat´ern GF ξ(s) as a discrete indexed 

GMRF by means of a basis function representation defined on a triangulation of the 

domain D 
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𝜉𝑠 = ∑ 𝜑𝑔(𝑠)

𝐺

𝑔=1

𝜉𝑔 

Here G is the total number of vertices in the triangulation, {𝜑𝑔} is the set of basis 

functions and {𝜉𝑔} are zero-mean Gaussian distributed weights. The basis functions 

are chosen to be piecewise linear on each triangle, i.e. ϕg is 1 at vertex g and 0 

elsewhere. Notice that we use the formal notation 𝜉𝑠  in the left-hand side of the 

expression since SPDE provides a representation of the whole spatial process 

(defined for any point s) that varies continuously in the considered domain D
4 

(Blangiardo and Cameletti 2015). 

b) Implementation  

We have used the Integrated Nested Laplace Approximation (INLA) implemented in 

the R-INLA package to be used from within R statistical software. In R-INLA the 

first step required to run the geostatistical spatial model with only one covariates (M 

= 1 represented by elevation or vegetation), is the triangulation of the considered 

spatial domain. We use the inla.mesh.create specifying the spatial coordinates used 

for estimation. The inla.mesh.create performs a constrained refined Delaunay 

triangulation for a set of spatial locations: firstly the triangle vertices are placed at the 

observation locations and then further vertices are added in order to satisfy 

triangulation quality constraints (Lindgren et al., 2011). Depending on the values 

chosen for inla.mesh.create arguments, the total number of vertices changes with a 

trade-o between the accuracy of the GMRF representation and the computational and 

time costs. We can summarise the process as follows, with a similar approach than 

explained in Blangiardo et al. 2013. 

With the setting used above we obtain a mesh with 3328 vertices, which can be 

obtained in the R terminal by typing mesh$n. Given the mesh, we have created the 

spde model object, to be used later in the f() term in the R-INLA formula, with the 

expression 

spde=inla.spde2.matern(mesh=mesh) 
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We have used now the helper function inla.stack which builds the necessary 

matrices required by the SPDE approach and of combining the data, the observation 

matrix 𝐴 and the linear predictor 𝜂; some details about the usage of the inla.stack 

function can be found also in Cameletti et al. (2011). Before employing 

inla.stack, we create the object A.est which corresponds to ~A 

A.est = inla.spde.make.A(mesh, loc=loc) 

and is a 2000 3328 sparse matrix that extracts the values of the latent spatial field at 

the observation locations. Moreover, we generate the required vectors of indices 

field.indices=inla.spde.make.index("field",n.mesh=mesh$n) 

with field.indices being a list whose first component is called field and 

contains the spatial vertex indices (i.e, the sequence of integers from 1 to 3328). 

Finally, we call the inla.stack function that takes in input the data (data), an 

identification string (tag) and the components of the observation matrix (A) and of 

the linear predictor (effects), combined together in list-type objects: 

stack.est <- inla.stack(data=list(presence=species), 

A=list(A.est,1,1,1,1,1,1,1), tag='est',                

effects=list(field=field.indices, altII=inventory$Z, 

soilII=inventory$A, PreII=inventory$Ppr, 

TasII=inventory$Tas, tasMAXII=inventory$tasMAX, 

tasMINII=inventory$tasMIN,intercept=rep(1,length(species)

))) 

Note that each term in A has its own linear predictor component in the effects object 

so that, for example, A.est is paired with the list composed by field.indices 

and Intercept=1 (this may seem a little strange but it is due to how the SPDE related 

functions are internally coded). Similarly, we create the corresponding objects 

inla.val and stack.val for the validation stations with the only difference that, since 

we are interested in prediction, we have specified 

data=list(presence=species) in the inla. stack function.  
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stack.pred<- inla.stack(data=list(presence=species), 

A=list(A.est,1,1,1,1,1,1,1), tag='pred', 

effects=list(field=field.indices,altII=inventory$Z,soilII

=inventory$A,PreII=inventory$Ppr,TasII=inventory$Tas,tasM

AXII=inventory$tasMAX,tasMINII=inventory$tasMIN,intercept

=rep(1,length(species)))) 

Finally, we combine all the data, effects and observation matrices using the command 

stack=inla.stack(stack.est, stack.pred) 

In the R-INLA formula we include the spde model object named field; 

moreover, note that, due to the way inla.stack works, we need to specify an 

explicit Intercept term and remove the automatic intercept with -1.  

Formula  = presence ~ -1 + intercept + alt + soil + Pre + 

TasII + tasMAX + tasMIN + f(spatial.field, model=spde) 

Finally, we can run the specified model calling the inla function as follows: 

mod=inla(formula, data=inla.stack.data(stack,spde=spde), 

family="binomial", 

control.predictor=list(A=inla.stack.A(stack), 

compute=TRUE), control.compute=list(dic=TRUE,waic=TRUE)) 

the functions inla.stack.data and inla.stack.A simply extract the 

required data and the observation matrix from the stack object. The option 

compute=TRUE is required to obtain the marginal distributions for the linear 

predictor. We retrieve the posterior summary statistics of the fixed effects a and b 

from the object mod$summary.fixed, while the posterior marginal of the 

precision 𝜏𝑒 = 1/𝜎𝑒
2  is included in the list mod$marginals. hyperpar. If we are 

interested in the variance 𝜎𝑒
2 , we employ the function inla.emarginal for 

computing the expected value of the (reciprocal) transformation of the posterior 

marginal distribution. The results on the parameters of the Matèrn spatial covariance 

function can be obtained typing 
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mod.field=inla.spde2.result(mod, name="spatial.field", 

spde) 

where the string name refers to the name of the spde effect used in the inla formula. 

Applying the suitable transformations through the inla.emarginal function as 

described in Cameletti et al. (2011), we obtain the posterior estimates for the spatial 

variance 𝜎𝑒
2 C and for the range  𝑟. Then, we extract the linear predictor values on the 

mesh 

index.pred=inla.stack.index(stack,"pred")$ data 

lp.mean.pred=mod$summary.linear.predictor[index.pred, 

"mean"] 

lp.sd.pred=mod$summary.linear.predictor[index.pred, "sd"] 

 

c) Model evaluation 

A natural way to estimate out-of-sample prediction error is cross-validation (see 

Geisser and Eddy, 1979, and Vehtari and Lampinen, 2002, for a Bayesian 

perspective), but researchers have always sought alternative measures, as cross-

validation requires repeated model and can run into trouble with sparse data (Gelman 

et al. 2013). In a comparative perspective (e.g. to evaluate which model the data best) 

the most used index is the DIC (Spiegelhalter et al., 2002, van der Linde, 2005) 

which consists of two components, a term that measures goodness of t and a penalty 

term for increasing model complexity. 

More recently the WAIC (Watanabe, 2010) this approach has been proposed as a 

suitable alternative for estimating the out-of-sample expectation is a fully Bayesian 

approach. This approach starts with the computed log pointwise posterior predictive 

density and then adds a correction for the efective number of parameters to adjust for 

overfitting (Gelman et al. 2013). WAIC operates on predictive probability density of 

observed variables rather than on model parameter, hence it can be applied in 

singular statistical models (i.e models with non-identifiable parameterization (Li et 

al. 2015). 
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2.4 Extension spatio-temporal 

Analysing only the spatial patter or ecological processes does not allow saying 

anything about their temporal variation which could even more interesting than only 

the spatial distribution. The objective is to understand and estimate a spatial varying 

phenomenon. If we consider the data aggregated over the time we can only model the 

spatial pattern, but if we disaggregate the data by time, we can now investigate a 

temporal trend. 

The concept of spatial process can be extended to the spatio-temporal case including 

a time dimension. The data are then defined by a process 

𝑌(𝑠, 𝑡)   ≡   {𝑦(𝑠, 𝑡), (𝑠, 𝑡) 𝜖 𝐷 𝜖 ℝ2 × ℝ } 

As we define in the spatial model, we can consider a collection of data points with 

presence/absence obtained from the inventory and the sampled points are the set 

(s1, ..., sn) of n points; yst is the species presence at each point in space and time, 

specified as 

𝑦𝑠𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑠𝑡) 

where πst is the probability of the species being present.  

Then on the logit(πst) a linear model is specified including the different covariates, 

xms (Temperatures, precipitation, soil and elevation) and a spatio-temporal field ωst 

logit(𝜋𝑠𝑡) = 𝑏0 + ∑ 𝛽𝑚

𝑀

𝑚=1

𝑥𝑚𝑠+𝜔𝑠𝑡  

where 𝜔s𝑡 refers to the latent spatio-temporal process that changes in time with 

autoregressive dynamics and spatial correlation innovations, which we model as 

follows: 
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𝜔𝑠𝑡 = 𝑎𝜔𝑠(𝑡−1) + 𝜉𝑠𝑡 

with t=2, …T, |𝑎|<1 and 𝜔𝑠1~𝑁𝑜𝑟𝑚𝑎𝑙(0,
𝜎2

1−𝑎2) . 𝜉𝑠𝑡, is a zero-mean Gaussian field 

temporally independent with the following spatio-temporal covariance: 

Cov(𝜉𝑠𝑡 , 𝜉𝑗𝑢) = {
0,                        𝑡 ≠ 𝑢

Cov(𝜉𝑠𝑡 , 𝜉𝑗𝑢),   𝑡 = 𝑢
 

for i ≠ j , where Cov(𝜉𝑖𝑡 , 𝜉𝑗𝑢) is modeled through the Matern spatial covariance 

function.  

To implement this model in R-INLA, we need to define a similar process to the 

spatial one, including the time in the expressions. To obtain the temporal 

differentiation we define a number of groups based in the dates of the inventories. 
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3 Results 

In order to summarize results in this chapter we are going to show results from the 

process or technical perspective, avoiding, as far as possible, explanations about 

ecological findings not related with the models per se. As we said in the beginning 

we have approached similar problems from different perspectives. 

From a general perspective and comparing the different models applied during the 

process, from MaxEnt to spatio-temporal models with INLA, we can affirm that the 

models that we have developed show better results that the already built. Also, it is 

difficult to compare between the different approaches, but the Bayesian approach 

shows more flexibility and also the inclusion of spatial field or the latent spatio-

temporal process give in a way the possibility to understand that variables that are not 

possible to evaluate, can be included in this expression as a residual. 

Results obtained with INLA in both projects show interesting information about how 

the different species are related to different environmental variables. As we said 

before, in this summary we are not looking to explain how the species are related to 

these variables, our main objective is to show the results related to the different 

models used. 

Below we are going to summarise results of individual papers to identify the goals 

obtained during the different projects. 
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3.1 Development and Comparison of Species Distribution Models for 

Forest Inventories (Rivera and López-Quílez, 2017) 

 

For the first study we performed with a large number of species revealing some 

important results. 

A two-way ANOVA shows that all the environmental variables included in the 

models are significant for all measures of performance (P < 0.05). All models 

designed have good predictions and obtain high AUC values. 

Analyzing predictability, based in AUC we have obtained that: for all the species 

analyzed, MARS and MaxEnt are the models with the lowest predictability and 

consequently with the lowest AUC average; however, CART and GAM generally 

have the highest AUC values. 

The following ecological modelling methods are compared: MARS and MaxEnt, 

CART and GAM.TP. The scatterplot graph shows the different models’ behavior, 

demonstrating that all have good predictability based on their AUC value. 

For the different species, all the statistical models show similar behaviour and they 

performed in the same way. Moreover, comparing model predictability, the AUC 

values in GAM.TP have better results on average than the others. 

Analysing the results, species with the highest number of presences have lower 

values in the predictions due to a wide range of the environmental variables. In 

contrast, the species with the more absences have the highest AUC values, perhaps 

due to the representative environmental characteristics that give rise to the presence 

of these species. 

If we analyse presence-absence from the dataset and compare with the AUC average, 

we find that the relationship between AUC and percentage of presence is negative 

(based on the correlation index), with a value of -0.75. Species with the highest 

percentage of presence have lower values of AUC than other less represented species 

in the area of study 
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In summary, every AUC value obtained with those models is significant and all the 

models could be useful to represent the distribution of each species. 

Overall, the Additive model with thin plate splines gave the best results. MaxEnt, 

CART and GAM.TP with thin plates splines obtained similar AUC values. 

The worst capability was obtained with MARS. This model’s performance was 

below average for several species. 

The models we developed obtained better results because they allowed for changes 

and calibrations. In this case we were aware of all the processes that occurred during 

the modelling. By contrast, models obtained using specific software in general 

performs like “hermetic machines”, because it could sometimes be impossible to 

understand the stages followed toward the final results. 
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3.2 Species Distribution Modelling through Bayesian hierarchical 

approach (de Rivera et al, 2018a) 

 

During the second project we have analysed species with low number of presences, 

comparing the different models using WAIC (Watanabe, 2010). In this case, there are 

not big differences between models, only we can affirm that the model with a smaller 

number of environmental variables has better fit. 

We have also calculated the conditional predictive ordinate (CPO) (Pettit, 1990) to 

evaluate model assessment. The conditional predictive ordinate (CPO) is based on 

leave-one-out-cross-validation. CPO estimates the probability of observing a value 

after having already observed the others. The mean logarithmic score (LCPO) was 

calculated as a measure of the predictive quality of the model (Gneiting and Raftery, 

2007; Roos and Held, 2011). High LCPO values suggest possible outliers, high-

leverage and influential observations. 

Finally, we have used an AUC (Area Under operating Curve score) approach to 

calculate the predictive accuracy of each method by comparing the validation data 

with the predicted presence value. AUC represents a commonly used and adequately 

performing measure of predictive accuracy (Huang and Ling, 2005) and works by 

calculating the relative numbers of correctly and incorrectly identified predictions 

across all possible classification threshold values of the binomial response, with an 

AUC value equal to or below 0.5 indicating a predictive ability equal to random 

expectation and 1 a perfect predictive ability (Qiao et al. 2015). 

Analysing the different results obtained, we can affirm that the first model obtained 

using only the elevation has a better fit than the model with elevation and ambient. 

However, based on LCPO the model with ambient has fewer outliers. Also, we have 

compared performance of the different models based in AUC, these analysis shows 

similar results than LCPO, obtaining better values in models without ambient. 

Looking at the WAIC, most of the species have a better fit for the model with 

vegetation (except Bufo bufo and Pelobates cultripes), but looking at LCPO values 

Ambient seems to increase the number of outliers. Also, looking at AUC values, 
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models with ambient have lower predictability. However, results are really similar 

across both models. 

Finally, we can see that hierarchical models are particularly useful when data are 

sparse or species are similar. In our case Amphibia model, has different relationship 

with the environmental variables than the individual species included in the class 

model. 
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3.3 Assessing the spatial and spatio-temporal distribution of forest species 

via Bayesian hierarchical modelling (Rodriguez de Rivera et al, 2018) 

 

Thinking in the second project as a test to apply this approach with a large number of 

presences and also in a bigger area, we applied the knowledge acquired to analyse the 

presence of different species of forest trees in Galicia (Spain). In this case we 

compare spatial and spatio-temporal models in order to understand which one could 

be the best approach. From general perspective we can affirm that the models, 

comparing the same species using WAIC, have similar fit, and also the outputs 

obtained are really similar. Moreover, we have seen interesting results when 

comparing the relationship between variables and presence of the species. With all 

the species, the inalterable variables show similar relationship in spatial and spatio-

temporal models, but this is not the case with variables that change along the time. 

Finally, as we said, spatial and spatio-temporal models show similar output. 

Moreover, the problems that we are approaching are dynamic situations with several 

changes along the time, so the difference between use a spatio-temporal model 

instead of a spatial model is based in the continuity of the process, avoiding 

understand each period of the analysis (in our case each inventory), as an 

independent process. 

Most of the species show different relationships with environmental and climatic 

variables between spatial and spatio-temporal models. Also, if we generalise, species 

with more presences show larger differences between models. Also if we analyse the 

results from spatial to spatio-temporal models typically variables not showing a clear 

effect become positively or negatively associated with presence, depending of the 

species and the variable. 

There are interesting differences between spatial and spatio-temporal models for the 

different species. As we have shown, not always the same variables have the same 

weight in the different models. 

As we can see the behavior of the species is really different according to the 

characteristics and traditional uses and strategies, probably do to the impact of 

unobserved variables. 
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Finally, analysing the models we can affirm that the use of spatio-temporal models is 

an advantage for the understanding of the different ecological dynamics, giving the 

temporal perspective, not really frequent in environmental research projects. 
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4 Conclusions 

Looking at the experience obtained during this research as learning process, we can 

conclude the following points: 

If we analyse the models separately, from a frequentist approach, additive models 

with thin plate splines may be considered one of the greatest methods to analyse 

species distribution models working with presence-absence data, comparable to 

MaxEnt, CART and MARS. Our results show a better fit and more flexibility in the 

design. 

Looking at the quality of the data and the possibility to work with presence/absence 

values and also with a systematic survey, we can confirm, looking our results, that 

the information obtained from the absences could be more important than the 

presences. Analysing this result from an ecological perspective, absences deliver of 

the species due to the combination of several environmental predictors. 

Finally, we understand that there are more advanced approaches to apply in species 

distribution model, most of them through Bayesian approach (i.e R-INLA can be 

compiled with the stochastic partial differential equations (SPDE) approach 

(Lindgren et al. 2011) which through  a discretisation of a continuous Gaussian field 

can cope efficiently with variables characterised by a complex spatial structure), but 

our objective along the first project was show the interesting opportunities that offer 

these explanatory techniques seek to assess the relationship between environmental 

variables. 

As we said in the beginning of this conclusions this research period has worked as a 

learning process, and as a natural process we have realised that the Bayesian 

approach could be a better solution or at least a different approach for consideration. 

The main advantage of the Bayesian model formulation is the computational ease in 

model fit and prediction compared to classical geostatistical methods. The main goal 

of this study has been to predict the occurrence of species with a relatively small 

number of data points, but the data was useful to show the power of this kind of 

process and the options of the model construction. To do so, instead of MCMC we 

have used the novel integrated nested Laplace approximation approach. More 
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precisely, we have applied the work of Lindgren et al. (2011), which provides a link 

between Gaussian Fields and Gaussian Markov Random Fields through the 

Stochastic Partial Differential Equation (SPDE) approach. The SPDE approach can 

be easily implemented providing results in reasonable computing time (comparing 

with MCMC). We showed how SPDE is as useful tool in the analysis of species 

distribution. This modelling could be expanded to the spatio-temporal domain by 

incorporating an extra term for the temporal effect, using parametric or 

semiparametric constructions to reflect linear, nonlinear, autoregressive or more 

complex behaviours. 

We conclude that SPDE and INLA are promising tools to work with species 

distribution model as they save in computational times and are easy to specify and to 

implement also for non-statistician when we work with a large data set. 

There are interesting differences between spatial and spatio-temporal models for the 

different species. As we have shown, not always the same variables have the same 

weight in the different models. 

As we can see the behaviour of the species is really different according to the 

characteristics and traditional uses and strategies. Moreover, other aspects as forest 

fires can be the reason of these changes in the distribution. 

Comparing spatial and spatio-temporal models we can affirm that the use of spatio-

temporal models is an advantage for the compression of the different ecological 

processes, giving the temporal perspective, not really common in environmental 

research projects. 

An interesting point is that we have analysed the credible interval of the different 

variables from a frequentist point of view in order to understand the relationship 

between environmental variables and species presence. We can see that some 

variables change their “weight” depending of the inventory and also, several 

variables have the same behaviour in all the inventories and also along the spatio-

temporal model.  

Summarizing we can generalize that permanent and theoretical inalterable variables 

have similar performance in spatial and spatiotemporal models, showing similar 

relationship between presence of species and this variables along the time. Moreover, 
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not always species presence has similar relationship with “non static” variables. This 

relationship is changing not only due to changes in environmental factors, but also 

based on species management and possible human disturbances. 

Finally, we can conclude that Bayesian approach and particularly spatio-temporal 

models are really interesting approaches for the understanding of environmental 

dynamics, not only because of the possibility to develop and solve more complex 

problems but also for the easy understanding of the implementation processes. 
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5 Future lines of research 

Spatial and Spatio-Temporal models through Integrated Nested Laplace are statistical 

techniques widely used in several fields of knowledge. The application of this 

approach to try to understand ecological problems is emerging and from this point of 

view, several “concerns” could be analysed through this Bayesian approach. 

Development of populations of species and their behavior against the different 

problems caused by the Climate change can be a starting and generic point. 

Particularly, understand important species behavior, i.e. pollinators, could be an 

interesting problem to analyse looking for a correct management of species and 

disturbances. In order to understand the problem we can approach that insect 

pollination is vitally important to terrestrial ecosystems and to crop production. The 

oft-quoted statistics are that 75% of our crop species benefit from insect pollinators 

(Klein et al. 2003), which provide a global service worth $215 billion to food 

production (Gallai et al. 2008). Hence, the chance that we may be facing a 

“pollination crisis” (Holden, 2006), in which crop yields begin to fall because of 

inadequate pollination, has generated understandable debate and concern and 

stimulated much research in recent decades. Nonetheless, knowledge gaps remain 

substantial with regard to both the extent and causes of pollinator declines. 

Recent researches highlighted by Goulson et al. 2015 show the principal drivers of 

bee declines are: habitat loss, parasites and disease, pesticides, monotonous diets, 

competition and climate change. For most of them there are data base available to 

analyse and quantify the weight of each factor in bees decline. 

Apart of this an as a part of pending work “discovered” during the last project 

another interesting approach is understand through this approach ecological hazards 

that can affect valuables resources. In this case, understand causality of forest fires, 

pest and diseases or flooding risk could be a challenging project to create interesting 

tools in order to improve management of resources. In this case forest fires could be 

an interesting subject to analyse from a causality perspective through the time.  

Every year, over 60.000 forest fires are affecting Europe, mainly in the southern 

countries with a Mediterranean climate, burning more than 0.6 million hectares of 
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vegetation. Most forest fires in these countries are human caused and burn virtually 

everywhere across their geography, through any type of vegetation, causing 

important damages to human and environmental assets (Spano et al. 2014). 

Several models have been created to create fire danger mapping, most of them with a 

GIS approach (Chuvieco and Salas, 1996). Also, GIS has been applied to other fire 

management topics. The most promising are the location of look-out towers (Pawlina 

et al. 1990), dispatch planning (Salazar and Power 1988), ecological evolution after 

fire (Lowell and Astroch 1989), and fire growth simulation (Davis and Burrows 

1990, Vasconcelos and Guertin 1992).  

However, none of them where focused in understand the forest fire and his causality. 

An ideal approach could be to try to understand the forest as a disease, applying 

epidemiological concepts. Forest fire causality includes social, economic and 

ecological factors that affect rural and urban landscapes of the Mediterranean and 

reveal that forest fires are not the cause but the consequence of matters that go much 

beyond forests, and the smoke produced by flames. Understanding well the entire 

phenomenon must let us to identify potential solutions and even how we can take part 

in these solutions as citizens (Plana et al. 2016). 
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Abstract: A comparison of several statistical techniques common in species 

distribution modeling was developed during this study to evaluate and obtain the 

statistical model most accurate to predict the distribution of different forest tree 

species (in our case presence/absence data) according environmental variables. 

During the process we have developed maximum entropy (MaxEnt), classification 

and regression trees (CART), multivariate adaptive regression splines (MARS), 

showing the statistical basis of each model and, at the same time, we have developed 

a specific additive model to compare and validate their capability. To compare 

different results, the area under the receiver operating characteristic (ROC) function 

(AUC) was used. Every AUC value obtained with those models is significant and all 

of the models could be useful to represent the distribution of each species. Moreover, 

the additive model with thin plate splines gave the best results. The worst capability 

was obtained with MARS. This model’s performance was below average for several 

species. The additive model developed obtained better results because it allowed for 

changes and calibrations. In this case we were aware of all of the processes that 

occurred during the modeling. By contrast, models obtained using specific software, 
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in general, perform like “hermetic machines”, because it could sometimes be 

impossible to understand the stages that led to the final results. 

 

Keywords: additive model; area under the curve; AUC; forest inventory; receiver 

operating characteristic; ROC; species distribution model 

1. Introduction 

Species distribution models (SDMs) are mathematical tools based on combination of 

observations of species occurrence or abundance with environmental variables. These 

tools are used to analyze species distributions across landscapes [1]. 

In SDM we usually follow the following processes: (1) compile the locations of the 

presence of the species; (2) from databases we obtain different values of 

environmental variables (precipitation, temperature, etc.) for the compiled locations; 

(3) these environmental variables fit the models to estimate the relationship between 

sites of occurrence or species richness; and (4) the models are tools to predict the 

variable of interest across the space or time of interest [2]. 

Species distribution models comprise three main components: an ecological model, 

data, and a statistical model [3]. The most pertinent point in statistical modeling is the 

selection of the mathematical model, because a wrong selection may reduce the 

predictive power. Ecological modeling experts have shown a keen interest in the 

effects of mathematical methods on the predictive capacity of distribution models 

(e.g., [4,5]). A group from California University’s National Center for Ecological 

Analysis and Synthesis (NCEAS) carried out the most comprehensive study of 

modeling techniques to date [6]. Their research evaluated the predictive ability of 

sixteen methods with presence-only or presence-pseudo-absence data on six regions 

with more than 200 species. Results showed that new methods, such as maximum 

entropy (MaxEnt), have greater predictive power than other methods, such as logistic 

regression (both adjusted generalized linear models, GLM, and adjusted generalized 

additive models, GAM). Subsequent studies have also obtained better predictive 

capacity for MaxEnt than for logistic regression [7–11]. 
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Decision support tools for plant species selection for ecological/environmental 

management have been based on species distribution models (also called ecological 

niche models) that analyze the probability of the presence of the species as a function 

of environmental variables (e.g., precipitation, temperature,  or soil properties).  The 

idea of developing statistical models, with several variables,  to predict the potential 

distribution of species could be a complex task requiring in-depth study of several 

statistical methods that provide fairly inconsequential results. Several tools are now 

available to facilitate this task. Several studies have compared the performance of 

different statistical approaches to predict species distributions, obtaining a variety of 

suggestions about model selection [5,6,12]. 

Some of the latest species distribution models only use the presence of the species in 

the modeling process. Other methods use presence/absence data or ‘background’ 

data. Logistic regression is the traditional approach to analyzing presence/absence 

data [2]. Our study uses a large dataset with presence-absence and, therefore, requires 

a method that can use these data; in other words, a method with presence-absence 

data. We understand that MaxEnt is not a presence-absence method; in fact, it uses 

the presence-only data and a user-defined number of randomly-selected points, 

combining these with the covariates to build an index of habitat suitability for each 

cell ranging from 0 (least suitable habitat) to 1 (most suitable habitat). Moreover, 

MaxEnt was included in this analysis because of is one of the most commonly used 

methods as a species distribution model, as we can see summarized in [13]. 

The aim of this paper is two-fold. The first aim is to present and explain, from a 

mathematical point of view, different common tools designed for species distribution 

modeling.  Our main target  is to show how these tools develop models based on 

regressions, and explore the advantages and disadvantages of each model. The 

second aim is to compare these models and decide which is the most accurate 

according to easily understood indicators. 

This study uses real data on seventeen forest species obtained from the Spanish 

National Inventory, supported with environmental variables. These species, with 

presence-absence, were first located with geographical coordinates. We then 

generated distribution models with tools designed to create this kind of model.  

Finally,  we developed an additive model with R and compared the results from  it to 

evaluate the predictive capability of all of the models in an attempt to answer the 
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following questions: Does anyone statistical technique have a regularly greater 

predictive ability than the others for all types of relationships between environmental 

variables and the presence of the species? [14] Are species with a higher presence 

easier to predict than others that are less represented? 

The paper proceeds as follows: In Section2(Material and Methods), we review the 

principal properties of different models and the way each model is evaluated in order 

to compare the prediction capability. In Section3(Results) we summarize the results 

of each distribution model and evaluate them to conclude which one we consider to 

be the most accurate and which has the best prediction capability. Finally in 

Section4(Discussion), we analyze the potential of that model. 

2. Materials and Methods 

 

2.1. Species Occurrence Data 

 

We have used the Spanish National Forest Inventory (NFI) dataset to elaborate our 

research project. NFI comprises a systematic grid with 91,889 plots, each of which is 

0.2 ha in size. From this dataset, we started by choosing 17 forest species with 

presence/absence in each plot. The species analyzed with the percentage of presence 

are as follows: Abies alba Miller (<5%), Castanea sativa Miller (5%), Fagus sylvatica 

L. (5.5%), Pinus halepensis Miller (15%), Pinus nigra Arnold (9.5%), Pinus pinea L. 

(15%), Pinus pinaster Aiton (15%), Pinus sylvestris L. (12.3%), Pinus uncinata Turra 

(<5%), Quercus canariensis Willd. (<5%), Quercus faginea Lam. (11%), Quercus 

humilis Miller (<5%), Quercus ilex L. (36%), Quercus petraea (Matt.) Liebl (<5%), 

Quercus pyrenaica Willd. (8.2%), Quercus robur L. (8.6%), and Quercus suber L. 

(5%). In this paper we only report the most characteristic species to evaluate the 

statistical processes used in the study. 

2.2.  Environmental Predictors 

 

We have obtained the climatic data grids by applying the models for climatic 

estimation produced by [15] to the Shuttle Radar Topography Mission (STRM) 3-

arc-second (≈90 m) elevation dataset [16]. These models interpolate monthly climate 

data from weather stations using latitude, longitude, and elevation as independent 
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variables.   We  have analyzed 10 climatic predictors commonly used in   tree species 

autoecology in Spain [17]: mean summer rainfall (SR), mean annual rainfall (R), 

mean summer temperature (ST), mean annual temperature (T), mean of maximum 

temperatures of the warmest month (MTWM), mean of minimum temperatures of the 

coldest month (MTCM), mean annual potential evapotranspiration (ETP), mean 

annual water surplus (SUP), and mean annual water deficit (DEF). Moreover, we 

have used the European Soil Database [18] to allocate each plot to a parent material 

class (calcareous or siliceous) (C). The distribution of calcareous parent materials is a 

very useful predictor of plant species distribution in Mediterranean ecosystems [19]. 

Model selection was based on the ease of working with each model and the 

possibility of repeating each process with the same characteristics using the species 

studied. Therefore, we constructed the models with one of the most widely-used 

models (MaxEnt), and others based on simple software developed by Saldorf System 

(San Diego, CA, USA) (CART and MARS). Finally, we built an additive model 

using R software. 

The statistical methods used in this study are summarized below. 

 

2.3.  MaxEnt (Maximum Entropy) 

 

MaxEnt [20,21] is an artificial intelligence method based on the statistical principle 

of maximum entropy. Models are limited by the value of the variables used to 

develop the problem. For example, the expected value (mean value predicted by the 

model) of each independent variable must match its empirical average (the mean 

value observed when sampling with an independent variable occurrence data item). 

MaxEnt obtains the maximum entropy probability of the distribution; in other words, 

the distribution nearest to the uniform distribution, with all of the conditions. 

Additionally, MaxEnt is based on the following points: (a) the presence of a species 

is represented by a likelihood function P on a set x of points in the study zone.  P 

gives a positive value x everywhere so that the sum of P(x)   is unity; (b) building a 

model of P with a group of constraints obtained from the empirical data of presence; 

(c) the restrictions are expressed as a simple function of known environmental 

variables, f(v); (d) in the MaxEnt method, the average forces of each function of each 
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variable are close to the actual average of the variable zones of presence; and e) of 

the possible options available, a specific combination of features is selected to 

minimize the entropy function (measured by the Shannon index). The entropy 

function allows optimal selection of variables and functions based on their 

significance, and eliminates restrictions that do not provide the model with 

significance. 

The general form of the probability function is, with i environmental variables: 

P(x)=e
λ·f(x)

/Zλ, 

where lambda is a weighting coefficient vector and f is the vector corresponding to 

the functions. Z is a normalization constant used to ensure that P(x) is the unit. The 

values P(x) obtained should be interpreted as relative suitability values. These values 

are normally processed by a logistic function that is adjusted to a more 

comprehensible level in the range between 0 (incompatible) and 1 (ideal). 

Hypothetically, MaxEnt is most similar to generalized linear models and additive 

models. In what follows, we use the expressions of [22]. A commonly-used linear 

model is the Gaussian logit model, in which the logit of the predicted probability of 

occurrence is: 

α + β1 f1+γ1 f1(x)
2
+⋯+ βn fn+ γn fn(x)

2
 

where the fj are environmental predictors; α, βj, and γj  are fixed coefficients; and the 

logit function  is defined by logit(p) = ln(p/(1 − p)). The above expression is no 

different in form as the log (rather than logit) of the likelihood of the pixel x in a 

MaxEnt expression with linear and quadratic structures. A common method for 

modeling interactions between variables in a linear model is to create product 

predictors, which is equivalent to the use of it in MaxEnt [21]. 

From a similar point of view, if the probability of presence/absence is modeled with 

an additive model using a logit link function, the logit of the predicted likelihood has 

the form: 

g1(f1(x)) + · · · + gn(fn(x)) 
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where fi are the environmental predictors. gi  are smooth functions fitted by the 

expression,  with  the quantity of smoothing measured by a measurement factor. This 

is a similar method as the log probability in a MaxEnt model, for pixel x, with 

threshold structures, and regularization has an equivalent effect to smoothing on the 

otherwise random functions gi. In both cases, the form of the response curve to each 

environmental predictor is determined by the data. 

During the process, MaxEnt generates different probability distributions, opening 

from a uniform scattering, and improves the fitting to the data. This improvement is 

defined as the average possibility of occurrence data, removing a constant, which 

means that the uniform distribution has a gain of zero. Regardless of these 

similarities, several differences exist between generalized models and MaxEnt, 

leading them to create different results. When GLM/GAMs are developed to model 

the probability of presence, absences are needed. When applied to presence-only 

data, background pixels should be used as an alternative of true nonappearances 

[12,23]. However, the interpretation of the output is less clear-cut—it must be taken 

as a relative guide of ambient suitability. Dissimilarly, MaxEnt models a probability 

of presence over the pixels in the area of study, and on no account are pixels without 

records interpreted as no presences. Additionally, MaxEnt is a generative method, 

although GLM/GAMs are discriminative, and generative methods may give better 

likelihoods when the quantity of training data is insignificant [24]. 

For all species we use the model with the same variables, obtaining the following 

results shown below for each of the species under study. 
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2.4.  MARS (Multivariate Adaptive Regression Splines) 

 

MARS is a statistical method developed by Friedman [25]. It involves designing 

flexible models in which the data are adjusted to partial regressions. When models 

are nonlinear, they are approximated by partial linear regression, where the grade of 

the equation changes from one step to another, establishing a node between the end 

of one linear regression and the beginning of the next. 

A node indicates the end of one partial regression and the beginning of another. 

Between two consecutive nodes, logically, the model is defined by a linear 

regression. The nodes are selected with the aid of a search procedure that generates a 

stepper algorithm. The model generated is overfitted, so the less relevant nodes are 

subsequently removed using a statistical approach known as generalized cross-

validation. Finally, we only consider the most significant nodes. The function is a 

parameter interceptor β0, and βi is the weighted sum of one or more basic functions 

FBi. Therefore, the model will consist of a weighted sum of selected basic 

expressions from a large number of basic expressions that link all of the values of the 

predictor. The model is generated as follows: 

f(x)=β0+∑βi fi FBi 

FBi=max(0,V-N) 

FBi+1=max(0,N-V) 

 

where FB is a basic function and acts as a new variable, V is the variable and N is the 

node. 

Going deeper into the MARS algorithm, note that the models are constructed from 

double-sided truncated functions of the form (see Figure1): 

(x − t)+ = (x − t; x > t/0; other 
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Figure 1. Representation of two basic functions, where parameter t is the knot. The 

(+) signs denotes that only positive values are considered. 

Each expression is in linear pieces, with a lump in the value t, where each node is 

located at the end of one region of the data and starts at a different one [26]. The 

Salford Predictive Modeler Builder v6.6 (www.salford-systems.com) was used to 

generate these models. 

2.5.  CART (Classification and Regression Trees) 

 

This method was established by Brieman et al. [27] and generates binary trees (the 

parent nodes are divided into two child nodes) by iterative partitions, in a process that 

can be repeated to attempt to turn each child node into a parent node. The algorithm 

searches for the optimal cutoff values among all of the independent variables to 

obtain an optimal set of binary divisions, so as to minimize the variance within each 

node and maximize it between different nodes; it is, therefore, possible that some 

variables will be unused. Once the tree that best classifies the cases has been 

identified, with no limits on complexity, the algorithm ‘prunes’, or simplifies, to 

avoid overfitting of the data. The result is a tree that establishes yes/no questions. 

Depending on the kind of dependent variable there can be two types of trees: 

regression (continuous dependent variable) and classification (discrete variable). 

The aim of this method is to discriminate, estimate, or predict Y-based predictors X1, 

..., Xp by successive partitions or by sets of individuals, maximizing a measure of 

information content with respect to the response variable. In the validation phase this 
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same design, a training matrix, or a similar, but independent, matrix (validation or 

test sample) can be used; in this case we use the same matrix. The most important 

advantages of classification and/or regression trees are [28]: (a) structured knowledge 

is obtained in the form of classification rules or  the  values  of  a  variable  interval. 

This knowledge is easy to interpret and, in simple language, characterizes the classes 

or values of a variable interval; (b) as it is a nonparametric analysis (distribution-free 

procedure), it requires no distributional assumptions to validate probability; (c) it 

allows working with all types of predictor variables: binary, nominal, ordinal, and 

interval or ratio; (d) it allows unknown values for the predictor variables in the 

individuals, both in the construction phase and in the tree prediction; e) in the case of 

classification probability, it can be set to a priori classes; and (f) the observations can 

be weighed using an ad-hoc variable. 

An expression known as recursive dividing is essential to the nonparametric 

statistical approach of classification and regression trees (CART) [27]. Supposing the 

data are given by D = {(Xi, Yi), i = 1, 2, ..., n}, where Yi are widths made on a 

uninterrupted response variable Y, and the Xi are measurements on an input r-vector 

X. We accept that Y is connected to X as in multiple regression, and the aim is to use 

a tree-based algorithm to predict Y from X. 

Regression trees are built in a parallel way to classification trees, and the technique is 

generally stated as recursive-separating regression. In a classification tree, the class 

of a terminal knot is demarcated as the class that orders a plurality (generally in the 

two-class case) of all of the observations in that node, where ties are randomized. In a 

regression tree, the output is set to have the constant value Y(τ) at terminal node τ . 

Hence, the tree can be characterized as an r-dimensional histogram approximated of 

the regression surface, where r is the number of input variables, X1, X2, ..., Xr [29]. 

i(τ)=∑(Yi  -Ῡτ )
2
 

where Ỹτ is the average of the Yi for all annotations assigned to node τ.  

To determine the type of split in any node we take as our splitting strategy at node τ 

∈ Ť  the division that delivers the largest decrease in the value of i(τ).The reduction 

in i(τ ) due to a division into τL and τR is expressed by 
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Δi(τ)=i(τ) - i(τL ) - i(τR ) 

The left daughter node and right daughter node emanating from a (parent) node τ are 

denoted by τL and τR, respectively. 

The best division at τ is the one that exploits ∆i(τ). The consequence of employing 

such a splitting approach is that the best division will split up observations according 

to whether Y has a small or large value; in general, where divisions occur, we can see 

either y (τL) < y(τ)  < y(τR) or its opposite with y(τL)  and y(τR)  interchanged. 

We note that discovery τL and τR to exploit ∆i(τ) is similar to reducing i(τL )+i(τR ). 

Solving: 

min τL,τR⁡{p(τL ) s
2
 (τL )+p(τR) s

2
 (τR)} 

where p(τL) and p(τR) are the proportions of observations in τ  that  divide  to  τL  

and  τR,  individually [28]. 

The Salford Predictive Modeler Builder v6.6 (www.salford-systems.com) was used 

to generate these models. 

2.6.  Generalized additive model with thin plate splines (GAM.TP) 

A generalized additive model (GAM) is a generalized linear model in which the 

linear predictor be determined by linearly on unidentified smooth expressions of 

some variables, and interest focuses on inference about these smooth expressions. 

Additive models were originally built by [28] to combine properties of linear models 

with additive models. 

The generalized additive model replaces 

∑βj Xj 

with 

∑fj (xj) 

where fj is an unspecified (‘non-parametric’) function. It can be in a non-linear form:  
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E(Y│X1…Xp )=f(X1…Xp )=f0+f1 (X1 )+…+fp (Xp ) 

The function fj(xj) is estimated in a flexible manner using a spline smoother [30]. 

A smoother is an instrument for summarizing the tendency of a dependent variable Y 

as an expression of one, or more, independent variables X1, . . . , Xp. It generates an 

estimate of the tendency that is less mutable than Y itself; therefore, the name 

‘smoother’. The most significant characteristic of a smoother is its non-parametric 

nature, so the smooth function is also known as a non-parametric function. Its 

greatest difference from the GLM is that it does not undertake an inflexible form for 

the dependence of Y on X1, . . . , Xp. It allows an approach with the addition of 

expressions (expressions that have separated input estimates), not just with one 

indefinite expression only. For this reason it is the building block of the generalized 

additive model algorithm [31]. 

Testing the different types of splines reveals that the best model helped with the AIC 

value is  the additive model with thin plate regression splines. The thin plate spline is 

the two-dimensional equivalent of the cubic spline in one dimension. It is the 

essential resolution to the biharmonic equation, and has the form: 

U(r) = r
2
 ln(r) 

Assuming a dataset of points, a weighted mixture of thin plate splines concentrated 

about each point gives the interpolation expression that passes through the points 

precisely while reducing the so-called ‘bending energy.’ Bending energy is defined 

here as the integral over R2 of the squares of the second derivatives: 

I[f(x,y)]=∬( (fxx)
2
+2(f xy)

2
+(fyy)

2
 ) dxdy 

Regularization should be used to decrease the necessity that the interpolant pass 

through the data points exactly. 

The designation of ‘thin plate spline’ is a physical analogy referring to the flexibility 

of a thin sheet of metal. In the physical situation, the deflection is in the z direction, 

at a right angle to the plane. In order to apply this impression to the problem of 
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coordinate conversion, the lifting of the plate is interpreted as a dislocation of the x or 

y coordinates within the plane [32]. 

These splines are short rank isotropic smoothers of any number of variables. The 

splines are isotropic because any variation of the covariate co-ordinate system will 

not modify the output of smoothing. The low rank means that they have rarer 

coefficients than there are data to smooth.  They are the default smoother for ‘s’ 

terms due to there being a clear logic in which they are the ideal smoother of any 

given basis measurement/rank [33]. 

In this case, as we are building the model with R we used the mgcv package [33–37] 

to construct the additive model and the ROCR package [38] to obtain the validations, 

AUC values, and graphics. 

2.7.  Evaluation 

The area under the receiver operating characteristic (ROC) function (AUC) is taken 

to be an important index because it provides a single measure of overall accuracy that 

is independent upon a particular threshold [39]. If the objective is to rank the 

classifiers, comparisons using ROC plots are more robust since they are not 

dependent of the values in a confusion matrix [40]. An ROC graph is a method for 

visualizing, establishing, and selecting classifiers based on their presentation. ROC 

curve analysis was developed during World War II as a tool in signal processing, and 

is now used in many branches of science. Standard references for ROC curve 

analysis are [40–45]. 

Although ROC graphs are conceptually simple, their application in research contexts 

gives rise to some complexities that are not obvious and their practical use entails 

some common misconceptions and pitfalls [46]. 

Some formulae typical in ROC curves are 

tp rate ~ (Positives correctly classified)/(Total positives) 

fp rate ~ (Negatives incorrectly classified)/(Total negatives) 
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ROC graphs are two-dimensional graphs where the true positive rate is presented on 

the Y axis and the false positive rate is presented on the X axis. An ROC graph 

represents relative adjustments between profits (true positives) and expenses (false 

positives). Figure2shows the area under two ROC curves, A and B. Classifier A has a 

greater area and, therefore, better average performance. 

Finally, it is probable for a low-AUC classifier to perform better in a specific region 

of the ROC space than a high-AUC classifier. Figure2shows an example of this: 

classifier B is generally worse than A, except at an fp rate > 0.6 where B has an 

insignificant advantage. However, in practice the AUC performs very well and is 

often used when a general measure of predictiveness is desired. 

In order to analyze suitability of the different models, we have used 10% of the data 

available for each species. 

 

Figure 2. Example of two ROC curves and area under the curves (AUC). 
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3. Results 

The study performed with the 17 species reveals some important results. For the sake 

of simplicity, we present here only the results summarizing the species using the two 

species with the highest and lowest results. 

A two-way ANOVA shows that all the environmental variables included in the 

models are significant for all measures of performance (p < 0.05). All models 

designed have good predictions and obtain high AUC values. 

Analyzing predictability, based on the AUC, we have obtained that for all the species 

analyzed, MARS and MaxEnt are the models with the lowest predictability and, 

consequently, with the lowest AUC average. However, CART and GAM generally 

have the highest AUC values. 

Below are the AUC values  obtained  in  the  verification  process  for  the  species  

analyzed.  The following ecological modeling methods are compared: MARS and 

MaxEnt, CART, and GAM.TP. The scatterplot graph shows the different models’ 

behavior, demonstrating that all have good predictability based on their AUC values. 

Figure3shows that  MaxEnt,  CART,  and  GAM.TP  have  AUC  values  near  to  1,  

and  that  all of the  models  have  good  results  for  predicting  species  distribution.  

For  the  different  species, all of the statistical models show similar behavior and 

performed in the same way.  Comparing  model predictability,  the AUC values in 

GAM.TP have better results,  on average,  than the others.   A comparison of one 

particular species with the highest AUC results and another with the lowest reveals 

no important differences between the models. As we can see in the table below, AUC 

values are very similar across all models. 

In Table1, we can see that the average for the best species modeled was 0.986 with a 

deviation value of 0.029. Moreover, one of the species with the lowest AUC value 

was Pinus pinea with an average of 0.876; in this case the deviation was 0.019. In 

both cases MARS obtained the lowest AUC values. In contrast, the best values were 

obtained with GAM.TP, although the few differences between this model and the 

others were not very significant. Finally, we can see Quercus ilex, a species with 

greater presence in the dataset, and also the species with the lowest AUC for all the 

models. 
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Figure4a ( Quercus canariensis) and 4b (Pinus pinea) show the results. Models are 

represented in different colors to facilitate understanding: MaxEnt (red), MARS 

(green), CART (blue), and GAM.TP (black). Figure4a shows that every model has 

very good results, but GAM.TP exceeds the others. However, Figure4b shows that 

MARS obtains worse results than the others and, for this reason, the line is well 

below the rest. 

 

Figure 3. Average values of AUC for MaxEnt, MARS, CART, 

and GAM.TP models. 

Table 1. Average of values of AUC for each model with Quercus canariensis and Pinus 

pinea. 

 

Species MAXENT MARS CART GAM.TP 

Q. canariensis 0.986 0.920 0.970 0.995 
P. pinea 0.884 0.847 0.874 0.899 

Q. ilex 0.783 0.814 0.847 0.834 
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Figure 4. Curve ROC of different models with Quercus canariensis (right, a) and 

Pinus pinea (left, b). Models are represented in different colors to facilitate 

understanding: MaxEnt (red), MARS (green), CART (blue), and GAM.TP (black). 

 

Analyzing the results, species with the highest number of presences have lower 

values in the predictions due to a wide range of the environmental variables. In 

contrast, the species with the most absences have the highest AUC values, perhaps 

due to the representative environmental characteristics that give rise to the presence 

of these species. 

If we analyze presence-absence from the dataset and compare it with the AUC 

average, we find that the relationship between AUC and percentage of presence is 

negative (based on the correlation index), with a value of −0.75. Species with the 

highest percentage of presence have lower AUC values than other less-represented 

species in the area of study. 

Figure5represents the relationship between the presence percentage and the AUC 

value, showing it to be negative; when the percentage of presence increases, the AUC 

value decreases. A simple trend line clearly shows the behavior between these values. 
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The trend line is represented with the expression y = −0.0038x + 0.9365, and an R2 

value of 0.508. 

 

Figure 5. Dispersion graph with the percentage of the number of presences (X axis) 

and AUC values (Y axis) with regression. 

 

In summary, every AUC value obtained with those models is significant and all the 

models could be useful to represent the distribution of each species. Overall, the 

additive model with thin plate splines gave the best results. MaxEnt, CART, and 

GAM.TP with thin plates splines obtained similar AUC values. The worst capability 

was obtained with MARS. This model’s performance was below the average for 

several species. The models we developed obtained better results because they 

allowed for changes and calibrations. In this case we were aware of all of the 

processes that occurred during the modeling. By contrast, models obtained using 

specific software, in general, perform like “hermetic machines” because it could 

sometimes be impossible to understand the stages leading toward the final results. 
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4. Discussion 

Our modeling framework examines how applicable some of the most widely used 

models are to species, the presences of which are largely set by the physical 

environment. 

As we can see, all of the techniques developed here proved capable of successfully 

predicting species distribution. Factually, all of the models obtain similar 

performance based in the AUC and, over all, all of the methods show good results for 

predicting species distribution. Thus, there are no important differences between the 

different techniques developed in this analysis. Moreover, we can highlight 

interesting points based in our results to try to clarify and support our model 

selection: 

GAM.TP performed better overall than MaxEnt and MARS, even though these 

differences are not substantial when compared with regression trees. This result 

differed from other comparative analyses [5,14,47,48], where linear models and 

additive models performed better than classification trees. We establish that, despite 

the dissimilarities in model suppositions, all statistical techniques seem to provide the 

best predictions for additive models. 

As we said in the introduction,  MaxEnt  was included  in this  analysis  due to  the 

popularity  of the method. We can understand that, in some points, it is not 

comparable to presence/absence models. Moreover, the similarity in results gave us 

some chances to compare the models. As we said, MaxEnt is presence-only data; for 

this reason the interpretation of the output is less clear than the models for 

presence/absence data. MaxEnt output must be taken as a relative guide of 

environmental suitability. On the other hand, presence/absence models could be more 

reliable because these models use information from the real absences. 

From the user perspective, if we compare the different modeling techniques, CART 

and MARS required the least amount of user guidance (probably because they were 

developed in tools designed in a friendly environment). Moreover these tools are less 

flexible than the other statistical techniques developed in this research and, also, there 

is a high complexity if the user tries to manipulate the default settings in order to 

improve the accuracy of the outputs. 
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GAM.TP requires some knowledge of statistical techniques due to the amount of 

possibilities that it offers for building one’s own model. Moreover, this flexibility and 

the possibilities offered by this approach make this approach more attractive. 

Currently, several tutorials available for several packages in R make the possibility to 

elaborate advanced statistical models more affordable without master knowledge 

(although we recommend a deeper research in statistical techniques before applying 

any model to avoid misunderstanding and frustration). 

In conclusion, additive models with thin plate splines may be considered one of the 

greatest methods to analyze species distribution models working with presence-

absence data, comparable to MaxEnt, CART, and MARS. Our results show a better 

fit and more flexibility in the design. 

Looking at the quality of the data and the possibility to work with presence/absence 

values, and also with a systematic survey, we can confirm, looking our results, that 

the information obtained from the absences could be more important than the 

presences. Analyzing this result from an ecological perspective, absences deliver 

more information about the species due to the combination of several environmental 

predictors. 

From an ecological perspective, analyzing the variables used in all of the models, we 

can see some differences between the variables’ importance, depending of the model 

used. Comparing the species used before, we can see in Table2that different models 

have different variables’ weight. In our case, MARS and CART have the same set of 

the most important variables for both species (SUP, MTCM, C, SR). Moreover, 

MaxEnt uses different variables for the different species: MTCM, C, R, and ETP 

with Q. canariensis, and ST, SUP, MTCM, and SR in P. pinea model. Finally, with 

GAM. TP, the most important variables were MTCM, SR, R, and WD in Q. 

canariensis, and in P. pinea, all of the variables have similar weight, but the more 

important four were R, SR, MTWM, and ST. 
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Table 2. Summary of the most important variables for each model with Quercus canariensis 

and Pinus pinea. 

Species 

Q. canariensis 

MAXENT 

MTCM 

MARS 

SUP 

CART 

SUP 

GAM.TP 

MTCM 

 C 

R 

ETP 

MTCM 

C 

SR 

MTCM 

C 

SR 

SR 

R 

WD 

P. pinea ST SUP SUP R 

 SUP 

MTCM 

SR 

MTCM 

C 

SR 

MTCM 

C 

SR 

SR 

MTWM 

ST 

 

As we have seen in the results (Table1and Figure5), species that are less represented 

(i.e., with more absences), have better predictability than species with more 

presences. This situation shows  us the importance of absences in predictive models. 

These absences give us several pieces of information about the suitability of species 

and defining absence areas. If we analyze these models as management tools, this 

information is essential regarding the species selection and, in our case, for forest 

management. 

Finally, we understand that there are more advanced approaches that can be applied 

in species distribution models, most of them through the Bayesian approach (i.e., R-

INLA (Integrated nested Laplace approximation) can be compiled with the stochastic 

partial differential equations (SPDE) approach [49] which, through a discretization of 

a continuous Gaussian field, can cope efficiently with variables characterized by a 

complex spatial structure). However,  our objective was to show  the interesting 

opportunities that these explanatory techniques offer and to assess the relationships 

between environmental variables. 

Author Contributions: Óscar Rodríguez de Rivera and Antonio López-Quílez 
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Abstract 

Usually in Ecology, the availability and quality of the data is not as good as we 

would like. For some species, the typical environmental study focuses on 

presence/absence data, and particularly with small animals as amphibians and 

reptiles, the number of presences can be rather small. The aim of this study is to 

develop a spatial model for studying animal data with a low level of presences; we 

specify a Gaussian Markov Random Field for modelling the spatial component and 

evaluate the inclusion of environmental covariates. To assess the model suitability, 

we useWatanabe-Akaike information criteria (WAIC) and the conditional predictive 

ordinate (CPO). We apply this framework to model each species of amphibian and 

reptiles present in the Las Tablas de Daimiel National Park (Spain). 
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Keywords Stochastic partial differential equation . Integrated nested Laplace 

approximation. Species distribution . Spatial model. 

Introduction 

Species distribution models (SDM) commonly used in ecology consist of numerical 

tools that combine observations of species occurrence or abundance with 

environmental covariates. They are used to gain ecological and example of 

evolutionary insight from SDM and to predict distributions across landscapes, 

sometimes requiring extrapolation in space and time (Elith and Leathwick 2009). In 

SDM, the following steps are usually taken: (1) locations of occurrence of a species 

(or other phenomenon) are compiled; (2) values of environmental predictor variables 

(such as climate) at these locations are extracted from spatial databases; (3) the 

environmental values are used to fit a model to estimate similarity to the sites of 

occurrence, or another measure such as abundance of the species; (4) the model is 

used to predict the variable of interest across the study region (and perhaps for a 

future or past climate) (Hijmans and Elith 2015). 

Currently, the statistical understanding of applied scientists is increasing and new 

techniques can cope with larger, more complex data sets, so applied statisticians are 

faced with the need to specify sophisticated models. Logically, as the complexity of 

these models increase, it becomes harder to perform inference. The Bayesian 

approach is particularly appropriate as it is flexible and can deal with complex 

models, for instance including hierarchical structure or including missing data. 

Undoubtedly, the most popular family of approximate inference methods in Bayesian 

statistics is the class of Markov Chain Monte Carlo (MCMC) methods. These 

methods, which exploded into popularity in the mid-1980s have remained at the 

forefront of Bayesian statistics ever since, with the basic framework being extended 

to cope with increasingly more complex problems (Simpson et al. 2011). 

Modelling patterns of the presence/absence of the species using local environmental 

factors have been a growing problem in Ecology in the last few years (Chakraborty et 

al. 2010). This kind of modelling has been extensively used to address several issues, 

including the identification of essential fauna habitats in order to classify and manage 

conservation areas (Pressey et al. 2007), and predicting the response of species to 

environmental features (Midgley and Thuiller 2007; Loarie et al. 2008). Different 
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approaches and methodologies have been proposed in this perspective (see for 

instance Guisan and Thuiller 2005; Hijman and Graham 2006; Wisz et al. 2008), with 

Maximum Entropy modelling (MaxEnt) (Elith and Burgman 2002), more flexible 

models as generalised linear and additive ones (GLM and GAM) (Guisan et al. 

2002), species envelope models such as BIOCLIM (Busby 1991) and the multivariate 

adaptive regression splines (MARS) (Leathwick et al. 2005) being some of the most 

commonly used (Muñoz et al. 2013).  

Several projects have focused on comparing these different methods (see for instance 

Rivera and López-Quílez 2017); also a summary this comparison has been developed 

recently by Lecours 2017. Most of these applications consist of explanatory models 

that seek to assess the relationship between environmental variables (e.g. 

precipitation, bathymetry, etc.) (Guisan et al. 2002). Moreover, the theory of these 

methods is based on the fact that the observations are independent, while spatial 

autocorrelation is common in georeferenced ecological data (Crase et al. 2012). 

Spatial autocorrelation should be taken into account in the species 

distributionmodels, even if the data were collected through a standardised sampling 

scheme, since the observations are often close and subject to similar environmental 

features (Underwood 1981; Hurlbert 1984). In addition observer error (Royle et al. 

2007; Cressie et al. 2009), gaps in the sampling, missing data, and spatial mobility of 

the species (Gelfand et al. 2006) can also affect the models. 

The value of both reptiles and amphibians has been recognised as an integral part of 

natural ecosystems and as heralds of environmental quality (Gibbons and Stangel 

1999). In recent years, as overall environmental awareness among the public has 

increased, concerns have raised on the ecological state of reptile and amphibian 

species as well as of their habitats (Gibbons et al. 2000). Habitats of many 

amphibians populations are small, temporary ponds and the surrounding forested 

area, which are usually affected by many stressors such as UV-radiation (Cummins 

2003; Hatch and Blaustein 2003), the use of pesticides (Gendron et al. 2006; Fellers 

et al. 2004), industrial chemicals (Bishop and Gendron 1998; Sower et al. 2000) and 

climate change (Corn 2005). Since amphibians are sensitive to the alterations of their 

environment, they could be used as bioindicator organisms to follow changes in their 

habitats and in ecotoxicological studies (Henry 2000). As their population usually 

contains high numbers of individuals and they are good representatives of freshwater 

environments, they are ideal model organisms for pollution studies (Burger and 
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Snodgrass 1998). Gibbons et al. (2000), consider the vulnerability of reptiles within 

the context of the factors known or suspected to be associated with amphibian 

declines, using six categories of concern established by Partners in Amphibian and 

Reptile Conservation (PARC; Gibbons and Stangel 1999): habitat loss and 

degradation, introduced invasive species, environmental pollution, disease and 

parasitism, unsustainable use and global climate change. 

The aim of this paper is to build a spatial model to predict the spatial distribution of 

several species characterised by a low level of presences, which leads to data 

sparsity. We will use real data on five species of amphibians obtained from 

inventories developed in Las Tablas de Daimiel National Park (TDNP-Spain) in 

2011–2012 supported with environmental variables. On these species, we have 

presence/absence at geographical coordinates and we will generate distribution 

models for each species aswell as combine these into the corresponding the class 

(Amphibia). Our approach is to specify a Bayesian hierarchical geostatistical 

modelling framework accounting for spatial dependency. Hierarchical models can 

simplify complex interactions by allowing parameters to vary at more than one level 

via the introduction of random effects. The expected value of the response is then 

expressed conditional on these random effects (Cosandey-Godin et al. 2015). The 

advantages of using hierarchical Bayesian models emerge more so as complexity 

increases, when, for example, spatio-temporal variability needs to be modelled 

explicitly (Cressie et al. 2009). The Bayesian framework also offers the advantage of 

providing full inference, such that model parameters and uncertainty can be 

quantified, which has great utility in applied conservation (Wade 2000; Wintle et al. 

2003). 

Several authors have used a Bayesian approach to analyse species distribution. For 

instance Golding and Purse 2016, compared Gaussian processes against more 

traditional techniques obtaining better performance, while Gelfand et al. 2006, tried 

to illustrate spatial patterns applying hierarchical logistic regression trough a 

Bayesian framework. Also, Latimer et al. 2006, developed Bayesian regression 

models for species presence/absence and Royle 2004, estimated abundance of birds 

applying N-mixture model in a Bayesian perspective. Another interesting work 

developed by Mackenzie et al. 2002, focused on understanding site occupancy of 

some amphibians species when detection probabilities are below 1, again in a 

Bayesian approach. 
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Hierarchical Bayesian models have traditionally relied on MCMCsimulation 

techniques, which are computationally expensive and technically challenging, 

consequently limiting their use. However, a new statistical approach is now readily 

available, namely integrated nested Laplace approximations (INLA) via the R-INLA 

package (http://www.r-inla.org) (Cosandey-Godin et al. 2015). INLA methodology 

and its powerful application to modelling complex datasets has recently been 

introduced to a wider non-technical audience (Illian et al. 2013). As opposed to 

MCMC simulations, INLA uses an approximation for inference and hence avoids the 

intense computational demands, convergence, and mixing problems sometimes 

encountered by MCMC algorithms (Rue and Martino 2007). It can only be used for 

Gaussian models but this includes the class of models which we consider here for 

species distribution. Moreover, R-INLA can be compiled with the stochastic partial 

differential equations (SPDE) approach (Lindgren et al. 2011) which through a 

discretisation of a continuous Gaussian field can cope efficiently with variables 

characterised by a complex spatial structure. This is the case of this environmental 

inventory, since environmentalists or field workers start the inventory to target 

particular species, resulting in clustered spatial patterns and large regions without any 

values. Together, these new statistical methods and their implementation in R (R 

Core Team 2016) allow scientists to fit complex spatio-temporal models considerably 

faster and more reliably (Rue et al. 2009).  

The structure of the paper is as follows. In Section 2, we introduce our motivating 

problem regarding spatial distribution for amphibian species in Las Tablas de 

Daimiel National Park (TDNP) (Ciudad Real, Spain). Then, after discussing the 

available data, we describe the geostatistical spatial model. In Section 3, we explain 

the model evaluation and the comparison. In Section 4, we present the results of the 

analysis of the spatial distributions and show how the environmental variables could 

affect the presence of the species. Finally, in Section 5, we resume the conclusions of 

this work. 

Motivating example 

The data set come from an inventory developed in Las Tablas de Daimiel National 

Park (TDNP) during 2011 and 2012, comprising 234 sample points with coordinates. 

Each sample point has the presence or absence of each species, elevation inmeters 

and information about the ambient (categorical variable with the following 

http://www.r-inla.org/
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categories: Salt marsh, Reed bed, Islands, areas of Typha latifolia, Cladium mariscus 

and free of vegetation). 

The following species are included: Bufo bufo, Bufo calamita, Pelobates cultripes, 

Pelodytes punctatus and Triturus pygmaeus (see Table 1). As the aim of this analysis 

is not to study the distribution of each species, we are not going to explain the 

biology or characteristics of each species. The Tablas de Daimiel National Park is a 

floodplain wetland located in the Upper Guadiana Basin, central Spain (see Fig. 1). 

The landscape of Las Tablas de Daimiel is characterised by the horizontality of the 

terrain, with a range of altitude between the 599 m above sea level in the confluence 

of the rivers Guadiana and Cigüela, and the 623 m above sea level in the Pochela hill. 

 

Table 1: Species presence (in percentage) by ambient (C.m.=Cladium mariscus, F.v.=Free of 

vegetation, I.=Islands, R.b.=Reed bed, S.m.=Salt marsh and T.l.=Typha latifolia) and by 

number of presences 

 

 C.m. F.v. I. R.b. S.m. T.l. Presences 

Bufo bufo 0% 0% 0% 100% 0% 0% 3% 

Bufo calamita 5% 5% 48% 19% 0% 24% 54% 

Pelobates cultripes 0% 0% 0% 100% 0% 0% 3% 

Pelodytes 

punctatus 

0% 21% 14% 50% 0% 14% 36% 

Triturus pygmaeus 0% 0% 0% 50% 0% 50% 5% 

Amphibia 3% 10% 31% 36% 0% 21% 100% 

 

The Guadiana River is one of the three main drainage units of the Iberian Peninsula, 

having its source in central Spain before flowing into Portugal and then, in its lower 

reaches, acting as a natural border between the two countries. The TDNP is one of 

the core areas of the Mancha Húmeda, declared a Biosphere Reserve in 1980 by 

UNESCO. The wetland is the result of the mixture of inputs from Cigüela and 

Guadiana rivers, together with groundwater discharge from the West Mancha aquifer. 

The peripheral surface of the wetland is 1928 ha, but at present, the potentially 

flooded area is 1587 ha (Sánchez-Carrillo et al. 2010). The climate of the Upper 
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Guadiana Basin is semiarid, with an average temperature of 14.1 °C (1955–2009) and 

an average precipitation of 448 mm (1945–2009) (Yustres et al. 2013). The 

spatiotemporal distribution of rain is irregular (Acreman et al. 2000), and the high 

temperature values in the summer cause the potential evapotranspiration to be 

notably high. Subject to this semiarid climate regime, the water balance is 

particularly fragile in the river basin, with water shortage considered a structural 

characteristic of the system (Cots et al. 2007). 

 

Fig. 1 Map of the situation of the Las Tablas de Daimiel National Park 

Currently, the TDNP suffers a reduction in water inputs mainly because the 

groundwater discharge to the wetland is decreasing, since the aquifer has been 

suffering intensive groundwater overexploitation since the late 1970s (Navarro et al. 

2011). The water quality has been also affected, since one of its peculiarities is the 
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variety of hydrochemical and hydrological processes, i.e. the two main sources of 

water and salts and at the same time TDNP is an area where saline sulfate-rich 

surface waters flowing from the Cigüela River mix with calcium carbonate 

freshwater coming from groundwater (Coronado et al. 1974; Sánchez-Ramos et al. 

2015).  

We can see in Fig. 2 the distribution of the ambients in our data set, summarised as 

follows: Salt marsh (2% of the samples), Reed bed (31%), Islands (17%), areas of 

Typha latifolia (34%), Cladium mariscus (4%) and free of vegetation (13%). 

 

Fig. 2 Map of the distribution of the ambients in the Las Tablas de Daimiel National Park 
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Species distribution model 

Model 

Spatial data are defined as realisations of a stochastic process indexed by space: 

Y(s) ≡ {y(s), sϵD}  

where D is a (fixed) subset of R
d
 (here we consider d = 2). The actual data can be 

then represented by a collection of observations y = {y(s1), ..., y(sn)}, where the set 

(s1, ..., sn) indicates the spatial units at which the measurements are taken. Depending 

on D being a continuous surface or a countable collection of d-dimensional spatial 

units, the problem can be specified as a spatially continuous or discrete random 

process, respectively (Gelfand et al., 2010).  

In our case, we can consider a collection of data points with presence/absence 

obtained from the inventory; the sampled points are the set (s1, ..., sn) of n points; ysis 

the presence of each specie in each point and it is specified as  

ys ~ Bernoulli(πs)  

where πs is the probability of the species being present.  

Then on the logit(πs) a linear model is specified including covariates x1 (elevation), 

x2(ambient) and a spatial field ξs  

logit( π s )= bs + x1S β + x 2S γ + ξ s 

where a discretely indexed spatial random process (see Lindgren et al. 2011) is 

included to approximate the continuous process: 

ξs = ∑φg(s) 𝜉𝑔̃ 
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In practice the discretisation is done dividing the study region in triangles and writing 

ξs as a linear combination of basic functions 𝜑𝑔  weighted by some zero mean terms 

𝜉𝑔̃ (for more details see Blangiardo and Cameletti 2015). 

Implementation, inference and evaluation 

The statistical inference has been carried out through the integrated nested Laplace 

approximation (INLA) implemented in the R-INLAwithin R statistical software. In 

R-INLA, the first step required to run the geostatistical spatial model through SPDE 

is the triangulation of the considered spatial domain. We use the inla.mesh.create 

specifying the spatial coordinates used for estimation. This function performs a 

constrained refined Delaunay triangulation for a set of spatial locations: firstly the 

triangle vertices are placed at the observation locations and then further vertices are 

added in order to satisfy triangulation quality constraints (Lindgren et al. 2011).  

A natural way to estimate out-of-sample prediction error is cross-validation (see 

Geisser and Eddy 1979, and Vehtari and Lampinen 2002, for a Bayesian 

perspective), but researchers have always sought alternative measures, as cross-

validation requires repeated model fits and can run into trouble with sparse data 

(Gelman and Shalizi 2013). In a comparative perspective (e.g. to evaluate which 

model fits the data best), the most used index is the DIC (Spiegelhalter et al. 2002; 

van der Linde 2005) which similarly to AIC consists of two components, a term that 

measures goodness of fit and a penalty term for increasing model complexity. More 

recently, the WAIC (Watanabe 2010) has been proposed as a suitable alternative for 

estimating the out-of-sample expectation in a fully Bayesian approach. This approach 

starts with the computed log pointwise posterior predictive density and then adds a 

correction for the effective number of parameters to adjust for overfitting (Gelman 

and Shalizi 2013). WAIC operates on predictive probability density of observed 

variables rather than on model parameter; hence, it can be applied in singular 

statistical models (i.e. models with nonidentifiable parameterization, see Li et al. 

2015). 

We have also calculated the conditional predictive ordinate (CPO) (Pettit 1990) to 

evaluate model assessment. The conditional predictive ordinate (CPO) is based on 

leave-one-outcross- validation. CPO estimates the probability of observing a value 

after having already observed the others. The mean logarithmic score (LCPO) was 
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calculated as a measure of the predictive quality of the model (Gneiting and Raftery 

2007; Roos and Held 2011). High LCPO values suggest possible outliers, high-

leverage and influential observations. 

Finally, we have used an AUC (Area Under operating Curve score) approach to 

calculate the predictive accuracy of each method by comparing the validation data 

with the predicted presence value. AUC represents a commonly used and adequately 

performing measure of predictive accuracy (Huang and Ling 2005) and works by 

calculating the relative numbers of correctly and incorrectly identified predictions 

across all possible classification threshold values of the binomial response, with an 

AUC value equal to or below 0.5 indicating a predictive ability equal to random 

expectation and 1 a perfect predictive ability (Qiao et al. 2015). 

Results 

Table 2 presents the main results of the analyses for the Amphibia, characterised by 

more data sparsity (a fewer presences). As we can see, the first model obtained using 

only the elevation has a better fit (WAIC = 21.17/LCPO = 1.759/ AUC = 0.762) than 

the model with elevation and ambient (WAIC = 24.53/LCPO = 1.898/AUC = 0.735). 

However, based on LCPO, the model without ambient has fewer outliers. Also, we 

have compared performance of the different models based in AUC, these analysis 

shows similar results than LCPO, obtaining better values in models without ambient. 
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Table 2: Posterior estimates for the models with elevation and with elevation and ambient 

 Parameter Mean St. Dev. 2.5% 50% 97.5% 

Model with elevation 

Amphibia Intercept  -4.69 30.36 -64.30 -4.69 54.86 

WAIC=21.17 

LCPO=1.759 

AUC=0.762 

Elevation 0.01 0.05 -0.10 0.01 0.10 

Model with elevation and ambient 

 Intercept  -4.70 30.51 -64.62 -4.70 55.16 

 Elevation  -0.03 0.05 -0.13 -0.03 0.08 

Amphibia Ambient. 

Reedbed  
0.30 6.34 -21.97 0.75 13.04 

WAIC=24.53  

LCPO=1.898 

Ambient. 

Islands  
0.71 8.16 -15.96 0.62 15.32 

AUC=0.735 Ambient. 

Freeofveg  
0.82 6.74 -16.49 0.75 20.86 

 Ambient. 

C.mariscus  
-0.72 8.37 -25.06 0.69 7.13 

 Ambient. 

Saltmarsh  
-1.17 13.09 -33.29 -2.19 45.36 

 

In Table 3, we can see the summary of theWAIC, LCPO and AUC values obtained in 

the different models for each species (model E with only Elevation and model E&A 

with Elevation and Ambient); this shows that, looking at theWAIC, most of the 

species have a better fit for the model with vegetation (except Bufo bufo and 

Pelobates cultripes), but looking at LCPO values Ambient seems to increase the 

number of outliers.. Also, looking at AUC values, models with ambient have lower 

predictability.  
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Table 3: WAIC, LCPO and AUC comparison in species models 

 E E&A 

Amphibia WAIC LCPO AUC WAIC LCPO AUC 

Bufo bufo 1.83 1.965 0.726 13.03 2.260 0.712 

Bufo calamita 14.04 1.521 0.783 13.03 1.531 0.752 

Pelobates cultripes 1.103 1.894 0.83 3.27 2.265 0.758 

Pelodytes 

punctatus 
10.79 2.523 0.693 5.43 3.914 0.656 

Triturus pygmaeus 4.61 2.327 0.725 3.38 2.986 0.718 

 

From an ecological perspective, amphibian as group (Table 2) does not have any 

preference between the different ambients analysed, with small negative point 

estimates, but with a credibility intervals including zero. Analysing the different 

species (Table 4),we can summarise as follows: Bufo calamita has all the variables 

have point estimates positives and excluding zero except areas with Cladium 

mariscus where the point estimate includes zero; Pelodytes punctatus and Triturus 

pygmaeus have a different relationship with the variables, with all the point estimates 

including zero; however, Bufo bufo has predictability for areas with Reed bed as is 

the only variable with point estimate positive and the zero is not included; finally, 

Pelobates cultripes has better relationship with Reed bed, Islands and Free of 

vegetation areas. 

In Fig. 3, we can see the maps of posterior mean for class Amphibia of models 

developed based on the covariates used. In both cases, we can see that the 

distribution are complementary: due to the nature of amphibians and reptiles, there 

are no points with both classes present at the same time. On the bottom, the map 

shows the distribution of the model with elevation and ambient. As we can see, the 

maps obtained with elevation and with elevation and ambient are very similar. Also, 

the model with only elevation as covariate has more details than the model with 

Ambient.  

 



 

84 

Species distribution modelling through Bayesian hierarchical approach 

  

Fig. 3 Maps of posterior mean for the models with only Elevation as 

covariate (top); Elevation and Ambient (bottom) 
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Conclusions 

Hierarchical models are commonly used in ecology (Clark 2005; Cressie et al. 2009). 

The hierarchical modelling framework has been useful when implementing process 

models that include ecological theory or when modelling the data collection process 

(Hooten and Wikle 2008; Hooten et al. 2007, Wikle 2003). The hierarchical 

modelling framework has also been useful and commonly implemented for count and 

presence/absence data (MacKenzie et al. 2006; Royle and Dorazio 2008), but has not 

been readily used for presenceonly data (Dorazio 2014; Fithian et al. 2015). 

However, we can affirm that absences are giving important information to define 

species distribution. Also, the hierarchical species  distribution modelling approach 

can be readily extended to include multiple species, as we have done with 

amphibians, and possibly interacting species (Hui 2016; Ovaskainen and Soininen 

2011; Warton et al. 2015). The spatio-temporal Poisson point process model is 

currently used for the analysis of species movement data captured using telemetry 

devices (Brost et al. 2015; Johnson et al. 2013; Russell et al. 2016). 

Data models developed for telemetry data will have a similar use for species 

distribution models (Brost et al. 2015). The methodology used to account for 

repeated measurements (i.e., locations) of the same individual(s) developed for 

telemetry data will have analogous use for species distribution models that are used 

to model count, presence-absence, and presence-only data that includes multiple 

observations of the same individuals (Hefley and Hooten 2016).  

In this work, we have specified a Bayesian spatial model for studying species 

distribution. We have evaluated the inclusion of two variables (elevation and 

ambient). 

The main advantage of the Bayesian model formulation is the computational ease in 

model fit and prediction compared to classical geostatistical methods. The main goal 

of this study has been to predict the occurrence of species with a relatively small 

number of data points, but the data was useful to show the power of this kind of 

process and the options of the model construction. To do so, instead of MCMC, we 

have used the novel integrated nested Laplace approximation approach. More 

precisely, we have applied the work of Lindgren et al. (2011), which provides a link 

between Gaussian Fields and Gaussian Markov Random Fields through the 
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Stochastic Partial Differential Equation (SPDE) approach. The SPDE approach can 

be easily implemented providing results in reasonable computing time (comparing 

with MCMC). We showed how SPDE is as useful tool in the analysis of species 

distribution. This modelling could be expanded to the spatiotemporal domain by 

incorporating an extra term for the temporal effect, using parametric or 

semiparametric constructions to reflect linear, non-linear, autoregressive or more 

complex behavior. 

On the other hand, we have concluded some interesting points from an ecological 

perspective. Amphibians are easy species to model: due to their dependence to the 

water, most of the species live in freshwater aquatic ecosystems. The relationship 

between the amphibians and the water is stronger than the relationship with the 

ambient, probably because most of the amphibians use the water as ambient for the 

reproductive habits. At the same time, vegetation and environment are less important 

than the elevation (as a distance of the water surface). Wetlands are essential 

breeding habitats for many amphibian species. Pond-breeding amphibians require 

aquatic habitats for breeding, and embryonic and larval development, whereas 

terrestrial habitats are used for foraging and aestivation, and as migration and 

dispersal routes. Both aquatic and terrestrial habitats are used for hibernation. Hence, 

pondbreeding amphibians can be susceptible to changes in the availability and quality 

of both local-scale (aquatic habitats) and landscape-scale habitat characteristics (Piha 

et al. 2007). Currently, habitat loss is considered one of the greatest threats to the 

world’s amphibian species, one-third of which are threatened (Stuart et al. 2004). 

Pond-breeding amphibians may be particularly influenced by the loss and increased 

isolation of important habitat types caused by agricultural intensification in our case 

due to the water lost from the agricultural ponds. 

We understand that extending this framework to situations characterised by 

environmental changes, there is the possibility to experience climatic changes 

between points. And this framework could benefit by the inclusion of meteorological 

variables. However, Las Tablas de Daimiel National Park has a really small 

extension with only one meteorological station (IGME 2017), so we have avoided the 

use of climatic features in order to not include estimated data into the model 

selection. 
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Also, we can see that hierarchical models are particularly useful when data are sparse 

or species are similar. In our case, Amphibia model has different relationship with the 

environmental variables than the individual species included in the class model. 

As we have explained about the study area, the National Park is a water area of about 

1600 ha. As we are working with amphibians that develop most of their cycle in 

water and also, as there is no way to introduce the distance to the water due to the 

variation in water level, we have introduced elevation as a proxy. We assume that 

elevation can be affected by spatial autocorrelation. However, all methods assume 

spatial stationarity, i.e. spatial autocorrelation does only depend on distance between 

point locations, and there are very few methods to deal with non-stationarity in this 

context (Osborne et al. 2007). 

Finally, we can conclude that due to the low level of observations, CPO is more 

robust than WAIC due to the presence of influential observations. 

We conclude that SPDE and INLA are promising tools to work with species 

distribution model as they save in computational times and are easy to specify and to 

implement also for non-statisticians when we work with a large data set.  

Summarising, R-INLA can be a complementary tool for ecologists. The major 

strength of R-INLA is that it allows to perform Bayesian inference, based on highly 

accurate approximations of posterior distributions,where models are specified using a 

syntax that should be familiar to R users, and where data are formatted in a 

straightforward way with relatively few lines of code. The straightforwardmodel 

syntax and data format could help remove barriers to the adoption of N-mixture 

models for biologists. The substantial decrease in computation time should also 

facilitate the use of a wider variety of model and variable selection techniques (e.g. 

cross-validation and model averaging) that are not commonly used in an MCMC 

context due to practical issues related to computing time (Kery and Schaub 2011). 

Limitations of R-INLA are mostly related to the more restricted set of N-mixture 

models that can be specified. R-INLA does not handle site survey covariates, 

employs only Poisson-Binomial and Negative Binomial-Binomial mixtures, and 

handles random effects (exchangeable, spatially and temporally structured) for p 

only. In cases where site survey covariates are particularly significant and not 
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otherwise controlled in the sampling design, R-INLA will not be the suitable tool 

(Meehan et al. 2017). 
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Abstract: Climatic change is expected to affect forest development in the short 

term, as well as the spatial distribution of species in the long term. Species 

distribution models are potentially useful tools for guiding species choices in 

reforestation and forest management prescriptions to address climate change. The 

aim of this study is to build spatial and spatio-temporal models to predict the 

distribution of four different species present in the Spanish Forest Inventory. We 

have compared the different models and showed how accounting for dependencies 
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1. Introduction 

Tree species distributions are undoubtedly associated with climatic factors 

through the direct effects of climate circumstances on tree biological processes 

(Running at al. 2004). Consequently, climate change is likely to affect forest 

development in the short term (Boisvenue & Running, 2006), as well as spatial 

distribution of species in the long term, through demographic processes (Davis & 

Shaw, 2001, Parmesan & Yohe, 2003). For temperature-limited boreal woods, the 

main expectation is a deep northward shift of appropriate tree species environment, 

while the situation in temperate areas tends to be more complex and is different 

between Mediterranean, continental, and maritime climates (Bonan, 2008). Climate 

impacts, such as water deficit and the elevated risk of forest fires, will threaten 

Mediterranean forests (Adams et al. 2010, Schröter et al. 2005), while forest 

development might benefit in continental and Atlantic forests, but only at sites where 

an increased evaporative demand can be satisfied by enough water availability 

(Lindner et al. 2010, Spathelf et al. 2014, Rivera et al. 2018). 

Although the predicted impacts of global warming, there are uncertainties 

around the magnitude of the effects. Among forest researchers, awareness has 

increased that the global warming poses a huge impact to the management and 

environmental value of woodland areas (Lindner et al. 2014). In Europe, it was 

projected that financial losses may come to several billion euros by the end of this 

century if policies for the forest sector do not change in response to the predicted 

climate changes (Hanewinkel et al. 2013).  

To help species selection in reforestation and forest management treatments to 

manage climate change, species distribution models (SDMs) are a valuable tool 

(Maaten et al. 2017). Species distribution models (SDMs) can be defined as a 

mathematical approach built on combination of observations of species presence or 

abundance with environmental factors. These models are treated to evaluate species 

distributions across sceneries (Elith & Leathwick, 2009). Although there are 

exceptions (e.g., O'Neill et al. 2008), SDMs usually predict the appropriate niches of 

species (Maaten et al. 2017). 
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Even though the limits of SDMs for global warming impact assessments on 

complex ecological structures, it has been recognized that species distribution models 

are theoretically sufficiently appropriate for simpler practical tasks: for example in 

leading global warming adaptation policies that include habitat restoration or species 

selection for reforestation or forest management (Gray & Hamann, 2011, Gray & 

Hamann, 2013, Hamann & Aitken, 2013, Schelhaas et al. 2015). For such 

management treatments, the key is to match the source and the ambient target. 

However, it is uncertain whether subsequent long-term forest developments are 

correctly described by species distribution models that can be used to influence early 

decisions on species selection for a geographic area (Maaten et al. 2017). 

SDM typically consists of the following process: (1) compilation of the sites of 

occurrence of species; (2) collection of environmental variables from databases 

(pluviometry, soil composition, etc.) for the registered location; (3) regression 

algorithms to understand the connection between sites of presence or species 

abundance and the environmental variables collected in (2); (4) prediction of the 

outcome variable (occurrence or species richness) through the space/time of interest, 

based on the models in (3) (Hijmans & Elith, 2013). 

Some of the newest SDMs only use the presences of the groups in the modeling 

process. Other approaches use presence/absence data or pseudo-absences. Logistic 

regression is the most common approach to studying presence/absence data (Hijmans 

& Elith, 2013). Currently the statistical knowledge of applied researchers is growing, 

and new approaches can handle bigger, more complex datasets, so that applied 

statisticians are faced with the necessity to specify sophisticated statistical 

approaches. Logically, as the difficulty of these models grows, it becomes more 

difficult to perform inferences. The Bayesian approach is mostly suitable as it is 

flexible and can deal with complex models, for instance, naturally accounting for a 

hierarchical structure, which could describe the data well, or deal with missing data 

imputation. Unquestionably, the most popular family of approximate inference 

methods in Bayesian statistics is the class of Markov Chain Monte Carlo (MCMC) 

approaches. These approaches, which exploded into popularity in the mid-1980s, 

have continued at the vanguard of Bayesian statistics ever since, with the basic 
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structure being expanded to cope with progressively more difficult problems 

(Simpson et al. 2011). 

The modeling patterns of the presence/absence of species using local ecological 

variables has been a rising problem in the field of ecology over the last few years 

(Chakraborty et al. 2010). This type of modeling has been highly used to address 

numerous questions, as the identification of essential wildlife habitats with the 

purpose of classifying and managing conservation regions (Pressey et al. 2007), and 

predicting the reaction of species to environmental structures (Midgley & Thuiller, 

2007, Loarie et al. 2008). Several methodologies and approaches have been presented 

in this perspective (see for instance (Guisan & Thuiller, 2005, Hijmans & Graham, 

2006, Wisz et al. 2008, Rivera, López-Quílez, 2017), with generalized linear models 

and additive models (GLM and GAM) (Guisan et al. 2002), species envelope models 

such as BIOCLIM (Busby, 1991), and the multivariate adaptive regression splines 

(MARS) (Leathwick et al. 2005) being some of the most commonly used models 

(Munoz et al. 2013). 

Most of these approaches consist of regression models to assess the role of 

environmental factors (e.g., precipitation, bathymetry, etc.) in explaining the species 

presence (Guisan et al. 2002). However, some difficulties appear: for example, 

spatial autocorrelation must be taken into account, even if the data were captured 

through a consistent sampling scheme, as the observations are often adjacent and 

exposed to similar environmental characteristics (Underwood, 1981, Hurlbert, 1984). 

Furthermore observer error (Royle et al. 2007, Cressie et al. 2009), gaps in the 

sampling, missing data, and the mobility of the species (Gelfan et al. 2010) can also 

influence the models. 

Even though traditionally climatic variables have been believed the principal 

factor in the spatial distribution of the European forest species (Svenning et al. 2008), 

several paleobotanic studies have shown that the Iberian forest structure has been 

influenced by the activity of the first agricultural societies from the Neolithic and 

Chalcolithic period (López Sáez et al. 2006a, López Sáez et al. 2006b, López Sáez et 

al. 2008, Carrión et al. 2007). Hence, more complex analysis of forest ecosystems are 

required to comprehend how land-cover variations can affect vegetation dynamics 

and spatial distribution (Matejicek et al. 2011). Unfortunately, some of these 
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activities are not possible for inclusion in our spatio-temporal framework, not only 

because of the absence of geographical references, but also because of the difference 

of timestamps (i.e., Forest Inventory is developed each 10 years). 

The forest ecosystems in Europe were affected by several disturbances during 

the last years. One of the most important issues is degradation due to stress caused by 

anthropogenic processes. Variation in forest circumstances were not connected to a 

particular issue but rather to a combination of stress factors that intensified one 

another. In order to understand the evolution of these ecosystems, the pertinent 

processes need to be approached by spatio-temporal modeling on detailed spatial and 

temporal scales (Matejicek et al. 2011). Spatio-temporal processes include the 

development of spatial patterns over time, thus providing a connection between 

pattern and process in ecological communities, and having a crucial role in 

understanding the ecosystem processes (Gratzer et al. 2004). Most of the analyses 

developed in forest communities were motivated by forest growth (i.e., (O'Rourke & 

Kelly, 2015, Diggle, 2003, Stoyan & Penttinen, 2000, Illian et al. 2008) for general 

surveys, and (Grabarnik & Särkkä, 2009) for a specific study), while in this paper, we 

take a slightly different perspective, and our interest is to show that trees 

communities are dynamic systems that are affected by environmental disturbances, 

and that these can also cause changes in the species distribution and dispersion in 

short periods of time. 

Hierarchical models can manage complex interactions by specifying parameters 

varying on several levels via the introduction of random effects. The predicted value 

of the response is then articulated to be conditional on these random effects 

(Cosandey-Godin et al. 2014). The benefits of applying hierarchical Bayesian models 

arises moreso as complexity rises, when, for instance, spatio-temporal change needs 

to be modeled explicitly (Cressie et al. 2009). The Bayesian structure similarly offers 

the benefit of supplying the full posterior probability of the set of parameters of 

interest, so that point estimates and measures of uncertainty can be easily computed, 

but with the added benefit that any other function of the parameters can be obtained 

with no additional effort (Wade, 2000, Wintle et al. 2003).  

Hierarchical Bayesian models have commonly relied on MCMC simulation 

techniques, which are challenging from a technical perspective and are 
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computationally intensive, consequently limiting their use. However, a new statistical 

method is now available, namely integrated nested Laplace approximations (INLA) 

via the R-INLA package (http://www.r-inla.org) (Cosandey-Godin et al. 2014). The 

INLA approach and its potent application to handle complex datasets has been 

introduced to a wider nontechnical researchers (Illian et al. 2013). Differently from 

MCMC simulations, INLA applies an approximation for inference, and hence 

prevents the intense computational requests, convergence, and combining issues 

sometimes faced by MCMC algorithms (Rue & Martino, 2007). It is only 

implemented for latent Gaussian models, but this includes the class of models that we 

consider here for species distribution (for example, logistic regression). Moreover, 

when the interest lies in a continuous spatial phenomenon, for which realizations are 

obtained at discrete locations, R-INLA can be coupled with the stochastic partial 

differential equations (SPDE) approach (Lindgren et al. 2011) which performs 

discretization of the underlying continuous Gaussian field. This is the case of 

environmental inventories, which are typically characterized by clustered spatial 

patterns, and at the same time record large regions with absences. Jointly, these 

statistical approaches and their implementation in R allow researchers to fit intricated 

spatio-temporal models considerably faster and more reliably (Rue et al. 2009), due 

to the characteristics of this approach. 

The aim of this paper is to build spatial and spatio-temporal models to predict 

the distribution of four different species present in the Spanish Forest Inventory. We 

want to compare the different models and show how accounting for dependencies in 

space and time affect the relationship between species and environmental variables. 

We will work with real data on four species of trees obtained from forest inventories 

developed in Galicia as part of the National Inventories 1970–2010, supported with 

environmental variables. In particular we consider the II (1980’s), III (1990’s), and 

IV (2000’s) inventories. For these species we have their presence/absence at specific 

geographical coordinates, and we generate SDMs for each species. We specify a 

Bayesian hierarchical geostatistical modeling structure accounting for the spatial 

dependency. 

Other studies have been developed to understand species distribution through a 

Bayesian approach using INLA, i.e., (Beguin et al. 2012) analyzing the spatial 



 

103 
Assessing the Spatial and Spatio-Temporal Distribution of Forest Species via Bayesian 

Hierarchical Modeling 

distribution of caribou, or (Dutra et al. 2017) analyzing the presence of invasive 

species and shrubs in Azores. One of the most interesting differences for our case is 

the temporal approach, as we work with data from three different inventories.  

2. Materials and Methods  

Our main data source was the Spanish National Forest Inventory (NFI) dataset, 

which comprises a systematic grid with 91,889 plots, each of which is 0.2 ha in size, 

collecting data every 10 years. In our case, we worked only with the Galician dataset, 

which has had three completed Forest Inventories since 1970. The following tree 

species are present in the different National Inventories: Pinus sylvestris L., P. 

uncinate Ram., P. pinea L., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. 

canariensis C. Sm., P. radiata D. Don, Abies alba Mill., Quercus robur L./Q. 

petraea (Matt.) Liebl, Q. pyrenaica Chips./Q. pubescens Willd./Q. humilis Mill., Q. 

faginea Lam./Q. canariensis Willd., Q. ilex L., Q. suber L., Alnus glutinosa (L.) 

Gaertn., Fraxinus spp., Populus nigra L./P. x Canadensis Moench, Eucalyptus 

globulus Labill., E. camaldulensis Dehnh, Olea europaea L., Ceratonia siliqua L., 

Castanea sativa Mill., Betula spp., Myrica faya Ait./Erica arborea L., Fagus 

sylvatica L., and Juniperus spp. The data provided by the National Inventory 

included the presence/absence of species. 

We chose the following four species from the Spanish National Inventory 

according to their characteristics, usage, and distribution in the Spanish Peninsula, 

and more specifically in Galicia: 

2.1. Abies alba Mill. 

Silver fir (A. alba) is a huge evergreen tree located in central Europe, and in 

some parts of southern and eastern Europe. It is one of the largest tree species of the 

genus Abies in Europe. This species is considered to be a significant ecological and 

efficient balancer of European forests, and an essential species for preserving high 

biodiversity in forest ecosystems. Its future distribution is subject to debate between 

palaeoecologists and modelers, with contrasting climate-response forecasts (San-

Miguel-Ayanz et al. 2016). 
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2.2. Castanea sativa Mill. 

The sweet chestnut is the single natural species of the genus in Europe. 

Extensive dispersion and active management caused the establishment of the species 

at the boundaries of its prospective ecological range. For this reason, it is difficult to 

trace its original natural area. In Europe, chestnut forests are mainly concentrated in a 

few countries such as Italy, France, Spain, and Portugal. This species has an 

extraordinary multipurpose nature, and can be managed for timber production, for 

chestnut production, and also for a broad range of secondary products and ecosystem 

services (San-Miguel-Ayanz et al. 2016). 

2.3. Pinus pinaster Ait. 

The maritime pine is a widespread medium-size tree native to the western 

Mediterranean basin. This pine dwells well in temperate-warm locations, from coasts 

to high mountains. It does not tolerate shade. Due to its undemanding behavior, salt 

spray tolerance, and fast growth, it has been used for soil protection, reforestation of 

degraded areas, and dune stabilization as shelterbelts and also in intensive 

plantations. The maritime pine has been also traditionally utilized for the extraction 

of resin for turpentine and rosin. In the Southern Hemisphere, where maritime pine 

has been introduced for environmental and economical purposes, it has been 

considered as a highly invasive species (San-Miguel-Ayanz et al. 2016). 

2.4. Quercus robur L. 

Pedunculate oak is a common deciduous tree species in Europe, found from the 

north (Scandinavia) to the southwest (Spain and Portugal). This genus has cultural 

importance for people through Europe, and the trees or leaves are commonly used in 

national or regional emblems. This genus can live several centuries and grow to 

about 40 m in height. The wood from oaks is strong and robust, and has been valued 

for centuries. It is preferred for structures, and also for barrels (to contain wine and 

spirits); overall, it was a main source of ship timbers. Currently, acute oak decline is 

one of the biggest concerns faced by this genus (San-Miguel-Ayanz et al. 2016). 
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2.5. Environmental Variables 

We have used the following variables to elaborate our models: mean annual 

temperature, mean of the maximum temperatures of the warmest month, mean of the 

minimum temperatures of the coldest month, and mean annual rainfall, calcareous 

soil and elevation. 

The environmental variables used in this analysis were obtained from [Herrera 

et al. 2012, Herrera et al. 2016), and are those typically considered in this type of 

studies: mean annual temperature, mean of the maximum temperatures of the 

warmest month, the mean of minimum temperatures of the coldest month, and mean 

annual rainfall. We also considered the distribution of the calcareous parent materials 

as a useful predictor of plant species distribution in our study area (Gastón et al. 

2009). We used the European Soil Database (Van Liedekerke et al. 2006) to assign 

each plot to a parent material class. All of the values were related to the data points. 

In each data point, we have obtained all the environmental variables apart from the 

presence/absence of the species and coordinates (X, Y, Z). 

We can see the summary of the different meteorological variables (mean annual 

temperature, mean of maximum temperatures of the warmest month, mean of 

minimum temperatures of the coldest month, and mean annual rainfall) below 

(Figure 1). As we can see, there are no large fluctuations between the three 

inventories. 
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Figure 1. Boxplot summary of meteorological variables during the 

different inventories. From top to bottom: mean annual rainfall (Ppr) in 

mm; mean annual temperature (Tas) in °C, mean of the maximum 

temperatures of the warmest month (tas MAX) in °C, mean of minimum 

temperatures of the coldest month (tas MIN) in °C. 

On the other hand, the presence of the different species varied among the 

different inventories: three of the species analyzed showed a decrease in the presence 

in the III inventory, while A. alba was almost constant across time (Table 1).  
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Table 1. Percentage of presences of the different species in Galicia during 

the three inventories. 

Inventory Abies alba 

Mill. 

Castanea sativa 

Mill. 

Pinus pinaster 

Ait. 

Quercus robur 

L. 

II (1980s) 1% 26% 51% 51% 

III (1990s) 2% 15% 38% 40% 

IV (2000s) 1% 35% 46% 59% 

2.6. Spatial Model 

Spatial data are described as realizations of a stochastic process indexed by 

space:  

Y(s)  ≡  {y(s), s ϵ D}, (1) 

where D is a (fixed) subset of R
d
 (here we consider d = 2). The actual data can be 

then represented by a collection of observations y = {y(s1), ..., y(sn)}, where the set 

(s1, ..., sn) indicates the spatial units where the measurements are taken. Depending on 

D being a continuous surface or a countable collection of d-dimensional spatial units, 

the problem can be specified as a spatially continuous or discrete random process, 

respectively (Gelfand et al. 2006). In our case, we can consider a collection of data 

points with their presence/absence obtained from the inventory, and the sampled 

points being the set (s1, ..., sn) of n points; ys is the presence of each species in each 

point, and it is specified as:  

ys ~ Bernoulli(πs) (2) 

where πs is the probability of the species being present.  

Then, on the logit(πs) a linear model is specified including the different 

covariates, xms (Temperatures, precipitation, soil and elevation) and a spatial field ξs: 

𝐥𝐨𝐠𝐢𝐭 (𝛑𝒔) = ∑ 𝛃𝒎 𝐱𝐦𝐬 +  𝛏𝐬,𝑴
(𝐦=𝟏)   (3) 

where M is the number of parameters, and a discretely indexed spatial random 

process (see Lindgren et al. 2011) is included to approximate the continuous process:  
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𝛏𝒔 = ∑ 𝛗𝐠 (𝐬)𝛏𝐠,
𝑮

(𝐠=𝟏) 
  (4) 

where G is the total number of vertices of the triangulation. 

In practice, the discretization is done dividing the study region in triangles, and 

writing ξs as a linear combination of basis functions φg weighted by some zero means 

terms ξg (for more details see Blangiardo & Cameletti, 2015). 

The vector 𝛏̃ = {ξ1, ..., ξG} can be modeled as a Gaussian Markov Random Field 

with a structured covariance function of the distance. 

2.7. Spatio-Temporal Model 

The concept of the spatial process can be extended to the spatio-temporal case, 

including a time dimension. The data are then defined by a process:  

Y(s,t)  ≡  {y(s,t), (s,t) ϵ D ⊂ R
2 
× R }, (5) 

As we define in the spatial model, we can consider a collection of data points 

with presence/absence obtained from the inventory and the sampled points are the set 

(s1, ..., sn) of n points; yst is the species presence at each point in space and time, 

specified as: 

yst ~ Bernoulli(πst), (6) 

where πst is the probability of the species being present.  

Then, on the logit(πst) a linear model is specified including the different 

covariates, xms (Temperatures, precipitation, soil and elevation) and a spatio-temporal 

field ωst: 

𝐥𝐨𝐠𝐢𝐭 (𝛑𝒔𝒕) = ∑ 𝛃𝒎 𝐱𝐦𝐬 +  𝛚𝐬𝐭,
𝑴
(𝐦=𝟏)   (7) 

where ωs𝑡 refers to the latent spatio-temporal process that changes in time with 

autoregressive dynamics and spatial correlation innovations, which we model as 

follows: 
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ωst = aωs(t−1) + ξst, 
(8) 

with t = 2, …T, |a| < 1 and ωs1~Normal (0, σ
2
/(1 − a

2
)). ξst, is a zero-mean Gaussian 

field that is temporally independent with the following spatio-temporal covariance: 

Cov(ξst,ξju) = {(0, t ≠ u; Cov(ξs,ξj), t = u), (9) 

for s ≠ j, where Cov(ξs,ξj) is modeled through the Matern spatial covariance function 

(Lindgren et al. 2011).  

2.8. Implementation 

We have used the Integrated Nested Laplace Approximation (INLA) 

implemented in R-INLA within the R statistical software.  

The R-INLA package solves models using INLA, which is an approach to 

statistical inference for latent Gaussian Markov random field (GMRF). The 

approximation is divided in three stages. The first stage approximates the posterior 

marginal of θ using the Laplace approximation. The second stage calculates the 

Laplace approximation, or the simplified Laplace approximation, of π(xi|y,θ), for 

selected values of θ, in order to improve on the Gaussian approximation. The third 

process combines the previous two using numerical integration (Rue et al. 2009). 

In R-INLA, the first step needed to process the geostatistical spatial model 

through SPDE, is the triangulation of the spatial domain of the study. We have used 

inla.mesh.create providing the spatial coordinates used for estimation. This function 

executes a constrained refined Delaunay triangulation for a set of spatial locations: 

firstly the vertices of the triangles are placed at the observation coordinates, and then 

additional vertices are added, in order to satisfy triangulation quality constraints 

(Lindgren et al. 2011). Depending on the values selected for the arguments of the 

function, the total number of vertices changes, with a trade-off between the accuracy 

of the spatial field representation and the computational and time costs. 
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Given the mesh, we create the SPDE model object, to be used later in the 

specification of the final expression in our case, the different spatial and spatio-

temporal models.  

We consider now the triangulation of National Inventories using the 

inla.mesh.create(.)function. The function subdivides the region in the triangles, 

placing the initial vertices at the 2000 station locations and adding 1328 additional 

vertices (see Figure 2). 

 

 

Figure 2. The National Inventory region triangulation with the extended 

boundary. Blue dots are the monitoring stations and the black bold line 

represents the region border. 

  



 

111 
Assessing the Spatial and Spatio-Temporal Distribution of Forest Species via Bayesian 

Hierarchical Modeling 

3. Results 

In this section we show how each of the four species previously described has 

evolved in different ways during the last 30 years. Note that we present the maps of 

the posterior mean of the spatial field from the spatial model, as this model represents 

better the evolution of the different species. 

3.1. Abies alba 

As we can see in Figure 3, A. alba started being located in the western and 

southwestern area of Galicia. As time passes, it moves to the northern part and 

expands in the later years to occupy the western and northern part of the region. This 

pattern could be explained by the fact that this species does not tolerate high 

temperatures, and the southeast of Galicia is characterized by high temperatures 

during the summer, so the introduction of this species in this area should be avoided. 

 

Figure 3. Maps of the posterior mean of the spatial field from the spatial 

model of A. alba, II, III, and IV forest inventories (coordinates in m.). 

As we can see in Figure 4, A. alba did seem to be affected by the environmental 

variables in a different way, depending on the time (inventory) and model (spatial vs 

spatio-temporal). In the first instance, we could see that all the variables, except the 

soil characteristics, have the same behavior in all the different models, with small 

negative point estimates, but with credibility intervals excluding zero. On the other 
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hand, Soil showed a larger point estimate, but with an interval including zero, which 

was narrower in the spatio-temporal model. 

 

Figure 4. Boxplot diagram for the posterior estimates of the covariates for 

A. alba models: Spatial model II inventory (SpII); Spatial model III 

inventory (SpIII); Spatial model IV inventory (SpIV); Spatio-temporal 

model (SpT).  

3.2. Castanea sativa 

This species is less clustered than the previous one, being mostly present in the 

central and northern parts of the region at the beginning of the period considered; as 

time passes, its presence becomes more pronounced (III inventory), but it becomes 

scattered across the whole Galicia during the last inventory (see Figure 5). 
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Figure 5. Maps of the posterior means of the spatial field from the spatial 

model of C. sativa, II, III, and IV forest inventories (coordinates in m.). 

This species showed a different relationship with the environmental variables if 

we analyzed the different models (see Figure 6 below). In the spatio-temporal model, 

the average annual temperature was the most important variable, followed by the 

temperatures of the coldest and warmest months. Also, in the spatial models, the type 

of substrate was an important variable followed by the temperatures. This could be 

explained by the adaptability of this species to the substrate: it generally preferred 

siliceous substrate, but it could be present also in certain calcareous soils if there 

were optimum conditions. Also, in this case, we could see different variables 

behavior between spatial and spatio-temporal models. Looking at the Elevation, in 

the II and III inventories, all the values in the credible interval were positives, but 

then in the IV inventory and in the spatio-temporal model, there were negative and 

positive values. If we compared the credible intervals for the remaining variables 

(Soil, Precipitation, Temperature, Maximum emperature, and Minimum 

Temperature), we can see similar behaviors in the spatial models with negative and 

positive values. Moreover, the spatio-temporal model showed that Soil has a similar 

performance than the spatial models, while the other variables show differences. 

Precipitation and Temperature show positive values in the credible interval, with 

values close to zero in Precipitation; Max and Min Temperature showed negative 

values in this interval. These results suggest that this species is affected positively by 

the temperature, but extreme temperatures can also affect its presence. 
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Figure 6. Boxplot diagram for posterior estimates of the covariates for C. 

sativa models: Spatial model II inventory (SpII); Spatial model III 

inventory (SpIII); Spatial model IV inventory (SpIV); Spatio-temporal 

model (SpT). 

3.3. Pinus Pinaster 

This species shows similarities with C. sativa: it starts with a low presence, then 

it becomes present in the whole area of analysis, but in this case, the posterior mean 

in inventory IV shows that this species becomes concentrated in the southern area, 

with low presences in the interior (see Figure 7). 
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Figure 7. Maps of the posterior mean of the spatial field from the spatial 

model of P. pinaster, II, III, and IV forest inventories (coordinates in m.). 

Moreover, as we can see in Figure 8 below, not only temperatures, but also soil 

characteristics (calcareous) are very important in the different models for this species; 

we could see interesting differences between the spatial and the spatio-temporal 

models: in the latter, Temperature (average) positively affected the presence of the 

species, and extreme values (Maximum and Minimum), participated negatively. On 

the other hand, in spatial models, the most important variable was that the type of 

soil, followed by Temperatures in III and IV inventory. This species had a similar 

behavior to the previous one. Elevation and Soil had similar credible intervals in 

spatial and spatio-temporal models, while there are some differences in the other 

variables. Looking at Precipitation, in spatial models, the credible interval had 

positive and negative values, but only positive values were represented in the spatio-

temporal model. Finally, the Temperature variables (average, maximum and 

minimum), had positive and negative values in the credible interval for the II and III 

inventories, but in the IV inventory and spatio-temporal model, all the values were 

positive in the average, and negatives in Max. and Min. 
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Figure 8. Boxplot diagram for the posterior estimates of the covariates for 

P. pinaster models: Spatial model II inventory (SpII); Spatial model III 

inventory (SpIII); Spatial model IV inventory (SpIV); Spatio-temporal 

model (SpT). 

3.4. Quercus robur 

This species showed an increasing presence in Galicia. During the third 

inventory, it was present in almost all of the areas, except the southeastern area (see 

Figure 9). 
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Figure 9. Maps of the posterior mean of the spatial field from the spatial 

model of Quercus robur, II, III, and IV forest inventories (coordinates in 

m.). 

As can see in Figure 10, the variables in Q. robur have a similar behavior to C. 

sativa, except in the IV inventory model, where the calcareous soil had a very 

important part in the species distribution. As we have seen in most of the other 

species, Elevation had similar credible intervals in all the different models, in this 

case, always showing positive values that were close to zero. As we have seen in C. 

sativa, the rest of the variables had similar performances in the spatial models and 

different performances in the spatio-temporal model (except the Max. Temperature, 

with similar credible intervals in all the models). All the variables had 95% credible 

intervals, including zeros in the spatial models, while the spatio-temporal model 

showed positive values in Min. Temperature and negative values in the Soil, 

Precipitation, and Temperature. 
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Figure 10. Boxplot diagram for posterior estimates of the covariates for Q. 

robur models: Spatial model II inventory (SpII); Spatial model III 

inventory (SpIII); Spatial model IV inventory (SpIV); Spatio-temporal 

model (SpT). 

3.5. Summary 

As we can see in Table 2, most of the species show different relationships with 

environmental and climatic variables between the spatial and spatio-temporal models. 

The positive symbol (+) summarizes a positive relationship between the variable and 

the presence; the negative symbol (−) represents the opposite; Rn does not show a 

clear relationship with a credible interval with the positives and negatives values. 

Also, if we generalize, species with more presences (see Table 1) show larger 

differences between models. Also, if we analyse the results from spatial to spatio-

temporal models, typically variables not showing a clear effect become positively or 

negatively associated with presence, depending on the species and the variable. 
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Table 2. Posterior estimates summary. Comparison between variables and 

presence of different species in spatial (Sp) and spatio-temporal (Sp-T) 

models (+) represents a positive relationship, (−) a negative relationship, 

and (Rn) not a clear relationship. 

 

Abies alba Castanea sativa Pinus pinaster Quercus robur 

Sp Sp-T Sp Sp-T Sp Sp-T Sp Sp-T 

Elevation − − Rn Rn + + + + 

Soil Rn Rn Rn Rn Rn Rn Rn − 

Precipitation − − Rn Rn Rn + Rn − 

Temperature − − Rn Rn Rn + Rn − 

Max. Temperature − − Rn − Rn − Rn Rn 

Min. Temperature − − Rn − Rn − Rn − 

An usual way to estimate out-of-sample prediction error is cross-validation (see 

(Geisser & Eddy, 1979, Vehtari & Lampinen, 2002)) for a Bayesian approach), but 

scientists have always looked for alternative methods, as cross-validation involves 

repeated model fits and it can run into trouble with sparse data (Gelman at al. 2013). 

When the aim is model comparison, the most common index is the DIC 

(Spiegelhalter et al. 2003, Van del Linde, 2005), which, in the same way to the 

Akaike information criterion AIC involves two components, a term that measures the 

goodness of fit, and a penalty term for growing model complexity. More recently, the 

Watanabe-Akaike information criterion WAIC (Watanabe, 2010) has been suggested 

as an appropriate alternative for estimating the out-of-sample expectation in a fully 

Bayesian approach. This method starts with the calculated log pointwise posterior 

predictive density, and then adds a correction for the effective number of parameters 

to adjust for overfitting (Gelman at al. 2013). WAIC works on predictive probability 

density of observed variables rather than on model parameter; hence, it can be 

applied in singular statistical models (i.e., models with non-identifiable 

parameterization, see (Li et al. 2016).  

We have also considered the conditional predictive ordinate (CPO) [74] to 

perform model evaluation. The conditional predictive ordinate (CPO) is established 

on leave-one-out cross-validation. CPO estimates the probability of observing a 
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value, after having already observed the others. The mean logarithmic score (LCPO) 

was calculated as a measure of the predictive quality of the model (Gneiting & 

Raftery, 2007, Roos & Held, 2011). High LCPO values indicate possible outliers, 

high-leverage, and influential observations. 

In Table 3, we can see the summary of the WAIC and LCPO values obtained in 

the different models for each species (spatial and spatio-temporal models); this shows 

that, looking at the WAIC, most of the species have a better fit for the spatio-

temporal model with vegetation (except C. sativa), also looking at LCPO spatial 

model has more outliers than spatio-temporal models. 

Table 3. Watanabe-Akaike information criterion (WAIC) and logarithmic 

score of conditional predictive ordinate (LCPO) comparison in spatial (Sp) 

and spatio-temporal (Sp-T) models. 

 

Abies alba Castanea sativa Pinus pinaster Quercus robur 

Sp Sp-T Sp Sp-T Sp Sp-T Sp Sp-T 

WAIC 15.54 12.73 5.435 10.629 4.621 3.385 9.676 1.837 

LCPO 1.531 1.251 2.327 2.986 3.725 2.327 2.382 1.965 

Summarizing the computational costs of performing the different models, all the 

models were executed from the same terminal (laptop Core i7 with 12 GB RAM). 

Spatial models need between 10 and 30 min to obtain the results. However, spatio-

temporal models need between 5 and 12 hr to finish the process.  

4. Conclusions 

We have built spatial and spatio-temporal models to predict the distributions of 

four different species present in the Spanish Forest Inventory. We have compared the 

different models and show the relationship between species and environmental 

variables. We have shown that this relationship changes between spatial and spatio-

temporal models. Most of the spatial models show a vague relationship with the 

environmental variables, which becomes more clear when we analyzed all of the time 

series when developing the spatio-temporal model. Also, we have shown how the 
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species evolve in space along time, changing their distributions between the II to the 

IV inventory. 

Initially our aim in this project was to apply these models to the whole of Spain, 

assuming that the spatial continuity is essential to understand species distribution. 

However due to technical issues, we were not able to finalize this. Currently not all 

the data from the last inventory are available for all the provinces, and also some of 

the areas have different reference systems to locate the parcels. Another problem was 

the computational cost; the available resources were not powerful enough to work 

with this data volume (more than 90,000 points per inventory). 

There are interesting differences between spatial and spatio-temporal models for 

the different species. As we have shown, not all the same variables have the same 

weight in the different models. 

Several factors can affect spatial distribution of species. Environmental factors 

are not the only variables that can affect this distribution, but socioeconomic factors, 

policies, and management criteria can also be important agents that have different 

impacts in the species presence. 

Analysing the models, we can affirm that the use of spatio-temporal models is 

an advantage for the understanding of the different ecological dynamics, given the 

the temporal perspective is not very frequent in environmental research projects. 

We have analyzed the credible interval of the different variables in order to 

understand the relationship between the environmental variables and species 

presence. We can see that some variables change their “weight” depending of the 

inventory, and several variables also have the same behavior in all the inventories, 

and also along the spatio-temporal model.  

Summarizing, we can generalize that permanent and theoretical inalterable 

variables have similar performances in spatial and spatio-temporal models, showing a 

similar relationship between the presence of species and these variables along time. 

Moreover, species presence does not always have a similar relationship with “non 

static” variables. This relationship is changing, not only due to changes in 

environmental factors, but also based on species management and possible human 

disturbances. 
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Spatio-temporal models and the R-INLA package appear to offer additional 

benefits beyond the common SDM or spatially-explicit modeling. The combination 

of using a complex spatial latent field to capture spatial processes and an underlying 

simple additive regression model for the response variables relationship to 

environmental factors, means that the fixed effects are potentially more 

straightforward to interpret (Goldin & Purse, 2016). Another benefit of a Bayesian 

approach is the capture of uncertainty for each predicted value, with predictive 

uncertainty being an often ignored aspect of SDM modeling and prediction. R-INLA 

models are extremely flexible in their specifications, with spatial autocorrelation and 

observer bias being straightforwardly incorporated as random effects, while standard 

error distributions, such as Gaussian, Poisson, binomial, and a variety of zero-inflated 

models, can be used interchangeably (Rue et al. 2009). This method, therefore, has a 

built-in potential for extending SDM analysis away from simple binomial models by, 

for example, incorporating two or more types of data (Warton et al. 2015), 

hierarchical seasonal models (Redding et al. 2016), or fitting point-process models 

(Renner & Warton, 2013). We hope that our research will aid in the uptake of such 

fast spatial Bayesian methods, as this approach shows great promise for other 

analyses in ecology.  
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